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Abstract

In the context of real-valued evolutionary optimization in high dimensional domains, un-

derstanding and exploiting the problem structure can lead to significant improvements in

final result quality while also lowering the computational burdens by cutting down evaluation

time. This dissertation presents novel approaches for linkage learning and gene sensitivity de-

tection through machine learning methods in the real-valued domains and a proposed idea to

jointly represent these measures. A surrogate-assisted perturbation-check for non-linearity

that does not stress the true fitness function is introduced and various machine learning

methods are employed and compared in terms of their ability to rank gene importance. Fur-

thermore, novel surrogate-assisted crossover operators that incorporate linkage knowledge

through crossover masks are defined and evaluated on synthetic fitness functions to empir-

ically validate their utility. Finally, a new benchmark with overlapping linkage groups of

increasing size is presented, which provides a platform for comparison of real-valued global

optimization algorithms.
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Problem Structures, Genetic Algorithms, Benchmark



Learning, Exploiting and Benchmarking Problem Structures

in Real-Valued Evolutionary Optimization

by

Tomasz Michal Oliwa

Diplom-Informatiker, University of Koblenz-Landau, Germany, 2012

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2013



c©2013

Tomasz Michal Oliwa

All Rights Reserved



Learning, Exploiting and Benchmarking Problem Structures

in Real-Valued Evolutionary Optimization

by

Tomasz Michal Oliwa

Approved:

Major Professor: Khaled Rasheed

Committee: Krzysztof J. Kochut
Thiab R. Taha

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2013



Learning, Exploiting and Benchmarking

Problem Structures

in Real-Valued Evolutionary Optimization

Tomasz Michal Oliwa

May 2013



Acknowledgments

I would like to thank my main advisor, Prof. Dr. Khaled Rasheed, who introduced me

to the fascinating and challenging topics of machine learning and evolutionary computation

and guided me professionally towards successful research, all of which lead to multiple peer-

reviewed publications and shaped this dissertation.

Furthermore, I would like to thank Prof. Dr. Krzysztof J. Kochut, a member of my advi-

sory dissertation committee, who taught me a lot about software engineering and the proper

way of leading, managing and realizing software projects, which has been very beneficial for

the design and implementation of my research programming.

Also, I am thankful for the help and insight I got from Prof. Dr. Thiab R. Taha, also a

member of my advisory dissertation committee.

I am very grateful for the Enterprise Information Technology Services Help Desk for their

support and would like to thank its current and former staff.

My thanks also goes to Yan Li who I met at the University of Georgia, and I want to

mention my gratitude to her.

Finally, I would like to thank my parents Anna and Leszek Oliwa, who have been caring

for me and supporting me all my life.

iv



Contents

Acknowledgments iv

List of Tables viii

List of Figures xi

1 Introduction 1

1.1 Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Importance of Global Optimization . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Problem Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Notes on Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Proposed Approach and Main Contributions . . . . . . . . . . . . . . . . . . 7

1.8 Structure of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Contemporary Evolutionary Computation 11

2.1 EC Groundwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 EC Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Parent Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



2.7 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Survivor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Machine Learning 26

3.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Surrogate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Linkage and Sensitivity 30

4.1 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Representational Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Existing Perturbation-based Linkage Learners . . . . . . . . . . . . . . . . . 37

4.5 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Ideas of a Joint Representation of Problem Structure 45

5.1 Iterative Linkage Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Identification of Crossover Masks . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Problem Structure Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Machine Learning aided Discovery and Exploitation of Problem Structure 58

6.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 A Surrogate-Assisted and Informed Linkage Exploiting Genetic Algorithm . 67

6.3 Surrogate-Assisted Linkage Check . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Detecting Sensitivity through Machine Learning . . . . . . . . . . . . . . . . 76

7 Benchmark for Problem Structures 84

7.1 Contemporary Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Overlapping Variable Linkage Benchmark . . . . . . . . . . . . . . . . . . . . 91

vi



8 Experimental Results and Analysis 110

8.1 Linkage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.2 Sensitivity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3 SAILEGA Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9 Conclusion 139

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2 Review of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography 144

Appendices 157

A Surrogate Modeling with Weka 157

A.1 Weka Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.2 Fitness Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B Statistical Tests with R 164

B.1 R Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.2 Statistical Tests with R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

vii



List of Tables

2.1 Common Evolutionary Computation Terminology. . . . . . . . . . . . . . . . 12

3.1 Play Outside data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 New Play Outside data instance. . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Dependency Matrix Example. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 1st Neighborhood in List-view Example. . . . . . . . . . . . . . . . . . . . . 50

5.3 2nd Neighborhood in List-view Example. . . . . . . . . . . . . . . . . . . . . 50

5.4 3rd Neighborhood in List-view Example. . . . . . . . . . . . . . . . . . . . . 50

5.5 Neighborhoods in the Set-view Example. . . . . . . . . . . . . . . . . . . . . 50

5.6 PSM - Filling in the sensitivities. . . . . . . . . . . . . . . . . . . . . . . . . 54

5.7 PSM - Filling in the 1st neighborhood. . . . . . . . . . . . . . . . . . . . . . 55

5.8 PSM - Filling in the 2nd neighborhood. . . . . . . . . . . . . . . . . . . . . . 55

5.9 PSM - Filling in the 3rd neighborhood. . . . . . . . . . . . . . . . . . . . . . 56

6.1 SAILEGA Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 SAILEGA Fitness Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 SAILEGA Function Compositions. . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Neural Network Linkage Configuration. . . . . . . . . . . . . . . . . . . . . . 77

6.5 Linkage Detection Base Fitness Functions. . . . . . . . . . . . . . . . . . . . 77

6.6 Linkage Detection Composite Fitness Functions. . . . . . . . . . . . . . . . . 77

6.7 Sensitivity Fitness Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.8 Sensitivity Fitness Function Configurations. . . . . . . . . . . . . . . . . . . 83

viii



6.9 Neural Network Sensitivity Configuration. . . . . . . . . . . . . . . . . . . . 83

6.10 ReliefF Sensitivity Configuration. . . . . . . . . . . . . . . . . . . . . . . . . 83

6.11 SMOreg Sensitivity Configuration. . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1 Synthetic Base Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 Composition of the Fitness Functions. . . . . . . . . . . . . . . . . . . . . . . 107

7.3 OVLB Benchmark Dimensionalities. . . . . . . . . . . . . . . . . . . . . . . . 109

8.1 MLMglobal on an example run with the Configuration Function 1 in generation

ten. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 DSM created from the MLMglobal in Table 8.1 through k-means clustering. . 111

8.3 Linkage Probabilities in Dimension 6 for Configuration 1. . . . . . . . . . . . 114

8.4 Precision, Recall and F-measure results for Configuration 1. . . . . . . . . . 114

8.5 Linkage Probabilities in Dimension 6 for Configuration 2. . . . . . . . . . . . 115

8.6 Precision, Recall and F-measure results for Configuration 2. . . . . . . . . . 115

8.7 Linkage Probabilities in Dimension 6 for Configuration 3. . . . . . . . . . . . 116

8.8 Precision, Recall and F-measure results for Configuration 3. . . . . . . . . . 116

8.9 Linkage Probabilities in Dimension 6 for Configuration 4. . . . . . . . . . . . 117

8.10 Precision, Recall and F-measure results for Configuration 4. . . . . . . . . . 117

8.11 Linkage Probabilities in Dimension 6 for Configuration 5. . . . . . . . . . . . 118

8.12 Precision, Recall and F-measure results for Configuration 5. . . . . . . . . . 118

8.13 Linkage Probabilities in Dimension 6 for Configuration 6. . . . . . . . . . . . 119

8.14 Precision, Recall and F-measure results for Configuration 6. . . . . . . . . . 119

8.15 Linkage Probabilities in Dimension 6 for Configuration 7. . . . . . . . . . . . 120

8.16 Precision, Recall and F-measure results for Configuration 7. . . . . . . . . . 120

8.17 Linkage Probabilities in Dimension 6 for Configuration 8. . . . . . . . . . . . 121

8.18 Precision, Recall and F-measure results for Configuration 8. . . . . . . . . . 121

8.19 Linkage Probabilities in Dimension 6 for Configuration 9. . . . . . . . . . . . 122

ix



8.20 Precision, Recall and F-measure results for Configuration 9. . . . . . . . . . 122

8.21 Sensitivity Detection Results in Dimension 4 for F1. . . . . . . . . . . . . . . 124

8.22 Sensitivity Detection Results in Dimension 4 for F2. . . . . . . . . . . . . . . 124

8.23 Sensitivity Detection Results in Dimension 16 for F1. . . . . . . . . . . . . . 125

8.24 Sensitivity Detection Results in Dimension 16 for F2. . . . . . . . . . . . . . 125

8.25 Sensitivity Detection Results in Dimension 32 for F1. . . . . . . . . . . . . . 126

8.26 Sensitivity Detection Results in Dimension 32 for F2. . . . . . . . . . . . . . 126

8.27 Spearman’s ρ results for F1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.28 Spearman’s ρ results for F2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.29 Sensitivity Probabilities in Dimension 4 for F1. . . . . . . . . . . . . . . . . . 131

8.30 Sensitivity Probabilities in Dimension 4 for F2. . . . . . . . . . . . . . . . . . 131

8.31 Sensitivity Probabilities in Dimension 16 for F1. . . . . . . . . . . . . . . . . 132

8.32 Sensitivity Probabilities in Dimension 16 for F2. . . . . . . . . . . . . . . . . 133

8.33 Sensitivity Probabilities in Dimension 32 for F1. . . . . . . . . . . . . . . . . 134

8.34 Sensitivity Probabilities in Dimension 32 for F2. . . . . . . . . . . . . . . . . 135

8.35 SAILEGA Minimization Results. . . . . . . . . . . . . . . . . . . . . . . . . 138

x



List of Figures

2.1 The common workflow of an EA. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The one-point crossover applied to two parents. . . . . . . . . . . . . . . . . 22

2.3 The two-point crossover applied to two parents. . . . . . . . . . . . . . . . . 22

2.4 The uniform crossover applied to two parents. . . . . . . . . . . . . . . . . . 22

2.5 The whole arithmetic crossover applied to two parents. . . . . . . . . . . . . 23

2.6 The non-uniform mutation applied to an offspring. . . . . . . . . . . . . . . . 24

2.7 The uniform mutation applied to an offspring. . . . . . . . . . . . . . . . . . 24

3.1 Training a surrogate model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 A surrogate model as a function approximator. . . . . . . . . . . . . . . . . . 29

4.1 Two building blocks represented through the MPM, LN and LTGA models

based on the family of subsets. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Pairwise dependency calculation. . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Direct Neighborhood preparation. . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 1st neighborhood calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 2nd neighborhood calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Example structure of linkage. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Iterative Linkage Neighborhoods Conjunction. . . . . . . . . . . . . . . . . . 52

5.7 Iterative Linkage Neighborhoods Conjunction example. . . . . . . . . . . . . 52

xi



6.1 Example of the ILGL crossover with two parents with genes x1 and x2 in

one problem structure group (one partition) and genes x3 and x4 in another

partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 The ILGL crossover algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Example of calculating an offspring with the ILGL crossover. . . . . . . . . . 61

6.4 The IGLG crossover algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5 Example of calculating an offspring with the IGLG crossover. . . . . . . . . . 63

6.6 The ILIG crossover algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.7 Example of calculating an offspring with the ILIG crossover. . . . . . . . . . 65

6.8 The ILIIG crossover algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.9 Example of calculating an offspring with the ILIIG crossover. . . . . . . . . . 66

6.10 Overview of SAILEGA’s structure and its work flow. . . . . . . . . . . . . . 68

6.11 Cluster number to sets of instances mapping. . . . . . . . . . . . . . . . . . . 70

6.12 Cluster number to surrogate model mapping. . . . . . . . . . . . . . . . . . . 70

6.13 SA-LINC-R pairwise checking illustration. . . . . . . . . . . . . . . . . . . . 74

6.14 The SA-LINC-R check during a generation. . . . . . . . . . . . . . . . . . . 75

6.15 Visualization of the function setup of Table 6.6. . . . . . . . . . . . . . . . . 78

6.16 Training a neural network with an individual. . . . . . . . . . . . . . . . . . 79

6.17 Distinct weight paths of gene x4. . . . . . . . . . . . . . . . . . . . . . . . . 79

6.18 Example of increasing and decreasing rankings of genes. . . . . . . . . . . . . 82

7.1 Illustrations of MPM separability from the BBOP benchmark. . . . . . . . . 86

7.2 Illustrations of separability from the LGSO benchmark. . . . . . . . . . . . . 88

7.3 Illustrations of separability from the LSGO-extended benchmark. . . . . . . 90

7.4 Illustrations for the novel overlapping variable linkage benchmark. . . . . . . 93

7.5 The fitness function selector without overlapping. . . . . . . . . . . . . . . . 94

7.6 The fitness function selector with overlapping. . . . . . . . . . . . . . . . . . 94

xii



7.7 Illustration of shifting the global optimum and the permutation of access to

the genes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.8 3-D plot of F1, the Sphere Function, range [−1, 1]. . . . . . . . . . . . . . . . 99

7.9 3-D plot of F1, the Sphere Function, range [−100, 100]. . . . . . . . . . . . . 99

7.10 3-D plot of F2, the Schwefel 1.2 Function, range [−1, 1]. . . . . . . . . . . . . 100

7.11 3-D plot of F2, the Schwefel 1.2 Function, range [−100, 100]. . . . . . . . . . 100

7.12 3-D plot of F3, the Rosenbrock Function, range [−1, 1]. . . . . . . . . . . . . 101

7.13 3-D plot of F3, the Rosenbrock Function, range [−100, 100]. . . . . . . . . . . 101

7.14 3-D plot of F4, the Rastrigin Function, range [−1, 1]. . . . . . . . . . . . . . 102

7.15 3-D plot of F4, the Rastrigin Function, range [−100, 100]. . . . . . . . . . . . 102

7.16 3-D plot of F5, the Ackley Function, range [−1, 1]. . . . . . . . . . . . . . . . 103

7.17 3-D plot of F5, the Ackley Function, range [−100, 100]. . . . . . . . . . . . . 103

7.18 3-D plot of F6, the Weierstrass Function, range [−1, 1]. . . . . . . . . . . . . 104

7.19 3-D plot of F6, the Weierstrass Function, range [−100, 100]. . . . . . . . . . . 104

7.20 3-D plot of F7, the Katsuura Function, range [−1, 1]. . . . . . . . . . . . . . 105

7.21 3-D plot of F7, the Katsuura Function, range [−100, 100]. . . . . . . . . . . . 105

7.22 3-D plot of F8, the Sharp Ridge Function, range [−1, 1]. . . . . . . . . . . . . 106

7.23 3-D plot of F8, the Sharp Ridge Function, range [−100, 100]. . . . . . . . . . 106

8.1 Fitness averages on F 7
1 + F 7

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2 Fitness averages on F 6
3 + F 8

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



Chapter 1

Introduction

In this Chapter, the fundamental preliminaries of this dissertation are laid out by giving an

introduction to continuous global optimization and its importance to the field of computer

science and beyond. Evolutionary algorithms, as the chief optimization methods used, will be

briefly outlined. The problem structure notions of linkage and sensitivity are then provided as

well as the basic concept of machine learning in regards to the topics of this work. Following

this, an overview of the proposed approach is given and the Chapter is concluded with a

layout of the organization of the rest of this dissertation.

1.1 Global Optimization

In a global optimization problem, the goal is to locate the best (or a reasonable good and

satisfactory) solution from a set of solutions. In mathematical terms, this means to find a

global optimum (or a reasonable good and satisfactory local optimum) of a function. Such

a task is usually declared as a minimization problem. Any such minimization problem can

be equivalently stated as a maximization task (the minimization of the function f(x) is

equivalent to the maximization of −f(x)), hence without loss of generality, this dissertation

will keep its definitions based on minimization.

1



1.1.1 Definition of Global Optimization

More formally, adopting the following definitions from [54], a global optimization problem

for real-valued domains can be defined as:

Definition 1.

minimize : f(x)

subject to :
(1.1)

gi(x) ≤ 0 i = 1, ..., p (1.2)

hj(x) = 0 j = 1, ..., q (1.3)

xlower ≤ x ≤ xupper (1.4)

where :

• x = [x0, . . . , xn] is a real-valued vector. Its lower and upper boundaries of permissible

values for the particular problem are given by xlower and xupper, respectively.

• f(x) : X → Y is a function with its domain X ⊆ Rn and its codomain (target set) Y ⊆

R≥0. X (the representation space) and Y are restricted by representational limitations

of real numbers on digital computers and X furthermore by the aforementioned lower

and upper boundaries of x.

• gi and hj are the inequality and equality constraints, if the problem defines any.

Informally, x can be interpreted as a possible solution to the problem expressed through

the function f , and this function assigns a score (or measure of merit) from the codomain

Y to it. In minimization problems, the score of zero (0) is commonly the best obtainable

score. With a global optimization problem stated as such, additional useful definitions can

be made:

Definition 2. x0 ∈ X is a called a global optimum with y0 ∈ Y and f(x0) = y0 if

f(xi) ≥ f(x0) ∀ xi ∈ X .

2



Definition 3. xl ∈ X is a called a local optimum with yl ∈ Y and f(xl) = yl if there

∃ε > 0 such that f(xi) ≥ f(xl) when |xi − xl| < ε.

Definition 4. A function with only one global optimum (which also is the local optimum)

is called a unimodal function, otherwise, if the function has more than one local optimum,

it is called a multimodal function.

The notion of a fitness landscape as defined in [30] can be further introduced:

Definition 5. The fitness landscape is a 3-tuple (X ,N , f), where N defines a neighbor-

hood relation that indicates which solutions are neighbors in the representation space.

While X and f are generally fixed during the process of an optimization, N depends

on an optimization operator that establishes which solutions are reachable from any xi. To

visualize such a fitness landscape, it has become popular to employ the analogy of a landscape

with hills, valleys, peaks and plateaus. If x has two dimensions, these can be interpreted

as x and y coordinates of a three dimensional plot, where f assigns the value on the z axis

for any x. Finding the global optimum would be akin to searching for the point of lowest

elevation (for instance the deepest valley) in such a landscape.

The ruggedness of a landscape refers to the relative changes of altitude in the landscape.

A flat landscape with few small hills or valleys would be considered a smooth landscape,

whereas the existence of numerous and large peaks, valleys and abrupt changes in elevation

would indicate a rugged landscape. While [30] suggests that (in general) problems with

rugged landscapes are harder to solve (due to a more chaotic change of elevation), there

are counter-examples, such as the needle-in-a-haystack problem [31], featuring a smooth

landscape with a single (sharp) deviation.

1.2 Importance of Global Optimization

Global optimization problems are ubiquitous in a vast number of scientific and engineer-

ing domains and have been the focus of extensive research across academic disciples. For
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the context of this dissertation, prominent journals include the Evolutionary Computation

journal (MIT Press), the IEEE Transactions on Evolutionary Computation and the Jour-

nal of Global Optimization (Springer). Furthermore,important conferences related to the

topics of this work and global optimization are the Genetic and Evolutionary Computation

Conference (GECCO), the IEEE Congress on Evolutionary Computation (CEC), and the

International Conference on Parallel Problem Solving From Nature (PPSN).

1.3 Evolutionary Algorithms

An Evolutionary Algorithm (EA) is a population-based stochastic optimization algorithm.

EAs are often synonymously referred to as Evolutionary Computation (EC) algorithms, and

this dissertation adopts this notion, while another descriptive term for such algorithms that

has been used is metaheuristic algorithms [42] or just metaheuristics. If EC algorithms are

applied for optimization purposes, it is called evolutionary optimization. In the broadest

sense, the metaphor of a Darwinian natural selection, the “survival of the fittest”, can be

taken to symbolize the concepts of EAs. EAs operate on a population of solutions at the same

time (as opposed to only having a single solution at a time), they have a stochastic nature

(as opposed to deterministic algorithms) by which random variations are applied and they

gradually improve solutions during the course of the optimization with no absolute guarantee

of fully reaching the global optimum but with the aim to at least closely approximate it. The

problem, expressed through a so called fitness function, serves as an environmental pressure,

and solutions that can adapt to this environment (by virtue of being superior in fitness to

their peers) are allowed to pass parts of themselves on to a next generation of solutions.

1.4 Problem Structures

Problem structures are notions of relationships among decision variables and the solution

fitness, and linkage and sensitivity are the two problem structure means in this dissertation.
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1.4.1 Linkage

The term linkage (sometimes also called epistasis) denotes interactions among decision vari-

ables in regards to the fitness. If a change of value in xi can influence the contribution of xj

towards the solution fitness, xi and xj are said to be linked together. Knowledge about the

existence and strength of linkage can significantly contribute to the success of optimization

runs and help to understand the structure of the problem. For example, linked variables need

to be simultaneously optimized together to achieve optima and should not be broken up [83]

[89] and optimized separately, and on the other hand, variables that have no interactions

with each other can be optimized independently.

1.4.2 Sensitivity

Sensitivity, in the context of global optimization means the direct strength of contribution

of a decision variable xi towards the fitness of its individual. Not all variables have an equal

contribution, and there can be cases where some decision variables have a much stronger

influence on the fitness of a solution than others. This information can be used to guide

the optimization process [10], especially in cases where the dimensionality of the problem is

relatively high compared to the number of truly influential variables.

1.5 Machine Learning

A descriptive quote that captures the essence of machine learning is:

The field of machine learning is concerned with the question of how to construct

computer programs that automatically improve with experience.

— Tom Mitchell, [44]

The two major approaches in machine learning that are employed in this dissertation are:
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1. Supervised Learning: Supervised learning methods aim to capture knowledge or find

a function pertaining to the target class or target attributes usually through inductive

learning.

2. Unsupervised Learning: With unsupervised learning, the algorithms try to detect

patterns and structures within the feature space without specific target attributes.

In this dissertation, supervised and unsupervised methods are applied to autonomously

construct surrogate models of the fitness function based on examples explored during an

optimization. Other machine learning approaches, such as semi-supervised learning or rein-

forcement learning, are outside the scope of this work.

1.6 Notes on Optimization

In this dissertation, there are no restrictions placed upon f , in particular, f does not need

to be differentiable. In fact, some of the functions used in the developed benchmark (for

example the Weierstrass Function) are everywhere continuous but nowhere differentiable.

This shows one advantage of EAs over conventional optimization methods that rely on

gradient information and need derivatives to proceed with the optimization.

In all minimization problems used in this dissertation, the best achievable values (at

which global optima are located) are set as 0 (zero). However, because digital computers

represent the infinite real-valued domain through a finite number of bits, rounding errors of

approximation occur inevitably [21]. One convention that has been established is to replace

zero by an epsilon ε, such that if an optimization method locates a solution that has an

absolute measure of merit ≤ ε, a global optimum is said to be found.

This Chapter introduced some properties with which optimization functions can be at-

tributed, such as ruggedness, multimodality or linkage. While it seems reasonable to assume

that multimodal or linkage-incorporating problems are more difficult to solve than unimodal

or fully separable problems, there exist some counter-examples. In [31], a unimodal problem
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is presented that despite having a basin of attraction and information provided about its

single optimum within the search space remains a very challenging task for a hill climber and

requires exponential time to solve; and even genetic algorithms with only mutation opera-

tors available struggle with it. In contrast to this, another problem is defined which shows

extreme multimodality, yet is deemed to be easy to solve with a genetic algorithm. Similar

arguments can be made regarding the interaction of genes. The existence of linkage (in the

context of epistasis correlation) in a problem may well increase its solution difficulty but this

is not guaranteed [59].

Finally, there is a multitude of proposed approaches for optimization outside of EC such

as various hill climbing techniques or simulated annealing. According to the no free lunch

theorem [93], there is no single superior algorithm, since any two optimization methods will

perform equally when performance is averaged across all problems.

1.7 Proposed Approach and Main Contributions

This dissertation introduces novel methods to learn, exploit and benchmark problem struc-

tures in real-valued evolutionary optimization, the main contributions of this work are:

1. Learning Problem Structures: Both linkage (gene interactions) and sensitivity

(gene importance) are considered as crucial measures of a meaningful structural rep-

resentation for real-valued optimization problems. SA-LINC-R, a surrogate-assisted

perturbation based linkage checker with a nonlinearity criterion is presented and em-

pirically validated on several fitness function setups. Furthermore, the machine learning

methods of neural networks, support vector machines for regression and ReliefF are

employed in a novel comparison with regards to their ability to correctly rank genes

in terms of importance. A proposed concept of iterative neighborhoods and a problem

structure matrix idea is presented, which is envisioned to represent and characterize

overlapping groups of linkage and different sensitivities.
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2. Exploitation of Learned Information: This dissertation presents a combination

of linkage-aware, informed and surrogate-assisted operators. Linkage-aware operators

aim to not disrupt gene sets that have been found to possess linkage among their genes.

Informed and surrogate-assisted operators create a pool of potential offspring and judge

their measure of merit by an approximate model of the fitness function, to then only

allow the best judged offspring to survive. Methods from the machine learning domain

are used to achieve this.

3. Benchmarking of Optimization Methods: A newly created benchmark for real-

valued optimization is presented, which combines the benefits of three contemporary

benchmarks from the field of evolutionary optimization. This benchmark allows for

the empirical analysis and investigation of optimization methods on problems involv-

ing linkage groups of increasing sizes with different degrees of overlap and different

sensitivities.

1.8 Structure of this Dissertation

This dissertation is organized as follows:

Chapter 2

This Chapter introduces the original variants of EAs and provides a unified, contem-

porary view thereof for the purposes of this work.

Chapter 3

The basic concepts of machine learning relevant to this dissertation are introduced and

surrogate modeling is established.

Chapter 4

Linkage and sensitivity of genes, the two chief problem structure measures studied in

this work, are discussed along with established ways of detection, manifestation and
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representational linkage models. The chapter also describes additively decomposable

functions and perturbation-based linkage learning methods.

Chapter 5

The concept of iterative neighborhoods and a proposed idea to jointly represent link-

age and sensitivity in a problem structure matrix is presented. This representation is

envisioned to provide a data structure that could be analyzed with regards to a com-

bined structural partaking of linkage and sensitivity. Furthermore, an idea to create

crossover masks based on the iterative neighborhood concept is defined.

Chapter 6

Surrogate-assisted crossover operators fueled by the knowledge of the linkage prob-

lem structure in terms of partitionings are presented and their experimental setup is

discussed. The surrogate-assisted linkage checker SA-LINC-R is defined and fitness

function configurations are given to empirically validate it. Following this, the experi-

mental comparison setup of the machine learning methods of neural networks, support

vector machines for regression and ReliefF to detect sensitivity is given.

Chapter 7

A novel benchmark with overlapping linkage groups of increasing size for real-valued

optimization is described along with its configuration and synthetic fitness function

compositions.

Chapter 8

The evaluation of the surrogate-assisted perturbation-check for nonlinearity SA-LINC-

R is given alongside with values of precision, recall and F-measure on several test

function compositions. An experimental analysis pertaining to the comparison of sen-

sitivity detection through machine learning methods with Spearman’s ρ is shown. Fur-

thermore, results and tests for statistical significance are presented for the introduced

crossover operators.
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Chapter 9

A brief summary is provided along with an outlook on future work and current limi-

tations of the work of this dissertation.

In the appendices of this dissertation, brief instructions on surrogate modeling with Weka

and statistical testing with R are provided.
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Chapter 2

Contemporary Evolutionary

Computation

The following Chapter portrays the field of EC and establishes its terminology and back-

ground to then define a unified, contemporary view of an EC algorithm that can be applied to

global optimization. Structure, recombination and mutation operators and selection schemes

are elaborated on.

2.1 EC Groundwork

To establish a basis for the following pages, the necessary terminology of EC is laid out,

followed by a general workflow of an algorithm for evolutionary optimization and the com-

ponents of such a system, orientated by the established definitions of EC in [17] and further

inspired by the descriptions of GAs components in [54].

2.1.1 Terminology

In Table 2.1, the common terms of EC that will be used throughout this dissertation are

explained. The origin of these terms is often based on notions from nature.
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Table 2.1: Common Evolutionary Computation Terminology.
Term Definition
Individual A candidate solution for a problem that is expressed through a

fitness function.
Genotype A low-level representational view of an individual (for example x),

often as a chromosome (ordered structure of genes).
It is from the domain of the fitness function.

Gene A single problem variable (locus) in a chromosome.
Allele A setting of a gene; in this dissertation real-valued representation

is used.
Phenotype The expressed properties of an individual, a higher-level view of

what the solution stands for.
Fitness A numerical value that gives a measure of merit to an individual;

it also denotes a point in the codomain of the fitness function.
Population A bag of individuals, often called µ.
Generation A population at a certain point in time.
Selection Scheme The process by which an EA selects a subset from a population,

either for mating or survivor selection.
Mating Selection This defines which individuals will undergo breeding.
Survivor Selection This defines which individuals are carried over

from one generation to the next.
Elitism The number of best individuals to be guaranteed to survive

into the next generation.
Offspring Bag of individuals that will form the next generation,

also known as λ.
Crossover Recombination operator that recombines parts of parental

chromosomes into an offspring chromosome.
Mutation Operator that modifies the allele(s) of one or more genes.
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2.1.2 A short History of EC

The history of algorithms inspired by nature and evolution is outlined in the book “Introduc-

tion to Evolutionary Computing” [17] that can be recommended as introductory material.

Furthermore, “Essentials of Metaheuristics” [42] is a noteworthy set of lecture notes with

algorithm descriptions that is a valuable complement. Also, a unifying framework for EC is

given in “Evolutionary computation - a unified approach” [35]. A summary of EC history is

provided here. Bremermann [7] and Fraser [19] were among the first to develop the notion

and executable programs of evolutionary algorithms. At the same time or shortly thereafter

other researchers began to perform research into optimization methods guided by the idea

of Darwin’s natural selection and created the following fields, which by the end of the 1990s

were unified under the umbrella-term EC:

1. Evolution Strategies: Rechenberg [68] and Schwefel [75] created Evolution Strategies

(ES), which are optimization algorithms with a real-valued representation, truncation

selection [42] and possess self-adaptation abilities of their strategy parameters.

2. Genetic Algorithms: Genetic Algorithms (GAs) were developed by Holland [29] and

later furthered by Goldberg [22], initially to study adaptive behavior [17] with binary

chromosomes, fitness proportional selection and an emphasis on the crossover operator.

3. Evolutionary Programming: Fogel, Owens and Walsh [18] invented the field of evo-

lutionary programming (EP) that has the goal to evolve programs expressed through

finite state machines.

4. Genetic Programming: Koza [38] established Genetic Programming (GP), where

symbolic tree-based representations of programs are evolved.

In recent years, various nature-inspired approaches that sometimes are also attributed to

the field of Computational Intelligence have been considered part of EC, for instance particle
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swarm optimization [36], while the field of EC also itself inspired newer methods like estima-

tion of distribution algorithms (EDAs) [45] [39]. In this dissertation, EC methods are applied

for global optimization problems with real-valued representations. Linkage and sensitivity

detection mechanisms and operators guided by machine learning methods are an eclectic

composition of some of the aforementioned systems. Ultimately, this work expands upon

the basic concepts of the fundamental EC fields, enables linkage detection and exploitation

with the help of machine learning throughout the course of an evolutionary optimization and

provides a novel benchmark for real-valued evolutionary optimization.

2.2 EC Workflow

In Figure 2.1 a common workflow of an EC system that is based on the GA model is depicted

and the next Sections will give a description of the constituent parts of such an EA.

2.3 Population

In an EA, the multi-set of current solutions is referred to as the population. EAs work

by iteratively improving the fitness of the individuals of such a population through the

generations. A population is a bag of individuals denoted as vectors x (duplicates are

allowed), and its current instantiation in a generation is denoted by µ. The initialization

of such a population is in most EAs based on a uniform random assignment of values to

each x with respect to xlower ≤ x ≤ xupper. An alternative to this from design experiment

theory is the symmetric Latin hypercube method [95], that aims at sampling the search

space in an orthogonal (evenly distributed) manner. Domain expert knowledge can be also

used to seed the population with known good solutions or by creating a bias [42] of how

initial solution vectors should be generated. Finally, another pre-optimizer such as a hill-

climber can be run to obtain a better-than-random initial population [59]. A problem with

these approaches is that it may evoke extra computational costs (which can be a serious
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Figure 2.1: The common workflow of an EA.
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problem in computationally expensive domains) and that a “typical progress curve of an

evolutionary process makes it unnecessary” [17], since the quality standard of such biased

solutions can be reached after a few generations using a uniform randomly initialized EA

according to [17]. Furthermore, especially when seeding with initially strong solutions that

vastly outperform the rest of the population, the problem of premature convergence can

arise. Highly fit individuals can quickly take over the whole population, which then leads to

a loss of genetic diversity, and the evolutionary optimizer is lead into a local optimum.

2.4 Fitness Evaluation

The fitness function assigns a quality measure to each individual. Therefore, each individual

has a certain goodness according to this fitness evaluation (with respect to the fitness land-

scape), and the goal of an EA is to improve (in the case of this dissertation to minimize) the

fitness of its individuals. The fitness function can manifest itself as a:

• Synthetic function: An artificial, mathematical function f(x) that is used to bench-

mark EAs, showcase their optimization capabilities, and extrapolate their performance

on other, unseen problems. Examples include the benchmark presented in this disser-

tation, the Real-Parameter Black-Box Optimization Benchmark (BBOP) [25] or the

The CEC’2010 Special Session and Competition on Large-Scale Global Optimization

(LSGO) [82] benchmark.

• Real-world problem function: Technically also expressed as a function f(x), these

functions correspond to a real-world problem.

• Simulation: A fitness of an individual can be the result of the individual’s performance

in a simulation, for instance the design and simulation of a missile inlet [64].

• Human evaluation of the phenotype: Here, the human judgement replaces the

computational calculation of a fitness. This field is also called Interactive Evolutionary

16



Computation, a survey with about 250 publications in this field can be found in [81]

with projects ranging from various fields including graphic, musical and artistic designs,

data mining, food industry, control and robotics.

• Actual physical response: In evolutionary robotics [53], a control system and behav-

ior of robots is evolved by measuring the performance of these controls via real-world

feedback.

In a sense, anything that can provide a measure of quality of individuals can therefore

serve as a fitness function. Of importance are the following qualities of functions: A fitness

function is called a blackbox fitness function if the only information it can provide is a response

with a certain fitness score when presented with an individual. While synthetic fitness

functions and many real world functions can be investigated by looking at the implementation

in the program, a simulation, a human judgement or an actual physical feedback cannot be

inspected with the naked eye. A function is computationally expensive if there are significant

time and processing costs involved in assigning a fitness to an individual, for instance if the

fitness function is computed by a simulation that takes a long time to finish. A fitness

function is called noisy if it is a relation that is not uniquely defined, which means that

subsequent calculations of the fitness of the same individual can yield different fitness scores,

due to noise. Dynamic fitness functions are uniquely defined, but can change the whole

fitness landscape at points in time.

2.5 Termination

There are theoretical investigations of convergence of EC systems [73] [46]. A broad overview

with references to bibliographies for this topic is given in [16]. For a stochastic optimization

process, not only the probability of convergence is to be considered, but also the number

of fitness evaluations to reach it (the speed of of convergence) [16]. For practical purposes,
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it becomes necessary to define termination criteria which state when the EA will stop the

optimization, the most common are:

• Best Solution Found: If the best possible solution has been found (for example a

fitness of zero for a minimization problem with a non negative fitness function), the

EA can simply stop and present this solution.

• Fitness Functions Evaluations: In most cases, an EA will only return an approxi-

mation of the best solution, and a typical criterion to stop the search is to pre-define

a limit on the number of fitness function calls, after which the best solution (or set of

solutions) will be output. Alternatively, this can be equivalently defined through the

total number of generations to evolve.

• Elapsed Time: Another termination criterion is to provide a fixed time-frame, after

which the evolution will be stopped and the best solution(s) given.

• Stagnation: This criterion will stop the EA if there is no improvement in the fitness

of the best individual after a defined number of generations.

It is also possible to combine these criteria, for instance to set a maximum number of

generations to evolve but to also stop if stagnation happens during the optimization.

2.6 Parent Selection

An EA is inspired by biological reproduction to step from one generation of individuals

to the next, and parent selection mechanisms provide a way to choose a set of parents to

generate new offspring. An important concept is that of selection pressure [4], which denotes

the amount of emphasis that is put on the fitness of the individual when making a selection

decision. With strong selection pressure, individuals with a better than average fitness will

be selected predominantly, while a low selection pressure increases the chances for less fit
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individuals to pass on their genotypic material. The following parental selection schemes are

in use in EAs:

• Trunkation Selection: In ES, truncation selection [42] schemes such as (µ, λ) or

(µ+λ) retain the fittest fraction of the population, this can, in the context of ES, also

be seen as a survivor selection scheme [17].

• Fitness Proportional Selection: With the fitness proportional selection [17], each

individual has a probability to be selected as a parent that corresponds to its fitness

value in relation to the total fitness of the overall population. This can be expressed as

probability p(xi) =
f(xi)∑µ
n=1 f(xn)

for maximization problems. Furthermoree, a modifi-

cation called Stochastic Universal Sampling, that is described in [42], chooses highly fit

individuals at least once. The disadvantages of proportional selection include the fact

that individuals that possess a very high fitness are much more probable to be choosen,

which then can lead to the dominance of these individuals leading to premature con-

vergence. On the other hand, a population with little variation in the fitness of its

individuals will have a very low selection pressure that can be close to being uniform

random, “and having a slightly better fitness is not very “useful” to an individual [17]”.

Finally, information about the fitness of the whole population is needed to compute

the selection probability of individuals.

• Rank-based Selection: In rank-based selection [17], the individuals in the population

are sorted according to their fitness, and the probability of being selected as a parent

is defined by the rank, rather than the actual fitness, of the individual. The actual

probability can be calculated using different functions, for example an exponential or

linear mapping. Rank-based selection also requires information about the fitness of

the whole population.

• Tournament Selection: This non-parametric method [42] defines a tournament size

(binary tournaments are most common). For each parent, a tournament is held where
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individuals are selected uniform randomly and then the most fit among them is chosen.

This selection scheme only decides which of the presented individuals is the best and

does not require full knowledge of the fitness of the population, which makes it suitable

for distributed computing where communication overhead has to be considered. If the

tournament size is increased, so does the selection pressure, as more and more emphasis

is put on letting only relatively stronger individuals become parents.

• Restricted Tournament Selection: Restricted tournament selection [26] combines

tournament selection with local competition, so that competing individuals are likely to

belong to the same niche. This aims at preserving diversity for multimodal problems.

As stated in [17], tournament selection is the most used parent selection method in GAs.

It has therefore been chosen as the selection method in this dissertation.

2.7 Crossover

The crossover operator (more generally called recombination operator) is one of the two

major operators in EAs (the other being mutation). In a nut-shell, it crudely models biolog-

ical recombination of genetic material by mating at least two parent individuals, applying

a certain recombination of their genotype and outputting one or more offspring individu-

als. While it can be implemented as a n-ary operator, most operators in the literature are

defined as binary (two parents). It recombines the genetic material of promising parents

with the hope that the resulting offspring will exceed their parents’ fitness value. A proba-

bility pcrossover, which is often chosen to be within the range [0.5, 1) is used to determine if

two parents actually undergo crossover. The following common recombination operators are

identified and outlined in [17] and have illustrations in Figures adopted from [54]:

• n-point Crossover: This operator has n-crossover points defined that decide if sub-

sequent genetic material from this point on is taken from the first or second parent.
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An example of the one-point crossover is shown in Figure 2.2, while Figure 2.3 presents

the two-point crossover. These crossovers can be applied to any representation, be it

binary, real-valued or otherwise, since they just copy and do not modify the actual

alleles. The one-point crossover was one of the first crossovers of GA optimizers. As

noted in [17], this crossover has a positional bias, which means that genes that are far

apart from each other on the chromosome have a lower chance of being recombined

together, and this can create a disturbance if they have a linkage relation.

• Uniform Crossover: In the uniform crossover, another probability puniform is taken,

which is commonly set to 0.5. In this case each gene position has an equal chance to

be chosen from either of the two parents. This crossover is illustrated in Figure 2.4.

This recombination operator has a distributional bias [17], by which on average half of

the genetic material will come from each parent. The bias can be modified by altering

puniform, such that one parent can get a higher probability to pass on its genes to the

offspring than the other.

• Whole Arithmetic Crossover: The whole arithmetic crossover [17] takes a weighted

sum of each allele to create an offspring. By definition, it is an operator for real-valued

representations. The formula for each allele is shown in Equations 2.1 and 2.2, where

w is a weight within the range (0, 1), and an example with w = 0.3 is given in Figure

2.5. It is to note that alleles obtained through this will be always between the values

of the two original parent genes.

offspring1i = w ∗ parent1i + (1− w) ∗ parent2i (2.1)

offspring2i = w ∗ parent2i + (1− w) ∗ parent1i (2.2)
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            First Parent                                                First Offspring

           Second Parent                                            Second Offspring

First Crossover Group Second Crossover Group 

0.06 0.05 0.04 0.03 0.02 0.01

1.23 4.52 0.23 3.11 2.01 2.53

0.06 4.52 0.23 3.11 2.01 2.53

1.23 0.05 0.04 0.03 0.02 0.01

Figure 2.2: The one-point crossover applied to two parents.

            First Parent                                                First Offspring

           Second Parent                                            Second Offspring

First Crossover Group Second Crossover Group 

0.06 0.05 0.04 0.03 0.02 0.01

1.23 4.52 0.23 3.11 2.01 2.53

0.06 4.52 0.23 3.11 2.01 0.01

1.23 0.05 0.04 0.03 0.02 2.53

Figure 2.3: The two-point crossover applied to two parents.

            First Parent                                                First Offspring

           Second Parent                                            Second Offspring

First Crossover Group Second Crossover Group 

0.06 0.05 0.04 0.03 0.02 0.01

1.23 4.52 0.23 3.11 2.01 2.53

1.23 0.05 0.04 3.11 2.01 2.53

0.06 4.52 0.23 0.03 0.02 0.01

Figure 2.4: The uniform crossover applied to two parents.
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            First Parent                                                First Offspring

           Second Parent                                            Second Offspring

First Crossover Group Second Crossover Group        w = 0.3 

0.06 0.05 0.04 0.03 0.02 0.01

1.23 4.52 0.23 3.11 2.01 2.53

0.88 3.18 0.17 2.19 1.41 1.77 

0.41 1.40 0.1   0.96 0.62 0.77

Figure 2.5: The whole arithmetic crossover applied to two parents.

2.8 Mutation

This operation is most commonly performed after an offspring has been created and has the

goal to introduce new genetic material into the population by slightly altering an individual.

A probability pmutationrate, which is often set to a low value, determines if mutation is applied.

Heuristics on how to set this parameter range from low fixed settings of pmutationrate = 0.01

or pmutationrate =
1

xlength
[3], to adaptive settings such as the 1/5 rule (the ratio of fitness

improving mutations to all occurred mutations in a generation should be
1

5
) [68] to self-

adaptation of mutation rates [17], which are part of the chromosome and evolve alongside

the individuals. Some frequently applied mutation operators for real-valued representations,

that are described in [17], are (accompanied with Figures inspired from [54]):

• Non-uniform mutation following a Distribution: This mutation operator draws

a value from a distribution (for instance the Gaussian or Cauchy distribution) with a

mean of zero and a standard deviation equal to pmutationrate for each gene and modifies

the gene by adding this value, an example is given in Figure 2.6. Bounded Uniform

Convolution [42] is a variant of this where pmutationrate decides if a gene is mutated.

• Uniform mutation: For each gene xi a decision is made if it should be mutated

or not according to pmutationrate. Then, within an allowable xlower ≤ x ≤ xupper, the
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          Offspring before mutation                          Offspring after mutation

Gene prior to mutation             Gene after mutation              p = 0.02

1.23 4.52 0.23 3.11 2.01 2.53 1.24 4.52 0.21 3.12 2.01 2.52

Figure 2.6: The non-uniform mutation applied to an offspring.

          Offspring before mutation                          Offspring after mutation

Gene prior to mutation             Gene after mutation

1.23 4.52 0.23 3.11 2.01 2.53 1.23 0.02 0.23 4.19 2.01 2.53

Figure 2.7: The uniform mutation applied to an offspring.

gene xi is set with a new allele uniformly randomly drawn from within the permissible

range. This is shown in Figure 2.7.

2.9 Survivor Selection

The second selection mechanism other than parent selection in an EA is the survivor se-

lection, which defines what individuals from µ (the parent generation) and λ (all created

offspring) at generation t will form the population in generation (t+ 1). The population size

of an EA is fixed, and therefore it has to be decided which individuals survive. Two major

selection schemes described in [17] are:

• Steady-State Selection: With steady-state selection, only a small number of best

individuals from λ replace an equal number of individuals from µ. Determining which

individuals to remove from the parent population is a decision problem within itself.

Some examples are to remove the worst individual(s), or to remove below average
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individuals that provide the least genetic diversity for the whole population. Steady-

state selection is considered to be more exploitative than generational selection, since

fit parents can stay and influence the population for a longer time [42].

• Generational Selection: In a generational selection, the size of µ is equal to λ, and

after every generation, the group of λ individuals becomes the new generation, while

the original µ individuals are removed. The scheme of elitism can be used to guarantee

that the best k number of individuals (usually k = 1) from µ will survive and be carried

over to the next generation. Without elitism, the best fitness in a population might get

worse from one generation to the next if all offspring are worse then the best parent(s),

this can prevent the convergence in some GAs [73].
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Chapter 3

Machine Learning

After introducing the concepts of machine learning for supervised and unsupervised learning

tasks, this Chapter defines surrogate modeling, which is the application of machine learning

methods for fitness approximation in the field of EC. Machine learning in general and par-

ticularly surrogate models are essential elements of this dissertation, and their components

are briefly described the following pages.

3.1 Supervised Learning

A large part of machine learning research is concerned with inductive learning, that is, to

empirically discover rules, concepts or decisions based on existing examples and then extrap-

olate from this knowledge somehow to be able to make meaningful decisions (classifications

or predictions) for unseen examples. “Machine Learning” [44] is a seminal work that covers

both theoretical and practical sides of the field. Another book which places more emphasis

on application (and the implementation thereof in the open source data mining software

Weka1) is “Data Mining: Practical Machine Learning Tools and Techniques” [92]. A huge

bulk of machine learning algorithms stem from the supervised learning contingent of the

field. In supervised learning, the data that a machine learning algorithm is investigating

consists of a number of instances, each having a certain number of features (or sometimes

1http://www.cs.waikato.ac.nz/ml/weka/
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Table 3.1: Play Outside data.
Outlook Temperature Humidity Windy Play
sunny 85 85 FALSE no
sunny 80 90 TRUE no

overcast 83 86 FALSE yes
rainy 70 96 FALSE yes
rainy 68 80 FALSE yes
rainy 65 70 TRUE no

Table 3.2: New Play Outside data instance.
Outlook Temperature Humidity Windy Play
sunny 82 75 TRUE ?

called attributes). In addition, each instance also includes a target attribute (label or a basis

for a target function) that describes this instances characteristics. The following example

dataset in Table 3.1 from the Weka datasets exemplifies this. Each row in this dataset can

stand for the conditions of a particular day and a decision to play outside or not. Each in-

stance is described by four features and a target attribute, that characterizes that instance.

The task of a machine learning method would be to study this dataset and to form a basis

for decisions if outside play should happen or not given a new, unseen instance such as the

instance in Table 3.2.

In Table 3.1, the target class is binary (a “yes” or “no” decision), therefore such a concept

learning can be seen as a classification task, where instances such as the one in Table 3.2 have

to be labeled (or classified) appropriately. In other problems, called regression problems, the

target attribute is real-valued, and therefore a machine learning method can be viewed as

approximating (or modeling) the underlying function that formed the data instances.
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0.09 5.01 1.24 2.53 7.02

1.06 7.05 4.05 2.24 6.12

23.1

12.4

19.5

Train the surrogate 
model to create sf(x)

Neural Network
Input 
Nodes

Hidden Layer
with Hidden 
Nodes

Output
Node

Figure 3.1: Training a surrogate model.

3.2 Surrogate Models

To apply supervised machine learning methods for EC, the population (or possibly a multi-

set collection of every individual encountered so far) can be viewed as a dataset with each

individual being an instance thereof. Each specific gene xi would represent a specific feature

and its allele the attribute value. The fitness of the individual can be then interpreted as

the target attribute. With this approach, suddenly a large collection of machine learning

algorithms are directly applicable to any global optimization problem. This approach is

known as surrogate-assisted evolution (SAE). Figure 3.1 shows how a population is given

as input to a surrogate model learner (a neural network) to learn the approximation of the

fitness function sf(x) based on all individuals and the true fitness function f(x). Figure

3.2 sketches a fitness approximation through sf(x). A survey and discussion on SAE with

function approximator examples of neural networks, quadratic least squares, support vector

machines and kriging (also known as Gaussian processes) can be found in [34]. Contemporary

frameworks which implement an adaptive variety of surrogate models and surrogate control

have been empirically studied in [41].
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Figure 3.2: A surrogate model as a function approximator.
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Chapter 4

Linkage and Sensitivity

The two main approaches to represent or assess problem structure in this dissertation are

linkage and sensitivity of genes. Linkage and sensitivity learning and detection techniques

are discussed and representational models of interacting groups of genes, so called linkage

groups, are presented.

4.1 Dimensionality Reduction

Dimensionality reduction, a methodology commonly used in machine learning and optimiza-

tion, aims at reducing or transforming the features of a problem while still retaining their

usefulness in the context of the problem. The motivations for doing so include:

• The combinatorial explosion of complexity with an increasing dimensionality puts

a computational burden on algorithms making large-scale problems very difficult to

tackle or even intractable. Such an exponential increase in complexity is also known

as the “curse of dimensionality” [5].

• Even a single random binary feature that serves as noise to a decision tree learner can

degrade its performance up to 10% [92].

• The features may need to be transformed into a different format (numerical, ordinal,

binary) to meet a machine learning algorithm’s input requirements.
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• While technically the opposite of dimensionality reduction, the introduction of a new

feature based on multiple existing features can be benefitial to the learner, for instance

an “age” attribute [92] can be helpful even though its value can be derived from other

date attributes.

In EC, problem structure detection can be thought of as a step towards dimensionality

reduction, where successful analysis of the structural dependencies and importance of genes

leads to mechanisms to meaningfully exploit linkage groups (reduced subsets of the whole

chromosome) and gene sensitivities to significantly lower the overall number of function

evaluations to reach an acceptable solution quality.

4.2 Linkage

Learning linkage is an active topic of research in EC. Two books that provide a fairly recent

overview on learning, exploitation and applications are “Exploitation of Linkage Learning in

Evolutionary Algorithms” [11] and “Linkage in Evolutionary Computation” [12]. Another

helpful collection of mostly perturbation-based approaches of linkage learning is presented

in [89]. Definition 6 gives an intuitive way to understand the concept of linkage:

Definition 6 (Linkage). If a change of value in gene xi can influence the contribution of

gene xj towards the solutions fitness, xi and xj interact and are said to be linked together.

A linkage relation is therefore an interdependence between genes in regards to the fitness,

and is often considered to be symmetric, i.e. if gene xi is linked to gene xj, then the opposite

is also true. An important concept to describe certain functions that have been a focus of

linkage learning research is that of an additively decomposed function (ADF) [47], sometimes

also called additively decomposable function. An ADF adopting the formalism of [46] is

provided in Definition 7.
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Definition 7 (Additively Decomposed Function).

f(x) =
m∑
i=1

fi(xsi
) (4.1)

where S1, . . . , Sm, Si ⊆ 1, . . . , n are index sets, fi are functions only applied to the genes of

Si. These are defined as xsi
. Furthermore, Si can be called the scope of fi.

ADFs may involve overlapping, such that two functions fa and fb would have a gene

in common in their scopes. In [89] it is stated that many real-world problems are “loosely

decomposable” through such an ADF with a degree of overlapping. This concept of ADFs

has been applied in the creation of the benchmark proposed in this dissertation.

Linkage can be used to investigate separability of functions. A notion of separability is

defined in [94], where a fitness function f(x) is deemed to possess separability under the

following conditions: The function f(x) is fully separable, if Equation 4.2 implies Equation

4.3 ∀k ∈ {0, .., n} and x and x’ are both ∈ X , and ∀ y ∈ X .

x = {x0, .., xk, .., xn}

x’ = {x0, .., x
′

k, .., xn}

 f(x) < f(x’) (4.2)

y = {y0, .., xk, .., yn}

y’ = {y0, .., x
′

k, .., yn}

 f(y) < f(y’) (4.3)

However, this definition only holds without modifications for non-noisy and non-dynamic

(changing) fitness landscapes. Informally, if xk is perturbed into x
′

k (all other genes being

equal), and this leads to a decrease in fitness, then for all other individuals ∈ X the same

needs to hold. If it is not the case, another gene’s allele is necessarily influencing the fitness

(and therefore these two genes are linked) and full separability cannot be claimed.

The question arises why and how this might be important for global optimization tasks

involving EAs. In [89] it is stated that:
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In genetic algorithms, it is essential to process building blocks (BBs) effectively

through genetic recombination such as crossovers. To apply simple GAs, tight

linkage of BBs is necessary in encoding strings because simple genetic operators

such as one-point crossovers should disrupt BBs when they are encoded sparsely

over a string.

— Miwako Tsuji and Masaharu Munetomo, [89]

With black-box optimization problems it is unforeseeable which genes share interactions

with each other as the scopes Si of the functions that this problem might be based upon

are unknown. Furthermore, even if some of the groups of genes which have interactions are

tightly encoded as neighbours on a chromosome, a linkage-blind operator can still disrupt

linkage groups most of the time. To remedy this, linkage learning approaches need to solve

(at least) the following problems:

1. Which genes are linked to each other and how is their linkage characterized?

2. What representational model can be used to express linkage structures?

3. How can this structural information about linkage be incorporated into the optimiza-

tion process?

What follows is a non-exhaustive overview of influential and current linkage learning

methods and representational models in EC.

4.3 Representational Models

With regards to linkage, it has been stated that:

The goal of linkage learning, while ambitious, is only a small part of the more

general goal of representation learning.

— Georges Harik, [27]
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Detecting interactions among genes needs to be coupled a method to represent this in-

formation in a meaningful way in the context of the problem. The extended compact GA

(ECGA) is a type of EDA that defines such a structure through a Marginal Product Model

(MPM), where probability distributions over more than one gene are modeled, which was

shown to be very beneficial on non-overlapping sum of binary trap functions. Essentially,

groups of interacting genes can be seen by the MPM as members of a partition of the

chromosome. With the MPM, two groups of interacting variables are merged into one if a

dependency between theses groups can be detected. Every gene {xi} belongs to exactly one

linkage group (or forms its own one-sized group if it has no epistasis with other genes). One

downside of such a model is that if there is only a tiny dependency among two otherwise

unrelated groups, they will be merged regardless. In a drastic scenario, if the problem con-

sists of several large linkage groups that only share one variable with each other, the MPM

will represent this problem as one giant block of genes and not provide any other structural

information, as described in [85].

Another way to represent an interaction structure is through a dependency structure

matrix (DSM). This has been done by the dependency structure matrix (driven) genetic

algorithm (DSMGA) [97] [96]. The DSM is an adjacency matrix, where the DSMij entry

represents a measure of the interaction between genes xi and xj. In the case of a binary matrix

this defaults to 0 as no interaction and 1 as interaction present. The DSMGA calculates

its matrix through a mutual information measure and defines the following subproblem for

each problem that it is solving: What is the optimal clustering of the DSM such that “nodes

within a cluster are maximally dependent and clusters are minimally interacting” [97].

The Bayesian Optimization Algorithm (BOA) [61] is a type of an EDA that uses Bayesian

networks to build a model of the structural composition of the problem by defining the rela-

tionships (edges) among variables (nodes) in a Bayesian network. It is capable of modeling

overlapping interaction structures and has been extended to create the hierarchical Bayesian

optimization algorithm (hBOA) [60], which defines Bayesian networks with decision graphs
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and uses niching. An investigation of linkage learning in EDAs with a focus on the hBOA

and problems involving parity functions is provided in [13].

One of the challenges that EDAs typically face is the time requirement for model building,

especially if done repeatedly. ClusterMI [15], a model building method, has been proposed to

alleviate this with ideas inspired from both the ECGA and the DSMGA. Furthermore, while

the aforementioned approaches have been originally developed focusing on binary represen-

tations of the chromosomes, there exist extensions such as the real-coded ECGA (rECGA)

[40] or rBOA [1].

Tree representations for linkage structures have also been applied. A recent variant is

the Linkage Tree Genetic Algorithm (LTGA) [84] [86]. It uses the information theory based

entropy and hierarchical clustering to build a tree-structure of linkage bottom-up and has

been implemented for binary representations. A comparison of LTGA modifications is shown

in [23]. In the LTGA, a hierarchical tree is constructed in a bottom-up manner by merging

genes that have epistasis with each other. When two genes are merged into a node, this node

is treated as a new entity that might have dependencies with other genes or other nodes.

In this tree, the lower a node is located, the stronger the dependency is present. However,

it is not possible to directly model overlapping linkage groups [23], since child nodes are

completely merged into a parent node.

Recently, the concept of Linkage Neighbors (LN) has been proposed [6] for binary chromo-

somes, where linkage is calculated through a likelihood-ratio test and each gene is associated

with its own family of subsets (the genes that are in its neighborhood). This allows a set of

genes to be logically connected to each gene and aims to represent overlapping or transitivity

relations between genes. Also, the notion of a Multiscale Linkage Neighbors (MLN) model

is introduced that assigns multiple linkage sets per gene.

Linkage representation models do not necessarily correspond to an additive decomposition

of the fitness function. In [85], the three models MPM, LN and LTGA are described and

empirically compared in the context of a family of subsets. An illustrative example in Figure
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MPM

  0     1     2      1     2     3    

 3      0     1     2    

Two interacting blocks:

 3      0     1     2    

LTGA

  0     1     2    

 3    
or:

 3      0     1     2    

  1     2     3    

 0    

LN
  0     1     2    

 3      1     2     0    

 3      2     1     0    

  3     2     1    

Figure 4.1: Two building blocks represented through the MPM, LN and LTGA models based
on the family of subsets.

4.1 depicts this, where the two building blocks {x0, x1, x2} and {x1, x2, x3} are represented.

The results in [85] show that, in the context of family of subsets, using a predetermined

model on a NK-landscape and MAXCUT fitness functions leads to worse results than the

usage of a predetermined linkage tree model, which cannot model overlapping accurately.

This can initially seem surprising since the predetermined model “is an exact copy of the

underlying structure of the additively decomposable fitness function” [85]. Furthermore, a

learned linkage tree (which may include mistakes about the detected interactions) shows an

even greater performance increase compared to a predetermined linkage tree.

Finally, in [59] an empirical investigation with hBOA and a GA about the relationship

of epistasis correlation and problem difficulty on nearest-neighbor NK landscapes for binary

representations is carried out. While the results show that epistasis correlation is not a sole

indicator to judge problem difficulty, it can be said that:
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Nonetheless, given our current understanding of problem difficulty, there is no

doubt that introducing epistasis increases the potential of a problem to be diffi-

cult.

— Martin Pelikan, [59]

This adds to the need for more testing, benchmarking and theoretical research in this

area, especially with complex overlapping linkage structures and in particular with real-

valued representations, as these problem characteristics are common in many real-world

problems. The benchmark provided in this dissertation takes a step to establish a common

test-ground for real-valued problems with overlapping linkage of varying size.

4.4 Existing Perturbation-based Linkage Learners

This Section describes some perturbation-based linkage learning algorithms [89] and com-

ments on their strengths and drawbacks as a preparation for SA-LINC-R, the perturbation-

based surrogate-assisted linkage check idea in this dissertation. However, it should be noted

that methods that detect initial linkage based on pair-wise checks, regardless of being of

perturbation-based or EDA nature, will encounter difficulties with functions that do not

show lower-order dependencies but express a higher order dependency among some vari-

ables, such as the parity function [13].

4.4.1 Linkage Identification by Nonlinearity Check

One of the earliest linkage detection mechanisms for genetic algorithms with direct gene-

pair investigations is Linkage Identification by Nonlinearity Check (LINC) [49] [89]. It is

a perturbation-based method, defined on a binary representation (the perturbations being

bit-flips), which uses non-linearity as a linkage criterion. The method calculates for each

unique gene pair the quantities shown in Equations 4.4, 4.5 and 4.6:
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∆fi(x) = f(...¬xi...)− f(...xi...) (4.4)

∆fj(x) = f(...¬xj...)− f(...xj...) (4.5)

∆fij(x) = f(...¬xi¬xj...)− f(...xixj...) (4.6)

If for any individual ∈ X Equation 4.7 is true, then the corresponding genes xi and xj

are said to be linked to each other in a non-linear fashion. Otherwise, there exists only a

linear dependency among these genes.

|∆fij(x)− (∆fi(x) + ∆fj(x))| > ε (4.7)

The constant of ε is used instead of an absolute zero to counter floating-point irregularities

on digital computers as described in Chapter 1.

• Strengths: LINC is relatively easy to implement and provides a direct detection

mechanism for non-linear interactions on any gene-pair in the neighborhood of the

individual.

• Drawbacks: In [48] it is shown that LINC fails to detect proper linkage for sum of

trap functions with an exponent and is “vulnerable to nonlinearity of overall fitness

functions” [48]. Also, non-linearity as criterion is not always sufficient to decide that

two genes should be optimized together, for instance the Sphere function can be made

non-linear yet still independently optimizable on each dimension. An example with the

onemax Function is given in [58]. Furthermore, O(l2) perturbation-checks per individ-

ual need to be performed for a complete linkage picture, where l is the dimensionality

of the problem. This means three extra calls to the fitness function per linkage pair.

Furthermore, the authors recommend performing this check on every individual of the

population, since if LINC fails to detect linkage, it does not exclude the posibility of

epistasis between two genes in another part of the search space. This makes LINC
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potentially very computationally expensive. Finally, this method is only defined for

binary representation.

4.4.2 LINC for Real-Coded GAs

Linkage Identification by Nonlinearity Check for Real-Coded Genetic Algorithms (LINC-R)

[83] is an adaption of LINC to real-valued representations. The perturbations from Equations

4.4, 4.5 and 4.6 are not binary flips but instead uniformly randomly drawn ∆xi and ∆xj

that are added to the corresponding genes for a perturbation (within allowable constraints)

check.

• Strengths: LINC-R can directly check a gene pair for non-linearity interaction and

is as straight-forward to implement as LINC. In [83] this approach is shown to be

superior on synthetic fitness functions to a linkage learner that calculates correlations

to estimate linear dependencies.

• Drawbacks: Just like LINC, LINC-R does not provide a guarantee that if a linkage

check fails, no linkage between the checked genes exists. The perturbation is performed

by adding a uniformly drawn value (within permissible bounds of the chromosome).

If all four points (xi, xj, xi + ∆, xj, xi, xj + ∆, xi + ∆, xj + ∆) are outside of the non-

linear region, LINC-R will fail to detect the interaction. Hence, to increase the chances

of finding linkage, more than one individual needs to undergo a linkage check, which

brings the computational costs to the same level as LINC.

4.4.3 Linkage Identification by non-Monotonicity Detection

In [50], Linkage Identification by non-Monotonicity Detection (LIMD) is presented. It per-

forms perturbation checks with the goal to detect linkage based on non-monotonicity. For

each gene-pair check, Equations 4.4, 4.5 and 4.6 are calculated but the criterion to decide if

linkage exists is given in Equations 4.8 and 4.9.
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if (∆fi(x) > 0 and ∆fj(x) > 0) then (∆fij(x) > ∆fi(x) and ∆fij(x) > ∆fj(x)) (4.8)

if (∆fi(x) < 0 and ∆fj(x) < 0) then (∆fij(x) < ∆fi(x) and ∆fij(x) < ∆fj(x)) (4.9)

Non-monotonicity is argued to be a more reliable criterion for linkage than non-linearity,

and that “the non-linearity condition is sometimes too strict to optimize real-world problems”

[89]. This is exemplified on a fitness function which consists of the sum of binary trap

functions as shown in Equations 4.10 and 4.11. LINC will detect one single linkage group for

all genes of x (because the whole fitness function is raised to the power of two and therefore

a non-linear interaction is occurring for all genes), whereas LIMD is shown to capture the

5-bit trap functions as separate groups.

f(x) = [
10∑
i=1

(fi(ui)]
2 (4.10)

fi(ui) =


4− ui, if 0 ≤ ui ≤ 4

5, if ui = 5

(4.11)

In [51], the authors extend LIMD with a measure to model overlapping linkage groups

called tightness detection (TD) that is shown in Equation 4.12. n1(xi, xj) refers to the

number of linkage groups where both xi and xj occur, and n2(xi, xj) is the number of such

groups where either xi or xj (XOR) are included. The TD measure will be [0..1] for any pair

of genes and denotes their tightness or closeness.

TD(xi, xj) =
n1(xi, xj)

n1(xi, xj) + n2(xi, xj)
(4.12)
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• Strengths: LIMD checks for non-monotonicity, which can capture dependencies that

are hidden behind non-linearity. The addition of TD provides an estimate of the

tightness of genes in overlapping linkage scenarios.

• Drawbacks: Like LINC and LINC-R, three extra perturbation checks are necessary to

investigate a gene pair. It is important to note that the authors write “It is still not clear

on what class of problems the LINC and the LIMD procedures outperform the other

methods ...” [50]. Furthermore, this was only developed for binary representations.

4.4.4 Dependency Detection by Fitness Clustering

In [88], Dependency Detection by Fitness Clustering (D5) and its extension to the real-

valued domain, rD5 and presented. An overview is also given in [89]. This method combines

a perturbation-based approach with estimation of distribution methods to calculate linkage.

Only O(l) extra fitness calculations per individual are required, but just as with LINC and its

derivatives, the use of a population that is large and varied enough to capture dependencies

is recommended.

D5 works as follows: To find which genes interact with gene xi, ∆fi(x) is calculated for

each individual. The value of the fitness difference is taken as the individuals classification

attribute and the population of perturbed individuals is clustered based on it. Then, in a

bottom-up approach using the notion of entropy, linkage groups for xi are created. This

process is then repeated for all genes. rD5 quantizes (discretizes) the domain of the fitness

function to apply the same technique. An extension to D5 for the binary domain is presented

in [87], where it is applied together with the Apriori data mining algorithm and is found to

require a lower population size to obtain comparable results to the original D5.

• Strengths: (r)D5 requires only O(l) extra fitness calls per individual. It provides

means to calculate linkage for binary and real-valued scenarios.
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• Drawbacks: The size of linkage groups has to be provided beforehand to the algorithm

as a parameter, otherwise D5 needs to be called successively until a satisfactory result

is found.

4.4.5 Inductive Linkage Identification

Inductive Linkage Identification (ILI) [32] shares a similarity with D5 in that it requires O(l)

extra fitness calculations per individual, and also needs a set of individuals to operate on.

Just like D5, to find which genes are linked to gene xi, ILI performs a ∆fi(x) (a binary bit

flip is performed as perturbation) for each individual in the population and uses the value

of this fitness difference as a classification attribute. However, here, a decision tree (ID3)

[44] is formed with gene xi forced to be the root node, and then every gene that shows up in

the tree as a node is taken to be a linked gene to gene xi. The rationale of ILI is that since

the classification attribute is a fitness difference on a particular perturbed gene, and this

gene is furthermore taken as the root node, only genes that interact with it can come into

consideration as further classification nodes. This method can detect overlapping structures.

This was shown on overlapping binary trap-functions.

• Strengths: ILI requires only O(l) extra fitness calls per individual and can represent

overlapping linkage structures.

• Drawbacks: ILI only works with binary representation, and unlike LINC it does not

provide a numerical indication of the strength of the linkage; it only gives a binary

decision about it.

4.5 Sensitivity

The term sensitivity denotes the impact of a parameter or variable on an outcome or measure

of merit, and Definition 8 states this in the context of EAs.
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Definition 8 (Sensitivity). Sensitivity is defined as the direct strength of contribution or

effect of a gene xi towards the fitness of the individual.

In this dissertation, it can be considered as the importance of a gene in regards to the

fitness. This can be viewed as similar to the statistical term main effect of a variable, which

has been investigated for GAs in [69] through the ANOVA method.

An example of sensitivity, similar to the one in [54], can be given as follows: The fitness

function given in Equation 4.13 is the three dimensional Schwefel 1.2 Function (and will be

investigated further in Chapter 6). A possible individual could be x = [2.0, 2.0, 2.0], and its

fitness calculation is shown in Equation 4.14. Perturbation operations on x0 and on x2 with

a ∆ = 1.0 are shown in Equations 4.15 and 4.16, respectively. The fitness scores indicate

that the same ∆ on x2 had less of an effect in the change of the fitness of the individual than

the perturbation on x0. Therefore, it can be said that in this situation, the sensitivity of x0

is higher than that of x2.

f(x) = x2
0 + (x0 + x1)

2 + (x0 + x1 + x2)
2 (4.13)

2.02 + (2.0 + 2.0)2 + (2.0 + 2.0 + 2.0)2 = 56 (4.14)

3.02 + (3.0 + 2.0)2 + (3.0 + 2.0 + 2.0)2 = 83 (4.15)

2.02 + (2.0 + 2.0)2 + (2.0 + 2.0 + 3.0)2 = 69 (4.16)
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4.5.1 An Epistasis Measure Based on the Analysis of Variance for

the Real-coded Representation in Genetic Algorithms

The algorithm in [10] is able to calculate sensitivity (called the main effect) and also interac-

tions of genes of real-valued GAs by applying the analysis of variance (ANOVA) method on a

population. The work focuses on the sensitivity detection and its exploitation with an adap-

tive mutation operator. It is shown to give an estimate of interaction on three benchmark

functions. In [9], the authors extend this work with a linkage aware crossover operator.

• Strengths: This approach does not need extra fitness functions to calculate the inter-

actions of genes and also gives an indication of the importance of the impact of each

gene.

• Drawbacks: This method has only been tested on three non-overlapping fitness func-

tions, and results for effective linkage detection are only available for three dimensions

with gene values between [−1, 1].

4.6 Conclusion

Linkage learning is a well studied concept in EC, and the sensitivity of genes has also been

considered an important factor in the context of GAs. They can help to understand the

problem structure and the importance of decision variables, represented through genes. Fur-

thermore, the presented detection techniques can help to improve the quality of solutions

and detect structures within problems. Such notions of a problem structure can also pro-

vide valuable insight about the search space. However, many of these methods have been

primarily tested on binary representations, and the combination of linkage and sensitivity

is a topic that requires further investigation. Finally, to empirically compare some of the

aforementioned approaches on problems with overlapping linkage groups of varying size, a

novel benchmark has been created and is defined in this dissertation.
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Chapter 5

Ideas of a Joint Representation of

Problem Structure

This Chapter provides an idea of a joint representation of problem structure in EC using

the present linkage and sensitivity knowledge. First, the concept of iterative neighborhoods

is discussed, in which the neighborhoods start with a LN model and are incrementally build

up from direct interactions towards a MPM neighborhood. Following this, a proposed way

of obtaining crossover masks is shown. Finally, the notion of a problem structure matrix

idea is presented, which is envisioned to combine linkage information and sensitivity, and an

example is shown in which the iterative linkage neighborhood with a reference to a distance

metric and the sensitivity of genes are combined.

5.1 Iterative Linkage Neighborhoods

This Section details the concept of iterative linkage neighborhoods. They are based on the

notion of LN, where each variable defines its own neighborhood of linked genes. By stepping

through transitive relationships among linked genes, similar to the chain of subproblems [62],

these neighborhoods are built as a possible foundation for a problem structure matrix and

its distance metric.
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5.1.1 Preparation

Iterative linkage neighborhoods are one way to represent the interaction structures that

form the problem’s representational model; they are, in essence, the sets composed through

transitive steps of pairwise interactions. To build them, at first a pair-wise linkage checker

such as LINC-R needs to calculate pairwise dependencies among genes and store them in for

instance a n× n two-dimensional dependency matrix M (with n being the dimensionality),

where the (i, j) entry stands for a possible interaction of genes (xi, xj)
1. This is shown in

pseudo-code in Figure 5.1. Such a matrix has been previously used to store linkage of genes

of a GA in [97] and [96].

The discussed linkage neighborhood approach requires only such an interaction matrix

as input, so that various linkage detection mechanisms from the literature can be applied,

as long as they produce M . It should be noted, however, that the choice of the linkage

criterion is of fundamental importance for the creation of the problem structure. A non-

linear criterion can retrieve different interaction answers than a non-monotonicity check [50]

and furthermore, a non-linear dependency as a sufficient basis for non-separability of genes

might not always correspond to the right choice with regards to optimization [58].

Based on the calculated matrix M through the algorithm in Figure 5.1, the direct neigh-

borhood, which is a structure that keeps a record of which genes are directly (via M) inter-

acting, is calculated. This bears a strong resemblance to the LN model [6] where each gene

is assigned a set of genes that is has direct dependencies with. The algorithm is given in

Figure 5.2.

5.1.2 1st, 2nd Neighborhoods and Beyond

Having created the direct neighborhood, 1st, 2nd, and further neighborhoods can be now

calculated iteratively. These neighborhoods are incrementally created by an iterative expan-

sive approach to increase the scope of interactions that each gene participates in through the

1This matrix is a symmetric matrix.

46



1: x← current individual
2: M ← empty n× n 2D-matrix
3:
4: for each genepair xi, xj ∈ x do
5: M [i][j] = M [j][i]← dependency(xi, xj) B for instance LINC-R or LIMD check
6: end for

Figure 5.1: Pairwise dependency calculation.

1: M ← n× n 2D-matrix with pairwise dependencies
2: DN ← empty direct neighborhood
3: ε← small value close to 0, i.e. 0.000001
4:
5: for each genepair xi, xj ∈ x do
6: if M [i][j] > ε then
7: DNxi

← xj
8: DNxj

← xi
9: end if

10: end for

Figure 5.2: Direct Neighborhood preparation.

idea of transitivity. The 1st neighborhood is a direct mapping from the direct neighborhood

adopting the LN notation, in which the first element of a list corresponds to the gene under

investigation and the remaining elements the genes that it interacts with. For instance,

if xi is (based on M) interacting with xa, xb, xc, xd, the notation of xi’s 1st neighborhood,

1stNxi
, would be: [i, a, b, c, d]. The algorithm that generates the 1st neighborhood is pre-

sented in Figure 5.3. The 2nd neighborhood is iteratively generated based on the input from

the 1st neighborhood. The algorithm for this is described in pseudo code in Figure 5.4. A

2nd neighborhood of gene xi contains all genes from its 1st neighborhood plus all genes in

which xi is part of their 1st neighborhood. For example, if xi’s 1st neighborhood, 1stNxi
,

is [i, a, b, c, d], and xa’s 1st neighborhood, 1stNxa , is [a, b, i, j], then xi’s 2nd neighborhood,

2ndNxi
, is [i, a, b, c, d, j].

This procedure can be iteratively continued, to generate a k-neighborhood from a (k-1)

neighborhood using the algorithm in Figure 5.4 and substituting the 2nd neighborhood with a
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1: DN ← direct neighborhood
2: 1stN ← empty 1st neighborhood
3:
4: for each gene xi ∈ DN do
5: 1stNxi

← xi B the gene itself
6: for each gene xj ∈ DNxi

do
7: 1stNxi

← xj
8: end for
9: end for

Figure 5.3: 1st neighborhood calculation.

1: DN ← direct neighborhood
2: 1stN ← 1st neighborhood
3: 2ndN ← empty 2nd neighborhood
4:
5: for each gene xi ∈ DN do
6: 2ndNxi

← xi B the gene itself
7: for each group 1stNxj

do
8: if xi ∈ 1stNxj

then
9: 2ndNxi

← 1stNxj
B add all genes of this group to xi’s 2nd neighborhood

10: end if
11: end for
12: end for

Figure 5.4: 2nd neighborhood calculation.

k-neighborhood and the 1st neighborhood with the (k-1) neighborhood. If there is no change

(no genes are added to any neighborhoods) in such step, the calculation of neighborhoods

can be stopped. At this point, this last neighborhood will then contain a representational

model that corresponds to the MPM. In a way, the iterative linkage neighborhoods approach

can be viewed as incrementally approaching the MPM from direct, pairwise dependencies

through transitivity and allowing more and more overlapping as the neighborhoods grow.

At this step, two views on these neighborhoods can be adopted, a list-view and a set-view.

• List-view: Each k-neighborhood is a list of integer lists, where the number of these

integer lists is equal to number of genes in the chromosome. Each such list adopts the
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Minimal overlapping linkage groups:

,
Base 
functions: :

Overlapping 
function  0   1    2   3   4   5    6 

Figure 5.5: Example structure of linkage.

Table 5.1: Dependency Matrix Example.
x0 x1 x2 x3 x4 x5 x6

x0 - 1 0 0 0 0 0
x1 1 - 1 0 0 0 0
x2 0 1 - 1 0 0 0
x3 0 0 1 - 1 1 1
x4 0 0 0 1 - 1 1
x5 0 0 0 1 1 - 1
x6 0 0 0 1 1 1 -

LN notation of a neighborhood, such that [i, ...] defines the neighborhood of xi and

lists all genes that belong to it.

• Set-view: In the set view, each k-neighborhood is a set of integer sets. This can be

achieved by applying set properties on a k-neighborhood under a list view.

To provide an example with seven genes and overlapping among linkage neighborhoods,

Table 5.1 shows M for a function that is visualized in Figure 5.5. Table 5.2 then gives

the 1st neighborhood, Table 5.3 the 2nd neighborhood and finally Table 5.4 the final 3rd

neighborhood, all under the list view. Generating a 4th neighborhood would not provide

any changes compared to the 3rd neighborhood, hence this is where the calculation stops.

If a pairwise linkage detection checker would only apply the MPM to represent linkage, the

result would be a list such as in Table 5.4, where every gene is linked to every other gene.

Table 5.5 gives a view on the neighborhoods as sets, here, the 3rd neighborhood would not

include any new set ([0, 1, 2, 3, 4, 5, 6] is already included in the 2nd neighborhood), so the

calculation stops.

49



Table 5.2: 1st Neighborhood in List-view Example.
1st Neighborhood in List-view

x0 [0, 1]
x1 [1, 0, 2]
x2 [2, 1, 3]
x3 [3, 2, 4, 5, 6]
x4 [4, 3, 5, 6]
x5 [5, 3, 4, 6]
x6 [6, 3, 4, 5]

Table 5.3: 2nd Neighborhood in List-view Example.
2nd Neighborhood in List-view

x0 [0, 1, 2]
x1 [1, 0, 2, 3]
x2 [2, 0, 1, 3, 4, 5, 6]
x3 [3, 1, 2, 4, 5, 6]
x4 [4, 2, 3, 5, 6]
x5 [5, 2, 3, 4, 6]
x6 [6, 2, 3, 4, 5]

Table 5.4: 3rd Neighborhood in List-view Example.
3rd Neighborhood in List-view

x0 [0, 1, 2, 3, 4, 5, 6]
x1 [1, 0, 2, 3, 4, 5, 6]
x2 [2, 0, 1, 3, 4, 5, 6]
x3 [3, 0, 1, 2, 4, 5, 6]
x4 [4, 0, 1, 2, 3, 5, 6]
x5 [5, 0, 1, 2, 3, 4, 6]
x6 [6, 0, 1, 2, 3, 4, 5]

Table 5.5: Neighborhoods in the Set-view Example.
Neighborhoods in Set-view

1st Neighborhood [0, 1], [1, 0, 2], [2, 1, 3], [3, 2, 4, 5, 6] , [4, 3, 5, 6]
2nd Neighborhood [0, 1, 2], [1, 0, 2, 3], [0, 1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6],

[2, 3, 4, 5, 6]
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5.2 Identification of Crossover Masks

Crossover masks partition a chromosome into disjoint subsets. One of the simplest examples

of a crossover mask is the one-point crossover as introduced in Chapter 2. This operator

defines a mask that separates a chromosome into two parts, before and after the crossover

point. Crossover masks have been shown to be useful in linkage exploitation with linkage

trees [23], MPM or LN representations [86], [85]. The idea goes back to the realization that

it is beneficial to keep genes that have meaningful interactions together during optimization,

such as with the BB-wise crossover [97]. A possible draft of determining such valuable

partitionings that is inspired by these crossover mask implementations and can be performed

through the iterative neighborhoods concept is as follows:

• Iterative Linkage Neighborhoods Conjunction: This approach recombines the

iterative linkage neighborhoods under the set-view. Figure 5.6 presents the algorithm

for this and in Figure 5.7, a visualization of the construction of a partitioning with this

method is shown. Every time a substructure is picked, as shown in Line 4 of Figure 5.7,

its genes are removed from the AllN set, this is visible in Line 5. In Line 6, the chosen

substructure is added as disjoint subset to the partitioning. The rationale behind this

method is to generate small, linkage preserving partitionings of the chromosome in

scenarios where distinct linkage groups with some overlapping among them exist that

would be all merged in the MPM model, as demonstrated in [85]. Furthermore, genes

that do not interact with each other in any neighborhood do not appear within the same

group in the crossover mask, while the optimizer is given varying possibilities of subsets

of genes that have at least some degree of interactions as explorative opportunities.

51



1: AllN ← Set of all neighborhood substructures B 1st, 2nd, ...
2: partitioning ← ∅ B empty partitioning set
3: while AllN includes at least one gene do
4: substructure← randomPick(AllN) B randomly pick a substructure
5: remove(AllN, substructure) B remove all genes of substructure from AllN
6: partitioning ← substructure B add substructure to partitioning
7: end while

Figure 5.6: Iterative Linkage Neighborhoods Conjunction.

[0,1], [1, 0, 2], [2, 1, 3], [3, 2, 4, 5, 6], [4, 3, 5, 6], 
[1, 0, 2, 3], [0, 1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6]   

pick a substructure

[0, 1]

All-Neighborhoods Set Partition

[(0, 1)]

[0,1], [1, 0, 2], [2, 1, 3], [3, 2, 4, 5, 6], [4, 3, 5, 6], 
[1, 0, 2, 3], [0, 1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6]   

[2], [2, 3], [3, 2, 4, 5, 6], [4, 3, 5, 6]    

remove [0, 1]

pick a substructure

[3, 4, 5, 6]
[(0, 1), (3, 4, 5, 6)]

[2], [2, 3], [3, 2, 4, 5, 6], [4, 3, 5, 6]    

remove [3, 4, 5, 6]

[2]
pick a substructure

[2]
[(0, 1), (2), (3, 4, 5, 6)]

[2]

remove [3, 4, 5, 6]

empty [(0, 1), (2), (3, 4, 5, 6)]

Final Partition

Figure 5.7: Iterative Linkage Neighborhoods Conjunction example.
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5.3 Problem Structure Matrix

Linkage and sensitivity can both provide important insights about the problems tackled by

EAs. It is proposed that a meaningful representation of such problem structure measures can

be achieved through a joint combination. This Section presents the first idea of a problem

structure matrix which combines information about the interaction of genes, expressed as

linkage with a distance metric, as well as their contribution towards the fitness function,

defined as gene sensitivity. The proposed matrix can be seen as an extension of the idea of

the dependency structure matrix [97], and could be envisioned to allow numerical ways of

comparing substructures, which are sets of genes, and to be subsequently used to discover

valuable crossover masks.

5.3.1 Generating the Problem Structure Matrix

The work in [37] introduces binary test problems with iff constraints (if and only if) that

are defined through an a priori filled out adjacency matrix. Weights (i, j) in this matrix

correspond to the linkage between genes xi and xj. The four matrices shown follow a pattern

of having weights such as
1

2
,
1

8
,

1

32
or

1

2
,
1

4
,
1

8
, where the weaker weights are obtained by

dividing a weight by a constant; such an idea for a distance metric allows to model weaker,

transitive interactions. Furthermore, [28] and [62] advance the notion of a distance metric

as a soft measure of interactions, where variables separated by greater distance in a graph

have a weaker interaction.

In [97] and [96], the concept of a dependency structure matrix is applied to represent

interactions for GAs. However, this matrix excludes the information about sensitivity of

genes and only specifies existing linkage found by a linkage checking algorithm. This stands

in opposition to the findings in [69] and [77] that the main effect plays an important role in

understanding the problem and the additional findings in [10], where detection and exploita-

tion of sensitivity with regards to GAs results in notable improvements of performance. A
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Table 5.6: PSM - Filling in the sensitivities.
x0 x1 x2 x3 x4 x5 x6

x0 Sx0

x1 Sx1

x2 Sx2

x3 Sx3

x4 Sx4

x5 Sx5

x6 Sx6

novel comparison of three machine learning based sensitivity detection methods is presented

in this dissertation which adds to the variety of possible detection approaches.

The proposed representation, called the problem structure matrix PSM , is designed to

contain both sensitivity and linkage information, such as given by the iterative neighborhoods

method. However other ways of including the interaction information gained from model

builds presented in Chapter 4 are also possible.

A concept of the PSM will be created step-by-step based on the structure in Figure 5.5

and its iterative neighborhoods to provide insight on this idea2.

In a first step, the sensitivity of each gene Sxi
is inserted in its cells xi, xi of the PSM as

shown in Table 5.6. Ideas for a numerical score include the obtained ranks from sensitivity

detection methods with a transformation or scaling function (for instance linear) applied

or raw weights of the strength of contribution if extractable from the sensitivity detection

method, such as through the ANOVA [10].

In the next steps, the linkage information can be entered. In this example, it is taken from

the iteratively generated neighborhoods (using the list-view) from the problem displayed in

Figure 5.5, and Table 5.7 shows the entries of all 1st neighborhood interactions.

For any subsequent neighborhood level, the amount of interaction could be reduced

through an applied function to give an emphasis on the importance of closer interactions.

2Being a symmetric matrix, for brevity’s sake only the upper half is displayed in the examples.
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Table 5.7: PSM - Filling in the 1st neighborhood.
x0 x1 x2 x3 x4 x5 x6

x0 Sx0 1stN
x1 Sx1 1stN
x2 Sx2 1stN
x3 Sx3 1stN 1stN 1stN
x4 Sx4 1stN 1stN
x5 Sx5 1stN
x6 Sx6

Table 5.8: PSM - Filling in the 2nd neighborhood.
x0 x1 x2 x3 x4 x5 x6

x0 Sx0 1stN 2ndN
x1 Sx1 1stN 2ndN
x2 Sx2 1stN 2ndN 2ndN 2ndN
x3 Sx3 1stN 1stN 1stN
x4 Sx4 1stN 1stN
x5 Sx5 1stN
x6 Sx6

Such a distance metric corresponds to ideas in [28], where in the context of hBOA, interac-

tion strengths of binary decision variables that decrease with increasing distance in a graph

are investigated and also in [62], where a decreasing weight added to the edges (which stand

for interactions) in the graph is considered. Table 5.8 shows how the entries from the 2nd

neighborhoods are incorporated.

Finally, Table 5.9 gives the final PSM for this problem by including the information

from the 3rd neighborhoods.

5.3.2 Discussion of Problem Structure Matrix Analyses

The PSM contains the joint measures of sensitivity and linkage about a problem. This can

be denoted by structural partaking of sets of genes in relation to the overall problem. There

are scoring and distance metric techniques that have been considered before for problem
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Table 5.9: PSM - Filling in the 3rd neighborhood.
x0 x1 x2 x3 x4 x5 x6

x0 Sx0 1stN 2ndN 3rdN 3rdN 3rdN 3rdN
x1 Sx1 1stN 2ndN 3rdN 3rdN 3rdN
x2 Sx2 1stN 2ndN 2ndN 2ndN
x3 Sx3 1stN 1stN 1stN
x4 Sx4 1stN 1stN
x5 Sx5 1stN
x6 Sx6

matrices such as [62] and [15]. In [37], the concept of modularity is discussed, which refers to

subsets of nodes which have a larger linkage density with each other than with nodes outside

of this subset, and one way to apply structural partaking can be to view it as the extension

of it with added information about the strength of contribution of genes towards the fitness.

If a quantitative measure of subsets can be given, a next step can be to apply such a scoring

to possible subset combinations with the goal to obtain partitionings with a high measure

of structural partaking.

The number of all possible partitionings of a chromosome can be obtained through the

n-th Bell number [72] (Bn), where n is the dimensionality of the chromosome. Equation 5.1

shows a recursive formula to calculate Bell numbers.

Bn+1 =
n∑
k=0

(
n

k

)
Bk (5.1)

Looking at the first Bell numbers 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, ...

it becomes clear that an exhaustive search for the best (in terms of maximized structural

partaking) partitions is impractical. However, if a scoring measure is defined, this task can

be clearly stated as an optimization (maximization) problem that an EC method or any

other suitable optimizer can tackle. The problem can be therefore formulated as finding

the partition(s) that maximize the structural partaking. In [96], a similar problem (using a
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dependency structure matrix that only represents interactions) is viewed as a clustering task

and various techniques to cluster into meaningful groups are presented. A model building

technique with clustering called clusterMI [15] has also been applied to find best partitionings,

inspired by the ECGA and the DSMGA. Furthermore, an idea to assess modularity through

Q values is discussed in [37]. However, the dimensionality of the problem has to be taken into

account, since it involves a whole subsidiary optimization run that can involve additional

computational overhead.

Finally, a reasonable heuristic to cut down the search time in the PSM for these impor-

tant partitions can be to include substructures from the iteratively generated neighborhoods

as starting points of the search. One direct application of these valuable partitionings in

terms of an EC optimizer is that of a crossover mask, or, in broader terms suitable for

other optimization techniques, a dimensionality reduction to apply improvements on only

one substructure at a time, while the other substructures are fixed.
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Chapter 6

Machine Learning aided Discovery

and Exploitation of Problem

Structure

This Chapter introduces methods to discover the problem structure measures of linkage

and sensitivity through machine learning and further proposes a method to exploit detected

interaction groups through crossover masks and specialized linkage-aware operators. Four

such surrogate-assisted informed crossover operators are defined that are designed to work

in real-valued evolutionary optimization; and their implementations and rationales are pre-

sented. Furthermore, a novel surrogate-assisted perturbation-check for linkage, SA-LINC-R,

is described and its experimental setup is given. Finally, three machine learning methods

that detect sensitivity of genes are introduced and their experimental configuration is shown.

6.1 Operators

One immediate application of learned partitionings through detected linkage are crossover

masks for recombination operators. In the following, four such recombination operators are

introduced, they have been previously published in [57] to be employed with a partitioning

under the MPM generated through linkage learning.
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6.1.1 Informed Surrogate-Assistance

Informed operators were introduced in [67]. Their idea is to create a pool of promising

offspring (as opposed to only one or two with conventional operators for GAs), and then

rank every offspring in this pool according to its fitness to finally only choose the best one or

two individuals to be taken as true offspring. To avoid the computational burden on extra

fitness evaluations (each offspring needs to have its own fitness associated with it), informed

operators implement surrogate models to estimate the fitness of their potential offspring. By

doing so, no calls to the true fitness function are necessary, while the operators are still able

to return offspring that are expected to be superior or at least as good as other members

from the offspring pool. Whenever the domain provides enough training examples to allow

such a fitness approximator to be created, it is strongly recommended to do so, as it can save

evaluation time and provide significant improvements to the final result quality [67]. The

following four crossover operators are all implemented as informed operators (and therefore

can use a surrogate model), but they are also capable of only producing one or two offspring

in case it is not possible or desired to apply a fitness approximator.

6.1.2 Informed Linkage Group Line Crossover

The informed linkage group line (ILGL) crossover is based on the line and the double line

crossover methods described in [64]. The line crossover connects the two parents with a line,

extends this line from both sides by twice its length (the length of the segment between

the two parents) and picks a point with uniform probability from its total length. The

reason behind this is that many Engineering design fitness functions exhibit thin but good

(in terms of fitness) regions of ellipsoidal space. Those hyper-ellipsoids [64] are targeted by

this operator. With explicit problem structure information available that is expressed as a

crossover mask gained from a linkage learning algorithm, the ILGL crossover improves upon

this by applying separate line crossovers according to the provided partitioning knowledge.
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 ,    = Parents = Valuable 
fitness region= Potential offspring

Figure 6.1: Example of the ILGL crossover with two parents with genes x1 and x2 in one
problem structure group (one partition) and genes x3 and x4 in another partition. If the
chromosome consists of four genes, the partitioning here is [(0, 1), (2, 3)]. Potential offspring
on the extended lines are created inside the ellipsoidal regions of higher fitness, each group
of genes exploring their own ellipsoidal region.

The algorithm for the ILGL crossover is given in Figure 6.2. Each group (single genes form

a unique additional group) receives a ratio r drawn uniformly from [−2, 3], as described

in Figure 6.2. This means that while the connected line between the parents extends the

connection length for every group by two times, each group will be steered independently

by a different r, keeping linked parameters together. If a newly calculated gene value is

outside of its lower or upper bound, a repair function corrects this (by setting it to the

lower or upper bound, respectively). This operator is particularly helpful in fitness regions

of ellipsoidal space as shown in Figure 6.1. The creation of an offspring from its parents can

be seen in an illustrative example in Figure 6.3.
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1: p1, p2← parentSelection(currentPopulation)
2: offspring ← empty offspring
3: partitioning ← structural partition B based on linkage information
4: for all group ∈ partitioning do
5: r ← getRandom(−2, 3)
6: for all gene ∈ group do
7: newGene = r ∗ p1gene + (1− r) ∗ p2gene
8: offspringgene ← newGene
9: end for

10: end for

Figure 6.2: The ILGL crossover algorithm.

1  1  2  2  5  5  2

 Offspring

     Parent 1                           Parent 2

Group 1 Group 2 

3  3  4  4  8  7  4

3.79 3.79 1.60 4.80 9.20 4.60 1.60

ratio 1 = -0.4     step sizeratio 2 = 1.2

Figure 6.3: Example of calculating an offspring with the ILGL crossover.
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6.1.3 Informed Guided Linkage Group Crossover

The informed guided linkage group (IGLG) crossover is based on the guided crossover [66].

It has a greedy nature and aims at exploiting the search landscape with the goal to converge

to an optimum that the population is close to.

The first parent parent1 is picked through the regular binary tournament selection. To

get the second parent parent2, a value mutualF itness(x, parent1) is computed for every

other individual x in the current population. It serves as a rough approximation of the

gradient and is calculated as follows:

mutualF itness(x, y) =
((fitness(x)− fitness(y))2

euclideanDistance(x, y)2
(6.1)

The individual that has the highest mutual fitness with parent1 is chosen as parent2, and if

parent2 has a higher fitness than parent1, they are swapped. As in [64], during the last 5%

of the evolutionary iterations, the best individual of the generation is taken to be parent2

(except if parent1 is the best, in which case the second best individual is chosen). Also, with

Equation 6.2 the variable stepSize is calculated using the maximal number of generations

and the current generation number. stepSize will decrease as the generations progress.

stepSize = 0.75 ∗ maxGens.− currentGen.
maxGens.

+ 0.25 (6.2)

Finally, for every gene pair a ratio variable r is calculated by picking a value uniformly

randomly from [1− 0.2 ∗ stepSize, 1 + stepSize]. The algorithm for IGLG is given in Figure

6.4. Each group is guided by its own ratio variable r (similar to the ILGL crossover) so that

genes that form meaningful groups can exploit the search space in the same direction, and

a repair function ensures that upper and lower bounds of gene values are maintained. The

creation of an offspring with this operator is shown in an example in Figure 6.5.
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1: p1, p2← guidedParentSelection(currentPopulation)
2: stepSize← calculateStepSize()
3: offspring ← empty offspring
4: partitioning ← structural partition B based on linkage information
5: for all group ∈ partitioning do
6: r ← getRandom(1− 0.2 ∗ stepSize, 1 + stepSize)
7: for all gene ∈ group do
8: newGene = r ∗ p1gene + (1− r) ∗ p2gene
9: offspringgene ← newGene

10: end for
11: end for

Figure 6.4: The IGLG crossover algorithm.

1  1  2  2  5  5  2

Offspring

     Parent 1                           Parent 2

Linkage group 1 Linkage group 2 

3  3  4  4  8  7  4

2.00 2.00 -0.8  3.00 6.50 2.20 -0.8

ratio 1 = 0.5   ratio 2 = 2.4   step size = 2.8 

Figure 6.5: Example of calculating an offspring with the IGLG crossover.
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6.1.4 Informed Linkage Inter Group Crossover

The motivation behind informed linkage inter group (ILIG) crossover goes back to the idea

that mixing of above average fit subcomponents of solutions (building blocks) leads to suc-

cessful individuals, and genes forming such valuable subcomponents (based on a problem

structure metric) need to be kept together during optimization [52]. This has been also

formulated as “Linkage learning in genetic algorithms (GAs) is the identification of building

blocks to be conserved under crossover” [27]. This crossover therefore functions essentially

as the BB-wise [97] recombination operator and has been named ILIG with regards to the

usage of crossover masks gained from a linkage detection mechanism in combination with

employing a surrogate-model to create and rank a pool of offspring. The ILIG crossover

applies the rationale of the uniform crossover with problem structure groups of interacting

genes as basic units (to get from the same parent). The motivation is to keep discovered sub-

structures from being disrupted while recombining parent groups with the goal to discover

better recombinations. This operator has been used in the past in early linkage learning

approaches and is a natural extension of basic GA recombinations. An algorithm for this

operator is given in Figure 6.6. An illustration is also provided in Figure 6.7. The group of

single genes (each forming its own substructure) is treated by a regular uniform crossover,

as there is no further information available about which of these genes should be grouped

together during recombination.

6.1.5 Informed Linkage Inter-Intra Group Crossover

The informed linkage inter-intra group (ILIIG) crossover consists of a slight modification of

the ILIG operator. It is a two-stage crossover. During the first stage, it mixes substructures

of two parents in their offspring just like the ILIG crossover. In the second stage, it uses a

shuffling of the gene values inside the substructures after they have been recombined into a

new offspring. This allows for an intra group gene exchange, while still keeping the values
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1: p1, p2← parentSelection(currentPopulation)
2: offspring1← empty offspring
3: offspring2← empty offspring
4: partitioning ← structural partition B based on linkage information
5: for all group ∈ partitioning do
6: r ← getRandomBoolean()
7: if r == true then
8: offspring1group ← p1group
9: offspring2group ← p2group

10: else
11: offspring1group ← p2group
12: offspring2group ← p1group
13: end if
14: end for

Figure 6.6: The ILIG crossover algorithm.

1  1  2  2  5  5  2

3  3  4  4  8  7  4

First Parent                      First Offspring

Second Parent                 Second Offspring

Group 2 Group 1

1  1  4  2  5  7  4

3  3  2  4  8  5  2

Figure 6.7: Example of calculating an offspring with the ILIG crossover.
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1: p1, p2← parentSelection(currentPopulation)
2: offspring1← empty offspring
3: offspring2← empty offspring
4: partitioning ← structural partition B based on the amount of structural partaking
5: for all group ∈ partitioning do
6: r ← getRandomBoolean()
7: if r == true then
8: offspring1group ← shuffle(p1group)
9: offspring2group ← shuffle(p2group)

10: else
11: offspring1group ← shuffle(p2group)
12: offspring2group ← shuffle(p1group)
13: end if
14: end for

Figure 6.8: The ILIIG crossover algorithm.

1  1  2  2  5  5  2

3  3  4  4  8  7  4

First Parent                      First Offspring

Second Parent                 Second Offspring

Group 2 Group 1

1  1  4  2  5  4  7

3  3  2  4  8  2  5

Figure 6.9: Example of calculating an offspring with the ILIIG crossover.

of a linkage group together. Figure 6.9 depicts this in an example. A repair function similar

to the one used in the ILGL crossover makes sure that no upper or lower boundaries are

violated. The algorithm is given in Figure 6.8. As with the ILIG crossover, the uniform

crossover is applied to single gene groups, giving these genes the maximal possibility to mix.

It should be noted that this crossover is very disruptive in terms of allele settings. Therefore,

if positions of optima differ strongly and are spread out, it should not be applied.
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6.2 A Surrogate-Assisted and Informed Linkage Ex-

ploiting Genetic Algorithm

In [57], the surrogate-assisted and informed linkage exploiting genetic algorithm (SAILEGA)

is presented and will be outlined in the following pages. It combines the three fields of linkage

learning through LINC-R, surrogate modeling through the machine learning algorithms from

Weka1 [24] and informed operators. The operators are designed in a modular way that makes

it easy to re-implement them without the informed or the surrogate-assisted components,

making them potential candidates for other linkage-aware frameworks.

SAILEGA’s2 structure and general work flow is depicted in Figure 6.10. This Section

presents its steps in detail.

6.2.1 Clustering

Step 1 in Figure 6.10 consists of copying the current generation of individuals into the

population storage. This storage has the properties of a set and holds all unique encountered

individuals so far. Every generation, the population storage is clustered with X-means [63].

X-means clustering is based on the Bayesian Information Criterion and is a computationally

fast extension of the K-means algorithm. It allows to specify a lower and upper bound of the

number of clusters, and computes the clustering with the ideal cluster size according to its

metric and a maximum number of preset iterations. SAILEGA sets these bounds as follows:

1. The lower bound is fixed as two, defining a minimum of two clusters.

2. To calculate the unknown parameters with a second-order polynomial approximator,

Equation 6.3 shows the minimum necessary individuals ibasic [34], where n is the chro-

mosome length. Following the advice of [65], it is slightly increased to iincreased as

1The Weka software can be downloaded from: http://www.cs.waikato.ac.nz/ml/weka/
2The algorithm is build on top of the Watchmaker Framework 0.7.1, which can be obtained from:

http://watchmaker.uncommons.org/
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Figure 6.10: Overview of SAILEGA’s structure and its work flow.
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shown in Equation 6.4 as minimum size. This yields Equation 6.5 with popStoresize as

the number of individuals in the population storage and upper as upper bound. The

rationale behind this is to gain a reasonable size for each cluster even if the upper

bound is chosen and a similar size for all clusters is assumed.

ibasic =
(n+ 1) ∗ (n+ 2)

2
(6.3)

iincreased = (n+ 1) ∗ (n+ 2) ∗ 0.75 (6.4)

upper =
popStoresize
iincreased

(6.5)

6.2.2 Surrogate Models

A study of fitness approximation in EC [34] suggests that there are benefits to using local

surrogate models instead of a single global one. While this can be taken to an extreme

by creating a custom surrogate model for each individual [70] based on its ibasic k-nearest

neighbors from Equation 6.3, a middle ground is chosen by creating surrogate models for

each cluster given by X-means, that is represented by at least one member of the current

population. Clusters without representation within the current population do not become

eligible for surrogate training which cuts down computation time as only useful surrogates

will be created. The second rationale for such clustering is that, especially in multi-objective

problems, regions with good fitness might be located far apart from each other, and therefore

having a dedicated surrogate model for each of those regions where parts of the populations

gather can add to the model’s prediction accuracy.

To make this happen, in Step 2 of Figure 6.10 first a mapping between cluster numbers

and sets of individuals eligible to become training sets for surrogate models is created. The

algorithm for this is given is Figure 6.11. Then, a mapping between the eligible instance sets,

accessible via their cluster numbers, and the corresponding surrogate models is created. In

case there is at least one individual in the population that is a member of a cluster that did
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1: pop← currentPopulation
2: store← populationStore
3: mapCI ← map of clusternumber to instances
4: clusterSet← xMeans(store, lower, upper)
5: for all clusters c ∈ clusterSet do
6: if size(c) ≥ iincreased then
7: if ∃ x ∈ pop with cnumber then
8: mapCI ← (cnumber, ycnumber

) ∀ ycnumber
∈ store

9: end if
10: end if
11: end for

Figure 6.11: Cluster number to sets of instances mapping.

1: pop← currentPopulation
2: store← populationStore
3: mapCI ← map of clusternumber to instances
4: mapCS ← map of clusternumber to surrogate models
5: for all cnumber ∈ mapCI do
6: instances← ycnumber

∈ mapCI
7: mapCS ← (cnumber, buildSurrogate(instances))
8: end for
9: if ∃ x ∈ pop with xcnumber

/∈ mapCS then
10: instances← yfailsafe ∈ mapCI
11: buildFailSafe(instances)
12: end if

Figure 6.12: Cluster number to surrogate model mapping.

not receive a surrogate, a failsafe surrogate trained on the last two generations is constructed.

This algorithm is depicted in Figure 6.12.

SAILEGA uses Weka implementations of support vector machines for regression [79] with

the Pearson VII function-based universal kernel (PUK) [90] as surrogate model. The PUK

allows for robust surrogate models without having to specify or test any kernel exponents

or kernel types, making it suitable for creating accurate fitness approximators without any

prior knowledge of the fitness landscape.
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6.2.3 Crossover Operators and Selector

Four recombination operators have been implemented in SAILEGA, among which two (in-

formed linkage group line crossover the informed guided linkage group crossover) are ex-

tensions of informed but linkage unaware crossovers from GADO [64], and they have been

described previously in this Chapter. In the absence of any dependencies among genes

(none of the genes is linked), SAILEGA’s operators automatically work like their linkage

unaware counterparts, making them applicable to a wide range of fitness functions. To

choose a crossover operator for a mating between two parents, Step 5 of Figure 6.10 includes

a crossover selector. The idea of this crossover selector is taken from [64]. It maintains a

variable elapsedGens that expresses the proportion of generations elapsed so far; its value is

0 at the beginning of the evolutionary run and 1 at the end. Also, a variable guidedFactor

that is fixed to 0.25 is defined. To choose a crossover operator for two parents, the crossover

selector proceeds as follows:

1. With a probability of elapsedGens ∗ guidedFactor, the informed guided linkage group

crossover is chosen. As the evolutionary search progresses, the probability of using this

operator increases.

2. Otherwise, with a probability of 0.5, the informed linkage group line crossover is se-

lected, or the informed linkage inter group crossover with a probability of 0.25, or the

informed linkage inter-intra group crossover with a probability of 0.25.

The selector follows GADO’s guideline, as the informed guided linkage group crossover is

a greedy operator and should be used more during the later (exploitation) phase of the search,

and less during the early (exploration) phase, where it could lead to premature convergence

to a local optimum.

6.2.4 Configuration and Experimental Setup of SAILEGA

To provide comparative results, three SAILEGA configurations are defined as follows:
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Table 6.1: SAILEGA Configuration.
Operator/Parameter Setting

Representation Real-valued genome
Population Size chromosomeLength2

Linkage Learning (SA)LINC-R, (SA)LIMD
Clustering X-means

Surrogate Model Set of SVMs with PUK kernel
Recombination ILGL, ILIG, ILIIG, IGLG

Informed Offspring Pool 20, (following setting in [67])
Recombination prob. 80%

Mutation Gaussian Mutation
Mutation prob. 0.02
Parent Selection Binary Tournament Selection

Survivor Selection Generational
Elitism Yes (1)

Initialization Random (Mersenne Twister[43])
Termination Condition After 50 generations

• Configuration SAILEGAdefault, using surrogate models, a summary can be seen in

Table 6.1.

• Configuration SAILEGAnoSu, calling only the true fitness function for any evaluations

to show the maximal potential of SAILEGAs novel operators.

• Configuration SAILEGA1point, having only the 1-point crossover as recombination

operator.

The three configurations are run 50 times on composite functions, where the base func-

tions are given in Table 6.2 and their compositions in Table 6.3.

6.3 Surrogate-Assisted Linkage Check

In [56], a surrogate-assisted perturbation check for non-linearity (SA-LINC-R) is introduced.

It performs a perturbation-based LINC-R check (as described in Chapter 4), but calls a
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Table 6.2: SAILEGA Fitness Functions.
Function Definition

F1: Sphere4

D∑
i=1

(xi + 4)2

F2: Sphere−4

D∑
i=1

(xi − 4)2

F3: Rosenbrock
D∑
i=2

(100(x1 − xi)2 + (xi − 1)2)

F4: Schwefel 1.2
D∑
i=1

(
i∑

j=1

xj)
2

F5: Rastrigin 10D +
D∑
i=1

(x2
i − 10cos(2πxi))

Table 6.3: SAILEGA Function Compositions.
Config FunctionDim

SAILEGAdefault F 7
1 + F 7

2

SAILEGAnoSu F 7
1 + F 7

2

SAILEGA1point F 7
1 + F 7

2

SAILEGAdefault F 6
3 + F 8

2

SAILEGAnoSu F 6
3 + F 8

2

SAILEGA1point F 6
3 + F 8

2

SAILEGAdefault F 4
4 + F 4

5 + F 6
2

SAILEGAnoSu F 4
4 + F 4

5 + F 6
2

SAILEGA1point F 4
4 + F 4

5 + F 6
2
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Linkage 
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Figure 6.13: SA-LINC-R pairwise checking illustration.

surrogate-model for the evaluation of the three additional individuals that need to be created

per gene-pair investigation. Figure 6.13 depicts such an operation in an illustrative example.

A pseudo-code of SA-LINC-R is given in Figure 6.14. Line 4 initializes the empty linkage

matrix LM that stores the numerical value of a SA-LINC-R check for genes xi and xj in

position LMij. In Line 5, an empty list LMListgen is created that will store all LM matrices

created during a generation (a matrix LM is created for each individual). Line 6 refers

to an empty current mean linkage matrix, which will contain the means of all matrices

in LMListgen. For every individual, its LM is generated in Line 10 with the help of the

surrogate model, and in Line 12 this completed LM is added to the list of all linkage matrices

of this generation LMListgen. Following this, in Line 14 a mean matrix of all matrices from

LMListgen is created, the MLMgen. Finally, in Line 15, the global mean linkage matrix

MLMglobal is updated with the MLMgen. The MLMglobal is itself a matrix created from

the means of all previous MLMt, for t from 1 to gen. At the end of every generation, the

MLMglobal is created anew, incorporating the latest MLMgen and reflecting all previous and

current encountered linkage information.

Each generation, the updated MLMglobal is then used as the basis for a binary dependency

structure matrix DSM , which is created by applying Weka’s implementation of the k-means

clustering method [24] with a fixed cluster size of two on the values of the MLMglobal, this is

shown in Equation 6.6. The DSM gives, for each generation, the accumulated binary view

of existing pair-wise interactions (based on the non-linearity criterion).
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1: pop← current population
2: gen← current generation
3: surrogate← trained surrogate model
4: LM ← empty linkage matrix
5: LMListgen ← empty list of linkage matrices of gen
6: MLMgen ← empty mean linkage matrix
7: MLMglobal ← global mean linkage matrix
8: for all individuals x ∈ pop do
9: for all gene pairs xi, xj do

10: LMij ← SA-LINC-R(x, xi, xj)
11: end for
12: LMListgen� LM B add the LM to the list of matrices LMListgen
13: end for
14: MLMgen ← createMeanMatrix(LMLgen)
15: update(MLMglobal, MLMgen)

Figure 6.14: The SA-LINC-R check during a generation.

DSM(xi, xj) =

 1 if (xi, xj) ∈ clusterhighCentroid

0 if (xi, xj) ∈ clusterlowCentroid
(6.6)

While a check with LINC-R will cost additional fitness evaluations, unless the fitness

function is noisy, it will return correct information about the non-linearity of the problem,

provided that at least one of the alleles in each check is in a non-linear region of the fitness

function. With a perturbation test done through a surrogate as function approximator,

estimation errors are bound to occur. When the surrogate model is not accurate enough,

a check for a gene pair that does not have any interactions in common might still claim

existing linkage. Therefore it is imperative that the surrogate model is adequately trained

to predict the fitness of the perturbed individuals. While using the technique from Equation

6.6 helps to smoothen the values and has been found to be necessary to obtain reliable

results, the drawback of using k-means clustering as described is that if the function consists

of two or more subfunctions that feature interactions on disjoint sets of genes, and one of

these subfunctions yields substantialy higher pairwise linkage scores than the other(s), then
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the linkage scores obtained on the other subfunctions will be incorrectly clustered into the

non-linked group with the low centroid.

Neural networks will be used as surrogate models for this experiment, a focus on neural

networks as function approximators is given in [33]. To increase the general approximation

quality beyond the presented setup here, the work in [34] can be studied, where an overview

of various surrogate models in EC is given, and in [41] where adaptive surrogate model

frameworks are discussed.

Furthermore, when estimating the fitness through a surrogate, a calibration technique as

described in [56] can be used, where the fitness of the original individual is used to modify

the fitness of the three extra individuals per gene pair check, however depending on the

domain, this technique can degrade the approximator’s accuracy.

The base functions used to empirically evaluate the capabilities of this approach are given

in Table 6.5. They are used to create the configurations shown in Table 6.6. A visualization

of the configurations can be seen in Figure 6.15. Each configuration will be run for 50

times and a neural network with its settings shown in Table 6.4 will be used as surrogate

model. The range of each dimension is fixed to [0, 1]. The configurations are kept in a low

dimensionality with a small range and no overlapping to demonstrate the principles of this

method. For more challenging or complex functions with a higher dimensionality and range,

this method needs to be adapted with a more accurate surrogate modeling technique to be

able to reliably detect the linkage.

6.4 Detecting Sensitivity through Machine Learning

In the following sub-sections, three approaches from machine learning to detect sensitivity

in real-valued optimization and a setup for a novel empirical comparison will be presented.

The approaches perform the detection through a neural network, a support vector machine

for regression and a feature selection approach called ReliefF.
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Table 6.4: Neural Network Linkage Configuration.
Parameter Setting

Weka Classifier Multilayer Perceptron
Hidden Layer Size 1

Hidden Nodes (Number of genes + 1)
Learning Rate 0.3

Momentum 0.2
Decay True

Normalize True
Training Time 500

Calibration True

Table 6.5: Linkage Detection Base Fitness Functions.
Function Definition

F1: Sphere
D∑
i=1

x2
i

F2: Schwefel 1.2
D∑
i=1

(
i∑

j=1

xj)
2

F3: Rosenbrock
D−1∑
i=1

(100(x2
i − xi+1)

2 + (xi − 1)2)

F4: Ackley −20exp
(
− 0.2

√√√√ 1

D

D∑
i=1

x2
i

)
− exp

( 1

D

D∑
i=1

cos(2πx2
i )
)

+ 20 + e

Table 6.6: Linkage Detection Composite Fitness Functions.
Configuration Definition Population Max. Gen. Range

1 F2(x0, x1, x2) + F1(x3, x4, x5) 100 10 [0, 1]
2 F3(x0, x1, x2) + F1(x3, x4, x5) 100 10 [0, 1]
3 F4(x0, x1, x2) + F1(x3, x4, x5) 100 10 [0, 1]
4 F2(x0, x1, x2) + F2(x3, x4, x5) 100 10 [0, 1]
5 F3(x0, x1, x2) + F3(x3, x4, x5) 100 10 [0, 1]
6 F4(x0, x1, x2) + F4(x3, x4, x5) 200 10 [0, 1]
7 F2(x0, x1) + F2(x2, x3) + F2(x4, x5) 100 10 [0, 1]
8 F3(x0, x1) + F3(x2, x3) + F3(x4, x5) 100 10 [0, 1]
9 F4(x0, x1) + F4(x2, x3) + F4(x4, x5) 200 10 [0, 1]
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Figure 6.15: Visualization of the function setup of Table 6.6.

6.4.1 Detecting Sensitivity with a Neural Network

Introduced in [55] and applied in [54] with a GA using a specialized mutation operator, a way

to detect sensitivity through machine learning methods is presented that is here part of a new

empirical comparison. A neural network architecture with one hidden layer implemented in

Weka is trained as a surrogate model and approximates the fitness of the individuals. Figure

6.16 (based on [54]) shows how an individual is given as the input to a neural network for

training to create a surrogate model using the true fitness as the target attribute. The

proposed way to induce sensitivity of a gene xi is to use all its distinct weight paths starting

from the corresponding input node and reaching all the way to the output node. An example

of all such distinct weight paths for the gene x4 (input node 5) is given is Figure 6.17 (based

on [54]).
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Figure 6.16: Training a neural network with an individual.
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Figure 6.17: Distinct weight paths of gene x4.
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The sensitivity of a gene can be calculated with this approach as given in Equation 6.7,

in which z stands for the output node and k represents the hidden nodes. In Figure 6.17,

only the marked weights will be used for the calculation of the sensitivity of x4 (in neural

network literature, it is common to describe a weight from node x to node y as wyx).

Sensitivity(x) = |
∑

k∈hiddenLayer

wkx ∗ wzk| (6.7)

For example, the calculation for obtaining the sensitivity of x4 as shown in Figure 6.17

is given in Equation 6.8.

Sensitivity(x4) = |w65 ∗ w96 + w75 ∗ w97 + w85 ∗ w98| (6.8)

6.4.2 Detecting Sensitivity with Support Vector Machines

Support vector machines have been developed for regression tasks [14]. An introduction

and overview is provided in [80]. Weka’s implementation of these is called SMOreg, and

an example of measuring the strength of genes on several synthetic fitness functions with a

SMOreg approach has been given in [55]. The idea behind this is also described as:

Another possibility is to use an algorithm that builds a linear model-for example,

a linear support vector machine-and ranks the attributes based on the size of the

coefficients.

— Ian H. Witten and Eibe Frank and Mark A. Hall, [92]

Although a support vector machine that builds a linear model through its kernel can

have deficits in terms of its predictive power for the fitness when used as a surrogate model

on non-linear fitness functions, the primary goal here is to capture the raw strengths of

contribution of the genes.
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6.4.3 Detecting Sensitivity through ReliefF

In machine learning, feature selection aims to select a useful subset of variables (features)

from all variables. This helps to discard variables that add no explanatory benefit to the

dataset but just increase the dimensionality of the problem and to reduce the problem’s

general dimensionality by selecting only the most important features for further machine

learning tasks. ReliefF for regression tasks [71] is one such approach which aims to detect

the strength of contribution of each attribute by continually sampling instances and per-

forming a comparison of how well an attribute can categorize instances in close proximity

of the sampled. For regression problems, as noted in [71], a probability is used to make a

decision on membership to the same or different class based on the real-valued target class.

Weka’s implementation of ReliefF can act jointly with the Ranker search method for at-

tribute evaluation, which “sorts attributes by their individual evaluations” [92]. With the

idea from Chapter 3 that a population can be viewed as a dataset, such a feature selection

technique becomes directly applicable to identify the most influential genes.

6.4.4 Configuration and Experimental Setup of Sensitivity Detec-

tion

To provide empirical evidence and comparisons for the results of the aforementioned machine

learning based sensitivity detection approaches, the functions in Table 6.7 are used as fitness

functions for an EA. They have already been investigated for epistasis detection in [10]. In

the Increasing Sphere Function, the higher the number of a gene, the higher its sensitivity.

This is realized by the function’s exponent. The Schwefel 1.2 Function features interactions

of genes in addition to a varying sensitivity. An example of this is shown in Figure 6.18. The

dimensionality of the experiments is set to 4, 16 and 32 with the two ranges [0, 1] and [0, 100].

The goal of the experiment is to detect the sensitivities of genes in the first generation. The

full function setup is provided in Table 6.8. The configurations of the Weka algorithms of
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Table 6.7: Sensitivity Fitness Functions.
Function Definition

F1: Increasing Sphere
D∑
i=1

1.5i−1x2
i

F2: Schwefel 1.2
D∑
i=1

(
i∑

j=1

xj)
2

Increasing Importance:

Decreasing Importance:

1   2   3   4   5   6

6   5   4   3   2   1

best

Figure 6.18: Example of increasing and decreasing rankings of genes.

neural networks, ReliefF and SMOreg are given in Tables 6.9, 6.10 and 6.11 and have been

chosen based on sensible Weka defaults. Each configuration is run 50 times, with the results

being ranking averages, Spearman’s ρ as well as two different probability measures of the

rankings.
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Table 6.8: Sensitivity Fitness Function Configurations.
Configuration Function Dimension Population Range

1 F1: Increasing Sphere 4 50 [0, 1]
2 F1: Increasing Sphere 4 50 [0, 100]
3 F1: Increasing Sphere 16 500 [0, 1]
4 F1: Increasing Sphere 16 500 [0, 100]
5 F1: Increasing Sphere 32 1000 [0, 1]
6 F1: Increasing Sphere 32 1000 [0, 100]
7 F2: Schwefel 1.2 4 50 [0, 1]
8 F2: Schwefel 1.2 4 50 [0, 100]
9 F2: Schwefel 1.2 16 500 [0, 1]
10 F2: Schwefel 1.2 16 500 [0, 100]
11 F2: Schwefel 1.2 32 1000 [0, 1]
12 F2: Schwefel 1.2 32 1000 [0, 100]

Table 6.9: Neural Network Sensitivity Configuration.
Parameter Setting

Weka Classifier Multilayer Perceptron
Hidden Layer Size 1

Hidden Nodes (Number of genes + 1) / 2
Learning Rate 0.3

Momentum 0.2
Decay True

Normalize True
Training Time 500

Table 6.10: ReliefF Sensitivity Configuration.
Parameter Setting

Weka Attribute Evaluator ReliefF
Number of neighbors 10

Sigma 2
Search Method Ranker

Table 6.11: SMOreg Sensitivity Configuration.
Parameter Setting

Weka Classifier SMOreg
Kernel Polynomial Kernel

Kernel Exponent 1
Kernel Cache Size 250007

RegOptimizer RegSMOImproved
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Chapter 7

Benchmark for Problem Structures

This Chapter introduces three recent EC benchmarks for real-valued representations and

identifies their limitations in regards to being able to exhibit the behavior of EAs on problems

with complex and overlapping linkage structures. Following this, a novel benchmark suite is

presented that mends these shortcomings. The benchmark and contents of this Chapter are

to appear in GECCO 2013. As benchmarks are important to indicate the quality of EAs over

different problem classes, it is critical to cover situations where some genes share interactions

with each other - a situation that often occurs in real-world problems. This benchmark

provides the possibility to quantitatively assess the performance of various optimization

techniques on problems with overlapping linkage groups of varying sizes, and is not only

limited to evolutionary algorithms.

7.1 Contemporary Benchmarks

The purpose of public benchmarks in fields related to global optimization such as EC is to:

• Give a possibility to empirically evaluate an EA’s capabilities on a broad set of es-

tablished problem classes and to inspect its optimization abilities and deficiencies on

problems with certain features.

• Provide the means for statistical tests to compare different EAs on well-studied prob-

lems and to make statements about their statistically significant differences [2].
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• Enable extrapolations of the EA’s performance on new, unseen problems (potentially

from real-world domains) that share similarities with the synthetic benchmark fitness

functions.

This improves upon the practice of testing new EAs on only one problem or with publicly

inaccessible functions and gives a common testing ground of assembled, well defined func-

tions. The two major contemporary benchmarks for real-valued evolutionary optimization

are:

• The Real-Parameter Black-Box Optimization Benchmarking (BBOP) [25] alongside

with the COmparing Continuous Optimisers (COCO) platform1.

• The CEC’2010 Special Session and Competition on Large-Scale Global Optimization

(LSGO) [82] benchmark2.

Furthermore, an extension of the LSGO benchmark, in this dissertation called LSGO-

extended, was presented in [74] and contains overlapping composite functions.

7.1.1 BBOP

The BBOP benchmark from GECCO 2012 consists of two parts, a noise-free and a noisy set

of problems. Only the noise-free part is considered in this dissertation. The 24 functions for

real-valued optimization that it is composed of can be, under the MPM, classified as:

1. Fully separable.

2. Fully non-separable.

A visualization of this is shown in Figure 7.1. There is, however, an emphasis on other

functional properties such as ruggedness, deceptiveness, symmetry and (multi)modality of

1http://coco.gforge.inria.fr/doku.php
2http://staff.ustc.edu.cn/˜ketang/cec2012/cec2012lsgo.htm
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Fully-separable Functions:                          1

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

Base 
function:

Non-separable Functions:2

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

Figure 7.1: Illustrations of MPM separability from the BBOP benchmark.

different degrees. The benchmark also allows shifting the global optimum of the function

individually per dimension and implements a rotation technique to make a separable function

fully non-separable. The Katsuura, Weierstrass and Sharp Ridge Functions have been taken

from here to supplement the novel benchmark of this dissertation with a more varied function

set.

7.1.2 LSGO

In contrast to this, linkage among genes is a main focus in the LSGO benchmark, which

includes 20 problems for large-scale global optimization. Although multiple linkage groups

that comprise the chromosome are offered here, the group sizes remain constant throughout

the chromosome and no function includes overlapping linkage groups. Furthermore, these

problems are composite functions constructed from six base functions, thereby offering less

diversity of the remaining function properties than the BBOP benchmark. These six func-

tions are the Sphere, Elliptic, Schwefel 1.2, Rosenbrock’s, Rastrigin’s and Ackley’s Function.
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Similar to the BBOP benchmark, the LSGO also offers a shifting of the global optimum. It

also gives a permutation vector to randomize the order of the genes on the chromosome to

prevent any positional bias. With the exception of the Elliptic Function3, all other functions

from LSGO are included in the benchmark given in this dissertation. Figure 7.2 displays the

separability configurations of the LSGO benchmark and shows an overview of the different

fitness function compositions4 in this benchmark. As can be seen, it includes functions that

are:

1. Fully separable.

2. Single-group m-non-separable, where m denotes a size of a group of genes that form

a non-separable linkage group, while the rest of the genes are evaluated by a fully

separable function.

3.
D

2m
-group non-separable-m, where same-sized linkage groups are formed on the first

half of the chromosome, while the remaining part is evaluated by a fully separable

function.

4.
D

m
-group non-separable-m, where same-sized linkage groups are formed on the length

of the whole chromosome.

5. Fully non-separable.

None of these setups includes overlapping linkage groups, and, the size of the non-

separable groups within a chromosome does not change.

7.1.3 LSGO-extended

The LSGO-extended benchmark is composed of the same six base functions as LSGO. How-

ever it has been modified to allow an overlapping of non-separable groups. Its setup is shown

3This function is a variant of the Sphere Function with a non-constant sensitivity of the genes.
4The dimensionality of LSGO is by default 1000 and its linkage group size is 50, this has been lowered in

the Figure for better visibility without loss of generality.
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Separable Functions:

Single-group m-non-separable Functions:

                          1

2

D/(2m)-group m-non-separable Functions:3

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

Base 
function:

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

D/m-group m-non-separable Functions:4

Non-separable Functions:5

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

* 10^6

Figure 7.2: Illustrations of separability from the LGSO benchmark.
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in Figure 7.3 where the composite fitness functions can be of the following form:

1. Two fully non-separable and non-overlapping functions that split the chromosome in

half. Viewed logically, these genes can either be subsequent to each other as shown in

the first example (so that a one-point crossover that splits a chromosome with even

length in the middle would perfectly divide the two linkage groups) or spliced, which

assigns successive genes in an alternating way to the two different fitness functions.

2. Two fully non-separable and non-overlapping functions that split the chromosome in

half, and in addition to that, a number of genes (determined by the parameter ov)

evaluated on the first fitness function that also are evaluated on the second. The

spliced version is omitted from Figure 7.3.

3. Two fully non-separable and non-overlapping functions that split the chromosome in

half, with ov genes from the first fitness function evaluated on the second function and,

additionally,
1

10
genes at the end of the chromosome (also denoted to as sep) that are

only evaluated by a fully separable function. Again, the spliced version is omitted from

Figure 7.3.

Although this benchmark introduces overlapping linkage groups for its fitness functions,

the following shortcomings can be identified:

• Splicing is supposed to prevent a bias of position, where linked groups of genes are

(logically) always next to each other and a linkage-blind optimizer might still uninten-

tionally exploit this, with for instance the application of the aforementioned one-point

crossover example. However, the LSGO benchmark offers a permutation vector, which

completely randomizes the logical positioning order of the genes, and splicing is only

a special case thereof.

• The linkage groups have the same size, they either split the chromosome in half (
D

2
)

or they split it in half minus the fully separable part D−sep
2

.
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Non-separable problems:

Overlapping non-separable problems:

                          1

2

Overlapping partially non-separable problems:3

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

,
Base 
functions:

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

: Splicing :
Separable 
function

Figure 7.3: Illustrations of separability from the LSGO-extended benchmark.
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• While there is overlapping through ov and a fully separable part with sep, there are

always only two linkage groups, each group evaluated on a non-separable fitness func-

tion.

• ov and sep are fixed constants, so that the amount of overlapping is either zero or

always ov throughout the whole benchmark run.

• As with the original LSGO, only six base functions are included, which limits the

expressiveness of this benchmark compared to the BBOP setup.

These deficiencies are addressed in the novel benchmark of this dissertation.

7.2 Overlapping Variable Linkage Benchmark

This Sections presents a novel overlapping variable linkage benchmark for real-valued opti-

mization, introduces its templates, eight base and 33 composite fitness functions and dis-

cusses their configurations.

7.2.1 Templates

The Overlapping Variable Linkage Benchmark (OVLB) includes three templates that are

applied to create its composite benchmark functions, these are shown in Figure 7.4. The

templates are:

1. Non-overlapping linkage groups: Composite functions of this type are divided into

linkage groups of increasing size, where the increase is determined by the powers of

two (the sizes of the linkage groups are 1, 2, 4, 8, 16, 32, ...). Two different non-separable

fitness functions are applied in an alternating fashion to evaluate these groups and their

results are added to the overall fitness of the individual. Similar to the LSGO-extended

benchmark,
1

10
of the genes of the chromosome are not evaluated on either of these
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two functions, but on a fully separable function, and are therefore independent. The

rationale for this template is to represent a class of real-world problems that have

separate groups of interacting genes (for instance a group of control parameters that

experience interactions with each other but do not share any epistasis with other groups

of control parameters) with different sizes. In addition, a relatively small number of

genes do not have any interactions, adding to the problem as a whole.

2. Minimal overlapping linkage groups: These functions are laid out in the same way

as the functions from (1.). However, overlapping is added to increase the problem’s

structure complexity. For each neighboring linkage group, the two adjacent genes of

each group are partaking in an extra evaluation through a non-separable fitness func-

tion, establishing a transitive relation between the two groups. In the MPM represen-

tation, this would mean that all linkage groups that have such a minimal overlapping

would be grouped together as one giant interacting group.

3. Increasing overlapping linkage groups: As with (2.), after the setup of the com-

posite and fully separable functions is complete (so that the template looks like (1.)),

overlapping is added. However, in this template, the overlapping linkage groups in-

crease linearly in size (2, 4, 6, 8, 10, 12, 14, ...). Smaller linkage groups are therefore

interacting with all or a considerable amount of their genes with other linkage groups.

This effect diminishes with the increase of linkage group sizes, which follow the powers

of two, so that large linkage groups only interact directly with a relatively small number

of genes with distinct groups of linked genes. For example, the linkage groups with size

32 and 64 interact on 10 genes with each other through an extra applied non-separable

fitness function on them, while the linkage groups of size 256 and 512 only interact on

16 genes. With this, an increase in overlapping is simulated while at the same time

larger linkage groups are less affected by direct interactions.
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Non-overlapping linkage groups:

Minimal overlapping linkage groups:

                          1

2

Increasing overlapping linkage groups:3

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

,
Base 
functions: :

Overlapping 
function :

Separable 
function

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

Figure 7.4: Illustrations for the novel overlapping variable linkage benchmark.

The algorithm for the non-overlapping linkage groups is shown in Figure 7.5, while the

algorithm for the minimal and increasing overlapping linkage groups is given in Figure 7.6.

The only difference between these templates is the amount of overlapping that is occurring

among the individual linkage groups, specified through the variable overlapping.

7.2.2 Features

Other features of the OVLB, that have been borrowed from the LSGO benchmark, include:

• Shift Vector: A shift vector is created as a constant at the instantiation time of an

OVLB function and shifts the global optimum uniformly randomly within allowable

boundaries. This vector is accessed in the fitness function at evaluation time. The shift
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1: result← 0
2: i← 0
3: separable← separable genes
4: individual← current individual
5: groupLengths← linkage group lengths
6: kernel← fitnessFunctions B contains F1− F8
7: for i = 0; i ≤ groupLengths.size; i+ + do
8: if i % 2 == 0 then
9: result += kernel.f1(individual, groupLengthsi)

10: else
11: result += kernel.f2(individual, groupLengthsi)
12: end if
13: end for
14: result += kernel.fSeparable(individual, separable)
15: return result

Figure 7.5: The fitness function selector without overlapping.

1: result← 0
2: i← 0
3: overlapping ← overlapping genes
4: separable← separable genes
5: individual← current individual
6: groupLengths← linkage group lengths
7: kernel← fitnessFunctions B contains F1− F8
8: for i = 0; i ≤ groupLengths.size; i+ + do
9: if i % 2 == 0 then

10: result += kernel.f1(individual, groupLengthsi)
11: else
12: result += kernel.f2(individual, groupLengthsi)
13: end if
14: end for
15: result += kernel.fOverlap(individual, overlapping)
16: result += kernel.fSeparable(individual, separable)
17: return result

Figure 7.6: The fitness function selector with overlapping.
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vector does not change after creation, so that the global (shifted) optimum for each

gene stays the same for the whole optimization run. For example, if x = [x1, . . . , xn]

is an individual and o = [o1, . . . , on] is the (shifted) global optimum, then z = x− o =

[z1, . . . , zn] is a vector that is evaluated on the OVLB function. Without such a shifting,

global optima can be typically located at the alleles of 0.0.

• Permutation Vector: A permutation vector is also created as a constant at the

instantiation time of an OVLB function and contains the permuted indices of the chro-

mosome’s genes. As an example, the typical indices of a chromosome are [0, 1, 2, . . . , n],

and this permuted vector is a shuffled version (random permutation) thereof. This al-

lows the removal of positional bias from an OVLB function, and while linkage groups

are situated next to each other on the genotype, logically (at the time of the fitness

function evaluation), they are shuffled throughout the chromosome. Shifting and per-

muting a chromosome with regards to the optimization is shown in Figure 7.7

• Rotation Matrix: A random coordinate rotation technique directly taken from the

LSGO benchmark is applied to create non-separable versions of separable functions.

The shifting and permuting operations can be disabled by providing a vector of zeros as

the shift vector (so that the global optimum for each gene does not move) and a vector with

integer numbers from 1 to n as the permutation vector, so that the genotypical (real) and

the logical (view of the fitness function) location of the genes are the same.

7.2.3 Synthetic Base Functions

The following synthetic base functions are applied on the defined templates in this Chapter.

They are provided in their mathematical forms in Table 7.1, followed by 3-D surface plots

made with gnuplot. Those functions are further described in [25] or [82]. The functions are:

1. F1, the Sphere Function is a unimodal function that is fully separable. It is relatively

simple to optimize compared to the other base functions, and is used to evaluate 1/10
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Table 7.1: Synthetic Base Functions.
Function Definition

F1: Sphere
D∑
i=1

x2
i

F2: Schwefel 1.2
D∑
i=1

(
i∑

j=1

xj)
2

F3: Rosenbrock
D−1∑
i=1

(100(x2
i − xi+1)

2 + (xi − 1)2)

F4: Rastrigin
D∑
i=1

(x2
i − 10cos(2πxi) + 10)

F5: Ackley −20exp
(
− 0.2

√√√√ 1

D

D∑
i=1

x2
i

)
− exp

( 1

D

D∑
i=1

cos(2πx2
i )
)

+ 20 + e

F6: Weierstrass
D∑
i=1

(
20∑
k=0

(1/2kcos(2π3k(xi + 1/2))))−D
20∑
k=0

(1/2kcos(π3k))

F7: Katsuura
10

D2

D∏
i=1

(
1 + i

32∑
j=1

|2jxi − b2jxic|
2j

)10/D1.2

− 10

D2

F8: Sharp Ridge x2
1 + 100

√√√√ D∑
i=2

x2
i
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Chromsome                    Functions Global Optimum 1

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

  0   0   0    0   0   0    0   0   0    0   0   0    0   0    0   0   

  1   2   3    4   5   6    7   8   9   10 11  12 13 14  15 16

 -4   2  0.3 -7  -2  4   3.4 -3  3    5   -6   8  2.2 -5  3   3.1   

shift the
global 
optimum
uniformly
random
per gene

2

1

2

1

2 permutate
the genes 
through
shuffling

  9  12  16  6   7    4   5  10  1   8   13  2   11 15  14  3

 -4   2  0.3 -7  -2  4   3.4 -3  3    5   -6   8  2.2 -5  3   3.1   

1

2

Prevent optimum location bias

Prevent proximity bias

Figure 7.7: Illustration of shifting the global optimum and the permutation of access to the
genes. This happens only at the beginning of the optimization run and stays fixed until the
end of the optimization of the particular function.

of the genes of a chromosome in cases where neither of the two base functions that are

applied to create the linkage groups are originally separable (prior to the application

of the random coordinate rotation technique of the LSGO benchmark). 3-D surface

plots for the Sphere Function are shown for the range [−1, 1] in Figure 7.8 and for the

range [−100, 100] in Figure 7.9.

2. F2, the Schwefel 1.2 Function, defined in [76], is a unimodal function that is fully non-

separable. From its definition it can be inferred that in contrast to F1, the sensitivity

of genes differs. 3-D surface plots for the Schwefel 1.2 Function are shown for the range

[−1, 1] in Figure 7.10 and for the range [−100, 100] in Figure 7.11.

3. F3, the Rosenbrock Function, is a multimodal function in higher dimensions (4∼30[78])

that is non-separable. It is one of the most widely used optimization benchmark

functions. The global minimum of this function is located inside a narrow valley of
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the search space, and therefore this problem “often serves as a test case for premature

convergence” [78]. 3-D surface plots for the Rosenbrock Function are shown for the

range [−1, 1] in Figure 7.12 and for the range [−100, 100] in Figure 7.13.

4. F4: the Rastrigin Function is a highly multimodal function (its modality increases

exponentially in relation to the dimensionality [82]) that is fully separable. It bears

similarity to F1, but has the cosine function applied to it. 3-D surface plots for the

Rastrigin Function are shown for the range [−1, 1] in Figure 7.14 and for the range

[−100, 100] in Figure 7.15.

5. F5: the Ackley Function is a multimodal function (also including the usage of the cosine

function as F4), which has many local optima spread out across the search space and

one global optimum. This function is separable (but not additively separable). 3-D

surface plots for the Ackley Function are shown for the range [−1, 1] in Figure 7.16

and for the range [−100, 100] in Figure 7.17.

6. F6: the Weierstrass Function is a multimodal and separable function, and has more

than one unique global optimum [25]. It is famous for being a continuous function that

is nowhere differentiable. 3-D surface plots for the Weierstrass Function are shown for

the range [−1, 1] in Figure 7.18 and for the range [−100, 100] in Figure 7.19.

7. F7: the Katsuura Function is highly multimodal, separable, and just like F6 continu-

ous on all points but nowhere differentiable [25]. 3-D surface plots for the Katsuura

Function are shown for the range [−1, 1] in Figure 7.20 and for the range [−100, 100]

in Figure 7.21.

8. F8: the Sharp Ridge Function defines a non-differentiable sharp ridge that “needs to

be followed” [25] to reach the global optimum. 3-D surface plots for the Sharp Ridge

Function are shown for the range [−1, 1] in Figure 7.22 and for the range [−100, 100]

in Figure 7.23.
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Figure 7.8: 3-D plot of F1, the Sphere Function, range [−1, 1].
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Figure 7.9: 3-D plot of F1, the Sphere Function, range [−100, 100].
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Figure 7.10: 3-D plot of F2, the Schwefel 1.2 Function, range [−1, 1].
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Figure 7.11: 3-D plot of F2, the Schwefel 1.2 Function, range [−100, 100].
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Figure 7.12: 3-D plot of F3, the Rosenbrock Function, range [−1, 1].
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Figure 7.13: 3-D plot of F3, the Rosenbrock Function, range [−100, 100].
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Figure 7.14: 3-D plot of F4, the Rastrigin Function, range [−1, 1].
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Figure 7.15: 3-D plot of F4, the Rastrigin Function, range [−100, 100].

102



Ackley(x,y)
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Figure 7.16: 3-D plot of F5, the Ackley Function, range [−1, 1].
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Figure 7.17: 3-D plot of F5, the Ackley Function, range [−100, 100].
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Figure 7.18: 3-D plot of F6, the Weierstrass Function, range [−1, 1].
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Figure 7.19: 3-D plot of F6, the Weierstrass Function, range [−100, 100].
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Figure 7.20: 3-D plot of F7, the Katsuura Function, range [−1, 1].
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Figure 7.21: 3-D plot of F7, the Katsuura Function, range [−100, 100].
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Figure 7.22: 3-D plot of F8, the Sharp Ridge Function, range [−1, 1].
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Figure 7.23: 3-D plot of F8, the Sharp Ridge Function, range [−100, 100].
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Table 7.2: Composition of the Fitness Functions.
Functions Base-1 Base-2 Separable If Overlap
C1, C12, C23 F2 F3 F1 F3

C2, C13, C24 F4 F5 F4 F3

C3, C14, C25 F4 F6 F4 F3

C4, C15, C26 F4 F7 F4 F3

C5, C16, C27 F4 F8 F4 F3

C6, C17, C28 F5 F6 F5 F3

C7, C18, C29 F5 F7 F5 F3

C8, C19, C30 F5 F8 F5 F3

C9, C20, C31 F6 F7 F6 F3

C10, C21, C32 F6 F8 F6 F3

C11, C22, C33 F7 F8 F1 F3

Table 7.2 shows the application of the base functions from Table 7.1 after being fit into

the aforementioned templates as follows:

1. Non-overlapping linkage groups: C1 − C11.

2. Minimal overlapping linkage groups: C12 − C22.

3. Increasing overlapping linkage groups: C23 − C33.

F2 and F3, in their role as base functions, are only paired together and form the functions

C1, C12, C23. These two functions are the only ones which are naturally fully non-separable.

Furthermore, F3 is used as an overlapping function. F4 − F8 appear in every possible per-

mutation. These functions have been made non-separable into the defined linkage sizes with

the aforementioned random coordinate rotation technique. With 8 base functions forming

33 composite fitness functions, the OVLB benchmark strives to keep a balance between a

reasonable function size in terms of computability, and variety of diverse function properties

and combinations with regards to providing a reasonable encompassing benchmark of func-

tions with overlapping linkage groups of different sizes. While the no free lunch theorem [93]
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states that no algorithm will be better than another averaged over all possible problems, it

can be of tremendous benefit to know the performance, the strengths and the weaknesses of

a particular optimization algorithm on some or all of the OVLB functions to extrapolate this

onto real-world problems with overlapping linkage groups of varying size that have similar

functional properties.

7.2.4 Parameter and Configuration

The OVLB has one parameter to be set a priori, which is the desired number of base linkage

groups. Through this, the dimensionality of all composite functions C1 − C33 is determined

as well as the actual overlap amount. Starting from zero and up to and including the desired

number of base linkage groups, the powers of two with this as exponent are calculated; these

numbers determine the size of the base linkage groups. Furthermore, after all linkage group

sizes are calculated, b 1
10
∗ Dc expresses the number of genes on which only the separable

function may be evaluated. To give an example, if the parameter value is set to 4, a bench-

mark will be created with the dimensionality of 16, with base linkage groups of sizes 1, 2, 4, 8

(each having its distinct and disjoint group of genes) accounting for 15 genes and the one

extra gene, which will be evaluated by the separable function. Table 7.3 shows, for each

parameter value, the dimensionality of the part of the chromosome evaluated by the base

functions, the dimensionality of the separable part and the final dimension D.

After the templates have been filled in and the composite functions C1 − C33 have been

set up, the OVLB applies the same code as the LSGO to create a shift vector in order to shift

the global optimum for each gene and also creates a permutation vector to create a shuffled

access to the genes from inside the composite fitness functions. By doing so, positional bias

is excluded (otherwise, genes in close proximity could be always assumed to have higher

probability to interact with each other) and the global optimum can be anywhere within

allowable boundaries while still operating with well studied and understood base fitness

functions. In addition to that, the same rotation matrix technique from the LSGO is used to
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Table 7.3: OVLB Benchmark Dimensionalities.
Parameter Base Function 1 + Base Function 2 Separable Function Final D

1 1 0 1
2 3 0 3
3 7 0 7
4 15 1 16
5 31 3 34
6 63 6 69
7 127 12 139
8 255 25 280
9 511 51 562
10 1023 102 1125

create non-separable versions of separable functions in order to fill the templates. To be able

to repeat the experiments, a fixed seed for the random number generator can be provided,

so that the same templates will appear every time the benchmark is recreated.

The proposed and pre-defined settings for the OVLB are:

1. Problem Range: [−100, 100]

2. Maximal number of fitness evaluations: 3E+6 for each composite fitness function

Ci when parameter value 10 is chosen (D = 1125), similar to the LSGO benchmark.

3. Independent Runs: 50 runs are performed per fitness function Ci, each run recording

the mean and the standard deviation of the best solutions found every generation.

4. Comparison of two optimizers: As proposed in [20], non-parametric test methods

such as the Wilcoxon rank sum test should be applied to answer the question “Is

algorithm A statistically significantly better than B on Ci of the OVLB?” based on the

data gathered from a sufficient number of independent runs of each optimizer.
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Chapter 8

Experimental Results and Analysis

In this Chapter, the results and analysis of the experimental setups for the surrogate-assisted

perturbation check for nonlinearity (SA-LINC-R), the sensitivity detection through machine

learning methods and the application of the presented surrogate-assisted crossover operators

are given. The linkage results include precision, recall, F-measure and an empirically com-

puted probability of discovered interactions of gene pairings for each generation. In terms of

the detection of influential genes, Spearman’s rank correlation coefficient towards the true

ranking and both the ranking averages as well as two probabilities denoting the appearance

of genes in their correct place are provided. The results of the evolutionary optimization

runs are given along with plots and tests for statistical significance.

8.1 Linkage Detection

This Section contains the linkage detection results of the SA-LINC-R approach described in

Chapter 6. To give an impression of how k-means clusters a matrix with interaction results

obtained from the perturbation checks, first an example is given to visualize this.

8.1.1 Clustering the DSM

To give an overview of how k-means can smoothen the results in the MLMglobal and provide

a binary linkage decision, Table 8.1 shows an example of a MLMglobal calculated from a run
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Table 8.1: MLMglobal on an example run with the Configuration Function 1 in generation
ten.

x0 x1 x2 x3 x4 x5

x0 - 0.41 0.26 0.05 0.06 0.05
x1 - - 0.22 0.04 0.05 0.04
x2 - - - 0.04 0.04 0.04
x3 - - - - 0.06 0.05
x4 - - - - - 0.03
x5 - - - - - -

Table 8.2: DSM created from the MLMglobal in Table 8.1 through k-means clustering.
x0 x1 x2 x3 x4 x5

x0 - 1 1 0 0 0
x1 - - 1 0 0 0
x2 - - - 0 0 0
x3 - - - - 0 0
x4 - - - - - -
x5 - - - - - -

on Configuration Function 1 from generation ten, where the first half of the chromosome is

evaluated on the Schwefel 1.2 Function, and the second half on the Sphere Function. Table

8.2 shows the resulting DSM . The genes x0, x1 and x2 all have interactions with each other,

while the remaining genes do not. As long as the estimation for linkage is significantly higher

than the estimation for genes that do not interact, k-means will create the DSM accordingly.

However, one limitation of this approach is that if the fitness function consists of two (or

more) different subfunctions, each having linkage for all their genes, but one subfunction

provides substantially stronger interaction values from SA-LINC-R than the others, then

the genes that are evaluated on the subfunctions with the weaker linkage results would be

classified as non-interacting.
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8.1.2 Linkage Detection Results

Precision, recall and F-measure are measures from the field of information retrieval [92]

that are used quantify the performance of information retrieval algorithms. With regards to

linkage learning, these measures have been applied in [8] and their notion is adopted here in

the same fashion as shown in Equations 8.1, 8.2 and 8.3.

Precision =
True interactions discovered

Total interactions discovered
(8.1)

Recall =
True interactions discovered

Total true interactions existing
(8.2)

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

(8.3)

Precision provides a way to express how much meaningful linkage has been discovered in

relation to all detected linkage (including wrongfully detected interactions), and recall can

be viewed to describe how much of the existing linkage of a problem has been found. The

F-measure combines precision and recall into a single measure. All three measures have the

range [0, 1], with 1 being the best, and the F-measure value of 1 can be only achieved if both

precision and recall are equal to 1.

In addition to providing averages of these measures for each generation with every con-

figuration, probability results for every possible gene-pair check are given that tell how often

(based on the 50 runs) a particular interaction was detected. For instance, Table 8.3 has

a value of 0.98 for combination x0x2 in generation 2. This means that this interaction was

detected in 49 out of 50 runs.

Probability results for Configurations 1, 2 and 3 (half the chromosome is evaluated on

a non-separable function, the other half on the separable Sphere function) are presented in

Tables 8.3, 8.5 and 8.7. The Tables containing precision, recall and the F-measure for these
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configurations are 8.4, 8.6 and 8.8. On all three configurations, the F-measure is either close

to or equal to one after a few generations. Configuration 3 includes the Ackley Function,

which initially poses a harder challenge, as can be seen in the first generation, where an

F-measure of only 0.665 is obtained, and especially the precision of 0.567 contributes to this

low value. Subsequent generations are able to improve the F-measure to 1.

Probability results for Configurations 4, 5 and 6 and the information retrieval measures

can be found in Tables 8.9, 8.11, 8.13 and Tables 8.10, 8.12 and 8.14, respectively. Although

both the Rosenbrock and Ackley Configurations do not result in a perfect F-measure, the

values of 0.988 and 0.989 in generation 10 get very close.

Finally, Tables 8.15, 8.17 and 8.19 show the probabilities for Configurations 7, 8 and

9, and Tables 8.16, 8.18 and 8.20 show the corresponding precision, recall and F-measure

values. While interactions from the Schwefel 1.2 Function are found with an F-measure

of 1 from the third generation onward, this measure goes close to 1 (precision, recall and

F-measure are all above 0.95) but does not quite reach it for Configurations 8 and 9.
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8.2 Sensitivity Detection

The average ranking results were calculated as follows: Each configuration was run inde-

pendently for 50 times and 50 individual rankings were obtained. For each variable, its

ranks from each detection run were added and then divided by 50 to give an average rank

that is displayed in the tables. It should be noted that while this method provides an

overview of how, on average, the three machine learning methods were judging each vari-

able, it smoothens the results such that for example even if the most influential variable was

not always identified as such (with rank 1), it suffices that on average it was ranked as the

best. The means and standard deviations of the Spearman’s rank correlation coefficient for

each of the configurations have been therefore calculated to measure how close the obtained

rankings from the 50 runs came to the true, known ranking of gene sensitivities. In addition

to that, the tables provide a probability that is based on how often a gene appeared in its

correct ranking, and a second probability that also allows neighboring ranks per gene to be

counted as right position to fully display the detection of gene sensitivities.

8.2.1 Sensitivity Averages

Tables 8.21 and 8.22 show the results of the final ranking averages on functions F1 and

F2 with dimensionality four. The ordering is sorted by the average descending order of

strength of contribution of the gene towards the fitness of the chromosome, and equals to its

average rank. In this low dimensionality, all methods, on average, discovered the sensitivities

perfectly. In Tables 8.23 and 8.24, the results of the final ranking averages on functions F1

and F2 with dimensionality 16 are shown. The neural network approach is able to almost

reliably capture the sensitivity information, followed by the SMOreg approach. Especially

with the ReliefF results with F1 it can be seen that as the sensitivity ranking gets larger

(and therefore the genes are getting less influential), the precision of the approach decreases

- a trend that is even more visible in dimension 32. Finally, Tables 8.25 and 8.26 give the

123



Table 8.21: Sensitivity Detection Results in Dimension 4 for F1.
Config. Approach Average Ranking

(descending order of strength)
True Ranking 3, 2, 1, 0
Neural Network 3, 2, 1, 0

1 ReliefF 3, 2, 1, 0
SMOreg 3, 2, 1, 0
Neural Network 3, 2, 1, 0

2 ReliefF 3, 2, 1, 0
SMOreg 3, 2, 1, 0

Table 8.22: Sensitivity Detection Results in Dimension 4 for F2.
Config. Approach Average Ranking

(descending order of strength)
True Ranking 0, 1, 2, 3
Neural Network 0, 1, 2, 3

7 ReliefF 0, 1, 2, 3
SMOreg 0, 1, 2, 3
Neural Network 0, 1, 2, 3

8 ReliefF 0, 1, 2, 3
SMOreg 0, 1, 2, 3

results of the final ranking averages on functions F1 and F2 with dimensionality 32. The

neural network misplaces 0 and 1 in Table 8.26 Configuration 12. It can also be observed that

in this dimensionality, the rankings of mid and low influential genes are hard to distinguish

for all three approaches, whereas the genes with the strongest sensitivity influence can be

mostly reliably detected and ranked.
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Table 8.23: Sensitivity Detection Results in Dimension 16 for F1.
Config. Approach Average Ranking (descending order of strength)

True Ranking 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Neural Network 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

3 ReliefF 15, 14, 13, 12, 11, 10, 9, 6, 0, 2, 4, 3, 8, 1, 5, 7
SMOreg 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 4, 1, 5, 2, 0, 3
Neural Network 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

4 ReliefF 15, 14, 13, 12, 11, 10, 9, 3, 8, 4, 6, 5, 1, 2, 0, 7
SMOreg 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 3, 5, 1, 2, 4, 0

Table 8.24: Sensitivity Detection Results in Dimension 16 for F2.
Config. Approach Average Ranking (descending order of strength)

True Ranking 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Neural Network 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

9 ReliefF 1, 0, 2, 4, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 14
SMOreg 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Neural Network 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

10 ReliefF 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
SMOreg 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
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8.2.2 Spearman’s ρ and Sensitivity Probabilities

Spearman’s rank correlation coefficient, also known as Spearman’s ρ, is described in [91]. It

is a non-parametric test that can be used to investigate the “correlation between two ranked

variables” [91]. In the context of this work, it can be applied to determine how close a

sensitivity ranking of genes by a machine learning method compares to the true ranking (the

true ranking, in these experiments, is known beforehand). If no ties in the true and observed

rankings are present, the calculation of Spearman’s rank correlation coefficient between the

two rankings given in variables x and y can be done as shown in Equation 8.4.

ρ = 1−
6
∑n

i−1 d
2
i

n(n2 − 1)
where di = xi − yi. (8.4)

The range of ρ is [−1, 1], with 1 being a perfect match between the detected and the

true sensitivity ranking. Table 8.27 shows the mean and standard deviation of ρ (it was

calculated for each of the 50 independent runs) for the neural network, the SMOreg and

the ReliefF results on F1 for both dimensionalities. In dimension 4, the neural network

approach obtains a ρ of 1 and 0.988, outperforming the SMOreg and ReliefF methods. As

the dimensionality is increased to 16, the neural network again receives the best ρ values

of 0.931 and 0.934, but this means that a perfect ranking was not always found. ReliefF

already shows a considerably weaker performance with ρ values of 0.646 and 0.690. This

trend continues in the results for dimensionalities 32, where ReliefF only achieves a ρ of 0.416

and 0.425. While the highest ρ values again belong to the neural network approach. It can

be seen that with the values of 0.694 and 0.706, the detected rankings show inaccuracies.

The results for Function F2 are given in Table 8.28. In general, the three methods had

more success to detect the sensitivities than on F1, as can be seen with all ρ values. In

the dimension 4, the neural network slightly outperforms the SMOreg with a ρ of 0.992

compared to 0.988, and the ReliefF method already drops to a ρ of 0.904. Similar trends

can be seen in dimensionalities 16 and 32, with the neural network having the same or very
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Table 8.27: Spearman’s ρ results for F1.
Dim. Range Neural Network SMOreg ReliefF

mean std. dev. mean std. dev. mean std. dev.
4 [0,1] 1.000 0.000 0.992 0.040 0.984 0.055
16 [0,1] 0.931 0.039 0.898 0.044 0.646 0.133
32 [0,1] 0.694 0.083 0.678 0.090 0.416 0.121
4 [0,100] 0.988 0.048 0.976 0.066 0.980 0.061
16 [0,100] 0.934 0.036 0.904 0.042 0.690 0.139
32 [0,100] 0.706 0.069 0.682 0.084 0.425 0.103

Table 8.28: Spearman’s ρ results for F2.
Dim. Range Neural Network SMOreg ReliefF

mean std. dev. mean std. dev. mean std. dev.
4 [0,1] 0.992 0.040 0.988 0.048 0.904 0.116
16 [0,1] 0.998 0.002 0.998 0.003 0.900 0.054
32 [0,1] 0.999 0.001 0.999 0.001 0.819 0.039
4 [0,100] 0.988 0.048 0.992 0.040 0.960 0.081
16 [0,100] 0.999 0.002 0.997 0.003 0.900 0.050
32 [0,100] 0.999 0.001 0.999 0.001 0.838 0.050

close ρ when compared to the SMOreg method, and ReliefF which obtain noticeably lower

(but still reasonably high) ρ values.

Another way of looking at the obtained ranking results is to count, for each of the 50 runs

of an algorithm on a function, how many times a gene appeared in its correct ranking. For

example, looking at F2 in dimensionality four, the correct ranking in the descending order

of strength of contribution should be 0, 1, 2, 3, indicating a sensitivity order for the genes

x0, x1, x2, x3. If in an example the neural network approach classified gene x0 in 48 out of

50 times as the best gene, but for two times, it misplaced it as possibly second or even third

best, then it can be said that with a probability of
48

50
= 0.96 the gene was ranked correctly.

This probability is denoted as PNN0 . Furthermore, a more lenient measure, PNN1 , can be
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adopted which allows a gene to be ranked with either its correct true rank or a neighboring

rank. If gene x0 was ranked in its true place correctly for 48 times, and ranked as second

most influential gene for 2 times, then its probability to appear correctly is
50

50
= 1. For the

most contributing and least contributing gene only one neighboring place is allowed under

this measure (second most contributing and penultimate contributing), while the other genes

are allowed to be misplaced one rank below or above. This provides a straightforward way

of judging the accuracy of the sensitivity detection methods, and in the following tables,

the probabilities for all runs on all genes are provided. A higher value in the tables means

a stronger probability to detect the gene in its correct rank and is therefore more desirable

(higher is better).

Table 8.29 gives the probabilities for F1 in dimensionality four, and Table 8.30 shows

the probabilities for F2 in the same dimensionality. While the neural network calculated all

rankings correctly in F1, even with the stricter PNN0 measure, ReliefF and SMOreg already

show performance differences in the least influential genes. The opposite happens in F2,

where the most influential genes are the hardest to identify. A reason for this can be that

there is no interaction among variables in F1, only an exponent that increases subsequently

with the genes, such that the difference between the most influential genes is bigger than

that of the least influential ones. F2, on the other hand, features linkage between its genes,

and the more influential a gene is, the more interactions are present between this genes and

the others.

In Table 8.31, results of the probabilities for F1 in dimensionality 16 are presented, and

Table 8.32 contains the probabilities for F2 in dimensionality 16. Here the performance

differences between the neural network and ReliefF are clearly visible, especially in PNN1 ,

where the probabilities for ReliefF degrade quickly. It can be said that on F2, except for

a few most contributing genes, both the neural network and the SMOreg provide a correct

ranking based on the probabilities, whereas ReliefF struggles with all genes rankings.

Finally, Table 8.33 has the probabilities for F1 in dimensionality 32, and Table 8.34 holds
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the probabilities for F2 in dimensionality 32. After approximately half the dimensionality

of F1, the ranking performance of all three methods looses its expressive power, giving a

different picture than the previous ranking averages. The exponent in F1 increases with

the number of dimensions, and with 32 genes it could be concluded that the contribution

of the strongest genes vastly outperforms the contributions of remaining genes such that

the algorithms have problems to distinguish between the ranks of these less influential genes.

However, especially with the neural network approach and followed by the SMOreg, the most

influential genes in F1 and a large number of the least influential genes in F2 are classified

with their correct rank with a high probability.

It can be said that these approaches can be used to detect and rank the genes with

the high sensitivities on functions like F1, where the gene contributions are not blurred

through interactions. On functions like F2, where no exponential increase of contribution

takes place and genes are interacting more strongly if they feature a higher importance,

these approaches were able to detect the least and medium influential genes very well and

especially for the neural network and SMOreg, the strong interacting genes were found with

a reliable probability. In practice, while an absolute perfect ranking is desirable, it is already

beneficial to know the genes approximate ranking, for example to know that a gene is either

the most influential or the second most influential.

With obtained sensitivities through machine learning methods, several possibilities to

employ this knowledge are open. In [55], a crossover operator is presented that focuses on

the most influential genes, while [10] gives the idea of a mutation operator with variable

mutation rates based on the genes importance.
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Table 8.29: Sensitivity Probabilities in Dimension 4 for F1.
Config. Prob. x3 x2 x1 x0

PNN0 1.00 1.00 1.00 1.00
PReliefF0 1.00 1.00 0.92 0.92

1 PSMOreg0 1.00 0.98 0.96 0.98
PNN1 1.00 1.00 1.00 1.00
PReliefF1 1.00 1.00 1.00 1.00
PSMOreg1 1.00 1.00 1.00 1.00
PNN0 1.00 1.00 0.94 0.94
PReliefF0 1.00 0.98 0.90 0.92

2 PSMOreg0 1.00 1.00 0.88 0.88
PNN1 1.00 1.00 1.00 1.00
PReliefF1 1.00 1.00 1.00 1.00
PSMOreg1 1.00 1.00 1.00 1.00

Table 8.30: Sensitivity Probabilities in Dimension 4 for F2.
Config. Prob. x0 x1 x2 x3

PNN0 0.96 0.96 1.00 1.00
PReliefF0 0.66 0.60 0.86 0.92

7 PSMOreg0 0.94 0.94 1.00 1.00
PNN1 1.00 1.00 1.00 1.00
PReliefF1 1.00 1.00 1.00 0.92
PSMOreg1 1.00 1.00 1.00 1.00
PNN0 0.94 0.94 1.00 1.00
PReliefF0 0.88 0.80 0.92 1.00

8 PSMOreg0 0.96 0.96 1.00 1.00
PNN1 1.00 1.00 1.00 1.00
PReliefF1 1.00 1.00 1.00 1.00
PSMOreg1 1.00 1.00 1.00 1.00
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8.3 SAILEGA Runs

SAILEGAdefault, SAILEGAnoSu and SAILEGA1point were run for 50 times on each com-

posite fitness function to provide statistically meaningful results.

The outcomes of the experiments are given in Table 8.35 together with the mean of the

best individuals from the last generation and their standard deviation calculated from the 50

runs. SAILEGAdefault and SAILEGAnoSu perform distinctly better than SAILEGA1point

on all the tested functions when looking at the lower mean of the final individuals and

also their standard deviation. These results can be interpreted that the linkage learn-

ing and exploitation effort payed off in terms of better final result quality. Furthermore,

SAILEGAdefault and SAILEGAnoSu both obtained a very close final mean fitness on the

composite function F 7
1 + F 7

2 , indicating the ability of SAILEGAs operators to work well in

this non-linked fitness scenario. Also, Table 8.35 also gives the results of an one-tailed t-

test to compare SAILEGAdefault and SAILEGAnoSu against SAILEGA1point. The p-value

on all three functions for all comparisons is below the threshold for statistical significance

(0.01 level), showing that SAILEGAdefault and SAILEGAnoSu performed significantly bet-

ter than SAILEGA1point.

To visualize the performance during the generations, Figures 8.1 and 8.2 provide examples

of logarithmically scaled plots of the average fitness development through the generations.
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Table 8.35: SAILEGA Minimization Results.
Config FunctionDim mean std. dev. p-value
Cdefault F 7

1 + F 7
2 0.0027 7.68e-4 1.168e-10

CnoSu F 7
1 + F 7

2 0.002 0.00036 1.15e-10
C1point F 7

1 + F 7
2 1.32 1.17 -

Cdefault F 6
3 + F 8

2 4.06 3.75 2.911e-10
CnoSu F 6

3 + F 8
2 1.94 2.27 7.383e-12

C1point F 6
3 + F 8

2 20.44 14.99 -
Cdefault F 4

4 + F 4
5 + F 6

2 2.03 1.43 2.567e-10
CnoSu F 4

4 + F 4
5 + F 6

2 0.08 0.2 < 2.2e-16
C1point F 4

4 + F 4
5 + F 6

2 4.86 2.42 -
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Chapter 9

Conclusion

This Chapter provides a summary of the work presented in this dissertation and includes a

review of the main contributions and conclusive remarks about the machine learning aided de-

tection methods for linkage and sensitivity, the exploitation through novel surrogate-assisted

operators and finally the benchmarking of overlapping linkage groups in real-valued evolu-

tionary optimization. Current limitations of the developed methods are laid out and future

work to mend them is discussed.

9.1 Summary

In this dissertation, the perturbation-based linkage checking method SA-LINC-R is pre-

sented, which employs surrogate models to discover interactions among genes without having

to call the true fitness function and results on several synthetic fitness functions are presented

that provide precision, recall and the F-measure. In addition to that, probabilities for ev-

ery possible gene-pair check are explored to show how often a specific interaction pair was

found. Results show that SA-LINC-R is a promising method to detect interactions if true

perturbation costs significantly outweigh the computational expenses of training accurate

and precise surrogate models.

Furthermore, an empirical evaluation and comparison including Spearman’s ρ for de-

tecting sensitivities through the machine learning methods of neural networks, ReliefF and
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support vector machines for regression is given. The neural network method results show

that it is a viable approach to discover sensitivities while providing a surrogate model capa-

ble of approximating any continuous function at the same time (given a large enough hidden

layer).

Means to represent problem structure in real-valued evolutionary optimization are dis-

cussed. Iterative linkage neighborhoods are built up with only pair-wise dependency informa-

tion and a method attempting to extract crossover masks from them is shown. Furthermore,

a problem structure matrix idea is envisioned that aims to give a data structure for describing

an optimization problem’s joint composition of linkage and sensitivity.

The four introduced surrogate-assisted and informed operators are applied through the

SAILEGA method, where they show a large performance and final result improvement over a

linkage-unaware GA setup. These operators can be integrated into other optimization frame-

works, as long as meaningful crossover masks are provided that partition the chromosome

with regards to the problem structure.

Finally, a benchmark suite for overlapping linkage groups of increasing size has been

defined which fills a gap in the current field of evolutionary computation benchmarks for

real-valued optimization problems. It combines benefits of three contemporary benchmarks

BBOP, LSGO and LSGO-extended and can be applied with any global optimization al-

gorithm capable of handling real-valued representations. This novel benchmark can be a

valuable component in empirically judging the performance and quality differences of opti-

mization methods on well studied fitness functions.

9.2 Review of Contributions

The main contributions of this work are:

1. Surrogate Model aided Learning of Problem Structure: Interactions among

genes as well as the importance of genes with regards to the fitness are meaningful
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measures to characterize a problems structure. The novel machine learning based

method of linkage detection, SA-LINC-R, is presented, which extends LINC-R by ap-

plying a surrogate model to perform the perturbation checks on the extra individuals.

This method is especially useful in cases where the true fitness evaluation is computa-

tionally expensive. Three methods for detecting sensitivity, using a neural network, a

support vector machine for regression and ReliefF, are presented and empirically com-

pared to gauge their performance. Like SA-LINC-R, no additional fitness evaluations

are needed for all three methods, and the neural network method has been found to

be the most accurate on the investigated functions. These concepts and their exper-

imental setups are given in Chapter 6, while Chapter 8 contains the corresponding

experimental results. Furthermore, iterative linkage neighborhoods are presented and

an algorithm aiming to generate crossover masks from them is shown.

2. Exploitation of Problem Structure: In Chapter 6, four novel recombination op-

erators are presented that are capable of exploiting the discovered structural infor-

mation of linkage through crossover masks. By virtue of this, the operators do not

disrupt important substructures that need to be optimized together, and are further-

more surrogate-assisted and informed which means that they employ machine learning

methods to approximate the fitness function and create a pool of individuals that is

ranked by the approximate fitness. Chapter 8 provides the results along with statis-

tical tests for significance for the application of these operators on synthetic fitness

functions indicating a large performance improvement.

3. Overlapping Linkage Benchmark of Increasing Size: Chapter 7 presents a novel

benchmark for real-valued global optimization that focuses on overlapping linkage

groups of increasing size, governed by the number of the powers of two. This benchmark

contains 33 composite fitness functions and draws from the strengths of three contem-

porary benchmarks for evolutionary algorithms, BBOP, LSGO and LSGO-extended.
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It allows researchers to systematically compare and evaluate optimization algorithms

on well-studied and well-defined functions in the context of overlapping groups of de-

pendent genes of different sizes.

9.3 Limitations and Future Work

The presented operators are designed to operate with two parents to produce a pool of

offspring - a common setting in EC. However, the concept of optimal mixing allows the use

of a new parent for each linkage group investigated. In the future, this can be adapted to

correspond to optimal mixing of the proposed substructures and implemented for the defined

operators.

Linkage learning with the help of surrogate models can be of benefit in cases where the

true cost of a fitness evaluation is the major computational component of an optimization.

A crucial measure of the success of such learning is an accurate fitness approximator. The

presented setup could be extended by other methods and techniques from the field of surro-

gate modeling such as a comprehensive surrogate model management system, integration of

other techniques such as kriging or the use of parallel computing concepts.

Based on the conclusions about the sensitivity detection through machine learning meth-

ods, it becomes harder to detect the perfect ranking of genes as the dimensionality increases.

However, a combination of learning techniques (such as ensemble learning) might provide

additional precision for this task.

The presented idea of the problem structure matrix requires future work to identify a

proper scheme to assign sensible linkage and sensitivity values based on individual problems

and to measure them according to well-established metrics.

An improvement for the novel overlapping linkage benchmark is to extend it to include

functions that feature noise. Noisy optimization is a challenging field of optimization, in

which the fitness function is not guaranteed to return the same fitness value for the same
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individual at different times as it includes random error terms. This effect happens in some

real-world problems, especially when measurements of the physical reality are part of the

fitness function calculation and is worthy to be studied in an extension of this work.
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Thomas Weise. Benchmark Functions for the CEC’2010 Special Session and

Competition on Large-Scale Global Optimization. Technical report, University of

Science and Technology of China (USTC), School of Computer Science and

Technology, Nature Inspired Computation and Applications Laboratory (NICAL):
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Appendix A

Surrogate Modeling with Weka

Weka is a popular machine learning and data mining open-source (free software under the

GPL) suite written in Java. In the following pages, code examples on how to create surrogate

models for a population of an EA for real-valued optimization will be presented as well as

an implementation of population clustering.

A.1 Weka Preliminaries

Weka1 comes in two editions, the (stable) book edition (at the time of writing, weka-3-

6-9), and the developer edition (at the time of writing, weka-3-7-9), in this context it is

assumed that the developer edition is used on a GNU/Linux system with an installed Java

environment. A very helpful resource with many examples and their source codes is the

Weka wiki2, and a short guide on training a neural network that these pages are inspired by

is included in [54].

After obtaining and unpacking the Weka package “weka-3-7-9.zip”, the suite can be

started by running “weka.jar” in a shell such as Bash as follows (omitting the $ symbol):

$ java -jar weka.jar

1Weka is available at: http://www.cs.waikato.ac.nz/ml/weka/
2The Wiki is available at: http://weka.wikispaces.com/
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The weka source code resides in the file “weka-src.jar”, and, once extracted, is accessi-

ble under “../weka-3-7-9/weka-src/src/main/java/weka/”. The Weka source code needs to

be accessible (for imports of its classes) to allow the following code examples to function.

Furthermore, Weka uses a special format for its data instances, the Attribute-Relation File

Format (ARFF). To employ Weka on a population of an EA, the population needs to be

transformed into this format. For demonstration purposes, a bare bones definition of an

individual from a real-valued EA is defined in Listing A.1, the class Individual contains the

genes as well as the fitness. Listing A.2 shows a method that has a list of individuals as

input and creates an Instances object in the ARFF format for further Weka processing.

1 public class I n d i v i d u a l {

2

3 private double [ ] genes ;

4 private double f i t n e s s ;

5

6 public I n d i v i d u a l (double [ ] genes , double f i t n e s s ) {

7 this . genes = genes ;

8 this . f i t n e s s = f i t n e s s ;

9 }

10

11 public double [ ] getGenes ( ) {

12 return genes ;

13 }

14

15 public double g e t F i t n e s s ( ) {

16 return f i t n e s s ;

17 }
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18 }

Listing A.1: A bare bones implementation of an individual.

1 public stat ic In s tance s c r e a t e I n s t a n c e s ( Li s t<Ind iv idua l>

populat ion ) {

2

3 int popSize = populat ion . s i z e ( ) ;

4 int chromLength = populat ion . get (0 ) . getGenes ( ) . l ength ;

5

6 // Creat ing the a t t r i b u t e s o b j e c t

7 ArrayList<Attr ibute> a t t s = new ArrayList<Attr ibute >() ;

8

9 // A l l genes are added as a t t r i b u t e s

10 for ( int i = 0 ; i < chromLength ; i++) {

11 a t t s . add (new Attr ibute ( ” gene ” + i ) ) ;

12 }

13

14 // As l a s t a t t r i b u t e , the f i t n e s s i s added

15 a t t s . add (new Attr ibute ( ” f i t n e s s ” ) ) ;

16

17 // The i n s t a n c e s o b j e c t i s c r e a t e d

18 In s tance s data = new In s tance s ( ” populat ion ” , at t s ,

popSize ) ;

19

20 // Every i n s t a n c e i s added to the data o b j e c t

21 double [ ] v a l s ;

22 for ( int i = 0 ; i < popSize ; i++) {
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23 v a l s = new double [ data . numAttributes ( ) ] ;

24 v a l s = Arrays . copyOf ( populat ion . get ( i ) . getGenes ( ) ,

chromLength + 1) ;

25 // The f i t n e s s i s added

26 v a l s [ data . numAttributes ( ) − 1 ] = populat ion . get ( i ) .

g e t F i t n e s s ( ) ;

27 data . add (new DenseInstance ( 1 . 0 , v a l s ) ) ;

28 }

29

30 // The c l a s s a t t r i b u t e ( f i t n e s s ) i s s e t

31 data . s e tC la s s Index ( data . numAttributes ( ) − 1) ;

32

33 return data ;

34 }

Listing A.2: Creating the Weka instances.

A.2 Fitness Approximation

In Listing A.3, a method is shown that creates a support vector machine for regression

(SMOreg) and trains it on an object of data instances, such as the object created in Listing

A.2. The SMOreg can be set with desired options (in this example, the exponent “2.0” is

specified for the kernel). The SMOreg is then trained on the data instances. Finally, in

Listing A.4, an example is given of how to approximate the fitness of a new individual by

letting the trained SMOreg classify the instance and store the estimated fitness in the result

variable.

1 public A b s t r a c t C l a s s i f i e r b u i l d C l a s s i f i e r ( In s tance s data ) {
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2 SMOreg smoREG = new SMOreg ( ) ;

3 S t r ing [ ] opt i ons = new St r ing [ 2 ] ;

4 opt ions [ 0 ] = ”−K” ;

5 opt ions [ 1 ] = ”weka . c l a s s i f i e r s . f u n c t i o n s . supportVector .

PolyKernel −C 250007 −E 2 .0 ” ;

6 try {

7 smoREG. setOpt ions ( opt ions ) ;

8 smoREG. b u i l d C l a s s i f i e r ( data ) ;

9 } catch ( Exception e ) {

10 // perform Except ion hand l ing

11 }

12 return smoREG;

13 }

Listing A.3: Training a support vector machine for regression.

1 In s tance s populat ion = . . . // c r e a t e p o p u l a t i o n i n s t a n c e s

2 In s tance s newInstance = . . . // c r e a t e i n s t a n c e to c l a s s i f y

3

4 A b s t r a c t C l a s s i f i e r c l a s s i f i e r = b u i l d C l a s s i f i e r ( populat ion ) ;

5 double r e s u l t = 0 ;

6

7 try {

8 r e s u l t = c l a s s i f i e r . c l a s s i f y I n s t a n c e ( newInstance .

f i r s t I n s t a n c e ( ) ) ;

9 } catch ( Exception e ) {

10 // perform Except ion hand l ing
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11 }

Listing A.4: Classifying a new instance.

A.3 Clustering

Weka also contains clustering algorithms that can be applied on a population of an EA

(which has been used to create an Instances object as shown in Listing A.2). Clustering is

useful in situations where a partitioning of the current population (or even all or a subset

of all encountered individuals) is desired, for instance to train a surrogate model on each of

the clusters to then obtain a set of local surrogates. A method that performs a clustering

of instances and returns an array of cluster assignments in the order of individuals in the

instances object is shown in Listing A.5.

1 public stat ic double [ ] c l u s t e r I n s t a n c e s ( In s t ance s data , int

numberOfClusters ) {

2 SimpleKMeans kMeans = new SimpleKMeans ( ) ;

3 Clus te rEva luat ion eva l = new Cluste rEva luat ion ( ) ;

4 try {

5 data . s e tC la s s Index (−1) ; // necessary f o r c l u s t e r i n g

6 kMeans . setNumClusters ( numberOfClusters ) ;

7 kMeans . s e tPre s e rve In s tance sOrde r ( true ) ;

8 kMeans . b u i l d C l u s t e r e r ( data ) ;

9 eva l . s e t C l u s t e r e r ( kMeans ) ;

10 eva l . e v a l u a t e C l u s t e r e r (new In s tance s ( data ) ) ;

11 } catch ( Exception ex ) {

12 // perform Except ion hand l ing

13 }
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14 return eva l . getClusterAss ignments ( ) ;

15 }

Listing A.5: Classifying a new instance.
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Appendix B

Statistical Tests with R

R is a language (free software under the GPL) for statistical computing, modeling and anal-

ysis. Examples of how to use R’s capabilities to calculate the mean and standard deviation

and how to perform the one-tailed t-test and the Wilcoxon rank sum test on the outputs of

EAs are presented here.

B.1 R Preliminaries

The R1 language is a dynamically typed interpreted language which contains a large collec-

tion of statistical methods. For the following examples, it is assumed that R is installed and

used on a GNU/Linux system. The R interpreter is started from a shell such as Bash as

follows (omitting the $ symbol):

$ R

B.2 Statistical Tests with R

If an EA is run for multiple times on the same fitness function with the task of global

optimization (and provided that the seed for the random number generator is not fixed), the

1R is available at: http://www.r-project.org/
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final best individuals found are often different from each other. To compare the performance

of two different optimizers on the same fitness function, the means and corrected standard

deviations of the best final individuals for those two algorithms can be calculated to provide

a first impression of the performances.

Furthermore, one-tailed t-tests have been used in the past to check for a certain statistical

significance (one direction) of two datasets, which in the context of evolutionary optimization

aims to answer: Given a fitness function for a minimization task and a list of final fitness

scores of runs of optimizer A on this function and also a list of final fitness scores of optimizer

B on this function, did optimizer A perform statistically significantly (with a confidence level)

better than B?

For the one-tailed t-test, the two lists with the final results need to contain a reasonable

representative number of independent results drawn from a normal distribution. With re-

gards to EAs, lists that have been used consist of, for example, an adequate number of final

fitness scores of the optimizers, where each run was performed independently on the fitness

function. However, in [20] it is recommended to perform non-parametric tests such as the

Wilcoxon rank sum test to compare the final results of EAs instead. The rationale is that

the conditions for parametric tests (like the t-test) are not always fulfilled.

In a first example (in which, for the sake of brevity, only five final fitness scores per

optimizer are shown) in Listing B.1, it can be assumed that optimizers A and B have been

each run five times on a minimization problem and their results are stored in the variables

resultA and resultB. After calculating their means and standard deviations, a first thought

might be that optimizer A did not outperform optimizer B. A one-tailed t-test is then

performed to test if resultA is statistically significantly better (in terms of minimization)

than resultB under a certain significance level, for example 0.05. Looking at the p-value of

0.9992, it can be said that this is not the case and that the null hypothesis cannot be rejected.

It cannot be said that resultA is statistically significantly better (in terms of minimization)

than resultB. The Wilcoxon rank sum test provides a p-value of 1, leading to the same
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conclusion.

1 > re su l tA <− c (2 , 2 . 4 , 2 . 1 , 1 . 9 , 2 . 5 )

2 > r e su l tB <− c (1 , 1 . 5 , 1 . 2 , 0 . 7 , 1 . 6 )

3 > mean( re su l tA )

4 [ 1 ] 2 .18

5 > mean( r e su l tB )

6 [ 1 ] 1 . 2

7 > sd ( re su l tA )

8 [ 1 ] 0 .2588436

9 > sd ( r e su l tB )

10 [ 1 ] 0 .3674235

11 >

12 > t . t e s t ( resultA , resu l tB , a l t e r n a t i v e=” l e s s ” )

13

14 Welch Two Sample t−t e s t

15

16 data : r e su l tA and re su l tB

17 t = 4.8757 , df = 7.186 , p−value = 0.9992

18 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s l e s s than 0

19 95 percent con f idence i n t e r v a l :

20 −I n f 1 .35933

21 sample e s t imate s :

22 mean o f x mean o f y

23 2 .18 1 .20

24 >

25 > wi lcox . t e s t ( resultA , resu l tB , a l t e r n a t i v e=” l e s s ” )

26

166



27 Wilcoxon rank sum t e s t

28

29 data : r e su l tA and re su l tB

30 W = 25 , p−value = 1

31 a l t e r n a t i v e hypothes i s : t rue l o c a t i o n s h i f t i s l e s s than 0

Listing B.1: Running statistical tests with R, first example.

Listing B.2 shows a second example, where optimizer A2 has been run on the same fitness

function and obtained its results stored in the variable resultA2. After computing the means

and standard deviations, it might initially look like optimizer A2 outperformed optimizer B,

since the mean and standard deviation of resultA2 are both lower than their counterparts

of resultB. However, when performing the one-tailed t-test and the Wilcoxon rank sum test

to determine if resultA2 is statistically significantly better (in terms of minimization) than

resultB, the obtained p-values of 0.4397 and 0.5 indicate that this is not the case and that

the null hypothesis cannot be rejected. Therefore, it cannot be claimed that optimizer A2

outperformed optimizer B.

1 > resu l tA2 <− c ( 0 . 9 5 , 1 . 21 , 1 . 4 , 1 . 52 , 0 . 75 )

2 > r e su l tB <− c (1 , 1 . 5 , 1 . 2 , 0 . 7 , 1 . 6 )

3 > mean( resu l tA2 )

4 [ 1 ] 1 .166

5 > mean( r e su l tB )

6 [ 1 ] 1 . 2

7 > sd ( resu l tA2 )

8 [ 1 ] 0 .3169069

9 > sd ( r e su l tB )

10 [ 1 ] 0 .3674235

11 >
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12 > t . t e s t ( resultA2 , resu l tB , a l t e r n a t i v e=” l e s s ” )

13

14 Welch Two Sample t−t e s t

15

16 data : r e su l tA2 and re su l tB

17 t = −0.1567 , df = 7.831 , p−value = 0.4397

18 a l t e r n a t i v e hypothes i s : t rue d i f f e r e n c e in means i s l e s s than 0

19 95 percent con f idence i n t e r v a l :

20 −I n f 0 .3706399

21 sample e s t imate s :

22 mean o f x mean o f y

23 1 .166 1 .200

24

25 >

26 > wi lcox . t e s t ( resultA2 , resu l tB , a l t e r n a t i v e=” l e s s ” )

27

28 Wilcoxon rank sum t e s t

29

30 data : r e su l tA2 and re su l tB

31 W = 12 , p−value = 0 .5

32 a l t e r n a t i v e hypothes i s : t rue l o c a t i o n s h i f t i s l e s s than 0

Listing B.2: Running statistical tests with R, second example.
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