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ABSTRACT 

 Conservation and management of rare species is one of the most challenging tasks 

confronting natural resource managers.  Species are classified as rare for several reasons: (1) 

very few individuals are known to exist, (2) the species is widely distributed resulting in low 

densities, (3) the species has a clumped distribution and/or (4) the species has very low detection 

rates (elusive behavior, difficult to catch/observe).  They are often most negatively affected by 

environmental perturbation (more specifically human alterations) making conservation and 

management extremely challenging.  The Ivory-billed Woodpecker (Campephilus principalis), if 

extant (Fitzpatrick et al. 2005; Hill et al. 2006; Jackson 2006), may be the most rare and elusive 

bird species in the United States and thus presents a great challenge for designing efficient and 

effective surveys.  In this dissertation I present results from a large-scale effort to estimate 

occupancy rates for the Ivory-billed Woodpecker.  In addition I used this case study to highlight 

several important problems and shortfalls common to many studies involving rare species.  

These shortfalls motivated the development of several new approaches that provide advances in 

rare species modeling.  First, I developed a framework for allocating effort that provides a 



probabilistic approach to sampling, allowing for improved accuracy in estimating occupancy 

probability.  This approach was found to have a much lower predictive error rate compared to 

traditional approaches such as single-season occupancy estimation especially when there was a 

large amount of spatial heterogeneity in habitat and detection probability was low.  Second, I 

developed a hierarchical model that integrates adaptive cluster sampling and occupancy 

estimation, which allowed for additional effort to be placed at adjacent sites after a known 

detection.  I found this model to outperform traditional occupancy modeling and provide 

excellent coverage under a variety of conditions.  Future improvements in conservation and 

management of rare species will be accomplished through a variety of techniques and 

approaches.  Ultimately, I believe the most operative approach will be the integration of unique 

and innovative methods of data collection coupled with models that identify and subsequently 

estimate the most important vital rates responsible for driving population dynamics. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Conservation and management of rare species is an important component to maintaining 

ecosystem health and community dynamics.  Species are classified as rare for several reasons: 

(1) very few individuals known to exist, (2) widely distributed resulting in low densities, and/or 

(3) very low detection rates (elusive behavior, difficult to catch/observe).  They are often most 

negatively affected by environmental perturbation (more specifically human alterations) making 

conservation and management extremely challenging.  Rare species are often simultaneously the 

species for which strong inference about state variables and vital rates are most needed and the 

species for which such information is most difficult to obtain (MacKenzie et al. 2005).  

Difficulties arise when designing surveys for rare species because obtaining adequate samples of 

information to be used in analysis can be demanding.  Often a very large proportion of zeros or 

non-detections exist in the dataset creating difficulty not only in parameter estimation (few data, 

convergence issues), but interpreting the non-detection as a true absence.  Unfortunately there is 

often a lack of thought devoted to fundamental questions associated with sound sampling 

programs (Yoccoz et al. 2001), which adds to the difficulty in conserving and managing rare or 

elusive species. 

Decisions about the management and conservation of rare or threatened species are made 

in the face of considerable uncertainty.  This uncertainty arises from a lack of knowledge about 

the populations themselves and the dynamic processes driving those populations.  Often basic 
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state variables of interest such as population size and occupancy are not known, which are 

critical to help managers and conservationists make appropriate decisions.  This uncertainty is 

exacerbated by the poor understanding of the influence of other environmental variables on 

population dynamics.  Ultimately, decisions will need to be made regardless of the quantity or 

quality of the information available.    

Formal decision making frameworks such as Structured Decision Making (SDM; Lindley 

1985; Clemen 1996) and Adaptive Resource Management (ARM; Williams et al. 2002; Moore 

and Conroy 2006) provide a foundation to evaluate and optimize the decision process in an 

integrated framework.  Elements of the decision process include stating objectives, specifying 

decision alternatives, recognizing consequences or outcomes, identifying models that describe 

how we think the decision will influence outcomes, and a monitoring program to follow the 

system’s evolution and response to management.  Each decision opportunity relies on explicitly 

stating and differentiating these elements of the process.   

The use of a formal decision making process allows for the reduction of uncertainty 

involved in making that decision.  In reality there are multiple types of uncertainty influencing 

each decision.  Environmental stochasticity involves the uncertainty related to environmental 

factors beyond the control of the decision maker leading to stochastic or non-deterministic 

outcomes.  For example, a drought year could potentially have a severe impact on an expected 

outcome.  Partial controllability is the uncertainty associated with the realization of a decision.  

For example, 100 ha of forest are proposed to be burned, but instead 150 ha are actually burned.  

Because we rarely if ever observe the true state of the system and instead rely on a sample of the 

population, statistical uncertainty corrupts our ability to effectively determine current conditions 

and evaluate the results of our conservation actions.  Statistical uncertainty manifests itself in 
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estimates of the parameters or variables of interest and can lead to bias, imprecision or both.  

Finally, structural uncertainty presents itself in the underlying assumptions about how a system 

will respond to our decision.  Structural uncertainty is akin to having very little information and 

insight into how a population is influenced by its environment, common practice for rare or 

threatened species.  Therefore the response of the population to changes in the environment is 

poorly understood. 

    The goal of decision making is ultimately to make the best or optimal decision in light 

of multiple sources of uncertainty.  Therefore one nested goal is to potentially reduce the 

uncertainty associated with each decision.  One approach then is to gain as much information 

about the system and species so that structural and statistical uncertainties are minimized while 

accounting for environmental stochasticity.  This can be accomplished by using appropriate 

methods of survey design, estimation and modeling to reduce statistical uncertainty and to 

understand the basic relationships that drive population dynamics to reduce structural 

uncertainty.  This is often the most critical step to effective decision making and therefore is the 

main focus of this dissertation. 

Rarely are ecologists or wildlife biologists able to collect a complete enumeration of 

animals present (i.e. census) over some specified area.  Instead a sample, collected over space or 

time, must be used that relates information from the collected sample to the larger population of 

interest.  Although this is at the foundation of statistics (statistical inference), the relationship 

between the evidence in the sample of animals and the connection to the larger population of 

animals is often times very difficult to infer.  This is due in part to two major sources of 

variation, 1) imperfect detection of animals and, 2) spatial coverage of the sample.  Parameters of 

interest such as density, survival rate, reproduction rate, or colonization/extinction rates are 
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therefore very difficult to estimate because we rarely observe all of the animals in the population 

and we rarely collect data over the entire spatial extent of that population.   

 The problem of sampling becomes even more difficult when discussing species that are 

described as rare or elusive.  These animals are usually of great concern to managers and 

conservationists because there is little information about population sizes and how they respond 

to environmental perturbation (including human induced changes) and ultimately are at higher 

risk (Thompson 2004).  Sampling is difficult because these animals exhibit specific 

characteristics that reduce the ability to collect a sufficient amount of information to estimate 

parameters of interest. These characteristics include being hard to capture or observe, occurring 

in low numbers, being patchily distributed, and having low detection rates (see Chapter 2 in 

Thompson 2004 for lengthy discussion).  Even species that have a large total population size 

may occur sparsely over a very large area making sampling very difficult.  It is therefore 

necessary to devote effort to developing specific modeling and estimation techniques that can 

apply to these unique and difficult circumstances to reduce uncertainty. 

Current approaches to the estimation of finite population parameters can broadly be 

classified into two main categories: design-based approach and model-based approach.  A third 

distinction can be made which separates Bayesian inference from a likelihood model-based 

approach.  Other authors have somewhat similar distinctions, for instance Rubin (1976) roughly 

outlines three approaches to statistical inference: 1) sampling-distribution inference (similar to 

design-based), 2) direct-likelihood inference (comparison of ratios of the likelihood function for 

the various values of the parameters of interest), and 3) Bayesian inference (inference based 

solely from posterior distributions corresponding to specified prior distributions).  Thompson and 
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Seber (1996) make three distinctions as well: 1) design-based, 2) frequentist model-based, and 3) 

likelihood model-based (includes Bayesian inference).   

In the design-based approach probability only enters through the use of design-induced 

probabilities to select one sample over another.  Nothing is assumed about the underlying 

population and inference is only based on hypothetical repetition of selecting sample units.  The 

frequentist model-based approach suggests that the values of the variable of interest from the 

population are viewed as a realization of a set of random variables.  A “superpopulation model” 

(stochastic model) is assumed describing the distribution of possible realizations of the 

population values.  Inference procedures are based on having good properties over a 

hypothetically repeated realization of population values.  In the likelihood model-based approach 

inference is based on the likelihood functions of the unknowns given the sample data.  The 

Bayesian approach extends this by allowing for an assignment of subjective prior distributions 

on the population or its parameters, thus inference is based on the posterior distribution which is 

a combination of the priors and likelihood function.  I felt these categories encompass and 

elucidate the main differences among the current approaches, although they are neither mutually 

exclusive nor independent.  I will therefore mainly make the distinction between design-based 

and model-based inference at this stage.   

Current methods that account for variation in detection such as capture-recapture (Seber 

1982; Williams et al. 2002) and occupancy estimation (MacKenzie et al. 2006) are two examples 

of model-based approaches that have been used extensively to estimate parameters of interest for 

animal populations.  Design-based approaches have also seen widespread use especially in 

relation to rare species (e.g. Smith et al. 2003; Thompson 2004), but often do not allow for 

incorporation of imperfect detection.  Bayesian approaches are relatively newer in their 
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application, but have already made an impact in the wildlife literature (Link et al. 2002) and 

methods involving Bayesian inference that account for imperfect detection continue to evolve 

(e.g. see Royle and Dorazio 2008). 

Difficulty in estimating parameters of interest for rare or threatened species can be due to 

a lack of data and very low detection rates.  Methods such as Bayesian hierarchical modeling 

(e.g. Royle and Kery 2007), which permit the leveraging of information at larger scales to better 

estimate smaller scale parameters, can be of great use when there is very little data at scales of 

interest.  Other techniques such as the use of spatial modeling to accommodate spatial 

dependencies in the data can be used to more accurately predict quantities of interest (e.g. 

Webster et al. 2008).   Techniques from other fields including the use of small area estimation 

methods (Rao 2003) from survey sampling, which were developed to estimate parameters of 

interest when very little or no data were collected from the area of interest, seem a natural fit to 

the problem of estimation for rare or threatened species.  Small area methods improve upon 

direct design-based estimators by including suitable linking models with other sources of data, 

for example collected covariates or in our case data from similar species.    

An important avenue of research brought forth by small area estimation is the 

investigation of combining design-based and model-based (both likelihood and Bayesian) 

inference.  Often specific sampling designs (e.g. adaptive cluster sampling, stratified sampling, 

disproportionate sampling, systematic sampling, sequential sampling) have been favored for rare 

or elusive species (see Part Two of Thompson 2004), but rarely are they able to account for 

imperfect detection without the use of independent estimates of detectability (see Chapter 9 of 

Thompson and Seber 1996).  The use of these designs is obvious because of the geographically 

clustered nature of many rare populations (Christman 2000), but a second use of these specific 
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designs is to accommodate observer behavior.  Many rare or threatened species are so rare or 

endangered that any information about them is extremely important (e.g. Ivory-billed 

Woodpecker).  Therefore the ability to mimic observer behavior by putting more effort in areas 

where individuals have been detected is a potentially important component of an effective 

sampling design.  Thus, integrating the sampling design and model-based inference which allows 

for the incorporation of imperfect detection and spatial dependency is potentially optimal.   

In Bayesian inference the incorporation of data collection or design within the modeling 

framework is favored by some (e.g. see Chapter 7 in Gelman et al. 2004) alluding to the 

complete definition of observed data including how the observed values arose.  Acknowledging 

that the complete definition of observed data does indeed include information on how the 

observed values arose has direct bearing on inference.  Therefore it is necessary to incorporate all 

of the information regarding the data (observed values and data collection process) in the 

probability model used for analysis.  This general view of the problem allows for the separation 

of “observed data” and “missing data” (together make “complete data”) in which inference is 

conditional on observed data and also on the pattern of observed and missing data.  Missing data 

can include unintentional missing data due to unfortunate circumstance and intentional missing 

data such as data from units not sampled in a survey.  Data collected for rare species usually 

consists of a large proportion of “missing” data thus this mode of inference seems appropriate 

when attempting to marriage design-based and model-based inference while accounting for 

imperfect detection.   
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Chapter Description 

Chapter 2 –  

The Ivory-billed Woodpecker (IBWO), if extant (Fitzpatrick et al. 2005; Hill et al. 2006; 

Jackson 2006), may be the most rare and elusive bird species in the United States and thus 

presents a great challenge for designing efficient and effective surveys. The species once existed 

at low densities in the southeastern U.S. from Florida to Texas and as far north as Illinois and 

Indiana and is thought to have used extensive forested areas with very large trees and many dead 

trees (Jackson 2002). In 1938, Tanner (1942) took the last universally accepted photograph of 

this species in the U.S.; however, intriguing sightings continued throughout the 20th century 

(Jackson 2002; Fitzpatrick et al. 2005; Hill et al. 2006). Recent evidence that the Ivory-billed 

Woodpecker persists in both Arkansas (Fitzpatrick et al. 2005) and Florida (Hill et al. 2006) has 

reinvigorated the hope that this species can be saved from extinction.  The putative rediscovery 

of the Ivory-billed Woodpecker in the Cache-lower White River Basins initiated a new search 

effort.  The primary objective of the search has been to find the bird and document its existence, 

mostly searching only those locations that were believed to be optimal based mostly on the 

limited data provided by Tanner (1942).   

The objective of Chapter 2 is to present a study design for the new search effort for 

IBWO that permits occupancy and analyze data collected under this design.  In addition I focus 

on evaluating the evidence obtained from the survey in relation to the effort expended.  I discuss 

complications that arose during the study and are representative of many large-scale surveys for 

rare avian species.  These complications provide suggestions to improve future studies where 

many logistical constraints exist and provide motivation for Chapters 3 and 4. 
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Chapter 3 –  

 One of the main complications that arose from the IBWO survey was the inefficient use 

of resources specifically related to allocating effort for occupancy-based surveys.  Therefore in 

Chapter 3 I develop a framework for efficiently allocating effort that profits from placing more 

effort in areas with higher probability of occupancy.  This allows for areas with high predicted 

probability of occupancy to have a higher inclusion probability for sampling thus more effort can 

be concentrated in these areas.  I compare this approach with the traditional simple-random 

sample associated with occupancy estimation and use simulations to evaluate the predictive 

performance of each approach.   

Chapter 4 –  

 Again motivated by the findings in Chapter 2, I develop a model that allows for the 

augmentation of traditional occupancy estimation to allow for additional effort to be allocated to 

adjacent sites once a detection has occurred.  I create a statistically rigorous approach that 

integrates adaptive cluster sampling and occupancy estimation and permits inference under 

maximum likelihood or Bayesian flavors.  I focus on the development of a Bayesian hierarchical 

model and assess model fit using a Bayesian p-value, evaluate the frequentist properties of the 

model under a range of design scenarios and compare the performance of the new model to 

traditional occupancy estimation and adaptive cluster sampling. 

Chapter 5 – 

I provide a synthesis and conclusion of the previous chapters.  In addition I highlight 

major contributions of each chapter and discuss future research needs.   
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CHAPTER 2 

INSIGHTS FROM A LARGE SCALE IVORY-BILLED WOODPECKER (CAMPEPHILUS 
PRINCIPALIS) SEARCH EFFORT WITH APPLICATIONS TO RARE WIDE-RANGING 

AVIAN SPECIES1 

 

 

 

 

 

 

 

 

 

 

 

1Pacifici, K., M. J. Conroy, R. J. Cooper, J. T. Peterson, and R. S. Mordecai.  To be submitted to 
Avian Conservation and Ecology. 
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Abstract 

Rare or elusive species present many conservation challenges, particularly when species 

occur over a very large range as in many rare avian species.  Recently, a large scale survey was 

implemented to obtain information about the Ivory-billed Woodpecker (Campephilus 

principalis), previously thought to be extinct.   The objectives of the survey were to document 

the species’ existence and describe habitat relationships and overall distribution.  Of 595 patches 

included in the historical range of the bird, 180 patches were surveyed, resulting in 28 total 

putative detections of evidence of Ivory-billed Woodpecker presence with 27 occurring within 

two river basins: Congaree Swamp, South Carolina and Lower Choctawhatchee, Florida.  

Detection probabilities were estimated at 0.045 (± 0.012) for South Carolina and 0.047 (± 0.016) 

for Florida.  Occupancy probabilities were estimated at 0.73 (± 0.199) for South Carolina and 

0.77 (± 0.249) for Florida.  We found no relationship between occupancy or detection with two 

habitat variables, number of snags (i.e. dead trees) and number of big trees (> 24’’ dbh).  Model-

averaged estimates for these covariates had very large standard errors (CVs > 100%) suggesting 

no effect on detection or occupancy.  The power to detect occurrence given our estimates of 

detection ranged from 0.55 to 1 for a survey with 40 visits per patch.  Regardless of whether or 

not the Ivory-billed Woodpecker actually exists, we believe that our implementation of a single-

season occupancy model assisted by the use of historical information provides a practical and 

scientifically rigorous framework for monitoring many wide-ranging avian species.   
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Conservation and management of rare species is one of the most challenging tasks 

confronting natural resource managers.  Collecting data is difficult because these animals have 

specific characteristics that reduce the ability to accumulate a sufficient amount of information to 

estimate parameters of interest. Characteristics include elusiveness, low densities, and patchy 

distribution, often resulting in low detection probability (see Chapter 2 in Thompson 2004 for 

lengthy discussion).  Even species that have a large total population size may occur sparsely over 

a very large area making sampling very difficult.  Often this is the case for avian species that can 

occur over a wide range creating problems with sampling a very large area (Pollock et al. 2002).  

Unfortunately, rare species are often simultaneously the species for which accurate estimates of 

population status and vital rates are most needed and the species for which such information is 

most difficult to obtain (MacKenzie et al. 2005).   

The Ivory-billed Woodpecker (IBWO; Campephilus principalis), if extant (Fitzpatrick et 

al. 2005; Hill et al. 2006; Jackson 2006), may be the rarest and most elusive bird species in the 

United States. Consequently, designing efficient and effective surveys for this species presents a 

great challenge. The species once existed at low densities in the southeastern U.S. from Florida 

to Texas and as far north as Illinois and Indiana and is thought to have used extensive forested 

areas with very large trees and many dead trees (Jackson 2002). Recent evidence that the IBWO 

persists in both Arkansas (Fitzpatrick et al. 2005) and Florida (Hill et al. 2006) has reinvigorated 

the hope that this species can be saved from extinction and resulted in new search efforts 

beginning in 2006 (Fitzpatrick et al. 2005).  The primary objective of these searches was to find 

the bird and document its existence.  Locations that were believed to contain optimal habitat 

based on the limited data provided by Tanner (1942) were included in the search effort. 

Meanwhile, searches were initiated in locations within the former range where unsubstantiated 
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sightings were reported in recent decades, again focusing on places believed to have the best 

chance of being occupied.  Some evidence of IBWO presence and other promising data were 

collected in these places, but there also was evidence of presence in areas that were not 

consistent with prior expectations of habitat affinities (i.e., smaller tracts, few large trees and 

snags).  The inability to obtain a photograph or other definitive evidence led to a new search 

effort that was based on probabilistic survey sampling methodology (Thompson 1992).    

Our goals were to describe the design and application of the new search effort for IBWO 

and analyze data collected with the design.  Our specific objectives of analysis were to: estimate 

occupancy probability (probability of site being occupied) and the occupancy rate (psi(fs); 

proportion of area occupied), while accounting for imperfect detection;  assess relationships 

between occupancy and habitat characteristics; and assess design characteristics (bias, variance, 

mean squared error) and tradeoffs of the current design to suggest improvements for future 

studies involving rare wide-ranging avian species.   

Recently much debate has arisen about the validity of the “observations” and we 

recognize the controversial nature of these data and whether or not they actually constitute 

IBWO observations (Elphick et al. 2010, Fitzpatrick et al. 2006, Jackson 2006, Jackson 2006b, 

Jones et al. 2007, McKelvey et al. 2008, Roberts et al. 2009,).  To avoid using cumbersome 

terminology such as “putative observation,” and to avoid confusion with standard wildlife survey 

terminology such as observation and detection, we use these latter terms with the understanding 

that they do not constitute confirmed detections, but were instead sounds or other evidence that 

may or may not have actually been IBWO.    
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Methods 

Study Design 

In 2006, a two-stage (following Thompson 1992) occupancy-based survey design 

occurring at two spatial scales, a primary level and a secondary level, was created for the IBWO 

as follows.  Consider the population of spatial units as composed of N primary units from which 

we take a random sample of n.  At the second stage, we take an initial simple random sample of 

mi units without replacement from the primary unit i for i = 1. . . n associated with the jth 

secondary unit of the ith primary unit is a variable of interest yij.  In this case, yij represents 

detection of an IBWO from a presence-absence survey with k visits.  The N primary units are 

individual river basins within the former range of the IBWO (Figure 2.1).  Many of those were 

eliminated from further consideration due to their (believed) complete lack of suitability. River 

basins with consistent sightings and/or sound recordings (i.e., high quality evidence) were 

always selected to survey. Those were the Cache/lower White in Arkansas, the Choctawhatchee 

in Florida, and the Congaree/Wateree in South Carolina.  Other river basins were also selected 

non-randomly based on recent reported sightings.  Remaining basins in the sampling frame were 

randomly selected with weights based on the subjective probability of IBWO occurring in the 

area. These selection weights resulted in basins with an assumed high occupancy probability 

being frequently selected and those with assumed low occupancy probability being rarely 

selected.   

 The M secondary units were defined as approximately 2-km2 patches of land within the 

selected river basins.  The 2-km2 size was chosen because it is currently in use as part of the 

Lower Mississippi Valley Joint Venture habitat survey (LMVJV refers to these patches as stands, 
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which are subunits of management compartments on public land in the survey).  These patches 

were generally squares or a similar shape on a grid, but were occasionally modified to follow 

existing features of the landscape, such as water features or management compartments.  Patches 

that were inaccessible due to logistics or landowner permission were omitted from the sampling 

frame.  Patches were randomly selected with weights based on the perceived (by the 

investigator) probability of IBWO use.   

Habitat surveys  

 We followed the  Lower Mississippi Valley Joint Venture habitat measurement protocol 

(http://www.lmvjv.org/IBWO_habitat_inventory_&_assessment.htm), which included  

measurements on 4 transects of 5 plots each, or n=20 plots per patch of density of large (>24” 

dbh) trees, density of snags (dead trees), and the diameter class of dominant tree species within a 

16-m radius.  Habitat surveys were only done once for each patch unless in the view of the 

survey team the patch had undergone significant change since the last survey.   

Data and Modeling 

Data were collected over seventeen months (1/2007 – 5/2008) and consisted of detection 

data suitable for occupancy analysis (MacKenzie et al. 2006).  Following advice from 

MacKenzie et al. (2005) we treated the seventeen months as a “single-season”, which allowed us 

to borrow information temporally across the entire study to estimate parameters.  All detections 

were auditory  and consisted of two commonly described sounds produced by IBWO: a kent call 

and a double knock (Jackson 2002). In 1935, Arthur Allen made the only known recording of a 

kent call (Allen and Kellogg 1937), a call often described as sounding like a toy trumpet or 
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clarinet. There is no known recording of the IBWO double knock; however, historic descriptions 

of “double resounding whacks” produced by IBWO (Allen and Kellogg 1937) agree well with 

double knocks produced by other woodpeckers in the genus Campephilus (Ron Rohrbaugh, Jr. 

unpubl. data).  Although there is some dispute about the validity of the “double-knocks” as being 

unique to IBWO (Jones et al. 2007), we again treated these data as valid “detections” for the 

analysis. 

 All detections occurred within three river basins (Figure 2.1 and Table 2.1; Congaree 

Swamp in SC, Lower Choctawhatchee in FL, and Lower Trinity in TX), but the third river basin 

(TX) only contained a single detection.  Instead of modeling occupancy and detection across all 

595 patches, we modeled occupancy and detection conditional on the river basins containing 

information.  This results in biased high estimates of detection and occupancy; we acknowledge 

this bias and discuss the implications further in the discussion.  Furthermore, because only a 

single detection occurred in the Lower Trinity river basin in Texas, we excluded it from the 

analysis and focused on the two river basins in South Carolina and Florida.  

We used a single-season occupancy model in Program MARK (White and Burnham 

1999) to fit several models to examine heterogeneity in detection and occupancy along with 

covariate relationships.  We treated SC and FL as separate groups because of the slightly 

different habitat characteristics in each river basin, but we examined the utility of borrowing 

information across groups in an attempt to estimate parameters more precisely (MacKenzie et al. 

2005).  Because of the limited amount of information contained in the data (27 total detections 

over 17 month span, see Table 2.1) we were only able to fit a simple set of models that included 

variation in detection and occupancy as a function of number of snags, number of big trees and 
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both in combination in an additive logit-linear model for each of the groups and for both groups 

together (resulted in 25 total models).  We used Akaike’s Information Criterion adjusted for 

small sample size (AICc) to conduct model selection (Burnham and Anderson 2002). We then 

produced model-averaged estimates of detection and occupancy to be used for inference 

(Burnham and Anderson 2002).  Unfortunately, we were not able to conduct a Goodness-of-Fit 

Test (MacKenzie and Bailey 2004) due to a large number of missing values created by 

variability in the number of visits to particular patches (Table 2.1).  MacKenzie and Bailey 

(2004) suggest treating patches (referred to as sites) with different combinations of missing 

observations as separate cohorts, but this would require >15 cohorts (>15 different numbers of 

visits to patches) which would result in < 2 detections per cohort in many cases.   

We calculated the power of the survey design (p*), Pr(y>0|z=1) (Royle and Dorazio 

2008; probability of at least one detection given that the patch is occupied, where y is the 

detection and z is the “latent” or unobserved occupancy state) and estimated the variance of this 

quantity using the delta method (Seber 1982).  We also estimated ψcondl (MacKenzie et al. 2006), 

or the probability of occupancy conditional on no detections having occurred at that patch, and 

estimated the variance of ψcondl using the bootstrap method (Efron and Tibshirani 1993) with 

1,000,000 iterations.  We predicted ψcondl and related quantities for other values of occupancy 

(e.g. lower confidence bound of maximum likelihood estimate) and calculated the variance of 

these quantities by back calculating a variance assuming the estimate has the same coefficient of 

variation as the original estimate of occupancy.  We estimated ψfs (finite-sample occupancy rate, 

or proportion of area occupied), and Nocc , the number of occupied patches in the total study area, 

along with a variance of these quantities using the approach described by Royle and Dorazio 

(2008) for likelihood-based inference assuming constant homogeneous detection (also see 
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Dorazio and Royle 2005 for a more complicated model which resorts to empirical Bayes 

estimators).  Alternatively one could estimate this quantity in a more intuitive manner by 

resorting to Bayesian inference (see Royle and Kery 2007 for an example).   

 We evaluated estimator performance under a range of scenarios concentrated around our 

observed results.  We estimated bias, variance and Mean Squared Error (MSE) for the 

probability of detection and probability of occupancy when true occupancy covered the 

estimated range (lower confidence bound to upper confidence bound), detection probability was 

fixed at its maximum likelihood estimate and the number of patches and visits varied (patches: 

50, 200, and 600, visits: 4, 10, 20, and 40).  We simulated detection histories under the true 

values and used 10,000 simulations to estimate the properties of interest (bias, variance, MSE).  

Following MacKenzie and Royle (2005b), Bailey et al. (2007), and Guillera-Arroita et al. (2010) 

we chose to use simulations instead of expected values because of the low sample size that we 

observed. We present results including the percentage of boundary estimates (p = 1) obtained 

under each scenario.  We used Program R (2009) to conduct the simulations, but acknowledge 

that Program GENPRES (Bailey et al. 2007) could also be used.  We also attempted to find an 

optimal design given our estimates of occupancy and detection and under a range of patch and 

visit combinations assuming homogeneous constant detection probability using the software 

package SODA (Guillera-Arroita et al. 2010).  We were able to investigate three criteria for 

optimization.  One was finding the design that minimized Mean Squared Error for the probability 

of occupancy estimator.  Two other approaches incorporated the variance of the probability of 

detection into the design criteria, which is useful when the probability of detection is a parameter 

of interest, which is often the case for rare species (e.g., interest lies not only in occupancy, but 

in amount of effort needed to detect species).  The first of these approaches, A-optimality, 
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minimizes the trace of the variance-covariance matrix (i.e., the sum of the variances of the 

parameters) and gives equal weight to the two variances (probability of occupancy and 

probability of detection) rather than minimizing the variance of each of the parameters 

separately.  The second approach, D-optimality, minimizes the determinant of the variance-

covariance matrix.  For a more detailed description of these approaches in the context of 

occupancy estimation see Guillera-Arroita et al. (2010).   

Results 

 180 total patches were surveyed out of a possible 595 patches in the historic range of the 

IBWO that included 13 states (Figure 2.1 and Table 2.1).  There were 28 total detections from 

1/2007 – 5/2008.  These detections were all classified as auditory and consisted of 17 “double-

knocks”, 7 “kent” calls, and 4 auditory detections with no description.  Twenty-seven of the 

detections occurred in two river basins, Congaree Swamp, SC and Lower Choctawhatchee, FL 

(Figure 2.1 and Table 2.1).  There were 32 total patches in the Congaree Swamp river basin in 

SC and 18 total patches in the Lower Choctawhatchee river basin in FL and these patches were 

visited anywhere between 3-40 times with one patch visited 59 times (Table 2.1).   Mean number 

of snags on all sampled patches was 0.9922 (± 0.335) with a range of 0.14 to 2.37.  Mean 

number of big trees (>24’’ dbh) was 1.75 (± 2.13) with a range of 0 to 6.03. 

 A total of 25 models were run of which three models (psi(group)p(snags), 

psi(group)p(trees), psi(group)p(snags+trees)) were excluded because of inestimable parameters 

(standard errors estimated as 0) (Table 2.2).  We found very little support in the data for 

covariates influencing detection or occupancy (Table 2.2).  The top model was the constant (no 

variation) model for detection and occupancy with an AICc weight of 0.2284 and was ≈2.5 times 
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more likely than the second best model (psi(.)p(snags)).  Out of the 22 models fit to the data, 16 

had weights within 10% of the top model suggesting the confidence set of models includes 

almost all of the a priori models. It was clear the models with more complexity (i.e., parameters; 

covariates and group effects) did little to reduce the deviance (Table 2.2).   

Model-averaged parameter coefficients from the candidate set of models (excludes 

models with weights below 10% of top model) had very large estimated standard errors with the 

majority of the confidence intervals ranging over the entire parameter space (Table 2.3).  This 

result suggests there was no evidence of a discernible group effect on occupancy or detection 

either (difference between SC and FL) (Table 2.3).  Model-averaged estimates (at the mean patch 

level covariate value) of detection were slightly higher in FL as was occupancy (Table 2.3).  The 

naïve estimate of occupancy (number of sites with detection/total number of sites sampled) for 

the two river basins with detections was 0.28, which was substantially lower than the estimated 

occupancy probabilities.  Interestingly, detection probabilities were estimated precisely and the 

confidence intervals were small compared with the estimates of occupancy probability (Table 

2.3).   

Figure 2.2 shows the power of the survey method given three different values of 

detection (lower confidence bound, mean and upper confidence bound of maximum likelihood 

estimate) over a range of visits.  Here, power can either be interpreted as power of rejecting the 

null hypothesis (non-occurrence) given that the alternative is true (occurrence), or as the 

probability of at least one detection given the patch is occupied.  Depending on what value of 

detection is used the power of the survey for 40 visits ranged from 0.5 to 0.99, suggesting that at 

sites with 40 visits and no detections there is strong evidence the site is unoccupied.  This 
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statement is strengthened for the few sites that were visited >40 times as power tends to one.  

These estimates are conditional on the two river basins with detections (Figure 2.1 and Table 

2.1). Applying these estimates to the other patches with no detections suggests that there is 

sufficient power to conclude that these patches were unoccupied as many of the patches were 

visited frequently (> 40 visits); thus the power to detect the species given occurrence is near one. 

The estimated probability of nonoccurrence given no detections at a patch  (1- ψcondl) 

varied with the number of visits to the patch (K) at both the lower bound and mean of the 

maximum likelihood estimate of occupancy (0.3 and 0.75 respectively) and, assuming fixed 

detection probability of 0.0461, the mean maximum likelihood estimate (Figure 2.3).  We 

estimate that it takes approximately 70 visits before probability of a “true absence” was 0.9 or 

higher although the confidence bound for this estimate was very large and includes 0.9 in as little 

as 20 visits.  Using the lower bound of occupancy, the estimate of a “true absence” was 0.9 or 

higher in as few as 30 visits and the confidence bound included 0.9 with less than 10 visits.   If 

we take the lower bound of the occupancy estimate (ψ=0.3) and assume it was a proxy for the 

probability of occupancy for the patches outside of the two river basins used to fit the models we 

conclude that there was strong evidence that those patches were indeed unoccupied.  Using 

maximum likelihood estimates, we estimate that between 141 – 445 patches out of 595 that 

should be occupied depending on which occupancy probability and number of visits to a patch is 

used (Table 2.4). 

Table 2.5 displays the bias, variance, and MSE for a range of designs given a fixed 

detection probability (0.0461, mean of maximum likelihood estimate) and three different 

estimates of the probability of occupancy (lower confidence bound, mean, and upper confidence 
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bound of maximum likelihood estimate).  There appears to be little bias in estimating detection 

probability regardless of the occupancy parameter although in many scenarios estimates tend to 

the boundary.  MSE for detection probability is relatively low regardless of the true parameter 

values and ranges from 0 to 0.0076 (ψ=0.3, patches=50, visits=4).  Bias in estimating occupancy, 

on the other hand, can be substantial.  The current design (patches = 50, visits = 4 to 40) exhibits 

a considerable amount of bias (minimum = 0.0019 and maximum = 0.5508) with bias decreasing 

as the number of visits to a patch increases and decreasing as the true occupancy value increases.  

MSE in estimating occupancy follows a similar pattern as it decreases as the number of visits to 

a patch increases and it decreases as the true occupancy value increases. There is a greater 

reduction of MSE by increasing the number of visits as opposed to increasing the number of 

patches regardless of the true occupancy value.   

Figure 2.4 displays the distribution of maximum likelihood estimates for a select group of 

combinations of true occupancy, number of patches, and number of visits.  It is clear with a low 

number of visits to a patch that there is substantial bias in estimating both occupancy and 

detection although there appears to be more difficulty estimating occupancy.  Sampling more 

sites while holding the number of visits fixed results in substantial improvement in reducing bias 

while estimating both detection and occupancy.  This improvement is less pronounced when 

increasing the number of visits and holding the number of patches fixed. 

 The optimal design according to the D-opt criterion for the current study (ψ̂ =0.75, 200 

total patches) was to sample only 4 patches with 50 visits.  The other two criteria found no 

optimal design for the current study (Table 2.6).  Note that it did not search all possible 

combinations of criteria, but instead started with the design suggested as being optimal by 
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asymptotic evaluations and then iterates through different combinations.  In many cases there 

was no optimal design found when looking at all of the possible combinations.  Often, the 

optimal design consisted of a large number of visits or a very large number of patches.  The D-

optimal criteria appeared to always find an optimal design while the other two criteria appeared 

to come to the same conclusion.   

Discussion 

 The putative rediscovery of the IBWO and the surrounding doubt associated with the 

discovery has highlighted the need for rigor and standards in science and conservation (Jackson 

2006, Jones et al. 2007, McKelvey et al. 2008).  Although much of the debate centers on the 

validity of the observations, an important issue is raised regarding the methodological 

approaches used to validate (or invalidate) the existence and distribution of critically rare species 

(Elphick 2008, Elphick et al. 2010, Roberts et al. 2009, Scott et al. 2008).  Often, data on 

critically rare species are collected in a haphazard manner limiting the ability to make credible 

inference about the species of interest.  Presumably, this is primarily due to the difficulty in 

designing surveys for rare species as many common standard methods are usually not suitable 

(Thompson 2004).  We believe that our implementation of a single-season occupancy model 

assisted by the use of historical information provides a practical and scientifically rigorous 

framework for monitoring wide-ranging avian species.  We acknowledge that in our particular 

case our estimates of occupancy and detection were biased high because we needed to exclude 

the sampled patches within the former range of the IBWO in which IBWO were not detected to 

fit our models. Nonetheless, we believe the overall framework we presented should be useful for 

making valid inference about a species of interest.   
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 We were unable to find evidence of a relationship among several habitat covariates and 

IBWO apparent presence and distribution although several relationships were thought to exist 

(Tanner 1942).  This result highlights a critical misconception about sampling extremely rare 

species.  Often sampling only occurs in areas where the species is “thought” to be or based on a 

preconceived habitat relationship, but by using a statistically valid sampling design other areas 

can be sampled, permitting inference to a larger area.  In addition, the information gained at 

other putatively “unsuitable” or “non-ideal” locations can potentially provide confirmation and 

support of the pre-existing relationships thought to exist or provide evidence of new 

relationships.  This is not a minor point for species where there is very little biological 

information available.  Relying solely on a small number of observations and subsequently 

restricting search effort to those particular areas can severely limit the understanding of the 

resource requirements and affect the effectiveness of management.   

Our occupancy estimates were high (>0.75), but were estimated with a considerable 

amount of uncertainty (large standard error) and often ranged over the entire parameter space (0 

to 1).  Because of this poor precision it makes it difficult to make confident statements about 

occupancy rates.  This uncertainty is elevated when we acknowledge the bias in our estimates.  

As our simulation results showed, bias could exceed 0.5 in our current study.  Unfortunately, 

there was no feasible optimal design for our situation either.  Observers would not be interested 

in sampling only 4 patches 50 times unless there was substantial evidence at those patches and 

only at those patches.  Although this design would be optimal in one sense of the word it would 

not permit making inference to a larger area possible as no new locations could be searched.  

Another source of bias that was introduced into our estimates was a result of relying on data only 

from two river basins with detections instead of using all of the patches that were sampled.  
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Given our calculated values of the proportion of area occupied based on our estimates of 

occupancy and detection, we assume that there should have been many more detections across 

the former range of the IBWO.  There were no detections in the other 130 patches, suggesting 

that our estimates of detection and occupancy were likely biased by non-representative sampling, 

and may call into question the validity of these localized auditory detections.  On the other hand 

it also suggests that the IBWO is absent from the majority of its former range while some 

corroboration of evidence exists in Florida (Hill et al. 2006). 

The use of not only the probability of occupancy (ψ), but the proportion of area occupied 

(PAO or ψfs) illustrates an important, yet subtle point for conservation.  For many rare species, 

both of the quantities (ψ and ψfs) are essential and knowing only one may not be sufficient.  

Consider a situation in which a rare species is only known to exist in a very small geographic 

region.  Simply estimating occupancy probability may provide a theoretical measure of the 

probability of sites occupied based on a random sample of an infinitely large population of sites, 

but if there are no other known study areas then its use is limited.  Instead, a manager would be 

more interested in knowing how many sites are actually occupied in the study area.  Royle and 

Kery (2007) point out that although the expected values of the two quantities may be equivalent, 

the levels of uncertainty are typically different and in their example fsψ resulted in more precise 

estimates.  This was also exemplified in our own results and stems from the information in the 

sample data that contains sites where the state is actually known, thus reducing the uncertainty in 

the estimate of fsψ .  By simply estimating and using the probability of occupancy (infinite 

sample) the variation in the estimate would be much larger than the finite sample estimate and 

would not use all of the information in the data. This reduction in uncertainty is critical for 
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managing and conserving rare species in small or restricted geographic ranges.  Admittedly, the 

estimation of such quantities can be challenging and preferably a Bayesian hierarchical modeling 

approach allows for a natural and intuitive option to estimation (see MacKenzie et al. 2006 and 

Royle and Dorazio 2008 for examples). 

Although we provided a statistically valid and rigorous approach to estimate parameters 

of interest for a wide-ranging rare avian species, there was one critical deficiency in our design 

that should be addressed in future work.  In the IBWO survey searchers were highly motivated 

(some might say obsessed) to find a bird.  When a putative detection (i.e., sound) occurred in a 

particular patch, it was extremely difficult to get searchers to survey anywhere else, which is 

human nature.  But the simple random sampling design required them to sample in another 

randomly selected location.  Not only does this create antipathy towards the use of a formal 

design it can also result in missing important information and data collection opportunities for 

species that are clustered, or in this case for an individual bird that might use a cluster of patches 

in its home range.  We found that observers were constantly trying to find ways to bypass the use 

of a simple random sample to reallocate sampling effort in locations they thought were more 

suitable because of a known detection or strong prior belief.  This problem can be generalized to 

many situations involving rare species when information is limited and highly valued and can be 

exemplified by the behavior of birders when a rare species has been sighted.  A potential solution 

would be to implement an adaptive design which permits augmentation of the design to 

accommodate clustered individuals while still allowing for statistically valid inference. One 

approach to augment the sample design would be to use design-based estimators based on 

adaptive cluster sampling (Thompson and Seber 1996) that have been used quite frequently for 

rare species (Thompson 2004).  In such a scenario any detection could act as a “trigger” to 
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permit augmentation of the sampling design such that adjacent patches are sampled.  This 

approach would allow an increase in effort around areas where detections are observed thus 

allowing the potential for more evidence to be collected.  Unfortunately, the only way to account 

for imperfect detection with this method would be to have independent estimates from another 

survey (Thompson and Seber 1996) which may not be feasible.  Alternatively one could develop 

a hierarchical model that incorporated the adaptive cluster sampling design into the modeling 

effort (see Rapley and Welsh 2008 for a Bayesian treatment of this approach).  Ideally a design 

that uses repeat visits to the patches could be implemented thus alleviating the need for 

independent estimates of detection.  This would permit inference of occupancy and detection 

while accommodating the adaptive augmentation of the sampling design.   

Our results come from a large multi-state and multi-agency effort to collect information 

on a rare species.  In the future, these sorts of cooperative approaches will likely play a major 

role in the conservation of rare avian species because of the large areas that birds traverse and the 

difficulty in collecting information at one particular site.  Not only does our design provide a 

framework for rigorous inference at a large scale, it displays the benefits of working across 

geographic boundaries when a common goal is to be reached.  Yoccoz et al. (2001) and Pollock 

et al. (2002) identified three major points of interest for any long-term and/or large scale 

monitoring program: (1) Why? (2) What? and (3) How?  These points must be addressed and 

communicated effectively among all cooperators to ensure the success and credibility of large 

scale long-term monitoring programs for rare avian species.  We see the development and 

application of new statistically rigorous survey methods and models along with the cooperation 

of partners across large landscapes as providing the critical steps in conservation and 

management of rare species. 
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Figure 2.1.  River basins in the United States within the former range (cross-hatched) of the 

Ivory-billed Woodpecker (Campephilus principalis).  Three darkened areas represent basins that 

contained at least a single auditory detection observed during the survey in 2007-2008. 
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Figure 2.2.  Power of detection for the survey method given that the patch is occupied under 

three different levels of detection probability and over a range of repeat visits to the patch (K) 

and with 95% confidence limits obtained from the delta method.  This can also be interpreted as 

the probability of at least one detectoin conditional on the patch being occupied. 
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Figure 2.3.  Probability of nonoccurrence conditional on no detections at a patch for two levels of 

occupancy, ψ=0.75 (top) and ψ=0.3 (bottom) over a range of number of visits to a patch (K).  

The dark lines represent the 95% confidence bounds obtained from bootstrapping with 1,000,000 

iterations and the two levels of occupancy correspond to the mean and lower confidence bound 

of the maximum likelihood estimate from the data. 
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Figure 2.4.  Distribution of maximum likelihood estimates obtained from evaluating estimator 

bias, variance and Mean Squared Error for a range of true values for occupancy and detection 

using 10,000 simulations.  Values of occupancy and detection were obtained from maximum 

likelihood estimates of the data and the range of conditions (# of patches and visits)  were from 

the range of conditions used in the field survey.  Light gray cross hairs represent the true 

simulated value of occupancy (ψ̂ ) and detection ( p̂ ).  From left to right and then down: ψ=0.75, 

p=0.046, patches = 50, visits = 4; ψ=0.75, p=0.046, patches = 50, visits = 40; ψ=0.75, p=0.0461, 

patches = 600, visits = 4; ψ=0.75, p=0.046, patches = 600, visits = 40; ψ=0.3, p=0.046, patches = 

50, visits = 4; ψ=0.3, p=0.046, patches = 50, visits = 40; ψ=0.3, p=0.046, patches = 600, visits = 

4; and ψ=0.3, p=0.046, patches = 600, visits = 40.   
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Table 2.1.  Information about the survey design and detection data collected from 2007-2008 for 

the Ivory-billed Woodpecker (Campephilus principalis) across its former range in the United 

States.  Patches were approximately 2 km2.  *One patch was visited 59 times in the Congaree 

River Basin in South Carolina. 

State 
# River 
Basins 

Range of # of 
Patches Within 

Each River 
Basin 

Number of Patches in a 
River Basin With a 

Detection 

Number of 
Visits to the 

Patches 

# of 
Auditory 

Detections 

Alabama 39 1-81   0 

Arkansas 49 1-37   0 

Florida 54 1-81 4 (Lower Choctawhatchee) 3-14 5 

Georgia 26 1-23   0 

Kentucky  9 1   0 

Louisiana 56 1   0 

Missouri 10 1-23   0 

Mississippi 53 1-37   0 

North 
Carolina 10 1   0 

Oklahoma 17 1   0 

South 
Carolina 22 1-44 10 (Congaree) 4-40* 22 

Tennessee 11 1   0 

Texas 48 1-36 1 (Lower Trinity)   1 
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Table 2.2.  The deviance (-2*log likelihood), number of parameters, Akaike’s Information 

Criteria adjusted for small sample size (AICc), the difference between the model and the top 

model (∆AICc), model weights (w), and likelihood of candidate detection (p) and occupancy 

(psi) models for the Ivory-billed Woodpecker (Campephilus principalis) in two states (SC and 

FL).  The dotted line represents the cutoff for the candidate set of models (>10% of the top 

model’s weight).  The group effect corresponds to differences between the 2 states.   

Model1 Deviance 
Num. 
Par AICc ∆AICc w Likelihood 

{psi(.)p(.)} 229.95 2 234.20 0.00 0.228 1.000 

{psi(.)p(snags)} 229.50 3 236.02 1.82 0.092 0.403 

{psi(group)p(.)} 229.53 3 236.06 1.85 0.090 0.396 

{psi(.)p(big_trees)} 229.73 3 236.25 2.05 0.082 0.359 

{psi(.)p(group)} 229.82 3 236.34 2.14 0.078 0.344 

{psi(snags)p(.)} 229.90 3 236.42 2.21 0.075 0.331 

{psi(big_trees)p(.)} 229.94 3 236.46 2.26 0.074 0.323 

{psi(.)p(snags+big_trees)} 229.42 4 238.31 4.11 0.029 0.128 

{psi(snags)p(snags)} 229.50 4 238.39 4.18 0.028 0.124 

{psi(big_trees)p(snags)} 229.50 4 238.39 4.18 0.028 0.123 

{psi(group)p(group)} 229.50 4 238.39 4.19 0.028 0.123 

{psi(snags)p(group)} 229.66 4 238.55 4.34 0.026 0.114 

{psi(snags)p(big_trees)} 229.70 4 238.59 4.38 0.025 0.112 

{psi(big_trees)p(big_trees)} 229.73 4 238.62 4.41 0.025 0.110 

{psi(big_trees)p(group)} 229.80 4 238.69 4.48 0.024 0.106 
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{psi(snags+big_trees)p(.)} 229.89 4 238.78 4.58 0.023 0.101 

{psi(snags)p(snags+big_trees)} 229.42 5 240.79 6.58 0.008 0.037 

{psi(big_trees)p(snags+big_trees)} 229.42 5 240.79 6.58 0.008 0.037 

{psi(snags+big_trees)p(snags)} 229.50 5 240.86 6.66 0.008 0.036 

{psi(snags+big_trees)p(group)} 229.65 5 241.01 6.81 0.008 0.033 

{psi(snags+big_trees)p(big_trees)} 229.68 5 241.04 6.84 0.007 0.033 

{psi(snags+big_trees) 

p(snags+big_trees)} 229.42 6 243.37 9.17 0.002 0.010 

1(.) indicates that the parameter was modeled as a constant. 
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Table 2.3.  Model averaged real parameter estimates at the mean value of the patch-level 

covariate and model-averaged Beta coefficients obtained from the candidate set of 16 models 

(>10% of the weight of top model).  Naïve estimate of occupancy corresponds to the number of 

known occupied patches (> 1 detection) divided by the number of patches sampled (50 total from 

SC and FL). 

Real Parameter Estimates Model averaged Estimate Unconditional SE 

Naïve  0.28  

p SC 0.045 0.012 

p FL 0.047 0.016 

psi SC 0.733 0.199 

psi FL 0.768 0.249 

Beta parameters     

p Intercept -2.3500 0.9844 

p Group effect (Florida) -0.2951 0.7054 

p Snags 0.0454 0.3411 

p Big Trees 0.0105 0.1859 

psi Intercept -4.3519 2.6873 

psi Group effect (Florida) 0.8138 1.2508 

psi Snags 0.0435 0.5061 

psi Big Trees 0.0034 0.2947 
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Table 2.4.  Total number of occupied patches out of 595 total patches (Nocc), number of repeat 

visits (K), occupancy probability conditional on no detections at a patch (ψcondl), and occupancy 

rate or proportion of patches occupied out of 595 (ψfs) and their estimated variances following 

Royle and Dorazio (2008).  The two levels of occupancy (ψ) represent the values used for the 

calculation of these quantities and correspond to the mean and lower confidence bound of the 

maximum likelihood estimates.  

ψ=0.75 Nocc Var (Nocc) K ψcondl Var (ψcondl) ψfs Var (ψfs) 

 445 1115.22 3 0.72 0.0397 0.75 0.00315 

 442 1171.46 5 0.70 0.0418 0.74 0.00331 

 434 1299.38 10 0.65 0.0464 0.73 0.00367 

 425 1421.99 15 0.60 0.0508 0.71 0.00402 

 415 1522.79 20 0.54 0.0544 0.70 0.00430 

 405 1587.90 25 0.48 0.0568 0.68 0.00449 

 396 1608.15 30 0.42 0.0576 0.67 0.00454 

 386 1585.67 35 0.36 0.0568 0.65 0.00448 

 378 1523.29 40 0.31 0.0547 0.63 0.00430 

 370 1439.82 45 0.26 0.0517 0.62 0.00407 

 363 1338.49 50 0.22 0.0481 0.61 0.00378 

 356 1225.76 55 0.18 0.0441 0.60 0.00346 

 351 1110.46 60 0.15 0.0400 0.59 0.00314 

 343 884.15 70 0.10 0.0319 0.58 0.00250 

 337 685.56 80 0.06 0.0248 0.57 0.00194 

  333 511.90 90 0.04 0.0186 0.56 0.00145 
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ψ=0.3 184 259.34 3 0.27 0.0083 0.31 0.00073 

 181 242.32 5 0.25 0.0078 0.30 0.00068 

 174 204.56 10 0.21 0.0065 0.29 0.00058 

 168 173.85 15 0.17 0.0055 0.28 0.00049 

 163 147.42 20 0.14 0.0047 0.27 0.00042 

 159 123.32 25 0.12 0.0039 0.27 0.00035 

 155 100.36 30 0.09 0.0032 0.26 0.00028 

 152 79.61 35 0.08 0.0025 0.26 0.00022 

 150 62.04 40 0.06 0.0019 0.25 0.00018 

 148 47.20 45 0.05 0.0015 0.25 0.00013 

 146 35.69 50 0.04 0.0011 0.25 0.00010 

 145 26.57 55 0.03 0.0008 0.24 0.00008 

 144 19.61 60 0.02 0.0006 0.24 0.00006 

 142 10.49 70 0.02 0.0003 0.24 0.00003 

 141 5.50 80 0.01 0.0001 0.24 0.00002 

  141 2.86 90 0.01 0.0001 0.24 0.00001 
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Table 2.5.  Results from conducting 10,000 simulations to evaluate bias, variance and mean 

squared error (MSE) for both occupancy and detection under a range of scenarios characterized 

by the number of visits to a patch (K), the number of patches, true occupancy probability (0.3, 

0.75, 0.9; lower confidence bound, mean and upper confidence bound of maximum likelihood 

estimate), and a fixed detection probability (0.046; mean of maximum likelihood estimate).  P 

empty corresponds to the percentage of simulated detection histories that were empty while p 

bound represents the percentage of estimates of p that were at the boundary (p=1).   

ψ K Patches p Bias p Var p MSE p Empty p Bound ψ Bias ψ Var ψ MSE 

0.9 4 50 0.0187 0.002 0.0023 0 0.629 -0.0912 0.0781 0.0864 

0.9 4 200 0.0087 0.0004 0.0005 0 0.473 -0.0716 0.0446 0.0497 

0.9 4 600 0.0044 0.0002 0.0002 0 0.417 -0.0424 0.0257 0.0275 

0.9 10 50 0.005 0.0003 0.0003 0 0.455 -0.0449 0.0323 0.0343 

0.9 10 200 0.002 0.0001 0.0001 0 0.343 -0.0185 0.0153 0.0157 

0.9 10 600 0.0006 0 0 0 0.226 -0.0026 0.0077 0.0077 

0.9 20 50 0.0012 0.0001 0.0001 0 0.351 -0.0114 0.0137 0.0139 

0.9 20 200 0.0004 0 0 0 0.156 -0.0004 0.0056 0.0056 

0.9 20 600 0 0 0 0 0.038 0.002 0.0025 0.0025 

0.9 40 50 0.0001 0 0 0 0.129 0.0019 0.0054 0.0054 

0.9 40 200 -0.0001 0 0 0 0.08 0.002 0.0017 0.0017 

0.9 40 600 0 0 0 0 0 0.0011 0.0006 0.0006 

0.75 4 50 0.0153 0.0028 0.0031 0.001 0.661 0.0506 0.0923 0.0948 

0.75 4 200 0.0068 0.0006 0.0007 0 0.405 0.0118 0.063 0.0631 
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0.75 4 600 0.0023 0.0002 0.0002 0 0.293 0.0209 0.0397 0.0401 

0.75 10 50 0.0029 0.0004 0.0004 0 0.349 0.026 0.0487 0.0494 

0.75 10 200 0.0006 0.0001 0.0001 0 0.151 0.0213 0.0242 0.0247 

0.75 10 600 0 0 0 0 0.032 0.013 0.0107 0.0109 

0.75 20 50 -0.0001 0.0001 0.0001 0 0.155 0.0257 0.0233 0.0239 

0.75 20 200 -0.0001 0 0 0 0.009 0.0096 0.0074 0.0075 

0.75 20 600 0 0 0 0 0 0.0028 0.0025 0.0025 

0.75 40 50 -0.0002 0 0 0 0.008 0.0085 0.0083 0.0084 

0.75 40 200 -0.0001 0 0 0 0 0.002 0.0019 0.0019 

0.75 40 600 0 0 0 0 0 0.001 0.0006 0.0006 

0.3 4 50 0.0019 0.0076 0.0076 0.071 0.767 0.5508 0.1075 0.4109 

0.3 4 200 0.0034 0.0022 0.0022 0 0.489 0.3052 0.1584 0.2515 

0.3 4 600 0.0005 0.0008 0.0008 0 0.126 0.1318 0.0782 0.0956 

0.3 10 50 0.0003 0.0014 0.0014 0.001 0.332 0.2388 0.1279 0.185 

0.3 10 200 -0.0008 0.0004 0.0004 0 0.03 0.0678 0.0353 0.0399 

0.3 10 600 -0.0002 0.0001 0.0001 0 0 0.0173 0.0067 0.007 

0.3 20 50 -0.0008 0.0004 0.0004 0 0.04 0.0671 0.0379 0.0424 

0.3 20 200 -0.0004 0.0001 0.0001 0 0 0.012 0.0044 0.0046 

0.3 20 600 -0.0001 0 0 0 0 0.0033 0.0012 0.0012 

0.3 40 50 -0.0003 0.0001 0.0001 0 0 0.0098 0.0068 0.0069 

0.3 40 200 -0.0002 0 0 0 0 0.0022 0.0015 0.0015 

0.3 40 600 0 0 0 0 0 0.0009 0.0005 0.0005 
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Table 2.6.  The optimal design given the true occupancy probability (0.3, 0.75, 0.9; lower 

confidence bound, mean and upper confidence bound of maximum likelihood estimate), and a 

fixed detection probability (0.046; mean of maximum likelihood estimate).  Total patches 

corresponds to the number of visits times the number of patches and can represent total effort.  K 

represents the number of visits and s represents the number of sites (patches) that need to be 

visited for the optimal design.  “None” refers to no optimal design being found given the 

constraints.  Optimal is defined as minimizing MSE of occupancy (ψ MSE), A-opt minimizes the 

trace of the variance-covariance matrix (between occupancy and detection) and D-opt minimizes 

the determinant of the variance-covariance matrix.  The search process for an optimal design 

does not include searching all possible combinations of criteria, but instead starts with the design 

suggested as being optimal by asymptotic evaluations and then iterates through different 

combinations from there.    

ψ Total Patches ψ MSE A-opt D-opt 

0.9 200 none none k=49,s=4 

0.9 800 none none k=66,s=12 

0.9 2400 k=70,s=34 k=70,s=34 k=84,s=28 

0.9 500 none none k=55,s=9 

0.9 2000 k=74,s=27 k=62,s=32 k=80,s=25 

0.9 6000 k=50,s=120 k=50,s=120 k=50,s=120 

0.9 1000 none none k=71,s=14 

0.9 4000 k=78,s=51 k=50,s=80 k=50,s=80 

0.9 12000 k=50,s=240 k=50,s=240 k=50,s=240 
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0.9 2000 k=62,s=32 k=66,s=30 k=62,s=32 

0.9 8000 k=50,s=160 k=50,s=160 k=50,s=160 

0.9 24000 k=50,s=480 k=50,s=480 k=50,s=480 

0.75 200 none none k=50,s=4 

0.75 800 none none k=61,s=13 

0.75 2400 none none k=75,s=32 

0.75 500 none none k=50,s=10 

0.75 2000 none none k=50,s=40 

0.75 6000 k=49,s=122 k=49,s=122 k=50,s=120 

0.75 1000 none none k=55,s=18 

0.75 4000 k=49,s=81 k=49,s=81 k=50,s=80 

0.75 12000 k=49,s=244 k=49,s=244 k=50,s=240 

0.75 2000 none none k=51,s=39 

0.75 8000 k=49,s=163 k=49,s=163 k=50,s=160 

0.75 24000 k=49,s=489 k=49,s=489 k=50,s=480 

0.3 200 none none k=49,s=4 

0.3 800 none none k=61,s=13 

0.3 2400 k=39,s=61 k=38,s=63 k=39,s=61 

0.3 500 none none k=50,s=10 

0.3 2000 none none k=42,s=47 

0.3 6000 k=32,s=187 k=32,s=187 k=41,s=146 

0.3 1000 none none k=50,s=20 

0.3 4000 k=38,s=105 k=40,s=100 k=48,s=83 
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0.3 12000 k=32,s=375 k=32,s=375 k=41,s=292 

0.3 2000 none none k=50,s=40 

0.3 8000 k=32,s=250 k=32,s=250 k=41,s=195 

0.3 24000 k=32,s=750 k=32,s=750 k=41,s=585 
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CHAPTER 3 

A TWO-PHASE SAMPLING DESIGN FOR INCREASING DETECTIONS OF RARE 

SPECIES IN OCCUPANCY SURVEYS1 

 

 

 

 

 

 

 

 

 

 

1Pacifici, K., R. M. Dorazio, and M. J. Conroy.  To be submitted to Methods in Ecology and 

Evolution. 
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Abstract 

Occupancy estimation is a valuable tool to examine the effects of habitat characteristics, 

evaluate the outcome of large scale perturbations, determine the influence of habitat landscape 

variation on species richness, explore processes driving population dynamics, and understand 

community dynamics and interactions.  Recently, there has been a focus on developing sampling 

protocols using occupancy estimation.  Here, we develop a two-phase sampling approach for rare 

species.  We evaluate this new approach compared to the traditional single-season occupancy 

approach under a range of conditions exhibiting variation in population structure, detection 

probability, and spatial relatedness.  We develop an intuitive measure of predictive error and use 

simulations to evaluate the two approaches.  We found that our new approach outperformed the 

traditional approach under almost every scenario.  We believe that our new approach will be 

valuable for managers and conservationists interested in rare species and will provide a more 

efficient allocation of effort. 
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Occupancy modeling/estimation (MacKenzie et al. 2006) has become a valuable tool to 

examine effects of localized habitat characteristics (Dorazio et al. 2006), evaluate the outcome of 

large scale perturbations (Saracco et al. 2011), determine the influence of habitat and landscape 

variation on species richness (Kery and Royle 2009), explore processes driving population 

dynamics (MacKenzie et al. 2003), and understand community dynamics and interactions 

(Dorazio and Royle 2005; Zipkin et al. 2009) all while accounting for imperfect detection 

(MacKenzie et al. 2002).  The recent increase of occupancy studies relying on binary presence-

absence data is due in part to the ease at which this type of data can be collected in the field 

while still allowing for explicit discrimination of biological hypotheses and full investigation of 

process dynamics (MacKenzie et al. 2006).  Although the theory supporting occupancy 

estimation is sound, often the greatest resistance to the use of occupancy modeling is the 

complications arising when designing and implementing such approaches.  The amount and 

allocation of effort needed to survey many sites over a large scale and the necessity of spatial 

and/or temporal replication (required to estimate detection probability) can sometimes be 

challenging (MacKenzie and Royle 2005; Bailey et al. 2007).  These challenges become more 

significant and often magnified when dealing with rare species (MacKenzie et al. 2005). 

Rare species are usually of great concern to managers and conservationists because there 

is little information about relevant demographic state variables and how they respond to 

environmental perturbation (including human induced changes), and they are ultimately at higher 

risk (Thompson 2004).  In general sampling is difficult because these animals are often hard to 

observe or capture, occur in low numbers and are patchily distributed (Thompson 2004).  

Difficulties arise when designing surveys for rare species because obtaining adequate 

information to be used in analysis can be demanding.  Often a very large proportion of zeros or 
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non-detections exist in the dataset creating problems not only with parameter estimation (few 

data, convergence issues) and the interpretation of non-detections as true absences (Martin et al. 

2005), but result in wasted field effort and squandered resources.   

Recently there has been an increase in studies focusing on the implementation and 

logistical constraints imposed when collecting occupancy-type data, with much of this effort 

concentrated on designing efficient surveys.  MacKenzie and Royle (2005) explored the optimal 

number of sites to survey and repeat visits to each site along with investigating different methods 

of sampling (i.e., double sampling, removal sampling or a standard design) and their relative 

efficiency, Guillera-Arroita et al. (2010) incorporated the precision of the estimated detection 

parameters into the optimality of the design and Field et al. (2005) evaluated the statistical power 

for alternative survey designs to detect a decline in occupancy over a 3-yr. period when false-

negative errors (imperfect detection) were present.    

One area of research that has received little attention is the efficient allocation and 

distribution of effort for occupancy surveys.  Often managers and conservationists want to 

maximize the amount of information gained with each survey especially when working with rare 

or endangered species where severe logistical and financial constraints exist (Wilson et al. 2006).  

Frequently, rare species are found in spatially correlated patches (Prendergast et al. 1993) and 

thus a more efficient use of resources would be to allocate additional effort to these areas in an 

attempt to increase the amount of information collected.  An adaptive design that permits 

reallocation of effort towards areas of higher occupancy would provide the following benefits, 1) 

identify hotspots or clusters of individuals, 2) result in more information collected via more 

positive detections, and 3) be a more economical use of resources.   
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Here we provide a two-phase framework for adaptive reallocation of effort in occupancy 

studies.  In the first phase a simple random sample is taken and occupancy probability is 

estimated and predicted at non-sampled locations as a function of habitat covariates thought to 

influence occupancy.  The predicted occupancy probabilities at non-sampled locations then form 

the inclusion probabilities for the second phase of sampling.  Thus in the second phase additional 

locations are sampled relative to their predicted occupancy probability.  Locations with a high 

predicted probability of occupancy have a higher probability of inclusion such that once a “good 

quality” habitat is found (i.e., sampled) predicted probability of occurrence will be higher and 

effort will be more concentrated in these habitats.   We compare this adaptive strategy for effort 

allocation to traditional simple-random-sampling used in single-season occupancy estimation.  

We develop an intuitive measure of error and use simulations to assess the overall error rate and 

predictive ability of the two methods.  We show that our new adaptive approach is highly robust 

outperforming the traditional approach in almost every scenario.  Even in the worst cases our 

approach results in similar error rates to those that are found when using the traditional simple-

random-sampling single-season occupancy approach. 

Methods 

 We describe a two-phase sampling protocol that permits informed allocation of effort.  

Our framework for adaptation is predicated on two important premises: 1) that variation in 

occurrence is associated with spatially varying habitat information such that interest lies in 

examining the relationship between a covariate or suite of covariates and their influence on 

occupancy, and 2) the availability of fully observable covariate information throughout the study 

area obtained through possibly remotely-sensed data (e.g., GIS).  In addition we assume that 

although there is interest in the relationship between specific habitat covariates and occurrence, 
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this relationship is not completely understood or quantified before the study.  For example there 

are often a suite of covariates believed to influence occurrence and possibly explain spatial 

heterogeneity, but the specific habitat covariates as well as the direction and magnitude of 

influence is not necessarily known.   

Two-phase sampling approach 

The first phase of our approach is the traditional single-season occupancy model as 

described by MacKenzie et al. (2006) in which a simple random sample of size n1 is taken from 

N sites.  On each of the i = 1…n1 sites J Bernoulli detection samples are taken resulting in yi = 0, 

1, 2, …, Ji detections per site.  A simple model for estimating occupancy is thus: 

,௜ݖ|௜ݕ ,ܬሺ݈ܽ݅݉݋݊݅ܤ	~	݌  ሻ݌௜ݖ

 ሺ߰ሻ݈݈݅ݑ݋݊ݎ݁ܤ	~	߰|௜ݖ

Where zi is the underlying latent occupancy state at site i, i=1,…n1, p is the probability of 

detection which we can assume to be constant across sites and visits, J is the number of repeat 

visits to an individual site and ψ is the probability of occupancy.  Variation in occupancy 

probability can be modeled as a function of site-specific covariates thus inducing heterogeneity 

across the different locations in the study area.  To do so we can use a logit-linear model with 

site-specific habitat covariates xi, influencing ψi: 

ሺ߰௜ሻݐ݅݃݋݈ ൌ ଴ߚ	 ൅	ߚଵ ∗  ௜                                                      (3.1)ݔ

Here we will focus on only one covariate influencing occupancy, but our approach can be 

expanded to accommodate multiple covariates such that: 

ሺ߰௜ሻݐ݅݃݋݈ ൌ ଴ߚ	 ൅	ߚଵ ∗ ଵ௜ݔ ൅ ଶߚ ∗ ଶ௜ݔ ൅ ⋯൅ ௞ߚ ∗  ௞௜                              (3.2)ݔ
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Under conditional independence among sites the marginal or integrated likelihood for the 

observations (integrating out the latent process variable zi) is 

Pr൫ݕଵ, ,ଶݕ … , ௡భ൯ݕ ൌ 	ෑPrሺݕ௜|߰௜, ሻ݌

௡భ

௜ୀଵ

 

ൌ	∏ ቀ ௃௬೔ቁ௜:௬೔வ଴ ߰௜݌௬೔ሺ1 െ ሻ௃ି௬೔݌ 	∏ ߰௜ሺ1 െ ሻ௃݌ ൅ ሺ1 െ ߰௜ሻ௜:௬೔ୀ଴                    (3.3) 

This is often referred to as a zero-inflated binomial (ZIB) distribution because it is a mixture of a 

binomial distribution and a point-mass at zero.  Estimation is done through maximizing the 

above likelihood providing parameter estimates for p and the βks which establishes a quantifiable 

relationship between occurrence, ψi and site-specific covariates, xi.    

The estimated relationship between occurrence and site-specific covariates is used to 

inform the next phase of sampling.  We first predict occupancy probability at the remaining non-

sampled locations relying on the assumption that covariates are fully observable at all locations 

within the study area.  Define m as the remaining non-sampled locations such that m = N – n1 

and ߰ఫ෪ as the predicted probability of occurrence at site j, j = 1…m with observable covariate xj 

such that: 

߰ఫ෪ ൌ
ୣ୶୮	ሺఉబ෢ାఉభ෢∗௫ೕሻ

ଵା	ୣ୶୮	ሺఉబ෢ାఉభ෢∗௫ೕሻ
.                                                (3.4) 

We next calculate the probability of inclusion for each site j as: 

௝ߨ ൌ
టണ෪

∑ టണ෪
೘
ೕసభ

                                              (3.5) 
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The second phase of sampling consists of selecting a sample size n2 from the remaining m sites 

where each site j has the associated weight πj.  Estimation of the associated parameters p and the 

βks is then done by maximizing the likelihood using the augmented data (n1 + n2).   

Proportion of Area Occupied or Finite-Sample Estimation 

We are particularly interested in providing support and guidance for studies involving 

rare or endangered species where interest lies in making sound inference about a local population 

(finite-sample).  Therefore we focus on the setting where our geographic extent consists of a 

finite number of sites and we want to predict the proportion of total sites that are occupied 

(proportion of area occupied, PAO) or the finite-sample occupancy rate as opposed to the 

occurrence probability associated with a theoretically infinite population from which a selection 

of sites has been sampled (Royle and Dorazio 2008).  This is a trivial calculation when using 

Bayesian estimation, where we can sum up the latent occupancy states, zi directly: 

߰௙௦ ൌ ଵ

௡
∑ ௜ݖ
௡
௜ୀଵ , where “fs” is for finite sample.  However it is not so trivial when using 

maximum likelihood estimation.  One approach suggested by Royle and Dorazio (2008) is to 

expand the ZIB likelihood to include a new parameter for the total number of occupied sites, Ntot 

and estimate it directly.  This results in a joint likelihood based on the trinomial distribution for 

the three parameters ψ, p, and Ntot: 

,ሺ߰ܮ ,݌ ܰ௧௢௧|࢟, ܰ, ݊ሻ ൌ ቂ ே೟೚೟!

ሺே೟೚೟ି௡ሻ!
∑݌ ௬೔

೙
೔సభ ሺ1 െ ∑ሻ௃∗ேି݌ ௬೔

೙
೔సభ ቃ x 

ቂ ே!

ே೟೚೟!ሺேିே೟೚೟ሻ!
߰ே೟೚೟ሺ1 െ ߰ሻேିே

೟೚೟
ቃ. 

The joint likelihood can be maximized to obtain estimates of the three parameters ψ, p, and Ntot.   
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We chose to use a slightly different approach, wherein we work directly with the latent 

states zi, and the probability of occupancy at each site.  It is therefore necessary to differentiate 

among three different types of sites: 1) those that were sampled and a detection occurred, 2) 

those that were sampled and no detections occurred, and 3) those that were not sampled.  For the 

first type of site we know that the underlying latent occupancy state z = 1 because a detection 

occurred.  The second type of site could result from either the site being unoccupied or the site 

being occupied but no detections occurred.  We can show this probabilistically using Bayes rule: 

Prሺݖ௜|ݕ௜ ൌ 0ሻ ൌ టሺଵି௣ሻ಻

టሺଵି௣ሻ಻ାሺଵିటሻ
,                                             (3.6) 

where ߰ ൌ ୣ୶୮	ሺఉబ෢ାఉభ෢∗௫೔ሻ

ଵା	ୣ୶୮	ሺఉబ෢ାఉభ෢∗௫೔ሻ
 for the ith site.  The third type of site is simply a prediction to a non-

sampled location j, given a new covariate value and estimates of the βs so that the probability of 

occupancy ߰ఫ෪, is (Eq. 4): 

߰ఫ෪ ൌ
ୣ୶୮	ሺఉబ෢ାఉభ෢∗௫ೕሻ

ଵା	ୣ୶୮	ሺఉబ෢ାఉభ෢∗௫ೕሻ
.                                     (3.4) 

We can calculate an estimate of Ntot by summing up all of the different probabilities at each of 

the three different types of sites: 

ܰ௧௢௧ ൌ ∑ ሼPrሺݖ௜ ൌ ௜ݕ|1 ൐ 1, ௜ሻݔ ൅ Prሺݖ௜|ݕ௜ ൌ 0, ௜ሻݔ ൅ Pr	ሺݖ௝|ݔ௝ሻሽே .               (3.7) 

 Note that this approach is similar to the Bayesian approach because we are summing up the 

latent states, but by working directly with the probabilities we avoid a second layer of stochastic 

variation because we do not calculate the zis directly (1s or 0s from a Bernoulli trial).   
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Predictive ability and error rate 

 We develop a measure of predictive ability to compare our new two-phase approach with 

the traditional single-season approach.  We define the following test statistic, d, to quantity the 

lack of fit.  Let N = the total number of sites in the sampling frame, xi be the observable covariate 

for site i and let zi be the true latent state of the ith site while ݖప෥  is the estimated/predicted latent 

occupancy state (from above).  Note that Prሺݖ௜ ൌ 1|߰ሻ ൌ ߰	and Prሺݖ௜ ൌ 0|߰ሻ ൌ 1 െ ߰.  Next 

define the following: 

ଵଵݐ ൌ ∑ Prሺݖప෥ ൌ ,௜ݔ	|	1 ௜ሻݕ ∗ ௜ݖሺܫ ൌ 1ሻே
௜ୀଵ                                        (3.8) 

ଵ଴ݐ ൌ ∑ Prሺݖప෥ ൌ ,௜ݔ	|	1 ௜ሻݕ ∗ ௜ݖሺܫ ൌ 0ሻே
௜ୀଵ                                        (3.9) 

଴ଵݐ ൌ ∑ Prሺݖప෥ ൌ ,௜ݔ	|	0 ௜ሻݕ ∗ ௜ݖሺܫ ൌ 1ሻே
௜ୀଵ                                      (3.10) 

଴଴ݐ ൌ ∑ Prሺݖప෥ ൌ ,௜ݔ	|	0 ௜ሻݕ ∗ ௜ݖሺܫ ൌ 0ሻே
௜ୀଵ .                                    (3.11) 

Note that the I() is the indicator argument taking the value of 1 if the argument is true and 0 

otherwise.  Because we are interested in the lack of fit we can define the following test statistic: 

݀ ൌ ଵ଴ݐ ൅  ଴ଵ                                                               (3.12)ݐ

such that  

݀	 ൌ෍Prሺݖప෥ ൌ ,௜ݔ	|	1 ௜ሻݕ ∗ ௜ݖሺܫ ൌ 0ሻ
ே

௜ୀଵ

൅෍Prሺݖప෥ ൌ 0	| ,௜ݔ ௜ሻݕ ∗ ௜ݖሺܫ ൌ 1ሻ

ே

௜ୀଵ

 

ൌ ∑ Prሺݖప෥ ൌ ,௜ݔ	|	1 ௜ሻݕ ∗ ௜ݖሺܫ ൌ 0ሻே
௜ୀଵ ൅ ∑ ሾ1 െ Prሺݖప෥ ൌ ,௜ݔ	|	1 ௜ሻሿݕ ∗ ௜ݖሺܫ ൌ 1ሻே

௜ୀଵ .     (3.13) 

Again we need to differentiate among the three different types of sites, 1) sites where a detection 

occurred: 

Prሺݖప෥ ൌ ,௜ݔ	|	1 ௜ݕ ൐ 0ሻ ൌ 1,                                                     (3.14) 
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2) sites that were sampled, but no detection occurred: 

Prሺݖప෥ ൌ 1	| ,௜ݔ ௜ݕ ൌ 0ሻ ൌ 	 ట෡ሺଵି௣ොሻ಻

ట෡ሺଵି௣ොሻ಻ାଵିట෡
,                                         (3.15) 

 

and, 3) sites that were not sampled: 

Prሺݖప෥ ൌ ௜ሻݔ	|	1 ൌ 	 ෠߰.                                                             (3.16) 

Simulations 

 We used simulations to compare our two-phase approach with the traditional single-

season occupancy approach under a range of known patterns in occupancy and design criteria.  

We were interested in exploring the usefulness of our design when patterns in occupancy are 

spatially correlated through the use of habitat covariates and overall occupancy rate is relatively 

low.  We therefore created three different habitat types with varying degrees of spatial 

correlation on a 20 x 20 grid (Figure 3.1).  The first consisted of three blocks of habitat: low, 

medium, and high quality with a small amount of random noise added (standard normal deviate) 

to each block.  We considered habitat 1 as an example of extreme spatial correlation.  The 

second type of habitat was generated using a Matérn cluster process (Matérn 1986; Møller and 

Waagepetersen 2003; Baddeley and Turner 2005).  The Matérn cluster process is a doubly-

stochastic or two-stage model for point generation and consists of first defining a parent Poisson 

process with some mean intensity κ.  Next, within a radius r of each parent process a second 

Poisson process with mean μ is generated.  This creates a clustering of points around each of the 

parents with a fine scale of control to manipulate the amount and degree of clustering.  We used 

this to generate spatially correlated habitat by defining κ = 0.09, r = 2.3, and μ = 22.  We 

considered habitat 2 as an example of moderate spatial correlation.  The third habitat type had no 

spatial correlation and was generated as completely random.  The true occupancy rates for each 
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habitat were calculated by specifying a logit-linear model with the simulated habitat covariates 

(Eq. 1): 

ሺ߰௜ሻݐ݅݃݋݈ ൌ ଴ߚ ൅ ଵߚ ∗ ௜ݔ ൅  ,ߝ	

where xi is the habitat covariate at each site, ε ~ N(0,1) and we fixed β0 = -2 and β1 = 2.  A 

second set of habitats were created that were identical to the first three habitats except we set β1 

= 0 to mimic the situation when the proposed covariate has no effect on occupancy (Figure 3.1).        

 To explore the new approach under different design criteria we varied the overall 

detection probability p (0.25, 0.5, or 0.75), the number of repeat visits to a site J (3, 5), and the 

overall sample size.  We fixed the sample size n for the traditional single-season occupancy 

model (100 or 200) and then varied the proportion allocated to either the first or second phase of 

sampling for the two-phase approach (25%, 50%, or 75% to the first phase).  We generated 1000 

synthetic data sets for each of the combinations of parameters and habitat structures.  We 

explored the overall error rate as calculated by the test statistic d along with bias and mean-

squared error for the parameters p, β0, β1, and Ntot (the total number of occupied sites out of the 

400 sites).  All simulations and analysis were done using the software package R v. 2.12 (R 

Development Core Team 2010) and all code is provided in Appendix A. 

Results 

 We present selected results and the remainder of the results can be found in Appendix B.  

The true occupancy rate for the three different habitats ranged from 0.33 to 0.39.  The overall 

error rate regardless of sampling approach decreased as sample size increased and as detection 

probability increased.  There was little effect of increasing the number of repeat visits (J) on the 

overall error rate.  Allocating 25% to the first phase of sampling for the two-phase approach 
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resulted in the lowest overall error rate and the difference was the largest between the two 

approaches in Habitat 1 (Figures 3.2 and 3.3, Appendix B).  In an environment with extreme 

spatial correlation (Habitat 1) the gain in predictive ability for the two-phase approach was most 

noticeable when detection probability was low (0.25) and 25% of the sample size was allocated 

to the first phase of sampling.  In an environment with moderate spatial correlation (Habitat 2) 

there was little improvement for the two-phase approach compared to the traditional single-

season occupancy approach regardless of the sample size and detection probability (Figures 3.2 

and 3.3, Appendix B).  In the random habitat with no simulated spatial correlation (Habitat 3) the 

two-phase approach outperformed the traditional single-season occupancy approach under most 

circumstances (Figures 3.2 and 3.3, Appendix B).  The greatest difference between the two 

approaches in Habitat 3 was when the overall sample size was 200 and detection probability was 

high (0.75).  When there was no simulated effect of habitat on occupancy, the two approaches 

had very similar overall error rates which were much higher relative to the scenarios with a 

simulated effect of habitat on occupancy (Figure 3.4, Appendix B). 

The overall distributions of estimates for the total number of occupied sites, Ntot, were 

very similar for the two approaches (Figure 3.5, Appendix B).  The two-phase approach had a 

tighter distribution around the true value for lower sample size (n=100), but this effect was 

generally non-existent when the sample size increased (Figure 3.5, Appendix B).  This effect was 

most noticeable when 50% of the sample size was allocated to each phase of sampling although 

this was highly variable and depended on the habitat (Appendix B). 

The overall bias and mean-squared error (MSE) tended to decrease for both approaches 

as sample size, number of repeat visits, and detection probability all increased (Tables 3.1-3.4, 

Appendix B).  When estimating Ntot , Bias and MSE were lowest when using the two-phase 
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approach with either 25% or 50% allocated to the first phase of sampling regardless of the 

sample size, habitat, or detection probability.  Estimation in habitat 1 resulted in the lowest bias 

and MSE for both approaches.  Bias in estimating Ntot was generally positive for the traditional 

single-season occupancy approach and generally negative for the two-phase approach.  Overall 

estimation of detection probability, p, was very accurate regardless of the approach or habitat 

(Appendix B).  Both approaches did a better job of estimating β1 than β0 from the logit-linear 

model describing occupancy (Tables 3.3 and 3.4), but there was little difference between the two 

approaches. 

Discussion 

Our goal is to provide a logical and coherent approach to adaptively allocating resources 

to improve the predictive ability of occupancy modeling and estimation.  We found that our two-

phase sampling approach has the potential to reduce the overall error rate by a large amount 

under certain scenarios.  When spatial correlation was extreme or when there was no spatial 

correlation, we found our approach to be an improvement over the traditional simple-random-

sampling involved with the single-season occupancy approach although we found no benefit of 

the two-phase approach when there was only moderate spatial correlation.  This suggests that the 

benefit is highly dependent upon the structure of the habitat and the amount and type of spatial 

correlation.   Fortunately, our new approach did not result in consistently higher error rates under 

any circumstance.  This provides evidence that the approach is fairly robust to a broad range of 

conditions and design factors and merits use under a wide variety of settings.  Under the worst 

case scenarios the two-phase approach resulted in similar error rates as the traditional single-

season occupancy model with simple-random-sampling. 
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Although we explored the merit of our approach under a range of conditions and design 

criteria we kept total occupancy rate relatively low.  As the occupancy rate increases we posit 

that the overall benefit of this approach may decrease under certain conditions.  If the overall 

occupancy rate is high, we believe a simple-random-sample will do a sufficient job of estimating 

occupancy and reallocating effort will likely not improve the overall error rate.  We therefore see 

our method as being most applicable for studies of rare species that tend to cluster or aggregate 

across the landscape making sampling difficult (Thompson 2004). 

Our approach is dependent upon the availability of covariate information across the entire 

landscape.  Although this initially may seem restrictive we believe that such information is 

readily available for a wide range of locations.  Remotely-sensed data is becoming increasingly 

more available and several recent studies show the diversity of questions that involve remotely-

sensed data.  These include the assessment of gene flow and genetic differentiation (Weigel et al. 

2003; Alberto et al. 2010), determining the influence of stream characteristics on introgression in 

trout (Bennett et al. 2010), evaluating the efficacy of marine protected areas (Friedlander et al. 

2007), predicting species distributions (Raxworthy et al. 2003, Spens et al. 2007), and mapping 

species’ habitat (Rotenberry et al. 2006).  This suggests that there is available geographic 

information across a diverse set of landscapes and therefore we do not see the requirement of 

available covariate information throughout the study area as restricting the utility of our 

approach.   

Our simulations suggest that approximately 25% of the total sample size should be 

allocated to the first phase of sampling.  This design resulted in the greatest improvement over 

the traditional approach under a wide range of conditions.  Not only is this potentially useful for 

reallocating effort, it is also easy to implement because many studies begin with a pilot study in 



69 
 

which a small number of sites are surveyed.  The use of a pilot study can not only provide 

information about required sample sizes to meet a predetermined level of precision, but by using 

our approach it can provide a more efficient use of resources.  The reallocation of effort to areas 

where more individuals exist can increase the information content of the sample thus improving 

the overall knowledge about the system of interest.  This can often lead to a reduction of 

uncertainty which can inform the potential conservation actions that must be initiated with 

limited resources (McDonald-Madden et al. 2008). 

 There has been an increase in the awareness and utility of incorporating decision making 

into conservation and natural resource management (Possingham 1997; Conroy et al. 2002; 

Williams et al. 2002; Dorazio and Johnson 2003; Nichols and Williams 2006; Martin et al. 2009; 

McDonald-Madden 2010; Conroy et al. 2011) although much of the literature has focused on 

implementing insulated decisions that involve manipulating or eliciting a response from the 

species of interest.  We believe our framework further advances the marriage of monitoring, 

decision making and conservation/management by integrating scientific objectives with the 

decisions necessary to allocate resources.  Although decisions that elicit a direct response of the 

system are the most rewarding there are also a set of important decisions regarding study design 

and allocation of resources.  Other authors have found that study design can have a significant 

effect on parameter estimation and inference (Bailey et al. 2007; MacKenzie and Royle 2005; 

Guillera-Arroita et al. 2010) thus influencing the decisions to be made.  Therefore decisions 

about study design should be included in objective-driven science or management creating a 

more robust set of available decision alternatives to be implemented.    

Our approach provides a framework that facilitates explicitly defining and stating a priori 

hypotheses about habitat-occupancy relationships before the study starts.  It forces 
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biologists/ecologists and natural resource managers to clearly define such relationships which are 

often based on prior information regarding the distribution and spatial variation of individual 

species.  This in turn provides a mechanism for listing competing models which describe 

variation in occupancy and allows for the exploration of these relationships during the first phase 

of our approach.  The second phase provides guidance on effectively concentrating resources to 

the information richest locations thus forming a focused monitoring effort for conservation 

which can be more effective (Nichols and Williams 2006).  In addition the two phase approach 

permits the integration of a priori information into the study in a natural and coherent manner.   

We believe our two-phase approach provides a structured and coherent framework 

allowing for a more effective use of resources for a wide variety of occupancy based studies.  

Our approach places a premium on clearly defining objectives and biological hypotheses before 

a study begins thus echoing others who have stressed the importance of objective-driven science 

and management (Yoccoz et al. 2001).  In addition our approach forces biologists/ecologists and 

natural resource managers to acknowledge the fundamental constraints limiting available 

resources by potentially incorporating design criteria into decision making.  Not only does this 

bring attention to the usefulness of conservation planning, in addition, the adaptive phase of 

reallocation can potentially concentrate resources to obtain the highest conservation value per 

unit of effort.    
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Figure 3.1.  Habitat covariates (row 1) and associated occupancy data (rows 2 and 3) for three 

different types of simulated environments.  The first habitat represents extreme spatial 

correlation, the second habitat represents moderate spatial correlation and the third habitat was 

generated randomly and contains no spatial correlation.  The true occupancy rates for each 

habitat (rows 2 and 3) were calculated by specifying a logit-linear model with the simulated 

habitat covariates with the slope in the equation equal to 2 (row 2) or 0 (row 3; mimics no habitat 

effect on occupancy).  Lighter colors represent higher quality habitat for row 1 and occupied for 

rows 2 and 3.   
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Figure 3.2.  Plots of test statistic and associated quartiles (25% and 75%) measuring lack of fit 

(lower is better) for two-phase adaptive approach (circles) and traditional single-season 

occupancy approach (squares) when n=100, J=3, and for three different levels of detection, 

p=0.25, 0.5, 0.75.  X-axis represents proportion of sample allocated to phase one for the two-

phase adaptive approach.  Habitat 1 is a simulated habitat with extreme spatial correlation while 

habitat 2 has moderate spatial correlation and habitat 3 is randomly generated and contains no 

spatial correlation.   
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Figure 3.3.  Plots of test statistic and associated quartiles (25% and 75%) measuring lack of fit 

(lower is better) for two-phase adaptive approach (circles) and traditional single-season 

occupancy approach (squares) when n=200, J=3, and for three different levels of detection, 

p=0.25, 0.5, 0.75.  X-axis represents proportion of sample allocated to phase one for the two-

phase adaptive approach.  Habitat 1 is a simulated habitat with extreme spatial correlation while 

habitat 2 has moderate spatial correlation and habitat 3 is randomly generated and contains no 

spatial correlation.   
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Figure 3.4.  Plots of test statistic and associated quartiles (25% and 75%) measuring lack of fit 

(lower is better) for two-phase adaptive approach (circles) and traditional single-season 

occupancy approach (squares) when there is no simulated relationship between habitat and 

occupancy for n=100, J=3, and for three different levels of detection, p=0.25, 0.5, 0.75.  X-axis 

represents proportion of sample allocated to phase one for the two-phase adaptive approach.  

Habitat 1 is a simulated habitat with extreme spatial correlation while habitat 2 has moderate 

spatial correlation and habitat 3 is randomly generated and contains no spatial correlation.   
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Figure 3.5.  Distribution from 1000 simulations of the estimates of Ntot for the two-phase 

adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 1 (extreme spatial correlation, see text for more 

details) with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.25.  

Percent allocation refers to the percentage of the total sample size, n, allocated to the first phase 

of sampling for the two-phase adaptive approach.  The dotted line represents the true value of 

Ntot.  
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Table 3.1.  Average value from 1000 simulations of test statistic measuring lack of fit, d, test 

statistic measuring goodness of fit, GOF, estimate of Ntot, ࢚࢕࢚ࡺ෢ ,	bias associated in estimating Ntot, 

and mean-squared-error, MSE, associated with estimating Ntot.  Ntot represents the true value of 

the total number of sites occupied out of 400.  n1 and n2 represent the sample size at each phase 

of sampling.  n2 = 0 represents the traditional single-season occupancy approach.  Habitat 

represents three different habitats with varying degrees of spatial correlation (1-extreme spatial 

correlation, 2-moderate spatial correlation, 3-no spatial correlation). 

n1 n2 p Habitat d GOF ࢚࢕࢚ࡺ෢  Bias 
෢࢚࢕࢚ࡺ  

MSE 	
෢࢚࢕࢚ࡺ  

Ntot 

100 0 0.25 1 114.755 285.245 150.480 5.340 1407.308 145.140

100 0 0.5 1 102.159 297.841 147.745 2.605 320.458 145.140

100 0 0.75 1 95.062 304.938 147.913 2.773 218.215 145.140

25 75 0.25 1 107.554 292.446 140.491 -4.649 1314.674 145.140

25 75 0.5 1 95.307 304.693 142.073 -3.066 409.661 145.140

25 75 0.75 1 87.063 312.937 141.484 -3.655 305.384 145.140

50 50 0.25 1 111.088 288.912 144.188 -0.952 1035.041 145.140

50 50 0.5 1 98.113 301.887 146.220 1.080 310.262 145.140

50 50 0.75 1 90.353 309.647 146.240 1.100 201.638 145.140

75 25 0.25 1 113.701 286.299 145.722 0.582 1206.157 145.140

75 25 0.5 1 100.375 299.625 147.991 2.852 295.876 145.140

75 25 0.75 1 92.861 307.139 147.135 1.995 201.181 145.140

100 0 0.25 2 129.117 270.883 149.873 8.873 2032.738 141.000

100 0 0.5 2 114.089 285.911 142.655 1.655 366.643 141.000
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100 0 0.75 2 106.980 293.020 141.005 0.005 214.669 141.000

25 75 0.25 2 124.113 275.887 139.564 -1.436 1541.001 141.000

25 75 0.5 2 111.311 288.689 139.684 -1.316 418.092 141.000

25 75 0.75 2 103.762 296.238 139.074 -1.926 272.805 141.000

50 50 0.25 2 127.072 272.928 146.771 5.771 1773.656 141.000

50 50 0.5 2 112.168 287.832 141.025 0.025 331.710 141.000

50 50 0.75 2 105.305 294.695 140.119 -0.881 227.736 141.000

75 25 0.25 2 127.516 272.484 146.480 5.480 1584.779 141.000

75 25 0.5 2 113.423 286.577 141.053 0.053 313.394 141.000

75 25 0.75 2 105.973 294.027 140.368 -0.632 218.706 141.000

100 0 0.25 3 121.151 278.849 157.188 12.976 2044.173 144.211

100 0 0.5 3 108.290 291.710 151.054 6.843 462.077 144.211

100 0 0.75 3 101.308 298.692 149.554 5.342 244.966 144.211

25 75 0.25 3 116.458 283.542 152.960 8.749 1607.953 144.211

25 75 0.5 3 104.595 295.405 148.170 3.959 354.152 144.211

25 75 0.75 3 96.273 303.727 147.198 2.987 236.908 144.211

50 50 0.25 3 118.334 281.666 155.361 11.150 1593.905 144.211

50 50 0.5 3 106.114 293.886 149.212 5.000 369.732 144.211

50 50 0.75 3 98.096 301.904 147.857 3.646 212.632 144.211

75 25 0.25 3 120.279 279.721 158.513 14.302 1877.900 144.211

75 25 0.5 3 107.152 292.848 149.964 5.753 351.897 144.211

75 25 0.75 3 99.690 300.310 149.013 4.802 225.244 144.211
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Table 3.2.  Average value from 1000 simulations of test statistic measuring lack of fit, d, test 

statistic measuring goodness of fit, GOF, estimate of Ntot,  ࢚࢕࢚ࡺ෢ , bias associated in estimating 

Ntot, and mean-squared-error, MSE, associated with estimating Ntot.  Ntot represents the true value 

of the total number of sites occupied out of 400.  n1 and n2 represent the sample size at each 

phase of sampling.  n2 = 0 represents the traditional single-season occupancy approach.  Habitat 

represents three different habitats with varying degrees of spatial correlation (1-extreme spatial 

correlation, 2-moderate spatial correlation, 3-no spatial correlation). 

n1 n2 p Habitat d GOF ࢚࢕࢚ࡺ෢  Bias 
෢࢚࢕࢚ࡺ  

MSE 	
෢࢚࢕࢚ࡺ  

Ntot 

200 0 0.25 1 103.380 296.620 156.644 0.977 998.222 155.667

200 0 0.5 1 80.143 319.857 148.410 -7.257 197.677 155.667

200 0 0.75 1 66.856 333.144 147.750 -7.917 134.989 155.667

50 150 0.25 1 101.870 298.130 155.348 -0.319 859.942 155.667

50 150 0.5 1 74.834 325.166 148.241 -7.426 185.475 155.667

50 150 0.75 1 58.440 341.560 148.144 -7.523 126.438 155.667

100 100 0.25 1 102.566 297.434 155.041 -0.626 908.924 155.667

100 100 0.5 1 76.823 323.177 147.958 -7.709 179.998 155.667

100 100 0.75 1 61.024 338.976 147.128 -8.539 138.919 155.667

150 50 0.25 1 103.795 296.205 156.860 1.194 1108.037 155.667

150 50 0.5 1 78.430 321.570 148.429 -7.238 186.988 155.667

150 50 0.75 1 63.884 336.116 147.245 -8.421 138.432 155.667

200 0 0.25 2 112.331 287.669 148.367 5.367 912.685 143.000

200 0 0.5 2 86.082 313.918 143.285 0.285 157.894 143.000
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200 0 0.75 2 73.242 326.758 143.263 0.263 78.417 143.000

50 150 0.25 2 111.983 288.017 146.835 3.835 1022.134 143.000

50 150 0.5 2 84.731 315.269 143.027 0.027 126.740 143.000

50 150 0.75 2 70.290 329.710 143.038 0.038 80.748 143.000

100 100 0.25 2 112.390 287.610 146.105 3.105 876.839 143.000

100 100 0.5 2 85.803 314.197 143.414 0.414 138.902 143.000

100 100 0.75 2 71.421 328.579 142.920 -0.080 80.428 143.000

150 50 0.25 2 112.167 287.833 145.877 2.877 756.609 143.000

150 50 0.5 2 85.981 314.019 142.878 -0.122 141.002 143.000

150 50 0.75 2 72.336 327.664 143.227 0.227 78.675 143.000

200 0 0.25 3 102.148 297.852 141.142 -9.541 949.983 150.682

200 0 0.5 3 78.291 321.709 134.026 -16.656 412.159 150.682

200 0 0.75 3 66.029 333.971 133.620 -17.063 361.748 150.682

50 150 0.25 3 98.022 301.978 135.821 -14.862 831.152 150.682

50 150 0.5 3 70.565 329.435 133.313 -17.370 408.793 150.682

50 150 0.75 3 54.980 345.020 132.493 -18.189 389.696 150.682

100 100 0.25 3 99.413 300.587 136.957 -13.726 776.537 150.682

100 100 0.5 3 73.198 326.802 133.335 -17.347 417.079 150.682

100 100 0.75 3 58.192 341.808 132.519 -18.163 390.058 150.682

150 50 0.25 3 100.779 299.221 139.387 -11.296 909.738 150.682

150 50 0.5 3 75.740 324.260 133.412 -17.270 411.439 150.682

150 50 0.75 3 62.053 337.947 132.916 -17.767 381.537 150.682
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Table 3.3.  Average value from 1000 simulations for estimates of coefficients in the logit-linear 

model for occupancy probability, ࢼ૙෢  and ࢼ૚෢ , along with average bias and mean-squared-error 

(MSE).  n1 and n2 represent the sample size at each phase of sampling.  n2 = 0 represents the 

traditional single-season occupancy approach.  Habitat represents three different habitats with 

varying degrees of spatial correlation (1-extreme spatial correlation, 2-moderate spatial 

correlation, 3-no spatial correlation). 

 

n1 n2 p Habitat ࢼ૙෢  
Bias 
૙෢ࢼ  

MSE 
૙෢ࢼ  

૚෢ࢼ  
Bias 	
૚෢ࢼ  

MSE 
૚෢ࢼ  

100 0 0.25 1 -0.734 1.266 3.034 2.016 0.016 6.456 

100 0 0.5 1 -0.835 1.165 1.461 1.527 -0.473 0.370 

100 0 0.75 1 -0.843 1.157 1.421 1.553 -0.447 0.302 

25 75 0.25 1 -3.148 -1.148 41.485 4.090 2.090 42.623 

25 75 0.5 1 -1.482 0.518 8.417 2.131 0.131 5.417 

25 75 0.75 1 -1.496 0.504 9.969 2.113 0.113 6.292 

50 50 0.25 1 -1.327 0.673 8.549 2.365 0.365 11.155 

50 50 0.5 1 -0.953 1.047 1.431 1.698 -0.302 0.405 

50 50 0.75 1 -0.933 1.067 1.287 1.668 -0.332 0.256 

75 25 0.25 1 -0.909 1.091 4.774 2.061 0.061 7.362 

75 25 0.5 1 -0.859 1.141 1.418 1.604 -0.396 0.645 

75 25 0.75 1 -0.881 1.119 1.355 1.598 -0.402 0.271 

100 0 0.25 2 -0.397 1.603 5.441 1.767 -0.233 6.242 

100 0 0.5 2 -0.701 1.299 1.764 1.247 -0.753 0.690 

100 0 0.75 2 -0.728 1.272 1.665 1.245 -0.755 0.648 
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25 75 0.25 2 -1.164 0.836 6.062 2.516 0.516 15.251 

25 75 0.5 2 -0.790 1.210 1.613 1.361 -0.639 0.648 

25 75 0.75 2 -0.778 1.222 1.576 1.288 -0.712 0.598 

50 50 0.25 2 -0.514 1.486 5.930 2.142 0.142 10.294 

50 50 0.5 2 -0.747 1.253 1.659 1.306 -0.694 0.623 

50 50 0.75 2 -0.748 1.252 1.624 1.247 -0.753 0.644 

75 25 0.25 2 -0.572 1.428 3.413 1.706 -0.294 4.805 

75 25 0.5 2 -0.734 1.266 1.681 1.248 -0.752 0.704 

75 25 0.75 2 -0.742 1.258 1.635 1.255 -0.745 0.628 

100 0 0.25 3 0.046 2.046 32.855 3.769 1.769 133.278

100 0 0.5 3 -0.766 1.234 1.632 1.522 -0.478 0.406 

100 0 0.75 3 -0.784 1.216 1.541 1.480 -0.520 0.356 

25 75 0.25 3 -2.232 -0.232 65.776 6.486 4.486 301.096

25 75 0.5 3 -0.884 1.116 2.067 1.615 -0.385 1.111 

25 75 0.75 3 -0.852 1.148 1.432 1.524 -0.476 0.340 

50 50 0.25 3 -0.743 1.257 34.414 5.166 3.166 233.646

50 50 0.5 3 -0.819 1.181 1.526 1.543 -0.457 0.454 

50 50 0.75 3 -0.822 1.178 1.468 1.488 -0.512 0.349 

75 25 0.25 3 -0.338 1.662 19.262 3.444 1.444 93.541 

75 25 0.5 3 -0.788 1.212 1.564 1.524 -0.476 0.434 

75 25 0.75 3 -0.800 1.200 1.511 1.487 -0.513 0.362 
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Table 3.4.  Average value from 1000 simulations for estimates of coefficients in the logit-linear 

model for occupancy probability, ࢼ૙෢  and ࢼ૚෢ , along with average bias and mean-squared-error 

(MSE).  n1 and n2 represent the sample size at each phase of sampling.  n2 = 0 represents the 

traditional single-season occupancy approach.  Habitat represents three different habitats with 

varying degrees of spatial correlation (1-extreme spatial correlation, 2-moderate spatial 

correlation, 3-no spatial correlation). 

 

n1 n2 p Habitat ࢼ૙෢  
Bias 
૙෢ࢼ  

MSE 
૙෢ࢼ  

૚෢ࢼ  
Bias 	
૚෢ࢼ  

MSE 
૚෢ࢼ  

200 0 0.25 1 -0.630 1.370 2.305 1.870 -0.130 3.279 

200 0 0.5 1 -0.779 1.221 1.524 1.467 -0.533 0.327 

200 0 0.75 1 -0.782 1.218 1.502 1.434 -0.566 0.342 

50 150 0.25 1 -0.702 1.298 1.914 2.387 0.387 12.811 

50 150 0.5 1 -0.770 1.230 1.551 1.411 -0.589 0.390 

50 150 0.75 1 -0.765 1.235 1.551 1.383 -0.617 0.400 

100 100 0.25 1 -0.667 1.333 2.470 2.207 0.207 8.918 

100 100 0.5 1 -0.777 1.223 1.529 1.422 -0.578 0.373 

100 100 0.75 1 -0.786 1.214 1.497 1.404 -0.596 0.376 

150 50 0.25 1 -0.636 1.364 2.313 2.063 0.063 6.953 

150 50 0.5 1 -0.773 1.227 1.541 1.442 -0.558 0.351 

150 50 0.75 1 -0.790 1.210 1.486 1.427 -0.573 0.350 

200 0 0.25 2 -0.529 1.471 3.041 1.346 -0.654 0.802 

200 0 0.5 2 -0.647 1.353 1.863 1.215 -0.785 0.666 

200 0 0.75 2 -0.649 1.351 1.840 1.217 -0.783 0.637 
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50 150 0.25 2 -0.494 1.506 5.085 1.396 -0.604 1.399 

50 150 0.5 2 -0.655 1.345 1.835 1.220 -0.780 0.653 

50 150 0.75 2 -0.655 1.345 1.826 1.204 -0.796 0.653 

100 100 0.25 2 -0.475 1.525 7.555 1.356 -0.644 2.242 

100 100 0.5 2 -0.647 1.353 1.858 1.207 -0.793 0.672 

100 100 0.75 2 -0.656 1.344 1.824 1.204 -0.796 0.652 

150 50 0.25 2 -0.585 1.415 2.293 1.333 -0.667 0.718 

150 50 0.5 2 -0.655 1.345 1.838 1.221 -0.779 0.654 

150 50 0.75 2 -0.651 1.349 1.837 1.216 -0.784 0.635 

200 0 0.25 3 -0.773 1.227 8.451 2.046 0.046 50.721 

200 0 0.5 3 -1.007 0.993 1.019 1.463 -0.537 0.335 

200 0 0.75 3 -1.011 0.989 1.000 1.455 -0.545 0.325 

50 150 0.25 3 -1.055 0.945 1.151 1.710 -0.290 2.095 

50 150 0.5 3 -1.026 0.974 0.995 1.462 -0.538 0.341 

50 150 0.75 3 -1.026 0.974 0.979 1.435 -0.565 0.348 

100 100 0.25 3 -0.907 1.093 8.973 1.834 -0.166 26.199 

100 100 0.5 3 -1.027 0.973 0.990 1.471 -0.529 0.329 

100 100 0.75 3 -1.030 0.970 0.969 1.450 -0.550 0.330 

150 50 0.25 3 -0.919 1.081 1.836 1.866 -0.134 11.036 

150 50 0.5 3 -1.024 0.976 0.989 1.474 -0.526 0.326 

150 50 0.75 3 -1.019 0.981 0.987 1.442 -0.558 0.335 
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CHAPTER 4 

OCCUPANCY ESTIMATION WITHIN AN ADAPTIVE SAMPLING DESIGN: 
EVALUATION OF A BAYESIAN HIERARCHICAL MODEL FOR RARE OR ELUSIVE 

SPECIES1 

 

 

 

 

 

 

 

 

 

 

1Pacifici, K., R. M. Dorazio, and M. J. Conroy.  To be submitted to Ecological Applications. 
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Abstract 

Monitoring state variables of interest such as animal abundance, density or site-

occupancy rate is a critical component to many large scale and long-term conservation efforts.  

Often this information is very difficult to collect especially when working with rare or elusive 

species.  These species exhibit specific characteristics such as low detection rates, patchily 

distributed, spatially aggregated or clumped distributions, creating unique challenges for these 

species.  Two recent methodological developments have been introduced to circumvent many of 

these problems: 1) adaptive cluster sampling, and 2) occupancy estimation.  Here, we attempt to 

combine those two approaches leveraging the advantages of each approach to better estimate 

site-occupancy rate.  We develop a Bayesian hierarchical model that integrates traditional 

adaptive cluster sampling with occupancy estimation allowing for the augmentation of adjacent 

sites during sample, but still accommodating imperfect detection.  We use simulations to 

evaluate our new model and compare it to traditional occupancy estimation and traditional 

adaptive cluster sampling under a range of known conditions in population spatial structure, 

detection probability, and design criteria.  We use a simulated environment that mimics a range 

of spatially correlated habitat characteristics.  We found that our new approach outperformed 

traditional occupancy estimation when detection rates were extremely low and the population 

was highly spatially clustered.  Our new approach provided robust coverage under all conditions 

making it useful for a variety of species and situations with highly aggregated species.  We 

believe it has potential for improving our ability to make accurate inference for rare species. 
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Monitoring state variables of interest such as animal abundance, density or site-

occupancy rate, is a critical component to many large scale and long-term conservation efforts.  

Unfortunately, this information can be very challenging to obtain due to limited financial 

resources and logistical constraints imposed by complex environmental and geographic 

conditions (Possingham et al. 2001).  These problems become amplified when the species of 

interest does not occupy a large proportion of area, is patchily distributed, occurs in very low 

numbers, or is very difficult to observe or capture (Thompson 2004; MacKenzie et al. 2005).  

These specific characteristics, possessed by many rare or elusive species, create unique 

challenges not only for designing effective surveys, but for conducing analyses as well 

(Thompson 2004; MacKenzie et al. 2005; Cunningham and Lindenmayer 2005).  

Recently there has been an increase in developing specific approaches aimed at providing 

robust parameter estimates for rare or elusive species.  A somewhat arbitrary, but noticeable 

distinction in many of the current approaches is at what stage of the study the advancement in 

methodology is concentrated.  For example, several recent approaches aim to borrow or leverage 

information across different species (Alldredge et al. 2007; MacKenzie et al. 2005), multiple 

spatial scales (Dixon et al. 2005; Nichols et al. 2008), or community characteristics (Zipkin et al. 

2009) which can be done at the analysis stage of the study.  This is in contrast to other 

approaches that tailor data collection to profit from a specific behavior of the species of interest.  

For instance the use of different sampling designs such as stratification (Thompson 2002; 

Edwards et al. 2005), sequential sampling (Thompson 2002; Thompson 2004), multi-phase 

sampling (Thompson 2002; Thompson 2004), or adaptive sampling (Thompson 1990; Thompson 

2004) can potentially increase the information content in a particular sample as well as provide 

more efficient estimation by accommodating the non-uniform spatial structure of the species.  
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Although a focus on either approach (focus on analysis and modeling vs. focus on design and 

data collection) is equally valuable it is important to consider both in the context of a scientific 

study (Yoccoz et al. 2001).   

The distinction between the modeling stage and the design stage can further be 

articulated as it bears resemblance to a once-standing division in the field of statistics: model-

based inference versus design-based inference (Smith 1994; Kish 1995; Little 2004).  

Fortunately this division is all but gone as many current approaches benefit from an 

incorporation of both modes of inference to obtain estimates (e.g., model-assisted survey 

sampling Särndal et al. 1992, small area estimation Rao 2003, Bayesian modeling Ch. 7 in 

Gelman et al. 2004).   Therefore it is worth providing sufficient detail to highlight the advantages 

and disadvantages of each with the aim to combine these two modes of inference to improve 

estimation in ecological studies of rare species.   

Following Dorazio (1998) and Thompson (1992) model-based inference suggests that the 

values of the variable of interest from the population are viewed as a realization of a set of 

random variables.  A “superpopulation model” (stochastic model) is assumed describing the 

distribution of possible realizations of the observed population values.  Once the data are 

collected and thought to be representative of the population, the probabilities of sample selection 

become unnecessary in matters of inference.  Inference is based on the likelihood functions of 

the unknowns given the sample data and follow the likelihood principle (Berger and Wolpert 

1984), requiring all conclusions about the population to be based solely on the observed data in 

the sample.  Advantages of model-based inference include the ability to make use of auxiliary 

information, evaluation of competing hypotheses about the theoretical relationship among 

variables, efficient use of sample data, and dealing explicitly with multiple sources of error.  
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There are a variety of well-developed model-based approaches for parameter estimation 

including mark-recapture (Williams et al. 2002) and site-occupancy modeling (MacKenzie et al. 

2006), both of which incorporate the ability to account for survey or detection bias explicitly.  

Several disadvantages include the overreliance on often tenuous assumptions (e.g., identically 

and independently distributed random variables), and the possibility of model misspecification 

(Williams et al. 2002). 

In the design-based approach, probability only enters the estimation process through the 

use of design-induced probabilities to select one sample over another.  Nothing is assumed about 

the underlying population and inference is only based on hypothetical repetition of selecting 

sample units.  The observable characteristics of a population are regarded as fixed constants, and 

the idea is to choose a sampling design that will improve the precision of a parameter estimate if 

anticipated differences in the population are actually realized in the sample.  Estimators are 

closely linked to the sampling design and are usually unbiased regardless of the nature of the 

population. No assumptions about the data collected are needed to guarantee the unbiasedness of 

the estimators.  In addition the use of design-based inference alleviates to some degree the 

potential disastrous effects of important but unknown auxiliary variables.  Design-based 

approaches have seen much use in ecology because there is a potential gain in estimator 

efficiency and performance when used with geographically clustered or rare populations (Brown 

2003; Christman 2000; Smith et al. 2003).  A potential second advantage of certain design-based 

estimators is to accommodate observer behavior (Pacifici Chapter 2).  Many rare or threatened 

species are so rare or endangered that any information about them is extremely important (e.g. 

Ivory-billed Woodpecker, Campephilus principalis).  Therefore, the ability to mimic observer 

behavior by putting more effort in areas where individuals have been detected is a potentially 
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important component of an effective sampling design for rare species.  Unfortunately, the use of 

design-based approaches requires an independent estimate of detection probability to account for 

survey or detection bias (Thompson and Seber 1996; Smith et al. 2010). 

Given that both design-based and model-based approaches have unique advantages and 

disadvantages, an approach that combined properties of both techniques should ideally take 

advantage of features of both approaches.  We acknowledge that others have explored a 

combined approach (Edwards et al. 2004) with Hines et al. (2010) developing an occupancy-

based model that accounted for the induced spatial dependency among adjacent transects that 

were sampled in a linear fashion.  Our motivation originated from a suggestion by Pacifici et al. 

(Chapter 2) which posited the potential advantages of augmenting the sample design used in 

occupancy estimation to allow for the inclusion of adjacent sites into the sample and therefore 

allocating effort to areas surrounding an observed detection.  They describe a scenario that would 

have required the combination of occupancy estimation (MacKenzie et al. 2006) and adaptive 

cluster sampling (Thompson 1990) and point out the potential advantages of such an approach.  

MacKenzie and Royle (2005) also suggested the possibility of selecting sites by adaptive 

sampling leading to reliable inference about occupancy probability.  Rapley and Welsh (2008) 

developed a model-based approach to adaptive cluster sampling that would accommodate the 

benefits of both approaches, but did not incorporate estimates of detection probability.  We 

therefore develop a statistically rigorous approach that integrates adaptive cluster sampling and 

occupancy estimation thus allowing for the estimation of detectability into the model.  Although 

a frequentist or Bayesian approach is possible we agree with Little (2004) and Gelman et al. 

(2004) that Bayesian hierarchical modeling provides a natural, flexible way of incorporating the 

data collection process into our model structure and thus is an appropriate avenue to develop a 
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model that integrates both design and model-based components.  Therefore our objectives were 

to:  

1) develop a Bayesian hierarchical model that integrates occupancy estimation within an 

adaptive cluster sampling framework while accounting for imperfect detection, 

2) assess model diagnostics and model fit using a Bayesian p-value, 

3) evaluate the frequentist properties of the model under a range of design scenarios and, 

4) compare the performance of the developed model with the traditional single-season 

occupancy model and the traditional adaptive cluster sampling approach. 

Methods 

Sampling Overview 

 We provide a general overview of the sampling framework which combines adaptive 

cluster sampling with occupancy estimation.  We envision N specific sites where an initial 

simple random sample of size n is taken without replacement from the N sites.  On each of the i 

= 1…n sites J Bernoulli detection samples are taken resulting in yi = 0, 1, 2, …, Ji detections per 

site.  Here we assume that J is identical at all of the n sites, but a balanced design is not essential.  

The J samples can be a result of J independent visits to a particular site or J independent 

observers surveying a single site.  Detections can be visual, by detection of sign (visual or aural), 

physical captures or any other approach as long as there is no discrepancy about the positive 

determination of a detection.   

Next we define a condition C such that if a particular site satisfies the condition, yi > C, 

the sites within the neighborhood of yi are added to the sample.  Because we are working with 
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occupancy data we define C =0 although this condition can be generalized to have a higher 

threshold depending on the characteristics of the species and the objectives of the study (see 

Discussion).  The condition C can be satisfied by the joint observations of the J Bernoulli 

detection samples such that any one of the J samples can trigger adaptation.  Note that the 

neighborhoods can be defined to have a variety of shapes and do not have to be contiguous, but 

the neighborhood relationship must be symmetric in that if unit j’ is in the neighborhood of unit 

i’ then unit i’ must be in the neighborhood of unit j’.  After the condition has been satisfied, at 

each of the neighboring sites J Bernoulli detection samples are taken and if the condition C is 

satisfied at these additional sites then their neighborhoods are added as well.  This process is 

continued until a cluster of units is obtained that contains a boundary of sites that do not satisfy 

the condition C.  The data is of the form yij = 0,1,2,…Jij, i=1…n, j=1…ki where ki is the size of 

the cluster which includes all of the adapted sites associated with site i.  If a site from the initial 

simple random sample (size n) did not meet the criteria C then that site is part of a cluster of size 

1 (k = 1).   

As with traditional occupancy estimation (MacKenzie et al. 2002) we assume that the 

duration of sampling is sufficiently short enough that each site’s occupancy status remains fixed 

during the time required to complete the survey.  We also require that each site belongs to one 

and only one cluster.  We believe this is not a strict requirement as most sampling protocols are 

developed to occur in a sequential fashion such that it is possible to identify sites that have 

already been sampled (and thus are already a part of a cluster) and will not be sampled again.  In 

the event that a site could potentially belong to two different clusters we suggest that it be 

assigned to whichever cluster was sampled first. 
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Statistical Model 

To develop the statistical model it is necessary to reiterate that we assume each site 

belongs to one and only one cluster and therefore once a site has been sampled (completion of J 

visits) it cannot be sampled again even if it is adjacent to a different site with yij>0.  Therefore 

we can assume that the clusters are conditionally independent and once the data has been 

collected we only need to model the spatial process underlying the clustering. 

We use a state-space approach in which we express the model by its two component 

processes: a submodel for the unobserved or partially observed state process (zij); i=1,2, …, n, 

j=1,2, …, ki, and a submodel for the observations conditional on the unobserved state process 

(yij|zij). 

State model: 

 ൫߰௜௝൯ for i=1,2, …, n, j=1,2, …, ki,                          (4.1)݈݈݅ݑ݋݊ݎ݁ܤ~௜௝|߰௜௝ݖ

logit൫߰௜௝൯ ൌ 	ܾ௜଴ ൅	ߚଵ ∗  ௜௝,                                               (4.2)ݔ

ܾ௜଴|ߚ଴, ,଴ߚሺ݈ܽ݉ݎ݋ܰ~ଶߪ  ଶሻ,                                                (4.3)ߪ

where zij is the latent occupancy state at site ij taking the value 1 if the site is occupied and 0 if 

the site is unoccupied, xij is an observed site-specific covariate thought to influence occupancy 

probability, and ki is the size of the ith cluster.  Additional site-specific covariates could be 

specified to influence the probability of occupancy, but will not be considered further. 

Observation model: 

,ܬ|௜௝ݕ ,݌ ߰௜௝~݈ܽ݅݉݋݊݅ܤሺܬ,  ௜௝ሻ for i=1,2, …, n, j=1,2, …, ki,                 (4.4)ݖ݌



105 
 

where J is the number of replicate observations at each site and p is the probability of detection 

which is assumed to be constant here, and logit൫߰௜௝൯ ൌ 	ܾ௜଴ ൅	ߚଵ ∗  ௜௝ as above. Thus, if a site isݔ

occupied then the data are Binomial with probability p and J trials and if the site is unoccupied 

then the data are Binomial with Pr(yij=1) = 0.  Additional variation in the probability of detection 

could be modeled through the use of replicate-level covariates by substituting logistic regression 

formulations for p (MacKenzie et al. 2002). 

We can express the likelihood as follows:  

,݌ห࢐࢏࢟ൣ ,ଵߚ଴ߚ ଶ൧ߪ ൌ ∏ ሾܾ௜଴|ߚ଴, ∏ଶሿቄߪ ሾݕ௜௝|ܬ, ,݌ ܾ௜଴, ଵሿߚ
௞೔
௝ୀଵ ቅ௡

௜ୀଵ ,                    (4.5) 

noting that the joint probability of the counts ࢏࢟ ൌ ሺݕ௜ଵ, … ,  ௜௞೔ሻ detected within the ith adaptiveݕ

cluster is 

ሾ݌|࢏࢟, ,ଵߚ଴ߚ ଶሿߪ ൌ ׬ ሾܾ௜଴|ߚ଴, ∏ଶሿߪ ,ܬ௜௝หݕൣ ,݌ ܾ௜଴, ଵ൧ܾ݀௜଴ߚ
௞೔
௝ୀଵ

ஶ
ିஶ .                    (4.6) 

It is possible to use maximum likelihood to obtain estimates as the integration could be 

approximated with an adaptive form of Gauss-Hermite quadrature (Pinheiro and Bates 1995; 

Dorazio and Royle 2005) or with stochastic methods such as Monte Carlo integration (Press et 

al. 2007) although such an approach can be computationally intensive to implement (we found 

that in our application Monte Carlo integration required an approximately equal amount of 

computational time as the suggested Bayesian approach).   

Bayesian Analysis 

 We chose to conduct estimation and inference in a Bayesian framework using 

conventional methods of Markov chain Monte Carlo (MCMC).  The model proposed is a 
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relatively simple random-effects model and can be implemented in the freely available software 

package OpenBUGS v. 3.2.1 (Lunn et al. 2009).  We chose noninformative priors for p 

(Uniform(0,1)) and ߪ (Uniform(0,20) following Gelman 2006).  For the coefficients (ߚ଴,  ଵሻ weߚ

chose to use priors that followed a t-distribution with specified scale, location, and degrees of 

freedom (location = 0, scale = 1.56, d.f. = 7.76) to ensure they would be approximately uniform 

on the logit scale.  We ran the model using the package R2OpenBUGS in program R v. 2.12 (R 

Development Core Team 2010) and evaluated convergence by examining trace plots, 

autocorrelation, and R-hat values (comparison of within-chain and between-chain variances) for 

each parameter estimate (Gelman et al. 2004).    

Simulations 

  We used simulations to evaluate our new adaptive cluster sampling-occupancy model 

(ACSOCC) and to compare our new model to traditional adaptive cluster sampling (ACS) and 

single-season occupancy estimation (SSOCC) under a range of known patterns in occupancy and 

design criteria.  We were interested in exploring the usefulness of our model when patterns in 

occupancy are spatially correlated through the use of habitat covariates and overall occupancy 

rate is relatively low.  We therefore created three different habitat types with varying degrees of 

spatial correlation on a 20 x 20 grid (Figure 4.1).  The first consisted of three blocks of habitat: 

low, medium, and high quality with a small amount of random noise added (standard normal 

deviate) to each block.  We considered habitat 1 as an example of extreme spatial correlation.  

The second type of habitat was generated using a Matérn cluster process (Matérn 1986; Møller 

and Waagepetersen 2003; Baddeley and Turner 2005).  The Matérn cluster process is a doubly-

stochastic or two-stage model for point generation and consists of first defining a parent Poisson 

process with some mean intensity κ.  Next, within a radius r of each parent process a second 
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Poisson process with mean μ is generated.  This creates a clustering of points around each of the 

parents with a fine scale of control to manipulate the amount and degree of clustering.  We used 

this to generate spatially correlated habitat by defining κ = 0.03, r = 2.5, and μ = 19.  We 

considered habitat 2 as an example of moderate spatial correlation.  The third habitat type had no 

spatial correlation and was generated as completely random.  The true occupancy rates for each 

habitat were calculated by specifying a logit-linear model with the simulated habitat covariates: 

ሺ߰௜ሻݐ݅݃݋݈ ൌ ଴ߚ ൅ ଵߚ ∗ ௜ݔ ൅  (4.7)                                               ,ߝ	

where xi is the habitat covariate at each site, ε ~ N(0,1) and we fixed β0 = -2 and β1 = 2.   

Model Evaluation 

We were able to assess the fit of our model using posterior predictive checks by 

simulating replicated data under the fitted model from the posterior predictive distribution 

(Gelman et al. 2004).  This allowed an assessment and comparison of the “observed data” (data 

simulated from spatially correlated habitat) to the replicated data (data simulated from the fitted 

model); ideally there would be very little discrepancy between the two.  This approach allows for 

a check of possible model misfit and any systematic differences between observed data and 

replicated data suggest a failing in the model structure.   

We specifically used an approach suggested by Gelman et al. (1996) referred to as a 

Bayesian p-value.  We defined a discrepancy measure or test quantity  ܦ ൌ ∑ ሺݕ௜௝ െ௜,௝

,݌௜௝หݕൣܧ ,଴ߚ ,ଵߚ  ଶ൧ሻଶ for the observations yij and their expected values under the model.  Thisߪ

discrepancy statistic is computed at each iteration of the MCMC algorithm.  A reference 

distribution is computed from the replicated data by simulating data sets from the posterior 
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predictive distribution and a discrepancy measure, Dsim, is calculated for the replicated data.  The 

Bayesian p-value is defined as the probability: Pr(D > Dsim).  Extreme values (e.g., less than 0.05 

or greater than 0.95) indicate that the model is inadequate. 

Model Comparisons 

 We compared our model to the single-season occupancy model (SSOCC; MacKenzie et 

al. 2006), and the traditional Adaptive Cluster Sampling design-based estimators that assume 

perfect detection (ACS; Thompson and Seber 1996).  We calculated the total sample size for the 

ACSOCC model (includes both primary and secondary sites) and used this as the sample size for 

the SSOCC model to account for the discrepancy in sample sizes.  In addition we compared the 

ACSOCC model to traditional adaptive cluster sampling (ACS) except that we purposely fixed p 

(detection probability) to be < 1 under all scenarios to examine the influence of imperfect 

detection on the ACS design-based estimators.  We chose to use the modified Horvitz-Thompson 

estimator for ACS as several others have acknowledged the improved performance when 

compared to the modified Hansen-Hurwitz estimator (Thompson and Seber 1996; Christman 

2000; Salehi 2003).  The modified Horvitz-Thompson estimator for the population mean is: 

ߤ̂ ൌ
ଵ

ே
∑ ௬ೖ

∗

ఈೖ
఑
௞ୀଵ ,                                                          (4.8) 

where ݕ௞
∗ is the sum of the y-values for the kth network, κ is the number of distinct networks in 

the sample, N is the total number of sites in the study area (equal to 400 here), and αk is defined 

for xk units in the kth network as: ߙ௞ ൌ 1 െ ൥
൫ேି௫ೖ௡ ൯

൫ே௡൯
൘ ൩, where n is the sample size for the 

initial simple random sample.  Here a network is defined as a cluster with the edge units 
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removed.  Note that for the ACSOCC model we require working with the entire cluster (edge 

units included) while traditional ACS utilizes the networks for estimation not the entire cluster.  

Following Thompson and Seber (1996) an estimator for the variance is: 

ෞݎܽݒ ሺ̂ߤሻ ൌ
ଵ

ேమ ൤∑ ∑
௬ೕ
∗௬ೖ

∗

ఈೕೖ
൬
ఈೕೖ
ఈೕఈೖ

െ 1൰఑
௞ୀଵ

఑
௝ୀଵ ൨,                          (4.9) 

where ߙ௝௞ ൌ 1 െ ൣ൫ேି௫ೕ௡ ൯ ൅ ൫ேି௫ೖ௡ ൯ െ ൫ேି௫ೕି௫ೖ௡ ൯൧ ൫ே௡൯ൗ .  We are particularly interested in 

comparing our new model (ACSOCC) to the current approaches (SSOCC, ACS) in the context 

of studies focused on rare species where interest lies in making sound inference about a local 

population (finite-sample).  Therefore we focus on the setting where our geographic extent 

consists of a finite number of sites and we want to predict the proportion of total sites that are 

occupied (proportion of area occupied, PAO) or the finite-sample occupancy rate (ψfs) as 

opposed to the occurrence probability associated with a theoretically infinite population from 

which a selection of sites has been sampled (Royle and Dorazio 2008).  For the ACSOCC model 

we can calculate this by simply summing up the latent occupancy states at each site directly 

(Royle and Kery 2007; Royle and Dorazio 2008).  This problem is slightly more complicated for 

traditional maximum likelihood estimation with the SSOCC model and we refer readers to Royle 

and Dorazio (2008) for more details.  We chose to follow an approach outlined by Pacifici et al. 

(Chapter 3) to estimate the total number of occupied sites and finite-sample occupancy rate for 

SSOCC.  For both the SSOCC model and the ACSOCC model we assumed that covariate 

information was completely observable at all sites within the study.  This was only done for 

convenience and is not necessary for implementation of either model.  For the ACS design-based 

estimator we calculated the total number of occupied sites in the population as ߬̂ ൌ  with ߤ̂ܰ

ෞݎܽݒ ሺ߬̂ሻ ൌ ܰଶݎܽݒෞ ሺ̂ߤሻ and then used this quantity to calculate the finite-sample occupancy rate. 
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 We explored frequentist properties of all three models (ACSOCC, SSOCC, and ACS) 

under a range of different design criteria.  We varied the overall detection probability p (0.25, 

0.5, 0.75), the number of repeat visits to a site J (3, 5), the initial sample size n (20, 50, 100, 

150), and the spatial structure of the habitat (1, 2, 3 from above).  We calculated 500 synthetic 

datasets for each combination of design criteria (72 total) and report relative bias, relative mean 

squared error, and interval coverage for the parameters.  We evaluated relative bias (RBIAS) and 

relative root mean-squared error (RMSE) as  

RBIAS = 


 
m

i
iil
)ˆ(

1

 

and 

RMSE = 


 
m

i
iil

2)ˆ(
1

 

where i is the value of the parameter of interest at the ith simulation trial and i̂ is the mean for 

that parameter.  For the ACSOCC model we used the posterior mean from the MCMC samples 

for the specified parameter.  Each synthetic dataset (out of 500) consisted of running 2 MCMC 

chains each of length 40,000 with a 10,000 burn-in period and thinned by 10 for the ACSOCC 

model.  Coverage for the ACSOCC model consisted of computing the proportion of 95% 

Bayesian Credible Intervals in 500 simulation trials that included the true parameter in the 

interval. 
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Cost Analysis 

To examine the potential benefit in terms of total cost for the ACSOCC model compared 

to the SSOCC model we developed a simple cost analysis.  We specified two cost functions, one 

for SSOCC and one for ACSOCC that included start-up costs, travel costs, and sampling costs.  

We constrained the total number of samples to be equal for SSOCC and ACSOCC assuming that 

information collected was a linear function of number of sites visited.  This analysis permitted us 

to investigate the total cost of each design under a range of scenarios.  The cost function for 

SSOCC is: 

Total costSSOCC = Jncnxcc **** 2110   

where c0 = initial cost or startup cost (20; same for SSOCC and ACSOCC), c1= cost of moving 

to a new site in study area (10,20,30,or 40), c2 = cost of collecting sample at each site (2,4,6, or 

8), n = number of sample sites (25,30,40, or 50), J = number of repeat visits to each site (5, 10), 

and 1x = average # of sites moved between locations (equal to 5.3).  This was calculated by 

simulating data on 10x10 grid and calculating Euclidean distance between sites, where Euclidean 

distance is  

2
21

2
21 )()( yyxxd  for the pair ),(),,( 2211 yxyx  

The cost function for adaptive sampling is: 

Total costAdaptive = JncnxcJncnxcc ******** 22221121110   
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where the first part of the equation is identical to SSOCC except only n1 sites are sampled (n = n1 

+ n2), 2x = average # of sites moved between locations in adaptive sampling (always equal to 1 

because adaptive sites are adjacent), and n2 = number of sites sampled in adaptive phase.     

All code for the data generation, simulations, and analysis are presented in Appendix A 

while additional results are presented in Appendix C. 

Results 

The overall true occupancy rate for the simulated habitats ranged from 0.32 – 0.43.  The 

Bayesian p-value averaged over the 500 synthetic datasets ranged from 0.49 – 0.65 for all of the 

different scenarios suggesting that there was little discrepancy between the replicated data from 

the fitted model and the observed data according to our measure of discrepancy.   

We computed RMSE, RBIAS, and coverage for all parameters, but present here only the 

parameter of interest ψfs (finite-sample occupancy rate).  Overall both occupancy models 

(ACSOCC and SSOCC) were unbiased in estimating detection probability when p was high (0.5 

or 0.75).  There was a small amount of negative bias for both models when p=0.25 and the initial 

sample size, n, was small (50 or less), but the bias decreased as n increased (Appendix C).   

RMSE for ψfs was generally lower for the ACSOCC model compared to the SSOCC 

model when initial sample size, n, was low and detection probability, p, was low, but this 

difference became negligible as p increased and/or n increased (Figures 4.2).  This pattern of 

RMSE occurred across all three types of habitats and levels of spatial correlation.  In general 

there was very little effect of habitat on the RMSE for any of the three approaches.  There was 

little effect on RMSE from increasing the number of repeat visits especially when detection 

probability was high or the initial sample size was high (Appendix C).  RMSE was largest for 
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ACS in all cases as much of the error was driven by the large amounts of bias induced by 

imperfect detection (Figures 4.3).   

RBIAS for ψfs was smaller for the SSOCC model compared to the ACSOCC model under 

almost all design criteria, but the difference between the two models was very small when the 

probability of detection was 0.5 or 0.75.  There was a small amount of positive bias for both the 

ACSOCC and SSOCC models when estimating ψfs  and detection probability was low, but the 

bias became negative when detection probability was larger than 0.25 (Figures 4.3).  The ACS 

approach always exhibited substantial negative bias.  Both the ACSOCC and SSOCC models 

exhibited a noticeable drop in RBIAS when increasing the initial sample size in Habitat 1 with 

low detection probability (Figure 4.3).  This pattern is not present in Habitat 2 or in Habitat 3 and 

is not as pronounced when detection probability is increased or the number of visits is increased.  

Otherwise there is very little variation in RBIAS for any of the three approaches when moving 

among the three habitat types. 

Coverage for the ACSOCC model was almost always near the nominal 95% level under 

all of the design criteria even when n and p were low (Table 4.1).  There was little observed 

variation in coverage even as patterns in detection probability, habitat, or sample size fluctuated.  

Coverage for the SSOCC model was much lower than the ACSOCC model and only under a few 

occasions did it meet or exceed the nominal level (Table 4.1).  We expect coverage for the 

ACSOCC model to be slightly higher than the SSOCC model because the Bayesian approach can 

accommodate the propagation of uncertainty as opposed to the SSOCC approach.  Interestingly, 

the variation in estimates of occupancy rate over the 500 simulations was always smaller for the 

ACSOCC model compared to the SSOCC model (Table 4.1).  The SSOCC model exhibited large 

amounts of variation in the observed estimates especially when detection probability was low 
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and the sample size was low.  This suggests that although the SSOCC shows relatively little 

RBIAS and on average is unbiased the variation is much larger among the estimates compared to 

the ACSOCC model.  The ACSOCC model exhibits smaller variation among its estimates of 

mean occupancy rate even if there is slightly more bias overall (Table 4.1).  Coverage for the 

ACS approach was very poor and never met or exceeded the nominal level (Table 4.1).   

Under all scenarios we found ACSOCC to be more cost efficient than SSOCC.  We 

found the average cost of SSOCC across all possible scenarios to be 6665.46  3036.35 while 

the average cost of ACSOCC was 5199.55  2205.58.  The difference between SSOCC and 

ACSOCC was always positive (average difference = 1465.91  1220.09, minimum = 43, 

maximum = 5160) suggesting that ACSOCC was always more economical when compared to 

SSOCC.  Figure 4.4 shows a plot of the total cost for SSOCC and ACSOCC under a range of 

conditions highlighting the pattern in cost differences as a function of sample sizes.  The smallest 

difference between SSOCC and ACSOCC occurs when total sample size = 25 and in ACSOCC, 

the initial sample (n1) had a size of 24 and n2 = 1 (excluding the obvious case when n1 = 40 and 

the cost is identical).  The largest difference occurred when n1 = 20 and n2 = 30.   

Discussion 

The conservation and management of rare species is one of the most daunting challenges 

natural resource managers and ecologists face.  It is important that methods are developed that 

permit accurate estimation and inference for these unique scenarios.  We have developed an 

approach that augments the traditional single-season occupancy design to leverage information 

from adjacent sites when a known detection has occurred.  We have thus provided a relatively 

simple model that integrates adaptive-cluster sampling into an occupancy estimation framework.  

Our simulations show a stark improvement in interval coverage for the ACSOCC model 
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compared to SSOCC and traditional ACS most notably when detection probability is low and 

there is extreme spatial correlation in occupancy.   

Several other authors have explored the use of different survey designs for occupancy-

based studies.  MacKenzie and Royle (2005) explored two common sampling designs and their 

influence on estimator performance.  Double-sampling, where repeat surveys are conducted at a 

subset of sites only, was found to have little advantage over the traditional approach while 

removal sampling, where surveying of a site stops once the species is detected or J surveys have 

been conducted, was found to be more efficient in terms of obtaining a smaller standard error for 

estimating occupancy.  MacKenzie and Royle (2005) went on further to say that this gain in 

efficiency for removal sampling was only realized when a greater maximum number of visits to 

a particular site is conducted.  This suggests that the use of these designs is not always warranted 

except under specific circumstances.  We found similar results as our model, and thus the use of 

adaptive-cluster sampling, showed very little improvement in RMSE except when detection 

probability was extremely low and the initial sample size was low.  In addition our model was 

biased high when detection probability was low, as was SSOCC but to a lesser degree.   

Our results suggest that our model may only be useful under certain conditions that relate 

to specific characteristics of the population.  This is not surprising as the benefits of traditional 

adaptive sampling are only realized for very specific circumstances as well.  Several authors 

have shown that the gain in efficiency for adaptive-cluster sampling depends on many factors 

including the condition to adapt, the number of sites, and the aggregation and distribution of the 

population (Smith et al. 1995; Thompson and Seber 1996).  Smith et al. (1995) also has shown 

that for adaptive-cluster sampling to be more efficient than simple-random sampling the final 

sample size should not be much larger than the initial sample size.  In addition Thompson (1990) 
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has shown that the within-network variance should be a high proportion of the total variance in 

the population.  For binary data (only 1’s and 0’s) the within network variance is 0, since every 

network in the population consists of either a single unit (0 detections) or a group of one or more 

units with one detection.  It is worth noting, however, that Thompson and Seber (1996) identified 

a threshold for the initial sample size for which the modified Horvitz-Thompson estimator was 

more efficient than simple-random sampling for binary data (n > 50).   

Our simulations also support many of the previous findings from the adaptive sampling 

literature.  For example, in our simulations the final sample size was much greater than the initial 

sample size and this difference was inflated when detection probability was high.  In some cases 

the final sample size was greater than seven times the initial sample size.  This has several 

implications.  First it may seem daunting for the field biologist who initially plans to sample 20 

sites and ends up sampling over 150, which could be a logistical nightmare.  This is a common 

problem for adaptive-cluster sampling and has led other authors to develop approaches that 

provide specific stopping rules or other ways to define a fixed sample size (Christman and Lan 

1998; Christman and Lan 2001; Rocco 2003).  These variations of adaptive sampling may be 

useful to consider in such cases.  Second, an argument could be made that differentiates between 

the 150 sites sampled in ACSOCC with the 150 sites sampled in SSOCC because sampling 

adjacent sites in ACSOCC can be more economical and logistically more feasibly than complete 

simple-random sampling.  This was supported by our simple cost analysis and has been 

suggested by other authors (Thompson and Seber 1996).  Regardless, the drastic difference 

between initial and final sample size could explain the lack of an advantage for ACSOCC over 

SSOCC under certain conditions.   
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Although Thompson and Seber (1996) found little evidence of improved adaptive 

sampling estimator performance compared to simple-random sampling for binary data this 

should not impede the use of such a design with occupancy estimation.  The findings of 

Thompson and Seber (1996) suggest that there is no gain in precision of the ACS estimator, but 

one benefit is the increase in the number of sites sampled thus increasing the likelihood of 

sampling more individuals.  This gain in the likelihood of observing a particular species has been 

noted by several other authors as well (Salehi and Brown 2010; Thompson 2004) and can play a 

critical role in some study objectives when finding a species is equally, if not, more important 

than estimation (e.g., Pacifici et al. Chapter 2).  In addition we found such a stark improvement 

in interval coverage with minimal variation in model performance over the 500 trials for each 

simulation it suggests there is a clear advantage in performance compared to SSOCC. 

Similar to traditional adaptive cluster sampling we envision the logistics of conducting 

adaptation to be complex and require excellent communication among all parties involved.  Of 

course the exact procedure to allocate effort will ultimately depend on the size of each site, the 

definition and arrangement of the neighborhood, and the available resources. We therefore 

envision several different approaches to conducting searches on adjacent sites where we define 

the sites in the initial simple random sample as primary and adjacent sites that are sampled as a 

part of adaptation as secondary.  We foresee adaptation occurring in one of two possible ways.  

The adaptation occurs by using the same field biologist(s) that sampled the initial site to sample 

adjacent secondary sites within the neighborhood of the primary site once the condition has been 

satisfied.  An alternative approach is that adaptation is accommodated by allocating additional 

effort (other field biologists) to the secondary sites once the condition has been satisfied.  Much 

of this will depend on the order to which sampling will occur.  For instance, it would be possible 
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in some scenarios to complete sampling on all of the primary sites before surveys begin on the 

secondary sites.  Alternatively it may be possible to immediately conduct secondary surveys 

once the condition has been met on a primary site.  Again this will depend on the particular study 

and the available resources, but these issues should be clearly identified and resolved 

beforehand.   

Although we have focused solely on occupancy-type data we believe that our model can 

be easily extended.  Occupancy estimation has seen many variations as needed to accommodate 

different objectives and constraints for ecological studies.  We believe that many of these same 

approaches could be easily integrated into our model.  For example, the use of auxiliary 

information collected at each site (e.g., counts of individuals Royle and Nichols 2003; Royle 

2004) could easily be integrated into our model by focusing specifically on abundance instead of 

occupancy.  This would require a different state model in which abundance was directly modeled 

instead of occupancy or a model that explicitly relied on the occupancy-abundance relationship 

(Royle and Nichols 2003; Conroy et al. 2008).  There already exists a wide variety of occupancy-

based modeling flavors focused on modeling spatial variation in abundance that could be 

suggested (Dorazio et al. 2005; Royle et al. 2007; Post van der Burg et al. 2011; Webster et al. 

2008).  As MacKenzie and Royle (2005) found, a removal-based approach may be useful to 

reduce the logistical effort required to conduct repeat visits while still obtaining reasonable 

estimates of occupancy.  For the ACSOCC model this may be even more advantageous because 

sampling adjacent sites and conducting repeat visits can be logistically taxing.  Thus a removal-

type design could still provide the benefits of augmenting the design, but would reduce the 

overall effort.     
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We envision other areas of expansion that should be investigated as well.  As noted in the 

adaptive sampling literature, changing the definition of the condition to adapt (trigger) can 

provide valuable changes in estimation and inference (see overview by Turk and Borkowski 

2005).  We imagine many possible definitions for the trigger in occupancy-based studies which 

would ultimately depend on the overall objectives of the study.  For example, we can conceive of 

a situation where the use of auxiliary information (e.g., counts of individuals) could be used as 

the trigger.  A second suggestion is to use a combination of species or an index of multiple 

species (i.e., measure of diversity) as the trigger for adaptation especially if interest is in 

community composition or species richness.  A separate area of expansion involves the 

exploration of various neighborhood structures.  Christman (1996) found physically contiguous 

neighborhoods to be most efficient for classical adaptive sampling and this may be relevant for 

ACSOCC as well. 

Although the incorporation of model-based and design-based approaches is not new we 

believe our approach is unique and potentially useful for a variety of studies interested in 

patchily distributed, clustered or rare species exhibiting spatial variation.  This model builds on 

both the strength of occupancy modeling and adaptive sampling and performs at least as well, 

and often better than occupancy modeling alone.  In addition it benefits from incorporating 

observer behavior by allowing for extra effort to be included in areas with known detections 

while permitting statistically rigorous estimates of occupancy and detection probability.  We see 

the continuation of research focusing on integrating sample design and data collection into the 

modeling framework as a much needed and critical component to rare species conservation and 

management.  Approaches that allow for the flexibility of combining designs and modeling can 

provide a critical and informative step in conserving and managing rare species. 
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Figure 4.1. Habitat covariates (row 1) and associated occupancy data (row 2) for three different 

types of simulated environments.  The first habitat represents extreme spatial correlation, the 

second habitat represents moderate spatial correlation and the third habitat was generated 

randomly and contains no spatial correlation.  The true occupancy rates for each habitat (rows 2 

and 3) were calculated by specifying a logit-linear model with the simulated habitat covariates 

(see text for more details).  Lighter colors represent higher quality habitat for row 1 and occupied 

for row 2.   
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Figure 4.2.  Plots of the relative root mean-squared error (RMSE) comparing three different 

models: ACSOCC (Adaptive-cluster sampling occupancy, solid lines and squares), SSOCC 

(Single-season occupancy, dashed lines with circles), and ACS (Adaptive-cluster sampling, 

dotted lines with triangles).  The columns differentiate among the three different habitats (1,2, 

and 3) with varying levels of spatial correlation (high, med, none, respectively).  The detection 

probability is fixed at p = 0.25 for the first row, p = 0.5 for the second row, and p = 0.75 for the 

third row.  All cases have three repeat visits to a site (J).  The x-axis represents an increase in the 

initial sample size, n (20, 50, 100, 150), for each of the three different models. 
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Figure 4.3.  Plots of the relative bias (RBIAS) comparing three different models: ACSOCC 

(Adaptive-cluster sampling occupancy, solid lines), SSOCC (Single-season occupancy, dashed 

lines), and ACS (Adaptive-cluster sampling, dotted lines).  The columns differentiate among the 

three different habitats (1,2, and 3) with varying levels of spatial correlation (high, med, none, 

respectively).  The detection probability is fixed at p = 0.25 for the first row, p = 0.5 for the 

second row, and p = 0.75 for the third row.  All cases have three repeat visits to a site (J).  The x-

axis represents an increase in the initial sample size, n (20, 50, 100, 150), for each of the three 

different models. 
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Figure 4.4.  Total cost for SSOCC and ACSOCC models under a range of scenarios.  Scenarios 

represent plausible values included in the cost function (see method section for more details).  

Scenario 1: n1 = 20, n2 =5; Scenario 2: n1 = 20, n2 =10; Scenario 3: n1 = 20, n2 =20; Scenario 4: 

n1 = 20, n2 =30; Scenario 5: n1 = 24, n2 =1; Scenario 6: n1 = 24, n2 =6; Scenario 7: n1 = 24, n2 

=16; Scenario 8: n1 = 24, n2 =26; Scenario 9: n1 = 32, n2 =8; Scenario 10: n1 = 32, n2 =18; 

Scenario 11: n1 = 40, n2 =10.  In all cases n = n1 + n2 (SSOCC sample size equals total from 

ACSOCC). 
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Table 4.1.  Simulation results from 500 synthetic datasets with different design criteria 

comparing three different models: ACSOCC (Adaptive-cluster sampling occupancy), SSOCC 

(Single-season occupancy), ACS (Adaptive-cluster sampling).  Habitat refers to the amount of 

generated spatial correlation where Habitat 1 has the most spatial correlation and Habitat 3 has 

no spatial correlation (see text for more details).  Parameters are p-detection probability, n- initial 

sample size for adaptive-sampling models (ACSOCC, ACS), and J-number of repeat visits is 

fixed at 3.  Sample Size is the average realized number of sites sampled for the adaptive-

sampling models and the total sample size for the SSOCC model.  True ψ is the actual finite-

sample occupancy rate while ߰௙௦෢  is the estimated occupancy-rate for each model averaged over 

the 500 synthetic datasets.  Range represents the minimum and maximum estimated occupancy 

rate out of the 500 synthetic datasets for each set of design criteria.  Coverage represents the 

percent of confidence intervals that contained the true occupancy rate out of the 500 synthetic 

data sets.  For the ACSOCC model the 95% Bayesian Credible Interval was used to calculate 

coverage. 
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ACSOCC SSOCC ACS 

n 
Sample 

Size 
True 
ψ   ߰௙௦෢ Range Coverage  ߰௙௦෢ Range Coverage  ߰௙௦෢ Range Coverage

Habitat 1 20 58 0.36 0.46 0.21 0.63 0.93 0.42 0.09 0.99 0.16 0.09 0.00 0.51 0.09 

p=0.25 50 123 0.41 0.43 0.18 0.63 0.99 0.41 0.20 0.78 0.34 0.10 0.00 0.25 0.00 

100 200 0.41 0.43 0.26 0.63 0.97 0.42 0.22 0.73 0.38 0.11 0.03 0.20 0.00 

150 244 0.38 0.40 0.26 0.52 0.97 0.38 0.23 0.59 0.41 0.10 0.04 0.18 0.00 

p=0.5 20 151 0.43 0.42 0.27 0.52 0.99 0.43 0.29 0.56 0.65 0.22 0.00 0.52 0.36 

50 207 0.40 0.40 0.26 0.48 0.96 0.40 0.31 0.48 0.73 0.21 0.07 0.44 0.09 

100 255 0.38 0.37 0.30 0.43 0.98 0.38 0.29 0.47 0.69 0.21 0.10 0.34 0.01 

150 291 0.38 0.38 0.32 0.43 0.93 0.38 0.31 0.45 0.77 0.22 0.13 0.32 0.00 

p=0.75 20 151 0.37 0.35 0.16 0.40 0.98 0.37 0.29 0.51 0.75 0.28 0.00 0.60 0.83 

50 222 0.43 0.40 0.31 0.45 0.90 0.42 0.36 0.48 0.83 0.35 0.20 0.51 0.67 

100 288 0.39 0.39 0.33 0.42 0.97 0.39 0.34 0.44 0.88 0.33 0.21 0.43 0.48 

150 309 0.39 0.38 0.34 0.40 0.91 0.39 0.34 0.42 0.89 0.32 0.24 0.39 0.26 

Habitat 2 20 51 0.35 0.43 0.13 0.63 0.96 0.37 0.06 1.00 0.25 0.09 0.00 0.31 0.09 

p=0.25 50 113 0.35 0.44 0.14 0.64 0.89 0.39 0.15 0.73 0.29 0.09 0.00 0.21 0.00 

100 181 0.35 0.37 0.19 0.56 0.96 0.37 0.19 1.00 0.38 0.09 0.02 0.22 0.00 
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150 248 0.37 0.40 0.24 0.55 0.94 0.39 0.25 1.00 0.41 0.10 0.03 0.17 0.00 

p=0.5 20 104 0.39 0.36 0.18 0.51 0.97 0.40 0.20 0.57 0.59 0.20 0.00 0.52 0.33 

50 147 0.34 0.31 0.19 0.40 0.94 0.34 0.23 0.53 0.67 0.17 0.06 0.35 0.15 

100 262 0.38 0.39 0.30 0.44 0.95 0.38 0.31 0.44 0.81 0.21 0.09 0.35 0.01 

150 294 0.35 0.36 0.27 0.43 0.92 0.35 0.29 0.42 0.78 0.20 0.11 0.29 0.00 

p=0.75 20 148 0.37 0.33 0.13 0.40 0.93 0.37 0.28 0.52 0.77 0.28 0.05 0.65 0.80 

50 208 0.36 0.35 0.27 0.39 0.96 0.36 0.29 0.44 0.84 0.28 0.11 0.45 0.68 

100 297 0.41 0.41 0.36 0.44 0.96 0.41 0.36 0.46 0.91 0.34 0.23 0.44 0.42 

150 303 0.35 0.35 0.31 0.37 0.98 0.35 0.32 0.40 0.89 0.29 0.18 0.37 0.30 

Habitat 3 20 51 0.38 0.47 0.22 0.63 0.95 0.42 0.11 0.88 0.14 0.09 0.00 0.31 0.10 

p=0.25 50 114 0.39 0.45 0.16 0.65 0.95 0.43 0.20 0.83 0.29 0.10 0.00 0.29 0.00 

100 184 0.36 0.40 0.21 0.57 0.93 0.39 0.22 0.77 0.32 0.10 0.02 0.20 0.00 

150 243 0.37 0.39 0.22 0.57 0.95 0.38 0.24 0.62 0.43 0.10 0.03 0.18 0.00 

p=0.5 20 90 0.40 0.38 0.20 0.52 0.99 0.40 0.23 0.67 0.51 0.20 0.00 0.51 0.35 

50 190 0.39 0.37 0.25 0.49 0.95 0.40 0.30 0.50 0.70 0.20 0.06 0.38 0.10 

100 251 0.38 0.37 0.30 0.43 0.96 0.38 0.31 0.46 0.80 0.21 0.08 0.32 0.00 
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150 289 0.36 0.35 0.29 0.42 0.94 0.36 0.30 0.41 0.81 0.19 0.10 0.28 0.00 

p=0.75 20 96 0.37 0.34 0.15 0.42 0.98 0.36 0.25 0.50 0.63 0.28 0.00 0.68 0.79 

50 212 0.39 0.40 0.29 0.46 0.96 0.39 0.33 0.46 0.83 0.31 0.13 0.49 0.65 

100 272 0.38 0.35 0.30 0.39 0.75 0.38 0.34 0.42 0.91 0.30 0.19 0.41 0.46 

150 333 0.41 0.41 0.38 0.44 0.98 0.42 0.38 0.45 0.93 0.34 0.26 0.45 0.22 
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CHAPTER 5 

CONCLUSION 

 Natural resource managers are faced with the difficult task of conserving and managing 

rare or elusive species.  It is critical that substantial effort is put forth to understand what 

proximate and ultimate factors are influencing and driving their population dynamics.  

Regardless of the amount and quality of information available to managers, decisions will be 

made that can have a substantial impact on rare species.  It is therefore paramount that methods 

and approaches are developed to reduce the uncertainty associated with such decisions.  In this 

dissertation I have focused on developing methods and models that improve our ability to 

conserve and manage rare species.  I have used a case study on Ivory-billed Woodpeckers to 

provide insight into common problems and shortfalls when working with extremely rare species.  

The case study has provided motivation to create new methods that provide potential solutions 

for other studies working with rare species and are robust to a wide variety of scenarios and 

circumstances. 

 In chapter 2 I presented a large scale occupancy survey for an extremely rare species and 

analyzed the associated data collected under this survey.  I found that with extreme effort in 

certain locations, the power of the given survey to detect an individual is very high (>0.95).  I 

estimated that it takes approximately 70 visits to a particular site before the probability of a “true 

absence” reaches a probability of 0.9 given the estimated detection probability (MLE 0.046).  In 

addition using the maximum likelihood estimates of occupancy from the two river basins, I 



142 
 

estimated that between 141-445 sites out of the 595 sites should be occupied depending on the 

number of visits to a site.  All of these results suggest that there is strong evidence against the 

presence of the IBWO in the two river basins in Florida and South Carolina.  Additionally we 

found that the distribution of effort for the survey created substantial bias in estimating 

occupancy although there was little bias associated with estimating detection probability.  I also 

found that increasing the number of visits to a site reduced the MSE at a faster rate than 

increasing the number of sites visited when occupancy and detection are extremely low.  

MacKenzie and Royle (2005) found it is more beneficial to increase the number of sites visited 

when detection probability is low, but did not explore cases when occupancy and detection are 

both extremely low as in our case.  Given the current survey design we could find no optimal 

design that would permit accurate estimates of occupancy and detection. 

 Chapter 2 highlighted the importance of a priori thought devoted to the allocation and 

distribution of effort.  The implementation of the occupancy survey was not done in a standard 

manner resulting in large heterogeneity in the number of visits to a particular site.  This was 

mainly the cause of observer behavior and observer beliefs about suitable and unsuitable habitat.  

Two main problems were that observers wanted to put substantially more effort in areas where 

they observed or thought they observed an individual and observers only wanted to search areas 

they thought contained suitable habitat as opposed to adhering to a probabilistic sampling 

framework.  These two problems motivated the development of the following two chapters.  The 

heterogeneity in effort and confusion among observers about where to place effort was a serious 

problem that can potentially affect many other studies and therefore I developed an approach to 

efficiently allocate effort for occupancy surveys. 
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 In Chapter 3 I developed a framework for allocating effort that provides a probabilistic 

approach to sampling, allowing for improved accuracy in estimating occupancy probability.  The 

statistical sampling literature already contains many methods for selecting sites in a 

heterogeneous manner (i.e., stratified sampling, sequential sampling, multi-phase sampling), but 

these methods do not explicitly allow for the estimation of important quantities in a model-based 

framework and thus allowing for imperfect detection.  The approach I have developed allows for 

heterogeneity in inclusion probability in addition to reducing the error rate associated with 

estimating occupancy probability.  I found the greatest reduction in predictive error for the new 

approach when there was a large amount of spatial heterogeneity in habitat and detection 

probability was low.  The optimal approach for the new method was to allocate a relatively small 

(25%) proportion of sites to the first phase of sampling.  Surprisingly, I found improved 

performance for the new approach even when the habitat had no spatial dependency and was 

completely random. 

 Chapter 3 highlighted the need to consider survey design criteria as a part of the decision 

process.  Often there are many options regarding the distribution of effort: how many sites to 

visit, how many visits to a particular site, which sites to sample first, how to select sites, and 

these should be utilized as decision alternatives in a decision framework.  Using different forms 

of sample designs and effectively allocating resources can potentially result in the quickest 

reduction of uncertainty. 

 In Chapter 4 I addressed the other major issue raised by Chapter 2, namely that observers 

want to sample more intensively in areas with known detections.  As suggested in Chapter 2 I 

created a model that integrated adaptive-cluster sampling and occupancy estimation, which 

allowed for additional effort to be placed at adjacent sites after a known detection.  I found this 
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model to outperform traditional occupancy modeling under certain conditions.  This result was 

very similar to the advantages obtained when using traditional adaptive cluster sampling 

compared to simple-random sampling which is that the characteristics of the population often 

dictate what the appropriate model or estimator is to use.   

The use of a hierarchical model allowed for an explicit recognition and differentiation of 

factors influencing the detection process and the state process.  I believe this way of viewing the 

problem (hierarchical model) provides a generic and robust framework for many additional 

scenarios and can be applied to a large and diverse set of problems in ecology.  I therefore see 

several important extensions to the new model that would not require restructuring the 

framework.  Two important areas of improvement are the expansion to address multi-species 

studies.  Specifically, the focus on community dynamics and species richness is an important 

aspect of ecology and thus the model should be augmented to accommodate this.  I briefly 

addressed this in Chapter 4, but believe that this would be a worthy future research need.   

The second major area of development that I believe is important to address in the near 

future, is allowing for the model to accommodate dynamics.  I see this development as a critical 

next step, much like the progression from the original occupancy model (MacKenzie et al. 2002), 

to a model that incorporated dynamical parameters (MacKenzie et al. 2003).  This would be a 

difficult endeavor and require much thought because of several important limitations.  In the 

original occupancy model parameters were used that relate the state of a site at one time period 

to the state of a site at the following time period thus allowing for colonization or extinction of a 

specific site.  This is more difficult with adaptive-cluster sampling because not all sites will be 

sampled uniformly in each time period.  For instance there will be sites that were not sampled at 

time t, but are sampled at time t+1 because they were adjacent to an occupied site.  Therefore an 
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additional layer of uncertainty exists because new sites are added to the list of sites without any 

information about their previous state.  Although this is akin to problems in capture-recapture 

(Williams et al. 2002) and could be worked out probabilistically using conditioning, it may be 

easier to work with the entire cluster as we have in our model.  By treating the cluster as the 

individual unit for which dynamics are influencing, several things become apparent.  First, 

estimation may be more tractable because the size of the unit will be approximately stable (under 

some conditions) and therefore modification to our existing model could accommodate the 

advent of dynamical parameters.  Second, we can focus on the cluster itself as the unit of interest 

for which changes in occupancy can be attributed to directly and subsequently changes in the 

overall population.  This would allow for focus to be placed on the individual clusters as 

themselves smaller populations and therefore there could potentially be interactions among the 

clusters in a similar fashion as metapopulation dynamics (Hanski 1998) thus allowing for an 

additional scale of resolution. 

Future improvements in conservation and management of rare species will be 

accomplished through a variety of techniques and approaches.  I believe the acknowledgement 

and ultimately incorporation of spatial dependence and autocorrelation into modeling efforts is 

critical to our understanding of spatial heterogeneity in the distribution and abundance of rare 

species.  Models should account for this form of dependence whether it is directly by modeling 

the covariance structure or through the use of more complex survey designs.  In addition the use 

of innovative techniques such as global positioning systems (GPS), non-invasive genetic 

marking, passive integrated transponder (PIT) tags, camera traps, and photographic identification 

lend themselves to new approaches of collecting and analyzing data.  Ultimately, the most 

operative approach will be the integration of unique and innovative methods of data collection 
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coupled with models that identify and subsequently estimate the most important vital rates 

responsible for driving population dynamics.  
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APPENDIX A 

 Please find select R and OpenBUGS code used in the design and analysis (simulations) 

for Chapters 3 and 4.  The first section labeled Chapter 3 contains code specific to chapter 3.  

The second section labeled Chapter 4 contains code specific to chapter 4. 

Chapter 3   

#Approach #1 

#Simple random sample, traditional single-season occupancy analysis with fixed n 

#source("functions.r") 

#source("data_generation.r") 

approach1<-function(n,p,k,d,occ.data,habitat){ 

n=n 

k=k 

p.detect=p 

d=d 

flat=flatten(occ.data,d) 

#take SRS of size n 
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primary.samples=sample(1:(d*d),n,replace=F) 

#get data in encounter history format 

observed.data.ssocc=matrix(NA,nrow=length(primary.samples),ncol=k) 

for(i in 1:length(primary.samples)){ 

observed.data.ssocc[i,]=sample.ssocc.history(flat[primary.samples[i],2],flat[primary.samples[i],3

],occ.data,k=k,p=p.detect) 

  } 

#data vector y 

y=observed.data.ssocc 

M=length(primary.samples) 

#get covariates at sampled sites 

sample.cov=matrix(NA,ncol=1,nrow=length(primary.samples)) 

for(i in 1:length(primary.samples)){ 

  sample.cov[i]=habitat[flat[primary.samples[i],2],flat[primary.samples[i],3]] 

  } 

#likelihood function including covariates influencing psi, p still constant 

lik.zib.cov<-function(parms,vars){ 

#calculates likelihood for zero-inflated binomial 
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#with constant detection p and occupancy prob psi with one covariate 

  tmp<-c(0,0,0) 

  names(tmp)<-c("pconstant","psiconstant","psicov") 

  tmp[vars]<-parms 

  ones<-rep(1,M) 

  pmat<-invlgt(tmp[1]) 

  psi<-invlgt(tmp[2]*ones+tmp[3]*sample.cov) 

  loglik<-rep(NA,M) 

  for(i in 1:n){ 

    yvec<-y[i,] 

    nd<-sum(yvec) 

    pvec<-pmat 

    cp<-(pvec^yvec)*((1-pvec)^(1-yvec)) 

    loglik[i]<-log(prod(cp)*psi[i] + ifelse(nd==0,1,0)*(1-psi[i])) 

  } 

  sum(-1*loglik) 

} 
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#calculate maximum likelihood estimates 

x=optim(c(0.5,0.5,0.5),lik.zib.cov,method="BFGS",hessian=T) 

#get parameter estimates for psi with covariate value = 0 and p 

ssocc.estimates=invlgt(x$par) 

#ssocc.psi=ssocc.estimates[2] 

ssocc.p=ssocc.estimates[1] 

#ssocc.psi.se=sqrt(1/x$hessian)[2,2] 

#ssocc.p.se=sqrt(1/x$hessian)[1,1] 

#predicted occupancy at all sites given observed covariate and estimated coefficients 

predicted.sites=matrix(NA,nrow=d,ncol=d) 

for(xxx in 1:length(primary.samples)){ 

  if(sum(y[xxx,1:k]) > 0){ 

    predicted.sites[flat[primary.samples[xxx],2],flat[primary.samples[xxx],3]]=1} 

  else if(sum(y[xxx,1:k]) == 0){ 

tmp1=invlgt(x$par[2]+x$par[3]*habitat[flat[primary.samples[xxx],2],flat[primary.samples[xxx],

3]]) 

    tmp2=(1-invlgt(x$par[1]))^k 
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predicted.sites[flat[primary.samples[xxx],2],flat[primary.samples[xxx],3]]=(tmp1*tmp2)/((tmp1

*tmp2)+ (1-tmp1)) 

    } 

  } 

for(i in 1:d){ 

  for(j in 1:d){ 

    if(is.na(predicted.sites[i,j])==T){ 

      predicted.sites[i,j]=invlgt(x$par[2]+x$par[3]*habitat[i,j]) 

    } 

  } 

} 

predicted.sites.vector=as.vector(predicted.sites) 

#calculate variance (z_i | psi_hat) 

predicted.sites.var=matrix(NA,nrow=d,ncol=d) 

for(i in 1:d){ 

  for(j in 1:d){ 

    predicted.sites.var[i,j]=predicted.sites[i,j]*(1-predicted.sites[i,j]) 

  } 
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} 

predicted.sites.var.vector=as.vector(predicted.sites.var) 

ntot.hat=sum(predicted.sites.vector) 

#               CALCULATE SCALAR COMPARISON STATISTIC T                        # 

#.xx is true/model so .00 indicates truth = 0 and model =0 

t.stat.11=c() 

t.stat.01=c() 

t.stat.10=c() 

t.stat.00=c() 

occ.data.vector=as.vector(occ.data) 

temp=cbind(occ.data.vector,predicted.sites.vector,1-predicted.sites.vector) 

t.stat.11=sum(temp[temp[,1]==1,2]) 

t.stat.01=sum(temp[temp[,1]==0,2]) 

t.stat.10=sum(temp[temp[,1]==1,3]) 

t.stat.00=sum(temp[temp[,1]==0,3]) 

t.stat=c(t.stat.11,t.stat.01,t.stat.10,t.stat.00) 

return(list(t.stat,predicted.sites.vector,predicted.sites.var.vector,x,ntot.hat)) 
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} 

#Approach #2 

#Simple random sample, predict occupancy, sample in proportion to high probability 

# of occupancy; adapt by habitat 

#source("functions.r") 

#source("data_generation.r") 

approach2<-function(n1,n2,p,k,d,occ.data,habitat){ 

n1=n1 

n2=n2 

p.detect=p 

d=d 

flat=flatten(occ.data,d) 

#take SRS of size n 

primary.samples.n1=sample(1:(d*d),n1,replace=F) 

#get data in encounter history format 

observed.data.ssocc.n1=matrix(NA,nrow=length(primary.samples.n1),ncol=k) 

for(i in 1:length(primary.samples.n1)){ 
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observed.data.ssocc.n1[i,]=sample.ssocc.history(flat[primary.samples.n1[i],2],flat[primary.sampl 

es.n1[i],3],occ.data,k=k,p=p.detect) 

  } 

#data vector y 

y.n1=observed.data.ssocc.n1 

M.n1=length(primary.samples.n1) 

#get covariates at sampled sites 

sample.cov.n1=matrix(NA,ncol=1,nrow=length(primary.samples.n1)) 

for(i in 1:length(primary.samples.n1)){ 

  sample.cov.n1[i]=habitat[flat[primary.samples.n1[i],2],flat[primary.samples.n1[i],3]] 

  } 

#likelihood function including covariates influencing psi, p still constant 

lik.zib.cov.n1<-function(parms,vars){ 

#calculates likelihood for zero-inflated binomial 

#with constant detection p and occupancy prob psi with one covariate 

  tmp<-c(0,0,0) 

  names(tmp)<-c("pconstant","psiconstant","psicov") 
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  tmp[vars]<-parms 

  ones.n1<-rep(1,M.n1) 

  pmat.n1<-invlgt(tmp[1]) 

  psi.n1<-invlgt(tmp[2]*ones.n1+tmp[3]*sample.cov.n1) 

  loglik.n1<-rep(NA,M.n1) 

  for(i in 1:n1){ 

    yvec.n1<-y.n1[i,] 

    nd.n1<-sum(yvec.n1) 

    pvec.n1<-pmat.n1 

    cp.n1<-(pvec.n1^yvec.n1)*((1-pvec.n1)^(1-yvec.n1)) 

    loglik.n1[i]<-log(prod(cp.n1)*psi.n1[i] + ifelse(nd.n1==0,1,0)*(1-psi.n1[i])) 

  } 

  sum(-1*loglik.n1) 

} 

#calculate maximum likelihood estimates 

x.n1=optim(c(0.5,0.5,0.5),lik.zib.cov.n1,method="BFGS",hessian=T) 

#get parameter estimates for psi with covariate value = 0 and p 
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ssocc.estimates.n1=invlgt(x.n1$par) 

#ssocc.psi.n1=ssocc.estimates.n1[2] 

ssocc.p.n1=ssocc.estimates.n1[1] 

#ssocc.psi.se.n1=sqrt(1/x.n1$hessian)[2,2] 

#ssocc.p.se.n1=sqrt(1/x.n1$hessian)[1,1] 

#predicted occupancy at all sites given observed covariate and estimated coefficients 

predicted.sites.n1=matrix(NA,nrow=d,ncol=d) 

for(xxx in 1:length(primary.samples.n1)){ 

  if(sum(y.n1[xxx,1:k]) > 0){ 

    predicted.sites.n1[flat[primary.samples.n1[xxx],2],flat[primary.samples.n1[xxx],3]]=1} 

  else if(sum(y.n1[xxx,1:3]) == 0){ 

tmp1=invlgt(x.n1$par[2]+x.n1$par[3]*habitat[flat[primary.samples.n1[xxx],2],flat[primary.sam

ples.n1[xxx],3]]) 

    tmp2=(1-invlgt(x.n1$par[1]))^k 

predicted.sites.n1[flat[primary.samples.n1[xxx],2],flat[primary.samples.n1[xxx],3]]=(tmp1*tmp

2)/((tmp1*tmp2)+ (1-tmp1)) 

    } 

  } 



158 
 

 
 

for(i in 1:d){ 

  for(j in 1:d){ 

    if(is.na(predicted.sites.n1[i,j])==T){ 

      predicted.sites.n1[i,j]=invlgt(x.n1$par[2]+x.n1$par[3]*habitat[i,j]) 

    } 

  } 

} 

predicted.sites.vector.n1=as.vector(predicted.sites.n1) 

#calculate variance (z_i | psi_hat) 

predicted.sites.var.n1=matrix(NA,nrow=d,ncol=d) 

for(i in 1:d){ 

  for(j in 1:d){ 

    predicted.sites.var.n1[i,j]=predicted.sites.n1[i,j]*(1-predicted.sites.n1[i,j]) 

  } 

} 

predicted.sites.var.vector.n1=as.vector(predicted.sites.var.n1) 

#weights for sampling at second stage 
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wts.n1=c() 

temporary=predicted.sites.vector.n1 

temporary[primary.samples.n1]<-0 

#normalizes the weights without sites included in n1 

for(i in 1:length(temporary)){ 

  wts.n1[i]=temporary[i]/sum(temporary) 

} 

temp=1:(d*d) 

n2.index=sample(temp,size=n2,replace=F,prob=wts.n1) 

#data in encounter history format 

observed.data.n2=matrix(NA,nrow=length(n2.index),ncol=k) 

for (i in 1:length(n2.index)){ 

observed.data.n2[i,]=sample.ssocc.history(flat[n2.index[i],2],flat[n2.index[i],3],occ.data,k=k,p=p

.detect) 

} 

#augmented data y2 

y.n2=c() 

y.n2=rbind(y.n1,observed.data.n2) 
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augment.sample=c() 

augment.sample=append(augment.sample,primary.samples.n1) 

augment.sample=append(augment.sample,n2.index) 

M.n2=dim(y.n2)[1] 

#get covariates at sampled sites 

sample.cov.n2=matrix(NA,ncol=1,nrow=length(n2.index)) 

for(i in 1:length(n2.index)){ 

  sample.cov.n2[i]=habitat[flat[n2.index[i],2],flat[n2.index[i],3]] 

} 

#get total (n1+n2) covariates at sampled sites 

sample.cov.tot=append(sample.cov.n1,sample.cov.n2) 

lik.zib.cov.n2<-function(parms,vars){ 

#calculates likelihood for zero-inflated binomial 

#with constant detection p and occupancy prob psi with one covariate 

  tmp<-c(0,0,0) 

  names(tmp)<-c("pconstant","psiconstant","psicov") 

  tmp[vars]<-parms 
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  ones<-rep(1,M.n2) 

  pmat.n2<-invlgt(tmp[1]) 

  psi.n2<-invlgt(tmp[2]*ones+tmp[3]*sample.cov.tot) 

  loglik.n2<-rep(NA,M.n2) 

  for(i in 1:M.n2){ 

    yvec.n2<-y.n2[i,] 

    nd.n2<-sum(yvec.n2) 

    pvec.n2<-pmat.n2 

    cp.n2<-(pvec.n2^yvec.n2)*((1-pvec.n2)^(1-yvec.n2)) 

    loglik.n2[i]<-log(prod(cp.n2)*psi.n2[i] + ifelse(nd.n2==0,1,0)*(1-psi.n2[i])) 

  } 

  sum(-1*loglik.n2) 

} 

#calculate mle's for betas 

x.n2=optim(c(0.5,0.5,0.5),lik.zib.cov.n2,method="BFGS",hessian=T) 

#get parameter estimates for psi with covariate value = 0 and p 

ssocc.estimates.n2=invlgt(x.n2$par) 
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#ssocc.psi.n2=ssocc.estimates.n2[2] 

ssocc.p.n2=ssocc.estimates.n2[1] 

#ssocc.psi.se.n2=sqrt(1/x.n2$hessian)[2,2] 

#ssocc.p.se.n2=sqrt(1/x.n2$hessian)[1,1] 

#predicted occupancy at all sites given observed covariate and estimated coefficients 

predicted.sites.n2=matrix(NA,nrow=d,ncol=d) 

for(xxx in 1:length(augment.sample)){ 

  if(sum(y.n2[xxx,1:k]) > 0){ 

    predicted.sites.n2[flat[augment.sample[xxx],2],flat[augment.sample[xxx],3]]=1} 

  else if(sum(y.n2[xxx,1:k]) == 0){ 

tmp1=invlgt(x.n2$par[2]+x.n2$par[3]*habitat[flat[augment.sample[xxx],2],flat[augment.sample 

[xxx],3]]) 

    tmp2=(1-invlgt(x.n2$par[1]))^k 

predicted.sites.n2[flat[augment.sample[xxx],2],flat[augment.sample[xxx],3]]=(tmp1*tmp2)/((tm 

p1*tmp2)+ (1-tmp1)) 

    } 

  } 
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for(i in 1:d){ 

  for(j in 1:d){ 

    if(is.na(predicted.sites.n2[i,j])==T){ 

      predicted.sites.n2[i,j]=invlgt(x.n2$par[2]+x.n2$par[3]*habitat[i,j]) 

    } 

  } 

} 

predicted.sites.vector.n2=as.vector(predicted.sites.n2) 

#calculate variance (z_i | psi_hat) 

predicted.sites.var.n2=matrix(NA,nrow=d,ncol=d) 

for(i in 1:d){ 

  for(j in 1:d){ 

    predicted.sites.var.n2[i,j]=predicted.sites.n2[i,j]*(1-predicted.sites.n2[i,j]) 

  } 

} 

predicted.sites.var.vector.n2=as.vector(predicted.sites.var.n2) 

ntot.hat=sum(predicted.sites.vector.n2) 
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#               CALCULATE SCALAR COMPARISON STATISTIC T                        # 

#.xx is true/model so .00 indicates truth = 0 and model =0 

t.stat.2.11=c() 

t.stat.2.01=c() 

t.stat.2.10=c() 

t.stat.2.00=c() 

occ.data.vector=as.vector(occ.data) 

temp=cbind(occ.data.vector,predicted.sites.vector.n2,1-predicted.sites.vector.n2) 

t.stat.2.11=sum(temp[temp[,1]==1,2]) 

t.stat.2.01=sum(temp[temp[,1]==0,2]) 

t.stat.2.10=sum(temp[temp[,1]==1,3]) 

t.stat.2.00=sum(temp[temp[,1]==0,3]) 

t.stat.2=c(t.stat.2.11,t.stat.2.01,t.stat.2.10,t.stat.2.00) 

return(list(t.stat.2,predicted.sites.vector.n2,predicted.sites.var.vector.n2,x.n2,ntot.hat)) 

} 

Chapter 4 

OpenBUGS code: 
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model { 

for (i in 1:n.data){ 

 for(j in 1:k.vector[i]){ 

  z[i,j]~dbern(psi[i,j]) 

  logit(psi[i,j])<-b0[i] + beta1*x.data[i,j] 

  mu[i,j]<-z[i,j]*p.det 

  y.data[i,j]~dbin(mu[i,j],k)    

  } 

 b0[i]~dnorm(beta0,tau) 

 } 

for(i in 1:n.data){ 

 for(j in 1:k.vector[i]){ 

  y.rep[i,j]~dbin(mu[i,j],k)   #posterior predictive dist 

  exp.y[i,j]<-mu[i,j]*k    #E(y_ij|parms) 

  #var.y[i,j]<-(mu[i,j]*(1-mu[i,j]))/k #var(y_ij|pars) 

  tmp.data[i,j]<-(y.data[i,j]-exp.y[i,j]) #squared error loss  

  tmp2.data[i,j]<-pow(tmp.data[i,j],2) #data 
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  #tmp.var[i,j]<-pow(var.y[i,j],-1) 

  loss.data[i,j]<-tmp2.data[i,j] 

  tmp.rep[i,j]<-(y.rep[i,j]-exp.y[i,j]) #replicated data 

  tmp2.rep[i,j]<-pow(tmp.rep[i,j],2) 

  loss.rep[i,j]<-tmp2.rep[i,j] 

  abstmp.data[i,j]<-abs(y.data[i,j]-exp.y[i,j]) #absolute error loss 

  abstmp.rep[i,j]<-abs(y.rep[i,j]-exp.y[i,j]) #replicated data 

  } 

 } 

#get sum of test quantity (squared error loss or absolute error loss) 

for(i in 1:n.data){ 

 data.tmp[i]<-sum(loss.data[i,1:k.vector[i]]) 

 rep.tmp[i]<-sum(loss.rep[i,1:k.vector[i]]) 

 absdata.tmp[i]<-sum(abstmp.data[i,1:k.vector[i]]) 

 absrep.tmp[i]<-sum(abstmp.rep[i,1:k.vector[i]]) 

 } 

test.data<-sum(data.tmp[1:n.data]) 
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test.rep<-sum(rep.tmp[1:n.data]) 

abs.data<-sum(absdata.tmp[1:n.data]) 

abs.rep<-sum(absrep.tmp[1:n.data]) 

test<-step(test.data-test.rep) 

test3<-step(abs.data-abs.rep) 

#used to get latent states 

for(i in 1:n.data){ 

 zsum[i]<-sum(z[i,1:k.vector[i]]) 

 } 

#sum of latent states for all observed/sampled sites 

ztot.obs<-sum(zsum[1:n.data]) 

#prediction to new locations that were not sampled 

for(xx in 1:n.predict){ 

 b0.new[xx]~dnorm(beta0,tau) 

 logit(psi.new[xx])<-b0.new[xx]+beta1*cov.predict[xx] 

 z.new[xx]~dbern(psi.new[xx]) 

 } 
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#sum of latent states for unobserved/unsampled locations 

ztot.new<-sum(z.new[1:n.predict]) 

#latent states for all sites observed + unobserved 

ztot<- ztot.obs + ztot.new 

#overall occupancy prob 

psi.tot<- ztot/400 

#priors and other definitions 

tau<-1/(sigma*sigma) 

p.det~dunif(0,1) 

t.nu <- 7.763179      # Uniform prior on logit scale 

t.sigma <- 1.566267   # Uniform prior on logit scale 

tmp<-pow(t.sigma,-2) 

beta0 ~ dt(0,tmp,t.nu) 

beta1~dt(0,tmp,t.nu) 

sigma~dunif(0,20) 

} 

R code: 
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#adaptive-sampling occupancy approach 

#source("functions.r") 

#source("data_generation.r") 

ACSocc<-function(n,p.detect,k,d,occ.data,habitat,n.iter,n.burn,n.thin,n.chain){ 

##############             ACS-occupancy model                       ########### 

n=n 

k=k 

p=p.detect 

d=d 

n.iter=n.iter 

n.burn=n.burn 

n.thin=n.thin 

n.chain=n.chain 

habitat=habitat 

occ.data=occ.data 

ntot=sum(occ.data) 

psitot=ntot/(d*d) 
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#take SRS of size n 

primary.samples=sample(1:(d*d),n,replace=F) 

#flatten out matrix to keep indices stored 

flat=flatten(occ.data,d) 

#flatten out matrix of covariates 

flat.cov=flatten(habitat,d) 

#maximum number of adapted sites 

max.adapt.sites=200 

#create matrices to store data 

primary.data=matrix(NA,nrow=n,ncol=max.adapt.sites) 

#matrix to store covariate data 

covariate.data=matrix(NA,nrow=n,ncol=max.adapt.sites) 

#matrix to store locations "1t1" is row 1, col 1 

loc.data=matrix(NA,nrow=n,ncol=max.adapt.sites) 

#create empty vector to keep track of sites that have been sampled 

storage=c() 

#loop through primary sites, check if it has already been sampled, get adjacent 
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#sites and proceed with sampling those sites.  Condition for adaptation is single detection 

for(xx in 1:n){ 

  #create empy queue to hold list of sites for each primary site 

  queue=c() 

  #adding location of primary site to list 

  primary.paste=paste(flat[primary.samples[xx],2],"t",flat[primary.samples[xx],3],sep="") 

  #making sure primary site has not already been sampled 

  if(primary.paste %in% storage==F){ 

  storage=append(storage,primary.paste) 

  #getting data (both detections and covariates) at primary site location 

  primary.data[xx,1]=rbinom(1,k,flat[primary.samples[xx],1]*p) 

  covariate.data[xx,1]=flat.cov[primary.samples[xx],1] 

  loc.data[xx,1]=paste(flat[primary.samples[xx],2],"t",flat[primary.samples[xx],3],sep="") 

  #if get a detection do adaptive sampling to rooks neighbors 

  if(primary.data[xx,1]>0){ 

    temp=adjacency.rooks(flat[primary.samples,2][xx],flat[primary.samples,3][xx],occ.data) 

    queue=rbind(queue,temp) 
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    temp1=queue[,1:2] 

    unique.queue=unique(temp1) 

    unique.queue.paste=paste(unique.queue[,1],"t",unique.queue[,2],sep="") 

    queue.1=unique.queue[unique.queue.paste %in% storage==F,] 

    #manually iterating through the process of checking neighbors, getting detections... 

    second=adapt2(queue.1,occ.data,storage,k,p,flat.cov) 

    third=adapt2(second$queue.2,occ.data,second$storage,k,p,flat.cov) 

    fourth=adapt2(third$queue.2,occ.data,third$storage,k,p,flat.cov) 

    fifth=adapt2(fourth$queue.2,occ.data,fourth$storage,k,p,flat.cov) 

    sixth=adapt2(fifth$queue.2,occ.data,fifth$storage,k,p,flat.cov) 

    seventh=adapt2(sixth$queue.2,occ.data,sixth$storage,k,p,flat.cov) 

    eighth=adapt2(seventh$queue.2,occ.data,seventh$storage,k,p,flat.cov) 

    ninth=adapt2(eighth$queue.2,occ.data,eighth$storage,k,p,flat.cov) 

    tenth=adapt2(ninth$queue.2,occ.data,ninth$storage,k,p,flat.cov) 

    eleven=adapt2(tenth$queue.2,occ.data,tenth$storage,k,p,flat.cov) 

    twelve=adapt2(eleven$queue.2,occ.data,eleven$storage,k,p,flat.cov) 

    thirteen=adapt2(twelve$queue.2,occ.data,twelve$storage,k,p,flat.cov) 
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    fourteen=adapt2(thirteen$queue.2,occ.data,thirteen$storage,k,p,flat.cov) 

    fifteen=adapt2(fourteen$queue.2,occ.data,fourteen$storage,k,p,flat.cov) 

    sixteen=adapt2(fifteen$queue.2,occ.data,fifteen$storage,k,p,flat.cov) 

    seventeen=adapt2(sixteen$queue.2,occ.data,sixteen$storage,k,p,flat.cov) 

    eighteen=adapt2(seventeen$queue.2,occ.data,seventeen$storage,k,p,flat.cov) 

    nineteen=adapt2(eighteen$queue.2,occ.data,eighteen$storage,k,p,flat.cov) 

    twenty=adapt2(nineteen$queue.2,occ.data,nineteen$storage,k,p,flat.cov) 

    twenty1=adapt2(twenty$queue.2,occ.data,twenty$storage,k,p,flat.cov) 

    twenty2=adapt2(twenty1$queue.2,occ.data,twenty1$storage,k,p,flat.cov) 

    twenty3=adapt2(twenty2$queue.2,occ.data,twenty2$storage,k,p,flat.cov) 

    twenty4=adapt2(twenty3$queue.2,occ.data,twenty3$storage,k,p,flat.cov) 

    twenty5=adapt2(twenty4$queue.2,occ.data,twenty4$storage,k,p,flat.cov) 

    twenty6=adapt2(twenty5$queue.2,occ.data,twenty5$storage,k,p,flat.cov) 

    twenty7=adapt2(twenty6$queue.2,occ.data,twenty6$storage,k,p,flat.cov) 

    twenty8=adapt2(twenty7$queue.2,occ.data,twenty7$storage,k,p,flat.cov) 

    twenty9=adapt2(twenty8$queue.2,occ.data,twenty8$storage,k,p,flat.cov) 

    thirty=adapt2(twenty9$queue.2,occ.data,twenty9$storage,k,p,flat.cov) 
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    thirty1=adapt2(thirty$queue.2,occ.data,thirty$storage,k,p,flat.cov) 

    thirty2=adapt2(thirty1$queue.2,occ.data,thirty1$storage,k,p,flat.cov) 

    thirty3=adapt2(thirty2$queue.2,occ.data,thirty2$storage,k,p,flat.cov) 

    thirty4=adapt2(thirty3$queue.2,occ.data,thirty3$storage,k,p,flat.cov) 

    thirty5=adapt2(thirty4$queue.2,occ.data,thirty4$storage,k,p,flat.cov) 

    thirty6=adapt2(thirty5$queue.2,occ.data,thirty5$storage,k,p,flat.cov) 

    thirty7=adapt2(thirty6$queue.2,occ.data,thirty6$storage,k,p,flat.cov) 

    thirty8=adapt2(thirty7$queue.2,occ.data,thirty7$storage,k,p,flat.cov) 

    thirty9=adapt2(thirty8$queue.2,occ.data,thirty8$storage,k,p,flat.cov) 

    forty=adapt2(thirty9$queue.2,occ.data,thirty9$storage,k,p,flat.cov) 

    forty1=adapt2(forty$queue.2,occ.data,forty$storage,k,p,flat.cov) 

    #adding everything to storage and getting unique sites that need to be sampled 

    storage=append(storage,forty1$storage) 

    storage=append(storage,forty1$queue.2) 

    storage=unique(storage) 

    #getting all of the data for the adaptively added sites associated with primary site 

    y=rbind(second$secondary.data,third$secondary.data,fourth$secondary.data, 
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    fifth$secondary.data,sixth$secondary.data,seventh$secondary.data,eighth$secondary.data, 

      ninth$secondary.data,tenth$secondary.data,eleven$secondary.data,twelve$secondary.data, 

 thirteen$secondary.data,fourteen$secondary.data,fifteen$secondary.data,sixteen$secondary.data, 

seventeen$secondary.data,eighteen$secondary.data,nineteen$secondary.data,twenty$secondary.d

ata, 

twenty1$secondary.data,twenty2$secondary.data,twenty3$secondary.data,twenty4$secondary.da

ta, 

twenty5$secondary.data,twenty6$secondary.data,twenty7$secondary.data,twenty8$secondary.da

ta, 

twenty9$secondary.data,thirty$secondary.data,thirty1$secondary.data,thirty2$secondary.data, 

thirty3$secondary.data,thirty4$secondary.data,thirty5$secondary.data,thirty6$secondary.data, 

thirty7$secondary.data,thirty8$secondary.data,thirty9$secondary.data,forty$secondary.data, 

              forty1$secondary.data) 

    #getting locations for all of the adaptively added sites associated with primary site 

    locs=rbind(second$location,third$location,fourth$location, 

    fifth$location,sixth$location,seventh$location,eighth$location, 

      ninth$location,tenth$location,eleven$location,twelve$location, 

        thirteen$location,fourteen$location,fifteen$location,sixteen$location, 
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          seventeen$location,eighteen$location,nineteen$location,twenty$location, 

            twenty1$location,twenty2$location,twenty3$location,twenty4$location, 

              twenty5$location,twenty6$location,twenty7$location,twenty8$location, 

              twenty9$location,thirty$location,thirty1$location,thirty2$location, 

              thirty3$location,thirty4$location,thirty5$location,thirty6$location, 

              thirty7$location,thirty8$location,thirty9$location,forty$location, 

              forty1$location) 

    #getting data and putting it in the associated row for the primary site 

    if(is.null(y)==F){ 

    primary.data[xx,2:(dim(y)[1]+1)]=y[,1] 

    covariate.data[xx,2:(dim(y)[1]+1)]=y[,2] 

    loc.data[xx,2:(dim(locs)[1]+1)]=locs[,1] } 

    } 

  } 

} 

#get rid of NAs in primary.data[,1] that were a result of the primary sample already 

#sampled during one of the other clusters.  Need to augment the size of primary data and n 
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y.data=primary.data[!(is.na(primary.data[,1])),] 

location.data=loc.data[!(is.na(loc.data[,1])),] 

x.data=covariate.data[!(is.na(covariate.data[,1])),] 

#k.vector gives list of size of each cluster  

k.vector=c() 

for(i in 1:dim(y.data)[1]){ 

  temp=0 

  for(j in 1:dim(y.data)[2]){ 

    if(is.na(y.data[i,j])==F){ 

      temp=temp+1 } 

    } 

  k.vector=append(k.vector,temp) 

} 

#get number of primary locations 

n.data=dim(y.data)[1] 

#get true sample size (this includes all of the adaptively added sites) 

sample.size=sum(k.vector) 
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#create matrix that identifies which sites have been sampled 

zeros=matrix(0,ncol=ncol(occ.data),nrow=nrow(occ.data)) 

for(i in 1:dim(location.data)[1]){ 

  for(j in 1:dim(location.data)[2]){ 

    if(is.na(location.data[i,j])==F){ 

      temp=strsplit(location.data[i,j],"t") 

      temp1=as.numeric(temp[[1]][1]) 

      temp2=as.numeric(temp[[1]][2]) 

      zeros[temp1,temp2]=1 

    } 

  } 

} 

#need vector of sites that have not been sampled 

zeros.flat=flatten(zeros,d) 

n.predict=(d*d)-sample.size 

#need vector of covariate values for those sites that have not been sampled 

cov.predict=c() 



179 
 

 
 

cov.predict.locs=c() 

for(i in 1:(d*d)){ 

  if(zeros.flat[i,1]==0){ 

    cov.predict=append(cov.predict,flat.cov[i,1]) 

    cov.predict.locs=append(cov.predict.locs,paste(zeros.flat[i,2],"t",zeros.flat[i,3],sep="")) 

  } 

  else i=i+1 

}       

#Bayes inference 

library(R2OpenBUGS) 

data=list("n.data","y.data","k.vector","k","x.data","n.predict","cov.predict") 

parameters<-c("p.det","ztot","psi.tot","test","test3") 

par.inits<-function(){ 

  list(p.det=runif(1),beta1=rnorm(1),beta0=rnorm(1),sigma=runif(1),b0=rnorm(n.data))} 

adaptocc.bayes<-bugs(data,inits=par.inits,parameters,"ACSocc.txt", 

n.thin=n.thin,n.chains=n.chain, 

n.burnin=n.burn,n.iter=n.iter,debug=F,codaPkg=F,DIC=T,OpenBUGS.pgm="/usr/local/OpenBU

GS-3.1.2/bin/OpenBUGS") 
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attach.bugs(adaptocc.bayes) 

ztot.median=median(ztot) 

ztot.mean=mean(ztot) 

psi.tot.median=median(psi.tot) 

psi.tot.mean=mean(psi.tot) 

test.mean=mean(test) 

test3.mean=mean(test3) 

p.median=median(p.det) 

p.mean=mean(p.det) 

quant.ztot=quantile(ztot,probs=c(0.025,0.975)) 

low.ztot=quant.ztot[1] 

high.ztot=quant.ztot[2] 

coverage=0 

if(ntot<quant.ztot[2] & ntot>quant.ztot[1]){ 

  coverage=1} 

bias.p=mean(p.det)-p 

mse.p=(mean(p.det)-p)^2   
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bias.psi=mean(psi.tot)- psitot 

mse.psi=(mean(psi.tot) - psitot)^2 

bias.z=mean(ztot)-ntot 

mse.z=(mean(ztot)-ntot)^2 

detach.bugs() 

return(list(sample.size=sample.size,ztot.median=ztot.median,ztot.mean=ztot.mean, 

low.ztot=low.ztot,high.ztot=high.ztot,psi.tot.median=psi.tot.median, 

psi.tot.mean=psi.tot.mean,test.mean=test.mean,test3.mean=test3.mean,p.median=p.median, 

p.mean=p.mean,coverage=coverage,bias.p=bias.p,mse.p=mse.p,bias.psi=bias.psi, 

mse.psi=mse.psi,bias.z=bias.z,mse.z=mse.z,true.z=ntot,true.psi=psitot)) 

} 

#traditional adaptive cluster sampling Thompson 1990 

##       HORVITZ-THOMPSON ESTIMATOR  

#get unique network.data (each network only listed once) 

network.data.unique=unique(network.data) 

#calculate estimate of mean and total 

big.N=(d*d) 
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alpha.k=c() 

y.k=c() 

for(i in 1:dim(network.data.unique)[1]){ 

  alpha.k[i]=1-((choose(big.N-network.data.unique[i,2],n))/(choose(big.N,n))) 

  y.k[i]=network.data.unique[i,3] 

} 

mu.hat.ht=(1/big.N)*sum(y.k/alpha.k) 

ntot.hat.ht=sum(y.k/alpha.k) 

#variance estimation 

ht.denom=choose(big.N,n) 

vhat.ht=0 

alphakh=0 

tnum=0 

for(j in 1:dim(network.data.unique)[1]){ 

  for(k in 1:dim(network.data.unique)[1]){ 

    if(j==k){ 

      alphakh=alpha.k[j] 
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    } 

    else { 

      alphakh=1-((choose((big.N-network.data.unique[j,2]),n)+choose((big.N-

network.data.unique[k,2]),n)- 

        choose((big.N-network.data.unique[j,2]-network.data.unique[k,2]),n))/ht.denom) 

    } 

    tnum=network.data.unique[j,3]*network.data.unique[k,3] 

    tnum=tnum*(alphakh-alpha.k[j]*alpha.k[k])/(alphakh*alpha.k[j]*alpha.k[k]) 

    vhat.ht=vhat.ht+tnum 

  } 

} 

vhat.ht=vhat.ht/(big.N^2) 

var.mu.hat.ht=vhat.ht 

var.ntot.hat.ht=(big.N^2)*var.mu.hat.ht 

se.ntot.hat.ht=sqrt(var.ntot.hat.ht) 

#check to see if variance is negative 

var.ht.0=0 

if(var.mu.hat.ht<0){ 
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  var.ht.0=1} 

#95% Asymptotic confidence interval 

ci.95.ht=1.96*se.ntot.hat.ht 

lower.bound.ht=ntot.hat.ht - ci.95.ht 

upper.bound.ht=ntot.hat.ht + ci.95.ht 

####        HANSEN-HURWITZ ESTIMATOR FOR MEAN, TOTAL AND VARIANCE            

wi=network.data[,3]/network.data[,2] 

mu.hat.hh=mean(wi) 

ntot.hat.hh=mu.hat.hh*big.N 

piece.1.hh=((big.N-n)/(big.N*n*(n-1))) 

temp=c() 

for(i in 1:n){ 

  temp[i]=(wi[i]-mu.hat.hh)^2 

} 

var.mu.hat.hh=piece.1.hh*sum(temp) 

var.ntot.hat.hh=var.mu.hat.hh*big.N^2 

se.ntot.hat.hh=sqrt(var.ntot.hat.hh) 
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#check to see if variance is negative 

var.hh.0=0 

if(var.mu.hat.hh<0){ 

  var.hh.0=1} 

ci.95.hh=1.96*se.ntot.hat.hh 

lower.bound.hh=ntot.hat.hh-ci.95.hh 

upper.bound.hh=ntot.hat.hh+ci.95.hh   

#create matrix that identifies which sites have been sampled 

zeros=matrix(0,ncol=ncol(occ.data),nrow=nrow(occ.data)) 

for(i in 1:dim(loc.data)[1]){ 

  for(j in 1:dim(loc.data)[2]){ 

    if(is.na(loc.data[i,j])==F){ 

      temp=strsplit(loc.data[i,j],"t") 

      temp1=as.numeric(temp[[1]][1]) 

      temp2=as.numeric(temp[[1]][2]) 

      zeros[temp1,temp2]=1 

    } 
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  } 

} 

#need vector of sites that have not been sampled 

zeros.flat=flatten(zeros,d) 

#get true sample size (this includes all of the adaptively added sites) 

sample.size=sum(zeros) 

coverage.ht=0 

if(ntot<upper.bound.ht & ntot > lower.bound.ht){ 

  coverage.ht=1} 

coverage.hh=0 

if(ntot<upper.bound.hh & ntot > lower.bound.hh){ 

  coverage.hh=1} 

psi.hat.ht=ntot.hat.ht/(d*d) 

psi.hat.hh=ntot.hat.hh/(d*d)   

bias.z.ht=ntot-ntot.hat.ht 

bias.z.hh=ntot-ntot.hat.hh 

mse.z.ht=(ntot-ntot.hat.ht)^2 
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mse.z.hh=(ntot-ntot.hat.hh)^2 

bias.psi.ht=psi.hat.ht - psitot 

mse.psi.ht=(psi.hat.ht - psitot)^2 

bias.psi.hh=psi.hat.hh - psitot 

mse.psi.hh=(psi.hat.hh - psitot)^2 

return(list(sample.size=sample.size,ntot.hat.ht=ntot.hat.ht,var.ntot.hat.ht=var.ntot.hat.ht, 

ntot.hat.hh=ntot.hat.hh,var.ntot.hat.hh=var.ntot.hat.hh,bias.z.ht=bias.z.ht, 

bias.z.hh=bias.z.hh,mse.z.ht=mse.z.ht,mse.z.hh=mse.z.hh,bias.psi.ht=bias.psi.ht, 

mse.psi.ht=mse.psi.ht,bias.psi.hh=bias.psi.hh,mse.psi.hh=mse.psi.hh, 

coverage.ht=coverage.ht,coverage.hh=coverage.hh,var.ht.0=var.ht.0, 

var.hh.0=var.hh.0,true.z=ntot)) 

} 

#Monte Carlo Integration of ACSOCC likelihood 

M=1000 

lik.zib.cov.rand.effects<-function(parms){ 

#calculates likelihood for zero-inflated binomial with random effects 

#with constant detection p and occupancy prob psi with one covariate and random effects 



188 
 

 
 

  pconstant=invlgt(parms[1]) 

  beta0=parms[2] 

  sigma=exp(parms[3]) 

  beta1=parms[4] 

  negl1=0 #counter for likelihood 

  for(i in 1:n){ 

    temp2=matrix(nrow=M,ncol=k[i]) 

    b0=rnorm(M,beta0,sigma) 

    for(j in 1:k[i]){ 

      xval=x[i,j] 

      psi=invlgt(b0) 

      temp=psi*dbinom(y[i,j],J,pconstant)+ifelse(y[i,j]==0,1,0)*(1-psi) 

      temp2[,j]=temp 

      } 

    temp3=apply(temp2,1,prod) 

    integral1=mean(temp3) 

    negl1=negl1-log(integral1) 
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    } 

return(negl1) 

} #close function for lik.zib.cov.rand.effects 

xx=optim(c(1,0,0),lik.zib.cov.rand.effects,hessian=F) 

yy=optim(c(xx$par[1],xx$par[2],xx$par[3]),lik.zib.cov.rand.effects,method="BFGS",hessian=F) 
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APPENDIX B 

 Please find additional figures and tables of results from the simulations conducted in 

Chapter 3. 
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Figure B.1.  Plots of test statistic and associated quartiles (25% and 75%) measuring lack of fit 

(lower is better) for two-phase adaptive approach (circles) and traditional single-season 

occupancy approach (squares) when n=100, J=5, and for three different levels of detection, 

p=0.25, 0.5, 0.75.  X-axis represents proportion of sample allocated to phase one for the two-

phase adaptive approach.  Habitat 1 is a simulated habitat with extreme spatial correlation while 

habitat 2 has moderate spatial correlation and habitat 3 is randomly generated and contains no 

spatial correlation.   
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Figure B.2.  Plots of test statistic and associated quartiles (25% and 75%) measuring lack of fit 

(lower is better) for two-phase adaptive approach (circles) and traditional single-season 

occupancy approach (squares) when n=200, J=5, and for three different levels of detection, 

p=0.25, 0.5, 0.75.  X-axis represents proportion of sample allocated to phase one for the two-

phase adaptive approach.  Habitat 1 is a simulated habitat with extreme spatial correlation while 

habitat 2 has moderate spatial correlation and habitat 3 is randomly generated and contains no 

spatial correlation.   
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Figure B.3.  Plots of test statistic and associated quartiles (25% and 75%) measuring lack of fit 

(lower is better) for two-phase adaptive approach (circles) and traditional single-season 

occupancy approach (squares) when there is no simulated relationship between habitat and 

occupancy for n=100, J=5, and for three different levels of detection, p=0.25, 0.5, 0.75.  X-axis 

represents proportion of sample allocated to phase one for the two-phase adaptive approach.  

Habitat 1 is a simulated habitat with extreme spatial correlation while habitat 2 has moderate 

spatial correlation and habitat 3 is randomly generated and contains no spatial correlation.   
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Figure B.4.  Plots of test statistic and associated quartiles (25% and 75%) measuring lack of fit 

(lower is better) for two-phase adaptive approach (circles) and traditional single-season 

occupancy approach (squares) when there is no simulated relationship between habitat and 

occupancy for n=200, J=3, and for three different levels of detection, p=0.25, 0.5, 0.75.  X-axis 

represents proportion of sample allocated to phase one for the two-phase adaptive approach.  

Habitat 1 is a simulated habitat with extreme spatial correlation while habitat 2 has moderate 

spatial correlation and habitat 3 is randomly generated and contains no spatial correlation.   
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Figure B.5.  Plots of test statistic and associated quartiles (25% and 75%) measuring lack of fit 

(lower is better) for two-phase adaptive approach (circles) and traditional single-season 

occupancy approach (squares) when there is no simulated relationship between habitat and 

occupancy for n=200, J=5, and for three different levels of detection, p=0.25, 0.5, 0.75.  X-axis 

represents proportion of sample allocated to phase one for the two-phase adaptive approach.  

Habitat 1 is a simulated habitat with extreme spatial correlation while habitat 2 has moderate 

spatial correlation and habitat 3 is randomly generated and contains no spatial correlation.   
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Figure B.6.  Distribution from 1000 simulations of the estimates of Ntot for the two-phase 

adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 1 (extreme spatial correlation, see text for more 

details) with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.75.  

Percent allocation refers to the percentage of the total sample size, n, allocated to the first phase 

of sampling for the two-phase adaptive approach.  The dotted line represents the true value of 

Ntot.  
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Figure B.7.  Distribution from 1000 simulations of the estimates of Ntot for the two-phase 

adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 2 (moderate spatial correlation, see text for more 

details) with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.25.  

Percent allocation refers to the percentage of the total sample size, n, allocated to the first phase 

of sampling for the two-phase adaptive approach.  The dotted line represents the true value of 

Ntot.  
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Figure B.8.  Distribution from 1000 simulations of the estimates of Ntot for the two-phase 

adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 2 (moderate spatial correlation, see text for more 

details) with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.75.  

Percent allocation refers to the percentage of the total sample size, n, allocated to the first phase 

of sampling for the two-phase adaptive approach.  The dotted line represents the true value of 

Ntot.  
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Figure B.9.  Distribution from 1000 simulations of the estimates of Ntot for the two-phase 

adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 3 (no spatial correlation, see text for more details) 

with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.25.  Percent 

allocation refers to the percentage of the total sample size, n, allocated to the first phase of 

sampling for the two-phase adaptive approach.  The dotted line represents the true value of Ntot.  
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Figure B.10.  Distribution from 1000 simulations of the estimates of Ntot for the two-phase 

adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 3 (no spatial correlation, see text for more details) 

with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.75.  Percent 

allocation refers to the percentage of the total sample size, n, allocated to the first phase of 

sampling for the two-phase adaptive approach.  The dotted line represents the true value of Ntot.  
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Figure B.11.  Distribution from 1000 simulations of the bias in estimates of Ntot for the two-

phase adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 1 (extreme spatial correlation, see text for more 

details) with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.25.  

Percent allocation refers to the percentage of the total sample size, n, allocated to the first phase 

of sampling for the two-phase adaptive approach.   
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Figure B.12.  Distribution from 1000 simulations of the bias in estimates of Ntot for the two-

phase adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 1 (extreme spatial correlation, see text for more 

details) with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.75.  

Percent allocation refers to the percentage of the total sample size, n, allocated to the first phase 

of sampling for the two-phase adaptive approach.   
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Figure B.13.  Distribution from 1000 simulations of the bias in estimates of Ntot for the two-

phase adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 2 (moderate spatial correlation, see text for more 

details) with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.25.  

Percent allocation refers to the percentage of the total sample size, n, allocated to the first phase 

of sampling for the two-phase adaptive approach.   
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Figure B.14.  Distribution from 1000 simulations of the bias in estimates of Ntot for the two-

phase adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 2 (moderate spatial correlation, see text for more 

details) with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.75.  

Percent allocation refers to the percentage of the total sample size, n, allocated to the first phase 

of sampling for the two-phase adaptive approach.   
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Figure B.15.  Distribution from 1000 simulations of the bias in estimates of Ntot for the two-

phase adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 3 (no spatial correlation, see text for more details) 

with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.25.  Percent 

allocation refers to the percentage of the total sample size, n, allocated to the first phase of 

sampling for the two-phase adaptive approach.   
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Figure B.16.  Distribution from 1000 simulations of the bias in estimates of Ntot for the two-

phase adaptive approach (empty dotted rectangles) and the traditional single-season occupancy 

approach (gray filled rectangles) in Habitat 3 (no spatial correlation, see text for more details) 

with the number of repeat visits, J, equal to 3 and detection probability, p, equal to 0.75.  Percent 

allocation refers to the percentage of the total sample size, n, allocated to the first phase of 

sampling for the two-phase adaptive approach.   
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Table B.1.  Average value from 1000 simulations of estimates of test statistic measuring lack of 

fit, d, test statistic measuring goodness of fit, GOF, estimate of Ntot,  , bias associated in 

estimating Ntot, and mean-squared-error, MSE, associated with estimating Ntot.  Estimates of 

coefficients in the logit-linear model for occupancy probability,  and , along with average 

bias and mean-squared-error (MSE).  Ntot represents the true value of the total number of sites 

occupied out of 400.  n1 and n2 represent the sample size at each phase of sampling.  n2 = 0 

represents the traditional single-season occupancy approach.  Habitat represents three different 

habitats with varying degrees of spatial correlation (1-extreme spatial correlation, 2-moderate 

spatial correlation, 3-no spatial correlation). 
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N n1 n2 p J habitat approach d GOF Ntot-hat Bias Ntot MSE Ntot Ntot ψ 

100 50 50 0.25 3 1 1 114.755 285.245 150.480 5.340 1407.308 145.140 0.370

100 50 50 0.5 3 1 1 102.159 297.841 147.745 2.605 320.458 145.140 0.370

100 50 50 0.75 3 1 1 95.062 304.938 147.913 2.773 218.215 145.140 0.370

100 50 50 0.25 3 1 2 111.088 288.912 144.188 -0.952 1035.041 145.140 0.370

100 50 50 0.5 3 1 2 98.113 301.887 146.220 1.080 310.262 145.140 0.370

100 50 50 0.75 3 1 2 90.353 309.647 146.240 1.100 201.638 145.140 0.370

100 25 75 0.25 3 1 2 107.554 292.446 140.491 -4.649 1314.674 145.140 0.370

100 25 75 0.5 3 1 2 95.307 304.693 142.073 -3.066 409.661 145.140 0.370

100 25 75 0.75 3 1 2 87.063 312.937 141.484 -3.655 305.384 145.140 0.370

100 75 25 0.25 3 1 2 113.701 286.299 145.722 0.582 1206.157 145.140 0.370

100 75 25 0.5 3 1 2 100.375 299.625 147.991 2.852 295.876 145.140 0.370

100 75 25 0.75 3 1 2 92.861 307.139 147.135 1.995 201.181 145.140 0.370

100 50 50 0.25 5 1 1 115.546 284.454 158.422 2.702 657.654 155.720 0.387

100 50 50 0.5 5 1 1 103.911 296.089 155.394 -0.325 224.154 155.720 0.387

100 50 50 0.75 5 1 1 101.807 298.193 155.928 0.208 209.604 155.720 0.387



225 
 

 
 

100 50 50 0.25 5 1 2 113.960 286.040 156.317 0.598 567.511 155.720 0.387

100 50 50 0.5 5 1 2 101.544 298.456 154.722 -0.998 216.550 155.720 0.387

100 50 50 0.75 5 1 2 98.945 301.055 153.762 -1.958 228.373 155.720 0.387

100 25 75 0.25 5 1 2 112.653 287.347 156.331 0.611 675.991 155.720 0.387

100 25 75 0.5 5 1 2 100.075 299.925 152.981 -2.739 275.358 155.720 0.387

100 25 75 0.75 5 1 2 97.223 302.777 152.927 -2.793 266.763 155.720 0.387

100 75 25 0.25 5 1 2 114.782 285.218 157.002 1.282 625.160 155.720 0.387

100 75 25 0.5 5 1 2 102.768 297.232 155.650 -0.070 219.510 155.720 0.387

100 75 25 0.75 5 1 2 100.593 299.407 155.238 -0.482 226.265 155.720 0.387

200 100 100 0.25 3 1 1 103.380 296.620 156.644 0.977 998.222 155.667 0.368

200 100 100 0.5 3 1 1 80.143 319.857 148.410 -7.257 197.677 155.667 0.368

200 100 100 0.75 3 1 1 66.856 333.144 147.750 -7.917 134.989 155.667 0.368

200 100 100 0.25 3 1 2 102.566 297.434 155.041 -0.626 908.924 155.667 0.368

200 100 100 0.5 3 1 2 76.823 323.177 147.958 -7.709 179.998 155.667 0.368

200 100 100 0.75 3 1 2 61.024 338.976 147.128 -8.539 138.919 155.667 0.368

200 50 150 0.25 3 1 2 101.870 298.130 155.348 -0.319 859.942 155.667 0.368
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200 50 150 0.5 3 1 2 74.834 325.166 148.241 -7.426 185.475 155.667 0.368

200 50 150 0.75 3 1 2 58.440 341.560 148.144 -7.523 126.438 155.667 0.368

200 150 50 0.25 3 1 2 103.795 296.205 156.860 1.194 1108.037 155.667 0.368

200 150 50 0.5 3 1 2 78.430 321.570 148.429 -7.238 186.988 155.667 0.368

200 150 50 0.75 3 1 2 63.884 336.116 147.245 -8.421 138.432 155.667 0.368

200 100 100 0.25 5 1 1 100.665 299.335 159.250 2.831 319.297 156.419 0.387

200 100 100 0.5 5 1 1 77.152 322.848 155.533 -0.886 86.793 156.419 0.387

200 100 100 0.75 5 1 1 72.579 327.421 155.151 -1.268 70.004 156.419 0.387

200 100 100 0.25 5 1 2 99.721 300.279 157.264 0.845 272.283 156.419 0.387

200 100 100 0.5 5 1 2 73.278 326.722 154.590 -1.830 84.281 156.419 0.387

200 100 100 0.75 5 1 2 68.036 331.964 155.275 -1.144 69.946 156.419 0.387

200 50 150 0.25 5 1 2 98.889 301.111 156.764 0.345 262.498 156.419 0.387

200 50 150 0.5 5 1 2 71.484 328.516 155.553 -0.866 82.876 156.419 0.387

200 50 150 0.75 5 1 2 66.143 333.857 155.174 -1.245 79.626 156.419 0.387

200 150 50 0.25 5 1 2 100.107 299.893 157.104 0.685 280.170 156.419 0.387

200 150 50 0.5 5 1 2 75.162 324.838 155.145 -1.274 81.886 156.419 0.387
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200 150 50 0.75 5 1 2 70.183 329.817 155.012 -1.407 78.988 156.419 0.387

100 50 50 0.25 3 2 1 129.117 270.883 149.873 8.873 2032.738 141.000 0.353

100 50 50 0.5 3 2 1 114.089 285.911 142.655 1.655 366.643 141.000 0.353

100 50 50 0.75 3 2 1 106.980 293.020 141.005 0.005 214.669 141.000 0.353

100 50 50 0.25 3 2 2 127.072 272.928 146.771 5.771 1773.656 141.000 0.353

100 50 50 0.5 3 2 2 112.168 287.832 141.025 0.025 331.710 141.000 0.353

100 50 50 0.75 3 2 2 105.305 294.695 140.119 -0.881 227.736 141.000 0.353

100 25 75 0.25 3 2 2 124.113 275.887 139.564 -1.436 1541.001 141.000 0.353

100 25 75 0.5 3 2 2 111.311 288.689 139.684 -1.316 418.092 141.000 0.353

100 25 75 0.75 3 2 2 103.762 296.238 139.074 -1.926 272.805 141.000 0.353

100 75 25 0.25 3 2 2 127.516 272.484 146.480 5.480 1584.779 141.000 0.353

100 75 25 0.5 3 2 2 113.423 286.577 141.053 0.053 313.394 141.000 0.353

100 75 25 0.75 3 2 2 105.973 294.027 140.368 -0.632 218.706 141.000 0.353

100 50 50 0.25 5 2 1 124.837 275.163 148.568 2.568 621.482 146.000 0.365

100 50 50 0.5 5 2 1 112.790 287.210 145.993 -0.007 258.456 146.000 0.365

100 50 50 0.75 5 2 1 110.361 289.639 145.383 -0.617 228.508 146.000 0.365
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100 50 50 0.25 5 2 2 124.206 275.794 145.364 -0.636 582.411 146.000 0.365

100 50 50 0.5 5 2 2 111.324 288.676 144.487 -1.513 257.627 146.000 0.365

100 50 50 0.75 5 2 2 108.798 291.202 144.440 -1.560 245.665 146.000 0.365

100 25 75 0.25 5 2 2 122.967 277.033 142.326 -3.674 693.525 146.000 0.365

100 25 75 0.5 5 2 2 110.830 289.170 143.053 -2.947 278.444 146.000 0.365

100 25 75 0.75 5 2 2 107.788 292.212 142.888 -3.112 286.378 146.000 0.365

100 75 25 0.25 5 2 2 124.425 275.575 146.203 0.203 524.876 146.000 0.365

100 75 25 0.5 5 2 2 111.947 288.053 145.023 -0.977 235.125 146.000 0.365

100 75 25 0.75 5 2 2 109.754 290.246 144.949 -1.051 219.971 146.000 0.365

200 100 100 0.25 3 2 1 112.331 287.669 148.367 5.367 912.685 143.000 0.358

200 100 100 0.5 3 2 1 86.082 313.918 143.285 0.285 157.894 143.000 0.358

200 100 100 0.75 3 2 1 73.242 326.758 143.263 0.263 78.417 143.000 0.358

200 100 100 0.25 3 2 2 112.390 287.610 146.105 3.105 876.839 143.000 0.358

200 100 100 0.5 3 2 2 85.803 314.197 143.414 0.414 138.902 143.000 0.358

200 100 100 0.75 3 2 2 71.421 328.579 142.920 -0.080 80.428 143.000 0.358

200 50 150 0.25 3 2 2 111.983 288.017 146.835 3.835 1022.134 143.000 0.358
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200 50 150 0.5 3 2 2 84.731 315.269 143.027 0.027 126.740 143.000 0.358

200 50 150 0.75 3 2 2 70.290 329.710 143.038 0.038 80.748 143.000 0.358

200 150 50 0.25 3 2 2 112.167 287.833 145.877 2.877 756.609 143.000 0.358

200 150 50 0.5 3 2 2 85.981 314.019 142.878 -0.122 141.002 143.000 0.358

200 150 50 0.75 3 2 2 72.336 327.664 143.227 0.227 78.675 143.000 0.358

200 100 100 0.25 5 2 1 106.290 293.710 148.074 3.074 602.967 145.000 0.363

200 100 100 0.5 5 2 1 82.106 317.894 145.193 0.193 91.525 145.000 0.363

200 100 100 0.75 5 2 1 77.775 322.225 144.683 -0.317 75.237 145.000 0.363

200 100 100 0.25 5 2 2 105.423 294.577 146.595 1.595 250.471 145.000 0.363

200 100 100 0.5 5 2 2 80.361 319.639 144.457 -0.543 88.251 145.000 0.363

200 100 100 0.75 5 2 2 75.619 324.381 144.468 -0.532 82.780 145.000 0.363

200 50 150 0.25 5 2 2 104.725 295.275 145.969 0.969 252.891 145.000 0.363

200 50 150 0.5 5 2 2 79.389 320.611 144.689 -0.311 83.968 145.000 0.363

200 50 150 0.75 5 2 2 74.514 325.486 144.640 -0.360 80.562 145.000 0.363

200 150 50 0.25 5 2 2 105.434 294.566 146.172 1.172 256.158 145.000 0.363

200 150 50 0.5 5 2 2 81.180 318.820 144.781 -0.219 86.370 145.000 0.363
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200 150 50 0.75 5 2 2 76.602 323.398 144.338 -0.662 79.442 145.000 0.363

100 50 50 0.25 3 3 1 121.151 278.849 157.188 12.976 2044.173 144.211 0.373

100 50 50 0.5 3 3 1 108.290 291.710 151.054 6.843 462.077 144.211 0.373

100 50 50 0.75 3 3 1 101.308 298.692 149.554 5.342 244.966 144.211 0.373

100 50 50 0.25 3 3 2 118.334 281.666 155.361 11.150 1593.905 144.211 0.373

100 50 50 0.5 3 3 2 106.114 293.886 149.212 5.000 369.732 144.211 0.373

100 50 50 0.75 3 3 2 98.096 301.904 147.857 3.646 212.632 144.211 0.373

100 25 75 0.25 3 3 2 116.458 283.542 152.960 8.749 1607.953 144.211 0.373

100 25 75 0.5 3 3 2 104.595 295.405 148.170 3.959 354.152 144.211 0.373

100 25 75 0.75 3 3 2 96.273 303.727 147.198 2.987 236.908 144.211 0.373

100 75 25 0.25 3 3 2 120.279 279.721 158.513 14.302 1877.900 144.211 0.373

100 75 25 0.5 3 3 2 107.152 292.848 149.964 5.753 351.897 144.211 0.373

100 75 25 0.75 3 3 2 99.690 300.310 149.013 4.802 225.244 144.211 0.373

100 50 50 0.25 5 3 1 119.784 280.216 154.118 3.878 862.466 150.240 0.373

100 50 50 0.5 5 3 1 107.921 292.079 150.660 0.420 246.166 150.240 0.373

100 50 50 0.75 5 3 1 105.580 294.420 149.062 -1.179 214.183 150.240 0.373
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100 50 50 0.25 5 3 2 118.080 281.920 152.491 2.251 675.478 150.240 0.373

100 50 50 0.5 5 3 2 105.301 294.699 148.045 -2.195 230.096 150.240 0.373

100 50 50 0.75 5 3 2 103.023 296.977 149.226 -1.014 219.928 150.240 0.373

100 25 75 0.25 5 3 2 117.387 282.613 149.216 -1.024 671.097 150.240 0.373

100 25 75 0.5 5 3 2 104.048 295.952 147.589 -2.651 271.295 150.240 0.373

100 25 75 0.75 5 3 2 101.547 298.453 148.134 -2.106 252.970 150.240 0.373

100 75 25 0.25 5 3 2 118.863 281.137 152.443 2.203 677.885 150.240 0.373

100 75 25 0.5 5 3 2 106.866 293.134 149.128 -1.112 250.355 150.240 0.373

100 75 25 0.75 5 3 2 104.431 295.569 149.471 -0.769 220.591 150.240 0.373

200 100 100 0.25 3 3 1 102.148 297.852 141.142 -9.541 949.983 150.682 0.332

200 100 100 0.5 3 3 1 78.291 321.709 134.026 -16.656 412.159 150.682 0.332

200 100 100 0.75 3 3 1 66.029 333.971 133.620 -17.063 361.748 150.682 0.332

200 100 100 0.25 3 3 2 99.413 300.587 136.957 -13.726 776.537 150.682 0.332

200 100 100 0.5 3 3 2 73.198 326.802 133.335 -17.347 417.079 150.682 0.332

200 100 100 0.75 3 3 2 58.192 341.808 132.519 -18.163 390.058 150.682 0.332

200 50 150 0.25 3 3 2 98.022 301.978 135.821 -14.862 831.152 150.682 0.332
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200 50 150 0.5 3 3 2 70.565 329.435 133.313 -17.370 408.793 150.682 0.332

200 50 150 0.75 3 3 2 54.980 345.020 132.493 -18.189 389.696 150.682 0.332

200 150 50 0.25 3 3 2 100.779 299.221 139.387 -11.296 909.738 150.682 0.332

200 150 50 0.5 3 3 2 75.740 324.260 133.412 -17.270 411.439 150.682 0.332

200 150 50 0.75 3 3 2 62.053 337.947 132.916 -17.767 381.537 150.682 0.332

200 100 100 0.25 5 3 1 102.861 297.139 156.057 0.129 325.133 155.928 0.387

200 100 100 0.5 5 3 1 78.748 321.252 154.831 -1.097 98.137 155.928 0.387

200 100 100 0.75 5 3 1 74.316 325.684 154.737 -1.191 81.937 155.928 0.387

200 100 100 0.25 5 3 2 100.570 299.430 154.829 -1.099 235.785 155.928 0.387

200 100 100 0.5 5 3 2 74.623 325.377 154.511 -1.417 90.037 155.928 0.387

200 100 100 0.75 5 3 2 69.431 330.569 154.500 -1.428 69.763 155.928 0.387

200 50 150 0.25 5 3 2 98.516 301.484 153.602 -2.326 221.242 155.928 0.387

200 50 150 0.5 5 3 2 72.212 327.788 153.411 -2.517 100.899 155.928 0.387

200 50 150 0.75 5 3 2 66.663 333.337 153.259 -2.669 84.461 155.928 0.387

200 150 50 0.25 5 3 2 101.446 298.554 155.216 -0.712 239.744 155.928 0.387

200 150 50 0.5 5 3 2 76.568 323.432 155.175 -0.753 84.006 155.928 0.387
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200 150 50 0.75 5 3 2 71.770 328.230 154.869 -1.059 72.971 155.928 0.387
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Table B.2.  Average value from 1000 simulations of estimates of test statistic measuring lack of 

fit, d, test statistic measuring goodness of fit, GOF, estimate of Ntot,  , bias associated in 

estimating Ntot, and mean-squared-error, MSE, associated with estimating Ntot.  Estimates of 

coefficients in the logit-linear model for occupancy probability,  and , along with average 

bias and mean-squared-error (MSE).  Ntot represents the true value of the total number of sites 

occupied out of 400.  n1 and n2 represent the sample size at each phase of sampling.  n2 = 0 

represents the traditional single-season occupancy approach.  Habitat represents three different 

habitats with varying degrees of spatial correlation (1-extreme spatial correlation, 2-moderate 

spatial correlation, 3-no spatial correlation). 
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N n1 n2 p J habitat approach p-hat Bias p 
MSE 

p 
β0 Bias β0 MSE β0 β1 Bias β1 MSE β1

100 50 50 0.25 3 1 1 0.261 0.011 0.005 -0.734 1.266 3.034 2.016 0.016 6.456 

100 50 50 0.5 3 1 1 0.508 0.008 0.004 -0.835 1.165 1.461 1.527 -0.473 0.370 

100 50 50 0.75 3 1 1 0.751 0.001 0.002 -0.843 1.157 1.421 1.553 -0.447 0.302 

100 50 50 0.25 3 1 2 0.261 0.011 0.004 -1.327 0.673 8.549 2.365 0.365 11.155 

100 50 50 0.5 3 1 2 0.502 0.002 0.003 -0.953 1.047 1.431 1.698 -0.302 0.405 

100 50 50 0.75 3 1 2 0.750 0.000 0.002 -0.933 1.067 1.287 1.668 -0.332 0.256 

100 25 75 0.25 3 1 2 0.254 0.004 0.004 -3.148 -1.148 41.485 4.090 2.090 42.623 

100 25 75 0.5 3 1 2 0.503 0.003 0.003 -1.482 0.518 8.417 2.131 0.131 5.417 

100 25 75 0.75 3 1 2 0.752 0.002 0.001 -1.496 0.504 9.969 2.113 0.113 6.292 

100 75 25 0.25 3 1 2 0.263 0.013 0.005 -0.909 1.091 4.774 2.061 0.061 7.362 

100 75 25 0.5 3 1 2 0.502 0.002 0.003 -0.859 1.141 1.418 1.604 -0.396 0.645 

100 75 25 0.75 3 1 2 0.749 -0.001 0.002 -0.881 1.119 1.355 1.598 -0.402 0.271 

100 50 50 0.25 5 1 1 0.248 -0.002 0.002 -0.608 1.392 2.103 1.542 -0.458 1.604 

100 50 50 0.5 5 1 1 0.501 0.001 0.001 -0.659 1.341 1.858 1.381 -0.619 0.460 

100 50 50 0.75 5 1 1 0.749 -0.001 0.001 -0.646 1.354 1.888 1.366 -0.634 0.467 



236 
 

 
 

100 50 50 0.25 5 1 2 0.249 -0.001 0.002 -0.689 1.311 2.018 1.639 -0.361 2.277 

100 50 50 0.5 5 1 2 0.500 0.000 0.001 -0.682 1.318 1.812 1.395 -0.605 0.454 

100 50 50 0.75 5 1 2 0.750 0.000 0.001 -0.695 1.305 1.782 1.384 -0.616 0.457 

100 25 75 0.25 5 1 2 0.245 -0.005 0.002 -0.894 1.106 4.120 1.971 -0.029 6.895 

100 25 75 0.5 5 1 2 0.501 0.001 0.001 -0.744 1.256 1.890 1.431 -0.569 0.554 

100 25 75 0.75 5 1 2 0.749 -0.001 0.001 -0.824 1.176 3.352 1.491 -0.509 1.492 

100 75 25 0.25 5 1 2 0.248 -0.002 0.002 -0.645 1.355 1.996 1.581 -0.419 1.812 

100 75 25 0.5 5 1 2 0.500 0.000 0.001 -0.661 1.339 1.857 1.394 -0.606 0.448 

100 75 25 0.75 5 1 2 0.750 0.000 0.001 -0.661 1.339 1.858 1.367 -0.633 0.467 

200 100 100 0.25 3 1 1 0.245 -0.005 0.003 -0.630 1.370 2.305 1.870 -0.130 3.279 

200 100 100 0.5 3 1 1 0.498 -0.002 0.002 -0.779 1.221 1.524 1.467 -0.533 0.327 

200 100 100 0.75 3 1 1 0.749 -0.001 0.001 -0.782 1.218 1.502 1.434 -0.566 0.342 

200 100 100 0.25 3 1 2 0.243 -0.007 0.002 -0.667 1.333 2.470 2.207 0.207 8.918 

200 100 100 0.5 3 1 2 0.498 -0.002 0.002 -0.777 1.223 1.529 1.422 -0.578 0.373 

200 100 100 0.75 3 1 2 0.749 -0.001 0.001 -0.786 1.214 1.497 1.404 -0.596 0.376 

200 50 150 0.25 3 1 2 0.241 -0.009 0.002 -0.702 1.298 1.914 2.387 0.387 12.811 
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200 50 150 0.5 3 1 2 0.499 -0.001 0.002 -0.770 1.230 1.551 1.411 -0.589 0.390 

200 50 150 0.75 3 1 2 0.749 -0.001 0.001 -0.765 1.235 1.551 1.383 -0.617 0.400 

200 150 50 0.25 3 1 2 0.241 -0.009 0.003 -0.636 1.364 2.313 2.063 0.063 6.953 

200 150 50 0.5 3 1 2 0.498 -0.002 0.002 -0.773 1.227 1.541 1.442 -0.558 0.351 

200 150 50 0.75 3 1 2 0.748 -0.002 0.001 -0.790 1.210 1.486 1.427 -0.573 0.350 

200 100 100 0.25 5 1 1 0.247 -0.003 0.001 -0.558 1.442 2.139 1.249 -0.751 0.620 

200 100 100 0.5 5 1 1 0.499 -0.001 0.001 -0.604 1.396 1.967 1.194 -0.806 0.669 

200 100 100 0.75 5 1 1 0.750 0.000 0.000 -0.608 1.392 1.951 1.190 -0.810 0.674 

200 100 100 0.25 5 1 2 0.247 -0.003 0.001 -0.585 1.415 2.060 1.236 -0.764 0.989 

200 100 100 0.5 5 1 2 0.500 0.000 0.001 -0.615 1.385 1.937 1.176 -0.824 0.696 

200 100 100 0.75 5 1 2 0.750 0.000 0.000 -0.603 1.397 1.968 1.164 -0.836 0.716 

200 50 150 0.25 5 1 2 0.248 -0.002 0.001 -0.595 1.405 2.029 1.325 -0.675 2.645 

200 50 150 0.5 5 1 2 0.500 0.000 0.001 -0.600 1.400 1.982 1.160 -0.840 0.726 

200 50 150 0.75 5 1 2 0.750 0.000 0.000 -0.605 1.395 1.968 1.158 -0.842 0.726 

200 150 50 0.25 5 1 2 0.249 -0.001 0.001 -0.586 1.414 2.054 1.234 -0.766 0.656 

200 150 50 0.5 5 1 2 0.501 0.001 0.001 -0.608 1.392 1.957 1.181 -0.819 0.690 
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200 150 50 0.75 5 1 2 0.750 0.000 0.000 -0.608 1.392 1.957 1.172 -0.828 0.703 

100 50 50 0.25 3 2 1 0.251 0.001 0.005 -0.397 1.603 5.441 1.767 -0.233 6.242 

100 50 50 0.5 3 2 1 0.501 0.001 0.004 -0.701 1.299 1.764 1.247 -0.753 0.690 

100 50 50 0.75 3 2 1 0.748 -0.002 0.002 -0.728 1.272 1.665 1.245 -0.755 0.648 

100 50 50 0.25 3 2 2 0.247 -0.003 0.005 -0.514 1.486 5.930 2.142 0.142 10.294 

100 50 50 0.5 3 2 2 0.499 -0.001 0.003 -0.747 1.253 1.659 1.306 -0.694 0.623 

100 50 50 0.75 3 2 2 0.752 0.002 0.002 -0.748 1.252 1.624 1.247 -0.753 0.644 

100 25 75 0.25 3 2 2 0.247 -0.003 0.004 -1.164 0.836 6.062 2.516 0.516 15.251 

100 25 75 0.5 3 2 2 0.491 -0.009 0.003 -0.790 1.210 1.613 1.361 -0.639 0.648 

100 25 75 0.75 3 2 2 0.751 0.001 0.001 -0.778 1.222 1.576 1.288 -0.712 0.598 

100 75 25 0.25 3 2 2 0.251 0.001 0.005 -0.572 1.428 3.413 1.706 -0.294 4.805 

100 75 25 0.5 3 2 2 0.498 -0.002 0.004 -0.734 1.266 1.681 1.248 -0.752 0.704 

100 75 25 0.75 3 2 2 0.750 0.000 0.002 -0.742 1.258 1.635 1.255 -0.745 0.628 

100 50 50 0.25 5 2 1 0.251 0.001 0.002 -0.562 1.438 2.241 1.226 -0.774 0.997 

100 50 50 0.5 5 2 1 0.500 0.000 0.002 -0.608 1.392 1.987 1.180 -0.820 0.751 

100 50 50 0.75 5 2 1 0.752 0.002 0.001 -0.617 1.383 1.959 1.198 -0.802 0.715 
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100 50 50 0.25 5 2 2 0.250 0.000 0.002 -0.625 1.375 2.019 1.270 -0.730 1.170 

100 50 50 0.5 5 2 2 0.498 -0.002 0.001 -0.637 1.363 1.913 1.239 -0.761 0.665 

100 50 50 0.75 5 2 2 0.749 -0.001 0.001 -0.639 1.361 1.907 1.247 -0.753 0.640 

100 25 75 0.25 5 2 2 0.250 0.000 0.002 -0.732 1.268 2.221 1.313 -0.687 1.477 

100 25 75 0.5 5 2 2 0.503 0.003 0.001 -0.661 1.339 1.858 1.224 -0.776 0.701 

100 25 75 0.75 5 2 2 0.751 0.001 0.001 -0.667 1.333 1.846 1.261 -0.739 0.626 

100 75 25 0.25 5 2 2 0.252 0.002 0.002 -0.603 1.397 2.062 1.220 -0.780 0.818 

100 75 25 0.5 5 2 2 0.501 0.001 0.002 -0.626 1.374 1.939 1.218 -0.782 0.691 

100 75 25 0.75 5 2 2 0.751 0.001 0.001 -0.625 1.375 1.936 1.205 -0.795 0.696 

200 100 100 0.25 3 2 1 0.249 -0.001 0.003 -0.529 1.471 3.041 1.346 -0.654 0.802 

200 100 100 0.5 3 2 1 0.501 0.001 0.002 -0.647 1.353 1.863 1.215 -0.785 0.666 

200 100 100 0.75 3 2 1 0.750 0.000 0.001 -0.649 1.351 1.840 1.217 -0.783 0.637 

200 100 100 0.25 3 2 2 0.249 -0.001 0.002 -0.475 1.525 7.555 1.356 -0.644 2.242 

200 100 100 0.5 3 2 2 0.499 -0.001 0.002 -0.647 1.353 1.858 1.207 -0.793 0.672 

200 100 100 0.75 3 2 2 0.751 0.001 0.001 -0.656 1.344 1.824 1.204 -0.796 0.652 

200 50 150 0.25 3 2 2 0.247 -0.003 0.002 -0.494 1.506 5.085 1.396 -0.604 1.399 
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200 50 150 0.5 3 2 2 0.500 0.000 0.002 -0.655 1.345 1.835 1.220 -0.780 0.653 

200 50 150 0.75 3 2 2 0.749 -0.001 0.001 -0.655 1.345 1.826 1.204 -0.796 0.653 

200 150 50 0.25 3 2 2 0.250 0.000 0.002 -0.585 1.415 2.293 1.333 -0.667 0.718 

200 150 50 0.5 3 2 2 0.499 -0.001 0.002 -0.655 1.345 1.838 1.221 -0.779 0.654 

200 150 50 0.75 3 2 2 0.750 0.000 0.001 -0.651 1.349 1.837 1.216 -0.784 0.635 

200 100 100 0.25 5 2 1 0.249 -0.001 0.001 -0.474 1.526 6.258 0.965 -1.035 1.323 

200 100 100 0.5 5 2 1 0.500 0.000 0.001 -0.629 1.371 1.896 0.958 -1.042 1.105 

200 100 100 0.75 5 2 1 0.750 0.000 0.001 -0.635 1.365 1.876 0.957 -1.043 1.105 

200 100 100 0.25 5 2 2 0.248 -0.002 0.001 -0.614 1.386 1.965 0.979 -1.021 1.114 

200 100 100 0.5 5 2 2 0.500 0.000 0.001 -0.640 1.360 1.865 0.961 -1.039 1.097 

200 100 100 0.75 5 2 2 0.748 -0.002 0.000 -0.640 1.360 1.865 0.958 -1.042 1.099 

200 50 150 0.25 5 2 2 0.250 0.000 0.001 -0.622 1.378 1.942 0.979 -1.021 1.103 

200 50 150 0.5 5 2 2 0.500 0.000 0.001 -0.637 1.363 1.874 0.953 -1.047 1.113 

200 50 150 0.75 5 2 2 0.748 -0.002 0.001 -0.638 1.362 1.871 0.956 -1.044 1.104 

200 150 50 0.25 5 2 2 0.249 -0.001 0.001 -0.618 1.382 1.952 0.981 -1.019 1.092 

200 150 50 0.5 5 2 2 0.500 0.000 0.001 -0.634 1.366 1.880 0.952 -1.048 1.117 
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200 150 50 0.75 5 2 2 0.751 0.001 0.000 -0.641 1.359 1.860 0.965 -1.035 1.088 

100 50 50 0.25 3 3 1 0.252 0.002 0.005 0.046 2.046 32.855 3.769 1.769 133.278

100 50 50 0.5 3 3 1 0.498 -0.002 0.004 -0.766 1.234 1.632 1.522 -0.478 0.406 

100 50 50 0.75 3 3 1 0.751 0.001 0.002 -0.784 1.216 1.541 1.480 -0.520 0.356 

100 50 50 0.25 3 3 2 0.246 -0.004 0.004 -0.743 1.257 34.414 5.166 3.166 233.646

100 50 50 0.5 3 3 2 0.495 -0.005 0.003 -0.819 1.181 1.526 1.543 -0.457 0.454 

100 50 50 0.75 3 3 2 0.752 0.002 0.002 -0.822 1.178 1.468 1.488 -0.512 0.349 

100 25 75 0.25 3 3 2 0.241 -0.009 0.004 -2.232 -0.232 65.776 6.486 4.486 301.096

100 25 75 0.5 3 3 2 0.495 -0.005 0.003 -0.884 1.116 2.067 1.615 -0.385 1.111 

100 25 75 0.75 3 3 2 0.746 -0.004 0.002 -0.852 1.148 1.432 1.524 -0.476 0.340 

100 75 25 0.25 3 3 2 0.249 -0.001 0.005 -0.338 1.662 19.262 3.444 1.444 93.541 

100 75 25 0.5 3 3 2 0.498 -0.002 0.004 -0.788 1.212 1.564 1.524 -0.476 0.434 

100 75 25 0.75 3 3 2 0.748 -0.002 0.002 -0.800 1.200 1.511 1.487 -0.513 0.362 

100 50 50 0.25 5 3 1 0.247 -0.003 0.002 -0.589 1.411 2.953 1.684 -0.316 15.912 

100 50 50 0.5 5 3 1 0.496 -0.004 0.002 -0.709 1.291 1.724 1.325 -0.675 0.544 

100 50 50 0.75 5 3 1 0.752 0.002 0.001 -0.731 1.269 1.664 1.315 -0.685 0.539 



242 
 

 
 

100 50 50 0.25 5 3 2 0.247 -0.003 0.002 -0.653 1.347 3.263 1.791 -0.209 17.416 

100 50 50 0.5 5 3 2 0.501 0.001 0.001 -0.754 1.246 1.625 1.315 -0.685 0.551 

100 50 50 0.75 5 3 2 0.749 -0.001 0.001 -0.729 1.271 1.679 1.294 -0.706 0.563 

100 25 75 0.25 5 3 2 0.246 -0.004 0.002 -0.802 1.198 3.610 1.763 -0.237 18.641 

100 25 75 0.5 5 3 2 0.500 0.000 0.001 -0.771 1.229 1.610 1.320 -0.680 0.557 

100 25 75 0.75 5 3 2 0.750 0.000 0.001 -0.754 1.246 1.643 1.299 -0.701 0.570 

100 75 25 0.25 5 3 2 0.248 -0.002 0.002 -0.665 1.335 5.667 1.908 -0.092 60.656 

100 75 25 0.5 5 3 2 0.500 0.000 0.002 -0.730 1.270 1.681 1.301 -0.699 0.566 

100 75 25 0.75 5 3 2 0.750 0.000 0.001 -0.723 1.277 1.690 1.298 -0.702 0.559 

200 100 100 0.25 3 3 1 0.246 -0.004 0.003 -0.773 1.227 8.451 2.046 0.046 50.721 

200 100 100 0.5 3 3 1 0.499 -0.001 0.002 -1.007 0.993 1.019 1.463 -0.537 0.335 

200 100 100 0.75 3 3 1 0.749 -0.001 0.001 -1.011 0.989 1.000 1.455 -0.545 0.325 

200 100 100 0.25 3 3 2 0.247 -0.003 0.002 -0.907 1.093 8.973 1.834 -0.166 26.199 

200 100 100 0.5 3 3 2 0.495 -0.005 0.002 -1.027 0.973 0.990 1.471 -0.529 0.329 

200 100 100 0.75 3 3 2 0.748 -0.002 0.001 -1.030 0.970 0.969 1.450 -0.550 0.330 

200 50 150 0.25 3 3 2 0.247 -0.003 0.002 -1.055 0.945 1.151 1.710 -0.290 2.095 
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200 50 150 0.5 3 3 2 0.499 -0.001 0.002 -1.026 0.974 0.995 1.462 -0.538 0.341 

200 50 150 0.75 3 3 2 0.749 -0.001 0.001 -1.026 0.974 0.979 1.435 -0.565 0.348 

200 150 50 0.25 3 3 2 0.247 -0.003 0.003 -0.919 1.081 1.836 1.866 -0.134 11.036 

200 150 50 0.5 3 3 2 0.498 -0.002 0.002 -1.024 0.976 0.989 1.474 -0.526 0.326 

200 150 50 0.75 3 3 2 0.750 0.000 0.001 -1.019 0.981 0.987 1.442 -0.558 0.335 

200 100 100 0.25 5 3 1 0.251 0.001 0.001 -0.579 1.421 2.517 1.147 -0.853 0.864 

200 100 100 0.5 5 3 1 0.501 0.001 0.001 -0.614 1.386 1.940 1.163 -0.837 0.726 

200 100 100 0.75 5 3 1 0.751 0.001 0.000 -0.614 1.386 1.938 1.157 -0.843 0.732 

200 100 100 0.25 5 3 2 0.249 -0.001 0.001 -0.640 1.360 1.904 1.242 -0.758 0.667 

200 100 100 0.5 5 3 2 0.500 0.000 0.001 -0.635 1.365 1.889 1.211 -0.789 0.656 

200 100 100 0.75 5 3 2 0.750 0.000 0.000 -0.632 1.368 1.892 1.203 -0.797 0.662 

200 50 150 0.25 5 3 2 0.249 -0.001 0.001 -0.688 1.312 1.786 1.332 -0.668 0.592 

200 50 150 0.5 5 3 2 0.499 -0.001 0.001 -0.665 1.335 1.815 1.255 -0.745 0.598 

200 50 150 0.75 5 3 2 0.750 0.000 0.000 -0.662 1.338 1.817 1.242 -0.758 0.609 

200 150 50 0.25 5 3 2 0.251 0.001 0.001 -0.622 1.378 1.945 1.210 -0.790 0.703 

200 150 50 0.5 5 3 2 0.500 0.000 0.001 -0.617 1.383 1.933 1.185 -0.815 0.692 
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200 150 50 0.75 5 3 2 0.749 -0.001 0.000 -0.621 1.379 1.921 1.184 -0.816 0.691 
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Table B.3.  Average value from 1000 simulations of estimates of test statistic measuring lack of 

fit, d, test statistic measuring goodness of fit, GOF, estimate of Ntot,  , bias associated in 

estimating Ntot, and mean-squared-error, MSE, associated with estimating Ntot.  Estimates of 

coefficients in the logit-linear model for occupancy probability,  and , along with average 

bias and mean-squared-error (MSE).  Ntot represents the true value of the total number of sites 

occupied out of 400.  n1 and n2 represent the sample size at each phase of sampling.  n2 = 0 

represents the traditional single-season occupancy approach.  Habitat represents three different 

habitats with varying degrees of spatial correlation (1-extreme spatial correlation, 2-moderate 

spatial correlation, 3-no spatial correlation) and no covariate relationship (see text for more 

details). 
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N n1 n2 p J habitat approach d GOF Ntot-hat Bias Ntot MSE Ntot Ntot ψ 

100 50 50 0.25 3 1.0 1 173.647 226.353 171.496 20.496 4100.754 151.000 0.377

100 50 50 0.5 3 1.0 1 151.635 248.365 153.869 2.869 511.722 151.000 0.377

100 50 50 0.75 3 1.0 1 142.912 257.088 151.263 0.263 297.576 151.000 0.377

100 50 50 0.25 3 1.0 2 173.258 226.742 169.485 18.485 4320.183 151.000 0.377

100 50 50 0.5 3 1.0 2 150.988 249.012 152.340 1.340 520.729 151.000 0.377

100 50 50 0.75 3 1.0 2 142.689 257.311 150.147 -0.853 309.433 151.000 0.377

100 25 75 0.25 3 1.0 2 171.093 228.907 160.777 9.777 3741.166 151.000 0.377

100 25 75 0.5 3 1.0 2 150.700 249.300 150.719 -0.281 521.817 151.000 0.377

100 25 75 0.75 3 1.0 2 142.419 257.581 148.686 -2.314 346.604 151.000 0.377

100 75 25 0.25 3 1.0 2 173.452 226.548 170.121 19.121 4477.118 151.000 0.377

100 75 25 0.5 3 1.0 2 151.167 248.833 152.930 1.930 482.336 151.000 0.377

100 75 25 0.75 3 1.0 2 142.660 257.340 149.940 -1.060 287.618 151.000 0.377

100 50 50 0.25 5 1.0 1 152.907 247.093 144.541 11.541 871.365 132.999 0.353

100 50 50 0.5 5 1.0 1 139.197 260.803 141.140 8.141 378.050 132.999 0.353

100 50 50 0.75 5 1.0 1 136.893 263.107 140.349 7.349 332.978 132.999 0.353
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100 50 50 0.25 5 1.0 2 152.801 247.199 142.608 9.609 905.640 132.999 0.353

100 50 50 0.5 5 1.0 2 138.860 261.140 140.624 7.624 369.467 132.999 0.353

100 50 50 0.75 5 1.0 2 136.585 263.415 140.072 7.073 348.762 132.999 0.353

100 25 75 0.25 5 1.0 2 151.458 248.542 138.349 5.349 920.239 132.999 0.353

100 25 75 0.5 5 1.0 2 138.334 261.666 138.442 5.442 385.228 132.999 0.353

100 25 75 0.75 5 1.0 2 136.095 263.905 138.568 5.569 331.587 132.999 0.353

100 75 25 0.25 5 1.0 2 153.245 246.755 144.303 11.303 949.438 132.999 0.353

100 75 25 0.5 5 1.0 2 138.931 261.069 140.250 7.250 345.215 132.999 0.353

100 75 25 0.75 5 1.0 2 136.824 263.176 141.084 8.085 328.818 132.999 0.353

200 100 100 0.25 3 1.0 1 126.371 273.629 120.353 -12.612 2161.577 132.965 0.275

200 100 100 0.5 3 1.0 1 93.799 306.201 111.330 -21.635 605.068 132.965 0.275

200 100 100 0.75 3 1.0 1 81.899 318.101 110.258 -22.707 593.260 132.965 0.275

200 100 100 0.25 3 1.0 2 126.821 273.179 120.851 -12.115 2269.514 132.965 0.275

200 100 100 0.5 3 1.0 2 93.598 306.402 110.050 -22.916 671.588 132.965 0.275

200 100 100 0.75 3 1.0 2 81.652 318.348 109.756 -23.209 623.566 132.965 0.275

200 50 150 0.25 3 1.0 2 126.773 273.227 119.918 -13.048 2756.791 132.965 0.275
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200 50 150 0.5 3 1.0 2 93.388 306.612 109.641 -23.324 690.231 132.965 0.275

200 50 150 0.75 3 1.0 2 81.482 318.518 108.958 -24.007 664.249 132.965 0.275

200 150 50 0.25 3 1.0 2 128.047 271.953 123.206 -9.759 2518.567 132.965 0.275

200 150 50 0.5 3 1.0 2 93.743 306.257 111.255 -21.710 602.513 132.965 0.275

200 150 50 0.75 3 1.0 2 81.774 318.226 109.934 -23.032 618.619 132.965 0.275

200 100 100 0.25 5 1.0 1 127.496 272.504 154.200 10.517 1750.531 143.683 0.365

200 100 100 0.5 5 1.0 1 97.732 302.268 145.767 2.084 111.058 143.683 0.365

200 100 100 0.75 5 1.0 1 93.288 306.712 146.672 2.989 102.261 143.683 0.365

200 100 100 0.25 5 1.0 2 126.583 273.417 151.418 7.735 1369.161 143.683 0.365

200 100 100 0.5 5 1.0 2 97.617 302.383 145.654 1.971 108.440 143.683 0.365

200 100 100 0.75 5 1.0 2 93.206 306.794 145.304 1.621 101.471 143.683 0.365

200 50 150 0.25 5 1.0 2 126.845 273.155 151.821 8.139 1580.684 143.683 0.365

200 50 150 0.5 5 1.0 2 97.613 302.387 145.200 1.517 111.181 143.683 0.365

200 50 150 0.75 5 1.0 2 93.118 306.882 145.238 1.555 94.843 143.683 0.365

200 150 50 0.25 5 1.0 2 126.308 273.692 150.343 6.660 1298.626 143.683 0.365

200 150 50 0.5 5 1.0 2 97.656 302.344 145.596 1.913 113.588 143.683 0.365
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200 150 50 0.75 5 1.0 2 93.216 306.784 146.171 2.489 99.247 143.683 0.365

100 50 50 0.25 3 2.0 1 168.306 231.694 158.241 16.241 3694.796 142.000 0.355

100 50 50 0.5 3 2.0 1 146.744 253.256 142.716 0.716 445.371 142.000 0.355

100 50 50 0.75 3 2.0 1 139.037 260.963 141.511 -0.489 282.792 142.000 0.355

100 50 50 0.25 3 2.0 2 169.045 230.955 159.441 17.441 4092.388 142.000 0.355

100 50 50 0.5 3 2.0 2 146.688 253.312 142.481 0.481 437.392 142.000 0.355

100 50 50 0.75 3 2.0 2 138.722 261.278 140.918 -1.082 278.161 142.000 0.355

100 25 75 0.25 3 2.0 2 165.787 234.213 149.616 7.616 3554.107 142.000 0.355

100 25 75 0.5 3 2.0 2 145.867 254.133 140.730 -1.270 506.723 142.000 0.355

100 25 75 0.75 3 2.0 2 138.273 261.727 139.499 -2.501 341.638 142.000 0.355

100 75 25 0.25 3 2.0 2 168.462 231.538 158.115 16.115 3748.338 142.000 0.355

100 75 25 0.5 3 2.0 2 146.867 253.133 142.660 0.660 488.935 142.000 0.355

100 75 25 0.75 3 2.0 2 138.946 261.054 141.669 -0.331 282.767 142.000 0.355

100 50 50 0.25 5 2.0 1 150.469 249.531 138.399 4.399 795.483 134.000 0.335

100 50 50 0.5 5 2.0 1 136.647 263.353 134.749 0.749 293.774 134.000 0.335

100 50 50 0.75 5 2.0 1 134.380 265.620 133.944 -0.056 267.502 134.000 0.335
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100 50 50 0.25 5 2.0 2 150.217 249.783 137.508 3.508 739.186 134.000 0.335

100 50 50 0.5 5 2.0 2 136.203 263.797 133.170 -0.830 313.749 134.000 0.335

100 50 50 0.75 5 2.0 2 134.021 265.979 132.813 -1.187 289.727 134.000 0.335

100 25 75 0.25 5 2.0 2 148.801 251.199 132.808 -1.192 900.676 134.000 0.335

100 25 75 0.5 5 2.0 2 135.582 264.418 131.255 -2.745 359.613 134.000 0.335

100 25 75 0.75 5 2.0 2 133.684 266.316 131.908 -2.092 314.297 134.000 0.335

100 75 25 0.25 5 2.0 2 150.075 249.925 136.944 2.944 755.416 134.000 0.335

100 75 25 0.5 5 2.0 2 136.321 263.679 133.434 -0.566 294.786 134.000 0.335

100 75 25 0.75 5 2.0 2 134.283 265.717 133.964 -0.036 267.374 134.000 0.335

200 100 100 0.25 3 2.0 1 146.570 253.430 156.098 15.098 3328.519 141.000 0.353

200 100 100 0.5 3 2.0 1 108.265 291.735 141.711 0.711 167.412 141.000 0.353

200 100 100 0.75 3 2.0 1 93.559 306.441 140.483 -0.517 95.031 141.000 0.353

200 100 100 0.25 3 2.0 2 146.463 253.537 154.713 13.713 3210.288 141.000 0.353

200 100 100 0.5 3 2.0 2 108.095 291.905 140.772 -0.228 174.089 141.000 0.353

200 100 100 0.75 3 2.0 2 93.437 306.563 140.972 -0.028 95.136 141.000 0.353

200 50 150 0.25 3 2.0 2 146.986 253.014 154.637 13.637 3803.403 141.000 0.353



251 
 

 
 

200 50 150 0.5 3 2.0 2 107.799 292.201 139.855 -1.145 167.802 141.000 0.353

200 50 150 0.75 3 2.0 2 93.311 306.689 139.623 -1.377 104.729 141.000 0.353

200 150 50 0.25 3 2.0 2 145.775 254.225 153.619 12.619 2767.346 141.000 0.353

200 150 50 0.5 3 2.0 2 108.174 291.826 142.202 1.202 161.768 141.000 0.353

200 150 50 0.75 3 2.0 2 93.479 306.521 140.650 -0.350 97.996 141.000 0.353

200 100 100 0.25 5 2.0 1 126.416 273.584 151.649 6.649 1226.644 145.000 0.363

200 100 100 0.5 5 2.0 1 97.424 302.576 145.332 0.332 97.852 145.000 0.363

200 100 100 0.75 5 2.0 1 93.033 306.967 145.318 0.318 97.997 145.000 0.363

200 100 100 0.25 5 2.0 2 125.740 274.260 150.280 5.280 1140.624 145.000 0.363

200 100 100 0.5 5 2.0 2 97.280 302.720 144.364 -0.636 107.606 145.000 0.363

200 100 100 0.75 5 2.0 2 92.993 307.007 144.474 -0.526 94.817 145.000 0.363

200 50 150 0.25 5 2.0 2 124.937 275.063 147.807 2.807 958.867 145.000 0.363

200 50 150 0.5 5 2.0 2 97.338 302.662 144.210 -0.790 110.013 145.000 0.363

200 50 150 0.75 5 2.0 2 92.931 307.069 144.220 -0.780 98.071 145.000 0.363

200 150 50 0.25 5 2.0 2 125.924 274.076 150.005 5.005 1023.003 145.000 0.363

200 150 50 0.5 5 2.0 2 97.329 302.671 143.972 -1.028 105.258 145.000 0.363
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200 150 50 0.75 5 2.0 2 92.996 307.004 144.905 -0.095 96.247 145.000 0.363

100 50 50 0.25 3 3.0 1 161.176 238.824 144.092 11.778 3339.318 132.314 0.322

100 50 50 0.5 3 3.0 1 140.275 259.725 130.095 -2.219 410.806 132.314 0.322

100 50 50 0.75 3 3.0 1 132.798 267.202 128.696 -3.618 306.794 132.314 0.322

100 50 50 0.25 3 3.0 2 162.118 237.882 145.485 13.171 3859.154 132.314 0.322

100 50 50 0.5 3 3.0 2 139.678 260.322 129.568 -2.746 429.972 132.314 0.322

100 50 50 0.75 3 3.0 2 132.382 267.618 127.806 -4.508 318.139 132.314 0.322

100 25 75 0.25 3 3.0 2 158.419 241.581 135.490 3.176 3309.773 132.314 0.322

100 25 75 0.5 3 3.0 2 138.835 261.165 126.585 -5.729 585.933 132.314 0.322

100 25 75 0.75 3 3.0 2 131.860 268.140 125.980 -6.334 420.318 132.314 0.322

100 75 25 0.25 3 3.0 2 162.406 237.594 146.539 14.225 3677.485 132.314 0.322

100 75 25 0.5 3 3.0 2 139.842 260.158 129.264 -3.050 466.062 132.314 0.322

100 75 25 0.75 3 3.0 2 132.581 267.419 128.182 -4.132 287.977 132.314 0.322

100 50 50 0.25 5 3.0 1 151.679 248.321 142.720 -0.646 701.384 143.366 0.350

100 50 50 0.5 5 3.0 1 138.162 261.838 141.347 -2.019 278.382 143.366 0.350

100 50 50 0.75 5 3.0 1 135.807 264.193 140.170 -3.196 284.499 143.366 0.350
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100 50 50 0.25 5 3.0 2 151.754 248.246 143.227 -0.139 784.634 143.366 0.350

100 50 50 0.5 5 3.0 2 137.459 262.541 139.133 -4.234 325.299 143.366 0.350

100 50 50 0.75 5 3.0 2 135.309 264.691 139.487 -3.879 284.605 143.366 0.350

100 25 75 0.25 5 3.0 2 150.350 249.650 138.791 -4.575 941.566 143.366 0.350

100 25 75 0.5 5 3.0 2 136.804 263.196 136.847 -12.793 500.437 143.366 0.350

100 25 75 0.75 5 3.0 2 134.713 265.287 137.634 -5.733 353.925 143.366 0.350

100 75 25 0.25 5 3.0 2 151.568 248.432 142.271 -1.095 726.533 143.366 0.350

100 75 25 0.5 5 3.0 2 137.807 262.193 139.887 -3.480 309.863 143.366 0.350

100 75 25 0.75 5 3.0 2 135.365 264.635 139.077 -4.289 291.694 143.366 0.350

200 100 100 0.25 3 3.0 1 145.426 254.574 152.337 18.672 3185.668 133.665 0.348

200 100 100 0.5 3 3.0 1 107.895 292.105 139.596 5.930 196.017 133.665 0.348

200 100 100 0.75 3 3.0 1 93.367 306.633 139.200 5.535 132.118 133.665 0.348

200 100 100 0.25 3 3.0 2 144.354 255.646 149.901 16.236 3041.162 133.665 0.348

200 100 100 0.5 3 3.0 2 107.753 292.247 139.037 5.371 200.129 133.665 0.348

200 100 100 0.75 3 3.0 2 93.184 306.816 138.349 4.683 120.024 133.665 0.348

200 50 150 0.25 3 3.0 2 145.292 254.708 151.048 17.383 3585.795 133.665 0.348
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200 50 150 0.5 3 3.0 2 107.747 292.253 139.163 5.498 210.792 133.665 0.348

200 50 150 0.75 3 3.0 2 93.020 306.980 138.129 4.464 116.175 133.665 0.348

200 150 50 0.25 3 3.0 2 146.653 253.347 154.758 21.093 3620.127 133.665 0.348

200 150 50 0.5 3 3.0 2 107.681 292.319 139.452 5.787 202.371 133.665 0.348

200 150 50 0.75 3 3.0 2 93.237 306.763 139.127 5.462 119.198 133.665 0.348

200 100 100 0.25 5 3.0 1 123.301 276.699 144.131 6.891 2439.896 137.241 0.335

200 100 100 0.5 5 3.0 1 93.547 306.453 133.808 -3.433 115.269 137.241 0.335

200 100 100 0.75 5 3.0 1 89.502 310.498 133.711 -3.530 104.479 137.241 0.335

200 100 100 0.25 5 3.0 2 121.267 278.733 139.613 2.373 1451.576 137.241 0.335

200 100 100 0.5 5 3.0 2 93.381 306.619 133.185 -4.055 116.491 137.241 0.335

200 100 100 0.75 5 3.0 2 89.323 310.677 133.166 -4.075 114.971 137.241 0.335

200 50 150 0.25 5 3.0 2 121.596 278.404 139.991 2.750 1888.622 137.241 0.335

200 50 150 0.5 5 3.0 2 93.205 306.795 132.615 -4.626 127.266 137.241 0.335

200 50 150 0.75 5 3.0 2 89.133 310.867 132.768 -4.472 119.428 137.241 0.335

200 150 50 0.25 5 3.0 2 121.883 278.117 141.391 4.150 1952.309 137.241 0.335

200 150 50 0.5 5 3.0 2 93.451 306.549 133.959 -3.282 110.097 137.241 0.335
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200 150 50 0.75 5 3.0 2 89.388 310.612 133.599 -3.642 109.709 137.241 0.335
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Table B.4.  Average value from 1000 simulations of estimates of test statistic measuring lack of 

fit, d, test statistic measuring goodness of fit, GOF, estimate of Ntot,  , bias associated in 

estimating Ntot, and mean-squared-error, MSE, associated with estimating Ntot.  Estimates of 

coefficients in the logit-linear model for occupancy probability,  and , along with average 

bias and mean-squared-error (MSE).  Ntot represents the true value of the total number of sites 

occupied out of 400.  n1 and n2 represent the sample size at each phase of sampling.  n2 = 0 

represents the traditional single-season occupancy approach.  Habitat represents three different 

habitats with varying degrees of spatial correlation (1-extreme spatial correlation, 2-moderate 

spatial correlation, 3-no spatial correlation) and no covariate relationship (see text for more 

details). 
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N n1 n2 p J habitat approach p-hat Bias p MSE p β0 
Bias 
β0 

MSE 
β0 

β1 
Bias 
β1 

MSE 
β1 

100 50 50 0.25 3 1.0 1 0.244 -0.006 0.006 0.127 2.127 12.497 0.231 0.231 5.091 

100 50 50 0.5 3 1.0 1 0.492 -0.008 0.004 -0.482 1.518 2.363 0.057 0.057 0.051 

100 50 50 0.75 3 1.0 1 0.748 -0.002 0.002 -0.506 1.494 2.266 0.066 0.066 0.038 

100 50 50 0.25 3 1.0 2 0.243 -0.007 0.006 0.326 2.326 19.613 0.488 0.488 11.968 

100 50 50 0.5 3 1.0 2 0.497 -0.003 0.004 -0.499 1.501 2.315 0.055 0.055 0.048 

100 50 50 0.75 3 1.0 2 0.747 -0.003 0.002 -0.518 1.482 2.232 0.047 0.047 0.035 

100 25 75 0.25 3 1.0 2 0.247 -0.003 0.006 -0.357 1.643 17.798 0.514 0.514 18.892 

100 25 75 0.5 3 1.0 2 0.497 -0.003 0.004 -0.522 1.478 2.268 0.047 0.047 0.064 

100 25 75 0.75 3 1.0 2 0.750 0.000 0.002 -0.537 1.463 2.190 0.056 0.056 0.045 

100 75 25 0.25 3 1.0 2 0.244 -0.006 0.006 0.292 2.292 17.647 0.222 0.222 8.783 

100 75 25 0.5 3 1.0 2 0.497 -0.003 0.004 -0.491 1.509 2.333 0.047 0.047 0.044 

100 75 25 0.75 3 1.0 2 0.748 -0.002 0.002 -0.521 1.479 2.223 0.054 0.054 0.037 

100 50 50 0.25 5 1.0 1 0.252 0.002 0.002 -0.591 1.409 2.100 -0.172 -0.172 0.105 

100 50 50 0.5 5 1.0 1 0.501 0.001 0.002 -0.622 1.378 1.939 -0.157 -0.157 0.066 

100 50 50 0.75 5 1.0 1 0.749 -0.001 0.001 -0.630 1.370 1.912 -0.164 -0.164 0.067 
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100 50 50 0.25 5 1.0 2 0.247 -0.003 0.002 -0.617 1.383 2.024 -0.164 -0.164 0.116 

100 50 50 0.5 5 1.0 2 0.499 -0.001 0.002 -0.629 1.371 1.922 -0.161 -0.161 0.068 

100 50 50 0.75 5 1.0 2 0.750 0.000 0.001 -0.635 1.365 1.903 -0.165 -0.165 0.069 

100 25 75 0.25 5 1.0 2 0.250 0.000 0.002 -0.712 1.288 2.223 -0.177 -0.177 0.766 

100 25 75 0.5 5 1.0 2 0.498 -0.002 0.002 -0.668 1.332 1.974 -0.157 -0.157 0.173 

100 25 75 0.75 5 1.0 2 0.749 -0.001 0.001 -0.655 1.345 1.854 -0.173 -0.173 0.080 

100 75 25 0.25 5 1.0 2 0.247 -0.003 0.002 -0.572 1.428 2.832 -0.142 -0.142 0.529 

100 75 25 0.5 5 1.0 2 0.501 0.001 0.002 -0.632 1.368 1.910 -0.158 -0.158 0.066 

100 75 25 0.75 5 1.0 2 0.750 0.000 0.001 -0.621 1.379 1.935 -0.160 -0.160 0.061 

200 100 100 0.25 3 1.0 1 0.248 -0.002 0.005 -0.568 1.432 10.915 0.340 0.340 5.494 

200 100 100 0.5 3 1.0 1 0.499 -0.001 0.003 -0.963 1.037 1.097 0.074 0.074 0.024 

200 100 100 0.75 3 1.0 1 0.749 -0.001 0.001 -0.973 1.027 1.067 0.066 0.066 0.018 

200 100 100 0.25 3 1.0 2 0.246 -0.004 0.005 -0.593 1.407 9.546 0.306 0.306 4.793 

200 100 100 0.5 3 1.0 2 0.499 -0.001 0.003 -0.979 1.021 1.065 0.063 0.063 0.024 

200 100 100 0.75 3 1.0 2 0.750 0.000 0.001 -0.980 1.020 1.055 0.065 0.065 0.019 

200 50 150 0.25 3 1.0 2 0.245 -0.005 0.005 -0.605 1.395 8.854 0.331 0.331 5.145 
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200 50 150 0.5 3 1.0 2 0.498 -0.002 0.003 -0.986 1.014 1.053 0.072 0.072 0.029 

200 50 150 0.75 3 1.0 2 0.750 0.000 0.001 -0.991 1.009 1.034 0.073 0.073 0.021 

200 150 50 0.25 3 1.0 2 0.244 -0.006 0.005 -0.436 1.564 12.527 0.391 0.391 6.439 

200 150 50 0.5 3 1.0 2 0.497 -0.003 0.003 -0.963 1.037 1.096 0.065 0.065 0.022 

200 150 50 0.75 3 1.0 2 0.749 -0.001 0.001 -0.978 1.022 1.060 0.067 0.067 0.018 

200 100 100 0.25 5 1.0 1 0.245 -0.005 0.002 0.040 2.040 18.584 0.424 0.424 6.960 

200 100 100 0.5 5 1.0 1 0.499 -0.001 0.001 -0.560 1.440 2.086 0.047 0.047 0.015 

200 100 100 0.75 5 1.0 1 0.751 0.001 0.001 -0.550 1.450 2.114 0.042 0.042 0.014 

200 100 100 0.25 5 1.0 2 0.246 -0.004 0.001 -0.129 1.871 13.880 0.291 0.291 4.145 

200 100 100 0.5 5 1.0 2 0.500 0.000 0.001 -0.561 1.439 2.082 0.051 0.051 0.016 

200 100 100 0.75 5 1.0 2 0.751 0.001 0.001 -0.565 1.435 2.071 0.047 0.047 0.015 

200 50 150 0.25 5 1.0 2 0.247 -0.003 0.002 -0.067 1.933 15.292 0.336 0.336 5.694 

200 50 150 0.5 5 1.0 2 0.498 -0.002 0.001 -0.567 1.433 2.068 0.046 0.046 0.018 

200 50 150 0.75 5 1.0 2 0.750 0.000 0.001 -0.566 1.434 2.068 0.047 0.047 0.017 

200 150 50 0.25 5 1.0 2 0.247 -0.003 0.001 -0.148 1.852 14.572 0.283 0.283 4.132 

200 150 50 0.5 5 1.0 2 0.502 0.002 0.001 -0.562 1.438 2.081 0.047 0.047 0.015 
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200 150 50 0.75 5 1.0 2 0.750 0.000 0.001 -0.555 1.445 2.098 0.048 0.048 0.014 

100 50 50 0.25 3 2.0 1 0.248 -0.002 0.006 -0.135 1.865 10.247 -0.301 -0.301 4.193 

100 50 50 0.5 3 2.0 1 0.497 -0.003 0.004 -0.605 1.395 2.001 -0.080 -0.080 0.055 

100 50 50 0.75 3 2.0 1 0.748 -0.002 0.002 -0.614 1.386 1.956 -0.064 -0.064 0.043 

100 50 50 0.25 3 2.0 2 0.244 -0.006 0.007 -0.051 1.949 11.511 -0.344 -0.344 7.507 

100 50 50 0.5 3 2.0 2 0.495 -0.005 0.004 -0.613 1.387 1.982 -0.101 -0.101 0.081 

100 50 50 0.75 3 2.0 2 0.748 -0.002 0.002 -0.625 1.375 1.928 -0.094 -0.094 0.065 

100 25 75 0.25 3 2.0 2 0.246 -0.004 0.007 -0.647 1.353 10.893 -0.744 -0.744 12.221 

100 25 75 0.5 3 2.0 2 0.497 -0.003 0.004 -0.686 1.314 2.390 -0.175 -0.175 0.698 

100 25 75 0.75 3 2.0 2 0.748 -0.002 0.002 -0.650 1.350 1.889 -0.117 -0.117 0.101 

100 75 25 0.25 3 2.0 2 0.245 -0.005 0.006 -0.246 1.754 8.303 -0.319 -0.319 3.771 

100 75 25 0.5 3 2.0 2 0.494 -0.006 0.004 -0.608 1.392 1.999 -0.087 -0.087 0.064 

100 75 25 0.75 3 2.0 2 0.748 -0.002 0.002 -0.615 1.385 1.954 -0.090 -0.090 0.058 

100 50 50 0.25 5 2.0 1 0.248 -0.002 0.002 -0.660 1.340 1.911 -0.051 -0.051 0.101 

100 50 50 0.5 5 2.0 1 0.500 0.000 0.002 -0.691 1.309 1.753 -0.034 -0.034 0.045 

100 50 50 0.75 5 2.0 1 0.751 0.001 0.001 -0.699 1.301 1.728 -0.021 -0.021 0.042 
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100 50 50 0.25 5 2.0 2 0.246 -0.004 0.002 -0.673 1.327 1.904 -0.068 -0.068 0.316 

100 50 50 0.5 5 2.0 2 0.497 -0.003 0.002 -0.711 1.289 1.705 -0.042 -0.042 0.049 

100 50 50 0.75 5 2.0 2 0.747 -0.003 0.001 -0.714 1.286 1.693 -0.051 -0.051 0.049 

100 25 75 0.25 5 2.0 2 0.249 -0.001 0.003 -0.801 1.199 2.269 -0.168 -0.168 1.068 

100 25 75 0.5 5 2.0 2 0.500 0.000 0.002 -0.805 1.195 2.370 -0.150 -0.150 1.219 

100 25 75 0.75 5 2.0 2 0.750 0.000 0.001 -0.745 1.255 1.877 -0.086 -0.086 0.403 

100 75 25 0.25 5 2.0 2 0.249 -0.001 0.003 -0.678 1.322 1.854 -0.040 -0.040 0.086 

100 75 25 0.5 5 2.0 2 0.500 0.000 0.002 -0.706 1.294 1.713 -0.042 -0.042 0.047 

100 75 25 0.75 5 2.0 2 0.749 -0.001 0.001 -0.699 1.301 1.728 -0.034 -0.034 0.041 

200 100 100 0.25 3 2.0 1 0.245 -0.005 0.004 -0.135 1.865 11.085 0.209 0.209 1.856 

200 100 100 0.5 3 2.0 1 0.500 0.000 0.002 -0.607 1.393 1.960 0.137 0.137 0.035 

200 100 100 0.75 3 2.0 1 0.751 0.001 0.001 -0.620 1.380 1.917 0.147 0.147 0.035 

200 100 100 0.25 3 2.0 2 0.243 -0.007 0.004 -0.202 1.798 8.559 0.211 0.211 1.660 

200 100 100 0.5 3 2.0 2 0.500 0.000 0.002 -0.619 1.381 1.929 0.137 0.137 0.041 

200 100 100 0.75 3 2.0 2 0.747 -0.003 0.001 -0.615 1.385 1.931 0.145 0.145 0.035 

200 50 150 0.25 3 2.0 2 0.243 -0.007 0.004 -0.027 1.973 15.574 0.059 0.059 2.954 
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200 50 150 0.5 3 2.0 2 0.501 0.001 0.002 -0.630 1.370 1.900 0.128 0.128 0.044 

200 50 150 0.75 3 2.0 2 0.751 0.001 0.001 -0.630 1.370 1.890 0.133 0.133 0.036 

200 150 50 0.25 3 2.0 2 0.244 -0.006 0.004 -0.275 1.725 6.583 0.232 0.232 1.187 

200 150 50 0.5 3 2.0 2 0.499 -0.001 0.002 -0.602 1.398 1.974 0.138 0.138 0.037 

200 150 50 0.75 3 2.0 2 0.750 0.000 0.001 -0.618 1.382 1.923 0.139 0.139 0.033 

200 100 100 0.25 5 2.0 1 0.246 -0.004 0.002 -0.242 1.758 10.145 0.062 0.062 1.747 

200 100 100 0.5 5 2.0 1 0.500 0.000 0.001 -0.564 1.436 2.073 0.013 0.013 0.012 

200 100 100 0.75 5 2.0 1 0.750 0.000 0.001 -0.564 1.436 2.074 0.018 0.018 0.010 

200 100 100 0.25 5 2.0 2 0.248 -0.002 0.002 -0.277 1.723 9.495 -0.008 -0.008 1.631 

200 100 100 0.5 5 2.0 2 0.502 0.002 0.001 -0.575 1.425 2.043 0.014 0.014 0.013 

200 100 100 0.75 5 2.0 2 0.750 0.000 0.000 -0.573 1.427 2.046 0.005 0.005 0.012 

200 50 150 0.25 5 2.0 2 0.249 -0.001 0.001 -0.337 1.663 9.039 -0.012 -0.012 1.733 

200 50 150 0.5 5 2.0 2 0.501 0.001 0.001 -0.577 1.423 2.039 0.005 0.005 0.013 

200 50 150 0.75 5 2.0 2 0.749 -0.001 0.001 -0.576 1.424 2.039 0.013 0.013 0.011 

200 150 50 0.25 5 2.0 2 0.246 -0.004 0.001 -0.307 1.693 8.203 0.092 0.092 1.817 

200 150 50 0.5 5 2.0 2 0.502 0.002 0.001 -0.579 1.421 2.031 0.009 0.009 0.013 
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200 150 50 0.75 5 2.0 2 0.749 -0.001 0.001 -0.569 1.431 2.061 0.011 0.011 0.010 

100 50 50 0.25 3 3.0 1 0.248 -0.002 0.007 0.005 2.005 37.701 0.133 0.133 22.940 

100 50 50 0.5 3 3.0 1 0.495 -0.005 0.005 -0.750 1.250 1.619 0.017 0.017 0.060 

100 50 50 0.75 3 3.0 1 0.747 -0.003 0.002 -0.760 1.240 1.577 0.023 0.023 0.042 

100 50 50 0.25 3 3.0 2 0.243 -0.007 0.008 0.005 2.005 37.723 0.113 0.113 38.985 

100 50 50 0.5 3 3.0 2 0.499 -0.001 0.004 -0.757 1.243 1.605 0.020 0.020 0.061 

100 50 50 0.75 3 3.0 2 0.750 0.000 0.002 -0.772 1.228 1.550 0.013 0.013 0.046 

100 25 75 0.25 3 3.0 2 0.245 -0.005 0.007 -0.618 1.382 19.789 -0.271 -0.271 43.231 

100 25 75 0.5 3 3.0 2 0.500 0.000 0.005 -0.808 1.192 1.536 0.015 0.015 0.095 

100 25 75 0.75 3 3.0 2 0.749 -0.001 0.002 -0.805 1.195 1.511 0.027 0.027 0.075 

100 75 25 0.25 3 3.0 2 0.244 -0.006 0.007 -0.008 1.992 25.621 0.048 0.048 19.293 

100 75 25 0.5 3 3.0 2 0.499 -0.001 0.005 -0.760 1.240 1.600 -0.002 -0.002 0.058 

100 75 25 0.75 3 3.0 2 0.749 -0.001 0.002 -0.767 1.233 1.560 0.009 0.009 0.043 

100 50 50 0.25 5 3.0 1 0.250 0.000 0.002 -0.617 1.383 2.002 -0.232 -0.232 0.117 

100 50 50 0.5 5 3.0 1 0.498 -0.002 0.002 -0.621 1.379 1.935 -0.216 -0.216 0.084 

100 50 50 0.75 5 3.0 1 0.750 0.000 0.001 -0.636 1.364 1.897 -0.225 -0.225 0.089 
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100 50 50 0.25 5 3.0 2 0.246 -0.004 0.002 -0.604 1.396 2.197 -0.339 -0.339 4.604 

100 50 50 0.5 5 3.0 2 0.501 0.001 0.002 -0.651 1.349 1.861 -0.234 -0.234 0.105 

100 50 50 0.75 5 3.0 2 0.748 -0.002 0.001 -0.645 1.355 1.871 -0.236 -0.236 0.099 

100 25 75 0.25 5 3.0 2 0.249 -0.001 0.002 -0.688 1.312 1.886 -0.277 -0.277 0.219 

100 25 75 0.5 5 3.0 2 0.498 -0.002 0.002 -0.683 1.317 1.790 -0.246 -2.244 5.100 

100 25 75 0.75 5 3.0 2 0.747 -0.003 0.001 -0.670 1.330 1.814 -0.248 -0.248 0.110 

100 75 25 0.25 5 3.0 2 0.248 -0.002 0.002 -0.625 1.375 1.987 -0.236 -0.236 0.131 

100 75 25 0.5 5 3.0 2 0.499 -0.001 0.002 -0.641 1.359 1.887 -0.229 -0.229 0.096 

100 75 25 0.75 5 3.0 2 0.750 0.000 0.001 -0.650 1.350 1.860 -0.246 -0.246 0.099 

200 100 100 0.25 3 3.0 1 0.246 -0.004 0.004 0.547 2.547 86.923 0.492 0.492 36.553 

200 100 100 0.5 3 3.0 1 0.498 -0.002 0.002 -0.630 1.370 1.898 0.066 0.066 0.022 

200 100 100 0.75 3 3.0 1 0.748 -0.002 0.001 -0.633 1.367 1.882 0.068 0.068 0.019 

200 100 100 0.25 3 3.0 2 0.249 -0.001 0.004 0.175 2.175 46.247 0.476 0.476 19.764 

200 100 100 0.5 3 3.0 2 0.498 -0.002 0.002 -0.637 1.363 1.880 0.071 0.071 0.025 

200 100 100 0.75 3 3.0 2 0.751 0.001 0.001 -0.642 1.358 1.856 0.072 0.072 0.020 

200 50 150 0.25 3 3.0 2 0.246 -0.004 0.004 0.705 2.705 74.160 0.920 0.920 43.675 
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200 50 150 0.5 3 3.0 2 0.497 -0.003 0.002 -0.636 1.364 1.884 0.075 0.075 0.026 

200 50 150 0.75 3 3.0 2 0.750 0.000 0.001 -0.645 1.355 1.849 0.067 0.067 0.019 

200 150 50 0.25 3 3.0 2 0.242 -0.008 0.004 0.438 2.438 59.127 0.432 0.432 23.346 

200 150 50 0.5 3 3.0 2 0.500 0.000 0.002 -0.632 1.368 1.894 0.062 0.062 0.022 

200 150 50 0.75 3 3.0 2 0.748 -0.002 0.001 -0.633 1.367 1.880 0.061 0.061 0.017 

200 100 100 0.25 5 3.0 1 0.245 -0.005 0.002 0.100 2.100 32.440 0.199 0.199 9.136 

200 100 100 0.5 5 3.0 1 0.499 -0.001 0.001 -0.694 1.306 1.720 0.101 0.101 0.023 

200 100 100 0.75 5 3.0 1 0.750 0.000 0.001 -0.695 1.305 1.716 0.099 0.099 0.023 

200 100 100 0.25 5 3.0 2 0.245 -0.005 0.002 -0.175 1.825 28.496 0.255 0.255 8.923 

200 100 100 0.5 5 3.0 2 0.500 0.000 0.001 -0.702 1.298 1.699 0.107 0.107 0.028 

200 100 100 0.75 5 3.0 2 0.749 -0.001 0.001 -0.701 1.299 1.699 0.104 0.104 0.025 

200 50 150 0.25 5 3.0 2 0.246 -0.004 0.002 -0.110 1.890 27.149 0.352 0.352 7.076 

200 50 150 0.5 5 3.0 2 0.498 -0.002 0.001 -0.709 1.291 1.681 0.115 0.115 0.032 

200 50 150 0.75 5 3.0 2 0.750 0.000 0.001 -0.707 1.293 1.685 0.115 0.115 0.031 

200 150 50 0.25 5 3.0 2 0.247 -0.003 0.002 -0.038 1.962 41.816 0.120 0.120 12.500 

200 150 50 0.5 5 3.0 2 0.500 0.000 0.001 -0.693 1.307 1.722 0.110 0.110 0.026 
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200 150 50 0.75 5 3.0 2 0.750 0.000 0.001 -0.696 1.304 1.712 0.107 0.107 0.025 
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APPENDIX C 

 Please find additional results from Chapter 4.  All code is provided in Appendix A. 
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Figure C.1.  Plots of the relative root mean-squared error (RMSE) comparing three different 

models: ACSOCC (Adaptive-cluster sampling occupancy, solid lines and squares), SSOCC 

(Single-season occupancy dashed lines with circles), and ACS (Adaptive-cluster sampling dotted 

lines with triangles).  The columns differentiate among the three different habitats (1, 2, and 3) 

with varying levels of spatial correlation (high, med, none, respectively).  The detection 

probability is fixed at p = 0.25 for the first row, p = 0.5 for the second row, and p = 0.75 for the 

third row.  All cases have five repeat visits to a site (J).  The x-axis represents an increase in the 

initial sample size, n (20, 50, 100, 150), for each of the three different models.  Note that one 

simulation trial encountered fatal errors and is not represented (n = 100, p = 0.75, J = 5, Habitat 

2). 
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Figure C.2.  Plots of the relative bias (RBIAS) comparing three different models: ACSOCC 

(Adaptive-cluster sampling occupancy, solid lines), SSOCC (Single-season occupancy dashed 

lines), and ACS (Adaptive-cluster sampling dotted lines).  The columns differentiate among the 

three different habitats (1,2, and 3) with varying levels of spatial correlation (high, med, none, 

respectively).  The detection probability is fixed at p = 0.25 for the first row, p = 0.5 for the 

second row, and p = 0.75 for the third row.  All cases have five repeat visits to a site (J).  The x-

axis represents an increase in the initial sample size, n (20, 50, 100, 150), for each of the three 

different models.  Note that one simulation trial encountered fatal errors and is not represented (n 

= 100, p = 0.75, J = 5, Habitat 2). 

 

 

 

 



272 
 

 
 

Table C.1.  Simulation results from 500 synthetic datasets with different design criteria for the 

ACSOCC model (Adaptive-cluster sampling occupancy).  Habitat refers to the amount of 

generated spatial correlation where Habitat 1 has the most spatial correlation and Habitat 3 has 

no spatial correlation (see text for more details).  Parameters are p-detection probability, n- initial 

sample size, and J-number of repeat visits.  True Ntot is the actual number of occupied sites out of 

400 while Ntot-hat is the estimated number of occupied sites averaged over the 500 synthetic 

datasets.  Range represents the minimum and maximum estimated number of occupied sites out 

of the 500 synthetic datasets for each set of design criteria.  p-hat is the estimated detection 

probability while RBIAS and RMSE refer to relative bias and relative root mean-squared error, 

respectively.  Note that one simulation trial encountered fatal errors and is not represented (n = 

100, p = 0.75, J = 5, Habitat 2). 
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Scenario n p J Habitat 

True 

Ntot Ntot-hat Range 

Ntot 

RBias 

Ntot 

RMSE 

p-

hat 

p 

RBias 

p 

RMSE 

1 20 0.25 3 1 143 185.52 92.58 276.63 0.30 0.36 0.19 -0.23 0.37 

min 0.25 143 83.60 10.00 166.00 -0.42 0.00 0.06 -0.75 0.00 

max 0.25 143 251.65 186.00 360.00 0.76 0.76 0.48 0.92 0.92 

2 50 0.25 3 1 162 170.75 105.22 248.02 0.05 0.19 0.23 -0.09 0.24 

min 0.25 162 73.06 39.00 127.00 -0.55 0.00 0.07 -0.71 0.00 

max 0.25 162 251.45 165.00 356.00 0.55 0.55 0.47 0.86 0.86 

3 100 0.25 3 1 162 171.75 121.15 231.79 0.06 0.17 0.23 -0.06 0.19 

min 0.25 162 103.53 68.00 140.00 -0.36 0.00 0.13 -0.47 0.00 

max 0.25 162 253.24 196.00 314.00 0.56 0.56 0.41 0.62 0.62 

4 150 0.25 3 1 150 159.48 116.63 210.81 0.06 0.15 0.24 -0.05 0.16 

min 0.25 150 105.37 74.00 143.00 -0.30 0.00 0.13 -0.48 0.00 

max 0.25 150 207.64 160.00 270.00 0.38 0.38 0.36 0.42 0.48 

5 20 0.5 3 1 170 167.89 128.14 213.68 -0.01 0.10 0.49 -0.02 0.09 

min 0.5 170 107.37 49.00 151.00 -0.37 0.00 0.24 -0.52 0.00 
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max 0.5 170 206.83 172.00 276.00 0.22 0.37 0.62 0.24 0.52 

6 50 0.5 3 1 159 158.57 135.02 185.67 0.00 0.07 0.49 -0.01 0.08 

min 0.5 159 102.98 68.00 141.00 -0.35 0.00 0.37 -0.26 0.00 

max 0.5 159 192.58 166.00 226.00 0.21 0.35 0.58 0.17 0.26 

7 100 0.5 3 1 150 149.46 130.93 171.86 0.00 0.06 0.49 -0.02 0.08 

min 0.5 150 118.93 98.00 141.00 -0.21 0.00 0.37 -0.26 0.00 

max 0.5 150 173.75 153.75 207.00 0.16 0.21 0.61 0.22 0.26 

8 150 0.5 3 1 151 151.24 136.31 169.24 0.00 0.05 0.50 -0.01 0.07 

min 0.5 151 126.70 114.00 142.00 -0.16 0.00 0.40 -0.19 0.00 

max 0.5 151 171.69 154.00 195.00 0.14 0.16 0.61 0.22 0.22 

9 20 0.75 3 1 148 138.10 110.42 169.53 -0.07 0.11 0.74 -0.01 0.05 

min 0.75 148 64.62 20.00 134.00 -0.56 0.00 0.46 -0.38 0.00 

max 0.75 148 161.36 138.00 227.00 0.09 0.56 0.83 0.11 0.38 

10 50 0.75 3 1 170 160.46 143.06 179.38 -0.06 0.07 0.75 0.00 0.03 

min 0.75 170 124.24 104.00 150.00 -0.27 0.00 0.67 -0.10 0.00 

max 0.75 170 180.00 172.38 199.00 0.06 0.27 0.80 0.07 0.10 
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11 100 0.75 3 1 157 157.77 146.74 169.84 0.00 0.03 0.75 0.00 0.03 

min 0.75 157 130.98 118.00 145.00 -0.17 0.00 0.67 -0.10 0.00 

max 0.75 157 168.36 158.00 181.00 0.07 0.17 0.82 0.09 0.10 

12 150 0.75 3 1 155 151.22 142.57 160.96 -0.02 0.04 0.75 0.00 0.03 

min 0.75 155 137.08 127.00 148.00 -0.12 0.00 0.67 -0.11 0.00 

max 0.75 155 160.18 152.00 170.00 0.03 0.12 0.81 0.08 0.11 

13 20 0.25 5 1 148 155.94 98.47 224.87 0.05 0.19 0.23 -0.08 0.23 

min 0.25 148 69.38 6.00 132.15 -0.53 0.00 0.04 -0.84 0.00 

max 0.25 148 226.17 159.00 329.00 0.53 0.53 0.44 0.76 0.84 

14 50 0.25 5 1 153 156.69 122.64 197.62 0.02 0.12 0.24 -0.03 0.13 

min 0.25 153 90.88 59.00 134.00 -0.41 0.00 0.10 -0.59 0.00 

max 0.25 153 218.48 173.00 263.00 0.43 0.43 0.33 0.33 0.59 

15 100 0.25 5 1 154 159.00 131.94 192.21 0.03 0.10 0.24 -0.02 0.11 

min 0.25 154 105.48 84.00 132.00 -0.32 0.00 0.17 -0.33 0.00 

max 0.25 154 210.48 174.00 251.00 0.37 0.37 0.31 0.25 0.33 

16 150 0.25 5 1 149 154.05 129.92 184.31 0.03 0.10 0.25 -0.02 0.11 
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min 0.25 149 105.98 87.00 130.00 -0.29 0.00 0.16 -0.37 0.00 

max 0.25 149 190.67 160.00 234.00 0.28 0.29 0.34 0.35 0.37 

17 20 0.5 5 1 160 149.38 121.59 181.25 -0.07 0.10 0.50 -0.01 0.06 

min 0.5 160 103.54 20.00 134.78 -0.35 0.00 0.23 -0.55 0.00 

max 0.5 160 179.22 160.35 236.00 0.12 0.35 0.60 0.19 0.55 

18 50 0.5 5 1 141 142.95 125.08 163.19 0.01 0.06 0.50 0.00 0.05 

min 0.5 141 106.33 82.00 131.00 -0.25 0.00 0.43 -0.14 0.00 

max 0.5 141 160.25 144.00 179.00 0.14 0.25 0.57 0.15 0.15 

19 100 0.5 5 1 152 150.36 138.42 163.50 -0.01 0.04 0.50 0.00 0.05 

min 0.5 152 132.17 117.00 145.00 -0.13 0.00 0.43 -0.13 0.00 

max 0.5 152 165.32 154.00 178.00 0.09 0.13 0.58 0.16 0.16 

20 150 0.5 5 1 157 156.79 147.19 167.51 0.00 0.03 0.50 0.00 0.04 

min 0.5 157 142.75 131.00 155.00 -0.09 0.00 0.44 -0.11 0.00 

max 0.5 157 167.87 159.00 179.00 0.07 0.09 0.56 0.11 0.11 

21 20 0.75 5 1 162 163.07 134.24 194.92 0.01 0.05 0.75 0.00 0.03 

min 0.75 162 132.64 104.00 172.00 -0.18 0.00 0.69 -0.08 0.00 
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max 0.75 162 182.86 163.98 220.00 0.13 0.18 0.81 0.08 0.08 

22 50 0.75 5 1 159 158.54 140.96 177.80 0.00 0.04 0.75 0.00 0.02 

min 0.75 159 137.27 118.00 161.00 -0.14 0.00 0.70 -0.06 0.00 

max 0.75 159 174.22 163.68 195.00 0.10 0.14 0.80 0.07 0.07 

23 100 0.75 5 1 140 135.90 125.05 148.18 -0.03 0.05 0.75 0.00 0.02 

min 0.75 140 117.43 105.00 130.00 -0.16 0.00 0.67 -0.10 0.00 

max 0.75 140 149.49 140.00 160.00 0.07 0.16 0.81 0.08 0.10 

24 150 0.75 5 1 167 163.51 156.44 171.40 -0.02 0.03 0.75 0.00 0.02 

min 0.75 167 149.80 140.00 160.00 -0.10 0.00 0.71 -0.06 0.00 

max 0.75 167 172.25 165.00 180.00 0.03 0.10 0.80 0.07 0.07 

25 20 0.25 3 2 141 172.50 82.41 273.02 0.22 0.34 0.20 -0.18 0.39 

min 0.25 141 53.43 6.00 146.00 -0.62 0.00 0.07 -0.74 0.00 

max 0.25 141 253.52 160.00 375.00 0.80 0.80 0.71 1.85 1.85 

26 50 0.25 3 2 141 174.40 104.91 254.62 0.24 0.34 0.21 -0.16 0.30 

min 0.25 141 54.86 21.00 110.00 -0.61 0.00 0.06 -0.78 0.00 

max 0.25 141 256.19 196.00 361.00 0.82 0.82 0.46 0.83 0.83 
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27 100 0.25 3 2 142 147.26 101.98 205.26 0.04 0.18 0.24 -0.03 0.20 

min 0.25 142 74.66 44.00 120.18 -0.47 0.00 0.09 -0.64 0.00 

max 0.25 142 224.32 155.00 335.00 0.58 0.58 0.40 0.61 0.64 

28 150 0.25 3 2 149 159.89 120.70 208.45 0.07 0.17 0.24 -0.02 0.17 

min 0.25 149 96.26 70.00 131.00 -0.35 0.00 0.14 -0.45 0.00 

max 0.25 149 221.01 161.00 303.00 0.48 0.48 0.37 0.49 0.49 

29 20 0.5 3 2 157 145.21 105.69 190.00 -0.08 0.13 0.49 -0.02 0.13 

min 0.5 157 70.89 41.00 121.00 -0.55 0.00 0.15 -0.71 0.00 

max 0.5 157 203.49 151.00 301.00 0.30 0.55 0.70 0.39 0.71 

30 50 0.5 3 2 134 124.69 96.40 157.52 -0.07 0.13 0.50 -0.01 0.10 

min 0.5 134 74.30 46.00 103.00 -0.45 0.00 0.36 -0.27 0.00 

max 0.5 134 158.83 134.00 205.00 0.19 0.45 0.67 0.35 0.35 

31 100 0.5 3 2 154 154.64 136.83 175.08 0.00 0.06 0.50 0.00 0.07 

min 0.5 154 118.54 97.00 143.00 -0.23 0.00 0.40 -0.20 0.00 

max 0.5 154 177.45 159.00 199.00 0.15 0.23 0.59 0.19 0.20 

32 150 0.5 3 2 140 143.43 127.71 161.97 0.02 0.07 0.49 -0.02 0.07 
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min 0.5 140 109.71 94.00 129.00 -0.22 0.00 0.39 -0.23 0.00 

max 0.5 140 171.20 149.00 198.00 0.22 0.22 0.58 0.17 0.23 

33 20 0.75 3 2 148 131.47 104.20 164.67 -0.11 0.14 0.74 -0.01 0.04 

min 0.75 148 50.27 6.00 122.00 -0.66 0.00 0.61 -0.19 0.00 

max 0.75 148 159.60 141.90 194.00 0.08 0.66 0.86 0.15 0.19 

34 50 0.75 3 2 144 138.53 120.87 157.09 -0.04 0.07 0.75 0.00 0.04 

min 0.75 144 108.77 80.00 135.00 -0.24 0.00 0.64 -0.14 0.00 

max 0.75 144 155.33 139.00 174.00 0.08 0.24 0.83 0.10 0.14 

35 100 0.75 3 2 166 163.28 152.10 175.05 -0.02 0.04 0.75 0.00 0.03 

min 0.75 166 143.81 128.00 159.00 -0.13 0.00 0.69 -0.09 0.00 

max 0.75 166 175.37 168.68 187.00 0.06 0.13 0.83 0.11 0.11 

36 150 0.75 3 2 140 139.63 129.66 150.66 0.00 0.03 0.74 -0.01 0.04 

min 0.75 140 123.70 112.00 136.00 -0.12 0.00 0.66 -0.12 0.00 

max 0.75 140 149.74 141.00 161.00 0.07 0.12 0.82 0.10 0.12 

37 20 0.25 5 2 143 138.99 83.84 209.32 -0.03 0.19 0.24 -0.05 0.25 

min 0.25 143 56.27 6.00 98.00 -0.61 0.00 0.05 -0.81 0.00 
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max 0.25 143 236.20 156.00 350.00 0.65 0.65 0.46 0.84 0.84 

38 50 0.25 5 2 139 132.93 101.11 171.54 -0.04 0.12 0.25 -0.01 0.14 

min 0.25 139 81.97 49.00 121.00 -0.41 0.00 0.14 -0.46 0.00 

max 0.25 139 182.13 139.00 255.00 0.31 0.41 0.35 0.41 0.46 

39 100 0.25 5 2 144 148.26 123.25 177.48 0.03 0.09 0.25 -0.02 0.11 

min 0.25 144 113.23 79.00 139.00 -0.21 0.00 0.17 -0.34 0.00 

max 0.25 144 197.55 155.00 235.00 0.37 0.37 0.34 0.34 0.34 

40 150 0.25 5 2 129 133.80 108.74 165.75 0.04 0.12 0.24 -0.04 0.13 

min 0.25 129 93.62 73.00 115.00 -0.27 0.00 0.13 -0.47 0.00 

max 0.25 129 177.48 143.00 220.00 0.38 0.38 0.33 0.31 0.47 

41 20 0.5 5 2 138 129.26 95.63 165.76 -0.06 0.11 0.49 -0.01 0.10 

min 0.5 138 80.48 6.00 132.00 -0.42 0.00 0.09 -0.82 0.00 

max 0.5 138 165.44 138.75 276.00 0.20 0.42 0.64 0.27 0.82 

42 50 0.5 5 2 143 144.78 127.14 163.44 0.01 0.05 0.50 0.00 0.05 

min 0.5 143 106.88 84.00 133.00 -0.25 0.00 0.41 -0.17 0.00 

max 0.5 143 163.50 148.00 181.00 0.14 0.25 0.57 0.14 0.17 
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43 100 0.5 5 2 164 163.04 151.70 175.32 -0.01 0.03 0.50 0.00 0.04 

min 0.5 164 147.16 133.00 161.00 -0.10 0.00 0.43 -0.14 0.00 

max 0.5 164 176.20 166.00 188.00 0.07 0.10 0.56 0.11 0.14 

44 150 0.5 5 2 138 131.49 121.11 142.91 -0.05 0.06 0.50 0.00 0.05 

min 0.5 138 116.49 106.00 128.00 -0.16 0.00 0.44 -0.13 0.00 

max 0.5 138 146.61 136.00 158.00 0.06 0.16 0.57 0.14 0.14 

45 20 0.75 5 2 148 136.56 105.66 168.63 -0.08 0.11 0.75 0.00 0.04 

min 0.75 148 76.78 29.00 122.00 -0.48 0.00 0.66 -0.13 0.00 

max 0.75 148 161.70 151.45 190.00 0.09 0.48 0.85 0.13 0.13 

46 50 0.75 5 2 143 136.82 117.43 156.61 -0.04 0.08 0.75 0.00 0.03 

min 0.75 143 92.33 64.00 120.00 -0.35 0.00 0.68 -0.09 0.00 

max 0.75 143 162.88 148.00 178.00 0.14 0.35 0.82 0.09 0.09 

47 100 0.75 5 2 

min 0.75 

max 0.75 

48 150 0.75 5 2 140 138.43 129.77 147.80 -0.01 0.03 0.75 0.00 0.03 
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min 0.75 140 122.37 114.00 132.00 -0.13 0.00 0.69 -0.08 0.00 

max 0.75 140 148.90 141.23 158.00 0.06 0.13 0.80 0.07 0.08 

49 20 0.25 3 3 150 188.00 94.17 281.27 0.25 0.32 0.20 -0.20 0.36 

min 0.25 150 89.07 9.00 162.00 -0.41 0.00 0.07 -0.72 0.00 

max 0.25 150 250.51 171.00 362.00 0.67 0.67 0.57 1.28 1.28 

50 50 0.25 3 3 155 178.96 106.74 258.33 0.15 0.26 0.22 -0.13 0.29 

min 0.25 155 65.73 30.00 120.00 -0.58 0.00 0.07 -0.73 0.00 

max 0.25 155 260.40 184.00 355.00 0.68 0.68 0.47 0.89 0.89 

51 100 0.25 3 3 145 158.84 107.09 219.90 0.10 0.21 0.24 -0.05 0.21 

min 0.25 145 83.99 39.00 120.00 -0.42 0.00 0.11 -0.55 0.00 

max 0.25 145 228.60 180.00 310.00 0.58 0.58 0.44 0.78 0.78 

52 150 0.25 3 3 149 157.58 112.57 212.66 0.06 0.17 0.24 -0.05 0.19 

min 0.25 149 88.47 64.00 124.00 -0.41 0.00 0.13 -0.50 0.00 

max 0.25 149 229.43 173.00 298.00 0.54 0.54 0.41 0.64 0.64 

53 20 0.5 3 3 158 151.11 103.39 204.79 -0.04 0.13 0.48 -0.05 0.17 

min 0.5 158 78.13 25.00 135.75 -0.51 0.00 0.08 -0.85 0.00 
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max 0.5 158 209.93 156.00 301.00 0.33 0.51 0.72 0.44 0.85 

54 50 0.5 3 3 156 149.89 123.73 180.04 -0.04 0.09 0.49 -0.02 0.10 

min 0.5 156 100.55 67.98 139.00 -0.36 0.00 0.33 -0.35 0.00 

max 0.5 156 195.51 154.00 236.00 0.25 0.36 0.61 0.22 0.35 

55 100 0.5 3 3 152 148.61 129.30 170.35 -0.02 0.07 0.50 0.00 0.08 

min 0.5 152 118.63 96.00 139.00 -0.22 0.00 0.37 -0.26 0.00 

max 0.5 152 173.53 154.00 200.00 0.14 0.22 0.62 0.23 0.26 

56 150 0.5 3 3 143 139.97 123.84 159.07 -0.02 0.06 0.50 -0.01 0.08 

min 0.5 143 114.32 99.00 129.00 -0.20 0.00 0.35 -0.30 0.00 

max 0.5 143 167.40 146.00 199.00 0.17 0.20 0.63 0.26 0.30 

57 20 0.75 3 3 146 135.04 97.78 172.10 -0.08 0.13 0.73 -0.02 0.08 

min 0.75 146 60.68 23.00 113.00 -0.58 0.00 0.52 -0.31 0.00 

max 0.75 146 167.72 139.00 203.00 0.15 0.58 0.88 0.17 0.31 

58 50 0.75 3 3 157 159.78 138.50 179.81 0.02 0.06 0.74 -0.01 0.04 

min 0.75 157 114.03 88.00 142.00 -0.27 0.00 0.64 -0.15 0.00 

max 0.75 157 182.57 165.00 200.00 0.16 0.27 0.84 0.12 0.15 
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59 100 0.75 3 3 150 140.75 128.12 153.68 -0.06 0.07 0.75 0.00 0.04 

min 0.75 150 120.32 106.00 135.00 -0.20 0.00 0.67 -0.11 0.00 

max 0.75 150 155.24 145.00 167.00 0.03 0.20 0.83 0.11 0.11 

60 150 0.75 3 3 166 165.91 157.13 175.04 0.00 0.02 0.75 0.00 0.03 

min 0.75 166 153.49 143.00 163.00 -0.08 0.00 0.68 -0.10 0.00 

max 0.75 166 175.86 167.00 187.00 0.06 0.08 0.82 0.09 0.10 

61 20 0.25 5 3 153 158.02 92.64 228.96 0.03 0.18 0.23 -0.06 0.25 

min 0.25 153 74.86 6.00 135.00 -0.51 0.00 0.06 -0.76 0.00 

max 0.25 153 223.62 163.00 327.00 0.46 0.51 0.48 0.93 0.93 

62 50 0.25 5 3 160 167.48 125.05 216.84 0.05 0.16 0.23 -0.07 0.17 

min 0.25 160 99.36 65.00 141.00 -0.38 0.00 0.10 -0.58 0.00 

max 0.25 160 234.21 187.00 287.00 0.46 0.46 0.36 0.43 0.58 

63 100 0.25 5 3 158 159.23 128.39 196.76 0.01 0.12 0.24 -0.05 0.14 

min 0.25 158 81.27 60.00 109.00 -0.49 0.00 0.15 -0.41 0.00 

max 0.25 158 219.61 185.00 255.00 0.39 0.49 0.33 0.33 0.41 

64 150 0.25 5 3 159 160.63 136.60 188.98 0.01 0.08 0.24 -0.02 0.10 
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min 0.25 159 124.84 106.00 145.00 -0.21 0.00 0.18 -0.29 0.00 

max 0.25 159 202.82 173.00 234.00 0.28 0.28 0.33 0.31 0.31 

65 20 0.5 5 3 158 153.38 122.06 182.55 -0.03 0.09 0.50 -0.01 0.08 

min 0.5 158 79.48 22.00 151.00 -0.50 0.00 0.28 -0.43 0.00 

max 0.5 158 177.51 158.00 223.00 0.12 0.50 0.62 0.23 0.43 

66 50 0.5 5 3 152 150.50 132.54 167.82 -0.01 0.05 0.50 0.00 0.05 

min 0.5 152 117.21 90.00 145.00 -0.23 0.00 0.43 -0.14 0.00 

max 0.5 152 170.82 157.00 185.00 0.12 0.23 0.58 0.15 0.15 

67 100 0.5 5 3 169 171.32 160.82 182.21 0.01 0.03 0.50 0.00 0.04 

min 0.5 169 156.37 143.00 169.00 -0.07 0.00 0.44 -0.12 0.00 

max 0.5 169 184.60 174.00 196.00 0.09 0.09 0.56 0.12 0.12 

68 150 0.5 5 3 166 163.51 154.00 173.66 -0.02 0.03 0.50 0.00 0.04 

min 0.5 166 146.50 136.00 157.00 -0.12 0.00 0.44 -0.12 0.00 

max 0.5 166 175.23 166.00 186.00 0.06 0.12 0.57 0.13 0.13 

69 20 0.75 5 3 163 159.37 123.53 191.32 -0.02 0.11 0.75 0.00 0.04 

min 0.75 163 78.92 31.00 138.00 -0.52 0.00 0.61 -0.19 0.00 
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max 0.75 163 189.96 169.00 215.00 0.17 0.52 0.85 0.13 0.19 

70 50 0.75 5 3 149 143.73 125.86 161.24 -0.04 0.06 0.75 0.00 0.03 

min 0.75 149 103.90 75.00 133.00 -0.30 0.00 0.67 -0.10 0.00 

max 0.75 149 157.46 144.50 173.00 0.06 0.30 0.81 0.09 0.10 

71 100 0.75 5 3 159 157.97 147.65 168.30 -0.01 0.02 0.75 0.00 0.02 

min 0.75 159 144.75 129.00 158.00 -0.09 0.00 0.70 -0.07 0.00 

max 0.75 159 167.07 157.00 177.00 0.05 0.09 0.80 0.06 0.07 

72 150 0.75 5 3 161 164.32 156.50 172.15 0.02 0.03 0.75 0.00 0.02 

min 0.75 161 153.71 143.00 163.00 -0.05 0.00 0.70 -0.07 0.00 

max   0.75     161 173.83 169.00 182.00 0.08 0.08 0.80 0.07 0.07 
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Table C.2.  Simulation results from 500 synthetic datasets with different design criteria for the 

SSOCC model (Single-season occupancy).  Habitat refers to the amount of generated spatial 

correlation where Habitat 1 has the most spatial correlation and Habitat 3 has no spatial 

correlation (see text for more details).  Parameters are p-detection probability, n- initial sample 

size, and J-number of repeat visits.  Sample size is the realized number of sites sampled from the 

adaptive sampling models and is the true sample size for this model.  True Ntot is the actual 

number of occupied sites out of 400 while Ntot-hat is the estimated number of occupied sites 

averaged over the 500 synthetic datasets.  Var(Ntot) represents the estimated variance of the  

estimated number of occupied sites out of the.  p-hat is the estimated detection probability while 

RBIAS and RMSE refer to relative bias and relative root mean-squared error, respectively.  Note 

that one simulation trial encountered fatal errors and is not represented (n = 100, p = 0.75, J = 5, 

Habitat 2). 
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Scenario n 

Sample 

Size p J Habitat

True 

Ntot 

Ntot-

hat Var(Ntot)

Ntot 

RBias 

Ntot 

RMSE 

p-

hat 

p 

RBias p RMSE 

1 20 57.61 0.25 3 1 143 167.77 44.71 0.17 0.43 0.24 -0.04 0.41 

min 20.00 0.25 143 34.64 0.16 -0.76 0.00 0.02 -0.91 0.00 

max 116.00 0.25 143 397.40 93.96 1.78 1.78 0.64 1.54 1.54 

2 50 122.83 0.25 3 1 162 162.36 59.82 0.00 0.22 0.26 0.03 0.24 

min 67.00 0.25 162 78.17 14.81 -0.52 0.00 0.12 -0.53 0.00 

max 183.00 0.25 162 313.50 85.48 0.94 0.94 0.42 0.69 0.69 

3 100 199.56 0.25 3 1 162 169.46 51.43 0.05 0.20 0.25 -0.01 0.21 

min 156.00 0.25 162 88.37 12.11 -0.45 0.00 0.12 -0.51 0.00 

max 238.00 0.25 162 291.88 69.44 0.80 0.80 0.46 0.82 0.82 

4 150 243.75 0.25 3 1 150 153.03 45.89 0.02 0.17 0.25 0.00 0.18 

min 211.00 0.25 150 93.92 27.70 -0.37 0.00 0.14 -0.43 0.00 

max 282.00 0.25 150 235.31 63.92 0.57 0.57 0.39 0.55 0.55 

5 20 151.33 0.5 3 1 170 170.16 52.11 0.00 0.09 0.50 0.00 0.09 

min 44.00 0.5 170 116.93 37.91 -0.31 0.00 0.35 -0.31 0.00 
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max 208.00 0.5 170 224.96 76.58 0.32 0.32 0.63 0.27 0.31 

6 50 206.93 0.5 3 1 159 158.03 40.28 -0.01 0.07 0.50 0.01 0.08 

min 115.00 0.5 159 122.58 26.05 -0.23 0.00 0.39 -0.22 0.00 

max 249.00 0.5 159 193.71 55.04 0.22 0.23 0.66 0.32 0.32 

7 100 254.70 0.5 3 1 150 152.21 35.44 0.01 0.08 0.49 -0.01 0.08 

min 201.00 0.5 150 117.85 26.08 -0.21 0.00 0.35 -0.30 0.00 

max 288.00 0.5 150 188.27 46.66 0.26 0.26 0.63 0.27 0.30 

8 150 291.10 0.5 3 1 151 151.38 27.90 0.00 0.06 0.50 0.00 0.07 

min 253.00 0.5 151 124.09 20.61 -0.18 0.00 0.41 -0.19 0.00 

max 329.00 0.5 151 180.07 37.59 0.19 0.19 0.61 0.21 0.21 

9 20 151.14 0.75 3 1 148 149.43 44.60 0.01 0.08 0.75 0.00 0.05 

min 29.00 0.75 148 116.05 30.48 -0.22 0.00 0.63 -0.17 0.00 

max 220.00 0.75 148 204.77 78.48 0.38 0.38 0.87 0.16 0.17 

10 50 222.27 0.75 3 1 170 169.95 33.24 0.00 0.05 0.75 0.00 0.04 

min 172.00 0.75 170 144.31 25.65 -0.15 0.00 0.64 -0.14 0.00 

max 261.00 0.75 170 192.72 45.54 0.13 0.15 0.85 0.13 0.14 
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11 100 287.90 0.75 3 1 157 157.23 22.02 0.00 0.04 0.75 0.00 0.03 

min 250.00 0.75 157 137.47 15.79 -0.12 0.00 0.65 -0.13 0.00 

max 318.00 0.75 157 175.77 29.75 0.12 0.12 0.82 0.09 0.13 

12 150 309.25 0.75 3 1 155 155.03 18.14 0.00 0.03 0.75 0.00 0.03 

min 270.00 0.75 155 136.10 13.10 -0.12 0.00 0.67 -0.10 0.00 

max 337.00 0.75 155 169.43 26.71 0.09 0.12 0.83 0.11 0.11 

13 20 95.27 0.25 5 1 148 154.04 53.71 0.04 0.20 0.25 -0.02 0.21 

min 20.00 0.25 148 62.29 3.83 -0.58 0.00 0.09 -0.64 0.00 

max 166.00 0.25 148 252.59 83.35 0.71 0.71 0.46 0.83 0.83 

14 50 171.48 0.25 5 1 153 156.00 44.71 0.02 0.13 0.25 -0.01 0.15 

min 83.00 0.25 153 93.96 18.30 -0.39 0.00 0.12 -0.51 0.00 

max 233.00 0.25 153 213.87 64.91 0.40 0.40 0.35 0.42 0.51 

15 100 237.51 0.25 5 1 154 159.19 41.83 0.03 0.11 0.25 -0.02 0.12 

min 185.00 0.25 154 114.67 29.69 -0.26 0.00 0.16 -0.36 0.00 

max 275.00 0.25 154 216.28 53.25 0.40 0.40 0.33 0.31 0.36 

16 150 273.50 0.25 5 1 149 152.64 41.10 0.02 0.10 0.25 -0.02 0.12 
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min 231.00 0.25 149 111.86 30.47 -0.25 0.00 0.17 -0.33 0.00 

max 305.00 0.25 149 205.71 52.56 0.38 0.38 0.33 0.32 0.33 

17 20 159.33 0.5 5 1 160 160.31 41.87 0.00 0.07 0.50 0.00 0.06 

min 28.00 0.5 160 125.28 28.68 -0.22 0.00 0.40 -0.21 0.00 

max 226.00 0.5 160 198.04 59.55 0.24 0.24 0.59 0.19 0.21 

18 50 217.26 0.5 5 1 141 140.99 35.11 0.00 0.06 0.50 0.00 0.06 

min 164.00 0.5 141 112.01 26.68 -0.21 0.00 0.41 -0.17 0.00 

max 252.00 0.5 141 164.11 46.15 0.16 0.21 0.58 0.16 0.17 

19 100 266.27 0.5 5 1 152 152.25 25.71 0.00 0.04 0.50 0.00 0.05 

min 217.00 0.5 152 133.11 19.51 -0.12 0.00 0.42 -0.16 0.00 

max 299.00 0.5 152 171.40 33.20 0.13 0.13 0.56 0.12 0.16 

20 150 306.93 0.5 5 1 157 156.94 18.74 0.00 0.03 0.50 0.00 0.04 

min 270.00 0.5 157 135.01 13.66 -0.14 0.00 0.43 -0.13 0.00 

max 335.00 0.5 157 171.62 23.48 0.09 0.14 0.56 0.12 0.13 

21 20 182.45 0.75 5 1 162 162.65 38.64 0.00 0.06 0.75 0.00 0.03 

min 131.00 0.75 162 138.54 26.97 -0.14 0.00 0.67 -0.10 0.00 
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max 217.00 0.75 162 185.75 48.00 0.15 0.15 0.81 0.08 0.10 

22 50 233.36 0.75 5 1 159 158.86 28.15 0.00 0.04 0.75 0.00 0.03 

min 205.00 0.75 159 127.26 20.69 -0.20 0.00 0.69 -0.07 0.00 

max 273.00 0.75 159 179.51 36.85 0.13 0.20 0.82 0.10 0.10 

23 100 260.57 0.75 5 1 140 140.24 21.95 0.00 0.04 0.75 0.00 0.03 

min 220.00 0.75 140 124.18 16.03 -0.11 0.00 0.69 -0.07 0.00 

max 300.00 0.75 140 158.07 29.96 0.13 0.13 0.82 0.09 0.09 

24 150 323.01 0.75 5 1 167 167.29 13.69 0.00 0.02 0.75 0.00 0.02 

min 285.00 0.75 167 155.55 8.92 -0.07 0.00 0.70 -0.06 0.00 

max 349.00 0.75 167 178.71 20.28 0.07 0.07 0.81 0.07 0.07 

25 20 51.18 0.25 3 2 141 149.33 60.87 0.06 0.41 0.27 0.06 0.41 

min 20.00 0.25 141 25.74 0.13 -0.82 0.00 0.01 -0.97 0.00 

max 115.00 0.25 141 399.15 96.94 1.83 1.83 0.64 1.56 1.56 

26 50 112.83 0.25 3 2 141 155.70 58.06 0.10 0.30 0.24 -0.04 0.28 

min 64.00 0.25 141 60.24 17.44 -0.57 0.00 0.05 -0.80 0.00 

max 171.00 0.25 141 292.32 90.13 1.07 1.07 0.46 0.83 0.83 
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27 100 180.82 0.25 3 2 142 146.68 52.68 0.03 0.21 0.25 0.00 0.22 

min 135.00 0.25 142 75.98 0.01 -0.46 0.00 0.10 -0.61 0.00 

max 219.00 0.25 142 399.99 82.08 1.82 1.82 0.42 0.67 0.67 

28 150 248.18 0.25 3 2 149 154.28 47.17 0.04 0.19 0.25 -0.01 0.19 

min 205.00 0.25 149 98.21 0.00 -0.34 0.00 0.08 -0.69 0.00 

max 283.00 0.25 149 400.00 67.38 1.68 1.68 0.41 0.62 0.69 

29 20 103.78 0.5 3 2 157 158.33 54.94 0.01 0.12 0.50 0.00 0.12 

min 40.00 0.5 157 78.88 26.25 -0.50 0.00 0.31 -0.39 0.00 

max 189.00 0.5 157 228.02 79.19 0.45 0.50 0.66 0.32 0.39 

30 50 147.04 0.5 3 2 134 134.25 50.77 0.00 0.11 0.50 0.00 0.11 

min 87.00 0.5 134 93.49 36.54 -0.30 0.00 0.36 -0.28 0.00 

max 208.00 0.5 134 212.30 70.84 0.58 0.58 0.67 0.33 0.33 

31 100 261.93 0.5 3 2 154 153.00 33.72 -0.01 0.06 0.50 0.01 0.07 

min 196.00 0.5 154 124.28 24.90 -0.19 0.00 0.39 -0.22 0.00 

max 302.00 0.5 154 175.13 43.65 0.14 0.19 0.61 0.22 0.22 

32 150 293.54 0.5 3 2 140 140.75 28.67 0.01 0.06 0.50 0.00 0.07 
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min 260.00 0.5 140 117.68 19.82 -0.16 0.00 0.35 -0.30 0.00 

max 318.00 0.5 140 167.64 39.92 0.20 0.20 0.59 0.19 0.30 

33 20 148.37 0.75 3 2 148 148.63 43.88 0.00 0.08 0.75 0.00 0.05 

min 24.00 0.75 148 112.26 31.95 -0.24 0.00 0.63 -0.16 0.00 

max 207.00 0.75 148 206.15 83.93 0.39 0.39 0.85 0.13 0.16 

34 50 207.84 0.75 3 2 144 143.73 35.33 0.00 0.06 0.75 0.00 0.04 

min 127.00 0.75 144 116.83 25.35 -0.19 0.00 0.63 -0.17 0.00 

max 257.00 0.75 144 174.66 56.32 0.21 0.21 0.84 0.12 0.17 

35 100 296.91 0.75 3 2 166 165.65 21.63 0.00 0.03 0.75 0.00 0.03 

min 246.00 0.75 166 144.44 15.25 -0.13 0.00 0.67 -0.11 0.00 

max 331.00 0.75 166 182.65 31.37 0.10 0.13 0.83 0.11 0.11 

36 150 302.54 0.75 3 2 140 140.93 17.62 0.01 0.04 0.75 -0.01 0.04 

min 269.00 0.75 140 126.92 12.46 -0.09 0.00 0.65 -0.13 0.00 

max 338.00 0.75 140 161.20 24.94 0.15 0.15 0.83 0.11 0.13 

37 20 75.42 0.25 5 2 143 148.19 60.26 0.04 0.21 0.25 0.00 0.22 

min 20.00 0.25 143 60.19 11.33 -0.58 0.00 0.06 -0.77 0.00 
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max 148.00 0.25 143 336.90 90.21 1.36 1.36 0.44 0.76 0.77 

38 50 144.49 0.25 5 2 139 139.21 47.71 0.00 0.13 0.25 0.01 0.16 

min 80.00 0.25 139 90.15 30.29 -0.35 0.00 0.14 -0.43 0.00 

max 226.00 0.25 139 207.60 74.49 0.49 0.49 0.36 0.45 0.45 

39 100 226.56 0.25 5 2 144 144.59 39.11 0.00 0.10 0.25 0.00 0.12 

min 166.00 0.25 144 110.36 27.41 -0.23 0.00 0.16 -0.36 0.00 

max 271.00 0.25 144 195.98 54.48 0.36 0.36 0.33 0.32 0.36 

40 150 262.08 0.25 5 2 129 131.35 43.06 0.02 0.11 0.25 0.00 0.12 

min 226.00 0.25 129 95.12 31.18 -0.26 0.00 0.16 -0.37 0.00 

max 295.00 0.25 129 172.54 60.17 0.34 0.34 0.34 0.36 0.37 

41 20 108.73 0.5 5 2 138 137.81 50.47 0.00 0.11 0.50 0.00 0.08 

min 20.00 0.5 138 97.31 30.81 -0.29 0.00 0.38 -0.25 0.00 

max 190.00 0.5 138 187.43 77.62 0.36 0.36 0.66 0.33 0.33 

42 50 216.47 0.5 5 2 143 143.28 33.37 0.00 0.06 0.50 0.00 0.05 

min 123.00 0.5 143 120.83 23.20 -0.16 0.00 0.43 -0.14 0.00 

max 269.00 0.5 143 170.89 49.74 0.20 0.20 0.58 0.15 0.15 
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43 100 297.07 0.5 5 2 164 164.74 20.56 0.00 0.03 0.50 0.00 0.04 

min 252.00 0.5 164 147.97 13.38 -0.10 0.00 0.43 -0.14 0.00 

max 328.00 0.5 164 184.36 29.55 0.12 0.12 0.55 0.11 0.14 

44 150 297.47 0.5 5 2 138 138.22 21.34 0.00 0.04 0.50 0.00 0.05 

min 264.00 0.5 138 120.84 16.46 -0.12 0.00 0.43 -0.15 0.00 

max 325.00 0.5 138 154.86 30.16 0.12 0.12 0.58 0.15 0.15 

45 20 118.26 0.75 5 2 148 148.78 48.15 0.01 0.10 0.75 0.00 0.04 

min 37.00 0.75 148 70.23 32.83 -0.53 0.00 0.62 -0.18 0.00 

max 185.00 0.75 148 192.61 78.77 0.30 0.53 0.84 0.12 0.18 

46 50 185.33 0.75 5 2 143 143.46 37.23 0.00 0.06 0.75 0.00 0.03 

min 103.00 0.75 143 113.77 25.79 -0.20 0.00 0.68 -0.09 0.00 

max 247.00 0.75 143 175.14 56.17 0.22 0.22 0.82 0.09 0.09 

47 100 0.75 5 2 

min 0.75 

max 0.75 

48 150 308.05 0.75 5 2 140 140.26 15.64 0.00 0.03 0.75 0.00 0.03 
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min 273.00 0.75 140 122.87 10.59 -0.12 0.00 0.69 -0.08 0.00 

max 337.00 0.75 140 153.59 20.34 0.10 0.12 0.81 0.08 0.08 

49 20 50.98 0.25 3 3 150 169.41 49.79 0.13 0.44 0.25 0.01 0.43 

min 20.00 0.25 150 43.89 1.11 -0.71 0.00 0.04 -0.84 0.00 

max 105.00 0.25 150 353.88 96.57 1.36 1.36 0.59 1.35 1.35 

50 50 114.05 0.25 3 3 155 170.20 58.87 0.10 0.31 0.25 -0.02 0.30 

min 61.00 0.25 155 79.16 1.42 -0.49 0.00 0.06 -0.74 0.00 

max 164.00 0.25 155 333.00 91.36 1.15 1.15 0.50 0.99 0.99 

51 100 184.12 0.25 3 3 145 157.35 46.61 0.09 0.25 0.24 -0.04 0.24 

min 126.00 0.25 145 89.02 2.38 -0.39 0.00 0.10 -0.62 0.00 

max 243.00 0.25 145 309.56 70.09 1.13 1.13 0.42 0.69 0.69 

52 150 242.50 0.25 3 3 149 150.71 47.66 0.01 0.16 0.25 0.02 0.17 

min 207.00 0.25 149 95.12 14.26 -0.36 0.00 0.13 -0.47 0.00 

max 283.00 0.25 149 246.83 67.71 0.66 0.66 0.43 0.73 0.73 

53 20 90.48 0.5 3 3 158 159.68 59.11 0.01 0.15 0.50 0.00 0.13 

min 23.00 0.5 158 93.55 4.98 -0.41 0.00 0.26 -0.49 0.00 
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max 151.00 0.5 158 266.90 92.16 0.69 0.69 0.69 0.37 0.49 

54 50 189.56 0.5 3 3 156 158.40 46.61 0.02 0.08 0.49 -0.01 0.09 

min 115.00 0.5 156 121.96 34.97 -0.22 0.00 0.37 -0.27 0.00 

max 262.00 0.5 156 200.43 66.07 0.28 0.28 0.62 0.25 0.27 

55 100 250.63 0.5 3 3 152 151.02 34.45 -0.01 0.06 0.50 0.01 0.07 

min 195.00 0.5 152 125.13 25.39 -0.18 0.00 0.40 -0.19 0.00 

max 296.00 0.5 152 182.88 45.45 0.20 0.20 0.60 0.21 0.21 

56 150 289.41 0.5 3 3 143 142.42 29.62 0.00 0.06 0.50 0.01 0.07 

min 248.00 0.5 143 119.67 21.75 -0.16 0.00 0.41 -0.18 0.00 

max 324.00 0.5 143 164.73 39.03 0.15 0.16 0.63 0.26 0.26 

57 20 95.52 0.75 3 3 146 145.78 52.47 0.00 0.11 0.75 0.00 0.07 

min 31.00 0.75 146 98.82 36.20 -0.32 0.00 0.55 -0.26 0.00 

max 178.00 0.75 146 199.13 73.41 0.36 0.36 0.93 0.24 0.26 

58 50 212.04 0.75 3 3 157 157.90 35.79 0.01 0.05 0.75 0.00 0.04 

min 141.00 0.75 157 131.95 25.08 -0.16 0.00 0.66 -0.12 0.00 

max 271.00 0.75 157 182.80 55.53 0.16 0.16 0.83 0.10 0.12 
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59 100 272.15 0.75 3 3 150 150.40 25.15 0.00 0.04 0.75 0.00 0.04 

min 223.00 0.75 150 135.26 16.55 -0.10 0.00 0.64 -0.14 0.00 

max 313.00 0.75 150 168.91 34.67 0.13 0.13 0.83 0.11 0.14 

60 150 333.11 0.75 3 3 166 166.00 14.60 0.00 0.03 0.75 0.00 0.03 

min 296.00 0.75 166 153.41 9.35 -0.08 0.00 0.67 -0.10 0.00 

max 356.00 0.75 166 179.74 20.99 0.08 0.08 0.82 0.09 0.10 

61 20 65.52 0.25 5 3 153 158.12 53.23 0.03 0.24 0.25 -0.01 0.24 

min 20.00 0.25 153 74.48 0.69 -0.51 0.00 0.08 -0.68 0.00 

max 116.00 0.25 153 305.49 92.90 1.00 1.00 0.44 0.76 0.76 

62 50 158.08 0.25 5 3 160 163.21 52.59 0.02 0.13 0.25 0.00 0.15 

min 93.00 0.25 160 104.65 0.96 -0.35 0.00 0.12 -0.50 0.00 

max 226.00 0.25 160 269.54 70.00 0.68 0.68 0.36 0.43 0.50 

63 100 231.05 0.25 5 3 158 161.00 44.49 0.02 0.10 0.25 0.00 0.12 

min 162.00 0.25 158 118.12 15.14 -0.25 0.00 0.15 -0.39 0.00 

max 295.00 0.25 158 209.29 57.33 0.32 0.32 0.34 0.37 0.39 

64 150 285.32 0.25 5 3 159 159.44 36.53 0.00 0.08 0.25 0.00 0.10 
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min 249.00 0.25 159 123.84 26.41 -0.22 0.00 0.18 -0.26 0.00 

max 322.00 0.25 159 204.24 47.55 0.28 0.28 0.33 0.32 0.32 

65 20 130.14 0.5 5 3 158 158.99 41.78 0.01 0.08 0.50 0.00 0.07 

min 30.00 0.5 158 117.76 25.21 -0.25 0.00 0.38 -0.25 0.00 

max 219.00 0.5 158 213.54 70.83 0.35 0.35 0.60 0.21 0.25 

66 50 211.44 0.5 5 3 152 151.93 30.61 0.00 0.05 0.50 0.00 0.06 

min 132.00 0.5 152 120.54 20.02 -0.21 0.00 0.42 -0.17 0.00 

max 266.00 0.5 152 173.32 44.46 0.14 0.21 0.58 0.17 0.17 

67 100 313.08 0.5 5 3 169 168.48 18.67 0.00 0.03 0.50 0.00 0.04 

min 265.00 0.5 169 152.74 11.26 -0.10 0.00 0.44 -0.11 0.00 

max 354.00 0.5 169 186.07 27.22 0.10 0.10 0.55 0.11 0.11 

68 150 333.82 0.5 5 3 166 166.06 17.27 0.00 0.03 0.50 0.00 0.04 

min 299.00 0.5 166 150.87 12.37 -0.09 0.00 0.43 -0.13 0.00 

max 362.00 0.5 166 179.22 23.47 0.08 0.09 0.57 0.13 0.13 

69 20 140.66 0.75 5 3 163 162.44 48.18 0.00 0.08 0.75 0.00 0.04 

min 42.00 0.75 163 120.11 33.79 -0.26 0.00 0.63 -0.15 0.00 
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max 217.00 0.75 163 212.32 74.67 0.30 0.30 0.85 0.14 0.15 

70 50 206.38 0.75 5 3 149 148.40 34.69 0.00 0.06 0.75 0.00 0.03 

min 117.00 0.75 149 124.90 24.63 -0.16 0.00 0.68 -0.09 0.00 

max 260.00 0.75 149 173.02 53.79 0.16 0.16 0.81 0.09 0.09 

71 100 293.59 0.75 5 3 159 159.15 17.82 0.00 0.03 0.75 0.00 0.02 

min 235.00 0.75 159 145.40 11.99 -0.09 0.00 0.70 -0.07 0.00 

max 328.00 0.75 159 175.38 28.85 0.10 0.10 0.80 0.06 0.07 

72 150 338.94 0.75 5 3 161 161.06 11.25 0.00 0.02 0.75 0.00 0.02 

min 311.00 0.75 161 148.59 7.36 -0.08 0.00 0.70 -0.06 0.00 

max   361.00 0.75     161 173.21 15.99 0.08 0.08 0.79 0.05 0.06 
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Table C.3.  Simulation results from 500 synthetic datasets with different design criteria for the 

ACS model (adaptive-cluster sampling using the modified Horvitz-Thompson estimator).  

Habitat refers to the amount of generated spatial correlation where Habitat 1 has the most spatial 

correlation and Habitat 3 has no spatial correlation (see text for more details).  Parameters are p-

detection probability, n- initial sample size, and J-number of repeat visits.  True Ntot is the actual 

number of occupied sites out of 400 while Ntot-hat is the estimated number of occupied sites 

averaged over the 500 synthetic datasets.  Var(Ntot) represents the estimated variance of the  

estimated number of occupied sites out of the.  Coverage represents the percent of confidence 

intervals that contained the true occupancy rate out of the 500 synthetic data sets.  RBIAS and 

RMSE refer to relative bias and relative root mean-squared error, respectively.  Note that one 

simulation trial encountered fatal errors and is not represented (n = 100, p = 0.75, J = 5, Habitat 

2). 
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Scenario n p J Habitat 

True 

Ntot 

Ntot-

hat.HT Var(Ntot.Ht)

Ntot.HT 

RBias 

Ntot.HT 

RMSE Coverage HT

1 20 0.25 3 1 143 37.01 625.89 0.74 0.76 0.09 

min 0.25 143 0.00 0.00 -0.43 0.01 0.00 

max 0.25 143 204.92 1994.72 1.00 1.00 1.00 

2 50 0.25 3 1 162 41.26 251.09 0.75 0.75 0.00 

min 0.25 162 0.00 0.00 0.39 0.39 0.00 

max 0.25 162 99.18 519.44 1.00 1.00 0.00 

3 100 0.25 3 1 162 43.57 107.55 0.73 0.74 0.00 

min 0.25 162 12.00 35.00 0.51 0.51 0.00 

max 0.25 162 80.06 185.06 0.93 0.93 0.00 

4 150 0.25 3 1 150 40.95 54.01 0.73 0.73 0.00 

min 0.25 150 16.60 18.14 0.51 0.51 0.00 

max 0.25 150 73.00 87.24 0.89 0.89 0.00 

5 20 0.5 3 1 170 86.02 1207.47 0.49 0.53 0.36 

min 0.5 170 0.00 0.00 -0.22 0.00 0.00 
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max 0.5 170 207.95 1995.20 1.00 1.00 1.00 

6 50 0.5 3 1 159 85.59 413.73 0.46 0.48 0.09 

min 0.5 159 29.19 154.69 -0.11 0.02 0.00 

max 0.5 159 176.90 662.25 0.82 0.82 1.00 

7 100 0.5 3 1 150 82.93 160.40 0.45 0.46 0.01 

min 0.5 150 40.10 75.17 0.10 0.10 0.00 

max 0.5 150 134.61 243.49 0.73 0.73 1.00 

8 150 0.5 3 1 151 86.39 82.32 0.43 0.43 0.00 

min 0.5 151 52.42 42.89 0.16 0.16 0.00 

max 0.5 151 127.33 112.31 0.65 0.65 0.00 

9 20 0.75 3 1 148 112.61 1405.34 0.24 0.35 0.83 

min 0.75 148 0.00 0.00 -0.62 0.00 0.00 

max 0.75 148 240.32 1990.26 1.00 1.00 1.00 

10 50 0.75 3 1 170 138.42 471.05 0.19 0.23 0.67 

min 0.75 170 78.01 174.18 -0.21 0.00 0.00 

max 0.75 170 205.12 681.82 0.54 0.54 1.00 
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11 100 0.75 3 1 157 130.61 165.61 0.17 0.19 0.48 

min 0.75 157 83.38 87.07 -0.09 0.00 0.00 

max 0.75 157 170.84 238.51 0.47 0.47 1.00 

12 150 0.75 3 1 155 129.08 90.79 0.17 0.18 0.26 

min 0.75 155 96.31 60.02 0.00 0.00 0.00 

max 0.75 155 155.40 119.96 0.38 0.38 1.00 

13 20 0.25 5 1 148 38.88 660.02 0.74 0.76 0.10 

min 0.25 148 0.00 0.00 0.02 0.02 0.00 

max 0.25 148 145.44 1811.12 1.00 1.00 1.00 

14 50 0.25 5 1 153 38.59 234.39 0.75 0.76 0.00 

min 0.25 153 0.00 0.00 0.37 0.37 0.00 

max 0.25 153 97.05 520.64 1.00 1.00 0.00 

15 100 0.25 5 1 154 41.86 102.74 0.73 0.73 0.00 

min 0.25 154 8.00 23.48 0.43 0.43 0.00 

max 0.25 154 87.38 176.63 0.95 0.95 0.00 

16 150 0.25 5 1 149 41.36 54.10 0.72 0.73 0.00 
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min 0.25 149 5.95 8.58 0.50 0.50 0.00 

max 0.25 149 74.55 88.21 0.96 0.96 0.00 

17 20 0.5 5 1 160 83.42 1197.19 0.48 0.53 0.37 

min 0.5 160 0.00 0.00 -0.23 0.01 0.00 

max 0.5 160 196.40 1975.70 1.00 1.00 1.00 

18 50 0.5 5 1 141 74.36 374.85 0.47 0.49 0.11 

min 0.5 141 19.27 103.55 0.09 0.09 0.00 

max 0.5 141 128.15 570.94 0.86 0.86 1.00 

19 100 0.5 5 1 152 83.85 162.13 0.45 0.46 0.01 

min 0.5 152 39.49 77.09 0.08 0.08 0.00 

max 0.5 152 140.24 246.13 0.74 0.74 1.00 

20 150 0.5 5 1 157 91.17 85.98 0.42 0.43 0.00 

min 0.5 157 57.39 50.84 0.15 0.15 0.00 

max 0.5 157 133.05 121.57 0.63 0.63 0.00 

21 20 0.75 5 1 162 128.83 1399.91 0.20 0.32 0.79 

min 0.75 162 20.00 224.89 -0.70 0.00 0.00 
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max 0.75 162 276.01 1974.04 0.88 0.88 1.00 

22 50 0.75 5 1 159 128.18 442.21 0.19 0.24 0.64 

min 0.75 159 60.14 169.06 -0.14 0.00 0.00 

max 0.75 159 182.03 637.82 0.62 0.62 1.00 

23 100 0.75 5 1 140 115.67 159.46 0.17 0.20 0.53 

min 0.75 140 65.84 76.80 -0.11 0.00 0.00 

max 0.75 140 155.30 232.60 0.53 0.53 1.00 

24 150 0.75 5 1 167 140.36 90.33 0.16 0.17 0.26 

min 0.75 167 102.59 45.36 -0.08 0.00 0.00 

max 0.75 167 181.18 128.90 0.39 0.39 1.00 

25 20 0.25 3 2 141 36.78 626.43 0.74 0.76 0.09 

min 0.25 141 0.00 0.00 0.12 0.12 0.00 

max 0.25 141 123.46 1680.00 1.00 1.00 1.00 

26 50 0.25 3 2 141 35.92 220.94 0.75 0.75 0.00 

min 0.25 141 0.00 0.00 0.42 0.42 0.00 

max 0.25 141 82.14 455.82 1.00 1.00 0.00 
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27 100 0.25 3 2 142 37.19 95.56 0.74 0.74 0.00 

min 0.25 142 8.57 23.06 0.39 0.39 0.00 

max 0.25 142 86.31 200.31 0.94 0.94 0.00 

28 150 0.25 3 2 149 40.65 54.07 0.73 0.73 0.00 

min 0.25 149 11.89 16.94 0.55 0.55 0.00 

max 0.25 149 66.45 89.50 0.92 0.92 0.00 

29 20 0.5 3 2 157 79.51 1173.42 0.49 0.54 0.33 

min 0.5 157 0.00 0.00 -0.33 0.03 0.00 

max 0.5 157 208.59 1990.71 1.00 1.00 1.00 

30 50 0.5 3 2 134 68.72 374.97 0.49 0.51 0.15 

min 0.5 134 24.00 153.41 -0.05 0.05 0.00 

max 0.5 134 141.32 639.05 0.82 0.82 1.00 

31 100 0.5 3 2 154 84.66 161.65 0.45 0.46 0.01 

min 0.5 154 37.54 72.04 0.10 0.10 0.00 

max 0.5 154 138.13 237.69 0.76 0.76 1.00 

32 150 0.5 3 2 140 79.40 81.28 0.43 0.44 0.00 
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min 0.5 140 44.16 45.71 0.16 0.16 0.00 

max 0.5 140 116.99 112.13 0.68 0.68 0.00 

33 20 0.75 3 2 148 112.99 1388.93 0.24 0.36 0.80 

min 0.75 148 20.00 308.96 -0.75 0.00 0.00 

max 0.75 148 258.52 1973.73 0.86 0.86 1.00 

34 50 0.75 3 2 144 112.90 492.01 0.22 0.27 0.68 

min 0.75 144 44.54 237.22 -0.26 0.00 0.00 

max 0.75 144 181.52 664.27 0.69 0.69 1.00 

35 100 0.75 3 2 166 134.26 201.01 0.19 0.21 0.42 

min 0.75 166 90.37 134.38 -0.07 0.00 0.00 

max 0.75 166 177.05 266.86 0.46 0.46 1.00 

36 150 0.75 3 2 140 116.58 85.66 0.17 0.18 0.30 

min 0.75 140 71.35 55.24 -0.06 0.00 0.00 

max 0.75 140 148.74 120.66 0.49 0.49 1.00 

37 20 0.25 5 2 143 35.85 614.52 0.75 0.77 0.10 

min 0.25 143 0.00 0.00 0.14 0.14 0.00 
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max 0.25 143 122.94 1680.00 1.00 1.00 1.00 

38 50 0.25 5 2 139 35.86 220.75 0.74 0.75 0.00 

min 0.25 139 0.00 0.00 0.40 0.40 0.00 

max 0.25 139 83.23 456.86 1.00 1.00 0.00 

39 100 0.25 5 2 144 37.33 93.67 0.74 0.74 0.00 

min 0.25 144 8.00 21.86 0.50 0.50 0.00 

max 0.25 144 71.43 161.91 0.94 0.94 0.00 

40 150 0.25 5 2 129 34.28 47.97 0.73 0.74 0.00 

min 0.25 129 12.58 15.89 0.50 0.50 0.00 

max 0.25 129 65.08 85.97 0.90 0.90 0.00 

41 20 0.5 5 2 138 71.03 1076.96 0.49 0.54 0.46 

min 0.5 138 0.00 0.00 -0.22 0.03 0.00 

max 0.5 138 168.50 1909.64 1.00 1.00 1.00 

42 50 0.5 5 2 143 75.94 392.20 0.47 0.49 0.13 

min 0.5 143 16.52 104.79 -0.01 0.01 0.00 

max 0.5 143 144.66 637.42 0.88 0.88 1.00 
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43 100 0.5 5 2 164 88.45 170.18 0.46 0.47 0.01 

min 0.5 164 39.05 70.98 0.17 0.17 0.00 

max 0.5 164 136.84 243.24 0.76 0.76 1.00 

44 150 0.5 5 2 138 74.81 83.26 0.46 0.47 0.00 

min 0.5 138 43.74 48.52 0.19 0.19 0.00 

max 0.5 138 111.43 118.31 0.68 0.68 0.00 

45 20 0.75 5 2 148 116.48 1479.77 0.21 0.35 0.82 

min 0.75 148 0.00 0.00 -0.57 0.00 0.00 

max 0.75 148 232.94 1988.78 1.00 1.00 1.00 

46 50 0.75 5 2 143 111.36 501.73 0.22 0.27 0.68 

min 0.75 143 34.12 208.71 -0.21 0.00 0.00 

max 0.75 143 172.49 665.08 0.76 0.76 1.00 

47 100 0.75 5 2 

min 0.75 

max 0.75 

48 150 0.75 5 2 140 114.45 86.15 0.18 0.20 0.28 
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min 0.75 140 83.82 46.65 -0.06 0.00 0.00 

max 0.75 140 148.45 123.13 0.40 0.40 1.00 

49 20 0.25 3 3 150 36.76 625.78 0.75 0.78 0.10 

min 0.25 150 0.00 0.00 0.18 0.18 0.00 

max 0.25 150 122.49 1680.00 1.00 1.00 1.00 

50 50 0.25 3 3 155 40.91 249.70 0.74 0.74 0.00 

min 0.25 155 0.00 0.00 0.25 0.25 0.00 

max 0.25 155 115.80 573.95 1.00 1.00 1.00 

51 100 0.25 3 3 145 38.13 97.98 0.74 0.74 0.00 

min 0.25 145 8.00 23.21 0.46 0.46 0.00 

max 0.25 145 78.31 185.71 0.94 0.94 0.00 

52 150 0.25 3 3 149 39.41 54.55 0.74 0.74 0.00 

min 0.25 149 11.28 17.18 0.52 0.52 0.00 

max 0.25 149 71.85 95.41 0.92 0.92 0.00 

53 20 0.5 3 3 158 81.59 1205.85 0.48 0.53 0.35 

min 0.5 158 0.00 0.00 -0.29 0.02 0.00 
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max 0.5 158 204.46 1995.19 1.00 1.00 1.00 

54 50 0.5 3 3 156 81.84 425.58 0.48 0.50 0.10 

min 0.5 156 25.57 157.46 0.01 0.01 0.00 

max 0.5 156 153.95 653.99 0.84 0.84 1.00 

55 100 0.5 3 3 152 82.11 173.01 0.46 0.47 0.00 

min 0.5 152 32.98 75.79 0.15 0.15 0.00 

max 0.5 152 128.56 246.46 0.78 0.78 1.00 

56 150 0.5 3 3 143 76.88 88.69 0.46 0.47 0.00 

min 0.5 143 39.17 50.10 0.22 0.22 0.00 

max 0.5 143 112.03 120.91 0.73 0.73 0.00 

57 20 0.75 3 3 146 110.30 1455.22 0.24 0.37 0.79 

min 0.75 146 0.00 0.00 -0.86 0.00 0.00 

max 0.75 146 271.46 1992.04 1.00 1.00 1.00 

58 50 0.75 3 3 157 123.14 515.30 0.22 0.27 0.65 

min 0.75 157 53.17 232.13 -0.25 0.00 0.00 

max 0.75 157 196.50 685.68 0.66 0.66 1.00 
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59 100 0.75 3 3 150 119.53 208.70 0.20 0.23 0.46 

min 0.75 150 75.04 123.75 -0.10 0.00 0.00 

max 0.75 150 164.65 261.58 0.50 0.50 1.00 

60 150 0.75 3 3 166 136.86 101.64 0.18 0.19 0.22 

min 0.75 166 105.39 69.61 -0.09 0.00 0.00 

max 0.75 166 180.72 133.14 0.37 0.37 1.00 

61 20 0.25 5 3 153 37.99 645.87 0.75 0.77 0.04 

min 0.25 153 0.00 0.00 0.21 0.21 0.00 

max 0.25 153 121.47 1679.16 1.00 1.00 1.00 

62 50 0.25 5 3 160 39.89 243.46 0.75 0.76 0.00 

min 0.25 160 0.00 0.00 0.43 0.43 0.00 

max 0.25 160 91.75 488.04 1.00 1.00 0.00 

63 100 0.25 5 3 158 40.93 104.49 0.74 0.74 0.00 

min 0.25 158 4.57 11.72 0.53 0.53 0.00 

max 0.25 158 73.94 178.34 0.97 0.97 0.00 

64 150 0.25 5 3 159 42.66 57.65 0.73 0.73 0.00 
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min 0.25 159 13.95 21.39 0.53 0.53 0.00 

max 0.25 159 74.16 90.97 0.91 0.91 0.00 

65 20 0.5 5 3 158 80.15 1187.20 0.49 0.54 0.32 

min 0.5 158 0.00 0.00 -0.32 0.03 0.00 

max 0.5 158 208.05 1996.28 1.00 1.00 1.00 

66 50 0.5 5 3 152 80.11 419.22 0.47 0.49 0.10 

min 0.5 152 25.07 159.58 -0.16 0.11 0.00 

max 0.5 152 176.49 679.34 0.84 0.84 1.00 

67 100 0.5 5 3 169 92.17 182.52 0.45 0.46 0.00 

min 0.5 169 27.67 66.11 0.23 0.23 0.00 

max 0.5 169 130.26 243.07 0.84 0.84 0.00 

68 150 0.5 5 3 166 92.24 96.66 0.44 0.45 0.00 

min 0.5 166 53.79 61.16 0.20 0.20 0.00 

max 0.5 166 132.83 125.89 0.68 0.68 0.00 

69 20 0.75 5 3 163 125.87 1551.92 0.23 0.33 0.77 

min 0.75 163 20.00 367.97 -0.55 0.00 0.00 
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max 0.75 163 251.94 1994.16 0.88 0.88 1.00 

70 50 0.75 5 3 149 113.75 505.45 0.24 0.29 0.63 

min 0.75 149 50.97 244.54 -0.22 0.00 0.00 

max 0.75 149 182.06 681.32 0.66 0.66 1.00 

71 100 0.75 5 3 159 128.34 200.04 0.19 0.22 0.42 

min 0.75 159 80.93 125.40 -0.11 0.00 0.00 

max 0.75 159 177.02 265.59 0.49 0.49 1.00 

72 150 0.75 5 3 161 134.61 89.27 0.16 0.18 0.25 

min 0.75 161 104.05 46.84 -0.03 0.00 0.00 

max   0.75     161 165.89 121.19 0.35 0.35 1.00 
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Table C.4.  Simulation results from 500 synthetic datasets with different design criteria for the 

ACS model (adaptive-cluster sampling using the modified Hansen-Hurwitz estimator).  Habitat 

refers to the amount of generated spatial correlation where Habitat 1 has the most spatial 

correlation and Habitat 3 has no spatial correlation (see text for more details).  Parameters are p-

detection probability, n- initial sample size, and J-number of repeat visits.  True Ntot is the actual 

number of occupied sites out of 400 while Ntot-hat is the estimated number of occupied sites 

averaged over the 500 synthetic datasets.  Var(Ntot) represents the estimated variance of the  

estimated number of occupied sites out of the.  Coverage represents the percent of confidence 

intervals that contained the true occupancy rate out of the 500 synthetic data sets.  RBIAS and 

RMSE refer to relative bias and relative root mean-squared error, respectively.  Note that one 

simulation trial encountered fatal errors and is not represented (n = 100, p = 0.75, J = 5, Habitat 

2). 



318 
 

 
 

Scenario n p J Habitat 

True 

Ntot 

Ntot-

hat.HH Var(Ntot.HH)

Ntot.HH 

RBias 

Ntot.HH 

RMSE 

Coverage 

HH 

1 20 0.25 3 1 143 36.80 632.48 0.74 0.77 0.09 

min 0.25 143 0.00 0.00 -0.54 0.02 0.00 

max 0.25 143 220.00 1980.00 1.00 1.00 1.00 

2 50 0.25 3 1 162 41.31 259.51 0.74 0.75 0.00 

min 0.25 162 0.00 0.00 0.41 0.41 0.00 

max 0.25 162 96.00 521.14 1.00 1.00 0.00 

3 100 0.25 3 1 162 43.57 116.45 0.73 0.74 0.00 

min 0.25 162 12.00 35.27 0.48 0.48 0.00 

max 0.25 162 84.00 201.09 0.93 0.93 0.00 

4 150 0.25 3 1 150 40.95 61.22 0.73 0.73 0.00 

min 0.25 150 16.00 25.77 0.50 0.50 0.00 

max 0.25 150 74.67 101.89 0.89 0.89 0.00 

5 20 0.5 3 1 170 86.08 1287.44 0.49 0.54 0.43 

min 0.5 170 0.00 0.00 -0.29 0.06 0.00 
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max 0.5 170 220.00 2000.00 1.00 1.00 1.00 

6 50 0.5 3 1 159 85.60 470.92 0.46 0.48 0.17 

min 0.5 159 32.00 210.29 -0.06 0.04 0.00 

max 0.5 159 168.00 696.00 0.80 0.80 1.00 

7 100 0.5 3 1 150 82.63 196.60 0.45 0.46 0.02 

min 0.5 150 36.00 99.27 0.12 0.12 0.00 

max 0.5 150 132.00 268.00 0.76 0.76 1.00 

8 150 0.5 3 1 151 86.36 112.95 0.43 0.44 0.00 

min 0.5 151 50.67 74.24 0.19 0.19 0.00 

max 0.5 151 122.67 142.70 0.66 0.66 0.00 

9 20 0.75 3 1 148 112.04 1533.32 0.24 0.36 0.87 

min 0.75 148 0.00 0.00 -0.62 0.05 0.00 

max 0.75 148 240.00 2000.00 1.00 1.00 1.00 

10 50 0.75 3 1 170 138.75 634.63 0.18 0.24 0.69 

min 0.75 170 72.00 421.71 -0.32 0.01 0.00 

max 0.75 170 224.00 714.29 0.58 0.58 1.00 
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11 100 0.75 3 1 157 130.74 264.50 0.17 0.20 0.62 

min 0.75 157 68.00 171.03 -0.10 0.01 0.00 

max 0.75 157 172.00 297.09 0.57 0.57 1.00 

12 150 0.75 3 1 155 128.79 145.83 0.17 0.19 0.41 

min 0.75 155 90.67 117.64 -0.08 0.00 0.00 

max 0.75 155 168.00 163.49 0.42 0.42 1.00 

13 20 0.25 5 1 148 38.64 666.48 0.74 0.76 0.10 

min 0.25 148 0.00 0.00 -0.22 0.19 0.00 

max 0.25 148 180.00 1980.00 1.00 1.00 1.00 

14 50 0.25 5 1 153 38.59 243.86 0.75 0.76 0.00 

min 0.25 153 0.00 0.00 0.37 0.37 0.00 

max 0.25 153 96.00 521.14 1.00 1.00 0.00 

15 100 0.25 5 1 154 41.70 111.91 0.73 0.73 0.00 

min 0.25 154 8.00 23.76 0.43 0.43 0.00 

max 0.25 154 88.00 208.00 0.95 0.95 0.00 

16 150 0.25 5 1 149 41.55 61.98 0.72 0.72 0.00 
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min 0.25 149 8.00 13.15 0.43 0.43 0.00 

max 0.25 149 85.33 112.63 0.95 0.95 0.00 

17 20 0.5 5 1 160 83.36 1250.40 0.48 0.53 0.41 

min 0.5 160 0.00 0.00 -0.25 0.00 0.00 

max 0.5 160 200.00 2000.00 1.00 1.00 1.00 

18 50 0.5 5 1 141 74.54 424.48 0.47 0.50 0.13 

min 0.5 141 16.00 109.71 -0.13 0.04 0.00 

max 0.5 141 160.00 685.71 0.89 0.89 1.00 

19 100 0.5 5 1 152 83.82 198.59 0.45 0.46 0.01 

min 0.5 152 40.00 109.09 0.05 0.05 0.00 

max 0.5 152 144.00 279.27 0.74 0.74 1.00 

20 150 0.5 5 1 157 90.55 116.76 0.42 0.43 0.00 

min 0.5 157 56.00 80.81 0.18 0.18 0.00 

max 0.5 157 128.00 146.04 0.64 0.64 0.00 

21 20 0.75 5 1 162 130.96 1668.00 0.19 0.33 0.83 

min 0.75 162 20.00 380.00 -0.73 0.01 0.00 
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max 0.75 162 280.00 2000.00 0.88 0.88 1.00 

22 50 0.75 5 1 159 127.76 609.57 0.20 0.25 0.79 

min 0.75 159 56.00 344.00 -0.31 0.01 0.00 

max 0.75 159 208.00 714.29 0.65 0.65 1.00 

23 100 0.75 5 1 140 114.48 245.48 0.18 0.22 0.60 

min 0.75 140 68.00 171.03 -0.26 0.00 0.00 

max 0.75 140 176.00 298.67 0.51 0.51 1.00 

24 150 0.75 5 1 167 140.46 152.11 0.16 0.18 0.45 

min 0.75 167 101.33 126.95 -0.09 0.01 0.00 

max 0.75 167 181.33 166.32 0.39 0.39 1.00 

25 20 0.25 3 2 141 36.64 632.24 0.74 0.76 0.10 

min 0.25 141 0.00 0.00 0.15 0.15 0.00 

max 0.25 141 120.00 1680.00 1.00 1.00 1.00 

26 50 0.25 3 2 141 35.82 228.54 0.75 0.75 0.00 

min 0.25 141 0.00 0.00 0.43 0.43 0.00 

max 0.25 141 80.00 457.14 1.00 1.00 0.00 
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27 100 0.25 3 2 142 37.07 100.86 0.74 0.74 0.00 

min 0.25 142 8.00 23.76 0.41 0.41 0.00 

max 0.25 142 84.00 201.09 0.94 0.94 0.00 

28 150 0.25 3 2 149 40.68 60.91 0.73 0.73 0.00 

min 0.25 149 10.67 17.42 0.55 0.55 0.00 

max 0.25 149 66.67 93.21 0.93 0.93 0.00 

29 20 0.5 3 2 157 79.56 1212.68 0.49 0.54 0.36 

min 0.5 157 0.00 0.00 -0.27 0.02 0.00 

max 0.5 157 200.00 2000.00 1.00 1.00 1.00 

30 50 0.5 3 2 134 68.40 397.24 0.49 0.51 0.13 

min 0.5 134 24.00 161.14 -0.07 0.04 0.00 

max 0.5 134 144.00 658.29 0.82 0.82 1.00 

31 100 0.5 3 2 154 84.80 200.36 0.45 0.46 0.02 

min 0.5 154 36.00 99.27 0.09 0.09 0.00 

max 0.5 154 140.00 275.76 0.77 0.77 1.00 

32 150 0.5 3 2 140 78.98 105.74 0.44 0.44 0.00 
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min 0.5 140 37.33 56.79 0.14 0.14 0.00 

max 0.5 140 120.00 140.94 0.73 0.73 1.00 

33 20 0.75 3 2 148 112.04 1523.80 0.24 0.37 0.84 

min 0.75 148 20.00 380.00 -0.76 0.05 0.00 

max 0.75 148 260.00 2000.00 0.86 0.86 1.00 

34 50 0.75 3 2 144 113.02 568.12 0.22 0.28 0.69 

min 0.75 144 40.00 257.14 -0.28 0.00 0.00 

max 0.75 144 184.00 709.71 0.72 0.72 1.00 

35 100 0.75 3 2 166 133.73 267.38 0.19 0.22 0.49 

min 0.75 166 88.00 208.00 -0.11 0.01 0.00 

max 0.75 166 184.00 301.09 0.47 0.47 1.00 

36 150 0.75 3 2 140 116.70 137.91 0.17 0.19 0.53 

min 0.75 140 69.33 96.17 -0.09 0.01 0.00 

max 0.75 140 152.00 158.12 0.50 0.50 1.00 

37 20 0.25 5 2 143 35.76 621.60 0.75 0.77 0.10 

min 0.25 143 0.00 0.00 0.16 0.16 0.00 
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max 0.25 143 120.00 1680.00 1.00 1.00 1.00 

38 50 0.25 5 2 139 35.86 228.23 0.74 0.75 0.00 

min 0.25 139 0.00 0.00 0.37 0.37 0.00 

max 0.25 139 88.00 490.29 1.00 1.00 0.00 

39 100 0.25 5 2 144 37.54 102.04 0.74 0.74 0.00 

min 0.25 144 8.00 23.76 0.47 0.47 0.00 

max 0.25 144 76.00 186.55 0.94 0.94 0.00 

40 150 0.25 5 2 129 34.12 52.01 0.74 0.74 0.00 

min 0.25 129 10.67 17.42 0.48 0.48 0.00 

max 0.25 129 66.67 93.21 0.92 0.92 0.00 

41 20 0.5 5 2 138 71.04 1116.08 0.49 0.54 0.49 

min 0.5 138 0.00 0.00 -0.30 0.01 0.00 

max 0.5 138 180.00 1980.00 1.00 1.00 1.00 

42 50 0.5 5 2 143 75.82 430.16 0.47 0.49 0.15 

min 0.5 143 16.00 109.71 -0.01 0.01 0.00 

max 0.5 143 144.00 658.29 0.89 0.89 1.00 
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43 100 0.5 5 2 164 88.21 205.91 0.46 0.47 0.02 

min 0.5 164 40.00 109.09 0.07 0.07 0.00 

max 0.5 164 152.00 285.58 0.76 0.76 1.00 

44 150 0.5 5 2 138 74.56 101.13 0.46 0.47 0.00 

min 0.5 138 45.33 67.44 0.15 0.15 0.00 

max 0.5 138 117.33 139.12 0.67 0.67 1.00 

45 20 0.75 5 2 148 116.16 1564.24 0.22 0.35 0.85 

min 0.75 148 0.00 0.00 -0.76 0.05 0.00 

max 0.75 148 260.00 2000.00 1.00 1.00 1.00 

46 50 0.75 5 2 143 110.64 561.89 0.23 0.28 0.68 

min 0.75 143 32.00 210.29 -0.29 0.01 0.00 

max 0.75 143 184.00 709.71 0.78 0.78 1.00 

47 100 0.75 5 2 

min 0.75 

max 0.75 

48 150 0.75 5 2 140 113.84 135.90 0.19 0.21 0.44 
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min 0.75 140 77.33 104.67 -0.16 0.01 0.00 

max 0.75 140 162.67 161.94 0.45 0.45 1.00 

49 20 0.25 3 3 150 36.64 631.28 0.76 0.78 0.11 

min 0.25 150 0.00 0.00 0.20 0.20 0.00 

max 0.25 150 120.00 1680.00 1.00 1.00 1.00 

50 50 0.25 3 3 155 40.94 257.07 0.74 0.74 0.00 

min 0.25 155 0.00 0.00 0.28 0.28 0.00 

max 0.25 155 112.00 576.00 1.00 1.00 1.00 

51 100 0.25 3 3 145 38.18 103.64 0.74 0.74 0.00 

min 0.25 145 8.00 23.76 0.48 0.48 0.00 

max 0.25 145 76.00 186.55 0.94 0.94 0.00 

52 150 0.25 3 3 149 39.19 58.88 0.74 0.74 0.00 

min 0.25 149 10.67 17.42 0.50 0.50 0.00 

max 0.25 149 74.67 101.89 0.93 0.93 0.00 

53 20 0.5 3 3 158 81.72 1236.12 0.48 0.53 0.38 

min 0.5 158 0.00 0.00 -0.27 0.01 0.00 
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max 0.5 158 200.00 2000.00 1.00 1.00 1.00 

54 50 0.5 3 3 156 81.98 456.62 0.47 0.50 0.12 

min 0.5 156 24.00 161.14 -0.13 0.08 0.00 

max 0.5 156 176.00 704.00 0.85 0.85 1.00 

55 100 0.5 3 3 152 81.74 195.04 0.46 0.47 0.00 

min 0.5 152 28.00 78.91 0.18 0.18 0.00 

max 0.5 152 124.00 259.27 0.82 0.82 1.00 

56 150 0.5 3 3 143 76.42 103.01 0.47 0.47 0.00 

min 0.5 143 37.33 56.79 0.20 0.20 0.00 

max 0.5 143 114.67 137.24 0.74 0.74 0.00 

57 20 0.75 3 3 146 110.44 1513.88 0.24 0.37 0.84 

min 0.75 146 0.00 0.00 -0.78 0.04 0.00 

max 0.75 146 260.00 2000.00 1.00 1.00 1.00 

58 50 0.75 3 3 157 122.48 594.27 0.22 0.28 0.68 

min 0.75 157 56.00 344.00 -0.38 0.02 0.00 

max 0.75 157 216.00 713.14 0.64 0.64 1.00 
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59 100 0.75 3 3 150 118.55 250.48 0.21 0.24 0.50 

min 0.75 150 72.00 178.91 -0.12 0.01 0.00 

max 0.75 150 168.00 295.27 0.52 0.52 1.00 

60 150 0.75 3 3 166 136.68 150.11 0.18 0.20 0.33 

min 0.75 166 98.67 124.71 -0.09 0.00 0.00 

max 0.75 166 181.33 166.32 0.41 0.41 1.00 

61 20 0.25 5 3 153 37.88 650.44 0.75 0.77 0.04 

min 0.25 153 0.00 0.00 0.22 0.22 0.00 

max 0.25 153 120.00 1680.00 1.00 1.00 1.00 

62 50 0.25 5 3 160 39.95 251.37 0.75 0.76 0.00 

min 0.25 160 0.00 0.00 0.40 0.40 0.00 

max 0.25 160 96.00 521.14 1.00 1.00 0.00 

63 100 0.25 5 3 158 40.99 110.35 0.74 0.74 0.00 

min 0.25 158 4.00 12.00 0.52 0.52 0.00 

max 0.25 158 76.00 186.55 0.97 0.97 0.00 

64 150 0.25 5 3 159 42.60 63.42 0.73 0.73 0.00 
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min 0.25 159 13.33 21.63 0.55 0.55 0.00 

max 0.25 159 72.00 99.06 0.92 0.92 0.00 

65 20 0.5 5 3 158 79.68 1215.84 0.50 0.54 0.36 

min 0.5 158 0.00 0.00 -0.27 0.01 0.00 

max 0.5 158 200.00 2000.00 1.00 1.00 1.00 

66 50 0.5 5 3 152 80.18 449.34 0.47 0.49 0.11 

min 0.5 152 24.00 161.14 -0.16 0.11 0.00 

max 0.5 152 176.00 704.00 0.84 0.84 1.00 

67 100 0.5 5 3 169 91.62 211.94 0.46 0.47 0.01 

min 0.5 169 24.00 68.36 0.17 0.17 0.00 

max 0.5 169 140.00 275.76 0.86 0.86 1.00 

68 150 0.5 5 3 166 92.63 118.64 0.44 0.45 0.00 

min 0.5 166 50.67 74.24 0.12 0.12 0.00 

max 0.5 166 146.67 155.85 0.69 0.69 1.00 

69 20 0.75 5 3 163 126.44 1646.52 0.22 0.34 0.81 

min 0.75 163 20.00 380.00 -0.72 0.02 0.00 
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max 0.75 163 280.00 2000.00 0.88 0.88 1.00 

70 50 0.75 5 3 149 113.89 570.99 0.24 0.29 0.71 

min 0.75 149 56.00 344.00 -0.23 0.02 0.00 

max 0.75 149 184.00 709.71 0.62 0.62 1.00 

71 100 0.75 5 3 159 127.88 261.27 0.20 0.23 0.52 

min 0.75 159 72.00 178.91 -0.16 0.01 0.00 

max 0.75 159 184.00 301.09 0.55 0.55 1.00 

72 150 0.75 5 3 161 134.51 149.05 0.16 0.18 0.42 

min 0.75 161 90.67 117.64 -0.08 0.01 0.00 

max   0.75     161 173.33 164.80 0.44 0.44 1.00 
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