

LeaREX: LEARNING RELATIONSHIP EXTRACTION PATTERNS FROM TEXT BASED

ON TYPED DEPENDENCIES

by

CHATALI PATEL

(Under the Direction of Krzysztof J. Kochut)

ABSTRACT

 An immense number of articles containing important information are being published

every day. We have developed a generalized text mining system which automatically extracts

relationships between concepts from free text and presents them in user desired format. The

system requires example sentences with entities of interest annotated by the user as an input to

train the system. The system uses the SPARQL query language as an interface to identify

grammatical patterns existing in the sentence, which helps in extracting relationships. A

curatorial system can be used to verify extracted relationships. To improve the performance, an

additional module was developed that generates SPARQL query patterns using expert feedback

from the curatorial system; this module adds patterns to the extraction patterns set. Similar

patterns are combined to reduce the overall numbers of distinct patterns to speed up extraction

process. Additionally, the module improves system accuracy over time.

INDEX WORDS: Text Mining, Natural Language Processing, Relationship Extraction,

Parsing, Pattern Recognition, Ontology, Jena, SPARQL

LeaREX: LEARNING RELATIONSHIP EXTRACTION PATTERNS FROM TEXT BASED

ON TYPED DEPENDENCIES

by

CHATALI PATEL

B.E., GUJARAT TECHNOLOGICAL UNIVERSITY, INDIA, 2013

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2017

© 2017

CHATALI PATEL

All Rights Reserved

LeaREX: LEARNING RELATIONSHIP EXTRACTION PATTERNS FROM TEXT BASED

ON TYPED DEPENDENCIES

by

CHATALI PATEL

 Major Professor: Krzysztof J. Kochut

 Committee: Hamid A. Arabnia

 Ismailcem Budak Arpinar

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School

The University of Georgia

August 2017

iv

DEDICATION

 Dedicated to my family and friends who supported me throughout this work.

v

ACKNOWLEDGEMENTS

 I am very much grateful to Dr. Krzysztof J. Kochut for his motivation and consistent

guidance throughout my research. His office door was always open whenever I had any doubt or

questions regarding my work. I could not have imagined completing my work without his

supervision, patience, and immense knowledge. I would also like to thank my committee

members, Dr. Hamid A. Arabnia and Dr. Ismailcem Budak Arpinar, for their support and

agreeing to be committee members.

I would like to thank my labmates for their guidance, comments and suggestions. I would

also thank my friends who supported me, especially Ankita Joshi, Amitabh Priyadarshi and

Sanath Bhat, master’s students in The Computer Science Department at The University of

Georgia, for helping me work through my issues and clarifying my understanding.

Finally, I would like to thank The University of Georgia, especially The Computer

Science Department, for providing me a stimulating environment to study and serving as a

gateway for better opportunities.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

 1 INTRODUCTION ...1

 1.1 Introduction ..1

 1.2 Major Contribution ..2

 2 BACKGROUND ...5

 2.1 Text Mining ...5

 2.2 Natural Language Processing ..7

 2.3 Parsing and Stanford Parser ...9

 2.4 Ontology and SPARQL ...15

 2.5 Information Extraction from Text ..20

 3 RELATED WORK ..22

 3.1 “Learning Information Extraction Patterns from Examples”22

 3.2 “Semanticizing Syntactic Patterns in NLP Processing using SPARQL-DL” ..23

 3.3 “RelEx—Relation extraction using dependency parse trees”25

 3.4 “A Framework for Schema-Driven Relationship Discovery from Unstructured

Text” ..26

vii

 3.5 “Learning User-Defined, Domain-Specific Relations: A Situated Case Study

and Evaluation in Plant Science” ...28

 3.6 “Semantic Tool for Analysing Unstructured Data” ...30

 3.7 “Comparative Evaluation” ...31

 4 LeaREX IMPLEMENTATION ...35

 4.1 Motivation ..35

 4.2 Implementation ..36

 5 RELATIONSHIP EXTRACTION USING LeaREX ..40

 5.1 Training the system ..40

 5.2 Testing the system..60

 5.3 Automatic Pattern Generation from curatorial knowledge60

 6 EXPERIMENTS AND EVALUATION ...61

 7 CONCLUSION AND FUTURE WORK ..66

REFERENCES ..68

viii

LIST OF TABLES

Page

Table 1: Comparison of related systems ..33

Table 2: Experimental results of Sentence to Pattern Matching ..61

Table 3: Comparison of related systems with each other ..64

ix

LIST OF FIGURES

Page

Figure 1: Parse tree representation of the sentence “Keith saw the man with the telescope”10

Figure 2: POS Tagging of sentence “Bell, based in Los Angeles, makes and distributes

electronic, computer and building products” generated by Stanford parser11

Figure 3: Parse of sentence “Bell, based in Los Angeles, makes and distributes electronic,

computer and building products” generated by Stanford parser ..11

Figure 4: Typed dependencies of sentence “Bell, based in Los Angeles, makes and distributes

electronic, computer and building products” generated by Stanford parser12

Figure 5: example RDF data ..19

Figure 6: example SPARQL query ..19

Figure 7: example SPARQL query result ..19

Figure 8: LeaREX Architecture ...37

Figure 9: UML diagram of the system’s database ...39

Figure 10: Visualization of the grammatical structure of the sentence “Under restrictive media

conditions, only S252W fibroblasts showed enhanced migration” using POS tagging,

parse tree and typed dependencies ...43

Figure 11: Visualization of the grammatical structure of sentence “Under restrictive media

conditions, only S252W fibroblasts showed enhanced migration” with the smallest

subgraph interconnecting critical words highlighted ...44

x

Figure 12: Graphical representation of triples used to interconnect the critical nodes of the

sentence “Under restrictive media conditions, only S252W fibroblasts showed enhanced

migration” with intermediate nodes replaced by variables and critical words by the

categories they belong to ...45

Figure 13: Triples representation of the sentence “Under restrictive media conditions, only

S252W fibroblasts showed enhanced migration” after replacing intermediate nodes by

variables and critical words by the categories they belong to ...45

Figure 14: Final SPARQL query representation of the sentence “Under restrictive media

conditions, only S252W fibroblasts showed enhanced migration”46

Figure 15: Linear pattern graphical structure...51

Figure 16: Star pattern graphical structure...51

Figure 17: The graph showing grammatical interconnection between words of the sentence

“Since residue V617 is located in the pseudokinase domain of JAK2, this lack of

information has hindered a detailed understanding of the mechanism of activation of

JAK2 V617F” ..53

Figure 18: Graphical representation of linear interconnection between critical words of the

sentence “Since residue V617 is located in the pseudokinase domain of JAK2, this lack

of information has hindered a detailed understanding of the mechanism of activation of

JAK2 V617F” ..53

Figure 19: The graph showing grammatical interconnection between words of the sentence “The

AKT1 (E17K) mutant can cause increases in the protein levels of Bcl 2 and the

phosphorylation of the pro apoptotic protein BAD, resulting in enhanced resistance to

apoptosis” ...54

xi

Figure 20: Graphical representation of star interconnection between critical words of the

sentence “The AKT1 (E17K) mutant can cause increases in the protein levels of Bcl 2

and the phosphorylation of the pro apoptotic protein BAD, resulting in enhanced

resistance to apoptosis” ..55

Figure 21: LeaREX evaluation flowchart ..62

Figure 22: Graph representing System Accuracy based on 1000 Training and 100 Testing

Sentences..63

Figure 23: Graph representing Reduction in Patterns based on 1000 Training Sentences65

1

CHAPTER 1

INTRODUCTION

 In this chapter, we briefly discuss Text Mining and its applications in different areas.

Also, this chapter includes different facets of Text Mining. We have also provided an overview

of our approach and how it could be helpful in extracting information from the data contained in

a natural language text.

1.1 Introduction

A large amount of textual data has been generated during the past several years. Every single

day, about 10 million web pages are being added to the Internet, and this trend is expected to

keep accelerating [11]. Most of this data is in an unstructured form; in other words, it is

represented in natural language as text data. For scientists, it is virtually impossible to process

this data and manually discover needed elements. Much of this data contains very useful

information but it is not easy to read. This situation can be affectively addressed by Text Mining.

Text Mining [1] is popular technology that strives to derive meaningful information from the

large amount of unprocessed natural language data, which may be ambiguous, unstructured or

semi-structured and difficult to process automatically. In simple terms, it is the ability to process

unstructured text from thousands or even millions of articles, interpret the meaning and

automatically identify and extract useful information, such as the relationships exist of texting

between concepts of interest. To mine the information, a text mining process usually involves a

series of tasks to be performed, such as document collection, document pre-processing [2], Part-

2

of-Speech (POS) tagging [3], and application of other Natural Language Processing techniques.

These tasks are explained in detail in Chapter 2 of this thesis. Text mining has many different

facets, depending on the characteristics and applications of the area. The following are examples:

• Search and Information Retrieval (IR)

• Document Classification

• Data Mining

• Natural Language Processing (NLP)

• Information Extraction (IE)

Search and Information Retrieval [4] helps in searching documents relevant to the problem,

which significantly speeds up the analysis process. Document Classification [5] helps in

managing and sorting documents by assigning them different categories or classes. Data mining

[6] is the process of extracting useful information from data and converting it into an easily

readable form. Natural Language Processing (NLP) [7] enables computers to glean meaning

from natural language text, which is not easily understandable by machines. Often, NLP works

as an input to the Information Extraction (IE) phase. Many NLP applications exist and use word

dictionaries, ontologies, word-lists, rules etc. In the Information Extraction [8] phase, structured

information is extracted from semi-structured or unstructured machine readable data, which is

often received from the Natural Language Processing phase.

1.2 Major Contribution

In this work, we mainly focused on Information Extraction and Natural Language Processing to

automatically extract relationship from text using grammatical dependence patterns.

3

A wide range of Text Mining Systems have been developed according to the area of application.

One of the most common areas where text mining is applied the most is the biomedical domain.

The majority of the text mining systems use a bag of words and some set of predefined rules or

patterns to train the system, and this trained system is eventually used to identify/predict possible

outcomes.

We have developed a generalized text mining system that can be applied to arbitrary natural

language text with minimum human effort. It is domain independent and builds its own

knowledge base in any new corpus of text automatically using provided training data. It requires

the user to provide a set of example sentences with the index of critical words present in the

sentence. The user also needs to provide a set of words from different categories which can exist

in other testing sentences. The system utilizes the grammatical structure of the sentence for

analysis, transforms it into graph structure using a graph library and, ultimately, takes advantage

of SPARQL Protocol and RDF Query Language (SPARQL) [9] expressiveness to encode it into

a SPARQL query. Later, these SPARQL queries are used for pattern matching to predict the

relationship between concepts in the text. To test our system, we used a system called Ki-MIner

[68], created and implemented by Bhargabi Chakrabarti, a student who graduated from The

Computer Science Department at the University of Georgia, as part of her Master’s Thesis

project. She used articles from PubMed Central [14] for her system. To assure the correctness of

the predictions generated by the system, we used a system called CURAMI [69], created and

implemented by Reshmi De, a student who graduated from The Computer Science Department at

the University of Georgia, as part of her Master’s Thesis project. It is a curatorial system that

provides a significant level of assistance to human experts, implements a multilevel verification

4

and provides a feedback mechanism. It presents the extraction outcome along with all relevant

information to the human curators. Curators assess the predictions and give feedback on them.

We also added an additional feature to improve our system using curatorial knowledge. The

system generates the SPARQL patterns using expert feedback and adds them to the training

dataset automatically rather than requiring manual observation. This makes the system robust

and more reliable over time. To increase speed and efficiency, we attempted to optimize the

system by minimizing the number of patterns generated automatically. The measures taken to

achieve this are described in the subsequent chapters.

In Chapter 2, we discuss background information regarding Text Mining, Ontology and

SPARQL, Parsing and the Stanford Parser, Natural Language Processing and Information

Extraction from Text. Chapter 3 discusses related work that has been done in this research area.

Chapter 4 states our approach to extracting information from text using dependence patterns.

Chapter 5 explains the implementation of our approach. Evaluations are described in Chapter 6.

Finally, Chapter 7 presents the conclusion and a discussion of future work.

5

CHAPTER 2

BACKGROUND

2.1 Text Mining

Text Mining is an increasingly popular area of research in computer science that strives to derive

meaningful information from the large amount of unprocessed natural language data, which may

be ambiguous, unstructured or semi-structured and difficult to process. This unprocessed data is

in the form of newspaper or web articles, email, blog entries, internal reports, research papers,

transcripts of phone calls and many more [10]. Text Mining generally attempts to discover the

semantics of the data by deducing rules or non-trivial patterns from natural language text

documents, which helps in automatically discovering knowledge from other unprocessed

documents. The challenge here is to transform unstructured data into rules or patterns. They can

be domain-specific or general rules that can be applied to any domain. Also, they can be built by

hand or automatically with minimal human involvement.

Machine Learning, Data Mining, Information Extraction and Natural Language Processing are

some of the most frequently used techniques for discovering knowledge using Text Mining [12].

Though Text Mining and Data Mining tend to have a similar purpose, Text Mining is regarded as

having higher potential than Data Mining. The reason is that Text Mining discovers knowledge

from free text, while Data Mining attempts to discover knowledge from structured data like a

database. Thus, Text Mining can be viewed as an extension of Data Mining. In other words, it

can be called Text Data Mining. As mentioned in the Introduction chapter, mining text involves

a series of tasks to mine the text such as Information Retrieval (document collection), document

6

pre-processing, Part-of-Speech (POS) tagging, Natural Language Processing and others which

are described in detail below.

2.1.1 Information Retrieval

Information Retrieval (IR) is also called Document Collection. It is the first key step in Text

Mining. IR is the activity of acquiring static or dynamic documents that are relevant to the

domain of research. In static document collection, documents remain the same, while in dynamic

document collection, documents are updated over time [12]. IR starts with the user query

containing relevant strings describing the kind of documents needed. It returns documents (or

images, audio, video, etc.), which may or may not match the user search. PubMed [13] is one of

the largest platforms for text data collections. It has been maintained by The United States

National Library of Medicine. It contains millions of documents on biomedical topics.

2.1.2 Document Pre-Processing

Once the relevant documents are collected, the next step is to process them. Since the text in the

documents is not structured data, analyzing it becomes a difficult task. This text might also have

redundant and irrelevant data. In this step, the syntactic and semantic structure of the text is

extracted, and characters, words or sentences are identified. In the later processing stages of

Chakrabarti’s thesis, Part-of-Speech tagging was applied to the resulting sentences to give the

sentence a better structure.

2.1.3 Part-of-Speech (POS) tagging

Tagging means annotating a sentence and Part-of-Speech references grammatical category of

words (POS tags includes the verb, noun, adjective, preposition, etc.) [3]. This means that words

having the same POS belong to the same category and are similar in some way. Generally, they

tend to have similar syntax. Thus, POS tagging annotates words in the text by appropriate

7

category based on their grammatical relationship with other words in the phrase, sentence or

paragraph. POS tagging is usually a sentence-based process that labels the word by its correct

part-of-speech, which helps in adding more structure to the sentence. Most of the English taggers

use The Penn Treebank [15] tag set. The example sentence and its part-of-speech tagging is

shown below:

“I like watching movies” [16]

➢ I-PRP like-VBP watching-VBG movies-NNS

Here, we see that I is PRP (Personal Pronoun), like is VBP (Verb, non-3rd person singular

present), watching is VBG (Verb, gerund or present participle) and movies is NNS (Noun,

plural). These tags are taken from The Penn Treebank Project.

POS taggers perform morphological analysis of words and produce stems for the input words.

For the purpose of stemming, we apply The Porter Stemmer algorithm [17]. Many part-of-speech

taggers are available nowadays. In our approach, we used the Stanford Dependency Parser [18],

which first performs POS tagging of the sentence and then generates the parse tree and the

grammatical typed dependencies present between the words in the sentence. The Stanford Parser

is described in greater detail later in this chapter.

2.2 Natural Language Processing

Natural Language Processing enables a computer to process natural language text or human

speech by extracting the semantics from it. To extract the semantics from a sentence, NLP

performs grammatical analysis, which helps in reading the text. Some of the most common NLP

tasks are: Part-of-speech (POS) tagging, Parsing, Named Entity Recognition (NER) and

Relationship extraction. As mentioned above, Part-of-speech tagging determines the part of

8

speech (such as noun, adjective, verb, etc.) for each word in the sentence. Parsing [19]

determines the syntax of the sentence. It tokenizes the sentence and converts it into a parse tree

[20] structure presenting its syntactic representation. Named Entity Recognition [21] finds

named entities from text and annotates them according to some pre-defined categories (e.g.,

names of persons, locations, organizations, expressions of times, monetary values, percentages,

quantities, etc.). Relationship Extraction [22] identifies semantic relations between those named

entities in text. One uncommon way to represent those relationship is by using RDF (Resource

Description Framework) [23] triples in domain ontologies [24]. RDF triples are in the form of

(subject, relationship, object).

NLP techniques can be employed in many applications. One of the popular applications is

sentiment analysis of social media posts to determine public opinion or trends for marketing,

customer service, or other purposes. Question-answering systems are also one of the most used

applications, in which a user query is taken as an input and a relevant result is produced as

output. A few other applications are machine translation, automatic summarization, spam email

filtering, etc. We have developed an information extraction system that uses natural language

processing techniques like POS tags, parse tree and typed dependencies using the Stanford NLP

parser library to retrieve information as per user requirements.

The difference between Text Mining and Natural Language Processing is that Text Mining

transforms unstructured data into a structured form to discover new information from text, while

Natural Language Processing is one of the analysis methodologies to achieve that goal. Thus,

NLP can be regarded as a component of Text Mining, which performs linguistic analysis to

extract meaning.

9

2.3 Parsing and Stanford Parser

Parsing refers to the process of examining or analyzing natural language text. The Stanford

Parser is a probabilistic natural language parser which uses a highly optimized PCFG

(Probabilistic Context-Free Grammar) [18].

A context-free grammar, abbreviated as CFG, consists of 4-tuple [25]:

G = (N, Σ, R, S),

where

• N is a finite set of non-terminal symbols

• Σ is a finite set of terminal symbols

• R is a finite set of rules of the form X → Y1Y2…Yn , where X ∈ N, n ≥ 0,

and Yi ∈ (N ∪ Σ) for i = 1…n

• S ∈ N is a distinguished start symbol.

Probabilistic Context-Free Grammar is an enhancement of CFG in which rules are associated

with a parameter called probability. Each rule is assigned a probability that lies between 0 and 1.

Rules can be in the forms shown below:

S → NP VP

VP → Vi

NP → DT NN

NP → NP PP

PP → IN NP,

where S=sentence, NP=noun phrase, VP=verb phrase, Vi=intransitive verb, DT=determiner,

NN=noun, PP=prepositional phrase, IN=preposition [25]. These are the POS tags taken from

10

Penn Treebank. A parse tree can be constructed using these rules. Let us take an example

sentence:

“Keith saw the man with the telescope” [26]

The parse tree for this sentence is shown in Figure 1.

Figure 1: Parse tree representation of the sentence “Keith saw the man with the telescope”

Since the existence of ambiguity is obvious in natural language, an NLP parser sometimes

generates more than one parse tree for the same sentence. Here, PCFG takes the advantage of

augmented probabilities and generates the most probable parse tree or a ranking of the parse

trees. Thus, PCFG improves the accuracy of parsing.

In addition to parsing, the Stanford parser also provides grammatical relationships between

words in the sentence in the form of typed dependencies.

Below is an example sentence with POS tagging, parse tree and typed dependencies generated by

The Stanford Parser:

“Bell, based in Los Angeles, makes and distributes electronic, computer and building

products” [27]

11

Figure 2: POS Tagging of the sentence “Bell, based in Los Angeles, makes and distributes

electronic, computer and building products” generated by The Stanford Parser [28]

 Figure 3: Parse of the sentence “Bell, based in Los Angeles, makes and distributes electronic,

computer and building products” generated by The Stanford Parser [28]

12

Figure 4: Typed dependencies of the sentence “Bell, based in Los Angeles, makes and

distributes electronic, computer and building products” generated by The Stanford Parser [28]

The Stanford parser first tokenizes the sentence and assigns an index to each word in the

sentence. Then, it uses those indexes in typed dependency generation. Thus, the number shown

in the typed dependencies indicates the index of that word. Typed dependencies represent

relationships between governor (head) and dependent. Definitions of the typed dependencies

generated in the example above are explained below:

• nsubj: nominal subject

E.g. “Clinton defeated Dole” [29]

nsubj(defeated, Clinton)

• acl: clausal modifier of noun

E.g. “I don’t have anything to say to you” [29]

13

acl(anything, say)

• case: case marking

E.g. “I saw a cat in a hat” [29]

case(hat, in)

• compound: compound

E.g. “I have four thousand sheep” [29]

compound(thousand, four)

• nmod: nominal modifier

E.g. “the office of the Chair” [29]

nmod(office, Chair)

• root: root

E.g. “Bill is an honest man” [29]

root(ROOT, man)

• cc: coordination

E.g. “And then we left.” [29]

cc(left, And)

• conj: conjunct

14

E.g. “Bill is big and honest” [29]

conj(big, honest)

• dobj: direct object

E.g. “She gave me a raise” [29]

dobj(gave, raise)

There are many more typed dependencies used by the Stanford Parser, such as advcl, advmod,

xcomp, ccomp, etc. [29], which are not further explained here.

Typed dependencies can be represented in many different forms. The basic type and the

collapsed types are the most used types of representation.

The basic type forms a tree structure using dependencies. The graph generated using basic typed

dependencies does not contain cycles. An example of basic dependency representation for the

phrase “based in LA” is shown below [27]:

prep(based-7, in-8)

 pobj(in-8, LA-9)

In the collapsed type representation, basic dependencies containing conjuncts or prepositions

collapse to obtain direct dependencies between main words in the sentence. In a collapsed

dependency representation, the example of basic dependencies shown above will be collapsed as

follows:

prep_in(based-7, LA-9)

There are other variants of collapsed typed dependency representation:

15

1. Collapsed dependencies with propagation of conjunct dependencies

2. Collapsed dependencies preserving a tree structure

The dependencies which contain conjuncts in it are propagated in Collapsed dependencies with

propagation of conjunct dependencies. With this form, preservation of a tree structure is not

assured.

Collapsed dependencies preserving a tree structure are the same as Collapsed dependencies with

propagation of conjunct dependencies with removal of those dependencies that do not preserve

tree structure.

2.4 Ontology and SPARQL

An Ontology is a theory about what kind of objects exist in the universe and how they are related

to each other. Ontology defines concepts (objects/entities) in the form of classes and

relationships (interactions) between them in terms of properties. Ontologies can be used to create

a knowledge base in any domain using a representation vocabulary. A Representation vocabulary

provides a list of concepts in a particular domain. The W3C states that: “An ontology defines the

terms used to describe and represent an area of knowledge.”

Relational databases are also being used as a knowledge base for many applications, but there are

some features that make ontologies special. In ontologies, we can infer implicit knowledge that

we cannot with a relational database. The main advantage of using ontologies is that they

represent the intended meaning of vocabularies, while a relational database only represents data

[31]. For any domain, its ontology builds a core of knowledge that clarifies the structure and

constraints of the domain knowledge.

16

When should we use an ontology? When the schema is very large and/or complex, and schema

information is used while querying, we should consider using an ontology. On the other hand,

when the schema is small and simple, and querying does not use the schema structure, a database

should be used. One of the most popular real world ontologies is WordNet [30], which models

the domain of the English language. It is comprised of concepts, concept types and relations

between concepts to provide a “terminological knowledge base” in the English language domain

[12].

Thus, a major application of ontologies is the Semantic Web [32]. The contents on the web are

not structured. They can be made useful by converting complex website content and the large

number of applications on semantic web into ontologies to include the semantically related

information and exclude irrelevant information [31].

The semantics in the ontology rely on the representation language. Many languages have been

developed to represent an ontology [33]. Some of the semantic markup ontology languages are

Resource Description Framework (RDF) [23], RDF Schema (RDFS) [34], Web Ontology

Language (OWL) [35], etc., and traditional syntax ontology languages are LOOM (ontology)

[36], KIF (Knowledge Interchange Format) [37], F-Logic (Frame Logic) [38], etc.

Resource Description Framework is a framework that models metadata information on web

resources in graph format. It enables reuse and interchange of the data on the web using XML

(eXtensible Markup Language) syntax. XML syntax makes data user-readable and machine-

processable. RDF represents information in the form of triple (subject, predicate/property,

object) expressions. These triples collectively can generate a graph. In RDF, URIs can also be

used as resources. Thus, RDF is a method for making statements on web resources (like URI) in

17

the form of triples, and the semantic web’s structure is constructed using the RDF concept. RDF

is a vocabulary of terms which can be rendered in number of different formats such as

RDF/XML, N3, Turtle, etc.

RDF Schema (RDFS) provides a schema to RDF terms. It is a language to represent RDF

vocabularies. In simple terms, we can say that RDF defines instances, while RDFS provides a

way to define classes and properties for those instances. RDFS adds semantics to the RDF terms.

For example, Car and Vehicle are two instances defined in RDF, RDFS gives us the flexibility to

say that Car is a class and Car is a sub-class of the Vehicle class. In RDF vocabulary, the term

“rdf:type” is defined, stating that the subject which comes before “rdf:type” is an instance of an

object that comes after “rdf:type”. For example [39],

PREFIX rdf:<https://www.w3.org/ 1999/02/22 -rdf-syntax-ns>

<http://example.com/Car> rdf:type <http://example.com/Vehicle>

Here, PREFIX defines the document it refers to. Car is the subject, and Vehicle is the object.

On the other hand, in RDFS, “rdfs:subclassOf” is one of the example terms in its vocabulary. For

the example above, it can be defined as [39]:

PREFIX rdfs:<https://www.w3.org/2000/01/rdf-schema#>

<http://example.com/Car> rdfs:subClassOf <http://example.com/Vehicle>

Along with classes and sub-classes, RDFS allows the definitions of properties, sub-properties

and the typing of properties. Although RDFS is expressive, it lacks many expressions, some of

which are as follows:

• range restrictions to particular classes

• inverse of property

18

• negation of an expression

• cardinalities

• metadata of the schema

• disjoint classes

Web Ontology Language (OWL) addresses the limitations of RDF Schema and adds more

semantics to data. OWL also provides a much larger vocabulary and metadata than RDF or

RDFS. Hence, OWL can be used as a robust data modeling language that provides the ability of

automatic reasoning.

 OWL defines following three species which are used as per the needs of users or implementers

to allow layering within OWL:

1. OWL Lite

2. OWL DL

3. OWL Full

 OWL Lite is the simplest of the three. It provides simple constraints such as cardinality, but it

allows only 0 and 1 as a value. OWL DL, as its name suggests, supports description logic

capabilities. It guarantees computational completeness, decidability and maximum

expressiveness [40]. OWL Full provides maximum expressiveness but does not guarantee

computational completeness. Also, it does not have any syntactic constraints on RDF [40].

Since RDF documents cannot be assumed to be compatible with OWL Lite or OWL DL

documents, RDF constructs cannot be mixed with OWL Lite or OWL DL constructs. On the

other hand, OWL Full documents are compatible with RDF documents; thus, OWL Full and

RDF documents can be mixed, augmented or redefined. This shows that RDFS is more

expressive than RDF, and OWL is more expressive than RDFS.

19

Once the ontologies are created with a set of RDF triples, they can be queried using SPARQL

(Simple Protocol and RDF Query Language) [9]. Just as SQL is used as a query language to

query relational databases, SPARQL is used to query the semantic web. It was created by the

W3C and is comprised of a PREFIX declaration to abbreviate URIs, a FROM clause to define

which RDF graph to query, a SELECT clause defining the information to extract from the

ontology in the form of variables starting with a Question mark (?), and a WHERE clause stating

conditions to be satisfied while querying an ontology in the form of triple patterns. Triple

patterns are just like triples except that they can contain variables.

A simple example of a RDF dataset, SPARQL query and result set is given below:

Data [9]:

Figure 5: Example RDF data

SPARQL Query [9]:

Figure 6: Example SPARQL query

Result [9]:

Figure 7: Example SPARQL query result

20

No PREFIX is used in this example. The example variable “?title” in the SELECT clause

contains variables to be returned as a result. The WHERE clause consists of triple pattern which

instructs the system to return the title of a book from the given dataset. SPARQL also allows

placing constraints on string or numerical data using FILTER functions [9].

2.5 Information Extraction from Text

Owing to the complexity of natural language text, it is very difficult to understand the meaning

of the text. The amount of electronic content is increasing tremendously day by day. This leads

to a need for building a system that identifies entities and relationships between those entities

and extracts structured data from unstructured text. Information extraction works on two key jobs

which are Named Entity Recognition and Relationship Extraction which identify entities and

extract relations between them, respectively. Thus, Information Extraction helps in transforming

textual unstructured or semi-structured data into structured form and extracts useful/meaningful

information. Information Extraction can be applied to a wide range of applications in different

domains. Depending on the particular requirement of an application, information is extracted in

different type of structured format.

Following is an example sentence and the extracted result by applying information extraction

task:

“In 1998, Larry Page and Sergey Brin founded Google Inc.” [41]

Extracted information:

“FounderOf(Larry Page, Google Inc.),

FounderOf(Sergey Brin, Google Inc.),

FoundedIn(Google Inc., 1998).” [41]

21

In this work, we have developed a Text Mining system which uses an information extraction task

as an initial step to generate relationship extraction patterns. Along with the information

extraction, it also uses a parsing technique and some other steps to achieve the goal which is

described in detail in Chapter 4 and Chapter 5. The original Information Extraction systems and

many other currently developed systems work on hand-coded rules or patterns to extract needed

information. Also, the majority of them are domain specific. We have developed a system which

automatically generates relationship extraction patterns with the least amount of human effort. In

addition, it is domain independent and can be used for any area of interest.

22

CHAPTER 3

RELATED WORK

The aim in developing a system (text mining system) that extracts structured information

from unstructured text can be achieved using different approaches. This section discusses the

implementation of six different systems which are related to our work. These systems usually

aim to create a set of rules or patterns to extract useful information from natural language text.

Also, the strengths and weaknesses of these systems are discussed in terms of comparative

analysis.

3.1 “Learning Information Extraction Patterns from Examples”

This paper introduces a system called LIEP (Learning Information Extraction Patterns) [42],

which learns a set of patterns from user-provided example sentences and events to be extracted

based on local syntax. Those patterns are later used by the extraction system, called ODIE (On

Demand Information Extractor), to extract relationships between key events in the sentence.

ODIE takes text as an input and breaks it into sentences. If a sentence contains any event of

interest, its words were tagged using Eric Brill’s part-of-speech tagger [43]. Next, it applies

patterns generated by LIEP to identify events and check the syntactic relationships between

them. ODIE does not parse the whole sentence but checks for the possible availability of

syntactic relationships between events. It makes a strong assumption about what part of the

sentence could have an event and parses that part of the sentence.

23

Before building a new pattern for any sentence, LIEP checks if any known pattern can be

matched by this sentence. If that is not the case, it tries to produce a generalized pattern that can

cover that example. If it fails to do so, it generates a new pattern. To extract a pattern, LIEP finds

a path between three (two role-filling constituents and the relationships between them) pairs and

combines those paths to create a set of relationships and creates a pattern from the relationships.

ODIE’s average values of precision, recall, and F-measure [44] for hand built patterns were

93.2%, 85.9%, 89.4%, respectively and for LIEP-built patterns, the values were 89.4%, 81.6%,

85.2%, respectively.

Hence, LIEP is a tool which does not require any specialized programmer to extract patterns

from free text. Also, patterns learned by this system have performance very close to the level of a

hand-built pattern dictionary. The general task of extracting relationships using example

sentences is similar to our approach. The difference is in creating patterns and identifying

matching patterns using ODIE. In LeaREX, patterns are encoded as SPARQL queries to leverage

SPARQL’s expressivity and reasoning power. The Jena [66] library is used to identify matching

patterns. Also, LIEP makes some assumptions while learning new patterns, which adds some

uncertainty to the system, which is not the case with LeaREX.

3.2 “Semanticizing Syntactic Patterns in NLP Processing using SPARQL-DL”

The main purpose of this project [45] is to use the SPARQL-DL [46] query language as a rule

engine to identify syntactic patterns in a sentence. Also, the authors have used FrameNet [47]

elements and valance patterns to add semantics to a sentence along with the syntactic tagging

obtained from the NLP parser (The Stanford Parser), which together helps in obtaining a

semantic parse of a sentence. FrameNet carries about 1,200 semantic frames, 13,000 lexical

units, and over 190,000 example sentences. Lexical Units (LUs) in a FrameNet play a key role.

24

They are usually in a verb form and can be used in a sentence in various Syntactic Realizations

(SRs) depending on its role and form (e.g. I like sleeping and I like iPhone). A valance pattern is

used to present those realizations. It consists of frame elements (FEs) like Experiencer, Reason,

Parameter, etc.

FrameNet’s example valance pattern for the sentence “I like him as a fellow” given in the paper

is:

NP.ObjContent NP.ExtExperiencer PP[as].DepParameter

[I]Experiencer like [him]Content [as a fellow]Parameter

where the subscripts are the FEs and the words separated by dot are phrase type (PT) and

grammatical function (GF), respectively. By using valance pattern’s <PT, GF> pair and typed

dependencies, SPARQL-DL queries were formulated by hand. Here, SPARQL-DL queries are

used to detect PhraseType Dependency patterns only in the sentences.

Object properties containing PP[as].Dep are:

ObjectProperty(VBP, prep, IN)

ObjectProperty(IN, pobj, NN)

SPARQL-DL query for matching the pattern can be represented as:

PREFIX : <ontology prefix>

SELECT ?n1 ?n2 ?n3

WHERE { Type(?n1, :VB), Type(?n2, :IN), Type(?n3, :NN),

 PropertyValue(?n1, :prep, ?n2),

 PropertyValue(?n2, :pobj, ?n3),

 PropertyValue(?n2, :lemma, "as") }

25

A predefined ontology with POS tags as classes, grammatical dependencies as object properties,

and a data type property ‘lemma’, which relates a word with its base form, was populated for

each sentence with words as individuals of the defined classes and object properties relating the

words. To leverage the capabilities of an ontology, some rules or constrains can be applied to the

ontology for pattern matching. It is also possible to loosen some of the constraints in case no

matching sentence is found.

After constructing the temporary ontology for the sentence, all the queries were executed against

it, and the resulting <PT, GF> pairs were collected. Using those pairs returned as a result, a

suitable matching valance pattern (consisting of frame elements associated with

PhraseType.Dependency pairs defined in FrameNet) was chosen to semantically tag the sentence

using the valance pattern and Frame Entities. As this work is intended to provide a domain

independent system using SPARQL, it is much related to our work, but in this work, SPARQL

queries were formulated by hand, which is automatic in our system.

3.3 “RelEx—Relation extraction using dependency parse trees”

The authors of this paper [48] proposed a system called RelEx to extract relationships from free

biomedical texts. This system was evaluated on one million MEDLINE abstracts to extract

protein-gene relationships, and about 150,000 relationships were extracted with a performance of

approximately 80% for both precision and recall. It was also applied to other datasets like the

Learning Language in Logic (LLL) [49] dataset and the Human Protein Reference Database

(HPRD) [50] dataset to evaluate system performance. In this approach, they used MedPost [51]

for part-of-speech tagging, fnTBL [52] to identify noun-phrase chunks, and The Stanford

Lexicalized Parser to generate dependency trees for a sentence and to set word positions for each

word in the sentence. These dependency trees are later enriched with gene and protein words by

26

ProMiner [53] based on matching to a synonym dictionary [54]. Based on dependency parsed

trees, a set of three simple rules were manually crafted to extract relationships from sentences of

a text. RelEx checks for the presence of a protein pair and then looks for a relationship term on

the path between two protein terms created by the dependency parse tree. They use the following

three rules to describe relations:

1. effector-relation-effectee (‘A activates B’)

2. relation-of-effectee-by-effector (‘Activation of A by B’)

3. relation-between-effector-and-effectee (‘Interaction between A and B’).

These rules were applied to extract candidate relations which were later given as an input to the

filtering module for negation check, effector/effectee detection, enumeration detection, and

restriction to focus the domain of interest for screening the relations. These patterns of rules can

be adapted or expanded to any other domain to extract different types of relations by using

corresponding relation terms and entity terms including synonyms.

Thus, RelEx is a simple and straightforward approach based on publicly available tools with

higher performance noted on public datasets. This system is also related to our system as it

extracts relationships from a text using NLP techniques but it is rule-based rather than pattern-

based.

3.4 “A Framework for Schema-Driven Relationship Discovery from Unstructured Text”

A schema-driven approach is described in this paper [55] to extract implicit and explicit

relationships between known entities in biomedical texts. It uses a combination of vocabulary

from the Medical Subject Headings (MeSH) [56] and domain knowledge in the form of the

Unified Medical Language System (UMLS) [57]. Since MeSH also contains synonyms of

27

entities, it eliminates the need for Named Entity Identification and Named Entity

Disambiguation/Reference Reconciliation. Later, NLP techniques were applied on the domain

knowledge to extract relationships. An empirical rule-based method was used to extract entities

and relationships between them and to convert them in RDF form. In the methodology, first they

split the PubMed [13] text into sentences, tag parts-of-speech (using SS-Tagger [58]) and

generate a parse tree (using SS-parser [59]). The parse tree obtained was enriched by known

entities (defined in MeSH terms) and relationships (defined in the UMLS). In any biomedical

domain, entities are not always in a simple form. They might be combined with other entities or

modifiers. They used rules to identify simple, modified, or composite entities and developed an

algorithm to apply those rules. Eventually, they developed an algorithm to extract relationships

between them. A relationship extraction algorithm checks the parse tree to determine if children

under node S (sentence - root node) contain an entity followed by the relationship term, which in

turn is followed by another entity. If that is true, it indicates the presence of a relationship

between two entities. They validate those relations using UMLS schema information. After

having all relationships between entities identified, they converted them into RDF form. These

RDF resources can be utilized in many applications for experimental analysis of large datasets

and to obtain useful information by querying.

To evaluate the scalability of the system, they used two datasets from PubMed. Another

objective behind this experiment was to check the effectiveness of the rules they developed to

extract different types of entities and relationships between them and to understand the

usefulness of extracted RDF triples. In the first dataset, they processed about 1.6 million

candidate sentences, which resulted in 200,000 triples. In the second dataset, out of 798

candidate sentences, 122 relationships were extracted. More modified entities were extracted

28

than composite or simple entities. The number of simple, composite, and modified entities

extracted were 752, 377 and 4762, respectively. From 122 relationships identified, 5 were

incorrect, yielding a precision of 95%. They did not measure the recall because of the need for an

expert to read all sentences to verify extracted relations. They planned to do that in the future.

Hence, results clearly show the ability of generated RDF resources in discovering knowledge

from large texts by using analytical path queries. Though this approach focuses on general

relationships rather than any specific type of relationships, the overall system concentrates on the

biomedical domain.

3.5 “Learning User-Defined, Domain-Specific Relations: A Situated Case Study and

Evaluation in Plant Science”

The goal of this paper [60] was to develop a system that predicts the nature of the relation that

exists between two entities automatically by using a lightly supervised machine learning

approach and giving the user the flexibility to define domain specific relations.

The first step in the process of achieving the goal was to define domain specific relations

between a plant and a location from the plant science articles with the help of domain experts

and other research group members. Relations identified were neither primitive nor domain

specific nor general. They can be said to be the subtype of a more general ‘location-of’ or

‘spatially-related-to’ relation. The four relations identified were between:

1. plant and the manufacturer of the tool or instrument that was used

2. plant and the location of a seed donor

3. plant and seed origin

4. plant and location of the field experiment

29

The system provides user-facilitated indexing that requires the user to provide the sentences with

relations of interest extracted from articles. For the case study, the author considered 662

candidate sentences out of 2595 sentences annotated with a plant and location. Out of 662

sentences, 110 were used for testing, 518 for training, and 34 were removed because of

ambiguous relations.

They used entity, lexical, and syntactic features that were helpful in using training sentences. In

the entity feature, plant names and locations were identified using the Unified Medical Language

System (UMLS) and Stanford Named Entity Recognizer, respectively. While identifying lexical

features for each sentence, highest frequency and inverse document frequency weighted words

that occur between plant and location were extracted and ranked to obtain words with highest

rank in each category. The Stanford syntactic parse of the sentence was used to identify syntactic

features like root of the sentence, and syntactic path from root to plant and from root to location.

It was also used to check if location appeared under the same branch of plant. If not, root was

used to connect the path between plant and location.

Using annotated sentences and features, binary classifiers were created and were run on 518

training sentences to learn domain specific relations using the Oracle Data Miner (ODM) [61]

with the default settings of Generalized Linear Model (GLM), Decision Tree, Support Vector

Machines (SVM), and Naïve Bayes (NB).

To evaluate the performance of the system, the SVM model created using training sentences was

applied to the remaining 1967 sentences, and 200 randomly selected sentences (with 50 instances

in each category) were manually evaluated. This resulted in the highest precision of 94% for

manufacturer_location relation, which was consistent with training set results. The precision

values for seed_bank-donor_location, seed_origin_location and field_experiment_location

30

categories were lower from what was achieved in training sets. Thus, the results demonstrate that

one of the four categories achieved good performance for test data, but user can change the

default settings of ODM to change precision and recall for other categories. Also, adding more

information about main verb in features improves the performance.

Therefore, a method developed to identify user-defined domain-specific relations facilitates user

indexing and provided assistance to bio-curators, data curators and metadata librarians to assign

metadata to articles. The method relies on a high precision syntactic parser and named entity

recognizer used to identify features. This system is related to our system because it focuses on

user-defined domain-specific relation extraction.

3.6 “Semantic Tool for Analysing Unstructured Data”

In this paper [62], semantic and NLP techniques were used to convert unstructured data into a

semantically structured form, and it also presents an approach to visualizing those structured data

using a graph mechanism. The authors implemented this approach as a web application that can

extract and visualize data. To extract information, the system used static ontology [63] that was

developed by domain experts for an agriculture and technology application to model information

about Organization, Company, Country/Region, Person, and Products. The data repository from

which information was extracted contains full news articles, web sites URLs and RSS feeds. The

structural analysis was performed on those documents to make them noise free and added

metadata information for additional processing. Once the documents are ready for use, linguistic

and semantic analyses were performed using static domain ontology to extract information

constructs.

31

In the linguistic analysis, Onto Root Gazetteer [64] was used to annotate documents with entities

by using static ontology. This annotated corpus was used as an input to the semantic analysis

phase. In this phase, they defined the set of JAPE rules to be executed by the JAPE transducer

[65] to extract relevant entities and identify relationships between them.

The method to validate semantic relation constructs generated by semantic analysis was also

implemented. To do so, paths connecting pairs of entities and the relationship term between them

were identified from the dependency parse tree. Those validated constructs were stored and

presented as triplets using the RDF framework [23]. The reason behind using RDF representation

was its capability of complex querying on extracted data. Jena [66] was used to store ontology

and RDF data. Jena’s Reasoning Engine was used to acquire required result for the search query

of the user. Finally, the Spring Graph Generator [67] was used to generate spring graph for the

visualization of the resultant set.

Hence, the web application developed here uses three algorithms to extract and visualize

structured information from free text, and it also provides dynamic and interactive graphs as an

output using publicly available tools. The system also gives the user the flexibility to choose

options for the information to make visible on the graph.

Thus, the approach presented here was straightforward to implement and achieved competitive

performance. Though the intent of developing this system was visualization of extracted

information, which not the case for LeaREX, the algorithm used to achieve it is similar to

LeaREX.

32

3.7 Comparative Evaluation

All the systems described above extract relationships from free text. Though all of them use

some syntactic or semantic rules or NLP techniques to identify entities and relationships between

them, they have several significant differences and similarities among them. Abbreviations used

to address systems:

System 1: “Learning Information Extraction Patterns from Examples”

System 2: “Semanticizing Syntactic Patterns in NLP Processing using SPARQL-DL”

System 3: “RelEx—Relation extraction using dependency parse trees”

System 4: “A Framework for Schema-Driven Relationship Discovery from Unstructured Text”

System 5: “Learning User-Defined, Domain-Specific Relations: A Situated Case Study and

Evaluation in Plant Science”

System 6: “Semantic Tool for Analysing Unstructured Data”

Table 1: Comparison of related systems

Multi-slot

extraction

Approach

Used

Domain

Independent

Entities

Allowed

Validation

Mechanism

Ontology-

based

Pattern

Formulation

System

1
Yes

Pattern-

based
Yes

Exact

Word
No No Automatic

System

2
Yes

Pattern-

based
Yes

Not

Specified
No Yes Manual

System

3
Yes Rule-based Yes

 Exact

word,

Synonyms

Yes

(Filtering)
No Manual

System

4
Yes Rule-based Yes

Simple,

Modified,

Composite

Yes No Manual

System

5
Yes

Lightly

supervised

machine

learning

No
Exact

Word
No No N/A

System

6
Yes Rule-based No

Not

Specified
Yes Yes Manual

33

Table 1 presents a brief comparative analysis of all systems. All six systems support multi-slot

extractions. Multi-slot extraction systems generate a single rule/pattern for all items of interest in

a sentence, rather than generating one for each item of interest. System 1 and System 2 followed

a pattern-based approach, while System 3, System 4 and System 6 followed a rule-based

approach. In contrast, System 5 uses a lightly supervised machine learning approach. Each of

these approaches performs better in different scenarios. A pattern-based approach has an

advantage over a machine learning approach in that patterns are easy to customize to deal with

errors. However, a pattern-based approach requires human involvement for manual inspection of

extracted output, which is time consuming. System 5 and System 6 are domain-specific systems,

while the other four systems can be applied to any domain with little or no changes in extraction

mechanism. Though the intents of System 2 and System 6 are different, they use Ontology to

extract relationships. In System 2, ontology was populated for each sentence, and queries were

executed against it to match the pattern. In System 6, static domain ontology was used to obtain

the results for user queries using the JENA library.

The Entity Identification mechanism is different for many of these systems. System 1 and

System 5 allows only an exact word as an entity, while System 4 allows simple (exact word),

modified, and composite entities. System 3 considers synonyms of entities along with exact

entity words. Thus, granularity of the extraction is not the same. System 4 and System 6 have

implemented mechanisms to validate entities and relationships, while System 3 has implemented

a filtering mechanism to remove unwanted entities or relationships. System 1 assumes that all

needed information is between two entities, and it generates a parse tree for that part of the

sentence only. It uses an “On-demand” parser that does not consider semantics that sometimes

34

result in incorrect pattern matches. All other systems parse the whole sentence. System 1

automatically generates patterns, while System 2, System 3, System 4 and System 6 uses a hand-

coded set of rules or patterns.

35

CHAPTER 4

LeaREX IMPLEMENTATION

4.1 Motivation

Since a number of text mining systems have been developed to extract information in a specific

domain, we have developed a generalized (domain independent) text mining system. In simple

terms, the system can be applied to a new corpora without much human effort to train the

system. It automatically builds its knowledge base by using user provided example sentences and

a number of sets of words from different categories of user interest. It can also use curatorial

feedback and add new knowledge to the system’s training set (knowledge base).

In this work, we used Chakrabarti’s system [68] as a case study to evaluate our system. Her

system takes a full text article as an input, processes it, and uses text mining methods to output

the mutation impacts present in the articles. The output mutation impacts were of 4 different

types: Positive, Negative, Neutral and Unknown. Positive impact means the mutation has a

positive effect on biological function or protein property. Negative impact means it affects the

function negatively. Neutral impact represents no effect or a neutral effect on biological function

or protein property. In the case of sentences for which the system cannot detect the impact, or

whether the sentence is negated, her system could not predict the impact and set the mutation

impact as Unknown. To ensure the correctness of the predicted impact, Chakrabarti used the

curatorial system CURAMI [69] (developed by her fellow student De). CURAMI provides a user

interface to the human curators providing prediction generated by Chakrabarti’s system along

36

with some other useful information (such as a whole sentence, the paragraph to which the

sentence belongs, other critical words identified by the system, etc.). Curators can agree or

disagree with the predicted output, change the predicted output, and also specify the impacts for

sentences which were predicted as Unknown. In her work, Chakrabarti manually analyzed

curated results and added patterns to her system for corrected (changed) predictions and for

newly specified impacts by curators.

In our work, we followed a similar approach for mining the text (explained in detail in later

sections), but Chakrabarti’s system can be used to predict the impact of protein mutations only,

while our system can be used to predict any type of output, in any domain, as per user

requirements. Also, the output can be generated in the format of the user given templates. Along

with this generalized text mining system, we developed an additional module which can make

Chakrabarti’s system much faster than before. Since Chakrabarti manually added new

knowledge to the training dataset based on curatorial feedback, we created a module which can

perform the same task automatically.

4.2 Implementation

The LeaREX system has been implemented in the Java programming language. The flow

of how the system works is explained in Chapter 5. We used open source libraries in

implementing a part of the system. A PostgreSQL database was used to store the data.

4.2.1 System Architecture

The two main modules of LeaREX are the training and testing modules. Apart from them, an

additional module was developed to automatically generate patterns from curatorial feedback of

37

KiMIner (Chakrabarti’s system) generated predictions. The architecture of the system is shown

in Figure 8.

The training module and automatic pattern generation module follows the same algorithm. Both

uses The Stanford Parser [18] [27] to generate parse tree and typed dependencies for sentences.

Next, to generate the smallest subgraph interconnecting critical words, The Grph 2.0.0 library

[70] was used. It is a Java library to manipulate graphs. It is easy to use and offers high

performance. Once the subgraph was ready, we used the Jena library version 2.11.2 to generate

RDF triples followed by the RDF graph, and finally the pattern was generated.

Figure 8: LeaREX Architecture

In the testing module, one sentence at a time is taken as an input. The parse tree and typed

dependencies generated for the sentence are used to generate RDF triples. Apart from these

triples, one triple per critical word existing in the sentence is added to the set of triples in the

form of

?Word textMine:type textMine:Category

38

Critical words are identified using a user provided set of words of different categories. The

temporary ontology is created using the Jena library for each sentence, and all the triples

generated for that sentence are added to it. Once we have an ontology filled with all the triples,

we run all the SPARQL queries (training patterns) against the ontology. If any query matches the

pattern existing in the sentence, it will return the result. The result will contain the value of all

variables in the select clause of the query. The system has the ability to provide the result in the

form of user requests. It uses Apache FreeMarker [71], a Java library which generates text output

based on an input template(s). Users can provide FreeMarker template as an input.

LeaREX is designed to take example sentences and lists of words per category from the

database. We also created a small web interface which allows user to provide that information in

a set of Excel files. The interface first accepts excel files, one file per category, containing lists of

words belonging to that category. Next, it accepts Excel file containing example sentences with

indexes of critical words for each sentence. These data are used to train the system. Once the

system is trained, it takes Excel file containing testing sentences and produces the outcome in the

form of a template provided by the user.

4.2.2 Database Design

The UML diagram in Figure 9 depicts the design of the database used by LeaREX. The system

uses the tables Sentence, Word, WordOccurance, Category, and Pattern. Other tables are used by

Chakrabarti’s or De’s systems. Example sentences were stored in the Sentence table, the index of

critical words in each sentence was stored in the WordOccurance table, categories were stored in

the Category table, and words from each category were stored in the Word table. Final generated

patterns were stored in the Pattern table.

39

Figure 9: UML diagram of the system’s database

40

CHAPTER 5

RELATIONSHIP EXTRACTION USING LeaREX

The flow of the system is explained in this chapter.

5.1 Training the system

The main task of our system is to extract relationships between concepts existing in a natural

language text. As an input to the system, a set of example sentences with the indexes and

categories of critical words for each sentence is given. By Critical word, we mean that a word

that needs to be identified as concept in the sentence. As there might be other critical words

which can belong to those categories but is not present in any of the example sentences, the user

also provides a list of words for each category. As mentioned above, we used Chakrabarti’s

system as a case study, we took some number of sentences with indexes of critical words (in this

case, Function, Mutation and Impact words) and a list of other Function, Mutation and Impact

words (along with the types of impact words which can be positive, negative, neutral or

unknown) as an input to the system.

Once we have the input dataset ready, we use it to train the system first. After the system is

trained, we can pass any sentence (not present in the training set) to the system, and the system

will predict the outcome for that sentence based on example sentences given by the user. We can

check the correctness of our system by using curatorial knowledge.

41

5.1.1 Parse Tree and Typed Dependencies Generation

As the initial task to train the system, sentence level analysis is performed by determining the

semantics of the sentences. To determine the semantics, the system generates a parse tree and

collapsed typed dependencies for each sentence. The system uses The Stanford Parser to perform

these tasks.

The parser first tokenizes the sentence into words and then performs the Part-of-Speech (POS)

tagging for each word. Once the sentence is tagged by POS tags, the parser generates a parse tree

that shows syntactic structure of the sentence followed by typed dependencies generation. An

example sentence with parse tree and typed dependencies is given below.

Sentence:

“Under restrictive media conditions, only S252W fibroblasts showed enhanced migration”

Parse Tree:

(ROOT

 (S

 (PP (IN Under)

 (NP (JJ restrictive) (NNS media) (NNS conditions)))

 (, ,)

 (NP (RB only) (CD S252W) (NNS fibroblasts))

 (VP (VBD showed)

 (NP (JJ enhanced) (NN migration)))))

42

Typed Dependencies:

amod(conditions-4, restrictive-2)

nn(conditions-4, media-3)

prep_under(showed-9, conditions-4)

advmod(fibroblasts-8, only-6)

num(fibroblasts-8, S252W-7)

nsubj(showed-9, fibroblasts-8)

root(ROOT-0, showed-9)

amod(migration-11, enhanced-10)

dobj(showed-9, migration-11)

We can visualize the sentence based on a parse tree and typed dependencies generated as shown

in Figure 10 below.

Figure 10: Visualization of the grammatical structure of the sentence “Under restrictive media

conditions, only S252W fibroblasts showed enhanced migration” using POS tagging, parse tree

and typed dependencies.

43

Since typed dependencies provide grammatical relationships between pairs of words in a

sentence, we can represent them in the form of RDF triples [40] and encode them as an RDF

graph structure with words as nodes and grammatical relationships between them as edges

between nodes.

5.1.2 Pattern Generation

We analyzed example sentences in order to discover repetitive patterns connecting critical words

in the sentences. The key task in the training phase is to create a pattern for each example

sentence provided by the user. As we can generate an RDF graph for a sentence and the user has

provided indexes of critical words in the sentence, we can find the shortest path between each

unique pair of critical words and create the smallest subgraph interconnecting all critical words

in the sentence.

The critical words with categories for the example sentence “Under restrictive media conditions,

only S252W fibroblasts showed enhanced migration” are Mutation: S252W, Function: migration,

Positive Impact: enhanced.

Figure 11 shows an example sentence with the smallest subgraph interconnecting these three

critical words highlighted with thicker lines.

44

Figure 11: Visualization of the grammatical structure of the sentence “Under restrictive media

conditions, only S252W fibroblasts showed enhanced migration” with the smallest subgraph

interconnecting critical words highlighted.

Based on this smallest subgraph, we can extract the triples which played a role in forming their

connection. For the example sentence, those triples will be as follows:

(showed, dobj, migration)

(migration, amod, enhanced)

(showed, nsubj, fibroblasts)

(fibroblasts, num, S252W)

We can also represent these triples as a graphical structure by replacing the intermediate nodes

with interconnecting variables.

45

Figure 12: Graphical representation of triples used to interconnect the critical nodes of the

sentence “Under restrictive media conditions, only S252W fibroblasts showed enhanced

migration” with intermediate nodes replaced by variables and critical words by the categories

they belong to.

As we are interested in how critical words are related to each other, we can replace intermediate

nodes by variables and critical words by the categories they belong to as shown in Figure 12. The

new triples representation is shown in Figure 13:

Figure 13: Triples representation of the sentence “Under restrictive media conditions, only

S252W fibroblasts showed enhanced migration” after replacing intermediate nodes by variables

and critical words by the categories they belong to.

To generate the final pattern, we encode these triples into a SPARQL query as shown in Figure

14 below. We add additional triples to the pattern with the property textMine:type to indicate

which critical word belongs to which category.

46

Figure 14: Final SPARQL query representation of the sentence “Under restrictive media

conditions, only S252W fibroblasts showed enhanced migration”

We generate patterns for all user provided example sentences by keeping the number of the

patterns generated at a minimum. To minimize the number of patterns generated, we applied two

different optimization steps, as explained in the next section. The final patterns are saved in the

database as learned patterns which are later used to discover relationships from other testing or

unknown sentences.

47

5.1.3 Pattern Set Optimization

As discussed, our LeaREX system generates a set of patterns, based on a set of training

sentences. For some realistic applications, the system may generate a high number of patterns,

which will slow down the final extraction task. We have developed a framework for optimizing

the final set of patterns by reducing their number and so decreasing the extraction execution

time. We applied two approaches as explained below.

Approach 1: Elimination of duplicate patterns

Our analysis of patterns (generated from example sentences) frequently showed three types of

similarities, and they were not added to the training pattern set.

1. Exact patterns

2. Patterns with the same set of triples but arranged in different order. These types of

patterns have the exact same meaning; the only difference is in the representation of

triples. The program generates triples depending on the formation of the sentence. When

the same sentence is formed differently, it generates patterns with the same triples

arranged in different order. For example,

i. ?Function.textMine:dobj ?x.

?Function textMine:amod ?Positive.

?x textMine:nsubj ?Mutation.

ii. ?x textMine:nsubj ?Mutation.

?Function textMine:amod ?Positive.

?Function.textMine:dobj ?x.

48

Below are the two example sentences for which system generates SPARQL patterns with

the same set of triples arranged in different order.

Sentence 1: "The mutation Y253F experiences increased electrostatic interactions,

Y253H experiences increased electrostatic interactions and decreased vdW when binding

to ponatinib"

SPARQL Pattern:

PREFIX textMine: <http://example.uga.edu/>

SELECT ?Positive ?Mutation ?Function WHERE {

?C textMine:nn ?Mutation.

?Positive textMine:nsubj ?C.

?Positive textMine:dobj ?Function.

?Positive textMine:type textMine:Positive. ?Mutation textMine:type textMine:Mutation.

?Function textMine:type textMine:Function. }

Sentence 2: "The EphA3 G518L lung cancer mutation enhances cis interaction with

ephrin A3"

SPARQL Pattern:

PREFIX textMine: <http://example.uga.edu/>

SELECT ?Positive ?Mutation ?Function WHERE {

?C textMine:nn ?Mutation.

?Positive textMine:dobj ?Function.

?Positive textMine:nsubj ?C.

?Positive textMine:type textMine:Positive. ?Mutation textMine:type textMine:Mutation.

49

?Function textMine:type textMine:Function. }

The triples in the Blue font in both the sentences’ patterns are re-organized. In SPARQL,

the order of triples does not matter. They mean the same. So, these types of patterns are

not added to the training pattern set again.

3. Patterns with Structurally Identical triples. These types of patterns have the same

graphical structure that connects critical nodes, but the intermediate nodes are different.

For example,

i. ?Function.textMine:dobj ?x.

?Function textMine:amod ?Positive.

?x textMine:nsubj ?Mutation.

ii. ?Function.textMine:dobj ?y.

?Function textMine:amod ?Positive.

?y textMine:nsubj ?Mutation.

Two example sentences for which SPARQL patterns contain structurally identical triples

are shown below.

Sentence 1: "Immune complexes kinase assays showed, as expected, high BRAF activity

in YULAC BRAF V600E and YUMAC BRAF V600K cells that was suppressed after

treatment with PLX4032"

SPARQL Pattern:

PREFIX textMine: <http://example.uga.edu/>

SELECT ?Positive ?Mutation ?Function WHERE {

?E textMine:nn ?Mutation.

50

?Function textMine:amod ?Positive.

?D textMine:prep ?E.

?D textMine:prep ?Function.

?Positive textMine:type textMine:Positive. ?Mutation textMine:type textMine:Mutation.

?Function textMine:type textMine:Function. }

Sentence 2: "FDG could furthermore be used to distinguish between BRAF V600E

mutant melanomas with high or low sensitivity to PLX4032"

SPARQL Pattern

PREFIX textMine: <http://example.uga.edu/>

SELECT ?Positive ?Mutation ?Function WHERE {

?Function textMine:amod ?Positive.

?A textMine:prep ?Function.

?A textMine:prep ?B.

?B textMine:nn ?Mutation.

?Positive textMine:type textMine:Positive. ?Mutation textMine:type textMine:Mutation.

?Function textMine:type textMine:Function. }

Both the SPARQL patterns show same graphical structure. The only difference is in the

organization of triples (shown in Blue font) and the variables used to represent

intermediate nodes. As the name of variables does not make any difference in the

meaning of SPARQL query, we consider them duplicates.

51

In this approach, we check the similarities of patterns by comparing their triples. Every time a

new query is generated, we compare it with all previously generated queries, and we add it to the

training pattern set only if it is not a duplication of any of the previously generated queries. If

triples in any pattern are exactly the same as any already generated pattern, no new pattern is

added. There is also a possibility that the triples are exactly the same but are not in the exact

same order. Since these types of queries have the same meaning in the SPARQL query language,

we do not add it. Also, if the structure of the graph generated from the pattern triples has the

same structure as any other pattern, these patterns are not added.

Approach 2: Merging similar patterns

 Some patterns were not duplicates, but they were sufficiently similar to be merged and still

retain the same meaning and structure. Out of all generated patterns, the majority of them have a

linear or star structure. Figure 15 and Figure 16 show how the graphical structure appear for the

linear and star patterns.

Figure 15: Linear pattern graphical structure

Figure 16: Star pattern graphical structure

52

Here, C1, C2 and C3 are assumed to be critical words of the sentence. There can be more than

three critical words in the sentence. In a linear pattern, all critical words are connected to each

other in a linear manner. There might be some intermediate node connecting them. In a star

pattern, all critical words are connected to each other via one common intermediate node.

The example sentence along with its dependence graph, and SPARQL pattern for both the linear

and star pattern is shown below.

Linear Pattern Example Sentence:

“Since residue V617 is located in the pseudokinase domain of JAK2, this lack of information has

hindered a detailed understanding of the mechanism of activation of JAK2 V617F”

53

Figure 17: The graph showing grammatical interconnection between words of the sentence

“Since residue V617 is located in the pseudokinase domain of JAK2, this lack of information has

hindered a detailed understanding of the mechanism of activation of JAK2 V617F”.

The highlighted subgraph displaying linear interconnection between critical words V617F

(Mutation word), activation (Function word), and hindered (Negative Impact word) in the

sentence is shown in Figure 17. Here, understanding and mechanism are the intermediate nodes.

The graph is generated using the typed dependencies of the sentence that shows the grammatical

relationship between words of the sentence. Each node in the graph is word of the sentence and

edges show the grammatical relationship between those words. The simple graphical

representation of critical words interconnection in the sentence is shown in Figure 18 below.

Figure 18: Graphical representation of linear interconnection between critical words of the

sentence “Since residue V617 is located in the pseudokinase domain of JAK2, this lack of

information has hindered a detailed understanding of the mechanism of activation of JAK2

V617F”.

The SPARQL pattern generated from the graph is shown below. The Blue font triples shows the

interconnection.

PREFIX textMine: <http://example.uga.edu/>

SELECT ?Negative ?Mutation ?Function WHERE {

?Negative textMine:dobj ?C.

?C textMine:prep ?E.

54

?Function textMine:prep ?Mutation.

?E textMine:prep ?Function.

?Negative textMine:type textMine:Negative. ?Mutation textMine:type textMine:Mutation.

?Function textMine:type textMine:Function. }

The example sentence to demonstrate star pattern:

“The AKT1 (E17K) mutant can cause increases in the protein levels of Bcl 2 and the phosphorylation of

the pro apoptotic protein BAD, resulting in enhanced resistance to apoptosis”

Figure 19: The graph showing grammatical interconnection between words of the sentence “The

AKT1 (E17K) mutant can cause increases in the protein levels of Bcl 2 and the phosphorylation of the pro

apoptotic protein BAD, resulting in enhanced resistance to apoptosis”.

55

The highlighted subgraph in Figure 19 shows that critical words E17K (Mutation word),

phosphorylation (Function word), and increases (Positive Impact word) are connected via

common intermediate node cause in a Star pattern. The graphical representation is shown in the

Figure 20.

Figure 20: Graphical representation of star interconnection between critical words of the

sentence “The AKT1 (E17K) mutant can cause increases in the protein levels of Bcl 2 and the

phosphorylation of the pro apoptotic protein BAD, resulting in enhanced resistance to apoptosis”

The SPARQL pattern (with interconnection triples in Blue font) is generated as below:

PREFIX textMine: <http://example.uga.edu/>

SELECT ?Positive ?Mutation ?Function WHERE {

?C textMine:prep ?Function.

?C textMine:dobj ?Positive.

?C textMine:nsubj ?E.

56

?E textMine:appos ?Mutation

?Positive textMine:type textMine:Positive. ?Mutation textMine:type textMine:Mutation.

?Function textMine:type textMine:Function. }

In this approach, we are considering only a linear structured patterns for merging. Before

applying this approach, we changed the representation of patterns generated, as shown in the

example below. Initially, for ease of understanding, only triples are shown as only representation

of triples is changed. The PREFIX clause, select clause and additional triples indicating the

category of critical words remain the same. Later, the example sentence with the complete

SPARQL query is provided.

Triples in the original pattern generated:

?Function.textMine:dobj ?x.

?x textMine:nsubj ?Mutation.

?Function textMine:amod ?Positive.

In the new representation of the query, the triples will appear as:

?Function textMine:dobj/textMine:nsubj ?Mutation

?Function textMine:amod ?Positive.

We combine the paths (connecting critical words) by sequence path operator “/”. Sequence

operator shows that one path is followed by another path in the graph. The paths that contain

intermediate node(s) to connect critical words get combined. This combination of paths retains

57

the meaning of SPARQL query and ease the merging process. We added this new form of query

to the training pattern set which are used to see if it is eligible for merging with any previously

generated pattern. For merging, we first ensure that both patterns are linear, then we check if the

categories of the critical words in both are the same. Next, we check if the path between any two

categories (critical words) in both the patterns are same, and we then merge the path between the

other two categories. The example below will assist in understanding this explanation. First,

triples of three different linear type queries are given, and how they are merged in new pattern is

shown.

1. ?Function textMine:prep ?Negative. ?Function textMine:amod ?Mutation.

2. ?Function textMine:prep ?Negative. ?Function textMine:nsubj ?Mutation.

3. ?Function textMine:prep ?Negative. ?Function textMine:prep/textMine:prep ?Mutation.

Triples in Merged Pattern:

?Function textMine:prep ?Negative.

?Function (textMine:amod) | (textMine:nsubj) | (textMine:prep/textMine:prep) ?Mutation.

In the triples of three linear patterns, first we check if critical words in the patterns belong to the

same three categories (Negative, Function and Mutation). Then, we see if the path between

Function and Negative category words is the same (shown as triple in blue font). Next, the path

between other triples (shown in red font) are merged by the “|” operator, which signals an

alternative path expression. By this merging, we represented three different patterns by one that

58

can match all three sentence patterns. Shown below is how one sentence (used to demonstrate

linear pattern structure) is merged with another sentence’s pattern.

Sentence 1: “Since residue V617 is located in the pseudokinase domain of JAK2, this lack of

information has hindered a detailed understanding of the mechanism of activation of JAK2

V617F”

SPARQL Pattern:

PREFIX textMine: <http://example.uga.edu/>

SELECT ?Negative ?Mutation ?Function WHERE {

?Negative textMine:dobj ?C.

?C textMine:prep ?E.

?Function textMine:prep ?Mutation.

?E textMine:prep ?Function.

?Negative textMine:type textMine:Negative. ?Mutation textMine:type textMine:Mutation.

?Function textMine:type textMine:Function. }

New representation of SPARQL pattern is:

PREFIX textMine: <http://example.uga.edu/>

SELECT ?Negative ?Mutation ?Function WHERE {

?Negative textMine:dobj/textMine:prep/textMine:prep ?Function.

?Function textMine:prep ?Mutation.

?Negative textMine:type textMine:Negative. ?Mutation textMine:type textMine:Mutation.

?Function textMine:type textMine:Function. }

59

The triples in Blue font shows how the representation is changed from actual one. In this

sentence, Negative and Function nodes are connected via two intermediate nodes, and their paths

get combined. In the example sentence 2 below, all three critical nodes are connected directly to

each other without any intermediate node. So, their representation does not get changed.

Sentence 2: “In pre clinical studies, JAK2 inhibitors reduced the proliferation of JAK2 V617F

and MPL W515L mutant cells and attenuated disease development in murine models of MPN”

SPARQL Pattern:

PREFIX textMine: <http://example.uga.edu/>

SELECT ?Negative ?Mutation ?Function WHERE {

?Negative textMine:iobj ?Function.

?Function textMine:prep ?Mutation.

?Negative textMine:type textMine:Negative. ?Mutation textMine:type textMine:Mutation.

?Function textMine:type textMine:Function. }

As the critical words’ categories (Function, Mutation, and Negative) in both the patterns are

same, and the path between Function and Mutation words is same, these patterns are eligible for

merging. New merged pattern is shown below. The blue font triples get changed in new pattern.

PREFIX textMine: <http://example.uga.edu/>

SELECT ?Negative ?Mutation ?Function WHERE {

?Negative (textMine:dobj/textMine:prep/textMine:prep) | (textMine:iobj) ?Function.

?Function textMine:prep ?Mutation.

60

?Negative textMine:type textMine:Negative. ?Mutation textMine:type textMine:Mutation.

?Function textMine:type textMine:Function. }

5.2 Testing the system

Once the system is trained, the set of SPARQL query patterns is placed in the database. Next, the

system is tested with other sentences. In the testing phase, we first identify the critical words in

the sentence based on the list of user provided words (with category) as an input. Then, we find

the relationships between each of these critical words by finding the shortest path between each

of them as explained in section 4.2.2. We obtain the set of triples from the shortest path list. We

create a temporary ontology, add these triples to it, and run all the training SPARQL patterns

against that ontology. If any pattern matches the testing sentence’s pattern, it will return the

result. The variables in the SPARQL query are returned in the result.

5.3 Automatic Pattern Generation from curatorial knowledge

Apart from the Generalized text mining system, we also developed an additional module to

automatically generate SPARQL query patterns from curation of predictions generated by

Chakrabarti’s system. Patterns were generated only for those predictions which were changed

from “Unknown” to some known (Positive, Negative or Neutral) impact by curators. As curators

provided the indexes of critical words for each of those sentences, we used the same approach

that we used to train our system to generate the pattern using a parse tree and typed dependencies

(explained in detail in Section 5.1) and which were later added to the training patterns. This will

make the system more accurate over time.

61

CHAPTER 6

EXPERIMENTS AND EVALUATION

The main goal of our system is to generate a pattern correctly for each sentence. To

verify the correctness of patterns generated, we took 262 sentences which were predicted to have

unknown mutation impact by Chakrabarti’s system and were changed to some known impact

(Positive, Negative or Neutral) by curators. Patterns were generated for those 262 sentences and

used as the training dataset. Those sentences were passed through the LeaREX to check if they

successfully matched the pattern for each sentence, and the correct output (mutation impact) was

predicted. As a result, each sentence was matched to a correct pattern. Furthermore, we randomly

took 1100 sentences which were correctly predicted by Chakrabarti’s system and curated by

curators and applied those 262 patterns on them. It matched patterns for 329 sentences correctly

out of 1100 sentences. Along with 262 patterns generated by LeaREX, we added 32 more

patterns used by Chakrabarti to predict the mutation impact on the training dataset. Next, with a

total of 294 (262 + 32) patterns in the training dataset, 1100 sentences were tested, and all the

sentences were matched to one or more patterns. These results are summarized in Table 2 below.

No. of Sentences
No. of Patterns used to predict

Outcome

No. of sentences that matched

Pattern correctly

262 262 262

1100 262 329

1100 294 1100

Table 2: Experimental results of Sentence to Pattern Matching

62

A flowchart illustrating the evaluation of LeaREX is shown in Figure 21 below.

Figure 21: LeaREX evaluation flowchart

Along with this testing, we did another experiment that used those same 1100 sentences to see

how system improves accuracy as it learns more patterns. Out of 1100 sentences, we used 1000

sentences for testing and remaining 100 sentences for testing. First, we used only 100 sentences

63

(of 1000 training sentences) to train the system and checked the accuracy against 100 testing

sentences. We kept adding 100 sentences in each experiment and checked how many testing

sentences matched the pattern(s). In the graph below, X-axis shows the number of sentences used

for training and Y-axis shows how many testing sentences matched the pattern(s).

Figure 22: Graph representing System Accuracy based on 1000 Training and 100 Testing

Sentences

When system is trained with all 1000 training sentences, it got 71% accuracy. It shows that as we

add more sentences to train system, it gives better results.

After evaluating the training and testing modules of LeaREX, we applied two approaches

discussed in Chapter 5 (Section 5.1.3) to optimize patterns. We took 2 sets of 500 and 1 set of

1000 sentences (Union of those two sets) and applied both the approaches on them. The results

of applying these approaches are shown in Table 3.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

N
o
.

o
f

S
en

te
n

ce
s

M
a
tc

h
in

g
 P

a
tt

er
n

No. of Training Sentences

64

No. of

Sentences

Approach 1 – Duplicate Pattern Elimination
Approach 2 -

Merging
Reduction in

Patterns (%)
Exact Patterns

Re-Organized

Patterns

Similar

Structured

Patterns

Merged

Patterns

500 22 10 30 102 33%

500 20 13 27 108 34%

1000 67 46 75 221 41%

Table 3: Results of pattern optimization approaches

By applying both the approaches, we removed 164 (22+10+30+102), 168 (20+13+27+108), and

409 (67+46+75+221) patterns out of first (500 sentences), second (500 sentences) and third set

(1000 sentences), respectively.

This shows that more than 1/3 of the total patterns were removed, which sped up the pattern

identification and relationship extraction process in this instance. Future runs should display

similar increases.

We used the same 1000 sentences and checked how gradually system can reduce the number of

patterns. The same way that we did to test system’s accuracy, we first took 100 sentences and

checked the reduction in patterns and kept adding 100 more sentences in each run and observed

the reduction in number of patterns after applying both the optimization approaches. The X-axis

in the graph below shows the number of training sentences used to train the system and Y-axis

shows how much percentage of the total training patterns are actually distinct which are used to

predict the outcome.

65

Figure 23: Graph representing Reduction in Patterns based on 1000 Training Sentences

This shows that as we increase the number of training sentences, reduction in number of patterns

also increases. In other words, number of distinct patterns decreases as we add more data to train

the system.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

D
is

ti
n
ct

 P
at

te
rn

s

(%
 o

f
T

ra
in

in
g
 S

en
te

n
ce

s)

No. of Training Sentences

66

CHAPTER 7

CONCLUSION AND FUTURE WORK

We implemented a generalized text mining system which uses Natural Language

Processing techniques to extract relationships from text. The system can be used to extract

relationships in any domain, but as a case study, we used data from Chakrabarti’s system to

extract the impact of mutations. Our system automatically generates patterns to identify

relationships. Many similar text mining systems exist, but the majority of them have been

developed for specific domains and very few generate patterns automatically. Also, the

approaches used to generate patterns are different from ours. We use sentence-level grammatical

analysis and SPARQL to detect and store grammatical patterns, which is similar to Chakrabarti’s

system, but the novelty here is that the system is domain independent and generates patterns

automatically without any human intervention except proving example sentences and lexical lists

of words for different categories. Also, the pattern optimization is automatic. The system also

gives users the flexibility to provide a freemarker template to obtain the output in the desired

format. A small web interface was also created which allows user to provide example sentences

and list of words in excel files. The only restriction is that system takes the complete sentence

only as an input. It does not predict the output for sentences which cannot be parsed by The

Stanford Parser.

As we do not consider non-linear patterns in the second approach to merging patterns, we plan to

discover other frequently occurring pattern structures (such as star) and optimize more patterns.

Also, new pattern optimization approaches can be explored, which will improve pattern

67

identification process. A PostgreSQL database is used to store patterns (SPARQL queries).

SPARQL Inferencing Notation (SPIN) [72], a SPARQL based constraint language for Semantic

Web, combines ideas from rule based systems and object oriented languages, allows the linking

of OWL and RDFS classes with reusable SPARQL queries. Thus, rather than storing patterns in

the database, we can use SPIN and link patterns in the ontology itself, which will probably

reduce the pattern matching time. Also, we can introduce the concept of constraint/rule matching

using SPIN, which helps to filter out results and adds another feature to the system.

68

REFERENCES

1. “Text Mining”, https://en.wikipedia.org/wiki/Text_mining

2. “Document pre-processing”, https://en.wikipedia.org/wiki/Document_processing

3. Toutanova, Kristina, et al. "Feature-rich part-of-speech tagging with a cyclic dependency

network." Proceedings of the 2003 Conference of the North American Chapter of the

Association for Computational Linguistics on Human Language Technology-Volume 1.

Association for Computational Linguistics, 2003.

4. “Information Retrieval” https://en.wikipedia.org/wiki/Information_retrieval

5. “Document Classification” https://en.wikipedia.org/wiki/Document_classification

6. “Data Mining” https://en.wikipedia.org/wiki/Data_mining

7. “Natural Language Processing”,

https://en.wikipedia.org/wiki/Natural_language_processing

8. “Information Extraction”, https://en.wikipedia.org/wiki/Information_extraction

9. “SPARQL”, http://www.w3.org/TR/rdf-sparql-query/

10. “What is text mining?”, https://ischool.syr.edu/infospace/2013/04/23/what-is-text-

mining/

11. “How Big Is The Internet”, https://metamend.com/archive/education/internet-growth/

12. “Text Mining Handbook”, https://wtlab.um.ac.ir/images/e-

library/text_mining/The%20Text%20Mining%20HandBook.pdf

13. “PubMed”, http://www.ncbi.nlm.nih.gov/pubmed

14. “PubMed Central”, http://www.ncbi.nlm.nih.gov/pmc/

https://en.wikipedia.org/wiki/Text_mining
https://en.wikipedia.org/wiki/Document_processing
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Document_classification
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Information_extraction
http://www.w3.org/TR/rdf-sparql-query/
https://ischool.syr.edu/infospace/2013/04/23/what-is-text-mining/
https://ischool.syr.edu/infospace/2013/04/23/what-is-text-mining/
https://metamend.com/archive/education/internet-growth/
https://wtlab.um.ac.ir/images/e-library/text_mining/The%20Text%20Mining%20HandBook.pdf
https://wtlab.um.ac.ir/images/e-library/text_mining/The%20Text%20Mining%20HandBook.pdf
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pmc/

69

15. “Penn Tree Bank Project”, https://www.cis.upenn.edu/~treebank/

16. “Java example for using Stanford POSTagger”,

http://www.programcreek.com/2012/07/java-example-for-using-stanford-postagger/

17. “Porter Stemmer implementation”,

http://svn.apache.org/repos/asf/lucene/java/branches/flex_1458/src/java/org/apache/lucen

e/analysis /PorterStemmer.java

18. “Stanford Dependency Parser”, http://nlp.stanford.edu/software/stanford-

dependencies.shtml#About

19. “Parsing”, https://en.wikipedia.org/wiki/Parsing

20. “Parse Tree”, https://en.wikipedia.org/wiki/Parse_tree

21. “Named Entity Recognition”, https://en.wikipedia.org/wiki/Named-entity_recognition

22. “Relationship Extraction”, https://en.wikipedia.org/wiki/Relationship_extraction

23. “Resource Description Framework (RDF)”,

https://en.wikipedia.org/wiki/Resource_Description_Framework

24. “Ontology”, https://en.wikipedia.org/wiki/Ontology_(information_science)

25. Michael Collins, Probabilistic Context Free Grammar,

http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/pcfgs.pdf

26. “Parse trees visualization”, https://kwtrnka.wordpress.com/2011/01/14/parse-trees-

visualization/

27. Marie-Catherine de Marneffe and Christopher D. Manning, Stanford Typed Dependency

Manual, http://nlp.stanford.edu/software/dependencies_manual.pdf

28. Online Stanford Parser, http://nlp.stanford.edu:8080/parser/

29. Universal typed dependencies, http://universaldependencies.org/docs/en/dep/

https://www.cis.upenn.edu/~treebank/
http://www.programcreek.com/2012/07/java-example-for-using-stanford-postagger/
http://svn.apache.org/repos/asf/lucene/java/branches/flex_1458/src/java/org/apache/lucene/analysis%20/PorterStemmer.java
http://svn.apache.org/repos/asf/lucene/java/branches/flex_1458/src/java/org/apache/lucene/analysis%20/PorterStemmer.java
http://nlp.stanford.edu/software/stanford-dependencies.shtml#About
http://nlp.stanford.edu/software/stanford-dependencies.shtml#About
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Relationship_extraction
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/Ontology_(information_science)
http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/pcfgs.pdf
https://kwtrnka.wordpress.com/2011/01/14/parse-trees-visualization/
https://kwtrnka.wordpress.com/2011/01/14/parse-trees-visualization/
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu:8080/parser/
http://universaldependencies.org/docs/en/dep/

70

30. Fellbaum, Christiane. WordNet. Blackwell Publishing Ltd, 1998.

31. Martinez-Cruz, Carmen, Ignacio J. Blanco, and M. Amparo Vila. "Ontologies versus

relational databases: are they so different? A comparison." Artificial Intelligence Review

38.4 (2012): 271-290.

32. Berners-Lee, Tim, James Hendler, and Ora Lassila. "The semantic web." Scientific

american 284.5 (2001): 28-37.

33. “Ontology language”, https://en.wikipedia.org/wiki/Ontology_language

34. “RDF Schema”, https://en.wikipedia.org/wiki/RDF_Schema

35. “Web Ontology Language”, https://en.wikipedia.org/wiki/Web_Ontology_Language

36. “LOOM (ontology)”, https://en.wikipedia.org/wiki/LOOM_(ontology)

37. “Knowledge Interchange Format”,

https://en.wikipedia.org/wiki/Knowledge_Interchange_Format

38. “F-logic”, https://en.wikipedia.org/wiki/F-logic

39. “RDF Triples”, https://www.w3.org/TR/n-triples/

40. “OWL Web Ontology Language Guide”, https://www.w3.org/TR/2004/REC-owl-guide-

20040210/#Introduction

41. Jiang, Jing. "Information extraction from text." Mining text data. Springer US, 2012. 11-

41.

42. Huffman, Scott B. "Learning information extraction patterns from examples."

International Joint Conference on Artificial Intelligence. Springer Berlin Heidelberg,

1995.

43. Brill, Eric. "Some advances in transformation-based part of speech tagging." arXiv

preprint cmp-lg/9406010 (1994).

https://en.wikipedia.org/wiki/Ontology_language
https://en.wikipedia.org/wiki/RDF_Schema
https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/LOOM_(ontology)
https://en.wikipedia.org/wiki/Knowledge_Interchange_Format
https://en.wikipedia.org/wiki/F-logic
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/2004/REC-owl-guide-20040210/#Introduction
https://www.w3.org/TR/2004/REC-owl-guide-20040210/#Introduction

71

44. Chinchor, Nancy, and Beth Sundheim. "MUC-5 evaluation metrics." Proceedings of the

5th conference on Message understanding. Association for Computational Linguistics,

1993.

45. Vitucci, Nicola, et al. "Semanticizing Syntactic Patterns in NLP Processing Using

SPARQL-DL Queries." OWLED. 2012.

46. Sirin, Evren, and Bijan Parsia. "SPARQL-DL: SPARQL Query for OWL-DL." OWLED.

Vol. 258. 2007.

47. Baker, Collin F., Charles J. Fillmore, and John B. Lowe. "The berkeley framenet

project." Proceedings of the 36th Annual Meeting of the Association for Computational

Linguistics and 17th International Conference on Computational Linguistics-Volume 1.

Association for Computational Linguistics, 1998.

48. Fundel, Katrin, Robert Küffner, and Ralf Zimmer. "RelEx—Relation extraction using

dependency parse trees." Bioinformatics 23.3 (2007): 365-371.

49. Nédellec, Claire. "Learning language in logic-genic interaction extraction challenge."

Proceedings of the 4th Learning Language in Logic Workshop (LLL05). Vol. 7. 2005.

50. Peri, Suraj, et al. "Human protein reference database as a discovery resource for

proteomics." Nucleic acids research 32.suppl 1 (2004): D497-D501.

51. Smith, L., Thomas Rindflesch, and W. John Wilbur. "MedPost: a part-of-speech tagger

for bioMedical text." Bioinformatics 20.14 (2004): 2320-2321.

52. Ngai, Grace, and Radu Florian. "Transformation-based learning in the fast lane."

Proceedings of the second meeting of the North American Chapter of the Association for

Computational Linguistics on Language technologies. Association for Computational

Linguistics, 2001.

72

53. Hanisch, Daniel, et al. "ProMiner: rule-based protein and gene entity recognition." BMC

bioinformatics 6.Suppl 1 (2005): S14.

54. Fundel, Katrin, and Ralf Zimmer. "Gene and protein nomenclature in public databases."

Bmc Bioinformatics 7.1 (2006): 1.

55. Ramakrishnan, Cartic, Krys J. Kochut, and Amit P. Sheth. "A framework for schema-

driven relationship discovery from unstructured text." International Semantic Web

Conference. Springer Berlin Heidelberg, 2006.

56. NLM, Medical Subject Heading (MeSH), The National Library Of Medicine, Bethesda,

MD.

57. NLM, Unified Medical Language System (UMLS), The National Library Of Medicine,

Bethesda, MD.

58. Tsuruoka, Y. and J.i. Tsujii, Bidirectional Inference with the Easiest-First Strategy for

Tagging Sequence Data, in Proceedings of Human Language Technology Conference

and Conference on Empirical Methods in Natural Language Processing. 2005,

Association. p. 467-474.

59. Tsuruoka, Y. and J.i. Tsujii, Chunk Parsing Revisited, in Proceedings of the 9th

International Workshop on Parsing Technologies (IWPT 2005). 2005. p. 133-140. 19

60. Lucic, Ana, and Catherine Blake. "Learning user‐defined, domain‐specific relations: A

situated case study and evaluation in plant science." Proceedings of the Association for

Information Science and Technology 52.1 (2015): 1-12.

61. Tamayo, Pablo, et al. "Oracle data mining." Data mining and knowledge discovery

handbook. Springer US, 2005. 1315-1329.

73

62. Jadhao, Harish, Dr Jagannath Aghav, and Anil Vegiraju. "Semantic Tool for Analysing

Unstructured Data." International Journal of Scientific & Engineering Research 3.8

(2012).

63. Heiner Stuckenschmidt, Frank van Harmelen, “Information Sharing on the Semantic

Web,” Springer, 2005.

64. Damljanovic, Danica, Valentin Tablan, and Kalina Bontcheva. "A Text-based Query

Interface to OWL Ontologies." LREC. 2008.

65. Cunningham, Hamish, Diana Maynard, and Valentin Tablan. "JAPE: a Java annotation

patterns engine." (1999).

66. “An Introduction to Jena RDF API”, http://jena.sourceforge.net/tutorial/RDF

API/index.html.

67. M. Mudholkar, S.Peswani, S. Kela, J. Aghav, H. Jadhao, P. Gaikwad, “Generating Spring

Graph To Infer RDF Data”, ICITCS, India, 2012

68. Bhargabi Chakrabarti (2015). KiMIner:TEXT MINING THE IMPACT OF PROTEIN

KINASE MUTATIONS (Master’s thesis). Retrieved from

https://getd.libs.uga.edu/pdfs/chakrabarti_bhargabi_201505_ms.pdf

69. Reshmi De (2015). CURAMI : A SYSTEM FOR CURATION OF MUTATION

IMPACTS FROM TEXT MINING (Master’s thesis). Retrieved from

https://getd.libs.uga.edu/pdfs/de_reshmi_201505_ms.pdf

70. Grph Package, http://www.i3s.unice.fr/~hogie/grph/

71. “Apache Freemarker”, https://en.wikipedia.org/wiki/FreeMarker

72. “SPARQL Inferencing Notation (SPIN)”, http://spinrdf.org/

https://getd.libs.uga.edu/pdfs/chakrabarti_bhargabi_201505_ms.pdf
https://getd.libs.uga.edu/pdfs/de_reshmi_201505_ms.pdf
http://www.i3s.unice.fr/~hogie/grph/
https://en.wikipedia.org/wiki/FreeMarker
http://spinrdf.org/

