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ABSTRACT 

 Pregnant women continue to suffer from serious complication due to malaria, particularly 

worse in first time pregnancies.  Susceptibility to infection is due to Plasmodium falciaprum 

phenotype that expressing adhesive protein VAR2CSA able to interact with placental 

chondroitin sulfate A (CSA) on fetal cells, syncytiotrophoblast (ST). The resulting sequestration 

of infected red blood cells (iRBC) in the intervillous space is associated with placental malaria 

pathology, marked by accumulation of inflammatory cells and damage of the ST.  While it is 

know that ST-adherent iRBC stimulate immune activation of ST, it is yet unclear and remains 

necessary to determine the signaling molecule on ST as well as the synergistic role other cells, 

such as monocytes play in mediating immune response.  In this study, we explored these 

question using primary trophoblast cells, a placental choricarcinoma cell line and a monocytic 

cell line.  Here we determined the role of proteoglycan molecule, CD44 in promoting binding of 

ST-adherent iRBC and the downstream stimulatory of ST via Src kinase family of proteins. Also, 

we determined role of Toll-like receptor 2 (TLR-2) in monocyte cells and ST cell stimulation, 



 

marked by secretion of interleukine-8 (IL-8) cytokine and determined that iRBC profoundly 

affect the immune activation of these cells, addatively on ST and negatively on monocytes 

 Taken together, these results suggest that during placental malaria, CD44 plays an 

important receptor and stimulation function on ST by providing CSA ligand for ST-adheren 

iRBCs and that the ST stimulation is to some degree orchestrated by Src kinases.  Also, 

monocytes and ST cells TLR-2 response is differentially influenced by iRBCs, positively and 

negatively for ST and monocytes respectively.   
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CHAPTER 1 

INTRODUCTION 

 Epidemiological studies estimate that malaria accounts for nearly 250 million clinical 

cases annually, claiming approximately 700 thousand lives, and imposing an enormous impact 

on human health. Partial immunity is developed only over years of exposure, leaving children 

mainly under the age of 5 years susceptible. While this partial immunity does not provide 

sterilizing protection, it is adequate to reduce disease severity.  Pregnant women, however, are 

unique, since irrespective of prior exposure and immunity, they become extremely susceptible to 

infection.  This is mostly severe during their first pregnancy, with better outcome in subsequent 

pregnancies.  The renewed virulence emanates from the mature late stages of Plasmodium 

falciparum, known to sequester in host microvasculature where infected red blood cells (iRBCs) 

adhere to host endothelium and escape clearance in the spleen. This cytoadhesion phenomenon is 

key to development of pathology associated with malaria.  In particular, placental malaria (PM) 

is due to emergence of a parasite phenotype capable of binding to chondroitin sulfate A (CSA), a 

sulfated glycosaminoglycan, secreted from and found at the surface of specialized fetal epithelial 

syncytiotrophoblast (ST) cells in contact with maternal placental circulation.  A parasite protein, 

Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1), exported to the surface of 

iRBCs, is the principle CSA ligand.  It is currently estimated that up to 200,000 infants die 

annually due of consequences of PM.  Premature delivery, maternal anemia and low birth weight 

are commonly outcomes associated with PM.  The underlying biological interactions promoting 

this susceptibility to malaria during pregnancy and the associated poor birth outcomes remain 
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largely unknown, but hypothesis pointing toward involvement of cellular proteoglycan (PG) 

molecules have been advanced.  

   Proteoglycans are macromolecules made up of protein cores decorated with sulphated 

sugar polymers, glycosaminoglycans. These molecules have a number of biochemical functions, 

including coagulation, cell-cell adhesion and maintenance of cell matrix integrity.  To date, other 

than describing the sugar component promoting binding to iRBCs, the role of proteoglycans 

bearing CSA in the pathology of PM has not been assessed.  Considering the nature of CSA on 

ST, it is, therefore, important to investigate protein cores with which it is associated and assess 

the role they play in the placental response to malaria infection.  Studies have demonstrated 

receptor as well as signaling properties of proteoglycans (PG) molecules on cells.  The role of 

thrombomodulin, a CSA bearing PG, in coagulation has been clarified and aggrecan has been 

hypothesized as promoting iRBC binding; and engagement of CD44 PG has been shown to result 

in CD4+ T cell activation.  Moreover, engagement of CD44 by hyaluronan, its principal ligand, 

has been shown to result in changes of the cytokine secretion profile of cells, marked by 

production of tumor necrosis factor (TNF), a cytokine involved in systemic inflammation.  The 

dual role of CD44 PGs as receptor and signaling molecule on other cells, provide precedence for 

us to study its role on ST during PM (since this still is largely underappreciated).  Furthermore, 

given reports of the gravidity dependent increase of CSA in placenta during PM, and the fact that 

the effects of PG abundance on binding of infected erythrocytes on PG has not been exhaustively 

explored, prioritizes stidying these PG molecule.  PG such as CD44 is an integral component of 

ST cells plus these could not only be important as iRBCs receptors but also have significant 

influence in the ST cell response to iRBCs and malarial toxins, as well.  Therefore it remains 

critical to provide an in depth understanding on whether changes in CSA abundance are infection 
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driven or due to host genetic differences.  We address this problem using our established cell 

culture model to provide the vital information on molecular interactions between iRBCs and the 

ST.  This study mainly addressed CD44-PG receptor functions and immunological consequences 

of engagement on ST cells, both pivotal for understanding regulation and function during PM.  

By demonstrating the role of CD44-PG in promoting iRBC binding to and stimulation of ST 

cells, we provide critical information promoting further understanding of parasite/host 

interaction during PM.  Additionally, we provide knowledge on the course of pathology 

associated with malaria infection during pregnancy.  

  Also, we assess the role of malaria toxin, glycosylphosphatydlyinositol (GPI) in driving 

innate immune responses on ST cells as well as monocytes and the overall impact on the 

microimmune environment.  

To decipher the role of CD44 PG during PM and further expand our understanding of the 

immunologic response of ST to malarial infection, we followed these four objectives.  

(1) Establish CD44 as a CSA bearing receptor for iRBCs on ST cells  

(2) Establish CD44 expression variability as a function of exposure to malaria, and 

(3) Determine the functional significance of CD44 identified in Aim 1 in syncytial cell 

responses to iRBCs and malarial toxins.   

(4) Examine the immunologic impact of interaction of ST with malarial components 

known to be released from iRBCs. 
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Significance 

  Malaria pathophysiology is associated with host immunologic responses.  To date, little is 

known about the CSA-bearing PGs that mediate ST-iRBC interactions or how binding of 

infected erythrocytes to placental ST CSA may influence net PG core protein abundance and 

function.  Without detailed understanding of how host (i.e., ST) and parasite interact and respond 

to each other, especially in terms of development, maintenance and modulation of cellular 

responses in the pregnant uterus, therapeutic methodologies for management of malaria during 

pregnancy cannot be fully realized.  A detailed understanding of interaction between infected 

erythrocytes, CSA and CSA-bearing PGs on ST is fundamental.  The systems developed through 

this study provide a stage upon which concise study of PG core proteins involved in placental 

malaria is feasible.  Only through characterization of these protein cores will it be possible to 

fully understand proteins involved in CSA expression on ST cells, and functional changes 

induced by iRBCs engagement of CSA.  Subsequently, this information will provide critical 

information relevant in understanding of the biology of the maternal/fetal interface in context of 

PM.  This study assessed the extent to which the ST response is influenced by CD44 in response 

to engagement of CSA moieties on this cell surface PG by CSA adherent iRBCs, as well as 

effect of malaria components such as hemozoin (malaria pigment) through a series of 

biochemical and immunological investigations.  The findings from this study demonstrate that 

ST CD44 proteoglycan is an integral part of ST cell response to iRBCs and malarial toxins and 

that abundance of protein cores of CSA bearing glycan are influenced to some degree by PM, 

and that these protein cores may dictate cellular phosphorylation patterns that account for 

immunologic activation of ST cells.  
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This study also enhances our understanding of general biology of maternal/fetal interface 

important for reproductive biology in general and other infectious diseases.  

 

Hypothesis: 

Our overarching hypothesis for the proposed research is that CD44-PG is a functionally 

relevant receptor for iRBCs on ST cells during PM. This study is designed to advance knowledge 

in the field of malaria pathogenesis and glycobiology, providing better understanding of parasite-

host interaction, key for promoting development of tools important for improving overall quality 

of health of pregnant women and their unborn children.  Our experimental model included an 

array of molecular and cellular biology techniques applied on both trophoblast cell line (BeWo) 

and primary placental cells from both malaria naïve and exposed populations.  To test our 

hypothesis and achieve overall objectives, the following three specific aims were pursued: 

 

SPECIFIC AIM 1: Establish CD44-PG as a CSA expressing receptor on ST cells, capable of 

interacting with iRBCs.  

Working hypothesis 1: Binding of iRBCs to CSA moieties on ST cells is directly influenced by 

availability of CD44-PG. 

These hypotheses were addressed by experimentally asking the following questions: 

1. Will CSA moieties on CD44-PG promote iRBC binding on ST membrane?  

2. What is the consequence of knocking out CD44 on STs in terms of iRBC engagement to 

CD44-PG on ST cells? 
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SPECIFIC AIM 2: Determine to what extent malaria infection influences abundance of CD44 

protein and its effect on placental ST cells function. 

Working hypothesis 2: Disease status will influence CD44 protein abundance. 

Working hypothesis 3: Engagement of CD44-PG on ST cells results in cellular activation.  

 These hypotheses were addressed by asking the following questions: 

3. Will ST cells with CD44 knocked down express marked difference in tyrosine 

phosphorylation profile post exposure to iRBCs?  

4. Will women in endemic areas have differential CD44 protein expression?  

 

SPECIFIC AIM 3: Determine to what extent a parasite toxin like malarial GPI might influence 

ST and its immediate immune environment 

Working hypothesis 4: Engagement of the GPI receptor, TLR2, will immunologically activate 

both ST and monocytic cells 

Working hypothesis 5: Activation of monocytic cells via TLR2 will influence cell surface 

phenotype. 

These hypotheses were addressed by asking the following question: 

5. Will ST cells and monocytes immunologically respond to a GPI analog, Pam3C SK4, in terms 

of chemokine secretory response and expression of CD44?  

In summary, defining the role CD44 PG plays in anchoring iRBC and influencing ST 

cellular response to malaria infection offers critical information in understanding malaria 

pathogenesis. 
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CHAPTER 2 

LITERATURE REVIEW 

MALARIA 

 Life cycle of the malaria parasite 

 Malaria is a mosquito-borne disease mostly confined to the tropics and caused by a 

protozoan parasite of the genus Plasmodium. Five species are known to cause disease in humans: 

Plasmodium falciparum is by far most virulent, causing lethal infection. Other parasites, P. 

ovale, P. vivax, P. malariae and lately P. knowlesi also cause disease in human beings [1, 2]. 

 The malaria parasite has a complex multistage life cycle divided between an insect vector 

and the human host [1]. Infection with malaria occurs when a person receives an infective bite 

from a female Anopheles mosquito. During a blood meal, the infected female mosquito injects 

microscopic sporozoites into the human blood stream. These sporozoites target quiescent liver 

cells where they rapidly divide, undetected, and transform into schizonts,that undergoes 

replication and mature into merozoites. After this stage, the merozoites burst out of the 

hepatocytes. The merozoites invade red blood cells where they transform into asexually 

reproducing trophozoites, then schizonts, which mature to new merozoites infective to 

erythrocytes or gametes that will be taken up by another mosquito during a blood meal, thus 

ensuring continuation of the life - cycle and survival of the parasite [3].  This sequential invasion 

by the parasite during the erythrocyte stage coincides with symptoms associated with infection 

which include: nausea, fatigue, joint pain, fever and vomiting, followed by anemia due to 

excessive destruction of red blood cells [4] (see figure 1 below).   
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Figure 2.1. Life cycle of malaria parasite 
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Parasite/host interaction during malaria infection 

 

The global malaria burden is huge, approximately 2.2 billion people are exposed to P. 

falciparum annually and roughly 149 to 274 million estimated clinical cases reported are 

attributed to this parasite.  The majority of reported deaths occur in sub-Saharan Africa, mostly 

among children under five years of age [4, 5]. In addition, pregnant women, especially those in 

their earlier pregnancies, are at elevated risk of infection despite previously acquired anti-

malarial immunity [6-8].   

 The classical response to malaria infection involves filtration of damaged, malaria-

infected cells by the spleen and to some extent, macrophage phagocytosis of iRBCs [9, 10]. 

Ultimately, effective parasite clearance is dependent on early detection of iRBCs by antigen 

presenting cells, triggering both cellular and humoral immune responses.  An inflammatory-type 

immune response, championed by monocytes, promotes production of high levels of interferon 

gamma (IFN- ) and tumor necrosis factor (TNF), both cytokines required for amplifying the 

inflammatory signal, leading to recruitment of a large number of immune cells to sites of iRBC 

cytoadhesion and enhanced phagocytosis [11].  Furthermore, sequential bursting of iRBCs and 

ensuing cellular debris impose a filtration problem in the spleen, hence increases in spleen size, 

i.e splenomegaly [12-15].  During synchronized iRBC rupture, released merozoites re-infect 

other erythrocytes and malarial toxins, such as malaria parasite pigment, (hemozoin; Hz) and 

parasite glycosylphosphatidylinositols (GPIs) released from bursting iRBCs, together act to 

stimulate increased cytokine and chemokine secretion by immune cells, often associated with 

spikes in fever and joint pains experienced during infection [16-22].  These inflammatory 

responses, though important for parasite clearance, left uncontrolled, often lead to tissue damage, 

especially in immune privileged organs such as brain and placenta [23-25].  
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Epidemiology of Malaria  

 Malaria infection is governed by many factors; patient’s age and immunity are most 

important [26, 27].  Malaria endemicity, described as transmission rate per year has been 

characterized based on disease prevalence.  Regions experiencing malaria transmissions all 

through the year with seasonal surges are termed hyper-endemic, while mesoendemic areas 

experience seasonal malaria outbreaks.  In hyper endemic regions, adults acquire partial 

immunity to the parasites characterized by their T cells having high potency in secreting 

interferon gamma (IFN-γ) in response to parasite antigens, and production of anti-parasitic 

antibodies, both phenomena important in fighting malarial infection [28].  Also, pregnant women 

in these areas have been shown to be able to make pregnancy specific anti- iRBC adhesion 

antibodies during PM, with multigravid women producing more antibodies [29-32]. 

 

Clinical Manifestations of Malaria  

 Malaria is characterized by a combination of different signs and symptoms, dependent on 

infective species, the geographical setting, and an individual’s level of immunity [33].  When a 

person is first infected, parasites establish in hepatocytes, an asymptomatic stage which lasts 

between seven to fourteen days.  As merozoites burst out of the liver cells to infect erythrocytes, 

antigens released by the parasites trigger host immune responses marked by a surge of type I 

cytokine production, known to cause fever.  As mature late stage parasites rupture from iRBCs, 

immunogenic malaria antigens are released that evoke secretion of TNF and IFN cytokines by 

macrophages and T cells, both cytokines responsible for causing cycles of fever, a common 

presentation during malaria infection, accompanied by headache, aches and general malaise.  

Other severe complications may present singly or in combination: cerebral malaria due to 
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accumulation of iRBC in the brain, anemia, renal failure, hypoglycemia, fluid electrolyte and 

acid based disturbance, pulmonary oedema, circulatory collapse and shock [33].  Prolonged 

malaria infection may lead to anemia (hemoglobin <50g/L or hematocrit <15%) due to continual 

destruction of erythrocytes, and cytoadhesion of iRBCs results in cerebral malaria, and PM in 

pregnant women (discussed later).  

 

Control and Treatment of Malaria  

 Over the years, the fight against malaria has taken a number of approaches that include 

mass drug administration, environmental sanitation, application of insecticides and most 

recently, emphasis on use of insecticide-treated bed nets.  Although promising results have been 

realized, global eradication of malaria poses a huge challenge, mainly due to widespread 

development of drug resistance by the parasite and insecticide resistance by the host vector, the 

mosquito [34].  The problems have led to a shift of focus, gravitating towards development of 

vaccines that will hopefully confer lasting immunity, especially in risk groups such as children, 

non-immune individuals and pregnant women.  Vaccines have been argued to be the most 

reliable and cost effective strategy for reducing the burden of malaria disease [35-37], as is the 

case with other diseases.  For all these noble approaches to be realized, an in-depth 

understanding of basic parasite/ host interaction and immunology is paramount.  

 

Host ligands utilized by the parasite 

   The Plasmodial parasite, it seems, has successfully coevolved with its host and acquired 

ability to exploit not only surface receptors on erythrocytes, but also other host receptors on 

endothelial and epithelial cells. For instance, glycophorin A, a major carrier of red cell sialic acid 
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residue, is exploited by merozoites during entry into red blood cells [38]. Once established in the 

red cell, the parasite synthesizes proteins that modify the iRBC membrane [39-42].  As such, 

parasite gene products are exported to the iRBC membrane, a mechanism associated with 

parasite virulence that promotes binding of iRBCs to host ligands on micro vesicles and 

epithelium, impeding clearance of iRBCs.  The P. falciparum genome contains a family of 

highly polymorphic genes, var, that encode P. falciparum erythrocyte membrane protein-1 

(PfEMP-1), important for cytoadhesion of iRBCs to host receptors on microvasculature, an 

evasive mechanism for escaping splenic clearance [42, 43].  This interaction leads to 

sequestration of iRBC containing late stage parasites in distal organs such as brain and placenta 

[44, 45].  Cells in these organs are known to express adhesion receptors suitable for parasite 

binding. For example, multiple receptors such as CD36 and Intercellular adhesion molecule-1 

(ICAM-1) promote iRBC adhesion [46] to the endothelium in microvasculature.  In fact, CD36 

has been associated with severe malaria in children [47] and polymorphisms in CD36 are 

deemed protective against cerebral malaria [48].  In the placenta, CSA, a glycosaminoglycan on 

placental epithelial ST cells, is the principle iRBC ligand [44, 45, 49], an interaction that ensures 

parasite survival, promoting chronic infection characterized by a host of undesirable immune 

responses and culminating in pathological consequences often with increased disease burden in 

pregnant women. 

   As a defense mechanism, certain mutations related to erythrocytes, only common in 

malaria endemic region, have been noted.  These mutations have been shown to impede parasite 

entry and or survival in the red cells, as well as preventing cytoadhesion of iRBCs, conferring 

protection against malaria in a poorly understood manner [50-55].  For instance, sickle cell 

anemia, a disorder in red cells, limits ability of erythrocytes to carry oxygen and will at the same 
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time limit parasite infectivity [52, 53, 55, 56]. Another example involves deficiency of the 

enzyme glucose -6- phosphate dehydrogenase; heterozygous carriers seem to be more protected 

against malaria caused by P. falciparum [57, 58]. And recently, these abnormalities were found 

to impair cytoadherence of iRBCs, an important event in both parasite survival and malaria 

pathogenesis in humans [59].  Other abnormalities have also been reported, namely alpha and 

beta- thelassamieas, where the presence of hemoglobin S has been shown to impair the ability of 

P. falciparum to thrive in the erythrocyte by reducing oxygen tension [60, 61].  In addition to 

these mutations, T cells from individual in malaria endemic regions have been shown to secret 

high levels of inflammatory cytokines, mainly IFN-  and TNF, both important for parasite 

clearance [62]. These individuals also, as a protective measure, produce high amounts of 

antibodies that opsonize iRBCs, promoting phagocytosis and preventing cytoadhesion, as well 

[63-65].  Put together, these defenses, natural or acquired, improve disease resistance in malaria 

endemic regions. 

  

 MALARIA AND THE IMMUNE SYSTEM  

   P. falciparum infection, as described above, follows a complex but predictable pattern of 

movement from the liver, the site of initial infection, to RBCs, with intervening brief windows of 

extracellular circulation before a new cell is invaded. At each stage of growth, the parasites are 

subject to a variety of unique, antigen-specific and innate immune responses mounted by the 

host.  

   The liver stage is marked by sporozoite invasion of hepatocytes and is largely an 

asymptomatic stage, while the erythrocytic stage, characterized by cyclic rupture of iRBCs, 

produces the clinical symptoms of malaria, discussed earlier [66].  Malarial antigens and toxins, 
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GPIs and Hz, released during these stages of invasion drive both host innate and adaptive 

immune responses [66-69].  Notably, due to repeated exposures to these antigens and 

components, individuals in holoendemic areas, irrespective of gender, develop a robust antibody 

repertoire, deemed protective against subsequent infections [70].  Additionally, this immunity 

though not sterilizing, yields low-grade parasitemia and episodes of clinical disease in the face of 

repeated exposures throughout life [71-73]. 

   Strong immune responses post malaria infection are marked by production of malaria-

specific antibodies mediating a number of anti-parasitic effector functions, including inhibition 

of cytoadhesion and invasion of erythrocyte, as well as promoting antibody-dependent 

phagocytosis of infected cells.   Different isotypes of immunoglobulins (IgGs) have been 

identified to play a role in responses to malaria [74, 75]. 

  

Immunogenic components of malarial parasites that interact with human host  

      Many immunogenic antigens of malarial parasite are considered important for host 

defense and include merozoite surface proteins (MSPs) on the merozoite surface and proteins in 

the apical organelles [65, 76]. These and other antigens on the plasma membrane of iRBCs are 

highly polymorphic [66], thus complicating immunity against malaria [77-80].  Therefore, a 

diverse antibody repertoire capable of blocking antigens involved in invasion and tissue adhesion 

is favored for anti-parasite immunity [81, 82].  This variability, in essence, accords the parasite 

the ability to evade the immune response and is therefore considered an important virulence 

factor [83].   

   Predominantly, variant parasite antigens on iRBCs are encoded by the multi-gene family 

var [84]. The gene products are highly variant polypeptides of 200-350 kD presenting several 
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binding sites that promote adhesion of iRBCs to host receptors on vascular endothelium of 

capillaries and post-capillary venules resulting in parasite sequestration and pathogenesis [85-

88].  Notably, one variant form, var2csa, mediates binding to CSA in the placenta leading to PM 

(discussed below).   

   P. falciparum, is known to express variant proteins on the surface of iRBCs.  During PM, 

VAR2CSA protein, a member of PfEMP-1 (var) protein family [90, 91], predominates and 

interacts with placental epithelial cells, STs, via chondroitin sulfate A (CSA) [89], an adhesion 

ligand.  VAR2CSA is a product of the var2csa gene and each parasite only encodes for one or 

two var2csa genes among the 50 to 60 total vars [92].  PfEMP-1 is a highly polymorphic 

multidomain protein [94] with only one var gene transcribed at any one time [95] in a yet not 

well-understood mono-allelic exclusion manner [96, 97]. This phenomenon accounts for parasite 

selective advantage over host defense by switching phenotypes in an event of immune pressure.   

In addition, binding of iRBCs to host cell receptor is domain dependent; cystine-rich interdomain 

region (CIDR) and duffy binding like domains (DBLs), both consisting of numerous sub-

domains are critical [98]; three sub-domains (alpha beta and gamma) for CIDR and five sub-

domains (alpha, beta, gamma, delta and epsilon) for DBLs are of importance. Of note, the 

number of DBLs and CIDR vary between PfEMP-1s, hence difference in size and adhesive 

phenotype [98, 99].  Importantly, analysis of var genes revealed high diversity amongst the 

genes of worldwide parasite isolates, although they can be summarized to fit into two broad 

categories: type 3 var gene and var2csa [84].  var2csa is relatively conserved in comparison to 

other var genes [84] and the protein, VAR2CSA, appears to be solely responsible for binding to 

CSA in the placenta [100], an interaction that induces pregnancy specific antibodies [101]. 

Appreciably, most PfEMP-1/var genes have < 50% amino acid sequence identity between 
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individual DBL domains [99].  The N-terminal region with domain 1-2 is important in var2csa 

binding to CSA [102-108].  The challenging nature of P. falciparum infection can be traced to its 

ability to regulate and switch genes, providing an enormous problem in identifying conserved T 

cell epitopes.  During pregnancy as already mentioned, only one gene, var2csa, has been 

associated with the expression of PfEMP-1 [90] and that anti-adhesive antibodies from 

multigravidae women block binding to CSA in culture systems, irrespective of geographical 

source of the placental parasite [109-111]. Therefore, development of anti-adhesion antibodies 

marks immune maturation in multigravidae women [29, 31, 32].  Moreover, it has been 

suggested that, recirculation of memory T lymphocytes within intervillous blood, may account 

for maintenance of local memory immunity to placenta malaria in multigravidae women [93].   

  

Additional malaria antigens that interact with host ligands 

   Other multi-gene antigen families have been identified the iRBC.  Rifins, a product of a 

highly polymorphic rifin gene, occurs in at least 200 copies, mostly located subtelomerically on 

several parasite chromosomes [30, 112-114].  Furthermore, other antigenic components, namely 

(MSP)-1, have been identified as importance immune targets capable of inducing antibody 

production, and have found applications in vaccine development [115-118].  Despite having 

numerous antigenic variable sequences, the C-terminal amino acid sequence (19KD) of MSP-1 is 

highly conserved, favoring it as a vaccine candidate [116].   

   During erythrocyte stage of infection, sequential release of parasites from iRBC 

inadvertently leads to release of cellular components containing parasite antigens such as GPIs 

and Hz [65]. In circulation, both of these components have been shown to be potent immune 

stimulators [119].   
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   The malaria pigment, Hz, a toxin by-product generated by parasites during hemoglobin 

metabolism, is crystalline and found sequestered in a parasitophorous vacuole within the iRBCs 

[120].  Acquisition of Hz by macrophages has been shown to impair eyrthropoiesis, and in 

addition to influencing macrophage function by increased secretion of TNF, in excess will 

reduced phagocytic capacity as well as production of macrophage inhibitory factor (MIF); an 

important regulator of innate inflammatory responses.  In fact, impaired MIF production has 

been associated with severe malarial anemia in children [11, 121].  Also, during PM presence of 

Hz on macrophages and ST cells has been used as a marker for chronic malaria infection and 

shown to alter cellular function, in terms of cytokine production. [119]  

   GPIs are important glycolipids attached to the C-terminal and of proteins during post-

translational modification and used to anchor proteins onto plasma membranes of cells.  A large 

number of P. falciparum parasite proteins are GPI anchored, and the GPIs are essential for 

parasite survival [122].  Parasite GPIs are structurally distinct from host GPIs in their lipid 

content thus making them recognizable as foreign by host innate mechanisms [122, 123].  

Studies have shown that parasite GPIs released into circulation during iRBCs rupture are sensed 

by host cells TLR-2, triggering an immune response marked by increased inflammatory cytokine 

production. Polymorphisims in the TLR2 gene may affect GPIs induced disease pathogenesis 

[123].  Furthermore, IgG from P. falciparum-exposed individuals significantly inhibit the GPI-

induced activation of macrophages in vitro [124].  

   

   Innate immunity: Role of TLRs in malaria immunity 

   Early recognition innate and adaptive anti-parasitic responses are highly beneficial in the 

control of malarial infection.  For this to be feasible, immune cells need to recognize pathogen- 
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associated molecular patterns on parasite antigen.  In fact, during rupture of infected cells, 

malarial toxins such as GPIs and Hz are released, being potent activators of immune cells via 

TLRs as discussed above [125-127].  Indeed, increased IFN-γ induced TLR-2/4 and TLR-9 

sensitivity to malarial antigens has been linked to elevated inflammatory responses [128].  

Monocytes, neutrophils and a large proportion of resident macrophages from malaria-infected 

individuals engulf Hz, which is a potent modulator of cytokine profile during malaria [19, 129-

131].  In addition to mediating cytokine release, Hz has been identified as a key 

immunosuppressant; affecting both the antigen processing and immunomodulator function of 

macrophages [21].   This effect has substantial benefits regarding macrophage insensitivity to 

other infections [132, 133].  

   Importantly, innate immune responses are necessary in shaping factors that dictate the 

outcome of adaptive immunity [134].  Indeed, modulation of cytokine profile, biased towards 

secretion of inflammatory type, improves macrophage phagocytosis of iRBCs and has also been 

associated with, to a great degree, the presence of highly opsonic antibodies in serum of 

individual living in endemic areas [64, 65].  

   

Antibody mediated immunity  

   After many exposures, malaria infection induces production of antibodies against 

polymorphic antigens expressed during the parasite erythrocytic stage; a response deemed 

protective against P. falciparum malaria [32, 74, 135].  In fact, high levels of IgG1 and IgG3, 

both cytophilic, are considered protective against malaria [136].  And, in some cases, 

significantly elevated levels of IgG2, able to bind FcgammaRIIA in individuals possessing the 
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H131 allele on monocytic cells, as well as increased IgG2/IgG4 and IgG3/IgG4 ratios, have been 

associated with protection against P. falciparum [136]. 

   In both human and animal studies, antibody responses have been shown to be both 

beneficial as discussed above or may, in some instances lead to undesirable outcome.  Elevated 

IgE and IgE anti-malarial antibodies, for instance, have been associated with development of 

cerebral malaria in children [137], and a case of IgA related nephropathy in adults has been 

reported as well [138,139]. 

   

  Mechanisms of antibody protection 

   Antibody protection against malaria infection works via various mechanisms. This 

protection is primarily through opsonization of iRBC by antibodies; in essence promoting 

phagocytosis, inhibition of cytoadhesion and erythrocyte invasion, and antibody dependent 

cytotoxicity or direct lysis of infected cells [63, 64].   The opsonizaton of iRBCs with 

immunoglobulin or complement enhance recognition and eventually target the iRBCs for 

phagocytic clearance by specialized macrophages.  Generally, the level of iRBC uptake by these 

phagocytes is stage dependent, with trophozoites and schizonts (mature stage) being more 

rapidly internalized than the immature rings [140].  This interaction, inadvertently, induces 

release of factors such as TNF that although cytolytic to the parasite upregulates endothelial 

markers such as CD36 but may cause tissue lesions as well [11, 141, 142].  Collectively, 

antibodies act to preferentially target the iRBCs for internalization by the macrophages [143]. 
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 Cell mediated immunity: Role of T cells in anti-malarial immunity 

   Malaria infection induces adaptive cell-mediated immune responses against both pre-

erythrocytic and erythrocytic parasite stages [144, 145].  Functionally, differentiated CD4+ T 

cells have been identified in naturally exposed individuals; in vitro experiments showed these 

cells to be hyper-proliferative in response malarial antigens, suggesting a memory type response 

beneficial in parasite clearance and protection against malaria [28, 142, 146].   

   

  Cytokines in anti-malarial immunity 

   The course of malaria infection is highly dependent on a tight balance between pro and 

anti-inflammatory cytokines secreted by the various cells in response to malaria antigens.  

Production of pro-inflammatory cytokines such as IFN- , TNF, IL-1, IL-6, IL-12 and others, 

crucial in regulating course of infection by inducing parasite-killing action, may in excess, 

induce undesirable outcomes leading to irreversible tissue damage, hence pathology associated 

with malaria [11, 142, 147-149].  In particular, T cell derived IFN- , is a potent anti-erythrocytic-

stage parasite cytokine associated with protection against malaria re-infection in Africa [142].  

Importantly, IFN-  stimulates macrophage microbicidal function, increasing their production of 

IL-12; a response associated with protection against both murine and human pre-erythrocytic and 

blood infection [69, 144, 145, 148].  In fact, IL-12 in combination with IL-4 enhances in vitro 

murine erythropoiesis [150].  On the other hand, IFN-  induced TNF production, increases 

monocytes phagocytic capacity by inducing increased Fc receptor expression, upon engagement 

of TNF receptor.  Also, IFN-  promotes production of inducible nitric oxide synthase (iNOS) by 

macrophages, a response beneficial in controlling malaria pathogenesis [151]. Conversely, both 

cytokines discussed above, despite being crucial in malaria control are also responsible for spikes 
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in fever, a classical malaria presentation and furthermore, TNF has also been linked to severe 

malarial outcomes; for example anemia and cerebral malaria [152, 153].  Most importantly, an 

anti-inflammatory cytokine, IL-10, counteracts the production and possible cytopathic effect of 

pro-inflammatory cytokines and is associated with milder form of infection [153, 154].  

Additionally, In vitro experiments using a two-chambered system demonstrated a CXCL8, CCL3 

and CCL4 chemokine driven response on STs upon stimulation with malaria antigens and toxins 

in an ERK1/2 dependent fashion [119].  Notably, Hz-stimulated ST cells were found to elicit 

specific migration of peripheral blood mononuclear cells (PBMCs) towards the ST chamber 

[119].   

  

PREGNANCY 

   Pregnancy is a complex process marked by fertilization of an ovum and successful 

implantation of the resulting zygote into endometrial wall of the uterus, punctuated by cell 

differentiation, leading to formation of an inner cell mass and trophectodermal cells. The latter 

adhere to the uterus forming the placenta while the former cells develop into the embryonic cells 

of the fetus [155, 156].  The human placenta is defined as hemochorial, since during invasion of 

uterus by trophectodermal cells, a lacunae is formed, allowing maternal blood to flow over the 

fetal syncytialized cells.  As such, any compromise of these cells will lead to dire consequences 

to pregnancy.  The placenta, therefore, is a complex fetal organ with the following specific roles; 

1) To conduct selective exchange of a wide range of substances between mother and the fetus, 

for example, transport of nutrients and gasses and protecting the fetus from toxic chemicals or 

bacteria and other pathogens.  For this to happen successfully, a wide range of transport 

mechanisms are involved, including passive diffusion, pinocytosis, active transport and 
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phagocytosis.  2) To maintain pregnancy by secreting an array of molecules important for fetal 

survival. 3) To provide an immunologic barrier between the embryo and the mother and as such 

protect the foreign implanted embryo from maternal antigenic attack and also preventing any 

foreign antigens from attacking embryo.  Therefore, placental integrity is pivotal to pregnancy 

success and any faults will pose a great risk in the developmental process of the embryo [157, 

158].  

 

HUMAN PLACENTA 

   Placental development starts immediately after conception, and for 9 months, remains the 

principle excretory, endocrine, metabolic, and respiratory organ for the growing fetus.  During its 

development, the blastocyst rapidly increases in size, eventually bursting out of the zona 

pellucida immediately followed by implantation into the mid-line of the upper part of the 

posterior wall of the uterus.  A change in the structure of the trophoblast ensues, leading to 

interdigitation of the uterine microvilli and trophoblast cell membrane.  Trophoblastic cells 

penetrate uterine epithelium into the underlying stroma triggering invasion processes that result 

in trophoblastic cells differentiating into two layers.  These two layers are extravillous 

cytotrophoblast and STs, forming a continuous fused single layer of cells with regenerative 

cytotrophoblasts underneath [159-162], to replenish damaged ST cells.  Continual growth of ST 

leads to delineation of extracytoplasmic cavity forming a spongy structure, bathed with maternal 

blood via the spiral arteries [163-165].  At term, on average, a healthy placenta would weigh 

approximately 500 grams with a diameter and thickness of 20cm and 3 cm respectively.  

Typically, large volumes of blood flow through the placenta at an approximate rate of 500 to 

700ml per minute.  A large network of capillaries is a common feature of placentas; in fact, it is 
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estimated that if stretched, these capillaries would be about 50 km long. The ST is thus a fused 

single layer epithelium performing barrier functions, regulating nutrients and waste products 

exchange between the fetus and mother.  These cells were long thought to be immunological 

inert, but now evidenced to be immunological active [119, 166, 167].  In essence, damage to the 

ST is tantamount to consequences that may compromise pregnancy.  

 

IMMUNOLOGY OF THE PLACENTA 

   Immunologically, placenta, being a semiallogeneic organ, eludes maternal immune 

recognition via various mechanisms, some not yet well established. Mostly, down regulation of 

class I major histocompatibility complex (MHC) antigen expression on trophoblast cells is more 

pronounced and important for preventing tissue rejection [168].  During normal pregnancy, large 

amounts of trophoblast debris is shed from placenta into maternal circulation; phagocytosis of 

these debris influence immune microenvironment marked by switching macrophage phenotype 

such that they are likely to deviate maternal immune responses towards tolerance and away from 

inflammation [169].  Also, phagocytosis of trophoblast debris increased macrophage expression 

of indoleamine 2,3 dioxygenase (IDO), a key immunosuppressive enzyme important in activated 

catabolism of tryptophan [169]. Moreover, induction of IDO, in dendritic cells is up regulated 

during experimental malaria infection and its inhibition slightly suppresses parasite density in 

association with enhanced proliferation and IFN-  production by CD4+ T cells in response to 

malaria parasite [172]. Furthermore, other deficiencies, such as deficiencies in vitamin D have 

been shown to influence placental immune state [170, 171].  Also, ST cells have the capacity to 

secret cytokines and chemokines in response to antigenic challenge, acting to modulate maternal 

immune system, as is the case of PM [119, 167].     
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   The mammalian placental epithelium is heavily glycosylated, as a mechanism for 

attachment to uterine wall as well as shock absorption [173-175].  Glycosylation, however, has 

been shown to also benefit pathogens in mediating virulence.  During placental malaria, for 

example, chondroitin sulfate A glycosaminoglycan (GAG), has been implicated in binding of 

iRBCs and sequestration in the placenta [176, 177]. This phenomenon highlights the importance 

of GAGs as a central component in malaria pathogenesis as discussed later in this chapter. 

   During placental development, endovascular invasion juxtaposes fetal cells with uterine 

wall promoting ST cell direct contact with maternal blood.  Furthermore, studies have shown ST 

cells as a primary source of monocyte inflammatory protein (MIP)-1 alpha, a chemokine 

responsible for the migration of monocytes, natural killer cells and T cells, all comprising 

decidual granulated leukocytes (DGL). Such responses contribute to recruitment of decidual 

leukocytes towards the intervillous space (IVS), in close proximity to the ST and act to 

manipulate microimmune environment at the maternal-fetal interface as discussed above [166, 

167, 178].  In fact, to create a favorable immune environment for the fetus, anti-inflammatory 

responses are more favored than pro-inflammatory [179-181].   

 

Placental malaria 

 Selective sequestration of malaria infected erythrocytes in the placental IVS and on ST 

cells facing maternal blood circulation is the classical presentation of PM [182]. In response to 

sequestered iRBCs, ST cells secrete chemical signals, chemokines, attracting a host of immune 

cell into the IVS [166, 167, 178, 183, 184] that proliferate causing occlusion of IVS; resulting in 

placental insufficiency, a danger to both mother and fetus (See illustration below figure 2). 
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Figure 2.2.  Microscopic evidence of pathology associated with PM 

(Courtesy of Dr. Julie Moore) 

 Figure legend. Hematoxylin and eosin stain (H&E stain or HE stain) showing Pathology 

associated with PM.  Left panel shows a healthy, normal PM negative placenta, and PM 

positive placenta, right panel; increased cellular infiltration and disruption of IVS is 

evidenced. 

Consequences of PM include; low birth weight, anemia, and preterm delivery and in 

some instances abortion result from placental malaria [182, 185]. It is noteworthy to remember 

that pathology of PM emanates from interactions between PfEMP-1 and chondroitin 4-sulfate 

proteoglycan (CSPG) [166, 167, 178, 183, 184, 186]. 

CSPG is the major ligand responsible for placental parasite sequestration.  In general, 

proteoglycans are large macromolecules constituting a protein core decorated with gylcan 

moieties; glycosaminoglycans are linear, sulfated and negatively charged [187-190].  These 

molecules contain disaccharide repeat regions, composed of uronic acid (D-glucouronic or L-

iduronic) and amino sugars (D-galactosamine or D-glucosamine) and (4 s or 6s) sulfation pattern 
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and (beta 1-4, beta 1-3, beta 2-6) glucosodic linkage [191].  With exception of hyaluronic acid, 

all glycosaminoglycans are found covalently linked to a core protein [192].  For Chondroitin 

sulfate and heparan sulfate, the linkage involves a specific tetrasaccharide composed of two 

galactose residues, a xylose and a glucuronic acid residue and coupling to the protein is through 

an O-glycosidic bond to a serine residue [193-195].  Chondroitin sulfate-bearing proteoglycans 

include: Decorin, versican, aggrecan, thrombomodulin and CD44 [196-199]. Importantly, these 

proteins have been linked to critical biochemical functions such as regulating cell adhesion, 

migration, proliferation, and differentiation [196-198, 200, 201].  Of note, the glycosylation 

processes are marked by protein post-translational modification rather than straightforward 

protein synthesis from DNA and a number of important transcripts encoding specific 

glycosylation enzymes have been identified.  In particular, from mouse studies, enrichment of 

GlcNAc-4,6-O-sulfotransferase, C5-epimerases, and 3-O-sulfotransferases were shown to be 

involved in late GAG biosynthesis during embryogenesis [201].  Different types of chondroitin 

sulfates are found in proteoglycans (table 1 below); however, of importance in PM is chondroitin 

4-sulfate (C4S) proteoglycan, which predominantly interacts with iRBCs.  Considering that CSA 

is an iRBC receptor in the placenta, and that CD44 is a CSA bearing PG and has been shown to 

inhibit cytoadhesion of iRBC binding to CD36 [203], highlight the importance CD44 

proteoglycan.   As such, the impetus for this study is to determine role of CD44 CSA bearing 

core protein in PM, establish the influence of malaria on CD44 protein abundance, and also 

establish ST cellular response with regard to CD44 expression. 
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Chondroitin 

sulfate type 

  Disaccharide  

repeat 

Source Common name 

A GlcAβ1-  

3GalNAc4S 

Cartilage and  

other tissues 

Chondroitin-4- 

sufate 

B IdoAα1-  

3GalNAc4S 

Skin; tendon Dermatan sulfate 

C GlcAβ1-  

3GalNAc6S 

Cartilage and  

other tissues 

Chondroitin- 

6-sulfate 

D GlcA2Sβ1-  

3GalNAc6S 

Shark cartilage;  

brain 

Chondroitin-2,  

6-sulfate 

E GlcAβ1-  

3GalNAc4, 6diS 

Squid; secretory  

granules 

Chondroitin-4,  

6-sulfate 

 

Table1: A summary of different types of chondroitin sulfate found on mammalian cells 

Table legend: GlcA = glucuronic acid, GalNAc = N-acetylgalactosamine, S = sulfate, the letters 

 and  denote the carbon where glycocydic linkage occurs. These descriptions were partially 

adapted from National Library of Medicine – Medical Subject Heading (MeSH) web page 

 

SUMMARY AND GAPS IN KNOWLEDGE 

   Our understanding of iRBC placental cytoadhesion and its consequences has increased 

tremendously over the past decade.  This, however, created more questions than answers with 

regard to CSA and chondroitin sulfate proteoglycan (CSPG) interaction and how this interaction 

influences ST cell function.   
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   Notably, CSPG, a known ligand for iRBCs is heavily expressed on ST, thus, promoting 

sequestration of malaria iRBCs within the placental IVS as discussed earlier.  In addition, ST 

cells have been demonstrated to be competent secretors of potent inflammatory molecules, 

chemokines and cytokines that can change the dynamics of cell trafficking within the IVS in an 

event of antigenic stimulation [166, 167]. A good example, shows that stimulation of ST cells in 

culture with bacterial lipopolysaccharide, (LPS) a known toll like receptor 4 (TLR4) agonist 

[166], and iRBCs [167] leads to tyrosine phosphorylation of mitogen activation protein kinases 

(MAPKs) resulting in downstream transcription of genes necessary for production of pro-

inflammatory cytokines [166, 167].  These cytokines are the primary causes of gross pathology 

in tissues if in excess, a response deleterious to placenta and hence fetus [205].  In this scenario, 

sequestration of iRBCs within the IVS followed by morphologic changes characterized by 

excessive macrophage infiltration, malarial pigment deposition, fibrinoid deposition, 

trophoblastic basal lamina thickening, have far reaching consequences: ST necrosis or 

ultrastructural damage such as partial microvilli loss [186], result in placental insufficiency.  

Preterm delivery, low birth weight of infant and sometimes abortion may occur [207, 208] (see 

illustration in figure 2).  

    

Put together, these observations strengthen the need for disease intervention strategies to 

combat the huge problem malaria posses to the mother and her unborn fetus. What we have 

proposed to do is in line with understanding parasite/ host interaction and is critical for pushing 

forward knowledge base of strategies geared towards alleviating the health burden of mothers in 

malaria endemic.   
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    To achieve the full potential of developing novel chemotherapeutics and immune 

prophylaxis for pregnant women, more studies remain paramount.  The roles of cytoadhesion 

and pro-inflammatory responses during placental malaria pathogenesis are well documented, but 

how ST cells orchestrate this role is not yet well understood.  It is not clear whether binding of 

iRBCs to CSPG influence the net abundance of available CSPG, and if so, by what means. Some 

ideas put forward so far suggest that given the nature of CSPG, they posse a protein backbone 

that mediates attachment to cellular membrane and in some cases these proteins are 

transmembrane with cytoplasmic domains bearing residues that can be phosphorylated and act to 

recruit adaptor molecules important for cellular signaling.  These ideas have not yet been 

exhaustively explored in the context of PM, therefore warranting an in depth assessment.  So far, 

our laboratory has shown malarial components such as hemozoin, parasite GPI and iRBCs as 

causing overt stimulation of ST cells [119, 166, 167, 178].  These observations, together with 

differential CSPG levels in malaria infected women [209], lay precedence for studies toward 

discerning involvement of CSPG core proteins in eliciting such responses.  Also, the role these 

core proteins plays at influencing net immune response in the placenta are of key interest. 

Therefore, studies defining proteoglycans in PM are important in providing the much needed 

explanations.  It is plausible to expect some level of placental malaria disease driven modulation 

of CSA core proteins.  To answer some of these questions, careful manipulation of an in vitro 

system developed for studying iRBCs binding to ST is needed to investigate the responses 

elicited by ST cells during interaction with iRBCs and malarial components such as GPI and Hz.  

In this study, we developed such a system, which we have used to attempt to discern the role of 

CD44 CSPG core protein in malaria pathogenesis.  
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CHAPTER 3 

CD44 IS A FUNCTIONALLY RELEVANT RECEPTOR FOR ADHERENT 

PLASMODIUM FALCIPARUM IN THE PLACENTA 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1
 

 

 

                                                 
1
 Simon O. Owino, Briana Flaherty, Demba Sarr, Samantha Burton, Frank Michel, R. Jeff 

Hogan, David S. Peterson, and Julie M. Moore 

To be submitted to PLOS ONE Journal  

 

 

 
 



 

52 

ABSTRACT 

Plasmodium falciparum infected red blood cells (iRBCs) accumulate in the maternal 

blood space of the placenta during malaria infection, culminating in pathological consequences 

deleterious to pregnancy success.  The fetal cell in contact with maternal placental blood is a 

syncytialized epithelium called syncytiotrophoblast (ST). The placenta has a rich supply of low 

sulfated chondroitin sulfate A (CSA), a principle ligand for VAR2CSA parasite protein, present 

on the surface of placenta-adherent iRBCs, but the critical proteoglycans bearing CSA that 

participate in placental adherence and influence the course of infection have not been studied. 

Given that ST is immunologically active in the presence of iRBCs, here we examined the role of 

CD44 proteoglycan, a known CSA bearing molecule with a trans-membrane cytoplasmic 

domains adept at signaling functions, in iRBC/ST functional interactions.  

Using a flow cytometric approach with extracted ST proteins, we show specific CD44 

protein binding on the surface of CSA-adherent iRBCs, an interaction that is dependent on CSA, 

since chondroitinase treatment of syncytiotrophoblast membrane proteins (SMPs) significantly 

reduced binding and a parasite line devoid of VAR2CSA did not capture CD44. Lentiviral 

knockdown of CD44 expression in the choriocarcinoma cell line, BeWo, confirms a significant 

role for ST CD44 in iRBC binding. Additionally, we show by western blot CD44-dependent 

changes in tyrosine phosphorylation status of a series of ST proteins and confirm involvement of 

Src Kinases using specific inhibitor, indicating a potential functional role for CD44 in the ST 

immunological response..  By using a specific Src kinase inhibitor, we confirm involvement of 

these family of kinases in response to iRBC activation.  Furthermore, malarial exposure appears 

to enhance CD44 expression by ST cells in vitro as assessed by protein detection in cell lysates 

by ELISA.   
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In summary, we provide evidence for CD44 proteoglycan potential dual role as an in vivo 

receptor for VAR2CSA expressing iRBCs as well as an ST signaling molecule modulated by 

malaria infection.   

 

 

 

Key words: Placental malaria, CD44 proteoglycan, Chondroitin sulfate A, Syncytiotrophoblast 
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INTRODUCTION 

Malaria infection during initial pregnancies bears serious consequences for both mother 

and fetus [1-3]. Of the five known Plasmodial species infective to human beings, Plasmodium 

falciparum is most virulent, mainly due to expression of variable genes encoding Plasmodium 

falciaprum erythrocyte membrane protein-1 (PfEMP1), an adhesive protein exported to 

membranes of infected erythrocytes [4-6].  As a consequence, interaction of PfEMP1with host 

molecules on the endothelium of microvasculature and placental epithelium impedes clearance 

of infected cells [5, 7-9]. Ultimately, sequestered P. falciparum-infected red blood cells (iRBCs) 

induce a myriad of inflammatory responses [10-14], which are inadequate in clearance of 

parasites from the maternal blood, and instead culminate in a pathological condition referred to 

as placental malaria (PM).  The PM-induced inflammatory responses cause significant local 

tissue damage and are associated with poor birth outcomes [13, 15-19].  

The specialized fetal epithelial cells (syncytiotrophoblast; ST) in direct contact with 

maternal blood in the villous placenta boast a rich supply of a low sulfated form of chondroitin 

sulfate A (CSA) [20, 21], a principal ligand for sequestering iRBCs that express VAR2CSA, an 

adhesive parasite protein on membranes of iRBCs [6, 22]. It has been shown that disruption of 

this gene ablates iRBCs binding to placental epithelium [23]. Importantly, we have shown 

immunologic consequences of interaction between VAR2CSA-expressing parasites and CSA on 

STs, marked by secretion of cytokines and chemokines [10, 24-27], which may play a role in 

infiltration of intervillous space by immune cells [26, 27], often harmful to STs integrity [18, 

26].  These underlying damages and inadequate repair of STs contribute to intrauterine growth 

retardation and ultimately may lead to abortion or delivery of underweight babies [16]. 
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Cross talk between mammalian cells is critical for function and survival. Such cellular 

interactions are mostly governed by an array of membrane bound proteins and extracellular 

molecules [28-34]. Protein posttranslational modification during biosynthesis is responsible for 

most functional specificity of molecules [35]. For example, protein modification by addition of 

glycan moieties alters protein properties and function.  Relevant to immunologic function, CSA 

on the chemokine receptor CCR5 has been shown to mediate its interaction with the chemokine, 

RANTES/CCL5 [36], and in coagulation, CSA bearing proteoglycan (PG), thrombomodulin, 

engages thrombin and therefore modulates its activity [37].  In these cases, the PG inclusive of 

CSA is operational. In the case of P. falciparum iRBCs [20, 38-40], while the CSA glycan has 

been well characterized as an iRBC ligand, the critical protein backbone that bears CSA on STs 

and anchors iRBCs on the placental epithelium remains to be identified.  Since the protein 

backbone of a PG is important in determining function, attempts have been made to elucidate 

protein cores responsible for CSA expression on ST cells during PM. A protein with amino acid 

residues consistent with aggrecan was proposed [41] and thrombomodulin has most often been 

suggested as a possible candidate [42-44].  However, because STs are immunologically activated 

post- interaction with iRBCs [10, 25-27], we decided to target a PG that would satisfy a dual role 

of receptor as well as signaling molecule.   

CD44 proteoglycan, a principle hyaluronic acid (HA) receptor [45-49] was appealing in 

this context because it bears CSA and possesses a cytoplasmic domain that interacts with 

phosphorylated tyrosine residues of cytoplasmic molecules such as Lck, Fyn and other Src 

kinases [50].  This is of relevance since activation of these kinases precede changes in cellular 

immunologic function, as evidenced by T cell activation post engagement of CD44 by HA [50, 

51] and CCL5 [36], which induce secretion of interferon gamma (IFN- ).  Moreover, CD44 was 
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recently shown to act as a receptor for CSA-adherent P. falciparum on endothelial cells and, via 

Src-family kinases and MEK kinase, to influence the ability of CD36 to act as a cytoadherence 

receptor for iRBCs with that specificity [52]. Considering these functions and the fact that CD44 

is present on human placental ST cells [31] supports our interest in determining role of CD44 as 

a P. falciparum iRBC sequestration receptor important for ST cell stimulation in human 

placenta.  

 

MATERIALS AND METHODS 

Placental sample collection and processing 

Informed consent to obtain fresh, term placenta from elective Cesarean sections was 

sought from women attending pre-operative counseling at Athens Regional Hospital, Athens, 

Georgia USA, using forms pre-approved by both Institutional Review Boards of University of 

Georgia and Athens Regional Medical Center.  Immediately post-Cesarean delivery, placentae 

were collected into a suitable container containing saline with heparin and immediately 

transported to the laboratory for processing. Placentae were processed following our previously 

published protocol [10].  Upon successful purification of cytotrophoblast cells, 3.0 x 10
5
 

cells/cm
2
 were cultivated on 6 and 24 well cell culture treated plates (Corning Inc., New York. 

USA).  Following syncytium formation, normally by day 4 of culture, cells were used for 

experiments. 

For immunohistochemical analyses, placental tissues collected from women naturally 

exposed to malaria in western Kenya were utilized. The client recruitment and sample collection 

procedures and placental sample processing were previously summarized [53, 54]. PM-negative 

samples were confirmed by both microscopy and PCR [53] to be infection-free. 
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Cultivation of P. falciparum and isolation of trophozoite-infected iRBCs  

P. falciparum CS2 (CSA-binding; WT) and FCR3 var2csa (KO; generously provided by 

Artur Scherf [22] laboratory isolates were kept in continuous culture as described [10].  Cultures 

were maintained at 4% hematocrit in 75 cm
2
 tissue culture flasks at 37°C in 25 mM HEPES, 0.05 

mg/mL hypoxanthine, 2.2 mg/mL NaHCO3, 0.5% Albumax, and 0.01 mg/mL gentamicin RPMI 

medium.  The VAR2CSA KO parasites were maintained under identical conditions as CS2 with 

the exception of substitution of half the volume of Albumax with human O
+
 serum.  Cultures 

were confirmed to be mycoplasma negative by routine PCR analysis.  Synchronous cultures were 

achieved by weekly/biweekly treatment with 5% D-Sorbitol.   

To purify trophozoites, sorbitol synchronized cultures were enriched over a 35% to 70% 

percoll step gradient and centrifuged at 2000 xg. Cells at the interface were harvested and 

washed 3 times in PBS supplemented with 2 % fetal bovine serum (FBS). Cell numbers were 

determined and concentration adjusted to 10
6
 cells per ml. 

 

Cell stimulations 

Syncytialized primary trophoblast cells (ST) or the choriocarcinoma cell line, BeWo, 

purchased from American Type Culture Collection (Manassas, Virginia USA) were used. The 

latter were seeded at 1 X 10
5
 cells/mL in 24 well tissue culture plates and left at 37  C, 5% CO2 

for 24 hour in Ham’s F12 medium supplemented with 10% fetal bovine serum and 1% 

antibiotics (100 M penicillin/100 mU streptromycin) mixture. Cultures were stimulated with 

10µg/ml of bacterial lipopolysaccharide [55] purchased from Sigma Aldrich (Saint Louis, 

Missouri USA) as positive control [25], 10 uninfected erythrocytes or 10 iRBCs per ST nucleus.  

Stimulations were done for five, fifteen and thirty minutes for assessing phosphorylation changes 
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and longer incubations, 12 and 24 hours for assessing protein expression and secretion.  BeWo 

ST cells were cultured and treated with 10µM/ml of a pan Src Kinase inhibitor (PP1, cat# 

567809, EMD Millipore, Billerica MA, USA) or vehicle (DMSO) for 30 minutes prior to five 

minutes stimulation with iRBC  

 

shRNA knock down of CD44 using lentiviral particle delivery system 

 For targeted CD44 knock down, a pool of human SMARTvector 2.0 Lentiviral shRNA 

particle (VSH-5417; Thermo Fisher Scientific, Lafayette, CO) was utilized following 

manufacturer’s instructions. The following SMARTvector 2.0 particles were used, Non-target 

negative control for RNAi (S-005000-01), Human GAPD positive control (S-001000-01) and 

three different pools for targeted CD44 knock down (SH-009999-01-10, SH-009999-02-10 and 

SH-009999-03-10).  In order to determine multiplicity of infection (MOI), growth medium was 

replaced with 225 l of serum free medium and Lentiviral control particles listed above prepared 

into eight five-fold dilutions; 25µl of diluted particles were added into respective wells 

containing 50,000 BeWo cells. After 4 hours, 1 ml of complete medium was added to cells. 

Successful integration of control shRNA was monitored by expression of green fluorescence 

protein (GFP) under a fluorescent light microscope at 72 hours post-transduction.  A MOI of 0.1- 

0.2 was chosen and hence used for transducing cells with shRNA specific for knocking down 

CD44 mRNA, following the same procedure. Transduced cells sorted on the basis of GFP into 

GFP-intermediate and GFP-high populations using a MoFlo cell sorter (Beckman Coulter, Inc.).  

Extraction of ST membrane proteins 

The basal membrane was trimmed off fresh placenta and villous material extracted and 

minced into small half-centimeter cube sections, which were further washed in 0.9% NaCl to 
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remove excess blood.  The tissue pieces were then incubated for 60 minutes with intermittent 

mixing every 10 minutes in 1x cold phosphate buffered saline (PBS) supplemented with a 

cocktail of protease inhibitors; 2 g/ml aproptinin, 5 g/ml leupeptin, 1 g/ml pepstatin A, 1mM 

sodium orthovanadate and 1mM phenylmethylsulfonyl fluoride (abcam, Cambridge, MA, USA).  

The resulting suspension was passed through a 20 m pore size sieve to filter out debris and large 

tissue pieces. The filtrate was clarified sequentially by centrifugation at 1000 xg for 10 minutes 

then again at 14000 xg before membrane proteins were collected using a final spin at 100000 xg.  

The pellet was then re-suspended in 2ml of cold 1X PBS supplemented with protease inhibitor 

cocktail and concentrations determined by Bradford protein assay (Thermo Scientific).  

Separately, cultured ST proteins were prepared post stimulation with iRBCs. Briefly, ST cells 

were lysed in RIPA buffer (150mM NaCl, 50mM Tris, 1% V/V NP-40, 0.5% sodium 

deoxycholate, 1% SDS (sodium dodesyl sulfate) and supplemented with protease inhibitor 

cocktail as above, with protein concentration likewise determined by Bradford protein assay.  

 

Western blots  

For analysis of protein phophorylation state, ST protein concentrations were equalized 

prior to separation by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE).  

For resolving proteins, 12% gels were run at 150 volts for 90 minute, then proteins transferred to 

nitrocellulose membrane for 60 minute, blocked for 60 minute in 5% bovine serum in 1x tris 

buffer saline supplemented with 1% Tween-20 (TBS-T), then incubated overnight at 4°C with 

mouse mAb anti-phosphotyrosine (clone 4G10) from Upstate Biotechnology (Lake Placid, NY). 

Immunoblotted proteins were visualized with horseradish peroxidase–linked secondary 

antibodies (Dako, Glostrup, Denmark) using enhanced chemiluminescent (ECL) substrate 
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according to the manufacturer’s specifications (Amersham Pharmacia Biotech). To re-probe 

blots, membranes were incubated in stripping buffer (100 mM -mercaptoethanol, 2% SDS, 62.5 

mM Tris (tris (hydroxymethyl) aminomethane)–HCl, pH 6.7) at 55°C for 1 hour and rinsed with 

PBS several times prior to a second Western blot analysis for assessing expression of 

housekeeping proteins as loading controls; rabbit anti-human GAPDH (Cat # 5174S, Cell 

Signaling Technology). 

 

Enzyme Linked Immunosorbant Assays (ELISA) 

To assess CD44 expression, 100 g of proteins isolated from stimulated ST cells were 

used for overnight coating of Immulon II plates (Thermo Scientific, Rochester, NY USA) in 

duplicate wells.  Wells were washed four times in 1x phosphate buffered saline (PBS) 

supplemented with 0.1% bovine serum (BSA) and 0.05% Tween-20. Blocking for non-specific 

binding was done using 1% BSA in PBS for 30 minutes at room temperature. Plates were then 

incubated with 1 g/ml of anti-CD44 (IgG2a k; MCA89, AbD Serotec, Raleigh, NC) for 2 hour 

at room temperature. After primary antibody incubation, washing was done as detailed above 

then 0.25ug/ml of polyclonal biotin anti mouse IgG (cat # 13-4013-85 eBioscience San Diego 

California, USA) was added to each well. Plate was then incubated for 30minutes with a 1/200 

dilution of streptavidin-horseradish peroxidase (HRP) conjugate enzyme system (R&D Systems). 

Thermo Scientific Pierce TMB chromogenic substrate used to detect HRP activity.   

Matched antibody pairs and recombinant standards were used for quantification by 

ELISA in assessment of macrophage migration inhibitory factor (MIF), interleukin (IL)-8, and 

CCL3 (R&D systems) and IL-6 (BD Biosciences)  analytes in culture supernatants following 

procedures as described by the manufactures.  
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Immunohistochemistry 

Five m thick paraffin embedded placental tissues mounted on glass slides were 

subjected to deparaffinization, hydration and antigen retrieval protocol [56]. Endogenous 

peroxides in tissues were quenched by incubating with 30% hydrogen peroxide for 30 minutes at 

room temperature and washed once in PBS. Blocking for non-specific binding was done using 

4% BSA in PBS for ten minute prior to addition of mouse anti-CD44 (IgG2a k; MCA89, AbD 

Serotec, Raleigh, NC) at 10µg/ml concentration and incubated at room temperature for one hour. 

Following primary incubation, tissues were washed in PBS four times. Polyclonal rabbit anti-

mouse (Millipore, Bedford, MA) antibody was used at 2µg/ml for one hour then slides washed as 

above.  Color development done using a rabbit specific DAB substrate kit (cat # 760-4311, 

Ventana Medical systems). Tissues were then dehydrated and cover slips mounted using flow 

texx (cat # 14-390-3, Thermo Scientific).  

 

Flow cytometry   

Sorbitol-purifed trophozoites were labeled with hydroethidine (HE) at 2 g/ml per 10 

million iRBCs for 45 minutes and washed three times. To assess CD44 binding, 1 X 10
6
 cells 

were incubated with 1000 g of ST lysate proteins and incubated for 60 minutes at 4
o
 C with 

gentle shaking. Detection of CD44 bound on to erythrocytes was done using monoclonal mouse 

anti-CD44 (IgG2a k; MCA89, AbD Serotec, Raleigh, NC) isotype followed by signal 

amplification using a polyclonal biotin anti mouse IgG (cat # 13-4013-85) and streptavidin FITC 

(cat # 11-4317-87) (eBioscience San Diego California, USA). Data were acquired on a 

FACSCalibur Becton Dickinson (BD Biosciences) cytometer and analyzed using FloJo software 

(Version 9.5.2, Tree Star, Inc., OR). 
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Parasite binding assay 

BeWo cells were grown for 48 hours in 12 well tissue culture plates.  Percoll-enriched, 

HE-stained iRBCs were washed three times in binding medium (RPMI-1640 medium 

supplemented with 25mM Hepes and 10% human O
+
 serum), enumerated and added to BeWo 

cells in binding medium at a ratio of 10:1. Following a one hour incubation, the wells were 

washed three times with binding medium, using gentle rocking and vacuum aspiration to remove 

medium.  Enumeration of bound cells was done by capturing 10 low power photomicrographs 

per well using a fluorescent microscope (Leica DM IRBE, Ludi Electronic Production Ltd.) with 

a digital camera (model C4742-95, Hamamatsu) and analyzing fluorescence intensity with 

Image-J (version 2; rsbweb.nih.gov/ij/). 

 

Statistical analysis 

Graphing and statistical analysis were done using GraphPad software (version 5; GraphPad 

Sofware Inc., CA) 

 

RESULTS 

CD44 interacts with VAR2CSA on infected red blood cells via CSA  

To determine that CSA-bearing CD44 can mediate iRBC adherence to ST, placenta-

derived membrane proteins were incubated with CS2 parasites, a P. falciparum line shown to 

have a stable CSA binding phenotype [57] and probed with antibodies specific to CD44. To 

evaluate the extent to which this reaction is attributable to VAR2CSA, a VAR2CSA null (KO), 

non-CSA adherent parasite line, was employed. As shown in Figures 3.1A and 3.1B, interaction 

of placenta-derived CD44 with iRBCs was significantly influenced by the presence of 
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VAR2CSA, with significantly reduced binding to VAR2CSA null iRBCs (Figure 3.1C; p < 0.05, 

n=3; unpaired t-test). Pre-treatment of the placental membrane proteins with increasing 

concentrations of chondroitinase ABC, a CSA digesting enzyme, resulted in significantly 

diminished CD44 binding at 2 units per milliliter (Figure 3.1D; p < 0.05, n =3, unpaired t- test), 

confirming the dependence of the CD44/VAR2CSA interaction on the presence of CSA.   

The importance of cell surface CD44 in CSA-dependent iRBC adherence to trophoblast 

was assessed using a lentiviral short hairpin RNA knockdown approach, evaluated by protein 

expression (Figure 3.2A) and GFP expression on BeWo STs. Cells were sorted into intermediate 

and bright GFP-expressors and then assessed for iRBC binding; iRBCs were stained with a red 

DNA intercalating dye, HE (Figure 3.2B). While non-transduced BeWo cells and intermediate 

GFP cells readily captured CS2 iRBCs in vitro, significantly fewer cells bound to GFP-bright, 

CD44 knock down cells (Figure 3.2B and 3.2C).  

 

CD44 expression on ST is influenced by interaction with CSA-adherent iRBCs 

There is evidence in the literature that CSA expression on ST is increased in the context 

of PM [58]. Our preliminary data assessing glycan-associated transcripts support this observation 

(Appendix 1). Therefore, it was of interest to examine the extent to which CD44 expression is 

influenced by iRBC exposure and VAR2CSA-iRBC engagement of cell surface CSA. Toward 

this end, primary ST was exposed to VAR2CSA intact (CS2; WT) and null (KO) iRBCs, as well 

as uninfected RBCs (uRBC) for 24 hours. Assessment of CD44 levels on proteins isolated from 

these cells by ELISA method showed CSA-adherent iRBC (VAR2CSA intact)-dependent CD44 

up-regulation on ST cells compared to non-adherent (VAR2CSA null) iRBCs, (Figure 3.3A; p < 

0.05, unpaired t test). This observation notwithstanding, immunohistochemical staining of fixed 



 

64 

paraffin embedded placental tissues from malaria-exposed Kenyan women, while confirming 

CD44 expression (Figure 3.3B), did not reveal differences in antigen staining intensity on ST in 

infected relative to uninfected placentas (Figure3.4C), with intervillous leukocytes showing a 

similar level of staining in the context of infection (Figure 3.4B). Interestingly, this analysis 

revealed a slight tendency for decreased leukocyte CD44 expression in infected samples relative 

to the malaria-free counterparts (Figure 3.4D).  Despite the absence of a clear relationship 

between infection and CD44 expression on ST, linear regression analysis of CD44 staining 

intensity with parasite density on thick smears revealed parasite density as a positive predictor of 

CD44 levels on ST (Figure 4E; R
2
 = 0.35, p =0.016).  

 

ST activation by iRBC exposure is influenced by CD44 

Since ST is known to respond immunologically to iRBCs and other malarial components 

[10, 25-27], and given that CD44 binds to CSA-adherent iRBCs and is known to have signaling 

function [52], it was important to discern the role it may play in ST cell activation.  To assess 

this, intracellular phosphotyrosine species were examined by western blot following exposure of 

intact and CD44 knockdown BeWo cells to uRBCs and both CS2 and KO iRBCs. This analysis 

revealed that several proteins migrating between 30-40 kDa, at ~50 kDa, at ~58 kDa, and at 100-

110 kDa were differentially activated in cells exposed to CSA-adherent versus non-adherent 

iRBCs (Figure 3.5A).  Moreover, most of these proteins were less abundant in CD44 KO cells; 

proteins migrating at ~50 kDa were notably absent from both CS2/WT iRBC-exposed CD44 KO 

cells and KO iRBC-exposed cells (regardless of lentiviral transduction).  Furthermore, by using a 

specific inhibitor for Src kinases, PP1, a specific reduction of phosphorylated proteins in the 50 
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to 60 kD range was observed with iRBC exposure, suggesting that CD44 stimulation activities 

are mediated by part via Src family of kinases (Figure 3.5B). 

 

 

DISCUSSION 

  

While substantial progress has been made towards increasing our understanding of the 

role CSA plays in mediating P. falciparum-iRBC binding to ST and sequestration in the IVS, the 

nature and role of proteoglycans that bear CSA on ST cells has not been elucidated.  The present 

study made use of two cell types, primary trophoblast and BeWo choriocarcinoma cells, to 

address this problem.  BeWo cells are comparable to primary cells in many aspects, including the 

ability to secret signature placental derived hormones [59] in culture, and as we demonstrate, to 

express CD44-associated CSA on the cell membrane.  Notably, BeWo cells in contrast to 

primary ST cells can be propagated indefinitely as mononuclear cells in vitro, greatly expanded 

to large amounts and are easily manipulated for functional studies like the one reported here.     

In this study, and backed by our prior experiences [10, 25-27] both cells have been useful tools 

for exploring Plasmodium/trophoblast interactions. 

The general processes leading to accumulation of iRBC in the placenta are well 

understood.  However, the nature of proteoglycans that express CSA on the ST membrane have 

not been determined, although thrombomodulin [42-44] and a protein with amino acid residues 

consistent with aggrecan [41] have been suggested as possible candidates.  Based on evidence 

supporting mitogen activated protein kinase dependent ST cell immunologic activation post- 

interaction with iRBCs [10, 25-27], as well as a report of CD44 acting as a signaling receptor for 

CSA-adherent iRBCs on endothelium [52], it was of interest to target a proteoglycan that would 

satisfy a dual role of receptor as well as signal transducer.  In this report, we show that CD44, a 
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known CSA-bearing proteoglycan, is present on ST cells and promotes binding of iRBCs as well 

as influences net tyrosine phosphorylation patterns in ST cells. 

In this study, two parasite strains, CS2, which is a known CSA binder [60] and an 

FCR3delta mutant var2csa, a non-CSA binder (knock out (KO)) [23] together with ST cell 

membrane proteins were used to demonstrate involvement of CD44 in iRBC binding to ST.  As 

expected, there was notable difference in amount of CD44 detected when ST membrane proteins 

were incubated with the two parasite lines, with VAR2CSA-intact iRBCs having significantly 

higher mean fluorescent intensity compared to KO iRBCs.  Notably, CD44 binding to iRBC was 

diminished, when proteins were pretreated with chondrointinase ABC, an enzyme that cleaves 

CSA. The residual binding post CSA cleavage could suggest that CD44 may be binding to iRBC 

using an alternative mechanism.  Given that HA, a known CD44 ligand is found as a pericellular 

coating on live cells [61], including red blood cells [62], could provide a plausible explanation to 

the residual CD44 binding phenomenon.  

It is known that adhesion molecules can serve as receptor-signaling molecules capable of 

influencing cellular activation [63].  Several studies have shown that iRBC adhesion to ST 

induces intracellular signaling by triggering activation of mitogen-activated protein kinase 

(MAPK) pathway [25-27].  Moreover, RANTES (CCL5) chemokine, induces the formation of a 

signaling complex composed of CD44, src kinases, and adapter molecules, triggering the 

activation of the p44/42 mitogen-activated protein kinase (MAPK) pathway [36].  Together, 

these observations set the premise for investigating the impact of CD44/iRBC interaction in 

influencing ST cellular activation.  Here, by knocking down CD44 on BeWo cells, we 

demonstrate a reduction in iRBC binding capacity.  Furthermore, we also show an altered 

tyrosine phosphorylation pattern, with reduced activity upon CD44 knock down.  It is of interest 
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to note that phosphorylation of 60 kDa protein is consistent with tyrosine kinase of the Src 

family, Fyn and Lyn, both important for cellular activation [36, 64] and in fact by using a pan 

Src kinase inhibitor, PP1, we confirm involvement of Src family molecules.  This is a novel 

observation, showing the potential of CD44 acting as a signaling receptor in ST.  Careful 

identification of the phosphorylated protein tyrosine kinases will be necessary to fully appreciate 

the functional significance of this activation.    

A full understanding of the functional implications of binding of iRBCs to ST during PM 

is still lacking, however, the ST is known to be highly immunoreactive, and capable of secreting 

cytokines and chemokines [25-27].  We are in the process of testing the effect of CD44 loss at 

altering these secretion patterns.  Our preliminary results suggest that knockdown of CD44 

actually increases MIF secretion capacity by BeWo cells (Appendix 2), which was an 

unexpected observation. It deserves mention that CD44 acts as the signaling component of the 

MIF receptor, CD74 [65]. Clearly, further examination of the role of CD44 in ST and how it 

might influence immunologic responses by these cells is warranted. Also, it remains important to 

evaluate any chemotactic responses of immune cells towards ST molecules in relation to CD44 

mediated signaling.  These studies will have important implications for the understanding of the 

biology of PM, as they will provide critical information with regard to ST cell immunologic 

stimulation.  Furthermore, since trophoblasts are involved in manipulation of local immune 

response, potentially participating in both protective and pathogenic immune mechanisms, an 

understanding of signaling receptors involved in these responses, has significant implications for 

the prevention and control of this important public health problem. 

Like all in vitro systems this cell culture approach has some limitations.  For example, we 

did not completely replicate flow conditions of blood in the IVS of the placenta, therefore the 
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static condition used in this model may not reflect true in vivo situations.  It should be possible in 

future work, however, to perform these studies in a flow cell.  Also, in vivo, cells work in 

concert; ST is in direct contact not only to iRBC during PM but also with maternal immune cells 

and their secreted factors, including cytokines and chemokines.  These factors may profoundly 

influence the expression of CD44 on the ST membrane and potentially affect its interaction with 

iRBC, which may influence the signaling properties.  We are currently investigating how these 

and other parameters may influence the system, with the aim of developing a better a system that 

closely mimics the in vivo environment. 

Without a concise understanding of host (ST) cell receptors involved in interaction with 

iRBC and modulation of immune responses in placenta during PM, full evaluation of therapeutic 

methodologies will not be achieved.  The study described here, provides for the first time, to the 

best of our knowledge, a compelling argument for the involvement of CD44 proteoglycan in the 

immune modulation of ST cells during PM.  Only through identification of signaling receptors 

involved in the iRBC-induced ST immune response will a complete understanding of the biology 

of maternal/fetal interface in the context of PM be achieved.    
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Figure legends. 

 

Figure 3.1. Interaction of placental CD44 proteoglycan with infected erythrocytes.  

 

Proteins derived from term human placental villous material were incubated with both 

VAR2CSA intact [68] and null (KO) iRBCs, probed with anti-CD44 antibodies and assessed by 

flow cytometry. A) Representative histograms showing CD44 staining on VAR2CSA null (KO; 

top panels) and VAR2CSA competent (WT; bottom panels) iRBCs; isotype controls, left panels 

and CD44 specific staining, right panels. B) Overlay of CD44 histograms; WT depicted in blue 

and KO in red. C) Summary of median fluorescence intensity of CD44 staining on CS2 [68] and 

VAR2CSA null (KO) iRBCs (n = 3; **P < 0.01 unpaired t test). D) Representative histogram 

overlay for iRBCs incubated with membrane proteins treated with 500mU/ml chondroitinase 

ABC in blue, intact membrane proteins in orange compared to isotype control in red, one sample 

representative of three placental protein preparations.  

 

Figure 3.2. CD44 is a receptor for CSA-adherent P. falciparum on BeWo cells. 

A) Bar graph showing percentage knock down on CD44 expression on BeWo ST cells 

based on CD44 elisa data.  B) Intact syncytialized BeWo cells (BeWo ST) and lentiviral 

transduced BeWo cells sorted on the basis of integrated lentiviral GFP expression to dim (CD44 

intermediate KO) and bright (CD44 greater KO) were incubated with CS2 parasites pre-treated 

with HE. Washed cells were assessed by fluorescence microscopy, one experiment 

representative of three. C) iRBC binding was enumerated as the sum of total fluorescence per 10 

wells per condition ( *P < 0.05, Dunn’s multiple comparison test).  
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Figure 3.3. Induction of CD44 expression by iRBCs on ST. 

A) Primary ST was exposed to medium alone (Med), uninfected RBCs (uRBC), CS2 

(iRBC WT) and VAR2CSA null (iRBC KO) strains. Extracted proteins were probed for CD44 

protein by ELISA. The CD44 signal is reported as optical density. B) Immunohistochemical 

staining for CD44 shows clear staining on ST and on intervillous leukocytes in a placenta 

exposed to malaria.  

 

Figure 3. 4. Determination of CD44 abundance on placental tissues from malaria infected 

and uninfected individuals. 

Fixed thin placental sections, 5 m thick, were probed for CD44 expression using specific 

antibodies as described in materials and methods section. Semi-quantitatively scored for CD44 

by two independent, blinded scorers (SO and DS) on a scale of 0 to 5. Graphs show summaries 

of these scores with median and Standard error of means, unpaired t test statistics) A) Malaria-

free and B) malaria-infected samples, showing staining scores for ST and intervillous leukocytes. 

C) Summary of CD44 staining score on ST and D) leukocytes (P value= 0.145, unpaired t test), 

by infection status.  E) Linear regression analysis of CD44 with parasite density per 300 

leukocytes as predictor (R square =0.35, p value = 0.016).    
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Figure 3.5. Tryosine phosphorylation in BeWo cells is influenced by both CSA adherence 

and the presence of CD44. 

 

ST cells were cultured in 6 cell tissue culture plates for 48 hours then stimulated for five minutes 

with iRBC as indicated with gently rocking. For the kinase assays, the cells were pre-incubated 

with respective inhibitors, Src kinases (567809, PP1, EDM Millipore, MA, USA) and MEK 

kinases (Cell Signaling Technology Inc, MA, USA) at 10 M, as indicated, for 30 minutes prior 

to the 5 minutes stimulation with VAR2CSA expressing iRBCs.  Western blotting for 

phosphotyrosine was performed as described in Materials and methods. Arrowheads indicate 

molecular weights as depicted.  A) Shows tyrosine phosphorylation pattern due to stimulation 

with adherent and non- adherent iRBCs, on intact BeWo, lentiviral vector control, lentiviral non-

target control, and lentiviral and CD44 knock down.  B) Show effect of Src kinase inhibitors on 

tyrosine phosphorylation on lentiviral vector control and CD44 knock down bewo cells; medium 

control, untreated, Src kinase inhibitor Src kinase vehicle only.  

 

 

 

 

 

 

 

 

 



 

80 

Figure 3.1.  
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Figure 3.1. cont’d. 
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Figure 3.2. 
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Figure 3.2 continuedC) 
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Figure 3.3.  
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Figure 3.4 
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Figure 3.4 continued  
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Figure 3.4 continued 
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Figure 3.5. 
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CHAPTER 4 

DIFFERENTIAL RESPONSE OF HUMAN TROPHOBLAST AND MONOCYTIC 

CELLS TO CHONDROITIN SULFATE A- ADHERENT PLASMODIUM FALCIPARUM 

INFECTED ERYTHROCYTES AND THE TLR2 LIGAND, PAM3C SK4 
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ABSTRACT 

The human immune response to malarial infection is known to be multifactorial, 

involving aspects of both innate and adaptive immune mechanisms. However, the complexity of 

innate immune responses that are engaged simultaneously by Plasmodium falciparum infected 

red blood cells (iRBCs) and malarial components are not well understood, especially during 

pregnancy. In the infected placenta, iRBCs sequester in the maternal blood space, inducing 

immune activation of the fetoplacental epithelium, the syncytiotrophoblast (ST), resulting in 

recruitment of monocytes and local secretion of a number of pro-inflammatory cytokines and 

chemokines.  While evidence shows that both iRBCs and hemozoin (Hz), the catabolic 

byproduct of hemoglobin metabolism by the intraerythrocytic parasite, both activate 

immunologic function in ST, the ability of this cell to respond to other malarial components like 

glycosylphosphatidylinositols (GPIs), which act through Toll-like receptor (TLR) 2, has not been 

examined.  Likewise, how this stimulation may affect the responses of recruited monocytes in 

the placental milieu and their participation in placental pathogenesis remains understudied.  In in 

vitro experiments, both ST and a monocytic cell line, THP-1, when stimulated with a known 

TLR2 ligand Pam3C SK4, exhibit immune activation, marked by secretion of interleukin (IL)-8. 

Neither cell type produces IL-8 following exposure to iRBCs. However, the presence of iRBCs 

augments Pam3C SK4-induced IL-8 secretion from ST, while the same exposure suppresses IL-8 

secretion by THP-1 cells. In addition, whereas iRBC exposure induces upregulation of CD44, a 

putative CSA-adherence iRBC receptor, on ST, this response is induced only by Pam3C SK4 in 

THP-1 cells. Together, these results suggest that ST and THP-1 responses to dual exposure to 

iRBCs and a TLR2 ligand are divergent, with complex exposure to malarial products promoting 
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ST innate immune responses but suppressing those from monocytes. Thus, as previously 

proposed, ST likely plays an important contributing role in placental malaria pathogenesis.  

 

 

Key words: Syncytiotrophoblast, Monocytes, THP-1, Pam3C SK4, 

Glycosylphosphatidylinositols, Toll-like receptor, Interleukin-8 
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INTRODUCTION 

Pregnant women are at an elevated risk of malaria infection, more pronounced in earlier 

pregnancies with better outcomes in subsequent ones [1].  The increased risk in primigravidae is 

due to sequestration of infected red blood cells (iRBCs) in the placenta via a specific 

parasite/host receptor/ligand interaction within the intervillous space and at the 

syncytiotrophoblast (ST), fetal cells in contact with maternal circulation [2].  The presence of 

iRBCs in the intervillous space together with parasite components released during iRBC 

destruction by mature late trophozoites prompt immune activation of ST, marked by secretion of 

pro-inflammatory cytokines and chemokines [3-5].  These immune responses are thought to 

participate in the inflammatory environment in the infected placenta, marked by excessive 

accumulation of inflammatory cells [3-6]. 

In the placenta, chondroitin sulfate A (CSA) on ST interacts with the parasite protein 

VAR2CSA, a product of the P. falciparum var2csa gene, on the iRBC surface [7, 8]. Recently, 

we established CD44 proteoglycan, a cell adhesion molecule, as a functional receptor for CSA-

adherent iRBCs on ST [S. Owino et al, unpublished data]. Because CD44 is a signaling 

molecule, its engagement may be responsible for the immunologic activation of primary ST that 

is elicited by VAR2CSA-bearing iRBCs [3, 4]. Aside from the iRBC itself, malarial toxins (GPI 

and Hz), released by mature parasites exiting iRBC, interact with host cells and induce 

inflammatory responses [9-13]. Three pattern-recognition receptors, TLRs, have been identified 

as recognizing these parasite-derived molecules: TLR2 and TLR4 respond to malarial GPIs and 

TLR9 responds to DNA complexed with natural Hz [14-16]. Studies in term placenta have 

demonstrated expression of TLR-1–10 at the mRNA level [17, 18].  TLR2 and -4 have been 

detected at the protein level in term trophoblast cells and with expression restricted to the ST, 

intermediate trophoblast, and extravillous trophoblast cell populations [17, 19-21]. We have 
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shown TLR9 protein expression in primary ST (N. Lucchi et al, unpublished). Activation of 

TLR2 or -4 on trophoblast using bacterial lipoproteins, peptidoglycan (PDG), has been shown to 

drive secretion of IL-6 and IL-8 [17].  Our studies have shown that the ST mounts a pro-

inflammatory response to Hz [5]. The impact of engagement of TLR-2 in the context of placental 

malaria (PM) has not been explored. 

Signaling pathways for all of the pattern recognition receptors are complex, and a study 

of simultaneous activation is rare.  Recently, CD44 was found to associate with TLR2 and 

negatively regulate in vivo inflammation mediated by TLRs [22].  Here, we looked at differential 

responses with single and simultaneous engagement of TLR2 and activation of monocytic THP-1 

cells and primary ST with CSA-adherent iRBCs. Pam3C SK4 was used as a model TLR2 ligand 

to understand TLR2 signaling in the context of PM.  Results from this study highlight to what 

extent components of the malarial parasites differentially stimulate ST and monocytes during 

PM.  

 

MATERIALS AND METHODS 

 

Placental samples. Informed consent to obtain fresh, term placenta from elective 

Cesarean sections was sought from women attending pre-operative counseling at Athens 

Regional Medical Center, Athens, Georgia USA, using forms pre-approved by both Institutional 

Review Boards of University of Georgia and Athens Regional Medical Center.  Immediately 

post-Cesarean delivery, placentae were collected into a sterile container with heparin 

anticoagulant and samples transported to the laboratory for processing. Placentae were processed 

following our previously published protocol [3].   
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Cultivation of P. falciparum and isolation of trophozoite-infected iRBCs  

P. falciparum CS2 (CSA-binding; WT) laboratory isolates were kept in continuous 

culture as described [3].  Cultures were maintained at 4% hematocrit in 75 cm
2
 tissue culture 

flasks at 37°C in 25 mM HEPES, 0.05 mg/mL hypoxanthine, 2.2 mg/mL NaHCO3, 0.5% 

Albumax, and 0.01 mg/mL gentamicin RPMI medium.  Cultures were confirmed to be 

mycoplasma negative by routine PCR analysis.  Synchronous cultures were achieved by 

weekly/biweekly treatment with 5% D-Sorbitol.   

To purify trophozoites, sorbitol synchronized cultures were enriched over a 35% to 70% 

percoll step gradient and centrifuged at 2000 x g. Cells at the interface were harvested and 

washed three times in PBS supplemented with 2% fetal bovine serum (FBS). Cell numbers were 

determined and concentration adjusted to 1 x 10
6
 cells per ml 

 

Cell culture 

Cytotrophoblast cells purified from fresh placentae were cultivated in 6 and 24 well cell 

culture-treated plates (Corning, New York. USA) at 3.0 x 10
5
 cells/cm

2
 and syncytium formation 

allowed to proceed, normally by day 4 of culture. Monocytic THP-1 cells were obtained from 

American Tissue Culture Corporation (ATCC). Cells were maintained in 24 well tissue culture 

treated plates in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS), 

according to provider specifications.  In each well, 1.0 x 10
4
 THP-1 cells were plated and then 

rested for 24 hours. Both Primary ST and THP-1 cells were then stimulated for 12 hours with 

Pam3C SK4 (a kind gift of Dr. Geert-Jan Boons, Complex Carbohydrate Research Center, 

University of Georgia) at 100 ng/ml, 10 ng/ml and 1 ng/ml only with or without iRBC before 

supernatants were collected. 
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Flow cytometry   

To assess CD44 expression following exposure to iRBCs and Pam3Cys 4K, THP-1 cells were 

recovered from cultures by centrifugation and then stained with monoclonal mouse anti-CD44 

antibody (IgG2a k; MCA89, AbD Serotec, Raleigh, NC) or appropriate isotype control antibody 

(IgG2a k; cat# 14-4724-85, eBiosciences, San Diego, CA) followed by signal amplification for 

30 minutes using a polyclonal biotin anti mouse IgG (cat # 13-4013-85), strepavidin FITC (cat # 

11-4317-87) (eBioscience San Diego, CA, USA). Data were acquired on a FACSCalibur Becton 

Dickinson (BD Biosciences) cytometer and analyzed using FloJo software (Version 9.5.2, Tree 

Star, Inc.,). 

 

Enzyme Linked Immunosobant Assays (ELISA) 

Sandwich ELISAs were used to detect cytokine levels in supernatants following 

manufacture’s protocols with slight modification.  For both IL-8 and IL-6 samples were diluted 

1:1 in reagent diluents.  Both ELISA kits, including matched antibody pairs and recombinant 

standard were from R&D Systems.  

 

Statistical analysis 

Graphing and statistical analysis were done using GraphPad software (version 5; GraphPad 

Sofware Inc., CA) 
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RESULTS 

Pam3C SK4 stimulates secretion of IL-8 by ST and THP-1 cells in a concentration dependent 

manner.  

 Trafficking of cells within a microimmune environment is mainly orchestrated by 

chemokines, molecules secreted by immune and other cell types that form a chemoattractive 

gradient [24].  Here, secretion of IL-8, a proinflammatory chemokine responsible for immune 

activation of macrophages, epithelial cells and many other cell types and potent chemoattraction 

of neutrophils, was examined [25].  Following exposure to increasing concentrations of Pam3C 

SK4, a known TLR2 ligand, dose-dependent secretion of IL-8 by THP-1 cells (Figure 1A) and 

ST (Figure 1B) was observed. 

 

P. falciparum iRBCs influence Pam3C SK4 dependent secretion of IL-8 secretion by 

monocytic cells (THP1) and primary ST cells  

CD44 is crucial for influencing a number of cellular functions, ranging from adhesion, 

inflammation and phagocytosis [26, 27]. Recently we observed that CD44 also serves as a 

receptor for chondroitin sulfate A-adherent iRBCs on ST, and influences ST immunological 

responses to iRBCs (S. Owino et al, submitted; see Chapter 3). Interestingly, engagement of 

CD44 by its common ligand, hyaluronan, simultaneous with activation of TLRs on mouse bone 

marrow derived macrophages was shown to inhibit TLR signaling and subsequent cellular 

activation [22]. To assess if engagement of CSA proteoglycans on THP-1 cells by iRBCs has a 

similar impact, cells were co-incubated with CS2 iRBCs and Pam3C SK4. Under these 

conditions, secretion of IL-8 post-TLR-2 stimulation with either 10 or 100 ng/mL of Pam3C SK4 

was suppressed by contact with iRBCs (Figure 2A). In contrast, secretion of IL-8 by primary ST 
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cells was enhanced by dual exposure to iRBCs and sufficient Pam3C SK4 (100 ng/mL) of 

(Figure 2B).  Overall, ST cells were three fold more robust at IL-8 secretion compared to 

monocytic THP1 cells 

 

Stimulation of monocytes by a TLR-2 ligand changes surface expression of CD44 

proteoglycan 

  Following the observation that CD44 suppresses TLR2 mediated immune activation on 

mouse bone marrow derived macrophages [22] and its role as a functional receptor for CSA-

adherent iRBCs on ST (S. Owino et al, submitted; see Chapter 3), we assessed the impact of 

exposure of THP-1 cells to Pam3C SK4 on CD44 expression.  Our results indicate a dose-

dependent upregulation of CD44 on these cells (Figure 3).  

 

DISCUSSION 

 

In general, immune activation and cellular dysfunction in most organs during malaria 

infection are consequences of iRBC cytoadhesion [28, 29]. Other parasite products or “toxins” 

released during rupture of iRBC and exit of mature parasites are immunogenic, including Hz and 

GPIs [13, 30]. To the host, Hz is toxic [31], and induces proinflammatory activity in antigen 

presenting cells [32-37] and ST [5]. Endosomal TLR9 engages parasite DNA in association with 

Hz [38] and stimulates the inflammatory secretory response [39]. As a salient feature in chronic 

PM, Hz is found ubiquitously within phagocytic cells and becomes embedded in IVS fibrin [29]. 

TLR2/1 heterodimers interact with parasite GPIs released from rupturing mature iRBCs [13, 40-

44], an interaction that enhances signal for adhesion molecule expression on macrophages and 

endothelium, and promote inflammatory responses [45-49]. In PM, theories of GPIs promotion 
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of inflammation have been advanced, spanning from disruption of angiogenesis to impairment of 

placental function via activation of complement component C5 [9]. Trophoblasts have been 

shown to respond to a variety of TLR ligands confirming expression of TLR1-4 and 6 [50], and 

we have demonstrated TLR9 in primary ST (N. Lucchi et al, unpublished). Thus, pathogenesis of 

PM is likely a contribution of sequestering iRBCs, Hz and GPIs, eliciting both maternal and ST-

derived inflammatory responses. Indeed, our recent observations demonstrated that Hz-exposed 

ST can secret chemokines and immune factors that determine the fate of peripheral blood 

mononuclear cells with regards to homing and phenotype of primary human monocytes [5]. 

Given the nature of ST to respond to broad array of pathogens [50], and the observation that ST 

functional changes are unique in the face of iRBC versus Hz exposure [3-5], this study was 

undertaken to examine the nature of the response of ST to an analog of malarial GPI, Pam3C 

SK4. Work by other groups has shown that TLR9 is a receptor for Hz-associated parasite DNA 

[38]. Because GPIs (and Pam3C SK4) act via TLR2, we anticipated that the ST response to such 

stimulation might be unique. Although the data are still preliminary, the results show that similar 

to stimulation with Hz [5], Pam3C SK4 elicits a robust IL-8 response from ST and could account 

for much of IL-8 secreted in the intervillous space, given the three fold difference in the amounts 

produced by monocytic THP1 cells. This response is similar to other epithelia (namely, airway 

epithelial cells), which also produce IL-8 in response to this TLR2 ligand [51]. 

A common pathological change in PM is intervillositis, massive maternal inflammatory 

infiltrate, composed predominantly of monocytes. This response is strongly associated with fetal 

compromise [29]. For this reason, understanding how malarial toxins influence monocytic 

function is also relevant for defining mechanisms that underlie poor birth outcomes associated 

with PM. Additionally, in vitro studies in mice show a TLR2 dependent secretion of 
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inflammatory cytokines when macrophages are stimulated with P. falciparum GPI, and 

lipopeptide Pam3CysK4 [52]. In human studies, parasite GPI resulted in immune activation and 

increased expression of complement C5a receptor by the monocytes [9, 10, 13]. In this study, 

THP-1 cells were also found to release IL-8 in response to Pam3C SK4 in a dose-dependent 

manner. Thus, as suggested by others, monocyte responses to malarial toxins like GPIs are likely 

to play a critical role in the inflammatory responses associated with poor birth outcomes in PM 

[53]. An unexpected result of TLR2 ligation by Pam3C SK4 was increased expression of CD44 

on THP-1 cells. In addition to its potential role as an activating iRBC receptor on ST, CD44 has 

also been shown to function as a phagocytosis receptor on murine macrophages in an antibody-

independent manner [54] as well as interacting with TLR2, an interaction that leads to 

suppression of TLR-mediated inflammation [22]. This is potentially exciting, since CD44 bears 

CSA moieties and was previously shown to be a receptor for CSA-adherent iRBCs on 

endothelium [55] and could explain reduced TLR-2 mediated secretion of IL-8 in THP-1 cells. 

Thus, during PM, binding of iRBCs to CD44 on monocytes may promote phagocytic uptake of 

iRBCs with a CSA adherence phenotype without the assistance of opsonizing antibodies, which 

are notably absent in primigravid women, the most PM-vulnerable group [56, 57]. These cells 

may also become less inflammatory during this process due to downmodulation of TLR2 activity 

as shown here. Expression levels of TLR2 were not examined in this work, but confirmation of 

unchanged levels would suggest that functional changes in signaling account for the observed 

reduction in IL-8 secretion. 

The present work provides additional evidence that understanding of the complexity of 

cellular responses to malarial ligands, including those that interact with TLRs, is essential to a 

complete understanding of malarial pathogenesis. In this context, it is noteworthy that 
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polymorphisms in several TLRs impact on malaria susceptibility and outcome. For example, a 

Ser180Leu mutation in TIRAP, the adaptor protein that transmits TLR2- and TLR4- initiated 

signaling, which is common in Africa and Europe, influences disease outcome [58-60].  Also, 

clinical data highlight the influence of TLR polymorphisms during PM.  For example, the odds 

of malaria-associated anemia were more than doubled in TLR-1 S248N heterozygous women 

[61].  It is worth noting that TLR1 signaling is dependent on formation of a dimer with TLR2 

[51, 62]; the TRL2/1 heterodimer is the functional receptor for GPI [13].  Other observations 

showed that TLR4 Asp299Gly mutation is associated with a higher risk of maternal anemia and 

TLR4 Asp299Gly and TLR9 T148C mutations increased risk of low birth-weight babies [63]. 

Based on the present work, as well as a large body of published data, it is clear that such 

polymorphisms, if functional, may act at both the level of maternal (monocyte) and fetal (ST) 

levels.  

Our preliminary observations suggest the involvement of Src kinases in TLR2-mediated 

IL-8 secretion since inhibition of Src kinases negatively impacted IL-8 secretion by THP-1 

monocytes (see appendix 1), but further work will be required to confirm this observation. The 

extent to which Src kinases are involved in the apparent enhancement of Pam3C SK4-induced 

IL-8 secretion by ST in the presence of CSA-adherent iRBCs should also be assessed in future 

studies.  

In conclusion, this study provides provocative evidence indicating that TLR2 ligands like 

malarial GPIs may impose a significant impact on the progression of PM pathogenesis, but with 

differential impact of ST and monocyte function in the presence of CSA-adherent iRBCs. While 

this study employed a synthetic analog for GPIs, evidence suggests that the response observed 

here is consistent with that elicited by native P. falciparum GPIs [9, 13]. Expansion of these 
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studies to include either native or synthetic GPIs and examination of other inflammatory markers 

and functions promises to enhance our understanding of malarial pathogenesis, particularly at the 

placental level.  
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Figure legends. 

Figure 4.1. Pam3C SK4 elicits IL-8 secretion by monocytic cells (THP1) and primary ST. 

A. THP-1 monocytic cells were cultured and stimulated for 12 hours as described in 

Materials and Methods. Shown are concentrations of IL-8 (pg/ml) secreted in response to 

varying concentrations of Pam3C SK4 and by unstimulated cells (Med). Data represent three 

independent experiments. 

B. Placental cells were cultured and stimulated for 12 hour as described in Materials and 

Methods. Shown are concentrations of IL-8 (pg/ml) secreted in response to varying 

concentrations of Pam3C SK4 and by unstimulated cells (Medium). Data are representative of 

four independent experiments. 

 

Figure 4.2. P. falciparum iRBCs influence Pam3C SK4 dependent secretion of IL-8 

secretion by monocytic cells (THP1) and primary ST cells 

A Monocytic cell line (THP1) were cultured and stimulated for 12 hour as described in 

Materials and Methods. Shown are concentrations of IL-8 (pg/ml) secreted in response to 

varying concentrations of Pam3C SK4 and by unstimulated cells (Medium), in the presence or 

absence of VAR2CSA competent (WT). Data are representative of two independent 

experiments. 

B. Placental cells were cultured and stimulated for 12 hour as described in Materials and 

Methods. Shown are concentrations of IL-8 (pg/ml) secreted in response to varying 

concentrations of Pam3C SK4 and by unstimulated cells (Medium), in the presence or absence of 

VAR2CSA competent (WT). Data are representative of two independent experiments. 
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Figure 4.3.  Pam3C SK4 induces increased CD44 expression on THP-1 cells. 

THP-1 monocytic cells were cultured and stimulated for 12 hour as described in Materials and 

Methods. The plot shows median fluorescence intensity of cell surface CD44 in cells exposed to 

increasing concentrations of Pam3C SK4 and by unstimulated cells (Med), as well as for an 

antibody isotype. Data represent two independent experiments. 
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Figure 4.1. 
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Figure 4.2. 
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Figure 4.3 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

Malaria is an enigmatic disease and continues to be a leading public health problem 

requiring urgent solutions in terms of drugs and vaccine development.  A basic understanding of 

the host/parasite interaction is paramount, and critical if effective control strategies to curb the 

disease are to be realized.  Epidemiological studies indicate that, despite prior immunity due to 

parasite exposure, pregnancy renders women more susceptible to infection, and this is more 

pronounced during their earlier pregnancies.  Malaria during pregnancy causes both maternal and 

newborn complications.  The hallmark of malaria during pregnancy is the sequestration of 

infected red blood cells (iRBCs) in the placental intervillous space (IVS) often accompanied by 

the accumulation of maternal immune cells and several placental pathologies, giving rise to what 

has been referred to as placental malaria (PM).  Complications associated with PM are; maternal 

anemia, premature delivery, low birth weight (LBW; <2500g), intrauterine growth retardation 

and in some cases abortion.  Current annual estimations of infant mortality arising from 

complication of PM have been put at a staggering number of up to 200,000 infants.  This 

together with the aforementioned consequences of PM justifies the need for a concise 

understanding of the parasite/host interactions occurring in pregnant women.  A huge body of 

literature indicates that, apart from the parasite, the host’s immunologic response, particularly 

proinflammatory cytokines and chemokines, are key in mediating PM pathology. For example, 

levels of IL-8 proinflammatory chemokine have been associated with LBW and intrauterine 

growth retardation.  In addition, binding of iRBCs to syncytiotrophoblast (ST) cells and 

interaction with malarial components stimulate intercellular signaling and gene expression 
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changes in ST, marked by increased secretion of proinflammatory cytokine, IL-8 and MIF.  

Additionally, by secreting immune factors, ST cells seem to contribute to accumulation of 

maternal immune infiltrate.  

The ST syncytium is in direct contact with maternal blood and severs as the interface 

between mother’s blood and fetal circulation.  During PM, a chondroitin sulfate A (CSA) 

glycosaminoglycan mediates binding to iRBCs associated parasite protein, Plasmodium 

falciparum erythrocyte membrane1 (PfEMP1).  While the role of CSA is well established, a 

description of its protein backbone that could act as a putative signaling receptor on ST is 

lacking.  In addition to the above, a concise knowledge into what and how components of 

malaria induce ST mediated immune modulation of the IVS milieu remains unclear.   Noting 

these gaps in knowledge, the current study was undertaken with the aim of determining the role 

of CD44 molecule, a know CSA bearing proteoglycan and signal receptor on T cells. Also, these 

studies attempted to discern how a parasite derived component; gylcosylphophatidylinositols 

(GPIs) might influence the ST and its microimmune environment.  Knowledge obtained here fits 

well with trying to define the components of ST cells involved in iRBC mediated activation of 

ST and furthers our basic understanding of parasite/host interaction.   

The in vitro binding of iRBCs to CD44 on ST cell lysates in a CSA dependent fashion 

and the overall presences of CD44 on placental histological sections confirmed the role CD44 

plays with regard to mediating iRBCs binding onto ST.  Furthermore, changes in tyrosine-

phosphorylated pattern on a large array of proteins on ST stimulated with iRBC in a CD44 

dependent manner. This was an interesting finding since some of the proteins, of approximately 

60 kDa coincide with known Src kinases important for MAPK dependent cellular activation.  

Although the level of CD44 staining on placental ST remained unchanged in malaria positive 
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samples, the fact that malaria correlated with CD44 on leukocytes has great implications, since 

CD44 is known to participate in receptor mediated phagocytosis. It is possible that with added 

numbers of samples, a clear trend in CD44 levels on placental ST may be realized, however in 

our study and given limited samples no differences were seen. 

The role of plasmodial GPI in activating both ST and human monocytes through toll-like 

receptor 2 (TLR2) an innate immune sensor has not been investigated. Here, by using a known 

TLR-2 ligand, PAM3C SK4, as GPI analog, we have shown an increased IL-8 secretion in both 

ST and monocyte.  Additionally, we noted an increase on levels of CD44 on monocytic cell line 

post stimulation.  Both of these observations are important since they start to shed light into what 

immunologic events might follow after iRBCs bursting and releasing parasite components such 

as GPI. Given that we have used GPI mimic and not the actual molecule, is be a potential 

limitation.  As such, more experiments need to be done using actual GPI compounds.  We are 

currently working with our collaborators towards this.  

In conclusion, results from the current study suggest that during PM, binding of iRBCs to 

ST is to some degree mediated by CSA on CD44 and that this molecule influences 

phosphorylation events within the ST cells in a Src kinase family dependent manner.  In 

addition, we show that malaria infection alters the CD44 profile on placental leukocytes.  

Furthermore, it is shown here that ST and monocyte immune responses is to some extent due 

TLR-2 ligation, and leads to increase of CD44 on monocyte.     
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APPENDICES 

Appendix 1: Assessment of chondroitin sulfate biosynthesis by glycan mRNA array 

Glycan array developed by Kelley Moremen and colleagues at Complex Carbohydrates 

Research Center (CCRC) targeting 68 relevant transcripts was used.  Isolation of mRNA from 

primary ST exposed for 24 hours to CSA-adherent iRBCs, uninfected RBCs or hemozoin 

followed and were subjected to array analysis; analyzing changes for iRBCs relative to uRBCs 

and hemozoin relative to unstimulated ST 
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Appendix 2: Summary of cytokine secretion by BeWo cells 

 

Given that ST cells produce macrophage migration inhibitory factor (MIF) following 

activation by CSA-adherent iRBCs [1] the importance of CD44 in regulating the ST secretory 

response to iRBCs was also examined. Supernatant fluids collected from intact and CD44 KO 

BeWo cells at 12 and/or 24 hours post-iRBC exposure were subjected to sandwich ELISA to 

detect MIF and IL-6.  Contrary to expectation, the absence of CD44 was associated with 

increased secretion of MIF, with the highest levels of secretion seen for responses to CSA-

adherent iRBCs by CD44 KO cells. Slight increases overall for IL-6 secretion by CD44 KO cells 

relative to intact BeWos were also observed at 12 hours post-stimulation, but appeared to be 

independent of the stimulus. These observations suggest involvement of CD44 in regulation of 

the response of ST to iRBCs. 

 

 
Time post-

stimulation 

BeWo CD44 KO 
BeWo intact/BeWo non-target 

control* 

iRBC 

KO 

iRBC 

WT 
uRBC 

iRBC 

KO 

iRBC 

WT 
uRBC 

IL-6 

(pg/mL) 
12 15.7 10.4 14.5 3.7 3.0 2.9 

IL-6 

(pg/mL) 
24 11.2 9.7 14.0 7.4 2.2 11.6 

MIF 

(pg/mL) 
12 85.6 839.7 0 100.8 17.6 0 

MIF 

(pg/mL) 
24 248.4 496.9 ND 64.6 183.2 ND 

 

*Note: Control cells for data generated for IL-6 were intact BeWo cells; controls for MIF data 

were non-target lentivirus transduced BeWo cells. IL-6 data were generated in a single 

experiment; MIF data for 12 and 24 hours were generated in two separate experiments 

Reference: 

1. Chaisavaneeyakorn, S., et al., Immunohistological characterization of macrophage 

migration inhibitory factor expression in Plasmodium falciparum-infected placentas. 

Infect Immun, 2005. 73(6): p. 3287-93. 
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Appendix 3 Src Kinase signaling is important in Pam3C SK4 induced IL-8 secretion by 

monocytes (THP1) 

THP-1 monocytic cells were cultured and treated with 10µM/ml of a pan Src Kinase inhibitor 

(PP1, cat# 567809, EMD Millipore, Billerica MA, USA) or vehicle (DMSO) for 30 minutes then 

stimulated for 12 hours as described in Materials and Methods. Shown are concentrations of IL-8 

(pg/ml) secreted in response to varying concentrations of Pam3C SK4, CSA-adherent iRBC and 

by unstimulated cells (Med). Data represent one experiment. 
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