

SEMANTIC WS-AGREEMENT PARTNER SELECTION

by

NICOLE OLDHAM

(Under the direction of Amit P. Sheth)

ABSTRACT

In a dynamic service oriented environment it is desirable for service consumers and providers to

offer and obtain guarantees regarding their capabilities and requirements. WS-Agreement

defines a language and protocol for establishing agreements between two parties. The

agreements are complex and expressive to the extent that the manual matching of these

agreements would be expensive both in time and resources. It is essential to develop a method

for matching agreements automatically. This work presents the framework and implementation

of an innovative tool for the matching providers and consumers based on WS-Agreements. The

approach utilizes Semantic Web technologies to achieve rich and accurate matches. A key

feature is the novel and flexible approach for achieving user personalized matches.

INDEX WORDS: WS-Agreement, Semantic Policy Matching, Ontologies, OWL, ARL,

Snobase, Agreement Matching, Semantic Web Service, WSDL-S, dynamic service selection,

multi-ontology service annotation.

SEMANTIC WS-AGREEMENT PARTNER SELECTION

by

NICOLE OLDHAM

B.S., North Georgia College and State University, USA, 2002

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2006

© 2006

Nicole Oldham

All Rights Reserved

SEMANTIC WS-AGREEMENT PARTNER SELECTION

by

NICOLE OLDHAM

 Major Professor: Amit P. Sheth

 Committee: John Miller

 Hamid Arabnia

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2006

iv

DEDICATION

This thesis is dedicated to my father; Mike, without whom it would not exist, and to my mother;

Sonya, for all of her support.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Amit P. Sheth for his direction, assistance and

guidance. My graduate work was more rewarding and enriched under Dr. Sheth’s direction. I

would also like to thank Dr. John A. Miller for his valuable insight and wisdom. I would like to

thank Dr. Hamid Arabnia for being a part of my committee and for all of the advice and

guidance throughout the last two years. Thanks to the entire Meteor-S team and special thanks

to Kunal Verma for his advice and help in making this work something to be proud of. I must

express my gratitude to my parents for the sacrifices that they have made to ensure that I could

make it to this point and for the support and encouragement. Thank you to my husband, Heath,

for always having more faith in me than I had in myself and for his unfaltering support.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS...v

LIST OF TABLES..vii

LIST OF FIGURES ...viii

CHAPTER

 1. INTRODUCTION...1

 2. MOTIVATION FOR A SEMANTIC APPROACH……… ...3

 3. WS-AGREEMENT AND WS-AGREEMENT MATCHING ..5

 4. SEMANTIC WS-AGREEMENT PARTNER SELECTION ..13

 5. APPLICATION OF WS-AGREEMENTS AND AGREEMENT MATCHING31

 6. RELATED WORK..36

 7. CONCLUSION AND FUTURE WORK ...39

REFERENCES ...41

APPENDICES

 A WS-AGREEMENT ONTOLOGY ...45

 B SWAPS INSTALLATION MANUAL...46

 C SWAPS USER MANUAL...48

vii

LIST OF TABLES

Page

Table 1: Guarantee Term Components……………………………………………………………6

Table 2: SWAPS extensions to the WS-Agreement schema……………………………………...7

Table 3: Summary of Consumer Guarantees………………………..…………………………..24

Table 4: Summary of Guarantees from Provider Library….………..…………………………..24

Table 5: SWAPS Matching…………………………….….………..…………………………...26

Table 6: Evaluation Results…………………………….….………..…………………………..29

Table 7: Farming Contracts represented with WS- Agreement…..………………………….....32

viii

LIST OF FIGURES

Page

Figure 1: Linking Web Service and Web Service Agreement Concepts with Ontologies……..10

Figure 2: Benefits of the OntConcept Annotation…………………………………………… ..12

Figure 3: Control Flow throughout SWAPS……………………………………………………14

Figure 4: SWAPS Architecture…………………………………………………………………16

Figure 5: Conversion of Heterogeneous Service Level Objectives.……………………………18

Figure 6: The Provider Library………………………………… …..………………………….49

Figure 7: Consumer Guarantees.....…………………………………………………………….50

Figure 8: Match Results……..……………………………….. ……………………………….51

CHAPTER 1

INTRODUCTION

In a service oriented environment it is advantageous for service consumers and providers to obtain

guarantees regarding the services that they both require and offer. Usually these guarantees pertain

to quality of service (QoS) aspects. WSDL does not provide a means to express these guarantees;

therefore such standards as WS-Policy [23] and WSLA [25] exist to allow for the expression of

additional nonfunctional attributes. However, these standards are not expressive enough to

represent the truly complex nature of the relationship between a service consumer and provider.

The WS-Agreement specification [2] defines a language and protocol for capturing this intricate

relationship with agreements between two parties. An agreement between a service consumer and

a service provider specifies one or more service level objectives (SLO) which state the

requirements and capabilities of each party on the availability of resources and service qualities.

For example, an agreement may provide assurances on the bounds of service response time, service

availability, or service reliability. WS- Agreement is more expressive than the previous policy

standards because in addition to service level objectives, an agreement contains scopes for which

the guarantee holds, conditions which must exist in order for the guarantee on the SLO to be valid,

and business values, such as penalties and rewards, which incur if the SLO is not satisfied. This is

further complicated by the symmetry of these agreements such that each provider does not only

state guarantees regarding capabilities but likely has requirements of its own. In addition, each

agreement may contain multiple alternatives of guarantee sets. As each consumer seeking a

1

suitable provider has many complex options to choose from, the manual selection of providers is

time consuming, tedious, and error prone. With the increasing acceptance and popularity of WS-

Agreement and the ever present need to protect the quality of service with guarantees, the

development of an approach for the automatic matching of these agreements is imperative.

 This paper defines and provides reasoning methods for the components of an agreement which

must be compatible for quality matches. We present a powerful approach which uses OWL

ontologies to represent domain knowledge in conjunction with SWRL rules to achieve the most

accurate and consumer personalized matches. The contributions of this work include:

• Creating and implementing a framework for automated matching of provider and consumer

agreements that eliminates tedious and error prone manual matching.

• Use of multiple ontologies, both domain specific and domain independent for representing

semantic information used by the agreements

• Presenting a flexible approach for specifying and reasoning over user defined preferences

which allows the customized matching without changing matching code or possessing

programming knowledge.

The remainder of this paper is organized as follows. Section 2 presents the motivation for our

approach. Section 3 briefly covers the WS-Agreement schema and the general process of WS-

Agreement matching. Section 4 is composed of details on our framework and implementation of

Semantic WS-Agreement Partner Selection (SWAPS). Section 5 presents a real world situation

which would benefit from the use of WS-Agreements and illustrates the necessity of an efficient

tool for matching consumers with providers. Section 6 discusses related work, and Section 7

provides conclusions and future work.

2

CHAPTER 2

MOTIVATION FOR A SEMANTIC APPROACH

The current WS-Agreement specification is based on XML based domain vocabularies and

therefore limits the ability of matching the agreements to syntactical matching. Our approach

proposes using domain knowledge captured using ontologies and rules to extend the matching

capabilities beyond simple string matching. A matcher considering only the syntax of the

agreements without the domain knowledge may not able to correctly identify all matches. We

illustrate the usefulness of our approach with the following example. Consider that a service

consumer has the following requirement:

• Availability is greater than 95%

and a provider is offering the assurances:

• Mean Time to Recover equals 5 minutes

• Mean Time between failures equals 15 hours

A syntactic matcher would perform a string comparison to determine if the provider can satisfy

the consumer’s request. The syntactic matcher would generally determine that these two services

do not match on the grounds that the provider does not provide an assurance for availability.

However, our approach utilizes an ontology which provides a deeper understanding of the domain

with the help of domain rules. For example, with respect to the above case:

• Availability = Mean Time Between Failures/(Mean Time Between Failures + Mean Time

To Recover)

3

Therefore the semantic approach reasons that the provider is actually offering the assurance:

• Availability equals 99.4%.

Our matcher determines that this provider does in fact satisfy the requirements of the consumer.

This example illustrates how incorporating using domain knowledge helps matching yield much

more accurate matches.

4

CHAPTER 3

WS-AGREEMENT AND WS-AGREEMENT MATCHING

This section briefly describes the WS-Agreement schema [2], the extensions that have been added

for this work, and a general overview of the significant elements of WS-Agreement matching.

3.1. WS-AGREEMENT SCHEMA

WS-Agreement offers a rich language for stating the assurances and requirements of Web Services.

This allows capturing and representing the complicated nature of real world agreements with the

help of service level objectives (SLOs), qualifying conditions and business values. SLOs represent

some capability or requirement of a provider or consumer. For example, the consumer may require

that all response times be less than 5 seconds. However, in a real world environment these

capabilities and requirements cannot be guaranteed under every circumstance. For instance, a

service might only be able to process a job in less than 5 seconds if the number of requests at that

moment is less than a thousand. Such conditions can be associated with SLOs with the help of

qualifying conditions. Business values help in representing the importance, penalties, and rewards

associated with SLOs.

 WS-Agreements are written in XML and consist of alternative sets of guarantees denoted with

the “ExactlyOne” and “ALL” tags. Due to the already complex nature of agreements, we save the

WS-Agreement’s “OneOrMore” tag for future work and assume that all agreements are written as a

5

disjunction of alternative sets of guarantees. The guarantees are expressed within the

“GuaranteeTerm” tag and assert assurances or requirements on the quality associated with the

service. Below is the Guarantee Term schema followed by Table 1 which describes the

components of a guarantee term.

<wsag:GuaranteeTerm Obligated=”…”>

 <wsag:ServiceScope ServiceName=”…”>…

 </wsag:ServiceScope>*

 <wsag:ServiceLevelObjective> …

 </wsag:ServiceLevelObjective>

 <wsag:QualifyingCondition>…</wsag:QualifyingCondition>?

 <wsag:BusinessValueList>…</wsag:BusinessValueList>

</wsag:GuaranteeTerm>

Table 1: GuaranteeTerm Components

WS-Agreement Tag Purpose
Obligated States the party responsible for the fulfillment of the guarantee.

Value will be ServiceProvider or ServiceConsumer

ServiceScope Describes to what service element specifically a service applies.

ServiceLevelObjective

(SLO)
An assertion over the terms of the agreement which represents the
QoS aspect of the agreement. Usually defines bounds usually over
QoS concepts such as response time, fault rate or cost.

QualifyingCondition Optional condition which must exist in order for the SLO to be
satisfied. Usually over external factors such as time of day.

BusinessValueList Optional values which represent the strength of commitment by
stating penalties, rewards and importance

6

3.2. WS-AGREEMENT EXTENSIONS

In order to achieve effective semantic matches, we extend the original WS-Agreement schema with

several additional tags. The new tags allow for the incorporation of semantics into WS-Agreement

and add additional structure for clarity during parsing and matching

Table 2: SWAPS extensions to the WS-Agreement schema

 WS-Agreement Schema SWAPS Schema

SL
O

3.2.1. ADDING STRUCTURE TO SLO AND QUALIFYING CONDITIONS

The WS-Agreement specification was written with flexibility as one of the key goals and therefore

lacks some structure in important areas such as the SLO and QualifyingCondition. The values

within each of those tags can contain any possible expression. While this would be acceptable for

<ServiceLevelObjective>
 duration1+duration2 <
 5 s

<ServiceLevelObjective>
 <Expression>
 <Predicate type=”less”>
 <Parameter>duration1+duration2
 < /Parameter>
 <OntConcept>qos::responseTime
 </OntConcept>
 <Value>5</Value>
 <Unit>time:seconds</Unit>
 </Predicate></Expression>

</ServiceLevelObjective>

</ServiceLevelObjective>

Q
ua

lif
yi

ng
 C

on
di

tio
n <QualifyingCondition>

 day of week is a
 weekday

<QualifyingCondition>
 <Expression>
 <Predicate type=”equals”>
 <Parameter>dayOfWeek
 </Parameter>
 <OntConcept>time:dayOfWeek
 </OntConcept>
 <Value>time:weekday</Value>
 </Predicate></Expression>

</QualifyingCondition>

</QualifyingCondition>

7

an agreement which is intended to be read by a human user, additional structure must be added to

the expressions in order to for a machine to automatically parse and reason over agreements.

However, we added this structure while still preserving much of the flexibility specifically for

domain specific predicates. For structure, we have added the expression, predicate, parameter, and

value tags, as defined in the WSLA specification [25]. In addition there are the optional tags for

unit and percent. Percent is used when a service level objective uses a percentage. For example,

99% of responseTimes are less than 5 seconds. Table 2 shows an example using the original

schema as defined in [2] which is too ambiguous to parse and reason over. Our modified schema

which adds structure is also shown in Table 2.

3.2.2 ADDING SEMANTICS TO THE WS-AGREEMENT

Agreements contain ambiguities which we clarify using an OntConcept annotation tag. In the

original schema of the Terms section of the WS-Agreement. Even though these variables have

already been defined within the service description terms, it is unclear to what the summation of

duration1 and duration2 actually refers. For example, it may refer to a QoS parameter

responseTime or it may refer to a domain concept processOrderDuration. The addition of the

OntConcept tag removes this ambiguity by linking this expression parameter directly to the

concrete ontology concept. The value of OntConcept will be a concept from an ontology

regardless of what variables are named and to what they refer. The agreement creators are required

to include this tag to allow for semantic reasoning over the expression. This yields more effective

matches than purely syntactic methods. The OntConcept tag clarifies the QoS or domain specific

parameter to which the objective pertains. Figure 2 contains an example illustrating how the

8

OntConcept tag remedies ambiguity. A syntactic matcher is not able to determine that

(duration1+duration2) and processTime each refer to the response time of the service which is the

concept responseTime in the QoS ontology. Adding OntConcept allows the matcher to recognize

that although the concepts are syntactically different, they are semantically the same.

3.2.3. DOMAIN SPECIFIC PREDICATE FLEXIBILITY

When extending the WS-Agreement, we aimed to preserve much of the flexibility intended by the

WS-Agreement authors. We designed a unique method for using domain specific predicates in the

expressions. Any predicate may be used as long as it is added to the ontology and a rule is created

to define the semantics of that predicate. The tool is already aware of the WSLA predicates less,

lessEqual, greater, greaterEqual, equals, true, false, before. However the user is not limited to only

these predicates and can define additional predicates for the domain.

3.3. SEMANTIC WEB SERVICES

Semantic Web Services (SWS) provide an approach for representing the functionality of Web

services with the help of ontologies. Popular approaches for SWS include OWL-S [13], WSMO

[26], FLOWS [19] and WSDL-S [17][27]. For the the purposes of this paper, we have implemented

the prototype using ontologies. The OntConcept tag annotates the SLO and Qualifying Condition

parameters which facilitates the understanding and matching of the guarantee terms of the

agreement. The Agreement Service Description Terms (SDT) refer to the operations of the WSDL

to which the Agreement pertains. These SDT are also used during the monitoring of the service

9

and negotiation. Both the XML based WSDLs and WS-Agreements are limited in their ability to

express rich semantic meaning. In order to achieve the most accurate monitoring and negotiation

the WSDL files to which the SDTs refer are semantically annotated using WSDL-S [27].

WSDL-S builds on current standards and allows multiple semantic representation languages to

annotate services. This flexibility allows Web Services to be annotated with concepts from

multiple ontologies from different sources. One of the most pressing challenges when mapping

WSDL with ontologies is the heterogeneity between the XML Schema of the WSDL and the

ontology, however, WSDL-S overcomes this challenge by providing support for rich mapping.

GetMoisture

GetWeight
GetPrice

GetSplits

Merchant Service WSDL-S
WS-Agreement

Domain Independent
Ontologies

Agriculture Domain Ontology

Figure 1: L inking Web Service and WS-Agreement concepts with ontologies

 agri:moisture less 12%

Moisture
Splits

CropPrice

BV

Guarantee

 QoS Ont

BV

Time Ont

Greater

Less

Predicate

WS-Agreement Ontology

agri:splits less 20%

agri:weight greater 54 lbs

agri:price equals 10 USD Input: Address

Weight

CropQuality
FarmerAddr

SLO
Obligated

Crop

10

Figure 1 shows these mappings between an Agreement and Web Service, Agreement and ontology,

and Web Service and Ontology, in the context of the contract farming use case which is described

in Section 5 of this paper. WS-Agreement negotiations and the runtime monitoring of WS-

Agreement compliance is facilitated and enhanced by the use of semantically annotated Web

Services since the ontologies provide a common understanding of the functional properties of Web

Services. These semantic annotations enrich negotiations by linking heterogeneously expressed

service elements to a common ontological concept. They enhance the monitoring of WS-

Agreement compliance by disambiguating the terms used within the agreements and WSDL files

and by providing additional domain knowledge which can be used when monitoring.

3.4. WS-AGREEMENT MATCHING

In order for a provider to be considered a suitable partner match for a given consumer, its

description must contain one alternative which may satisfy any of the consumer’s alternatives as

denoted by the “ExactlyOne” and “ALL” tags. An agreement A contains

alternative sets of Guarantee Terms such that:

 A={Alt1, Alt2, …, AltN}

 Alt={G1, G2, ...GN} and G={Scope, Obligated, SLO, QC, BV}

We define the following functions to facilitate the description:

 “requirement(Alt, G)” returns true if G is a requirement of Alt

 “capability(Alt, G)” returns true if G is an assurance of Alt

 “scope(G)” returns the scope of G

 “obligation(G)” returns the obligated party of G

 “satisfies(Gj, Gi)” returns true if the SLO of Gj is equivalent to

11

 or stronger than the SLO of Gi

An alternative Alt1 is a suitable match for Alt2 if:

 (∀Gi) such that Gi ∈ Alt1 ∧ requirement(Alt1, Gi) ∧ (∃ Gj)

 such that Gj ∈ Alt2 ∧ capability(Alt2, Gj) ∧ scope(Gi)

 = scope(Gj) ∧ obligation(Gi) = obligation(Gj) ∧ satisfies(Gj, Gi)

 Most users have preferences for conditions and business values and a tradeoff is decided. For

instance, a user may choose an agreement with a less preferred condition but a higher penalty.

Alternatively, a user with a high number of requests on the weekend would find a provider to be

unsuitable if he has a condition which states that he is only able to satisfy a guarantee if it is a

weekday. We consider the tradeoff between qualifying conditions and business values to be a

matter of user preference and have designed a unique and flexible method for specifying these user

preferences in order to yield the most suitable matches. Our approach is presented in detail in

Section 4.

Figure 2. Benefits of the ontConcept annotation

qos:ResponseTime
QoS Ontology

processTime
ontConcept:
qos:
ResponseTime

duration1+duration2
ontConcept:
qos:ResponseTime

 Consumer Provider

12

CHAPTER 4

SEMANTIC WS-AGREEMENT PARTNER SELECTION

We present our framework and implementation in this section. We begin by describing the system

architecture followed by how ontologies and rules were utilized to achieve better matches and to

simplify the search algorithm. We then walkthrough an example which illustrates the reasoning

methodology used by the tool.

4.1 ARCHITECTURE

The system consists of three phases: parsing, matching and searching, which can be seen in Figure

3. To reason about domain ontologies, we use Snobase [9], an ontology based management system

that offers DQL-based [5] Java API for querying OWL ontologies. IBM’s ABLE engine [3] is

used by Snobase for inferencing and we use ABLE Rule Language (ARL) [3] to write the rules.

The ontologies are loaded into Snobase followed by each provider’s WS-Agreement. We parse the

agreements and load them into the system as instances of the WS-Agreement ontology. As each of

these new agreement instances is created, the ABLE rule engine within Snobase executes rules as

the criteria for each rule is met. The additional assertions made by the rules are used to greatly

simplify the search phase by making the match decisions a priori. These rules provide additional

knowledge about the domain and, as described in Section 2, play a significant role in the discovery

of the most accurate match results. We discuss the rules in further detail in the next section. When

a consumer seeks a partner, the consumer agreement is parsed and entered into the system as

13

another agreement instance. The search phase begins as the algorithm considers the agreement

instances and the assertions previously set by the rules and returns a list, ranked by preference, of

all of the provider agreements which accurately matched the consumer’s agreement.

Agreements

SNOBASE

Ontologies,
Agreement Instances,
ABLE Rule
Engine, ARL Rules

Parsing Searching

Agreement
Match(es)

Figure 3: Control flow throughout SWAPS

 Figure 4 illustrates the system architecture. The main components of SWAPS include the

ontology store, provider library, parser, ontology manager, and search engine. It is assumed that

the consumer seeking a match has a library of agreement instances previously made between

providers and is searching for the provider who is most able to satisfy the requirements. However

it is also known that previously unknown providers, in the form of an agreement offer or a

template, are constantly introduced into the set of options. Further details regarding the ontologies,

rules and search engine are given in sections 4.2 and 4.3.

4.2. WS-AGREEMENT AND RULES REPRESENTATION

Ontologies allow the matcher to understand the semantics of the domain; therefore enabling a much

more accurate search than a syntactic approach. Rules allow for richer domain knowledge by

14

stating additional domain rules and semantics and provide a high level of flexibility by stating

customized user preferences.

4.2.1 KNOWLEDGE REPRESENTATION

In order to realistically model the domains we employ several ontologies. We developed an OWL

ontology to represent the WS-Agreement schema. This ontology contains the concepts from the

schema such as Guarantee, Scope, and ServiceLevelObjective with relationships between them. In

addition to the significant elements from the WS-Agreement, we have also included the common

predicates from the WSLA specification [25]. We allow the user to add additional predicates to

this ontology to preserve flexibility. An instance of this ontology is created for each agreement that

is introduced into the system where they can be queried and reasoned easily. Most of the

guarantees are asserted over quality of service (QoS) concepts; therefore the QoS ontology as

described in [12] defines such concepts as failureRate, latency, throughput, availability, and

responseTime. In addition to these ontologies a third OWL ontology represents domain specific

knowledge. For our scenario in e-commerce and its implementation we are using the RosettaNet

ontology (http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/rosetta.owl), also represented

in OWL. Depending on the application, alternative or additional domain ontologies could be used.

Finally, we use the OWL time [14] ontology to represent temporal concepts such as endTime,

interval, dayOfWeek, and seconds. These ontologies are used to provide a commonality of terms

between agreement parties and to provide rich domain knowledge to the search engine so that it

may achieve the best possible match results.

15

http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/rosetta.owl

User
Interface

Domain
Knowledge
and Rules

Provider

Parser

Search
Engine

SNOBASE

Find matching agreements with the help
of domain knowledge stored in
SNOBASE

Ontology
Manager

Ontology Store

2
Providers are given to
the parser

Instances are created in
SNoBASE 3

Ontologies are loaded into SNoBASE 1

5 OWL.arl
4

Figure 4. SWAPS Architecture

4.2.2 REPRESENTATION OF RULES

We enhance the efficiency and flexibility of our matches by defining several categories of rules.

These rules are represented in ARL for ABLE inferencing. The rules assert new facts if the right

conditions exist for executing the various rules. We use these rules to supplement domain

knowledge, convert SLOs into a common comparable form, define the semantics of domain

16

specific predicates, and specify user preferences. Using rules instead of writing Java code to

perform all of the above allows us to separate the core implementation from the user so that he may

customize the matcher to the domain and personal preferences without any programming ability.

We define four categories of rules and show corresponding examples below.

1. Conversion of Heterogeneous SLOs

Often SLOs state the same objective but express it differently. We define a category of rules to

address SLOs that have semantic similarity but are syntactically heterogeneous as in the example in

Figure 5. In the example, the provider is expressing an assurance using the WSLA predicate

“PercentageLessThanThreshold” and the consumer is expressing the same requirement more

directly using the predicate “less”. While a human reader can clearly see that the provider’s SLO

satisfactorily meets the consumer’s requirements, the heterogeneity of the predicates prevents the

direct comparison of the provider and consumer SLOs. We define the following ARL rule, where x

is a user defined threshold, to convert the provider’s SLO so that it expresses the objective more

directly:

when: Agreement (A) and hasGuarantee (A,G) and hasSLO (G, SLO) and hasExpression(SLO, E)

and hasPredicate(E, P) and hasType(P, “PercentageLessThanThreshold”) and hasPercentage(E,

percent) do: if (percent<=x) then assert hasType(P, “less”) else assert hasType(P, “greater”)

The above ARL rule looks for any expression which contains the predicate

“PercentageLessThanThreshold” and if the percentage less than x it changes the predicate to “less”

otherwise it changes it to “greater”.

In many cases the value of x is dependent upon the parameter. For example, a user may require a

high percentage for responseTime but may be more lenient about other parameters. This feature

17

can be further customized by adding additional statements in the when segment which perform

parameter checks.

Provider: “99% of response times < 5 sec”
Predicate=percentageLessThanThreshold
Parameter=”qos:responseTime” Value=5
Percent=99 Unit=”time:Seconds

Predicate=less Parameter=
qos:responseTime
Value=6 Unit=”time:Seconds

Consumer: “response time < 6 seconds”

Conversion Rule

Predicate=less Parameter=
qos:responseTime Value=6
Unit=”time:Seconds

New Provider Assertion:
“response time < 5 seconds”

Figure 5. Conversion of Heterogeneous SLOs

2. Semantics of Predicates Rules

The second category of rules allows a user to utilize any domain specific predicates within an SLO

by defining how two SLOs with that predicate should be compared. A semantics rule should

compare SLOs according to the predicate semantics and assert an isStronger or isEquivalent triple

into Snobase. The following ARL rule defines the semantics of the predicate “less”.

when: Agreement (A1) and hasGuaranteeTerm(A1, G1) and hasSLObjective(G1, SLO1) and

hasExpression (SLO1, E1) and hasPredicate(E1, P1) and hasType(P1, “less”) and

hasParameter(E1, p1) and hasValue(E1, V1) and Agreement (A2) where A1 != A2 and

hasGuaranteeTerm(A2,G2) and hasSLO(G2, SLO2) and hasExpression (SLO2, E2) and

hasPredicate(E2, P2) and hasType(P2, “less”) and hasParameter(E2, p2) and p2 == p1 and

hasValue(E2, V2)

18

do: if (V1<V2) assert [E1 isStronger E2]

 else if (V1>V2) assert [E2 isStronger E2]

 else assert [E1 isEquivalent E2]

The above rule compares the values of SLOs from different agreements with the same predicate

and parameter and asserts isEquivalent if the values are the same otherwise it states which

expression is stronger based on the semantics of the predicate “less”. This rule can also be further

customized by incorporating parameters or checking units to determine whether to do a string or

numeric comparison. The benefit of this approach is two-fold. First, it allows for domain predicate

flexibility such that we do not restrict which predicates our matcher can compare but rather allow

the user to introduce new predicates by defining the semantics with an ARL rule. Second, since

rules are fired automatically as the agreements are being loaded into Snobase, the SLOs are

compared much before the search process. This simplifies the search algorithm because to find a

match for SLO1 we quickly query for all SLOs who have been asserted isStronger than or

isEquivalent to SLO1. The semantics of predicate rules have the lowest priority so that the other

rules may execute before the final evaluation is performed.

3. Domain Specific Rules

The domain rules provide the matcher with richer knowledge of the domain. The following

example is based on the scenario from Section 2. Consider the following domain rule for

Availability:

 MTBF is the Mean Time Between Failures

 MTTR is the Mean Time To Recover

 Availability = MTBF/(MTBF + MTTR)

Consider a provider agreement with the following guarantees:

19

Guarantee1: SLO: qos:MTBF=150 time:minutes, Qualifying Condition:

numRequests<1000, Penalty: 5 USD, Importance 8

Guarantee2: SLO: qos:MTTR<5 time:minutes, Qualifying Condition: numUsers<500,

Penalty: 3 USD, Importance 4

The ARL rule for Availability creates a new guarantee term for any agreement which has SLOs

regarding both MTBF and MTTR. The new guarantee has an SLO for the Availability. Any

Qualifying Conditions will be compounded and a Penalty/Reward will be the higher of the two. If

each has the business value importance, it will become the average of the two values. The

following ARL rule accomplishes the above:

when: Agreement (A) and hasGuarantee (A, G1) and hasSLO (G1, SLO1) and

hasQualifyingCondition(G1, QC1) and hasPenalty(G1, P1) and hasImportance(G1, I1) and

hasExpression (SLO1, E1) and hasParameter(E1, “qos:MTBF”) and hasValue(E1, X) and

hasGuarantee (A, G2) and hasSLO (G2, SLO2) and hasQualifyingCondition(G2, QC2) and

hasPenalty(G2, P2) and hasImportance(G2, I2) and hasExpression (SLO2, E2) and

hasParameter(E2, “qos:MTTR”) and hasValue(E2, Y) do: hasGuarantee (A,G3) and hasSLO(G3,

SLO3) and hasExpression(SLO3, E3) and hasParameter(E3, “qos:Availability”) and hasVaule(E3,

X+Y) and hasPenalty (G3, max(P1, P2)) and hasImportance(avg(I1,I2))

The rule will be fired once the provider agreement is loaded into Snobase and will add the

following guarantee to the agreement:

Guarantee3: SLO: qos:Availability=96.8, Qualifying Condition: numUsers<500 AND

numRequests<1000, Penalty: 5 USD, Importance: 6

4. User Preference Rules

20

The preference rules enable user assertions over subjective personal preferences. There is no

standard of comparison for Qualifying Conditions and Business Values as they are a matter of user

preference. For example, one service may be more active during the weekend in which case a

provider with a condition stating that the objective may only be guaranteed if it is a weekday would

not be suitable for that user. The matcher is unaware of the personal circumstances of each user

until they are defined using rules. A rule may assert one of two possible assertions which will have

an impact on matching: isPreferred or notSuitable. A user may write a rule to assert that “a

guarantee that has a condition that the day of the week must be a weekday is not suitable” or “a

guarantee with a condition involving transactionRate is preferred over a guarantee with a condition

involving the day of the week”. These rules have the flexibility to be more specific or generic. The

following ARL rule asserts that a weekday condition is not suitable for this user:

when: Agreement (A) and hasGuarantee (A, G1) and hasQualifyingCondition(G1, QC1) which

hasExpression(QC1, E1) and hasParameter(E1, “time:dayOfWeek”) and hasValue(E1,

“time:weekday”) do: assert Guarantee notSuitable G1

The above rule asserts that a guarantee is notSuitable if the parameter of the Qualifying Condition

is the dayOfWeek and if the value is weekday. Conflicting rules are resolved by using optional

priority and condition fields.

4.3 SWAPS SEARCH ALGORITHM

The system uses a two fold approach to finding the result set of providers. First, matching is

automatically performed by the semantics of predicates rules as agreement instances are created.

These rules significantly simplify the matching process because they compare the SLOs upon their

entrance into Snobase. At this time assertions are made about which SLOs are stronger than or

21

equivalent to other SLOs these assertions are queried by the search engine. Second, searching is

done to determine which providers had agreements which were best suited for the consumer’s

agreement. We now detail the search algorithm. The following functions are defined to facilitate

the expression of the search algorithm:

 “requirement(Alt, G)” returns true if G is a requirement of Alt

 “capability(Alt, G)” returns true if G is an assurance of Alt

 “scope(G)” returns the scope of G

 “obligation(G)” returns the obligated party of G

 “isStronger(Gj, Gi)” returns true if the SLO of Gj has an assertion isStronger than the SLO of Gi

 “isEquivalent(Gi, Gj)” returns true if the SLOs of the guarantees have the assertion isEquivalent

 “notSuitable(G)” returns true if G has an assertion notSuitable

As discussed in section 2.3, matching two agreements is reduced to finding two matching

alternatives and finding matching alternatives is reduced to finding matching guarantees.

(∀Gi) such that Gi ∈ Alt1 ∧ Alt1 ∈ A1 ∧ requirement (Alt1, Gi) ∧ (∃Gj) S.T. Gj ∈ Alt2 ∧

Alt2 ∈ A2 ∧ capability(Alt2, Gj) ∧ scope(Gi)=scope(Gj) ∧ obligation(Gi)=obligation(Gj) ∧

(isStronger(Gj, Gi) ∨ isEquivalent(Gi, Gj)) ∧ ¬notSuitable(Gj)

4.3.1 CLASSIFICATION OF RESULTS

The search algorithm will yield a Vector of potential providers where each provider contains at

least one alternative which can be fully satisfied and is also able to fulfill the requirements of the

consumer. This set will not contain any providers which have conditions that would not be suitable

for the consumer. As discussed earlier, each user will have a subjective personal preference

22

regarding qualifying conditions and business values. If the method for stating preferences was

utilized then there may be isPreferred assertions stated over some of the guarantees. We implement

a preference score for each alternative which is incremented for each isPreferred statement asserted

over one of the guarantees of the alternative. The agreements containing alternatives with the

highest preference scores are displayed first.

4.4 EXAMPLE

In this section we present an example to illustrate our approach. Table 3 shows simplified set of

guarantees for a consumer. The consumer is seeking the potential providers from the library of

providers given in Table 4. The tags and structure of the agreements are removed for simplicity

and clarity.

4.4.1 PARSING, INSTANCE CREATION AND RULE EXECUTION

When the tool is started, each of the provider agreement documents in the library given in Table 4

are parsed and loaded into Snobase. An agreement instance is created for each provider alternative.

Provider 3 will have two agreement instances associated with it because it has two alternatives. As

each agreement instance is loaded, the rule engine executes the rules as the criteria for each is met.

The user’s system includes all of the ARL rules from the previous examples in addition to a similar

rule to define the semantics of “greater”. An additional domain rule exists for responseTime =

processTime + transmitTime which follows the same procedure as the previous domain rule for

Availability but sums the values. The following rule defines the semantics of the “true” and “false”

predicates:

23

Table 3. Summary of Consumer Guarantees

Consumer1.wsag

G1 Scope: ProcessRequest, Obligated: ServiceConsumer SLOc1:
qos:availableMemory greater 12 MB

G2 Scope: ProcessRequest, Obligated: ServiceProvider
SLOc2: qos:failurePerWeek less 7

G3 Scope: ProcessRequest, Obligated: ServiceProvider
SLOc3: qos:allowIncompleteInputs true

G4 Scope: ProcessRequest, Obligated: ServiceProvider SLOc4: 99% of
qos:responseTime less 14 seconds

Table 4. Summary of Guarantees from Provider Library

 Provider1.wsag Provider2.wsag (Provider2a and Provider2b)
G1 Scope: ProcessRequest

Obligated:
ServiceProvider
SLO1:
qos:responseTime
 less 14 sec.
QC: time:dayOfWeek
equals weekday
Penalty: 15 USD

Scope: ProcessRequest
Obligated:
ServiceProvider
SLO5: qos:transmitTime
less 4 sec.
QC:qos:maxNumUsers
less 1000

Scope: ProcessRequest
Obligated:
ServiceProvider
SLO9: qos:transmitTime
less 4 sec.
QC: qos:maxNumUsers
less 1000

Penalty: 1 USD Penalty: 1 USD

G2 Scope:
ProcessRequest
Obligated:
ServiceProvider
SLO2:
qos:failurePerWeek
less 7
Penalty: 10 USD

Scope: ProcessRequest
Obligated:
ServiceProvider
SLO6: qos:processTime
less 5 sec.
QC: qos:numRequests
less 500
Penalty: 1 USD

Scope: ProcessRequest
Obligated:
ServiceProvider
SLO10: qos:processTime
less 5 sec.
QC: qos:numRequests less
500
Penalty: 1 USD

G3 Scope: ProcessRequest
Obligated:
ServiceProvider
SLO3:
qos:incompleteInputs
true

Scope: ProcessRequest
Obligated:
ServiceProvider
SLO7:
qos:failurePerWeek less
16
Penalty: 2 USD

Scope: ProcessRequest
Obligated:
ServiceProvider
SLO11:
qos:failurePerWeek less 7
Penalty: 2 USD

G4 Scope: ProcessRequest
Obligated:
ServiceConsumer
SLO4:qos:availableMe
mory greater 12MB

O
R

Scope: ProcessRequest Scope: ProcessRequest
Obligated:
ServiceProvider

Obligated:
ServiceProvider

SLO8:
qos:incompleteInputs
false

SLO12:
qos:incompleteInputs true

24

when any two guarantees from a different agreement instance have the same parameter and

each predicate =”true” or each predicate=”false”

assert [SLO1 isEquivalent SLO2]

Table 5 shows the assertions as each agreement is parsed and entered into Snobase.

4.4.2 SEARCHING

The consumer is matched against each alternative of each provider. By querying for isStronger

and isEquivalent assertions for the Provider’s SLOs, the algorithm determines that Provider 1 is

able to satisfy the consumer’s needs and the consumer can also satisfy the requirement expressed in

G1. However, Provider 1 is dismissed as a potential match because one of the guarantees was

asserted as notSuitable as highlighted in number 3 of Table 5.

 Provider 2’s first alternative is considered and the algorithm will determine that not all of the

consumer’s guarantees are satisfied as the provider does not have an isStronger or isEquivalent

assertion for each of them and as one of the SLOs is weaker than the consumer SLO as highlighted

in number 9 from Table 5. The algorithm moves on to the next alternative of Provider 2 and

determines that it is a match because all of the consumer’s guarantees are satisfied and none of the

relevant provider guarantees have been asserted as notSuitable. The algorithm returns Provider 2

as the only match.

25

Table 5. SWAPS Matching

 Guarantee Fact/Rule Assertion
1 Consumer

G4
PercentageLessThan
Threshold Conversion Rule

qos:responseTime < 14 seconds

Provider1
G1

Semantics of “less” SLO1 isEquivalent SLOc4 2

4.4.3 POST SEARCH CONSIDERATIONS

There was only one potential match in the simplified example above. However, if there had been

more compatible providers in the library, the algorithm would continue with additional steps. There

are several issues of preference in the example above. If Provider1 had been a suitable match the

responseTime is guaranteed to be less than 14 seconds with a very high penalty of 15 USD.

3 Provider1
G1

User Preference Rule
weekday notSuitable

Provider1’s G4 notSuitable

Provider1
G2

Semantics of “less” SLO2 isEquivalent SLOc2 4

5 Provider1
G3

Semantics of “true” SLO3 isEquivalent SLOc3

6 Provider1
G4

Semantics of “greater” SLOc1 isStronger SLO4

7 Domain rule for
“qos:ResponseTime”

Provider2a-G5-SLO13: qos:responseTime
less 9 secs., Qualifying
Condition:numRequests<1000 AND
 numUsers<500 Penalty: 1 USD

Provider2a
G1 and G2

8 Provider2a
G5

Semantics of “less” SLO13 isStronger SLOc4

9 Provider2a
G3

Semantics of “less” SLOc2 isStronger SLO7

10 Domain rule for
“qos:ResponseTime”

Provider2b-G5-SLO14: qos:responseTime
less 9 secs., Qualifying
Condition:numRequests<1000 AND
 numUsers<500 Penalty: 1 USD

Provider2b
G1 and G2

Provider2b
G5

Semantics of “less” SLO14 isStronger SLOc4 11

12 Provider2b
G3

Semantics of “less” SLO11 isEquivalent SLOc2

Provider2b
G4

Semantics of “true” 13 SLO12 isEquivalent SLOc3

26

Provider 2 offers a much faster responseTime of 9 seconds but a much lower penalty of 1 USD.

Some users may desire efficiency while others may wish to merely satisfy the objective while

sacrificing some efficiency for the potential of a high penalty payoff. Since this is a personal user

preference, the user may define a rule which states that a guarantee isPreferred if the penalty is

over some threshold. The user may also wish to state that if the penalties are the same then faster

speeds are preferred. During the matching process, the preference score for each alternative is

incremented each time a satisfactory guarantee has the isPreferred assertion. When multiple

providers are able to satisfy the basic needs of a consumer, the results are ranked by highest

preference scores so that the user may consider the most preferred providers first. This example

showed the reasoning process while illustrating the flexibility provided by the user defined rules.

4.5 EVALUATION

We now evaluate our tool by comparison with a syntactic matcher. We will discuss scenarios and

how matchers using the following four approaches perform: a) a combination of OWL ontologies

and rules, b) a syntactic approach which uses neither rules nor ontologies, c) an approach which

uses only rules with no ontologies, d) an approach which uses only ontologies with no rules. The

test scenarios are as follows:

Test Case 1:

• Consumer Requirement: responseTime < 5

• Provider Capability: responseTime < 4

All four approaches are able to successfully identify this match.

Test Case 2:

• Consumer Requirement: responseTime < 5

27

• Provider Capability: (duration1+duration2) < 4

Our semantic approach takes advantage of the OntConcept annotation tag which identifies each of

the parameters as the responseTime concept from the QoS ontology and is therefore able to identify

what is meant by (duration1+duration2). An approach which uses ontologies without rules was not

able to identify this as a match since there is no way to specify such a rule in OWL. A syntactic

approach which uses no ontologies or rules was not able to identify that (duration1+duration2) and

responseTime each mean the same thing. An approach which uses no ontologies but uses rules

may be able to specify that (duration1+duration2)=responseTime. However, if the consumer uses a

more ambiguously named parameter such as “rt”, the matcher is not able to determine that “rt” and

“responseTime” have the same semantics.

Test Case 3:

• Consumer Requirement: responseTime < 5

• Provider Capability: networkTime < 2

 executionTime <1

Our semantic approach which combines ontologies with rules recognizes that responseTime =

networkTime+executionTime and therefore determines An approach which uses ontologies

without rules is unable to express this formula within the expressiveness of OWL, however, we

chose to express this as an ARL rule to allow more flexibility. An approach which uses rules

without ontologies is able to determine that networkTime+executionTime=responseTime, however,

the execution of the rule itself relies on a syntactic match without ontological representation.

Therefore, if the provider capability is represented as: nt<2 and et<1 the matcher cannot

syntactically determine that those concepts represent the networkTime and executionTime. Our

approach uses the ontConcept tag to annotate the SLO with concepts from ontologies to

28

Table 6. Evaluation Results

disambiguate between the concepts. An approach which uses neither rules nor

ontologies fails to detect this match since neither executionTime nor networkTime when compared

directly with responseTime will yield a syntactic match. Table 6 summarizes these results.

Consumer
Requirement

Provider
Capability

Approach 1:
OWL
Ontology
and Rules

Approach 2:
OWL
Ontology
without
Rules

Approach 3:
Rules without
Ontologies

Approach 4:
No Rules and
No Ontology

responseTime
< 5

responseTime
< 4

YES YES YES, but only
if parameters
are named
syntactically
similar

YES, but only
if parameters
are named
syntactically
similar

responseTime
< 5

(duration1 +
duration2) < 4

YES NO YES, but only
if the
parameters are
named
syntactically
similar to the
rule criteria

NO

responseTime
< 5

rt < 4 YES YES NO NO

responseTime
< 5

networkTime
< 2

YES, but only
if the
parameters are
named
syntactically
similar to the
rule criteria

YES NO

executionTime
< 1

NO

29

CHAPTER 5

APPLICATION OF AGREEMENTS AND AGREEMENT MATCHING

This section does not attempt to show another technical example but rather describes how WS-

Agreements and our tool can be applied to remedy a challenging real world situation. The next

sections will describe the problem, how WS-Agreements can be applied, and how the WS-

Agreement matching tool can solve this problem.

5.1 AGRICULTURE IN INDIA

Agricultural trade in India is problematic for both Farmers and Merchants and there is a lack of

effective use of IT to facilitate trade. Farmers spend time and resources growing goods and

sending them to the markets without guarantee that they will be sold. The farmer pays for the

transportation of the goods and the wastages that occur when the goods spoil during transport.

Merchants have no assurances on the quality or availability of the

goods that they seek to purchase. This problem is addressed in [4] and the authors describe an

Agricultural Information System to improve the effectiveness of decision-making in the agriculture

domain. A Web Services based business process management system developed to aid the

marketing of agricultural produce is described in [18]. Each party involved is represented as a Web

Service. If each party is a Web Service, then the process of matching farmer to merchant can be

reduced to one of Web Service composition and policy matching.

30

 Contract farming is one remedy currently being practiced to solve the dilemma and is described

in [6] as a system for the production and supply of agricultural products under forward contracts

between producers/suppliers and buyers. The cultivator makes a commitment to provide an

agricultural commodity of a certain type, at a time and a price, and in the quantity required by a

known and committed buyer. Using faming contracts, growers and buyers can agree to terms and

conditions for the sale and purchase of goods. The buyer can make agreements to supply selected

goods which sometimes also include land preparation and technical advice. The contracts ensure

that the grower follows recommended production methods and cultivation and harvesting

specifications. Conditions are frequently stated regarding the price and quality of goods and

penalties in the form of discounts are offered for flaws or lack of quality.

Table 7. Farming Contracts represented with WS- Agreement

The situation for farmers is improved as they no longer must send goods to markets without a

guarantee of acquisition. The farmer’s price risk is reduced because the contracts specify the prices

in advance. The buyers obtain more consistent quality and more reliable production than if

Merchant Farmer 1 Farmer 2
Guarantee1: SLO1:
Moisture is less inclusive
12%
Guarantee2: SLO2: splits
is less inclusive 20%
Guarantee3: SLO3: test
weight is greater than 54 lbs
Guarantee4: SLO4: price
lessEqual 10 cents per
bushel

Guarantee1: SLO1:
Moisture is less 10% Penalty:
discount $10 each

Guarantee1: SLO1:
Moisture is less inclusive
12%

Guarantee2: SLO2: splits is
less inclusive 20% Penalty:
splits of 5% or more, discount
$1 each

Penalty: discount $15 each
Guarantee2: SLO2: splits is
less inclusive 20% Penalty:
splits of 3% or more, discount
$5 each Guarantee3: SLO3: test

weight is greater than 60 lbs Guarantee3: SLO3: test
weight is greater than 58 lbs Guarantee4: SLO4: price

greaterEqual 8 Guarantee4: SLO4: price
greaterEqual 7

31

purchases were made on the open market. When efficiently organized and managed, contract

farming reduces risk and uncertainty for both parties as compared to buying and selling crops on

the open market. The success stories of E-Chaupal and Tata Kisan Sansar, who have implemented

contract farming in India, are discussed in [18]. Just as Web Services can represent the farmers and

merchants, the WS-Agreement is well suited to represent the complex contracts drawn between the

two.

5.2 CONTRACTS AS WS-AGREEMENTS

The WS-Agreement is perhaps the best suited standard for representing farming contracts. The

protocol is functional for representing the guarantees which always include some objective and

often contain conditions which must exist in order for the objective to be fulfilled. For example, a

merchant may guarantee a price under the condition that the goods are of a certain quality.

Business values such as penalties are often seen in contracts in the form of discounts. For example,

a farmer may guarantee that the moisture percentage is than 10% and may offer a discount for

every bushel that contradicts that assurance. In this case, a merchant is considered to be a service

consumer and his guarantees and requirements can be proficiently represented using WS-

Agreement. The available merchants are the service providers. Table 7 contains an example of

farming contracts as WS-Agreements. It depicts the merchant as the consumer seeking the most

suitable farmer, however, this tool can also be used by a farmer to find the ideal merchant. Section

5.3 will discuss how SWAPS can easily match a merchant with a farmer who will provide the

required quality at a desired price.

32

5.3 WS-AGREEMENT MATCHING FOR THE AGRICULTURE DOMAIN

An ontology representing the Agriculture domain can provide the matcher with a complete

understanding of the domain and the user can supplement this knowledge with rules specific to the

domain. The user can also write any relevant conversion rules for measurements. For example, the

user may write a rule to convert from ounces to grams or from bushels to pounds. For predicates,

this user may which to use the basic predicates already defined within the system or can also add

domain specific predicates. The simple example in Table 7 uses predefined predicates. In this

domain, price is compared differently than moisture or splits because, with the latter, both parties

specify that the number must be less than some value because while moisture may vary per bushel

it must always be less than some value. Price, however, is a fixed price per bushel. Therefore,

when comparing price, expressions with different predicates may still be compatible. For example,

the merchant is willing to pay five cents or less but the farmer is asking 4 cents or greater per

bushel. Since a parameter such as price will be reasoned over differently than a parameter like

moisture, a separate rule must be defined to define the procedure for comparing price. The user

will surely have personal preferences and may define these as rules. In Table 7, Farmer 1 clearly

offers better quality goods while Farmer 2 offers much higher penalties. The merchant may specify

the tradeoff as an ARL rule which states that high penalties are preferred. This causes Farmer 2 to

be presented as a higher match than Farmer 1. This tool can effectively narrow down the hundreds

of farmers into a group which contains only those farmers offering what the merchant requires.

The merchant can specify additional preferences and aspects which are notSuitable to further

narrow down the search. Finally the merchant is presented with one or more farmers, in order of

preference, from which to choose. This feature greatly reduces the search effort for both farmers

33

and merchants. It can ensure that each farmer and merchant gets the best possible deal tailored to

their individual needs and preferences.

34

CHAPTER 6

RELATED WORK

There has been very little work done in the area of WS-Agreement. A formal definition of the WS-

Agreement is given in [1] and the schema is extended by adding tags to accommodate states for

negotiation. Cremona [11] is a tool for the creation and monitoring of WS-Agreements. Both

contributions do not consider partnering agreements. Major work in the domain of Service Level

Agreement (SLA) matching is purely syntactic. [28] developed a methodology for matching Web

Service Level Agreements (WSLA). This work syntactically matches SLAs by parsing them into

syntax trees. The authors have designed a matching algorithm which compares these trees node by

node. Heterogeneous SLAs are handled by referencing a table containing instructions which the

code must execute in order to convert them into the same format. Such syntactic approaches must

take a more exhaustive and laborious approach to matchmaking and are challenged by less obvious

matches. Since our agreements are parsed into instances of the WS-Agreement OWL ontology, we

are able to reason over the ontology and retrieve data via ontology queries with much less effort. In

addition, the semantics defined by this ontology result in more accurate matches. This work

focuses on matching Service Level Objectives, where, our work considers compatible scopes and

SLOs to be the most essential criteria for matching but also reason over qualifying conditions and

business values. GlueQoS [29] extends the grammar of WS-Policy to add qualifying conditions.

This approach uses only XML based models which limits the expressivity of the assertions. Since

XML cannot express formal meaning, the matching is purely syntactic which greatly limits

efficiency of the matching process. Our work uses the combination of OWL ontologies and ARL

35

rules to provide our matcher with detailed knowledge of the domain, QoS, and agreements which

leads to better matches.

 The following work uses rules without semantics to represent policies. Paschke et al use a rule

based SLA language (RBSLA) to express Service Level Agreements in [16]. RBSLA is an

extension of RuleML tailored to satisfy the requirements of the SLA domain. The rules are based

on the logic components of Derivation, Event Condition, Event Calculus, Courteous Logic, Deontic

Logic, and Description Logic. Rule based SLAs can be written and modified using the

management tool (RBSLM) which also enables the management, maintenance and monitoring of

contract rules. Policy matching is not considered in the scope of this approach. There has also been

some work that has benefited from using Semantic Web technologies. Uszok et al have developed

KAOS for the specification, management, analysis, and enforcement of policies [20]. The policy is

represented using concepts from an OWL ontology. Role-value maps are added to later work to

compensate for some of the limitations in expressiveness of OWL. The trust and privacy of Web

services is handled with a rule based engine in [7], and in [8], the authors discuss the combination

of OWL ontologies and SWRL rules. Parsia et al present the OWL ontology developed for

representing policies however they do not utilize rules [15]. Li et al apply a very interesting

approach to Access Control Policy specification [10]. Access Control Policies are designed and

expressed using a combination of OWL and SWRL. Policies are defined using an ontology.

SWRL is introduced to enhance OWL with additional expressiveness and deducible ability.

Access control policies are designed in the form of rules using concepts defined in the ontology and

relationships such as isPermittedDoWith to express which kinds of agents have permission to

access resources. This work aims to express policies and does not consider the matching of these

policies. Verma et al presents a successful approach to policy matching by combining semantics

36

with rules to achieve efficient matches. WS-Policy is extended to incorporate semantics and

policies are represented using an OWL ontology. SWRL rules express additional domain concepts

and expand the matching ability. Our work applies a similar approach to WS-Agreement and

extends it to also reason over scope, qualifying conditions and business values. We provide

matching flexibility by allowing users to define their own predicates and preferences.

37

CHAPTER 7

CONCLUSION AND FUTURE WORK

This work presents a novel contribution to the area of WS-Agreement and agreement matching.

With the framework and implementation described throughout this paper, service providers and

consumers may automatically make the most accurate and effective partnerships which are tailored

to user preferences. While this objective has been considered in the prior works, we extend this by

defining reasoning methods for the Scopes, Obligations, SLOs, Qualifying Conditions, and

Business Values of the Guarantee Terms. We consider the subjectivity of the latter two and

implement a feature which allows for the specification of what the user prefers and what the user

considers unsuitable. We effectively match complex agreements containing multiple alternatives

and symmetry such that both consumer and provider have capabilities and requirements. This

work utilizes an effective combination of ARL rules with multiple Ontologies in order to achieve

flexibility and accuracy. In the process it demonstrates the need and value of annotating multiple

activities (e-commerce in our exanple) with non-functional and domain-independent ontologies.

The use of WSDL-S for semantic Web Services is also demonstrated in this context. We define

several categories of rules to enhance domain specific knowledge, efficiently handle heterogeneous

SLOs, allow the definition of user preferences, and flexibly allow domain specific predicates while

greatly simplifying the matching process. These rules are a powerful addition because they allow

the matching process to be changed and customized at any time without any modifications to the

code or programming knowledge.

38

 Since a key feature of our work is to customize the matching process with user defined rules,

this work will benefit from a module which converts rules defined with SWRL to ARL rules to

facilitate the definition of rules by user. This tool can be extended to incorporate negotiations as

defined by the protocol in [2]. Suitable agreements can be identified by the current tool and

negotiations between parties could ensue. This tool can also be augmented to support other

standards for policy specification such as WS-Policy. This would allow consumer to provider

matches regardless of the specification used. This kind of matchmaking can be integrated with the

METEOR-S configuration and runtime binding middleware [22].

39

REFERENCES

[1] Aiello, M., Frankova, G., and Malfatti, D. What's in an Agreement? An Analysis and an

Extension of WS-Agreement, Proc. 3rd ICSOC, 2005

[2] Andrieux, A., Czajkowski, C., Dan, A., Keahey, K., Ludwig, H., Pruyne, J., Rofrano, J.,

Tuecke, S., Xu, M., WebServices Agreement Specification (WS-Agreement). June 29th 2005

[3] Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R, Mills III, W.N., and Diao, Y. ABLE: A toolkit for

building multiagent autonomic systems, IBM Systems Journal, 41 (3), 2002

[4] Chaudhary, S., Sorathia, V., Laliwala, Z., Architecture of Sensor based Agricultural

Information System for Effective Planning of Farm Activities. IEEE SCC 2004: 93-100

[5] DQL Technical Committee 2003. DAML Query Language (DQL). http://www.daml.org/dql

[6] Eaton, C., Shepherd, A., Contract Farming Partnerships for Growth FAO Agricultural Services

Bulletin 145

[7] Kagal, L., Paoucci, M., Srinivasan, N., Denker, G., Finin, T., and Sycara, K. Authorization and

Privacy for Semantic Web Services, AAAI Spring Symposium on SW S, 2004

[8] Kagal, L., Finin, T., and Joshi, A. Declarative Policies for Describing Web Service Capabilities

and Constraints, Proceedings of W3C Workshop on Constraints and Capabilities for Web

Services, 2005

[9] Lee, J., Goodwin, R. T., Akkiraju, R., Doshi, P., Ye, Y. Snobase: A Semantic Network-based

Ontology Ontology Management http://alphaWorks.ibm.com/tech/Snobase 2003

[10] Li, H., Zhang, X., Wu, H., Yuzhong, Q., Design and Application of Rule Based Access Control

Policies. Proc of the Semantic Web and Policy Workshop, 2005, Galway, IR.

40

http://www.daml.org/dql
http://alphaWorks.ibm.com/tech/Snobase

[11] L ey, B., Cremona: An Architecture and Library for Creation and

Monitoring of WS-Agreements. Proc 2nd ICSOC,, New York, 2004.

 Maxemilien,

udwig, H., Dan, A., Kearn

[12] M., Singh, M., A Framework and Ontology for Dynamic Web Services Selection.

E

[13]

IE E Internet Computing 8(5):84-93, September-October 2004

 OWL-S, http://www.daml.org/services/owl-s/

[14] Pan, F., Hobbs, J. OWL Time http://www.isi.edu/~ pan/damltime/time-entry.owl

 Parsia, B., Kolovski, V., Hendler, J. Expressing WS-Policies in OWL. Polic[15] y Management for

roc. of the

[17] ., Sheth, A., Miller, J., Adding Semantics to Web Services

[18] ricultural Marketing Reforms: Web

[19] rg/Submission/SWSF/

the Web Wkshp, May 2005

[16] Paschke, A., Dietrich, J., Kuhla, K. A Logic Based SLA Management Framework. P

Semantic Web and Policy Workshop, November, 2005.

 Sivashanmugam, K., Verma, K

Standards, ICWS 2003

 Sorathia, V., Laliwala, Z., and Chaudhary, S. Towards Ag

Services Orchestration Approach, IEEE SCC 2005.

 SWSF, http://www.w3.o

 of the AAAI Spring Symposium on

[22] , J., Sheth A., Miller, J., Semantically Enabled Dynamic

[20] Uszok, A., Bradshaw, J.M., Jeffers, R., Johnson, M., Tate, A., Dalton, J., Aitken, S. Policy and

Contract Management for Semantic Web Services, Proc.

Semantic Web Services, 2004

[21] Verma, K., Akkiraju, R., Goodwin, R. Semantic Matching of Web Service Policies, SDWP

Workshop, 2005.,

 Verma K., Gomadam K., Lathem

Process Configuration, LSDIS Lab Technical Report 2006.

41

http://www.daml.org/services/owl-s/
http://www.isi.edu/~
http://www.w3.o

[23] The Web Service Policy Framework, http://www-106.ibm.com/developerworkds/library/ws-

olfram p

o

e Proc ICSE 2004, pp. 189-199

[24] W hlstadter, E., Tai, S., Mikalsen, T., Rouvello, I., Devanbu, P. GlueQoS: Middleware to

Sweeten Quality-of-Service Policy Interactions, Th

[25] The WSLA Specification, http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

 Web Services Modeling Ontology, [26] http://www.wsmo.org

[27] WSDL-S, http://www.w3.org/Submission/WSDL-S/

[28] W. Yang, H. Ludwig, A. Dan: Compatibility Analysis of WSLA Service Level Objectives.

o plemental, 2003 W rkshop on the Design of Self-Managing Systems. Sup

42

http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www-106.ibm.com/developerworkds/library/ws-olfram
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.wsmo.org

APPENDIX A – WS-AGREEMENT ONTOLOGY

[http://lsdis.cs.uga.edu/~oldham/ontology/wsag/]

© Agreement
© AgreementContext
© AgreementInitiator
© AgreementProvider
© BusinessValueList
© Expression
© GuaranteeTerm
© Importance
© Name
© Penalty
© PenaltyAssesmentInterval
© Preference
© QualifyingCondition
© Reward
© RewardAssessmentInterval
© ServiceDescriptionTerm
© ServiceLevelObjective
© ServiceProperty
© ServiceReference
© ServiceScope
© SLA_predicate

© after
© before
© equal
© false
© greater
© greaterEqual
© less
© lessEqual
© mean
© median
© numberGreaterThanThreshold
© numberLessThanThreshold
© percentGreaterThanThreshold
© percentLessThanThreshold
© true

43

http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/Agreement.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/AgreementContext.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/AgreementInitiator.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/AgreementProvider.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/BusinessValueList.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/Expression.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/GuaranteeTerm.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/Importance.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/Name.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/Penalty.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/PenaltyAssesmentInterval.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/Preference.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/QualifyingCondition.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/Reward.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/RewardAssessmentInterval.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/ServiceDescriptionTerm.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/ServiceLevelObjective.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/ServiceProperty.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/ServiceReference.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/ServiceScope.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/SLA_predicate.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/after.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/before.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/equal.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/false.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/greater.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/greaterEqual.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/less.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/lessEqual.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/mean.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/median.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/numberGreaterThanThreshold.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/numberLessThanThreshold.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/percentGreaterThanThreshold.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/percentLessThanThreshold.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/true.html

© TerminationTime
© Terms
© Variable
© Variables

44

http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/TerminationTime.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/Terms.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/Variable.html
http://lsdis.cs.uga.edu/%7Eoldham/ontology/wsag/Variables.html

APPENDIX B – SWAPS INSTALLATION MANUAL

[http://lsdis.cs.uga.edu/projects/meteor-s/swaps]

REQUIREMENTS

1. Eclipse 3.0 or later, http://www.eclipse.org/

2. JDK 5.0, http://java.sun.com/j2se/1.5.0/download.jsp

To configure Eclipse to JDK 5.0 use the following instructions

a. Open Eclipse and make sure you are in the Resource perspective (window -> open

perspective -> others -> Resource)

b. Check if JDK 5.0 has been has been recognized as installed JRE (window -> preferences ->

java -> installed JREs). If you don't find JDK 5.0 in there add a new JRE pointing to your

JDK 5.0 installation.

c. set the JDK 5.0 JRE as default

3. IBM Ontology Management System (SnoBase)

 http://www.alphaworks.ibm.com/tech/snobase/download

 Download and extract Snobase_1_1.zip

INSTALLATION

1. Download the WsagSelection Project from here.

2. Extract the "WsagSelection" project directory from the zip archive and copy it into the Eclipse

workspace directory.

45

http://lsdis.cs.uga.edu/projects/meteor-s/swaps
http://www.alphaworks.ibm.com/tech/snobase/download
http://www.eclipse.org/
http://java.sun.com/j2se/1.5.0/download.jsp

3. Copy the “com” folder from SnoBase_1_1/bin into the WsagSelection folder that you just

copied into the Eclipse workspace directory.

4. Move the OWL.arl file from the WsagSelection project folder into

\com\ibm\jobc\ob2\inferencing\ABLE

5. Start Eclipse and import the WsagSelection project into workspace.

This can be done as follows:

File -> Import -> Existing project into workspace

On the project import screen, browse to the Eclipse workspace folder and select

"WSAGSELECTION" directory. Click Finish

6. The project is now imported into the workspace.

7. Get into the Java Perspective (window -> open perspective -> others -> Java)

8. Configure Eclipse for SnoBase.

 Import SnoBase library files. Project->Properties->Java Build Path, select the

 “Libraries” tab and click the “Add External Jars…” button. Navigate to the

 SnoBase_1_1/lib folder and select all of the jar files, click “Open”.

9. Compile the project and run

10. Now the WS-Agreement Matching tool is ready to be used. Please refer to the User's Guide for

using the tool.

46

APPENDIX C -SWAPS USER MANUAL

[http://lsdis.cs.uga.edu/projects/meteor-s/swaps]

First follow the installation guide to download and configure SWAPS.

CUSTOMIZING THE MATCHER

SWAPS can be fully customized by adding or modifying the rules in OWL.arl which was copied

into the SWAPS_HOME/com/ibm/jobc/ob2/inferencing/ABLE folder during installation.

Instructions for writing ARL rules can be found at:

http://www.eng.auburn.edu/users/sapleav/COMP%208700/ABLE/reference/com/ibm/able/rules/do

c-files/lngIndex.html#toc

1. Semantics of Predicates

SWAPS is automatically configured to match the requirements and capabilities using the predicates

Less, LessEqual, Greater, GreaterEqual, True, False, Equals.

To add a new predicate for a domain add it under the “Predicates” concept in the WS-Agreement

ontology, wsag.owl, in SWAPS_HOME/ontology_store. You must also write an ARL rule which

defines the semantics of the predicate. The rule should specify how to compare two SLOs by

asserting isStronger or isEquivalent assertions.

For examples see the Rules section at http://lsdis.cs.uga.edu/projects/meteor-s/swaps/

2. Heterogeneous SLOs

SWAPS is automatically configured to convert the predicates PercentageLessThanThreshold,

NumberLessThanThreshold, PercentageGreaterThanThreshold, and

47

http://lsdis.cs.uga.edu/projects/meteor-s/swaps
http://www.eng.auburn.edu/users/sapleav/COMP 8700/ABLE/reference/com/ibm/able/rules/doc-files/lngIndex.html#toc
http://www.eng.auburn.edu/users/sapleav/COMP 8700/ABLE/reference/com/ibm/able/rules/doc-files/lngIndex.html#toc
http://lsdis.cs.uga.edu/projects/meteor-s/swaps/

NumberGreaterThanThreshold. These rules can be made more specific. The percent value, which

is currently defined at 95%, can be changed.

For examples see the Rules section at http://lsdis.cs.uga.edu/projects/meteor-s/swaps/

3. Domain Specific Rules and UserPreferences

Rules which are specific to the domain or user preference can be added. UserPreference rules

should assert notSuitable or isPreferred.

For examples see the Rules section at http://lsdis.cs.uga.edu/projects/meteor-s/swaps/

Figure 6. The Provider Library

THE PROVIDER LIBRARY

Upon startup the provider agreement files located in SWAPS_HOME/providers are loaded into the

system. They are displayed in the provider library window shown in Figure 6 and the guarantee

48

http://lsdis.cs.uga.edu/projects/meteor-s/swaps/
http://lsdis.cs.uga.edu/projects/meteor-s/swaps/

terms for a provider can be viewed by selecting the provider. The guarantees show in the “Provider

Agreement” window.

ADDING PROVIDERS

New Providers which are not already in the library can be added by selecting File->Add a Provider.

Select the provider agreement file in the dialog box and click on the open button. The new

provider appears in the list of providers in the library and the guarantees can be viewed in the

“Provider Agreement” window by selecting the new provider in the list.

SELECTING A CONSUMER FOR MATCHING

To select a consumer for matching select File->New Consumer. When the file dialog box opens,

select the consumer agreement and click open. The consumer agreement is loaded into the system

and the guarantees are shown in the “Consumer Agreement” window shown in Figure 7.

Figure 7. Consumer Selection

49

MATCHING

In order to determine which providers from the list are suitable matches select Match->Find

Matches. A tab menu will appear with the guarantees of the matching providers in each tab. A

preference score indicates the number of user preferences that were found within the agreement.

These serve to facilitate the user’s decision. The “Match Log” window describes the matching

decisions. Figure 8 shows the results.

Figure 8. Match Results

50

	In a service oriented environment it is advantageous for service consumers and providers to obtain guarantees regarding the services that they both require and offer. Usually these guarantees pertain to quality of service (QoS) aspects. WSDL does not provide a means to express these guarantees; therefore such standards as WS-Policy [23] and WSLA [25] exist to allow for the expression of additional nonfunctional attributes. However, these standards are not expressive enough to represent the truly complex nature of the relationship between a service consumer and provider. The WS-Agreement specification [2] defines a language and protocol for capturing this intricate relationship with agreements between two parties. An agreement between a service consumer and a service provider specifies one or more service level objectives (SLO) which state the requirements and capabilities of each party on the availability of resources and service qualities. For example, an agreement may provide assurances on the bounds of service response time, service availability, or service reliability. WS- Agreement is more expressive than the previous policy standards because in addition to service level objectives, an agreement contains scopes for which the guarantee holds, conditions which must exist in order for the guarantee on the SLO to be valid, and business values, such as penalties and rewards, which incur if the SLO is not satisfied. This is further complicated by the symmetry of these agreements such that each provider does not only state guarantees regarding capabilities but likely has requirements of its own. In addition, each agreement may contain multiple alternatives of guarantee sets. As each consumer seeking a suitable provider has many complex options to choose from, the manual selection of providers is time consuming, tedious, and error prone. With the increasing acceptance and popularity of WS-Agreement and the ever present need to protect the quality of service with guarantees, the development of an approach for the automatic matching of these agreements is imperative.
	 This paper defines and provides reasoning methods for the components of an agreement which must be compatible for quality matches. We present a powerful approach which uses OWL ontologies to represent domain knowledge in conjunction with SWRL rules to achieve the most accurate and consumer personalized matches. The contributions of this work include:
	MOTIVATION FOR A SEMANTIC APPROACH
	3.2.2 ADDING SEMANTICS TO THE WS-AGREEMENT
	4.1 ARCHITECTURE
	The system consists of three phases: parsing, matching and searching, which can be seen in Figure 3. To reason about domain ontologies, we use Snobase [9], an ontology based management system that offers DQL-based [5] Java API for querying OWL ontologies. IBM’s ABLE engine [3] is used by Snobase for inferencing and we use ABLE Rule Language (ARL) [3] to write the rules. The ontologies are loaded into Snobase followed by each provider’s WS-Agreement. We parse the agreements and load them into the system as instances of the WS-Agreement ontology. As each of these new agreement instances is created, the ABLE rule engine within Snobase executes rules as the criteria for each rule is met. The additional assertions made by the rules are used to greatly simplify the search phase by making the match decisions a priori. These rules provide additional knowledge about the domain and, as described in Section 2, play a significant role in the discovery of the most accurate match results. We discuss the rules in further detail in the next section. When a consumer seeks a partner, the consumer agreement is parsed and entered into the system as another agreement instance. The search phase begins as the algorithm considers the agreement instances and the assertions previously set by the rules and returns a list, ranked by preference, of all of the provider agreements which accurately matched the consumer’s agreement.
	4.2. WS-AGREEMENT AND RULES REPRESENTATION
	Ontologies allow the matcher to understand the semantics of the domain; therefore enabling a much more accurate search than a syntactic approach. Rules allow for richer domain knowledge by stating additional domain rules and semantics and provide a high level of flexibility by stating customized user preferences.
	4.2.1 KNOWLEDGE REPRESENTATION
	4.2.2 REPRESENTATION OF RULES

	4.3 SWAPS SEARCH ALGORITHM
	4.4 EXAMPLE
	4.4.1 PARSING, INSTANCE CREATION AND RULE EXECUTION
	4.4.2 SEARCHING
	4.4.3 POST SEARCH CONSIDERATIONS

	4.5 EVALUATION
	5.1 AGRICULTURE IN INDIA
	5.2 CONTRACTS AS WS-AGREEMENTS
	5.3 WS-AGREEMENT MATCHING FOR THE AGRICULTURE DOMAIN

