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ABSTRACT

Cell motion and appearance have a strong correlation with cell cycle and disease progression.

Many contemporary efforts in machine learning utilize spatiotemporal models to predict a

cell's physical state and, consequently, the advancement of disease. Alternatively, generative

models learn the underlying distribution of the data, creating holistic representations that can

be used in inference. In this work, we propose an aggregate model that combine Generative

Adversarial Networks (GANs) and Autoregressive (AR) models to predict cell motion and

appearance in human neutrophils imaged by differential interference contrast microscopy. We

bifurcate the task of learning cell statistics by leveraging GANs for the spatial component

and AR models for the temporal component. The aggregate model learned results offer a

promising computational environment for studying changes in organellar shape, quantity,

and spatial distribution over large sequences.
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CHAPTER 1

INTRODUCTION

Polymorphonuclear neutrophil granulocytes (neutrophils) are the most abundant white blood

cells in most mammals. They are highly motile phagocytic cells that constitute the first line

of defense of the innate immune system [Sehgal, 2005]. Neutrophils can be considered as

surveillance systems that flow through the bloodstream, inspecting for infections in tissues

or other inflammatory events.

Study of neutrophils and their underlying motion patterns provide insights into a host's

response and behavior as a function of specific stimulus. To study their behavior and detect

possible abnormalities, data is crucial. Our understanding of cell behavior and the sources

of cellular variation can be further aided and validated by generating synthetic cells and

simulating their behavior from the currently available, limited neutrophil data.

Generative models have been extensively applied to real-world natural images. Exam-

ples of models include Variational Autoencoders [Kingma and Welling, 2013], PixelCNNs

[Oord et al., 2016] and Generative Adversarial Networks (GANs) [I. Goodfellow et al., 2014].

Generative models have the ability to learn distributions over data and can generate values,

both, those that can be observed from the data and the ones that can only be computed

from the observed ones. It can learn sophisticated conditional relationships as well.

Autoregressive (AR) models, traditionally used on temporal signals, are used for image pro-

cessing (e.g. image and video texture completion and reconstruction) [Köppel et al., 2015].

An autoregressive model predicts future behavior based on the past behavior. It is used

for forecasting when there is some correlation between values in a time series and the
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values that precede and succeed them. Autoregressive models are powerful density estima-

tors which have been successfully applied to dynamic texture synthesis ([Quinn et al., 2015],

[Hyndman et al., 2007]).

Considering the limited dataset available, in this work, we propose to simulate the behavior

of human neutrophils, using an aggregate application of Generative Adversarial Networks

(GANs) and Autoregressive (AR) models. We bifurcate our approach as two tasks: generating

neutrophils appearance and its motion, capturing the statistics independently. GAN learns

the appearance and spatial statistics, while the AR model captures the temporal aspect.

1.1 Previous Work

Several computational methods have been proposed for constructing from image data, sta-

tistical models of cellular and subcellular structures. [Cootes et al., 1995] introduced Active

Shape Models (ASM), methods to build flexible models of image structures whose shapes can

vary. This method relies on a set of points used to present every object or image structure

from the training set. Points can represent either boundary or internal features and have to

be placed in the same way on each training sample. Based on these points, a point distri-

bution model is derived, which gives the average shape and has parameters which control

the main modes of variation. Given such a model and an image containing an example of

the modeled object, ASM tries to find the best fit of the model to the image. Downside of

this approach, it relies on an initial rough guess of the best shape, orientation, scale and

position which is then refined by comparing the hypothesized model instance using differ-

ences between the model and image to deform the shape. This technique has been widely

used to analyze images of faces, mechanical assemblies and medical images (in both 2D

and 3D) [Song et al., 2012]. Based on the trained parameters of ASM ([Song et al., 2012],

[Agianpuye and Minoi, 2014]) synthesized 2D shape of tongue and 3D face shape respec-

tively. [Zhao and Murphy, 2007] constructed nested set of conditional models based on 2D
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images. They used a medial-axis model to represent a cell's nucleus shape and a texture model

to represent DNA distribution within that cell's shape. Using the nucleus as a starting point,

the final cell shape model is generated. Combining the medial axis shape model with the

texture model gave the ability to synthesize nuclear images with proper shape and approxi-

mate chromatin texture. [Buck et al., 2012] built parametric and nonparametric models for

the study of subcellular organization and protein patterns in 2D and 3D images. Based

on the approach of [Zhao and Murphy, 2007], cell's nucleus shape is modeled and then cell

shape is modelled as statistically dependent on the corresponding nuclei's shape. Recently,

[A. Osokin and Vaggi, 2017] applied GANs to fluorescence microscopy images of cells from

the LIN [Dodgson et al., 2017] dataset. Each image consisted of two independent fluores-

cence imaging channels (red and green) corresponding to the two different proteins tagged

with red or green-emitting fluorophores, respectively. Their aim was to synthesize biological

images, investigate co-localization of proteins and study the dynamical changes in cellular

localization that proteins undergo through time as cells grow and divide.

[Buck et al., 2012] also briefly discussed an approach for modeling cellular and nuclear shapes

to consider temporal evolution. To that end, they used nonparametric shape models to

produce a random walk based simulation. Random Walk is a type of autoregressive model.

AR modeling is a parametric technique, which models every point in sequence as a linear

combination of d previous points. The number of lagged values, known as the order, affects the

fit of the model and also increases the required amount of training data [Oziem et al., 2004].

AR model of order d can be formulated as (Eq. 1.1) where −→vt is white noise and coefficients

B = B1, B2, ..., Bd define the transition from state to state. An AR model of order 1 (AR(1))

can be modeled as (Eq. 1.2). Random Walk has the same form as AR(1) but with B1 = 1.

−→xt = B1
−→x t−1 +B2

−→x t−2 + ..+Bd
−→x t−d +−→vt (Eq. 1.1)
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−→xt = B1
−→x t−1 +−→vt (Eq. 1.2)

In ([Oziem et al., 2004], [Campbell et al., 2004], [Arikan et al., 2003]) AR processes synthe-

size video sequences based on the existing ones. [Arikan et al., 2003] presents an algorithm

that synthesizes motions based on annotations that describe it. Motion is constructed

by splitting segments of movement from a corpus of motion data and assembling them.

Each segment is modeled using an autoregressive process. This helps in modeling com-

plicated non-stationary sequences which a single autoregressive process cannot handle.

In [Oziem et al., 2004], frames of original videos are projected into low-dimensional space

and then an AR model is learned. [Campbell et al., 2004] extends this approach by over-

coming the problems of non-linearities in the data either using a spline-fitting approach or

a combined appearance model.

1.2 Objectives and Restrictions

Given the relevant background, the objectives of this thesis are as follows:

• To review the related literature and the solutions proposed for cell segmentation and

reconstruction.

• To apply semantic segmentation techniques to extract neutrophils from a stack of RGB,

two-dimensional medical images.

• Build generative models based on the segmented cells to generate synthetic neutrophil

images.

• To reveal the issues and solutions during the training of the deep generative models

for avoiding possible model collapses.
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• Build a weak motion model to synthesize neutrophil motion. Towards this goal we use

time-series based autoregressive models.

• Use appearance and content synthesized from generative models and motion synthe-

sized from autoregressive model to realistically simulate a biological system.

In the scope of the thesis, considering the time and resources allocated, the restrictions are

specified as follows:

• We are dealing with videos imaging the two dimensional motion of human neutrophilic

granulocytes. Often cells overlap each other or some of the cells appear cluttered or

some of them are deformed. We do not consider cells that appear fluorescent because

they are overlapped by others or cells that are highly deformed.

• Since neutrophils are lobed white blood cells, we consider only those cells which are

mostly circular.

• Due to the limited computing power, only a few convolutional neural network design

approaches are investigated to generate neutrophil images.

1.3 Thesis Outline

This thesis is organized as follows:

Chapter 2 gives an overview about the related background. It discusses deep learning

based medical image segmentation techniques that have been previously used. It also

provides details about generative models utilized for creating synthetic images and

autoregression - time-series models for synthesizing sequences.

Chapter 3 presents the details about the proposed system.

Chapter 4 analyzes all the results and discusses the strategies used for thorough eval-

uation.
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Chapter 5 Discusses about future improvements and concludes this study.



CHAPTER 2

BACKGROUND

2.1 Segmentation

Segmentation is the task of separating an image into distinct parts (each part represents a

class). Distinct parts can be identified by differences between colors, textures or other image

features. Semantic segmentation is where the same label is assigned to semantically identical

objects. In the case of neutrophil images, segmentation refers to the construction of a map

where each pixel is marked with a label that corresponds to either of the following classes:

neutrophil cell itself, cell border and background. To eventually train generative models, this

work employs semantic segmentation - a precursor, to automatically extract individual cells

from videos. This section discusses state-of-the-art neural network based architectures for

semantic segmentation that best fits the nature of the problem, achieving the best possible

performance.

Fully Convolutional Neural Networks (FCNs)

Introduced by [Long et al., 2014], the primary goal of fully convolutional neural networks

(FCNs) is to predict semantic segmentation maps. Given an input image, the predicted

output is an image that is same in size as the input, but in which every pixel is classified to

belong to one of the C classes (C is number of classes we are segmenting the image into).

[Long et al., 2014] takes in images from the Pascal VOC [Everingham et al., 2010] dataset

as input and outputs a 21 - class semantic segmentation map of the corresponding images.

The basic idea of fully convolutional network is that it is “fully convolutional”, meaning

7
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that all layers are convolutional layers and they do not have any fully connected layers. This

enables the network to read input images of arbitrary size and predict output maps that are

of same height and width as the input images, but number of channels is equivalent to the

number of classes. In the intermediate layers, input tensors1 typically get smaller because of

operations like pooling reduce the height and width of the tensors. FCNs use deconvolutions

- backward convolutions to upsample the outputs of intermediate tensors so that the final

output can be of same dimensions as the input. The coarse segmentation map acquired

through deconvolution is made finer by combining it with segmentation maps computed

from earlier stages in the network [Kayalibay et al., 2017].

U-Net

[Ronneberger et al., 2015] attempted the task of biomedical image segmentation with better

results, using the fully convolutional approach of [Long et al., 2014] as discussed in Section

2.1. They follow a design that is similar to that of a convolutional autoencoder: the network

consists of a downsampling and upsampling path resembling shape of the english letter U. In

the downsampling path, features from the input images are extracted. These features then

serve as input to the upsampling path to predict the segmentation mask, which has the same

height and width as the original input image. To compensate for the loss of spatial infor-

mation during downsampling, authors propose skip connections between the downsampling

and upsampling paths. Skip connections help the upsampling path to recover fine-grained

information. This network won the EM segmentation challenge at ISBI 2012.

1a mathematical object analogous to but more general than a vector, represented by an array
of components that are functions of the coordinates of a space. Tensors are high dimensional
generalizations of matrices.



9

Figure. 2.1: Architecture of U-Net, fully convolutional neural network which performed
biomedical image segmentation [Ronneberger et al., 2015]. Number of feature maps is
denoted on top of every box. Width - Height dimensions of the input images are denoted at
the lower left edge of the every box. White boxes represent concatenated feature maps.

DenseNets

[Huang et al., 2017] incorporates the observation that convolutional neural networks can

be substantially deeper, accurate and efficient to train if they contain shorter connections

between between layers close to the input and those close to the output. It introduces Dense

Convolutional Networks (DenseNets) that connects every layer to every other layer in a

feed-forward fashion. Every layer uses feature-maps of all the preceding layers as input

and its own feature-maps as inputs to all the subsequent layers. The feature-maps are

stacked/concatenated, unlike ResNets [He et al., 2015a] where the feature-maps are added

with the inputs. At every layer, DenseNet adds only a small set of feature-maps to the net-

work's collective knowledge and remaining feature maps are unchanged. The final classifier
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makes a decision based on all feature maps in the network. Feature map concatenation pro-

vides the advantage of improved information and gradient flow, making it easier to train the

network. Each layer has direct access to the gradients from the loss function and the orig-

inal input signal, leading to an implicit deep supervision [Huang et al., 2017]. This helps in

training of deeper network architectures and alleviating the problem of vanishing-gradient.

Dense connections have a regularizing effect, which reduces overfitting and thus makes it

suitable for training in situations where the dataset size is small. Other advantages of this

architecture are: number of parameters is substantially reduced as there is no need to relearn

the redundant feature maps, feature propagation is strengthened because each layer reads

the states from its previous layers and passes its own to the subsequent layers. This helps in

explicitly notifying about the state changes that need to be preserved.

Figure. 2.2: DenseNet architecture with three dense blocks [Huang et al., 2017]. Feature maps
of layers in a block are concatenated, which gives an advantage of improved information and
gradient flow.

Fully Convolutional DenseNet

[Jégou et al., 2016] extend DenseNets to work as FCNs by adding an upsampling path to

recover the full input resolution. Instead of naively building an upsampling path, to avoid

feature explosion, authors propose to only upsample the feature maps created by the pre-

ceding dense block. The higher resolution information is passed by means of standard skip

connections between the downsampling and the upsampling paths. Fig. 2.3a depicts the

components of a dense block in which the first layer is applied to the input to create k

feature maps, which are concatenated to the input. A second layer is then applied to create

another k features maps, which are again concatenated to the previous feature maps. The
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operation is repeated 4 times. The output of the block is the concatenation of the outputs

of the 4 layers, and thus contains 4 ∗ k feature maps. Fig. 2.3b depicts the architecture used

for semantic segmentation by [Jégou et al., 2016]. It consists of dense blocks, downsampling

and upsampling path. Circles represent concatenation of feature maps and arrows represent

the connectivity pattern. Gray horizontal arrows represent skip connections. Note, in the

upsampling path, dense blocks are not concatenated with their outputs.

(a) Dense Block (b) FCN DenseNet Architecture.

Figure. 2.3: FCN DenseNet Architecture [Jégou et al., 2016]. It combines fully convolutional
networks and DenseNets by adding upsampling path to DenseNet.

2.2 Generative Models

There are several ways to categorize machine learning models. Some of the categories

are: supervised vs unsupervised, regression vs classification and discriminative vs genera-

tive. Discriminative models learn the conditional probability P (y|x). During classification,

they try to find a line or hyperplane that separates the samples based on their class.
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Generative models aim at modeling how the data is generated. They learn the joint

probability of the input data and labels simultaneously, i.e. P (x, y). This lends them the

ability to synthesize samples based on the distribution of input data. Generative models

have the potential to understand and explain the underlying structure of the input data

even when there are no labels. Recently, generative models like Variational Autoencoders

[Kingma and Welling, 2013], PixelCNNs [Oord et al., 2016] and Generative Adversarial Net-

works (GANs) [I. Goodfellow et al., 2014] have been extensively utilized for natural images.

In this thesis, synthetic neutrophil images are generated by applying GANs. Following

sub-sections cover its details.

Generative Adversarial Networks (GANs)

In 2014, [I. Goodfellow et al., 2014] proposed Generative Adversarial Networks(GANs), an

adversarial framework for estimating generative models. GANs are a family of successful

models, that do not rely on training objectives related to log-likelihood, instead they are

analogous to game theory. GANs consists of 2 neural networks competing against each other:

Generator (G) and Discriminator (D). G generates images from random noise. While doing

so, it tries to get as close as it can, to the distribution of real images. D classifies between

the real images and fake images generated by G. Both are trying to perform best at their

respective tasks and maximize their gains. D is characterized as adversarial loss for training

G. GANs were originally applied to the MNIST [LeCun and Cortes, 2010] dataset.

Formally, consider a set of training images, x ∈ Xreal coming from a real distribution Pd.

The generator is a neural network G(z, θG) parameterized by θG and discriminator is a

neural network D(x, θD) parameterized by θD. G(z, θG) takes in random noise z from the

distribution Pz and generates images x ∈ Xfake. D(x, θD) takes images from x ∈ Xreal

and x ∈ Xfake, both, and outputs a scalar between [0, 1]. The output is higher if the

sample belongs to Xreal else Xfake. Both G and D are trained simultaneously. The goal of
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Figure. 2.4: Adversarial framework of GANs [Gharakhanian, 2017]. It consists of two neural
networks: Generator G and Discriminator D, competing against each other. G tries to fool
D by generating plausible images of the training set and D tries to distinguish between real
training set images and fake images produced by G.

D is to maximize the probability of assigning correct labels to an input while G minimizes

log (1−D(G(z)). As a result D and G can be seen as playing a minimax game, as formulated

in (Eq. 2.1).

min
G

max
D

V (D,G) = Ex∼pdata(x)
[

logD(x)
]

+Ez∼pz(z)
[

log 1−D(G(z))
]

(Eq. 2.1)
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Algorithm 1 Vanilla GAN algorithm. Minibatch SGD training. No. of times the discrim-
inator is trained before generator is trained, is k. The least expensive option is to train
discriminator once and then train the generator, so k = 1.

for number of total training iterations do
for k steps do

Sample minibatch of m noise samples z(1), ..z(m) from noise prior pg(z).
Sample minibatch of m examples x(1), ..x(m) from data generating distribution
pdata(x).
Update the discriminator by ascending its stochastic gradient.

∇θd

1

m

m∑
i=1

[logD(x(i)) + log (1−D(G(z(i))))] (2.2)

end

Sample minibatch of m noise samples z(1), ..z(m) from noise prior pg(z).
Update the generator by descending its stochastic gradient.

∇θd

1

m

m∑
i=1

log (1−D(G(z(i)))) (2.3)

end
The gradient-based updates can use any standard gradient-based learning rule.

Deep Convolutional GANs (DCGANs)

Historical attempts to scale up GANs using CNNs to model images have been generally

unsuccessful [I. Goodfellow et al., 2014]. Deep Convolutional GAN (DCGANs) [Radford et al., 2015]

identified a family of architectures that resulted in stable training and can generate higher

resolution images. The paper suggested following changes to Vanilla GANs:

• Replace any pooling layers with strided convolutions (for D) and fractional strided

convolutions (for G).

• Remove fully connected hidden layers.

• Use batch normalisation in both G (all layers except output layer) and D (all layers

except input layer).



15

• Use LeakyReLU in all layers of the D.

• Use ReLU activation in all layers of the G (except output layer which uses Tanh).

Wasserstein GAN (WGAN)

JS(Pr, Pg) =
1

2
KL(Pr||Pm) +

1

2
KL(Pg||Pm) (Eq. 2.4)

The basis of each GAN algorithm is to measure the distance between the real and fake

probability distributions and alter the network parameters of G. [I. Goodfellow et al., 2014]

showed that the minimax formulation (Eq. 2.1) can be reformulated via minimization of

the Jensen Shannon (JS) divergence (Eq. 2.4), between the data-generating distribution Pd

and the distribution Pg induced by Pz and G. [Arjovsky et al., 2017] theoretically justified

the JS minimized by GANs behaves badly(e.g. when the two distributions do not overlap)

and is potentially not continuous w.r.t to the generator's parameters. This leads to training

difficulty as it cannot provide any useful direction. They propose using an alternative distance

- Earth Mover's distance short for EM formulated as (Eq. 2.5).

W (Pr, Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)∼γ[‖x− y‖] (Eq. 2.5)

W (Pr, Pθ) = sup
‖f‖L≤1

E(x)∼Pr [f(x)]−E(x)∼Pθ [f(x)] (Eq. 2.6)

EM is also known as Wasserstein Distance, W (q, p), can be informally defined as: minimum

cost of transferring mass in order to transform one distribution q to another distribution

p. The cost is calculated by the amount of mass moved times the moving distance. Unfor-

tunately, computing the Wasserstein distance is intractable. [Arjovsky et al., 2017] showed

an approximate solution to the same using Kantorovich-Rubinstein duality to obtain (Eq.

2.6) where D is the set of 1-Lipschitz functions and Pg is once again the model distribution

implicitly defined by x̃ = G(z), z ∼ p(z) [Gulrajani et al., 2017]. In that case, under an
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optimal discriminator (called a critic in the paper, since it's not trained to classify), min-

imizing the value function with respect to the generator parameters minimizes W (Pr, Pg).

To enforce the Lipschitz constraint on the critic, [Arjovsky et al., 2017] proposes to clip the

weights of the critic to lie within a compact space [−c, c]. (Eq. 2.7) represents the WGAN

value function whose gradients w.r.t. its input is better behaved in comparison to Vanilla

GAN's value function, making optimization of the generator easier. Additionally, WGAN

has the desirable property that its value function correlates with sample quality, which is

not the case for Vanilla GANs [Arjovsky et al., 2017].

min
G

max
D∈D

Ex∼Pr [D(x)]−Ex̃∼Pg [D(x̃))] (Eq. 2.7)

Algorithm 2 WGAN algorithm. Learning rate α = 0.00005, weights clipped to c = 0.01,
minibatch size m = 64, no. of iterations discriminator D is trained for ncritic = 5 before
training the generator G. In comparison to Vanilla GAN training algorithm, there are no
logarithms and after every gradient update on critic, the weights are clamped between [−c, c].
w0, initial critic parameters
θ0, initial generator's parameters.
while θ has not converged do

for t= 0, ..., ncritic do
Sample x(i)

m
i=1 ∼ Pr a batch from real data.

Sample z(i)mi=1 ∼ p(z) a batch of prior samples.
gw = ∇w[ 1

m

∑m
i=1 fw(x(i))− 1

m

∑m
i=1 fw(gθ(z

(i)))]
w = w + α ·RMSProp(w, gw)
w = clip(w,-c,c)

end
Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.
gθ = −∇θ

1
m

∑m
i=1 fw(gθ(z

(i)))
θ = θ − α ·RMSProp(θ, gθ)

end

Improved WGAN

Recently, [Gulrajani et al., 2017] discussed optimization problems due to weight clipping in

WGAN and recommended an alternative way to enforce the Lipschitz constraint. Imple-
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menting a k-Lipschitz constraint via weight clipping biases the critic towards much simpler

functions [Gulrajani et al., 2017]. They also demonstrate the difficulty in WGAN optimiza-

tion process is because of interactions between the weight constraint and the cost function,

which inevitably result in either vanishing or exploding gradients, depending on the value

of the clipping threshold c. So, instead of weight clipping, authors advocate to penalize the

norm of the critic's gradient with respect to its input. The objective function (Eq. 2.8) leads

to stable training and enables training of a wide variety of GAN architectures with almost

no hyperparameter tuning.

L = Ex̃∼Pg
[
D(x̃)

]
−Ex∼Pr

[
D(x)

]︸ ︷︷ ︸
Original Critic Loss

+ λEx̂∼Px̂
[
(‖∇D(x̂)‖2 − 1)2

]︸ ︷︷ ︸
Gradient Penalty

(Eq. 2.8)

Algorithm 3 Improved WGAN algorithm with gradient penalty. Default values no. of
iterations discriminator D is trained for ncritic = 5 before training the generator G, learning
rate α = 0.0001, λ = 10, β1 = 0, β2 = 0.9. In comparison to Vanilla GAN training algorithm,
there are no logarithms and after every gradient update on critic, the weights are clamped
between [−c, c].
w0, initial critic parameters
θ0, initial generator's parameters.
while θ has not converged do

for t=1, ..., ncritic do
for i=1,...,m do

Sample real data x ∼ Pr, latent variable z ∼ p(z), a random number ε ∼ U [0, 1].
x̃ = Gθ(z)
x̂ = εx+ (1− ε)x̃
L(i) = Dw(x̃)−Dw(x) + λ(‖∇x̂∇D(x̂)‖2 − 1)2

end

w = Adam(∇w
1
m

∑m
i=1 L

(i), w, α, β1, β2)

end

Sample a batch of latent variables {z(i)}mi=1 ∼ p(z).
θ = Adam(∇θ

1
m

∑m
i=1−Dw(Gθ(z)), θ, α, β1, β2)

end
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2.3 Autoregression

For computer vision systems, motion synthesis is still a challenging task and is drawing

more contemporary research attention. Synthesis can be defined as generating new versions

of a dataset which follow the original distribution and can be closely related to modeling.

One of the targets of our research is synthesizing new video clips based on existing ones.

Such a technique has great appeal since, once a short video is obtained, new sequences

(potentially infinitely long) can be synthesized based upon it [Campbell et al., 2004]. AR

processes have been used in tracking and for synthesizing video textures (a temporal tex-

ture) [Oziem et al., 2004]. It's a parametric modeling technique, which models every point in

sequence as a linear combination of d previous points. The number of lagged values, known

as the order, affects the fit of the model and also increases the required amount of training

data [Oziem et al., 2004]. It is likely that an AR process will produce a good model if the

dataset follows Gaussian distribution.

An autoregressive model consists of two components: appearance and dynamic. The state of

the system is determined by the appearance component and dynamic component captures

how the state change over time. An AR process for a series of points in a n-dimensional space

can be modelled as (Eq. 2.9, Eq. 2.10). (Eq. 2.9) decomposes each video frame −→yt into a low-

dimensional state vector −→xt and a white noise term −→ut and (Eq. 2.10) denotes new state −→xt

in a low-dimensional subspace defined by an orthogonal basis C at time t. It also represents

the new state −→xt is a function of the sum of d of its previous states −→x t−1,
−→x t−2, ..,

−→x t−d each

multiplied by corresponding coefficients B = B1, B2, ..., Bd [Quinn et al., 2015]. Matrices

B = B1, B2, ..., Bd define the transition from state to state. The noise terms u and v represent

the residual difference between the observed data and the solutions to the linear equations,

assumed to be Gaussian White noise.

−→yt = C−→xt +−→ut (Eq. 2.9)
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−→xt = B1
−→x t−1 +B2

−→x t−2 + ..+Bd
−→x t−d +−→vt (Eq. 2.10)

Appearance Component

Videos are represented as trajectories of individual objects consisting of its center Carte-

sian coordinates across all the frames. Multiple object's trajectory can be represented as

(m x n x 2) i.e. x, y center coordinates of m objects over n frames. Processing this high

dimensional data can be computationally expensive. Dimensionality reduction enables us to

handle huge amounts of data. The low-dimensional representation not only allows to use

more data, but also helps in retaining the relevant information concisely and ignoring the

uninformative redundancies. (Eq. 2.9) decomposes trajectories of each video frame −→y t into

a low-dimensional vector −→x t and white noise term −→u t, using an orthogonal basis C. Prin-

cipal Component Analysis (PCA) can be used to define this low-dimensional space. PCA

exploits the redundancy in data by rotating the image space with orthogonal axes along the

directions of highest variance. C can be derived using singular value decomposition (SVD),

which is an efficient approach for extracting the principal components ([Quinn et al., 2015],

[Hyndman et al., 2007]). Trajectories of objects consisting of center coordinates over n frames

serve as input to SVD. Therefore, if the number of objects were given by m, and the number

of frames as n, the dimensions of the input matrix Y T would be (γ x n), where γ is (m x 2),

depicting the aggregate motion of all the m objects. The singular value decomposition of the

trajectories is Y T = U
∑
V T . Matrix U is a (γ x n) matrix, matrix

∑
is (n, ) and V is (n

x n). Matrix U contains the principal components. C ≡ Û , where Û is a matrix containing

first q columns on U . V̂ is composed of first q columns of V , and
∑̂

is a diagonal matrix

consisting the largest q singular values in matrix
∑

. The low-dimensional subspace matrix

XT ≡
∑̂
V̂T is a (q x n) matrix, where q determines the dimensionality of the subspace C.
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Dynamic Component

The temporal aspect of trajectories changing over time is captured by the dynamic com-

ponent of AR as formulated in (Eq. 2.10). It is modeled using deterministic and stochastic

components. The deterministic component described by (Eq. 2.11) is a linear Markov model

[Hyndman et al., 2007]. It basically implies that linear combination of past states can be

used to generate the current state. Information that is not captured by the linear model is

modeled by the stochastic component −→vt . Once the low-dimensional subspace, X and C are

learned using the appearance component as discussed in Sec. 2.3, the goal is to determine

the transition matrix B which best describes the transitions between states and minimizes

the total squared error between the true states and approximated states. Eq. 2.12 can be

used to solve for transition matrices, where D� = DT (DDT )−1

−→xt = B1
−→x t−1 +B2

−→x t−2 + ..+Bd
−→x t−d (Eq. 2.11)

A = XT
2 (XT−1

1 )� (Eq. 2.12)



CHAPTER 3

PROPOSED SOLUTION

3.1 System Overview

In this chapter the overall system architecture is introduced. For each subsystem a short

description of its purpose is given which serves as ground work for the detailed explanations

in the following sections. The system can be seen in Fig. 3.1.

Figure. 3.1: Overview of the system. It consists of four components - Segment, Track, GANs
and AR. Segment and Track components extract the input data in relevant format in order
to train the generative components - GANs and AR. GANs learn the appearance and spatial
statistics, while AR learns the motion and temporal statistics.

The first component - Segment, is based on fully convolutional neural networks (CNN). It

reads the input images and generates the segmentation maps. Based on these segmentation

maps, the component - Track, extracts trajectories of the segmented objects. The function of

these two blocks (Segment and Track) is to extract the input data into a usable form so as to

train the next two blocks. Segmented objects serve as input to train the block - Generative

Adversarial Network, which is responsible to create synthetic images. Trajectories obtained

21
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from tracking are fed to the block - Autoregressive models, which learns the object movements

and is used to synthesize motion.

3.2 Dataset

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure. 3.2: Sample neutrophil images. Fig. 3.2a, Fig. 3.2b depicts lobed neutrophils with
texture. (left) object from Fig. 3.2c denotes a neutrophil, while (right) object is not a neu-
trophil. Fig. 3.2d is not a neutrophil. Fig. 3.2e display deformed neutrophils. Fig. 3.2g displays
fluorescent neutrophils. Because they are overlapped by other neutrophils the underlying
neutrophils appear bright.

Videos imaging the two dimensional motion of human neutrophilic granulocytes were pro-

vided by Dr. Balazs Rada (Department of Infectious Diseases, University of Georgia). The

videos were recorded using DIC microscopy which enhances the contrast in unstained, trans-

parent samples. The dataset consisted of 11 videos, including 3 videos of normal neutrophils

and 8 videos of neutrophils treated with an inhibitor, MRS2578, targeting a purinergic

receptor. The average length of neutrophil videos was 3.0secs. Using ffmpeg individual frames

were extracted at the rate of 20fps. Extracted frames were of size (1024 x 1024). All the frames

were converted to grayscale and saved separately as PNG files.
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Ground Truth Segmentation Maps

To synthesize individual cells, neutrophils had to be segmented from the video frames. Unfor-

tunately, annotations to identify neutrophils were not provided. As stated in Section 1.2

neutrophils are mostly circular. The cell population varied in the range of 25 - 100 cells

per frame, and cells freely enter/exit the field of view. As we lacked pathological training

and depended on a few guidelines, some cells were hard to discern either because they were

overlapping, tightly cluttered or underwent significant appearance variation. Ultimately it

was deemed that a consistent segmentation could not be reached. These issues are, listed in

Fig. 3.2.

Figure. 3.3: Segmentation Pipeline: 1) Given an input image, we manually marked the centers
of every cell. 2) A (64 x 64) patch was extracted surrounding every center. 3) An ellipse was
fit to every box followed by morphological erosion which produced the binary segmentation
maps. 4) To separate cluttered cells, marker based Watershed segmentation was applied.

To segment neutrophils, we manually marked the centers of every cell in all the frames

using bounding box annotation tool [Yen, 2017]. A (64 x 64) patch was extracted around

the centers of each cell. Every patch was then thresholded using adaptive thresholding to

output a binary image. An ellipse was fit to every binary patch followed by morphological

erosion. Subsequently, binary segmentation maps were produced. Cluttered cells appeared

as big blobs in binary maps. There were no cell borders separating each cell instance. As a

workaround, we applied marker based Watershed segmentation [Beucher and Meyer, ] and

added a two-pixel-wide border around each cell. This effectively created a new class: neu-

trophil border apart from neutrophils and background. The segmentation pipeline is depicted

in Fig. 3.3 and the final segmentation map corresponding to an image can be seen in Fig.

3.4.
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(a) Sample input frame extracted from video. (b) Segmentation map

Figure. 3.4: Input image and its corresponding segmentation map produced by the procedure
discussed in Section. 3.2

3.3 Experiments

This section presents the details of each block of the system from Fig. 3.1.

Segmentation

To automate the process of segmenting neutrophils, we utilize FC-DenseNet-103 architecture

as described in [Jégou et al., 2016]. Fig. 3.5a defines the building blocks of the network. The

output dimension of each layer has k feature maps where k is referred to as the growth

rate parameter and is set to k = 16. Fig. 3.5b depicts all the layers of the network. This

architecture consists a total of 103 convolutional layers: 38 layers in downsampling path,

38 in upsampling path, one layer at the input and output, 15 layers in the bottleneck, one

convolution layer in each of the 5 transition up and transition down blocks.

A total of 412 grayscale frames/images were extracted from 8 videos of Neutrophils which

consisted of normal and inhibited cells, both. Groundtruth segmentation maps for 3 classes -

neutrophil, neutrophil border and background were obtained using the procedure described

in Section. 3.2. All the images were standardized using mean subtraction, normalized by



25

(a) Building blocks of FC-DenseNet

(b) Architecture of FC-DenseNet103

Figure. 3.5: FC-DenseNet103 Architecture used for segmentation. It consists of 103 con-
volutional layers. Following are the notations: DB stands for Dense Block, TD stands for
Transition Down, TU stands for Transition Up, BN stands for Batch Normalization and m
corresponds to the total number of feature maps at the end of a block. c stands for the
number of classes [Jégou et al., 2016].

dividing by the standard deviation and resized to (224 x 224). This preprocessing technique

helps avoid issues caused by poor contrast images. To make the most of our few training

examples and increase the accuracy of the model, the dataset was augmented via random

vertical and horizontal flips. This also helps to prevent overfitting and improve the model's

ability to generalize. All frames of the videos were considered as cells enter/exit the field of

view. We set aside 46 of the 412 images as a holdout test set and randomly choose samples

from the remaining 366 for training and validation using a 90/10% train-validation split.
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We do not use any pre-trained models and initialize our model using HeUniform [He et al., 2015b].

RMSprop [Tieleman and Hinton, 2012], with an initial learning rate of 1e − 3 is used. We

regularized our models with a weight decay of 1e− 4 and a dropout rate of 0.2. The model

is trained by minimizing the weighted pixelwise cross-entropy loss. The cell body and cell

borders separating touching cells, obtain a large weight in the loss function in comparison

to the background class. The pixels from background class are weighted by inverse of their

frequency.

Extracting Segmented Cells

To synthesize a neutrophil, individual cells were extracted from the images based on the seg-

mentation maps and the statistics shown in Table .3.1. Only those cells which were under ±2

standard deviations of the average area, major axis, and minor axis length, were considered.

An additional constraint on their eccentricity was imposed. If the eccentricity was between

0 and +1 standard deviation, only then the cell was extracted. Once extracted, cells were

center positioned on a black patch of size (64 x 64).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure. 3.6: Samples of segmented neutrophils used for training the generative models.
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mean std

area 1430.736241 376.554888
eccentricity 0.507366 0.159627

major axis length 46.581709 6.338599
minor axis length 38.994317 6.169081

Table. 3.1: Statistics of segmented neutrophils. We extracted only those neutrophils from the
segmentation maps which fell under ±2 standard deviations of area, major, and minor axis
lengths. As neutrophils are lobed cells, we imposed constrains on the eccentricity as well.
Neutrophils having eccentricity in the range of (0,+1) were extracted.

Tracking

To develop a motion model and synthesize sequences based on it, neutrophil trajectories were

required. Trajectories were extracted by associating the segmented cells across consecutive

video frames using Kalman filters based on a constant velocity model. Kalman filtering is a

method for predicting the future states of a system based on the previous ones. The state of

the Kalman filter was defined as: x = [u, v, s, r, u̇, v̇, ṡ], where (u, v) represent the center pixel

coordinates, while s and r represent the scale (area) and the aspect ratio of the neutrophil's

bounding box respectively. (u̇, v̇, ṡ) represent the respective velocities. The aspect ratio was

considered to be constant. The Hungarian algorithm was applied to optimally match the

Kalman filter predicted location with the detection. Introduced by [Bewley et al., 2016], we

have utilized these two classical yet efficient methods for tracking multiple cells.

Generative Adversarial Networks (GANs)

As [A. Osokin and Vaggi, 2017], we trained models based on DCGAN architecture with

GAN, Wasserstein GAN (WGAN) and Improved WGAN loss functions. Fig. 3.7 demon-

strates the architecture of generator(G) with specific dimensions of each layer (width x
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height x depth). The generator network consists of 5 convolutional layers, each of them fol-

lowed by a BatchNormalization and ReLU (except the input and output) layer. The input

is a noise vector of dimension (1 x 100) dimension drawn from Gaussian distribution. The

generator transforms this input vector into a (64 x 64 x 1) dimensional neutrophil image by

passing through each layer in G. Similar architecture is followed for discriminator (D), as

shown in Fig. 3.8. Discriminator (D) takes an image (either from training set or fake image

generated by generator (G)). Table. 3.2 contains the rest of the training details.

Figure. 3.7: Architecture of Generator (G). Z - a 100 dimensional uniform distribution is
projected to a small spatial extent convolutional representation. Width x height x no. of
feature maps is denoted at the bottom of every block. 64 x 64 x 1 image is obtained after
series of convolutions.

Autoregression (AR)

Different motion patterns are observed based on the cell conditions. We build a global motion

model for normal and inhibited cells respectively. It is sufficient for us to build a coarse motion

model for neutrophils, by considering each neutrophil as a single compartment. Based on the

existing motion characteristics, new sequences can be synthesized for the corresponding cells

using AR models.
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Figure. 3.8: Architecture of discriminator (D). width x height x no. of feature maps is denoted
at the bottom of every block. D reads an image either from real training set or from G and
after a series of convolutions, classifies it as real or fake.

Neutrophil motion is represented as trajectories of individual cells consisting of its center

Cartesian coordinates across all the frames. Because we assume all the pixels (under the

same conditions i.e. normal and inhibited cells) surrounding the center move similarly, we

avoid building models which take into consideration movement of individual pixels. All the

trajectories were truncated at 61 frames. A single neutrophil trajectory is represented as (61 x

2) vector. Repeating this process over all normal and inhibited neutrophils, and stacking the

respective trajectories together, the result was (34 x 61 x 2) vector for normal neutrophils, and

(44 x 61 x 2) vector for inhibited neutrophils. 34 represents number of normal neutrophils.

We flattened it to (61 x 68) vector (i.e. (61 x 34 x 2)) to build an average AR model

of all the normal neutrophils moving over 61 frames. Similarly, 44 represents the number

of inhibited neutrophils which were flattened into (61 x 88) vector (i.e. (61 x 44 x 2)).

Trajectories belonging to normal and inhibited cells are pooled separately and normalized.

As discussed in Section. 2.3, these high dimensional sequences are then projected into a low-
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GAN WGAN Improved
WGAN

Optimizer Adam RMSProp Adam

Learning Rate D,G = 0.0002 D,G = 0.00005 D,G = 0.001

Exponential Decay beta1 = 0.5 - beta1 = 0.0

beta2 = 0.999 beta2 = 0.9

Iterations of D - 5 5
No. of epochs 10000 10000 10000

Loss Functions (Eq. 2.1) (Eq. 2.7) (Eq. 2.8)

Table. 3.2: Training details of GAN framework. With DCGAN as the network architecture,
we trained three different models based on the Vanilla GAN, Wasserstein GAN(WGAN) and
Improved WGAN loss functions.

dimensional space. Principal Component Analysis (PCA) was used to define the appearance

component of AR. PCA exploits the redundancy in data by rotating the image space with

orthogonal axes along the directions of highest variance. The principal components C are

extracted using Singular Value Decomposition (SVD). The original trajectories can be viewed

as digital signatures through the low-dimensional space. Having C, and solving for x in (Eq.

2.9), AR coefficients B in (Eq. 2.10) are determined. New sequences can be synthesized by

moving through the low-dimensional space and creating similar signatures using (Eq. 2.10).

Parameter q determines the dimensionality of the subspace C; parameter d determines the

order of AR coefficients B = B1, B2, ...Bd. We performed grid search over q ∈ [2, 10] and

d ∈ [1, 10].
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Figure. 3.9: 2D trajectory plots of normal neutrophil and inhibitor-treated (MRS) neutrophil.
The inhibitor-treated (MRS) neutrophil tend to exhibit less movements in comparison to the
normal ones.



CHAPTER 4

RESULTS and ANALYSIS

4.1 Segmentation

The motive of training FC-DenseNet was to take advantage of the trained model to automat-

ically segment neutrophils from images. Thus, in the future this model can be used instead

of relying on manual segmentation as discussed in Section .3.2. 96% pixel classification accu-

racy was achieved on the holdout test set, using the network discussed in the Section. 3.3.

Fig. 4.1 displays sample results of segmentation. Table. 4.1 shows dice coefficient results.

Dice Coefficient

Neutrophil border 0.478704134139
Neutrophil cell body 0.877087162892

Background 0.988928566552

Table. 4.1: Dice coefficient is used to quantify the performance of segmentation. It measures
the overlap between the predicted and ground truth segmentation map. It ranges from 0 (no
overlap) to 1 (perfect overlap).

4.2 Generative Adversarial Networks (GANs)

GAN generated images are shown in Fig. 4.2, WGAN images are shown in Fig. 4.3 and

Improved WGAN in Fig. 4.4.

32
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(a) (b)

(c) (d)

(e) (f)

Figure. 4.1: Segmentation results. (left) column displays the test images and (right) column
displays the corresponding predicted segmentation maps.

Optimization to Reconstruct the Test Set

Visual examination of images generated by GAN doesn't inform much about its performance.

In the context of GANs and other likelihood-free approaches, evaluation is even harder,

because the models do not provide a way to compute the log-likelihood on the test set,

which is the most common evaluation technique. Several techniques have been discussed in

[A. Osokin and Vaggi, 2017] for evaluation of GANs. We employed the optimization-based

approach to check if the test samples can be reconstructed well. This can be used to test for

mode collapse, a common failure in GANs, wherein very poor diversity is exhibited amongst

generated samples. For a fixed trained generator G we examine how well it can reconstruct
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure. 4.2: GAN synthesized images of neutrophils. Images are displayed every 100 epochs
starting from 100th upto 1000th epoch.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure. 4.3: WGAN synthesized images of neutrophils. Images are displayed every 100 epochs
starting from 100th upto 1000th epoch. WGAN takes more time to train in comparison to
GAN because discriminator D is trained for more iterations before generator G is trained.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure. 4.4: Improved WGAN synthesized images of neutrophils. Images are displayed every
100 epochs starting from 100th upto 1000th epoch. The generated samples display more
variation even in the initial epochs in comparison to samples generated by GAN.

images from a held out test set. For each image in the test set, we minimize the L2-distance

between the generated and test images w.r.t. the noise vector z. We use 50 iterations of

L-BFGS [Liu and Nocedal, 1989] and select the best reconstruction out of 3 runs. We also

report the negative log likelihood (NLL) w.r.t. the prior Pz of the noise vectors z. Fig. 4.5

displays the results.

GAN WGAN Improved
WGAN

100 0.432± 0.004 0.376± 0.006 0.165± 0.027

500 0.142± 0.025 0.073± 0.013 0.041± 0.006

1000 0.064± 0.008 0.044± 0.007 0.037± 0.007

5000 0.054± 0.006 0.034± 0.005 0.031 ± 0.005

10000 0.044± 0.006 0.033 ± 0.005 0.033 ± 0.005

Table. 4.2: L2-error of reconstructions to hold out test set. Lower the better
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(a) (b)

(c) (d)

Figure. 4.5: Reconstruction errors against negative log likelihood (NLL) of the latent vectors
found by reconstruction are displayed for 500, 1000, 5000 and 10000 epochs. The vertical
blue line shows the mean L2-error. Horizontal gray lines show mean NLL (±3std) of the
noise sampled from the Gaussian prior. Lower values for both are better. Improved WGAN
consistently shows lower values for NLL and L2.

Latent Space Walk

We can interpolate between points in the latent space and understand the landscape Fig. 4.6.

Walking the manifold can identify if there are any sharp transitions and whether the network

has memorized. If walking the latent space results in smooth semantic changes to the image

generations we can reason that the model has learned relevant, interesting representations

[Radford et al., 2015].
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GAN WGAN Improved
WGAN

100 138 ± 6 144± 7 152± 17

500 146± 12 172± 9 170± 14

1000 242± 29 191± 13 141 ± 7

5000 204± 36 165± 17 143± 10

10000 230± 49 178± 18 149± 10

Table. 4.3: NLL of the noise vectors z w.r.t. the prior Pz. Lower the better.

4.3 Autoregressive (AR) Models

AR models are trained according to the procedure described in Section. 3.3. The trained

model is used to synthesize novel sequences which are perceptually similar to the original

ones rather than identical. Fig. 4.7 displays the synthesized sequences superimposed over

the original sequences. This helps to validate that the synthesized sequences do follow the

distribution of original sequences. In this section we discuss the impact of changing the

dimensions of subspace C and the order of AR model and the error measures used to assess

the quality of results.

PCA Analysis

As discussed in Section. 3.3, the high-dimensional trajectories of normal and inhibited neu-

trophils are projected into a low-dimensional space C in order to reduce the complexity. The

original trajectories can be viewed as digital signatures through the low-dimensional space.

Fig. 4.8 depicts the variance explained by top five principal components. As the top three

principal components capture maximum variance of the data, parameter q which determines

the dimensionality of the subspace C was set to q = 3. Fig. 4.9 illustrates the characteristics
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Figure. 4.6: Interpolation between a series of ten random points in the latent space depicts
that the space learned has smooth transitions. Top row depicts the starting location for each
of the 10 points. Last row depicts the respective ending locations.

of inhibited neutrophils are significantly different in comparison to normal neutrophils in the

subspace C.

One Step Prediction Error

There are several ways to evaluate synthesized sequences. We employed the one-step pre-

diction error discussed in [Hyndman et al., 2007]. To calculate one-step prediction error of

order d all sets of d+ 1 consecutive frames are used. Model is initialized with d frames and

d + 1 frame is generated. Mean squared error is used to calculate the difference between

synthesized frame and the original frame. Fig. 4.10 depicts that the one-step prediction error

is improved when more temporal information is used to generate subsequent sequences. It

also reflects that using higher order AR models degrade the performance. As AR(2) performs
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(a) Synthesized sequence of normal neutrophils (b) Inhibited Neutrophils

Figure. 4.7: To synthesize a sequence we randomly selected a starting point and predicted
their motion for 25 frames ahead in the sequence for all the neutrophils. Superimposing
synthesized sequences(red) over the original sequences(blue) helps to understand that the
synthesized sequences do indeed follow the original distribution.

consistently better than others, parameter d which determines the order of AR model, was

set to d = 2.

4.4 Synthesis

Synthesized neutrophil behavior consists of two parts: content and appearance is sampled

from the trained Improved WGAN generator G and motion is sampled from a point in sub-

space C. Using (Eq. 2.10) iteratively, different sequences are generated. These new sequences

are then projected back into the original space, leading to a new motion pattern synthesized

entirely from the eigenvector information. The separation of motion and appearance in two

streams enable GANs and AR process to identify the respective key features. This results

in movement of only the foreground cells and leaves the rest untouched. It also gives an

advantage of synthesizing video clips of different cells following different trajectories but
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(a) Normal Neutrophils (b) Inhibited Neutrophils

Figure. 4.8: Percentage of variance explained by top five principal components of normal
and inhibited neutrophils. The top three were used to compute AR parameters because
these components capture the maximum variance of the data.

Figure. 4.9: Distribution of values of top three principal components for normal and inhibited
neutrophils superimposed. The inhibited neutrophil values follow a restricted distribution in
comparison to normal neutrophils.

nonetheless looks similar to the existing motion patterns. Fig. 4.11, 4.12, 4.13 display the

results of synthesis.
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Figure. 4.10: One-step prediction error for normal(left) neutrophils and (right) represents the
same for inhibited neutrophils. It displays the impact of using higher order AR model and
using more frames for training the AR model. AR model of order d = 2 consistently performs
better than AR model of order d = 1. But, the performance degrades when higher order AR
models are used. The error curves were passed through a median filter for visualization
purposes.

Figure. 4.11: Sample results of appearance and motion synthesis combined. First frame is
displayed in the leftmost column - top row and the last image is displayed in the rightmost
column - bottom row. Every image represents the frames between starting and ending frames
for every epoch. Each neutrophil represents a different appearance and follows a different
trajectory.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure. 4.12: First 12 frames of synthesized sequence of normal neutrophils, from top to
bottom.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure. 4.13: First 12 frames of synthesized sequence of inhibited neutrophils, from top to
bottom.



CHAPTER 5

CONCLUSION

This thesis presents a two stream approach to simulate human neutrophil behavior. Neu-

trophil behavior can be decomposed into two components: appearance and motion. Appear-

ance encodes the spatial statistics of the objects and motion encodes the temporal dynamics.

Based on this notion and owing to the very limited data at our disposal, we utilized GANs

to learn the appearance of neutrophils, and AR models to learn their motion. GAN training

consists of adversarial training of a generator (G) against a discriminator (D) w.r.t the

images of segmented neutrophils. AR models are trained by regressing over the past values

of neutrophil trajectories in a low-dimensional subspace. To synthesize neutrophil behavior:

content and appearance is sampled from the trained generator (G) and motion is sampled

from a point in the subspace and using (Eq. 2.10) iteratively to generate a sequence. We

have validated through experiments that our approach does indeed synthesize neutrophil

appearance as well as its motion which is on par with distribution of real data.

5.1 Future Work

The proposed model combine GANs and AR. GANs encode the spatial aspect, while autore-

gression encodes the temporal aspect of neutrophil. Both models are trained independently.

Because of this disconnect between GAN and AR, we cannot model neutrophil appearance

changes w.r.t to time. Recently, ([Tulyakov et al., 2017],[Vondrick et al., 2016]) presented

similar two-stream approaches for video synthesis entirely based on generative adversarial

networks. Their models learn to model the appearance and motion of objects of interest in

44
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unsupervised manner. [Tulyakov et al., 2017] has shown that in spite of lacking supervision

signals about the decomposition of motion and content in natural videos, their framework

can learn to disentangle these two factors through a novel adversarial training scheme. Given

sufficient data, these techniques can be extended for neutrophils as well.
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