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Abstract

Predictive analytics in the big data era is taking on an ever increasingly important role.

Issues related to choice on modeling technique, estimation procedure (or algorithm) and

efficient execution can present significant challenges. For example, the selection of appro-

priate and most predictive models (i.e., the models that maximize the chosen performance

criteria such as lowest error) for big data analytics often requires careful investigation and

considerable expertise which might not always be readily available. In this thesis, we propose

two alternative methods to assist data analysts and data scientists in selecting appropriate

modeling techniques and building specific models as well as the rationale for the techniques

and models selected.

The first approach uses ontology-based semantics to assist selecting the most predictive

model for a given dataset. To formally describe the modeling techniques, models, and

results, we developed the Analytics Ontology that supports inferencing for semi-automated

model selection. The ScalaTion framework, which currently supports over sixty modeling

techniques for big data analytics, is used as a testbed for evaluating the use of semantic

technology.



In the second approach, we present a meta-learning system for selecting the most pre-

dictive regression algorithm in a predictive big data analytics setting. The meta-learning

system uses meta-features characterizing the aspects of the dataset to select most predic-

tive modeling techniques for that dataset. We show that our meta-learning system provides

promising performance in predicting top performing modeling techniques for a given dataset.

In addition to evaluating the system against existing baseline approaches, we also compare

meta-learning approach with the ontology-assisted suggestion engine.

Finally, we present detailed performance analysis of the regression algorithms, namely

Lasso and Ridge Regression, that we have implemented in ScalaTion and show that they

provide robust performance compared to R, both in terms of training time and error.

Index words: predictive big data analytics; automated modeling; meta-learning;
ontology-based semantics; machine learning.
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Chapter 1

Introduction

Data scientists are becoming increasingly overwhelmed by dealing with the quantities of data

they are being exposed to. As technology to collect and store data becomes cheaper, the

amount of data readily available for analysis and decision making grows steadily. In a data-

driven environment, quicker turnaround times are required to keep up with the constant flow

of data. As there are hundreds of popular modeling techniques in the fields of Statistics and

Machine Learning (ScalaTion already supports over sixty), how can one decide? With

smaller data sets and high expertise on the part of the analyst, one practice is to try all

possible models for a set of preferred techniques. For big data and less experienced analysts,

this practice cannot be relied upon. Thus, leveraging automation for predictive big data

analytics becomes tremendously important.

Predictive analytics can be defined as the process of building a statistical model to cap-

ture the relationships between variables in order to make sense of or to predict future

outcomes from data. Although classification is similar to prediction, it tries to model a

binary/categorical response as the outcome.

Predictive big data analytics is a non-trivial and a highly iterative task requiring do-

main knowledge, expertise in Statistics, and often times, familiarity with programming and
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big data frameworks. In this thesis, we explore leveraging the success of ontology-based

semantics and meta-learning in other problem domains to help fully or partially automate

predictive big data analytics workflows, providing assistance to data scientists, analysts, or

even domain experts regardless of their background.

We use the ScalaTion [Miller et al., 2013] framework to develop, test, and integrate the

solutions presented in our work. We have developed the Analytics Ontology in Web Ontology

Language (OWL) to formally describe modeling techniques, capture domain expertise which

allows using logical reasoning to perform inference for automated model selection. The

ontology covers popular predictive modeling techniques including Generalized Linear Models,

Regularization models such as Lasso, Ridge and Partial Least Squares Regression among

others such as time series analysis models. Using the ontology backend, we were able to

build scala-dash, a graphical tool to load a dataset, to automatically extract the key

characteristics and to suggest suitable regression algorithms to build and analyze predictive

models. As the suggestions were generated by an ontological reasoner, the justifications for

each suggestion are provided as well.

We have also built a machine learning based meta-learning system for performing au-

tomated model selection. A meta-learner is built using quality-of-fit metrics and 21 meta-

features from 114 datasets to automatically predict the best performing algorithm among

15 regression algorithms. Evaluation of the system suggests promising results for using

meta-learning in the context of predictive analytics (i.e., regression algorithms).

The rest of the thesis is organized as follows.

Chapter 2 provides an introduction to predictive analytics and presents the current

state-of-the-art approaches for automated predictive analytics.

Chapter 3 presents our manuscript published in IEEE International Journal of Big

Data [Nural et al., 2015] which introduces ontology-based semantics for assisting predictive

big data analytics workflows.

2



Chapter 4 covers our work on meta-learning based suggestion of appropriate modeling

techniques. The work presented in this chapter has been partially published in the Proceed-

ings of IEEE Big Data Conference 2017, Special Session on Intelligent Data Mining.

Finally, Chapter 5 concludes this thesis and provides a summary of the presented work.
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Chapter 2

Background

A predictive analytics problem may generally be modeled as

y = f(x;β) + ε

where the response variable y is modeled as a function of the vector of predictor variables

x (also commonly referred as features or attributes) and the β parameter/coefficient vector

plus the ε error/residual term representing what the model does not account for. The

parameter/coefficient vector β can be estimated by collecting training data (e.g., a response

vector y and a data matrix X) and minimizing some norm of the error/residual vector ‖ε‖.

For a linear model and L2 norms, this involves using matrix factorization to solve the normal

equations, X tXβ = X ty. More general optimization techniques are required in other cases.

In almost all real life scenarios, predictive analytics involve many steps and are highly

iterative exercises. Figure 2.1 shows a typical workflow for performing predictive big data

analytics.

4



Parsing

Data & Metadata 
Extraction

Preprocessing

Sparsity Analysis

Collinearity/
Orthogonality 

Analysis

Missing Value 
Handling

Dimensionality 
Reduction

Variable Selection

Model Development

Model Type 
Selection

Diagnostic Analysis 
& Model 

Comparison
Feature Selection

Model Development

Model Type 
Selection

Diagnostic Analysis 
& Model 

Comparison
Feature Selection

Interpretation

Explanation

Prediction

Visualization

Interpretation

Explanation

Prediction

Visualization

Figure 2.1: Sample Predictive Analytics Workflow

5



Preprocessing

Preprocessing plays a significant role for building successful predictive models. At the very

least, it involves preparing the training dataset for the input requirements of the target

algorithms/techniques.

For example, most algorithms cannot recognize dates, thus, treating them as strings. For

that reason, a date needs to be properly encoded. One method is to split the date into three

variables: year, month, and day. If the ordering is important then the date might be encoded

as the day of the year (e.g., January 15th becomes 15 whereas July 27th becomes 207). The

choice of which encoding will be used usually depends on the inherent meaning that the date

carries with respect to the other variables in the dataset. If the data includes an ID string,

a variable that uniquely identifies each instance of the dataset, it should be removed.

Missing values are another challenge that must be handled before running any modeling

algorithm, as they would fail. There are a number of different techniques for dealing with

missing values. These range from naive approaches such as removing instances/variables

containing missing values to more advance methods such as utilizing an imputation function

based on the characteristics of a variable to replace the missing values.

In addition to meeting the input requirements of a target modeling algorithm, preprocess-

ing can also be performed to increase model performance. A few of the most commonly used

approaches include feature selection, dimensionality reduction, outlier analysis and removal,

sparsity analysis and etc.

Model Development

Model development is a highly iterative process involving selecting a suitable model-type

(i.e., modeling technique/algorithm), building and performing model diagnostics, and feature

selection. In most use cases, many models are built and later on compared.
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Selecting a suitable modeling algorithm is a challenging task as there are literally hun-

dreds of different algorithms for performing predictive analytics. Different modeling tech-

niques have certain assumptions that the dataset must satisfy (e.g., OLS requires a tall input

matrix m ≥ k) in order to make effective predictions. For a given dataset, certain model-

ing techniques may be automatically eliminated due to the violations of their assumptions.

However, it is still a daunting task to choose an appropriate modeling technique among the

remaining as this often times involves building a model for each candidate technique. Af-

terwards, metrics such as the R2 values and cross-validated errors may be used to select the

best or top modeling techniques. We discuss different approaches for automating this task

in more detail in Section 2.1.

Feature selection is usually performed during model development to improve predictive

power of a model by eliminating unnecessary features and hence reducing the risk of over-

fitting. This procedure is often carried out during the process of model comparisons but may

also be done during preprocessing or model-type selection via selecting a modeling technique

with implicit feature selection (e.g., Lasso Regression).

Interpretation

Once the most predictive (or sufficiently good) model is found during the model develop-

ment phase, it is deployed to production for prediction. The explanation and visualization

of predictions are equally important in many contexts. For example, recent regulations in-

troduce mandates such as “right to explanation” [Goodman and Flaxman, 2016] that lever-

age individuals’ rights to ask for an explanation when they are affected by an algorithmic

decision-making process (e.g., credit approval based on user-level predictors). Some mod-

eling techniques such as regression provide inherent explanatory capabilities and therefore

are preferred when explanatory power is a requirement. On the other hand, there are efforts

[Ribeiro et al., 2016] to provide explanation for prediction models even when the model itself

7



is opaque, that is, being inherently difficult to interpret how the model predicts. Similarly,

visualization helps interpreting prediction results and quickly identify insights from data.

2.1 Model Type Selection

Finding the most predictive (or sufficiently good) modeling algorithm is a non-trivial task

as it often times involves building and running models with each of the different modeling

algorithms. Automating this process has been studied extensively and resulted in a multitude

of approaches that will be covered below.

Exhaustive Approach

As the name suggests, one of the simplest ways to find the most predictive modeling algorithm

for a given dataset is to exhaustively try building a model for each technique and pick the

best performing one(s). In fact, many analytics software packages and frameworks (both

commercial and open-source) provide tools to automate this process. Typically, the user

chooses an evaluation metric and the techniques of interest (or simply all). The tool then

builds a model for every possible technique, evaluates each model by the metric of choice

(e.g., root mean squared error) and returns the model with the highest performance to the

user as a result. As the dataset size increases however, training each model becomes much

more expensive. It is not uncommon to encounter a model taking hours and even days

for training in practice. Considering the fact that some tools have hundreds of modeling

algorithms available1, it is clear how this approach would quickly become impractical.

1The caret package lists 240 modeling algorithms that are available in R ecosystem. See http://

topepo.github.io/caret/available-models.html
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Ontology-based Approach

A well-designed ontology can assist with the model selection problem in a number of ways.

By capturing domain expertise expressed in a formal structure, one can use logical reason-

ing to reduce search space for finding the most predictive model type for a given dataset.

Additionally, using a logical reasoner also makes it possible to provide justifications for the

suggestions provided.

Figure 2.2 shows the basic setup for how we have used ontology-based semantics to

provide model type suggestions.

First, domain knowledge from the experts has to be captured formally. Next, a dataset
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should be represented in the ontology. This is done by creating an abstract representation of

the candidate dataset in the ontology which involves automatically extracting representative

features from the dataset itself and from metadata if available.

A logical reasoner would then be able to infer suitable model types for the candidate

dataset from the ontology using domain knowledge encoded in formal rules and ontological

axioms.

Details and implementation of this approach have been presented in Chapter 3.
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Meta-learning based Approach

Meta-learning can be briefly described as “learning to learn” or “learning about learning”.

There are large number of machine learning algorithms (i.e., learners) one can choose

among for a given problem. According to the no free lunch theorems for optimization

[Wolpert and Macready, 1997], no single algorithm outperforms other algorithms for all dif-

ferent classes of problems. Therefore, identifying the most predictive learning algorithm for

a given problem itself can be treated as a learning problem. Hence, the term first appeared

in the field of machine learning in 90’s to describe efforts for “learning” a mapping between

datasets and machine learning techniques to achieve the best performance. Since then, it

has been studied extensively, focusing mostly on classification problems (i.e., selecting the

top-performing classifier).

A typical meta-learning system is developed similarly to the workflow displayed in Figure

2.3. First, one needs to collect datasets representative of the problem domain. Next, a fixed

set of meta-features should be extracted from each dataset. The number and type of the

meta-features should relate to the nature of the task. For example, one might choose to

extract information-theoretic meta-features such as class entropy for the response variable

for a classification problem whereas statistical meta-features such as skewness and kurtosis

of the response might be more appropriate for a regression problem. Then, depending on the

chosen metric, performance statistics should be collected in order to rank algorithms based

on performance. A meta-learner is then trained with the meta-features and the performance

statistics. After a meta-learner is trained with the training data, it is then possible to use it

in production for suggesting top modeling algorithm(s) for future candidate datasets.

A meta-learner can be built in many different ways. For example, it is possible to build

a regression model per each target technique using meta-features of the dataset collection

as predictors and the performance of the target technique for the datasets as the response.

The regression models would then be used to predict performance of a future dataset from

11



its meta-features. The predicted performance of each target technique can then be used to

select the top-k performing techniques or to generate a full ranking of all target techniques.

Another common approach is to build a binary classifier for every pair of technique and

predict which technique would have better performance. The pair-wise comparisons from

each meta-learner can then be aggregated to identify the winner. These approaches work

best when the number of target techniques is relatively small as the number of meta-learners

to train can become unmanageable when the number of candidate techniques becomes larger.

Alternatively, it is also possible to train a meta-learner capable of multi-class classifica-

tion. In this case, the classifier output would be the most predictive technique from the set

of target modeling techniques. We have preferred this approach as it provides more flexibil-

ity to update the meta-learning model as the modeling technique space grows and used a

random-forest classifier and a k-nearest neighbors (k-NN) classifier as the meta-learner. Our

work on using meta-learning for selecting top performing modeling technique (i.e., model

type) is presented in Chapter 4.

Other Approaches

In addition to aforementioned systems, there are fully automated commercial solutions en-

capsulating most if not all the details of the model building and diagnostics process from

the end user and produce a ready to use prediction model from the user provided dataset.

Most prominent examples include the Watson Analytics platform from IBM2 and Google

Prediction API3. Although these systems allow a low entry point into data analysis, more

seasoned data analysts including domain experts may find this approach limiting.

2https://www.ibm.com/watson-analytics
3https://cloud.google.com/prediction/docs
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Chapter 3

Automated Predictive Big Data

Analytics Using Ontology-based

Semantics
1

1Mustafa V. Nural, Michael E. Cotterell, Hao Peng, Rui Xie, Ping Ma, John A. Miller. 2015. International
Journal of Big Data. (2)2:43-56.
Reprinted here with permission of the publisher.
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Abstract

Predictive analytics in the big data era is taking on an ever increasingly important role.

Issues related to choice on modeling technique, estimation procedure (or algorithm) and

efficient execution can present significant challenges. For example, selection of appropri-

ate and most predictive models for big data analytics often requires careful investigation

and considerable expertise which might not always be readily available. In this paper, we

propose to use semantic technology to assist data analysts and data scientists in selecting

appropriate modeling techniques and building specific models as well as the rationale for the

techniques and models selected. To formally describe the modeling techniques, models and

results, we developed the Analytics Ontology that supports inferencing for semi-automated

model selection. The ScalaTion framework, which currently supports over thirty model-

ing techniques for predictive big data analytics is used as a testbed for evaluating the use of

semantic technology.

3.1 Introduction

Predictive big data analytics relies on decades worth of progress made in Statistics and Ma-

chine Learning. Several frameworks are under development to support data analytics on

large data sets. Included in the group are Drill2 , Hadoop3 , Mahout4 , Storm5 , Spark6

, and ScalaTion [Miller et al., 2010]. These frameworks target large data sets by using

databases and distributed file systems as well as parallel and distributed processing to speed

up computation and support a greater volume of data. As large amounts of data become

readily available, one would expect greater use of such frameworks, even by scientists, engi-

2Drill: http://drill.apache.org/
3Hadoop: http://hadoop.apache.org/
4Mahout: http://mahout.apache.org/
5Storm: https://storm.apache.org
6Spark: http://spark.apache.org
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neers and business analysts that may not be familiar with the state-of-the-art in Statistics

and Machine Learning.

The rapidly growing need for more people to analyze, or more importantly, make sense of,

ever increasing amounts of data is an important challenge that needs to be addressed. One

way to address this challenge is more education. Many universities are adding academic and

professional programs on data analytics and data science. In addition to this, technology can

also help address the problem. As there are over one hundred popular modeling techniques

in the fields of Statistics and Machine Learning (ScalaTion already supports over thirty),

how can one decide? Furthermore, given a modeling technique (type of model), there is still

much work left to build a model, including use of data transformation functions, choices of

predictor variables, etc.

With smaller data sets and high expertise on the part of the analyst, one practice is to

try all possible models for a set of preferred techniques. For big data and less experienced

analysts, this practice cannot be relied upon.

We propose to use Semantic Web technology to assist analysts in selecting, building and

explaining models. Statistical and Machine Learning models are formally described using

the Analytics Ontology. It is defined using the Web Ontology Language (OWL)7 and built

using the Protégé8 Ontology Editor and Framework . Its taxonomy (class hierarchy) of

model types, equivalence axioms between the model types in the taxonomy and property

restrictions can be used to help choose appropriate modeling techniques using a Description

Logic (DL) reasoner. This thesis focuses on the use of the ScalaTion framework and

semantic technology to assist in the development and execution of large-scale models.

The rest of this paper is organized as follows: Section 3.2 discusses the workflow that we

use to oversee the entire analytics process. Related work, on model selection and the use of

7OWL: http://www.w3.org/TR/owl2-overview/
8Protégé: http://protege.stanford.edu/
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semantics in analytics, is presented in Section 3.3. Section 3.4 provides an overview of the

ScalaTion Framework. Extraction of metadata is presented in Section 3.5. The structure

and design of the Analytics Ontology as well as how this ontology is used in our analytics

process is presented in Section 3.6. Finally, Section 3.7 concludes the paper.

3.2 Predictive Analytics Workflow

Abstractly, a univariate predictive model can generally be formulated using a prediction

function f as follows:

y = f(x, t; b) + ε

where y is the response variable, x is a vector of predictor variables, t is a time variable,

b is a vector of parameters and ε represents the residuals (what the model does not account

for). The objective is to pick functional forms and then fit the parameters, b to the data

to in some sense minimize the residuals. Estimation procedures for doing this include the

following [Godambe, 1991]: Ordinary Least Squares (OLS), Weighted Least Squares (WLS),

Maximum Likelihood Estimation (MLE), Quasi-Maximum Likelihood Estimation (QMLE),

Method of Moments (MoM) and Expectation Maximization (EM). Closely related to the

prediction problem is the classification problem. Although some view classification as a

special case of prediction, classification takes center stage when the response variable y takes

on values from a set small enough for its elements to be named (e.g., reject, weak reject,

neutral, weak accept, accept).

Predictive big data analytics involves many complex steps, many of which require a high-

level of expertise. To help manage the complexity, we developed a hierarchical workflow for

the predictive analytics process. The top level of our hierarchical workflow is illustrated in

Figure 3.1.
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Figure 3.1: Predictive Analytics Workflow

The first step is to load the dataset in a flexible data structure that will make common

manipulation operations easy. We use a table structure that support relational algebra

operations [Codd, 1970].

The second step involves extracting key information regarding the dataset from data and

metadata. This information plays an essential role during model type selection phase in

addition to the explanation phase described later. Data & metadata extraction is discussed

in more detail in Section 5.

The third step in the workflow involves further refinement of the selection problem as well

as preparation of the data for analysis. This step involves the handling of missing values,

multicollinearity and sparsity of data. It also involves the preprocessing of the various
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columns in a dataset so that they are encoded numerically. Certain other considerations

may be taken at this point as well. For example, if the number of predictor variables

and the multicollinearity are both high, some form of data/dimensionality reduction should

be considered (e.g., Regression using Singular Value Decomposition (SVD) or Principal

Component Analysis (PCA)).

For example, instead of performing PCA, using Singular Value Decomposition (SVD)

when estimating the coefficients of final models may be sufficient.

The fourth step in the workflow, and the main focus of this paper, is the selection of

practical modeling techniques or model types based on the characteristics of a dataset. This

is performed by first identifying the domains of discourse for each column in the dataset,

then applying semantic inferencing using an ontology to suggest potential model types. For

example, if the response variable is binary or dichotomous (e.g., grant loan or deny loan),

then Logistic Regression becomes a candidate since the residuals are distributed according

to a Binomial distribution. If the response variable represents counts, Poisson Regression

should be considered. The characteristics of domains of the predictor variables can be used

in selecting between Analysis of Variance (ANOVA), Analysis of Covariance (ANCOVA) and

Multiple Linear Regression (MLR).

The fifth step is a diagnostic analysis of the full models (all predictors included) in order

to validate the chosen model(s) and go back to first step if a model(s) does not conform to

the assumptions and requirements of the model type and therefore needs to be refined. One

of the most important diagnostics is residual analysis. For example, if the first step suggested

a General Linear Model (GLM), but the residuals are found not to be normally distributed

with zero mean and constant variance, then various stabilizing transformations may be

considered. Additionally, the distribution of the residuals (e.g., Multinomial) can suggest

a different type such as Multinomial Logistics Regression. In addition, outlier analysis can

be performed in this step. Finally, in the previous step, more than one model type may be
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suggested. Diagnostic analysis also involves comparison of models in such cases and choosing

the most suitable one according to the metrics provided.

The sixth step in the workflow performs various model building and model reduction

techniques to suggest the subset of predictor variables that are used for each model type.

For example, in regression the following procedures may be used: Forward Selection, Back-

ward Elimination, Least absolute shrinkage and selection operator (Lasso) [Tibshirani, 1996],

Forward Stagewise, Least Angle Regression (LARS) [Efron et al., 2004].

Finally, once a model is validated and finalized, it can be used for prediction. Additionally,

the results may be explained based on the information available to the system. Information

sources include both the metadata extracted from the dataset and the information gathered

from external sources such as domain ontologies. In-depth discussion on this topic is provided

in later sections.

3.3 Related Work

Semi-automated/automated model selection has been studied extensively in the literature.

Similar to our approach, [Bernstein et al., 2002] describes an ontology-based Intelligent Dis-

covery Assistant (IDA). After analyzing an input dataset, the system generates all possible

workflows from the ontology that are valid within the characteristics of the input. The rec-

ommendations are then ranked based on user specified criteria (e.g., simplicity, performance,

etc.).

A more widely adopted technique used in automated model selection for classification is

called Meta-learning. Meta-learning treats the selection problem itself as a learning problem.

A meta-learning model uses characteristic properties of a dataset and performance metrics

of different classification algorithms on that dataset as a training sample and learns to pick

the most suitable model for a given dataset from this training exercise. The dataset proper-
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ties used in meta-learning (i.e., meta-features) include simple properties such as number of

attributes, sample size, number of classes, and, in most cases, more complex properties such

as noise-signal ratio, normalized class entropy, skewness, etc. A comprehensive list of meta-

features used in meta-learning is provided in [Reif et al., 2012]. Despite the fact that the

field of meta-learning is well established, there are only a few studies that focus on applying

meta-learning for model selection for disciplines other than classification [Smith-Miles, 2008].

Our approach differs from meta-learning in two ways. First, we capture expertise in ontolo-

gies and rule bases. Second, we make use of metadata in addition to properties computed

from the data.

Another approach was taken by [Calcagno and de Mazancourt, 2010]. In their paper,

they describe an R package glmulti for the model selection problem with Generalized Linear

Models (GZLM). glmulti focuses mainly on feature selection which is a sub-problem of

automated model selection. glmulti takes the list of all predictor variables and generates

all possible unique models from the combination of these variables. After generating and

fitting all models using a specified metric iteratively, glmulti returns top n models for the

input. Since the number of possible unique models grows exponentially with respect to the

number of variables in the input, their approach becomes prohibitive as fitting all models

requires significant resources. The authors try to overcome this limitation by using a genetic

algorithm to assist model generation and try not to fit all possible models. Finally, glmulti

does not take into consideration metadata when reducing the sample space as opposed to

our approach.

Finally, traditional techniques for model selection include using decision trees hand

crafted by domain experts9. These trees classify techniques based on the goal of the analysis

and basic dataset properties such as number and types of predictors, number and types of

9See [Tabachnick and Fidell, 2013] for an example. There are also websites that serve
similar purpose. Examples include http://www.ats.ucla.edu/stat/mult pkg/whatstat/ and
http://www.socialresearchmethods.net/selstat/ssstart.htm
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responses. Based on the properties of the dataset to be analyzed, one can find a suitable

technique (i.e., model type) for analysis. However, these approaches usually provide general

outlines and leave the majority of the work including the implementation to the analyst.

Even though it is possible to extend this approach, we suggest using an ontology-based ap-

proach. This approach has several advantages over a decision tree based approach. First, the

expertise is captured in description logic. Capturing the expertise in a formal language such

as description logic makes it easier to point out inconsistencies, validate suggestions and cre-

ate executable models automatically. This may not carry much importance when the domain

knowledge rarely changes, however, there is no universal truth in statistics. Additionally,

each scientific discipline has well-established preferences when it comes to statistical analy-

sis. Therefore it is important to have an adaptable platform that is designed with changes

in mind. Additionally, since model suggestion is done by a description logic reasoner, it is

possible to generate formal justifications for why a particular model is suggested.

3.4 ScalaTion Framework

We use the ScalaTion [Miller et al., 2010] framework which supports multi-paradigm mod-

eling for running our analyses. ScalaTion provides many analytics techniques for optimiza-

tion, clustering, predicting, etc. which could be easily integrated in a large scale data analysis

pipeline. Additionally, ScalaTion supports discrete event and continuous simulation.

ScalaTion is organized in three major package groups. The analytics package, analyt-

ics, includes implementations of major analytics algorithms which can be categorized under

four types: predictors, classifiers, clusterers and reducers. Additionally, the graphalytics

package provides implementations for graph-based analytics.

The optimization packages, minima and maxima, provide algorithms for optimization and

implement major optimization paradigms such as Linear, Integer, Quadratic and Nonlinear
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Programming and the Simplex method. The minima package is for minimization, while the

maxima package is for maximization.

Finally, the simulation packages provide simulation engines for a variety of different mod-

eling paradigms. Currently, ScalaTion has implementations for tableau, event, process,

activity and state oriented models in addition to system dynamics. ScalaTion also has 2D

(and prototype 3D) visualization support for such models.

ScalaTion , coded in the Java Virtual Machine (JVM) based the Scala language, makes

use of Scala’s native parallelism support via .par functions in addition to processing using

Akka10. In ScalaTion , the linalgebra.par package, which currently contains 3,326 lines

of code, contains parallel versions Cholesky and QR factorizations as well as parallel versions

of many operations for both dense and sparse matrices. For some operations like matrix

multiplication, the .par function available in Scala makes it easy to convert sequential to

parallel code. Below is the definition of the matrix multiplication function in ScalaTion

’s MatrixD class. The parallel ranges in the for loop split the iterations of the loop into

manageable units of execution that can be performed by parallel threads.

def * (b: MatrixD): MatrixD =

{

val c = new MatrixD (dim1, b.dim2)

val bt = b.t // transpose the b matrix

for (i <- range1.par; j <- c.range2.par) {

val va = v(i); val vb = bt.v(j)

var sum = 0.0

for (k <- range2) sum += va(k) * vb(k)

c.v(i)(j) = sum

} // for

10Akka Framework: http://akka.io/
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c

} // end * function

For other operations such as Cholesky and QR factorizations, matrix inversion and

SVD a substantial speedup via parallelism is not so easy to achieve. For example, in

[Lahabar and Narayanan, 2009] speedup of SVD was only achieved by utilizing Graphics

Processing Units (GPUs) via the CUDA11 platform. We plan on exploring the use of co-

processors (e.g., Intel Xeon Phi), custom thread pooling, and frameworks for distributed

computation (e.g., Akka) to facilitate speedup.

There are also other modeling environments such as Weka [Hall et al., 2009] sharing

similar functionality with ScalaTion . Weka is a popular data analytics and machine

learning platform written in Java. It provides a very intuitive user interface that allows

pre-processing of data in addition to visualization. Weka also provides a Java API for

programmatic access to the algorithms. In contrast to ScalaTion , Weka is focused on

machine learning. By providing an integrated approach, ScalaTion reduces the cost of

development time for a multi-paradigm modeling task.

In contrast to statistical software like R and SAS, ScalaTion has a cleaner syntax that

allows for mathematical formulas and expressions to more closely resemble their standard

textbook notations. For example, Figures 3.2, 3.3 & 3.4 show how to estimate the coefficients

in a Principal Component Regression (PCR) model of the form y = Xb+ ε using SVD in R,

SAS and ScalaTion , respectively. Let U , Σ and V be the factors obtained from applying

SVD to X. Then, an estimate for b is

b̂ = V Σ−1U ty = V
1

Σ
U ty

where Σ−1 and 1
Σ

both represent the inverse of the diagonal matrix containing the singular

11CUDA: http://www.nvidia.com/object/cuda home new.html
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values of X [Mandel, 1982]. Of the three code examples provided, one could argue that

the ScalaTion example is not only more readable, but looks closer to the mathematical

notation provided above.

svd <- svd(x)

u <- svd$u

d <- diag(svd$d)

v <- svd$v

b <- v %*% ginv(d) %*% t(u) %*% y

Figure 3.2: Estimating coefficients of a PCR model using SVD in R

call svd(u, d, v, x);

b = v * inv(diag(D)) * u‘ * y;

Figure 3.3: Estimating coefficients of a PCR model using SVD in SAS

val (u, d, v) = x.svd.factors()

val b = v ** d.reciprocal * u.t * y

Figure 3.4: Estimating coefficients of a PCR model using SVD in ScalaTion

Additionally, since ScalaTion is written in Scala for the JVM, users can easily integrate

existing APIs in Scala, Java, and other JVM languages. For integration with native code

libraries, the Java Native Interface (JNI) can be used. While Spark is also available on the

JVM, it utilizes Stochastic Gradient Descent SGD) to produce least squares estimates in

regression whereas ScalaTion utilizes factorization techniques such as Cholesky Factoriza-

tion, QR Decomposition and SVD Decomposition which are commonly considered to work

better in practice.
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3.5 Extraction of Metadata

In order to reduce model type space and find suitable modeling techniques for a given dataset,

some information needs to be gathered. Some of this information can be obtained directly

by performing a quick analysis of the dataset. We list a number of properties in Table 3.1

that can be obtained in such a way.

Table 3.1: Data Extraction Tasks

TASK DESCRIPTION

Domain of Variables Continuous, Discrete (Binary, Integer, etc.)

Variable Diagnostics Mean, variance, probability distribution and etc.

Dimension Analysis Dimension reduction based on multicollinearity / rank
(PCA etc.)

Feature Space Analysis Analyzing relationship between sample size and number
of predictors to prevent overfitting

Sparsity Yes, No

# of Samples Integer

The domains of variables are essential when choosing an appropriate model type. For

example, if the domain of the response variable is binary, then a logistic regression model can

be selected. Similarly, for a dataset which contains both discrete and continuous predictor

variables, an ANCOVA model can be more appropriate. Although capturing the domain

of a variable can be difficult, it can be useful when this information is not available in the

metadata. For example, a technique based on repeated differences can be employed to help

identify whether the values are discrete.

Diagnostic analysis of variables includes computing basic statistics such as mean and

variance as well as more advanced information such as the probability distribution of the

variable. This information may be useful in several ways. First, it can help the model
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suggestion process. As an example, Poisson regression may be used for modeling count

data (i.e., non-negative integer response). However, an important assumption for Poisson

regression is that the mean is equal to the variance. If the diagnostics reveal that the variance

is significantly larger than mean (i.e., overdispersion) negative-binomial regression may be

suggested instead. It may also help determine the validity of a selected model after fitting.

A very important factor in predictive analytics is reliability. [Harrell, 2015] defines relia-

bility as the ability of the fitted model to predict future instances as well as existing instances

upon which the model is trained. If a model is overfitted, its reliability of predicting future

instances will be low. In addition to choosing an inappropriate model, a major cause for over-

fitting is having too many predictors for the given sample size. According to [Harrell, 2015],

a fitted relation model is likely to be reliable in most cases if the number of predictors p is

less than m/15 where m is the limiting sample size. m is equal to the number of samples

in the dataset for a continuous response. For a binary response, m is equal to min(n1, n2)

where n1 and n2 are marginal frequencies of two response levels. In cases where p > m/15,

a dimension reduction approach such as Principal Component Analysis (PCA) should be

taken. PCA can also be performed to reduce the dimensionality of the matrix when the data

matrix for the predictor variables has high multicollinearity. Additionally, this step can help

make some of the underlying matrix operations performed by various algorithms easier (e.g.,

matrix factorization). Another consideration that should be taken with respect to the data

matrix is whether or not it is sparse. Certain algorithms can take advantage of specialized

data structures for storing sparse matrices in order to reduce memory consumption and avoid

unnecessary operations [Smailbegovic et al., 2005].

Additionally, any available metadata can also be used. As mentioned in the related

work, existing systems operate solely on the input data ignoring problem definition, field

descriptions and other metadata. However, predictive analytics often requires knowledge of

the experiment design which was used in order to generate the data. Additionally, selection
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of a modeling technique is often dependent on the goal of the analysis.

Table 3.2: Metadata Extraction Tasks

TASK DESCRIPTION

Associated Task (Goal) Prediction, Classification, etc.

Multivariate Response? Yes, No

Multivariate Predictor? Yes, No

Variable Type Continuous, Discrete (Binary, Integer, etc.)

Response Column Column number(s) of the response variable

Missing Values Yes, No

Table 3.2 lists a number of useful properties that can potentially be obtained from meta-

data. An associated task can be as simple as whether this problem is a prediction or a

classification problem. In some cases, the Associated Task could be as specific as ANOVA or

ANCOVA (e.g., if you are interested in the relationship between the predictors themselves

with respect to the response). Often times, data is stored in a matrix format where a row

indicates a sample and columns indicate the features of the sample. The Response Column

indicates the column index of the data matrix in which the response variable is stored. Vari-

able Type indicates the domain of a variable (e.g., continuous, binary, ordinal, etc.) and can

be extracted for each variable in the dataset depending of the availability of the metadata.

Whether the dataset contains missing values or not and which variables have missing values

can affect the selection of appropriate model types. Depending on the situation, our system

may choose a model that can handle missing values or otherwise samples containing missing

values would be discarded.

Whether a dataset has multivariate response or predictors can be implicitly available

given the above information, however, the provided metadata may contain only partial in-

formation.
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Figure 3.5: Main Object and DataType properties in the analytics ontology

3.6 Analytics Ontology

The Analytics Ontology12 is an ontology for supporting automated model selection. Cur-

rently, it is more geared towards predictive analytics. However, the ontology is designed to

be extensible in order to support a wide range of analytics paradigms including classification

and clustering.

The most important class in the ontology is Model. The Model class along with its sub-

classes is both indicative of a model type as well as a partial realization of a statistical model.

This is due to the fact that all other classes such as Variable, Function, and Distribution

12Analytics Ontology can be accessed from https://github.com/scalation/analytics.
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describe a part of the model.

Figure 3.6 displays the major classes and their hierarchy. We now give working definitions

of the major classes of the ontology in the analytics context.

Model defines different model types that can be used for analyzing data. There are many

ways of specifying the class hierarchy for a collection of model types, however, we have given

priority to correspondence with implementations of these types (e.g., ScalaTion ). This

becomes important when running models generated from the abstract models represented in

the ontology. There are two top level Model classes, namely DependentModel and Indepen-

dentModel. The main distinction between the two models is the dependency (i.e., correlation)

among responses of the observations belonging to the same individual in the dataset. The

dependency usually occurs when there are repeated observations (i.e., measurements) of the

same individual in time or space dimension. Time-series models are a typical example of

a DependentModel. Other major members of DependentModel are Generalized Estimating

Equation (GEE) models and Generalized Linear Mixed Models (GLMM).

IndependentModel includes Generalized Linear Models (GZLM) [Nelder and Baker, 2004].

The most basic independent model is simple linear regression, which quantifies the linear

relationship between the response and a single explanatory variable. An equivalent model of

regression is ANOVA model, which target the problem from a different angle that focuses on

analyzing the differences among group means and their associated procedures. The extension

of simple linear regression and ANOVA are multiple linear regression and MANOVA, respec-

tively, which are used when there are two or more predictors. Those models, together with

other models, such as before-mentioned ANCOVA, and polynomial regression that describe

the linear relation between predictors and responses, belong to the general linear model class.

The generalized linear model is a flexible generalization of general linear model that allows

for response variables that have error distributions other than normal distributions. The

common generalized linear models include logistic regression, Poisson regression, Log-Linear
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Models, etc. Changing the relationship between the parameters and the linear predictor, i.e.

changing the link function, usually will lead to different generalized linear models.

Variable represents a feature of a Model. A variable can have a role of a predictor or a

response which is defined by the relationship with Model. This relationship is defined by the

object properties hasPredictorVariable and hasResponseVariable. Additionally, a predictor

variable can also have a role of representing the time component in a time series model. In

that case, hasTemporalVariable property may be used.

Variable Type restricts a Variable’s corresponding domain of discourse. The relationship

between a Variable and Variable Type is defined by the object property hasVariableType. As

seen in Figure 3.6, a Variable can either have a Continuous or Discrete type. Even though

Discrete class may be considered a subclass of Continuous class algebraically, their statistical

interpretation mandate being represented as two distinct classes in the ontology. Similarly,

subclasses of Categorical class, Binary and Ordinal are represented as distinct classes albeit

Binary being a special case of Ordinal variable type.

In some families of models such as GZLM (Generalized Linear Models) a link Function

is used to relate the predictor variables to the mean response. The relationship between a

Model and a Function is defined by the object property hasLinkFunction.

Distribution class refers to the (probability) distribution of a random variable which

specifies how to assign the probability of occurrence for each element in the variable’s range.

Considering the fact that the residual (error term) of a model is considered to be a random

variable, this class is used to specify the residual distribution of a model. This relationship

can be defined using the hasResidualDistribution object property.

3.6.1 Equivalence Class Axioms

In addition to the class axioms (i.e., class definition, hierarchy of classes) and object proper-

ties, the Analytics Ontology defines equivalence class axioms to capture key characteristics
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of different model types. According to the OWL language specification, an equivalent class

axiom states the equivalence of two named classes which is defined with Description Logic

syntax. Using these axioms, it becomes possible to deduce implicit information hidden in

the ontology with a reasoner.

Figure 3.7: Example of equivalence axioms based on the variable type and residual distribu-
tion

Figure 3.7 lists a few of the equivalence class axioms from the ontology. Based on these

axioms it is possible to infer that a dataset can be modeled using ANOVA if it has only

categorical predictor variables and a continuous response variable. We can easily see that
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Multiple Linear Regression is left out according to the equivalence axiom restricting the do-

main of at least one predictor variable to be Continuous. We should note that the restrictions

defined by the equivalence axioms are used for elimination of unsuitable models. Therefore,

a dataset can be modeled by using any other Model which is not eliminated by the reasoner

during inference.

3.6.2 Model Selection Using Semantic Reasoning

We use description logic reasoning for reducing the model type space. Given background

knowledge and observations, an explanation is computed. In our context, background knowl-

edge is realized with the axioms in the ontology. These include the class axioms which define

the hierarchy between model types and the equivalence class axioms. Similarly, observations

are the acquired characteristics of the dataset of focus. These are captured by the facts

which are defined by linking the instances describing the dataset to the ontology axioms

using the object property relationships. Finally, explanation constitutes the set of inferred

possible model types that could be used for analyzing the specified dataset.

Our reasoning framework is fully captured in the Analytics Ontology which is expressed in

OWL 2 DL profile. The DL profile imposes certain restrictions over the full OWL 2 language

so that certain computational guarantees can be made by the reasoners who support reason-

ing with OWL 2 DL profile. Since the Analytics Ontology fully adheres to OWL 2 DL profile,

any existing OWL 2 reasoner (e.g., HermiT [Shearer et al., 2008], Pellet [Sirin et al., 2007],

etc.) can be used for deducing the model types for a given dataset. Also, this ensures that

our approach is decidable as all possible inferences are guaranteed to be made. A logical rea-

soner serves several different purposes for an ontology. First, it helps extend the knowledge

base by discovering hidden (i.e., implicit) information related to the concepts and individuals

in the ontology. For a dataset, the information of the most suitable model type(s) is hidden

in the characteristics and properties of it. In our case, this hidden (implicit) information is
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discovered by the logical reasoner from the explicit information added to the ontology about

the dataset. Additionally, it performs consistency checking for all axioms in the ontology in-

cluding the axioms that were inferred during the discovery phase. This step help ensure that

the domain expertise is properly captured in the ontology and may be used for suggesting

suitable models for datasets.

3.6.3 Scala-Dash

In order to demonstrate the approach described in this paper, we have developed scala-

dash13. Developed in scala language for leveraging ScalaTion framework to full extent,

scala-dash is an application with a graphical user interface that is designed to handle all

steps of predictive analytics workflow as described in Section 3.2.

We use the Auto-MPG dataset [Quinlan, 1993] from UCI Machine Learning Repository

[Lichman, 2013] as a small example for illustration. The dataset is for prediction of fuel

consumption in miles per gallon and contains 3 discrete variables; cylinders, model year,

origin and 5 continuous variables; mpg, displacement, horsepower, weight and acceleration.

The dataset contains 398 samples including 6 samples with missing values for horsepower.

According to this specification, the dataset can be represented in the ontology as shown in

Figure 3.8. By default, all individuals are an instance of owl:Thing in OWL. Note that the

AutoMPGModel is not an instance of any specific Model class in the hierarchy as this is not

explicitly expressed (see Figure 3.8). It is not known at this point which models are suitable

for this dataset.

As opposed to other logic frameworks OWL takes an open-world assumption(OWA) when

dealing with missing/incomplete knowledge. In a closed-world assumption (CWA) system,

any information that does not exist in the knowledge is considered false14. As an example,

13scala-dash is available for download at https://github.com/scalation/analytics
14For a more in-depth discussion on OWA and CWA, see [Russell et al., 2005]
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Figure 3.8: Representation of Auto MPG Model in the ontology

in a closed-world, a logical reasoner can deduce that AutoMPGModel only has 8 variables as

shown in Figure 3.8. However, an open-world reasoner cannot deduce the same fact as there

might be other variables which may still exist in another knowledge base. For this reason,

besides asserting the facts as in Figure 3.8, we also need to assert closure axioms that are

implicitly asserted in a closed-world assumption (CWA). Following the same example, the

following assertions must be added to the ontology to ”close” the axioms for AutoMPGModel.

• AutoMPGModel hasVariable only ({acceleration, cylinders, displacement, horsepower,

model year, mpg , origin, weight})

• mpg hasDistribution only ({Normal Distribution Instance})
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• mpg hasVariableType only ({Non Negative Continuous Variable Type})15

Another related characteristic of OWL is the lack of unique name assumption (UNA).

As a result, OWL makes no assumption that individuals with different unique names are

in fact different individuals. To let the reasoner be aware of the fact that the variables are

different, we add the following axiom to the ontology.

• DifferentIndividuals ({acceleration, cylinders, displacement, horsepower, model year,

mpg, origin, weight})

After the AutoMPGModel instance is properly closed, the following facts about the

dataset are inferred when a reasoner is run on the ontology:

• AutoMPGModel is-a Model.

• AutoMPGModel is-a IndependentModel.

• AutoMPGModel is-a GZLM.

• AutoMPGModel is-a GLM.

• AutoMPGModel is-a ANCOVA.

• AutoMPGModel is-a Multiple Linear Regression.

As one can quickly notice, some of these inferences such as AutoMPGModel is-a Model

do not carry much importance in terms of information content. Therefore, a filtering based

on the model hierarchy is performed. An inference is not added to the list of suggestions

if one of its subclasses already exist in the list. The pseudocode for the filtering algorithm

is given in Figure 3.10. After the filtering function is run, only the following inferences are

returned to the user as suggestions as shown in Figure 3.9:

15Similar assertions are made for other variables as well. They are excluded for brevity.
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• AutoMPGModel is-a ANCOVA.

• AutoMPGModel is-a Multiple Linear Regression.

Figure 3.9: A Screenshot from scala-dash Displaying Suggestions for AutoMPGModel

Figure 3.10: Algorithm for Filtering Suggestions

Based on the current knowledge, all the inferred models can be suitable for analyzing

this dataset. However, additional information can be asserted as new information becomes

available. For example, during the full model residual analysis phase after the candidate

models were run, if the residual distribution of the model is determined to be an exponential
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distribution we add this information by asserting the following statement ”AutoMPGModel

hasResidualDistribution Exponential Distribution” to the ontology. When the reasoner is

re-run including this new information, Exponential Regression is added to the list. Also

note that ANCOVA and Multiple Linear Regression are no longer possible models since

both models are a sub-class of GLM model which expects the residuals to be Normally

Distributed.

Based on the suitable models inferred by the reasoner, running a model with ScalaTion

can be performed in the following fashion. Given a data matrix X and response vector y, a

Multiple Linear Regression model can be run as shown in the code snippet below. The fit

function returns coefficient estimates and as well as various model diagnostics (e.g., R2 and

F − Statistic, etc.).

val mpgMLRModel = new Regression (x, y)

mpgMLRModel.train ()

println ("fit = " + mpgMLRModel.fit)

In a different example, we look into the resin defects dataset16. The dataset captures

three predictor variables: hours since last hose cleaning, temperature of the resin and the

size of the screw that moves the resin pellets through the hoses, to predict the number of

discoloration defects per hour during the manufacturing process. Since the response variable

represents a count (Non-Negative Integer), Poisson Regression is inferred as the suitable

model by our system. In contrast, glmulti tool does not have a mechanism to capture

information of this nature and therefore suggests a general linear model (glm) formula. A

quick analysis reveals that Poisson Regression model provides a better fit for this dataset.

Finally, we demonstrate scala-dash by using the airline dataset17 . The airline dataset has

become popular in the big data domain after the 2009 Data Expo competition organized by

16http://support.minitab.com/en-us/datasets/
17http://stat-computing.org/dataexpo/2009/
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American Statistical Association Sections on Statistical Computing. The dataset is produced

by RITA18 and covers flight delay information for all commercial flights since 1987. Dataset

may be analyzed in many ways as it is quite comprehensive but we focus on modeling delay

between estimated and actual arrival of a flight as a function of following predictors: Month,

Day of Month, Day of Week, Departure Time, Arrival Time, Departure Delay, Flight Time

and Distance. After the dataset is loaded into the system, scala-dash suggested a Multiple

Linear Regression model for the dataset. The model diagnostics revealed a R2 value of .775.

3.6.4 Incorporation of Knowledge Through Domain Ontologies

Since the Analytics Ontology is written in the OWL language, it can be easily supplemented

with a domain ontology related to the input domain. Besides top-level ontologies such as

Dublin Core (DC) that define common metadata terms, many domain-specific ontologies

have been created and been in use extensively. It is becoming more common that data is

published with metadata defined in these domain-specific ontologies especially in the scien-

tific and biomedical domains. As a prominent example, the Gene Ontology (GO) contains

over 40,000 biological concepts and has been used for annotating more than 100,000 peer-

reviewed scientific papers with information on genes and gene properties19. The well-defined

knowledge captured in these domain ontologies would assist reducing the possible model

space even further. For example in a traffic dataset, the response variable might capture a

count such as number of cars passing by an intersection in a certain period of time. Even

though the variable has an Integer domain, it can be modeled using Poisson Regression since

the response variable captures a count. Many insights such as in the example are available

in domain ontologies. Additionally, it can also be beneficial for making inferences based on

the model since an alignment provides more information.

18http://www.transtats.bts.gov/OT Delay/OT DelayCause1.asp
19Gene Ontology: http://geneontology.org/page/about
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3.7 Conclusion

We have described a framework for supporting semi-automated model selection and model

execution for conducting predictive analytics. Particularly, we show that instance classifi-

cation can be used for reducing the set of applicable model types. After the model types

are chosen, feature selection can be performed in order to find suitable subsets of the full

model for each type. This is important because as the number of predictor variables and/or

the sample size increase, exploration of all possible model types becomes less feasible. The

ability to provide an explanation of why a particular model is selected based upon the infer-

ence provided by the reasoner is an important advantage over existing model selection tools.

For future work, we plan to extend the ontology with concepts (e.g., skewness, kurtosis,

etc.) to assist automating workflow steps after model selection. Additionally, we plan to

facilitate alignments with top-level and domain-specific ontologies to aid in output analy-

sis. Finally, we plan to conduct extensive evaluations of the usability of this approach and

provide performance results.
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Chapter 4

Using Meta-learning for Model Type

Selection in Predictive Big Data

Analytics
1

1Mustafa V. Nural, Hao Peng, John A. Miller. To be submitted to International Journal of Data Mining
Science.
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Abstract

One of the biggest challenges for today’s data scientists is to be able to make an informed de-

cision among an exhaustive number of different modeling techniques. As no single algorithm

can perform optimally in all cases, the context for the modeling task including the dataset

characteristics plays an unsurprisingly important role in deciding which modeling algorithm

to choose. In our previous work, we have presented an ontology-based automated model-

selection system extending the Scala-based ScalaTion data framework. In this study, we

present a meta-learning based model-selection system for regression problems using a Ran-

dom Forest classifier as the meta-learner and provide an extensive evaluation of the system.

Additionally, we compare the meta-learning approach with the ontology-based approach and

evaluate performance of both methods.

4.1 Introduction

With the rapid increase in the quantity of very large datasets, the need for improvements

in the technological infrastructure to handle these datasets has become obvious. Recent

technological advancements, including large-scale storage, huge main memories, multi-core

servers and high- performance clusters, provide the foundation for handling big data. Soft-

ware to facilitate the processing of big data, e.g, Hadoop 2 and Spark 3, has made tremendous

strides. Many of these frameworks now provide some support for advanced predictive an-

alytics. Some attempt to work with existing software like R with its hundreds (including

232 in the caret package) of analytics techniques [Kuhn, 2008]. Others, like Spark’s MLlib 4

and ScalaTion 5 [Miller et al., 2013], are providing better performance and scalability by

2http://hadoop.apache.org/
3https://spark.apache.org/
4https://spark.apache.org/mllib/
5https://github.com/scalation
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re-developing the analytics libraries.

Data scientists are now faced with vastly more data than ever before, a huge number of

analytics techniques to chose from, many optimization techniques for structure or parameter

learning (e.g., parameter estimation), and configuration issues for running software efficiently

on a cluster. As a result, the pace of data generation and the complexity of the field are

surpassing the ability to process and analyze such data in the conventional way. Data

scientists will need to depend more than ever on tools that provide support for automating

parts of their data analytics workflow.

The primary contribution of this paper is an extensive study on meta-learning for regres-

sion algorithms. Past studies have mostly focused on classification problems, and in a few

cases, a limited number of regression-based techniques. Our extensive study also introduces

new meta-features that can be effectively applied to algorithm selection.

This paper discusses advances in the automation of big data analytics, focusing on assist-

ing data scientists in key steps in the development of data analytics workflows. Related work

discussing various approaches to automating the development of analytics workflows is given

in Section 4.2. Section 4.3 presents the key steps within predictive analytics workflows. It

highlights the issues that need to be addressed in automated modeling. Section 4.4 discusses

the use of meta-learning to support automated modeling. An evaluation of the approaches

is given in section 4.5. Finally, conclusions and future work are presented in Section 4.6.

4.2 Related Work

Automation of analytics workflows, or parts of them, has been studied and attempted over

the years. As a result, there are various approaches to support the data scientist.
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4.2.1 Exhaustive Approach

As there are literally hundreds of different techniques for predictive modeling, choosing an

optimal (or one of the top few similarly performing) technique(s) for a given problem proves

to be hard. One way to tackle this issue is to take an exhaustive approach and try as many

different techniques as possible. However, even though this seems straightforward, often

times each modeling technique requires a slightly different setup and therefore the approach

quickly becomes prohibitive.

The caret package [Kuhn, 2008] available for the open-source R language is designed

to address this problem by providing a common interface for running, evaluating, and tun-

ing over 200 available techniques scattered across different packages in the R environment.

Another R package that provides an infrastructure to streamline searching of the solution

space is performanceEstimation [Torgo, 2014]. Additionally, it also has workflow support

to include pre- and post- processing steps.

Similarly, the open-source WEKA [Hall et al., 2009] data-mining tool has an “Experi-

menter” module that performs an automatic experimentation for a dataset(s) against the

user-selected algorithms based on the chosen performance metric.

Many commercial tools provide similar functionality to the end-users to perform this

kind of automated modeling. IBM SPSS Modeler6 has three Automated Modeling Nodes,

namely, Auto Classifier, Auto Numeric, and Auto Cluster that allow its users to au-

tomatically search the algorithm space for classification, prediction, and clustering problems,

respectively.

DataRobot7– a startup company founded by veterans from insurance companies – lever-

ages cloud infrastructure to allow data scientists to evaluate all possible algorithms simul-

taneously by running them all in parallel in the cloud. The company claims to reduce the

6https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.modeler.

help/ensemblemodeling_overview.htm
7https://www.datarobot.com
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model development time spent by a data scientist significantly, from weeks and months to

less than a day.

Finally, Auto-WEKA [Thornton et al., 2013]8performs model selection and hyperparam-

eter (i.e., model-specific parameters) optimization simultaneously for identifying best classifi-

cation algorithm and its respective parameters. Auto-WEKA leverages existing classification

algorithms in the WEKA algorithm space and employs a Bayesian optimization method,

namely SMAC (Sequential Model-based Algorithm Configuration) [Hutter et al., 2011], to

explore the model and parameter space instead of a full exhaustive search. Authors re-

port promising results while completing significantly faster compared to a baseline random

grid search. Auto-WEKA 2.0 [Kotthoff et al., 2017] further extends the algorithm space to

include regression algorithms.

These solutions relieve a significant burden from an analyst’s shoulders; however, it

may quickly become prohibitive to depend on exhaustively evaluating a large number of

techniques, especially as the dataset size becomes larger. Therefore, systems that help

reduce the modeling algorithm/technique search space become essential. 9

4.2.2 Ontology-based Approach

Intelligent Data Assistant (IDA) [Kietz et al., 2014][Kietz et al., 2012] takes an ontology-

based approach to automated modeling focusing mainly on classification problems. The

IDA is backed by a data mining ontology [Panov et al., 2014] and generates analytics work-

flows using hieararchical task network planning. As there literally may be hundreds of valid

workflows satisfying input-output requirements of individual steps, IDA also performs rank-

ing to highlight the best workflows to the users. Two different ranking approaches are used.

8Ports to different environments including python based scikit-learn may be found at the AutoML website.
See http://www.ml4aad.org/automl/

9Interested readers may refer to the survey at https://thomaswdinsmore.com/2017/01/16/

the-year-in-machine-learning-part-four/
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One is frequency based in which workflows containing most frequently used operators (based

on usage data) are ranked higher. In the second approach, IDA utilizes a meta-learning

based system to rank workflow suggestions [Nguyen et al., 2011][Nguyen et al., 2014].

4.2.3 Meta-learning-based Approach

[Bilalli and Abell, 2016][Bilalli et al., 2016] study meta-learning approach for performing au-

tomated pre-processing of data. The authors use 17 features extracted from the datasets to

train a meta-learner to rank preprocessing steps by prediction accuracy for 5 different clas-

sification algorithms (Naive Bayes, Logistic, IBk, JRip, J48). Meta-learner is implemented

using a regression tree and training data are created by testing each dataset with each pre-

processing transformations using 10-fold cross-validation. For each dataset-algorithm pair,

possible transformations are classified as either good, bad, or neutral by the meta-learner

which corresponds to whether the transformation increases the prediction accuracy, decreases

it or doesn’t have a significant contribution. The authors argue that the number of datasets

for which the meta-learner suggested transformations were successful (i.e., increased the pre-

diction accuracy) outnumber the number of datasets for which the suggested transformations

were unsuccessful (i.e., decreased the prediction accuracy) .

[Loterman and Mues, 2015] compares a subsampling-based approach with meta-learning

based approach for model type selection of 5 regression techniques, namely, linear regression,

linear spline, regression tree, spline tree, and a decision tree. They conclude that subsample-

performance based approach is significantly better than the dataset features based or average

performance based approach. However, it is important to note that the authors consider

only a small number of dataset features compared to other studies in the literature. The

authors use 90 datasets from KEEL10 dataset repository and expand the number of datasets

available for training by switching the response with each of the numeric predictors and

10http://www.keel.es/
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randomly subsampling the resulting dataset (i.e., datasetoid). However, the final training

dataset collection is not available publicly.

[Smith et al., 2001] uses 57 classification datasets from the UCI machine learning reposi-

tory, 6 target classification algorithms (3 rule-based and 3 statistical) and 21 dataset features.

A supervised neural network is used as the meta-learner although the size of the training

set (67 datasets) is noted as being rather limited for this kind of process, with a danger of

over-fitting. Evaluation of meta-learning is performed using 10-fold cross-validation. When

predicting the best performing algorithm, 77% accuracy is obtained using the loose accu-

racy metric (LA@1) [Kalousis, 2002]. LA@2 and LA@3 measures would yield 95% and 98%

accuracy, respectively.

[Sun and Pfahringer, 2013] compares different meta-learning algorithms for top-k ranking

of classification algorithms using evaluation measures that include Normalized Cumulative

Discounted Gain (NCDG) and Loose Accuracy(LA).

Finally, [Serban et al., 2013] and [Smith-Miles, 2008] provide a comprehensive survey of

automated model development and data analysis using meta-learning and other approaches.

Although meta-learning for classification problems have been studied extensively, there

has been only a limited number studies on meta-learning for regression. Our study focuses

only on the regression algorithms for predictive analytics, introduces several new meta-

features, and includes detailed evaluation comparing it to a number of different approaches

including the baseline exhaustive search and ontology-based model selection approach.

4.2.4 Other Approaches

On the other side of the spectrum, some commercial platforms offer fully-automated pre-

diction services. That is, the end-users have little or no control on the prediction workflow

execution. Often times, most details of the prediction workflow are hidden from the end-users

as well.
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The Google Prediction API11 provides an cloud endpoint for its users to upload training

data in several ways. Once the upload is complete, training will be performed automatically.

The users will then be able to submit prediction queries (e.g., one or more instances) and

will receive a response with the predicted answer(s) (either numeric or categorical based on

the training data). The details of the implementation are proprietary but speculations is

that they select from multiple machine learning algorithms.

The Watson Analytics platform12 provides a web-based user interface for less technically-

inclined users to upload their data into the platform. Once the data are available in the

platform, the users can then follow the graphical interface to automatically develop a model

and obtain visualizations and summaries of key insights from their datasets. An appropriate

model type is automatically chosen by the system based on the dataset, however, end-users

can not make any modifications.

These systems provide a very low-barrier entry point to data analytics for an audience

with little or no data science background such as domain experts, software engineers and

business decision makers. However, this approach can easily be limiting for more advanced

scenarios when analysts would like to have more control over or knowledge of their analytics

workflow.

4.3 Predictive Analytics Workflow

A prediction analytics problem may generally be modeled as

y = f(x;β) + ε

where the response variable y is modeled as a function of the vector of predictor variables x

11https://cloud.google.com/prediction/docs/
12https://www.ibm.com/watson-analytics
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(also commonly referred as features or attributes) and the β parameter/coefficient vector plus

the ε error/residual term representing what the model does not account for. For example, if

the model is linear in the parameters, then

y = β · x + ε .

The parameter/coefficient vector β can be estimated by collecting training data (e.g., a

response vector y and a data matrix X) and minimizing some norm of the error/residual

vector ‖ε‖. For a linear model and L2 norms, this involves using matrix factorization to solve

the normal equations, X tXβ = X ty. More general optimization techniques are required in

other cases.

Other models for predictive analytics include time and/or prior values of y, e.g., the

auto-regressive order two time series model, AR(2), predicts a future value for y based on

prior values,

yt = φ1yt−1 + φ2yt−2 + ε .

In almost all real life scenarios, predictive analytics involve many steps and are iterative

exercises. Figure 4.1 shows a typical workflow for performing predictive big data analytics

that covers most scenarios. We describe three major components of the workflow in the

following.

4.3.1 Preprocessing

Preprocessing plays a significant role for building successful predictive models. At the very

least, it involves preparing the training dataset for the input requirements of the target

algorithms/techniques.

Below are the preprocessing operations we apply to each individual dataset automatically
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as needed to satisfy input requirements of individual modeling algorithms.

Nominal/Categorical variables are often encoded as strings. However, as most algorithms

require numerical input for training and prediction, we create an injection from the string

variables to integers using a bidirectional map. Given the string, it will give you the corre-

sponding integer and vice versa. Additionally, if the data includes an ID string, that is, the

variable uniquely identifies each instance of the dataset, it is removed from the dataset.

Missing values are rather common in many datasets and can be caused by issues such

as sensor failures, incomplete data collection and etc. Missing values in a dataset must be

handled as most algorithms expect complete instances in the training data. Ideally, missing

value imputation should be performed with careful consideration based the inherent reason

for why the missing values exist [Gelman and Hill, 2006]. However, this is not always possible

in the context of automated modeling. We use the following imputation function to handle

missing values in the input datasets13.

Let Xj be a random variable with mean µj and variance σ2
j ,

Xj ∼ N (µj, σ
2
j ) .

then, each missing value in the jth attribute of the input matrix will be replaced with

Xj.

In addition to meeting the input requirements of a target modeling algorithm, prepro-

cessing can also be performed to condition the data to increase model performance. A

few of the most commonly used approaches include feature selection, dimensionality reduc-

tion, outlier analysis and removal, sparsity analysis and etc. Except in cases where a chosen

modeling algorithm implicitly performs any of these operations (e.g., L1 regularization via

Lasso Regression), we do not count for these additional preprocessing operations in the

meta-learning system.

13for more details see Routine multivariate imputation in [Gelman and Hill, 2006]
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4.3.2 Model Development

Model development is a highly iterative process involving selecting a suitable model type,

building and performing model diagnostics, and feature selection. In most use cases, many

models are built in parallel and later on compared.

Model Type Selection (i.e., Algorithm Selection)

Different modeling techniques have different assumptions about the dataset that must be

satisfied (e.g., OLS requires a tall input matrix m ≥ k) in order to make effective predictions.

For a given dataset, certain modeling techniques may be automatically eliminated due to

the violations of their assumptions.

Diagnostic Analysis & Model Comparison

Among the remaining applicable modeling techniques, the best performing one for a given

dataset is of great interest. Metrics such as the R2 values and cross-validated root mean

squared errors may be used to select the best or top modeling techniques.

Feature Selection

Eliminating features that are not needed for making good predictions may increase the

robustness of the model and reduce the risk of over-fitting. This procedure is often carried

out during the process of model comparisons but may also be done during preprocessing or

model-type selection via selecting a modeling technique with implicit feature selection.

4.4 Meta-learning

Using notions from Rice’s formal theory for algorithm selection problem [Rice, 1976], we

may represent the model type selection problem as in Figure 4.2. Following the diagram,
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the problem can be defined as the following: Given a dataset d ∈ D, features extracted from

the dataset f(d) ∈ F , the available metadata m ∈ M , and the modeling algorithms α ∈ A,

find a mapping α ∈ S(f(d),m) that maximizes performance of p(α(d)).

Dataset Space

Dd

Feature Space Algorithm Space

A

Performance Space

Pp

Feature Extraction
Apply Algorithm

Selection Mapping

Metadata Space

Metadata

Fdf )(

))(( dp 

Mm

)),(( mdfS

Figure 4.2: Rice Algorithm Selection Theory Diagram adapted from [Smith-Miles, 2008]

The abstraction of a dataset by its features allows us to treat this as a learning problem

that creates a mapping S that for every d ∈ D, S(f(d),m)) would return the top performing

algorithm. Since predictive analytics techniques can be considered as learners, learning

the optimal selection mapping S becomes meta-level, hence the name for meta-learning.

Without abstraction, algorithm selection can only be done as an exhaustive search in which

one needs to explore all α ∈ A to find the optimal α that maximizes performance p(α(d)).

We argue that feature extraction introduces minimal overhead and therefore provides

significant advantage over exploring the full algorithm space provided that the meta-learning

algorithm can provide a satisfactory selection mapping for α ∈ S(f(d),m).

For the implementation and evaluation of the meta-learning system, we use the open

source ScalaTion framework which supports multi-paradigm modeling for running our
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analyses. Written in Scala language with an extensive support for simulation, optimization,

data analytics including clustering, prediction and classification, etc. which could be eas-

ily integrated in a large scale data analysis pipeline, ScalaTion is an ideal platform for

predictive data analytics.

In the following subsections, we describe individual components of the meta-learning

system.

4.4.1 Feature Space

In order to train our meta-learner, we first need to represent datasets using meta-features

extracted from the dataset d. Table 4.1 lists all the meta-features that we currently au-

tomatically extract from the datasets using ScalaTion . Most of the listed 21 meta-

features are commonly used statistical features from the literature, [Brazdil et al., 1994],

[Bilalli et al., 2016]. Since the literature mainly focuses on meta-learning for classification

problems, we have omitted the features such as majority/minority class ratio, class entropy,

number of classes and etc. Additionally, we have added a few extra features we believe that

might be useful for regression problems (i.e., prediction).

Dimensionality represents the log ratio of instances and features, and serves as another

scale for the degrees of freedom. This value becomes negative when there are fewer instances

than features, which implies negative degrees of freedom.

Matrix Condition can be used to check for multi-collinearity. If a matrix is ill-conditioned,

then regularization may be needed.

Response Skewness and Response Kurtosis are measures of skewness and long-tailedness,

respectively, of the distribution of the response. Both serve as measures of deviations from

the normal distribution, which is an important factor for developing Generalized Linear

Models (GLM).

Response Coefficient of Variation measures the relative variability of the response. If it
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is close to 1, then the response most likely follows an exponential distribution. A value less

than 1 typically means the variability is relatively low. If higher than 1, then the variability

is relatively high.

Distinct Ratio Response measures the the level of uniqueness in the values of the response.

If this ratio approaches 0, then the set of unique responses is very small.

Table 4.1: Dataset Meta-features(f(d))

META-

FEATURE

DOMAIN IMP DESCRIPTION

# of Instances Integer N/A Total number of instances (m)

# of Attributes Integer N/A Total number of predictor variables (k)

Degrees of Freedom Integer 0.686 Base degrees of freedom computed as df = m− k − 1

Ratio of Degrees of

Freedom

Decimal 0.671 rdf = m−1
df , rdf = 1 is ideal.

Dimensionality Decimal 0.645 log10(m/k) Ratio of #instances to#features in loga-

rithmic scale.

Matrix Condition Decimal 0.627 log10(ConditionNumber) of the input matrix.

ConditionNumber of matrix is the ratio of largest

singular value to smallest.

Nonnegative Re-

sponse

Binary 0.571 Whether the response is non-negative or not (Yes, No)

Domain Response Binary 0.699 Domain of the response variable (Integer or Decimal)

Distinct Ratio Re-

sponse

Decimal 0.639 Ratio of number of distinct values in the response to

the total number of instances (m)
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Table 4.1: Dataset Meta-features(f(d))

META-

FEATURE

DOMAIN IMP DESCRIPTION

Response Coeffi-

cient of Variation

Decimal 0.638 Ratio of the response standard deviation to the re-

sponse mean (s/y) where

y =

∑m
i=1 yi
m

, s =

√∑m
i=1(yi − y)2

m− 1

Response Skewness Decimal 0.646 Skewness parameter of the response variable computed

as ∑m
i=1(yi − ȳ)3/m

s3

Response Kurtosis Decimal 0.633 Kurtosis of the response variable computed as

∑m
i=1(yi − ȳ)4/m

s4

% Numeric At-

tributes

Decimal 0.537 Percentage of numeric attributes among all attributes

#numericAttrs/#allAttrs

% Nominal At-

tributes

Decimal 0.493 Percentage of nominal/categorical attributes among

all attributes (2 < #distinctV als < 20)

#nominalAttrs/#allAttrs

% Binary At-

tributes

Decimal 0.529 Percentage of binary attributes among all attributes

#binaryAttrs/#allAttrs
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Table 4.1: Dataset Meta-features(f(d))

META-

FEATURE

DOMAIN IMP DESCRIPTION

Mean Means of Nu-

meric Attributes

Decimal 0.560 Let N be the number numericAttrs

meanMeans =

(
N∑
i=1

mean(numericAttrsi)

)
/N

Mean Stddev of Nu-

meric Attributes

Decimal 0.545 meanStddev =
(∑N

i=1 stddev(numericAttrsi)
)
/N

Mean Kurtosis of

Numeric Attributes

Decimal 0.521 meanKurtosis =
(∑N

i=1 kurtosis(numericAttrsi)
)
/N

Mean Skewness of

Numeric Attributes

Decimal 0.529 meanSkewness =
(∑N

i=1 skewness(numericAttrsi)
)
/N

Max # Nominal

Distinct Values

Integer 0.516 Number of distinct values in the nominal attribute

with the maximum number of distinct values among

all nominal attributes

Min # Nominal

Distinct Values

Integer 0.531 Number of distinct values in the nominal attribute

with the minimum number of distinct values among

all nominal attributes

Mean # Nominal

Distinct Values

Decimal 0.532 Let N2 be the number of nominalAttrs:

meanDistinctV als =

∑N2
i=1 #distinctV als(i)

N2
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Table 4.1: Dataset Meta-features(f(d))

META-

FEATURE

DOMAIN IMP DESCRIPTION

Mean Stddev #

Nominal Distinct

Values

Decimal 0.509 √∑N2
i=1 #distinctV als(i)−meanDistinctV als

N2
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4.4.2 Metadata Space

In addition to the meta-features extracted from the data, existing metadata may be leveraged

to represent the dataset as well. Even though compiling metadata might seem cumbersome,

many communities in life sciences have well-established minimum information standards

(e.g., Minimum information about a microarray experiment (MIAME) [Brazma et al., 2001])

to accompany published datasets to ensure the data could be analyzed, verified and repro-

duced by the broader scientific community. We limit this paper’s scope to only utilizing f(d)

for selection mapping (S) and consider inclusion of metadata as future work.

4.4.3 Algorithm Space

We consider the following prediction algorithms that make up the algorithm space.

• Ordinary Least Squares Regression (OLS) (ScalaTion )

• Weighted Least Squares Regression (WLS) (ScalaTion )

• Back-elim Regression (BackElim) (ScalaTion )

• Response Surface Analysis Quadratic Expansion (ResponseSurfacequad) (ScalaTion

)

• Response Surface Analysis Cubic Expansion (ResponseSurfacecubic) (ScalaTion )

• Log Transformed Regression (LogTrans) (ScalaTion )

• Root Transformed Regression (RootTrans) (ScalaTion )

• Exponential Regression (Exp) (R)

• Poisson Regression (Poisson) (R)

• Inverse Gaussian Regression (InvGauss) (R)
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• Gamma Regression (Gamma) (R)

• Ridge Regression (Ridge) (R, ScalaTion )

• Lasso Regression (Lasso) (R, ScalaTion )

• Partial Least Squares Regression (PLS) (R)

• Principal Components Regression (PCR) (R)

Algorithms marked as ScalaTion have a native ScalaTion implementation, whereas

algorithms marked as R have been integrated to the ScalaTion framework using the JRI

(Java/R Interface) library14.

One may notice that above is not an exhaustive list of algorithms for performing predictive

analytics and can be extended to include popular algorithms such as neural-nets, support

vector regression, regression trees and many others. The selection of algorithms are mainly

based on the availability in ScalaTion , ease of interpretation of created models, and

reasonable performance with default options and therefore not requiring manual tuning of

parameters.

4.4.4 Performance Space

We collect a number of performance metrics for evaluation. Root Mean Squared Error

(RMSE) is defined as

RMSE =

√√√√ m∑
i=1

(yi − ŷi)2

n

where yi stands for the observed response for the ith instance and ŷi stands for the predicted

response for the ith instance. The RMSE metric is useful for comparing models with the

same input dataset as it is within the same scale of the response variable. However, it is

14See https://www.rforge.net/JRI/ for the official library page.
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Procedure 1 Creating Performance Space

1: procedure CollectMetrics (D,A)
2: k ← 10 . # folds for cross-validation
3: n← 10 . # runs
4: P ←Map((d, α)→ Tuple3[n])
5: for all d← D do
6: for all α← A do
7: perf ← Tuple3[n]
8: for i← 0until n do
9: model← BuildModel (d, α)

10: (RRSE,RMSE, time)← TrainAndCrossValidate (model, k)
11: perf [i]← (RRSE,RMSE, time)
12: end for
13: P (d, α)← perf
14: end for
15: end for
16: return P
17: end procedure

of little use if one wants to compare performance of a regression technique across different

datasets since response variable for each dataset will be in a different scale.

To overcome this limitation, Root Relative Squared Error (RRSE) may be used. The

RRSE metric is defined as

RRSE =

√√√√√√√
m∑
i=1

(yi − ŷi)2

m∑
i=1

(yi − y)2

which provides a ratio of the prediction error to the error of predicting the mean response

(y) for every instance. Therefore, a perfect model would yield RRSE = 0 whereas any

RRSE > 1 means the model performs worse than just predicting the mean response for

every instance.

The performance space may be extended to include other important metrics such as

Akaike information criterion (AIC), Mean absolute error (MAE), and Coefficient of deter-
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mination (R2 = 1−RRSE2), however, they were not considered in the context of this initial

study.

Procedure 1 describes how the performance space is built using the performance metrics

described above. As a summary, a regression model is built for each dataset and algorithm

combination and RMSE,RRSE, and time are recorded after performing a 10-fold cross-

validation. In order to account for randomness from the cross-validation, this process is

repeated 10 times for each run and results are averaged.

4.4.5 Meta-learning for Selection Mapping

Random forest is a very popular classification algorithm due to its relative simplicity and

resistance to overfitting [Hastie et al., 2009]. Additionally, random forests can also be used

for ranking using the individual class probabilities of a multi-class classifier. Hence, we

employ a random forest classifier to learn a mapping S(f(d)) → α from the features of a

dataset f(d) to an algorithm α ∈ A that yields maximum performance among the algorithms

in the algorithm space A.

Procedure 2 may be referred for a visual representation of how the training set for meta-

learning is created. First, meta-features shown in Table 4.1 are extracted from each dataset.

Next, the best performing algorithm for each dataset is selected by picking the algorithm that

produces the lowest cross-validated RMSE for the given dataset. Procedure 1 summarizes

the process of generating the performance metrics including RMSE in Section 4.4.4. All

experiments are run on a workstation with an 8 core Intel Core i7-4900MQ CPU operating

at 2.80GHz with 32GB RAM.

The training set is then used to train a multi-class random forest classifier with dataset

features as input and the best performing algorithm label as the output. In addition to the

top prediction, 2 more predictions for each dataset are made by the picking models that

yield top-2 and top-3 class probabilities.
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Procedure 2 Generating The Training Set for S(f(d))

1: procedure GenerateTrainingSet (D,P )
2: S ←Map (f → α)
3: for all d← D do
4: f ← extractFeatures (d) . f(d)
5: αbest ← argminα∈A(P (d, α)RMSE)
6: S += (f → αbest)
7: end for
8: return S
9: end procedure

4.5 Evaluation

4.5.1 Training Datasets

In order to evaluate our system, we have created a dataset collection from a number of

different sources and domains. The criterion for selection was to have a numeric response in

order to run regression algorithms. We have performed preprocessing on the datasets such

as numeric encoding of nominal or binary string variables, removing instances with missing

values etc. only when needed to satisfy input requirements of the regression algorithms. We

have removed any dataset from the collection if majority of the algorithms failed to complete

due any reason such as being ill-conditioned, not having enough instances to converge, etc.

As a result, we have ended up with a total of 114 regression datasets in our collection obtained

from various sources listed below. As a summary:

• 43 datasets from UCI Machine Learning Repository [Lichman, 2013]

• 17 datasets from OpenML [Kietz et al., 2014]

• 16 datasets from publicly available packages in R15

15See https://vincentarelbundock.github.io/Rdatasets/datasets.html for an unofficial compila-
tion.
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• 12 datasets from Luis Torgo Regression datasets collection16

• 9 datasets from Bilkent University Function Approximation Library17

• 9 datasets from NCI-60 Cell Line panel: Similar to [Lee et al., 2011], we have used

gene expression data obtained from Affymetrix HG-U133A and B chips normalized

using the GCRMA method as predictors of proteins with top 9 most variance obtained

from Reverse-phase protein lysate arrays (RPLA).

• 8 datasets from other sources18

The collection includes a very diverse set of datasets from various domains including but

not limited to life sciences, finance, engineering, physical sciences and so on. Additionally,

datasets have quite different characteristics in terms of size, feature types (e.g., binary, nu-

meric, categorical), response variable properties and etc. Table 4.2 shows some key statistics

for the collection.

Table 4.2: Dataset Collection by Numbers
Number of Datasets 114
Min # Instances 50
Max # Instances 999249
Min # Predictors 1
Max # Predictors 3489
Min Dimensionality 200 (50 x 4)
Max Dimensionality 44910250 (583250 x 77)
Min Input Size 1.4KB
Max Input Size 283MB
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4.5.2 Meta-learning Performance Results

As described in Section 4.4.5, we have trained a random forest classifier using the extracted

features and performance metrics for the 114 datasets in the dataset space. The resulting

classifier had 100 random trees with an average tree size of 75. The largest tree had a size

of 91 while the smallest tree in the forest had a size of 59.

Random forests are resilient to overfitting provided that the fraction of relevant (i.e.,

non-noise) attributes in the input dataset is not small and the number of trees is large

[Hastie et al., 2009].

The classifier is evaluated with 10-fold cross-validation and top 3 predictions from each

fold are recorded.

In the default evaluation strategy, the actual top performing algorithm is chosen based on

the lowest average RMSE over 10 runs. The default evaluation revealed that the algorithm

meta-learning system predicted was in fact the actual top performing algorithm in only 52%

of the cases (60 out of 114). When checked whether the predicted algorithm was in the

actual top 3 performing algorithms, the accuracy was 85% (97 out of 114).

However, since each model, α(d) (i.e., dataset-algorithm pair), is run 10 times and cross

validated error metrics (cv-folds are created randomly in each run) are recorded, it was not

always straightforward to identify the top performing algorithm due to overlapping errors

between different algorithms for the individual runs. In those cases, an algorithm is also

marked as top if a paired t-test against the algorithm having the lowest average RMSE fails

to reject the null hypothesis that the mean error of two algorithms for the dataset are not

significantly different. Algorithm 1 presents how the top algorithm(s) are identified for each

dataset in the testing collection. A similar approach is taken for identifying actual top-3

performing algorithms.

16http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
17http://funapp.cs.bilkent.edu.tr/DataSets/
18For more details on the datasets see github.com/scalation/analytics
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Algorithm 1 Identifying Top Performing Models

1: procedure TopAlgorithms (D,P,A)
2: top1Algs←Map(d→ Setα)
3: for all d← D do
4: algs← Setα
5: αbest ← argminα∈A(P (d, α)RMSE)
6: algs += αbest
7: for all α← A do
8: p← t-test(P (d, α)RMSE, P (d, αbest)RMSE)
9: if p > .05 then . failed to reject the null hypothesis

10: algs += α
11: end if
12: end for
13: top1Algs(d)← algs
14: end for
15: return top1Algs
16: end procedure

Following the extended strategy described above, the evaluation revealed that the pre-

dicted algorithm by the meta-learner was in fact the actual top performing model in 75%

of the cases (86 out of 114). Similarly, the predicted algorithm by the meta-learner was in

the actual top-3 performing models in 89% of the cases (102 out of 114). Figure 4.3 displays

how the two evaluation strategies compare.

We have also trained a meta-learner using kNN to serve as a comparison with the ran-

dom forest classifier. Ranking using a k-nearest neighbors (kNN) classifier is a commonly

used method for obtaining top-k rankings in meta-learning. After identifying the closest

neighbors of a dataset using a distance metric such as “Euclidean Distance” , a weighted av-

erage (neighbors are weighted by the inverse of their distance) of each individual neighbor’s

actual ranking is used for computing the candidate dataset’s predicted ranking of modeling

algorithms.

To compare the two meta-learners, we use the following metrics commonly used for
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evaluating top-k ranking.

Mean Average Precision (MAP@k) is calculated as the following. For each instance, if

the predicted algorithm at ranki (1 ≤ i ≤ k) matches the actual algorithm at ranki, then it

is scored as 1, otherwise 0. The precision scores for each rank are averaged and the MAP@k

is calculated by taking the mean of individual average rankings.

Loose Accuracy (LA@k) [Kalousis, 2002] is a metric used as an alternative for the tradi-

tional accuracy measure and it is particularly useful for cases where the top predictions may

not differ significantly. LA@k uses a binary scoring method in which an instance is scored

1.0 if any of the top-k predictions match the actual top-1 prediction, 0 otherwise.

Normalized Discounted Cumulative Gain (NDCG@k) [Wang et al., 2013] is another pop-

ular metric for evaluating top-k rankings. In contrast to the binary relevance score used in

MAP , NDCG uses a graded penalty logarithmically proportional to position of the sugges-

tion if a top modeling algorithm appears in the top-k results but out of order. For example

MAP@k would yield a score of 0 for an instance if all top-k performing algorithms are in

the results but in a slightly different order (e.g, actual top-1 appears in second rank, actual

top-2 appears first, etc.). On the other hand, NDCG may yield a much higher score in this

instance as the rankings are only penalized log proportional to their actual position in the

top-k results. In a hypothetical case where A1, A2 and A3 are the top-3 ordered performing

algorithms for a dataset and (A3, A1, A2) is the ranked list of suggestions, MAP@3 would

score this instance as 0 and NDCG@3 would score it as 0.82.

Figure 4.4 presents how meta-learners implemented using a random forest and kNN

compare using different evaluation measures listed above. The random forest based meta-

learner clearly performs better than the kNN classifier based meta-learner according to all

of the metrics discussed.

Finally, the importance of the features used in the meta-learning is evaluated. The ran-

dom forest classifier employs an entropy-based impurity measure during the training phase.
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Figure 4.4: Performance Comparison of Random Forest vs. kNN

The average impurity decrease measure for individual features is obtained from the clas-

sifier and the features are ranked by the measure averaged over 10 cross-validation folds

to identify most important features. The results revealed that the meta-features related

to the dimensionality (dim, df, rdf) and the meta-features based on the response variable

(skewness, kurtosis, distinct ratio, sttdev mean ratio, domain) are more important for se-

lecting optimally performing algorithm (i.e., model-type). Additionally, condition number

of the input matrix is also ranked higher in importance. Refer to the Table 4.1 for the

importance scores of all features.

4.5.3 Meta-learning vs. ScalaTion

Additionally, we provide a comparison of meta-learning with two different baselines. The first

baseline is ScalaTion in which we exhaustively run all algorithms listed in the section 4.4.3
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and record the total training time and the lowest RRSE score from the top performing algo-

rithm. As a second baseline, we have used the popular AutoWEKA [Thornton et al., 2013]

tool. We have run AutoWEKA with default parameters and used a time-limit of 30 minutes

per dataset. As AutoWEKA suggests trying at least thousands of configurations to obtain

reliable results, we have only included datasets that are less than 1MB to make sure each

dataset is run sufficient number of times. This criterion matched 47 out of 114 datasets in

our collection.

Table 4.3 displays both the lowest error and the total time taken to complete in seconds

for all 47 datasets included in the comparison. The RRSE values highlighted in bold de-

note the lowest error obtained for each dataset. After inspecting the results in detail, we

have identified that for the majority of the datasets where AutoWEKA outperformed meta-

learning, it was consistently better than both meta-learning and the ScalaTion baseline

at the same time. We attribute this difference due to the additional algorithms available to

AutoWEKA such as neural nets, k-nearest neighbors, MultilayerPerceptron, Random For-

est, KStar, Additive regression, REPTree, M5Rules, M5P and ensemble techniques such as

RandomCommittee19

To present a better comparison, future work should include the missing techniques in the

ScalaTion framework and consider additional metrics such as Akaike Information Criterion

(AIC) or Bayesian Information Criterion (BIC).

19See https://www.cs.waikato.ac.nz/ml/weka/documentation.html for a detailed documentation of
available techniques in the WEKA environment.
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Table 4.3: Performance Comparison Against Baseline

Dataset

BASELINE META-LEARNING

Auto-WEKA ScalaTion Top Prediction

RRSE time(s) RRSE time(s) RRSE time(s)

wisconsin breast 0.9454 1.80E + 03 0.9244 1.229 0.9244 0.32

auto price 0.3302 1.80E + 03 0.4287 0.603 0.4463 0.038

forest fire 0.9059 1.80E + 03 0.9330 0.749 0.9344 0.052

housing 0.3279 1.80E + 03 0.4591 1.037 0.5303 0.035

servo 0.3479 1.80E + 03 0.6590 0.936 0.6590 0.01

student 1 0.8953 1.80E + 03 0.9355 1.806 0.9355 0.051

yacht 0.0553 1.80E + 03 0.0761 1.037 0.0761 0.012

fb metric 1 0.7249 1.80E + 03 0.2319 1.169 0.2319 0.028

fb metric 2 0.1822 1.80E + 03 0.1754 1.215 0.1754 0.025

fb metric 3 0.8813 1.80E + 03 0.6734 1.240 0.7846 0.022

fb metric 4 0.6705 1.80E + 03 0.6050 1.221 0.6294 0.021

chick weight 0.4841 1.80E + 03 0.4992 0.923 0.5147 0.005

life cycle savings 0.9119 1.80E + 03 0.8886 0.930 0.9042 0.004

body fat 0.5831 1.80E + 03 0.5594 2.739 0.5594 0.02

plastic 0.2314 1.80E + 03 0.2316 1.895 0.2316 0.081

quake 0.9962 1.80E + 03 0.9987 1.940 0.9987 0.019

solar 0.9283 1.80E + 03 0.9425 1.208 0.9481 0.015

olympic2000 0.1635 1.80E + 03 0.4428 1.111 0.4493 0.007

prostate 0.7407 1.80E + 03 0.6400 0.343 0.6400 0.005

nist gauss 1 0.0631 1.80E + 03 0.6925 0.272 0.6937 0.003

concrete slump 3 0.1001 1.80E + 03 0.3471 0.535 0.3477 0.005
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Table 4.3: Performance Comparison Against Baseline

Dataset

BASELINE META-LEARNING

Auto-WEKA ScalaTion Top Prediction

RRSE time(s) RRSE time(s) RRSE time(s)

concrete slump 2 0.6883 1.80E + 03 0.7385 0.483 0.7590 0.005

concrete slump 1 0.8026 1.80E + 03 0.8821 0.459 0.8839 0.006

auto-mpg 0.3372 1.80E + 03 0.3787 0.824 0.4338 0.011

computer activity 2 0.1634 1.80E + 03 0.1997 8.458 0.1997 0.157

istanbul stock 0.6581 1.80E + 03 0.6561 0.479 0.6561 0.01

tecator moisture 0.2278 1.80E + 03 0.2068 17.299 0.2073 0.072

tecator fat 0.1734 1.80E + 03 0.1763 17.203 0.1763 0.076

tecator protein 0.2577 1.80E + 03 0.2190 18.660 0.2190 0.068

bike sharing total day 0.3315 1.80E + 03 0.4553 0.754 0.4553 0.018

visualizing soil 0.0042 1.80E + 03 0.2169 2.363 0.4082 0.052

abalone 0.6691 1.80E + 03 0.6892 2.338 0.6894 0.052

student 2 0.892 1.80E + 03 0.8566 2.166 0.8588 0.026

cars 0.331 1.80E + 03 0.5038 2.124 0.5262 0.075

weather 1 0.0834 1.80E + 03 0.2492 2.271 0.2492 0.033

weather 2 0.0836 1.80E + 03 0.2440 2.194 0.2471 0.029

treasury 0.0568 1.80E + 03 0.0719 3.149 0.2700 0.023

qsar 47555 0.7925 1.80E + 03 0.8192 2.793 0.8192 0.095

qsar 31274 − − 0.5414 81.918 0.5521 0.463

kin8nm 0.43 1.80E + 03 0.7664 6.320 0.7666 0.517

computer activity 1 0.133 1.80E + 03 0.1745 43.128 0.1745 0.261

bank8fm 0.2045 1.80E + 03 0.2553 6.687 0.2553 0.095
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Table 4.3: Performance Comparison Against Baseline

Dataset

BASELINE META-LEARNING

Auto-WEKA ScalaTion Top Prediction

RRSE time(s) RRSE time(s) RRSE time(s)

crime norm 0.5841 1.80E + 03 0.5793 62.058 0.5824 0.611

parkinson 1 0.4382 1.80E + 03 0.9252 7.014 0.9252 0.157

parkinson 2 0.4364 1.80E + 03 0.9140 6.601 0.9140 0.153

puma8nh 0.6573 1.80E + 03 0.7936 2.704 0.7938 0.103

pol 0.1293 1.80E + 03 0.5400 138.935 0.7308 0.6

4.5.4 Meta-learning vs. Ontology-based Suggestion

In this section, we present a comparison of the meta-learning approach described in this

paper with an ontology-based suggestion approach.

In [Nural et al., 2015], we have introduced an ontology-based suggestion approach for the

model selection problem. Using the Analytics Ontology20 describing various prediction mod-

eling techniques, parameters, variables, and model features such as dimensionality, condition

of the input matrix etc., candidate datasets are modeled in the ontology as an abstraction

via its extracted features. Modeling techniques are annotated by domain experts with logical

rules (i.e., equivalence axioms) to describe when it is appropriate to use that technique to

analyze a candidate dataset.

Using an ontological reasoner such as HermiT [Shearer et al., 2008], it becomes pos-

sible to retrieve suggestions from the ontology via matching the features of a candidate

dataset with appropriate modeling techniques for prediction. Interested readers may refer

20https://github.com/scalation/analytics/
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to [Nural et al., 2015] for detailed description of the approach.

For comparison, the same collection of 114 datasets (see 4.5.1) is used. Using ScalaTion

, each dataset is provided as an input to the ontology-based suggestion engine and the

suggested modeling technique is recorded. The suggestions are then evaluated using the

extended evaluation strategy described in section 4.5. The figure 4.5 shows how the ontology-

based approach compares to meta-learning based approach. When predicting the top-1

performing technique, the ontology-based approach achieves 51% accuracy compared to 75%

with meta-learning. When evaluating whether the suggested technique is within the actual

top-3 performing models, the ontology-based approach achieves 75% accuracy compared to

89% by the meta-learning approach.

Based on the results reported above, the ontology-based approach is not a strong alter-

native for the model-selection problem alone. However, the ontology-based approach may

still be relevant in the following scenarios.

• Performance of meta-learning depends on the quality and the size of the training set.

Therefore, extending the algorithm space requires significant investment for collection

of additional datasets to increase the size of the training set. To demonstrate this, we

have performed a small-scale experiment and re-evaluated meta-learning and ontology-

based suggestion performance on randomly selected 50% of the original dataset collec-

tion. As seen on Figure 4.5, the performance of ontology-based system stays relatively

stable. However, meta-learning performance drops significantly. So, one can argue

that ontology-based suggestion approach can be relevant with limited training set and

large number of target algorithms.

• As discussed in Section 4.3, data analytics requires an iterative workflow with many

other steps in addition to selecting the most predictive modeling algorithm. Even

though the ontology-based approach may be insufficient to support most predictive
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modeling algorithm selection, it can still be utilized successfully for determining most

predictive workflows. [Nguyen et al., 2014] presents a successful application of a well

curated data-mining ontology to generate valid workflows for a data-analysis task using

hierarchical task planning.

• In some data analysis settings, there may be other constraints in addition to the top

performance for selecting a modeling technique. A few examples include model inter-

pretability, parsimony, ability to inject theory and etc.

• Where there are multiple possible goals (prediction, forecast) and breadth, ontology

may be very helpful to reduce the search space and maybe used in tandem with meta-

learning in a hybrid setting.

4.6 Conclusion

This paper discusses the progress made in automated modeling, with particular emphasis on

modeling via meta-learning for predictive analytics with regression-based algorithms. The

major contributions and findings of this paper include that

• Metalearning may be utilized to efficiently reduce the algorithm space for predictive

big data analytics.

• Dimensionality and characteristics of the response variable are the most important

indicators of filtering algorithms. This is not surprising as Generalized Linear Mod-

els have specific assumptions on the response variable. Similarly, low dimensionality

and negative degrees of freedom is an important indicator for using a regularization

algorithm such as Lasso or Ridge Regression.

• Highly efficient and robust implementations of prediction algorithms, including OLS,

ridge, and lasso regression exist in the ScalaTion framework.
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• ScalaTion framework provides a viable alternative for big data analytics with its

support for multi-paradigm modeling and efficient learning algorithms.

• Provide a comparison of meta-learning and ontology-based approaches for the model

selection problem.

In addition to developing a meta-learning system, we have also introduced a number of

new meta-features for better capturing characteristics related to the regression algorithms.

An emphasis of future work will be to extend the meta-learning system with additional

learning algorithms in the algorithm space, provide support for alternative performance met-

rics for identifying optimally performing algorithms, and extend the meta-learning system

to consider of available contextual metadata in addition to features automatically extracted

from the datasets. Additionally, the future work will include comparison of the presented

automated modeling approach to the approaches currently employed for automated model-

ing.
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Chapter 5

Summary

This thesis presents our contributions to the field of predictive big data analytics with special

focus on automated modeling. We have explored the landscape of automated modeling

and investigated how ontology-based semantics and meta-learning can play a role assisting

data analysts by automating one or more of the steps of a typical predictive data analytics

workflow (refer to the Figure 4.1). Existing literature on automated modeling mainly focuses

on classification problems. Additionally, the small number of studies focusing on regression

(i.e., prediction) consider only a limited number of modeling techniques (< 5). Our work

extends the algorithm space with popular statistical techniques such as Generalized Linear

Models family, Lasso Regression, Partial Least Squares Regression and considers 15 different

algorithms in total.

Major contributions of this thesis may be summarized as follows:

• Investigation of machine learning based meta-learning approach for assisting automated

/semi-automated construction of a predictive analytics workflow.

We have successfully demonstrated a meta-learning system for predicting top perform-

ing model(s) among 15 different candidate algorithms based on dataset characteristics.

Our system achieved 75% accuracy for predicting top-1 performing model correctly.
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Additionally, the predicted model was in the actual top-3 in 89% of the cases. More-

over, we were the first to use a random-forest classifier as the meta-learner to predict the

performance of regression algorithms. We were not able to directly compare the perfor-

mance of our system with the literature on meta-learning for regression due to several

reasons such as the differences in target algorithms, inability to reproduce the training

datasets used in the studies and so on. The only quantitative study was performed

by [Loterman and Mues, 2015] and as mentioned in related work, we were unable to

acquire the datasets and there is minimal overlap with our modeling techniques.

• Investigation of ontology-based semantics for assisting automated/semi-automated con-

struction of a predictive analytics workflow.

We have demonstrated that ontology-based semantics can be useful for providing

model-type suggestions for a user-provided dataset automatically. Leveraging the log-

ical reasoning infrastructure the system is built upon, justifications of the suggestions

can also be provided for more educated model building. In our evaluations, the meta-

learning approach had better performance for correctly predicting top-1 performing

algorithm, however, we have shown that the ontology-based approach can still be rele-

vant when resources for collecting training datasets are limited and size of the algorithm

space is large.

• Highly efficient implementations of popular algorithms including Lasso and Ridge re-

gression in Scala base ScalaTion framework.

• A recent survey of the state-of-the-art automation efforts for assisting data analysts

for performing predictive big data analytics.

• Identifying the key areas of improvement for building systems to support automated

predictive data analytics efforts.
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• The scala-dash tool as a demonstration of ontology supported interactive data ana-

lytics.

• Extensive evaluation of ScalaTion framework as a platform for predictive big data

analytics.

After laying the foundation with the work presented in this thesis, we believe the following

might be appropriate directions to explore in future studies.

• Incorporating metadata along with the features automatically extracted from the data

for identifying most appropriate models. For example, the probability distribution of

a response variable is one of the most important factors for choosing an appropriate

model type for generalized linear models. If a response variable of a dataset follows an

exponential distribution, Exponential Regression should be chosen, Similarly, Gamma

Regression should be chosen when the response variable follows a Gamma distribution.

Even though it is possible to automatically extract information such as skewness and

kurtosis relating to the shape of the response distribution, it is challenging to correctly

identify the probability distribution a variable follows. Some tools such as Expert-

Fit [Law and McComas, 2003] provide identification however it is proprietary. If this

information can be made available as metadata (e.g., from problem definition or by

visualization) it can be used as an additional feature during the model-type suggestion

process.

• Investigation of a hybrid approach combining ontology-based semantics and meta-

learning together to support a wider range of scenarios and/or steps in predictive big

data analytics.

• Investigation of sub-sampling for very large datasets and extending meta-features to

better characterize a dataset.
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• Expanding the candidate modeling technique space in ScalaTion to provide a more

competitive platform and to be able to provide a fair evaluation with existing alterna-

tives.

• Expanding the scala-dash graphical data analysis tool with the contributions pre-

sented in this thesis and evaluate its usability.

We believe the automated modeling will continue to keep its relevance and become more

essential to any data analytics effort amidst the current trend of explosive increase in the data

production pace. Data analysts will be facing new challenges to timely analyze and inter-

pret incoming big data streams from many sources and therefore will be seeking automated

solutions to deal with the overwhelming amounts of data.
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Appendix A

Performance of ScalaTion

We have also evaluated performance of algorithms we have implemented in ScalaTion . As

a case study, OLS, ridge and lasso regression algorithms are compared with the R implemen-

tations. The glm package is used for creatingOLS fromR and glmnet [Friedman et al., 2010]

package is used for ridge and lasso models.

The test setup is as follows. A subset of 59 datasets from the dataset collection (see

Section 4.5.1) were selected if they had more rows than columns so that the resulting model

would have a positive degrees of freedom. Each dataset is read and prepared for execution

by creating an input matrix X and the response vector y using the ScalaTion framework.

Then, OLS, ridge and lasso models for each dataset is run with R and ScalaTion

implementations 10 times each. For each run, total training time in seconds, cross-validated

error measures RMSE and RRSE are recorded. The results from 10 runs are aggregated

by taking mean time, RMSE, RRSE per dataset per implementation.

Ordinary Least Squares Regression ( OLS)

Figure A.1 shows how OLS implementations in ScalaTion and R compare. Since the av-

erage training time for individual datasets differs significantly due to varying dataset charac-
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teristics (e.g., size, dimensionality, sparsity and etc.) in the collection, a relative comparison

is presented. Each data point represents the relative average training time (over 10 runs)

of a dataset in comparison to average training time taken by ScalaTion implementation.

The y-axis represents fold difference in which a positive number n depicts R implementation

completed training n times slower on average for that dataset. Similarly, a negative number

−n means, R was n times faster on average for the given dataset than ScalaTion .

Ridge Regression ( ridge)

The parameter vector β̂ learned from Ridge Regression (ridge) must satisfy the following

constraint:

β̂ = argmin
β

(
m∑
i=1

(yi − xiβ)2 + λ||β||22

)
where xi is the i-th instance of the input matrix as a row vector. In other words, ridge

attempts to minimize the sum of squared errors just like OLS but also places an additional

penalty on the sum of squared parameters in order to stabilize them from extreme values

which often causes over-fitting.

If the regularization parameter λ is set to 0, then ridge becomes OLS. However, the

search for the optimal value of λ that results in the best performance for a dataset is usually

of great interest. In the ScalaTion implementation of ridge, the Golden Section Line

Search [Kiefer and Monro, 1953] is used to find the optimal value of λ that minimizes the

cross-validated sum of squared errors: For each λ value that is searched, a 10-fold cross-

validation is performed on the dataset using that particular value of λ. For each fold, the

parameter vector β̂ is fitted from the training set using the Cholesky factorization technique,

then predictions are made on the testing test and residuals/errors are computed. Finally, the

sum of squared residuals/errors from all 10 folds is the criterion for determining the optimal

94



-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
R

R
SE

 D
if

fe
re

n
ce

Datasets (sorted by increasing RRSE) ------>

R (baseline)

ScalaTion Warm Start

ScalaTion Cold Start

Figure A.4: RRSE Difference lasso (lower is better)

value of λ.

In the glmnet package, Cyclical Coordinate Descent is used for fitting the parameter

vector β̂ and a grid search is used to find the optimal λ value based on the cross-validated

mean squared errors.

Figure A.2 shows how ScalaTion and glmnet implementations compare in terms of

achieving lowest cross-validated error by tuning λ penalty. Each data point in the plot

represents the mean RRSE error of 10 runs for a dataset for the given implementation. The

datasets in the horizontal axis are sorted by increasing RRSE score achieved by ScalaTion

. The plot clearly shows that ScalaTion implementation was consistently able to find

a better λ to achieve slightly lower cross-validated error in comparison to glmnet. This

is most likely due to the choice of different search algorithms for tuning λ in these two

implementations. For a number of datasets, ScalaTion performs dramatically better than

glmnet as it can be clearly seen from the plot.
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Additionally, the ScalaTion implementation is able to train a better model without a

compromise in time taken for training. According to the runtime profiling results during the

testing phase, matrix multiplication and transpose are the most time-consuming operations

in the ScalaTion implementation. Therefore some of the intermediate results have since

been cached to improve efficiency. Figure A.3 provides a comparison for average training

times for the same datasets. It is clear that ScalaTion implementation is able train a

ridge model faster than the glmnet implementation with a few exceptions. In one such

case, ScalaTion model completed training in 309 seconds on average, compared to 16.3

seconds for glmnet model for the qsar191 dataset. This dataset is from a family Quantita-

tive structure-activity relationship (qsar) datasets where the predictors are binary variables

defining the physio-chemical properties of a chemical and the response denotes the biological

activity. Having all binary features (i.e., either 0 or 1) combined with high dimensional-
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ity and sparsity, qsar datasets are a typical example of datasets that are difficult to train

for many algorithms. Comparing other metrics for the qsar191 dataset revealed that even

though glmnet requires significantly lower time to train, it is not able to find an optimal

λ penalty to yield a reasonable model (RRSE < 1). The ridge model from glmnet has

an average RRSE = 1.0003, whereas the model from the ScalaTion implementation has

RRSE = 0.7054.

Lasso Regression ( lasso)

The parameter vector β̂ learned from Lasso Regression (lasso)[Tibshirani, 1996] must satisfy

the following constraint:

β̂ = argmin
β

(
m∑
i=1

(yi − xiβ)2 + λ||β||1

)
where xi is the i-th instance of the input matrix as a row vector. Similar to ridge, lasso

also places a penalty on the size of the parameter vector with a small but an important

difference. In contrast to ridge, the penalty parameter λ is applied to the L1 norm instead

of the L2 (Euclidean) norm which allows some parameter coefficients to become exactly

zero. Therefore, lasso effectively performs variable selection and becomes very suitable for

problems where p� n.

glmnet uses the same method as ridge to solve lasso (i.e., Cyclical Coordinate Descent).

ScalaTion uses Alternating Direction Method of Multipliers (admm) [Boyd et al., 2011]

method to solve lasso. admm is a very flexible algorithm that works particularly well for

solving problems with two distinct parts. In the context of lasso, the minimization of the

sum of squared errors and finding the optimal regularization penalty λ can be considered as

two sub-problems.

When applied to the lasso problem as described in [Boyd et al., 2011], admm involves
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iteratively solving the following equations

βk+1 = (XTX + ρI)−1(XTy + ρ(zk − uk))

zk+1 = Sλ/ρ(β
k+1 + uk)

uk+1 = uk + βk+1 − zk+1

until the convergence criteria is met where X is the input matrix, y is the response vector,

β is the coefficient vector(i.e., solution), S is the fast soft thresholding function, λ is the

regularization penalty for lasso and ρ is the augmented Lagrangian parameter.

The most expensive computations (XTX + ρI)−1 and XTy are precomputed and cached

as the input and the ρ parameter stay constant. Selection of a larger value for the ρ parameter

allows faster convergence, however, usually at the expense of algorithm stability. After careful

tuning, we have determined to use ρ = 0.1 as the default. Using the same methodology used

for ridge described in A, the optimal λ penalty is determined by using Golden Section Line

Search minimizing the cross-validated sum of squared errors.

The original admm algorithm uses a “Cold Start” approach in which the z and u vectors

are initialized to 0 (z0 = u0 = 0) at the beginning of an admm run for each λ value.

For achieving faster convergence, the “Warm Start” approach uses initializing the z and u

vectors from the admm run for the previous λ value. We have implemented and tested both

approaches for comparison.

The figure A.4 shows how ScalaTion compares to glmnet in terms of cross-validated

error. Each data point in the plot represents the mean RRSE error difference of the re-

spective implementation and the R implementation(baseline) for a single dataset over 10

runs. It is clear that both “Warm Start” and “Cold Start” implementations are performing

on identically (i.e., the RRSE error difference is 0) with the baseline R implementation for
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most datasets. For a number of datasets, ScalaTion implementations perform better by

achieving RRSE errors than R. In a few other datasets, the baseline implementation per-

forms better. When averaged across all datasets, all three algorithms where within < 0.25%

error tolerance of each other.

The figure A.5 reveals that ScalaTion is able to train lasso much faster on average

than glmnet albeit a few notable exceptions. Each data point in the plot refers to the fold

difference of average time taken to train a dataset compared to the baseline (R). It can

also be seen that while the “Warm Start” is dramatically faster than the “Cold Start” for

majority of datasets, it fails to converge in a reasonable time period in a few exceptional

cases. However, it is important to note that even though “Warm Start” ran 5 to 15 times

slower for those exceptional cases (the three outliers can easily be spotted in figure A.5),

“Warm Start” was able to achieve much better accuracy in terms of the RRSE error (refer

to lower left portion of the plot in A.4). When accounting total training time of all datasets

with 10 runs each, the “Cold Start” and “Warm Start” implementations are 25% and 24%

faster than the baseline R implementation, respectively.
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Appendix B

Datasets

In order to evaluate our system, we have created a dataset collection from a number of

different sources and domains. The criterion for selection was to have a numeric response

in order to run regression algorithms. We have performed preprocessing on the datasets

such as numeric encoding of nominal or binary string variables, missing value imputation

etc. only when needed to satisfy input requirements of the regression algorithms. We have

removed any dataset from the collection if majority of the algorithms failed to complete due

any reason such as being ill-conditioned, not having enough instances to converge, etc. As

a result, we have ended up with a total of 114 regression datasets in our collection obtained

from various sources listed below. As a summary:

• 43 datasets from UCI Machine Learning Repository [Lichman, 2013]

• 17 datasets from OpenML [Kietz et al., 2014]

• 16 datasets from publicly available packages in R1

• 12 datasets from Luis Torgo Regression datasets collection2

1See https://vincentarelbundock.github.io/Rdatasets/datasets.html for an unofficial compila-
tion.

2http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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• 9 datasets from Bilkent University Function Approximation Library3

• 9 datasets from NCI-60 Cell Line panel: Similar to [Lee et al., 2011], we have used

gene expression data obtained from Affymetrix HG-U133A and B chips normalized

using the GCRMA method as predictors of proteins with top 9 most variance obtained

from Reverse-phase protein lysate arrays (RPLA).

• 8 datasets from other sources4

3http://funapp.cs.bilkent.edu.tr/DataSets/
4For more details on the datasets see github.com/scalation/data
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Table B.1: Dataset Collection

Dataset m§ k† Description

auto-mpg 392 9 Auto-MPG Dataset from UCI

airfoil 1503 6 Airfoil Self Noise Dataset from UCI(NASA)

concrete compressive 1030 10 Concrete Compressive Strength Dataset from

UCI

ccpp 9568 5 Combined Cycle Power Plant Dataset from UCI

concrete slump 1 103 11 Concrete Slump Dataset from UCI (target:

SLUMP)

concrete slump 2 103 11 Concrete Slump Dataset from UCI (target:

FLOW)

concrete slump 3 103 11 Concrete Slump Dataset from UCI (target: Com-

pressive Strength)

nist gauss 1 250 2 NIST Gauss1 dataset. The data are two well-

separated Gaussians on a decaying exponen-

tial baseline plus normally distributed zero-mean

noise with variance = 6.25.

prostate 97 9 R Prostate Cancer dataset

kin8nm 8192 9 kin8nm dataset from OpenML

(https://www.openml.org/d/189)

computer activity 1 8192 22 Torgo Computer Activity Dataset

computer activity 2 8192 13 Torgo Computer Activity Dataset - Small version

wisconsin breast 194 33 Wisconsin Breast Cancer Dataset

auto price 159 16 Torgo Auto Price Dataset

gym crowdedness 62184 11 Kaggle Campus Gym Crowdedness Dataset

§: number of instances †: number of features
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Table B.1: Dataset Collection

Dataset m§ k† Description

forest fire 517 13 UCI Forest Fire Dataset

housing 506 14 Boston Housing Dataset

istanbul stock 536 10 UCI Istanbul Stock Exchange Dataset

tecator moisture 240 101 OPENML Tecator Dataset(target: Moisture)

tecator fat 240 101 OPENML Tecator Dataset(target: Fat)

tecator protein 240 101 OPENML Tecator Dataset(target: Protein)

bike sharing total hour 17379 17 UCI Bike Sharing Dataset, Hourly Data Total

Count

bike sharing total day 731 16 UCI Bike Sharing Dataset, Daily Data Total

Count

bng breast 116640 10 OPENML BNG Breast Tumor Dataset

visualizing soil 8641 5 OPENML Visualizing Soil Dataset

bank8fm 8192 9 OPENML Customer Bank Selection Dataset

abalone 4177 9 Torgo Abalone Dataset

electricity prices 37682 17 OPENML ICON Electricity Challenge Dataset

casp 45730 10 UCI Protein Tertiary Structure DataSet

appliance energy 19735 29 UCI Appliance Energy DataSet

crime norm 1993 101 UCI Communities Crime(Normalized-

ViolentPerPop) DataSet

parkinson 1 5875 19 UCI Parkinson Telemonitoring Dataset(target:

total)

parkinson 2 5875 19 UCI Parkinson Telemonitoring Dataset(target:

motor)

§: number of instances †: number of features
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Table B.1: Dataset Collection

Dataset m§ k† Description

servo 167 5 UCI Servo Dataset

student 1 395 30 UCI Student Performance Dataset(target: mat)

student 2 649 30 UCI Student Performance Dataset(target: por)

yacht 308 7 UCI Yacht Hydodynamics Dataset

fb metric 1 496 16 UCI Facebook Metric Dataset(target: total)

fb metric 2 496 16 UCI Facebook Metric Dataset(target: like)

fb metric 3 496 16 UCI Facebook Metric Dataset(target: comment)

fb metric 4 496 16 UCI Facebook Metric Dataset(target: share)

cars 1447 14 Applied Predictive Modeling Cars Dataset(all)

chick weight 578 3 R Caret Package Chick Weight Dataset

life cycle savings 50 5 R Caret Package Life Cycle Savings Dataset

hi 22272 12 R Health Insurance Housewives Dataset

body fat 252 18 Bilkent Body Fat Dataset

fried 40768 11 Bilkent Fried Dataset

plastic 1650 3 Bilkent Plastic Dataset

quake 2178 4 Bilkent Quake Dataset

weather 1 1609 10 Bilkent Weather Ankara Dataset

weather 2 1461 10 Bilkent Weather Izmir Dataset

treasury 1049 16 Bilkent Treasury Dataset

pwlinear 177147 11 OPENML PWLinear Dataset

puma32h 8192 33 Torgo Puma32H Dataset

puma8nh 8192 9 Torgo Puma8NH Dataset

2dplanes 40768 11 Torgo 2dplanes Dataset

§: number of instances †: number of features
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Table B.1: Dataset Collection

Dataset m§ k† Description

pol 15000 27 OPENML Pole Telecom Dataset

solar 1066 10 UCI Solar Flare Dataset

qsar 47555 1158 52 OPENML QSAR Dataset(47555)

qsar 31274 1189 132 OPENML QSAR Dataset(31274)

air 999249 19 RITA Airline on-time Performance Dataset (1987

only)

buzz toms 28179 97 UCI Social Media Buzz Dataset - Toms Hard-

ware)

buzz twitter 583250 78 UCI Social Media Buzz Dataset - Twitter

qsar 47749 6003 611 OPENML QSAR Dataset(47749)

olympic2000 66 12 Olympic2000 Dataset from ”Analyzing Categori-

cal Data”

qsar 191 4442 1024 OPENML QSAR Dataset(191)

qsar 33511 6003 420 OPENML QSAR Dataset(33511)

corn m5spec moisture 80 701 NIR of Corn Samples for Standardization Bench-

marking Dataset (Moisture)

corn m5spec oil 80 701 NIR of Corn Samples for Standardization Bench-

marking Dataset (Oil)

corn m5spec protein 80 701 NIR of Corn Samples for Standardization Bench-

marking Dataset (Protein)

corn m5spec starch 80 701 NIR of Corn Samples for Standardization Bench-

marking Dataset (Starch)

qsar 12789 309 1025 OPENML QSAR Dataset(12789)

§: number of instances †: number of features
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Table B.1: Dataset Collection

Dataset m§ k† Description

energy efficiency 1 768 10 UCI Energy Efficiency Dataset(Heating Load)

energy efficiency 2 768 10 UCI Energy Efficiency Dataset(Cooling Load)

cbm 1 11934 15 UCI CBM Dataset(Compressor)

cbm 2 11934 15 UCI CBM Dataset(Turbine)

triazines 186 59 Bilkent Triazines Dataset

cars kbb 804 18 R Caret Package KBB Price Cars Dataset

chem 176 58 Applied Predictive Modeling Chemical Manufac-

turing Dataset

crime unnorm autoTheft 2211 103 UCI Communities Crime DataSet (target: au-

toTheft)

crime unnorm burgl 2211 103 UCI Communities Crime DataSet (target: burgl)

crime unnorm larc 2211 103 UCI Communities Crime DataSet (target: larc)

crime unnorm nonViol 2117 103 UCI Communities Crime DataSet (target: non-

Viol)

crime unnorm violent 1993 103 UCI Communities Crime DataSet (target: vio-

lent)

crime unnorm total 1901 103 UCI Communities Crime DataSet (target: total)

crime unnorm arsons 2123 103 UCI Communities Crime DataSet (target: ar-

sons)

crime unnorm assault 2201 103 UCI Communities Crime DataSet (target: as-

sault)

crime unnorm rapes 2006 103 UCI Communities Crime DataSet (target: rapes)

crime unnorm murd 2214 103 UCI Communities Crime DataSet (target: murd)

§: number of instances †: number of features
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Table B.1: Dataset Collection

Dataset m§ k† Description

crime unnorm robbb 2213 103 UCI Communities Crime DataSet (target: robb)

ailerons 13750 41 Ailerons Dataset

elevators 16599 19 Elevators Dataset

transcoding 68784 20 UCI Video Transcoding Dataset

sol 1 1267 229 Applied Predictive Modeling Solubility Dataset

sol 2 632 229 Applied Predictive Modeling Solubility

Dataset(trans)

blood brain 208 128 Applied Predictive Modeling Blood Brain Barrier

Dataset

aquatic tox 1 322 24 R QSARData Package Aquatic Toxicity

Dataset(lcalc)

aquatic tox 3 322 66 R QSARData Package Aquatic Toxicity

Dataset(moe3d)

aquatic tox 4 319 49 R QSARData Package Aquatic Toxicity

Dataset(qprop)

aquatic tox 2 322 221 R QSARData Package Aquatic Toxicity

Dataset(moe2d)

cox2 462 206 R Caret Package Cox2 Dataset

melting point 4401 204 R QSARData Package Melting Point Dataset

aloi 108000 129 OPENML Aloi Dataset

nci 60 90th 1 59 3490 NCI-60 Dataset(target: KRT18)

nci 60 90th 2 59 3490 NCI-60 Dataset(target: KRT19)

nci 60 90th 3 59 3490 NCI-60 Dataset(target: KRT7)

§: number of instances †: number of features
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Table B.1: Dataset Collection

Dataset m§ k† Description

nci 60 90th 4 59 3490 NCI-60 Dataset(target: TP53 26 GBL00064)

nci 60 90th 5 59 3490 NCI-60 Dataset(target: VASP)

nci 60 90th 6 59 3490 NCI-60 Dataset(target: MSN 4)

nci 60 90th 7 59 3490 NCI-60 Dataset(target: CDKN2A)

nci 60 90th 8 59 3490 NCI-60 Dataset(target: KRT8)

nci 60 90th 9 59 3490 NCI-60 Dataset(target: TP53 10 24342)

qsar 36276 6003 40 OPENML QSAR Dataset(36726)

qsar 47652 1731 84 OPENML QSAR Dataset(47652)

§: number of instances †: number of features
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