
BUILDING FEDERATED BIOINFORMATICS DATABASES USING WEB SERVICES

by

CARY MARCUS PENNINGTON

(Under the Direction of John A. Miller)

ABSTRACT

Laboratories around the world continue to generate massive amounts of genomic

and functional genomic data. Access to these data resources via Federated Databases

through the Web is an important emerging technology. Federated databases allow

several databases to be integrated while not discarding existing databases or losing

local control over the administration of the databases. In order to achieve this desirable

goal, technology needed to emerge to handle the heterogeneity and local autonomy of

distributed database systems. Web service technology, including semantic Web service

technology, provides a new opportunity to make federated databases a practical reality.

This thesis presents architecture and an implementation to build federated databases

using Web services. In particular, it demonstrates how Web service technology can

provide the flexibility to create a dynamic federation of databases with sufficient

abstraction to maintain the autonomy of the component systems and robustness to

handle the heterogeneous nature of the disparate databases. A case study is

conducted that involves federating six existing bioinformatics databases, CryptoDB,

GiardiaDB, PlasmoDB, ToxoDB, TrichDB and TryTrypDB, to create the EuPathDB

(formerly ApiDB) federated database.

INDEX WORDS: Web Services, Data Integration, Database, Federation, Bioinformatics

BUILDING FEDERATED BIOINFORMATICS DATABASES USING WEB SERVICES

by

CARY MARCUS PENNINGTON

B.S., Furman University, 1998

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial
Fulfillment

Of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA
2009

© 2009

Cary Pennington

All Rights Reserved

BUILDING FEDERATED BIOINFORMATICS DATABASES USING WEB SERVICES

by

CARY MARCUS PENNINGTON

Major Professor: John A. Miller

Committee: Eileen Kraemer
Jessica C. Kissinger

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2009

	
 iv	

ACKNOWLEDGEMENTS

I would like to thank Dr. John Miller and Dr. Eileen Kraemer for their patience and help

with this thesis. Also Cristina Aurrecochea, Steve Fischer, Xin Gao and Dr. Jessica C.

Kissinger for their support of my work on the EuPathDB Project.

I also want to thank my family for their help and patience while I completed this

milestone of my education.

	
 v	

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS.. iv

LIST OF TABLES ... vii

LIST OF FIGURES...viii

CHAPTERS

1 INTRODUCTION..1

2 BACKGROUND..6

 2.1 Database Federation..6

 2.2 Federated Databases in Bioinformatics ...8

 2.3 Web Services ...11

 2.4 Web Services in Bioinformatics..13

3 MOTIVATION ...16

 3.1 EuPathDB Project ..16

 3.2 History of EuPathDB and Problems ...20

4 ARCHITECTURE ...22

 4.1 Web Services Federation ...22

 4.2 Case Study: EuPathDB Architecture..26

 4.3 Incorporation of Outside Databases...33

 4.4 Supporting Workflows ..35

5 EVALUATION...38

	
 vi	

6 CONCLUSIONS AND FUTURE WORK...42

BIBLIOGRAPHY...45

APPENDIX A: IMPLEMENTATION DETAILS OF EUPATHDB WEB SERVICES.........49

APPENDIX B: API DOCUMENTATION ...52

	
 vii	

LIST OF TABLES

Page

Table 1: Approaches to Implementing Web Service Integration23

Table 2: Maintenance Comparison For EuPathDB Project ..32

	
 viii	

LIST OF FIGURES

Page

Figure 1: Basic Layout of Federation System ..7

Figure 2: Screen Shot of EuPathDB.org Home Page ..16

Figure 3: Primary Key Query Architecture At a Component Site18

Figure 4: PlasmoDB SQL Listing of GenesByMetabolicPathways.................................19

Figure 5: ToxoDB SQL Listing of GenesByMetabolicPathways.....................................19

Figure 6: Architecture of EuPathDB Federation ...28

Figure 7: Data Mediation ..34

Figure 8: Search Strategy System on EuPathDB.org ..37

Figure 9: Listing of invokeEx() Function ...49

Figure 10: Listing of execute() Function ...50

	
 1	

Chapter 1

Introduction

Data are a critical part of any software system and the storage of data is a topic

that all system designers must consider. Today, data are being created at a rapid pace.

Industries like medicine that formerly relied on paper charts for documentation and film

for evidence are turning to electronic versions of these data. Genetics has seen a

similar explosion in data generated through advancements in sequencing technology.

As these massive amounts of data are gathered, they are stored in databases that are

usually associated with the people that gathered that information. This is very useful to

the curators of the information; however, it would be ideal for that information to be

available to others to further their work as well. To gain access to all of this data, often

researchers must access multiple databases, then collect and analyze the information

to find the evidence they need to carry out their work. This can be an error prone and

time-consuming process. The goal of federated database systems is to consolidate

these data into a single, logical unit that can be accessed by an individual or computer

system to obtain data. Note, this is a “logical” unit as opposed to a physical unit. Data

are not being moved or copied to the federating system for purposes of storage; though,

data could be duplicated in the name of performance or reliability. The primary

advantage of federation is that the data are kept in their original location and continue to

be curated by the personnel that know the data best.

	
 2	

A federation is the transparent integration of multiple data sources into a single

logical resource. These resources can have different schema, different locations, and

different semantics (Sheth and Larson, 1990). Each of these differences creates a new

problem for the federation system to handle. These problems have been more formally

described with the following terms: autonomy, distribution and heterogeneity. According

to (Sheth and Larson, 1990), there are four types of autonomy.

• Design autonomy: Local databases can choose the data model, query language,

attributes, etc. for their system.

• Communication autonomy: Local databases decide on their own when and how

to communicate with other components of the federated database system.

• Execution autonomy: Execution of local operations/transactions will not be

influenced by external operations.

• Association autonomy: Local databases can decide how much of their

data/functions/operations to share with other components of a distributed

database (Sheth and Larson, 1990).

Preserving these autonomies will ensure that the local application of the

component databases is left undisturbed by the federation. Heterogeneity is another

challenge for federated databases. Two types of heterogeneity standout: Structural and

Semantic. Structural heterogeneity describes differences in schema, query language,

transaction protocol, and database type (relational, object-oriented, or object-relational).

The most accepted approach for solving schema heterogeneity is global view/schema

integration; that is, mapping local schemata to a single global schema. However,

creating a global schema that is accurate, flexible and concise is a difficult task made

	
 3	

more difficult by the existence of semantic heterogeneity. Semantic heterogeneity

defines the idea that different meanings can be attached to the same term in different

systems. Ontologies are an appropriate solution for handling this type of heterogeneity.

Ontology is a form of knowledge representation that formally describes objects and the

relations between them (Gruber, 1991). In the biological community, many ontologies

already exist including the Gene Ontology (GO: http://www.geneontology.org/) which

provides a controlled vocabulary to describe gene and gene product attributes in any

organism, the Sequence Ontology (SO:http://www.sequenceontology.org/) which aims

to develop an ontology suitable for describing biological sequences, and the Open

Biological Ontologies (OBO: http://obo.sourceforge.net/#rel) which is an umbrella Web

address for well-structured ontologies used across different biological domains.

Compared with other integration approaches, such as data warehousing,

federated databases provide a flexible and robust solution to these problems (Wang et

al., 2009). Furthermore, several implementations of federated databases were

compared and it was found that Web services were competitive in performance while

providing a very flexible solution (Wang et al., 2009).

For these reasons, we decided to use federated database strategies to

accomplish our goals within the EuPathDB (eupathdb.org) bioinformatics project

(Aurrecoechea et al., 2007). EuPathDB is a project funded under contract from the

National Institutes of Health (NIH). It is charged with creating bioinformatic resources to

aid scientists in their research of eukaryotic pathogens. The EuPathDB project currently

consists of 6 database-driven Web sites, which represent 21 different eukaryotic

parasites. These species include Toxoplasma gondii and Plasmodium faliciparum that

	
 4	

cause toxoplasmosis and malaria, respectively. Along with these sites, there is the

EuPathDB.org site, which is a portal to access the component sites. This portal is the

subject of a case study in this thesis. With this system in place, EuPathDB has

expanded from servicing 3 sites to 6. This portal not only provides the communities with

a single URL to access all the data within the EuPathDB projects, but also allows the

researchers to mine data by asking questions across all of the sites to discover cross

species relationships. Researchers worldwide use the EuPathDB resources to study

the pathogens they represent in an effort to develop more effective therapeutics and

advance basic research.

As one would expect, the above-mentioned problems of heterogeneity and

autonomy presented themselves in this project. Since the component databases were

already in active use, we needed a means to integrate them without interfering with their

current functionality and management. Though all the component sites are based on a

single schema, the Genomic Unified Schema (GUS), the differing ways in which the

schema was applied and naming inconsistencies forced us to confront many of the

challenges of federating databases. The use of Web services to implement the

federation puts the responsibility regarding how a database represents its data in the

hands of the people who know that data best, but restricts them to providing an

interface with which the federation system can communicate. Local administrators are

free to configure and use their systems as they see fit, with the only constraint being

that they maintain a stable and abstract implementation of the interface provided by the

federation. Web service federation aligns the incentives of all the parties involved so

that a comprehensive database federation system is possible.

	
 5	

This thesis will describe a novel approach to implementing a Web service based

federation system. Chapter 2 will provide some background information including other

work that has been done in this field and how our project relates. In chapter 3 the

motivation for the project will be discussed. Chapter 4 will describe the details of this

approach to federated databases and explain the implementation that is being used on

the EuPathDB.org site. Chapter 5 will evaluate the benefits and disadvantages of this

system and chapter 6 will provide the conclusions that were drawn from this work.

	
 6	

Chapter 2

Background

2.1 Database Federations

Database federation was an idea coined by Hammer and McLeod in 1980

(Hammer and McLeod, 1980). A database federation is created through the transparent

integration of multiple autonomous databases into a single, logical system (Sheth and

Larson, 1990). These systems are composed of a federation system, or mediator, and

component systems. Figure 1 shows the connections between these systems in a

basic database federation. It is important to note that the links in the image represent

live connections or the ability to make a live connection to the database and that the

component systems are not identical type systems. Such systems should provide data

abstraction to a point that the user of the federated system will view the data as being

from a single source. Also, since the constituent databases are autonomous systems,

the management system and query languages are not guaranteed to be the same

(Sheth and Larson, 1990). Thus the system must decompose queries and translate

them into the native query language of the component system. These issues lead us to

the three major problems that must be solved by a federated database management

system: Heterogeneity, both structural and semantic, Distribution and Autonomy (Sheth

and Larson, 1990).

	
 7	

Figure 1: Basic Layout of Federation System

Heterogeneity is the concept that the data, though related, are not guaranteed to

be stored in the same manner on all data sources. In one system, data could be in a

weakly structured textual format, in a semi-structured document (like XML) or in a well-

structured database management system. Even well structured databases can store

equivalent data according to differing schemas. We will refer to this type of

heterogeneity as structural heterogeneity. It is the difference in the manner in which the

data is stored. Different media or differing table structures in a Database Management

System (DBMS) pose the same problems. They both make it difficult for an outside

system to interact with data without intimate knowledge of the system housing the data.

Semantic heterogeneity is another type of heterogeneity that poses a challenge to

federation. As noted above, semantic heterogeneity is the idea that identical terms

could have very different meanings. Even in systems that are in the same domain,

terms and definitions will not always match.

	
 8	

Distribution is another topic for a federation system to cover. The fact that the

involved systems are not located in close proximity adds to the federation’s complexity.

This physical separation makes maintenance a challenge that is exacerbated by

communication issues amongst the individuals responsible for that maintenance. As

systems are altered or updated in the name of maximizing up time, the impact on a

distributed integration project is often overlooked.

Autonomy is defined as the ability for an individual to make a rational, non-

coerced decision. This applies to our database systems as well. The federating system

knows less about the constituent data and thus should allow for local control over all

administrative features of the local data.

2.2 Federated Databases in Bioinformatics

Despite the above challenges, federated systems are increasing in popularity for

integrating bioinformatics information systems partly due to the success of some high

visibility implementations (see below). Utilizing differing techniques, many organizations

have implemented database federations to provide access to their data. A few

examples of such systems are BioMart, Entrez, CytoScape, Galaxy and Neuroscience

Information Framework (NIF).

Entrez is a cross-database federated search mechanism implemented at

National Center for Biotechnology Information (NCBI). This system allows a global

query interface covering over 35 databases containing over 350 million records (Sayers

et al., 2009). Amongst theses databases are PubMed, PubMed Central, GenBank, and

Protein Database. The initial interface to Entrez is the global query interface where any

query is executed across all databases. Entrez extends the same simple query

	
 9	

interface to each of its component systems as well. A “Limit” feature is available to

allow results to be narrowed to a more manageable set (Sayers et al., 2009).

NCBI has also provided a programmatically accessible version of Entrez with the

Entrez Programming Utilities. These utilities are composed of eight applications

deployed on the Web that accept parameters for querying the databases in Entrez. The

“einfo” endpoint provides information about a given database. The “esearch” service

accepts a text query and returns the results of the query as identifiers that can be fed

into “efetch” or “esummary” to get detailed information about the records (Sayers et al.,

2009).

BioMart is a query-oriented system used to integrate disparate types of data.

BioMart was originally developed for Ensembl as EnsMart. EnsMart was developed as

a data warehouse for EBI’s and Sanger’s internal data along with some outside data-

sources. Since then it has developed into a generic data integration package known as

BioMart. BioMart consists of a package that can be installed to provide access to data

(Smedley et al., 2009). The same package can be used to provide access to local data

or remote data. The BioMart Central application, described later, is an example of

remote access through BioMart. Access is available through two main avenues:

MartView and MartServices. MartView is the web interface to the BioMart installation.

It allows a user to interactively build a query against any datasets that are available to

that BioMart installation. MartView also allows the query to be downloaded by the user

as XML to be used as input to MartServices. MartServices are RESTful and SOAP

based Web services (Smedley et al., 2009). Both implementations support having the

	
 10	

MartView XML POSTed to the service URL and will return the same results as the

MartView interface. This allows for distributed access to any BioMart installation.

BioMart consist of two main subsystems: QueryPlanner and Aggregator. The

QueryPlanner is responsible for accepting a query and breaking it down for distribution

to the appropriate component systems. If the planner detects credentials for a direct

connection to the database, then it will formulate SQL for the query and retrieve the

results. Otherwise, an XML request is built and the results are retrieved from the

remote system via a Web service implemented through the BioMart system. The

Aggregator receives the responses from the SQL and Web service queries and

combines all of the results into a single result. All columns are mapped to ‘exportables’

and all filters are mapped to ‘importables’. This abstraction hides the semantics of the

output columns, and thus allows the results of the component systems to be easily

combined (Smedley et al., 2009).

BioMart is mentioned here as an example of a distributed Federation system

though it still maintains a vast data warehousing aspect as a result of its origins as

EnsMart. BioMart provides an interface to allow standard access to the data within a

component database. This type of access makes data publicly available. It is this

public interface that has made BioMart such a popular choice.

Several other integration systems are using BioMart to integrate biological data in

different ways. CytoScape is one such system. CytoScape has developed a

visualization system that enables users to view relationships between entities

graphically. CytoScape is applicable to many fields, but is used in conjunction with

BioMart data sources to gather and display biological data.

	
 11	

 Galaxy is another example of a system that utilizes BioMart systems amongst

other data sources (Giardine et al., 2005). Galaxy is a portal system developed by

Penn State researchers in conjunction with a group from Emory University. Galaxy

provides a list of data sources that can be accessed from the Galaxy web interface.

The caretakers of these data sources have made modifications according to the Galaxy

API to link into the Galaxy system. A few examples of linked sites are UCSC, Flymine,

and BioMart. Galaxy also supports tools used to analyze data collected from these

disparate data sources (Giardine et al., 2005).

2.3 Web Services

A Web Service is defined by the World Wide Web Consortium (W3C) as “a

software system designed to support interoperable machine-to-machine interaction over

a network. It has an interface that is described in a machine-processable format. Other

systems interact with the Web service in a manner prescribed by its description using

SOAP-messages, typically conveyed using Hyper Text Transport Protocol (HTTP) with

an XML serialization in conjunction with other Web-related standards” (Haas and Brown

2004). Simple Object Access Protocol (SOAP) is an Extensible Markup Language

(XML) specification for message-based transactions over a network.

Web services are available in two implementations, RESTful and SOAP, both of

which are widely accepted in both academia and industry. Representational State

Transfer (REST) services are very lightweight services that allow for simple

implementation. These services are confined to only the standard HTTP operations of

GET, PUT, POST and DELETE. REST services work by binding methods within the

service to the HTTP operations. This simplicity is accomplished by standards like JAX-

	
 12	

RS, which handles the binding of JAVA code to the standard HTTP operations. Jersey

is a reference implementation of the JAX-RS standard (Hadley and Sandoz, 2009). For

example, to implement a Java class as a REST service, using JAX-RS, the developer

need only annotate the source code to indicate which methods are called on a given

operation. If a user accesses the service via the URL with a GET request, the method

that was annotated for GET is invoked. RESTful services require only a Web server to

be functional. SOAP services are also known as “big services”. This architecture got

this name from that fact that it requires more back-end infrastructure to support it. For

the remainder of this thesis, the term “Web service” will refer to SOAP-style services but

it could just as easily be applied to RESTful services. SOAP services utilize a stack of

standard protocols, known as WS-* to describe the interface used to interact with the

service, security, and constraints amongst other features.

The Web Service Description Language (WSDL) is a well-defined XML

specification that describes the service in sufficient detail that the reader of the file could

invoke it (Curbera et al., 2002). WSDL is the cornerstone and the container or

attachment point for most of the WS-* protocols. WSDL has a new flavor that is a

standard from W3C called Semantic Annotations for WSDL (SAWSDL). This standard

is based largely on work performed as a joint venture between IBM and the University of

Georgia. This work proposed a standard called WSDL-S which adds semantic

annotations to WSDL files from ontologies using “modelreference” attributes on

elements of the WSDL standard (Akkiraju, et al., 2005). Many features of WSDL-S

were adopted in the SAWSDL standard. SAWSDL allows similar annotations to provide

meaning to the terms in the WSDL file (Kopecky et al., 2007).

	
 13	

SOAP is the transport protocol for Web Services (Curbera et al., 2002). A SOAP

message contains header information for the routing message and the payload, which is

either the input or the output of the service as described in the WSDL file.

Universal Description, Discovery and Integration (UDDI) is a specification for a

registry that allows for Web services to be published. From here, others can discover

and download the WSDL for the published services. Information from the WSDL file is

used to invoke the service. (Curbera et al., 2002)

Many other standards exist to define attributes of Web services. WS-Policy, WS-

Addressing and WS-Transaction are only a few of the members of the WS-* protocol

stack that are used to further define and advertise a service.

Since Web services are publishable entities, they can be discovered (Aggarwal

et al., 2004). The METEOR-S project at the University of Georgia (Verma et al., 2005)

was designed and implemented to perform just such a function. Radiant is a software

package that offers a GUI for annotating WSDL files into WSDL-S or SAWSDL.

METEOR-S utilizes keyword and semantic searching of annotated and non-annotated

services to discover those that are compatible with the search criteria. Once the

services are found, WS-Policy can be used to establish which of the discovered

services are the “best” choices to be added to the federation. This discovery

functionality was implemented in the Lumina package (Li et al., 2004).

2.4 Web Services in Bioinformatics

With the growth in biological data, more database systems are beginning to offer

Web service based interfaces. Three such projects are described below. Each has

implemented Web services in a different way and to a different extent. In addition to

	
 14	

these three examples, the National Center for Biotechnology Information (NCBI),

European Bioinformatics Institute (EBI), and the DNA Data Bank of Japan (DDJB) have

implemented Web service access to their data.

KEGG (Kyoto Encyclopedia of Genes and Genomics) is a bioinformatics site

seeking to integrate 7 databases using a graph structure (Goto, 2000). These 7

databases are broken down into the Gene universe (comprised of the GENES, SSDB,

and KO databases), Chemical Universe (COMPOUND, GLYCAN, and REACTION

databases) and the Protein Network (PATHWAY database). KEGG provides an API,

which is a SOAP interface to query the KEGG system (Goto, 2000).

PathPort, which is short for Pathogen Portal, is a system designed and built at

the Virginia Bioinformatics Institute to provide analysis and visualization of infectious

disease data. PathPort works along side ToolBus, a client-side application used to

connect to PathPort. PathPort is implemented as a group of Web services, each of

which provides the answer to a certain question or query. ToolBus provides a means of

using these services, but they can be invoked from the WSDL file and executed without

ToolBus as well (Yang et al., 2006).

BioMOBY is a system that allows the interoperability between biological data

hosts (Wilkinson, et al., 2008). It works by using Grid and Web service technologies.

BioMOBY has become popular and today many Web services and systems are able to

interact using its set of standards. BioMOBY offers many tools to access its repository

of services including a Java API to allow programmatic access (Wilkinson and Links,

2002).

	
 15	

The work mentioned above mostly represents Web services being used in the

bioinformatics sector. This project’s topic is a slight variation on that work in that our

services are used internally to link systems together to create a single point of access to

a vast amount of data. In the process of doing this, we have created a system that

supports publicly accessible Web services that can be used by developers and

researchers.

	
 16	

Chapter 3

Motivation

3.1 EuPathDB Project

Figure 2 Screen Shot of the EuPathDB.org Home Page

 EuPathDB, formerly known as ApiDB (Aurrecoechea, et al., 2007), is a

bioinformatics database system that provides genomic and functional genomic data on

eukaryotic, parasitic pathogens. It is a portal site that allows access to data at six

component sites. Each of these component sites has a domain, website, and users of

its own. EuPathDB communicates with the component sites to retrieve data in

response to queries that are asked from the EuPathDB interface. Currently, the system

	
 17	

consists of six individual databases, PlasmoDB.org which works with Plasmodium

species (Aurrecoechea et al., 2009), CryptoDB.org, for Cryptosporidium species

(Heiges, et al., 2006), TrichDB.org, for Trichomonas species (Aurrecoechea, et al.,

2009), GiardiaDB.org for Giardia species (Aurrecoechea et al., 2009), TriTrypDB.org,

for the Kinetoplastid species and ToxoDB.org for Toxoplasma and Neospora (Kissinger

et al., 2003).

In EuPathDB, the component sites have much in common. They are all built on

three building blocks: The Genomics Unified Schema, The Web Development Kit, and

The Web Service Framework.

The Genomics Unified Schema (GUS) is a database schema designed for

bioinformatics data storage. GUS relationships were designed to follow an ontology of

actual biological relationships. It defines tables and relationships that make the setup

and implementation of this type of system easier (Davidson et al., 2000).

The Web Development Kit (WDK) was developed as a common set of functions

that build a system on top of GUS. It allows for questions and queries to be described

in a “model” structure to configure the WDK to work with any schema (Aurrecoechea et

al., 2007).

The Web Service Framework (WSF) is a generic Web service framework (Wang

et al., 2009). The WsfService contains only one operation, invoke(), which loads a plug-

in that is passed as a parameter, and executes the logic in the plug-in. The return type

of the WsfService is a WsfResponse which contains two fields: a message used to

return information about the invocation and a two dimensional array of strings

	
 18	

containing the results of the query. The federation services are implemented as plug-ins

to WsfService.

Figure 3 Primary Key Query Architecture At a Component Site

Figure 3 demonstrates how these different parts of the system work together to

create a working website. As you can see, the WDK has two distinct ways to collect

information for answers to questions. The first method is a direct access to a SQL

database; here Oracle is used. The second method is to use a Web service in the form

of the WSF, to access data that typically reside in a component database. In some

cases the data is stored by other means, such as files or XML documents.

The component databases that are part of the EuPathDB system are all

implemented and maintained by the EuPathDB team. Though all of the sites are

developed atop the same architecture and use the same schema, the underlying

databases still have differences in the way that the data is represented within the

databases. This means that the SQL for a given question can differ amongst the

	
 19	

component sites. For example, PlasmoDB and ToxoDB both include the

GenesByMetabolicPathway query, but they use different queries to retrieve the answer.

The SQL statements can be found in figures 4 and 5, respectively.

select * from (
SELECT gf.source_id, '@PROJECT_ID@' as project_id,
apidb.tab_to_string(CAST(COLLECT(distinct decode(dr.lowercase_secondary_identifier, null,
dr.primary_identifier,dr.lowercase_secondary_identifier)) AS apidb.varchartab), ', ') as met_pathways
FROM apidb.geneattributes gf, dots.DbRefNaFeature drnf, sres.DbRef dr,
(SELECT idrnf.na_feature_id
 FROM dots.DbRefNaFeature idrnf, sres.DbRef idr
 WHERE idr.primary_identifier = $$metabolic_pathway$$
 AND idrnf.db_ref_id = idr.db_ref_id) internal
 WHERE internal.na_feature_id = drnf.na_feature_id
 AND gf.na_feature_id = drnf.na_feature_id
 AND drnf.db_ref_id = dr.db_ref_id
 group by gf.source_id)

Figure 4: PlasmoDB SQL Listing for GenesByMetabolicPathways

Select * from (
SELECT gf.source_id, '@PROJECT_ID@' as project_id,
apidb.tab_to_string(CAST(COLLECT(distinct decode(dr.lowercase_secondary_identifier, null,
dr.primary_identifier,dr.lowercase_secondary_identifier)) AS apidb.varchartab), ', ') as met_pathways
FROM apidb.geneattributes gf, dots.Transcript t,dots.DbRefaaFeature draf, sres.DbRef dr,
dots.TranslatedAaFeature taf,
(SELECT idraf.aa_feature_id
 FROM dots.DbRefaaFeature idraf, sres.DbRef idr
 WHERE idr.primary_identifier = $$metabolic_pathway$$
 AND idraf.db_ref_id = idr.db_ref_id) internal
 WHERE internal.aa_feature_id = draf.aa_feature_id
 AND gf.na_feature_id = t.parent_id
 AND t.na_feature_id = taf.na_feature_id
 AND taf.aa_feature_id = draf.aa_feature_id
 AND draf.db_ref_id = dr.db_ref_id
 GROUP BY gf.source_id)

Figure 5: ToxoDB SQL Listing for GenesByMetabolicPathways

This type of heterogeneity is the type of problem that the Web service federation was

designed to solve.

	
 20	

3.2 History of EuPathDB and Problems

 EuPathDB’s initial release (previously called ApiDB) offered access to

CryptoDB.org, PlasmoDB.org, and ToxoDB.org and the communication was

implemented using database-links. This was a functional implementation as it allowed

communication at the database level. However, this solution proved to be problematic

when other organisms were added. Trichomonas vaginalis and Giardia Lamblia were

added with the sites TrichDB.org and GiardiaDB.org, respectively. In order to add these

sites to the portal, the SQL statements had to be altered for each and every question in

the portal. Differences in the SQL queries came about because the data for each

component site are slightly different and are represented in slightly different manners.

Though every attempt is made to keep the data uniform, the data itself causes this type

of heterogeneity. With more organisms to be added to the project in the following year,

it became clear that an improvement was needed to make the portal scalable.

Another requirement for this new system is to ease the maintenance of the

portal. New data are being created daily and then loaded into the databases for

upcoming releases of the component sites. Whenever a new query is added to the site

or an existing query is updated to fix an issue or add some new functionality, the portal

must be updated as well. Since the data loading team is located mostly at the

University of Pennsylvania and the portal team is at the University of Georgia, the

communication about these types of changes is imperfect. This leads to unexpected

outages of the portal and nearly constant maintenance edits to the SQL supporting

EuPathDB.

	
 21	

To this end, we implemented a federation using Web services to link the sites

using a common, stable, abstract interface to allow access to all queries on all

component sites.

	
 22	

Chapter 4

Architecture

4.1 Web Services Federation

Using Web services for federation involves providing a public interface for private

and local databases. A Web service federation system consists of a federation service

and component services. The federation service is designed and implemented by the

administrators of the federation. The federation service defines the federation query

language, dissects queries into pieces that are sent on to the appropriate component

systems for processing and composes the results from component systems into a

coherent whole for return to the user. The federation service also defines an interface

that component administrators must adhere to in order to join the federation, the

component interface. It is important that the component interface possesses two

characteristics: stability and abstraction. The component interface must be stable

because the federating service relies on it for communication with the component

service. The interface should be robust and capable of handling features of any system

that it might by abstracting. Any changes to this interface will require updates to all

systems within the federation. The interface should provide abstraction of the detailed

differences amongst the component systems, making access consistent. Absolute

uniformity is not required, but the more the component interfaces vary and change, the

more maintenance is required to keep the system functioning.

	
 23	

Still, the question remains of how to use Web services to provide abstraction

from the specific interfaces of the systems in the federation. I will now explain five

approaches and explore the pros and cons for each option.

Table 1 Approaches to implementing Web service integration
 Abstraction #

Services
Operations

/ Services

Queries
Discoverable Maintenance

1 Direct SQL 1 1 ∞ Yes Low
2 Many Services ∞ 1 ∞ Yes High
3 Generic Service 1 1 ∞ No Low
4 Generic Service +

Metadata 1 2 ∞ Yes Low

5 Categorized
Services ∞ 1 ∞ Yes Automated

The most obvious solution is to implement a Web service as a single operation.

The operation would supply the connection information to the database and would

accept a SQL statement as input. This service can be described by a WSDL

specification, published, and discovered. While this approach is simple to implement, it

has two flaws in our application design. The first flaw is a lack of abstraction. In order

for the federating system to directly send SQL queries to the service, it would have to

know the schema of the component databases. Thus, the federating system and the

local system would be tightly coupled and unable to exercise design autonomy. The

second and more serious flaw is a matter of security. If we allow anything that

resembles a SQL query to be executed on the database, the system is open to

malicious SQL queries that could damage or destroy the database. Some parsing could

be done to limit this type of breach, but it is difficult to eliminate completely.

	
 24	

The second solution is to create one Web service for each query. Each service

would contain a single operation specific to a certain query. Input to the service would

be parameters that are inserted into the query to give specific results. As before, each

service would have a WSDL file that describes the service's functionality. These WSDL

files could be annotated using the SAWSDL attributes to add semantics. This

significantly lessens the security threat by making the inputs a smaller set of terms, and

thus validating them becomes simpler and more precise. However, it would be difficult

to maintain such a large set of Web services. In the case of EuPathDB, there are over

80 queries and any changes to the parameters of a query would require changes to the

respective service, thus increasing the maintenance issues for both the component and

the federation administrators. A similar option would have only one service with an

operation for each query. Here there would be a single service will over 80 operations.

This has the same advantages and disadvantages as having one service per question.

The third solution is to implement a generic Web service. This service provides

only a framework for invoking “plugins” that are defined according to a given API.

These plugins are classes that contain the business logic for the service. The generic

service itself offers no logic and no useful function; but together with its plug-ins, it is a

powerful, robust, easily implemented solution to building web services. Since any

invocation of the service can ask for any available plug-in, the applications for this

particular service are limitless.

This service would contain one operation, “invoke”. The “invoke” operation will do

all of the work for the service. It will accept four parameters as input: pluginName,

queryName, input, and output. The pluginName parameter is critical to this

	
 25	

implementation. Since the service itself holds no logic for performing queries, then a

plug-in must be defined to tell the service what the user wants accomplished by this call.

The remaining parameters are plug-in specific and only hold meaning for the plug-in

that was asked for. This generic service provides an outside interface that is very stable.

Since no business logic is in the service, and the parameters are all abstracted into a

container, the interface should rarely need to be altered. A generic service is the most

abstract of the options. The lack of business logic in the service means that the same

service could be implemented on multiple databases. The drawback to this

implementation is that it is not describable in a meaningful way via a WSDL. Thus it

cannot be published and cannot describe itself in sufficient detail to be generally

invoked. A client must have knowledge of the plugins and the inputs to those plugins to

invoke this service.

Option four solves the problems with option three. It provides another operation

to the service to describe the inputs necessary to utilize the invoke operation. The new

operation is describable and discoverable via a WSDL file. With this operation in place,

a client can gather all the information needed to utilize the generic service. This also

offers the flexibility that the operations and plugins available to the generic service can

change and the client will be made aware of those changes in near real time.

The final option combines the pros of options 2 and 3. It utilizes the flexibility of

the generic service and standardizes the interfaces by utilizing code generation from a

file describing the questions in the system. The final result of this implementation is a

generic service that is used by the federation system where the plugins can be written

to conform to the needs of the federation. A generator is written to parse a

	
 26	

configuration file to create a wrapper for the generic service, which takes specific inputs

and outputs. These generated services can be described with WSDL files, semantically

annotated and published to a registry.

4.2 Case Study: EuPathDB Architecture

As mentioned earlier, the EuPathDB sites utilize a common infrastructure

consisting of GUS, WDK and WSF. This infrastructure provided a useful backdrop

against which a Web service federation system could be implemented. The WDK

contains a “model”. The model is a hierarchy of documents that defines all queries,

parameters, and controlled vocabularies used in the system. The model is common to

all sites but contains some attributes that are site specific. By leveraging the model

information through the WDK, the implementation of the Generic Service approach to

Web service integration (Table 1, option 3) was simplified considerably. Yet, because

of choosing option 3, the services are internal to the sites only because the inputs and

outputs are not describable in a WSDL. In the WDK, the queries are posed in the form

of questions. Most questions allow the user to choose the organism, or organisms, that

they wish to explore, and then provide values to parameters that are specific to the

question they are asking. The question is translated by the WDK to a query. The query

is either of type “sqlQuery”, which contains a SQL statement that is parsed with the

parameters and executed, or “processQuery”, which uses the WSF to execute a Web

Service to get the results of the query. Once finished, the results are returned in the

form of an answer to the originally posed question. We utilized the WSF and the

“plugins” architecture because of its easy integration in to the WDK to implement the

services that would act as our federation service, ApiFedPlugin, and component

	
 27	

service, WdkQueryPlugin. In EuPathDB.org, all queries are “processQuery” that point

to ApiFedPlugin. This plug-in decomposes the query and passes it to the

WdkQueryPlugin on the relevant component sites. Once all component invocations

return data, then ApiFedPlugin compiles the data into a single result that is returned to

the user.

ApiFedPlugin

ApiFedPlugin does the work described for the federation Web service. The

system uses the Invoke operation to get results for any question. The inputs are sent

as an array called the parameter list. Invoke takes the parameter list and finds the

organism parameter. This parameter determines which component sites need to be

included in this query. In the absence of an organism parameter, the query is sent to all

component sites. The parameter list is parsed to be sure that component specific

parameter values are not sent to the wrong site. For example, CryptoDB.org will

produce an error if “Plasmodium falciparum” is sent as input to the organism parameter.

For each component, a thread is spawned and an invocation of the WSFService on the

component site is made using the plug-in WdkQueryPlugin.

Once all invocations have returned, the results are combined into one 2-

dimensional array of strings with the columns from each invocation matching to ensure

a semantically meaningful result. This object is inserted in a WsfReponse object along

with any messages that were returned by the component sites. That object is returned

to the WDK to continue processing.

	
 28	

WdkQueryPlugin

The WdkQueryPlugin resides on each of the component sites. It works as a

generic container for the queries that are sent from ApiFedPlugin. WdkQueryPlugin is

configured on each site to initialize with the model.xml for that site. Once initialized, the

plug-in is stored in memory to avoid the expensive task of repeatedly parsing the XML

model file. When invoked, WdkQueryPlugin retrieves the query from the model,

validates the parameters and executes the query. The results are put into a

WsfReponse object and returned to the ApiFedPlugin.

Figure 6 Architecture of EuPathDB Federation

	
 29	

Figure 6 shows the path through the system graphically. As an example, if a

user selects the GenesByGeneType question and executes it with the following

parameters:

organism = Cryptosporidium parvum,Plasmodium vivax

gene_type = protein_coding

pseudogenes = No

The EuPathDB model instructs WDK to send this query to the WSF with the

ApiFedPlugin for processing. Once there, ApiFedPlugin spawns two threads based on

the organism parameter.

Thread #1 : organism = Cryptosporidium parvum

 gene_type = protein_coding

 pseudogenes = No

 queryName = GeneQuestions.GenesByGeneType

Thread #2 : organism = Plasmodium vivax

 gene_type = protein_coding

 pseudogenes = No

 queryName = GeneQuestions.GenesByGeneType

Thread #1 invokes the WdkQueryPlugin on CryptoDB.org and Thread #2 invokes the

WdkQueryPlugin on PlasmoDB.org. Each component service utilizes the WDK to find

the given query and execute it using the given parameters. All validation of inputs is

done by the component WDK. The WdkQueryPlugin returns the results to

ApiFedPlugin which combines the component results into a single answer and returns it

to EuPathDB’s WDK for display.

Results of EuPathDB Web Service Federation

Imagine for a moment what it would take to gain access to data about eukaryotic

pathogens. In the past, to compare results between Plasmodium and Cryptosporidium

	
 30	

would require going to two different sites, running two different queries, and examining

two lists of results. With the old implementation of the EuPathDB.org, the user was

given a single point of access, but was frustrated by inconsistent results and down time

of the site. Given the new implementation of the federation using Web services,

EuPathDB.org has solved all of these problems. All questions from all component sites

are available on the portal. The user can even execute orthology questions on their

results to find comparable genes in other species.

This system delivers solutions to two major issues around database federation.

Autonomy of design and maintenance are important to the individuals maintaining the

component sites. Web service federation maintains this feature by abstracting all of the

local decisions behind the Web service interface. By using the generic Web service

approach, we ensure that the interface to this service will change rarely, if ever. The

component managers implement the component plug-in to allow as much or as little

access to their data as they see fit. The federation has no control over the component

site other than the definition of the generic Web service interface. The second major

issue is one of heterogeneity. Structural heterogeneity is abstracted away by the Web

services. Because the interface is not connected to the database in any way, the

schema is hidden from the federation system. Data heterogeneity is a more difficult

problem. In the EuPathDB project, this is less of a problem due to the fact that all of the

component sites are bioinformatics sites yielding the same type of genomic and

proteomic data. This is not to say that we did not face data heterogeneity. In several

cases, sacrifices were made by some component site to use the naming conventions of

another in order to bring this system online in a timely fashion. In a more robust sense,

	
 31	

data heterogeneity can be addressed by the use of semantics. An advantage of this

system is that all of the data matching and handling of data heterogeneity is done by the

federation system. The component systems have no need to change or implement

anything differently. This information would allow for disparate systems to be federated

as long as they agreed upon ontology to define their data.

This Web service federation made EuPathDB a more feasible project. We were

able to make the project scale to more organisms and more sites. We were able to

decrease the amount of maintenance the portal required to remain functioning. We

were able to make the portal a more stable site that is useful to the research

community. Under the original implementation, adding a site took weeks. First DB-links

had to be setup for the new database. Then SQL statements for each query had to be

added to the SQL statements of the portal and debugged. With the Web services, this

process now takes only a few hours. The component site has WSF and the component

plugin, WdkQueryPlugin, in place from the build process. Setup of the federation

system means editing the configuration files for both plugins. The component service

needs to know where to find the model file and were the component site is installed.

The federation service must be given the URL of the component service, the name of

the component site and a regular expression used to parse the organisms to route only

the appropriate questions to the new component site. After this, the application server

reloads the portal and the component sites and the federation now services a new site.

With this system in place, EuPathDB has recently added GiardiaDB.org, TrichDB.org

and TriTrypDB.org. EuPathDB also had its contract renewed by NIH, partially due to its

ability to scale.

	
 32	

Before the services-based federation system, EuPathDB required almost constant

maintenance. Since the component sites are autonomous entities, they are on their

own release schedule. Each time a component site releases a new version, EuPathDB

had to be updated. This was not manageable with three sites and threatened to make

the project unmanageable if more sites were added. With the federation system, this is

no longer a concern. Once a site is configured as part of the federation, the Web

services handle the communication with the site. Each new version of a component

database no longer means an update of the portal. The Web services dynamically pick

up the new data when a question is requested from the new component. If one day that

component is version 2.3 and the next it is version 2.4 or 3.0, everything continues to

function. Table 2 compares the time needed to perform typical maintenance and

expanding tasks before and after the federation system was put in place.

Table 2: Maintenance Comparison for EuPathDB Project

	
 33	

The Web service federation also increased the stability of the portal site. Under

the old system, a change to a component system could bring down EuPathDB. If a

column was renamed or a parameter value changed, then an update had to be made to

the portal. This meant downtime for the portal. The new system abstracts such

changes so that they do not affect the portal. The component systems retain total

autonomy over their systems and most changes do not require downtime for

EuPathDB.org.

In addition to the benefits needed for a federation, this implementation offers

other benefits. One of these benefits is the ability to implement public Web services to

make all of the data available to the EuPathDB system programmatically accessible.

This enables researchers with programming skills to process large amounts of data

quickly and easily. It also will enable EuPathDB to collaborate with other Bioinformatics

Research Centers to share data. An example of this is represented by our plans to

implement Web services to enable EuPathDB to share functional proteomics data to aid

the annotators at GeneDB. In return, GeneDB will provide services to allow EuPathDB

to gain real-time access to their annotations.

4.3 Incorporation of Outside Databases

With the Web service federation system in place, it becomes a building block on

which a greater system can be implemented. The federation administrator can add

other systems to the federation with little or no effort. Once the component site has

implemented a service conforming to the federation interface then communication can

occur. But this does not solve all of the problems. Differing semantics amongst the

federation and component sites can create problems for the federation as it attempts to

	
 34	

incorporate results from the new component into results sets. Ideally, the federation

system should become smarter in order to handle the range of data that could come

from outside services. To this end, the federation system may add the functionality of

ontological data mediation (Nagarajan et al., 2007) to its arsenal. This approach will

allow the federation and constituent services to communicate efficiently even if they are

using differing terms and data structures. By using SAWSDL to annotate the federation

and component WSDL’s input and output elements with ontological concepts and

mapping functions, the services can have the information needed to successfully map

terms from one system and ontology to the another (Nagarajan et al., 2007).

Figure 7: Data Mediation

As an example, presently EuPathDB is integrating six component sites.

Implementing this federation with Web services will allow EuPathDB to reach outside it

current component sites and include systems that are maintained by other

	
 35	

organizations. Work is ongoing to have EuPathDB Web services communicating with

other services outside the EuPathDB group. One such collaborator is the Sanger

Institute that maintains the GeneDB web site. Once complete, this collaboration will

allow GeneDB annotators to search EuPathDB for evidence to support their annotations

of genes on the Plasmodium genome. EuPathDB will gain access to the latest

annotations of the genome in real-time and thus always provide the most up-to-date

information to the user base.

For these types of advances to be possible, EuPathDB will need to add publicly

available Web services to its complement of internal services. This task is simplified by

the existence of the internal services. Our implementation of these public services will

be to put a wrapper around the generic service that is used for the federation. The

wrapper services will be a lightweight operation that provides standards-compliant

WSDL that can be invoked with the parameters needed for that query. Once the

service receives the inputs, it will parse them into a form recognized by the WSF and

pass them along to be handled by the federation system services. Once the results are

returned, the same operation is performed in reverse and the output is put into a

standard format to be sent to and consumed by the client.

4.4 Supporting Workflows

Research is ongoing to compose Web services into processes. Languages such

as the Web Service Business Process Execution Language (WS-BPEL) define these

processes (Weerawarana et al., 2005). By implementing a federation using Web

services, the components could be made available to these processes through the

	
 36	

component service. The federation as a whole could also be included in such a

process.

Current work at EuPathDB is moving toward such a goal. EuPathDB has

developed a new user interface for all of its websites, known as the “Strategy system”.

This interface allows users to build very complex queries using Boolean and

transformation operations. Figure 7 shows a screen shot of this new interface. The

Boolean operations are clearly visible, easy to understand, and intuitive to use. User

feedback on this system has been overwhelmingly positive because it has brought the

ability to combine data sets to the forefront of the site. These strategies can be saved

and retrieved on the website for later viewing and editing. Making this system even

more powerful is the ability to nest the strategies within one another and create “sub-

strategies” within a step of a strategy.

With the Strategy system and the Web service federation in place, the next step

is to combine the two systems to create a powerful workflow system. The design is to

allow users to create a strategy and download an XML representation of their strategy.

The XML is then passed as input to a Web service to get the results of that strategy.

This service will allow users to create a workflow and programmatically manipulate the

input and outputs to gain some information about the data that would have been time

consuming and error-prone to do by hand.

	
 37	

Figure 8: Search Strategy System on EuPathDB.org

	
 38	

Chapter 5

Evaluation

As mentioned before, three features of database federations are heterogeneity,

distribution, and autonomy. Web services offer solutions to each of these issues.

Autonomy and structural heterogeneity are handled by the abstraction of the underlying

data source that Web services offer. Web services can offer high-level abstraction of the

underlying source and thus render the need for low-level knowledge of that system

unnecessary. Distribution is handled by the fact that the services are available over the

Web using standard protocols. Semantic heterogeneity is handled by the annotation of

the services from an agreed upon published ontology. Agreement on terms ensures

that results from disparate component systems can be assembled by the federation

service into a single coherent result.

The grounding principle of federated databases is that one can integrate several

systems without having to alter or discard the constituent systems. Neither should it

require current management to relinquish local control of their system. The technology

used to implement this system must allow communication in such a fashion that these

goals are achieved. Web services can supply a means to this end, since they can

provide both the autonomy and robustness needed for this system. Web services allow

for systems to be added to the federation with no changes whatsoever. The local

developers must get the interface from the federation system and implement a Web

service that adheres to that public interface. Once this is done, these same local

	
 39	

developers are responsible for defining the logic for this service to access their system.

This logic is not of concern to the federation and is not defined by the federation. This

allows for any data source that has data to be added to the federation with minimal work

by the federation administrators and no modifications to the component data source.

Roughly speaking, Web services can be thought of as remote procedure calls. In

this sense, the service is the application and the operation is the procedure. It has

inputs that are defined in the WSDL to be of a certain type and structure. These inputs

are akin to the parameters of a procedure. It has outputs that are also defined in the

WSDL that are akin to the return value of the procedure. Using this analogy, it is easy

to see how a Web service can provide absolute abstraction of the system to which it is

providing access. Because of this abstraction, the administrators of the constituent

systems maintain complete control over the implementation of their system. Web

services offer another type of autonomy as well. The constituent system must

implement the service in such a way that it is accessible by the federation system, but

other variables about the implementation of the service are left up to the local

developers. Since Web services use SOAP over HTTP to communicate, there are no

restrictions on the programming language, SOAP engine, or any other component of the

system that is regulated by the federating administrators. Thus each constituent system

retains total autonomy over its data and services while it is involved in the federation.

Semantics is the study of meaning. Meaning is central to a federation because if

the federation is using a term in one sense and the component is using the same term

to mean something else, then incorrect results could be returned for a query. As

mentioned, IBM and the University of Georgia developed WSDL-S which is WSDL

	
 40	

annotated with terms from ontology to provide meaning to the functionality inputs and

outputs of each operation of a Web service (Akkiraju et al., 2005; Miller et al., 2004).

WSDL-S has since evolved in a lighter weight version of itself that is a current W3C

standard called SAWSDL (Kopecky, et al., 2007). With these annotations in place the

federation and component systems only have to agree on the ontology to reduce

semantic ambiguity.

Web services provide advantages over other federation implementations. Using

Web services for federation creates a dynamic federation. It is dynamic in the sense

that constituents can come and go without degrading the federation. This dynamic

quality adds a great deal of functionality to the federation. First, a constituent system

could suffer a failure and not be available to answer a query. This system can leave the

federation without causing any lapse in functionality. Of course some data is no longer

available when a constituent leaves the system, but the federation will still function.

Web services offer another advantage; they are programmatically accessible

from outside the federation. If the federation service is published, then any of the

constituent services are also published and are accessible. A federation can be viewed

as a “star topology” or a centralized access point. These design patterns mean that the

federation system, acting like the access point, is known to the component systems,

acting as the nodes, but the nodes do not know about each other. The publishing of the

federation service gives each node the ability to share and retrieve data from each of

the other nodes.

Web service federation has another advantage, almost a side effect. Because of

the nature of Web services, using this technology yields a system that is dynamic. In

	
 41	

order for a system to enter into the federation, the schema mapping must exist, so if the

system leaves the federation it can return at any time without any further modifications

(assuming nothing was changed during its time away). In much the same way, if the

Web service is defined and working correctly, the administrator of one site can

disconnect from the other site physically, yet the mechanism would be in place to

reestablish communication at any time in the future. Over time, this process would

develop a list of candidate databases that could join the federation at any given time;

thus creating a truly dynamic database federation.

	
 42	

Chapter 6

Conclusions and Future Work

Web services are a viable and flexible means to implement a database

federation due to the high level of abstraction the architecture provides. Federations

require a level of abstraction and uniformity to provide the user with consistent access

to data. By using Web services, data can be abstracted by the use of a common

vocabulary (in the case of EuPathDB, this is currently given in an XML specification) or

the use of semantic techniques such as ontologies (which EuPathDB plans to

implement in future releases). These allow for the mapping of terms to ensure that the

terms used in all systems are consistent. Federations also require the structure of the

component systems to be abstracted so that the federating system can execute queries.

Web services provide this type of abstraction as well. Web services abstract the

structure of the component databases. The interface to the service is all the federation

must be aware of to invoke a query on a constituent system. The management system

and query language are of no concern and thus translation at the federation level is not

necessary.

These techniques and technologies have been implemented successfully on the

EuPathDB project. The system has aided the developers and administrators of the

EuPathDB portal a great deal by significantly decreasing the time needed to maintain

the current site and to add new component sites to the project. The Web service

federation has also cut down on errors in the federation by abstracting all SQL and

	
 43	

other database query languages out of the portal configuration. This has had a great

effect on the maintainability of the portal. In the past small changes in SQL statements

or schema updates, would cause the portal to have to be updated and re-released.

With the abstraction that the Web services provide, these changes no longer affect

EuPathDB.org. Expandability has also been improved as a result of the Web service

federation. The addition of new systems now takes developers only minutes to

accomplish what took days under the old implementation. Due to time and

implementation constraints, the EuPathDB system is not perfect, and some problems do

occur. But these problems now affect only a single component site while the remainder

of the portal continues to function correctly.

The use of Web services to implement a database federation creates a platform

on which a workflow system can be constructed. For EuPathDB, which uses only

predefined SQL statements, this allows the users to combine queries to create custom

queries that are useful to their work. They can then execute these queries against the

Web services to effectively run a custom built query. This custom query, or process, is

executed as a workflow against the Web services that represent each of the questions

within the query.

This current system will prove to be a stepping-stone for many new features in

the EuPathDB project. The team is now working to define the requirements for

automatically generating publicly accessible Web services based on the generic service

that is used for the federation. This was described earlier in this thesis as Categorized

Services (table 1, option 5). The public services can be annotated with SAWSDL

	
 44	

allowing them to handle more diverse data mediation tasks and add a greater range of

diversity in the systems that join the federation.

	
 45	

BIBLIOGRAPHY

Aggarwal, R., Verma, K., Miller, J. A., and Milnor, W., (2004). Constraint Driven Web

Service Composition in METEOR-S,". Paper presented at the Proceedings of the

2004 IEEE International Conference on Services Computing, Shanghi, China

23-30.

Akkiraju, R., Farrell, J., Miller, J. A., Nagarajan, M., Schmidt, M., Sheth, A., Verma, K.,

(2005). Web Service Semantics - WSDL-S: A Joint UGA-IBM Technical Note.

IBM AlphaWorks Technical Note, version 1.0, 42.

Aurrecoechea, C., Brestelli, J., Brunk, B. P., Carlton, J. M., Dommer, J., Fischer, S.

(2009). GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic

protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res,

37(Database issue), D526-530.

Aurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B. (2009).

PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids

Res, 37(Database issue), D539-543.

Aurrecoechea, C., Heiges, M., Wang, H., Wang, Z., Fischer, S., Rhodes, P. (2007).

ApiDB: Integrated Resources for the Apicomplexan Bioinformatics Resource

Center Nucleic Acids Res, 35(Database issue), D427-D430.

	
 46	

Curbera, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S. (2002). Unraveling the

Web services web: an introduction to SOAP, WSDL, and UDDI. Internet

Computing, IEEE, 6(2), 7.

Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P. (2005).

Galaxy: a platform for interactive large-scale genome analysis. Genome Res,

15(10), 1451-1455.

Haas, H. and Brown, A. (2004) W3C Working Group Note 11 Febuary 2004.

http://www.w3.org/TR/ws-gloss/.

Goto, M. K. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids

Ressearch, 28(1), 27-30.

Gruber, T. R. (1991). The Role of Common Ontology in Achieving Sharable, Reusable

Knowledge Bases. In J. A. Allen, R. Fikes, & E. Sandewall (Eds.), Principles of

Knowledge Representation and Reasoning: Proceedings of the Second

International Conference, Cambridge, MA, 601-602.

Hadley, M., Sandoz, P., JAX-RS: Java API for RESTful Web Services. Revision 1.1

Editor's Draft Aug. 21. https://jsr311.dev.java.net/drafts/spec20090821.pdf

Hammer, D. and McLeod, D. (1980) A Federated Architecture for Database Systems.

Proceedings of the May 19-22, 1980, National Computer Conference. (database

management seesion) 283-289.

Heiges, M., Wang, H., Robinson, E., Aurrecoechea, C., Gao, X., Kaluskar, N. (2006).

CryptoDB: a Cryptosporidium bioinformatics resource update. Nucleic Acids Res,

34 (Database issue), D419-422.

	
 47	

Miller, J. A., Verma, K., Rajasekaran, P., Sheth, A., Aggarwal, R. and Sivashanmugan,

K. (2004). WSDL-S: Adding Semantics to WSDL - White Paper. Technical

Report(UGA-CS-LSDIS-TR-04-011), 44.

Kissinger, J. C., Gajria, B., Li, L., Paulsen, I. T., and Roos, D. S. (2003). ToxoDB:

accessing the Toxoplasma gondii genome. Nucleic Acids Res, 31(1), 234-236.

Kopecky, J. V., T. Bournez, C. Farrell, J. (2007). SAWSDL: Semantic Annotations for

WSDL and XML Schema. Internet Computing, IEEE, 11(6), 7.

Li, K., Verma, K., Mulye, R., Rabbani R., Miller, J. A., Sheth, A. (2004). Designing

Semantic Web Processes: The WSDL-S Approach. In Jorge Cardoso and Amit

P. Sheth, editors, 'Semantic Web Services, Processes and Applications', Vol.3 of

Semantic Web And Beyond Computing for Human Experience, Springer, 2006.

161–193.

Nagarajan, M., Verma, K., Sheth, A., Miller, J. A. (2007). Ontology Driven Data

Mediation in Web Services. International Journal of Web Services Research,

4(4), 22.

Sayers, E. W., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V.

(2009). Database resources of the National Center for Biotechnology Information.

Nucleic Acids Res, 37(Database issue), D5-15.

Sheth and Larson (1990). Federated database systems for managing distributed,

heterogenous, and autonomous databases. ACM Computing Surveys, 22(3), 53.

Smedley, D., Haider, S., Ballester, B., Holland, R., London, D., Thorisson, G. (2009).

BioMart--biological queries made easy. BMC Genomics, 10, 22.

	
 48	

Verma, K., Gomadam, K., Sheth, A., Miller, J. A. and Wu, Z. (2005). The METEOR-S

Approach for Configuring and Executing Dynamic Web Processes," 1-34

Wang, Z., Gao, X., He, C., Miller, J. A., Kissinger, J. C., Heiges, M., Aurrecoechea, C.,

Kraemer, E. and Pennington, C. (2009). An Evaluation of Multiple Approaches for

Federating Biological Data. Journal of Information Technology Research, 2(2),

22.

Weerawarana S., Curbera, F., Leymann, F., Storey, T., Ferguson, D. F. (2005), Web

Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-

BPEL, WS-Reliable Messaging and More, Prentice Hall PTR, Upper Saddle

River, NJ, 2005

Wilkinson, M. D., Links, M. (2002). BioMOBY: An open source biological web services

proposal. Briefings in Bioinformatics 2002, 3(4), 10.

Wilkinson, M. D., Senger, M., Kawas, E., Bruskiewich, R., Gouzy, J., Noirot, C. (2008).

Interoperability with Moby 1.0--it's better than sharing your toothbrush! Brief

Bioinform, 9(3), 220-231.

Yang, B., T. X., Zhao, J., Kommidi, C., Soneja, J., Li, J., Will, R., Sharp, B., Kenyon, R.,

Crasta, O., Sobral, B. (2006). Bioinformatics Web Services. Paper presented at

the 2006 International Conference on Bioinformatics.

	
 49	

APPENDIX A

IMPLEMENTATION DETAILS OF EUPATHDB WEB SERVICES

The EuPathDB Federation system is comprised of two Web services. These

services were implemented within the framework of a single, generic service known as

the Web Service Framework, or WSF. The WSF is a service that contains only the logic

for accepting invocations, executing a plug-in through reflection, and returning results.

It contains no business logic code and does no real work toward a useful goal.

1 public WsfResult invokeEx(
2 String pluginClassName, String projectId, String[] paramValues,
3 String[] columns) throws ServiceException {
4 int resultSize = 0;
5 Map<String, String> params = convertParams(paramValues);
6 IWsfPlugin plugin;
7 if (plugins.containsKey(pluginClassName)) {
8 plugin = plugins.get(pluginClassName);
9 } else {
10 Class<?> pluginClass = Class.forName(pluginClassName);
11 plugin = (IWsfPlugin) pluginClass.newInstance();
12 plugin.setLogger(Logger.getLogger(pluginClass));
13 plugins.put(pluginClassName, plugin);
14 }
15 WsfResult result = plugin.invoke(projectId, params, columns);
16 resultSize = result.getResult().length;
17 prepareResult(result);
18 return result;
19 }

Figure 9: Listing of the InvokeEx() function

Above is a listing of the InvokeEx() function from the WsfService Class. This function is

responsible for handling the invocation request to the WSF. It is important to note here

that a pluginClassName is given as a parameter. That parameter if used in line 10 to

	
 50	

create an instance of that class. This is the plug-in class which contains the business

logic for this invocation of the WsfService. The services for the EuPathDB project

federation are implemented as this type of plug-in.

 The WsfPlugin class is another integral part of this system. It defines an abstract

class with the execute() function. This function must be implemented by all plugins to

the WsfSerice. This is the function where the business logic for the service is

implemented. Below is a listing of the interface for the execute function.

1 protected abstract WsfResult execute(String queryName,
2 Map<String, String> params, String[] orderedColumns)
3 throws WsfServiceException;

Figure 10: Listing of execute() function

The WdkQueryPlugin is the service that is running on each of the constituent

databases. It is responsible for doing the work of the federation. The inputs to the

execute function of this plugin are:

• QueryName – Name of the query that is to be executed on this component site

• Params – Map of term/value pairs defining the parameters of the query to be run

• orderedColumns – Array of the columns to be returned by this invocation

WdkQueryPlugin is configured with the knowledge of the sites WDK. Thus it has

an in memory copy of the model. It searches this model to determine if the requested

query exists on this site. If it is found, then execution is turned over to the WDK to

execute the query and return the results. Once the WDK returns to the plug-in, the

results are parsed and any columns that were not requested are removed from the

result set. A message is also formatted that contains the number of results returned by

	
 51	

this invocation. If the query is not found, the service returns a “-2” value in the message

to the federation signifying that the query was not available on this site. In the case that

there is an error on the component site, the WdkQueryPlugin will return “-1”.

The ApiFedPlugin is the federation service in this system. It is implemented with

the same inputs and output as the component plugin, yet it contains more logic.

ApiFedPlugin utilizes the fact that most queries in the EuPathDB system have

”organism” parameters. This parameter is used to parse the query and determine which

component sites need to be accessed for this particular invocation. This is

accomplished by the use of regular expressions that ApiFedPlugin is configured with at

invocation time that defined what organisms go to which component site. Once the

sites are determined, ApiFedPlugin spawns a new thread for each invocation. This

allows the system to achieve a performance that is equal to that of the slowest

component site rather to the sum of all sites. Once all results are returned,

ApiFedPlugin will parse the results and combine them into a single result set that is

returned to the WDK for display. It also combines all of the return messages to inform

the WDK if there were any errors in any of the component services.

	
 52	

APPENDIX B

API DOCUMENTATION

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.gusdb.wsf.service

Class WsfService
java.lang.Object
 org.gusdb.wsf.service.WsfService

public class WsfService
extends java.lang.Object

The WSF Web service entry point.

Constructor Summary
WsfService()

Method Summary
 WsfResponse invoke(java.lang.String pluginClassName,

java.lang.String projectId, java.lang.String[] paramValues,
java.lang.String[] columns)
 This method is left for backward compatibility purpose

 WsfResult invokeEx(java.lang.String pluginClassName,
java.lang.String projectId, java.lang.String[] paramValues,
java.lang.String[] columns)
 Client requests to run a plugin by providing the complete class name of
the plugin, and the service will invoke the plugin and return the result to the
client in tabular format.

 java.lang.String requestResult(java.lang.String requestId, int packetId)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

WsfService

WsfService file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

1 of 3 10/22/09 11:04 PM

public WsfService()

Method Detail

invoke

public WsfResponse invoke(java.lang.String pluginClassName,
 java.lang.String projectId,
 java.lang.String[] paramValues,
 java.lang.String[] columns)
 throws ServiceException

This method is left for backward compatibility purpose

Parameters:
pluginClassName -
projectId -
paramValues -
columns -

Returns:
Throws:

ServiceException

invokeEx

public WsfResult invokeEx(java.lang.String pluginClassName,
 java.lang.String projectId,
 java.lang.String[] paramValues,
 java.lang.String[] columns)
 throws ServiceException

Client requests to run a plugin by providing the complete class name of the plugin, and the
service will invoke the plugin and return the result to the client in tabular format.

Parameters:
pluginClassName -
projectId - The id of the project that invokes the service
paramValues - an array of "param=value" pairs. The param and value and separated by
the first "="
cols -

Returns:
Throws:

WsfServiceException
ServiceException

requestResult

WsfService file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

2 of 3 10/22/09 11:04 PM

public java.lang.String requestResult(java.lang.String requestId,
 int packetId)
 throws ServiceException

Throws:
ServiceException

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

WsfService file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

3 of 3 10/22/09 11:04 PM

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.gusdb.wsf.client

Class WsfResponse
java.lang.Object
 org.gusdb.wsf.client.WsfResponse

All Implemented Interfaces:
java.io.Serializable

public class WsfResponse
extends java.lang.Object
implements java.io.Serializable

See Also:
Serialized Form

Constructor Summary
WsfResponse()

WsfResponse(java.lang.String message, java.lang.String[][] results)

Method Summary
 boolean equals(java.lang.Object obj)

static org.apache.axis.encoding.Deserializer getDeserializer(java.lang.String mechType,

java.lang.Class _javaType,
javax.xml.namespace.QName _xmlType)
 Get Custom Deserializer

 java.lang.String getMessage()
 Gets the message value for this WsfResponse.

 java.lang.String[][] getResults()
 Gets the results value for this WsfResponse.

static org.apache.axis.encoding.Serializer getSerializer(java.lang.String mechType,
java.lang.Class _javaType,
javax.xml.namespace.QName _xmlType)
 Get Custom Serializer

static org.apache.axis.description.TypeDesc getTypeDesc()
 Return type metadata object

 int hashCode()

 void setMessage(java.lang.String message)
 Sets the message value for this WsfResponse.

 void setResults(java.lang.String[][] results)
 Sets the results value for this WsfResponse.

WsfResponse file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

1 of 3 10/22/09 11:01 PM

Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

WsfResponse

public WsfResponse()

WsfResponse

public WsfResponse(java.lang.String message,
 java.lang.String[][] results)

Method Detail

getMessage

public java.lang.String getMessage()

Gets the message value for this WsfResponse.

Returns:
message

setMessage

public void setMessage(java.lang.String message)

Sets the message value for this WsfResponse.

Parameters:
message -

getResults

public java.lang.String[][] getResults()

Gets the results value for this WsfResponse.

Returns:
results

setResults

public void setResults(java.lang.String[][] results)

Sets the results value for this WsfResponse.

Parameters:
results -

WsfResponse file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

2 of 3 10/22/09 11:01 PM

equals

public boolean equals(java.lang.Object obj)

Overrides:
equals in class java.lang.Object

hashCode

public int hashCode()

Overrides:
hashCode in class java.lang.Object

getTypeDesc

public static org.apache.axis.description.TypeDesc getTypeDesc()

Return type metadata object

getSerializer

public static org.apache.axis.encoding.Serializer getSerializer(java.lang.String mechType,
 java.lang.Class _javaType,
 javax.xml.namespace.QName _xmlType)

Get Custom Serializer

getDeserializer

public static org.apache.axis.encoding.Deserializer getDeserializer(java.lang.String mechType,
 java.lang.Class _javaType,
 javax.xml.namespace.QName _xmlType)

Get Custom Deserializer

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

WsfResponse file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

3 of 3 10/22/09 11:01 PM

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.gusdb.wsf.plugin

Class WsfResult
java.lang.Object
 org.gusdb.wsf.plugin.WsfResult

All Implemented Interfaces:
java.io.Serializable

public class WsfResult
extends java.lang.Object
implements java.io.Serializable

See Also:
Serialized Form

Constructor Summary
WsfResult()

WsfResult(int currentPacket, java.lang.String message, java.lang.String requestId,
java.lang.String[][] result, int signal, int totalPackets)

Method Summary
 boolean equals(java.lang.Object obj)

 int getCurrentPacket()

 Gets the currentPacket value for this WsfResult.
static org.apache.axis.encoding.Deserializer getDeserializer(java.lang.String mechType,

java.lang.Class _javaType,
javax.xml.namespace.QName _xmlType)
 Get Custom Deserializer

 java.lang.String getMessage()
 Gets the message value for this WsfResult.

 java.lang.String getRequestId()
 Gets the requestId value for this WsfResult.

 java.lang.String[][] getResult()
 Gets the result value for this WsfResult.

static org.apache.axis.encoding.Serializer getSerializer(java.lang.String mechType,
java.lang.Class _javaType,
javax.xml.namespace.QName _xmlType)
 Get Custom Serializer

 int getSignal()
 Gets the signal value for this WsfResult.

 int getTotalPackets()
 Gets the totalPackets value for this WsfResult.

WsfResult file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

1 of 5 10/22/09 11:02 PM

static org.apache.axis.description.TypeDesc getTypeDesc()
 Return type metadata object

 int hashCode()

 void setCurrentPacket(int currentPacket)
 Sets the currentPacket value for this WsfResult.

 void setMessage(java.lang.String message)
 Sets the message value for this WsfResult.

 void setRequestId(java.lang.String requestId)
 Sets the requestId value for this WsfResult.

 void setResult(java.lang.String[][] result)
 Sets the result value for this WsfResult.

 void setSignal(int signal)
 Sets the signal value for this WsfResult.

 void setTotalPackets(int totalPackets)
 Sets the totalPackets value for this WsfResult.

Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

WsfResult

public WsfResult()

WsfResult

public WsfResult(int currentPacket,
 java.lang.String message,
 java.lang.String requestId,
 java.lang.String[][] result,
 int signal,
 int totalPackets)

Method Detail

getCurrentPacket

public int getCurrentPacket()

Gets the currentPacket value for this WsfResult.

Returns:
currentPacket

setCurrentPacket

public void setCurrentPacket(int currentPacket)

Sets the currentPacket value for this WsfResult.

WsfResult file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

2 of 5 10/22/09 11:02 PM

Parameters:
currentPacket -

getMessage

public java.lang.String getMessage()

Gets the message value for this WsfResult.

Returns:
message

setMessage

public void setMessage(java.lang.String message)

Sets the message value for this WsfResult.

Parameters:
message -

getRequestId

public java.lang.String getRequestId()

Gets the requestId value for this WsfResult.

Returns:
requestId

setRequestId

public void setRequestId(java.lang.String requestId)

Sets the requestId value for this WsfResult.

Parameters:
requestId -

getResult

public java.lang.String[][] getResult()

Gets the result value for this WsfResult.

Returns:
result

setResult

public void setResult(java.lang.String[][] result)

Sets the result value for this WsfResult.

WsfResult file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

3 of 5 10/22/09 11:02 PM

Parameters:
result -

getSignal

public int getSignal()

Gets the signal value for this WsfResult.

Returns:
signal

setSignal

public void setSignal(int signal)

Sets the signal value for this WsfResult.

Parameters:
signal -

getTotalPackets

public int getTotalPackets()

Gets the totalPackets value for this WsfResult.

Returns:
totalPackets

setTotalPackets

public void setTotalPackets(int totalPackets)

Sets the totalPackets value for this WsfResult.

Parameters:
totalPackets -

equals

public boolean equals(java.lang.Object obj)

Overrides:
equals in class java.lang.Object

hashCode

public int hashCode()

Overrides:
hashCode in class java.lang.Object

WsfResult file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

4 of 5 10/22/09 11:02 PM

getTypeDesc

public static org.apache.axis.description.TypeDesc getTypeDesc()

Return type metadata object

getSerializer

public static org.apache.axis.encoding.Serializer getSerializer(java.lang.String mechType,
 java.lang.Class _javaType,
 javax.xml.namespace.QName _xmlType)

Get Custom Serializer

getDeserializer

public static org.apache.axis.encoding.Deserializer getDeserializer(java.lang.String mechType,
 java.lang.Class _javaType,
 javax.xml.namespace.QName _xmlType)

Get Custom Deserializer

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

WsfResult file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

5 of 5 10/22/09 11:02 PM

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.gusdb.wsf.plugin

Class WsfServiceException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 org.gusdb.wsf.plugin.WsfServiceException

All Implemented Interfaces:
java.io.Serializable

public class WsfServiceException
extends java.lang.Exception
implements java.io.Serializable

See Also:
Serialized Form

Constructor Summary
WsfServiceException()

WsfServiceException(java.lang.String message)

WsfServiceException(java.lang.String message, java.lang.Throwable cause)

WsfServiceException(java.lang.Throwable cause)

Method Summary

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace,
toString

Methods inherited from class java.lang.Object

WsfServiceException file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

1 of 2 10/22/09 11:02 PM

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

WsfServiceException

public WsfServiceException()

WsfServiceException

public WsfServiceException(java.lang.String message)

Parameters:
message -

WsfServiceException

public WsfServiceException(java.lang.String message,
 java.lang.Throwable cause)

Parameters:
message -
cause -

WsfServiceException

public WsfServiceException(java.lang.Throwable cause)

Parameters:
cause -

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

WsfServiceException file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

2 of 2 10/22/09 11:02 PM

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.gusdb.wsf.service

Class WsfResponse
java.lang.Object
 org.gusdb.wsf.service.WsfResponse

public class WsfResponse
extends java.lang.Object

Constructor Summary
WsfResponse()

Method Summary
 java.lang.String getMessage()

 java.lang.String[][] getResults()

 void setMessage(java.lang.String message)

 void setResults(java.lang.String[][] results)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

WsfResponse

public WsfResponse()

Method Detail

WsfResponse file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

1 of 2 10/22/09 11:03 PM

getMessage

public java.lang.String getMessage()

Returns:
Returns the message.

setMessage

public void setMessage(java.lang.String message)

Parameters:
message - The message to set.

getResults

public java.lang.String[][] getResults()

Returns:
Returns the results.

setResults

public void setResults(java.lang.String[][] results)

Parameters:
results - The results to set.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

WsfResponse file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

2 of 2 10/22/09 11:03 PM

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.gusdb.wsf.client

Class WsfServiceServiceLocator
java.lang.Object
 org.apache.axis.client.Service
 org.gusdb.wsf.client.WsfServiceServiceLocator

All Implemented Interfaces:
WsfServiceService

public class WsfServiceServiceLocator
extends org.apache.axis.client.Service
implements WsfServiceService

Constructor Summary
WsfServiceServiceLocator()

WsfServiceServiceLocator(org.apache.axis.EngineConfiguration config)

WsfServiceServiceLocator(java.lang.String wsdlLoc,
javax.xml.namespace.QName sName)

Method Summary
 java.rmi.Remote getPort(java.lang.Class serviceEndpointInterface)

 For the given interface, get the stub implementation.
 java.rmi.Remote getPort(javax.xml.namespace.QName portName,

java.lang.Class serviceEndpointInterface)
 For the given interface, get the stub implementation.

 java.util.Iterator getPorts()

 javax.xml.namespace.QName getServiceName()

 WsfService getWsfService()

 WsfService getWsfService(java.net.URL portAddress)

WsfServiceServiceLocator file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

1 of 5 10/22/09 11:01 PM

 java.lang.String getWsfServiceAddress()

 java.lang.String getWsfServiceWSDDServiceName()

 void setEndpointAddress(javax.xml.namespace.QName portName,
java.lang.String address)
 Set the endpoint address for the specified port name.

 void setEndpointAddress(java.lang.String portName,
java.lang.String address)
 Set the endpoint address for the specified port name.

 void setWsfServiceEndpointAddress(java.lang.String address)

 void setWsfServiceWSDDServiceName(java.lang.String name)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

WsfServiceServiceLocator

public WsfServiceServiceLocator()

WsfServiceServiceLocator

public WsfServiceServiceLocator(org.apache.axis.EngineConfiguration config)

WsfServiceServiceLocator

public WsfServiceServiceLocator(java.lang.String wsdlLoc,
 javax.xml.namespace.QName sName)
 throws javax.xml.rpc.ServiceException

Throws:
javax.xml.rpc.ServiceException

Method Detail

getWsfServiceAddress

WsfServiceServiceLocator file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

2 of 5 10/22/09 11:01 PM

public java.lang.String getWsfServiceAddress()

Specified by:
getWsfServiceAddress in interface WsfServiceService

getWsfServiceWSDDServiceName

public java.lang.String getWsfServiceWSDDServiceName()

setWsfServiceWSDDServiceName

public void setWsfServiceWSDDServiceName(java.lang.String name)

getWsfService

public WsfService getWsfService()
 throws javax.xml.rpc.ServiceException

Specified by:
getWsfService in interface WsfServiceService

Throws:
javax.xml.rpc.ServiceException

getWsfService

public WsfService getWsfService(java.net.URL portAddress)
 throws javax.xml.rpc.ServiceException

Specified by:
getWsfService in interface WsfServiceService

Throws:
javax.xml.rpc.ServiceException

setWsfServiceEndpointAddress

public void setWsfServiceEndpointAddress(java.lang.String address)

getPort

public java.rmi.Remote getPort(java.lang.Class serviceEndpointInterface)
 throws javax.xml.rpc.ServiceException

For the given interface, get the stub implementation. If this service has no port for the given

WsfServiceServiceLocator file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

3 of 5 10/22/09 11:01 PM

interface, then ServiceException is thrown.

Throws:
javax.xml.rpc.ServiceException

getPort

public java.rmi.Remote getPort(javax.xml.namespace.QName portName,
 java.lang.Class serviceEndpointInterface)
 throws javax.xml.rpc.ServiceException

For the given interface, get the stub implementation. If this service has no port for the given
interface, then ServiceException is thrown.

Throws:
javax.xml.rpc.ServiceException

getServiceName

public javax.xml.namespace.QName getServiceName()

getPorts

public java.util.Iterator getPorts()

setEndpointAddress

public void setEndpointAddress(java.lang.String portName,
 java.lang.String address)
 throws javax.xml.rpc.ServiceException

Set the endpoint address for the specified port name.

Throws:
javax.xml.rpc.ServiceException

setEndpointAddress

public void setEndpointAddress(javax.xml.namespace.QName portName,
 java.lang.String address)
 throws javax.xml.rpc.ServiceException

Set the endpoint address for the specified port name.

WsfServiceServiceLocator file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

4 of 5 10/22/09 11:01 PM

Throws:
javax.xml.rpc.ServiceException

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

WsfServiceServiceLocator file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

5 of 5 10/22/09 11:01 PM

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.gusdb.wsf.client

Class WsfServiceSoapBindingStub
java.lang.Object
 org.apache.axis.client.Stub
 org.gusdb.wsf.client.WsfServiceSoapBindingStub

All Implemented Interfaces:
java.rmi.Remote, WsfService

public class WsfServiceSoapBindingStub
extends org.apache.axis.client.Stub
implements WsfService

Constructor Summary
WsfServiceSoapBindingStub()

WsfServiceSoapBindingStub(javax.xml.rpc.Service service)

WsfServiceSoapBindingStub(java.net.URL endpointURL, javax.xml.rpc.Service service)

Method Summary
protected

 org.apache.axis.client.Call
createCall()

 WsfResponse invoke(java.lang.String pluginClassName,
java.lang.String projectId,
java.lang.String[] paramValues,
java.lang.String[] columns)

 WsfResult invokeEx(java.lang.String pluginClassName,
java.lang.String projectId,
java.lang.String[] paramValues,
java.lang.String[] columns)

 java.lang.String requestResult(java.lang.String requestId, int packetId)

WsfServiceSoapBindingStub file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

1 of 3 10/22/09 11:01 PM

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

WsfServiceSoapBindingStub

public WsfServiceSoapBindingStub()
 throws org.apache.axis.AxisFault

Throws:
org.apache.axis.AxisFault

WsfServiceSoapBindingStub

public WsfServiceSoapBindingStub(java.net.URL endpointURL,
 javax.xml.rpc.Service service)
 throws org.apache.axis.AxisFault

Throws:
org.apache.axis.AxisFault

WsfServiceSoapBindingStub

public WsfServiceSoapBindingStub(javax.xml.rpc.Service service)
 throws org.apache.axis.AxisFault

Throws:
org.apache.axis.AxisFault

Method Detail

createCall

protected org.apache.axis.client.Call createCall()
 throws java.rmi.RemoteException

Throws:
java.rmi.RemoteException

invoke

WsfServiceSoapBindingStub file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

2 of 3 10/22/09 11:01 PM

public WsfResponse invoke(java.lang.String pluginClassName,
 java.lang.String projectId,
 java.lang.String[] paramValues,
 java.lang.String[] columns)
 throws java.rmi.RemoteException

Specified by:
invoke in interface WsfService

Throws:
java.rmi.RemoteException

invokeEx

public WsfResult invokeEx(java.lang.String pluginClassName,
 java.lang.String projectId,
 java.lang.String[] paramValues,
 java.lang.String[] columns)
 throws java.rmi.RemoteException

Specified by:
invokeEx in interface WsfService

Throws:
java.rmi.RemoteException

requestResult

public java.lang.String requestResult(java.lang.String requestId,
 int packetId)
 throws java.rmi.RemoteException

Specified by:
requestResult in interface WsfService

Throws:
java.rmi.RemoteException

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

WsfServiceSoapBindingStub file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

3 of 3 10/22/09 11:01 PM

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.gusdb.wsf.plugin

Class WsfPlugin
java.lang.Object
 org.gusdb.wsf.plugin.WsfPlugin

All Implemented Interfaces:
IWsfPlugin

public abstract class WsfPlugin
extends java.lang.Object
implements IWsfPlugin

The WsfPlugin provides the common routines a plugin needs to simplify the development of new WSF plugins.

Field Summary
protected Logger logger

 The logger for this plugin.
protected

static java.lang.String
newline

protected
 ServletContext

servletContext

Constructor Summary
WsfPlugin()
 Initialize a plugin with empty properties
WsfPlugin(java.lang.String propertyFile)
 Initialize a plugin and assign a property file to it

Method Summary
protected abstract

 WsfResult
execute(java.lang.String queryName,
java.util.Map<java.lang.String,java.lang.String> params,
java.lang.String[] orderedColumns)
 The plugin should implement this method to do the real job, for example, to invoke an
application, and prepare the results into tabular format, and then return the results.

protected abstract
 java.lang.String[]

getColumns()
 The Plugin needs to provides a list of the columns expected in the result; the base class
will use this template method in the input validation process.

protected
 java.lang.String

getProperty(java.lang.String propertyName)

protected abstract
 java.lang.String[]

getRequiredParameterNames()
 The Plugin needs to provide a list of required parameter names; the base class will use
this template method in the input validation process.

WsfPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

1 of 5 10/22/09 11:02 PM

 WsfResult invoke(java.lang.String projectId,
java.util.Map<java.lang.String,java.lang.String> params,
java.lang.String[] orderedColumns)
 The service will call the plugin through this interface.

protected int invokeCommand(java.lang.String[] command, java.lang.StringBuffer result,
long timeout)

 void setLogger(Logger logger)

protected void validateColumns(java.lang.String[] orderedColumns)

protected abstract
 void

validateParameters(java.util.Map<java.lang.String,java.lang.String> params)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

newline

protected static final java.lang.String newline

logger

protected Logger logger

The logger for this plugin. It is a recommended way to record standard output and error messages.

servletContext

protected ServletContext servletContext

Constructor Detail

WsfPlugin

public WsfPlugin()

Initialize a plugin with empty properties

WsfPlugin

public WsfPlugin(java.lang.String propertyFile)
 throws WsfServiceException

Initialize a plugin and assign a property file to it

Parameters:

WsfPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

2 of 5 10/22/09 11:02 PM

propertyFile - the name of the property file. The base class will resolve the path to this file, which should
be under the WEB-INF of axis' webapps.

Throws:
WsfServiceException

Method Detail

getRequiredParameterNames

protected abstract java.lang.String[] getRequiredParameterNames()

The Plugin needs to provide a list of required parameter names; the base class will use this template method in
the input validation process.

Returns:
returns an array the names of the required parameters

getColumns

protected abstract java.lang.String[] getColumns()

The Plugin needs to provides a list of the columns expected in the result; the base class will use this template
method in the input validation process.

Returns:
returns an array the columns expected in the result

execute

protected abstract WsfResult execute(java.lang.String queryName,
 java.util.Map<java.lang.String,java.lang.String> params,
 java.lang.String[] orderedColumns)
 throws WsfServiceException

The plugin should implement this method to do the real job, for example, to invoke an application, and prepare
the results into tabular format, and then return the results.

Parameters:
queryName - the name of the query that invokes this plugin
params - The Map of parameters given by the client
orderedColumns - The ordered columns assigned by the client. each of the columns must match with one
column sepecified in getColumns() by the plugin. The The plugin is responsible to re-format the result
following the order of the columns defined here.

Returns:
returns the result in 2-dimensional array of strings format.

Throws:
WsfServiceException

setLogger

public void setLogger(Logger logger)

WsfPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

3 of 5 10/22/09 11:02 PM

Specified by:
setLogger in interface IWsfPlugin

Parameters:
logger - set a different logger to the plugin. The WsfService will assign a specific logger to each plugin.

invoke

public final WsfResult invoke(java.lang.String projectId,
 java.util.Map<java.lang.String,java.lang.String> params,
 java.lang.String[] orderedColumns)
 throws WsfServiceException

The service will call the plugin through this interface. Plugin cannot override this method from the base class,
instead it should implement execute() method.

Specified by:
invoke in interface IWsfPlugin

Returns:
Throws:

WsfServiceException
See Also:

org.gusdb.wsf.IWsfPlugin#invoke(java.util.Map, java.lang.String[])

validateParameters

protected abstract void validateParameters(java.util.Map<java.lang.String,java.lang.String> params)
 throws WsfServiceException

Throws:
WsfServiceException

validateColumns

protected void validateColumns(java.lang.String[] orderedColumns)
 throws WsfServiceException

Throws:
WsfServiceException

getProperty

protected java.lang.String getProperty(java.lang.String propertyName)

invokeCommand

protected int invokeCommand(java.lang.String[] command,
 java.lang.StringBuffer result,
 long timeout)
 throws java.io.IOException

Parameters:
command - the command array. If you have param values with spaces in it, put the value into one cell to

WsfPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

4 of 5 10/22/09 11:02 PM

avoid the value to be splitted.
timeout - the maximum allowed time for the command to run, in seconds
result - Contains raw output of the command.

Returns:
the exit code of the invoked command

Throws:
java.io.IOException

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

WsfPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/wsf/org/g...

5 of 5 10/22/09 11:02 PM

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.apidb.apicomplexa.wsfplugin.apifed

Class ApiFedPlugin
java.lang.Object
 WsfPlugin
 org.apidb.apicomplexa.wsfplugin.apifed.ApiFedPlugin

public class ApiFedPlugin
extends WsfPlugin

Field Summary
static java.lang.String COLUMN_RETURN

static java.lang.String MAPPING_FILE

static java.lang.String PARAM_COLUMNS

static java.lang.String PARAM_ORGANISMS

static java.lang.String PARAM_PARAMETERS

static java.lang.String PARAM_PROCESSNAME

static java.lang.String PARAM_QUERY

static java.lang.String PARAM_SET_NAME

static java.lang.String PROPERTY_FILE

static java.lang.String VERSION

Constructor Summary
ApiFedPlugin()
 Constructor for ApiFedPluginClass This class acts as the federation service for the EuPathDB Web
service Federation system

Method Summary

ApiFedPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

1 of 5 10/22/09 11:00 PM

protected
 WsfResult

execute(java.lang.String queryName,
java.util.Map<java.lang.String,java.lang.String> params,
java.lang.String[] orderedColumns)
 Main function in this class to perform the function of federation service Decomposes
query based on organism and distributes queries to component sites as needed

protected
 java.lang.String[]

getColumns()

protected
 java.lang.String[]

getRequiredParameterNames()

protected void validateColumns(java.lang.String[] orderedColumns)

protected void validateParameters(java.util.Map<java.lang.String,java.lang.String> params)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

PROPERTY_FILE

public static final java.lang.String PROPERTY_FILE

See Also:
Constant Field Values

MAPPING_FILE

public static final java.lang.String MAPPING_FILE

See Also:
Constant Field Values

VERSION

public static final java.lang.String VERSION

See Also:
Constant Field Values

PARAM_SET_NAME

public static final java.lang.String PARAM_SET_NAME

ApiFedPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

2 of 5 10/22/09 11:00 PM

See Also:
Constant Field Values

PARAM_PROCESSNAME

public static final java.lang.String PARAM_PROCESSNAME

See Also:
Constant Field Values

PARAM_PARAMETERS

public static final java.lang.String PARAM_PARAMETERS

See Also:
Constant Field Values

PARAM_COLUMNS

public static final java.lang.String PARAM_COLUMNS

See Also:
Constant Field Values

PARAM_ORGANISMS

public static final java.lang.String PARAM_ORGANISMS

See Also:
Constant Field Values

PARAM_QUERY

public static final java.lang.String PARAM_QUERY

See Also:
Constant Field Values

COLUMN_RETURN

public static final java.lang.String COLUMN_RETURN

See Also:
Constant Field Values

ApiFedPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

3 of 5 10/22/09 11:00 PM

Constructor Detail

ApiFedPlugin

public ApiFedPlugin()
 throws WsfServiceException

Constructor for ApiFedPluginClass This class acts as the federation service for the EuPathDB Web
service Federation system

Throws:
WsfServiceException

Method Detail

getRequiredParameterNames

protected java.lang.String[] getRequiredParameterNames()

getColumns

protected java.lang.String[] getColumns()

validateParameters

protected void validateParameters(java.util.Map<java.lang.String,java.lang.String> params)
 throws WsfServiceException

Throws:
WsfServiceException

validateColumns

protected void validateColumns(java.lang.String[] orderedColumns)

execute

protected WsfResult execute(java.lang.String queryName,
 java.util.Map<java.lang.String,java.lang.String> params,
 java.lang.String[] orderedColumns)
 throws WsfServiceException

Main function in this class to perform the function of federation service Decomposes query based on
organism and distributes queries to component sites as needed

Parameters:

ApiFedPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

4 of 5 10/22/09 11:00 PM

queryName - name of the query to be executed on components
params - Map of parameter name and parameter values
orderedColumns - Array of column name to be returned

Returns:
WsfResult containing combined results of component services

Throws:
WsfServiceException

See Also:
org.gusdb.wsf.WsfPlugin#execute(java.util.Map, java.lang.String[])

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

ApiFedPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

5 of 5 10/22/09 11:00 PM

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.apidb.apicomplexa.wsfplugin.wdkquery

Class WdkQueryPlugin
java.lang.Object
 WsfPlugin
 org.apidb.apicomplexa.wsfplugin.wdkquery.WdkQueryPlugin

public class WdkQueryPlugin
extends WsfPlugin

Field Summary
static java.lang.String COLUMN_RETURN

static java.lang.String GUS_HOME

static java.lang.String MODEL_NAME

static java.lang.String PARAM_COLUMNS

static java.lang.String PARAM_PARAMETERS

static java.lang.String PROPERTY_FILE

static java.lang.String SITE_MODEL

static java.lang.String VERSION

Constructor Summary
WdkQueryPlugin()
 Constructor for the WdkQueryPlugin object This object access WDK to execute the provided query
acts as the component service for the EuPathDB federation system

Method Summary
protected java.lang.String convertDatasetId2DatasetChecksum(java.lang.String sig_id)

 handles the dataset parameters from WDK must convert form internal to e
values to pass the correct information

WdkQueryPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

1 of 7 10/22/09 11:00 PM

protected
 java.util.Map<java.lang.String,java.lang.String>

convertParams(User user,
java.util.Map<java.lang.String,java.lang.String> p, Param[] q)
 converts parameters from internal to external values and validated values

protected WsfResult execute(java.lang.String invokeKey,
java.util.Map<java.lang.String,java.lang.String> params,
java.lang.String[] orderedColumns)
 access WDK and executes the proper query with the given parameters ret
given set of columns

protected java.lang.String[] getColumns()

protected java.lang.String[] getRequiredParameterNames()

protected java.lang.String[][] handleEnumParameters(Param p, java.lang.String[] ordCols)
 Allows the federation to work for all types of parameters to eliminate the
enumParameters in the portal Model

protected java.lang.String[][] results2StringArray(Column[] cols, ResultList result)
 Converts results into a String[][] to be returned to the portal

protected void validateColumns(java.lang.String[] orderedColumns)

protected void validateParameters(java.util.Map<java.lang.String,java.lang.St

protected boolean validateSingleValues(AbstractEnumParam p, java.lang.String val
 validated the inputs to ensure only allowed values

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

PROPERTY_FILE

public static final java.lang.String PROPERTY_FILE

See Also:
Constant Field Values

MODEL_NAME

public static final java.lang.String MODEL_NAME

See Also:
Constant Field Values

WdkQueryPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

2 of 7 10/22/09 11:00 PM

GUS_HOME

public static final java.lang.String GUS_HOME

See Also:
Constant Field Values

VERSION

public static final java.lang.String VERSION

See Also:
Constant Field Values

PARAM_PARAMETERS

public static final java.lang.String PARAM_PARAMETERS

See Also:
Constant Field Values

PARAM_COLUMNS

public static final java.lang.String PARAM_COLUMNS

See Also:
Constant Field Values

SITE_MODEL

public static final java.lang.String SITE_MODEL

See Also:
Constant Field Values

COLUMN_RETURN

public static final java.lang.String COLUMN_RETURN

See Also:
Constant Field Values

Constructor Detail

WdkQueryPlugin

WdkQueryPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

3 of 7 10/22/09 11:00 PM

public WdkQueryPlugin()
 throws WsfServiceException

Constructor for the WdkQueryPlugin object This object access WDK to execute the provided query
acts as the component service for the EuPathDB federation system

Throws:
WsfServiceException

Method Detail

getRequiredParameterNames

protected java.lang.String[] getRequiredParameterNames()

getColumns

protected java.lang.String[] getColumns()

validateParameters

protected void validateParameters(java.util.Map<java.lang.String,java.lang.String> params)
 throws WsfServiceException

Throws:
WsfServiceException

validateColumns

protected void validateColumns(java.lang.String[] orderedColumns)

execute

protected WsfResult execute(java.lang.String invokeKey,
 java.util.Map<java.lang.String,java.lang.String> params,
 java.lang.String[] orderedColumns)
 throws WsfServiceException

access WDK and executes the proper query with the given parameters returns the given set of columns

Parameters:
invokeKey - query name that will be executed by the service
params - parameters to be given as input to the query
orderedColumns - list of columns that should be returned by the service

Returns:
Object containing the results of the query from the WDK

Throws:
WsfServiceException

WdkQueryPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

4 of 7 10/22/09 11:00 PM

See Also:
org.gusdb.wsf.WsfPlugin#execute(java.util.Map, java.lang.String[])

convertDatasetId2DatasetChecksum

protected java.lang.String convertDatasetId2DatasetChecksum(java.lang.String sig_id)
 throws java.lang.Exception

handles the dataset parameters from WDK must convert form internal to external values to pass the
correct information

Parameters:
sid_id - signature of the user being used for this data set

Returns:
converted dataset id as string

Throws:
java.lang.Exception

convertParams

protected java.util.Map<java.lang.String,java.lang.String> convertParams(User user,
 java.util.Map<java.lang.String,java.
 Param[] q)

converts parameters from internal to external values and validated values

Parameters:
user - User object that initiated the query on the portal
p - parameters for the query from the portal
q - parameters for the query from the WDK Model

Returns:
converted parameters

results2StringArray

protected java.lang.String[][] results2StringArray(Column[] cols,
 ResultList result)
 throws WdkModelException

Converts results into a String[][] to be returned to the portal

Parameters:
cols - Array of columns to be returned
result - ResultList from the WDK containing the results of the query

Returns:
results as a two-demensional array of String

Throws:
WdkModelException

WdkQueryPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

5 of 7 10/22/09 11:00 PM

validateSingleValues

protected boolean validateSingleValues(AbstractEnumParam p,
 java.lang.String value)
 throws WdkModelException,
 java.security.NoSuchAlgorithmException,
 java.sql.SQLException,
 JSONException,
 WdkUserException

validated the inputs to ensure only allowed values

Parameters:
p - Parameter from WDK Model
value - Value passed in from the portal

Returns:
true if value is valid for the given parameter

Throws:
WdkModelException
java.security.NoSuchAlgorithmException
java.sql.SQLException
JSONException
WdkUserException

handleEnumParameters

protected java.lang.String[][] handleEnumParameters(Param p,
 java.lang.String[] ordCols)
 throws WdkModelException,
 java.security.NoSuchAlgorithmException,
 java.sql.SQLException,
 JSONException,
 WdkUserException

Allows the federation to work for all types of parameters to eliminate the need for enumParameters in
the portal Model

Parameters:
p - Parameter to get from the model
ordCols - values to return for the portal

Returns:
results of the parameter from the this component WDK Model

Throws:
WdkModelException
java.security.NoSuchAlgorithmException
java.sql.SQLException
JSONException
WdkUserException

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes

WdkQueryPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

6 of 7 10/22/09 11:00 PM

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

WdkQueryPlugin file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/newhtml/o...

7 of 7 10/22/09 11:00 PM

Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

org.gusdb.wdk.controller.action

Class ProcessRESTAction
java.lang.Object
 ShowQuestionAction
 org.gusdb.wdk.controller.action.ProcessRESTAction

public class ProcessRESTAction
extends ShowQuestionAction

This Action is called by the ActionServlet when a REST service is invoked. The path is used to
determine the Question to be asked and the parameters are pulled from the URL The results are
returned in a either XML or JSON format.

Constructor Summary
ProcessRESTAction()

Method Summary
 ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)
 Function to execute the question.

protected
 void

reportError(HttpServletResponse resp,
java.util.Map<java.lang.String,java.lang.String> msg,
java.lang.String errType, java.lang.String errCode,
java.lang.String type)
 Handles errors from the execute function and outputs them in the given
format (XML or JSON)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

ProcessRESTAction

ProcessRESTAction file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/rest/org/g...

1 of 3 10/22/09 11:00 PM

public ProcessRESTAction()

Method Detail

execute

public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws java.lang.Exception

Function to execute the question.

Parameters:
mapping - Mapping for the actions in the servlet
form - Form from the question page (not use in this environment)
request - HttpServletREquest Object
response - HttpServletResponse Object

Returns:
null

Throws:
java.lang.Exception

reportError

protected void reportError(HttpServletResponse resp,
 java.util.Map<java.lang.String,java.lang.String> msg,
 java.lang.String errType,
 java.lang.String errCode,
 java.lang.String type)
 throws java.io.IOException

Handles errors from the execute function and outputs them in the given format (XML or JSON)

Parameters:
resp - HttpServletResponse Object
msg - Map of error messages included in an exception
errType - Name this type of error
errCode - Code for the error
type - type of output ('xml' or 'json')

Throws:
java.io.IOException

Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

ProcessRESTAction file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/rest/org/g...

2 of 3 10/22/09 11:00 PM

ProcessRESTAction file:///Users/carypenn/Desktop/ThesisStuff/JavaDocs/rest/org/g...

3 of 3 10/22/09 11:00 PM

	Pennington-Thesis
	Pennington-Jdocs
	WsfService
	WsfResponse
	WsfResult
	WsfServiceException
	WsfServiceResponse
	WsfServiceServiceLocator
	WsfServiceSoapBindingStub
	WsfPlugin
	ApiFedPlugin
	WdkQueryPlugin
	ProcessRESTAction

