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from the curatorial system; this module adds patterns to the extraction patterns set. Similar 

patterns are combined to reduce the overall numbers of distinct patterns to speed up extraction 

process. Additionally, the module improves system accuracy over time. 
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CHAPTER 1 

INTRODUCTION 

 In this chapter, we briefly discuss Text Mining and its applications in different areas. 

Also, this chapter includes different facets of Text Mining. We have also provided an overview 

of our approach and how it could be helpful in extracting information from the data contained in 

a natural language text. 

 

1.1 Introduction 

A large amount of textual data has been generated during the past several years. Every single 

day, about 10 million web pages are being added to the Internet, and this trend is expected to 

keep accelerating [11]. Most of this data is in an unstructured form; in other words, it is 

represented in natural language as text data. For scientists, it is virtually impossible to process 

this data and manually discover needed elements. Much of this data contains very useful 

information but it is not easy to read. This situation can be affectively addressed by Text Mining. 

Text Mining [1] is popular technology that strives to derive meaningful information from the 

large amount of unprocessed natural language data, which may be ambiguous, unstructured or 

semi-structured and difficult to process automatically. In simple terms, it is the ability to process 

unstructured text from thousands or even millions of articles, interpret the meaning and 

automatically identify and extract useful information, such as the relationships exist of texting 

between concepts of interest. To mine the information, a text mining process usually involves a 

series of tasks to be performed, such as document collection, document pre-processing [2], Part-
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of-Speech (POS) tagging [3], and application of other Natural Language Processing techniques. 

These tasks are explained in detail in Chapter 2 of this thesis. Text mining has many different 

facets, depending on the characteristics and applications of the area. The following are examples: 

• Search and Information Retrieval (IR) 

• Document Classification 

• Data Mining  

• Natural Language Processing (NLP) 

• Information Extraction (IE) 

Search and Information Retrieval [4] helps in searching documents relevant to the problem, 

which significantly speeds up the analysis process. Document Classification [5] helps in 

managing and sorting documents by assigning them different categories or classes. Data mining 

[6] is the process of extracting useful information from data and converting it into an easily 

readable form. Natural Language Processing (NLP) [7] enables computers to glean meaning 

from natural language text, which is not easily understandable by machines. Often, NLP works 

as an input to the Information Extraction (IE) phase. Many NLP applications exist and use word 

dictionaries, ontologies, word-lists, rules etc. In the Information Extraction [8] phase, structured 

information is extracted from semi-structured or unstructured machine readable data, which is 

often received from the Natural Language Processing phase.   

 

1.2 Major Contribution 

In this work, we mainly focused on Information Extraction and Natural Language Processing to 

automatically extract relationship from text using grammatical dependence patterns.  
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A wide range of Text Mining Systems have been developed according to the area of application. 

One of the most common areas where text mining is applied the most is the biomedical domain. 

The majority of the text mining systems use a bag of words and some set of predefined rules or 

patterns to train the system, and this trained system is eventually used to identify/predict possible 

outcomes.  

We have developed a generalized text mining system that can be applied to arbitrary natural 

language text with minimum human effort. It is domain independent and builds its own 

knowledge base in any new corpus of text automatically using provided training data. It requires 

the user to provide a set of example sentences with the index of critical words present in the 

sentence. The user also needs to provide a set of words from different categories which can exist 

in other testing sentences. The system utilizes the grammatical structure of the sentence for 

analysis, transforms it into graph structure using a graph library and, ultimately, takes advantage 

of SPARQL Protocol and RDF Query Language (SPARQL) [9] expressiveness to encode it into 

a SPARQL query. Later, these SPARQL queries are used for pattern matching to predict the 

relationship between concepts in the text. To test our system, we used a system called Ki-MIner 

[68], created and implemented by Bhargabi Chakrabarti, a student who graduated from The 

Computer Science Department at the University of Georgia, as part of her Master’s Thesis 

project. She used articles from PubMed Central [14] for her system. To assure the correctness of 

the predictions generated by the system, we used a system called CURAMI [69], created and 

implemented by Reshmi De, a student who graduated from The Computer Science Department at 

the University of Georgia, as part of her Master’s Thesis project. It is a curatorial system that 

provides a significant level of assistance to human experts, implements a multilevel verification 
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and provides a feedback mechanism. It presents the extraction outcome along with all relevant 

information to the human curators. Curators assess the predictions and give feedback on them.  

We also added an additional feature to improve our system using curatorial knowledge. The 

system generates the SPARQL patterns using expert feedback and adds them to the training 

dataset automatically rather than requiring manual observation. This makes the system robust 

and more reliable over time. To increase speed and efficiency, we attempted to optimize the 

system by minimizing the number of patterns generated automatically. The measures taken to 

achieve this are described in the subsequent chapters.  

In Chapter 2, we discuss background information regarding Text Mining, Ontology and 

SPARQL, Parsing and the Stanford Parser, Natural Language Processing and Information 

Extraction from Text. Chapter 3 discusses related work that has been done in this research area. 

Chapter 4 states our approach to extracting information from text using dependence patterns. 

Chapter 5 explains the implementation of our approach. Evaluations are described in Chapter 6. 

Finally, Chapter 7 presents the conclusion and a discussion of future work.  
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CHAPTER 2 

BACKGROUND 

2.1 Text Mining 

Text Mining is an increasingly popular area of research in computer science that strives to derive 

meaningful information from the large amount of unprocessed natural language data, which may 

be ambiguous, unstructured or semi-structured and difficult to process. This unprocessed data is 

in the form of newspaper or web articles, email, blog entries, internal reports, research papers, 

transcripts of phone calls and many more [10]. Text Mining generally attempts to discover the 

semantics of the data by deducing rules or non-trivial patterns from natural language text 

documents, which helps in automatically discovering knowledge from other unprocessed 

documents. The challenge here is to transform unstructured data into rules or patterns. They can 

be domain-specific or general rules that can be applied to any domain. Also, they can be built by 

hand or automatically with minimal human involvement.  

Machine Learning, Data Mining, Information Extraction and Natural Language Processing are 

some of the most frequently used techniques for discovering knowledge using Text Mining [12]. 

Though Text Mining and Data Mining tend to have a similar purpose, Text Mining is regarded as 

having higher potential than Data Mining. The reason is that Text Mining discovers knowledge 

from free text, while Data Mining attempts to discover knowledge from structured data like a 

database. Thus, Text Mining can be viewed as an extension of Data Mining. In other words, it 

can be called Text Data Mining. As mentioned in the Introduction chapter, mining text involves 

a series of tasks to mine the text such as Information Retrieval (document collection), document 
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pre-processing, Part-of-Speech (POS) tagging, Natural Language Processing and others which 

are described in detail below.  

2.1.1 Information Retrieval  

Information Retrieval (IR) is also called Document Collection. It is the first key step in Text 

Mining.  IR is the activity of acquiring static or dynamic documents that are relevant to the 

domain of research. In static document collection, documents remain the same, while in dynamic 

document collection, documents are updated over time [12]. IR starts with the user query 

containing relevant strings describing the kind of documents needed. It returns documents (or 

images, audio, video, etc.), which may or may not match the user search. PubMed [13] is one of 

the largest platforms for text data collections. It has been maintained by The United States 

National Library of Medicine. It contains millions of documents on biomedical topics.  

2.1.2 Document Pre-Processing  

Once the relevant documents are collected, the next step is to process them. Since the text in the 

documents is not structured data, analyzing it becomes a difficult task. This text might also have 

redundant and irrelevant data. In this step, the syntactic and semantic structure of the text is 

extracted, and characters, words or sentences are identified. In the later processing stages of 

Chakrabarti’s thesis, Part-of-Speech tagging was applied to the resulting sentences to give the 

sentence a better structure.  

2.1.3 Part-of-Speech (POS) tagging  

Tagging means annotating a sentence and Part-of-Speech references grammatical category of 

words (POS tags includes the verb, noun, adjective, preposition, etc.) [3]. This means that words 

having the same POS belong to the same category and are similar in some way. Generally, they 

tend to have similar syntax. Thus, POS tagging annotates words in the text by appropriate 
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category based on their grammatical relationship with other words in the phrase, sentence or 

paragraph. POS tagging is usually a sentence-based process that labels the word by its correct 

part-of-speech, which helps in adding more structure to the sentence. Most of the English taggers 

use The Penn Treebank [15] tag set. The example sentence and its part-of-speech tagging is 

shown below: 

“I like watching movies” [16] 

➢ I-PRP like-VBP watching-VBG movies-NNS 

Here, we see that I is PRP (Personal Pronoun), like is VBP (Verb, non-3rd person singular 

present), watching is VBG (Verb, gerund or present participle) and movies is NNS (Noun, 

plural). These tags are taken from The Penn Treebank Project. 

POS taggers perform morphological analysis of words and produce stems for the input words. 

For the purpose of stemming, we apply The Porter Stemmer algorithm [17]. Many part-of-speech 

taggers are available nowadays. In our approach, we used the Stanford Dependency Parser [18], 

which first performs POS tagging of the sentence and then generates the parse tree and the 

grammatical typed dependencies present between the words in the sentence. The Stanford Parser 

is described in greater detail later in this chapter. 

 

2.2 Natural Language Processing 

Natural Language Processing enables a computer to process natural language text or human 

speech by extracting the semantics from it. To extract the semantics from a sentence, NLP 

performs grammatical analysis, which helps in reading the text. Some of the most common NLP 

tasks are: Part-of-speech (POS) tagging, Parsing, Named Entity Recognition (NER) and 

Relationship extraction. As mentioned above, Part-of-speech tagging determines the part of 
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speech (such as noun, adjective, verb, etc.) for each word in the sentence. Parsing [19] 

determines the syntax of the sentence. It tokenizes the sentence and converts it into a parse tree 

[20] structure presenting its syntactic representation.  Named Entity Recognition [21] finds 

named entities from text and annotates them according to some pre-defined categories (e.g., 

names of persons, locations, organizations, expressions of times, monetary values, percentages, 

quantities, etc.). Relationship Extraction [22] identifies semantic relations between those named 

entities in text. One uncommon way to represent those relationship is by using RDF (Resource 

Description Framework) [23] triples in domain ontologies [24]. RDF triples are in the form of 

(subject, relationship, object). 

NLP techniques can be employed in many applications. One of the popular applications is 

sentiment analysis of social media posts to determine public opinion or trends for marketing, 

customer service, or other purposes. Question-answering systems are also one of the most used 

applications, in which a user query is taken as an input and a relevant result is produced as 

output. A few other applications are machine translation, automatic summarization, spam email 

filtering, etc. We have developed an information extraction system that uses natural language 

processing techniques like POS tags, parse tree and typed dependencies using the Stanford NLP 

parser library to retrieve information as per user requirements. 

The difference between Text Mining and Natural Language Processing is that Text Mining 

transforms unstructured data into a structured form to discover new information from text, while 

Natural Language Processing is one of the analysis methodologies to achieve that goal. Thus, 

NLP can be regarded as a component of Text Mining, which performs linguistic analysis to 

extract meaning. 
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2.3 Parsing and Stanford Parser 

Parsing refers to the process of examining or analyzing natural language text. The Stanford 

Parser is a probabilistic natural language parser which uses a highly optimized PCFG 

(Probabilistic Context-Free Grammar) [18].  

A context-free grammar, abbreviated as CFG, consists of 4-tuple [25]: 

G = (N, Σ, R, S), 

where  

• N is a finite set of non-terminal symbols 

• Σ is a finite set of terminal symbols 

• R is a finite set of rules of the form X → Y1Y2…Yn , where X ∈ N, n  ≥ 0,  

and Yi ∈ (N ∪ Σ) for i = 1…n 

• S ∈ N is a distinguished start symbol. 

 

Probabilistic Context-Free Grammar is an enhancement of CFG in which rules are associated 

with a parameter called probability. Each rule is assigned a probability that lies between 0 and 1.  

Rules can be in the forms shown below: 

S → NP VP  

VP → Vi 

NP → DT NN  

NP → NP PP 

PP → IN NP, 

where S=sentence, NP=noun phrase, VP=verb phrase, Vi=intransitive verb, DT=determiner, 

NN=noun, PP=prepositional phrase, IN=preposition [25]. These are the POS tags taken from 
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Penn Treebank. A parse tree can be constructed using these rules. Let us take an example 

sentence: 

“Keith saw the man with the telescope” [26] 

The parse tree for this sentence is shown in Figure 1. 

 

Figure 1: Parse tree representation of the sentence “Keith saw the man with the telescope” 

Since the existence of ambiguity is obvious in natural language, an NLP parser sometimes 

generates more than one parse tree for the same sentence. Here, PCFG takes the advantage of 

augmented probabilities and generates the most probable parse tree or a ranking of the parse 

trees. Thus, PCFG improves the accuracy of parsing.  

In addition to parsing, the Stanford parser also provides grammatical relationships between 

words in the sentence in the form of typed dependencies.  

Below is an example sentence with POS tagging, parse tree and typed dependencies generated by 

The Stanford Parser: 

“Bell, based in Los Angeles, makes and distributes electronic, computer and building 

products” [27]  
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Figure 2: POS Tagging of the sentence “Bell, based in Los Angeles, makes and distributes 

electronic, computer and building products” generated by The Stanford Parser [28] 

 

 

 Figure 3: Parse of the sentence “Bell, based in Los Angeles, makes and distributes electronic, 

computer and building products” generated by The Stanford Parser [28] 

 



 

12 

 

Figure 4: Typed dependencies of the sentence “Bell, based in Los Angeles, makes and 

distributes electronic, computer and building products” generated by The Stanford Parser [28] 

 

The Stanford parser first tokenizes the sentence and assigns an index to each word in the 

sentence. Then, it uses those indexes in typed dependency generation. Thus, the number shown 

in the typed dependencies indicates the index of that word. Typed dependencies represent 

relationships between governor (head) and dependent. Definitions of the typed dependencies 

generated in the example above are explained below: 

 

• nsubj: nominal subject 

E.g. “Clinton defeated Dole” [29] 

nsubj(defeated, Clinton) 

 

• acl: clausal modifier of noun 

E.g. “I don’t have anything to say to you” [29] 
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acl(anything, say) 

 

• case: case marking 

E.g. “I saw a cat in a hat” [29] 

case(hat, in) 

 

• compound: compound 

E.g. “I have four thousand sheep” [29] 

compound(thousand, four) 

 

• nmod: nominal modifier 

E.g. “the office of the Chair” [29] 

nmod(office, Chair) 

 

• root: root 

E.g. “Bill is an honest man” [29] 

root(ROOT, man) 

 

• cc: coordination 

E.g. “And then we left.” [29] 

cc(left, And) 

 

• conj: conjunct 
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E.g. “Bill is big and honest” [29] 

conj(big, honest) 

 

• dobj: direct object 

E.g. “She gave me a raise” [29] 

dobj(gave, raise) 

 

There are many more typed dependencies used by the Stanford Parser, such as advcl, advmod, 

xcomp, ccomp, etc. [29], which are not further explained here. 

Typed dependencies can be represented in many different forms. The basic type and the 

collapsed types are the most used types of representation.  

The basic type forms a tree structure using dependencies. The graph generated using basic typed 

dependencies does not contain cycles. An example of basic dependency representation for the 

phrase “based in LA” is shown below [27]: 

prep(based-7, in-8)  

            pobj(in-8, LA-9) 

 

In the collapsed type representation, basic dependencies containing conjuncts or prepositions 

collapse to obtain direct dependencies between main words in the sentence. In a collapsed 

dependency representation, the example of basic dependencies shown above will be collapsed as 

follows:  

prep_in(based-7, LA-9) 

There are other variants of collapsed typed dependency representation: 
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1. Collapsed dependencies with propagation of conjunct dependencies 

2. Collapsed dependencies preserving a tree structure 

The dependencies which contain conjuncts in it are propagated in Collapsed dependencies with 

propagation of conjunct dependencies. With this form, preservation of a tree structure is not 

assured. 

Collapsed dependencies preserving a tree structure are the same as Collapsed dependencies with 

propagation of conjunct dependencies with removal of those dependencies that do not preserve 

tree structure. 

 

2.4 Ontology and SPARQL  

An Ontology is a theory about what kind of objects exist in the universe and how they are related 

to each other. Ontology defines concepts (objects/entities) in the form of classes and 

relationships (interactions) between them in terms of properties. Ontologies can be used to create 

a knowledge base in any domain using a representation vocabulary. A Representation vocabulary 

provides a list of concepts in a particular domain. The W3C states that: “An ontology defines the 

terms used to describe and represent an area of knowledge.” 

Relational databases are also being used as a knowledge base for many applications, but there are 

some features that make ontologies special. In ontologies, we can infer implicit knowledge that 

we cannot with a relational database. The main advantage of using ontologies is that they 

represent the intended meaning of vocabularies, while a relational database only represents data 

[31]. For any domain, its ontology builds a core of knowledge that clarifies the structure and 

constraints of the domain knowledge.  



 

16 

When should we use an ontology? When the schema is very large and/or complex, and schema 

information is used while querying, we should consider using an ontology. On the other hand, 

when the schema is small and simple, and querying does not use the schema structure, a database 

should be used. One of the most popular real world ontologies is WordNet [30], which models 

the domain of the English language. It is comprised of concepts, concept types and relations 

between concepts to provide a “terminological knowledge base” in the English language domain 

[12].  

 

Thus, a major application of ontologies is the Semantic Web [32]. The contents on the web are 

not structured. They can be made useful by converting complex website content and the large 

number of applications on semantic web into ontologies to include the semantically related 

information and exclude irrelevant information [31]. 

The semantics in the ontology rely on the representation language. Many languages have been 

developed to represent an ontology [33]. Some of the semantic markup ontology languages are 

Resource Description Framework (RDF) [23], RDF Schema (RDFS) [34], Web Ontology 

Language (OWL) [35], etc., and traditional syntax ontology languages are LOOM (ontology) 

[36], KIF (Knowledge Interchange Format) [37], F-Logic (Frame Logic) [38], etc.  

Resource Description Framework is a framework that models metadata information on web 

resources in graph format. It enables reuse and interchange of the data on the web using XML 

(eXtensible Markup Language) syntax. XML syntax makes data user-readable and machine-

processable. RDF represents information in the form of triple (subject, predicate/property, 

object) expressions. These triples collectively can generate a graph. In RDF, URIs can also be 

used as resources. Thus, RDF is a method for making statements on web resources (like URI) in 
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the form of triples, and the semantic web’s structure is constructed using the RDF concept. RDF 

is a vocabulary of terms which can be rendered in number of different formats such as 

RDF/XML, N3, Turtle, etc.  

RDF Schema (RDFS) provides a schema to RDF terms. It is a language to represent RDF 

vocabularies. In simple terms, we can say that RDF defines instances, while RDFS provides a 

way to define classes and properties for those instances. RDFS adds semantics to the RDF terms. 

For example, Car and Vehicle are two instances defined in RDF, RDFS gives us the flexibility to 

say that Car is a class and Car is a sub-class of the Vehicle class. In RDF vocabulary, the term 

“rdf:type” is defined, stating that the subject which comes before “rdf:type” is an instance of an 

object that comes after “rdf:type”. For example [39], 

PREFIX rdf:<https://www.w3.org/ 1999/02/22 -rdf-syntax-ns> 

<http://example.com/Car> rdf:type <http://example.com/Vehicle> 

Here, PREFIX defines the document it refers to. Car is the subject, and Vehicle is the object. 

 

On the other hand, in RDFS, “rdfs:subclassOf” is one of the example terms in its vocabulary. For 

the example above, it can be defined as [39]: 

PREFIX rdfs:<https://www.w3.org/2000/01/rdf-schema#> 

<http://example.com/Car> rdfs:subClassOf  <http://example.com/Vehicle> 

Along with classes and sub-classes, RDFS allows the definitions of properties, sub-properties 

and the typing of properties. Although RDFS is expressive, it lacks many expressions, some of 

which are as follows: 

• range restrictions to particular classes 

• inverse of property 
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• negation of an expression 

• cardinalities 

• metadata of the schema 

• disjoint classes 

Web Ontology Language (OWL) addresses the limitations of RDF Schema and adds more 

semantics to data. OWL also provides a much larger vocabulary and metadata than RDF or 

RDFS. Hence, OWL can be used as a robust data modeling language that provides the ability of 

automatic reasoning. 

 OWL defines following three species which are used as per the needs of users or implementers 

to allow layering within OWL: 

1. OWL Lite 

2. OWL DL 

3. OWL Full 

 OWL Lite is the simplest of the three. It provides simple constraints such as cardinality, but it 

allows only 0 and 1 as a value. OWL DL, as its name suggests, supports description logic 

capabilities. It guarantees computational completeness, decidability and maximum 

expressiveness [40]. OWL Full provides maximum expressiveness but does not guarantee 

computational completeness. Also, it does not have any syntactic constraints on RDF [40].   

Since RDF documents cannot be assumed to be compatible with OWL Lite or OWL DL 

documents, RDF constructs cannot be mixed with OWL Lite or OWL DL constructs. On the 

other hand, OWL Full documents are compatible with RDF documents; thus, OWL Full and 

RDF documents can be mixed, augmented or redefined. This shows that RDFS is more 

expressive than RDF, and OWL is more expressive than RDFS.  
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Once the ontologies are created with a set of RDF triples, they can be queried using SPARQL 

(Simple Protocol and RDF Query Language) [9]. Just as SQL is used as a query language to 

query relational databases, SPARQL is used to query the semantic web. It was created by the 

W3C and is comprised of a PREFIX declaration to abbreviate URIs, a FROM clause to define 

which RDF graph to query, a SELECT clause defining the information to extract from the 

ontology in the form of variables starting with a Question mark (?), and a WHERE clause stating 

conditions to be satisfied while querying an ontology in the form of triple patterns. Triple 

patterns are just like triples except that they can contain variables. 

A simple example of a RDF dataset, SPARQL query and result set is given below: 

Data [9]: 

 

Figure 5: Example RDF data 

SPARQL Query [9]: 

  

Figure 6: Example SPARQL query 

Result [9]: 

 

Figure 7: Example SPARQL query result 
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No PREFIX is used in this example. The example variable “?title” in the SELECT clause 

contains variables to be returned as a result. The WHERE clause consists of triple pattern which 

instructs the system to return the title of a book from the given dataset. SPARQL also allows 

placing constraints on string or numerical data using FILTER functions [9].  

 

2.5 Information Extraction from Text 

Owing to the complexity of natural language text, it is very difficult to understand the meaning 

of the text. The amount of electronic content is increasing tremendously day by day. This leads 

to a need for building a system that identifies entities and relationships between those entities 

and extracts structured data from unstructured text. Information extraction works on two key jobs 

which are Named Entity Recognition and Relationship Extraction which identify entities and 

extract relations between them, respectively. Thus, Information Extraction helps in transforming 

textual unstructured or semi-structured data into structured form and extracts useful/meaningful 

information. Information Extraction can be applied to a wide range of applications in different 

domains. Depending on the particular requirement of an application, information is extracted in 

different type of structured format.  

Following is an example sentence and the extracted result by applying information extraction 

task: 

“In 1998, Larry Page and Sergey Brin founded Google Inc.” [41] 

Extracted information: 

“FounderOf(Larry Page, Google Inc.), 

FounderOf(Sergey Brin, Google Inc.), 

FoundedIn(Google Inc., 1998 ).” [41] 
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In this work, we have developed a Text Mining system which uses an information extraction task 

as an initial step to generate relationship extraction patterns. Along with the information 

extraction, it also uses a parsing technique and some other steps to achieve the goal which is 

described in detail in Chapter 4 and Chapter 5. The original Information Extraction systems and 

many other currently developed systems work on hand-coded rules or patterns to extract needed 

information. Also, the majority of them are domain specific. We have developed a system which 

automatically generates relationship extraction patterns with the least amount of human effort. In 

addition, it is domain independent and can be used for any area of interest.   
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CHAPTER 3 

RELATED WORK 

The aim in developing a system (text mining system) that extracts structured information 

from unstructured text can be achieved using different approaches. This section discusses the 

implementation of six different systems which are related to our work. These systems usually 

aim to create a set of rules or patterns to extract useful information from natural language text. 

Also, the strengths and weaknesses of these systems are discussed in terms of comparative 

analysis. 

 

3.1 “Learning Information Extraction Patterns from Examples” 

This paper introduces a system called LIEP (Learning Information Extraction Patterns) [42], 

which learns a set of patterns from user-provided example sentences and events to be extracted 

based on local syntax. Those patterns are later used by the extraction system, called ODIE (On 

Demand Information Extractor), to extract relationships between key events in the sentence. 

ODIE takes text as an input and breaks it into sentences. If a sentence contains any event of 

interest, its words were tagged using Eric Brill’s part-of-speech tagger [43]. Next, it applies 

patterns generated by LIEP to identify events and check the syntactic relationships between 

them. ODIE does not parse the whole sentence but checks for the possible availability of 

syntactic relationships between events. It makes a strong assumption about what part of the 

sentence could have an event and parses that part of the sentence. 
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Before building a new pattern for any sentence, LIEP checks if any known pattern can be 

matched by this sentence. If that is not the case, it tries to produce a generalized pattern that can 

cover that example. If it fails to do so, it generates a new pattern. To extract a pattern, LIEP finds 

a path between three (two role-filling constituents and the relationships between them) pairs and 

combines those paths to create a set of relationships and creates a pattern from the relationships.  

ODIE’s average values of precision, recall, and F-measure [44] for hand built patterns were 

93.2%, 85.9%, 89.4%, respectively and for LIEP-built patterns, the values were 89.4%, 81.6%, 

85.2%, respectively. 

Hence, LIEP is a tool which does not require any specialized programmer to extract patterns 

from free text. Also, patterns learned by this system have performance very close to the level of a 

hand-built pattern dictionary. The general task of extracting relationships using example 

sentences is similar to our approach. The difference is in creating patterns and identifying 

matching patterns using ODIE. In LeaREX, patterns are encoded as SPARQL queries to leverage 

SPARQL’s expressivity and reasoning power. The Jena [66] library is used to identify matching 

patterns. Also, LIEP makes some assumptions while learning new patterns, which adds some 

uncertainty to the system, which is not the case with LeaREX.  

 

3.2 “Semanticizing Syntactic Patterns in NLP Processing using SPARQL-DL” 

The main purpose of this project [45] is to use the SPARQL-DL [46] query language as a rule 

engine to identify syntactic patterns in a sentence. Also, the authors have used FrameNet [47] 

elements and valance patterns to add semantics to a sentence along with the syntactic tagging 

obtained from the NLP parser (The Stanford Parser), which together helps in obtaining a 

semantic parse of a sentence. FrameNet carries about 1,200 semantic frames, 13,000 lexical 

units, and over 190,000 example sentences. Lexical Units (LUs) in a FrameNet play a key role. 
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They are usually in a verb form and can be used in a sentence in various Syntactic Realizations 

(SRs) depending on its role and form (e.g. I like sleeping and I like iPhone). A valance pattern is 

used to present those realizations. It consists of frame elements (FEs) like Experiencer, Reason, 

Parameter, etc. 

FrameNet’s example valance pattern for the sentence “I like him as a fellow” given in the paper 

is: 

NP.ObjContent NP.ExtExperiencer PP[as].DepParameter 

[I]Experiencer like [him]Content [as a fellow]Parameter 

where the subscripts are the FEs and the words separated by dot are phrase type (PT) and 

grammatical function (GF), respectively. By using valance pattern’s <PT, GF> pair and typed 

dependencies, SPARQL-DL queries were formulated by hand. Here, SPARQL-DL queries are 

used to detect PhraseType Dependency patterns only in the sentences.  

Object properties containing PP[as].Dep are: 

ObjectProperty(VBP, prep, IN)  

ObjectProperty(IN, pobj, NN) 

SPARQL-DL query for matching the pattern can be represented as: 

PREFIX : <ontology prefix>  

SELECT ?n1 ?n2 ?n3  

WHERE { Type(?n1, :VB), Type(?n2, :IN), Type(?n3, :NN),  

                 PropertyValue(?n1, :prep, ?n2),  

                 PropertyValue(?n2, :pobj, ?n3),  

                 PropertyValue(?n2, :lemma, "as") } 
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A predefined ontology with POS tags as classes, grammatical dependencies as object properties, 

and a data type property ‘lemma’, which relates a word with its base form, was populated for 

each sentence with words as individuals of the defined classes and object properties relating the 

words. To leverage the capabilities of an ontology, some rules or constrains can be applied to the 

ontology for pattern matching. It is also possible to loosen some of the constraints in case no 

matching sentence is found.  

After constructing the temporary ontology for the sentence, all the queries were executed against 

it, and the resulting <PT, GF> pairs were collected. Using those pairs returned as a result, a 

suitable matching valance pattern (consisting of frame elements associated with 

PhraseType.Dependency pairs defined in FrameNet) was chosen to semantically tag the sentence 

using the valance pattern and Frame Entities. As this work is intended to provide a domain 

independent system using SPARQL, it is much related to our work, but in this work, SPARQL 

queries were formulated by hand, which is automatic in our system. 

 

3.3 “RelEx—Relation extraction using dependency parse trees” 

The authors of this paper [48] proposed a system called RelEx to extract relationships from free 

biomedical texts. This system was evaluated on one million MEDLINE abstracts to extract 

protein-gene relationships, and about 150,000 relationships were extracted with a performance of 

approximately 80% for both precision and recall. It was also applied to other datasets like the 

Learning Language in Logic (LLL) [49] dataset and the Human Protein Reference Database 

(HPRD) [50] dataset to evaluate system performance. In this approach, they used MedPost [51] 

for part-of-speech tagging, fnTBL [52] to identify noun-phrase chunks, and The Stanford 

Lexicalized Parser to generate dependency trees for a sentence and to set word positions for each 

word in the sentence. These dependency trees are later enriched with gene and protein words by 
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ProMiner [53] based on matching to a synonym dictionary [54]. Based on dependency parsed 

trees, a set of three simple rules were manually crafted to extract relationships from sentences of 

a text. RelEx checks for the presence of a protein pair and then looks for a relationship term on 

the path between two protein terms created by the dependency parse tree. They use the following 

three rules to describe relations: 

1. effector-relation-effectee (‘A activates B’) 

2. relation-of-effectee-by-effector (‘Activation of A by B’) 

3. relation-between-effector-and-effectee (‘Interaction between A and B’). 

These rules were applied to extract candidate relations which were later given as an input to the 

filtering module for negation check, effector/effectee detection, enumeration detection, and 

restriction to focus the domain of interest for screening the relations.  These patterns of rules can 

be adapted or expanded to any other domain to extract different types of relations by using 

corresponding relation terms and entity terms including synonyms.   

Thus, RelEx is a simple and straightforward approach based on publicly available tools with 

higher performance noted on public datasets. This system is also related to our system as it 

extracts relationships from a text using NLP techniques but it is rule-based rather than pattern-

based.  

 

3.4 “A Framework for Schema-Driven Relationship Discovery from Unstructured Text”  

A schema-driven approach is described in this paper [55] to extract implicit and explicit 

relationships between known entities in biomedical texts. It uses a combination of vocabulary 

from the Medical Subject Headings (MeSH) [56] and domain knowledge in the form of the 

Unified Medical Language System (UMLS) [57]. Since MeSH also contains synonyms of 
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entities, it eliminates the need for Named Entity Identification and Named Entity 

Disambiguation/Reference Reconciliation. Later, NLP techniques were applied on the domain 

knowledge to extract relationships. An empirical rule-based method was used to extract entities 

and relationships between them and to convert them in RDF form. In the methodology, first they 

split the PubMed [13] text into sentences, tag parts-of-speech (using SS-Tagger [58]) and 

generate a parse tree (using SS-parser [59]). The parse tree obtained was enriched by known 

entities (defined in MeSH terms) and relationships (defined in the UMLS). In any biomedical 

domain, entities are not always in a simple form. They might be combined with other entities or 

modifiers. They used rules to identify simple, modified, or composite entities and developed an 

algorithm to apply those rules. Eventually, they developed an algorithm to extract relationships 

between them. A relationship extraction algorithm checks the parse tree to determine if children 

under node S (sentence - root node) contain an entity followed by the relationship term, which in 

turn is followed by another entity. If that is true, it indicates the presence of a relationship 

between two entities. They validate those relations using UMLS schema information. After 

having all relationships between entities identified, they converted them into RDF form. These 

RDF resources can be utilized in many applications for experimental analysis of large datasets 

and to obtain useful information by querying.  

To evaluate the scalability of the system, they used two datasets from PubMed. Another 

objective behind this experiment was to check the effectiveness of the rules they developed to 

extract different types of entities and relationships between them and to understand the 

usefulness of extracted RDF triples. In the first dataset, they processed about 1.6 million 

candidate sentences, which resulted in 200,000 triples. In the second dataset, out of 798 

candidate sentences, 122 relationships were extracted. More modified entities were extracted 
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than composite or simple entities. The number of simple, composite, and modified entities 

extracted were 752, 377 and 4762, respectively. From 122 relationships identified, 5 were 

incorrect, yielding a precision of 95%. They did not measure the recall because of the need for an 

expert to read all sentences to verify extracted relations. They planned to do that in the future.  

Hence, results clearly show the ability of generated RDF resources in discovering knowledge 

from large texts by using analytical path queries. Though this approach focuses on general 

relationships rather than any specific type of relationships, the overall system concentrates on the 

biomedical domain. 

 

3.5 “Learning User-Defined, Domain-Specific Relations: A Situated Case Study and 

Evaluation in Plant Science” 

The goal of this paper [60] was to develop a system that predicts the nature of the relation that 

exists between two entities automatically by using a lightly supervised machine learning 

approach and giving the user the flexibility to define domain specific relations.  

The first step in the process of achieving the goal was to define domain specific relations 

between a plant and a location from the plant science articles with the help of domain experts 

and other research group members. Relations identified were neither primitive nor domain 

specific nor general. They can be said to be the subtype of a more general ‘location-of’ or 

‘spatially-related-to’ relation. The four relations identified were between: 

1. plant and the manufacturer of the tool or instrument that was used 

2. plant and the location of a seed donor 

3. plant and seed origin 

4. plant and location of the field experiment 
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The system provides user-facilitated indexing that requires the user to provide the sentences with 

relations of interest extracted from articles. For the case study, the author considered 662 

candidate sentences out of 2595 sentences annotated with a plant and location. Out of 662 

sentences, 110 were used for testing, 518 for training, and 34 were removed because of 

ambiguous relations. 

They used entity, lexical, and syntactic features that were helpful in using training sentences. In 

the entity feature, plant names and locations were identified using the Unified Medical Language 

System (UMLS) and Stanford Named Entity Recognizer, respectively. While identifying lexical 

features for each sentence, highest frequency and inverse document frequency weighted words 

that occur between plant and location were extracted and ranked to obtain words with highest 

rank in each category. The Stanford syntactic parse of the sentence was used to identify syntactic 

features like root of the sentence, and syntactic path from root to plant and from root to location. 

It was also used to check if location appeared under the same branch of plant. If not, root was 

used to connect the path between plant and location.  

Using annotated sentences and features, binary classifiers were created and were run on 518 

training sentences to learn domain specific relations using the Oracle Data Miner (ODM) [61] 

with the default settings of Generalized Linear Model (GLM), Decision Tree, Support Vector 

Machines (SVM), and Naïve Bayes (NB).   

To evaluate the performance of the system, the SVM model created using training sentences was 

applied to the remaining 1967 sentences, and 200 randomly selected sentences (with 50 instances 

in each category) were manually evaluated. This resulted in the highest precision of 94% for 

manufacturer_location relation, which was consistent with training set results. The precision 

values for seed_bank-donor_location, seed_origin_location and field_experiment_location 
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categories were lower from what was achieved in training sets. Thus, the results demonstrate that 

one of the four categories achieved good performance for test data, but user can change the 

default settings of ODM to change precision and recall for other categories. Also, adding more 

information about main verb in features improves the performance. 

Therefore, a method developed to identify user-defined domain-specific relations facilitates user 

indexing and provided assistance to bio-curators, data curators and metadata librarians to assign 

metadata to articles. The method relies on a high precision syntactic parser and named entity 

recognizer used to identify features. This system is related to our system because it focuses on 

user-defined domain-specific relation extraction.  

 

3.6 “Semantic Tool for Analysing Unstructured Data” 

In this paper [62], semantic and NLP techniques were used to convert unstructured data into a 

semantically structured form, and it also presents an approach to visualizing those structured data 

using a graph mechanism. The authors implemented this approach as a web application that can 

extract and visualize data. To extract information, the system used static ontology [63] that was 

developed by domain experts for an agriculture and technology application to model information 

about Organization, Company, Country/Region, Person, and Products. The data repository from 

which information was extracted contains full news articles, web sites URLs and RSS feeds. The 

structural analysis was performed on those documents to make them noise free and added 

metadata information for additional processing. Once the documents are ready for use, linguistic 

and semantic analyses were performed using static domain ontology to extract information 

constructs. 
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In the linguistic analysis, Onto Root Gazetteer [64] was used to annotate documents with entities 

by using static ontology. This annotated corpus was used as an input to the semantic analysis 

phase. In this phase, they defined the set of JAPE rules to be executed by the JAPE transducer 

[65] to extract relevant entities and identify relationships between them. 

The method to validate semantic relation constructs generated by semantic analysis was also 

implemented. To do so, paths connecting pairs of entities and the relationship term between them 

were identified from the dependency parse tree. Those validated constructs were stored and 

presented as triplets using the RDF framework [23]. The reason behind using RDF representation 

was its capability of complex querying on extracted data. Jena [66] was used to store ontology 

and RDF data. Jena’s Reasoning Engine was used to acquire required result for the search query 

of the user. Finally, the Spring Graph Generator [67] was used to generate spring graph for the 

visualization of the resultant set.  

Hence, the web application developed here uses three algorithms to extract and visualize 

structured information from free text, and it also provides dynamic and interactive graphs as an 

output using publicly available tools. The system also gives the user the flexibility to choose 

options for the information to make visible on the graph.  

Thus, the approach presented here was straightforward to implement and achieved competitive 

performance. Though the intent of developing this system was visualization of extracted 

information, which not the case for LeaREX, the algorithm used to achieve it is similar to 

LeaREX. 
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3.7 Comparative Evaluation 

All the systems described above extract relationships from free text. Though all of them use 

some syntactic or semantic rules or NLP techniques to identify entities and relationships between 

them, they have several significant differences and similarities among them. Abbreviations used 

to address systems: 

System 1: “Learning Information Extraction Patterns from Examples” 

System 2: “Semanticizing Syntactic Patterns in NLP Processing using SPARQL-DL” 

System 3: “RelEx—Relation extraction using dependency parse trees” 

System 4: “A Framework for Schema-Driven Relationship Discovery from Unstructured Text” 

System 5: “Learning User-Defined, Domain-Specific Relations: A Situated Case Study and 

Evaluation in Plant Science” 

System 6: “Semantic Tool for Analysing Unstructured Data” 

 

Table 1: Comparison of related systems 

 
Multi-slot 

extraction 

Approach 

Used 

Domain 

Independent 

Entities 

Allowed 

Validation 

Mechanism 

Ontology-

based 

Pattern 

Formulation 

System 

1 
Yes 

Pattern-

based 
Yes 

Exact 

Word 
No No Automatic 

System 

2 
Yes 

Pattern-

based 
Yes 

Not 

Specified 
No Yes Manual 

System 

3 
Yes Rule-based Yes 

 Exact 

word, 

Synonyms 

Yes 

(Filtering) 
No Manual 

System 

4 
Yes Rule-based Yes 

Simple, 

Modified, 

Composite 

Yes No Manual 

System 

5 
Yes 

Lightly 

supervised 

machine 

learning 

No 
Exact 

Word 
No No N/A 

System 

6 
Yes Rule-based No 

Not 

Specified 
Yes Yes Manual 
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Table 1 presents a brief comparative analysis of all systems. All six systems support multi-slot 

extractions. Multi-slot extraction systems generate a single rule/pattern for all items of interest in 

a sentence, rather than generating one for each item of interest. System 1 and System 2 followed 

a pattern-based approach, while System 3, System 4 and System 6 followed a rule-based 

approach. In contrast, System 5 uses a lightly supervised machine learning approach. Each of 

these approaches performs better in different scenarios. A pattern-based approach has an 

advantage over a machine learning approach in that patterns are easy to customize to deal with 

errors. However, a pattern-based approach requires human involvement for manual inspection of 

extracted output, which is time consuming. System 5 and System 6 are domain-specific systems, 

while the other four systems can be applied to any domain with little or no changes in extraction 

mechanism. Though the intents of System 2 and System 6 are different, they use Ontology to 

extract relationships. In System 2, ontology was populated for each sentence, and queries were 

executed against it to match the pattern. In System 6, static domain ontology was used to obtain 

the results for user queries using the JENA library. 

 

The Entity Identification mechanism is different for many of these systems. System 1 and 

System 5 allows only an exact word as an entity, while System 4 allows simple (exact word), 

modified, and composite entities. System 3 considers synonyms of entities along with exact 

entity words. Thus, granularity of the extraction is not the same. System 4 and System 6 have 

implemented mechanisms to validate entities and relationships, while System 3 has implemented 

a filtering mechanism to remove unwanted entities or relationships. System 1 assumes that all 

needed information is between two entities, and it generates a parse tree for that part of the 

sentence only. It uses an “On-demand” parser that does not consider semantics that sometimes 
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result in incorrect pattern matches. All other systems parse the whole sentence. System 1 

automatically generates patterns, while System 2, System 3, System 4 and System 6 uses a hand-

coded set of rules or patterns.  
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CHAPTER 4 

LeaREX IMPLEMENTATION 

 

4.1 Motivation 

Since a number of text mining systems have been developed to extract information in a specific 

domain, we have developed a generalized (domain independent) text mining system. In simple 

terms, the system can be applied to a new corpora without much human effort to train the 

system. It automatically builds its knowledge base by using user provided example sentences and 

a number of sets of words from different categories of user interest. It can also use curatorial 

feedback and add new knowledge to the system’s training set (knowledge base).  

In this work, we used Chakrabarti’s system [68] as a case study to evaluate our system. Her 

system takes a full text article as an input, processes it, and uses text mining methods to output 

the mutation impacts present in the articles. The output mutation impacts were of 4 different 

types: Positive, Negative, Neutral and Unknown. Positive impact means the mutation has a 

positive effect on biological function or protein property. Negative impact means it affects the 

function negatively. Neutral impact represents no effect or a neutral effect on biological function 

or protein property. In the case of sentences for which the system cannot detect the impact, or 

whether the sentence is negated, her system could not predict the impact and set the mutation 

impact as Unknown. To ensure the correctness of the predicted impact, Chakrabarti used the 

curatorial system CURAMI [69] (developed by her fellow student De). CURAMI provides a user 

interface to the human curators providing prediction generated by Chakrabarti’s system along 
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with some other useful information (such as a whole sentence, the paragraph to which the 

sentence belongs, other critical words identified by the system, etc.). Curators can agree or 

disagree with the predicted output, change the predicted output, and also specify the impacts for 

sentences which were predicted as Unknown. In her work, Chakrabarti manually analyzed 

curated results and added patterns to her system for corrected (changed) predictions and for 

newly specified impacts by curators. 

In our work, we followed a similar approach for mining the text (explained in detail in later 

sections), but Chakrabarti’s system can be used to predict the impact of protein mutations only, 

while our system can be used to predict any type of output, in any domain, as per user 

requirements. Also, the output can be generated in the format of the user given templates. Along 

with this generalized text mining system, we developed an additional module which can make 

Chakrabarti’s system much faster than before. Since Chakrabarti manually added new 

knowledge to the training dataset based on curatorial feedback, we created a module which can 

perform the same task automatically.  

 

4.2 Implementation 

The LeaREX system has been implemented in the Java programming language. The flow 

of how the system works is explained in Chapter 5. We used open source libraries in 

implementing a part of the system. A PostgreSQL database was used to store the data. 

 

4.2.1 System Architecture 

The two main modules of LeaREX are the training and testing modules. Apart from them, an 

additional module was developed to automatically generate patterns from curatorial feedback of 



 

37 

KiMIner (Chakrabarti’s system) generated predictions. The architecture of the system is shown 

in Figure 8.  

The training module and automatic pattern generation module follows the same algorithm. Both 

uses The Stanford Parser [18] [27] to generate parse tree and typed dependencies for sentences. 

Next, to generate the smallest subgraph interconnecting critical words, The Grph 2.0.0 library 

[70] was used. It is a Java library to manipulate graphs. It is easy to use and offers high 

performance. Once the subgraph was ready, we used the Jena library version 2.11.2 to generate 

RDF triples followed by the RDF graph, and finally the pattern was generated. 

    

Figure 8: LeaREX Architecture 

In the testing module, one sentence at a time is taken as an input. The parse tree and typed 

dependencies generated for the sentence are used to generate RDF triples. Apart from these 

triples, one triple per critical word existing in the sentence is added to the set of triples in the 

form of 

?Word textMine:type textMine:Category 
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Critical words are identified using a user provided set of words of different categories. The 

temporary ontology is created using the Jena library for each sentence, and all the triples 

generated for that sentence are added to it. Once we have an ontology filled with all the triples, 

we run all the SPARQL queries (training patterns) against the ontology. If any query matches the 

pattern existing in the sentence, it will return the result. The result will contain the value of all 

variables in the select clause of the query. The system has the ability to provide the result in the 

form of user requests. It uses Apache FreeMarker [71], a Java library which generates text output 

based on an input template(s). Users can provide FreeMarker template as an input.  

LeaREX is designed to take example sentences and lists of words per category from the 

database. We also created a small web interface which allows user to provide that information in 

a set of Excel files. The interface first accepts excel files, one file per category, containing lists of 

words belonging to that category. Next, it accepts Excel file containing example sentences with 

indexes of critical words for each sentence. These data are used to train the system. Once the 

system is trained, it takes Excel file containing testing sentences and produces the outcome in the 

form of a template provided by the user. 

 

4.2.2 Database Design 

The UML diagram in Figure 9 depicts the design of the database used by LeaREX. The system 

uses the tables Sentence, Word, WordOccurance, Category, and Pattern. Other tables are used by 

Chakrabarti’s or De’s systems. Example sentences were stored in the Sentence table, the index of 

critical words in each sentence was stored in the WordOccurance table, categories were stored in 

the Category table, and words from each category were stored in the Word table. Final generated 

patterns were stored in the Pattern table.  
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Figure 9: UML diagram of the system’s database 
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CHAPTER 5 

RELATIONSHIP EXTRACTION USING LeaREX 

The flow of the system is explained in this chapter. 

5.1 Training the system 

The main task of our system is to extract relationships between concepts existing in a natural 

language text. As an input to the system, a set of example sentences with the indexes and 

categories of critical words for each sentence is given. By Critical word, we mean that a word 

that needs to be identified as concept in the sentence. As there might be other critical words 

which can belong to those categories but is not present in any of the example sentences, the user 

also provides a list of words for each category. As mentioned above, we used Chakrabarti’s 

system as a case study, we took some number of sentences with indexes of critical words (in this 

case, Function, Mutation and Impact words) and a list of other Function, Mutation and Impact 

words (along with the types of impact words which can be positive, negative, neutral or 

unknown) as an input to the system.  

Once we have the input dataset ready, we use it to train the system first. After the system is 

trained, we can pass any sentence (not present in the training set) to the system, and the system 

will predict the outcome for that sentence based on example sentences given by the user. We can 

check the correctness of our system by using curatorial knowledge.  
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5.1.1 Parse Tree and Typed Dependencies Generation  

As the initial task to train the system, sentence level analysis is performed by determining the 

semantics of the sentences. To determine the semantics, the system generates a parse tree and 

collapsed typed dependencies for each sentence. The system uses The Stanford Parser to perform 

these tasks.  

The parser first tokenizes the sentence into words and then performs the Part-of-Speech (POS) 

tagging for each word. Once the sentence is tagged by POS tags, the parser generates a parse tree 

that shows syntactic structure of the sentence followed by typed dependencies generation. An 

example sentence with parse tree and typed dependencies is given below. 

 

Sentence:  

“Under restrictive media conditions, only S252W fibroblasts showed enhanced migration” 

 

 

Parse Tree: 

(ROOT 

        (S 

                (PP (IN Under) 

                        (NP (JJ restrictive) (NNS media) (NNS conditions))) 

                (, ,) 

                (NP (RB only) (CD S252W) (NNS fibroblasts)) 

                (VP (VBD showed) 

                        (NP (JJ enhanced) (NN migration))))) 
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Typed Dependencies: 

amod(conditions-4, restrictive-2) 

nn(conditions-4, media-3) 

prep_under(showed-9, conditions-4) 

advmod(fibroblasts-8, only-6) 

num(fibroblasts-8, S252W-7) 

nsubj(showed-9, fibroblasts-8) 

root(ROOT-0, showed-9) 

amod(migration-11, enhanced-10) 

dobj(showed-9, migration-11) 

 

We can visualize the sentence based on a parse tree and typed dependencies generated as shown 

in Figure 10 below. 

 

 

Figure 10: Visualization of the grammatical structure of the sentence “Under restrictive media 

conditions, only S252W fibroblasts showed enhanced migration” using POS tagging, parse tree 

and typed dependencies. 
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Since typed dependencies provide grammatical relationships between pairs of words in a 

sentence, we can represent them in the form of RDF triples [40] and encode them as an RDF 

graph structure with words as nodes and grammatical relationships between them as edges 

between nodes. 

 

5.1.2 Pattern Generation 

We analyzed example sentences in order to discover repetitive patterns connecting critical words 

in the sentences. The key task in the training phase is to create a pattern for each example 

sentence provided by the user. As we can generate an RDF graph for a sentence and the user has 

provided indexes of critical words in the sentence, we can find the shortest path between each 

unique pair of critical words and create the smallest subgraph interconnecting all critical words 

in the sentence.  

The critical words with categories for the example sentence “Under restrictive media conditions, 

only S252W fibroblasts showed enhanced migration” are Mutation: S252W, Function: migration, 

Positive Impact: enhanced. 

Figure 11 shows an example sentence with the smallest subgraph interconnecting these three 

critical words highlighted with thicker lines. 
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Figure 11: Visualization of the grammatical structure of the sentence “Under restrictive media 

conditions, only S252W fibroblasts showed enhanced migration” with the smallest subgraph 

interconnecting critical words highlighted. 

Based on this smallest subgraph, we can extract the triples which played a role in forming their 

connection. For the example sentence, those triples will be as follows: 

(showed, dobj, migration) 

(migration, amod, enhanced) 

(showed, nsubj, fibroblasts) 

(fibroblasts, num, S252W) 

We can also represent these triples as a graphical structure by replacing the intermediate nodes 

with interconnecting variables.  

 



 

45 

Figure 12: Graphical representation of triples used to interconnect the critical nodes of the 

sentence “Under restrictive media conditions, only S252W fibroblasts showed enhanced 

migration” with intermediate nodes replaced by variables and critical words by the categories 

they belong to. 

 

As we are interested in how critical words are related to each other, we can replace intermediate 

nodes by variables and critical words by the categories they belong to as shown in Figure 12. The 

new triples representation is shown in Figure 13: 

 

Figure 13: Triples representation of the sentence “Under restrictive media conditions, only 

S252W fibroblasts showed enhanced migration” after replacing intermediate nodes by variables 

and critical words by the categories they belong to. 

To generate the final pattern, we encode these triples into a SPARQL query as shown in Figure 

14 below. We add additional triples to the pattern with the property textMine:type to indicate 

which critical word belongs to which category. 
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Figure 14: Final SPARQL query representation of the sentence “Under restrictive media 

conditions, only S252W fibroblasts showed enhanced migration”  

 

We generate patterns for all user provided example sentences by keeping the number of the 

patterns generated at a minimum. To minimize the number of patterns generated, we applied two 

different optimization steps, as explained in the next section. The final patterns are saved in the 

database as learned patterns which are later used to discover relationships from other testing or 

unknown sentences.  

 

 



 

47 

5.1.3 Pattern Set Optimization  

As discussed, our LeaREX system generates a set of patterns, based on a set of training 

sentences. For some realistic applications, the system may generate a high number of patterns, 

which will slow down the final extraction task. We have developed a framework for optimizing 

the final set of patterns by reducing their number and so decreasing the extraction execution 

time. We applied two approaches as explained below. 

 

Approach 1:  Elimination of duplicate patterns 

Our analysis of patterns (generated from example sentences) frequently showed three types of 

similarities, and they were not added to the training pattern set. 

1. Exact patterns 

2. Patterns with the same set of triples but arranged in different order. These types of 

patterns have the exact same meaning; the only difference is in the representation of 

triples. The program generates triples depending on the formation of the sentence. When 

the same sentence is formed differently, it generates patterns with the same triples 

arranged in different order. For example, 

i. ?Function.textMine:dobj ?x.  

?Function textMine:amod ?Positive.  

?x textMine:nsubj ?Mutation. 

ii. ?x textMine:nsubj ?Mutation.  

?Function textMine:amod ?Positive.  

?Function.textMine:dobj ?x. 
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Below are the two example sentences for which system generates SPARQL patterns with 

the same set of triples arranged in different order. 

Sentence 1: "The mutation Y253F experiences increased electrostatic interactions, 

Y253H experiences increased electrostatic interactions and decreased vdW when binding 

to ponatinib" 

SPARQL Pattern: 

PREFIX textMine: <http://example.uga.edu/>  

SELECT ?Positive ?Mutation ?Function WHERE      {  

?C textMine:nn ?Mutation.  

?Positive textMine:nsubj ?C.  

?Positive textMine:dobj ?Function.  

?Positive textMine:type textMine:Positive.   ?Mutation textMine:type textMine:Mutation.  

?Function textMine:type textMine:Function.                } 

 

Sentence 2: "The EphA3 G518L lung cancer mutation enhances cis interaction with 

ephrin A3" 

SPARQL Pattern: 

PREFIX textMine: <http://example.uga.edu/>  

SELECT ?Positive ?Mutation ?Function WHERE       {  

?C textMine:nn ?Mutation.  

?Positive textMine:dobj ?Function.  

?Positive textMine:nsubj ?C. 

?Positive textMine:type textMine:Positive.   ?Mutation textMine:type textMine:Mutation.  
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?Function textMine:type textMine:Function.               } 

The triples in the Blue font in both the sentences’ patterns are re-organized. In SPARQL, 

the order of triples does not matter. They mean the same. So, these types of patterns are 

not added to the training pattern set again.   

 

3. Patterns with Structurally Identical triples. These types of patterns have the same 

graphical structure that connects critical nodes, but the intermediate nodes are different. 

For example, 

i. ?Function.textMine:dobj ?x.  

?Function textMine:amod ?Positive.  

?x textMine:nsubj ?Mutation. 

ii. ?Function.textMine:dobj ?y.  

?Function textMine:amod ?Positive.  

?y textMine:nsubj ?Mutation. 

Two example sentences for which SPARQL patterns contain structurally identical triples 

are shown below. 

Sentence 1: "Immune complexes kinase assays showed, as expected, high BRAF activity 

in YULAC BRAF V600E  and YUMAC BRAF V600K  cells that was suppressed after 

treatment with PLX4032" 

SPARQL Pattern: 

PREFIX textMine: <http://example.uga.edu/>  

SELECT ?Positive ?Mutation ?Function WHERE   {  

?E textMine:nn ?Mutation.  
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?Function textMine:amod ?Positive.  

?D textMine:prep ?E.  

?D textMine:prep ?Function.  

?Positive textMine:type textMine:Positive. ?Mutation textMine:type textMine:Mutation. 

?Function textMine:type textMine:Function.            } 

 

Sentence 2: "FDG could furthermore be used to distinguish between  BRAF  V600E  

mutant melanomas with high or low sensitivity to PLX4032"  

SPARQL Pattern 

PREFIX textMine: <http://example.uga.edu/>  

SELECT ?Positive ?Mutation ?Function WHERE   {  

?Function textMine:amod ?Positive.  

?A textMine:prep ?Function.  

?A textMine:prep ?B.  

?B textMine:nn ?Mutation.   

?Positive textMine:type textMine:Positive. ?Mutation textMine:type textMine:Mutation. 

?Function textMine:type textMine:Function.            } 

 

Both the SPARQL patterns show same graphical structure. The only difference is in the 

organization of triples (shown in Blue font) and the variables used to represent 

intermediate nodes. As the name of variables does not make any difference in the 

meaning of SPARQL query, we consider them duplicates. 
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In this approach, we check the similarities of patterns by comparing their triples. Every time a 

new query is generated, we compare it with all previously generated queries, and we add it to the 

training pattern set only if it is not a duplication of any of the previously generated queries. If 

triples in any pattern are exactly the same as any already generated pattern, no new pattern is 

added. There is also a possibility that the triples are exactly the same but are not in the exact 

same order. Since these types of queries have the same meaning in the SPARQL query language, 

we do not add it. Also, if the structure of the graph generated from the pattern triples has the 

same structure as any other pattern, these patterns are not added.  

 

Approach 2:  Merging similar patterns 

 Some patterns were not duplicates, but they were sufficiently similar to be merged and still 

retain the same meaning and structure. Out of all generated patterns, the majority of them have a 

linear or star structure. Figure 15 and Figure 16 show how the graphical structure appear for the 

linear and star patterns. 

 

Figure 15: Linear pattern graphical structure 

 

Figure 16: Star pattern graphical structure 



 

52 

Here, C1, C2 and C3 are assumed to be critical words of the sentence. There can be more than 

three critical words in the sentence. In a linear pattern, all critical words are connected to each 

other in a linear manner. There might be some intermediate node connecting them. In a star 

pattern, all critical words are connected to each other via one common intermediate node.  

The example sentence along with its dependence graph, and SPARQL pattern for both the linear 

and star pattern is shown below. 

Linear Pattern Example Sentence: 

“Since residue V617 is located in the pseudokinase domain of JAK2, this lack of information has 

hindered a detailed understanding of the mechanism of activation of JAK2 V617F” 
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Figure 17: The graph showing grammatical interconnection between words of the sentence 

“Since residue V617 is located in the pseudokinase domain of JAK2, this lack of information has 

hindered a detailed understanding of the mechanism of activation of JAK2 V617F”. 

 

The highlighted subgraph displaying linear interconnection between critical words V617F 

(Mutation word), activation (Function word), and hindered (Negative Impact word) in the 

sentence is shown in Figure 17. Here, understanding and mechanism are the intermediate nodes. 

The graph is generated using the typed dependencies of the sentence that shows the grammatical 

relationship between words of the sentence. Each node in the graph is word of the sentence and 

edges show the grammatical relationship between those words. The simple graphical 

representation of critical words interconnection in the sentence is shown in Figure 18 below. 

 

Figure 18: Graphical representation of linear interconnection between critical words of the 

sentence “Since residue V617 is located in the pseudokinase domain of JAK2, this lack of 

information has hindered a detailed understanding of the mechanism of activation of JAK2 

V617F”. 

The SPARQL pattern generated from the graph is shown below. The Blue font triples shows the 

interconnection. 

PREFIX textMine: <http://example.uga.edu/>  

SELECT ?Negative ?Mutation ?Function WHERE {  

?Negative textMine:dobj ?C.  

?C textMine:prep ?E.  
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?Function textMine:prep ?Mutation.  

?E textMine:prep ?Function.   

?Negative textMine:type textMine:Negative. ?Mutation textMine:type textMine:Mutation. 

?Function textMine:type textMine:Function. } 

 

The example sentence to demonstrate star pattern: 

“The AKT1 (E17K) mutant can cause increases in the protein levels of Bcl 2 and the phosphorylation of 

the pro apoptotic protein BAD, resulting in enhanced resistance to apoptosis” 

 

Figure 19: The graph showing grammatical interconnection between words of the sentence “The 

AKT1 (E17K) mutant can cause increases in the protein levels of Bcl 2 and the phosphorylation of the pro 

apoptotic protein BAD, resulting in enhanced resistance to apoptosis”. 
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The highlighted subgraph in Figure 19 shows that critical words E17K (Mutation word), 

phosphorylation (Function word), and increases (Positive Impact word) are connected via 

common intermediate node cause in a Star pattern. The graphical representation is shown in the 

Figure 20. 

 

Figure 20: Graphical representation of star interconnection between critical words of the 

sentence “The AKT1 (E17K) mutant can cause increases in the protein levels of Bcl 2 and the 

phosphorylation of the pro apoptotic protein BAD, resulting in enhanced resistance to apoptosis” 

The SPARQL pattern (with interconnection triples in Blue font) is generated as below: 

PREFIX textMine: <http://example.uga.edu/>  

SELECT ?Positive ?Mutation ?Function WHERE {  

?C textMine:prep ?Function.  

?C textMine:dobj ?Positive.  

?C textMine:nsubj ?E.  
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?E textMine:appos ?Mutation 

?Positive textMine:type textMine:Positive. ?Mutation textMine:type textMine:Mutation. 

?Function textMine:type textMine:Function. } 

 

In this approach, we are considering only a linear structured patterns for merging. Before 

applying this approach, we changed the representation of patterns generated, as shown in the 

example below. Initially, for ease of understanding, only triples are shown as only representation 

of triples is changed. The PREFIX clause, select clause and additional triples indicating the 

category of critical words remain the same. Later, the example sentence with the complete 

SPARQL query is provided. 

 

Triples in the original pattern generated: 

?Function.textMine:dobj ?x.  

?x textMine:nsubj ?Mutation. 

?Function textMine:amod ?Positive. 

 

In the new representation of the query, the triples will appear as: 

?Function textMine:dobj/textMine:nsubj ?Mutation 

?Function textMine:amod ?Positive. 

 

We combine the paths (connecting critical words) by sequence path operator “/”. Sequence 

operator shows that one path is followed by another path in the graph. The paths that contain 

intermediate node(s) to connect critical words get combined. This combination of paths retains 
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the meaning of SPARQL query and ease the merging process.  We added this new form of query 

to the training pattern set which are used to see if it is eligible for merging with any previously 

generated pattern. For merging, we first ensure that both patterns are linear, then we check if the 

categories of the critical words in both are the same. Next, we check if the path between any two 

categories (critical words) in both the patterns are same, and we then merge the path between the 

other two categories. The example below will assist in understanding this explanation. First, 

triples of three different linear type queries are given, and how they are merged in new pattern is 

shown. 

 

1. ?Function textMine:prep ?Negative. ?Function textMine:amod ?Mutation.  

2. ?Function textMine:prep ?Negative. ?Function textMine:nsubj ?Mutation.  

3. ?Function textMine:prep ?Negative. ?Function textMine:prep/textMine:prep ?Mutation.  

 

Triples in Merged Pattern: 

?Function textMine:prep ?Negative.  

?Function (textMine:amod) | (textMine:nsubj) | (textMine:prep/textMine:prep) ?Mutation. 

 

In the triples of three linear patterns, first we check if critical words in the patterns belong to the 

same three categories (Negative, Function and Mutation). Then, we see if the path between 

Function and Negative category words is the same (shown as triple in blue font). Next, the path 

between other triples (shown in red font) are merged by the “|” operator, which signals an 

alternative path expression. By this merging, we represented three different patterns by one that 



 

58 

can match all three sentence patterns. Shown below is how one sentence (used to demonstrate 

linear pattern structure) is merged with another sentence’s pattern. 

Sentence 1: “Since residue V617 is located in the pseudokinase domain of JAK2, this lack of 

information has hindered a detailed understanding of the mechanism of activation of JAK2 

V617F” 

SPARQL Pattern: 

PREFIX textMine: <http://example.uga.edu/>  

SELECT ?Negative ?Mutation ?Function WHERE {  

?Negative textMine:dobj ?C.  

?C textMine:prep ?E.  

?Function textMine:prep ?Mutation.  

?E textMine:prep ?Function.   

?Negative textMine:type textMine:Negative. ?Mutation textMine:type textMine:Mutation. 

?Function textMine:type textMine:Function. } 

 

New representation of SPARQL pattern is: 

PREFIX textMine: <http://example.uga.edu/>  

SELECT ?Negative ?Mutation ?Function WHERE {  

?Negative textMine:dobj/textMine:prep/textMine:prep ?Function.  

?Function textMine:prep ?Mutation.  

?Negative textMine:type textMine:Negative. ?Mutation textMine:type textMine:Mutation. 

?Function textMine:type textMine:Function. } 
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The triples in Blue font shows how the representation is changed from actual one. In this 

sentence, Negative and Function nodes are connected via two intermediate nodes, and their paths 

get combined. In the example sentence 2 below, all three critical nodes are connected directly to 

each other without any intermediate node. So, their representation does not get changed. 

 

Sentence 2: “In pre clinical studies, JAK2 inhibitors reduced the proliferation of JAK2 V617F  

and MPL W515L  mutant cells and attenuated disease development in murine models of MPN” 

SPARQL Pattern: 

PREFIX textMine: <http://example.uga.edu/>  

SELECT ?Negative ?Mutation ?Function WHERE {  

?Negative textMine:iobj ?Function. 

?Function textMine:prep ?Mutation. 

?Negative textMine:type textMine:Negative. ?Mutation textMine:type textMine:Mutation. 

?Function textMine:type textMine:Function. } 

 

As the critical words’ categories (Function, Mutation, and Negative) in both the patterns are 

same, and the path between Function and Mutation words is same, these patterns are eligible for 

merging. New merged pattern is shown below. The blue font triples get changed in new pattern.  

 

PREFIX textMine: <http://example.uga.edu/>  

SELECT ?Negative ?Mutation ?Function WHERE {  

?Negative (textMine:dobj/textMine:prep/textMine:prep) | (textMine:iobj) ?Function.  

?Function textMine:prep ?Mutation.  
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?Negative textMine:type textMine:Negative. ?Mutation textMine:type textMine:Mutation. 

?Function textMine:type textMine:Function. } 

 

5.2 Testing the system 

Once the system is trained, the set of SPARQL query patterns is placed in the database. Next, the 

system is tested with other sentences. In the testing phase, we first identify the critical words in 

the sentence based on the list of user provided words (with category) as an input. Then, we find 

the relationships between each of these critical words by finding the shortest path between each 

of them as explained in section 4.2.2. We obtain the set of triples from the shortest path list. We 

create a temporary ontology, add these triples to it, and run all the training SPARQL patterns 

against that ontology. If any pattern matches the testing sentence’s pattern, it will return the 

result. The variables in the SPARQL query are returned in the result.  

 

5.3 Automatic Pattern Generation from curatorial knowledge 

Apart from the Generalized text mining system, we also developed an additional module to 

automatically generate SPARQL query patterns from curation of predictions generated by 

Chakrabarti’s system. Patterns were generated only for those predictions which were changed 

from “Unknown” to some known (Positive, Negative or Neutral) impact by curators. As curators 

provided the indexes of critical words for each of those sentences, we used the same approach 

that we used to train our system to generate the pattern using a parse tree and typed dependencies 

(explained in detail in Section 5.1) and which were later added to the training patterns. This will 

make the system more accurate over time.   
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CHAPTER 6 

EXPERIMENTS AND EVALUATION 

The main goal of our system is to generate a pattern correctly for each sentence. To 

verify the correctness of patterns generated, we took 262 sentences which were predicted to have 

unknown mutation impact by Chakrabarti’s system and were changed to some known impact 

(Positive, Negative or Neutral) by curators. Patterns were generated for those 262 sentences and 

used as the training dataset. Those sentences were passed through the LeaREX to check if they 

successfully matched the pattern for each sentence, and the correct output (mutation impact) was 

predicted. As a result, each sentence was matched to a correct pattern. Furthermore, we randomly 

took 1100 sentences which were correctly predicted by Chakrabarti’s system and curated by 

curators and applied those 262 patterns on them. It matched patterns for 329 sentences correctly 

out of 1100 sentences. Along with 262 patterns generated by LeaREX, we added 32 more 

patterns used by Chakrabarti to predict the mutation impact on the training dataset. Next, with a 

total of 294 (262 + 32) patterns in the training dataset, 1100 sentences were tested, and all the 

sentences were matched to one or more patterns. These results are summarized in Table 2 below. 

 

No. of Sentences 
No. of Patterns used to predict 

Outcome 

No. of sentences that matched 

Pattern correctly 

262 262 262 

1100 262 329 

1100 294 1100 

 

Table 2: Experimental results of Sentence to Pattern Matching  
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A flowchart illustrating the evaluation of LeaREX is shown in Figure 21 below.      

 

 

Figure 21: LeaREX evaluation flowchart 

 

Along with this testing, we did another experiment that used those same 1100 sentences to see 

how system improves accuracy as it learns more patterns. Out of 1100 sentences, we used 1000 

sentences for testing and remaining 100 sentences for testing. First, we used only 100 sentences 
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(of 1000 training sentences) to train the system and checked the accuracy against 100 testing 

sentences. We kept adding 100 sentences in each experiment and checked how many testing 

sentences matched the pattern(s). In the graph below, X-axis shows the number of sentences used 

for training and Y-axis shows how many testing sentences matched the pattern(s). 

 

  

Figure 22: Graph representing System Accuracy based on 1000 Training and 100 Testing 

Sentences 

When system is trained with all 1000 training sentences, it got 71% accuracy. It shows that as we 

add more sentences to train system, it gives better results. 

After evaluating the training and testing modules of LeaREX, we applied two approaches 

discussed in Chapter 5 (Section 5.1.3) to optimize patterns. We took 2 sets of 500 and 1 set of 

1000 sentences (Union of those two sets) and applied both the approaches on them. The results 

of applying these approaches are shown in Table 3. 
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No. of  

Sentences 

Approach 1 – Duplicate Pattern Elimination 
Approach 2 - 

Merging 
Reduction in 

Patterns (%) 
Exact Patterns 

Re-Organized 

Patterns 

Similar 

Structured 

Patterns 

Merged 

Patterns 

500 22 10 30 102 33% 

500 20 13 27 108 34% 

1000 67 46 75 221 41% 

 

Table 3: Results of pattern optimization approaches 

By applying both the approaches, we removed 164 (22+10+30+102), 168 (20+13+27+108), and 

409 (67+46+75+221) patterns out of first (500 sentences), second (500 sentences) and third set 

(1000 sentences), respectively. 

This shows that more than 1/3 of the total patterns were removed, which sped up the pattern 

identification and relationship extraction process in this instance. Future runs should display 

similar increases. 

 

We used the same 1000 sentences and checked how gradually system can reduce the number of 

patterns. The same way that we did to test system’s accuracy, we first took 100 sentences and 

checked the reduction in patterns and kept adding 100 more sentences in each run and observed 

the reduction in number of patterns after applying both the optimization approaches. The X-axis 

in the graph below shows the number of training sentences used to train the system and Y-axis 

shows how much percentage of the total training patterns are actually distinct which are used to 

predict the outcome.  

 



 

65 

 

Figure 23: Graph representing Reduction in Patterns based on 1000 Training Sentences  

 

This shows that as we increase the number of training sentences, reduction in number of patterns 

also increases. In other words, number of distinct patterns decreases as we add more data to train 

the system.   
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CHAPTER 7 

CONCLUSION AND FUTURE WORK  

We implemented a generalized text mining system which uses Natural Language 

Processing techniques to extract relationships from text. The system can be used to extract 

relationships in any domain, but as a case study, we used data from Chakrabarti’s system to 

extract the impact of mutations. Our system automatically generates patterns to identify 

relationships. Many similar text mining systems exist, but the majority of them have been 

developed for specific domains and very few generate patterns automatically. Also, the 

approaches used to generate patterns are different from ours. We use sentence-level grammatical 

analysis and SPARQL to detect and store grammatical patterns, which is similar to Chakrabarti’s 

system, but the novelty here is that the system is domain independent and generates patterns 

automatically without any human intervention except proving example sentences and lexical lists 

of words for different categories. Also, the pattern optimization is automatic. The system also 

gives users the flexibility to provide a freemarker template to obtain the output in the desired 

format. A small web interface was also created which allows user to provide example sentences 

and list of words in excel files. The only restriction is that system takes the complete sentence 

only as an input. It does not predict the output for sentences which cannot be parsed by The 

Stanford Parser.  

As we do not consider non-linear patterns in the second approach to merging patterns, we plan to 

discover other frequently occurring pattern structures (such as star) and optimize more patterns. 

Also, new pattern optimization approaches can be explored, which will improve pattern 



 

67 

identification process. A PostgreSQL database is used to store patterns (SPARQL queries). 

SPARQL Inferencing Notation (SPIN) [72], a SPARQL based constraint language for Semantic 

Web, combines ideas from rule based systems and object oriented languages, allows the linking 

of OWL and RDFS classes with reusable SPARQL queries. Thus, rather than storing patterns in 

the database, we can use SPIN and link patterns in the ontology itself, which will probably 

reduce the pattern matching time. Also, we can introduce the concept of constraint/rule matching 

using SPIN, which helps to filter out results and adds another feature to the system.      
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