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ABSTRACT

In taking a scheme theoretic approach to studying mathematical conjectures, this

paper examines the conjectural operations that underlie conjecturing activity. It provides

answers to the following two questions: How might conjectural operations engender

accommodations in schemes within a cognitive system, and how do students develop a

conjectural disposition? In answering these questions, the paper reports on the

conjecturing activity of four sixth-grade students, working in the context of fractions

problems and using software called TIMA:Bars. The researcher also served as the

students’ teacher during two teaching experiments, one with each of two pairs of

students. The teaching experiments were conducted twice per week for one school

semester.

Findings include that conjectural operations, themselves, sometimes serve as

functional accommodations in schemes. At least one kind of conjecturing operation,

generalizing assimilation, can modify the trigger of a scheme and raise student awareness

about new constraints to students’ ways of operating. Abduction was another kind of



conjectural operation and often reorganized existing operations into new patterns for

operating. Conjectural operations occurred among all four students and served in

actualizing their zones of potential construction.

Not all conjecturing activity was constructive. Several affective and

environmental factors contributed to differences between students’ success in

constructing new ways of operating through conjecturing activity. The role of the teacher

in designing appropriate tasks and interpreting students’ actions appropriately was

particularly important. Differences between the students’ initial levels of development

were a factor in the particular schemes that they constructed, but such differences did not

appear to determine the ways in which conjectural operations were used, nor the

constructiveness of their use.
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Chapter 1: Introduction

Research Questions

Cognitive learning is increasingly understood as the gradual refinement of

complex structures involving multiple components (Schoenfeld, Smith & Arcavi, 1993;

diSessa & Sherin, 1998; Steffe, 2002). Introducing fine-grained structural models allows

researchers to delve into the recesses of human thought, taking specific mental operations

as basal units. For example, diSessa and Sherin demonstrated that students’ concepts

could be modeled by “systematic collections of strategies” (1998, p. 1155), called

coordination classes, in order to “gain insight on how to improve learning” (p. 1161). In

their Fractions Project, Steffe (2002) and Olive (1999) outlined trajectories for fraction

learning based on the coordination of cognitive schemes, each of which can be defined as

a three-part cognitive structure: a set of triggers that call the scheme, a set of mental

operations that are triggered, and a set of expectations for the result of these operations

(Glasersfeld, 1998). Both approaches employ general, elemental structures that can be

coordinated and developed to produce various concepts, which might otherwise be

considered innate. In particular, the second approach presents conceptual learning as

accommodating one’s schemes in response to cognitive perturbations.

In my study, I examined students’ conjectures, or “informed guesses” (NCTM,

2000, p. 57) as occasions for learning, and I adopted a scheme-theoretic approach largely

because of the valuable context that Steffe & Olive’s study (1990) provides. Moreover,

because mathematical schemes are operative structures, I could use scheme theory to

study students’ underlying conjectural operations: mental operations used to resolve a
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problematic situation in which the effectiveness of their use is not already established.

How might conjectural operations engender accommodations (novel creation,

modification, and coordination) of schemes within a cognitive system? My method for

approaching this question informed a second question: how do students develop a

conjectural disposition?

Before going further, I should clarify what I mean by operations, and introduce

my general method for studying them, which is further elaborated in Chapter 3. While

actions refers to students’ behaviors (including verbalizations) that a teacher-researcher

can observe, operations are the cognitive constructs that those actions may represent. For

example, a student’s action of folding paper in half may represent the operation of

geometric reflection. As a teacher-researcher, I made inferences about students’ available

operations, operations that may explain students’ actions in various situations. I then

designed tasks to determine whether inferring a hypothetical operation for a particular

student was useful in explaining her actions. By focusing my research on students’

operations, instead of their actions alone, I have developed a unique approach to studying

conjecture and answering my research questions.

One possible answer to my first research question is that conjecturing activity

does not change schemes. In fact, Fodor’s paradox suggests that the process of making

and testing conjectures can never yield a cognitive system that is richer than the one

currently held because all possible conjectures must potentially exist in the system a

priori and are simply triggered by experience. Fodor claimed, “there literally isn’t such a

thing as the notion of learning a conceptual system richer than the one that one already

has” (Fodor, 1980, p. 149) if learning consists of the inductive-deductive process of
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“hypothesis formation and confirmation” (p. 148). To the extent that hypothesis

formation and conjecture can be used as synonyms, it seems that, in relevance to my

study, Fodor presented the following two tenets of learning: Learning occurs through

conjecturing, and conjecturing is an inductive process. While some research has

demonstrated other kinds of learning (Steffe, 1991b; Arzarello et al, 1988), most current

research in mathematics education on conjecturing seems to fall in line with Fodor’s

second tenet, that conjecturing (hypothesis formations) is inductive. My claim is

supported by the relatively fruitless results of an extensive literature search for

exceptions, which are included in the Chapter 2. But even Fodor did not espouse the first

tenet: “What I think [the paradox] shows… is that there must be some notion of learning

that is so incredibly different from the one we have imagined” (Fodor, 1980, p. 149).

Presently, I attempt to elaborate on such a notion of learning that does involve

conjecturing.

Supposing the tenets that Fodor presented, that learning consists of conjecturing

and that conjecturing is inductive inference, were accepted, Steffe agreed with Fodor’s

logical conclusion formulated in the learning paradox, implying that all knowledge is

innate—radical innativism (Steffe, 1991b, p. 26). However, Steffe introduced a

counterexample to the first tenet (thus undermining the second one): a metamorphic

accommodation that transformed a boy’s non-numerical counting scheme to a numerical

one (Steffe, 1991b). Metamorphic accommodations occur through (possibly

subconscious) reflection, in response to the perturbation caused when one’s schemes are

operating at different levels of abstraction. A detailed account of this research must be

relegated to the Chapter 2; for now, suffice it to say that the learning paradox can be



4

avoided by introducing Steffe’s model of learning by metamorphic accommodation. Such

accommodations will be of importance to my study of conjectures because Steffe has

demonstrated that they can be engendered by novel operations in problem solving.

The alternative to the learning paradox suggested here is not as categorical as that

of Steffe, who dismissed Fodor’s two tenets together.  While I do not necessarily agree

that all learning is conjectural, I contend only with the second tenet by developing a new

model of conjecturing that is not inductive. I pick up a path laid by Glasersfeld who

argued against radical innativism by saying that “instead of remembering innate ‘true’

ideas, the child has the innate tendency to search for ‘rhythms, regulations and groupings’

and to test constructs for viability in actual experience” (1998, p. 5). As for the

psychological mechanisms that allow the child to act on those tendencies, “what has to be

assumed innate is no more than the capacity to remember experience, reflect on it, and to

make comparisons” (p. 7). Rather than viewing these processes as inductive, Glasersfeld

pointed to what he called “the mainspring of creativity” (p. 10)—Peirce’s pattern of

abduction.

An abduction is a logical inference whereby one links a surprising result to a

general rule by supposing that the result follows as a particular case of the general rule

(Peirce, 1998, p. 231). It is a sort of reverse deduction because deduction applies a rule to

a particular case yielding the result of the particular case as a logical conclusion, and, in

abduction, the inferences are reversed. For instance, upon returning home from a trip, one

might notice a puddle of water in the middle of the kitchen. He might then assume that

there is a leak in the roof because the assumption of this hypothesis would explain, as a

matter of consequence, the surprising observation that there is water where there should
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not be. Peirce attributed the abduction of a general rule (or hypothesis) to an

instantaneous and “extremely fallible insight” (p. 227). “It is true that the different

elements of the hypothesis were in our minds before; but it is the idea of putting together

what we never had before dreamed of putting together which flashes the new suggestion

before our contemplation” (p. 227).

Peirce’s formulation still falls into the trap of the learning paradox because it does

not explain the creation of new ideas, only the putting together of existing ones. Thus, the

existing ideas and their potential to be put together would remain innate. However, if we

apply the pattern of abduction at the operational level, it may help explain how

accommodations of schemes (learning) may occur. Moreover, because the pattern

involves generating constructs that are untested resolutions to problematic situations, they

may be considered conjectural. So abducting—the process of producing, through the

pattern of abduction, new operational constructs—is of central interest to my study of

conjecturing, although I do not assume, as Peirce (1988) did, that the processes are

equivalent. I use the following vignette taken from Fractions Project data to demonstrate

how an operational perspective on Peirce’s pattern can be used to explain the production

of a “general rule” or conjecture, and thus provide a new alternative to the learning

paradox.

Two Cases

A teacher, working with a pair of fifth-graders using computer-based fraction

sticks, asked the students to use three-fourths of a whole stick to make parts that would

be eighths of the whole stick. Joe, one student in the pair, had been successful in

completing similar tasks only with unit fractions, such as one fourth. In the new situation,
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he divided each of the three fourths into two parts. Figure 1 illustrates the resulting six-

eighths stick, as well as the four-fourths stick from which he had pulled three fourths.

Assuming his reasoning was similar to his previous reasoning when making new

fractions out of one fourth, we can infer from his actions the existence of a reversible unit

fractional composition scheme that can be characterized in the following way: “To create

eighths, I'll cut each fourth into two pieces because two times four is eight.” Assimilating

the new situation with this existing scheme seemed unproblematic for Joe until Melissa,

the other student of the pair, began counting the parts that Joe had created. This prompted

Joe to count the six parts, at which point he experienced a perturbation because his

scheme seemed to include the expectation of having created eight parts.

The following transcription includes the actions of the two students, the teacher,

and a witness, whose main role was to observe and provide feedback on the teacher’s

interactions with the students. Note that the computer program was designed to allow

student actions similar to those allowed with string, ruler, tape, scissors and markers; in

addition, the program included a built in measuring tool that would display the fractional

part of any piece relative to a specified whole.

Figure 1. Joe’s construction of eighths from three-fourths of a stick.
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Protocol I: Joe’s abduction.

Teacher: How'd you do that, Joe? You know that's right?

Joe: [Shrugs his shoulders] It is.

Melissa: [Melissa begins counting each of the pieces created within the

three-fourths stick.] One, two, three, four, five, six.

Joe: [Joe follows Melissa's counting activity, begins to look worried, and

recounts.]

Teacher: How many? Is each little piece one-eighth of the big stick,

Melissa?

Joe: No. No. [Joe appears disturbed or even embarrassed, with his head

resting on his left hand.]

Witness: Pull a part out Joe and measure it.

Joe: [Pulls out one of the little pieces, measures and sees, with surprise,

that the computer displays the measure as “1/8.”]

Teacher: You’re right Joe. Honest to good correct!

Joe: [shaking excitedly with a big grin]

Teacher: Now you tell us how you thought that out…

Joe: I don’t know… like if I put it on two parts and do it like that [pointing

to each of the fourths within the six-eighths piece] then it will become six,

but this one will add on to it [pointing to the rightmost fourth in the four-

fourths stick]. That’s what I thought.
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I claim that Joe’s explanation indicates an abduction resulting from

conjectural operations that modified his existing scheme. From the start, Joe

realized that the three-fourths stick was embedded in a whole stick because he had

produced the three-fourths stick by pulling out copies of pieces from the whole.

Still, his reversible unit fractional composition scheme did not make use of

disembedding three-fourths from the whole in establishing the expected number

of parts that the scheme would create. This omission is indicated by his doubt

after Melissa’s counting activity and may be attributed to the taxing activity of

solving the novel task. After finding that he had indeed created eighths, his

disembedding of three-fourths from the whole was germane to explaining why he

had created six parts instead of eight. By adapting his existing scheme to include

this use of the disembedding operation, the surprise that he had made six rather

than eight parts became a matter of consequence. In other words, Joe's inclusion

of the disembedding operation into the scheme created a conjecture that fit the

pattern of abduction and modified the existing scheme. While the disembedding

operation was well-established for Joe, its role in the existing scheme was not. Its

inclusion modified the existing scheme into the kernel of a new scheme (a

reversible fractional composition scheme) for dealing with non-unit fractions,

such as three-fourths.

The emergence of a new scheme is corroborated in the next protocol of the

same episode, in which Joe and Melissa were trying to create twelfths from three-

fourths. When Melissa partitioned each of the three fourths into four pieces, Joe

claimed she was making sixteenths. However, he remained uncertain, admitting
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that Melissa’s idea “might be right” in creating twelfths, just before she measured

to find that each piece was in fact one-sixteenth. He had incorporated his

disembedding operation into his existing scheme, resulting in a new scheme that

received confirmation in this subsequent situation. Since this new way of

operating was relatively permanent, albeit still uncertain, we can infer the

emergence of a new scheme.

Glasersfeld referred to abductions as “accommodations… done

consciously” (1998, p. 9). In the transcribed protocol, Joe became aware of the

relation between the three-fourths part and the whole and his past experience of

pulling three fourths from four-fourths, which were crucial elements of his

abduction of the disembedding operation. Although Joe did seem aware of the

abduction, I only consider the pattern of abduction from the observer’s point of

view and do not insist that abducting, nor the broader range of conjecturing

activity, be done within a student’s awareness. The pattern of reasoning that I

developed from my observation of Joe’s actions fit that of an abduction because

the incorporation of disembedding within his reversible fractional composition

scheme resolved the perturbation caused by the disparity between the observed

and expected number of parts.

It is important to note that the modification to Joe’s scheme occurred

through the novel use of an operation. This offers a partial solution to Fodor’s

paradox (i.e. that conjectures can be created through operating). However, one

could argue that this only translates the paradox to the level of operations: people

have a limited number of innate operations that can be combined and enacted in
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order to produce some set of available conjectures, so how can students learn to

operate in truly novel ways? To confront such an argument, one needs only to

recognize that children construct novel operations through reflective abstraction

of experience in their first few years (Piaget, 1977), and there is no reason to

believe that this development ceases in adulthood.

In Chapter 2, I will provide a detailed account of reflective abstraction and

the production of operations, along with related theoretical constructs such as

interiorization and metamorphic accommodation. Using those theoretical

constructs, I demonstrate that the concepts on which we operate, which result

from operation and contain operations themselves, are by no means static; they

continually change through the experience of operating (i.e., operations change

through operating). The following example illustrates how concepts (and their

associated operations) can change and provides an example of another (non-

abductive) sort of conjecture, further refuting the new formulation of Fodor’s

paradox described above.

In another protocol with Joe and Melissa, Joe was asked to use ninths to

make a bar that would be “just a little bit larger than eight-eighths.” Joe responded

that nine ninths would work, but his tone and subsequent actions indicated that he

was not certain; thus, I classify his statement as a conjecture. He tested his

conjecture by making a nine-ninths bar and visually comparing it to a previously

produced eight-eighths bar. When he found they were the same size, he counted

up the parts in each. This action indicates that his conjecture was based on whole

number comparisons, where the units were ninths. Note that this protocol actually
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occurred a few weeks before the one involving Joe’s reversible fractional

composition scheme.

Protocol II: Joe’s concepts of eighths and ninths.

Teacher: How many ninths would you need so that it would be just a little bit

longer?

Joe: Nine ninths.

Teacher: Well try it! …and see if it's right.

Teacher: You think he's right, Melissa?

Melissa: [Nods shyly but affirmatively.]

Teacher: Let's see if you're right, Joe.

Joe: [His expression did not change throughout the activity, nor upon observing

the unexpected outcome. He had begun counting the eighths and ninths when the

teacher interrupted]

Teacher: What happened? Is that longer?… just longer? …or is it the same?

Joe: Same. [Again, begins to count the eighths and the ninths with pointer

that was controlled by the mouse]

Joe had a concept for longer than that was based on his experience and

operations with whole units. For example, he knew that nine units were longer

than eight units. However, he did not have to enact any of the operations

embedded in that concept in order to form his conjecture. Rather, his

interpretation of the task involving eighths, ninths and longer than, activated his
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concepts for those three words. Skemp referred to such concepts as schemas

(1989, pp. 131-141). Schemas are symbolized schemes in which operations are no

longer triggered; when activated, they form a sort of casting net that associates

past experiences in operating and connects to (coordinates) other schemas. When

multiple schemas are activated, attempts to coordinate them may produce

uncertainty and perturbation. For Joe, it is plausible that eighths and ninths

included connections to eight and nine, respectively, so that their coordination

could be reconciled by whole-number comparison operations involved in his

schema for longer than.

Unlike the conjecture illustrated in the first vignette, Joe did not seem to

incorporate any new operation within an existing scheme. Rather, he might have

established a new relationship between existing schemas. Skemp’s model of

resonating schemas points to the idea that such concepts can change in their

coordination with other schemas and potential operations. In this case, in response

to the perturbation caused by the simultaneous activation of three schemas and his

efforts to coordinate them, Joe seemed to generalize his schema and associated

operation for longer than from strictly whole-number comparisons to fractional

ones as well. The result might have changed the trigger for his scheme that calls

longer than operations (an accommodation of the first part of the scheme), even

though his conjecture was refuted by his visual comparison of nine-ninths and

eight-eighths.

In a sense, Joe learned from this first attempt at coordinating the three

schemas (his conjecture that nine ninths was bigger than eight eighths) that nine is
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not always bigger than eight! His initial conjecture had not resolved the situation

for Joe, as indicated by his counting of the pieces just after he observed that nine

ninths was in fact commensurate with eight eighths. And so his perturbation

persisted, along with a new realization that something beyond whole number

comparisons was involved in comparing ninths and eighths. Based on his actions

in subsequent protocols, we could say that the perturbation made Joe explicitly

aware that, when more parts are used in partitioning, the parts will be smaller. It is

likely that he became more attentive to the differences between compositions of

fractional units and compositions of whole units. This hypothesized attentiveness

in Joe’s reasoning would result in and is corroborated by Joe’s operations for

conceptualizing the equivalence of 
m

m
 and 

n

n
 in subsequent protocols. He had

constructed records of his reasoning process (in determining that nine ninths was

not greater than eight eighths) that constitute a change in his conceptions of one

eighth and one ninth (as well as other unit fractions).

Whereas the first protocol exemplifies the abduction of operations in

modifying a scheme, the second illustrates how concepts can evolve through

operating. Both cases constitute learning within a closed system. Joe’s cognitive

system is not closed in the sense that his interactions with the world are irrelevant.

Clearly, his experiences in operating at least affirm or refute his concepts and

ways of operating. If Joe were deprived of sensory experience, we might cast

doubt on Joe’s potential for growth (though imagined experiences should be

considered). Instead, Joe is constantly interacting with his experienced

environment and receiving feedback by processing raw perceptual data.
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Joe’s system is closed in the sense that new operations and concepts are

not given to him in interaction; they are born in and of the system itself. It is in

considering this creative process of learning that we can determine what is innate:

humans must have a profound ability to form patterns in thought. Limits to their

viability are only introduced, against experience, when those patterns are enacted

as operations. I believe this ability is what Glasersfeld referred to in suggesting an

“innate tendency to search for rhythms, regulations, and groupings” (1998, p. 5).

By applying rhythms, regulations and groupings to our experience, operations can

change through operating and concepts can change through conceptualizing

(assimilating an experience using one or more schemas).

The two examples of conjecturing activity establish that students in middle

childhood do make mathematical conjectures, as I have characterized them. The

examples also illustrate the nature of conjecturing activity of such students and

open the possibility that learning can follow from conjecturing activity. In the

current study, I describe the teacher’s role in fostering conjecturing activity and

specify actual accommodations students have made in their schemes as a result of

that activity. Furthermore, by selecting pairs of students operating at qualitatively

different stages of development, as described by Steffe and Olive, it was possible

to study whether students at different stages made qualitatively different

conjectures.

The Zone of Potential Construction

The accommodations that a student makes constitute her zone of actual

construction, in proximity to Steffe’s zone of potential construction [ZPC].
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Borrowing from Vygotsky’s notion of the zone of proximal development [ZPD],

Steffe adapted the ZPD to a radical constructivist framework by defining the ZPC

as the range “determined by the modifications of a concept a student might make

in, or as a result of, interactive communication in a mathematical environment”

(1991a, p. 193). This notion differs from ZPD because it involves inferring

changes to specific conceptual structures through observed changes in action,

rather than a focus on the students’ actions in achieving a goal predetermined by a

teacher. Considering the scheme-theoretic approach of this study within a radical

constructivist framework, “modifications of a concept” may be thought of as

accommodations of a scheme, which constitutes learning. Students’ “interactive

communication in a mathematical environment” is most likely to occur in the

classroom, which means that a child’s ZPC articulates hypotheses for learning in,

or as a result of, activity in a given class period.

By developing zones of actual construction of the students in my teaching

experiments, I describe ZPC’s for children like them and describe the role of

conjecturing and the role of the teacher in actualizing conjecturing potential. My

goal was to construct epistemic students: second-order cognitive models that can

be used when teaching students cognitively similar to the students in my teaching

experiment. The details of this theoretical construct—the epistemic subject—and

its use in my study are described in Chapter 2 and Chapter 9, respectively.

As an initial research hypothesis, I expected to find that the six students,

operating at three different stages, would have ZPC’s that would be more alike

within pairs than across pairs. In other words, students operating at the advanced
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stage would be able to develop novel ways of operating that would be

inaccessible to students operating at the two lower stages, and students operating

at the middle stage would be able to develop novel ways of operating that would

be inaccessible to students operating at the lowest stage. Moreover, I

hypothesized that students’ ZPC’s will be actualized, at least in part, through their

conjecturing activity.
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Chapter 2: Literature Review

I am fully aware of the fact that I am merely offering conjectures – but they are
conjectures that I have found useful in constructing a model of mental operations.

Ernst von Glasersfeld, 1991

While observing the conjecturing activity of students, I form and test my own

conjectures in an attempt to develop a model of students’ reasoning.  I refer to the latter

as hypotheses and emphasize their role in my research. As a central tenet of his research,

Ernst von Glasersfeld admitted that researchers of learning are only capable of providing

hypotheses about their students’ knowledge, thus forming models of students’ mental

operations; the usefulness of such models can then be tested against further experience

when interacting with students. By observing the actions (including verbalizations) of

students and reflecting on the teacher’s actions in interaction with students, researchers

can infer the usefulness of including particular mental operations within their models of

each student. In the current study, I infer, from observed actions, the conjectural

operations of students in order to build and revise models of their conjecturing.

In this chapter, I will examine previous research on conjecturing that contributes

to building models of students’ conjecturing. For example, Arzarello et al demonstrated

the usefulness of interpreting Peirce’s theory of abduction within a theory of student

learning. I will lay the theoretical foundation for the operational approach that I employ

and explain a new use for abduction within that approach. I use Vygotsky’s zone of

proximal development in addressing the various roles of interaction in learning. Finally, I

consider the affective aspects of learning that are integrated with cognitive activity. Other
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theoretical constructs will be important to my study, especially the fractions schemes

developed by Steffe and Olive, but descriptions of their roles are integrated within my

methodology (Chapter 3) and analysis (Chapters 5 and 7).

Conjecture

In his book, Science and Hypothesis (1952), Poincaré wrote about developments

of the scientific community and attempted to answer the question of how mathematics

can be considered infallible without “being reduced to a giant tautology” (p. 1). He

described mathematics as the study of relations (p. 20) and recognized that new relations

could not be realized through syllogistic (deductive) reasoning. In rejecting the a priori

existence of such relations (i.e. rejecting radical innativism) and by recognizing no other

alternative, Poincaré deduced that “we can only ascend by mathematical induction” (p.

16). He viewed mathematical induction as the means by which we can move beyond the

construction and verification of particular cases to proofs of statements about an infinite

number of cases that are useful because of their generality. This mathematical induction

is similar to the inductive learning of which Fodor wrote, but differs from it in at least

one essential regard.

Induction applied to the physical sciences is always uncertain, because it is

based on the belief in a general order of the universe, an order which is

external to us. Mathematical induction—i.e. proof by recurrence—is, on

the contrary, necessarily imposed on us, because it is only the affirmation

of a property of the mind itself. (Poincaré, 1952, p. 13)

So, Poincaré appealed to psychology in justifying mathematical truth, establishing

mathematics as an extension of our psychological operations. On the other hand, he took
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for granted that we could observe the true nature of the universe through observation of

experimental cases, rather than recognizing a symbiotic relationship between our

psychological structures (including mathematical objects) and our perceptions of the

universe. He claimed that we could generalize from the truthfulness of our physical

experiments to probabilistic statements about the universe through analogy and induction,

much as we interpolate graphs from a few given points (1952, p. 140). To the degree that

mathematical growth can be viewed as quasi-empirical, this kind of inductive learning

can be applied to it as well.

Because generalizations are only predictions about unobserved events and are as

simple as interpolations, the probability of their truth depends upon the unity and

simplicity of the universe (p. 145). Whereas Poincaré argued that the unity of the

universe is evident in the cause-effect relations between its observed elements, the

complexity of these relations would render the universe anything but simple. Our more

detailed observations, then, are accompanied by increasingly complex scientific theories

until they are replaced by simple theories that undergo a new cycle of complication (p.

149). Poincaré left his readers with that foregoing and less-than-satisfying explanation for

the simplicity of the universe as we know it. I call it unsatisfying because he did not

appeal to our psychological and social interactions with the universe. One’s universe may

well be simple because one perceives it through his mind’s simple organization of the

universe that she has experienced. It is only when one experiences contradiction that one

complicates her theory; Poincaré would have concurred, at least, with that (p. 146).

It is unclear whether Poincaré (1952) viewed mathematics as quasi-empirical.

While he wrote about the psychological nature of mathematics, the psychological
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structures corresponded to strictly formal objects and methods, such as axiomatic systems

and mathematical induction. Imre Lakatos, on the other hand, tried to emphasize the

neglected, informal methods of mathematics: “None of the ‘creative’ periods and hardly

any of the ‘critical’ periods of mathematical theories would be admitted into the formalist

heaven, where mathematical theories dwell like the seraphim, purged of all the impurities

of earthly uncertainty” (1976, p. 2).  Lakatos was insistent, throughout Proofs and

Refutations, on demonstrating the goodness of informal (“impure”) mathematics.  His

arguments came at a time when he perceived a dominant “formalist school” (p. 1) as

providing the paradigm for mathematical development.  He argued that such a paradigm

ignores the history or “growth” of mathematics.  This paradigm, as he demonstrated in a

mock dialogue, also undermines the growth of mathematics in the individual.

Lakatos argued, instead, for another view of mathematics, citing the importance

of conjecture, counter examples, lemmas, and proofs.  Rather than submitting these as

finished products, he demonstrated that refuted proofs yield better proofs and that poor

conjectures yield better conjectures through the revision process of argued reasoning:

“Mathematics grows through incessant improvement of guesses by speculation and

criticism” (p. 5); “Naïve conjectures are superseded by improved conjectures in growing

out of the method of proofs and refutations” (p. 91).

Throughout his work, Lakatos used “guess” and “conjecture” synonymously. He

did, however, distinguish conjecturing from “blind guessing,” by suggesting that

conjecturing is an alternative between guessing and machine-like rationalizing (p. 4). It

would seem that conjectures (beyond blind guesses) would require some insight into the

problem, but, through the voice of a particularly mature student in the mock dialogue,
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Lakatos rejected insight: “I abhor your pretentious ‘insight.’ I respect conscious guessing

because it comes from the best human qualities: courage and modesty” (p. 30).

Lakatos blamed insight for the dehumanization of mathematics. Insight might

imply that one can have knowledge of a platonic structure independent of one’s own

cognition. Max Wertheimer (1945), on the other hand, described insight as a focus on

“the structure of a problem and the function of statements” (p. 121), which occurs in

response to a discord between “actual and expected results” of an action or operation (p.

219). Just like conjectures, insights occur in response to perturbation. Furthermore, the

focus on structure and function within a problematic situation may be part of conjectural

activity, although some conjectures may be too circumstantial or contextual to call

insightful. Viewed in this light, insight is a desirable aspect of informal mathematical

development. In fact, Wertheimer believed such a focus on the structure of a problem,

beyond the guidance of steps toward its solution, was essential to development: “For real

understanding one has to re-create the steps, the structural inner relatedness, the

requiredness” (p. 194).

I find it interesting that Wertheimer referred to the “requiredness” of the steps.

For me, it alludes to the necessity and infallibility of our mental operations, described in a

section of this chapter on Scheme Theory and Operations. Furthermore, it seems that

Wertheimer’s “structural inner relatedness” does refer to the psychological operations

and experiences from which mathematical objects are defined. For example, in describing

the insightful approach to finding the area of a parallelogram, he emphasized the

importance of going beyond formulas for area to arrive at the area’s form in terms of the

parallelogram being built up from unit squares (p. 34). He also emphasized the
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importance of “grouping, reorganization, structurization, [and other] operations” (p. 41)

in solving such problems.

If we wish to draw a distinction between insight and conjecture, we may say that

conjectures admit uncertainty whereas insight may not. Of course, presumed certainty

seems to have been Lakatos’ entire concern about insight, but certainty here he only

refers to the attention of the learner at the time; he may find fallibility in his insight once

he uses it in thought or action. Charles Peirce alluded to a similar relationship between

abduction and insight: “The abductive suggestion comes to us like a flash. It is an act of

insight, although a very fallible insight” (Peirce, 1998, p. 227). Insights that appear

unquestionable, Peirce called perceptual judgments. I find this distinction useful because

the judgments we continually make about things, such as the colors of objects, are taken

at first as infallible observations. I will address perceptual judgments and abductions in

general, later in the chapter.

Regarding questions about the genesis of conjecture, Lakatos demurred, referring

to conjecture (in the quote below) as an infinite regression with no beginning. As we shall

see, at least two other major authors (Peirce and Polya) took similarly modest approaches

to the problem of identifying the origins of conjecture, and I was able to find none who

took bolder approaches.

Our naïve conjecture was not the first conjecture ever, ‘suggested’ by

hard, non-conjectural facts: it was preceded by many ‘pre-naïve’

conjectures and refutations. The logic of conjectures and refutations has

no starting point, but the logic of proof and refutations has: it starts with
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the first naïve conjecture followed by a thought-experiment. (Lakatos,

1976, p. 71)

Much like Lakatos, George Polya believed that mathematics is best viewed as an activity

requiring a laborious and cyclical process of conjecture and deductive reasoning: “Many

a guess has turned out to be wrong but nevertheless useful in leading to a better one”

(Polya, 1957, p. 99). Polya also characterized useful conjectures in terms of the activity

leading to them. “Guesses of a certain kind deserve to be examined and taken seriously:

those which occur to us after we have attentively considered and really understood a

problem in which we are genuinely interested” (p. 99). Perhaps Polya was describing the

role of insight in intelligent guessing. He also described the kinds of “plausible

reasoning” that may support one’s guesses.

Polya cited four broad methods of plausible reasoning: generalization,

specialization, analogy, and induction (1954a).  He offered examples of reasoning, based

on these methods, illustrating how conjectures might gain credibility.  The following is

an example of such plausible reasoning: “If A is analogous to B [where A and B are

conjectures], and B is proven true, then A becomes more credible” (1954b, p. 10). Also,

affirming a conjecture in special cases, through observation, renders the conjecture more

plausible. Although Polya was not primarily concerned with identifying the source of

conjectures, we will see in the next section that other authors refer to some of these

methods of plausible reasoning as methods for conjecturing.

Polya did make some speculations on how conjectures arise: “If a naturalist

observes a striking regularity which cannot be attributed to mere chance, he or she

conjectures that the regularity extends beyond the limits of his actual observations” (p.
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49).  This statement is reminiscent of earlier writing by Poincaré (described above) about

interpolating from points of observation. However, the statement might also be

interpreted as referring to inductive learning, and it seems that later authors did interpret

his statements that way.

Daniel Chazan and Richard Houde (1989) inferred from Polya’s work that

“conjectures are the result of plausible reasoning” (p. 3). This inference is quite the

reverse of the description of plausible reasoning provided above. This new twist in

definition may be useful for attempts to describe students’ activities leading to

conjecture. To differentiate the use of terms, we might refer to these two directions of

reasoning as pre-conjectural plausible reasoning and post-conjectural plausible

reasoning, respectively (Norton, 1999, p. 18).  In any case, Chazan and Houde also seem

to infer from Polya’s work that conjecturing is inductive.

According to Chazan and Houde, “a conjecture in geometry is a statement that

may be true or false; at the time of consideration, the conjecturer does not know for sure

whether it is true or false, but thinks that it is true” (1989, p. 3). Although I consider

conjectures to be based on the use of operations of which the learner does not necessarily

need to be aware, Chazan and Houde’s definition implies two important aspects of

conjecture for my study: a conjecture is an uncertainty (guess), and the conjecturer is

concerned about its credibility.

Chazan and Houde further insist that conjectures pertain to whole “sets of

objects” that “explicitly mention the intended set of objects” (1989, p. 3).  They refer to

guesses about particular situations as observations, akin to Peirce’s idea of perceptual

judgment. Barring conjectures about particular situations, which can be checked by
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observation, “the only way to determine the truth of a conjecture is through deductive

proof” (p. 3). Taking such an absolute positivistic stance, Chazan and Houde do not leave

much room for psychological mechanisms that might precede conjecture. If conjectural

statements are, in some absolute sense, true or false and if they must pertain to

preconceived sets of objects, then conjecturing is reduced to noticing properties shared by

some subset of observed objects and attributing those same properties to some extension

of the subset.

Ferdinando Arzarello and Federica Olivera stand out as researchers of learning

who have moved away from the inductive view in order to describe the psychological

processes behind students’ activities of conjecturing and proving. Moreover, they do not

insist that conjectures take the form of logical statements: “The conjecture in reality is a

hypothesis to be checked… It has a logical flavor, but perhaps it is not phrased in a

conditional form, nor is it crystallized in a logical form” (Arzarello et al, 1998, p. 84).

These authors describe ascending and descending “modalities of acting,” which are

roughly equivalent to pre-conjectural and post-conjectural plausible reasoning (p. 84).

Much like Lakatos’ descriptions of the interplay between conjecturing and proving, they

emphasize the “complex switching” back and forth between the modalities (p. 84). In

fact, their descriptions of switching from proving (descending) to conjecturing

(ascending) fit those of Lakatos; namely, in attempting to prove one conjecture,

subsequent problems are experienced, which require new conjectures. But “Lakatos does

not analyze the [complementary] conjecturing phase” as the authors do (p. 86).

The authors found fault in both Polya and Lakatos’ work, because each work

discussed “only half of the story” (p. 86). Whereas they viewed Polya’s work as
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examining the usefulness of four broad methods on the ascending side, Lakatos restricted

his attention to the activity of proving. “The analysis of the two sides reveals strong

elements of continuity” (p. 86). The authors claim that the missing piece making it

possible to switch from the ascending to descending side is Peirce’s idea of abduction. As

illustrated in Chapter 1, I too find abduction useful for describing students’ conjectures,

and I will elaborate on Peirce’s theories about abduction in the next section. Whereas the

authors’ descriptions of the switching back and forth between modalities may be helpful

to my study, the detail of their work is not as helpful because they examined only the

logic of conjecturing and did not consider the psychological operations behind the logical

forms.

Analogy, Induction, and Abduction

“The scientist’s procedure to deal with experience is usually called induction”

(Polya, 1954a, p. 4). Polya characterized this procedure as one that “begins with

observation” of particular instances, which in turn “suggest a general statement” (p. 4).

Moreover, he noticed that analogy was always involved in the process. As an example of

the inductive procedure, he considered how one might come to formulate what is

commonly called Goldbach’s conjecture: All even whole numbers greater than 4 can be

written as the sum of two odd primes. I will now examine Polya’s hypothetical trajectory

and use it to develop a critique of induction and analogy.

“By some chance, you come across the relation 3+7=10, 3+17=20, 13+17=30 and

notice some resemblance between them. It strikes you that the numbers 3, 7, 13, and 17

are odd primes” (p. 4). Here, Polya emphasized the role of analogy in the inductive

procedure: “We notice some similarity” (p. 5) between the equations; that is to say that
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the three equations are analogous. Polya explained that if the learner could identify

specific relationships between the respective components of two systems, the systems

could be considered analogous (p. 13). In applying this pattern to the case of Goldbach’s

conjecture, we might say that we are always adding what we have recognized as two

primes in order to achieve a sum that is an even number. The analogy would be one

drawn between the observed cases: Whereas the specific numbers differ, the pattern of

adding primes to achieve various even numbers persists. We could then generalize this

analogy in wondering whether we can achieve all even numbers in such a way—hence

the conjecture.

Although Polya seemed to be more interested in the probability of logic, it is

interesting to note that he recognized the importance for one to break free from logic in

order to grow intellectually. For instance, he applauded the genius behind Euler’s

willingness to apply rules to cases for which they were not intended. Such moves,

motivated by analogy, were illogical but served the purpose of generating new theories.

Like Lakatos, Polya demurred from an attempt to explain the genesis of conjecture but

recognized that extra-logical reasoning was involved. Polya also recognized the role of

psychological structures, beyond logical statements, involved in conjecturing, referring to

analogy and generalization as “fundamental mental operations” (p. 17).

We will see that Peirce, too, alluded to the importance of mental operations in

explaining the advent of conjecture. So, an examination of mental operations appears

necessary not only in explaining learning (as presented in Chapter 1), but also in getting

beneath the logic-laden surface of mathematics. Mental operations in general are

discussed later in this chapter, where it is argued that Polya’s generalization can be
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thought of as a special case of reflective abstraction and that the logical limits recognized

by Peirce and Lakatos can be circumvented.

Polya also understood the crucial role that operations of analogy play in

conjecturing. His ideas are supported by Glasersfeld who, in answering “how

hypothetical rules are invented,” found that analogy “seems to me a reasonable

suggestion” (Glasersfeld, 1998, p. 6). “There may be other ways of intuiting a rule on the

strength of a single observation, but I would suggest that the conception of analogy can

explain a great many such intuitions” (p. 7). But the ubiquitous role analogy played in

Polya’s view of induction is replaced by abduction in Glasersfeld’s view. He claimed

that, “every inductive inference contains an implicit abduction” (p. 7).

In Peirce’s paper on the “Logic of Abduction,” Peirce began his outline by

introducing the limiting case of abduction: perceptual judgment. As mentioned before,

this is roughly equivalent to Chazan and Houde’s conception of observation; they are

“absolutely beyond criticism” and serve as “the starting point or first premises of all

critical and controlled thinking” (Peirce, 1998, p. 227). In other words, perceptual

judgments are made before the observer can critically examine them; initially, the

observer will accept things as he or she perceives them. However, there is much more to

perceptual judgment than meets the eye!

Peirce used ambiguous Gestalt figures, such as that illustrated in Figure 2, to

demonstrate that we have already made decisions about objects upon perceiving them.

“The very decided preference of our perception for one mode of classing the percept

shows that this classification is contained in the perceptual judgment” (p. 228). In the

case of Figure 2, there are at least three different ways of perceiving the cube(s) (Do you
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see the cube in the corner, the two cubes, or the one cube with a missing piece?). One’s

perceptual preference is immediate and, for the time being, seems beyond question. It’s

not that one cannot perceive the figure in another way, but that we cannot consider

matters involving such controlled thinking about the object until we have first perceived

it in one definite way. This is, more or less, an elaboration of Aristotle’s view that “nihil

est in intellectu quod non prius fuerit in sensu [nothing is in the intellect that is not first in

the senses]” (p. 226).

Figure 2. “Cube in a Corner” illusion taken from EncycloZino.

The first time it is shown to us, it seems as completely beyond the control

of rational criticism as any percept is; but after many repetitions of the

now familiar experiment, the illusion wears off, becoming first less

decided, and ultimately ceasing completely. This shows that those
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phenomena are true connecting links between abductions and perceptions.

(Peirce, 1998, p. 288)

Peirce referred to abductions as perceptual judgments that are “discretely and consciously

performed” (p. 229). This definition demands a short discussion of what it means to be

conscious. First of all, in Peirce’s view, it is consciousness that opens the possibility for

control and rational criticism (including doubt); full consciousness of a situation allows

for control and critique of it. Jean Piaget seemed to make a complementary suggestion in

his claim that “need creates consciousness” (1955, p. 231). Consciousness corresponds to

a degree of control that one has over his mental processes that may be generated by the

needs of the learner. In particular, experiencing a problem (a perturbation) appears to

have the effect of awakening a learner’s consciousness about the particulars of a

situation.

In Chapter 1, I discussed the pattern of abduction. Here, I offer one more example

of the pattern to elucidate it. Consider again Polya’s illustration of Goldbach’s conjecture.

Polya suggested that the abstraction of the pattern (even numbers as the sum of two odd

primes) involves analogy, which may be the case. But it also fits the pattern of abduction,

wherein a general rule is adopted or created to explain a surprising situation. In this case,

the surprise might involve the recognition of the multitude of prime numbers, being

peculiar in their own right. To explain the situation, the student would begin to examine

the properties of the equations, combining various whole number concepts and operations

in novel ways, starting from just one equation. Then the student could inductively test to

see if a particular property holds across all three cases. Eventually, the student might

alight on a pattern fitting each of the equations and defining Goldbach’s conjecture,
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which becomes the general rule that explains the surprising situation. This is what

Glasersfeld was referring to in saying that every induction includes an implicit abduction.

Glasersfeld’s work on conjecture was built mostly from that of Peirce, by

demonstrating how abduction can be used as a theoretical construct within scheme

theory, bringing abduction closer to the level of mental operations. But Peirce himself

viewed abduction as logical inference only.

Abduction, although it is very little hampered by logical rules,

nevertheless is logical inference, asserting its conclusion only

problematically or conjecturally it is true, but nevertheless having a

perfectly definite logical form. (Peirce, 1998, p. 231)

On the other hand, Peirce did recognize the fruitlessness of applying logical analysis to

the genesis of an abduction. We have already noted this in the extreme case of perceptual

judgment, but the following passage illustrates that the infinite regression can be applied

to abductive inferences as well.

If we were to subject this perceptual judgment to logical analysis we

should find that it terminated in what that analysis would represent as an

abductive inference resting on the result of a similar process that a similar

logical analysis would represent to be terminated by a similar abductive

inference, and so on ad infinitum. (Peirce, 1998, p. 227)

Herein, we see the trap in which a strictly logical analysis would place us. As discussed

earlier in the chapter, a psychological theory of mental operations may resolve such an

endlessly circular (hence useless) logical analysis. The passage above also reiterates the

discrete nature of abductions, versus the continuous nature of perception (p. 229).
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Although we may need to go beyond logical analysis to explain the origin of an

abduction, because they are discrete and conscious, abductions themselves are, in

principle, susceptible to logical question and doubt.

In this section we have examined three important mechanisms (analogy,

induction, and abduction) involved in conjecturing. Glasersfeld suggested that abductive

inference is the ever-present, crucial phase, but I am careful not to dismiss any of the

mechanisms as useless or elevate any of them to ubiquity in explaining the formation of

conjectures. Polya and Glasersfeld (notwithstanding the latter’s emphasis on abduction)

each provided examples from their work demonstrating the usefulness of analogy (Polya,

1954a; Glasersfeld, 1998, pp. 6-7). Beyond that, from my own past research (Norton,

2000, p. 293), I have identified conjecturing episodes in which it is difficult to ascribe

any particular abduction (including the Protocol II given in Chapter 1). It is crucial that

researchers remember Glasersfeld’s advice from the beginning of this chapter, that

usefulness is the criterion for good theoretical constructs.

Scheme Theory and Operations

As demonstrated by Arzarello et al, abductions can be used to explain the

transition from the conjecturing modality to the proving modality. But Peirce himself

noted that abductions could not explain the novelty of the conjecture: “Self-control is the

character which distinguishes [abductive] reasoning from the processes by which

perceptual judgments are formed, and self-control of any kind is purely inhibitory. It

originates nothing” (Peirce, 1998, p. 233). This means that Peirce would be unable to

explain logically how abductions are formed, even though he was able to outline a couple

requirements: “Any hypothesis may be admissible, in the absence of any special reasons



33

to the contrary, provided it be capable of experimental verification” (p. 235). In other

words, our creative selves are free to construct any novelty that can be tested against

experience and does not contradict existing ideas a priori.

Whereas Peirce was concerned with the logic of abduction, Poincaré was

concerned with mathematical infallibility and tautology, and Polya and Lakatos were

concerned with the growth of mathematics through reasoning. All of them, of course,

reached points where they could conduct no further analysis; such points reveal what we

take for granted in any theory. However, Polya and Glasersfeld had the foresight to

suggest that analogy could be described as a mental operation that might generate new

ideas. In the next section, we will see how the mental operation of analogy involves the

reflective abstraction of a concept to a higher level. We turn first to a scheme theory of

operations, developed by Jean Piaget and refined by Glasersfeld, to establish new givens

that are fundamental to understanding learning and explaining the origins of conjectures.

Within scheme theory, Glasersfeld confronted the radical innativist idea that the

logical structure of all possible conjectures must be present in the learner a priori. That

was the trap (later formulated as Fodor’s paradox) that Poincaré tried to avoid. Even with

his theory of abduction, Peirce would have been resigned to radical innativism, except

that he recognized that there must be other unconscious (and therefore extra-logical and

extra-linguistic) mechanisms at work. Glasersfeld picked up where Peirce left off by

describing those mechanisms in terms of schemes and operational structures, the

theoretical constructs that Jean Piaget and Bärbel Inhelder had developed.

Piaget and Inhelder’s (1969, p. 44) theoretical development of operations reminds

us to consider carefully the meaning of Aristotle’s credo that nothing is in the intellect
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that is not first in the senses; the authors dedicated much of their work in The Psychology

of the Child to providing evidence for the need to consider the actions and operations of

the learner, beyond passive perception through the senses. For now, let us be content in

defining (mental) operations as actions that are interiorized through abstraction. Whereas

actions apply to anything we do in or to our perceptions (possibly in implementing an

operation), operations can be applied to concepts. I will elaborate on these ideas more in

the next section on reflective abstraction. As an example of the need for actions and

operations, Piaget and Inhelder contended that “logico-mathematical concepts presuppose

a set of operations that are abstracted not from the objects perceived but from the actions

performed on these objects, which is by no means the same” (p. 49). The authors further

argued that even perception involves action on the part of the learner. We saw such

evidence earlier in considering Gestalt figures.

While Gestaltism, developed in part by Wertheimer and praised by Peirce,

highlights the need to consider the operations of the observer in perceiving, this theory

diverges from scheme theory when we consider the relationship between perception and

operation. Gestaltists claim that the two occur and develop simultaneously. But through

their work with children’s development of object permanence, Piaget and Inhelder found

that “perceptual effect is determined by sensorimotor schemes, rather than explaining

them” (p. 33). In other words, our operations determine what we see and how we see; our

operations organize and structure our perceptions rather than being given through

perception.

Glasersfeld (1998, p. 8) thought about sensorimotor schemes (action schemes) in

terms of a three-part structure, as represented in Figure 3. He developed this model from
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Piaget and Inhelder’s description of schemes. Whereas behaviorists provided only two

steps in terms of stimulus and response, but Piaget determined the need for some sort of

expected result in order to explain goal directed behavior and the modification of

schemes (p. 8). Moreover, the behaviorist’s stimulus is one that is external to the learner,

but the perceived situation involves an assimilation on the part of the observer.

Perceived Situation ‡ Activity ‡ Expected Result

Figure 3. Glasersfeld’s model of a sensorimotor scheme.

. “As in the reflex, every implementation of an action scheme requires the acting

subject to recognize a triggering situation. Such a recognition is of course an assimilation,

because no two situations in a subject’s experience are ever quite the same” (Glasersfeld,

1998, p. 9). Again, this emphasizes that the perceiver is active even in the recognition of

a situation. Since the observer’s situation that the perceiver assimilates are never

identical, when assimilating them he neglects aspects of the situation that do not fit the

schemes of perception and action. As such, assimilation is our psychological mechanism

for constructing experience from sensory material.

“Assimilation plays a role also in the third part of the scheme. If a scheme is to be

considered successful, the actual result of the activity must be such that it can be

assimilated to the expected one” (p. 9). When we assimilate a situation using a scheme,

we have expectations about the result of acting on the assimilated experience. For

example, upon placing a glass on a table that we have never seen before, we might expect

that the table will support the glass. If, instead, the glass falls through the table, we would
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probably be surprised and should want to explain the unexpected result, because we

might not be able to assimilate the perceived result of the glass falling into the expected

result. This is the realm of conjecture and accommodation, wherein our schemes are

modified.

If, then, a formerly disregarded characteristic of the triggering situation

[such as the perception of the table and the goal of putting the glass down]

is taken into consideration, this may bring about a modification of the

conditions that determine the triggering of the scheme; or it may bring

about the formation of a new scheme. Both are instances of

accommodation. (Glasersfeld, 1998, p. 9)

Glasersfeld (1995) interpreted Piaget’s distinction between the roles of assimilation and

accommodation in the following manner: “[assimilation] modifies what is perceived in

order to fit it into the organism’s conceptual structures” (p. 62); accommodations are the

modifications the organism makes to structures when the assimilation  “does not yield the

expected result” (p. 66). So, whereas we are always assimilating sensory input with

existing structures in order to construct our experiential reality, accommodations occur

when we experience dissonance in applying our actions or operations to perceived reality

(which is already a result of action). Although it is through action and operation that we

experience perturbations, accommodations may be made to any part of the scheme.

There is one kind of assimilation that is also a kind of accommodation: a

generalizing assimilation. Steffe and Thompson (2000) described these as assimilations

of situations into schemes, where the situation involves novel sensory material relative to

the scheme (p. 26). The trigger of the scheme may be accommodated in such
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assimilations because, if using the scheme in the situation produces the expected result,

one might modify the trigger to include other situations involving such novel sensory

material. Glasersfeld described a third kind of accommodation, below, and we will

examine other kinds in the next section of this chapter.

“If the accommodation were done consciously, it would be an abduction, because,

at the moment the changes are made, they are hypothetical in the sense that their

usefulness has not yet been tested in further experience.” (Glasersfeld, 1998, p. 9).

Finally, we arrive at Glasersfeld’s argument that transforms Peirce’s theory of abduction

to the operational level, where there is still hope that it will be useful in describing the

origins of conjecture. However, Glasersfeld seemed to equate abductions with

conjectures and claimed that they are done consciously. In light of his very next

line—“Children accommodate their action schemes by means of fortuitous choices quite

some time before they begin to reflect on them consciously” (p. 9)—I would argue that it

is useful to consider unconscious abductions that, from an observer’s point of view, fit

the pattern of abduction. Indeed, this is the manner in which I will refer to abductions

throughout this paper. Furthermore, I have already mentioned an example of conjecture

(Protocol II) that did not seem to fit this pattern; so, I do not accept that all conjectures

are abductions.

Glasersfeld found abduction to be pervasive in cognitive development and

claimed that it is “the mainspring of human creativity” (p. 10). Certainly, I have found the

pattern of abduction useful in describing students’ conjecture. For example, consider

Protocol I in Chapter 1. Still, I have also admitted that considering the pattern of

abduction at the operational level only translates Fodor’s paradox to the level of
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operations instead of statements. I will address this new problem in the next section. For

now, let us consider how operations might help resolve some of the historic problems

faced by Poincaré, Lakatos, and Polya.

First of all, Piaget and Inhelder (1969, p. 50) characterized operations by their

reversibility and composibility. I interpret this to mean that the operations that I attribute

to students are potentially reversible (composible) from my point of view, although the

student may not yet be able to reverse (compose) the operations. As interiorized actions,

they act on our conceptions, define relationships between them, and, along with our

records of experience, constitute them. It may be said that mathematics is the study of

relationships, and so Piaget’s reference to the importance of logico-mathematical

operations is justified. This point also marks the distinction between the study of

mathematics and other sciences. Both may be considered at least quasi-empirical

(because mathematical concepts are ultimately abstractions from actions), but, whereas

science describes actions on perceptual material, mathematics describes actions on

abstracted concepts.

Now an operation is rigorously additive, for 2+2 make exactly 4 and not a

little more or a little less as in the realm of perceptual structures. It seems

obvious, therefore, that operations, or intelligence in general, do not derive

from the perceptual systems. (Piaget & Inhelder, 1969, p. 50)

Understanding mathematics is such a way demystifies the infallibility of mathematics.

For instance, I speculate that we know that 2 plus 2 equals 4 because our operations of

uniting 2 and 2, each of which is defined as the result uniting 1 and 1, is precisely the

operation defining 4 within an explicitly nested number sequence; or, in other words, we
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can reverse the uniting operations defining each 2 and compose all three uniting

operations as one (1+1+1+1), defining 4. If someone says, “2 plus 2 is 1 because when

two raindrops meet two others, the result is one raindrop,” that person is referring to an

operation that does not fit our consensual meaning of addition, which involves a uniting

operation of a different kind. We might say that the person has abstracted a merging

operation, which is a viable operation. But it would not take long in conversation with

that person to realize that our operations are not compatible. In such a manner, we can

parse out differences between various operations, abstracted from various actions (like

those applied to perceptions of raindrops merging) until we can agree on what it means to

add. So an operational understanding of mathematics might resolve Poincaré’s problem

of explaining mathematical infallibility, elaborate on the structural inner relatedness of

Wertheimer’s insight, and help to clarify Polya’s and Lakatos’ attempts to humanize the

field.

We can extend the argument to logical reasoning in general. Although Ludwig

Wittgenstein (1974) did not address specific psychological structures, such as operations,

we can interpret one of the results of his Tractatus in light of them. “What makes logic a

priori is the impossibility of illogical thought” (p. 47). Mental operations are logically

necessary because we can carry them out in thought, but Glasersfeld drew an even more

direct link between operations and deductive logic: “The certainty of conclusions

[through deduction] pertains to mental operations and not results of schemes on the

sensorimotor level” (1995, p. 69). Although the application of a scheme to a particular

situation is fallible and may yield perturbation, the operations of the scheme are infallible

in the sense that Wittgenstein suggested of logic.
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To conclude this section, before considering the universal mechanisms of

intellectual growth, I would like to mention a pattern of reasoning—syncretism of

reasoning—that may be particularly relevant to my study. In studying children between

ages nine and twelve, Piaget identified a peculiar pattern that appears to precede formal

conjecturing. Though I have opened my study to the consideration of informal

conjectures that may be attributed to conjectural operations, children’s development of

more formal systems of reasoning should be important to the implications of my results.

Moreover, it is interesting that this syncretism of reasoning uses assimilation to generate

propositions.

Syncretism of reasoning is the assimilation of two propositions in virtue of

the fact that they have a general schema in common, that they both, willy

nilly, form part of the same whole. A enters into the same schema as B,

therefore A implies B. (Piaget, 1955, p. 155)

The result of syncretic reasoning, then, resembles the if-then form that we expect to find

in the formal conjectures (hypotheses) of a researcher, although it lacks insight into the

relationship between cause and effect. Bärbel Inhelder and Jean Piaget (1958) found that

the development of such formal relationship “depends on the establishment of a

combinatorial system.” This system enables the student to link a set of base associations

or correspondences with each other in all possible ways so as to draw from them the

relationships of implication (p. 107).

Reflective Abstraction

“The weighty task of constructivism is to explain both the mechanisms of the

formation of new concepts and the characteristics these new concepts acquire in the
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process of becoming logical necessity” (Piaget, 1980, p. 26). In the sections leading up to

this one, I have outlined a constructivist model that defines learning as accommodations

of schemes and the growth of concepts in general. Realizing that “both interiorized

concepts [schemas] and interiorized actions [operations] are needed for intelligent

learning” (Olive and Steffe, 2002, p. 118), what is missing from the theory that I have

described is a mechanism that would explain how students form concepts and operations.

The general operations of reflection and abstraction serve this role in scheme theory by

interiorizing perceptions, actions, and concepts. These operations can be applied to any

experience and substantiate the innate capacities referred to in Chapter 1, namely “to

remember experience, reflect on it, and to make comparisons” (Glasersfeld, 1998, p.7).

Glasersfeld (1995) distinguished in Piaget’s work two broad categories of

abstraction. Empirical abstraction refers to the process by which we form records of our

perceptions and are able to remember, recall, and re-present them to ourselves as

figurative material. These are abstractions that we continually perform in our waking

lives, usually (if not always) unawares; they create and modify our concepts. Likewise,

sensory-motor experiences from our physical actions can be empirically abstracted as a

pattern of action (Glasersfeld, 1995, p. 69), so that they can then be thought of as

internalized actions that we can re-present and apply to figurative material, independent

of the physical action.

Reflective abstraction can be thought of as reflection on and organization of the

products of empirical abstraction—action schemes, internalized actions, and figurative

material—or the products of previous reflective abstractions. Sometimes this is done

consciously, in the sense that we commonly use the word reflect, as in “I will reflect on
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my thoughts.” Other times, reflective abstraction may be used to describe a subconscious

coordination of concepts and operations, which may occur as a result of an engendering

accommodation. We will consider a special case of this (metamorphic accommodation)

later in this section. In any case, reflective abstraction generally refers to the (uniquely?)

human ability to produce our cognition on two different levels, one (higher) level of

cognition using the other (lower) level of cognition as material for operating. As such,

through reflective abstraction, humans are also able to “project and reorganize” concepts,

schemes, and operations at one level in their cognitive structures to higher levels (p. 70).

As Glasersfeld described in the quote below, reflective abstraction in

operating may result in accommodation of the operations involved in resolving an

initial perturbation. Still, other times it may happen that a second perturbation is

experienced after the learner reflects upon two or more concepts or operations, in

which case the perturbation is brought about through reflective abstraction.

Every time the cognizing subject manages to eliminate a novel

perturbation it is possible and sometimes probable that the accommodation

that achieved this equilibrium turns out to have introduced a concept or

operation that proves incompatible with concepts or operations that were

established earlier and proved viable in the elimination of other

perturbations. (Glasersfeld, 1995, p. 67)

Whereas Glasersfeld, following Piaget, used the terms empirical abstraction and

reflective abstraction, Richard Skemp (1989, p. 70) distinguished between

abstractions from experience (concepts) and abstractions from concepts, which he

called secondary concepts. For him, concepts are synonymous with schemas,
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which “represent regularities abstracted from isolated experiences” (p. 52). We

might notice many parallels between the theoretical constructs of Skemp and

Piaget. However, as Olive and Steffe pointed out, Skemp never addressed

interiorized actions (2002, p. 118), just as Piaget noted of Aristotle.

Notwithstanding Skemp’s serious omission of operational change,

incorporating Skemp’s theory within scheme theory is particularly useful in

addressing an issue introduced in Protocol II: How do concepts change when we

operate on them? Skemp explained that, “[concepts] grow by assimilating new

experiences into existing schemas” (1989, p. 63). Of course this is viable because,

if we accept that concepts are abstractions from experience, why should the

abstraction cease after any number of experiences? But concepts also grow

through interiorization and relationships established between them through

reflective abstraction.

To make the relationship between the theories of Skemp and Piaget

explicit and incorporate Skemp’s theory within the larger scheme theory of

learning, I think of schemas as schemes that are symbolized through their

interiorization, which occurs in reflective abstraction. For example, Steffe (1991b)

described how a child named Tyrone, through operating, could develop a number

sequence from his figurative counting scheme. The conceptualization consisted of

the child interiorizing his acts of counting to five into a pattern of five, thus

establishing a new schema. Tyrone no longer needed to enact the operation of

counting by ones five times in order to recognize five. Instead the word five could
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resonate a concept that contained the pattern (the interiorized record of counting)

and the potential operation of counting.

We can see that both analogy and generalization involve a kind of reflective

abstraction—one in which patterns are abstracted from a way of operating in certain

situations and applied to other situations—whereas induction is a kind of empirical

abstraction in which we proceed from “some to all by simple extension” (Piaget, 1980, p.

28). We are now also ready to consider the role of reflective abstraction in metamorphic

accommodation: Steffe’s reply to Fodor’s learning paradox.

“A metamorphic accommodation of a scheme leads to a modification of the

scheme that occurs independently but not in any application of the scheme” (Steffe,

1991b, p.38). In Tyrone’s case, five had been interiorized as an operational pattern on a

higher level than the rest of his counting scheme, and this caused a perturbation of

dissonance within the organization of his counting scheme. Steffe demonstrated that,

during a period of relative inactivity, Tyrone had projected the rest of his counting

scheme to the higher level, creating operational patterns up to at least sixteen! Steffe

hypothesized that the metamorphosis was a kind of reflective abstraction through which

Tyrone’s counting scheme was reorganized at the higher level and the perturbation was

eliminated.

Social Interaction

“An explanation of a child’s development must take into consideration two

dimensions: an ontogenetic dimension and a social dimension” (Piaget & Inhelder, 1969,

p. 137). In the framework that I have established for my study, the social dimension is a

crucial aspect of the ontogenetic dimension; that is, the individual needs to interact with
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her environment, both physically and socially, in order to develop ontogenetically. Lev

Vygotsky presented a different perspective in distinguishing children’s learning from

their development. In his view, social learning precedes ontological development.

Learning awakens a variety of internal developmental processes that are

able to operate only when the child is interacting with people in his

environment and in cooperation with his peers. Once these processes are

internalized, they become part of the child’s independent developmental

achievement. (Vygotsky, 1978, p. 90)

Vygotsky’s perspective may be useful in describing how some cultural structures, like

language, seem to be shared among people, whereas operational structures clearly vary

from person to person. According to him, learning a language amounts to awakening the

operational structures that support the use of language, but language itself is shared and

exists, first, between people in society, before it becomes internalized within them. Other

forms of cultural knowledge, such as mathematical concepts, become internalized by the

individual through language. So, a child may learn from a teacher by solving a problem

in linguistic tandem, and then, once the child has internalized the structure of linguistic

interactions within his operational structures, he can solve similar problems on his own.

In such a way, “the developmental process lags behind the learning process” (p. 90). In

order to engage in problem solving with the teacher in the first place, the child must have

already developed suitable operational structures to support the linguistic interactions.

The disparity created by the lag introduces a zone that Vygotsky views as essential to

learning and development.
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The zone of proximal development of a child is the distance between her

actual development level as determined by independent problem solving

and her level of potential development as determined through problem

solving under the guidance or in collaboration with more capable peers….

It defines those functions that have not yet matured but are in the process

of maturation, functions that mature tomorrow but are currently in the

embryonic state. (Vygotsky, 1978, p. 86)

The goal for teachers, then, is to promote development by engaging students

linguistically with the teacher or other students in solving problems determined by the

students’ zones of proximal development. Of course, these zones will vary among the

students in a classroom, and so teachers might try to identify the overlaps. We will see

that such intersubjectivity presents a more complicated dilemma for the perspective of

learning that I have proposed. First, let us consider the differences between the two

perspectives.

Whereas a child’s zone of proximal development is defined in terms of a

predetermined set of problems that a teacher may pose, a child’s zone of potential

construction (of principal interest to my study) refers to mental operations indicated by

and explaining her actions. This distinction points to a fundamental epistemological

difference between the two perspectives: In Vygotsky’s view, problems, concepts, and

other forms of knowledge exist in society first before being internalized by the

individual; from a scheme theoretic perspective, problems, concepts, knowledge, and

even society itself are uniquely constructed by the individual. The former perspective

beholds “[children] growing into the intellectual life of those around them” (p. 88). The
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latter perspective frees the researcher to consider differences between student’s

conceptions and those around them—difference that may be obscured in language—but it

must bear the burden of explaining how concepts can be taken as shared between

students. Humberto Maturana took pains to provide a detailed account for the latter

perspective and argued for its necessity (Maturana, 1988). I will only mention here that

he appeals to the self-organization (autopoesis) of the individual mind.

Such differences in epistemology have spurred arguments over whether the mind

exists in the individual or in society (Cobb, 1994; Lerman, 1996; Steffe and Thompson,

2000). Some researchers of mathematics education have tried to put theories into

perspective either arguing that scheme theory and Vygotsky’s views are complementary

(Cobb, 1994; Kieran, 2000) or dichotomous (Lerman, 2000). In my view, the two

theories provide complementary benefits and limitations that may render one more useful

for one purpose and another more useful in serving another purpose. Although I have

primarily relied on the scheme theoretic perspective for my study, both in describing

students’ individual constructions and interactions between students, zones of proximal

development can be identified for my participants and provide a contrasting view of their

learning.

The zone of potential construction, as defined in Chapter 1, is based on the

researcher’s model of the operations of a child in a particular domain. It is important to

note that, using such a model, the meaning a child makes of his every interaction,

including all linguistic interactions in the domain, is afforded by his existing schemes and

operations. If a child is able to solve a problem with the aid of an expert, this only means

that he can use his schemes to meaningfully interpret the actions of the expert just as the
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expert interprets the child’s actions as signifying an understanding of the problem. In

scheme theory, one would never make the claim that a child comes to share the

knowledge of the expert, but that the child and the expert may resolve perturbations

caused by perceived differences in their actions until no further differences are perceived.

In my final chapter, I will illustrate the dangers of assuming shared knowledge between

students acting in the overlap of their zones of proximal development.

Now, the zone of potential construction is also modeled by the researcher in

hypothesizing what schemes and operations might become available to the child through

a reorganization of schemes and operations within the researcher’s existing model of the

student. So, it is much more difficult to identify or even appropriately refer to the overlap

between students’ zones of potential construction. We can resolve this issue by

considering yet another researcher construct: the epistemic subject.

While each child in a classroom thinks and behaves differently, teachers

can only know their students through the models they build of them. This is what

makes it possible for a teacher to infer that two students are thinking in

compatible ways about a mathematical problem; it only means that the teacher’s

models of the two students actions cannot be distinguished or that the teacher may

decide that the differences are unimportant in a particular context. While this

admits a limitation of teachers’ possible understanding of students, it is a useful

limitation because it allows the teacher to act effectively within a classroom of

thirty minds as if there were only a few minds, at least in consideration of a

particular mathematical concept. These general models of thinking are

constructions of the teacher that can be thought of as second-order models called
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“epistemic subjects” (Steffe, 1999, p. 6). They are second-order models because

they are neither the mathematical world of the child, nor the first-order world that

the teacher ordinarily experiences; they are the teacher’s construction of

children’s mathematical worlds. Epistemic subjects provide the teacher-researcher

with an understanding of what children know, how they operate, and what they

can learn. My study should yield epistemic subjects that, as such, can be used to

understand the mathematical realities, operations and possibilities of children in

general.

Affective Aspects

“When behavior is studied in its cognitive aspect, we are concerned with

its structures; when behavior is considered in its affective aspect, we are

concerned with its energetics (or economics)” (Piaget, 1969, p. 21). Although we

have discussed the structures of children’s schemes and operations, which are

intended to bring the child to a goal state, the establishment of that goal and its

relative importance are issues of affect. Suppose that a child experiences a

perturbation while using a particular scheme to achieve a goal. The child may

respond to the perturbation with frustration, giving up his efforts so that the

perturbation simply diminishes. In such a way, we find that frustration and

motivation regulate the energy for cognitive activity. “Affective and cognitive [as

well as social] aspects of behavior are in fact inseparable… Neither one can

function without the other” (p. 114).

Skemp (1989, p. 189) referred to goal states when describing several

categories of emotion. It is important to note that these goal states do not
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correspond to goals within the structure of particular schemes. Instead, goal states

include aspirations of receiving basic biological needs for survival, such as food

and shelter, or social needs such as gaining knowledge and receiving respect.

Skemp described how some goal states might have been inherited as products of

evolution, while others may be indirectly related to such survival needs. Anti-goal

states are those that work against our survival (risk death or lower our status).

Pleasure (displeasure) accompanies experiences bringing us toward (away

from) a goal state, whereas fear (relief) accompanies experiences bringing us

toward (away from) an anti-goal state (p. 193). Confidence and frustration are

determined by our construction of our selves and our goal states. If we feel that

we are capable of moving toward a goal state, we feel confident in realms of

acting designed to bring us to that state; otherwise, we feel frustrated (p. 194).

Likewise, security accompanies feelings of capability in avoiding anti-goal states;

otherwise, we experience anxiety (p. 195).

Goal states, as Skemp described them, are reminiscent of Maslow’s

hierarchy, and this may relate well to Piaget’s energetics. If students cannot

achieve the most basic and important goal states (such as establishing a safe home

for themselves), it seems unlikely that they will direct much energy to cognitive

tasks at school, which for them may not relate to such goal states at all.
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Chapter 3: Methods

The White Rabbit put on his spectacles. “Where shall I begin, please your
Majesty?” he asked. “Begin at the beginning,” the King said, gravely, “and go on
till you come to the end: then stop.”

Lewis Carroll, Alice in Wonderland (1865, p. 151)

The King’s advice is simple to hear and hard to follow because beginning and end

are rarely, if ever, absolute. Finding myself in the middle of so much research on

learning, I began where all purposeful problem-solving tasks must: I began with

questions. My research questions can be summarized by “whence and wherefore

conjecture?”

A scheme-theoretic view of learning and cognition focuses my question on the

mental operations associated with schemes. So, my approach to answering the question

must begin by identifying the available schemes and operations of the participants. In this

section, I will describe a type of experiment that targets these constructs and a computer

environment that can serve as a medium for students’ representations of those constructs.

Next, I will report on some findings of a pilot study that helped me to identify the desired

constructs for my participants. I will then characterize the general schemes involved,

which, in turn, informed my student selection and interview tasks. Finally, I will describe

my method for designing conjecture-rich tasks and analyzing conjectural protocols,

which allowed me to form hypotheses about the formation of conjectures and their role in

learning.
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Teaching Experiments

“Without the experiences afforded by teaching, there would be no basis for

coming to understand the powerful mathematical concepts and operations that students

construct” (Steffe & Thompson, 2000, p. 1). So, teaching experiments provide a unique

method for building models of the constructs and learning that are involved in

conjecturing activity. I decided to engage in teaching experiments with pairs of students

so that student-student interaction would be possible but not too diffuse (i.e. too many

possible combinations for student-student and student-teacher interactions) to analyze at

the level of individual cognition. My role as teacher-researcher was to build second-order

models of the students’ conjecturing activity, while attending to and re-constructing

second-order models of students’ fractional reasoning. While the second-order models

built by Steffe and Olive (Steffe, 2002; Olive & Steffe, 2002) provided me with a lens for

interpreting children’s actions, much as my own mathematics does, I knew I must be

open to surprise and find compelling explanations for the actions of students in my own

study.

In addition to the teacher-researcher, teaching experiments include a witness and a

recording device. The role of the witness is to provide second-order feedback during the

flow of teaching protocols and to consult with the teacher-researcher in his attempts to

build second-order models of the teaching protocols and plan tasks for subsequent

protocols. Video-recordings serve to facilitate the researcher in forming hypotheses about

students’ activity and to facilitate discussions between the witness and researcher

concerning the teaching protocols. As the teaching experiment progresses, tasks are
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designed, not only to provoke conjecturing activity, but also to test the researcher’s

hypotheses concerning student activity.

The teaching experiment method for research requires a particular approach to

teaching in which the teacher-researcher must “continually establish meaning of the

students’ language and actions” (Steffe & Thompson, 2000, p. 11) so that the students’

actions guide the teacher-researcher in his attempts to “become the students and to think

as they do” (p. 13). This approach is important on two levels. First, by continually

establishing meaning, the teacher-researcher is developing new hypotheses about

students’ cognition while remaining open to surprises. Second, by thinking as students

do, the teacher-researcher is in a position to understand the students’ stages of operating

and compare them to his own in order to design tasks to provoke creative activity in the

students. On both levels, the teacher-researcher experiences constraints in building viable

models and meaningful tasks based on the dichotomy of expected and observed activities

of students. This feedback provides the guiding principle for hypothesis testing and the

design of new tasks within and between protocols.

Micro Worlds

The computer software, TIMA:Bars, consists of many micro worlds (the

plurality refers to the potential for students’ creation of problematic situations within the

program) developed by Steffe & Olive (1996) for use in their teaching experiments

related to The Fractions Project. I used this program extensively throughout my teaching

experiments as a medium for students’ activity and for posing tasks. TIMA:Bars allows

students to enact operations on rectangular bars of varying sizes and shapes, which are

created by clicking and dragging the computer mouse. “Making a bar along with possible
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actions…can [also] be used to engender certain conceptual operations” (Steffe & Olive,

1996, p. 177). The possible actions within TIMA:Bars are described in Table 1,

developed by Barry Biddlecomb (1999, p. 61).

Table 1

Potential Actions in TIMA:Bars

MAKE Allows user to click-and-drag out a bar.

COPY Copies a selected bar.

PULL

PARTS

Copies selected parts from bar.

ROTATE Rotates a selected bar 90 degrees.

JOIN Joins two bars together. To be joined, the bars must be the same size

along the side to be joined.

REPEAT Extends a bar by appending copies of the original bar with each click of

the mouse. The side of the bar first clicked determines the direction of

the extension.

PARTS Marks a bar into equally sized parts. The marks may be selected

horizontal or vertical and run the full width (height) of the bar.

PIECES Allows the user to make marks on the bar one-by-one. The marks may be

selected horizontal or vertical and run the full width (height) of the bar.

BREAK Fragments a bar into its parts or pieces.

FILL Fills a bar or a part or a piece of a bar the color of the Color button.

IMAGES Allows a user to drag a shadowy image of a bar, part or piece for

comparison with another bar, part or piece.
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UNIT BAR Designates a selected bar as the unit for purposes of measurement.

MEASURE Compares the area of a selected bar to that of the unit bar in the form a/b.

COVER Makes a cover to hide bars.

UNCOVER Removes a cover by destroying it.

MAT Allows a user to create a mat by clicking-and-dragging. A mat is a

rectangular region that is fixed in place and will appear beneath any other

object in the micro world.

COLOR Clicking on the button selects a color to fill a bar.

I chose to use computer micro worlds because they provide an organized medium

for teacher-student and student-student interactions. The software developed by Olive &

Steffe (1994) is relatively easy to learn use and includes potential actions that can be used

in operating, such as recursive partitioning, which was identified by The Fractions Project

as an essential operation in the development of fractions knowledge. TIMA:Bars is

particularly useful in making recursive partitions because the same bar can be partitioned

both vertically and horizontally, making it easy to keep track of each partition. In

addition, this environment includes potential actions involving the UNIT BAR,

MEASURE, and COVER functions that can support conjecturing activity through their

use in posing tasks and testing conjectures.

The designers of TIMA:Bars developed actions that could be used to engender

mental operations that are essential for fractions learning. However, “children can act in

the micro world without having constructed the interiorized mental operations” (Steffe &

Olive, 1996, p.120) or they may have constructed the mental operations but use the
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available actions in a micro world for purposes unrelated to the operations. Therefore,

observed actions in a TIMA:Bars environment need not reflect students’ mental

operations, and this underscores the importance of forming and testing hypothesis based

on students’ actions while remaining open to surprise and revision.

In order to bring forth students’ mental operations in their use of TIMA:Bars,

students’ mathematical play is important and was encouraged in the first few episodes.

Mathematical play allows students to use their schemes and operations, and this use

serves as the goal of the play activity: “[This] is a necessary prelude for students’

engagement in independent mathematical activity” (Steffe & Thompson, 2000, p. 25). In

fact, students’ play in the first few protocols and occasionally throughout the semester

informed my task design. From observing the students engage in play activity, I learned

about students’ interests and comfort zones, and made inferences about their zones of

potential construction.

For two of the pairs, the TIMA:Bars environment offered too much freedom in

that the students’ actions and my interpretations of them became overwhelmed with

attention to and concern about dimensions of partitioning. Therefore, we backed away

from using TIMA:Bars and used a companion computer tool, TIMA:Sticks, which

allows for the construction of very similar micro worlds except that the objects are one-

dimensional sticks that can only be partitioned with vertical marks. TIMA:Sticks also

allows students to partition any part of an existing partition of a stick without breaking

the stick. This available function of partitioning recursively was especially beneficial to

the two pairs of students because they had not yet constructed recursive partitioning as an

interiorized action (i.e. an operation).
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Research Setting

During the episodes of their teaching experiment, each pair of students sat to one

side of me in front of the computer. We began meeting in a large storage/work room at

the end of the sixth grade math hall. The computer rested on a long table that extended

lengthwise against one of the long walls. There was also a chalkboard on that long wall,

to the left of the computer. Behind the students, there was a camera focused on the

computer, and another camera focusing on the students was behind and to the other side

of me, where the witness was. The witness was a graduate student in mathematics

education who was interested in the study and able to commit time participating in and

discussing the teaching experiments with me.

Each student had one mouse of a pair to use that had been spliced so that either

student could control the cursor on the screen with his or her mouse. The witness sat

behind us taking notes and monitoring the two cameras. One of the cameras was focused

on the two students and myself, while the other was zoomed in on the computer screen.

The set up varied slightly because we had to use three different rooms throughout the

semester: an empty storage room at the end of the sixth-grade math hallway, a back room

in the library, and a conference room. However, the general set-up described above was

always used.

Fractions Schemes

As a pilot study for the present study, I used videotaped data from The Fractions

Project to identify the cognitive constructs used and modified by students in conjecturing

activity. In fact, the two examples provided in the first chapter (Protocols I & II) were

taken from that pilot study. Through my analysis, I became familiar with children’s
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schemes constructed en route to the development of rational numbers of arithmetic: “a

scheme in which fractions have become abstracted operations” (Olive, 1999, p. 281). I

focused on two students who were operating in a range of development that proved to be

conjecture-rich. In particular, one of those students (Joe) appeared to undergo a cognitive

metamorphosis that resulted in a new operation, referred to by Confrey (1994) and Olive

& Steffe (2002) as splitting. Because of my familiarity with the schemes leading up to

and resulting from such a metamorphosis through my work with The Fractions Project,

and because of the richness of conjecturing and cognitive change demonstrated by

students in the project operating near the development of splitting operations, I decided to

continue my study of conjecture by working with students in that same range of

development. Figure 4 outlines the network of cognitive structures in the desired range.

The explicitly nested number sequence (ENS) is a whole-number scheme of the

epistemic subject that allows it to use results of counting as input for further operating.

This means that students can view numbers such as 5 as both five 1’s and as a composite

unit that may be used in further operating. The scheme includes operations of iterating

unit items and disembedding (mentally establishing a piece, simultaneously, as a separate

item and part of a whole in which it is embedded) a part from a whole (Steffe, 2002, p.

270) that allow the student to solve problems involving the difference of two whole

numbers. For example, a student with an ENS can find the difference of 37 and 29 by

disembedding 29 from 37 (each of which are records of past counting activity that could

be activated again but do not need to be) and counting his acts of iterating by one, from

29 to 37. Partitioning and progressive integration operations may also develop from an

ENS. Progressive integration leads to a construction of connected numbers whose
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development was outlined by Steffe (2002), and partitioning leads to the construction of a

critical partitioning scheme called equi-partitioning.

!

Figure 4. A trajectory for fractions schemes, from (Olive & Steffe, 2002, p. 436).
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The equi-partitioning scheme is one in which “[students] use their composite

units as templates for partitioning [an object] into equal and connected parts” (Steffe,

2002, p. 272). It is not a fractional scheme but a partitioning scheme in which any part

may be treated as an iterable unit (as with ENS) to reconstruct the whole. A student

attributed with this scheme may also use a part-whole partitioning scheme to establish

meaning for fractions as some number of parts within the partitioned whole. However,

the relationship between part and whole is still a whole number relation, until the student

begins to compare the size of the part back to the whole and use fractional language to

describe the part. Then, we can attribute a part-whole fractional scheme (not identified in

Figure 4) to the student, recognizing part of the whole as a fractional part of a partitioned

whole. Fractional schemes, in general, are those that employ fractional language and

account for the relative size of the fraction to the designated whole. Students limited to a

part-whole fractional scheme rely on a previously partitioned whole and still cannot

identify the size of a given fraction by iterating it within an unpartitioned whole. The

transition to such a treatment of the composite whole yields a partitive unit fractional

scheme and the production of unit fractions.

The partitive unit fractional scheme can be used to establish a multiplicative

relation between a unit fraction and the whole. Students attributed with this scheme can

use fractional language in referring to the size of a part, in addition to part-whole

references. Although a student without a partitive unit fractional scheme may be able to

iterate a unit fraction in activity in order to re-create the whole, the meaning of the unit

fraction is still based on additive part-whole operations. With a partitive unit fractional

scheme, unit fractions attain their meaning through interiorized operations of iteration,
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which result in a multiplicative relation between part and whole. The interiorized

operations of iteration can also be used to build meaning for non-unit fractions (including

improper fractions) as a multiple of the unit fraction, but such constructs are not fully

understood as fractions until their size is explicitly compared to the whole. Once students

can iterate proper fractions (fractions which can be embedded within the whole) and

compare them to the whole, we can attribute to the student a more general partitive

fractional scheme. Still, many fractions tasks, especially those involving improper

fractions, will remain problematic for such students because the student can lose track of

the whole in iterating.

The cloud over the next operation in Figure 4—the splitting operation—indicates

some uncertainty concerning its development. Because the scheme seems to emerge as a

global result of activity with fractions and perhaps after extended periods of inactivity

with fractions, its construction cannot be attributed to a functional accommodation, which

would occur through and in the context of mathematical activity. Instead, Steffe (2002)

referred to its construction as a metamorphic accommodation. While I am mostly

concerned with conjectures that directly result in functional accommodations, it is

possible that a conjecture may engender a metamorphic accommodation (which involves

the re-interiorization of concepts on one level to a higher level over a period of prolonged

perturbation). The schemes building up to and resulting from the emergence of a splitting

operation seem to provide a conjecture-rich realm for students’ activity and operating.

Splitting operations enable students to conceive of a whole as a partition into a

specified number of pieces and simultaneously to conceive of each piece as a fractional

part of the whole that can be iterated the specified number of times to re-establish the
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whole. Because records of the whole are contained in the students’ conception of each

piece, the whole is not lost in iteration, even when the child iterates beyond the whole to

produce improper fractions. This means of intentionally producing improper fractions is

the most obvious new function provided by an iterative fractional scheme. The iterative

fractional scheme enables a student to “produce any fractional amount through iteration

of a unit fraction and establish its multiplicative relation to the fractional whole” (Olive &

Steffe, 2002, p. 431). Operating in such a way results in the construction of a fractional

connected number sequence (FCNS), which consists of connected numbers, except that

the units of the connected numbers are now unit fractions whose whole may be embedded

in a larger connected number (improper fraction). Olive & Steffe (2002) determined that

Joe had constructed an FCNS by fifth-grade, which was Joe’s grade-level in the protocols

presented above. Included in my description of those protocols are a few schemes and

operations that go beyond those shown in Figure 4.

Student Selection and Pairs

Knowing that I wanted to work with sixth-grade students in the spring of 2003, I

began looking for opportunities at local public middle schools in the fall of 2002. In

December of that year, I was introduced to an assistant principle from a poor, rural

middle school outside of Atlanta. After I had received approval from the county, he

introduced me to three sixth-grade teachers: Mrs. Wood, Miss Rose and Mrs. Biltmore.

While I had planned on working with one teacher, these three teachers worked closely

together and wanted to be involved. All three teachers were experienced and were

considered to be good teachers by the administration. They viewed my study as an

opportunity for some of their struggling students as well as some of their more
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successful-but-bored students to receive more individual attention from another teacher. I

explained to the classroom teachers that my goal was to study student reasoning rather

than to facilitate the construction of particular concepts, but that learning was inextricably

tied to my study. I also volunteered to help tutor students on particular skills for as many

as fifteen minutes before each episode. After agreeing to work with me, each teacher

introduced me to one or two of their regular track math classes (there was an honors math

alternative), and I observed each of these classes for one or two days.

The classroom teachers identified students of various stages of ability (but with

attention to those who would benefit from individual instruction), and I began data

collection in February, 2003, by conducting individual interviews with each student and

then working with selected pairs of students at the middle school. Since the students’

school year ended that May, I had no more than sixteen weeks to complete the teaching

experiment. I was also limited by the number of meetings I could have per week. On the

one hand, I needed to meet with students at least two times per week so that lapses

between meetings did not break the continuity of tasks. On the other hand, I needed time

between sessions in order to complete initial analyses of the previous session and design

tasks for the next session. Working with students during their class time, I was able to

visit three days per week and schedule two different pairs for episodes on a given school

day. This meant that I could reasonably expect to work with three pairs of students.

Within the range of operating described in the “Fraction Schemes” section, I

searched for three pairs of students, with the members of each pair operating compatibly.

I wanted to select one pair of students who had constructed equi-partitioning schemes but

not partitive fractional schemes, one pair with partitive fractional schemes but without
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splitting operations, and one pair of splitters. The diversity in stages of operating between

pairs was designed to allow for greater specificity in patterns of conjecture, while cross-

pair analysis would allow for greater generality in findings about these patterns. In

choosing these pairs, it was important that members within each pair were compatible

affectively as well as cognitively. I relied on the classroom teachers’ recommendations in

determining affective compatibility. I also left open the possibility that I might have to

change pairings once the teaching experiments began, in order to find compatibility

between students. Indeed, I ended up switching partners between two of the pairs, in part

for that reason. However, my pairings were restricted by student schedules and students’

special needs.

I decided to work with pairs of students so that my study would include student-

student interactions, in addition to student-teacher interactions. Students would need to

assimilate each other’s actions using established schemes in order to interact

meaningfully. Students’ responses to each other in action, then, would reveal something

about their own constructs. In responding to one another, students might also become

more reflective of their own actions, as Joe did after Melissa’s counting activity in

Protocol I. Such reflection can lead to conjecturing activity and a reorganization of

schemes, as it did for Joe. Even the interpretations a student makes of the other’s actions

may be conjectural. Each of these potential responses contributes to an aspect of

classroom interactions that should inform the implications of my study.

Initial Interview Design

In order to identify the six students needed for my study, I conducted individual

interviews with eleven students from four sixth-grade classrooms. In order to limit the
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number of interviews, I first considered the recommendations of the classroom teachers

concerning individual students who might be operating at the desired stage and might be

interested in participating, as well as recommendations for particular pairs of students

who might work well together. These students were taken from class, one at a time, to a

workroom for a twenty-minute interview, where I verbally posed a list of tasks. Students

were given construction paper, string, scissors, tape, a ruler, and markers to complete the

tasks. Students’ verbal, written, and motor responses to these tasks were used to

determine their available schemes and stages of operating. Once six suitable students

were identified and their parents’ had signed forms agreeing to let them participate, I

discontinued interviews until a replacement was needed (due to personal differences

between two students in one of the pairings).

The interview tasks, given in Appendix A, were adapted from Wanda Nabors’

dissertation (2000, pp. 298-311). As with Nabors’ study, I explicitly intended to design

“fractional reasoning tasks that would be difficult to solve using school math rules and

algorithms” (2000, i). Each of these tasks, then, would require that the student be able to

operate at specific stages in order to complete the task successfully. Below, I describe

some of the hypothetical operations identified by Steffe and Olive (Steffe, 2002; Olive,

1999) associated with each task.

1. The first task requires that the student have some sort of equi-partitioning

operation available that can be used to create fifths. Then, for part (b), the

student would need at least a part-whole concept of fractions that could be

used to identify a non-unit fractional part. These may be present in a part-
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whole partitioning scheme, but a student limited to such a scheme would not

immediately recognize the relation between the complement (left-over piece)

and the whole. For this, the student would need something like a partitive

fractional scheme with which fractions are constituted in relation to their

complements and the whole.

2. The second task is much like the first except that it does not introduce

fractional language. Students may be more oriented toward using whole

number knowledge to solve the task. For instance, a student may use her

schema for 6 as a “template for partitioning” as Steffe has hypothesized

(2002, p. 272). In order to show that her share is fair, the student may use the

cutout piece, placing the piece in each of the successively adjacent positions

of the partitioned whole. She might also use folding or marks to demonstrate

equal parts. If the student uses a piece to reconstruct the whole through

iteration (rather than simply checking its size against the sizes of the other

parts), it would indicate that the student had constructed an equi-partitioning

scheme.

3. The third task is much like the first except that it deals with pieces that are

described by non-unit fractions. In order to interpret the task appropriately, the

student must make meaning for two-sevenths. This meaning may be based on

iterating one seventh twice, or a student may simply use a part-whole

partitioning scheme. Students have to use fractional language to describe the

leftover piece. Some students may be able to identify this fraction readily

while others may have to count pieces and still others may not be able to use
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fractional language at all to describe the leftover piece. These potential

responses offer feedback for the researcher to make inferences about students’

fractional schemes and their understanding of fractional language. Part (b) is

more difficult because students must operate with figurative material rather

than perceptual material.

4. This task requires simultaneous operations of partitioning and iterating in

order to posit a hypothetical piece of string and conceive of the whole as the

result of iterating that piece of string, while recognizing the hypothetical piece

as the result of partitioning the whole. This would imply the existence of

splitting operations. Part (c) will only be used if the student is successful with

part (a). Steffe (personal conversation, 1/29/03) has hypothesized that students

who can resolve (a) can also resolve (c) by the same kind of splitting

operations, and he suggested that string might lend itself to such activities

because it may be perceived as one-dimensional and is easy to manipulate.

5. Solutions to this task may also involve a simultaneous composition of

partitioning and iterating. It is possible that a student with a partitive fractional

scheme could solve this problem by conceiving three-fourths as one-fourth

iterated three times. If the student then partitioned three-fourths to construct

three one-fourths as if she were partitioning a whole into three parts, she could

iterate once more to create the whole. This would involve using the partitive

fractional scheme reversibly in reproducing the whole from a fractional part of

it—a reversible partitive fractional scheme. Students might also use splitting

to partition three-fourths into three of one-fourth.
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6. To complete this task the student would have to move beyond a part-whole

conception of fractions. Indeed, for many students four-thirds is nonsensical. I

would infer an iterative fractional scheme for students who could interpret this

task meaningfully and iterate one-third beyond the whole without losing the

reference to the whole.

7. Just as Task 5 requires reversibility of a students’ partitive fractional scheme,

this task requires such operations within a students’ iterative fractional

scheme—a reversible iterative fractional scheme.

8. This task is intended to test whether a student has recursive partitioning

operations with which to partition each fractional unit in a unit of units

produced by a previous partition into smaller fractional units. If the student

can name the fractional part without counting each little piece created by

recursively partitioning the whole, there is strong indication that the student

has constructed a unit fractional composition scheme with which to

recursively partition and coordinate the sizes of the smaller units in the

resulting unit of units of units.

9. If the student lacks a recursive partitioning operation, the student may still be

able to act in a situation such as this by partitioning sequentially, as this task

demands. However, naming the fractional part (and its complement) that

results from the second partition may require the student to count the resulting

number of parts in the whole bar, unless they can use a whole number

multiplicative relationship in the fractional context.
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10. This task may involve the use of a reversible unit fractional composition

scheme with which the student could identify one-sixth as half of one-third.

Analysis of the initial interviews for the seven students (the six original students and

one replacement) is presented in Chapter 4.

Task Design

Once the teaching experiments with student pairs began, the first session or two

with each pair was dedicated to free play, allowing the students to exercise their ways of

operating using the actions available in TIMA:Bars. Goal-directed activity followed

from play through tasks that either the students or I posed, based on experiences in play

and students’ available operations. Within the context of this goal-directed activity, it was

important for me to pose tasks that attempted to provoke conjecturing activity and a

general conjecturing disposition. While most of these tasks had to be designed on the spot

or between sessions (as described in the analysis section below and with more detail in

Chapters 6 and 8), in order to test emerging hypotheses concerning students’ conjectures,

I began to plan my task design before the first episode based on a couple of hypothetical

examples.

As an initial hypothesis, I assumed that tasks fitting both of the following

descriptions were likely to provoke conjecturing activity: ones that could be understood

by the student in terms of a meaningful goal whose attainment is problematic; ones where

students’ available operations are sufficient for achieving the goal if these operations

(including those embedded in schemas) are used in novel ways. For example, the task

posed to Joe and Melissa of creating eighths from three-fourths (Protocol I) fits the
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description, as demonstrated in the discussion of the first vignette. Questions following

students’ initial responses to the task can lead to further conjecturing activity. I might ask

students how they can test their conjectures or to explain why they believe their

conjectures to be true. These questions should be posed to invite the student partner to

join in the activity.

In between sessions, I analyzed students’ available schemes, their conjecturing

patterns, and the effectiveness of the posed tasks. If I hypothesized that a student had

constructed a particular scheme through conjecturing activity, I might design tasks just to

test for this. In addition, I considered my model of students’ available schemes in

comparison to my own schemes in order to hypothesize paths for students’ reorganization

resulting in more powerful schemes. As an initial hypothesis, I claim that students’

reorganization can often be achieved through conjecturing activity. As such, I used

hypothetical patterns developed from my experience in past sessions in order to

hypothesize the kinds of conjecturing activity required to modify schemes and devised

tasks to facilitate this. For example, if the characterization of abduction given in Chapter

2 describes one pattern of conjecturing, setting the student up to perceive situations with

surprising results (in light of their present ways of operating) may provoke them to search

for a general way of operating that resolves such situations.

Analysis

Initial analysis consisted of two major components that lasted the duration of the

school’s semester: building second-order models of students’ operations and examining

my role as teacher-researcher interacting with the students. Throughout the teaching

experiments, I continued developing my models for students’ constructs and conjecturing
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activity. This was especially important in designing tasks, and it occurred continually

during the teaching episodes as I created and tested hypotheses and found ways to

provoke student conjectures through posing tasks. To form my models and use them to

design tasks, I had to posit ways of operating that would explain students’ actions as

reasonable interpretations and reactions to posed tasks. The source for these hypothetical

ways of operating had to be my own potential ways of operating. Furthermore, my

potential ways of operating were used to design tasks that would challenge those of the

students in order to provoke conjecturing or to test my second-order models. Each night,

after a day of episodes, I would read my notes, watch the tapes, and type a couple of

pages describing students’ actions. These descriptions would finally include a set of tasks

for the next episode, based on the hypothetical mental operations of students.

Second-order models of my role as teacher-researcher resulted from reflections on

my own process of hypothesizing, in addition to reflections on my teaching. Since it

would be difficult and counterproductive to attempt this in my stream of experience with

the students, I relied on the witness and videotaped recordings to perform this analysis

between sessions. I would talk with the witness during our travel to and from the school

and review the videotapes at home, with the witness’ comments and written suggestions

in mind. In watching the tapes, I tried to pay special attention to my role as teacher in

order to guide my future interactions with the students. This was not easy, because my

tendency was to think only about the students’ actions and to make inferences about their

reasoning. Second-order analysis also informed the questions and tasks that I would pose

in subsequent episodes, and resulted in identifying general patterns of students’
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conjecturing activity and modifications to my hypotheses about the students’ cognitive

structures.

Once the teaching experiments were complete, I needed to code the data. I had

about fifty episodes recorded on about one hundred mini-DV tapes, and it was difficult to

get a handle on it all. It was especially difficult because I had spent a summer away from

the data, teaching in a summer program for mathematically gifted high school students. I

decided to mix the two tapes for each episode (one tape of the students and one of the

computer) to a picture-in-picture format and compress them onto a single video stream.

This left me with fifty tracks, and within each, I could quickly jump to any given

segment. Since the mixing was real-time, I used the time to review the data and re-

familiarize myself with the students.

Once the data was compressed, I analyzed all of the episodes for one pair, before

moving on to the next pair. This helped me to cut down the volume of data that I needed

to consider at one time and to focus on each student’s constructs. My goals in this second

phase of analysis were to describe the kinds of activity during each segment of the

episodes and to establish models of operations and schemes accounting for students’

actions. The latter would help me to identify cognitive change resulting from conjecture

and the available constructs that students might use during conjectural activity. The

former was especially helpful in determining which segments were conjectural. I decided

to transcribe initially only those segments that indicated the existence or nonexistence of

particular ways of operating and ones that fit my initial (loose) characterization of

conjecture described below. I would later transcribe other segments that demonstrated

support for, testing of or results from the conjectural activity.
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In order to manage the data, I created computer worksheets with brief descriptions

of general activity of the students in each episode. Each line in the worksheet [e.g.

Appendix B] represents about a minute of video and includes information on who was

controlling the mouse for that minute, what schemes might be involved, and whether the

segment of video included conjectural activity. I considered a segment of the episode to

be at least potentially conjectural if there was evidence of concern or uncertainty about a

student’s actions in a particular situation. I had to be able to infer that the student had

some goal in mind that she could not satisfy through use of well-established constructs.

Such segments may indicate perturbations, as in the initial interview with one of the

participants (Josh) who paused in the midst of activity and exclaimed, “man, this is

confusing!”  My initial characterization was sufficiently broad to capture most, if not all,

conjecturing activity and was refined through analysis.

The primary goal of my analysis was to determine the nature of conjecturing:

How are conjectures formed and what learning do they produce? As indicated in my

framework, this goal is attainable by inferring the existence of cognitive structures and

changes in them, through observation of students’ actions in response to problematic

situations. So, I was especially attentive to students’ actions and interactions that

indicated mental operations that may be employed in problem solving.

Throughout my analysis, I tried to capture my role and the role of the unique

micro worlds environments in which the students were working. This is important

because the environment (including myself and the student pairs) defines the freedoms

and constraints for students’ actions. I was only able to observe the actions of students

through their interactions with the given medium and their communication with particular
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people in a particular domain. While the micro worlds constrain action, they also enable

action. To speak metaphorically, my analysis is like trying to understand an animal

relative to its environment. Though the animal might behave differently in another

environment, there are inferences one can make about the lion if she considers the given

parameters and is careful about ascribing generality.

Reporting of Analysis

For a few reasons, my final analysis is restricted to the actions of two pairs of

students. First of all, I was unable to find pairs of students operating at three different

stages of development. Secondly, after reporting on the higher-stage pair, I had already

produced a tremendous amount of analysis. Finally, by the time that the two lower-stage

pairs switched partners, I had determined which newly formed pair would be most

interesting and decided to focus on the students forming that pair.

In Chapters 5 and 7, I describe the nature of conjecturing by drawing inferences

about students’ ways of operating, through observing students’ actions in problem

solving. Because the analysis presented in those chapters is so lengthy and difficult to

manage, I synthesized them in Chapters 6 and 8, respectively. The reader may choose to

read Chapters 6 and 8 first, using Chapters 5 and 7 as an audit trail to support claims

made in Chapters 6, 8, and 9.
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Chapter 4: Initial Interviews

I conducted the individual interviews with students using the interview tasks

described in Chapter 3 and Appendix A. I interviewed a total of eleven students,

beginning on February 2nd, 2003 and concluding on February 21st, 2003. In nine of the

eleven interviews, I found evidence that the students had constructed, at least, equi-

partitioning schemes—the minimal developmental requirement for participation in the

teaching experiments. Of the nine students, eight expressed interest in participating but

one changed his mind. Among the seven remaining students, I identified two higher-stage

(Hillary and Andy), one middle-stage (Will) and four lower-stage (Cory, Matthew, Josh,

and Sierra) students. However, the two higher-stage students did not get along, so I

formed one middle/higher-stage pair (Hillary & Will) and two lower-stage pairs (Cory &

Sierra; Matthew & Josh). The lower-stage pairs were later interchanged due to scheduling

conflicts.

In this section, I describe the responses of the seven participants. The descriptions

are intended to provide an initial model of the students’ fractional knowledge. The

protocols within each student’s interview are labeled in the following manner: “Protocol

[first letter of student’s name, or ‘T’ for myself as the teacher-researcher][sequential

numbering of protocol for that student].” Also in the protocols, descriptions within

brackets are given in terms of the researcher’s concepts.

Sierra

Sierra was a student in Mrs. Wood’s first period class. She had long brown,

braided hair and dressed casually. She was in the school band and liked to talk about
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riding dirt bikes at her uncle’s house. Mrs. Wood had recommended Sierra for my study

because Sierra had expressed interest in participating in it, and Mrs. Wood felt Sierra

needed extra help in building fractions concepts. During the interview, Sierra was very

reflective, cooperative, and did not seem afraid of being wrong.

She was very good at visualizing and estimating partitions, understanding the

importance of creating equal parts. For example, in response to Task 1, she marked off

one-fifth of a “candy bar” by drawing four evenly spaced vertical lines, except that the

last part was obviously bigger than the others. Dissatisfied with the size of the larger part,

Sierra flipped the bar over and repartitioned it into five parts that were nearly equal in

size. She was able to identify each of the five parts as one-fifth and could also identify

four-fifths by shading four of the five parts. She provided even stronger indication of her

ability to estimate equal partitions in response to Task 2, in which I asked her to cut off

her share of a candy bar shared between her and six friends. She cut off a piece and

demonstrated that she had an equal share by lining it up with the leftover part (using her

share as a template) and cutting six more pieces from it; the seven pieces she created

were uncannily close in size. Her actions in response to both Task 1 and Task 2 indicate

that Sierra had a well-developed equi-partitioning scheme.

After the first task, I asked her how she knew where to make the first partition.

She replied, “I have no idea; that’s just what they taught me, to start from here [pointing

the left side of the bar] and go down [sweeping her hand from left to right over the bar].”

It appears that she had some way of anticipating where the other evenly spaced partitions

would fall when estimating where to put the first one.
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When I asked Sierra, following her response to Task 1b, how she knew that the

four shaded parts made four-fifths, she responded, “because there are five spaces in there

and like say somebody ate like four of these spaces.” This indicates that she could use a

part-whole partitioning scheme and an equi-partitioning scheme in order to work with

non-unit fractions. If I could find indication that she compared the four-part bar back to

the whole, I would attribute a part-whole fractional scheme to her. Task 3 provided Sierra

with further opportunity to demonstrate her ability to work with non-unit fractions. In

particular, when I covered up all but three-sevenths of a seven-sevenths bar, she was

prompt in determining that the hidden part must be four-sevenths by “adding four and

three.” So, she was able to use the complement of a partitioned fraction to reproduce the

partitioned whole. While her reasoning with non-unit fractions was additive and her

responses thus far provided no indication as to whether Sierra had a fractional scheme,

they do illustrate the robustness of her equi-partitioning and part-whole relations.

For Task 4a (in which Sierra was asked to make a string so that mine was twice as

big), Sierra was unable, at first, to posit any part at all: “I really don’t know how to do

that.” Eventually, she marked off with her finger a part of my string that was about three-

fourths of the whole. I asked whether there was a way to check whether mine was twice

as big as hers, and she replied, “I have no idea.” She expressed even more confusion

about Tasks 4c, 5 & 6. So, I decided to come back to Task 4a using a rectangular bar

instead of a piece of string.
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Protocol S1: Sierra’s response to the revision of Task 4a.

T: This is my bar and my bar is twice as big as your bar. Could you make your

bar?

S: [draws a vertical line about two-thirds of the way from the left end of the bar]

T: Which one is your bar?

S: [shades the larger part of the bar]

T: Is my bar twice as big as your bar?

S: Um… No. Well, I was thinking that this part [the shaded part] was mine, the

whole thing was yours, and this [the unshaded part] was just the extra part.

T: So, do you think that my bar is twice as big as your bar?

S: Yes.

T: Okay. How do you know?

S: [thinks for several seconds trying to express herself] I kind of thought that it

might start there [pointing to the partition]

T: What might start there?

S: The twice.

T: So what does the word twice mean to you?

S: Well, I kind of thought about halving this [marking a line down the middle of

the unshaded part] so I would have two equal parts.

Evidently, Sierra thought of twice as being two more equal parts. The two equal

parts she created by marking half of the unshaded region were scandalously close in size

to the sevenths parts she had created in solving Task 2. It seems that she was unable to
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posit hypothetical parts that were to be iterated so many times to make the whole, and

instead used her records of making parts for Task 2 in order to posit two parts that would

complete the whole from the desired fraction of the whole bar. Her actions indicate that

she was reasoning additively and in the absence of splitting operations. Because her

means of checking the desired fraction did not involve iteration of the fraction, I also

question whether she had constructed a partitive unit fractional scheme. In order to

further test Sierra’s meaning of twice, I designed a discrete task using previously

produced bars.

Protocol S2: Sierra’s iterating in discrete cases.

T: Here’s a bar [placing one of the bars Sierra created in Task 2 in front of Sierra,

and placing the other six beside her]. Can you put together some more bars so that

you have a bar that’s twice as big?

S: [places three of the bars side-by-side] There. That’s one bar.

T: How many do you have now?

S: [pauses and looks worried] I couldn’t do that, because the 1 is on the bottom,

and the 2 is on the top. [Sierra does a calculation on paper, dividing 1 into 2 to

yield 2.] So, it would be 2. [She takes away one of the three bars.]

My question to Sierra at the beginning of the protocol engendered a conflict that

was resolved in an unexpected way. It seems that Sierra had been assuming that the two

more was needed in addition to the original bar, rather than replacing it, and I was

surprised that she resolved this issue by referring to a division algorithm. She was
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subsequently able to identify five times as much as one of the bars by lining up five of the

bars. Her actions indicate that she had resolved the conflict and built a new meaning for n

times as much, but her reasoning may still have been additive and might not translate

from discrete to continuous cases. In fact, when I repeated the task from Protocol S1,

Sierra acted as she had before, drawing a line of partition about three-fourths of the way

across the bar.

There was some indication at the end of the episode that Sierra had a partitive

fractional scheme available. Repeating Task 5, I had asked her to make a string such that

mine would be three-fourths of hers. She cut off a length of string that was remarkably

close to three-fourths of mine, but it could be that her production was based on reasoning

similar to that demonstrated in Protocol S1. If she had produced the three-fourths string

purposefully, even though she would be confusing our strings, it would be a strong

indication that three-fourths was a partitive fraction for her. But after all, she could not

explain her production in any way that I could discern as meaningful.

During the next and final task, there was also contra-indication to the claim Sierra

had constructed a partitive fractional scheme. I had asked her to make one-fourth of one-

half. After I encouraged her to start by marking off one-half, she was able to partition one

of the halves into four equal parts and identify one of these parts as the solution.

However, when I asked her to name the fractional part, she claimed that it was “one and a

half.” While the task was designed to test for recursive partitioning (which she also

seemed to lack), one and a half would not be a viable option for proper fractions, from a

student who had constructed partitive fractions. Instead, the name simply described her
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actions of taking one part from half of a bar. So, it seems that, regarding fraction names,

Sierra was confined to a part-whole fractional scheme, at best.

From this initial interview, I have built a model of Sierra’s ways of operating that

includes an equi-partitioning scheme and a part-whole (partitioning or fractional) scheme.

Although she could iterate discrete objects, she seems to lack an interiorized operation for

iterating fractions. My model of Sierra would place her in the lower stage, but at least

strong enough to participate in the teaching experiment. Throughout the initial interview,

she appeared energetic, willing to try out her ideas and unafraid to make mistakes. So, I

decided to ask her to participate in my study, initially pairing her with a boy named Cory

in one of two lower-stage pairs. Because of schedule conflicts, I had to switch the

partners amongst the two lower stage pairs, at which point Sierra began to work with a

boy named Josh.

Josh

I interviewed Josh during Miss Rose’s first period class on February 10th, eight

days after Sierra’s interview. He was a football player with short brown hair. He was

quiet but not shy, and was very responsive to my questions. Miss Rose had selected him

because he was a good student who was struggling in her class, and she thought having

Josh work with me would help. His mother was the receptionist at the high school. She

wanted Josh to be involved in the teaching experiments because she thought it might have

benefits similar to tutoring, and I did tutor Josh for about half an hour before starting the

interview.

For Task 1, I asked Josh to mark off one-fifth of a bar. He drew four lines

partitioning the bar into five roughly equal parts. When I asked him where one-fifth was,
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he pointing sequentially to each of the five parts, saying “um…” He did not seem to be

indicating the individual parts but the partitioned whole. So, I asked him to show me

what he would take to have one-fifth of the bar. At that point, he cut off one of the five

parts. Once he had done this, I asked him to show me four-fifths, and he immediately

pointed to the four remaining parts: “Just these [four], not this one.”

Josh’s equi-partitioning scheme was even more evident in his response to Task 2.

I asked him to cut off his share of a bar that was to be shared between him and six

friends. Without making any marks, he cut off a piece. When I asked him how he knew

that his share was fair, he began to respond, “because if I equaled all those out,” and

placed the cut off piece within the remaining piece six times. He had made a very good

estimate, and his verbal response indicated an implicit understanding that his estimate

should be one of seven equal parts.

Josh experienced some difficulty with fractional language beginning with the

third task. I showed him a bar partitioned into seven parts and asked him how much

would be left if I cut off two-sevenths. He knew there would be “five pieces,” but I

insisted that he name the fraction of the whole, to which he responded “five-sevenths or

fifty-sevenths.” He continued after I asked him which of his answers was right: “Seven-

fifths. Oh. Well, no… There’s five left, so maybe seven-fifths.” He was able to sort out

the language when I asked him whether the parts were fifths, and in Task 3, he was

immediately able to identify the complementary (hidden) part of the seven-part bar (when

three parts were visible) as “four-sevenths.” Other than this difficulty with fractional

language, Josh appeared to have no problem with the tasks so far. So, I decided to move

to the reversible partitive situations set up by Tasks 4a & 4c.
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Protocol J1: Indication of a splitting operation and more difficulty with fractional

language.

T: [measures with a ruler and cuts off one foot of string from a pile of string] This

is my piece of string and it’s twice as long as your string. I want you to make your

string.

J: Can I use the ruler?

T: Yes.

J: [measures and cuts off six inches of string from the pile of string] This is only

one time longer. Let’s see. [He cuts his string in half and moves it two places

from left to right along my string.] Twice as… Man, this is confusing!

T: Okay. So, what are you looking for?

J: Okay. I had a half. So, that’s six and that’s half of it, but that’s only one. Then I

had three, that’s one, two, three… [placing his three-inch string from left to right

across the ruler four times] four.

Josh seemed to have an intuitive understanding that his piece should be half of

mine, but he also had an expectation that my piece of string should be two more of his

piece. He also seemed to think that by cutting his piece in half again, mine would indeed

be two more of his. Instead, he found that mine was three more of his (or four total), and

he didn’t know what else he could do. His actions provide some indication that he had

splitting operations and a partitive unit fractional scheme available. I reasoned that I

might be able to resolve the issue if I could first help him to resolve the semantics. So, I
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cut out a few equally sized bars (about the size of the one-seventh bar he had produced

for Task 2) and posed some tasks involving discrete bars.

I put one bar in front of Josh and asked him to make a bar that was twice as big.

He responded by putting together three of the bars. Through such activity, it became clear

that “twice” meant “two more” to Josh. To clarify my meaning of the terms, I showed

him two bars and told him they were twice—or double—one bar because they were two

of the one bar, and half of the two bars was one bar again. He spontaneously returned to

the problem posed in Protocol J1: “That was what I had when I cut that [pointing to my

foot-long string]. It would have been right.” Now that he had clarified the situation for

himself, I felt I would learn a lot about his fractional schemes, reversible reasoning, and

splitting operations by continuing with Task 4c.

Protocol J2: Further indication of Josh’s splitting operations.

T: How about if I told you that my piece of string is five times as big as your piece

of string? This is my piece of string. It’s five times as big as yours, and I’d like

you to make yours.

J: [matches up one end of the pile of string with the left end of my string and

extends it beyond the other end of my string. He makes four marks on the

extended string that, placed at intervals that would equi-partition my string into

five parts! Finally, he cuts off four pieces from the extended string, one cut at

each mark, and lines them up along my string. He does not make a mark at the

right end of my string, and so he does not cut off a fifth piece.] So, I need

something just a little bit bigger to equal it up.
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T: Okay. Which piece are you saying is yours?

J: Right here [picks up one of the pieces he had just cut off of the extended string,

and begins mumbling to himself].

T: So, what’s bothering you?

J: I cut mine too short. There only needs to be four, four things to equal yours

because yours is five times.

Because Josh did not mark off the right end of the extended string, he did not

have a fifth mark from which to make a fifth cut. So, he ended up with four pieces. I do

not think that the situation was familiar enough for Josh to realize that this might be

problematic. After he lined up the four pieces he had cut off, he recognized that the

pieces did not remake my string, as he knew they should. But he explained away the

problem of having only four pieces by saying that, since mine was five times his, mine

should be four more than his. He may have developed this reasoning from his recent

activity with the discrete bars, an intervention I had designed to contend with his notion

that n times meant n more. Now, n times seemed to mean n-1 more! So, rather than

recognizing that he should have a fifth piece, he thought that the pieces were too short.

Once again, I decided to intervene. I drew a line on a sheet of paper and asked

Josh to draw one so that mine was five times as big. He drew one about the appropriate

length.

Protocol J2: (Cont.)

J: Right there. So yours would be four more.
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T: Oh! There’d be four more!

J: So, I should add one more [cuts off another piece of string, equal in length to

the others].

T: So how do you know that mine is five times yours?

J: Because it’s shorter.

T: But, how do you know mine isn’t just twice as long or four times as long?

J: Cause I put these down here [lines up the five pieces along side my string], and

took these away [removing four of them].

Josh’s actions indicate that he might be a splitter and be able to act reversibly with

partitive operations, but the novelty of his actions in solving reversible and splitting

situations created problems for him. Although he could posit hypothetical pieces

satisfying Tasks 4a & 4c, his piece was not embedded in the whole as one of n equal

pieces. At first, n times as much meant n more, and, later, it meant that his piece should

be n-1 less than the original whole. Josh had to further develop purposeful use of iteration

in naming fractions, as well as work out some semantic difficulties before I would

attribute to him a partitive unit fractional scheme. However, splitting operations may

have been available to him and partitive fractions were certainly in his zone of potential

construction.

Because Josh appeared to be operating in advanced ways without well-developed

fractional schemes, it was difficult to assign a stage-level to his cognitive structures. But

because the lack of a partitive fractional scheme was a particular distinction of the lower-

stage and because there had been contra-indication that Josh had constructed partitive
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fractions, I decided to pair Josh with a classmate named Matthew, in a lower-stage pair.

Due to further scheduling conflicts, I had to switch partners amongst the lower-stage

pairs, and Josh began working with Sierra after the first few episodes.

Cory

Cory was a shy, small, funny and very likeable student in Miss Rose’s first period

class. He wore glasses and was rather animated when I interviewed him on February 11th.

He had trouble finding words for his thoughts but was otherwise expressive. We spent

several minutes working on tasks similar to Tasks 1 & 2, so that I could assess whether or

not he could equi-partition.

I began the interview by asking Cory to mark off one-fifth of a bar. He drew a line

down the middle of it, but was unable to justify the result. So, I asked him to mark off

one-half of a new bar; again, he drew a line down the middle of it, and this time he

explained that he was right because the parts were “equal and cut straight through the

middle.” At first, he referred to the line itself as half, but was subsequently able to

identify each of the two pieces as being one half of the bar. I had hoped that Cory’s

similar productions of one-half and one-fifth would engender a conflict, but when I asked

him about their similarity, he wasn’t sure it was a problem.

I continued by asking Cory to mark off one-third of a new bar. He drew a line

about one-third of the way across the bar, but then stopped saying, “I need to make a

graph.” He indicated that he had done these in class and proceeded to draw a pie chart

within the larger part of the bar, but he struggled to draw dividing lines that created three

parts, accidentally making four parts instead. I explained that the dividing lines can be

much more difficult to determine for circles than bars. At that point, he excitedly said,
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“now I know,” drew a line about two-thirds of the way across the bar so that the bar was

now divided into three equal parts, and proclaimed, “one-third!” Cory went on to produce

fourths by making a horizontal and a vertical line down the middle of the bar. He

appropriately identified a one-fourth part of the bar, but when I asked him to make and

show me three-fourths of the bar, he shaded three of the four parts and pointed to the

unshaded one. His concepts of fractions seemed almost inextricably tied to patterns and

pictures.

On his second attempt at creating fifths (which followed his production of three-

fourths), he reverted to using only vertical lines and found it problematic that the parts

weren’t all equal. I think that Cory’s initial trouble with partitioning was due to his

misunderstandings of what I expected from him. Apparently, he had been assigned

partitioning tasks in class, and he seemed accustomed to drawing pie charts to represent

fractions rather than representing fractions with manipulatives, such as the construction

paper bars used in the interview. Once we had the discussion about the dividing lines,

Cory seemed to interpret my expectations differently and was able to equi-partition. He

was explicit about the necessity of creating equal parts, and was even able to incorporate

partitioning strategies from creating pie charts into the context of fraction bars (creating

fourths by partitioning with just two lines—one vertical and one horizontal). His actions

and explanations indicate that he had indeed constructed an equi-partitioning scheme.

The next few questions that I asked Cory were designed to determine whether or

not he had constructed part-whole fractional and partitive fractional schemes. I showed

him a seven-sevenths bar and asked him what fraction would remain if I were to remove

two-sevenths. He replied “five” and when I pressed him by asking “five what?” he
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corrected himself: “Oh, five sevenths.” As the second part of that task (Task 3), I showed

him three-sevenths of the seven-sevenths bar and hid the rest. Before I could even ask

him a question, Cory said, “Uh… four sevenths.” He was also able to name the seven-

sevenths bar as such when I asked him how much the whole bar would be. Although, at

first, I had to prompt him to name the fractional sizes rather than simply the number of

parts, Cory did seem to be able to readily adopt the language and even name the whole in

terms of its fractional parts. So, I think that Cory had constructed at least a part-whole

partitioning scheme.

Next, I posed Task 4 to test whether Cory had constructed a partitive operations

and reversible reasoning. I placed two equally sized bars in front of Cory, instructing him

to make his bar under the conditions specified in Protocol C1.

Protocol C1: Cory’s lack of reciprocity between twice and half.

T: This is my bar [pointing to the bar farthest from Cory] and my bar is twice as

big as your bar.

C: Twice as… [cuts the bar he was given in half, lengthwise, places it in front of

me, and then looks at me]

T: Okay. So mine is twice as big as yours?

C: No… I don’t know. I think I was thinking of halves.

T: Yours is half of mine. Is mine twice yours?

C: [pauses] See. When you asked me that question again, I thought I should cut it

like right there [cutting a notch about half way along the side of the one-half bar

he had just made].
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Cory certainly seemed to understand that his bar should be smaller than mine, but

this may be attributed to the fact that I had placed only one bar directly in front of him for

him to use. If he were operating reversibly, he should have recognized that my bar was

twice as much as his initial construction. Instead, he expressed uncertainty about his

initial claim (a conjecture) by saying, “I think I was thinking of halves.” This implies that

halving and doubling were not reciprocal operations for him. One might argue that

Cory’s problem was one of semantics, but later in the episode, working with discrete

bars, he was able to connect bars to make twice, three times, and four times a given bar.

In fact, when I repeated my original question, he made a connected bar that was twice as

big as my bar from the one-half bar he had made.

Protocol C1: (Cont.)

T: This is my bar; it’s twice as big as yours. And, I want to see yours.

C: …see how bigger it is?

T: Yeah.

C: [tapes together the two halves he had made and tapes another copy of the

whole] Not the best chocolate bar, but… [laughs]

T: Okay. So how does this bar [pointing to the two taped whole Cory had made]

compare to mine?

C: It’s twice as big.

T: Oh! Yours is twice as big as mine. How do you know yours is twice as big?
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C: Because I have another chocolate bar that’s exactly the same as that one and if

you connect them, I guess…

So, it seems that Cory did understand twice to mean two of or two times. Still, in

working with fractions within a whole, as he had been in the beginning of Protocol C1,

his actions were uncertain. Cory’s uncertainty indicates that he did not have a partitive

unit fractional scheme with which to interpret multiplicative relations between a whole

and a part of the whole. At the end of the first half of Protocol C1, he even suggested

cutting the one-half part in half again, presumably satisfying his criterion for twice by

cutting twice. In order to further examine Cory’s reasoning in such situations, I continued

with Task 4c.

Protocol C2: Cory’s trouble in positing new wholes.

T: Here’s my bar [points to one bar and places several identical bars in front of

Cory] and my bar is five times as big as yours. And, I’d like you to make yours.

C: [picks up one of the identical bars] I think I would just have one.

T: One what?

C: One chocolate bar, since you have… So, I think… No. I’m thinking how

many. So, I think I would cut this one in half [cuts the bar in half lengthwise]. I

think that might be it.

T: Show me that mine is five times as big as yours.

C: Mine is… shorter.

T: How much shorter?
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C: Four more times. No. Yeah, four more.

T: Show me that mine is four more than yours.

C: If I had it like this [placing the cut off half next to his half, remaking the

whole] it would be four more times, so I think it would be five more times.

Protocol C2 elucidates Cory’s concept of n times as much and his difficulties of

working within the whole with such concepts. After initially claiming that his bar should

be one whole, he realized that his bar should be shorter than mine and cut his bar in half.

However, five times as much still meant that one of us should have five of the other’s

whole. Cory could not posit this new whole within the given whole and even if he already

had such an object available in his perceptual field (as in Protocol C1), he had

demonstrated trouble in identifying the object as the desired whole. Cory knew that, since

I was to have five times as much as him, I should have four more of something, but that

something was my original bar and not his bar. This explains why he said that if he had a

whole, mine “would be four more times.” This also explains why he continually changed

such tasks into ones where his bar was n times as much as mine, even though he knew

that his bar should be smaller! He made that very mistake in a subsequent task in which I

asked him to make a bar such that mine was four times as big as his.

Cory had put together four whole bars in response to the task mentioned above.

When I asked him whose bar should be bigger, he expressed surprise, and then cut his bar

in half. He realized that my bar wasn’t four times bigger than the half that he created, but

thought that mine might be “three and a half” times bigger! He tried to correct this by

cutting his half in half again. Protocol C3 picks up there.
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Protocol C3: Cory’s conjecture concerning iterating a new whole.

C: [places his part in mine five times while counting aloud] All right. So one, two,

three… All right. So that would be five. [Upon my suggestion, Cory and I

carefully marked off the number of times his bar went into mine.] Okay. So a

little over four.

T: So, is mine four times bigger than yours?

C: Yep.

T: All right. That’s good. Now I’m going to ask you a tricky question. Can you

make one so that mine is eight times bigger than yours?

C: [picks up another whole bar] Eight. I’m going to have to make one smaller.

Oh, well why don’t I use this one here. [He picks up and cuts the one-fourth piece

in half.] It might be too small. [He places the one-eighth piece on the bottom of

my whole bar.]

T: You think that’s it?

C: Mm-hmm.

T: How do you know?

C: Since both of these connected was four, and if I cut them in half, so that

might… So, if I cut it in half, maybe it would be eight… then maybe this will add

four more strikes [referring to the marks we had made on the whole in keeping

track of the iterations of the one-fourth piece].

T: So how many of those halves would fit in there [pointing to the one-eighth

piece]?



94

C: One, I’m pretty sure.

I refer to Cory’s actions in Protocol C3 as conjectural, because thus far in the

interview, he seemed unable to consider his part as a whole that could be iterated in the

original whole bar. I have pointed out a couple of instances where he seemed to

experience a conflict or perturbation in resolving the ambiguity of such situations: While

he knew that his bar should be smaller than mine, he was only able to iterate my whole

bar. The conjectural operation involved embedding an unknown numerosity of his part

within the original whole. Because he actually iterated the part five times within the

whole at first, it is doubtful that he had anticipated that taking one-half of one-half

resulted in one-fourth, a piece that could be iterated in the whole four times. Moreover,

he did not recognize that half of that fourth would fit twice into each of the marks created

by the fourths. Still, in tasks where my bar was to be n times as much as his, he did

understand that the larger n was, the smaller his part would have to be.

Cory seems to have constructed equi-partitioning and part-whole partitioning

schemes, and he was struggling with concepts surrounding a partitive unit fractional

scheme. He was especially close to developing fractional reasoning with one-half, and a

generalization of operations with one-half might elevate his reasoning for other unit

fractions as well. Beyond that, his conjecture during Protocol C3, could result in

reversible reasoning with unit fractions.

Considering his expressive and thoughtful demeanor, his demonstrated propensity

for conjecturing, and his stage of development, I felt that Cory would be valuable to my

study as the second member of a lower-stage pair, along with Sierra. The two students
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were in the same class, and although they were not friends (both were actually a little shy

in class), I felt they would work well together. However, after a few episodes, scheduling

conflicts required me to switch partners among the lower-stage pairs, and Cory began

working with a boy named Matthew.

Matthew

Matthew was a good-natured student in Miss Rose’s first period class who

struggled some in math. During his interview (on the same day as Trent’s interview), he

was wearing camouflage pants and had a chubby, shy smile. I do not have a recording of

my interview with Matthew. So, the analysis given here is wholly reliant on artifacts from

Matthew’s productions (construction paper cut-outs, drawings, etc.) and notes taken

during and immediately following the interview. Although he was a little slow in getting

started, he demonstrated a part-whole partitioning scheme for fractions in the first few

tasks. He could also equi-partition in sharing tasks and use his part-whole partitioning

scheme to identify non-unit fractions and complements.

When asked to make a bar that was twice as much as mine, he created ten-tenths

with a bar of the same size because “it has more pieces.” I asked him whether he had

twice as much, and he began to think about the problem again. He then put two bars

together. In the reverse question of creating a bar so that mine was twice as big, he

eventually folded his paper in half, without any guidance from me.  He then used a trial-

and-error approach to finding a bar so that mine was five times as big. At first he used

fourths and iterated it in my bar to see that mine was four times as big as his. He then

made eighths and checked again. Finally he performed a fold that was in between and

was satisfied with the result upon iteration. When I asked him to make a string that was
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three fourths of mine, he lost the whole entirely and made a row of four pieces of string,

three of which were about the size of mine. He seemed more concerned with numbers of

parts than making equal parts, and the whole was redefined by his actions with those

parts.

I attributed to Matthew a part-whole partitioning scheme and equi-partitioning

operations, though he did not use these operations flexibly. He did appear to satisfy

requirements for cognitive development in the lower pair. Also, he was willing to act out

his ideas, and I imagined he would work well with other students. So I eventually decided

to ask Matthew to participate, though at that point I knew that the pairings for which I

was looking had to be worked out differently than I had initially planned.

Andy

I interviewed Andy on February 18th, 2003. He was a bright and outwardly

confident student from Mrs. Biltmore’s second period math class. During the interview,

he thought intently about each task and said that he liked difficult questions. From his

responses to the first few tasks, it was evident that he had constructed an equi-partitioning

scheme, so we quickly moved to more difficult tasks. Protocol A1 was extended from

Task 4 of Andy’s interview. The task was designed to investigate the splitting operation. I

gave Andy several pieces of construction paper referred to as candy bars, all about 12

inches by 8 inches, in addition to a ruler, scissors, markers and tape.

Protocol A1: The splitting operation.

T: My bar [touching one of the bars] is twice as big as your bar, and I’d like you

to make your bar.
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A: [immediately grabs a second sheet and folds it in half careful to match up the

edges, then cuts along the folding line, placing the piece on the left half of mine]

T: Is mine twice as big as yours?

A: If yours is twice as big as mine then… if this is it [touching my bar], then you

can fit two of these pieces in yours [sliding one of the pieces he had made to the

right half of mine].

T: And what is yours compared to mine?

A: One-half.

Andy had no problem with the task, nor in establishing the reciprocal relationship

between our bars; he responded immediately, confidently and deliberately in producing

the required bar and in making use of his fractional language. He had already

demonstrated in previous tasks that he could introduce terminology such as “five-

sevenths” meaningfully. Either he had already established that his bar would be half of

mine because mine was twice his, or he established it as a result of his production. In the

second case, he would also have had to posit a hypothetical bar that, when repeated twice,

would constitute my bar. Either way, there is solid indication that Andy had constructed

splitting operations, at least for one half, because he seemed to be able to consider

partitioning (as in his production of one-half) and iterating (as in “twice”)

simultaneously. His response to the second part of Task 4 serves as corroboration of the

splitting operation.
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Protocol A1: (Cont.)

T: This time, here’s my bar [a new whole sheet] and my bar is supposed to be five

times as big as yours.

A: [raises his eye brows and begins to tap the paper five times sequentially along

its length] That’s a little bit difficult right there.

T: Well you answered the other ones too easy.

A: [begins making four creases along the length and mutters to himself] …folds.

I’m estimating here, so this isn’t going to be exactly right I don’t think [cuts along

first fold and shows me the piece].

T: Okay, so show me that mine is five times as big as yours.

A: That’s one, two, three, four... [placing the cut out piece on the leftmost part of

my bar and sliding it each time one space to the right] Yeah, I was a little bit

off… a little too big.

Andy went on to describe how he could use the ruler to make a better

approximation but claimed it was “quite hard because it doesn’t have the exact

measurements.” He explained that he would divide the whole length by 5 to get

five equal sections. Based on his concern for exactness in his productions, the task

appeared challenging for Andy only because it was difficult to approximate one-

fifth of my bar, even with the ruler. Andy seemed to recognize from the start that

he needed to make one-fifth, which supports the inference that Andy had

established a reciprocal relationship between “n times as big” and “one nth.” Such

a relation involves splitting the stick into five equal parts to produce a stick such
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that the given stick is five times as big as the stick produced. Andy’s responses to

the next task, Task 5, are compatible with the inference that he could split a stick.

Protocol A2: Reversibility of Andy’s fractional schemes.

T: [cuts off twelve inches of string] This is my piece of string, and my piece of

string is three-fourths of your piece of string.

A: [thinks for about ten seconds] That’d mean mine was sixteen inches.

T: Why don’t you go ahead and make it and let’s see.

A: Can I use the ruler? [marks off one ruler plus four inches of string and asks me

to cut, which I do and ask him to explain] Because if you have three-fourths of

my string like you said, then divide 12 by 3, which is 4, and that’s 3 [of the four-

inch pieces]. And then if you go 4 times 4 [inches] with mine [sweeping his hand

along the length of the string he made], that’s 16. And 12 is three-fourths of mine.

It seemed that Andy solved this problem by determining what one-fourth was and

then iterating the composite unit four times. Iterating the composite unit four times

indicates that one-fourth was an iterable unit, as well as the composite unit, four. So, I

can infer that Andy had constructed, at least, a reversible partitive fractional scheme. We

can also see evidence that Andy is coordinating units of units of units, three fours and

four fours, indicating a generalized number sequence (the number sequence resulting

from the interiorization of the explicit number sequence). This coordination, when

coupled with iterating the composite unit, four, four times, indicates that he had

constructed a partitive fractional scheme for composite units—a scheme that can be used
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within a composite whole to re-establish the whole from any fractional part of it. This is

the best confirmation yet that Andy had established splitting operations for composite

units; he had to establish one fourth through partitioning before he could iterate, and he

seemed to enact both operations simultaneously in satisfying his goal of reproducing the

whole. Still, he had problems to work out surrounding such operations.

Protocol A3: An attempt to compare four-fourths and three-fourths.

T: Ok great. What fraction is yours of mine? [pointing to each, in turn]

A: One-fourth, maybe?

T: Why do you think one-fourth?

A: ‘Cause. Well, that wouldn’t work. Couldn’t say four fourths; that’s a whole.

This is hard. I have one more fourth of yours than you have of mine. You have

three fourths all together; I have four fourths. I have… I have to go with one

fourth because I don’t think you can go with four fourths.

T: [To help Andy to check his claim, I asked him to identify one-fourth of my bar,

which he was able to do.]

A: [changing his mind] It’s four fourths.

Andy definitely established my part as three-fourths and his as four-fourths, as

well as one fourth more than three-fourths. In this additive comparison, he seemed to

establish three-fourths as a three-part whole. But to establish his part as four-thirds of this

three-part whole, he would have needed to become explicitly aware that he took four-

thirds of three-fourths to produce 16, and so four-fourths is four-thirds of three-fourths.
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Such reciprocal reasoning is not a necessary consequence of the partitive fractional

scheme for composite units. It appears that Andy had not yet constructed a scheme for

producing improper fractions in the case of operating with composite units. Protocol A4

was extracted from Andy’s response to Task 6.

Protocol A4: An attempt to produce a string such that 12 would be four-thirds of the

string.

T: Mine’s four-thirds of yours [pointing to a 12-inch piece of string].

A: Four-thirds!

T: And I’d like you to make yours.

A: It might mean that mine is three-fourths of yours [cuts off 8 inches of string

from the 16 inch string from the last task]

T: Show me that mine is four-thirds of yours [picking up each piece, in turn].

A: I was thinking if you had four-thirds… It’s like an improper fraction and you

divide 3 into 4 and you get 1 and one-third.

T: Does that mean that mine is one and one-third of yours?

Andy seemed to have cut off an eight-inch piece of string because it was less than

twelve inches by four inches, which is one-third of twelve inches. In other words, he

knew that, because my string was one and one-third of his string, he would have to cut

off one third to produce his string; so, Andy calculated one-third of 12 (four inches) and

cut off that amount. This kind of reasoning parallels that of his solution to Protocol A3, in

which he found one-third of the given string (four inches) and added it back on to the
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given string to recreate the whole (sixteen inches). In that case, however, he was able to

posit the missing fourth in the whole as one-third of the given string. In the present

protocol, he would have to posit the extra third (beyond the whole) as one-fourth of the

given string. This would involve the integration of an iterative fractional scheme (for

dealing with improper fractions) with his partitive fractional scheme for composite units.

As the protocol continued, he returned to his earlier idea that his might be three-

fourths of mine and considered each of three fourths within his eight-inch piece. Once

again, he seemed to recognize a reciprocal relationship between our two pieces of string,

although this time he appeared less confident about it; it may have been a conjecture

influenced by my own reciprocal reasoning in posing four-thirds immediately after

posing three-fourths (in the last protocol). He may be in the process of generalizing the

relation for unit fractions and “n times as much” to situations involving non-unit

fractions, and integrating the splitting operations associated with these relations to his

partitive fractional scheme for composite units.

Protocol A4: (First Cont.)

A: [laughs a little and then looks intently at the pieces] I’m stumped [laughs

again]. This is 1, 2, and this is three fourths here [pointing to one of three equal

parts within his eight inch string, then two of them, then three] and you have four

fourths. [sequentially marking off between his thumb and forefinger two inches at

a time on the ruler] four-thirds… 4 times 3 is 12, which is a foot. You have four-

thirds of mine. Then I would have three-thirds of yours, which would be nine

inches.
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T: Did you make that?

A: I made eight inches. [cuts off nine inches] I think that’s right.

T: Show me that mine is four-thirds of yours.

A: You have four-thirds. Yours would be 12. So I’m thinking four thirds would be

4 of 3 [inches?], which is 12. If it’s four-thirds of mine… wait a minute.

[mumbling to himself with his hand on his face] Four thirds, 12, four-thirds of

mine...I think mine would be five-thirds.

Andy seemed to draw an analogy between his reasoning with three-fourths, as in

Protocol A3, and reasoning with four-thirds. The explicit analogy, illustrated just as

Protocol A4 continued, helped Andy to establish that four-thirds was four of one-third

and to determine the size of that one third: 4 times what is 12? Thus, Andy was able to

correct his original production by focusing on thirds rather than fourths. But while he

knew that my string should have four of his thirds, he referred to his string as being three

thirds of mine. As the protocol continues, it becomes apparent that his use of “of” often

refers to a sub-collection of parts rather than a reference to a whole that determines the

size of a fractional part. For example, he explains that my bar has four of the thirds

(three-inch pieces) whereas his has only three of those thirds. This is the kind of

regression Piaget noticed in children when they operate in unfamiliar ways. This may

also explain why he reasoned that his piece might have to be five thirds, a seemingly

absurd claim because he already appeared to recognize that my string was longer; he

could take four of his thirds to make mine only if he had more than four thirds to begin

with!
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Protocol A4: (Second Cont.)

T: What would it mean to be four-thirds of yours?

A: I was thinking at first to be four-thirds, which is 4 times 3 is 12. And if yours is

four-thirds of mine… And I thought mine would be three thirds which is 3 times 3

is 9. But if it’s four-thirds of mine, that sounds like it’d be four thirds of mine, not

mine being three-thirds of four-thirds. [marking each piece of the nine-inch string

into three-inch parts] I was thinking mine might have to be fifteen because yours

would be four-thirds of mine and if I added one third to mine it’d be five thirds

and five thirds is fifteen inches.

Andy had equated each third with three inches, which he was able to do using his

partitive fractional scheme for composite units. His surprise at the start of the protocol

(and his impulse to change improper fractions to mixed ones) indicates that he was not

prepared to work with improper fractions in the manner I suggested, even though he

could produce them through iteration. For these reasons, he transformed his goal to one

of finding a bar from which he could pull four three-inch pieces. That action would

constitute a meaning for my bar being four thirds of his. In other words, if his bar

contained five three-inch pieces, he could explain how my bar would be four thirds of

his: it would contain four of the three-inch pieces from the five three-inch pieces in his

own bar. I might claim that Andy’s solution was the result of abducting because it fit the

pattern of adopting a new way of operating in order to explain a surprising situation.

However, as I have argued in establishing the framework for my study, I would not be



105

able to examine such patterns of conjecture in depth without first establishing the

existence of available operations.

Although the last protocol points to some problems in Andy’s use of splitting in

the context of composite units, he certainly has constructed unit fractions as iterable

units. He can also use them reversibly as he did in producing one-fourth from three-

fourths with the intent of iterating that fourth to produce the whole. This indicates the

simultaneity of partitioning and iterating that define splitting. In fact, he seemed to use

splitting operations in the last task, and the novelty of their use in such a situation may

explain the problems that he faced. In particular, he had to consider more than one whole

and determine what it might mean to take an improper fraction of one whole in

establishing another. Thus, I do attribute splitting operations to Andy and find novel

situations for his use of them to be conjecture-rich.

In summary, Andy has splitting operations available, but he seems to be restricted

to working within a given string. He could posit a longer string by reasoning additively.

For example, Andy demonstrated that he could make sense of four-thirds as a given

string, by defining it as one more third than a whole. He had conflated one-third with

three inches and had also conflated “four-thirds of” as an operation with four-thirds as the

quantity, 12. “Of,” in such situations, referred to a number of composite units that could

be pulled from a larger number of composite units (hence, five-thirds). He did not see, for

example, four-thirds of three-thirds as four-thirds. The activities of Protocol A4,

described here, demonstrated the limits of Andy’s partitive fractional scheme for

composite units.
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As evidenced by the transcripts, Andy was adept at verbalizing his thoughts and I

felt he would be a wonderful participant as part of the high pair. However, his confident

attitude was interpreted as obnoxious behavior by some of his classmates. In particular,

the other prospect for the high pair, Hillary, did not get along with him at all, as I learned

after the initial interviews, when I tried to pair them. So, I had to choose between the two

students. For reasons described in my analysis of Hillary’s interview (below), I chose to

work with her and only used Andy to work with her partner, Will, when Hillary was

absent.

Will

Will was in Andy’s math class, and I interviewed him on the same day. He was a

football player with nice clothes, dyed spiked hair and a fun personality. He sat at the

front of the class next to his class partner Hillary, whom I also interviewed. All three

students were performing quite well in the class.

At the beginning of the interview, Will seemed to struggle with equi-partitioning.

When I asked him to mark off one-fifth of a rectangular candy bar, he tried to divide it

like pizza slices as he had done in class, drawing in the diagonals to create four equal

parts and then being unsure on how to continue. After he began acting frustrated in his

attempts, I suggested that he divide the bar vertically. This seemed to make sense to him,

as did all of the proper fractional names that I used in posing such tasks; he also

introduced fraction names himself in response to Task 3. Meaningful use of fractional

names in creating fractional parts, such a one-fifth, is a sufficient but not necessary

indication of equi-partitioning. However, Will exhibited further complications in using

his equi-partitioning scheme and fractions concepts in his response to the following task.
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I asked Will to share a candy bar between him and five friends. He drew five lines

lengthwise across the bar, creating five equal pieces and one large leftover piece. After he

drew the second, third and fourth lines, he counted the number of equal pieces he had

created. The following dialogue begins after Will cut off one of the smaller equal pieces,

and cut off and discarded the larger leftover piece.

Protocol W1: Will’s struggle with equi-partitioning.

T: Okay, so you’re sharing this with five friends, right?

W: Um-hmm.

T: Where’s your piece?

W: Right here [touches the small piece that he had cut off].

T: Where’s the pieces for your five friends?

W: [touches the other four equal-sized pieces that were still connected] Right

here. Well that’s four so…

T: Okay, so now you pretend like there were five of you, instead of six of you. So,

it was you and four friends, but five total. Okay. What about that piece? [pointing

to the larger discarded piece]

W: [picks up the discarded piece and shakes it while showing it to the teacher]

That’s just extra, left over.

T: Okay, so there’d be extra candy bar left over?

W: Um-hmm.
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T: Okay, what if we wanted to use the whole candy bar and you were going to…

So you were going to share this with your four other friends; there’s five of you,

but you’re going to use the whole candy bar.

Will then began cutting the discarded piece (which he was still holding) into five

equal parts lengthwise. This time he was able to partition the piece efficiently and

precisely. This stands in contrast to his initial attempt: Whereas in the initial attempt he

was only concerned with creating a specified number of equally sized pieces (as indicated

by his counting acts in creating them and his discarding of the left over piece), the second

time he had been explicitly instructed to use the whole candy bar and was able to apply

equi-partitioning, including the instruction as a goal and acting appropriately to satisfy

that goal. So, it seems that Will did have an effective equi-partitioning scheme available,

but did not recognize the importance of preserving the whole and, instead, altered it to

make the task easier. As the protocol continues, it also becomes clear that Will has

trouble reconciling his classroom knowledge in the new context.

Protocol W2: An attempt to name the equal shares.

T: Where’s your piece?

W: [places one of the old pieces and one of the new pieces in front of me] This is

mine right here, and that’s theirs [touching the remaining pieces].

T: So, if I was going to get one of these, I would get maybe this [scanning one of

the uncut old pieces] and what else?

W: Um-hmm. [picking up one of the new cut pieces]
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T: …and one of those. So, everybody would get like you – one of the big ones

and one of the small ones. And how much is this [holding Will’s share]?

W: That is two… fifths out of all of it.

T: Okay, so the whole candy bar is cut into how many pieces?

W: [sub-vocally counts the pieces while pointing with his right index finger] ten.

T: …and I’ve got two of them. So I got two out of ten.

W: …so you’d get two tenths of it.

T: So, if I’ve got two tenths, can you change that into another fraction?

W: You might be able to get it into two-fifths.

T: So, maybe two-tenths is the same as two-fifths? So, if I have two-tenths, like

I’ve got two of these [holding the old and new piece that Will had set aside as his

share], right? Then I might have two-fifths of the whole candy bar, too?

W: Um-hmm.

Will recognized the importance of giving equal shares in distributing one of each

size to each person. I thought that, in distributing five sets of two, Will might also

recognize the commensurability of two-tenths (although, there were not two equal tenths

in each share) and one-fifth, but he became confused with the numbers. While he was

familiar with fractional names and part-whole relations, he would lose track of the whole

and resort to playing with the numbers themselves without much regard for part-whole

relations. I speculate that part of this might be attributed to issues of affect; Will appears

to be very comfortable with guessing and could have been very successful in his math

class by finding patterns in numbers without considering context. In some ways, this
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could make him a powerful mathematician, except that he is lacking the critical reflection

necessary to question his own ideas. His equating two-fifths with two-tenths, in which

“two fifths” may have referred to the five sets of two, is one such example; others follow.

Using the four-fourths bar that he had produced in a previous task, Will was able

to recognize the commensurability of two-fourths and one-half. Still, in returning to the

case of two-tenths, Will continued to struggle. While drawing models on paper, he was

able to produce guesses such as “two-sixths” but could not establish any equivalence or

commensurability with two-tenths. As the protocol continued, it became clear that Will

was preoccupied with the numbers and not so much concerned with their meaning in the

context of his drawings.

Protocol W3: Naming an equivalent fraction.

W: The 2 has to be in there, don’t it? Cause there’d have to be something like two

eighths or something like that… or could it like three sixths or…

T: Well let’s see. Let me give you an example: you said that two-fourths is the

same as one-half. [writes on the board “2/4=1/2”] Right?

W: Uh-huh.

T: …and I want to know if something similar goes on with two-tenths [writing

“2/10=” under the other equation]. If you have two-tenths, is there something that

you can say that that’s equal to?

W: One-fifth?

T: What makes you say that?
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W: Well, from there it went down to 1 and then half of that because 2 is half and

then if you went down it would be 1 and fifth.

This time Will was very explicit in his strict attention to number. He had invented

a rule that 2 must somehow be involved in a fraction equivalent to two-tenths. When I

asked him to consider an equivalent fraction, rather than directing him to consider

quantities, my actions led him to notice a pattern in the numbers. He seemed to be

reasoning only with his whole number knowledge, and the situation had lost any

contextual meaning regarding the pieces he had made. We might further argue that Will

did not understand the relation between fraction names and fractional quantities of

wholes (which implies the paucity of a partitive fractional scheme), but then he seemed

able to relate them in Task 4a.

Protocol W4: Indication of a partitive unit fractional scheme.

T: [Showing Will a rectangular piece of construction paper (a bar)] This is my

candy bar, and I want you to show me what your candy bar would look like if

mine is twice as big as yours.

W: [draws a line down the middle (widthwise) of a second, congruent bar using a

ruler. He places it on top of mine, muttering]. It’s half of that bar. It’s going to be

once. [He then divides the right half in half with a new line and cuts off the

marked quarter of his whole bar. He places the piece at the right edge of my

whole bar and places it again one space over.] I guess it’s just going to be one half

[begins to cut off the other quarter from his whole bar, leaving half of the whole].
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T: What did you say about that last one?

W: It’s not going to be it because I was going to try to put this in there two times

[stopping his action of cutting and repeating his action of placing the quarter piece

in my whole bar twice].

T: Oh. Okay.

W: [finishes cutting and places the half in my whole bar twice, just as he had done

with the quarter piece] That’s going to be it right there.

T: That’s it?

W: Um-hmm.

T: So mine’s twice as big as that one?

W: Mmm… [looks a little confused and slides his piece adjacent to my whole bar

before sliding it back on top again]… You got two of my pieces.

Once again, Will’s confusion at the end might be attributed to his difficulty in

keeping track of the whole. When he slid his piece adjacent to my whole bar, he may

have been considering them together as a whole. However, he was able to resolve the

situation because he had made meaning for “twice as big”: it meant that I had two copies

of his piece within mine. He had tested this initially with a one fourth piece. Initially, he

seemed to think that my bar would be twice his if he took a half twice (i.e. a half of a

half). The fact that he didn’t immediately recognize a half as reciprocal to “twice as big”

may give us reason to doubt that he had constructed splitting operations. However, there

was also indication that he did at least have a partitive unit fractional scheme.
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Both one-half and one-fourth were iterable units for Will (at least within the

whole); he demonstrated this in testing his first and second solution. Since he used

iteration in satisfying a goal, we have good reason to infer the existence of a scheme that

incorporates operations of iterating and can anticipate iterating a hypothetical piece. The

next protocol tested whether he could operate similarly with larger values.

Protocol W5: Producing a bar such that a given bar is five times as big.

T: Here’s mine [pointing to my whole bar]. This time I’d like you to make one so

that mine’s five times as big as yours.

W: Five times as big… [Will immediately grabs the one-fourth piece and begins

iterating it within my whole bar. He first keeps track of the spaces using his

finger, then scissors, then a marker. After iterating the piece four times, he utters]

That’s four.

T: So how many times bigger is mine than yours?

W: This one right here is four, so I’ve got to make it where it’s five.

T: Okay.

W: [Will repeated his act of iterating the one-fourth piece four times] …cut half

that up. [He then cut the one-fourth piece in half lengthwise, and began iterating

one of the halves within my whole bar using a marker to keep track as he had

done before. He stopped when he got to the fourth iteration.] …too small. I’ve got

to make one bigger.

T: [laughing] First it was too big, then too small…
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W: [Will laughed a little, then iterated another one fourth piece in the whole four

times, but without using a marker. He then cut off about one third of the one

fourth piece and iterated it into the whole five times using the marker.] Five.

T: So what fraction is yours out of mine?

W: [looking down at the piece, he immediately responds…] One fifth.

Will’s responses to this last task, Task 4c, offer stronger indication that Will had

constructed a partitive unit fractional scheme. He iterated each of the three different sized

pieces in purposefully checking them against his goal of creating a piece so that mine was

five times as big as his. Moreover, he made appropriate adjustments when he found that a

piece went in too few or too many times, seemingly recognizing a relationship between

the size of the part and the number of parts in a fixed whole. On the other hand, I would

argue that Will had not yet constructed splitting operations, because he had trouble in

each of the last two tasks positing an appropriate hypothetical piece. In particular, for

Task 4c, he used the one-fourth piece first even though he had already found that it went

into the whole four times and not five times. His subsequent and immediate naming of

the final piece, “one fifth,” offers another indication that he had constructed a partitive

unit fractional scheme.

Splitting operations and a partitive fractional scheme did appear to be within

Will’s zone of potential construction. Although he could not posit the precise size of the

piece he wanted to make, he was able to posit a hypothetical piece with the goal that it

would form the whole when repeated so many times. For lack of a precise hypothetical

image, Will instead relied on tangible pieces that he had available. After checking, he
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knew that he needed a smaller piece but relied on halving to create the fifth part in the

whole, without realizing that this would actually create four more parts in the whole. This

may also point to a lack of recursive partitioning and fraction composition, as did his

trouble in equating two-tenths and one-fifth.

Although he faced some complications in equi-partitioning, I felt that many of

these complications could be attributed to his classroom experience and his unfamiliarity

of my expectations for him in the new setting. Once he accepted the premise of using the

whole bar as a goal, he was able to meet this goal. There is also plenty of evidence to

indicate that Will had constructed a partitive unit fractional scheme, and that he could

make meaning of goals involving partitive and splitting operations.

I felt that Will would work well with other students, and he seemed to enjoy the

activities. So, given my assessment of his reasoning, I decided to ask Will to participate

as one of the students in the middle pair. However, pairs did not work out as I had

anticipated, largely due to the problems that I mentioned existing between Hillary and

Andy. Thus, Will worked in the high pair with his classroom partner, Hillary.

Hillary

Hillary was a bright and pleasant girl who, along with Will and Andy, was in Mrs.

Biltmore’s second period class; I interviewed her three days after the other two. She had

long, curly brown hair and glasses. She was a little quiet but was thoughtful and

verbalized her ideas well when prompted. Unfortunately, when I videotaped her

interview, the sound did not record. So, the following analysis relied upon my notes taken

that day, artifacts of her productions, and observations of the silent video.
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Hillary had no problem solving sharing tasks. In Task 1, she was able to estimate

one-fifth of a whole bar by making sweeps at five intervals and then drawing the first

dividing line; she did not need to draw in the other parts in order to recognize the small

part as one-fifth of the whole. Furthermore, having drawn three-fifths within the whole

bar (one-fifth from the left end and two one-fifth pieces from the right end), she was able

to recognize the unpartitioned two-fifths part in the middle as two fifths of the whole.

This suggests that she may have had a partitive fractional scheme available in order to

make sense of two-fifths without having to refer to the individual units making it up.

When I asked Hillary to make a bar such that mine would be twice as big (Task

4a), she cut out a sort of picture-framed piece that was similar to the whole. She may

have perceived this as an additional requirement, as a result of schoolwork with similarity

and dilations (although the class had not been working with similarity in recent weeks).

She later demonstrated that she could easily produce the required piece with a single cut

down the middle of a whole bar, so it appears that she had assumed the additional

requirement as a goal in her initial production. While it was easy for her to justify that her

simpler production worked (because it fit twice into the whole), she struggled some in

justifying her initial, more complicated production. Eventually (after I questioned her

about the size of the left over frame), she was able to cut up the frame to show that it

filled half of the whole, arguing that her initial production must then be the other half.

This demonstrated to me that she had a strong understanding of quantity and the

contextual meaning of one-half and twice as much.

Hillary smiled, seeming very pleased with her justification that her initial

production was indeed one-half of mine, thus arguing that my bar was twice hers. She
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behaved similarly in response to Task 4c: creating a part so that my bar would be five

times as much as hers. Rather than producing the part with a single cut, as she later

demonstrated she could easily do, she cut out a piece from the bottom of the whole that

was similar to the whole again, this time using only three cuts (there was no need for her

to cut across the bottom). Her accuracy was uncanny; I measured her production after the

interview and found the area of the whole to be 4.72 times as big as the area of the cut out

piece! Still, Hillary had trouble justifying her production. In fact, after placing her piece

within the whole, she recanted and cut off a smaller piece from her original cut out; but

when she traced copies of that new piece within the whole five times, she found the new

piece to be too small.

Hillary’s trouble in Tasks 4a and 4c seemed to stem from her concern that the

initially produced pieces could not be iterated adjacently within the whole without

exceeding either the length or width of the whole. Given her trouble in justifying through

iteration, it is even more amazing that Hillary was able to produce the pieces so

accurately; it indicates that she could split, but that her splitting operations were not

always based on the iteration of a hypothetical part. Rather, the operations may have been

based on a more fluid sense of quantity (such as a dilation) that could not be represented

easily with the construction paper. In any case, she did appear to have the splitting

operations required to posit a hypothetical piece that, when iterated so many times, would

reproduce the whole.

For more complicated reversible tasks, such as Task 5, Hillary confused our parts

and made three-fourths of my string when she was supposed to make a string such that

mine would be three-fourths of hers. This serves as contra-indication that Hillary had
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constructed an iterative fractional scheme or even a reversible partitive fractional scheme.

Still, if her goal was to create a string that was three-fourths of mine, she was able to

accomplish her goal without first partitioning my string. In other words, she could

anticipate both partitioning my string into four parts and iterating one-fourth three times.

Her ability to anticipate the result of both operations together indicates that the two

operations might be simultaneous for her (i.e. she could split), or at least they had been

interiorized to a level where they could be treated as abstract entities that she could

anticipate composing.

In justifying her construction, Hillary did in fact mark the partitions of my four-

fourths string and her three-fourths string. When I restated the task that I had intended for

her, I used the three-fourths string as my string and disposed of the four-fourths string.

Hillary then lined up one end of my string with one end of a pile of string and cut off a

piece from that pile of string that was nearly identical to the disposed string. Had she

been able to do this without the previous experience of creating three fourths and without

the aid of the marks on my string, it provided solid indication that she had constructed a

reversible partitive fractional scheme. As things were, she must have been able to

recognize the three pieces marked in my string as fourths rather than thirds and posit a

missing fourth, unless, of course, she had simply remembered the size of the discarded

string and reproduced it. Her deliberate alignment of the three-fourths string with the pile

of string makes me believe the first scenario was the case. As such, her actions indicate

that she could preserve the relationship between three fourths and a whole in the absence

of the whole. Once again, we could attribute this to splitting and her reversible partitive
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fractional scheme—establishing an extra fourth from a piece that already contained three

iterations of that fourth.

At the end of the episode, I asked Hillary to make one fourth of one half. She had

little trouble making the bar: she cut a whole piece of paper in half and then cut off one

fourth of that half. However, she could not name the resulting part as one eighth without

iterating it within the whole. After placing the part in one half of the whole four times,

she knew that it would go into the other half four times and then called the part “one

eighth.” While Hillary could act out partitioning recursively, I claim that she could not

recursively partition because she seemed to be unable to coordinate whatever records she

had of her production. It was only in iterating the final piece in the whole, that she could

determine its fractional part of the whole.

An iterative fractional scheme was within Hillary’s zone of potential construction.

Since she was also very thoughtful, reflective and expressive in her activity, I felt that

Hillary would make a wonderful participant. So, I asked her to participate as a member of

the high pair. I had planned on pairing her with Andy until I learned, after the initial

interviews, that she did not get along with him. When I was forced to choose, I chose

Hillary as the primary participant because I was confident she would work well with

anyone else that I had interviewed, especially her class partner Will who was operating at

a similar stage.

As things turned out, I had six students with whom to work, but only one high

stage and one middle stage student. I decided to pair those two students and form two

lower stage pairs from the others. It was beneficial that Hillary and Will worked together

in class and seemed to get along well. I paired Sierra with Cory because they were also
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from the same class and I felt they both had mild personalities that might be drowned out

by more boisterous partners. That left Matthew and Josh whom, again, were from the

same class and knew each other from playing football.

I worked out a schedule in which I would visit the school for the first two periods

for three days per week. I worked with Hillary and Will two days per week and always

during their second period math class; I worked with Sierra and Cory during first period

math class one day and second period another day, under an agreement with their second

period English teacher; and I worked with Matthew and Josh during their first period

math class two days per week. After a few protocols, it became apparent that Sierra did

not like leaving her English class. I thought of switching her with Josh because Cory and

Josh seemed more advanced than the other two, but Josh could not afford to miss his

second period science class. So, I switched Sierra with Matthew, who was in Cory’s

second period English class as well. Such logistical decisions played as much of a role in

the final pairings as did my initial cognitive design for pairs.
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Chapter 5: Hillary and Will

Synopsis

Several of Hillary and Will’s conjectures are highlighted within this chapter and

synthesized in Chapter 6. The main purpose of this chapter is to build models of the

students’ ways of operating, which changed significantly as a result of conjecturing

activity. I provide examples from my data to indicate that Will and Hillary could operate

in the TIMA:Bars environments using particular schemes and operations. In the first

few teaching episodes, Will’s actions indicated that he had constructed a part-whole

fractional scheme and a partitive unit fractional scheme, but not a (more general) partitive

fractional scheme. During the teaching experiment, he constructed several procedural

schemes in response to tasks and in assimilating Hillary’s actions, but these were not

truly fractions schemes. His conjecturing activity did engender a partitive fractional

scheme for composite units and, eventually, a partitive fractional scheme.

Hillary’s actions in the first few teaching episodes indicated that she had

constructed a partitive fractional scheme and a splitting operation; a reversible partitive

fractional scheme was emerging. By way of a few conjectures and simpler schemes, she

constructed a commensurate fractional scheme during the teaching experiment. Her

conjecturing activity engendered several other schemes, eventually including an iterative

fractional scheme. I also note her agreeable disposition throughout the teaching

experiment in working with Will and its effect on her development.



122

Introduction

Through my analysis of their initial interviews, I determined that Hillary and Will

were advanced (especially Hillary) relative to other students that I interviewed. Whereas

Hillary had constructed a partitive fractional scheme and splitting operations, Will had

constructed a partitive unit fractional scheme; I place a partitive fractional scheme and

splitting operations within Will’s zone of potential construction.

Through analysis of the first several episodes, I will elaborate on my models of

the students’ fractional knowledge. These first episodes provided students with the

opportunity to familiarize themselves with the available computer tools, and they

provided me with the opportunity to get to know the students as mathematical operators

and to build a foundational model for their fractional knowledge. Throughout the

protocols, “O” precedes the comments and actions of the witness, “T” precedes those of

the researcher, and, likewise, the first letter of each student’s name is used. Also in the

protocols, the comments within brackets are the researcher’s descriptions of student

action and interaction, task elements, etc.

24 February, 2003 Teaching Episode

The focus of this first episode was for the students to develop familiarity in using

TIMA:Bars. Will and Hillary took turns asking about and trying out various tools

available in the program, including MAKE, CUTS, PARTS, SHADE, BREAK,

PULLOUT, ERASE, and JOIN. They traded control of the mouses (which were spliced

so that either student could control the cursor on the screen) back and forth about every

minute with little need for supervision from me on the issue of sharing. When the

students asked about the role of the MEASURE and UNIT BAR tools, I encouraged them
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to predict the fractional names of a couple of bars. This activity was helpful in providing

an opportunity for the students to become familiar with the tools, but revealed little about

the students’ fractional knowledge because the activity required only part-whole

reasoning.

Will’s conjecture about constructing an improper fraction. I decided to challenge

the students to produce a fraction that would exceed the whole. In response to that

challenge, Will operated conjecturally, and both students interpreted the results of their

actions (following the conjecture) using their available fractions schemes. Protocol 1

documents Will’s conjecture and refers to objects depicted in Figure 5.

Figure 5. Hillary’s production of eight sevenths.
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Protocol 1: Will’s conjectural production of eight-sevenths.

T: I want ya’ll to get one so that eight-sevenths comes out in the box [referring to

the measure box in the upper left corner of the screen].

W&H: [Both students looked intently at the screen for about twenty seconds.]

H: [pulls out all seven sevenths with some instruction on how to use PULLOUT]

T: So, what do you think is going to happen if you measure that? Is it going to be

eight-sevenths?

W: [after looking at the screen for about five more seconds] Couldn’t you add

another one on the end? …When you took that away you’d have eight sevenths

or… [mumbling in ambiguous reference to the bars].

Will, whose thoughts in the initial interview were often consumed with attempts

at associating the numerator and denominator of a fraction with the numbers of parts

visibly produced, was concerned with producing eight parts. However, it is not clear that

he saw these parts as sevenths. Rather, he might accept the existence of a bar with eight

parts in proximity to a bar with seven parts as constituting eight-sevenths. It is not even

clear that the bar marked “unit bar” held any distinction for him. Yet, Hillary continued

by joining another seventh part to her pullout of seven sevenths, under the guidance of

Will who informed her that she could pull the extra seventh from a three-sevenths piece

that was still visible. After the students had produced the eight-sevenths, the screen

looked like the image in Figure 5.

As indicated by his prolonged pauses, Will’s verbalization at the end of the

protocol was uncertain and conjectural. He conjectured, Conjecture W1, that eight-
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sevenths could be produced from seven-sevenths by adjoining one more part. His

conjecture was based on the conjectural operation of adding one more to seven to

produce eight. Still, after Hillary acted on his suggestion, he and Hillary seemed to

interpret the result in terms of part-whole fractions.

Protocol 1: (First Cont.)

T: What do you think is going to happen [if we measure the bar in question]?

H: It’s going to be eight-sevenths.

T: Let’s try it.

H: No, it’s going to be eight-eighths [continues on to measure the bar].

T: Hold on; don’t do it yet. Eight-sevenths or eight-eighths?

W: I say eight-sevenths.

T: Why do you think eight-sevenths?

W: Well, because first it was seven-sevenths and then when you got… Well! That

would make it. Well, never mind, I think it will be eight-eighths.

T: Hillary?

H: I think it will be eight-eighths because you add another bar and it’s not going

to be seven any more.

W: [after Hillary said “…you add another bar,” Will began saying] Eight. It will

be eight total.

After Hillary added one more one-seventh bar to the seven-sevenths bar, Will

construed the new bar as an eight-eighths bar rather than an eight-sevenths bar. That is, a
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unit fractional part had fractional meaning only in relation to the whole of which it was a

part, and so the one-seventh bar could not be said to be an iterative fraction. Rather, it

was still a partitive unit fraction (unit fractions determined through iteration in the whole)

or a part-whole fraction. For the time being, Will seemed to ignore the bar labeled “unit

bar,” as Hillary had in saying, “It’s not going to be seven anymore.” The students did not

act this way when dealing with proper fractions, presumably because they could still

make sense of such fractions within the original whole. This is not surprising in Will’s

case, because I had noted in his initial interview (Protocol W5) that he lacked splitting

operations, which Steffe (2002) showed are necessary for a meaningful construction of

eight-sevenths. Hillary, on the other hand, had demonstrated a powerful use of partitive

unit fractions in the initial interview and seemed to have already constructed splitting

operations. While her response “eight-eighths” casts doubt on the existence of an iterative

fractional scheme, the confusion of both students in the protocol above might be

attributed to their lack of familiarity with the functioning of the computer program,

particularly with the role of the unit bar. In any case, Hillary’s assertion that the bar

would measure eight-eighths indicates that she had established a new whole, and Will

followed suit.

Protocol 1: (Second Cont.)

T: Okay, let’s try it. Measure…

H: [measures the bar to show “8/7” in the measure box] Eight-sevenths.

W: [simultaneously] Eight-sevenths! So it was it!

T: Why?
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W: Well, because at first it was sevens…

H: Because we added on.

W: …we added one more.

T: So it’s eight-sevenths of something. What is it eight-sevenths of?

W: Bars.

T: What bars?

W: Well, we added on that one [pointing to the leftmost part of the eight-sevenths

bar, which Hillary had joined to her pulled out seven-sevenths bar].

Once the students realized that the bar did indeed measure eighth-sevenths, they

both attributed this surprising result to the unusual circumstance that they had added on

another bar: “Because we added on”; “We added one more.” This is the logical form of

an abduction, and it may have served in supporting Will’s initial conjecture.

Hillary and Will’s fractional schemes. Although I did not identify any more

conjectures in the remainder of the episode, the students’ actions regarding UNIT BAR

and MEASURE provide some indication of their partitive unit fractional schemes and

their interpretation of the roles of the computer tools. An understanding of the students’

fractional schemes (beyond the initial interviews) and the meaning they ascribed to the

computer tools is vital to analyzing Conjecture W1 and subsequent conjectures. I provide

this section, describing the students’ actions following Conjecture W1, in order to build

that understanding.

Recognizing that the students’ shifted the unit bar from a seven-sevenths bar to an

eight-sevenths bar, the witness intervened after Protocol 1 in order to ask the students
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what would happen if we changed the unit bar. I picked up on the idea and clarified his

question by designating the old eight-sevenths bar as the unit bar and asking the students

whether that would change anything. Hillary thought that the measure box would display

eight-eighths this time. Will measured to reveal “1” in the measure box, and Hillary said

“one whole!”

Protocol 2: Will’s equivalence of eight-eighths and one whole.

T: Why wasn’t it eight-eighths? What’s eight-eighths?

W: Cause that unit is not just on one… [pointing across the “unit bar” label,

which covered the top of two of the parts]. Oh! Eight-eighths equals one whole!

Will began by blaming the surprising fractional name on the position of the “unit

bar” label at first. He may have been looking for peculiar details in the situation (as

Glasersfeld suggested as a possible reaction to perturbation) and simply found the label

odd. He may also have thought that “unit bar” was supposed to refer to only one of the

parts within the bar, rather than the entire connected bar. In any case, it is clear that the

students needed to become more familiar with the actions in TIMA:Bars. It is not clear

how Will viewed the role of the unit bar, and I could have been more direct on the matter,

but decided to let them work it out.

Will’s second explanation was more insightful. He recognized that the output

from MEASURE (“1”) was consistent with the bar that he measured because eight-

eighths and one whole were equivalent for him. This explanation offers further indication

that Will had constructed partitive unit fractions, although my prompt—“What’s eight-
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eighths?”—may have elicited his response. Will’s surprise toward the end of Protocol 1

may indicate that it was a novel perceptual judgment. This would cast doubt that he had

previously constructed the relationship between eight-eighths and one whole, as he would

have done upon establishing a partitive unit fractional scheme because the scheme

contains the operations for rebuilding the whole from one eighth by iterating eight times.

As the episode continued, Hillary demonstrated that she had already established a similar

equivalence, but then struggled when I asked her to predict what fractional name the

seven-part bar would have.

Protocol 2: (Cont.)

H: It’s going to be eight-sevenths.

T: Let’s see.

W: [picks up his mouse to measure]

H: [before Will measures] Seven-sevenths. It’s going to be a whole.

W: [measures the bar to reveal “7/8”]

T: Seven-eighths! Why is that one seven-eighths?

W: [counts the pieces in the bar] There’s seven. Where’s the eighth one at

though?

Once again, Will’s primary concern was identifying whole numbers of the

numerator and denominator with the number of visible parts. It also seems that he had not

established a unit bar as an item with which to compare the bar being measured. This

assertion is based on the fact that the bar labeled “unit bar” had eight parts in it, but Will



130

didn’t use it in finding where the eighth one was. Hillary also neglected the unit bar in

claiming that the seven-part bar would be a whole. Hillary demonstrated that she could

reason as Will had, when she established the seven-part bar as a new whole. In previous

situations involving proper fractions, the students had pulled a specified number of parts

from the unit bar creating a part-whole fraction. In Protocol 2, the students began with the

seven-part bar, leaving Will (who had not yet constructed a general partitive fractional

scheme) to wonder, “where’s the eighth one?”

Before we picked up with more problems this type, I decided to demonstrate how

to use REPEAT in making bars. The REPEAT action can be used to make a copy of a bar

or a piece of a bar while joining them together as a connected but partitioned whole. I felt

that this was an important action the student’s could use to iterate a piece because both

students had demonstrated that they could iterate unit fractions. The students also spent

time playing with two tools they had not yet explored: MAT and COVER. Following

their play activity, they tried to make “3/2” appear in the measure box by making a copy

of the unit bar, partitioning the copy into three parts and pulling two of them. Their three

attempts initially yielded “2/3,” and in the last two attempts, they incidentally produced a

bar measuring “3/2” (with the two-part bar now labeled as the unit bar), but they could

not explain why measuring the three-part bar yielded “3/2.”

After my initial analysis of the episode, I decided that the students should pose

problems to each other in the next episode, but they should focus on proper fractions until

they established a more coherent meaning for the role of the unit bar. I felt that I might be

able to help by explicitly using “out of” language when describing fractions. For
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example, instead of referring to a bar as two-thirds, I might say that the bar is two-thirds

out of the unit bar.

26 February, 2003 Teaching Episode

Early in this episode, Will and Hillary began playing a game of asking each other

to make proper fractions. In doing so, they used PULLOUT, MEASURE, and UNIT

BAR appropriately. It also gave them an opportunity to use their part-whole fractional

schemes with TIMA:Bars.

Hillary’s progress toward constructing commensurate fractions. TIMA:Bars

always records the fractional name of a bar in reduced terms. So, when Will asked

Hillary to make six-ninths, the task presented an opportunity for conjecture. In fact,

Hillary did respond conjecturally, and her conjecture was instrumental in her eventual

construction of a commensurate fractional scheme with which to construct commensurate

fractions (fractions having the same size relative to the whole) by uniting or composing

units in one fraction to produce those of the other. The activities described in this section

build toward and from that conjecture, but because of the critical role MEASURE and

UNIT BAR play in this activity, I include Protocol 3, describing the students’ meaning of

those computer tools.

In response to Will’s challenge, Hillary produced six-ninths by partitioning a copy

of the unit bar into nine parts horizontally and pulling out six of them. She did this easily

except that she had trouble pulling out the six parts (it was difficult to draw a box around

the six parts in order to pull them). I anticipated measuring six-ninths would cause

additional trouble for the students because the computer would show the fraction in

reduced form. So, I asked the students to predict what MEASURE would display. Both
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students thought that the bar would measure six-ninths, but, before we measured Hillary’s

production, I wanted to make sure the students understood the role of UNIT BAR and

MEASURE.

Protocol 3: Explaining the role of the unit bar.

T: So, you know what the unit bar means then?

W&H: Mm-hmm.

T: Okay, so the unit bar… If I measure the unit bar it’s always going to be what?

W&H: One.

T: [measures unit bar and screen displays “1”] One… and if I measure this thing

[pointing with the cursor to be nine-ninths bar], it’s also going to be one

[measures the nine-ninths bar and screen displays “1” again]. Why is it going to

be one?

W: Cause it’s one whole.

T: Yeah, but how does it compare to the unit bar?

W: They’re the same size.

I had never before been so explicit about the role of the unit bar. For the first time,

Will began to focus on sizes of the bars, and both students realized the importance of

making copies of the unit bar. At this point, both students were fairly certain that the six-

ninths bar would measure as such, but then they measured the bar. I asked the students to

explain why “2/3” came up, and they thought for about twenty seconds before Will

responded, “Maybe it wasn’t the same size as the unit bar; maybe it was bigger.”
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However, we measured the nine-ninths bar to display “1,” and Will seemed to withdraw

his argument. Fifteen seconds later, Hillary responded.

Protocol 4: Understanding the common measure of six-ninths and two-thirds.

H: Is it because we have three pieces left in there?

T: Okay. There’s three pieces left in there…

W&H: [long pause, looking at the screen]

T: She took out six out of nine parts, and so that makes sense that she said it

should be six-ninths. But the computer says two-thirds. Why would the computer

say two-thirds when we think six-ninths?

W: [measures the nine-ninths bar and the unit bar and the six-ninths bar again] Is

six-ninths the same as two-thirds?

T: That’s a good question. Is six-ninths the same as two-thirds, Hillary?

H: [focusing on the screen, excitedly jerks her head up] Is it because it’s like the

same size as the unit bar [pointing with the cursor to the unit bar] and it’s two-

thirds of the unit bar?

T: [to Will who had leaned in to write on the chalkboard] You want to use paper.

[To Hillary…] Show me on here [pointing to the computer] what you mean while

Will does his calculation.

The students began trying to explain the unusual circumstance of the six-ninths

bar’s measure by looking for peculiarities. Will thought that the nine-ninths bar might not

be the same size as the unit bar. This was a reasonable thought because he had just
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observed that the only other unexpected numbers we had seen could be attributed to

differences between the sizes of the unit bar and the whole used to produce the fraction.

Hillary then seemed to reason as Will had in previous protocols, trying to relate the “3” in

“2/3” to some observable part: She found the leftover three parts from six-ninths and

wondered whether they were to blame. Finally, Will wondered whether the expected

fraction and the fraction displayed by MEASURE might be the same.

I am not sure how much insight I can attribute to Will’s claim. He may have

visualized two-thirds of the unit bar and compared its size to the six-ninths bar. But I

believe that Will relied more heavily on another idea: He knew that the bar was six-ninths

by using his part-whole fractional scheme; so, when the computer measured “2/3” it may

have led to Will’s establishing a second identity for the same fraction. In any case, Will’s

question about a connection between the two fractions may have oriented Hillary to the

sizes of them, and she was able to explain the connection with insight into the relative

sizes of the fractions. When she said “it’s two-thirds of the unit bar,” this indicated that

she had constructed a partitive fractional scheme with which to understand two-thirds as

a size relative to the unit bar. This was also a conjecture whose nature became more

apparent as the episode continued. I encouraged Hillary to make two-thirds from another

copy of the unit bar in order to help her explain her idea.

Protocol 4: (First Cont.)

H: [a few seconds after putting a copy of the unit bar into three parts] Oh! That

[pointing to the six-ninths bar] is the whole size of those two put together
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[pointing to two of the three thirds she had just created] and that [pointing to the

last part] is the third part!

Even before she produced the three-thirds bar, Hillary was able to consider the

size of the two-thirds bar as potentially the same as the size of the six-ninths bar; she

indicated as much just after Will had asked whether two-thirds was the same as six-

ninths. In order for her to reason in such a way, she would have to anticipate the

partitioning of one of the whole bars in her perceptual field. Her focus on size throughout

the protocols leads me to believe that she was using a partitive fractional scheme. She

seemed to be using the scheme in a novel way, for when she actually followed through on

the production of three-thirds, she conveyed surprise (“Oh!”), and the image that she

produced appeared to test and verify the novelty. It is interesting that she also indicated

the third part of the whole, just as she had noticed the three left over parts from six-ninths

of the whole. Her focus on complements offers further indication that she was using

partitive fractional operations, which make use of the complement in re-establishing the

whole from a fraction of it.

Being explicitly aware of the complement may have served as a means for Hillary

to keep track of the whole from which two-thirds was pulled. I hypothesize that she used

her disembedding operations along with the iteration operation available within her

partitive fractional scheme in order to consider fractional parts without losing their

relationship to the unit bar. This hypothesis is affirmed in my analysis of Hillary’s actions

just before Protocol 7. She had behaved similarly in producing a whole from three-

fourths during her initial interview. I do not know whether there was a novelty during the
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initial interview, but there is strong indication (her initial confusion and subsequent

surprise) to suggest that the use of those operations in Protocol 4 was novel, uncertain,

and therefore conjectural. I refer to her conjecture—positing two-thirds of the unit bar as

having the same size as six-ninths—as Conjecture H1.

Will’s conjectural use of parts-whole comparison. I mentioned that, in the middle

of Protocol 4, Will had begun writing (drawing a picture) in order to explain the

equivalence of six-ninths and two-thirds. His picture is represented in Figure 6 (although

Will had drawn his picture on paper without the aid of TIMA:Bars), and after inspecting

it, I realized that he was not reasoning at the same stage as Hillary. Still, his drawing

represented novel actions in response to a perturbation, and his question “Is six-ninths the

same as two-thirds”—indicated uncertainty about the use of operations underlying those

actions. I argue that his question and subsequent actions indicate a conjecture: a

conjectural comparison of two fractions.

Will had drawn a nine-ninths bar and shaded six of the ninths. Below it, he had

drawn a three-thirds bar that was considerably smaller, and he shaded two of the thirds.

He could have completed each drawing using only equi-partitioning and part-whole

partitioning schemes. Then he could apply his impoverished fractional comparison to the

drawings, which would give erroneous results because there was no criterion that the two

wholes be the same size. In fact, in partitioning the first bar, he was only able to fit six

partitions into the bar initially and had to extend the size of the bar by three more equal-

sized partitions. This, along with making a smaller whole to make two-thirds, indicates

that Will did not understand the importance of conserving the size of the whole. Even

when he finished his drawing and explained, “I was seeing if they were the same size
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[referring to the sizes of the two shaded fractions],” he did not notice a problem with the

sizes of the wholes. Furthermore, when I asked why the two whole bars were different

sizes, he explained that it was “because there are nine parts in that one and only three in

the other one.”

Figure 6. Will’s picture for explaining the equivalence of six-ninths and two-thirds.

I call Will’s fractional comparison impoverished because it seemed to satisfy only

the goal of making fractions to figuratively compare, but not determining the relative

sizes of the fractions to each other and a fixed unit bar. For lack of another way of

operating, he had invented a means for making a fractional comparison, but the size of

the fractional whole was not relevant. His means entailed a generalization of his whole

number comparison scheme, applying it to the connected numbers formed by shading 2

out of 3 and 6 out of 9, in order to compare their extents. I refer to his conjecture that he

could compare the fractions in such a way as Conjecture W2.
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Comparison of Hillary and Will’s emerging structures for partitive and

commensurate fractions. As the episode continued, just after Protocol 4, Hillary pulled

out two of the three thirds and dragged them together over to the six-ninths bar saying,

“See. It’s the same size!” After a brief interlude during which I showed the children how

they might use IMAGE to compare the sizes of two-thirds and six-ninths, Hillary

repeated her demonstration, which seemed to work better. Will seemed to follow this

demonstration in saying, “that’s the same thing!” He even went on to measure the two-

thirds bar. The mere fact that the two-thirds bar actually measured “2/3” seemed to add

credence to his belief. This may indicate that Will’s concept of two-thirds in terms of his

part-whole fractional scheme had not previously been reconciled with the computer’s

MEASURE tool.

Protocol 4: (Second Cont.)

W: Two-thirds of the unit bar is the same as six-ninths. …See. Look. I measured

it [the two-thirds bar].

T: [writing 2/3=6/9]. So two-thirds is the same as six-ninths?

H: I didn’t get it at first.

W: I didn’t either.

Both students got it now, but what they got were two different things. While Will

noticed the common measures and observed the equal sizes of the six-ninths bar and the

two-thirds bar, Hillary seemed to have constructed an explicit relationship between the

relative sizes of two-thirds of a bar and six-ninths of the same bar. It was an instantiation
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of a novel way of operating that established the kernel for a new scheme, which I call her

complementary fractional comparison scheme. In using such a scheme, she could keep

track of the wholes involved in comparing the sizes of two fractions by making explicit

reference to the complements of each fraction, although I have only noticed the scheme

used in cases where the complement of the simpler fraction is a unit fraction. I name it

because it becomes a relatively permanent structure in my model of her fractional

reasoning, as it is instantiated in subsequent protocols. This scheme could be used in

much the same way as a commensurate fractional scheme, except that there was not

necessarily a numerical relation between the parts, simultaneously understood in terms of

the sizes of the fractions.

The remainder of the teaching episode included many corroborations of Hillary’s

new way of operating. It also provided opportunity for elaborations of both students’

partitive schemes (fractional or unit fractional). We erased all but the unit bar and Will

made a few copies of it. I asked him to make two-fourths, which he did by partitioning

vertically and pulling two of the parts. The students were very confident that MEASURE

would display “2/4” (Will was 95 percent sure and Hillary was 100 percent sure.), but it

read “1/2” instead.

Protocol 5: Hillary and Will’s common measure of two-fourths and one-half.

H: It’s one half of that! [excitedly pointing to the middle of the unit bar and

smiling]

W: Yep! Watch. [Will dragged the two-fourths bar over the left half of the unit

bar.]
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I have already noted Hillary’s attention to the parts, their complements, and their

sizes relative to the unit bar. In the protocol described above, Hillary used the middle of

the three marks to identify one-half of the bar and establish an identity between one-half

and two-fourths. I am interested in finding out whether a commensurate fractional

scheme could emerge by operating with her complementary fractional comparison

scheme and whether such learning could be engendered by a particular conjecture.

Smiling, Hillary seemed completely satisfied by her explanation even before Will

dragged the two-fourths bar over to visually compare with the left side of the unit bar.

Because Will also responded immediately, it is possible that he reasoned as Hillary

seemed to reason, but it is also important to note that he had established the equivalence

of one-half and two-fourths through his actions in Protocol W3. It is unclear whether, for

Will, two-fourths was yet a determined fractional size relative to a fixed whole, because

he did visually compare to test whether two-fourths was the same size as one-half.

Hillary did not have to visually compare the bars because she was able to anticipate the

production of one-half and compare this image to the two-fourths bar on the screen.

The next protocol provides a test for the questions raised above, especially

regarding the students’ uniting operations and partitive schemes. Warning the students

that I was giving them another tricky problem like the last one, I asked Hillary to make

three-ninths.
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Protocol 6: Hillary’s prediction about three-ninths.

H: [after making three-ninths in a manner similar to Will’s production of two-

fourths] I think it’s going to be two-thirds. No! One-third!

W: Put it up there [suggesting that Hillary drag the three pulled parts over the unit

bar, which she subsequently did].

T: What do you think, Will?

W: [begins dragging the three-ninths piece three times across the unit bar].

H: It’s one-third. [smiling] One hundred percent sure… cause three of them can

fit inside that.

W: [seemingly a little frustrated that his iterations, done manually with the three-

ninths bar, did not fill the unit bar exactly] I think it’s one-third.

Next, I encouraged the children to make one-third to check their assertions, but I

should have reminded Will how to use the REPEAT tool because it would better fit his

actions in attempting to iterate manually. Will’s action opens the possibility that one-third

was an iterable unit for him (at least within the whole), which would corroborate that he

had constructed a partitive unit fractional scheme. However, the action of iterating a unit

fraction would have to be more than an internalized action for Will in order to ascribe a

partitive unit fractional scheme to him. It would have to be interiorized so that, as an

interiorized operation, it could be used to make material for further operating, just as the

interiorization of iterating 1 (through his ENS) makes 5 an object on which he can

operate.
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Even though Will carried out the iterative actions, Hillary was the only one who

expressed that she was convinced that three-ninths and one-third were commensurate.

Also, Hillary’s initial confusion that the bar would measure two-thirds may be further

indication that she was focusing on the complement of a fraction in establishing the

whole from it (just as she seemed to do in the case of six-ninths). This time Hillary

seemed to recognize that the three ninths constituted one third, but it was easier to do so

because the simplified fraction was a unit fraction. Will’s frustration at his inaccurate

attempt to act out the iterations and his expressed uncertainty (“I think it’s one-third”)

indicate that he expected to be able to iterate the part three times to produce the whole,

but cast doubt on whether he had interiorized the iteration of three-ninths as he would in

coordinating a unit of units. Instead, his iterative actions seemed to constitute a test of

Hillary’s claim that the part was one-third.

As the protocol continued, Hillary ended up making a three-thirds bar with

horizontal partitions, whereas the three-ninths bar had been produced using vertical

partitions. This made it difficult to compare one-third with three-ninths until Hillary

realized she could cut up the one-third piece: “Yes you can. You can cut it up into pieces

and it will all fit into the same as that [the three-ninths bar].” She then cut up the one-

third part into three pieces, estimating very accurately using CUTS. Next, she lined up

the three pieces on top of the three-ninths bar. The description of these actions highlight

Hillary’s focus on size and its conservation, and demonstrates the fluidity of her splitting

operations (as did her responses to initial interview Tasks 4a and 4c).

In the next part of the episode, I encouraged Hillary to give a similar tricky

problem to Will. She asked him to make eleven-twelfths. Will partitioned a copy of the
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unit bar into twelve parts and accidentally pulled ten of them instead of twelve. He

measured the ten-twelfths bar anyway, and the screen displayed “5/6.” Will admitted that

he thought it would say “10/12,” but Hillary explained “Mm-hmm… because you can cut

that [pointing to the unit bar] into six pieces and you have one piece left over, and all that

[pointing to the ten twelfths bar] can be cut into six pieces and it will be five pieces out of

six of that [sweeping her finger from the top to the bottom of the unit bar].”

Once again, Hillary explicitly mentioned the complement of a fraction in

explaining its commensurability with another fraction: “… and you have one piece left

over.” Although her explanation was a little confused when she referred to cutting the

ten-twelfths bar in six pieces (instead of five), it is clear that she imagined five sixths

being embedded in the unit bar and that the ten-twelfths bar would fit into those five

sixths, with one sixth left over. She did not seem to unite each pair of twelfths into one

sixth as she would with a commensurate fractional scheme, but rather anticipated the

production and size of five-sixths using her partitive fractional scheme while using her

disembedding operation to keep track of its complement and the unit bar. This affirms my

previous hypothesis (from Conjecture H1, during Protocol 4) that she had coordinated

those operations in forming her complementary fractional comparison scheme.

In examining the next protocol, it becomes clearer that Hillary’s size comparisons

were estimations rather than being constituted in a numerical relationship between two-

twelfths and ten-twelfths (the latter being five times the former) or an equivalence

relation between two-twelfths and one-sixth. In that protocol (Protocol 7), Will went on

to produce the eleven-twelfths bar, as Hillary had intended for him to do initially. The
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dialogue of Protocol 7 illustrates a limitation to the way of operating that Hillary had

constructed as a result of Conjecture H1.

Protocol 7: Hillary’s estimate for eleven-twelfths.

H: [just as Will started his production] It’s going to be a whole.

W: [after finishing his production of eleven-twelfths] What’s half of eleven-

twelfths. Nothing goes into eleven.

T: I heard you say before, Hillary, that you thought it was going to be a whole. Do

you still think it’s going to be a whole?

H: Hmm. No. I think it’s going to be five-sixths.

W: I think it’s going to be something sixths or eleven-twelfths. [Will measured to

reveal “11/12.”] Eleven-twelfths.

T:  Why didn’t this one do a tricky one, Hillary?

W: Is this one the same as that unit bar… cause we made copies of it so it must

be. [Will measured the twelve-twelfths bar, revealing “1”]. Yep. Could it be the

way you divide it make it different? [Will divided another copy of the unit bar

horizontally, pulled eleven parts and measured “11/12.”] Eleven-twelfths!

Hillary seemed to be approximating the size of the eleven-twelfths bar in terms of

fractions that she could imagine producing. “One whole” and “five-sixths” were viable

candidates, not because of an equivalence established by numerical relations or units

coordination, but because she anticipated that they would be about the same size as

eleven-twelfths. While such size estimations may form the figurative basis for a
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commensurate fractional scheme, her reliance on estimations presents a limitation to her

complementary fractional comparison scheme. She demonstrated the same limitation

when she initially posed the problem: Hillary did not anticipate the production of a

fraction commensurate to a given fraction until the given fraction was produced on the

screen. To do so would mean that not only could she imagine two equally sized fractions

of a whole, but she could engage in the operations of transforming, say, two-thirds into

four-sixths or ten-twelfths into five-sixths, which involves recursive partitioning and

reasoning with three levels of units. She did want to pose a tricky problem for Will, and

she seemed to guess that eleven-twelfths might result in something like the previous case

with six-ninths.

Will, on the other hand, was entirely interested in numerical relationships, but

these were not insightful relationships referring to the sizes of the fraction bars that he

produced, and they were certainly not established through units coordination. He knew

that he could follow a pattern in finding the solution. In two of the last three protocols,

the equivalent fraction could be found by taking half of the numerator and half of the

denominator. When his answer (“something sixths”) was refuted by MEASURE, Will

began looking for peculiarities, as he had before. In fact, the first peculiarity that he

mentioned—about the twelve-twelfths bar being the same size as the unit bar—was the

same as one he had mentioned before. He tested the second one, discovering that

MEASURE was unaffected by the direction of partitioning.

On his next (and last) turn, Will posed thirteen-fourteenths for Hillary, which she

easily produced. Will said that it would measure “13/14.” Hillary thought for a while

before exclaiming,  “I think it’s going to be three-fourths.” The bell rang for the end of
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the period before she could explain. She had started to say, “four of these [fourteenths

from the thirteen-fourteenths bar] could be split up into that [the unit bar].” She then

divided the unit bar into three equal parts with her finger. The students then left, so it is

difficult to determine what Hillary meant here, but she may still be focused on

approximating the size of one fraction in terms of another that she could anticipate

producing. Although there is little evidence to substantiate additional claims, it appears

that she thinks that each third of the unit bar could be filled with four of the fourteenths

and that the three thirds would exhaust all thirteen of the fourteenths. If that is so, I’m not

sure what to make of it at this point, but it may represent a diversion from her previous

focus on approximating the size of the fraction with a simpler fraction and reconstituting

the whole from its complement. Perhaps her failure to do so in the case of eleven-twelfths

generated a perturbation so that she began conjecturing new possibilities for action. Such

possibilities may include uniting smaller fractions into units within a larger fraction, as in

a commensurate fractional scheme, except that she still seemed to be estimating.

For his part, Will may have thought the fraction would measure “13/14” because

this problem, like the last one, involved a numerator that could not be divided in half

evenly. In other words, he may have revised his rule for finding commensurate fractions

after observing a break in the pattern of halving with eleven-twelfths. Will does not seem

to consider the relative sizes of the bars involved when he uses such rules. Rather, the

rules serve as a procedure—a sequence of steps—generalized from records of past

experiences (possibly through analogy, as Polya suggested).
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3 March, 2003 Teaching Episode (Andy and Will)

At the end of the last episode, Hillary and Will appeared to be acting

meaningfully with the actions of MEASURE and UNIT BAR so that they could begin to

reason more freely and meaningfully in representing and testing their mathematical ideas.

Unfortunately, Hillary was absent for the next episode, but her absence did provide an

opportunity for Will to catch up with Hillary on estimating fractional sizes, coordinating

units, and working toward the construction of an iterative fractional scheme (it is unclear

whether he had even constructed a partitive fractional scheme). Andy took Hillary’s place

for the day, and he had yet to become familiar with the potential for operating in the

micro worlds. Because, as a substitute partner for the other participants, Andy is not

included in many of the teaching episodes, I do not analyze his language and action. So, I

focus only on the schemes and conjectures of Will; Andy’s actions are considered only in

as much as they substantiate interactions with Will.

Will’s procedural schemes. After I introduced an example (two-fourths), the

students began finding new ways to make “1/2” appear in the measure box. They went on

to produce three-sixths, recognizing that it should also be one-half.

After Andy suggested eighths as another partition that would lead to a fraction

commensurate with one-half, Will produced eight-eighths and pulled four eighths. Will

then suggested that Andy could make six-twelfths “because six is half of twelve.” This

was an instantiation of what I refer to as Will’s procedural scheme for producing

fractions commensurate with one-half. Will had acted similarly at the end of the teaching

episode on February 26th, in which I attributed his actions to a generalized procedure.
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Because this procedure has persisted and served Will in constructive problem solving, I

now refer to it as a scheme.

We continued the episode with the students posing tricky fractions to one another.

Will posed thirteen-sixteenths to Andy, presumably because he thought it might simplify,

as three-sixths had. When he observed that the fraction actually measured “13/16,” Will

at first attributed this fact to the observation that the thirteen-sixteenths bar had been

produced from a copy of the unit bar. When I reminded him that we had used a copy of

the unit bar in the case of two-fourths, he stated, “Thirteen-sixteenths is not like a half.”

He was continually inventing rules like this to explain surprising situations in which his

existing numerical rules did not produce the desired results. His rules can be considered

abductions, but they were not insightful in the context of fractions because they did not

focus on fractional quantities, and there were no conjectural fractional operations.

Will’s use of iteration using composite units. For the next problem, Andy posed

six-eighteenths, which Will produced using a copy of the unit bar. Before producing the

fraction and dragging it over the unit bar, I asked Will what the fraction would measure,

and he admitted that he did not know. His procedure of relating the numerator and

denominator seemed restricted to identifying pairs in which the denominator was double

the numerator. After putting the copy into eighteen parts and pulling six eighteenths, Will

carefully lined up this fraction with the leftmost third of the (unpartitioned) unit bar and

then moved it over one space to the middle third.

Protocol 8: Will’s iteration of a six-eighteenths bar in establishing it as one-third.

W: [after moving the six-eighteenths bar to the middle of the unit bar] Two-thirds.
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T: What did you pull? What did Andy ask you to make?

W: I pulled six eighteenths.

T: Six eighteenths, and why do you think its going to be two-thirds?

W: Because it’s two-thirds of that right there [pointing to the unit bar].

T: Show me that it’s going to be two-thirds.

W: [demonstrates that the six-eighteenths bar fits inside of the unit bar three

times] One, two, three.

A: I think it’s going to be one-third.

T: What does that mean? So, if it goes in there three times, what should it make it

be?

W: It could be two-thirds. Oh!

T: What does two-thirds mean?

W: Oh, it could be one-third.

T: Why do you think one-third?

W: Cause this [dragging the six-eighteenths bar into the unit bar again] is one-

third of that.

T: How do you know it’s one-third of that?

W: [pointing to the six-eighteenths bar] Cause it’s one thir… [laughs!] Because

this goes into that three times.

Will was able to verbalize a partitive conception of one-third at the end of the

protocol, but it did not seem to be available through most of the protocol. Otherwise, he

might have experienced a conflict between his “two-thirds” answer and the situation. So,
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it seems that one-third was an iterable unit for Will, but he did not seem to be able to

carry out the mental operation of iterating figurative material in this situation. Instead, he

relied on the action of putting the six-eighteenths bar in the unit bar three times. Later, he

admitted that he had thought the fraction was two-thirds because, once he had repeated it

in the unit bar twice, he saw the remaining third and stopped. Having recorded his two

iterations of the fraction, which he then recognized as one-third, he answered “two-

thirds.”

Will had not been able to (mentally) iterate composite fractions in past protocols

either. The action of manually iterating a composite fraction was a novelty that may have

consumed him so that he was unable to reconstitute the fraction as a third and, instead,

simply recorded his actions of repeating twice and his visualization of the remaining one-

third part. Even so, Will was eventually able to carry out the action of iterating in order to

satisfy his goal of constituting the composite fraction as a new fraction.

Protocol 8 marks the first time that Will used fractional language to refer to the

size of a fraction relative to the whole. Although he had mistakenly called the fraction

“two-thirds,” this is the strongest indication yet that Will had constructed a partitive unit

fractional scheme, because he used iteration to determine the size of a given fraction and

even attempted to apply it to composite units. Will’s actions in this situation involved the

novel use of his iteration operation in resolving the perturbation caused by the unknown

commensurate fraction for the given fraction. I refer to his use of analogy in trying to

determine the fractional size of a composite fraction as he would an unpartitioned unit as

Conjecture W3a. We will see another similar conjecture involving the iteration of a

composite unit, which I will call Conjecture W3b.
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Another example. Will was still unable to anticipate the production of

commensurate fractions other than those in which the denominator was twice the

numerator. Intending to give Andy another commensurate fractions problem, Will posed

five-elevenths to Andy. Given the analysis of the protocol described above, this should

not be a surprise because Will needed to carry out of action of repeating a composite

fraction to reconstitute it as a simpler fraction, except in the cases where he could use his

procedural scheme for producing fractions commensurate with one-half. However, Andy

(a splitter) also had trouble determining whether the fraction could be simplified. The

following transcription begins after Andy had produced the objects illustrated in Figure 7.

When Andy guessed the measure of the five-elevenths bar would be “5/11,” I asked Will

what measuring would show.

Figure 7. Andy’s production of five-elevenths.
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Protocol 9: Will’s confusion in working with composite units.

W: Uh, I think it’s going to be two… [looking intently at the screen] Let’s see.

That’s five… Two and… ‘Cause see that’s five [touching the left side of the

eleven-elevenths bar] and then there’s five right there [touching the right side] and

then there’s one left over [pointing to the right-most eleventh].

T: Yeah.

W: So it’s going to be two, four… Ten-elevenths!

T: Why do you think ten-elevenths?

W: ‘Cause five and five and there’s one left over.

Will was trying to iterate a fractional part in order to segment the fractional

whole. His action corroborates my inference that he had constructed a partitive unit

fractional scheme. His goal was to produce the five-elevenths bar as one out of so many

parts that exhausted the eleven-elevenths bar—the goal of a partitive unit fractional

scheme. As with the last protocol, he became confused about the result of the scheme

because he was using it conjecturally. Ordinarily, working with unit fractions, his

partitive unit fractional scheme would yield the number of iterations of the fraction

within the whole, which would be used reciprocally to name the unit fraction. In the two

most recent cases, Will used the scheme with composite units, which indicates that his

use of the scheme constituted a generalizing assimilation. However, he experienced

unexpected constraints in the use of the scheme, and the adjustments that he made were

conjectural.
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In Protocol 8, Will only iterated twice (possibly because at that point he had

achieved his goal of identifying the fraction as one-third) and recorded the “2” in the

name of the fraction he was iterating, either because he was focused on the complement

or because he was counting the iterations. In the present case, Will experienced new

constraints; the fractional part did not exhaust the whole. This generated a perturbation as

exemplified by his stutters: “Two... Let’s see… Two and….” He could not name the

fraction as “1/[two and…].” Instead, once again he iterated the five-elevenths bar twice,

this time recording the number of elevenths. Failing to exhaust the eleven-elevenths bar,

he produced “ten-elevenths,” which satisfied Will’s goal of naming a new fraction.

His production of ten-elevenths was a conjecture (Conjecture W3b) produced as

a result of the constraints that he met in the use of his partitive unit fractional scheme.

Because he did not ordinarily consider non-unit fractions as measures of size, it did not

even strike him as strange that he was equating five-elevenths with ten-elevenths, until I

asked him to produce ten-elevenths later in the episode.

In Protocol 8, involving the reconstitution of six-eighteenths, Will had been

successful in unitizing six-eighteenths and iterating it to determine that it was one-third

(although, while iterating the piece by dragging it, the partitions of the six-eighteenths

were invisible). So, it was reasonable to try operating similarly in the latest protocol

involving five-elevenths. The immediacy of his approach to the latest situation indicates

that his partitive unit fractional scheme had already changed as a result of his experiences

in the previous protocol, at least in its trigger: He did not hesitate to apply the scheme to

another situation involving a composite fraction.
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After Protocol 9, Will produced ten-elevenths and was immediately able to

recognize five-elevenths as half of it. The immediacy of his recognition corroborates that

he had been using a partitive unit fractional scheme, and indicates that he had constructed

an experiential unit of units of units (ten-twelfths as two of five-twelfths). Now that there

was no left over piece, Will could quickly name the five-elevenths bar as one-half of the

ten-elevenths bar because the five parts went into the ten parts twice.

5 March, 2003 Teaching Episode

The episode began with Hillary making two-thirds by pulling two parts from a

copy of the unit bar that she had partitioned vertically into three parts. When I asked Will

to make two-thirds a different way, he did the same thing, except that he partitioned the

copy horizontally. We had a discussion about the two productions and both students said

that the productions were the same. However, at first, only Hillary seemed to recognize

that they had the same areas and that one could be cut up to neatly fill the other.

Will’s part-whole fractional scheme. When I asked the students to make two-

thirds without partitioning the copy into three parts, Will partitioned a copy of the unit

bar into six parts, pulled three parts, and then pulled two of those. Protocol 10 picks up

from there and demonstrates Will’s reliance on whole number concepts.

Protocol 10: Will’s attempt to produce two-thirds from six parts.

T: Don’t measure yet. I want you to explain what you did.

W: I made… I put it into six parts. I don’t know why I put it into six parts, but I

just did. I took three out of that, and then I took two out of the three, and maybe it

will come out to be two-thirds of that [pointing at the screen].
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T: Okay. It will be two-thirds of what?

W: That [pointing to the three-part bar]

T: Will it be two-thirds of the unit bar?

W: [pause] Nuh-uh. [begins to drag his “two-thirds” bar (two-sixths) into the unit

bar]

T: Okay. So we want something that will be two-thirds of the unit bar. How much

will [the two-sixths bar] be out of the unit bar?

W: [begins placing the two-sixths bar in the bottom third, then the middle third,

then the top third of the unit bar].

H: [as Will was beginning to drag the two-sixths bar to the middle third of the unit

bar] Two… [Will had just reached the middle third.] thirds.

W: Yep. Uh… One-third.

H: One-third.

T: Why did you say two-thirds, Hillary?

H: I got mixed up [smiling].

T: I know. You fixed it, but could you explain how someone could get mixed up

on this? [pause] How could somebody get mixed up and think it might be two-

thirds?

H: Cause you are taking two out of that.

Even after the discussion on area, Will’s actions provided no indication for a

partitive fractional concept of two-thirds. Rather than producing two-thirds as a fractional

size relative to the given whole, to make two-thirds, Will needed to take two out of three
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parts. The imposed constraint that he use the six-part bar led to the necessity that he

redefine the whole. To construct the desired two-to-three relation using his part-whole

fractional scheme, he took three parts from the six-sixths bar and pulled two of those

three parts. His goal had been satisfied by making two-thirds of something, where the

something was the three-part bar.  He held little regard for the unique role of the bar

labeled “unit bar” and his actions serve as contra-indication of a partitive fractional

scheme, commensurate fractional scheme, and recursive partitioning operations. It was

unclear (even to Will) why he chose to use six parts. It may be due to numerical relations

between 2, 3 and 6: 2 times 3 is 6, 2 and 3 both divide 6, and half of 6 is 3.

Once he had made his “two-thirds” bar (two-sixths) and was prompted to consider

its size in relation to the unit bar, Will could iterate through action. This is not an

indication that two-sixths or two-thirds was an iterable unit for Will, but, rather, that his

records of experience in such action could later become interiorized as the operation of

iteration. It is important to note that when the students drag a composite fraction in the

unit bar as Will did here, the partitions in the composite fraction are no longer visible, so

it is easier to perceive the object as a unit. Thus, Will’s actions in Protocol 10, for

example, may be more akin to iterating one-third than to iterating two-sixths, and this

corroborates only his partitive unit fractional scheme.

Hillary’s conjecture concerning commensurate fractions and Will’s assimilation

of her actions. Later in the episode, Hillary also attempted to make two-thirds from six

parts, but made one-half instead. Each student recognized Hillary’s production (three-

sixths) as one-half, but by different means. Whereas Will supported his claim by saying

that “3 is half of 6,” Hillary referred to the relative sizes of the fractional stick in question
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and the whole (six-sixths) stick. Recently, however, Hillary had also begun focusing on

the numbers of parts in fractions, possibly as a result of interacting with Will who seemed

to rely solely on the numbers of parts in his productions to justify their measure. In fact,

as Hillary renewed her attempts to produce two-thirds without using three parts, Will

suggested that she try using twelve parts, presumably because he recognized that 2 and 3

each divide 12.

Hillary’s actions in attempting to use twelve parts to produce two-thirds are

recorded in Protocol 11, and her resulting productions are illustrated in Figure 8.

Figure 8. Hillary’s production of four-twelfths.

Protocol 11: Hillary’s production of two-thirds from twelve parts.

H: [pulls four-twelfths and places it in the bottom third of the unit bar, then the

middle third, then the top third]

W: [following Hillary’s actions] One… two… Three!

H: That’s two-thirds!
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T: You think you’ve got two-thirds?

H: Nods.

T: Okay. What makes you think you’ve got two-thirds?

H: You can put… Oh, never mind, that’s not two-thirds.

T: What is it?

W: I think it would be one-third.

H: [simultaneously] It’s one-third.

T: Oh! It’s one-third. If you’ve got one-third, can you think of a way to get two-

thirds?

H: Mm-hmm. [begins counting eight parts in the twelve-twelfths bar]

Hillary’s pulling of four parts may represent a divergence from her previous ways

of operating in similar situations. Had she used her complementary fractional comparison

scheme, she might have anticipated the production of two-thirds and compared its size to

the twelve-twelfths bar. This would entail a novel use of the scheme because, previously,

she had never used it to construct a commensurate fraction; she had only used it in post-

hoc explanations of commensurate fractions. If she did estimate two-thirds of the twelve-

part bar, it’s possible that she would pull about eight parts from the twelve, and her action

of pulling four parts could only be explained by some confusion between the desired

fraction and its complement.

Considering Hillary’s recent focus on number and recent experiences of uniting

composite fractions (such as six-eighteenths), it seems more plausible that her pulling of

four parts involved a novel use of uniting operations and units coordination. She knew
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that three units of four is twelve units, so she united four parts into a one composite unit

in an attempt to make two-thirds, as indicated by her iterating the four-twelfths bar three

times in the unit bar. Her attempt constituted a test of Conjecture H2a, that she could

produce two-thirds by coordinating units of four parts. Hillary was beginning to

understand the importance of numerical relationships in these situations. The fact that she

thought the fraction was two-thirds indicates that she confused the composite fraction and

its complement upon iterating. If she were able to resolve the use of her iteration

operation with composite units, she would be able to construct a partitive fractional

scheme for composite units, as well as a commensurate fractional scheme.

As she began to justify her production of two-thirds, Hillary realized that she had

in fact produced one-third; she knew that one-third was the fraction you could put into

the unit bar three times. She also knew that two-thirds was one-third iterated twice. After

Hillary placed the four-twelfths bar in the unit bar three times, Will knew that she had

made one-third. He seemed to have a concept of one-third that was similar to Hillary’s,

but he did not seem to understand two-thirds as she did. These facts highlight Will’s

limitations with non-unit fractions: They were not partitive fractions, but part-whole

fractions. As the protocol continued, Will reverted to his part-whole fractional scheme as

he had in past protocols involving non-unit fractions.

Protocol 11: (First Cont.)

W: I was going to say she could take two out of that [pointing to a three-twelfths

bar that Hillary had pulled (but not named) by mistake] and put it into the unit bar

and see if it would make two-thirds.
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T: Oh. What would happen though?

W: It would be more than one-third.

T: You mean like more on the bottom.

W: Mm-hmm.

T: So it’d really be less…

Once more, the stark contrast between Will’s reasoning with unit fractions and

non-unit fractions was apparent as he suggested that he might create two-thirds by pulling

two of the three twelfths. But something had changed in his reasoning with composite

fractions: After using his part-whole fractional scheme to generate his suggestion, Will

understood that the suggestion was flawed because he considered the size of the resulting

fraction in relation to the unit bar. Although his language was a little ambiguous, he

understood that two-twelfths would go into the unit bar more than three times, and so it

could not be two-thirds or even one-third. Will’s confusion continued as Hillary

attempted to justify her production of two-thirds from eight-twelfths.

Protocol 11: (Second Cont.)

H: [finishes pulling out eight-twelfths and starts to move it to the bottom two-

thirds of the unit bar] That’s two-thirds. I had four and…

W: Nope.

H: … four was one-third of that. So you add double the number, so I got eight, so

that’s two-thirds of [the unit bar].

T: [to Will] What do you think about her explanation?



161

W: I don’t think so because if you put [eight-twelfths] again into [the unit bar], it

would be over it. [begins counting eight parts from the bottom of the twelve-

twelfths bar and whispers] She took out eight.

H: If you put [four-twelfths] right there [in the top third of the unit bar] in that

one-third.

T: [to Will] Look what she just did.

W: She just made another whole. Yep. I think it might be two-thirds.

T: So what was confusing you at first, Will?

W: What was confusing me at first was that if she put [eight-twelfths] in there

again, it would go over.

T: So if you put two-thirds in there twice, it’s okay if it goes over?

H: Yeah. The other half wouldn’t matter.

T: [to Will] So what should be left over if you put two-thirds in [the unit bar]?

W: Just four little parts like [the four-twelfths].

T: …which is how much out of the whole?

W: Uh. One-third.

From her explanation (“Four was one-third of that. So you add double the

number, so I got eight, so that’s two-thirds.”), it is clear that Hillary knew that two-thirds

was two of one-third. Later in the protocol, she even demonstrated her understanding that

one-third was half of two-thirds when she said, “the other half wouldn’t matter,”

indicating a reversible partitive fractional scheme. Her explanation also affirms that she

used units coordination, uniting four twelfths as one third and iterating it. Lining up the
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eight-twelfths bar with the unit bar may have helped her to reconcile the production with

her complementary fractional comparison scheme, but it is important to note that she did

this after claiming that she had produced two-thirds. We might refer to this way of

operating as the basis for a partitive fractional scheme for composite units, which may

grow from her complementary fractional comparison scheme as she continues

coordinating units of units with the latter scheme.

When Will expressed doubt about Hillary’s production (and possibly her

explanation), Hillary demonstrated that the complement of the eight-twelfths bar was

four-twelfths. This indicates that she could use unit fractional composition (composing

four parts in one-third) with her complementary fractional comparison scheme, possibly

establishing the kernel for a partitive unit fractional scheme for composite units—a

scheme that uses the operations of a partitive unit fractional scheme on composite units

with coordinating the resulting units of units. If she were able to combine the operations

of those schemes into one scheme with which to purposefully construct commensurate

fractions, she would also have a commensurate fractional scheme. This is a scheme with

which students can create units of units within a fractional part and the whole in order to

generate another name for the fraction.

Hillary’s action of putting the last four-twelfths bar into the unit bar to complete it

made sense to Will and convinced him that Hillary’s production of eight twelfths was

indeed two-thirds. This is an example in which Will was able to assimilate Hillary’s

actions and make local adjustments to his fractional schemes and concepts. It may be that

Will could understand two-thirds as the complement of one-third (as Hillary could), but

his hesitation in naming the four-twelfths bar as one-third (at the end of the segment)
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opens the possibility that he may instead have considered the complement of eight-

twelfths as four-twelfths. This could be done in action rather than as an operational

necessity, because of the explicit nature of Hillary’s construction. The results of Hillary’s

activity are illustrated in Figure 9, except that I exaggerated the misalignment that was

visible on the screen.

Figure 9. Hillary’s reconstruction of the unit bar.

Will realized that if a fraction went into the unit bar three times, it would be one-

third. His iteration of composite units had helped him to resolve (correctly or otherwise)

problematic situations in which he was supposed to find simpler fractions for fractions

such as six-eighteenths (Protocol 8) and five-elevenths (Protocol 9). He seemed to be in

the process of constructing a partitive unit fractional scheme for composite units. As

indicated by his admission that he had thought two-thirds repeated twice should not go

over the unit bar, Will was initially trying to make sense of the two-thirds bar by treating

it as he would treat a composite one-third bar and using the iteration operation of a

partitive unit fractional scheme. But then Hillary’s depiction of the unit bar’s
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reconstruction oriented him differently: “She just made another whole.” I hypothesize

that, after he agreed that Hillary had produced two-thirds, Will could visually unite the

three composites of four twelfths in order to establish the part as two composites and the

whole as three composites, producing an experiential unit of units of units. This claim is

corroborated by Will’s statements at the end of Protocol 11, when I tried to orient Will to

consider the complement of two-thirds. His initial identification of the complement as

“four little parts” and his subsequent claim that this was one-third affirms that he had

created at least an experiential unit of units.

Will seemed to be engaged in progressive uniting operations in the production of

an experiential structure. As the protocol continued, I pressed Will to explain his

production. During my interaction with Will, Hillary created another novelty.

Protocol 11: (Third Cont.)

T: Why would eight out of twelve give us two-thirds?

W: Well, 3 goes into 12, no 2 goes… no… I was going to say something goes into

12 three times. That’s the reason why I told her to go to 12, because the last

number right there [pointing to the “3” in the “2/3” displayed in the measure box]

could end up a 3 because something like that goes into 12…. Eight-twelfths is the

same as two-thirds.

T: How do you know?

H: [Hillary, who had been in silent reflection for about a minute (but still

appearing to follow my discussion with Will), turns from looking at the screen

and smiles] Um…
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T: [writes 8/12=2/3 on the chalk board and repeats the question for Will, ignoring

Hillary for the moment]

W: 4 times 2 is 8 and then 4 times 3 is 12.

When I asked Will to explain the commensurability of eight-twelfths and two-

thirds, he used a procedure for determining the equivalence of fractional numerals,

involving whole number operations of multiplication and division. This may have been a

generalization of his procedural scheme for producing fractions commensurate with one-

half. I will refer to it as his procedural scheme for producing equivalent fractions, but

note that it seems to occur without any consideration of commensurability (in terms of

fractional sizes) and was not yet used to produce new fractions other than those

commensurate with one-half. The generalization of the original scheme involved

generating post hoc explanations for the common measures of non-unit fractions. This

modification may have been the conjectural result of an abduction explaining the

surprising measure, but the conjecture and scheme were not based on fractional

operations. Will had apparently not used uniting or iteration operations at all. The fact

that he did not immediately know what “something” went into 12 three times would be

unlikely if he had created an experiential unit of units of units as I had hypothesized.

When he did establish the relation that “4 times 2 is 8 and then 4 times 3 is 12,” it seemed

independent of his previous actions. This serves as contra-indication that Will could

coordinate a unit of units of units and produce commensurate fractions. Instead, it seems

that he had only created a unit of units (four parts as one-third).
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Will’s partitive unit fractional scheme established fractions as the reciprocal of

the number of iterations needed to reproduce the unit bar. Because two-thirds was a non-

unit fraction, he did not know whether it would be established by two or three iterations.

With this in mind, Will suggested that Hillary use twelve-twelfths in their attempts to

produce two-thirds. Whereas his explanation in the latest segment focuses on finding a

number divisible by 3, in previous segments he had expressed interest in finding a

fraction that would go into the whole twice. In the end, he found a number divisible by 2

and 3: “Well, 3 goes into 12, no 2 goes… no… I was going to say something goes into 12

three times. That’s the reason why I told her to go to 12, because the last number could

end up a 3 because something like that goes into 12.” Will had reasoned similarly in

choosing six-sixths in the previous protocol, but had begun to consider the role of

denominator (“last number”) of non-unit fractions more.

Operation of a commensurate fractional scheme. Toward the end of Protocol 11,

Hillary had begun to excitedly express an idea, but I was focused on Will’s explanation at

the time. I don’t know whether her initial idea was related to the six-sixths bar, but the

witness interjected with a question about it, and Hillary appeared equally excited to

consider that question.

Protocol 12: Hillary’s explicit use of commensurate fraction operations.

O: Is it even possible to do it using sixths [referring to the six-sixths bar still

displayed on the screen]?

H: Yeah there is!
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W: Let’s see. There’s two-thirds right here [pointing to the eight-twelfths bar] and

you took out eight. You could add some. [After several seconds of looking at the

screen…] Is there a way to do it?

H: Uh-huh. What I’ve been thinking about is six can… There’s two parts, every

two parts is one-third [pointing her thumb and index finger to the three pairs of

sixths in the six-sixths bar] and if you put two parts together [pointing across four

sixths] that’s going to make two-thirds [pointing to the unit bar].

W: That’s what I was thinking about.

T: Okay. You do it, Will.

W: [pulls four sixths from the six-sixths bar and measures it to reveal “2/3”]

I think that Hillary had finally constructed the operations of a commensurate

fractional scheme. Her expression that “every two parts is one-third,” without pulling any

of the sixths, demonstrates that she could perceive six-sixths as a unit of units of sixths

that could be partitioned to form a unit of three units, each containing two sixths. Her

sporadically heightened level of excitement throughout the last several minutes of the

episode indicates she was beginning to operate in distinctly novel ways. I refer to her

explicitly stated conjecture as Conjecture H2b. Her use of the four-sixths and six-sixths

bars in referencing the units of units also served as a test of her conjecture.

Will’s predisposition to numerical relations continued to interfere with his

fractional reasoning in this last segment. In suggesting that Hillary “add some” to the six-

sixths bar, he seemed to have invented a rule that eight parts, regardless of their size

relative to the twelve-twelfths bar, would constitute two-thirds. However, he was able to
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make meaning of Hillary’s expressions and complete her suggested production. This

indicates that while Hillary could coordinate three levels of units to create new fractions,

Will could only act on experiential units of units of units once they were established. In

this case, Hillary created two out of the three units of sixths, and, once she verbalized

this, Will could use the parts on the screen to follow her instruction.

The episode concluded as Will and Hillary tried to produce two-thirds with

different numbers of parts. Will suggested that they use sixteenths, and, “in a way”

Hillary thought this might work. Will was still not focused on size; he initially thought

that eight-sixteenths might be two-thirds before realizing that it would be one-half.

Similar to his initial approach in trying to produce two-thirds using twelfths, he then tried

half of the eight sixteenths. Although he had been able to interpret Hillary’s previous

comments regarding the production of four-sixths as two-thirds, Will could not act

creatively with a commensurate fractional scheme of his own and instead resorted to

using his whole-number procedures again. Hillary, on the other hand, began using

discreet partitioning, trying to “count into parts where they will all be even, like seven,

seven and seven.” These actions may represent another instantiation of her commensurate

fractional operations.

12 March, 2003 Teaching Episode: Hillary’s Schemes for Working with Improper

Fractions

Will was out of school with strep throat for this teaching episode. I used the

opportunity to work with Hillary alone in order to test whether she had constructed a

reversible partitive fractional scheme or an iterative fractional scheme with which to

meaningfully interpret improper fractional language. I began by asking Hillary to “make”
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a bar so that the bar on the screen was three-fourths of hers. She used MAKE to draw the

bar because of my language. However, she drew a very good estimate in area and length.

Protocol 13 begins with her explanation of that initial production, which served as

indication for a reversible partitive fractional scheme.

Protocol 13: Hillary’s reversible partitive fractional scheme

T: Can you show me how mine is three-fourths of yours?

H: [nods affirmatively]

T: How do you know?

H: Um… ‘cause that’s like three pieces in here [sweeping the cursor across my

bar and then tracing an imaginary segment where her bar extended beyond mine

to the right (the bars were lined up of the left side)], and there’s the fourth piece.

T: So this would be in four pieces [pointing to her bar], and this [pointing to my

bar] would be three of those?

H: [nods again]

Hillary’s ability to accurately reproduce the fourth piece from an unpartitioned

three-fourths bar indicates that she could use her partitive fractional scheme reversibly.

This way of operating did not appear to be novel in Protocol 13 because she responded

immediately and with a precise explanation for her actions. It should not surprise us if

Hillary had constructed a reversible partitive fractional scheme because she could split,

meaning that iteration and partitioning were not only inverse operations, but were
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interiorized as a single operation. As the episode continued, I asked Hillary to produce

the desired whole exactly, rather than drawing an estimate for it.

Protocol 13: (Cont.)

T: [after drawing a new bar…] There’s my bar, and I would like you to do

something so that mine is three-fourths of yours.

H: [makes a copy of the unit bar, dials parts to 4, pauses, then dials it to 3 and

partitions the unit bar into three parts. She then pulled out one of the three parts in

the unit bar and joined it to the copy]

T: Did you get it?

H: [nods affirmatively]

T: How do you know you got it?

H: That’s [pointing to the left side of her bar] the same size as all three of those

[pointing to my bar], and if you add a fourth… another square to that [tracing a

fourth piece (equal in size to one third of my bar) with her finger] it would be the

same size as that [tracing her bar].

T: So mine is three-fourths of yours?

H: [nods again]

Hillary was learning to carry out her existing splitting operations in the

TIMA:Bars environment in satisfying the goal of producing a bar so that the given bar

would be three-fourths of it. If she had not already constructed a reversible partitive

fractional scheme, she was able to use operations of splitting and disembedding in
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satisfying a reversible partitioning goal, with no help from me. She may have acted with

certainty because her available ways of operating could give meaning to the situation and

suggest its resolution. I note her activity as an important example of the power Hillary

had gained through Conjecture H1: estimating a fractional size of a bar while keeping

track of the whole by explicitly referring to the fractional complement. It could be

argued, however, based on her response to Task 5 of her initial interview, that Hillary had

already possessed a reversible partitive fractional scheme or that she recalled records of

that similar experience.

Hillary did leave some room for doubt after she had finished, claiming that she

was seventy percent sure she had produced the desired bar. When I asked her how she

could be more sure, she tried joining another third of the unit bar to the unit bar (except

that TIMA:Bars does not allow other bars to be joined to the unit bar, so she just lined

them up). This raised her confidence to ninety percent. It also provided evidence that she

had been operating in ways compatible with her complementary fractional comparison

scheme, because rebuilding the whole using the complement served as a test for the

production of her bar. This is interesting in itself, but I cannot identify Hillary’s actions in

Protocol 13 as definitively conjectural because Hillary seemed to be rather certain of her

results and had acted similarly in the initial interview. The novelty was in acting

reversibly using TIMA:Bars.

Hillary’s conjectures concerning improper fractions. Although Hillary did seem to

reason reversibly using her partitive fractional scheme, there is reason to doubt that she

had constructed the operation that underpins an iterative fractional scheme. As the

episode continued, I asked Hillary what her bar would measure when mine was labeled as
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the unit bar. After several seconds in silent thought, she responded, “a whole?” When I

challenged her to consider the size of a whole, she began to focus on the fourth part in her

bar and claimed that her bar would be one-fourth. We will see in the episode on March

20th that this sort of regression (from her partitive fractional scheme in conflating her bar

with the extra part) was common to Hillary and Will when dealing with improper

fractions. Although Hillary was eventually able to name her bar “four-thirds,” it was only

through our interaction as I directed her to consider iterating one-third that she was able

to do so, and it did not seem to be the result of an established scheme for operating with

improper fractions. She could name improper fractions through iterating but could not yet

consider them as she could common fractions such as three-fourths, with her partitive

fractional scheme. This conclusion will be further corroborated by her actions in dealing

with improper fractions in the episode on March 20th. First, let us consider one more

protocol in this episode.

There had been no indication thus far that Hillary had constructed an iterative

fractional scheme, but she could make sense of and even produce fractions such as eight-

sevenths or four-thirds by “adding on” (Protocol 1) or iteration. She had also

demonstrated that she could operate reversibly with her partitive fractional scheme. In

order to test whether her reversibility would extend to improper fractions and possibly

provoke conjectural activity, I decided to challenge her with a reversible task involving

an improper fraction.

Protocol 14: Attempts to produce the whole from an improper fraction.
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T: [after making a bar on a cleared screen and labeling it the unit bar] This is my

bar again. This time, my bar is five-fourths of your bar, and I want you to make

your bar.

H: [makes a copy of my bar, partitions the original into five parts and the copy

into four parts] I think that’s it.

T: Okay. So, mine’s five-fourths of yours, right?  So, how should mine compare

to yours?

H: You should have one extra bar.

T: Let’s see if it does.

H: [lines up the two bars] Yeah it does. Mine are just bigger.

T: Is that okay?

H: [nods affirmatively].

T: So, if mine’s five-fourths of yours, should mine be bigger, smaller or the same

size.

H: Smaller.

T: So, if mine is five-fourths of yours, mine should be smaller than yours?

H: Your squares [the pieces] should.

Hillary knew that a five-fourths bar should have one more part than the whole, but

she did not recognize the whole embedded in the five-fourths bar as she would in using

an iterative fractional scheme. A student with an iterative fractional scheme might still

have trouble with the task because the task involves operating reversibly with respect to

the iterative fractional scheme—partitioning the given fraction with the goal of removing
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parts to reproduce the whole. Hillary could use partitioning in such a way, but because

she did not recognize the embedded whole, she acted on a new whole (a second copy of

the five-fourths bar) and created partitions that numbered one less than the given fraction.

She was still operating reversibly as she would with her partitive fractional

scheme, but there was a novelty: She posited a whole and used partitioning in order to

reduce the number of parts from her bar and satisfy the five-to-four relationship between

my bar and hers. Her uncertainty (“I think that’s it”) indicates the conjectural nature of

her claim (Conjecture H3a) that the five-part bar was five-fourths of the four-part bar

she made. In operating the way she did, Hillary neglected any requirements about the

sizes of the pieces and instead focused on the fact that my bar had one more part. As a

post hoc explanation, she even used her partitive fractional scheme to point out the

necessity of my parts being smaller than hers (because my bar was the same size as hers

and had more parts), and used this to justify the sensibility of her production. It was only

later when she focused on the sizes of our bars (at my prompting), that she found fault

with her production.

Once Hillary realized that my bar should be bigger than hers, she tried again to

produce the desired bar. However, she conflated the situation with one in which the bar

she would create would be five-fourths of the given bar.

Protocol 14: (Cont.)

H: [clears the parts on the unit bar, partitions it into four parts (instead of five),

pulls one fourth from it, and lines it up with the unit bar]

T: Okay. I see what you did, and it’s sneaky. Now, go ahead and explain.
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H: [lines up the copy (still in four parts) with the left side of the five-fourths bar

she had just made] That’s four [pointing to the unit bar within the five-fourths

bar]. That’s like the whole. So, you just add one more and it would be four… I

mean five-fifths… five-fourths.

T: So this whole thing [pointing to the five-fourths bar] is how much of this one

[pointing to the four-part bar]?

H: Five-fourths.

In Task 5 of her initial interview, in which she was asked to make a bar so that

mine was three-fourths of hers, Hillary conflated the two bars and made three-fourths of

my bar. At that time she seemed to have no means for keeping track of the whole when

an experiential whole was absent. After the first couple of teaching episodes, when

working with proper fractions, Hillary had learned a means of keeping track of the whole

by explicitly referring to the complement of the fraction. This was not possible with

improper fractions. In her first attempt at producing a bar so that mine was five-fourths of

hers, she had made a copy of my bar to use as the whole. In her second attempt, Hillary

again conflated the roles of our two bars. She used the given bar (my bar) as the whole

because, this way, she would not have to identify the whole within the five-fourths.

However, once she produced the five-fourths bar from my bar, she could identify the

whole within it because she was working from an experiential whole.

I refer to Hillary’s conflation of our bars as Conjecture H3b because she was

trying to determine how her bar might be embedded in mine, and she was uncertain how

this might be done. She needed a referent whole from which to construct my bar as five-
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fourths and conjectured that producing five-fourths from my bar might result in the same

construction. Once she partitioned her bar into four parts, she knew that it was four-

fourths and she also knew (from her experiences in Protocol 1) that she could “add one

more” fourth to make five-fourths. Even then, her reference to the five-fourths bar was

momentarily ambiguous: “It would be four… I mean five-fifths… five-fourths.” She

could conceive of the parts as both fourths and fifths depending on which whole she was

considering. So, the fractional sizes of the unit parts were dependent on the production of

an experiential whole.

Hillary seemed to resolve the ambiguity by positing the give bar (my bar) as the

whole. She must have understood five-fourths as five of some part of which the whole

had four, in order to produce five-fourths as she did.. But to construct an iterative

fractional scheme, that part would have to contain records of the whole so that she could

understand five-fourths as five of one-fourth of the whole. Because she could split, I

hypothesize that this way of operating was within Hillary’s zone of potential construction

if she had not already constructed an iterative fractional scheme. Either way, Conjectures

H3a and H3b might also engender the construction of a reversible iterative fractional

scheme.

As the episode continued, Hillary posed a problem to me. She drew a new bar and

said, “Mine is eight-sixths of yours.” I worked through the problem out loud referring to

my bar as having six of her eight pieces. When I made my bar the unit bar and measured

her bar, her bar measured “4/3.” When I asked Hillary why that measure appeared, she

responded, “You can connect these two, connect these two, and connect these two

[pointing in turn to the three adjacent pairs of sixths in my bar]. So that’s three parts,
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and… there’s four parts [pointing out the four pairs in her bar].” Her actions and

explanation indicate that she had assimilated my language and action using her

commensurate fractional scheme. Her explanation also corroborates my hypothesis that

she could conceive of fractions like four-thirds as four of one-third of the whole—an

indication of iterative fractional operations. In fact, by the end of the May 2nd teaching

episode, there is strong indication that Hillary had constructed an iterative fractional

scheme, affirming my hypothesis that the scheme had been in her zone of potential

construction.

As the episode concluded, Hillary demonstrated that she could also use her

commensurate fractional scheme to construe a nine-thirds bar as “three ones” before

actually measuring the fraction. In fact, she had produced the three-thirds whole given a

bar that was to be nine-thirds of her bar. She did this by dividing the given bar into nine

parts and pulling three of them. Although her actions appeared unproblematic, I interpret

them as a regeneration and generalization of her assimilated experience in observing my

actions in the case of eight-sixths. This argument is supported by her subsequent actions

on March 20th, which indicate that she was yet to construct an iterative fractional scheme

for meaningfully producing improper fractions. She could produce fraction bars like four-

thirds, but she did not seem to compare them back to the unit bar and sometimes

conflated them with the unit bar; except, in the case of four-thirds, she hesitated after the

third (“that’s three parts”) iteration. This may indicate an increased awareness of the unit

bar within an improper fraction.
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20 March, 2003 Teaching Episode

Will’s conjectural production of an improper fraction. The students’ classroom

teacher asked me to spend some time reviewing the conversion of improper fractions to

mixed numbers with the students. I decided to incorporate this into the teaching episode,

in order to test the students’ understanding of improper fractions. I began by asking Will

to produce seven-fourths. He made two copies of the unit bar and partitioned one of them

into seven parts, but then realized, “Oh! I need to cut it into four parts, not seven, because

we’re making seven-fourths [switching his index and middle fingers back and forth].”

Hillary, who had been sitting quietly, smiled and admitted that she had decided to let Will

figure that out for himself. Will went on to produce seven-fourths by partitioning the two

copies of the unit bar into four parts each, pulling seven parts from among them, and

joining them together. Hillary was confused because she thought that the unit bar would

also have to be partitioned into four parts for the measure of the seven-part bar to be

seven-fourths.

The last time that Will attempted to produce an improper fraction in the teaching

experiment was during Protocol 11, in which he attempted (unsuccessfully) to produce

four-thirds. Of course, we know that he had been working with improper fractions in

class. Since Protocol 13, and perhaps through classroom experience, Will seemed to have

enriched his concept of fractions like seven-fourths: He understood that seven-fourths

should be seven of a part that comes from four equal parts making up a given bar. It is

unclear whether Will necessarily conceived of the given bar as the unit bar, and he did

not appear to compare the seven-part bar back to it. Hillary, on the other hand, had

already demonstrated that she could meaningfully produce such fractions. Her confusion
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seemed to be related to the functioning of the computer in using the measure tool, as

described above.

Because I had never before observed Will successfully produce an improper

fraction, I refer to his production as conjectural: Conjecture W4a. He had initially

attempted its production by partitioning a copy of the unit bar into seven parts, before

using four parts. When he finished the production, he was not certain he had made seven-

fourths, but could explain why he thought it was seven-fourths: “’Cause I took seven

parts out of four out of all of these [pointing to one of the four-fourths bars].” When I

asked Will how much each of the seven parts was out of the unit bar, he did not

immediately know, and instead looked at the screen for a few seconds before responding,

“one… fourth.” This indicated that he may not have been using a fraction scheme in his

production, but was simply partitioning two bars into four parts each and taking seven

parts. “Seven-fourths” would then mean seven parts compared to four parts. This is

indicated by his uncertainties and, in turn, indicates that he had been reasoning with ratios

of whole units.

The episode continued as I asked the students what the mixed number for seven-

fourths would be. Will knew right away that it would be one and three-fourths. However,

when I asked him to show this with the bars, he pulled one-fourth and three-fourths and

joined them, thinking aloud, “I’m going to try measuring that because I took one, and

then I took three out.” His prompt recognition of the mixed number and his response in

making it corroborate my claim that Will had been using whole number algorithms and

had not treated the units as fourths but as whole units. Before measuring, he realized that

this would be one whole because it was the same size as the unit bar, but he did not seem
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to experience a conflict between the two expected measures of the bar, thinking it could

be both measures at the same time.

Hillary seemed initially confused but, after listening to Will’s explanation, agreed

that he had produced one and three-fourths. Once we actually measured the production as

“1,” I reminded the students that we wanted one and three-fourths. At this point Will

seemed to realize what “one” referred to, “Oh! I get it now [completing the production of

one and three fourths by pulling another three-fourths from the four-fourths bar and

lining it up below his previous production].” He explained his initial confusion and

subsequent insight saying, “’cause I took one part out and then three other ones and then

when I saw it, it was a whole entire thing – a unit bar.”

 Will’s insight was based on a perceptual judgment (recognizing the whole in his

perceptual field), and, as such, was not conjectural. But the students’ actions in the

segment highlight important ideas about their reasoning. First, Will still seemed focused

on numbers of parts and was only considering relative sizes of the parts in post hoc

explanations. This indicates that he had constructed fractions concepts with which to

make meaning of relative sizes, but had no fractional schemes constructed for

meaningfully producing improper fractions. Second, it is unclear whether Hillary had

constructed an iterative fractional scheme either. Although she seemed uncomfortable, at

first, with Will’s initial production, she agreed with his explanation. This may be an

example of what Piaget (1955) called “syncretism of reasoning” (pp. 140-170) referred to

in Chapter 2. Hillary’s assimilation of Will’s explanation and her conception of one and

three-fourths called the same schema—her concept of one as a singular unit, even if the

unit was a fourth—so that one implied the other without her deductively examining the
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details of the situation further. Syncretism of reasoning commonly occurs in children

between the ages of nine and eleven (Will and Hillary were not yet twelve) and precedes

formal deductive reasoning (p. 140).

There are affective issues to consider here as well. Hillary’s disposition in

working with Will had been very agreeable. She looked for ways to validate Will’s

reasoning, even when she was unable to reconcile it with her initial reasoning concerning

a situation.

Hillary’s conjectural progress toward an iterative fractional scheme. From the

students’ classroom experience, they were proficient in applying an algorithm to convert

improper fractional numerals to mixed numbers. So, after Will had successfully produced

ten-thirds, Hillary calculated that it should be three and one-third, and I asked her to show

that. Surprisingly, even after we had resolved the situation with one and three-fourths,

Hillary lined up a three-thirds bar with a one-third bar (as displayed in the lower-left

corner of Figure 10) and claimed that was three and one third!

Protocol 15: Hillary’s novel use of uniting operations.

H: Three and one-third?

T: Where’s three and one-third?

H: This is three [sweeping the cursor over the three-thirds bar] and that’s one-

third [pointing with the cursor to the one-third bar].

T: Is it the same as ten-thirds [pointing at the ten-thirds bar and then looking at

Hillary]?

H: [looks at the screen]
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W: [shakes his head no] Mm-mm.

T: Doesn’t look the same… This one [pointing to the ten-thirds bar] looks a lot

bigger!

W: I think it’s three and one-thirds but it’s not the same as three-tenths or ten-

thirds or whatever.

H: We’re going to take three of these bars [circling the cursor around three thirds

at a time, down the ten-thirds bar].

T: Do you want to fill them in to show?

H: [fills in three of the one-third bars at a time, with each group of three a

different color] Three and three...

W: [pointing at the groups] That’s three, three and three and we’ve got one left

over.

T: Is that three and one-third? You said three, three times.

W: It could be nine and one-third.

H: [after a few seconds pause looking at the screen] Three whole unit bars and

one-third out of it.

T: Did you hear what she said? Does that make sense?

W: Yeah.

T: So, explain in your own words, Will, what she means in terms of this.

W: Those three right there are unit bars. There’s three of them, so there’s three

whole unit bars. See [dragging the unit bar over each] they’re the same size as the

unit bar.
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T: So this right here is not three and one-third [pointing to the lower left corner of

the screen displayed in Figure 10], is it?

W: [pauses and shakes his head “no”] Uh-uh.

T: What is it?

H: [pauses for a couple of seconds] One and one-third?

W: [Joins the three-thirds and one-third bars and measures “4/3”] Four-thirds is

the same as one and one-third.

Figure 10: Hillary’s production on three and one-third.

I have argued that Hillary had constructed a commensurate fractional scheme. In

fact, at the end of the March 12th episode, she was even able to use this scheme to

interpret an eight-sixths bar, arguing that eight-sixths had the same measure as four-thirds
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by uniting every two sixths into one third. However, she had not previously united

composite wholes within an improper fraction, and her commensurate fractional scheme

would not be of immediate use in converting improper fractions to mixed numbers

because in such conversions there is no n-to-1 relationship that can be used to form equal

units of units within the whole fraction (for example, in the present case, there is a third

left over). Instead, she had to conceive of the whole within the fraction—a crucial step in

constructing an iterative fractional scheme and a modification to her commensurate

fractional scheme.

Hillary and Will used their conversion algorithm treating the fractional units

ambiguously as units of one and units of thirds (as they had with seven-fourths) until I

questioned them about the sizes of the bars: “Is it the same as ten-thirds?” Even then,

only Hillary deduced that the bars should be the same size. Will seemed to see no

problem in the different sizes associated with the “ten-thirds” and “three and one-third”

fractions, even though he had established that one could be converted into the other.

Although he could make meaning of Hillary’s subsequent actions and explanations, his

meaning did not seem to be based on uniting fractional wholes within the bar, and he was

not constructing the parts as fractions either. Rather, he first claimed that the “three, three

and three” might make “nine and one third,” and later used the unit bar to show that the

whole fit into ten-thirds three times. He had not recognized the copies of the unit bar

within ten-thirds until Hillary had colored them.

Hillary eventually united the three three-thirds parts as composite fractional

wholes using SHADE and dragging the unit bar to help her enact the novelty. Since this

was a novel use of her uniting operation and units coordination, I refer to it as a
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conjectural operation. The uncertainty of its use in such situations is indicated by her

tentative assertion about her initial production: “One and one-third?” It seems that she

had conjecturally made a functional accommodation of her commensurate fractional

scheme to coordinate composite fractional wholes within improper fractions. Such

coordination might also contribute to the construction of an iterative fractional scheme or

even a reversible iterative fractional scheme if she could use it to compare improper

fractions back to the whole and posit a whole within an unpartitioned improper fraction.

For example, if I were to ask her to find a bar such that mine was five-fourths of it, she

might be able to partition my bar into five equal parts, and unite four of them to

reestablish the intended whole. So, this episode includes a potentially powerful

conjecture, which I refer to as Conjecture H4: identifying the fractional wholes formed

within an improper fraction, m/n, by uniting each numerical composite of n parts as 1.

Will’s conception of and new procedure for improper fractions. We continued the

episode as Will asked Hillary to produce seven-sixths. Initially, she partitioned the unit

bar into seven parts, but quickly changed this to sixths, with no intervention from Will or

myself. She made a copy of the unit bar, partitioned it into six parts, pulled one more, and

joined to make seven-sixths. It is interesting that she still insisted on partitioning the unit

bar as she had done on March 20th. Whereas it indicates an awareness of the identity of

the copy and the unit bar, it would hardly seem necessary to partition the unit bar.

Perhaps she thought that it was necessary for the functioning of the MEASURE tool, or

she may have needed it as an experiential referent for the partitioned whole, with which

she could compare the number of parts in the seven-sixths bar. The latter necessity would
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indicate that comparing improper fractions back to the whole was indeed novel for her, as

she now appears to be operating as she would with an iterative fractional scheme.

Will agreed that Hillary had produced seven-sixths and immediately knew that it

would convert to one and one-sixth. He produced the mixed number by making a new

copy of the unit bar, partitioning it into six parts (saying, “that’s one”), and pulling

another sixth: “That’s going to be one and one-sixths.” After Hillary agreed that he was

right, Will measured each of the two bars in turn to reveal “1” and “1/6.”

Will’s production constituted a new way of acting for him. The question remains

whether he had assembled a novel way of operating based on his interpretation of

Hillary’s activity during Protocol 15. He had explicitly established that “one” referred to

one unit bar and, of course, he knew how to produce one-sixth. He had also

conceptualized “one and one-sixth” as “one” and “one-sixth.” What remains uncertain is

whether he could unite composite wholes within a given improper fraction, with the goal

of reconstituting the fraction as a mixed number.

 Will’s actions later in the episode indicate that he could not conceive of seven-

sixths as seven iterations of one-sixth of the whole, as Hillary could. Hillary posed

sixteen-fifths to Will. In response, he made a copy of the unit bar, partitioned it into

sixteen parts, pulled five parts, and joined them to make twenty-one sixteenths.

Protocol 16: Will’s ambiguous sense of improper fractions.

W: [finishing his production] That’s going to be sixteen-fifths.

T: All right, let’s check. What do you think Hillary?

H: It’s not.
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W: [measures to reveal “21/16”] Twenty-one sixteenths?! Okay…

T: [laughing] Why did it come out to be twenty-one sixteenths?

H: It’s because he used sixteen parts instead of five.

T: Do you get what she’s saying?

W: Yeah. That’s where I messed up; I cut the unit wrong.

T: Yeah. Ya’ll both switch it sometimes, so you have to be careful. So, what

should you cut it into?

W: Fifths.

T: Why fifths?

W: ‘Cause it’s sixteen fifths.

Will’s actions in Protocol 16 indicate that he still lacked a fraction scheme for

producing improper fractions. He seemed to be using contextual procedures, invented in

the social context of assimilating Hillary’s actions, to relate the numerators and

denominators in such fractions. In past protocols, he used procedures successfully, but it

was evident that his actions did not represent schemes for meaningful fractional

operation. Like the other procedures that he had invented, the social context of observing

and interacting with Hillary in solving problems provided occasion for him to assimilate

Hillary’s actions and to coordinate old operations in new ways.

In this case, Will’s assimilation of Hillary’s actions in producing seven-sixths

resulted in a procedure that simply concatenated the number of parts indicated by the

numerator and denominator. He had partitioned a copy of the unit bar just as Hillary had,

except that he used sixteen parts whereas Hillary would have used five; he then pulled a
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number of parts to join just as Hillary had except that Will used the number in the

denominator instead of building up to the number in the numerator. So, in assimilating

Hillary’s action, he did not distinguish the unique roles of numerator and denominator as

one would in using a partitive fractional scheme. Will’s lack of a partitive fractional

scheme accounts for the disparity between his actions and Hillary’s. Hillary knew that

Will’s production was not appropriate and reminded Will that “sixteen-fifths” referred to

the numerosity of fifths making up the fraction, and Will understood this “cause it’s

sixteen fifths.” Similar to Conjecture W4a, Will’s procedure amounted to a conjecture

(Conjecture W4b) that he could produce sixteen-fifths by adjoining five more parts to a

sixteen-part bar.

Once the students had successfully produced sixteen-fifths, I asked Hillary to find

the mixed number. This time, the unit bar was not partitioned, and she dragged the unit

bar into the sixteen-fifths bar three times (top, middle, and bottom) before I suggested

that she use FILL to keep track, as she had done with ten-thirds. When she was done

filling the three composite units, she claimed, “That’s three and one-fifth.” After a

moment of reflection, Will seemed to understand, saying, “there’s three out of all of

those, there’s one left over, and there’s five in each.” In that Will interpreted Hillary’s

language and action appropriately, transforming sixteen-fifths to three and one-fifth

seemed to be in his zone of potential construction. But it is important to keep in mind that

his understanding occurred in a social context of interpreting Hillary’s language and

actions. Hillary seemed to take the five-fifths bar as a given, which, coupled with her

transformation of sixteen-fifths to three and one-fifth, indicates that she was working at
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the level of a unit of units of units. There is no indication that Will could operate

independently with such units.

I have claimed that Hillary had been operating conjecturally in Protocol 15.

Protocol 16 provides further indication that her use of uniting operations and units

coordinating in such situations was novel. In the latter protocol, because the unit bar was

unpartitioned, there was no visual cue for Hillary to determine the numerosity of the

groups for shading. Instead, she dragged the unit bar within the improper fraction,

establishing three wholes within the fraction. This activity and her subsequent shading of

the groups of five may have served as a test for Hillary’s way of operating.

24 March, 2003 Teaching Episode

This episode was dedicated to producing various fractions by pulling parts from a

twelve-twelfths bar. The students began by pulling eight parts and measuring to find that

it was two-thirds.  Finding commensurate fractions had not been their goal, but they were

able to give post hoc explanations for the measures, much as they had in previous

episodes. For the next fraction, while trying to pull six parts, Will pulled out seven-

twelfths and thought that it would measure four-sixths.

Protocol 17: Will’s numerical procedures and a modification to Hillary’s commensurate

fractional scheme.

T: What do you think this one’s going to be?

W: I pulled out seven, so I think… I say four-sixths.

H: I think two-thirds.
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T: [to Hillary] Why do you think Will said four-sixths? Will, you try to think

about why she was thinking two-thirds.

H: ‘Cause if you cut that [pointing to the seven-twelfths bar] in the middle, you

are going to have four.

T: Go ahead and do that [suggesting that she use CUTS].

H: [cuts the bottom seven-twelfths and the top five-twelfths in half, but the top cut

wasn’t visible. She then drags one of the 3.5-twelfths pieces (which had no visible

partitions) in the unit bar four times (with some overlap)]. Four, and two of these

will fit into that piece [seven-twelfths]. But he said four-sixths…

T: Will, do you know why she said two-thirds?

W: Well, it’s pretty much like last time. We did a little bit over half [dragging the

seven-twelfths bar into the unit bar, then lining it up beside the unit bar].

H: Two-fourths.

W: I changed my mind. I think it’s going to be… I took seven out… [drags the

cursor across each twelfth in the twelve-twelfths (unit) bar] I think it’s just going

to be what I pulled out, seven-twelfths.

T: I’d like y’all to explain to each other.

W: I think it’s going to be seven-twelfths, first of all, because I pulled out seven

out of twelve [drags the seven-twelfths bar back into the twelve-twelfths bar].

H: …’cause seven is an odd number…

T: Do you still think two-fourths might be it?

H: [nods affirmatively]

T: Okay. Can you explain why two-fourths?
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H: It’s just like you cut that in half and you cut that part in half too, and you’re

going to have four pieces.

W: [After indicating that he understood Hillary’s explanation, Will cut a copy of

the seven-twelfths bar into two parts and begins to count parts in a copy of the

twelve-twelfths bar.]

H: I think it’s seven-twelfths… because you can’t split seven in half; it’s not an

even number.

Will seemed to make an analogical guess when he said that the seven-part bar

would measure “four-sixths.” Given his reference to the previous case, when eight

twelfths measured “two-thirds” (“it’s pretty much like last time”), he may have used his

procedural scheme for producing equivalent fractions to produce four-sixths as a similar

measure. Will had begun focusing on the sizes of bars relative to the unit bar. For the first

time in the teaching experiment, Will initiated the activity of explicitly comparing a non-

unit fraction to the whole in order to approximate its size; dragging the bar in question

over the unit bar, he said, “we did a little bit over half.” He must have been able to

figuratively posit the size of half of the unit bar and two-thirds of the unit bar and

compare them to the size of the bar in question, thus establishing an ability to figuratively

compare non-unit fractions. If his activity were to modify his concept of non-unit

fractions, he would eventually have to reconcile a conception of approximate fractional

size with his conception of non-unit fractions as ratios. In so doing, he might construct a

partitive fractional scheme. If he could also develop an ability to coordinate units of units
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of units, he might construct a commensurate fractional scheme from his current

procedural scheme for producing equivalent fractions.

Hillary initially approximated that the fraction would measure two-thirds, but

when she considered Will’s suggestion, she could make some sense of it by considering

four apparently equally sized parts. Perhaps she reasoned similarly with three such parts

in offering her own suggestion. At least with the four parts, her actions represented the

conjectural use of partitioning and units coordination. Her conjecture (Conjecture H5)

was to explain Will’s “four-sixths” response by creating four equal parts within the

seven-twelfths bar, but resulted in a conjectural production of two-fourths. This was,

again, a socially based conjecture. The crucial difference in her conjecture and Will’s

conjectural procedures is that she had the fractional operations available to evaluate her

conjecture.

Recall that Hillary’s complementary fractional comparison scheme involved

estimations of size, and her commensurate fractional scheme grew from the former

scheme by uniting parts within a composite fraction and its complement. Hillary

partitioned seven-twelfths and its complement into two parts each with the goal of

creating four approximately equally sized parts. Once she had done this, she was able to

assimilate the resulting bar using her commensurate fractional scheme and recognize it as

two-fourths. Having dragged the 3.5-fourths piece within the unit bar four times, Hillary

was convinced that she had created equal parts. But after observing Will make the cuts,

she realized a problem with cutting seven-twelfths in half.

When Hillary was cutting, she was operating within the framework of

assimilating Will’s production using her commensurate fractional scheme. Prior to this
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task, it worked, so she was simply repeating what had worked. She was not expecting

there to be differences. When Will operated, and produced seven-twelfths, Hillary’s goal

now was to explain why Will did not get a fraction other than seven-twelfths. She was

still learning to reflect on her operating. Being free from the activity of cutting allowed

her to notice that the groups of fourths would be uneven and consist of broken parts:

“You can’t split seven in half; it’s an odd number.” Through her conjecturing activity,

she had introduced a new constraint to her production of commensurate fractions: She

now understood the importance of divisibility in the numbers of parts in establishing

composite units within a partitioned whole. Will could not coordinate units as Hillary

had, and his reasoning that the bar would measure seven-twelfths probably was based on

his whole number division operation (7 is not divisible by 2).

Toward the end of the episode, the students produced a ten-twelfths bar. I asked

them to predict its measure, and the students’ responses are recorded in Protocol 18.

Hillary’s responses, in particular, indicate a modification to her commensurate fractional

scheme as a result of the new constraint introduced as a result of her test of Conjecture

H5.

Protocol 18: A newly observed aspect of Hillary’s commensurate fractional scheme.

W: I think it’s going to be five-sixths… because it’s half of ten-twelfths.

H: [after slowly moving her cursor down through the twelve twelfths] Six-

sevenths.

O: Can you explain to Will?
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H: Okay. There’s two bars left over, so… you can’t have three or more. You have

to have two [sliding the cursor under every other twelfth starting from the top of

the twelve-twelfths bar. Two, two, two, two…

T: Do you want to use fill to keep track of them?

W: Where’d you get the seven?

H: [Fills the twelve-twelfths bar different colors by two’s and counts the pairs]

Five-sixths.

T: So why’d you say six-sevenths before?

H: It’s confusing [pointing her cursor across the parts].

Will was able to use his procedural scheme for producing equivalent fractions

once more to quickly solve the problem of simplifying the fraction. His language, “it’s

half of ten-twelfths,” indicates both his method and the need for reconciliation between

his numerical computation and the sizes of fraction bars: His numerical computation was

based on ratio’s with which “half” meant half of each number in the ratio but he also used

the term to refer to half as much. Meanwhile, Hillary demonstrated what might have been

a novel way of operating for her: In order to decide how to coordinate the units of parts,

she considered the complement of ten-twelfths and concluded that 2 was the only

possibility because “you can’t have 3 or more.” This way of operating might be attributed

to a functional accommodation of her commensurate fractional scheme resulting from

Conjecture H5. In particular, she had learned the importance of finding equal composites

of whole parts within a fraction and its complement. Her initial claim that the bar was

six-sevenths may be explained by her pairings of the numerous parts involved, but it is
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interesting that even then she chose a fraction whose complement was a unit fraction; she

knew that the two parts in the complement of ten-twelfths should be united in the

complement of the simplified fraction.

26 March, 2003 Teaching Episode

This episode was unusually short (about eighteen minutes) because Will and

Hillary had to complete a classroom assignment before I could meet with them. I decided

to challenge the students to make the unit bar given a bar that was a proper fraction of it. I

asked the students to close their eyes as I partitioned the unit bar into twelve parts, pulled

out nine of them and covered the unit bar. I chose nine-twelfths to begin because it was a

fraction that the students had not thought to make in the previous episode when using

twelve-twelfths to pull out various fractions.

When the students measured and “3/4” appeared, they thought for several seconds

about why this happened. Hillary then began smiling and explained this happened

“because there’s three parts in each one.” Will then shaded the three groups of three

saying, “there’s three in each one of these; there’s three bars, and there’s nine in all,” but

then he stopped and looked puzzled, apparently confused about where the 4 came from.

Hillary responded by pulling a three-twelfths bar from the nine-twelfths bar and joining

the two bars to produce the whole. After Hillary had completed her production and

uncovered the unit bar to check, Will still seemed confused.

Protocol 19: Novelties in Hillary’s use of partitive fractional and commensurate

fractional operations.

T: Can you explain why she was right?
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W: [both hands at his mouth, looking at the screen] I’m trying to figure out…

Because you shade all of them and you have three, it equals nine. But where do

you get the three-fourths from?

T: [after several seconds, to Hillary] You can help him if you want.

H: There’s three parts right there, there’s three parts right there, there’s three parts

right there, and that part was left over [pointing in turn to the four groups of three

and then turning to look at Will]… nine times three is twelve… or nine plus three

is twelve [smiles].

W: [begins shading the twelve-twelfths bar by three’s and talking mostly to

himself] There’s three parts right there, three parts right there, three right there…

That equals up to nine, and you add that [pointing to the last three parts] and you

get twelve. [turns to the teacher] I get what she’s saying.

Protocol 19 illustrates the growth in Hillary’s ways of operating as a result of

Conjecture H5. Hillary demonstrated the power of her commensurate fractional scheme

in coordinating the units of three to establish nine-twelfths as three-fourths in a three-to-

one relationship, even in the absence of the whole. She could do this partly because her

commensurate fractional scheme contained operations for keeping track of the whole. In

particular, she was able to consider the complement of three-fourths: “and that part is left

over… nine plus three is twelve.” The manner in which she was able to maintain the

whole provides further indication that her commensurate fractional scheme had grown

from her complementary fractional comparison scheme. Her actions also indicate

reversibility in her partitive fractional scheme for composite units, which seemed to
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operate in coordination with her commensurate fractional scheme: establishing the whole

by adjoining the three-part complement as the fourth fourth. Such reversible reasoning

and coordination of schemes was novel for Hillary. I attribute the novelty to Conjecture

H5, which introduced the constraint of producing common composite units in both the

given fraction bar and its complement.

Will could not reason as Hillary had. He was once again trying to relate the

numbers of parts in the fraction to the numerator and denominator displayed in the

measure box. He had been successful operating in such ways before, and, in fact, we will

see a profound example of success in Protocol 20. However, such whole-number

operations, with little attention to fractional sizes, may have circumvented efforts that

otherwise might have led to the construction of a commensurate fractional scheme. He

did not yet coordinate units at three levels, absent of experiential units. Will could relate

nine-twelfths to its measure, only after Hillary had produced the fourth group of three and

he had shaded the groups (at the end of Protocol 19). In the absence of the entire twelve

parts making up the whole, Will was not even able to use his procedural scheme for

producing equivalent fractions.

As the episode continued, Hillary pulled six sixteenths, and challenged Will to

reproduce the covered whole. Will measured the six-sixteenths bar and found that it was

“three-eighths of the unit bar.” He looked at the screen and thought for about a minute

before explaining what he was thinking.
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Protocol 20: Will’s novel use of his procedural scheme for producing equivalent

fractions.

W: I was counting [the number of parts in the six-sixteenths bar] and then I was

going to look [at “3/8” in the measure box] to see if that number had anything to

do with… [pulls one of the sixteenths from the six-sixteenths bar and repeats it to

make another six-sixteenths bar, then joins the two] That’s it right there.

H: [shakes her head left and right, almost imperceptibly, but Will looks over at

her.]

T: Okay. So, tell us how you did that.

W: Well, first I was counting how many there were overall, and there were six in

there. And then I noticed the 3 [in measure] and that was half of it [the six parts].

So, I just figured if I added on to twelve, maybe… ‘cause 8 can… no… I think I

should have made sixteen instead of twelve.

Will completed the production and explained that he needed sixteen parts because

3 is half of 6 and 8 is half of 16. He also volunteered that this was the toughest problem

he had done so far. Because Will had used his ratio reasoning in a new way to resolve a

problematic situation, I refer to his operations as conjectural (Conjecture W5). He

conjectured that if six parts constituted three-eighths of the whole, then there should be

sixteen parts in the whole because 3 is to 6 as 8 is to 16. Whereas before he had used his

procedural scheme for producing equivalent fractions in inventing post-hoc explanations,

in Protocol 20 he was able to determine the total number of parts in the whole. In doing

this, it was important that he distinguish between the roles of the numerator and
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denominator. His initial attempt of making twelve parts indicates these distinctions had

been problematic: He doubled the number of parts in the visible bar rather than the

denominator of its fractional measure.

31 March, 2003 Teaching Episode

Will’s procedural schemes. The students returned to the game they had been

playing in the last episode. Will began by producing nine-thirteenths, covering the whole,

and challenging Hillary to reproduce the whole from that fractional part, which she

measured as “9/13.” After about ten seconds, Hillary pulled one thirteenth from the nine-

thirteenths bar, repeated it four times, and joined the parts to make the whole. When

Hillary had completed her production, she checked the number of parts, determining that

it had thirteen parts. This determination seemed to satisfy Hillary’s goal, as she indicated

that she was certain with no need for further checking. Next, Hillary posed three-

sixteenths to Will, who had to reproduce the whole. Will measured the visible three-part

bar (the original unit bar was covered) as “3/16,” pulled one part, joined it to the others,

and repeated the resulting four-part bar four times. Finally, he checked the number of

parts in the production to find “16.”

Protocol 21: Will’s new procedure for reproducing wholes from composite fractions.

T: You got it?

W: [nods affirmatively]

T: Let’s measure and check.

W: [measures “1”]
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T: …and then you can uncover. There’s lots of ways to check. You are getting

more sure every time aren’t you?

W: [nods affirmatively, uncovers the original unit bar, and drags it over his

production, apparently to compare sizes]

T: All right. Good job!

O: How did you know how to do it that way?

W: ‘Cause I got it off of Hillary’s idea.

O: [laughs] What was Hillary’s idea?

W: To, uh… Well, when we measured it, I did… I put down nine-thirteenths. So,

she measured it, and it was nine-thirteenths. So, she just added four more

[pointing to the last four parts in his production of sixteen-sixteenths].

When Hillary solved the problem that Will had posed, her goal seemed to be to

make thirteen parts because she knew that nine-thirteenths was nine of one-thirteenth and

that thirteen of these one-thirteenth units would recreate the whole. This sort of reasoning

would involve a reversible partitive fractional scheme. In observing Hillary and

subsequently solving a similar problem, Will had constructed a procedure by analogy. In

other words, Will had used his whole number operations in assimilating general steps to

Hillary’s solution: Hillary had nine thirteenths and added four more to make thirteen

thirteenths; Will had been given three sixteenths and knew he had to add on until he

reached sixteen sixteenths. Will had been very explicit about his analogy in explaining

“Hillary’s idea.” It may have been conjectural if he had been aware of his assimilation of

Hillary’s actions with the goal of generalizing them. But Will’s actions indicated little
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uncertainty. It was more like a perceptual judgment because it was constructed without

question.

It is interesting that Will converted this goal of adding on parts to make sixteen

into a goal of making sixteen through a multiplicative relationship, as indicated by his

actions of making four-sixteenths and repeating it. This may indicate that he could treat

the sixteenths as he would treat units within his explicitly nested number sequence,

anticipating the production of a unit of units of units.

I hypothesize that Will’s actions were based on a procedural scheme that could

emulate the operations of a reversible partitive fractional scheme: his procedural scheme

for reversing ratios. The goal of this scheme was to reproduce the whole from a

measured fractional part by creating a numerosity of parts equivalent to the denominator

of the measured fraction. We will see further indication of the scheme and affirmation of

my hypothesis throughout the rest of the teaching episode. I refer to it as a scheme

because it represents a general way of acting for Will that is consistent throughout this

episode. But we will see in future episodes that his procedural schemes were not as

permanent as Hillary’s conceptual schemes.

The constitutive characteristic of such a procedural scheme is that it is constructed

in the context of assimilating the language and action of another student, using operations

of a scheme different than the one used by the operating student. In this case, Will used

the operation of his adding scheme for whole numbers in interpreting Hillary’s language

and action that were produced using her reversible partitive fractional scheme. Will could

generalize some of the contextual details, such as the specific numbers in the fractional
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measure, but we will see that his procedure depended on other contextual details, such as

starting from a partitioned fraction bar.

As the episode progressed, the students engaged in posing and solving more

problems like that of Protocol 21. I encouraged the students to pose fractions to each

other that might be tricky, without specifying what that might mean except that the

measures of those fractions might say something different from what one might think. On

his next turn, Will posed six-twelfths to Hillary and rotated the bar ninety degrees. His

choice of using six-twelfths as a tricky problem indicates that Will was able to use his

procedural scheme for producing equivalent fractions with the goal of creating a

commensurate fraction, in addition to that of simply justifying equivalence (a restriction

of his scheme before Protocol 20). The inference that Will had acted purposefully is

supported by his explanation after Hillary had reproduced the whole: “Well, I just did

half of it. So, instead of ‘6/12,’ it should come out to be ‘1/2.’”

Hillary posed three-elevenths for her next problem, and Will produced the whole

by repeating one of the parts until he had eleven in all. Then, Will posed ten-twentieths to

Hillary. These occurrences respectively provide further indication that Will had

constructed general procedures for reproducing the whole from a proper, irreducible

fraction (by considering its measure) and that he could purposefully produce

commensurate fractions: his procedural scheme for reversing ratios and his procedural

scheme for producing equivalent fractions, respectively.

In the latter problem mentioned above, Hillary measured “1/2.” At which point,

Will, smiling nervously, exclaimed, “I have got to figure out how I would solve this.”

Meanwhile, Hillary proceeded to pull out a copy of the ten-twentieths bar and joined the
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two visible bars to reproduce the whole. Hillary’s actions may indicate the power of her

reversible partitive fractional scheme and her ability to treat ten-twelfths as one half,

using her commensurate fractional scheme, whereas Will’s expressed uncertainty

indicates a limitation to the procedural scheme for reversing ratios: It could not yet be

applied to reducible fractions because the measured fraction in such cases does not

specify the number of parts in the whole. This provides further indication that he had

been acting with such a procedural scheme, rather than acting with partitive operations as

Hillary seemed to do.

Modification of Will’s procedural schemes. Later in the episode, Hillary posed

seven twenty-firsts to Will. When Will measured the given bar as “1/3,” he reacted with

surprise, furrowing his brow and then turning to Hillary with a puzzled look. But then he

counted the number of parts in the seven-part bar, made two copies of it, and joined all

three bars.

Protocol 22:  A modification to Will’s procedural scheme for producing equivalent

fractions.

W: That’s the bar.

H: [nods affirmatively]

T: That’s the bar?

W: Mm-hmm.

T: You pretty sure?

W: Mm-hmm.

T: What percent [sure are you]?
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W: Ninety-nine.

T: All right. How can you check?

W: Uncover it. [uncovers the unit bar and begins to drag it over the bar that he

produced] Yep.

Will had successfully used his numerical procedure for reversing ratios three

times during the episode. He may have tried to apply it again in Protocol 22, but the

procedure would lead him to make a total of three parts (3 was the denominator of the

measure), when he already had seven parts. This conflict may account for Will’s

puzzlement, and a similar conflict may account for his nervous smile in Hillary’s last

problem of “1/2.” However, I hypothesize that Will had another way of operating

available as a result of his success in Protocol 20: a reversibility in his procedural scheme

for producing equivalent fractions, which enabled him to reproduce wholes through a

multiplicative relation defined by the number of parts in the given fraction and the

numerator of its measure. The relationship in this case was seven-to-one, and was

established after Will counted the number of parts in the given fraction.

Using the procedural scheme, Will’s goal would then be to create twenty-one

parts because 7 times 3 is 21. If indeed he was using the procedural scheme, Protocol 22

would serve as a test for the conjectural modification to the procedural scheme (using the

relations with the procedure to reproduce the whole) made in Protocol 20. Alternatively,

it is possible that Will had constructed a reversible partitive unit fractional scheme for

composite units, in which case his goal would be to iterate the seven-part bar three times

rather than to create twenty-one parts. Because Will counted the parts and chose to use
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COPY rather than REPEAT, it seems that Will had been using the procedural scheme,

corroborating my hypothesis.

Further limitations to Will’s procedural schemes became apparent toward the

conclusion of the episode. I made an unpartitioned three-fourths bar (with the unit bar

covered), and asked the students to reproduce the whole. Hillary measured the bar as

“3/4,” and the students sat looking intently at the screen for about twenty seconds before

Will made a suggestion.

Protocol 23: A limitation to Will’s procedural scheme for reversing ratios.

W: [to Hillary] Try to copy one… copy that [pointing to the unpartitioned three-

fourths bar].

H: It would be too much.

T: Do you know what I did that was sneaky?

W: [nods affirmatively and smiles] I think the other one has parts on it.

T: Yeah. I erased the parts.

H: [dials PARTS to 4 and then 3, partitions the given bar into three parts, pulls

one and joins it to make a whole. When she finishes, she turns to look at the

teacher, smiles and turns to Will, still smiling.]

W: [Meanwhile, Will appears to silently mouth the words “one fourth.”]

T: How’d she do that, Will?

W: I was trying to figure out what she was doing at the beginning, but she took

out one fourth of the three fourths and added another one to make one whole. So,

I think that’s it.
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If Will had been attempting to use his procedural scheme for reversing ratios in

Protocol 23, he would have tried to add one more part to the given fraction because it

measured “3/4” and 3 plus one more would be 4 (the whole). Of course, in assimilating

the situation using his procedural scheme he would have to supply the parts. Will was

aware that this was an aspect of the situation that made it tricky: “I think the other one

[the hidden unit bar] has parts on it.” More importantly, Will did indeed suggest that he

and Hillary should add another copy to the given fraction! If he were using a reversible

partitive fractional scheme (or a fractional scheme at all) he would be unlikely to offer

such a suggestion because he could recognize that two copies of three-fourths would go

beyond the whole. In fact, Hillary recognized this fact right away: “It would be too

much.”

Hillary’s actions in Protocol 23 provide the best indication yet that she had

constructed a reversible partitive fractional scheme, that she could split, and that an

iterative fractional scheme was within her zone of potential construction. Will could

make sense of her actions once she had partitioned the given bar into three parts. At that

point, his procedural scheme for reversing ratios could be applied without a problem. His

statements at the end of Protocol 23 serve as indication of this.

14 April, 2003 Teaching Episode: Relative Permanence of the Students’ Schemes.

This was the first episode in two weeks, following the students’ weeklong spring

break. Although the students’ actions in the episode often do not represent new ways of

operating, I mention them to highlight the relative permanence of the student’s schemes

and operations. At the beginning of the episode, I asked the students to remake a hidden
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unit bar given an unpartitioned bar that was two-thirds of it. Hillary immediately grabbed

the mouse and dialed PARTS to “3.” She hesitated a moment before dialing PARTS to

“2,” but then immediately partitioned the given bar into two parts, pulled one of them and

joined it to the others to make the whole. Despite the prolonged break from working with

fraction bars or even with classroom mathematics, Hillary’s reversible partitive fractional

scheme was still available for solving such tasks.

Next, Hillary made a wiped (unpartitioned) three-fifteenths bar for Will, and he

was supposed to reproduce the covered whole. After measuring the given bar to be “1/5,”

he partitioned it into two parts, pulled one of those parts, repeated it until he had three

additional parts (for a total of five parts), and joined them. I use this protocol as a test for

the flexibility and relative permanence of Will’s procedural schemes.

Protocol 24: A test of Will’s procedural scheme for reversing ratios.

W: I think that’s it.

T: Okay. How did you think about that?

W: Well, I measured and it said one-fifth, and so I pulled out one and I added

[holding out three fingers on his left hand] about… I think it was three more?

Three or four more, and that equaled five, and that equals one whole.

T: Okay. Let me ask this. The first thing you did was you put the piece into two

parts. Why did you do that?

W: Just so I could add… So I won’t have to… So when I cut them down lower, I

won’t have to add as many on.

T: Okay… Because you thought you would run out of room or something?
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W: No. Because, see, if you cut it down like more [pointing to the bar he had just

made] then it’s going to be smaller than that, and since she covered up a whole lot

[pointing to the cover over the whole], I figured she cut it down as bigger pieces.

T: If you’re right, what’s it going to say with MEASURE?

W: [thinks for a few seconds] One whole. [measures “1/2”]

T: Do you know why it says one-half instead of one whole?

W: Because I cut it into halves?

T: Yeah. May be.

O: Can you fix it?

T: Yeah. Can you fix it? Can you fix it and make it equal to the whole now?

W: Add a whole ‘nother one. [repeats the bar that he produced, doubling its size]

Or maybe I could wipe those [WIPES clear the partitions] That’s it.

T: Okay. Let’s measure it and see.

W: [measures “1”]

T: Oh! Okay. Good. So, you fixed it.

W: [nods affirmatively]

If Will had been acting using his procedural scheme for reversing ratios, he might

have made four more parts and joined them to the given part to make a total of five parts.

Indeed, he did make four more parts by partitioning the given part in two and joining on

three more parts. But he had presumed that the one-fifths bar was composed of smaller

parts: “If you cut it down more, it’s going to be smaller.” Because the size of the cover

Hillary had used was large relative to the given bar, he surmised that the given bar could
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not be cut into very small pieces. He figured that it might have been partitioned into two

parts before Hillary wiped it because such a partition would produce the largest possible

parts. All the while, Will planned to join four more copies of this part to remake the

whole. So, it seems that Will had been operating with his procedural scheme for reversing

ratios, only modifying it to take into account his presumption that the one-fifth bar was

composed of smaller parts.

Will had modified his procedural scheme to account for his observations and

interpretations of Hillary’s actions, forming a new procedure. When Hillary was given a

wiped two-thirds bar, she partitioned it into two parts and joined three copies to make the

whole. Will’s actions with one-fifth were completely analogous. Will’s previously

constructed numerical procedure, which had proven adequate for resolving such

situations before spring break, had been unnecessarily abandoned, bringing into question

whether such numerical procedures (procedural schemes) were permanent enough to call

schemes. Moreover, it seems that Will’s propensity for inventing new procedures was

impeding his construction of a partitive fractional scheme.

Will’s modification was conjectural (“I think that’s it”), but it did nothing to

increase his power in operating with fractions. His conjecture (Conjecture W7) that he

should partition the given fraction into two parts before producing a total of five parts

merely supplanted his old procedure. But the old procedure was not operationally flexible

enough to survive.

 At the end of the episode, the difference between Hillary and Will’s ways of

operating was yet again apparent. I posed a wiped five-sixths bar to Will and asked him

to remake the whole with Hillary’s help. Will measured the bar and paused for several
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seconds appearing to be stuck, so Hillary suggested that he partition the given bar into

five parts. Will followed her suggestion and proceeded to add one more sixth to the five-

sixths bar, but then continued repeating that sixth until he had produced twelve-sixths.

Hillary looked perplexed by this, and Will explained, “I was going to add five more to

that 5 [pointing to the numerator of 5/6 in the measure box] and make it 10, and then six

more to that 6 and make it 12, so that way it would be ten-twelfths.”

Will seemed to assume that he needed to create more parts to establish the

equivalent fraction that he assumed I had used to make the wiped five-sixths bar. This

may explain why he did not use his procedural scheme for reversing ratios, which he had

used effectively at least three times in the episode on March 31st. Hillary, on the other

hand, had constructed a reversible fractional scheme that was as effective in the new

situations as it had been in situations from the previous episode. So, at least in that

regard, Hillary’s operative schemes were more permanent than Will’s procedural

schemes.

Of course, Hillary had to continually modify her schemes as well, but the

modifications still included the necessary relationships established by previous

operations. For example, consider Protocol 25 (below), which illustrates a problem that

Hillary struggled to solve in the middle of the episode. Will had posed a wiped fourteen-

sixteenths bar to her, which she measured as “7/8.” As she began to partition the given

bar, she noticed that PARTS had been dialed to “16.” So Hillary assumed, as Will had

previously, that the given fraction was composed of smaller parts.



211

Protocol 25: A limitation to Hillary’s reversible partitive fractional scheme, and a new

conjecture coordinating two schemes.

H: [partitions the given bar into sixteen parts and begins shading by threes,

stopping when she reaches four groups of three]

T: What were you doing there, Hillary?

H: I was trying to figure out something.

T: Why were you shading by threes?

H: I was seeing what it would end up to be [begins shading by two’s instead, until

she reaches five groups of two. She then wiped the bar and repartitioned it into

fifteen parts].

O: How many pieces are in that bar?

H: Fifteen

W: [looking at Hillary who was still looking at the screen] You see, that [pointing

to “7/8” in the measure box] is simplified.

T: I want to get a view for what you are thinking, Hillary. I can’t tell what you are

thinking, but there is a lot going on. First, you split it into sixteen parts, right?

H: [nods]

T: Why did you do that?

H: Because it was already on there [pointing with the cursor to the PARTS dial].

T: Oh! It was on there [smiling]. Then you said ‘okay, I’m not going to use

sixteen’ and you split into fifteen instead. Why did you split into fifteen?

H: Because… when you try three it gets in four pieces, and when you try two, it

gets into eight pieces.
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T: So, you are trying to find something that will be in how many pieces?

H: Seven.

T: Oh! You are trying to find something that will be in seven pieces. I see.

H: [wipes the bar, repartitions it into fourteen pieces, shades by twos making

seven groups of two, and joins on two more of the fourteen parts to remake the

whole] That’s it.

T: Explain to Will what you did.

H: I put it into fourteen pieces, because I just thought of 7, and then I doubled it.

W: If you double 7, you get 14; if you double 8, you get 16. And, I took fourteen

out of sixteen pieces. So, seven-eighths is half of fourteen-sixteenths.

Hillary’s assumption that Will had used sixteen parts transformed her goal from

that of a reversible partitive fractional scheme, which she used successfully within this

episode, to first finding something with which to make seven composite units. Once she

was able to establish these composite units, she immediately knew that she needed to

adjoin one more of the composite units in order to produce the whole, because the whole

would be eight eighths, and she only had seven of them. So, even though she did not

immediately use her reversible partitive fractional scheme, she still recognized the

necessary relations established by its operations. By engendering a more complicated

goal, the situation provided an opportunity for Hillary to coordinate operations of her

reversible partitive fractional scheme with her commensurate fractional scheme.

What Hillary was lacking in the relationship between the two schemes was the

relationship between the numerator of the measure (namely, 7) and the number of parts in
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the partition. Of course, because she did not know the number of units in each composite

unit, she had no occasion to know the total number of parts in the partition. Instead, she

could have surmised that it would have to be a multiple of 7. Eventually, she did

recognize that necessity: “I just thought of 7, and then I doubled it.” Having resolved this,

it was certainly within her zone of potential construction to coordinate her reversible

partitive fractional scheme and commensurate fractional scheme into two new schemes,

namely a reversible fractional composition scheme and a reversible commensurate

fractional scheme. The first scheme would enable her to produce a specified unit fraction

within an unpartitioned proper fraction. The second would enable her to produce various

composite fractions from a simplified one by distributing units of units within a given

fraction bar.

Because Hillary’s actions in establishing seven units of units within the fraction

seemed to represent genuine problem solving and a novel way of operating, I refer to

them as conjectural. I label the associated conjecture—Hillary’s assertion that she could

produce seven composite units in the given bar and use an eighth one to reproduce the

whole—as Conjecture H6.

18 April, 2003 Teaching Episode

Will’s ambiguous fraction language. In recent episodes, Will had demonstrated an

ambiguous use of terms like half and double. For example, he would say that ten-twelfths

had the same measure as five-sixths because five-sixths is “half” of ten-twelfths. I wanted

him to confront the ambiguity in his use of such terms in describing the sizes of fractions.

So, I began the present episode by asking Will which was bigger, five-sixths or ten-

twelfths. Will produced five-sixths and claimed that ten-twelfths was “one time bigger.”
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He went on to make ten-twelfths by joining two copies of five-sixths and pulling all but

two of the parts. It seems that he was experiencing a conflict: While his partitive unit

fractional scheme would lead him to join the two copies in order to double a fraction, his

part-whole fractional scheme led him to pull all but two of the resulting parts because

ten-twelfths involves pulling ten parts and leaving two from the twelve (although he

ended up with eight-sixths). His activity might indicate that, in joining the two copies of

five-sixths, he thought that he had created twelve parts, never minding that the six parts

referred to by five-sixths were contained in the unit bar and not in the five-sixths bar. His

reasoning throughout the activity was more germane to ratios, with which the whole is

not a fixed length and ten out of twelve is like doubling five out of six.

Once Will actually made five-sixths and ten-twelfths, he lined them up to

determine that they were equal (Hillary had recognized the equality from the start,

presumably using her commensurate fractional scheme). Still, he used ambiguous

language: “Five-sixths is half of ten-twelfths and that’s the reason it’s probably the

same—like how big it is.” After pulling five of the ten parts in ten-twelfths to produce

half of ten-twelfths as I had requested, Will iterated the five-part bar within the unit bar

two times, saying, “that goes in there two times with two left over.” He had acted in

much the same way in previous episodes, in which I attributed his actions to a partitive

unit fractional scheme. When Hillary explained that the fraction would measure five-

twelfths, Will could make sense of this by referring to the number of parts in the fraction

and the number of parts in the unit bar from which ten-twelfths had been pulled: “If you

get the higher number out of all of those, you are going to get twelve.” This explanation

sounds similar to the kinds of rules Will had invented before in his post-hoc explanations,
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and I doubt that he viewed the five-twelfths bar as five of the twelve parts making up the

unit bar because he had not pulled the five parts directly from the unit bar.

Another numerical procedure. Toward the end of the episode, I asked the students

to reproduce a hidden whole from a wiped two-fifths of it. Hillary quickly completed the

production by partitioning the bar into two parts and repeating to five parts. Will

immediately claimed, “that’s your unit bar.” The immediacy of his response combined

with his explanation—“When I measured, it was two-fifths, and she copied and made

four, then added another one to make a whole”—surprised me, and led me to think that

Will had generalized the complicated procedure while recognizing two-fifths as two of

one-fifths. However, when I asked him to produce the whole from a wiped three-sevenths

bar, Will partitioned the bar into two parts and repeated to make seven parts. His actions

further corroborate my claim that Will did not recognize fractions such as three-sevenths

as three of one-seventh, especially when the parts were not visible! He had generalized

Hillary’s scheme to account for various denominators, but could not meaningfully

account for variation in the numerator. As such, his actions provide further indication that

Will had not constructed a partitive fractional scheme. Will did modify the procedure in

consideration of the numerator once Hillary helped him to correct his production, but it

still appeared to be independent of a general fraction scheme: “I should have cut it into

three parts because the first number [in the fraction] was 3.” Such post-hoc explanations

and procedures are characteristic of Will’s behavior throughout the teaching experiment.

What they lack is the necessity or requiredness of operating mentioned in Chapter 2 and

of which Wertheimer wrote.
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30 April, 2004 Teaching Episode: A distinction between the students’ zones of potential

construction.

School personnel needed to use the room we had been using in the back of the

library, so we met at a back table in the main room of the library. The set up was nearly

identical, but there was more noise and more visual distraction with other students

moving about the room. This episode was intended to test Will’s meaning of fractions

and to orient him to considering the sizes of fractions. In past protocols, it appears that

Will had been considering only the numbers of parts as related to the numerator and

denominator of the fraction and often lost sight of the unit bar and its role.

I began the episode by asking Will to make a fraction that was just a little bigger

than one-half. He responded by partitioning a copy of the unit bar into two parts, pulling

out one of them, partitioning that half into two parts, pulling one of those quarter parts

and joining it to the half part to make three-fourths of the unit bar. However, he thought

that he had made one-half “because [Will] didn’t cut any more out than just half.” I

interpret his remarks as an explanation that he had taken half of the unit bar and then half

of the resulting part (which was already a half), never using more than two parts. In other

words, his meaning for half (at least for the moment) was restricted to a relation between

the number of parts used and his actions of partitioning, and not related to the size of the

fraction in relation to the unit bar; the fraction he made was visibly larger than half of the

unit bar.

Further indication that Will still lacked a partitive fractional scheme was provided

by his actions concerning Hillary’s production of a bar that was even closer to one half of

the unit bar. Hillary had pulled one-half of the unit bar, partitioned that half into three
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parts, pulled one of them, partitioned it into two parts, pulled one of them, and joined it to

the original one-half part of the unit bar; an illustration of Hillary’s final and intermediate

productions is provided in Figure 11. The final fraction looked like the one shown in the

lower left hand corner of Figure 11, except that when she joined the three-sixths part to

the one-twelfth part, the partitions disappeared. Protocol 26 illustrates a conjecture that

Hillary formed based on her production.

Figure 11. Hillary’s production of a bar that was a little bigger than one-half.

Protocol 26: Hillary’s partitive conjecture.

T: Did ya’ll keep track of all of that to figure out what fraction she did?

H: [drags the bar in question (at the bottom of Figure 11) into the unit bar, pulls

one of the two smallest parts (in the lower right of Figure 11), and begins moving

it from right to left within the bar in question, as if iterating it]
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T: Hillary, why don’t you explain to Will what you are doing; I want to make sure

that ya’ll are working as a team.

W: I get why she’s putting them in there [pointing to the bar in question], but why

is she taking it out of there [pointing to the two smallest parts].

T: [after noticing that Hillary was having trouble keeping track of how many

times the smallest part went into the bar in question] If you want, you can use

REPEAT… if that helps.

H: [uses REPEAT to iterate the smallest part seven times within the bar in

question, filling the latter. Then, she pauses.]

W: I think it’s something with sevenths.

H: [continues iterating to fill the unit bar]

W: I think it’s going to be one-sevenths.

T: One-sevenths? All right. See if you can see what Hillary is doing, too.

W: [having looked away, begins paying attention to Hillary’s actions again, just

as she completed filling the unit bar with small parts] That would make the whole.

T: Okay. So, she made a whole, right? Does that help her figure out the fraction?

W: I’m trying to figure out why she made the whole.

T: All right, Hillary, why did you make the whole? I want to make sure you and

Will are talking.

H: [She had been focusing intently on counting the number of parts in the whole,

and then comparing the bar in question to the twelve-twelfths bar that filled the

whole. When she finally answered, she seemed a little put out by the distraction.]
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Because I’m trying to figure out how many parts are in there [sweeping the cursor

back and forth across the twelve-twelfths bar].

T: So, you made the whole with some part. Will didn’t know why you were

choosing that part to begin with. Why did you choose one of these [pointing to

one of the twelve parts] to start with?

H: Because it’s small.

T: Oh. She started with the smallest one, it looks like, Will. [to Hillary] And you

made the whole by repeating. Is that going to help you, Will? Can you use what

she did to figure out what fraction this [pointing to the bar in question] is out of

the unit bar?

W: I could but, if I was her, I would have stopped at seven.

T: So, if you stopped at seven, that would tell you what?

W: That it would probably be one-sevenths.

T: And what did it tell you Hillary?

H: One-sevenths.

At this point, I asked the students to produce one-seventh of the unit bar to

compare to the bar in question. Will produced a one-sevenths bar and realized that the bar

in question could not be one-seventh because the bar in question was bigger and “because

it won’t take up seven spaces; it will only take up a little bit over two.” He admitted that,

“if you count all of the parts, there’s seven of them; that’s the reason I said one-seventh,

but, then she kept on going.” I asked both students to think about the problem and try to

figure out what measure the bar in question would have. Will changed his mind to one-
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twelfth, after which Hillary claimed that it was seven-twelfths, and then Will immediately

agreed, “because that’s seven right there [pointing to the bar in question, which was now

embedded in the unit bar] and there’s twelve left over.”

I have already argued that Hillary had a partitive fractional scheme and Will did

not. Will’s claims that the bar in question was one-seventh and later that it was one-

twelfth corroborates the latter argument. When he finally recognized that the bar in

question was, in fact, seven-twelfths (after Hillary had made the claim), he seemed to be

using his part-whole fractional scheme, trying to explain that it was seven out of twelve

parts. It seems that, in dealing with non-unit fractions, Will conflates the part and the

whole. He knew that seven parts fit within the bar in question and thought that Hillary

should have stopped when she had established this. On the other hand, he did experience

conflict when he tried to reconcile his assertion that the bar was one-seventh with his

partitive unit fractional scheme. Will’s partitive unit fractional scheme determined the

measure of a unit fraction as the reciprocal of the number of times it would fit into the

whole, but the bar in question “won’t take up seven spaces.” Experiencing such conflicts

may be instrumental to engendering a partitive fractional scheme for Will.

Hillary did have a partitive fractional scheme but deferred to Will (at the end of

Protocol 26) either because she had been unsuccessful in her attempts to establish the

measure of the bar by iterating the one-twelfth part in it and the unit bar, or because I had

interrupted her train of thought. Will’s argument sounded reasonable, and we have seen

previous examples of Hillary agreeing with Will simply because she could understand his

reasoning, even when it was very different than her own approach. In any case, Hillary

had been using her partitive fractional scheme to solve a novel problem—one that
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seemed to consume her energy and resulted in uncertainty. So, I refer to her actions as

conjectural. Her conjecture (Conjecture H7) was that she could use the smallest piece as

a common partition of the unit bar and the bar in question.

Hillary’s goal had been to establish the measure of a bar by using a common

partition of it and the unit bar. In her partitive fractional scheme, the common partition of

the part and whole is established by the measure of the fraction; the multiplicities of the

common partition in producing the part and the whole are given. In the present case, the

part and whole were given, but the common partition and the multiplicities were not. So

Hillary had to use her partitive fractional scheme in a novel way to solve the problem:

hypothetically composing part and whole of smaller pieces So, her conjectural operations

employed fraction composition with her partitive fractional scheme, much as they had for

Conjecture H6. However, once she arrived at her conclusion that the bar would measure

seven-twelfths, she could use her part-whole fractional scheme (even as Will had) to

affirm the novel use of her operations.

2 May, 2003 Teaching Episode

We established two teams, with me (the teacher) and Hillary on one team and

Paul (the witness) and Will on the other, so that we could differentiate between those

problems appropriate for Hillary and those appropriate for Will. Hillary and Will’s

primary roles were problem solving while the observer and teacher’s roles were primarily

problem posing.

Hillary and I began by making one-seventeenth of a unit bar, covering the unit bar

and asking Will to reproduce the whole. Will measured “1/17” and repeated until he had

seventeen parts, exclaiming, “there it is.” His actions corroborate that he had constructed
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a partitive unit fractional scheme with which to recognize one-seventeenth as one of

seventeen equal parts making up the whole.

Hillary’s iterative fractional scheme. With guidance from Paul, Will was able to

make a wiped five-thirds bar (as Paul had suggested), and he challenged Hillary to

remake the whole. Hillary appeared to have little trouble in remaking the whole. She

dialed PARTS to “3,” quickly changed to “5” and partitioned the bar vertically. After

looking at the cover (covering the original unit bar), she wiped the five-thirds bar and

decided to partition it horizontally, presumably because the shape of the result of her

eventual production would resemble the shape of the cover (and thus the original unit

bar) better if she were to partition it horizontally instead of vertically. In fact, the shape of

her eventual production did fit the shape of the original unit bar, and Hillary said that she

had changed the direction of her partitioning for that reason.

Because her actions were so deliberate in establishing the whole from an improper

fraction, it seemed that Hillary had constructed an iterative fractional scheme. Her

subsequent actions in the present episode substantiate that the pattern for operating was

relatively permanent. It will be important for me to find further instances to substantiate

this claim and for me to identify how this scheme was constructed, conjecturally or

otherwise. Hillary’s actions at the end of this teaching episode address the former

concern, affirming that she had constructed the scheme. As for the latter concern, I noted

from my analysis of Protocol 14 that Hillary had not constructed an iterative fractional

scheme by March 12th. Although she could purposefully produce improper fractions and

had constructed a reversible partitive fractional scheme, she could not identify the whole

within an unmarked improper fraction and compare the improper fraction to it. I
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hypothesize that the critical period of operational change can be traced back to Hillary’s

conjectural operations on Protocol 15 (Conjecture H4 on March 20th), during which she

united unit wholes within improper fractions with the goal of converting improper

fractions to mixed numbers. So, I do not view her actions as conjectural, but as the result

of an engendering accommodation that can be attributed to Hillary’s conjectural use of

uniting operations in Conjecture H4.

Will’s partitive conjecture. As the episode continued, Hillary made a wiped five-

fourteenths bar and challenged Will to reproduce the hidden whole. Will’s subsequent

actions indicate that he had not yet constructed a reversible partitive fractional scheme.

Indeed, I question whether he had constructed a partitive fractional scheme at all. But

Will was operating conjecturally in a manner that might lead to the construction of both

schemes. Protocol 27 picks up after Will had measured the fraction as “5/14,” thought

about he problem for several seconds, and began verbalizing his thoughts to his partner,

Paul.

Protocol 27: A conjecture that may engender a partitive fractional scheme.

W: That one equals five [pointing to the five-fourteenths bar and then the “5/14”

in the measure box], and if you did another one, it would probably equal 10. Well,

if you add another one, it would be fifteen-fourteenths.

O: Right.

W: [partitions the five-fourteenths bar into five parts horizontally, pauses, wipes

the partitions, and then partitions it into five parts vertically instead]

O: I think you are on the right track.
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W: I need to make fourteen of those [sweeping the cursor over the five

fourteenths]

O: Make fourteen of what?

W: Take one of these boxes out and repeat it.

O: Okay.

W: [pulls one of the fourteenths and places it below the right end of the five-

fourteenths bar]

O: So, what’s the fraction there?

W: One-sixth? [repeats the pulled fourteenth part nine times so that he has a five-

fourteenths bar and a nine-fourteenths bar lined up]

O: So how many total do you have?

W: That’s fourteen right there.

Will’s actions in Protocol 27 were novel. Although he previously had been able to

use his procedural scheme for reversing ratios in order to reproduce the whole from a

partitioned, non-unit, proper fraction, he had never been able to recreate the partitions of

an unpartitioned (wiped), non-unit fraction. I can think of two explanations for the

novelty of his actions: Either he had constructed a new procedure from observing

Hillary’s actions in previous episodes, or his experiences over the past couple of episodes

engendered partitive fractions. I am inclined to agree with the former, after considering

the following observation made by Will at the end of the April 18th teaching episode: “I

should have cut it into three parts because the first number [in the fraction] was 3.”

However, the past couple of episodes had been designed to focus Will’s attention on the
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relative sizes of non-unit fractions and so to elicit partitive fractions; the episodes may

have been met with success. I hypothesize that Will had not yet constructed a partitive

fractional scheme with which to act consistently in treating fraction bars as partitive

fractions.

Will’s actions of partitioning the unpartitioned fraction conjecturally transformed

the unfamiliar situation into one in which he could use his procedural scheme for

reversing ratios in order to reproduce the whole. His conjecture, Conjecture W6, was

that, since the given bar measured “5/14,” it must contain five parts from a fourteen part

whole. As was the case in past uses of the procedural scheme, Will embedded the given

fraction within the whole by adding to the given bar to make the whole. He knew that he

needed to add nine parts, but he had trouble keeping track of what the parts were. Will

referred to the part he was repeating as one-sixth (at an intermediate stage when he had

six parts), which indicates that he had not understood the given five-fourteenths fraction

as a partitive fraction made up of five fourteenths.

As the episode continued, Will seemed unhappy with the non-rectangular shape

he had created, so he continued by using cuts. Even then, he was only able to get two

five-fourteenths bars lined up with a four-fourteenths bar in the middle, as displayed in

Figure 12. So, he filled in the gap by copying one of the fourteenths and joining it to the

four-fourteenths bar, and claimed, “That’s your whole.” So, it seems that Will’s goal of

completing the rectangle superceded his intention to create fourteen parts, further

indicating that his actions in producing fourteen parts from the given bar were conjectural

and not operationally necessary. He was surprised to find that he had created fifteen parts

when he counted them later; the test for his conjecture had not yielded complete success.
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Figure 12. Will’s production of fourteen-fourteenths from five-fourteenths.

Will’s actions in solving a similar problem at the end of the episode provide

further indication that Will had constructed a new way of operating that may not have

been based on partitive fractions. When Hillary challenged him to reproduce a hidden

whole from a wiped three twenty-eighths bar, he initially partitioned the bar into two

parts. But after wiping it, he repeated it three times, uttering “three, six, nine.” He

continued repeating “to see how close I can get the numbers to 28,” stopping after he had

reached twenty-seven. It is unclear whether he considered his production of “twenty-

seven” as twenty-seven twenty-eighths, and we ran out of time before he could complete

his production. His actions in solving this final problem of the episode seem to be related

to a partitive unit fractional scheme for composite units, except that he counted by threes
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with the goal of reproducing the whole from a wiped fraction, rather than counting by

ones with the goal of naming a given partitioned fraction.

Hillary’s actions late in the episode provided further indication that she too

continued operating in the manner that had been novel earlier in the episode. Will had

challenged her to reproduce the whole from a seven-fifths bar, and she was able to

immediately satisfy the goal by partitioning the seven-fifths bar into seven parts and

pulling five of them. Before she could pull out the five parts from the seven parts, I asked

her to tell me what one of the seven parts would measure, and she replied, “one-fifth.”

This is a strong indication that she had been using an iterative fractional scheme.

7 May, 2003 Teaching Episode: Results of Conjecture W6

Will’s actions in the middle of this episode provide for strong implications about

his partitive fractional reasoning. In my analysis of Protocol 27 from the last episode, I

hypothesized that Will had not yet constructed a partitive fractional scheme. It seemed

that he did recognize fractions such as five-fourteenths as five of something, but that the

something was not necessarily one-fourteenth of the unit bar. His goal in reversible tasks

such as reproducing the whole from five-fourteenths of it had been restricted to creating

fourteen of the something. Now, there is indication that Will could view fractions such as

two-fifths as partitive fractions if this goal were isolated from larger goals, such as

reproducing the whole from two-fifths. Protocol 28 begins with Will’s response to a task

requiring him to make one-fifth from a wiped two-fifths bar. The unit bar was hidden,

and Will had just measured the given bar to be “2/5.”
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Protocol 28: Will’s construction of two-fifths as a partitive fraction.

T: Can you use that [the wiped two-fifths] to make one-fifth?

W: [dials PARTS to 2, partitions the given bar, pulls one out, releases the mouse

and turns to look at me]

T: You sure?

W: [nods]

T: How do you know?

W: Well, it’s two fifths and if you cut it in half, it will take one off.

T: Oh, okay. Good.

Protocol 28 continued after Will had followed my instructions to reset the screen

to the way it had been before the protocol began. I then asked him to make the whole

from the wiped two-fifths bar. Will repeated the bar once, partitioned the result

horizontally, pulled out two of the parts and lined them up on the right as illustrated in

Figure 13. When the witness asked him how much he had, Will thought for a moment

and replied, “six-fifths.” He completed his production by removing the rightmost sixth,

eventually lining up the five parts side-by-side.

Something had changed in Will’s ways of operating. Whereas in the last episode

five-fourteenths only meant five of something (apparently unrelated to the size of the

five-fourteenths fraction bar), now Will was able to identify that two-fifths was two of

one-fifth, and he could identify the one-fifth within two-fifths by removing the other half

of two-fifths. Moreover, he did not lose track of the fact that he was operating with fifths

when he went on to produce the whole from two-fifths. He began much as he had with
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three twenty-eighths in the last episode, repeating the two-fifths fraction to get as close to

five as he could. He also seemed to insist that the original two-fifths bar be embedded in

unit bar that he was producing, as he had with four-fourteenths and three twenty-eighths.

However, with the knowledge that he was operating with fifths, he was now counting by

fractions rather than whole numbers, as indicated by his claim that he had created six-

fifths! He also accepted the restriction that he could not create additional fifths beyond

five-fifths in order to complete a rectangular shape (unlike his actions with five-

fourteenths in the last episode).

Figure 13. Will’s production of six-fifths in attempting to produce the whole.

Rather than considering Will’s actions as representative of a new conjecture, I

consider them as another test of Conjecture W6—a conjecture that may have engendered

partitive fractions. If he had indeed begun to construct partitive fractions and a partitive

fractional scheme, he could also transform his procedural scheme for reversing ratios into

a genuine reversible partitive fractional scheme.
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9 May, 2003 & 15 May, 2003 Teaching Episodes

The final two episodes were analyzed to determine the students’ available

operations at the end of the teaching experiment. The episodes provide indication that

Hillary had constructed at least a kernel for a reversible unit fractional composition

scheme (like the scheme Joe used in Protocol I), which included recursive partitioning

operations. The episodes provide indication that Will may have splitting operations

available, but there is contra-indication that he had constructed a partitive fractional

scheme.

In the episode on May 9th, Hillary was asked to make and determine the measure

of one-third of one-fourth. She produced the desired fraction by partitioning a copy of the

unit bar into four parts vertically, pulling one of these, and partitioning it into three parts

horizontally. After pulling one of the small parts, she determined that it was one-twelfth

of the unit bar by iterating the three-part bar in the unit bar four times. In this way, she

was able to recursively partition the unit bar into twelve parts and compose the two

partitions to determine the size of the fraction in question. Later in the episode she

appeared incapable of using recursive partitioning in such a way when given non-unit

fractions (e.g. two-thirds of two-sevenths). Instead, she acted much as she had during

Protocol 26 on April 30th. Hillary’s actions in these in the cases described here indicate

that her fractional composition scheme was restricted to unit fractions of unit fractions.

However, with such recursive partitions, she could also operate reversibly, as indicated

during the episode on May 15th. During that episode, with the goal of creating a part such

that the unit bar would be twelve times as big, Hillary partitioned the unit bar into three

parts vertically and four parts vertically and pulled one part, confident that it was one-
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twelfth of the unit bar. Furthermore, when I asked her if she could make one-twelfth from

one-sixth, she partitioned a one-sixth piece into two parts and pulled one.

In the same two episodes, I had also given Will tasks in which he was to make a

part such that the unit bar was n times as big. His responses were varied and sometimes

ambiguous, but he demonstrated in each case that he could posit a hypothetical piece to

check through iteration. In the first such task, I asked Will to find a bar such that the unit

bar was twice as big as it. He responded by taking half of the unit bar and then taking half

of that half. However, he was disappointed to find that the unit bar was four times bigger.

He acted analogously when I asked him to find a bar such that the unit bar was five times

as big. Finally, during the final episode, he was able to produce a bar so that the unit bar

was twelve times as big, by partitioning the unit bar into twelve parts. These cases

indicate that splitting was at least in Will’s zone of potential construction.

A partitive fractional scheme was also in Will’s zone of potential construction.

However, in each of the last two episodes, there is contra-indication that he had

constructed the scheme. On May 9th, Will claimed that five-fifths was five times as big as

two-fifths. With both bars already made, he iterated the latter into the former counting,

“two, four, and another one makes five.” He had only iterated the two-fifths bar twice

within the five-fifths bar, counting by two’s. During the last episode, I asked Will to

produce one-sixth of a unit bar and then to produce a bar that was five times as big. He

had no problem producing the one-sixth bar, by partitioning the unit bar into six parts and

pulling one. He easily produced the bar that was five times as big as one-sixth by

repeating it four more times. Still, he named the result as a whole rather than five-sixths.
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Chapter 6: Synthesis of Hillary and Will’s Conjectures

Whence and wherefore conjecture? In taking an operational approach to

answering this question, I needed to examine students’ conjectural activity and consider

how conjectural operations might engender accommodations of schemes. In the case

study of Hillary and Will in Chapter 5, I identified conjectural operations and the

conjectures that those operations formed. So, in the present chapter, I summarize and

synthesize the conjectures that I identified for Hillary and Will. I use the analysis

presented in Chapter 5 to specify those accommodations that the students made in their

schemes as a result of their conjectural operations, and demonstrate how the students’

zones of potential construction were actualized through conjectural activity.

Will

Conjecture W1. Will had constructed a partitive unit fractional scheme before

February 24th. During the teaching episode on that date, he was challenged to produce an

eight-sevenths bar, which is beyond the scope of the partitive unit fractional scheme. So,

he resorted to using his whole number knowledge in a novel way in acting on a

previously produced seven-sevenths bar to produce an eight-sevenths bar (Protocol 1). He

treated each seventh as a unit and suggested adding one more of those units to make eight

in all. I have argued that, in acting this way, he was not treating the units as fractional

units (sevenths). Instead, he used the one more than operation that he had available for

whole numbers in order to produce a relation between the seven units that he started with

and the eight units that would result from his action. So, his conjectural operation of
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adding one more in the fractional situation was based on a generalizing assimilation

using his number sequence.

By conjecturally assimilating the situation as he did, Will was able to establish

(what an observer might refer to as) an improper fraction as a ratio of whole numbers,

which constituted his conjecture. But with ratios, the whole is not a fixed quantity and,

indeed, Will lost the whole in action. Through the rest of the teaching experiment, he

used this sort of ratio reasoning to produce fractions in various situations in which he

found his partitive unit fractional scheme insufficient. For example, in attempting to

produce two-thirds from six parts (Protocol 10), he pulled three parts from a six-sixths

bar and then pulled two of those three parts. In doing so, he produced a two-to-three ratio,

and apparently was unaware that the two-to-three ratio was not two-thirds of the six-

sixths bar. Also, beginning in Protocol 18, Will insistently referred to five-sixths as half

of ten-twelfths. When interpreted as ratio reasoning, his actions were rational (e.g. five

hits out of six at-bats is half as many hits and at-bats as ten out of twelve).

Because Will used his ratio reasoning so flexibly, he seemed to experience no

need to change his pattern of reasoning through most of the teaching experiment. In fact,

there is contra-indication of a general partitive fractional scheme even at the end of

teaching experiment, although Conjecture W7 may have engendered the scheme. And,

during the teaching experiment, there is no indication that he had begun constructing an

iterative fractional scheme with which to meaningfully produce improper fractions, in

spite of tasks that I posed involving fractions like eight-sevenths and my attempts to

induce conflict between his and Hillary’s results of operating.
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Conjecture W2. Will lacked partitive fractional and commensurate fractional

schemes. So, when he was challenged to compare the measures of a two-thirds bar and a

six-ninths bar (during Protocol 4), he drew a picture (illustrated in Figure 6) and

compared the extensions of the fractional parts drawn within each whole bar. He did not

seem to attend to the relative sizes of fractional wholes until I questioned him on it, at

which point he reasoned that the nine-part whole should be longer than the three-part

whole because it had more parts. As in Conjecture W1, his reasoning was compatible

with ratio reasoning rather than fractional reasoning. He had produced the two fractions

as part-whole ratios in the connected numbers, three and nine, and he conjecturally used

his whole number comparison operation, applying it to the connected numbers.

Will had conjectured that he could compare the two fractions as ratios of parts in

connected numbers, and his use of his whole number comparison operation was a

generalizing assimilation. The comparison was unsuccessful in establishing the

commensurability of the two fractions, and, at the end of the teaching experiment, Will

still had not constructed a commensurate fractional scheme. So, this may be a second

example of Will’s ratio reasoning circumventing a need to change his pattern of

reasoning.

Conjectures W3a and W3b. In Protocols 8 and 9 (March 10th), Will formed two

conjectures in identifying simpler fractional names for given proper fractions. Conjecture

W3a was based on a generalizing assimilation involving his partitive unit fractional

scheme, and Conjecture W3b occurred as a result of the assimilation. In his generalizing

assimilation, Will was aware that he was acting in a new situation as he would in

situations involving unit fractions. He conjectured that he could determine the fractional
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size of a six-eighteenths bar by iterating it within the unit bar just as he would with a

partitive unit fraction. Polya might refer to Will’s generalizing assimilation as an

analogy: Will ignored some of the contextual details of the situation, such as the

partitions of the six-eighteenths bar, in order to operate as he would in another situation.

Conjecture W3a was successfully tested and modified the trigger of his partitive

unit fractional scheme so that he would begin using it to operate on composite fractions,

iterating them within the whole to determine their fractional measure as he had with unit

fractions. Conjecture W3b was formed in response to an unexpected constraint

introduced by Will’s use of his partitive unit fractional scheme on a composite fraction

that did not exhaust the whole. Asked to predict what a five-elevenths bar would measure

(Protocol 9), Will immediately began to iterate the bar within the unit bar (corroborating

the generalizing assimilation of Conjecture W3a), but there was one part left over. So,

Will iterated again, this time attending to the units of units created by his iterations, and

naming the bar ten-elevenths.

Will demonstrated in subsequent episodes that he could use his partitive unit

fractional scheme to act in a manner consistent with the functioning of a partitive unit

fractional scheme for composite units. But having constructed such a scheme would

imply that Will could coordinate a unit of units of units resulting from his iterations of a

composite unit. Whereas he created an experiential unit of units of units through

Conjecture W3b (treating ten-elevenths as two of five-elevenths), Protocol 11 includes

contra-indication that he could coordinate units at three levels. So, Conjectures W3a and

W3b resulted in a generalization of Will’s partitive unit fractional scheme in that he

contextually used a composite unit as iterable. For this reason, the partitive unit fractional
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scheme for composite units seemed to be in his zone of potential construction. Will’s

conjectures also raised his awareness of the operations of his partitive unit fractional

scheme in that he began using fractional language to refer to the size of a fraction relative

to the unit bar and explicitly justified the size of fractions like one-third, “because it goes

into the unit bar three times.”

Conjectures W4a and W4b. I have mentioned that Will treated non-unit fractions

as ratios. Acting on Conjecture W1, he was even able to use an eight-to-seven ratio of

parts in order to conjecturally establish eight-sevenths. Whereas in Conjecture W1 Will

had been working from a seven-sevenths bar, in acting on Conjecture W4a Will began

with an unpartitioned unit bar with the goal of producing seven-fourths. He conjectured

that, by partitioning copies of it into four parts, pulling a total of seven parts among them,

and joining the parts, he could produce seven-fourths. His meaning for seven-fourths was

based on an assimilation of Hillary’s previous actions using a procedure that was based

on ratio reasoning. As such, his assimilation was a conjectural operation that did not

result in fractional meaning (he did not immediately know that each part was one-fourth

of the unit bar), much less an improper fraction.

Ordinarily, Will could use ratios of parts within the unit bar to produce fraction

bars, which he could then give a part-whole fractional meaning based on the whole he

created (which sometimes differed from the unit bar). Conjecture W4a resulted in an

ability to produce fraction bars beyond the unit bar, but he could not give them meaning

using his part-whole fractional scheme. Will had simply assimilated Hillary’s productions

of fractions like seven-fourths using his partitioning operation and ratio reasoning,

learning to reproduce such fractions by partitioning the unit bar into a number of parts
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specified by one number in the fraction and joining together a number of parts specified

by the other number in the fractions.

Conjecture W4b (during Protocol 16) illustrated that even Will’s production of

bars such as seven-fourths and sixteen-fifths was still ambiguous. He was not acting out

of operational necessity, but with procedures constructed from his assimilations in the

social context of observing and interacting with Hillary. In forming Conjecture W4b, for

example, he had assimilated Hillary’s actions of working with improper fractions using

his partitioning operations and ratio reasoning again, but in a different way. His

conjecture was that he could produce sixteen-fifths by adjoining five more parts to a

sixteen-part bar and resulted in a new procedure. This time, he used the number of parts

in the numerator of the fraction to determine the number of parts to use in his partition,

and he added on five more parts to it because he could not add on to the number of parts

in the partition (sixteen) to produce the other number in the fraction (five) as he had in

the procedure from Conjecture W4a.

Conjecture W5. During Protocol 20, Will had used ratio reasoning and his whole

number multiplication operation in a novel way to reproduce the unit bar from a six-part

bar making up three-eighths of the unit bar. His reasoning involved a recognition that 3 is

to 6 as 8 is to 16. Given the procedures that Will was prone to construct from his

interactions with Hillary, it is likely that he had learned to posit a unit bar with an

indeterminate number of parts by reflecting on his records of experience in observing

Hillary’s reconstruction of the unit bar from nine-twelfths of it. His conjecture consisted

of independently positing such a unit bar in the new situation and constructing a

numerical relationship between the number of parts given and the numerator and
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denominator of their measure. In fact, he initially confused the proportional relationship

by producing a twelve-part bar (6 times 2, rather than 8 times 2). Will’s conjectural

operations included a novel use of his disembedding operation in positing a unit bar with

an indeterminate number of parts, in addition to his subsequent use of ratio reasoning and

multiplication in determining that number of parts.

In formulating his conjecture, Will had to sort out the roles of the numerator and

denominator of the fractional measure in setting up a proportion of ratios: 3 is to the

given number of parts (6) as 8 is to the number of parts in the whole. Due to the

successful test of his conjecture in reproducing the unit bar using sixteen parts, Will

could use his disembedding operation in subsequent situations to confidently posit a unit

bar in relation to a given ratio. Although he still did not consider a given ratio as a size

relative to the unit bar, as he would with a partitive fractional scheme, he had established

a meaningful numerical relation between the bars. This made it possible for Will to

construct his procedural scheme for reversing ratios (Protocol 21) with which to interpret

fractional measures. His ratio reasoning made it possible for him to create equivalent

ratios (in the middle of the March 31st teaching episode) and to reproduce the whole from

a seven-part bar that measured one-third (Protocol 22, March 31st).

Although his procedural schemes enabled Will to act as one would with reversible

partitive fractional and commensurate fractional schemes, we will see in Conjecture W6

that his structures were not as permanent or operationally flexible as those of Hillary.

Conjecture W6. As indicated by his actions in Protocol 23, Will’s procedural

scheme for reversing ratios was limited to working with partitioned fraction bars. So, he

could not produce the unit bar from an unpartitioned three-fourths bar. Hillary’s
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reversible partitive fractional scheme, however, was operationally flexible and could be

used in that situation and a similar one in the next episode (April 14th) involving an

unpartitioned two-thirds bar. She partitioned the fraction into two parts and joined on one

more part to produce the unit bar. In the social context of observing Hillary’s actions,

Will constructed a new procedure by conjecturally using his partitioning and iterating

operations. When Will was asked to produce the unit bar from a one-fifth bar (Protocol

24), he acted analogously to Hillary’s actions, by partitioning the given bar into two parts

and joining on parts until he had five of them in all.

Will’s actions served as a test of his conjecture that the procedure would produce

the whole just as Hillary’s actions had in case of two-thirds. Will’s test failed and left him

no more powerful than he had been before. He had abandoned one procedural scheme

and constructed a new procedure in its place, but neither procedure contained operational

necessities from which he could build. Although he could recall his procedural schemes

from one episode to another, they were not as permanent as Hillary’s fractional schemes

because they lacked flexibility, which necessitated Wills abandonment of them when he

experienced new challenges.

Conjecture W7. Although Conjecture W6 did nothing to increase Will’s

operational power, it’s failure, as well as subsequent failures of similar conjectural

procedures in the April 14th teaching episode, did seem to re-establish the relevance of his

procedural scheme for reversing ratios. He began using that scheme again after April 14th

and, in particular, during Protocol 27. Furthermore, Will’s test of Conjecture W6 seemed

to heighten his awareness about the role of the numerator in observing Hillary’s actions

of reproducing the unit bar from a fourteen-part bar that measured seven-eighths
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(Protocol 25): “If you double 7 you get 14.” His attention to the role of the numerator and

his confidence in the usefulness of his numerical scheme for reversing ratios were

indicted in Conjecture W7, during the May 2nd teaching episode.

When asked to reproduce the unit bar from an unpartitioned bar that measured

five-fourteenths of the unit bar, Will conjecturally applied partitioning operations to the

given bar. He had conjectured that since the given bar measured “5/14,” it must contain

five parts from a fourteen part whole. This conjectural operation produced a five-part bar

from which he could produce the unit bar using his procedural scheme for reversing

ratios (adding on nine more parts to make fourteen). But his reference to the parts was

ambiguous; the parts were not necessarily each one-fourteenth of the unit bar.

Will later demonstrated that he could treat an unpartitioned three twenty-eighths

bar as a unit of three. And, during Protocol 27 in the next episode, he was able to produce

one-fifth from an unpartitioned two-fifths bar. He was even able to keep track of the unit

measure when he produced and named six-fifths. So, sometime between the two episodes

(May 2nd & May 7th) Will had resolved the ambiguity in naming the partitive fractions

that he had begun to produce in Conjecture W7. I suggest that his conjecture and

subsequent productions in testing it engendered partitive fractions. Although there was

still contra-indication to his production of a partitive fractional scheme at the end of the

teaching experiment, he was in the process of constructing that scheme and a reversible

partitive fractional scheme.

Hillary

Conjecture H1. In forming conjecture H1 during the February 26th teaching

episode, a six-ninths bar was visible on the screen but a two-thirds bar and the unit bar
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were not. The students were surprised to find that the six-ninths bar measured two-thirds,

and Will’s question—“Is two-thirds the same as six-ninths?”—oriented Hillary to

estimate the size of the two-thirds bar using her partitive fractional scheme. In mentally

positing a two-thirds bar, she conjecturally used her disembedding operation to explicitly

refer to its complement (one-third) in order to maintain the unit bar from which six-ninths

was produced. She could thus compare the two fractions and conjecture that two-thirds of

the unit bar was the same size as six-ninths of the unit bar. Her conjecture was a sort of

abduction whereby she explained the surprising measure of six-ninths by establishing its

size as that of a two-thirds bar; because two-thirds and six-ninths of the unit bar were the

same size, their common measure was a matter of course.

Hillary’s partitive fractional operations and her conjectural use of disembedding

operations formed the operations of a new scheme—a complementary fraction

comparison scheme—that was eventually reconstructed as a commensurate fractional

scheme. The new scheme differed from a commensurate fractional scheme in that it

relied entirely on size estimations of fractions and their complements and did not yet

include the coordination of units of units. However, it was used successfully in Protocols

5 and 6 to simplify given fractions. Limitations to the scheme can be found in Protocol 7

in which Hillary estimated eleven-twelfths as five-sixths.

Conjecture H1 may have also contributed to Hillary’s construction of a reversible

partitive fractional scheme. She was able to use her partitive fractional scheme reversibly

(reproducing the unit bar from an unpartitioned proper fraction bar) because she could

maintain the unit bar by explicitly referring to the complement of the fraction bar.

Considering her initial interview (Task 5), it is possible that she had constructed the
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reversible scheme before the teaching experiment began, but Protocol 13 (March 12th) at

least marks the first indication that she could use the scheme with TIMA:Bars.

Conjecture H2a. Even before Protocol 11, I noted that Hillary had begun

attending to the numbers of parts in fractions, perhaps due to her interactions with Will

who predominantly considered number over fractional size in working with fraction bars.

In considering number and working from a partitioned unit bar (rather than a partitioned

fraction bar), Hillary’s complementary fractional comparison scheme was not called to

produce two-thirds from twelve parts. Instead, she conjecturally used her uniting

operation, iteration, and units coordination in conjecturing (Conjecture H2a) that she

could produce thirds from the twelve parts by constructing three units of four parts in the

twelve-twelfths bar.

Because using units coordination to produce a non-unit fraction was novel for

Hillary, she had to act out the iterations of a four-part bar in the twelve-part bar and

conflated the goal of producing two-thirds with one of producing a bar that would fit into

the unit bar three times. She was able to correct herself by using two units of four parts

each, and her actions in testing and correcting her conjecture may have engendered novel

uses of units coordination. In particular, her actions indicated that a partitive fractional

scheme for composite units and a commensurate fractional scheme were within her zone

of potential construction. The latter scheme seemed to be actualized by Conjecture H2b.

Conjecture H2b. This conjecture was based on the same operations used in

Conjecture H2a except that she coordinated the units of units in both the fraction and its

complement, indicating that she was reconciling units coordination with her

complementary fractional comparison scheme. She made the units coordination explicit
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in Protocol 12, uniting three units of two in the unit bar and using two of these units in

the fraction bar in order to identify it as two-thirds. In explicitly referencing the units of

units in the fraction bars, Hillary tested her conjecture that she could form the units of

units in order to produce two-thirds, and I hypothesize that she constructed

commensurate fractional operations as a functional accommodation of her

complementary fractional composition scheme. Her actions in Protocols 15, 17, and 18

indicate that she had constructed a relatively permanent way of operating—a

commensurate fractional scheme.

Conjectures H3a and H3b. In attempting to produce the unit bar from an

unpartitioned five-fourths bar (Protocol 14), Hillary understood the necessity of the five-

fourths bar having five parts and the necessity of the unit bar having one part fewer than

the five-fourths bar (perhaps using the iteration operation of her partitive fractional

scheme). But Hillary was unable to identify the unit bar within the five-fourths bar as she

might with an iterative fractional scheme. So, she made a generalizing assimilation using

her partitive fractional scheme to conjecturally (Conjecture H3a) posit a copy of the five-

fourths bar, partitioned into four parts, as the desired whole. Then she partitioned the

original five-fourths bar into five parts. In using her partitive fractional scheme, Hillary

had to neglect the necessity of creating equally sized parts in the two bars. She

recognized this necessity only after completing her production and examining it. Because

her generalizing assimilation failed, the trigger of her partitive fractional scheme was not

modified, as indicated by her next attempt. But the test of her generalizing assimilation

did seem to raise Hillary’s awareness of the criterion for producing equal parts among the

two bars.
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In Conjecture H3b, Hillary again posited a whole to use as a reference for the

five-fourths bar. This time, she conjectured that she could use the original five-fourths

bar as the unit bar and produce five-fourths of it, conflating the two bars. This involved

another generalizing assimilation using her partitive fractional scheme. While Hillary

acted with the operational necessity of producing equally sized parts in the unit bar and

the five-fourths bar, her conflation of the bars was a necessary product of the partitive

fractional scheme.

In each case, Hillary needed to produce an experiential whole because she had no

record of the whole within the improper fraction. Her actions using these posited wholes

indicate that she could iterate unit fractions beyond the whole to produce improper

fractions, but she had not been comparing the improper fractions that she produced back

to the whole from which she produced them. In my analysis of Protocol 14, I

hypothesized that Conjectures H3a and H3b might engender Hillary’s construction of an

iterative fractional scheme and a reversible iterative fractional scheme. Her raised

awareness of the embedded whole, due to her conjectural activity, could focus her

attention on comparing improper fraction bars back to the unit bar after producing them,

thus embedding the unit bar in the improper fraction bars. In fact, Hillary’s actions in

producing four-thirds at the end of the March 12th teaching episode and her actions in

inventing Conjecture H4 (Protocol 15, March 20th) do indicate increased attention to the

unit bar embedded in her productions of improper fractions.

Conjecture H4. After calculating that ten-thirds was the same as three and one-

third, Hillary pulled three-thirds and one-third from a ten-thirds bar, casually claiming

that she had produced three and one-third (Protocol 15, March 20th). This indicated an
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ambiguous concept for the 3 in three and one-third. When I prompted Hillary to compare

her production with that of ten-thirds, she experienced a perturbation that provoked her to

consider the relative sizes of the unit bar and the partitioned ten-thirds bar (both of which

were visible on the screen, as illustrated in Figure 10). She then conjectured that the 3

referred to the three composites of three parts (each equal in size to the unit bar) that she

could identify in the ten-thirds bar. This was a peculiar aspect of the situation, in part,

because there were exactly three of these of these composite whole in the ten-thirds bar.

In order to coordinate the peculiar composite wholes, her conjecture relied on her

commensurate fractional scheme, conjecturally using units coordination to establish three

such wholes within the improper fraction. She had used this scheme on improper

fractions before in order to simplify them, but she had not used it to convert them to

mixed numbers.

Hillary’s conjecture served as a functional accommodation of her commensurate

fractional scheme because she began using the operations (units coordination) of the

scheme differently in order to satisfy the new goal of converting improper fractions to

mixed numbers. The relative permanence of her modification is indicated by her actions

in converting sixteen-fifths to a mixed number later in the teaching episode. There is also

indication in the episode that Hillary had begun comparing back to the whole the

improper fractions that she produced—the critical aspect of an iterative fractional scheme

that she lacked before. By the end of the May 2nd teaching episode there was strong

indication that Hillary had indeed constructed that scheme.

I had hypothesized (in my analysis of the May 2nd teaching episode) that the

critical period of operational change in Hillary’s construction of an iterative fractional
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scheme could be traced back to Conjecture H4 on March 20th. However, the only

operation that she lacked in constructing the scheme during Protocol 14 on March 12th

was that of comparing improper fractions back to the whole. During Protocol 14, Hillary

formed Conjectures H3a and H3b, which seemed to raise her awareness of the need to

make such comparisons. While Conjecture H4 certainly involved a novel use of Hillary’s

commensurate fractional scheme, the missing aspect of an iterative fractional scheme was

engendered by Conjectures H3a and H3b. Indeed, Hillary did construct an iterative

fractional scheme by the end of the May 2nd teaching episode.

Conjecture H5. I have noted that many of Will’s conjectures were socially based,

assimilating Hillary’s actions using his whole number operations in order to construct

procedures for operating with fractions. Some of Hillary’s conjectures were socially

based too, except that she had the fractional operations available to evaluate and refine

her conjectures. For example, Conjecture H5 was Hillary’s attempt to explain Will’s

assertion that a seven-twelfths bar would measure four-sixths, by conjecturally uniting

two composite units within the fraction and two more within its complement, thus

creating four units. But when she had produced the units, she refined her conjecture,

claiming that she the fraction would be two-fourths.

Hillary had made a generalizing assimilation using her commensurate fractional

scheme, using it to work with cut parts and unequal units. Because she had been working

within the framework of assimilating Will’s assertion, she did not experience a problem

with her use of the scheme until she was free of the activity and reflected back on it. At

that point, she noted that “you can’t split seven in half; it’s an odd number,” introducing a

new constraint to her scheme and indicating insight as to why her generalizing
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assimilation had failed. The new constraint served as a functional accommodation of her

commensurate fractional scheme that became evident during Protocols 18 and 19: Hillary

began using divisibility in the numbers of parts in the fraction and its complement as a

criterion for producing units of units. This modification also contributed to Hillary’s

construction of a reversible partitive fractional scheme for composite units (Protocol 19).

Conjecture H6. This conjecture provides a stark contrast to Conjecture W6

because Hillary’s conjecture demonstrated operational flexibility. Like Will, when

Hillary measured a given unpartitioned proper fraction bar (seven-eighths) and was asked

to produce the unit bar, she assumed that the fraction was composed of smaller parts.

This was due to the fact that she had observed “16” in PARTS. Unlike Will, Hillary did

not abandon her existing scheme for producing the unit bar from a proper fraction

bar—her reversible partitive fractional scheme—but used it in the new situation of

working from a simplified fraction.

Hillary used her reversible partitive fractional scheme in coordination with her

commensurate fractional scheme to conjecturally compose seven units of two in the

fraction and eight units of two in the unit bar that she eventually produced. Her

conjecture was that she could coordinate seven units of smaller units in the given fraction

bar, all the while knowing that she would need to join one more unit of units to produce

the unit bar. She used trial and error to determine that she should form units of two.

Hillary had used her commensurate fractional scheme to posit seven units of two

within the unpartitioned fraction bar so that she could use her reversible partitive

fractional scheme to produce the unit bar from the seven units. In doing so, she

recognized the numerical relationship between the numerator of the fraction, 7, and the
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number of parts she created, 14: “I put it into fourteen pieces, because I just thought of 7,

and then I doubled it.” She could now operate as she would with a reversible

commensurate fractional scheme, which produces composite fractions from a simplified

one. She had also constructed the operations of a reversible fractional composition

scheme, which produces specified unit fractions within a partitioned proper fraction by

partitioning each unit in the partitioned fraction into a determined number of parts. Both

schemes were now in her zone of potential construction.

Conjecture H7. During the April 30th teaching episode, given the unit bar and the

fraction bar illustrated in the bottom left corner of Figure 11, Hillary attempted to name

the size of the fraction bar without using MEASURE. Using her partitive fractional

scheme, Hillary could transform the goal of the situation to one of finding a common

partition (co-partition) of the fraction bar and the unit bar. In Conjecture H6, she had

posited parts within a fraction based on its measure, but in the absence of the new

fractions’ measure, Hillary relied on the conjectural use of an experiential part (the one

outlined at the bottom of Figure 11). She conjectured that she could use the part as a co-

partition of the fraction bar and the unit bar in order to determine the fractional size of the

fraction bar. This involved a conjectural use of her partitive fractional scheme and

iteration operation, iterating the potential co-partition into both the fraction bar and the

unit bar.

Hillary’s conjecture might have engendered a functional accommodation of her

partitive fractional scheme, but, because the conjecture occurred so late in the teaching

experiment, there is no indication of its subsequent use.
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Chapter 7: Josh and Sierra

Synopsis

Several of Josh and Sierra’s conjectures are highlighted within this chapter and

synthesized in Chapter 8. The main purpose of this chapter is to build models of the

students’ ways of operating, which changed significantly as a result of conjecturing

activity. I provide examples from my data to indicate that Josh and Sierra could operate

in the TIMA environments using particular schemes and operations. In the first few

teaching episodes, Josh’s actions indicated that he had constructed a part-whole fractional

scheme, but not a partitive unit fractional scheme. This level of development placed him

in a lower-stage pair, but he did seem to have a splitting operation available and used it

constructively in conjecturing. His conjecturing activity engendered several schemes,

including a partitive unit fractional scheme, a partitive unit fractional scheme for

composite units, a partitive fractional scheme, a partitive fractional scheme for composite

units, and a commensurate fractional scheme.

Sierra’s actions in the first few teaching episodes indicated that she had

constructed a part-whole partitioning scheme, but not a part-whole fractional scheme.

During the teaching experiment, her conjecturing activity engendered a part-whole

fractional scheme and some fractional comparison schemes. I also note her propensity for

forming abductions throughout the teaching experiment.

Introduction

Josh and Sierra began working together on March 18th, after working with other

partners of lower-stage pairs for the first four or five teaching episodes. Because those



250

first few episodes were devoted to play while the students developed familiarity with the

computer environments, they do not provide much meaningful data on conjecturing. In

fact, after two episodes of observing continued confusion on the part of the students in

working with the two-dimensional bars in TIMA:Bars, I decided to start using

TIMA:Sticks with each of the lower-stage pairs. This change required the students to

make additional adjustments in learning to use the computer tools. Still, the data from the

initial pairs is used in determining the schemes that the students had available for use in

those environments. So, I begin the present chapter by analyzing the data from the initial

pairs and focus on Sierra and Josh within the initial pairs. This chapter will then proceed

with analysis of the lower-stage pair that Sierra and Josh formed.

Sierra and Cory

Sierra and Cory were classmates in Mrs. Wood’s first period math class, but they

did not interact much in class. Both students appeared quiet and shy in class, but they had

responded energetically in their initial interviews. The students’ responses during their

initial interviews indicated that each of them had constructed equi-partitioning and part-

whole partitioning schemes, but neither of them seemed to have constructed a partitive

unit fractional scheme. Analysis of the five episodes in which these students worked

together is devoted to characterizing Sierra’s schemes.

I introduced the students to the teaching experiment on February 21st, during their

first period math class. We met in the same storage/work room in which I had worked

with Hillary and Will during the first several teaching episodes. The set up was also the

same: The computer sat on a long table below a chalkboard, and two cameras were set up

to capture our physical actions and the actions represented on the computer screen. The
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students began playing a game in TIMA:Bars, challenging each other to make various

numbers of parts within a whole by partitioning the whole vertically and horizontally.

During such playful activity the students used PARTS, SHADE, and BREAK. But they

were yet to use the UNIT BAR and MEASURE tools. So, I decided to introduce those

tools during the next episode in order to direct their activity toward fractional measures of

a whole.

The second episode took place on February 26th and provided rich data for

examining the students’ fractional schemes or lack thereof. After demonstrating the use

of UNIT BAR and MEASURE in measuring fractions, I asked the students to make

various fractions and predict their measures. The students were free to choose whatever

fraction bars they wanted to make, and eventually challenged each other to make

specified fraction bars.

Cory began by partitioning a copy of the unit bar into three parts and breaking it

into three pieces. Sierra knew that each of the pieces would measure “1/3” because each

was one of three equally sized parts. Her prediction indicates that she had constructed a

part-whole partitioning scheme. But it does not necessarily indicate a fractional scheme

with which Sierra would compare the size of the part to the whole (beyond simply

naming the part based on it being one of three equal parts). In fact, there is indication

within the episode to suggest that she had not yet constructed any fractional scheme.

Sierra had challenged Cory to make a three-fifths bar, and he attempted to do so

by partitioning a copy of the unit bar into three parts horizontally and five parts vertically.

Cory was not yet satisfied with his production even after Sierra reassured him: “Cory,

you’re right. That’s three-fifths.” Cory continued by breaking up the fifteen-part bar,
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joining various numbers of pieces and measuring them. Sierra seemed to attribute Cory’s

lack of success to his action of breaking up the partitions. In her own attempts to create

three-fifths, she replicated his partitions, but measured the result before she broke the bar

and “1” appeared in the measure box. The students’ making of three-fifths by using

horizontal and vertical parts is contraindication that they had constructed a fractional

scheme because at the very least, “three-fifths” refers to three parts in five parts.

Other indications for the lack of a fractional scheme include her subsequent

identification of a partitioned two-fifteenths bar as “one-half.” Cory had produced the

two-fifteenths bar by joining two of the fifteen pieces that he had created. It seemed that

Sierra’s concept of one-half in that case was based on the partition marking the fraction

bar into two parts. She seemed to pay no attention to the unit bar or to the relative sizes of

the fraction bars.

While her trouble in the cases stated so far may be attributed to Sierra’s

unfamiliarity with the new environment and, in particular, the role of the unit bar, the

strongest contraindication of a fractional scheme occurred at the end of the episode. Cory

had challenged Sierra to make one-tenth of the unit bar. She partitioned a copy of the unit

bar into ten parts and pulled one, but measured the ten-part bar rather than the one-part

bar. Although she went on to measure the one-tenth bar, she had been surprised to see

that “1” appeared in the measure box after she measured the ten-part bar. Her initial

action and subsequent surprise indicate that Sierra had been considering the partitioning

into ten parts as creating one-tenth, rather than considering the size of a part relative to

the whole, as she would with a fractional scheme.
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Sierra’s actions in the next episode (February 28th) also corroborate my argument

that she had not yet constructed a fractional scheme. The students had begun the episode

by making and lining up bars such as two-halves, three-thirds, four-fourths, all the way

up to a ten-tenths bar. When I asked Sierra to use the bars to make three-sevenths, she

dragged the three-thirds by over to the side and began to dial parts to “7”. When I asked

her to make the three-sevenths bar without using PARTS, she did not act and sat quietly

in thought while Cory attempted to make the desired bar by joining the three-thirds and

four-fourths bars. When Cory joined the two bars, the partitions were cleared away, and

Cory explained that he had wanted to pull three of the joined parts, at which point Sierra

suddenly exclaimed that she had an idea. She pulled three parts from the seven-sevenths

bar!

I attribute Sierra’s final solution to a possibly novel use of her disembedding

operation as indicated by her pulling of three parts out of the seven parts. She constructed

the seven-sevenths bar as a seven-part whole from which she could disembed three out of

seven parts. I refer to this construal as a perceptual judgment because she acted with

certainty. Sierra’s part-whole partitioning scheme, of which the disembedding operation

was a part, would be sufficient for deciding that the three parts should be pulled from

seven parts given that it was her goal to make three-sevenths. Her initial attempt of using

the three-thirds bar indicates that she was primarily concerned with the whole numbers

involved in the fractional numeral “3/7,” and not with a fractional part of the unit bar. For

this reason, I retain my hypothesis that she had not yet constructed a fractional scheme.

Some of Sierra’s actions in the episode indicate that she had constructed a part-

whole fractional scheme. First of all, Sierra was able to make a one-half bar from a four-
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fourths bar by pulling two parts from the four-fourths bar. She was also able to justify

that a given piece was one-ninth (as was previously measured) by referring to the

commensurability of a nine-ninths bar and the unit bar; the piece in question had been

lined up under the left side of the unit bar when she said, “The bars [nine-ninths and the

unit bar] are the same size so, automatically, you know it's going to be one-ninth.” She

then made nine copies of the piece, lined them up and joined them under the unit bar.

Finally, she was able to make one-third from ninths by pulling three parts from the nine-

ninths bar.

These cases indicate that Sierra was able to estimate the relative unit fractional

sizes of bars, or at least compare composite fractions to the unit fractions that were

visible on the screen. Making such size comparisons using fractional language as she did

indicate the use of a part-whole fractional scheme. But when she attempted to justify the

common measures of three-ninths and one-third, she said, “that’s one [pointing to the

three-ninths bar] and there’s three parts,” apparently conflating the number of parts in the

one-third (three-ninths) bar with it being one of three parts in the whole. If she had

constructed a partitive unit fractional scheme, I would expect her to iterate the part three

times within the unit bar, because such actions would be essential to her understanding of

one-third. So, I maintain that Sierra had not constructed a partitive unit fractional scheme,

although a part-whole fractional scheme may be emerging from her actions in

TIMA:Bars.

In the next episode, held on March 3rd, there is indication that Sierra’s apparent

success with comparing and estimating fractional parts was based on something other

than a fractional scheme. During that episode, I introduced the students to
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TIMA:Sticks. Beginning with a set up of n/n-sticks very similar to the set up of long

skinny bars in the previous episode, the students took turns secretly pulling one part from

one of the sticks, and the other student had to determine the part’s fractional size. I

demonstrated the game by pulling a one-sixths bar while the students closed their eyes.

Upon opening their eyes and examining the piece I had pulled, both students guessed that

the piece was one-sixth, and Sierra explained that she knew “because it looks like one of

the sixths bar.” For the next mystery piece (one-eighth), she counted down the rows of

n/n-sticks in determining it’s fractional size (the sticks were lined up in order from top to

bottom, starting with an unpartitioned unit stick and ending with the ten-tenths stick). As

the students continued the activity, I decided to have them cover the n/n-sticks after

pulling the mystery piece (although the ruler was still visible). With this restriction in

place, Sierra did not even guess the fractional size of the piece. Her responses to these

cases indicate that she was simply visually comparing the piece in question to the parts in

the n/n-sticks rather than estimating the fractional size of the piece relative to the

(unpartitioned) ruler.

Sierra and Cory worked together for the last time on March 10th. I had to change

the pairings because Sierra did not want to leave her second period class to participate in

the teaching experiment. In fact, she was supposed to work with Cory again on March

14th, but declined because she did not want to leave class (English). Even in the March

10th episode, which was held during first period, she seemed disengaged. I hoped that

working with a new partner would not only relieve scheduling conflicts, but also raise her

level of interest. In any case, Sierra’s responses to tasks posed in this last episode with

Cory affirm that she had not yet constructed a fractional scheme.
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I began the episode by making a copy of the ruler, partitioning it into two equal

parts, and then partitioning one of those parts into two equal parts. When I asked the

students what one of the smaller parts would measure, Sierra guessed that it would

measure “half.” Even after indicating (by sweeping the cursor across the unpartitioned

half of the copy) what half of the ruler would look like, she maintained that her guess was

viable. So, after Cory had repeated one of the parts from the first partition to demonstrate

that it was one-half, I asked Sierra to demonstrate that the smaller part was one-half. She

pulled out the piece in question, lined it up with the ruler, and repeated it once. Then, she

pulled out one of the parts from the first partition (one-half) and lined it up beside the

repeated pieces (two-fourths), thus regenerating the image with which we had started.

She seemed to be reasoning that the piece in question was a half because it was half of

something, which was, in turn, half of the ruler. She subsequently seemed bothered that

her demonstration required two steps (whereas Cory’s had only required one) and

changed her guess to “one and a half.” Presumably the “one” represented the larger piece

that she appended to the two “halves.”

The actions described above do not fit those that I would expect to observe in

working with a student who had constructed a partitive unit fractional scheme. Instead, I

would expect such a student to iterate the part in question four times to reproduce the

ruler and determine that the part was one-fourth. Both Sierra’s initial guess and her

revised one indicate that her concepts for the fraction names she used were, at best,

restricted to those of a part-whole fractional scheme. Using such a scheme, she would be

able to name a fractional part if the whole were partitioned evenly. Because in this case
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the whole had uneven parts, Sierra treated the two smaller parts as the partitioned whole

and named one of them as one-half; the bigger part was another whole.

In justifying that the piece in question was actually one-fourth, Cory repeated it

four times along the ruler, creating a partitioned copy of the ruler. Cory’s actions

indicated that one-fourth was an iterable unit for him. Sierra indicated that she understood

Cory’s justification. It is unclear whether she was able to follow his actions in iterating

the piece or whether she understood only after his actions produced four partitions in the

ruler. In the latter case, Sierra could assimilate the situation with her part-whole

partitioning scheme. In the former case, she could assimilate his actions of iteration only

with her equi-partitioning scheme, because she had not constructed a partitive unit

fractional scheme nor iterative unit fractions. Her equi-partitioning scheme included the

tacit understanding that any part could be repeated so many times to reproduce the ruler,

and Cory’s actions had indeed reproduced the ruler from one part.

Sierra’s action in the final segment of the teaching episode indicate a novel use of

partitioning and a conjecture. Cory asked Sierra to determine the fractional name of a

four-tenths stick that he had made while she had her eyes closed. In response, Sierra

dragged the stick to the left side of the ruler and repeated it twice. She paused for a

moment between the repetitions, apparently considering the implications of going beyond

the ruler, but she resolved this situation by repeating the second time and cutting off the

two extra parts. She then counted the ten parts and said, resolutely, “ten.” The novelty of

her actions in using REPEAT in such a way was indicated by her stated resolution. She

had lost the original fraction stick (four-tenths) in the ten-part stick. Moreover, her goal in

repeating the stick seemed to be restricted to recreating the partitions of the ruler from
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which it was pulled, making it possible for her to use her part-whole partitioning scheme

to determine the fractional name of the stick, even if she lacked a part-whole fractional

scheme with which to compare it back to the ruler.

The novelty of Sierra’s actions involved her use of REPEAT with a partitioned

fraction stick in order to determine its fractional name. She did not seem to use REPEAT

to iterate the fraction and determine how many times it fit into the whole, as she might in

using a partitive unit fractional scheme. Rather, I hypothesize that she used the tool in a

non-iterative way to reproduce partitions in the ruler from those in the stick she was

repeating. As such, she had used the partitioning operation of her equi-partitioning

scheme in a novel way to partition the ruler. Her conjecture (Conjecture S1) was that she

could evenly partition the ruler by repeating the partitioned fraction stick beyond it.

Conjecture S1 may have engendered a functional accommodation of Sierra’s equi-

partitioning scheme because she had modified her tacit understanding that she could use a

unit stick to reproduce the ruler. Since she had tested her conjecture, she could now use a

composite stick to reproduce the parts in the ruler.

In sum, I hypothesize that Sierra had begun using her equi-partitioning scheme to

reproduce partitions in the ruler from a given part. She had at least constructed a part-

whole partitioning scheme with which to name fractions and may have been constructing

a part-whole fractional scheme. My only reservation in attributing the latter scheme to her

is that it is unclear whether she compared parts back to the whole of which they were a

part. I have cited one case in which she changed the whole in naming a one-fourth part as

one-half. At least in that case “one-half” may have meant nothing more than one of two

parts.
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Josh and Matthew

Josh and Matthew worked together for the first time during an episode on

February 28th, which was Matthew’s first episode of the teaching experiment. Josh had

participated in one other episode with Andy on February 24th. In that earlier episode, Josh

and Andy had practiced using various tools and features of the TIMA:Bars software,

including MAKE, COPY, REPEAT, PARTS, COVER/UNCOVER, JOIN, and BREAK.

While exploring various ways to partition, the students started playing a game of

partitioning copies of a whole into twenty-two parts in various ways. After they had

partitioned three copies of the whole in three different ways (using only horizontal

partitions, using only vertical partitions, and using a combination of two vertical and

eleven horizontal partitions), I asked the students which method of partitioning created

the largest parts. Josh claimed that the horizontal-only partition would create the largest

parts “because there is more space” between the partitions.

Although my question suggested that one of the parts should be larger than the

others, I would expect a student using a partitive unit fractional scheme to understand the

necessity of having produced equal parts after partitioning a fixed unit bar into n parts in

various ways. I would expect this because the partitive unit fractional scheme establishes

fractional size through iteration of the part in the whole. When I asked Josh to name one

of the parts created from the vertical partitioning, he said that it was “one out of twenty-

two.” His language indicates that he was not reasoning with a partitive unit fractional

scheme at all, but rather with a part-whole partitioning scheme. In contrast, Andy, who

had constructed a partitive unit fractional scheme, knew that a part from one of the
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partitioned wholes should be the same size as a part from another partitioned whole

because “they’re all being divided up into twenty-two.”

In Josh and Matthews’ first episode working with each other, Josh’s actions

indicated ambiguity in his non-unit fractional concepts, at least in the context of using

TIMA:Bars. The students had been practicing the use of various computer tools, such

as JOIN and BREAK when Matthew challenged Josh to make four-fifths of a given bar.

Perhaps because of his experience from the last episode with Andy in creating twenty-

two parts using vertical and horizontal partitions, Josh partitioned the bar into four parts

vertically and five parts horizontally. His production was similar to Cory and Sierra’s

production of three-fifths in one of their first episodes. It indicates the lack of a (general)

partitive fractional scheme and a kind of homonym for fraction names that can be

manifested in the two-dimensional environment of TIMA:Bars (i.e. four-fifths might

mean partitions of four and five, as well as four our of five parts). Even after Matthew

completed his action for producing four-fifths—by partitioning a whole into five parts

and shading four of them—Josh claimed that either production could represent four-

fifths.

We used Josh’s production (a twenty-twentieths bar) to explore some situations

related (from my frame of reference) to commensurate fractions. Josh had some success

in meaningfully assimilating those situations, but his ambiguities concerning partitive

fractions (proper fractions determined through iteration of parts in the whole) persisted.

Whereas he was able to shade in four-fifths of the twenty-twentieths bar that he had

produced, he could not discern one-fourth of it until Matthew helped him, presumably

because he had trouble orienting his perceptions to the vertical partitions (fourths) after
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focusing on the horizontal partitions (fifths). After Matthew demonstrated how to shade

two-fourths (by shading the left two columns), Josh exclaimed, “he made one-half.”

When asked for another name for the fraction, he responded, “one whole because there’s

two [shaded parts] and two [unshaded parts] and if you put them together, you get the

whole.” But, then he also claimed that it might be “four-fifths.” It seems that Josh’s

concepts for fractions in the TIMA:Bars context were dominated by visual patterns that

he could recognize in the partitions, as they would be using a part-whole partitioning

scheme. As the episode continued, he also demonstrated that he could anticipate the

relative sizes of fractions, at least for unit fractions, as he would in using a part-whole

fractional scheme.

The students had made a set of unit fraction bars—one half, one-third, one-fourth,

and one-sixth—when I asked Josh how one-fifth would compare to the others. Josh

responded that it would be “just a tad bigger than one-sixth.” This would indicate that

Josh had constructed a partitive unit fractional scheme, unless he was able to determine

the relative size of one-fifth by generalizing a pattern from the unit fraction bars in his

perceptual field. I am unable to determine whether there was a new development here,

but from his previous actions in the episode, it seemed that he had not yet constructed a

partitive unit fractional scheme.

For the next episode, held on March 5th, I decided to introduce the students to

TIMA:Sticks. I thought that the one-dimensional environment of the new program

would help avoid some of the ambiguity concerning the production of non-unit fractions.

The students spent the first several minutes of the episode playing with the available

tools, such as PARTS, BREAK, JOIN, PULL PARTS, COVER, and COPY. Then, I
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introduced the role of the ruler. Basically, it serves the same role as UNIT BAR (in

TIMA:Bars); a stick is designated as the ruler when is it copied into a box labeled

“ruler,” and all other sticks are measured relative to that stick. In addition to the

familiarity the students gained with TIMA:Sticks, the episode provided an opportunity

for me to learn more about Josh’s conception of unit fractions.

In the middle of the episode, Matthew had accidentally partitioned the left half of

a two-halves stick into two parts, and I asked the students to consider what one of the

resulting parts (the leftmost fourth) would measure. Josh responded that it would be “one

third… if it was even.” When Matthew said that he thought it would be one-third

anyway, Josh agreed. But when they pulled out the part and measured it to be “1/4,” Josh

reiterated his initial qualification as an explanation for the surprising result: “because it’s

not even.” This response fit the pattern of abduction, but his expressed confidence in

reiterating the reason indicates that his response was a based on a perceptual judgment.

Still, his agreement with Matthew that the part could be one-third indicates that one-third

was not determined through iteration in the ruler and served as contra-indication that he

had constructed a partitive unit fractional scheme. So did his actions surrounding

Matthew’s subsequent production of a three-thirds stick.

The three-thirds bar was broken into three equal parts when I dragged one aside

and asked Josh what it would measure. He knew that it would measure “1/3,” but when I

began to drag aside a second third (the middle one), he said it would measure “one-half,

because you had two of them together.” Whereas Josh demonstrated an ability to consider

the relative sizes of fractions, he established fractions in terms of what visual pattern at

the moment.
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Josh could name and determine fractional parts within a partitioned whole, and so

he may have constructed a part-whole fractional scheme. I have mentioned two cases in

which a fraction stick displayed a fractional name that was surprising to him, and these

surprises may have engendered change in his fraction concepts, at least for unit fractions.

In particular, Josh might be able to use his splitting operation (identified in the initial

interview) to transform concepts based on partitioning to ones based on iteration and

construct a partitive unit fractional scheme. There is indication at the end of the episode

that he was beginning to do just that.

The stick that Matthew had accidentally made earlier in the episode (the two-

halves stick with the left half partitioned into two parts) was still visible on the computer

screen. We revisited the measure of one of the smaller parts, which had been pulled out

of the stick. Protocol 1 picks up there.

Protocol 1: Josh’s abductive conjecture about an unevenly partitioned stick.

T: If I measure this [pointing to the pulled piece]?

M: One-fourth.

T: How do you know that’s one-fourth?

M: Because we already measured it.

T: Okay…

J: Let’s see. Because… them two look the same [pointing to the two fourths]; you

could put one more [partition] in there [pointing to the middle of the right half].
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Although Josh seemed to form an abduction about the same stick earlier in the

episode, it did not seem as insightful or operational as the present one. Using his part-

whole fractional scheme (or, at least a part-whole partitioning scheme integrated with

fractional language) in Protocol 1, Josh knew that one-fourth meant that the piece in

question should be one out of four equal pieces making up the ruler, but there were only

three visible parts. The new abduction, then, was to use partitioning in a novel way

(segmenting), creating the fourth equal part in the whole from the three unequal parts,

which would explain the surprising measure (one-fourth) of the piece. He conjectured

(Conjecture J1) that he could produce the desired part-whole fraction by partitioning the

larger part into two parts.

If he were indeed a splitter, partitioning and iterating would be inverse operations

for him so that one-fourth might become an iterable unit. In other words, Josh’s

abduction of his partitioning operation within the context of conceptualizing a unit

fraction could yield partitive unit fractions. In fact, at the end of the episode and for the

first time in my observations of him, Josh was able to estimate the fractional size of a

given piece in the absence of a partitioned whole.

While the students closed their eyes, I pulled a one-fourth piece from a four-

fourths stick and covered everything except for the one-fourth piece and the ruler. When

the students opened their eyes, Josh looked at the piece and the ruler for a moment and

said, “that’s one-fourth of it.” It seems that Josh had mentally repeated the piece within

the ruler to segment the ruler into four parts, thus determining that the piece was one out

of four parts in the ruler. This would indicate a novel use of his part-whole fractional

scheme. Alternatively, he may have treated the piece as a fractional quantity of the ruler
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that could be iterated four times to reproduce the length of the ruler. This would indicate

a partitive unit fractional scheme. Whether or not Will had yet constructed a partitive unit

fractional scheme, the relevance of Conjecture J1 is evident when we consider Josh’s

actions in subsequent episodes.

Conjecture J1 marked a point of transition after which Josh appeared to use

partitioning to determine the fractional sizes of given pieces. He could anticipate using a

given piece as a template for partitioning (or segmenting) a whole into “even” pieces,

thus determining the size of the piece. Similar partitioning activity occurred several times

in the episode following Conjecture J1, on March 7th. In that episode, the students were

creating unit fractions from n/n-sticks, and I encouraged them to use REPEAT to recreate

n/n-sticks from their unit fractional pieces.

In order to test the students’ concepts of one-half, the witness made an arbitrary

mark about one-third of the way across a copy of the ruler and asked the students whether

he had marked one-half. Josh looked at the marked stick for a moment and replied,

“That’s a third of the stick. You can put another one in there [pointing to the middle of

the larger part of the stick].” He did something similar after Matthew had accidentally

created an unpartitioned whole stick with a one-third stick appended to it: “He made

fourths.” When asked whether the stick made fourths of the ruler, Josh realized that it

didn’t because “it is longer than the ruler.” In both cases, Josh seemed to use a single

visible partition to mentally create the other partitions. While he was particularly

attentive to making sure the marks were “even,” he sometimes neglected to consider the

ruler, just as he had during the March 5th episode when he named a one-third stick “one-
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half.” Of course, this may be a consequence of his unfamiliarity with the computer

program in which he had only been using MEASURE and the RULER for two episodes.

It seems that Josh was in the process of constructing a partitive unit fractional

scheme and conceptualizing unit fractions as iterable units. After Matthew had made a

five-fifths stick, pulled one-fifth and covered the five-fifths stick, I asked Josh to justify

that the piece was indeed one-fifth of the ruler. He dragged the piece to the leftmost part

of the ruler and said, “If we mark it right here it would be…” He then dragged the piece

over within the ruler until he reached the rightmost part of the ruler, counting “one, two,

three, four, five.” These actions demonstrate how his novel use of partitioning

(segmenting the ruler with marks) might translate to a novel use of iterating. I have

provided indication in the initial interview that Josh was a splitter, and suggested in my

analysis of this teaching episode that he was capable of considering partitioning and

iterating simultaneously. But Josh’s actions at the end of the episode indicate that his

fraction concepts were not yet based on iteration.

The students had returned to the game from the end of the previous episode

(March 5th), posing mystery unit fractions with all but the mystery unit fraction and the

ruler covered. On the two occasions in the game that I posed problems, I created a one-

seventh piece and a one-twelfth piece as the students hid their eyes. Josh guessed one-

fifth and one-tenth, respectively. He checked each guess by making a copy of the ruler,

partitioning it into the anticipated number of parts, and comparing the size of the first part

to the piece in question. He persisted with this method of checking even after observing

Matthew using REPEAT to check that a piece was  by seeing if n repetitions of the

piece reproduced the ruler. Josh’s preference for the more time-consuming method of
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partitioning indicates that he was not operating with partitive unit fractions, but was

probably operating based on his part-whole fractional scheme.

The next episode, held on March 12th, was the last in which Josh and Matthew

worked together. We began the episode by continuing the game that we were playing at

the end of the last two episodes, except that Matthew was the one posing the mystery

fractions to Josh. Matthew began by pulling two parts from a thirty-thirtieths bar and

covering the thirty-thirtieths bar as Josh hid his eyes. When Josh opened his eyes, he

made a copy of the ruler, lined up the two-part piece with it and began making copies of

the piece. When he indicated that he was planning on joining the copies, I suggested that

he might use REPEAT because it would join the pieces for him as he repeated them. Josh

then used REPEAT to reproduce the ruler, thus determining that thirty of the small parts

would fit in it.

This was the first time that Josh used copies of a piece rather than partitioning of

the whole using PARTS in order to determine the fractional size of a piece. In fact, Josh

seemed wholly immersed in determining the number of times the small parts would fit

into the ruler, for when he had finished repeating and I asked him the name of the

fraction, he replied, “30.” He subsequently revised his claim a few times: “2… two out of

the whole bar… 2 over 30.”

It may be that this way of operating had been available to Josh all along, but that

partitioning with PARTS had been more meaningful, when he could use it, in

determining the size of a given fraction. Josh was unable to determine what number to

use in PARTS in order to partition the ruler as he had in the past because the given

fraction was not a unit fraction and the parts were unusually small. Instead, Josh relied on
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making copies of the piece, similar to actions he had observed Matthew perform in the

previous episode (except that Matthew used REPEAT). In using COPY instead of

PARTS, his goal had been transformed, and so he was not immediately able to use

fractional language as he had before. Copying or repeating the piece had become a

method for counting (by two’s in this case) the number of unit within a ruler, producing a

connected number that was a multiple of the two-unit piece.

When Matthew posed a similar problem—three-nineteenths—Josh solved it

similarly, lining up the three-part piece with a copy of the ruler and using REPEAT until

he had almost reached the end of the copy with eighteen parts. He assumed that one more

of the small parts would complete the copy of the ruler, and so claimed that it was 19.

Once again, his goal of determining the number of parts in the partitioning of the ruler

superseded the initial fraction goal. When I explicitly asked him to name the given

fraction, he said, “three out of nineteen.” I had already noted, in my analysis of Josh’s

initial interview, that he had trouble naming non-unit fractions. But he did not even try to

name the fraction when using REPEAT, until I prompted him. So, it seems that Josh had

not yet reconciled iteration in the context of determining a given fraction with

partitioning in that same context, and it is unclear whether any fractions were yet iterable

units for Josh.

18 March, 2003 Teaching Episode

In the previous teaching episodes, with other partners, Josh and Sierra had each

used partitioning conjecturally to determine fractional names of pieces. Indeed, the two

students had acted similarly in several situations, and both seemed to be on the verge of

constructing a partitive unit fractional scheme. However, as a splitter, Josh was



269

operationally more advanced than Sierra. Being a splitter implies that Josh’s novel use of

partitioning in Conjecture J1 should also yield a novel use of iterating. Each student

seemed to have constructed at least a part-whole partitioning scheme. Josh, at least, had

constructed a part-whole fractional scheme, and he could also use iterative actions in

estimating a fractional part of the whole. So, I hypothesize that Josh will construct a

partitive unit fractional scheme from the conjectural operations of Conjecture J1, whereas

that scheme may not yet be in Sierra’s zone of potential construction. It’s not that she

would need to construct splitting operations first, but that she had yet to establish

multiplicative relationships between part and whole as Josh had demonstrated he that had

done in his initial interview.

This was the first episode in which Josh and Sierra worked together. The students’

classroom teachers had asked me to spend a few minutes working with the students on

changing improper and mixed numbers. So, after allowing time for the students to

familiarize themselves with all of the available actions in TIMA:Sticks, I decided to

try to integrate the classroom topic with part of the teaching episode, and so I asked the

students to try to produce three-halves. In hindsight, working with improper fractions in

TIMA:Sticks this early in the teaching experiment was a bad idea. The students

appeared frustrated at several points in the episode, were given little opportunity to

interact, and my attempts to broach the subject of improper fractions yielded a funneling

effect that often guided the students’ responses. So, I present here only those segments of

the episode in which the students were able to operate independently and conjecturally.

Josh’s conjectures about improper fractions. Not only did Josh lack an iterative

fractional scheme, but he seemed to lack a partitive fractional scheme as well. So, early in
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the episode, when I challenged the students to produce three-halves of the ruler, Josh (and

Sierra) had no appropriate scheme available. Josh partitioned a copy of the ruler into

three parts, broke it up into three pieces and dragged one piece below the others. Protocol

2 begins as Josh completed this activity and released the mouse.

Protocol 2: Josh’s conjectural operations in attempting to produce an improper fraction.

T: All right. Where’s the three-halves of the ruler?

J: [picks up the mouse again and sweeps a path across the three pieces]

T: So, tell me what you meant by this.

J: I made one-third.

T: Oh, okay. You made one-third. So, this [pointing to the bottom piece] is one-

third.

J: [nods affirmatively]

T: So, why did you do that in trying to do three-halves? What got you to do that?

Is there something that made you think of making three parts when I asked you to

make three-halves?

J: [drags a second piece down below, beside the first one that he had dragged]

That’s two halves. [He then lines up the third piece beside the other two.] That’s

just a whole.

T: Okay. So, show me one half, then.

J: [drags the leftmost piece back up above the others]

T: Is that one half of the ruler?
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J: Yeah. [Josh drags the three pieces down to the ruler, one at a time, lining them

up along the length of the ruler and joining them.]

T: What do you think, Sierra?

S: [silence]

T: What do you think, Josh? Is it half of the ruler?

J: Uh-huh… Well… No! It wouldn’t be because you can’t make it half with three

[sweeping the cursor back and forth across the middle piece].

S: It would be one-third of that ruler.

I have hypothesized that Josh had constructed a part-whole fractional scheme and

was in the process of constructing a partitive unit fractional scheme. Using either scheme,

he was constrained to working within the copy of the ruler, always using the larger

number in the fraction to partition. If Josh were using a partitive unit fractional scheme,

he would also be constrained to treating the copy as a fixed whole. But he considered

each of the three parts as a half, even as he understood them as being one-third of the

ruler. By dragging one of these pieces below the others, he could use his part-whole

fractional scheme to conceive of each piece as a half of the two pieces on top. I have

noted that Josh had acted similarly in naming a fractional part relative to another

fractional part (rather than the ruler) during the March 5th teaching episode. But this time,

he acted with the goal of producing the relation, and, once he had completed his action

and reflected on it, he assimilated the situation using his part-whole fractional scheme in

order to recognize each piece as one-third of the ruler.
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Josh’s uncertainty about the fractional size of the part indicates that he had

operated conjecturally in producing it. He wavered between treating the pieces as halves

(e.g. “that’s two halves [as he dragged two pieces together]”) and thirds (e.g. “that’s just

a whole [as he dragged the three pieces together]”), until he finally realized that “you

can’t make it half with three” because the pieces would not divide evenly into two parts.

Whereas Sierra’s conclusion that the pieces were thirds may have been based on her part-

whole partitioning scheme (once the three pieces were aligned), Josh’s actions indicated a

fractional conception because he could consider the sizes of parts separated from the

whole. It seems that his conjectural activity had raised his awareness of the potential

ambiguity in considering a part separated from the whole, unlike the March 5th situation

in which he had simply made a perceptual judgment.

Josh conjecturally partitioned a copy of the ruler into three parts to produce a

(two-part) whole of which his (one-third) part would be one-half. I claim that Josh’s

actions represented a conjectural use of splitting operations because the three parts

contained records of the two-part whole, which is why he was able to conjecture that they

were three halves. His operations generated conflict because he was trying to use splitting

in two different ways. On the one hand, he used it to establish one of the three pieces as

being one-half of the other two. On the other hand, use of splitting, when considering the

ruler, established each piece as one-third of the ruler. The novelty was in considering the

relative sizes of the pieces within the copy of the ruler. He conjectured (Conjecture J2a)

that he needed three of something that could be considered a half, and, in testing the

conjecture, was able to satisfy the condition that one piece was half of the other two.
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However, his recognition of the piece as one-third of the whole refuted the conjecture and

introduced the constraint of considering fractions relative to the unit bar.

The new constraint should contribute to Josh’s construction of a partitive unit

fractional scheme because he had explicitly established the importance of considering the

number of iterations of a fractional part in the ruler in determining the part’s fractional

name. In forming his conjecture, Josh seemed to consider three-halves as three of one-

half. So, I hypothesize that Conjecture J2a and the problematic situation of considering

improper fractions as iterations of unit fractions may engender partitive fractions and a

(general) partitive fractional scheme, beyond a partitive unit fractional scheme.

My argument that Sierra was using a part-whole partitioning scheme in Protocol 2

is corroborated by her actions following the protocol, when Josh completed his second

attempt at producing three-halves. He had broken a copy of the ruler into six parts and

joined three of them, apparently trying to satisfy the goal of making three-halves by

producing one-half using three parts (below, I analyze this as conjectural). Upon

examining the result of Josh’s attempt (three joined pieces from six making up the ruler),

Sierra claimed that it was “one-third.” This indicates that “one-third” referred to the three

parts rather than the size of the three joined pieces relative to the ruler. After she joined

together all six pieces as a six-sixths stick and lined it up with the ruler, and after I pulled

out three of the six parts, she constituted them as “half.” So, it seems that fractions

concepts for Sierra so far were based on part-whole partitioning operations and numerical

relations, such as three parts are half of six parts.

I refer to Josh’s constitution of three-halves as a half made with three parts and

his production of this by pulling three of six parts of a given whole as Conjecture J2b).
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It is difficult to analyze by itself, in part because it was closely related to Conjecture J2a.

On the other hand, Josh’s actions in independently producing the three-part stick were, in

themselves, interesting. He construed “three-halves” as three parts in one-half, and

anticipated that he would need six parts in the whole. This indicates Josh had

disembedded the three-part half from the whole and iterated it to produce six parts in the

whole, conjecturally treating one-half (and a composite unit!) as a partitive fraction.

Josh and Sierra’s abductive conjectures concerning surprising measures. Even

after the students discussed and agreed that the three-part stick was one-half, Josh still

thought that it might measure three-halves and Sierra had “no idea.” After we measured

the stick, the students found that it measured one-half, and were in the position of having

to explain this. Each student invented explanations for surprising measures a few times

within the episode, and each time the explanations took the form of an abduction.

Protocol 3 begins with the students’ explanations after they measured the three-part stick

as one-half.

Protocol 3: Sierra and Josh’s abductions explaining the measure of the three-part stick.

T: What do you think it’s going to measure?

S: I have no idea.

J: Three-halves?

S: [measures the three-part stick and “1/2” appears]

T: One half. Why is that only one half?

J: Because it’s joined.

T: So do you think it’s going to be different when we break them?
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J: [breaks the three-part stick into three pieces and measures one of them “1/6”]

T: When they’re broken, it just measures one of them. Why would that be one-

sixth of the ruler?

S: I think it’s because there are six little things in there [indicating the six-sixths

stick that was still visible above the ruler and below the three pieces].

T: [joining the three-pieces back together] Can you explain why, when I have

three of them, it’s half of the ruler?

S: Because there’s six of them, and 3 plus 3 is 6, so it’s half.

Josh explained his surprising observation—that he had created one half and not

three halves—by assuming that the computer treated joined pieces as one of something

and treated broken pieces with respect to their number. His explanation fits the abductive

pattern of making sense of a surprising observation by assuming a general rule to explain

the observation. However, his test of the abduction failed. The abduction was certainly a

conjecture, but not a fractional conjecture. Rather, it was a local conjecture, bound within

the context of interpreting the functions of the MEASURE and JOIN tools in the

computer environment. So, I doubt that it would have general implications for his

fractional knowledge. For that reason, I do not distinguish the conjecture with a label, but

it does indicate that Josh was not yet familiar with the role of MEASURE. The students’

unfamiliarity with the computer tools may distract them, and I need to continue to

consider how such distractions may explain the actions that I analyze.

Sierra’s final explanation—“because there’s six of them and 3 plus 3 is 6”—did

involve her fractional knowledge. She had already noted, based on her part-whole



276

partitioning scheme, that six pieces make up the ruler, and so one of them would be one-

sixth. Her final explanation addressed the measures of three of the pieces, joined. She

used a whole number comparison between the number of pieces in the part and the

number of pieces in the whole. It is especially interesting that she did not use

multiplicative reasoning, such as 3 times 2 is 6 or 3 is half of 6. She was still reasoning

additively, further indicating that Sierra had not yet constructed a partitive unit fractional

scheme with which she might have mentally iterated the three parts twice within the

ruler. This supports part of my hypothesis from the beginning of the March 18th teaching

episode: a partitive unit fractional scheme had apparently not been in Sierra’s zone of

potential construction.

The explanation was a novel abduction with which Sierra was able to perceive the

three-part stick as being embedded in the six-part stick, and perceive the complement as

being three more parts, thus forming two equal parts in the ruler. I label this abduction as

Conjecture S2 and use it as one example of Sierra’s propensity for inventing abductive

explanations. The conjecture may have resulted in a way of operating similar to Will’s

procedural scheme for producing fractions commensurate with one-half, except that

Sierra used her way of operating to explain commensurability rather than to produce it.

This is indicated by her actions during Protocol 11 on March 28th, in which Sierra tried to

use three parts to produce a fraction stick commensurate with one-half.

The principal difference between Josh’s actions in the teaching episode and those

of Sierra was Josh’s use of multiplicative reasoning and Sierra’s apparent lack of it.

Whereas Josh focused on the multiplicity of halves and thirds in the ruler, Sierra focused

on the additive relationships between parts produced within a copy of the ruler (e.g. the



277

sum of the two composites of three parts in Protocol 3). Both students were able to unite

units, such as uniting three-sixths as one-half, but Sierra seemed to lack the ability to

iterate units.

I have noted in previous episodes that both students had seemed to be on the

verge of constructing partitive unit fractional schemes. I also hypothesized (March 18th)

that, because he was a splitter, Josh would more readily construct iteration from his use

of partitioning and that a partitive unit fractional scheme was in his zone of potential

construction. It appears now that this was the case and that Josh was indeed constructing

a partitive unit fractional scheme. Moreover, he was able to iterate composite units, so

that a general partitive fractional scheme now seems to be within his zone of proximal

development.

21 March, 2003 Teaching Episode

In my analysis of the episodes in which Josh worked with Matthew, I have noted

that Josh had learned to use REPEAT in order to recreate the partitions of a copy of the

ruler from which unknown fractions were pulled. For example, when Matthew pulled a

partitioned three-nineteenths stick from a nineteen-nineteenths stick and hid the latter,

Josh repeated the former six times and knew that Matthew had used nineteen parts in the

copy of the ruler. In the present teaching episode, Josh continued to use REPEAT to

determine unknown unit and composite fractions. He also demonstrated an uncanny

ability to visually estimate fractional sizes, which suggests that he may have constructed

a partitive unit fractional scheme. However, his difficulties with fractional language

persisted.
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Sierra, on the other hand, had no difficulty with fractional language, but her visual

estimates for given fractions were not nearly as accurate as Josh’s. She could use

REPEAT to reproduce partitions, but I suggest that REPEAT was still strictly a

partitioning tool for her. The subsections in this section provide contrasting descriptions

of the students’ actions. They are intended to modify or support the various claims made

in the previous teaching episode and clarify the students’ present ways of operating.

Josh’s estimates and use of REPEAT. As Josh hid his eyes, Sierra made a copy of

the ruler, partitioned it into seventeen parts and pulled one of them. After she hid the

seventeen-part stick, Josh opened his eyes and was asked to determine the fraction of the

ruler that Sierra had made. He made a copy of the fractional piece, dragged it to the left

end of the ruler, and repeated it seventeen times while sub vocally counting. Protocol 4

picks up there.

Protocol 4: Josh’s use of REPEAT in determining the size of a unit fraction.

J: She made seventeen little mark things [waving his forefinger vertically to

indicate the marks created by his repetitions of the piece].

T: Yep. So what was her fraction out of the ruler?

J: One out of seventeen. Uh… Yeah. One out of seventeen.

From his comment about the “little mark things,” just after completing the

repetitions of the unit fraction, it seems that Josh had been using REPEAT as a

partitioning tool, rather than one for iterating the unit fraction with the goal of

determining how many times it went into the ruler. This is a subtle but important
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distinction that indicates he was not yet using a partitive unit fractional scheme in such

situations. In fact, his naming of “one out of seventeen” indicates a part-whole

partitioning scheme that was employed to name the fractions, as an after-thought. I have

hypothesized that Josh was in the process of constructing a partitive unit fractional

scheme and was doing so by using his splitting operations to transform partitioning

actions into iterative actions.

Josh demonstrated that he could use REPEAT with composite fractions as well. In

Protocol 5, Sierra had posed a four-nineteenths stick for Josh to figure out. Just a few

seconds after he opened his eyes and looked at the fraction, he made a remarkably

accurate guess.

Protocol 5: Josh’s fractional estimate for a composite fraction.

J: I think it might be twenty.

T: So, what would the whole fraction be?

J: Four out of twenty or four-twentieths.

T: You think four-twentieths? Okay. Let’s check.

J: [drags the four-nineteenths stick to the left side of the ruler and repeats it until

he has extended just beyond the ruler, with twenty parts. He then looked confused

and indicated that he wanted to get rid of the extra part.]

T: [reminds Josh how to use CUTS]

J: [cuts off the extra part and begins counting the nineteen parts extending along

the length of the ruler] You’d have… I think nineteen.

S: Mm-hmm.



280

T: What was her fraction, then?

J: Uh, nineteen out of four… I meant four out of nineteen.

Josh’s initial estimate indicates that unit fractions were iterable for him, even if

the previous situation (Protocol 4) did not trigger a partitive unit fractional scheme. He

was able to look at the four parts in the given stick and imagine the number of parts

making up the ruler. When prompted, he was also able to name the fractional part,

although he experienced fractional language difficulty at the end of the protocol. I

hypothesize that these struggles in naming fractions run parallel to his struggles in

moving from a part-whole conception of fractions to a partitive conception of them.

Terms like “nineteen out of four” may indicate his recognition that he had made nineteen

parts from four parts.

Sierra’s estimates and use of REPEAT. In his first problem for Sierra, Josh

produced a one-tenth piece, leaving no other visible sticks except for the unmarked ruler.

Upon opening her eyes, Sierra’s task was to determine the fractional size of the piece.

Protocol 6: Sierra’s fractional estimate and use of REPEAT with a unit fraction.

T: Can you guess what it is before you even do anything?

S: I’m thinking sixteenths.

T: Sixteenths. Okay.

S: [drags the piece to the left side of the ruler and repeats it to the length of the

ruler, ten parts] Ten.
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Sierra’s estimate for the given fraction was not nearly as accurate as Josh’s

estimate in Protocol 5; the actual size of the fraction given to Sierra was sixty percent

larger than her estimate of it, whereas Josh was off by little over five percent. Still, she

was able to use REPEAT to determine the number of parts making up the ruler. Later in

the episode, she also demonstrated that she could use REPEAT with a composite fraction

(seven-eighteenths), as Josh had, in order to determine how many parts would be in the

ruler. So, the only notable difference between the students’ actions was in their fractional

estimates. Josh’s actions in the previous episode and during Protocol 5 indicate that he

had constructed iterable unit fractions, and was in the process of constructing a partitive

unit fractional scheme.

24 March, 2003 Teaching Episode

The students were not interacting very much in the last episode. So, many of my

actions in the present episode were intended to encourage communication between the

students and facilitate meaning-making of each other’s actions. My efforts seemed to pay

off, and the students’ interactions indicated significant differences between their available

operations.

Josh’s struggles in constructing a partitive unit fractional scheme. From the

beginning of the episode, we find more support for the claim that Josh could iterate unit

fractions. Having produced a five-fifths bar (in order to pose a problem for Sierra), he

had accidentally cut off about half of the rightmost fifth. Protocol 7 begins after Josh

dragged the piece that he had cut off below the rest of the stick. The protocol not only

shows that Josh could iterate but reveals more about his struggles in constructing a

partitive unit fractional scheme.
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Protocol 7: Josh’s iteration of an unknown fraction.

J: I cut half of it.

T: Yeah. Now, I tell you that this one is going to be real tricky. What do you think

it’s going to say?

J: That’s what I’m going to see.

T: Okay.

J: [drags the piece across the remaining parts of the stick, moving the piece twice

within each uncut fifth]

T: What do you think it’s going to say, Sierra?

S: I don’t know.

J: Nine out of… Uh. One out of nine, I think.

Once again, we see Josh struggle with the fractional language. I have suggested

that this may be due him reasoning that he was making nine parts out of one part, through

his iterations. I have only observed him using such language in these last two episodes, in

which Josh seemed to be struggling to construct a partitive unit fractional scheme

(although he had used language such as “seven-fifths” for five-sevenths in the initial

interview). Josh’s actions in Protocol 7 also indicate that his use of CUTS and BREAK

instead of PULL PARTS, may have contributed to additional struggles.

When using PULL PARTS, unlike CUTS or BREAK, the pieces pulled are only

copies, and the original parts from which they are pulled remain in the original stick.

When Josh used CUTS to create the piece in Protocol 7, the original stick, which would
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have contained about ten of the pieces, was reduced to one that would contain only nine

of the pieces. Josh did not consider this reduction in the size of the original stick when

determining the fractional measure of the piece. This indicates that he had not established

the unique role of the ruler in using iteration to determine the fractional size of the piece.

He had acted similarly in the March 18th teaching episode when he attempted to make

three-halves by breaking a stick into three pieces; having dragged one of the pieces away,

he referred to it as one-half, but it was one-half of the reduced stick and not the original.

Although he was struggling with a couple of aspects of naming the iterable

fractions, he did seem to be using the iteration of a fractional piece to determine its

measure. In that way, Protocol 7 serves as indication for Josh’s continued progress

towards a partitive unit fractional scheme. Examining the remainder of the teaching

episode, I examine the students’ use of REPEAT, with a particular focus on whether

iteration and partitive fractions seem to be involved.

Changes in Josh and Sierra’s uses of REPEAT. The first case occurred after Josh

had posed a partitioned four-fifteenths stick while Sierra closed her eyes, challenging her

to determine it’s fractional size in relation to the (unpartitioned) ruler. Sierra dragged the

fraction to the left side of the ruler and repeated it until the result extended just beyond

the ruler, with sixteen parts. She then cut off the rightmost part (extending beyond the

ruler) and counted the remaining parts. When she had finished, the following dialogue

began.

Protocol 8: Sierra’s rule-based use of REPEAT.

S: Okay. I got fif… sixteen, but I don’t know…
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T: What do you mean?

S: There’s sixteen over there, but when I cut off…

T: Uh-huh.

S: Okay. All of the others, including the one I cut off, is sixteen. Not including the

one I cut, it’s fifteen.

T: Okay. But what was his fraction… the fraction that he started with?

S: Four-sixteenths?

Although Sierra’s actions in repeating the fraction were similar to her actions in

previous episodes, she now seemed unsure of how to use the results of her actions in

determining the fractional name. She did not know whether to use the total number of

parts in the name or just the number that made up the ruler. This indicates that her present

and previous actions in naming fractions using REPEAT had been ambiguous: She could

follow the pattern of action but had constructed no permanent meaning for the results of

her actions. She did not seem to be using iteration in any fashion that might lead to

partitive unit fractions, if she were using iteration at all. Rather, I maintain my hypothesis

from the end of the March 10th teaching episode that Conjecture H1 enacted a functional

accommodation of her equi-partioning scheme. The modified scheme included

integration operations but its goal was still simply to produce partitions in the ruler.

Sierra’s confusion about whether or not to count the cut-off piece may have

resulted from her observation of Josh’s trouble in Protocol 7. In that case, Josh learned

that he should have counted the cut-off piece. Sierra’s lack of distinction between the
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situations represented in Protocols 7 and 8 indicates that her meaning for the situations in

naming fractions had been procedural, and not based on iteration.

Next, it was Sierra’s turn to pose a similar problem for Josh. She made a four-

eighteenths stick. When Josh opened his eyes, he made two copies of the stick and

repeated one of them four times along the ruler, much as he had in past episodes.

However, this time, instead of repeating the stick again and cutting off extra parts, he cut

off two parts from the other copy and joined those parts to the end of the sixteen-part

stick that he had created using REPEAT. He was then able to name the fraction as four-

eighteenths.

Josh’s novel action of joining on two more parts rather than repeating a fourth

time is an interesting departure from his previous approach to similar problems. First of

all, the novelty indicates flexibility in his understanding of the situation. Rather than

using a fixed procedure, he had demonstrated a meaningful approach. Beyond that, the

novel action was one of joining pieces rather than repeating parts. This indicates that his

use of REPEAT may have represented an intention to determine the number of times

each piece would go into the ruler, and not just a goal to recreate partitions in the ruler.

The difference (discussed in my analysis of the previous episode) was subtle, but may

indicate that he was actually iterating parts within the whole. Such use of an iterating

operation is a distinctive aspect of partitive schemes over part-whole schemes.

Students’ conjectures about commensurability. Once Josh had completed the

production of four-eighteenths, as described above, he measured the fraction as “2/9.”

The students then tried to explain why this unexpected measure appeared. Protocol 9

documents several of their conjectural attempts to explain this.
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Protocol 9: Josh’s conjectural iteration of a composite fraction.

S: 2 times 9 is 18 and there’s eighteen [parts] over there.

T: Ah. Okay. So maybe that will help you.

J: [Meanwhile, Josh was dragging the fraction stick across the top of the eighteen-

eighteenths stick making marks as illustrated in Figure 14.]

T: [to Sierra] Do you know what he’s doing?

S: [shakes her head, negatively]

T: Josh, what are you doing? Sierra’s not sure. I’m not either. [after a few seconds

of silence] It looks like you had an idea…

J: Remember last time? We had like, say, one of these bars equaled up to three

things [dragging the four-eighteenths fraction between each pair of marks that he

had just made]. You remember?

T: Oh! Okay. So, you were hoping that it might equal up to something.

J: Yeah. [continues dragging the fraction in the other direction until it reaches the

right side of the rightmost mark, as illustrated in Figure 14] It wouldn’t work.

T: It doesn’t work? Why doesn’t it work?

J: Because I would have two left over [pointing to the two rightmost parts in the

eighteen-eighteenths stick].

Sierra’s initial explanation was an abductive relation of the numerator and

denominator to the eighteen visible parts in the whole. Such a relation might help her

establish an invented rule or procedure, but it was not an operative conjecture about
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fractional measures. Josh, on the other hand, had begun to iterate a composite fraction

within the whole, using marks to keep track of his iterations. This appears to be a novel

use of iteration. Indeed, I have claimed that he had only recently begun to treat unit

fractions as iterable units, and now he was acting out the iterations of a non-unit fraction!

Josh seemed to unite four parts and iterate them in order to affirm their measure just as he

would iterate unit fractions with a partitive unit fractional scheme. The iteration of such a

unit in justifying its measure was conjectural. His Conjecture J3 was that the four-

sixteenths stick would fit evenly into the ruler and establish it as a simpler fraction.

Figure 14. Josh’s marks for iterating a composite fraction.

I hypothesize that Josh’s conjecture could contribute to his construction of a

partitive unit fractional scheme for composite units, as well as a partitive unit fractional

scheme and would engender commensurate fractions if he could coordinate the units of

units. Units coordination seemed to be occurring during Protocol 9, as indicated by Josh’s

disappointment that two parts were left over after his fourth iteration. He seemed to be

determining the measure of the fraction by figuring out how many times the composite
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fraction would evenly fit into the ruler. If he could then name the fraction as the

reciprocal of the number of iterations, he would demonstrate the essence of a partitive

unit fractional scheme for composite units. Moreover, Josh’s actions in Protocol 10

indicate the construction of commensurate fractional operations.

Multiplicative reasoning with composite fractions. There were no more significant

conjectures in the teaching episode, but we might learn more about the students and the

results of their previous conjectures by considering a couple of short segments toward the

end of the teaching episode. The students had resumed the game they had been playing

earlier. When Josh posed five-nineteenths to Sierra, she was able to use REPEAT

appropriately and unambiguously this time: She repeated the fraction four times, cut off

the extra part and counted only the remaining nineteen parts. At first, she seemed to have

forgotten how many parts she had started with, but she either remembered after a few

moments or somehow figured it out, naming the fraction five-nineteenths. I decided to

test whether she could use some sort of multiplicative reasoning in her process by asking

her if there was a way she could figure out how many parts were in the whole without

counting. She thought in silence for about ten seconds before admitting, “I don’t know.”

While Sierra’s language and action indicate that she had corrected her procedure

for acting since the previous, similar situation, they also corroborate my previous

arguments that she had not been using iteration of the five-part unit, nor iteration and

multiplicative reasoning with fractional situations in general. Josh, on the other hand,

seemed to be using multiplicative reasoning more and more as his iteration operation

became more manifest. For example, after Sierra had named the five-nineteenths stick,

Josh commented that, had it been five-twentieths, it would measure something different. I
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encouraged him to make five-twentieths, which he did, but neither student knew exactly

what it would measure. Protocol 10 picks up after Josh measured the fraction to be one-

fourth and as Josh began trying to explain this. I encouraged the students to share ideas

with each other.

Protocol 10: Josh’s operations for constructing commensurate fractions.

J: [lines up the five-twentieths stick with the left side of a twenty-twentieths stick]

There’s one. Okay. Then, if I put that in there [moving the stick over the next five

parts in the twenty-twentieths stick] it’s two. And then that one’s three, four. It’s

one-fourth out of the whole bar.

T: Don’t tell me; tell her.

J: [to Sierra] There’s a fifth. [dragging the five-twentieths stick across the twenty-

twentieths stick again] And then you put that one right there, and that’s another

fifth. So, that’ll make that ten. Put that one right there, it’d be fifteen. Put that

right there, it’d be twenty. That’s one fourth… There’s four of these little things

right here [pointing to the places he had dragged the five-twentieths stick] going

into that.

S: [nods] Yeah.

Josh’s explanation fit the pattern of abduction, but the novelty had occurred in

Conjecture J3. He used his uniting and iterating operations to justify that the five-part

stick was actually one-fourth of the whole. His actions included double-counting (five is

one; ten is two, etc), which indicates that he might be coordinating the units of units
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within the ruler. His actions also demonstrated his continuing struggles with fractional

language, referring to the five-part stick as “a fifth.” Considering this, along with his

inability to predict the measure of five-twentieths, I am not yet willing to attribute to Josh

a partitive unit fractional scheme for composite units, nor a commensurate fractional

scheme. But the essential operations for the schemes had been constructed and the

schemes themselves were within his zone of potential construction. Sierra claimed to, and

probably did, understand Josh’s explanation. She may have assimilated his actions using

her part-whole partitioning scheme and one-fourth concept, if not a part-whole fractional

scheme, once Josh had identified the four equal parts in the ruler.

We are now beginning to see the construction of operations and schemes that had

been latently available to Josh, as a splitter. He seemed to be on the verge of constructing

four significant schemes: a partitive unit fractional scheme, a partitive fractional scheme,

a partitive unit fractional scheme for composite units, and a commensurate fractional

scheme. I have provided contra-indication of the latter two schemes. While I expect to

find consistent use of a partitive unit fractional scheme in subsequent episodes, his

construction of the more general scheme was still in question.

When I asked Josh and Sierra (just before the dialogue described in Protocol 10)

which would be bigger, five-nineteenths or five-twentieths, they each claimed that five-

twentieths would be bigger and agreed this was due to the “higher number,” as Josh put

it. A student with a partitive fractional scheme might assimilate the fraction with that

scheme and make a comparison between the number of parts in each (five) and the

relative sizes of the parts. After producing the two fraction sticks, Josh focused on the

relative sizes of their parts in order to explain the surprising result of his comparison:
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“Because you have to put twenty of those things in there, and it makes it smaller.” His

conclusion does indicate a partitive unit fractional scheme because he seemed to

understand the reciprocal relationship between the number of parts in a partition of the

whole and the size of each part, but there was no indication of a (general) partitive

fractional scheme.

The students’ final exchanges in the episode further contrast their ways of

operating. Josh had just correctly determined that a fraction that Sierra had posed was

nine-fifteenths of the ruler, but measured it as “3/5.” Sierra quickly exclaimed, “three

times five is fifteen,” whereas Josh noted that “if you have five of those little [parts], it

would go in [the ruler] three times.” Each student had formed an abductive explanation

and both explanations were somewhat inadequate for insightfully resolving the situation.

Josh had iterated a composite unit (five parts), but it was not the appropriate one (three

parts). But the students’ attempts represented differences in their operations available for

use in assimilation and abduction. Sierra’s abduction was much like one that she had

employed before, in explaining why four-eighteenths measured two-ninths. It was based

one whole number multiplicative reasoning. Josh’s abduction was based on fractional

multiplicative reasoning, and represents his recent focus on iteration. Josh’s subsequent

production of the five-part stick that he had described elicited further differences. Sierra

thought that it would measure five-ninths, indicating her reliance on part-whole schemes

(the five parts were pulled from a nine-part stick). Josh thought it would be “one out of

fifteen” indicating his continued struggles in conceptualizing and naming non-unit

fractions. He was, however, able to use iteration to explain that the stick was in fact one-

third, after he had measured it, as the episode ended.
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28 March, 2003 Teaching Episode

I decided to test whether the students could create commensurate fractions. By

asking them to make a specified unit fraction in as many ways as they could, I imagined

that the students might begin to use their uniting, partitioning, and iterating operations in

novel ways. Since I have already argued that a commensurate fractional scheme was

within Josh’s zone of potential construction, such activity might engender his

construction of that scheme. Sierra’s potential for learning through the activity was less

clear. Indeed, she responded unexpectedly to the activity.

Sierra and Josh’s operations in producing fractions commensurate with one-half. I

began the teaching episode by asking the students to produce sticks, in as many ways as

possible, that would measure “1/2.” Once the students had completed a simple production

of one-half by breaking a copy of the ruler into two parts, Josh led the first attempt at an

alternate production. He broke in half one of the halves from the first production and

measured one of the resulting parts. He should have been able to recall (from a similar

production during his March 5th teaching episode with Matthew) that the piece would

measure “1/4”, but his goals and his explanations since his previous production had

changed.

Protocol 11: Novel uses of partitioning.

J: [just after measuring “1/4”] One-fourth… Now, if that wasn’t part of the ruler,

if it was part of the line, it would probably be one-half… if that wasn’t there

[dragging the unbroken half away]. See, if that was just a bar [circling the cursor

around the two remaining pieces (fourths)].
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T: Okay, but we’re trying to find out if it’s half of the ruler, right? It’s always

comparing to the ruler. So, is the piece you clicked on one-half of the ruler?

J: Uh-Uh. It’s one-fourth.

Josh’s actions described in Protocol 11 are reminiscent of his actions in two

previous segments. The first was one with Matthew on March 5th, during which Josh

formulated his partitioning conjecture (Conjecture J1). Although the production was

similar, Josh’s use and interpretation of the production were more in line with his

reasoning in forming Conjecture J2 during Protocol 2. During that protocol, Josh had

ignored the ruler in treating two-thirds as two-halves. In the present case, Josh was

treating two-fourths as two-halves by ignoring the other half of the ruler. This time,

however, Josh was explicitly aware of the new whole that he had used and the relative

sizes of the pieces to each of the original whole (the ruler) and the new whole. His

flexibility in considering two different measures depending on two different wholes

indicates a development in partitive reasoning that he seemed to lack before. Otherwise,

his attempt at producing one-half did not involve a particularly novel way of acting.

Sierra’s first attempts were not distinctly novel either, but they do help to

elaborate on her previous uses of partitioning and her existing fractional concepts.

Protocol 11: (Cont.)

T: Sierra, can you think of a way to use a different number of parts, besides two,

to make a half?
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J: [makes a new copy of the ruler and erases the two one-fourth pieces, leaving

only the one-half piece and the new copy of the ruler on the screen]

S: [partitions the new copy into three parts, pulls out the middle part and measures

“1/3”]

T: Okay. Now it says a third.

S: Mm-hmm.

T: Does that surprise y’all?

S: [shakes her head “no”]

T: Can you make a half, though, using three parts?

S: [excitedly grabs the mouse] Umm… [partitions the pulled third into two parts,

breaks it and measures one of them as “1/6].

T: Do you know why it said one-sixth?

S: I think so.

T: Can you explain to Josh?

S: Okay. Umm… It’s like two goes into each one and so there’s six of them.

J: So, it’s like two boxes in there [pointing to the rightmost third in the three-

thirds stick]. One, two, three, four, five six [pointing twice within each third].

T: That’s a good job guys! All right. But I want y’all to try to make a half with a

different number of parts, besides two.

S: Is there a way?

J: [begins making a new bar]
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Sierra’s initial action of pulling and measuring the middle third indicates that her

concept of one-half was based on a place in the middle of the stick. She may not have

been focused on sizes of fractions at all, but considered only the marks of partitioning.

This is in synch with my previous observation (from her initial interview) that she had

used a geometric operation of reflection in considering one-half of a stick. After

measuring “1/3,” she actually partitioned that middle third into two parts, creating a mark

in the middle of it.

The novelty of Sierra’s actions occurred when she was challenged to explain the

measure of “1/6.” She was able to mentally partition each of the thirds in the three-thirds

stick into two parts. This action fit the operations of a unit fractional composition scheme

with which she might distribute a partition of a unit fraction across all of the units making

up the whole. Josh had performed a similar operation in forming Conjecture J1. Sierra’s

Conjecture S3 was that the one-sixth measure could be explained by producing six parts

in the whole, each the size of the one she measured, and that she could use the one-third

part that she had already partitioned (into sixths) as a template in the other one-third

parts. As such, her conjecture was an abduction whose uncertainty was indicated by her

language: “I think so.” Obviously, it might lead to a unit fractional composition scheme,

if she could coordinate the units of units to anticipate the fractional sizes of the smallest

parts.

Of course, Josh had been able to assimilate Sierra’s actions using his operation for

composing units of units, but Josh’s novelty occurred when he resumed his attempts at

the end of the protocol: He made a copy of the ruler, broke it into ten parts, joined five of

them, and measured the result as “1/2”. His choice of using ten parts and BREAK
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indicate that he had been using whole number reasoning, such as five is half of ten. Had

he been considering fractional size, he would have cut or pulled parts so that he could

find half of the ten-part stick. His use of ten is significant because it was a familiar

number in his whole number reasoning. This was the first time either student had used

whole number, multiplicative reasoning with the goal of producing a commensurate

fraction. Although his action was novel, there was no indication of a fractional operation

being used, nor was there uncertainty in his use of whole number reasoning.

In previous episodes, the students had used whole number reasoning only to

explain the numerators and denominators in surprising measures. It is interesting that

Sierra, who had used whole number reasoning in the latter context, could not generate a

fraction at all (“Is there a way?”). This might suggest that Josh’s fractional operations

were significant in his application of whole number reasoning, but I can’t say how other

than to note that he was capable of iterating a unit of five units. Anyway, Sierra was able

to assimilate Josh’s actions and independently complete similar productions of one-half,

such as six-twelfths. In those cases, Sierra did appear to use multiplicative reasoning,

saying things like, “six is half of twelve.” It seems that this assimilation was based the

way of operating that Sierra used in Conjecture S2, which now seems as powerful as the

procedural scheme for producing fractions commensurate with one-half that Will had

constructed.

Sierra’s conjectural use of units coordination. Moving on, I asked the students to

produce fractions that would measure one-third. Sierra began by producing the canonical

example using three parts. Josh then produced and cut off the leftmost two parts of a six-

sixths stick. I was more impressed with this production until Josh admitted that he had
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remembered the measure of two-sixths from a previous task. Protocol 12 begins with

Josh’s explanation and continues with a powerful conjecture by Sierra.

Protocol 12: Producing a fraction commensurate with one-third.

T: What’s the name of that one, Josh?

J: Six out of two.

T: Six out of two?

J: Two out of six.

T: So, two out of six is the same as…

J: Uh… It’s one-third.

O: How did you decide that that’s what you wanted to do?

J: ‘Cause somebody did that last time. [Josh points out to Sierra, who had picked

up the mouse, that the stick she was about to partition was not a copy of the ruler.]

S: [Sierra makes a new copy of the ruler and partitions it into nine parts, and

immediately drags the one-third stick (still visible on the screen from her first

production) above the left side of the nine-ninths stick. She then cuts off three

parts, where the one-third stick ended, smiling all the while.]

T: That’s good, Sierra. I like the way you did that. Can you explain what she did,

Josh?

J: Mm-hmm. She took one third and measured it with three of them.

T: Ah! Okay. So, she knew she was going to get a third that way. And what’s the

name of what she made?

J: Nine. Nine-thirds? Three-thirds… Three-ninths!
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O: [to Sierra] How did you know to make ninths?

S: They’re all going to be even, so I just took a stick and measured it. Like all the

lines are going to be matched up. So, they’re going to have to be even with the

little pieces.

T: So, how did you know that nine parts was going to allow you to make them

even?

S: ‘Cause 3 times 3 is 9.

First of all, I note that Josh’s language difficulties are still prevalent in this most

recent protocol. It will be noteworthy, as well, when he is able to resolve these fractional,

linguistic issues once and for all. At that point, I will be better able to judge the root of

them. Unambiguous use of fraction language appears to be lagging far behind Josh’s

operational development.

Sierra was consistent in her use of fractional language, but seemed to be using her

part-whole partitioning scheme alone in naming fractions. It is unclear whether she had

yet constructed even a part-whole fractional scheme because she did not appear to

compare parts back to the whole. Nonetheless, Sierra’s actions in Protocol 12 are

powerful because they indicate that she had independently begun to consider fractional

parts relative to one another. The operations driving her actions were certainly

conjectural, and her excitement at the novelty in acting them out showed in her smile.

Sierra’s conjecture consisted of two phases. First, she had to decide what number

of parts to use. Second, she had to decide how many of those parts she needed in order to

make one-third. She used nine parts because 3 times 3 is 9 and because she and Josh had
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been using such whole number multiplication knowledge in their previous productions of

one-half and one-third. Even with that knowledge, she did not know how many of the

ninths would be needed to constitute one-third. From previous productions, Sierra had

noticed the various numbers of partitions within the various fractions commensurate with

one-half or one-third. Even with these two observations together, Sierra would not be

able to connect them and independently produce three-ninths without the crucial

operational potential introduced by Conjecture S3.

Conjecture S3 had opened the possibility for Sierra to coordinate partitions within

a part being distributed across a whole: units coordinating of connected numbers. In the

conjecture under present consideration, Conjecture S4, Sierra’s novel way of operating

involved assimilating the observations described above by coordinating three units of

three in the connected number, 9. She conjectured that she could partition the whole into

three equal parts by using nine parts. Whole number units coordination (available within

her explicitly nested number sequence) established the necessary relationship between the

number of parts in the whole and the potential for using some of those parts to constitute

one-third. Her action of comparing the existing one-third stick to the nine-part stick

helped her to test or determine that three parts from nine established one-third. Her

actions also provide strong indication for a part-whole fractional scheme. I hypothesize

that Sierra had constructed this scheme as the result of a functional accommodation of her

part-whole partitioning scheme, an accommodation occurring as a result of Conjecture

S4. Corroboration of this hypothesis can be found toward the end of my analysis of the

March 31st teaching episode.
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As the students resumed making fractions commensurate with one-third, Josh

acted much as he had been, but Sierra never again used one-third to measure off how

much she needed to cut. Instead, she and Josh seemed to have invented whole number

multiplication rules for determining the number of parts to pull, as they had for one-half.

Josh, however, was the only student to justify his productions by referring to iterations of

the composite fraction. For example, after pulling ten parts from a thirty-thirtieths stick,

Josh argued that the fraction was one-third because it would go into the whole three

times: “ten, twenty, thirty.” His actions throughout the episode not only indicate the kind

of iteration involved in a partitive unit fractional scheme, but that of a partitive unit

fractional scheme for composite units, which includes coordinating the units of units

making up the fractional parts of the whole. The schemes seemed to be well-established

for him at this point. There is no solid indication that Sierra could iterate fractions at all.

Testing the boundaries. To test the boundaries of Josh’s schemes and the

flexibility of Sierra’s new way of operating, I decided to complicate the tasks by asking

the students to make fractions commensurate with two-thirds. Josh began by partitioning

a copy of the ruler into three parts, cutting off one of them, and measuring the remaining

two parts. These actions indicate only a part-whole fractional scheme.

Sierra attempted the next fraction, with Josh’s two-thirds bar still visible at the top

of the screen. She made a copy of the ruler and thought for a few moments before

partitioning it into six parts. I presume that she chose 6 because 2 times 3 is 6, and she

thought this was a plausible choice because she was trying to produce two-thirds.

Anyway, she pulled three of the six parts, but realized this would not work even before

measuring it, and she erased it. Perhaps she recognized it as one-half of the whole. Next,
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she pulled two parts and actually measured these as “1/3,” even though she had recently

produced and measured an identical stick. At that point, Josh began pointing to the two-

thirds stick that he had made and mumbled something unintelligible. His pointing actions

seemed to direct Sierra’s attention to the size of the two-thirds stick because she then

made a cut on the six-sixths stick that was below the right end of the two-thirds stick; the

two sticks had been nearly aligned on the left ends. Sierra admitted that she had used the

two-thirds stick to visualize the place to cut on the six-sixths stick.

Once again, Sierra had used the length of one stick to mark off the length of

another. Her early trials indicate that she had not constructed a general fractional

composition scheme, nor a partitive fractional scheme. Instead she seemed to use a part-

whole fractional scheme and whole number multiplication (choosing 6 because it is a

multiple of 2) in the novel manner she had learned as a result of Conjecture S4. She was

not able to coordinate the units of units to determine the number of sticks needed in the

non-unit fraction, as she would with a commensurate fractional scheme or a fractional

composition scheme. But she seems to have constructed a part-whole fractional scheme,

which had become quite useful in resolving fractional composition and commensurate

fractional situations. We will see its limitations in Protocol 13.

Protocol 13: Josh’s conjecture in producing two-thirds from nine parts.

J: [partitions a copy of the ruler into nine parts, pulls out three parts, and measures

them as “1/3”]

T: One-third. What did you think that was going to say, Sierra? Did you think he

had it?
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S: Uh… I don’t know.

J: There’s one-third [dragging the three-part stick over the leftmost three parts in

the nine-ninths stick] and then you have another one-third [dragging the three-part

stick over the middle three parts in the nine-ninths stick].

S: Oh! He could cut seven out of it…

J: I’m going to pull six out of it [pulls the leftmost six parts].

T: So, six or seven. [to Josh] Don’t measure yet. [to Sierra] So, why did you think

seven?

S: Because it leaves two left over, and with the last one there was two left over.

T: Oh! Okay. So, with the last one there were two left over? This one [pointing to

the four-sixths stick that was still visible on the screen] you mean?

S: Yeah.

T: Okay. So, with this one if you had two left over, maybe it would work. That’s

what she was thinking. What did you think, Josh?

J: ‘Cause, see, I had that one equal to one-third and if I put one more it would be

six. So, it may be one-hal… I mean, it may be two-thirds.

Josh probably chose nine parts for reasons similar to Sierra’s selection of six parts

in the previous production (6 and 9 are multiples of 3). The fact that he pulled and

measured only three of those parts indicates that, while he may have constructed a

partitive unit fractional scheme, he had not yet constructed the more general partitive

fractional scheme. The latter scheme may progress as a result of his actions later in the

protocol.
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Josh iterated the three-part stick twice within the whole with the goal of

producing two-thirds. He had been initially uncertain about how to make two-thirds, and

his use of iteration in the situation was conjectural (Conjecture J4) as indicated by his

confusion in naming the fraction. He conjectured that if three parts made one-third, six

parts would make two-thirds.

Having iterated the composite fraction, he could then identify the number of

ninths necessary to constitute two-thirds. This indicates that his conjecture involved the

use of the operations involved in his partitive unit fractional scheme for composite units.

In particular, he used uniting, iterating, partitioning, and disembedding operations to

construct a new concept of two-thirds. Through his conjectural operation of iteration,

two-thirds could be conceived of as two of one-third, where three-parts were united as

one-third embedded in the three-thirds making up the whole. I hypothesize that his

conjecture would yield a partitive concept of two-thirds, which might, in turn, engender a

partitive fractional scheme.

Sierra’s claim that two-thirds could be created from seven of the parts was based

on a generalized procedure abstracted from her recent experiences in making two-thirds.

She noticed that she had cut off two parts in producing four-sixths, and thought the same

procedure might work again. Such claims do not involve iterative, multiplicative, or

fractional reasoning at all; they are additive and based on whole number reasoning. Sierra

seemed to turn to this kind of reasoning and these sorts of procedures when her available

fractional operations may have been insufficient for assimilating the situation.
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31 March, 2003 Teaching Experiment

Early in the episode there was corroboration for the models I had built for the

students’ reasoning and operations so far. After the students had produced one-fourth

with various numbers of parts, I had challenged the students to produce two-fourths.

Having pulled two parts from a four-fourths stick, Josh predicted that the stick would

measure one-half and Sierra agreed, pointing to the center partition in the four-fourths

stick and noting that the whole was “exactly in two parts.” She went on to attempt to

produce two-fourths from an eight-part stick by pulling three and then four parts,

measuring each. Next, Josh pulled two parts from either end of the eight-part stick and

joined them.

Whereas Sierra’s justification for the measure of the students’ initial attempt

corroborated my claim that her fractional reasoning included concepts of geometric

reflection about partitions, her later decision to use eight parts corroborates that she was

using whole number multiplication in her productions in the previous teaching episode:

She might choose eight parts to make two-fourths because 2 times 4 is 8. Josh’s

construction of partitive fractions is corroborated by his attempts to make two-fourths by

making two copies of one-fourth.

Josh’s construction of partitive fractions was further corroborated, just after the

students’ attempts at producing two-fourths, when I challenged him to make three-

fourths. He partitioned a copy of the ruler into sixteen parts, dragged one of the

previously produced one-fourth sticks to the right side of the sixteen-part stick, and cut

off the rightmost four parts from the latter. He immediately measured the remaining

twelve parts as “3/4.” Rather than representing a new conjecture (his confidence and
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certainty were manifested in his decision to use twelve parts and not four), Josh’s actions

corroborate my hypothesis from my analysis of Protocol 13 (March 28th) that Josh was

progressing in his construction of a new way of operating based on Conjecture J4. The

result might be a (general) partitive fractional scheme for composite units. After all, he

could use a composite unit to recognize the complement of a unit of composite units as

the desired fraction. Sierra’s struggles (which immediately followed) to assimilate and

emulate Josh’s actions are described in Protocol 14.

Protocol 14: Josh’s partitive actions and Sierra’s attempts to assimilate them.

T: [to Josh] Can you explain that?

J: Because sixteen… You can put four of these little line things in there [dragging

the same four-part stick he had used before across each of the four groups of four

parts making up the sixteen-part stick], and it will equal up to one-fourth.

T: Do you see what he did on that one, Sierra? Do you think you can do one like

that?

S: [makes three-fourths by pulling three parts from a four-part stick]

T: [presuming that Sierra could complete the previous production using only her

part-whole fractional scheme] All right. I want you to do one more, Sierra. See if

you can come up with a different way to make three-fourths.

S: [partitions a copy of the ruler into twelve parts, then pulls and measures a

three-part stick and then a four-part stick]



306

It is apparent throughout Protocol 14 that the students were operating in distinctly

different ways. Josh had been able to iterate a composite unit within the partitioned whole

in order to justify its measure. Sierra seemed to rely on whole number reasoning,

choosing twelve parts because 3 times 4 is twelve, and choosing to pull three or four parts

to make three-fourths. She appeared unable to assimilate Josh’s actions using her own

fractional operations and instead had focused on the numerator and denominator of the

fraction.

New constructs. The segments of the teaching episode described thus far only

corroborate existing models of the students’ schemes, operations, and concepts. As Josh

began the next production of three-fourths, I noticed new constructions. Josh made the

fraction by partitioning a copy of the ruler into eight parts and pulling six of those parts.

It was the first time he had produced a fraction commensurate with a non-unit fraction,

without first establishing a fraction commensurate with one of its units. For example, in

his previous production of three-fourths, Josh had used four-sixteenths to mark off one-

fourth of the sixteen-part whole. Regrettably, I did not ask him to explain how he was

able to complete his most recent production without intermediate productions. It may be

that he made use of the previous three-fourths productions that were still in his visual

field or that he had formed some kind of algorithm using whole number reasoning, like 3

times 2 is 6 and 4 times 2 is 8. Otherwise, he might have mentally partitioned each of the

four-fourths, in which three-fourths was embedded, into two parts. Because I did not ask,

I have no solid indication that the latter was the case. If it were, it would certainly be

conjectural, involving a novel use of fractional composition and recursive partitioning.
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Sierra attempted to emulate Josh’s actions by partitioning a copy of the ruler into

nine parts and pulling seven of them. Although she was unable to explain why she did

this, I suspect that she chose nine parts because it was a multiple of 3, and she chose

seven parts because it was two parts fewer than the nine parts making up the whole.

Recall that she had used a similar procedure for producing two-thirds in the last episode.

Josh knew that nine parts would not work and Sierra elaborated, noting that “4 won’t go

into it but 3 will.” Her explanation was an abduction based on her experiences in the two

most recent episodes. In these episodes, she had been successful at producing fractions

commensurate with m/n by using m·n parts. After observing that her most recent

production measured “7/9” and not three-fourths, Sierra explained the surprise based on

the distinction that I have described between her unsuccessful production and previous

successful ones. Having eliminated the surprise, she did not question her procedure for

using two fewer parts than the number of parts in the whole.

Since Josh had used twelve parts, Sierra continued her attempts to produce three-

fourths by using twenty-four parts (24 is divisible by 3 and 4). She pulled five connected

parts and carefully dragged them five times in the twenty-four-part whole: once in each

group of five-parts starting on the left side of the whole, and once more extending just

beyond the right side of the whole. She then erased the five-part stick and pulled six parts

from the whole. She dragged the six-part stick across the whole too, but in an erratic and

imprecise manner. Finally, she lined up the six-part stick with the left side of the whole,

used it to measure and cut off the leftmost six-parts in the twenty-four-part whole, and

measured the remaining eighteen-part stick as “3/4.”
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This was the first time I had observed Sierra dragging a fraction stick across a

whole. I cannot be certain that she was keeping track of the number of times the five-part

stick went into the whole, but she seemed to be, at least, determining whether it would go

into the whole evenly. Her actions resembled those that she acted out during Protocol 12,

in which I identified Conjecture S4. In forming that conjecture, she had used units

coordination to produce a connected number, 9: “They’re all going to be even, so I just

took a stick and measured it. Like all the lines are going to be matched up. So, they’re

going to have to be even with the little pieces.” She could establish partitions within a

partition and recognized the importance of the smaller units evenly dividing up the whole

into larger units of units. She also seemed to have constructed a part-whole fractional

scheme as a result of that way of operating, particularly in comparing a fraction back to

the whole and considering its complement. I had hypothesized (toward the end o the

March 28th teaching episode) that Sierra’s operations in forming Conjecture S4 would

serve to accommodate her part-whole partitioning scheme into a part-whole fractional

scheme.

Sierra’s action of dragging the six-part stick was too inaccurate to be useful in

determining how many times the stick would go into the whole. Her action may have

been half-hearted because she had already recognized a telling multiplicative relationship

between six and twenty-four: 6 goes into 24 four times. That relationship provided

enough reason to carry on with the rest of her procedure, cutting off six parts from the

whole and measuring the remaining parts. I refer to these final actions as procedural

because she had acted similarly in producing two-thirds and three-fourths from various

numbers of parts. But in such cases, she never seemed to be acting independently, based
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on her fractional operations. Rather, she had assimilated Josh’s actions with a procedure

for acting.

My hypothesis (early in my analysis of the March 18th teaching episode) that

Sierra had not been iterating as Josh might in using a partitive unit fractional scheme is

corroborated by Sierra’s actions toward the end of the episode. Josh had challenged her to

produce two-fourths using twelve parts. She pulled three of them and then four of them,

each time dragging the parts carefully across the length of the whole, as if to mark the

whole into four and three sections, respectively. She had just completed the action with

the four-part stick when the observer asked her, “What fraction is that?” Sierra responded

by counting parts and saying, “I think it’s four-twelfths.” Had she been keeping track of

her iterations within the whole, it is unlikely that she would have responded in such a

way instead of answering that the fraction was one-third. This indicates that Sierra had

been using the dragging action to determine the evenness of her fraction composition,

rather than to act out iterations. Regardless, I maintain that she might construct iteration

as a fractional operation through reflective abstraction upon her dragging actions.

14 April, 2003 Teaching Episode

The students had been on spring break for a week, so this was our first meeting in

two weeks. Much of the teaching episode was spent on tasks that were designed to

determine what reasoning they had retained (the permanence of previous constructions)

and to elicit partitive fractions. The tasks designed to elicit partitive fractions were so

simple that there was no notable conjecturing activity until the end of the episode. So,

mostly, I use this account of the episode to refine my models of the students’ operations

surrounding the construction of partitive fractions. In particular, the episode includes
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indication that Sierra had constructed part-whole fractions but not partitive fractions.

Until she could iterate unit fractions, I would not attribute to her a partitive unit fractional

scheme. The episode also includes indication that Josh had constructed a partitive

fractional scheme with which to estimate the relative sizes of non-unit fractions.

However, Protocol 15 describes Josh’s difficulty with some aspects of comparing

partitive fractions. I begin here with support for my general claims and then examine the

students’ interesting actions in that protocol.

At the beginning of the episode, Josh and Sierra chose numbers: 22 and 27,

respectively. I assigned to each of them the fraction created by the reciprocal of their

number and asked them whose fraction would be larger. Both students knew that one-

twenty-seventh would be smaller, and Sierra justified this by saying, “his lines would be

separated more so it would make his lines longer, and mine would be pushed together.”

She seemed to have constructed an inverse relation between the number of parts used in a

whole and the size of each part. Her explicit reference to such a relation indicates a part-

whole fractional conception of unit fractions that surpassed the part-whole partitioning

conception upon which she typically relied. She could have established the relation by

reflecting on her previous experiences in producing fractions; operationally, the

conception would require a partitioning operation, but not necessarily an iterating

operation, which would be essential to her construction of a partitive unit fractional

scheme.

There were at least two segments in the episode during which Josh appeared to be

using a partitive unit fractional scheme. The first occurred in response to the tasks

designed to elicit partitive fractions. Sierra had just made eight twenty-sevenths, and I
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asked Josh to produce a fraction using twenty-seconds that would be just a little bigger

than Sierra’s fraction. He immediately decided to use eight of the twenty-seconds. The

immediacy of his decision to use the same number of parts Sierra had used indicates that

he understood the context in which eight units of one size might be greater than eight

units of another size. The second occurrence, toward the end of the episode, was in

response to Sierra’s challenge of determining how many fiftieths she had used in making

a wiped fraction. Josh had closed his eyes as Sierra pulled twenty fiftieths. No fractions

were visible on the screen when Josh opened his eyes, except for the fraction in question

and the ruler. Once again, Josh immediately responded, claiming, “I think she pulled

twenty of them.” Combined, the occurrences demonstrate Josh’s ability to consider the

sizes of non-unit fractions relative to each other and the whole. His use of fractional

language encompassed my only lingering concern in attributing a partitive fractional

scheme to Josh, but from this episode forward, I never observed him reverse the

numerator and denominator in a fraction as he had in previous episodes.

The interesting protocol mentioned above occurred toward the end of the partitive

fraction activity, during which the students alternated turns in determining how many

twenty-seconds or twenty-sevenths they would need to pull in order to make a fraction

just longer than the preceding fraction. Protocol 15 describes the students’ responses to

my final question of the activity.

Protocol 15: Comparing fractions just less than the whole.

T: If we kept playing this game all the way through, what’s the last one that you

would have before you had the whole thing, Josh?
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J: I’d have twenty-two… Well, no [long pause].

T: You know what I mean? What could you make that’s just a little smaller than

the whole stick, using your pieces?

J: Twenty-one out of twenty-two.

T: Sierra, what would you have?

S: Twenty-six twenty-sevenths.

T: Now, whose would be longer, twenty-one twenty-seconds or twenty-six

twenty-sevenths?

S: Twenty-one twenty-seconds.

J: Mm-hmm.

T: I want ya’ll to talk about it together and tell me why you think that’s true.

J: ‘Cause these are a little bit longer than those [pointing to the unit fractions].

In determining which fraction was bigger, the students only considered the sizes

of the unit fractions of which the non-unit fractions were composed; after all, this

consideration had been sufficient in solving the task given at the beginning of the

episode. So, I encouraged the students to make each non-unit fraction stick and compare

their sizes. They produced the two fraction sticks by cutting off one piece from each

partitioned copy of the ruler, and lining up their left sides. Once they had done this, the

dialogue resumed.

Protocol 15: (Cont.)

J: Hers is a tad bit longer.
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T: Can ya’ll figure out why?

S: [to Josh] You have less than I do. [After a long pause, Sierra drags one twenty-

second and one twenty-seventh (from previous productions) to the ends of the

respective fractions the students were comparing, thus completing each whole.]

J: You have like a half of one longer than me. [removing the pieces Sierra had

dragged] She has twenty-six, and I only have twenty-one, but mine are a little bit

bigger than hers, but she has like half of one bigger than mine.

For the first time, Josh seemed to consider the dichotomy between the numbers in

the numerator and the numbers in the denominator in determining the relative sizes of

two fractions. Josh’s struggles to resolve this dichotomy might explain his use of the

conjunctive “but” twice in the same sentence. This dichotomy would be difficult to

resolve, even with a partitive fractional scheme, unless he considered the complements of

the two fractions, as Sierra seemed to do.

Sierra had rebuilt the two wholes by adjoining the two unit fractions that were the

respective complements of the non-unit fractions in question. She was capable of

determining the complements of the two non-unit fractions by using her part-whole

fractional scheme and disembedding operation, even without first producing the two

fractions to use as perceptual material. Once she determined the unit fraction

complements, her part-whole fractional conceptions of them would be sufficient to

compare them and thus determine which non-unit fraction was bigger. However, Sierra

did not consider the unit fraction complements until after the students had produced the
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non-unit fractions, and, even then, she did not seem to have the described operations

organized in a scheme for resolving the situation.

I refer to Sierra’s actions of adjoining the two unit fractions as conjectural

because they represented a novel use of her disembedding operation with consequences

that will become clearer in the next episode. In comparing the lengths of the twenty-one

twenty-seconds stick and the twenty-six twenty-sevenths stick, and in searching for a

reason why one was longer than the other, Sierra seemed to notice that their right sides

would be made even by adjoining the two unit fractions. She conjectured (Conjecture

S5) that she could reproduce the whole, in which the two non-unit fractions were

embedded, by adjoining their complements and that the unit fractional complements

could be used to justify the difference in the sizes of the non-unit fractions. She was not

able to explicitly justify her action or determine how it might be useful, but the action

itself helped to resolve the peculiarity of the fractions’ misalignment.

16 April, 2003 Teaching Episode

The present teaching episode began much as the previous one did and revealed

even more about the differences between the students’ fractional schemes and operations.

Later in the episode, we will see how each student used operations to form a powerful

conjecture. Given the differences between the students existing schemes and operations at

this point, the students’ respective conjectures will be interesting to compare in Chapter

9.

Elaborations on available structures. At the beginning of the episode, I asked the

students to think quietly for several seconds about which was larger, two-fourths or one-

half. Within five seconds, Josh claimed to know, but I asked Sierra to respond first. She
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claimed that one-half was bigger, after which Josh responded, “they’re both a half.” He

explained that if you took two one-fourth pieces and put them together, they would form

one-half. His response indicates that he had understood two-fourths as a partitive fraction

and corroborates my hypotheses (in my analysis of Conjectures J2a and J4) that he had

been constructing a partitive fractional scheme, although it is difficult to attribute the

development of partitive fractions to a single conjecture or experience.

In a previous episode (March 31st), both students had established the

commensurability of two-fourths and one-half, but Sierra appeared unable to reason

about the sizes of non-unit fractions in the absence of perceptual material. Instead, she

might have assumed that one-half was bigger because two-fourths was divided into more

pieces. In fact, she used such reasoning to justify a subsequent claim that one-fourth was

bigger than one-fifth. So, Sierra had constructed part-whole fractions, but still appeared

to lack an iteration operation for unit fractions that could be used to establish partitive

unit fractions.

Conjecture S5 revisited. I asked the students to consider which would be bigger,

twenty-four twenty-fifths or thirty-five thirty-sixths. This question was similar to one the

students had considered in Protocol 15. Even though the students explicitly recognized

the similarity between the two problems, they agreed that twenty-four twenty-fifths

would be bigger. I asked the students to make the two fractions to compare them, but,

because they had previously claimed that one twenty-fifth would be bigger than one

thirty-sixth, I asked them to check this first. Josh produced the unit fractions from

partitioned wholes and compared them, affirming the students’ previous claims. Then,

Sierra proceeded to make the non-unit fractions by cutting off one piece from each of the
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partitioned wholes. When she had completed the production and lined them up to

compare, both students realized that thirty-five thirty-sixths was bigger. The dialogue

described in Protocol 16 began just after each student expressed his or her realization.

Protocol 16: Sierra’s conjectural use of complements.

T: Why do ya’ll think that is?

S: Because the twenty-fifth one… the things are going to be bigger. So, that’s

going to take away more, but, if they’re smaller, that’s going to take away less, so

it’s not going to be… [pauses]

T: Can you show me what you mean by “take away more” and “take away less?”

S: ‘Cause if you take [cuts off the rightmost three parts in the twenty-four twenty-

fifths stick] and you cut three, and then you cut three off of this [the thirty-five

thirty-sixths stick], then that’s just going to be less. But there’s going to be more

of the little ones.

T: [after Sierra explained her idea again, to Josh] Does that make sense, Josh?

J: Mm-hmm.

T: Why don’t you explain in your own words.

J: These… There’s not as many of these [twenty-fifths], but they’re longer than

these [thirty-sixths]. But there’s like, say, three of these [thirty-sixths] equals one

of those [twenty-fifths], and you’ve got more of these [thirty-sixths].

Sierra had formed a new way of operating, using her concepts of complements,

her disembedding operation, and her part-whole fractional concepts. In cutting off the
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unit fractions from each partitioned whole, she had become explicitly aware of the

implications of her actions in Conjecture S5. Her conjecture from the previous episode

seemed to make her operationally aware of the complement embedded in the whole when

cutting off pieces. Being aware of the complementary parts of the whole when cutting

allowed her to establish a complementary relation between the sizes of the pieces. If the

cut off piece were smaller, the complement would be bigger, and vice versa.

From his statements at the end of the protocol, it is evident that Josh had been

unable to assimilate Sierra’s actions in terms of complements. I hypothesize that this was

so because he had not performed the cutting action and may not have constructed the

kind of operational understanding of such an action that Sierra had constructed. He was

still struggling with the dichotomy between the number of parts and their respective sizes,

as noted in the previous episode. His assimilation of Sierra’s actions seemed to rely on

uniting and composition operations, attempting to form units of the larger parts from

units of the smaller parts.

A new use of Josh’s composition and units coordinating. Later in the episode, the

students began playing a game in which one student would pull a number of parts from a

partitioned whole, while the other hid his eyes. The problem poser would then wipe the

fraction stick formed from the pulled parts and hide the partitioned whole. In this case,

when Josh opened his eyes, he was told that Sierra had partitioned the whole into sixty-

three parts, and he was supposed to determine the number of parts in the wiped fraction

stick (that stick and the ruler were the only sticks visible on the screen).

Sierra had used fourteen of the sixty-three parts in challenging Josh. Upon

opening his eyes, Josh responded to the challenge by lining up the fraction stick above
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the left side of the ruler. He then sat looking at the screen for ten seconds, before the

following dialogue began.

Protocol 17: Josh’s conjectural use of fractional composition.

J: I’m going to say fifteen.

T: How’d you do figure that?

J: I used 25 ‘cause… If that was 25 [pointing to the fraction in question], it would

give you 50 right there [pointing to a mark that would be one iteration to the right

of the fraction, and about half way across the ruler], and it would be too big

[moving his finger across the right half of the ruler]. That [pointing to the fraction

again] would be too small for 25. So, I used 15 for my number.

Josh posited hypothetical parts within the fraction and tested them against the

whole through iteration and units coordination, double-counting the iterations and the

hypothetical parts. Moreover, he was able to adjust the hypothetical number of parts in

the composite unit to account for the number of times the fraction would iterate within

the whole. This substantiates a novel and fascinating use of Josh’s composition operation.

He used fractional composition to double-count a hypothetical composite unit (keeping

track of the number of times the fraction iterated into the whole while counting the

number of hypothetical parts within the iterations) and to appropriately adjust the

hypothetical composition based on his iterations and double-counting. So, it seems that

Josh’s use of iteration and units coordination were integrated quite flexibly, corroborating

my claims that he had constructed the operations of a partitive fractional scheme for
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composite units and a commensurate fractional scheme. Josh’s actions in Protocol 17 also

indicate that Josh had constructed operations similar to those of a reversible unit

fractional scheme: Instead of positing the number of parts needed within a given unit

fraction in order to generate a specified number of parts in the whole, he could estimate

the number of parts needed without first establishing the size of the unit fraction through

iteration.

However, there is no indication that Josh’s actions were conjectural. His initial

response, “fifteen,” was an estimate, and the pause that preceded his estimate can be

attributed to his calculating of the estimate, operating as I have described. Rather, his

powerful use of iteration and units coordination (and the associated schemes mentioned

above) corroborate my hypotheses about the power of Conjectures J3 and J4.

25 April, 2003 Teaching Episode

Sierra’s complementary fractional comparison scheme. At the beginning of the

episode, I posed a task that provided occasion to test the consequences of Conjecture S5.

The task was similar to the one described in Protocol 16; I asked the students to

determine, with an empty screen, which was larger, seven-eighths or four-fifths. Both

students thought that four-fifths would be larger, indicating that Sierra was still unable to

act on figurative material and continued to rely on perceptual material instead. Indeed,

once Josh had made the two fractions (by cutting off unit fractions from partitioned

wholes) and the students had observed that seven-eighths was longer, Sierra was able to

argue as she had before: “because his [eighths] are littler, and that’s less to take away,

and then mine are bigger and that’s more to take away.” The persistence of her reasoning

across three episodes and eleven days indicates that Sierra had constructed a scheme for
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comparing the lengths of complements of unit fractions. Her scheme was still dependent

on perceptual material and involved her disembedding operation in order to conceptualize

the additive and complementary relationship between complements of a whole. I refer to

it as Sierra’s unit fractional complement comparison scheme.

Even though Josh had completed the production this time and even though he had

done so by cutting off the unit fractions as Sierra had in Protocol 16, he still did not seem

to assimilate Sierra’s described actions. When I asked him to explain Sierra’s reasoning,

he made an argument very similar to the one he had made during the protocol held nine

days before: “Mine are littler than hers and hers are bigger than mine, but I have more

than her…” I had hypothesized that Josh had not assimilated the situation using

complements in Protocol 16 because he had not completed the production, cutting off the

unit fractions. In the present case, he had done this and still seemed to ignore Sierra’s

references to pieces that were less to take away or more to take away. So, my hypothesis

is refuted, and I am left to assume that Josh had no scheme compatible with Sierra’s unit

fractional complement comparison scheme, although Josh’s demonstrated ability to

recognize complements embedded in a whole indicate that the scheme was in his zone of

potential construction. I have also noted instances in which Josh seemed to lose track of

the whole after cutting off a piece, and his ambiguity in referencing the whole may

account for the disparity between Josh’s potential structure and the actual one.

Josh’s splitting conjecture and Sierra’s assimilation of it. I have provided

evidence indicating that Josh had constructed a partitive unit fractional scheme for

composite units (if not the more general scheme), and that he had been able to posit

hypothetical units within a unit that he was iterating (Protocol 17). Figure 15 and
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Protocol 18 provide indication that Josh could conjecturally use a similar way of

operating in order to determine fractional sizes of unknown non-unit fraction sticks.

I had been posing problems to the students, challenging them to determine the

sizes of various unpartitioned fractions in the absence of any figurative material except

for the fraction stick in question and the ruler. I began with a unit fraction, which Josh

was able to determine to be one-sixth by repeating the fraction six times along the top of

the ruler. Next, I posed two-fifths and asked Sierra to take control of the mouse. She

made a copy of the fraction and repeated it three times along the ruler, but seemed unable

to proceed after observing that the three parts went beyond the ruler. She released the

mouse, and Josh immediately picked it up and cut off the piece that extended beyond the

ruler. He then iterated it just beyond the ruler, cut off that piece and continued,

recursively, until he had created the image that is represented by Figure 15. I describe the

rest of the students’ actions concerning the image in Protocol 18.

Figure 15. The results of Josh’s recursive actions.

Protocol 18: Using the results of Josh’s recursive process.

J: [after counting the small parts on the top stick illustrated in Figure 15] Maybe

thirty-one bars.

S: [drags the original fraction above the left side of the thirty-one part stick]
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T: And how much is this fraction [pointing to the original fraction]?

J: Um… [leans in, apparently counting parts]

S: [cuts off the thirty-one part stick at a mark that is at the right end of the original

fraction]

J: [uses the mouse to count the number of parts cut off] Twelve.

T: So, what’s the fraction?

J: Twelve out of thirty-one?

Josh recognized that Sierra’s repetitions of the fraction did not fit evenly within

the whole, as they would have to in order for him to immediately use any of his partitive

fractional schemes. But in Protocol 17, Josh had demonstrated an ability to hypothetically

posit units with the fractional unit that he was iterating. Moreover, he was a splitter,

meaning that he could compose partitioning and iterating simultaneously. So, Josh could

anticipate cutting off the piece of the six-fifths stick (the result of Sierra’s repeating

action) extending beyond the ruler and positing it as a sub-partition of the original

fraction, which could then be iterated. That piece would be an ideal choice to posit

because it represented the peculiarity of the situation (that Sierra’s repetitions did not fit

evenly in the whole).

So, Josh conjectured (Conjecture J5) that he could compose the fraction stick

and ruler from iterations of the extended piece. He needed to act out the iteration because

he was not sure how many times it would fit into the original fraction or the ruler. My

guess is that he thought it would go into the fraction stick twice, but was not certain. In

fact, upon repeating the piece, he found that it would not fit into the ruler evenly either,
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but it did not extend quite as far beyond the whole as the original fraction had.

Recursively applying his novel ways of operating, Josh produced better and better

partitions of the whole until he produced a thirty-one part stick, approximately the same

size as the ruler. But in positing the pieces, his initial goal of finding the size of the

original fraction was transformed to one of finding a piece that would fit into the ruler

evenly and finding out how many times the piece fit.

Once Josh had partitioned the ruler, Sierra was able to assimilate the situation

using composition operations as she had during Protocol 12 (Conjecture S4) of the March

28th teaching episode. She cut off a number of parts in the thirty-one part stick that

appeared to be the same size as the fraction in question. From that point, the students’

part-whole fractional schemes were sufficient for determining the size of the fraction.

20 May, 2003 Teaching Episode

There had been no teaching episodes with Josh and Sierra in nearly a month. I

decided to schedule this final one to test for the relative permanence of the students’

structures and to determine whether they acted in any manner incompatible with my

models of them. Through most of the episode, the students acted predictably: Josh

appeared to be operating with partitive fractions, whereas Sierra relied heavily on part-

whole fractions. The students’ behavior became interesting as I observed Josh’s response

to a challenge that Sierra posed. Sierra had produced a wiped two-ninths stick and

challenged Josh to determine its fractional size with no perceptual material available

except for the wiped fraction and the unpartitioned ruler. Protocol 19 documents Josh’s

response.
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Protocol 19: Josh’s recursive fraction composition.

J: [makes a few copies of the fraction and lines one of them along the top of the

left side of the ruler]

O: Do you have an initial guess?

J: Is it over ten [referring to the number of parts Sierra had used in her

production]?

T: It’s not over ten.

J: I think nine something [lines up four copies of the fraction along the top of the

ruler, extending from the left side of the ruler almost to the right end].

T: What’s your specific fraction?

J: Two-ninths, maybe.

Josh resumed action by dragging the copies of the two-ninths stick away and

using one of them to repeat four times along the top of the ruler, extending from the left

end of the ruler to just beyond the right end. He cut off the extra piece and repeated it

from the left of the ruler until he had almost reached the right end. Unfortunately, the left

ends were not perfectly aligned, so he decided to repeat once more and cut off the extra

piece. He acted recursively until he had made a twenty-three part stick that was

approximately the same size as the ruler. He guessed that the fraction in question was five

twenty-thirds, but figured that it must simplify because he knew that Sierra had used ten

parts or fewer. He proceeded to iterate the five part stick within the twenty-three part

stick, but became frustrated: “I know that there’s five of these [twenty-thirds] in one of

those [the original fraction], but it’s not going to be five because it would be over ten.”
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Josh’s initial (and correct!) guess of two-ninths also indicates that he had

constructed a partitive fractional scheme. His actions following Protocol 19 resemble

those of Conjecture J5 and indicate the operations of his partitive fractional scheme,

which enabled him to guess accurately. He determined that Sierra had used nine parts

because, in mentally iterating the fraction, he realized that it would extend beyond the

whole on the fifth iteration, and this implied for him that there were a large number of

partitions. Once he had determined that she used ninths, he could estimate how many

ninths would fit into the fraction. This estimate is a strong indication for partitive

fractions in operating with ninths. Because ninths are fairly arbitrary units, my claim that

Josh had constructed a partitive fractional scheme is substantiated. This affirms my

hypothesis—made during my analysis of Conjectures J2a and J4—that Josh would

construct such a scheme, although it is difficult to determine which, if either, conjecture

engendered the construction.
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Chapter 8: Synthesis of Josh and Sierra’s Conjectures

In the case study of Josh and Sierra in Chapter 7, I identified conjectural

operations and the conjectures that those operations formed. In the present chapter, I

synthesize the conjectures that I identified for Sierra and Josh. I use the analysis

presented in Chapter 7 to specify those accommodations that the students made to their

schemes as a result of their conjectural operations, and demonstrate how the students’

zones of potential construction were actualized through conjectural activity.

Sierra

Conjecture S1. During the last teaching episode in which Sierra worked with Cory

(March 10th), Sierra was asked to determine the fraction name for a four-part stick that

Cory made while Sierra had her eyes closed. At the time, she had an equi-partitioning

scheme, a part-whole partitioning scheme, and possibly a part-whole fractional scheme

available, but no partitive schemes. The four-part stick and the unpartitioned ruler were

the only visible sticks on the screen when Sierra opened her eyes. She repeated the four-

part stick twice and cut off the two parts that extended beyond the length of the ruler,

conjecturing that she could reproduce the partitions in the ruler to determine the number

of parts Cory had used in the ruler during his production of the four-part stick.

I have hypothesized that Sierra’s conjecture involved a novel use of her equi-

partitioning scheme. In fact, she may have used her equi-partitioning scheme to

assimilate Cory’s immediately preceding actions of reproducing the partitions in the ruler

by repeating a one-fourth part. If her conjectural operations for Conjecture S1 had

involved equi-partitioning, they might enact a functional accommodation of her equi-
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partitioning scheme, resulting in a scheme that could be used to partition the ruler by

progressively integrating parts from it. Indeed, her subsequent actions in Protocols 6 and

8 indicate that she had used the integration of parts (both unit parts and composite parts)

to produce partitions in the ruler. In both protocols, she named the number of parts in the

ruler rather than the fraction name that she was asked to determine. This indicates that

she had not been using iteration in order to determine the fraction name, but was acting

with the goal of determining the number of parts in the ruler, corroborating my

hypothesis.

Conjecture S2. In attempting to produce a three-halves stick (Protocol 3, March

18th), Josh pulled a three-part stick from a six-sixths stick and measured it as one-half.

Sierra had been unable to predict this surprising measure but offered this post-hoc

explanation: “because there’s six of them, and 3 plus 3 is 6; so it’s half.” Her explanation

was a conjecture that fit the pattern of abduction, explaining the surprising measure of the

three-part stick by constructing a general rule about the number of parts in it, its

complement, and the ruler.

Operationally, the abductive pattern was one in which Sierra had a goal of

constituting the three-part stick as one-half, but had no available scheme to do so. If she

were to have a part-whole fractional scheme available to use in the situation, for example,

she would have anticipated the measure of the three-part stick by comparing its size to

that of the ruler. Instead, she abductively (and conjecturally) used her disembedding

operation and whole number addition operation. She used disembedding to project the

three-part stick into the six-part ruler and establish its complement as another three-part
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stick. She used addition to relate the number of parts in the three sticks to her whole

number notion of taking one-half of something (taking one share from two equal shares).

On March 28th, between Protocols 11 and 12, Sierra was able to use disembedding

and her whole number multiplication operation to produce sticks commensurate with

one-half, such as six-twelfths. Although she observed Josh produce five-tenths first,

Conjecture S2 may have enabled Sierra to assimilate his actions meaningfully in order to

purposefully and appropriately act on her own with a procedural scheme for producing

fractions commensurate with one-half. Moreover, Conjecture S2 serves as an example of

Sierra’s propensity for inventing abductive explanations throughout the teaching

experiment. 

Conjecture S3. During Protocol 11 (March 28th), in attempting to produce one-

half of the ruler using three parts, Sierra pulled out one of the three parts (the middle one)

and broke it into two pieces. Upon measuring one of those two pieces, Sierra was asked

to explain why the piece measured one-sixth, instead of one-half as she had predicted.

She explained the surprising measure by conjecturing that it was due to the fact that “two

goes into each one and so there’s six of them.” This was an abduction that explained the

surprising measure of the one-sixth piece by identifying six equally sized pieces in the

ruler.

During Protocol 3 (March 18th) just before Conjecture S2, Josh had measured

another one-sixth piece. Sierra was able to explain that measure by referring to the six

parts that were visible in the ruler: “I think it’s because there are six little things in there.”

This was an abduction too, but it did not involve a fractional operation. In forming

Conjecture S3, on the other hand, Sierra had to mentally distribute the partition of one of
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the one-third parts in the ruler across the other two with the goal of producing the six

parts. This involved the conjectural operation of units coordinating, and Sierra’s actions

were similar to those of a unit fractional composition scheme.

In order to construct the unit fractional composition scheme, Sierra would have to

be able to anticipate the fractional sizes of the smallest parts, rather than simply

explaining the one-sixth measure by producing six parts from three. It is unclear whether

she could so that because her goal in forming Conjecture S3 seemed to be to produce six

parts rather than a one-sixth part. Conjecture S3 did open the possibility for Sierra to

consider partitions within a part being distributed across the whole, which was

instrumental in her formation of Conjecture S4.

Conjecture S4. During Protocol 12 (March 28th), Josh and Sierra were producing

fractions commensurate with one-third. Sierra produced a one-third stick using three

parts; then, Josh produced a two-sixths stick using six parts. With the previously

produced sticks still visible on the screen, Sierra partitioned a copy of the ruler into nine

parts and used the one-third stick to measure off one-third of the nine-part stick. She

explained that she used nine parts because “3 times 3 is 9” and that the lines partitioning

the ruler into three parts would be “even with the little pieces” produced by using nine

parts. So, her conjecture was that she could evenly partition the whole into thirds by

using nine parts.

Sierra’s conjecture relied on the conjectural operation of units coordination in the

production of a connected number, 9. This operation established the necessary

relationship between the number of parts in the ruler and the potential of using some of

those parts to constitute one-third of it: The parts in the ruler had to divide evenly into
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three composite parts that evenly partitioned the ruler. Although one might argue that

Sierra had simply used her whole number multiplication operation to guess that nine parts

would work, such a simple production would not explain Sierra’s immediate use of the

one-third part in measuring off the desired fraction, nor would it account for Sierra’s own

explanation about the lines of partitioning (using three parts and nine parts) being even

with each other.

Sierra’s use of the one-third stick to measure off three parts from the nine-part

stick also marks the first time that I had observed Sierra independently comparing a

fraction stick back to the ruler. This was a strong indication of a part-whole fractional

scheme. I hypothesized Sierra had constructed that scheme as a functional

accommodation of her part-whole partitioning scheme, as a result of Conjecture S4. In

fact, I had never observed her comparing fractions back to the ruler before Protocol 12

but observed her making such comparisons again later in the same teaching episode,

leading up to Protocol 13.

Conjecture S5. I had asked Josh and Sierra to predict which stick would be longer,

a twenty-one twenty-seconds stick or a twenty-six twenty-sevenths stick (Protocol 15,

April 14th). The students agreed that twenty-one twenty-seconds would be longer because

it would have bigger parts. To test this, the students produced the sticks in question by

cutting off one part each from a twenty-two twenty-seconds stick and a twenty-seven

twenty-sevenths stick. Observing that the twenty-one twenty-seconds stick was actually

the shorter one, Sierra sat in quiet thought for several seconds before dragging the cut-off

unit fractional sticks back over to their respective complements. In doing so, Sierra

rebuilt the whole sticks, conjecturally establishing an inverse relationship between the
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size of the cut-off unit fractional stick and the size of its complement in order to explain

the surprising sizes of the sticks in question (the complements of the unit fractional

sticks), relative to one another.

During Protocol 15, Sierra had not been able to explicitly verbalize the inverse

relationship that she was conjecturally forming. In fact, during Protocol 16 (April 16th),

Sierra was still unable to predict the relative sizes of two sticks that were complements of

the unit fractional sticks (twenty-four twenty-fifths and thirty five-thirty sixths). But once

the sticks were constructed, Sierra was able to explain the relationship: The twenty-four

twenty-fifths stick is smaller “because the parts are going to be bigger, so that’s going to

take away more; but if the parts are smaller, that’s going to take away less.” She had

become aware of her conjectural operation of disembedding, involved in reproducing the

whole sticks from the sticks in question by adjoining the unit fractional sticks.

Because Sierra had established a general rule for determining the longer stick in

such situations, her explicit statement was an abduction that explained her initial surprise

about the sizes of the stick. Her use of disembedding fit the pattern of abduction at the

operational level, using it unawares, at first, to build a link between her insights into the

reason for the size difference between the unit fractions and her confusion about the

relative sizes of the sticks in question.

Josh

Conjecture J1. I asked Josh to consider the fractional size of a part that Matthew

produced when he accidentally partitioned the left half of a two-halves stick into two

parts (March 5th). Josh responded that the part would be “one-third, if [the parts] were

even.” After observing that the stick actually measured one-fourth, Josh formed an
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abductive conjecture to explain the measure: “[the two fourths] look the same, so you

could put one more [partition] in [the other half]” (Protocol 1).  His abduction was to

explain the surprising measure by imagining one more partition in the (copy of the) ruler

that would produce four even (equal) parts.

Assimilating the fractional name with his part-whole fractional scheme, Josh

understood the necessity of producing four equal parts in the ruler. But in past

experience, he had only produced four equal parts in the ruler using his equi-partitioning

scheme, and, in Protocol 1, the ruler had already been partitioned into three uneven parts.

So, his abduction was formed through a novel use of partitioning, with which he

partitioned the large part into two parts that would be equal in size to the other two parts.

Because Josh was a splitter, partitioning and iteration were inverse operations for

him. So, in using partitioning as Josh did, he could simultaneously understand that the

parts that he produced through partitioning could be iterated in the ruler four times. Such

a conception of the parts would substantiate an iterable one-fourth unit. During the

ensuing teaching episodes and for the first time, I observed Josh estimating the fractional

sizes of pieces (one-fourth, one-third, and one-fifth, respectively) without a partitioned

copy of the ruler. Josh seemed to mentally iterate the pieces within the ruler to determine

the fractional sizes of the pieces, treating them as iterable units and partitive unit

fractions. Alternatively, he may have been using the pieces as templates to produce equal

partitions in the ruler. Either way, I hypothesized at the beginning of the March 18th

teaching episode, that Josh’s novel use of partitioning would engender a novel use of

iterating: iterable unit fractions, and a partitive unit fractional scheme. Josh’s actions in

Protocols 2, 3, 6, 7, and 9 indicate that he had begun constructing partitive unit fractional
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operations, corroborating my hypothesis. Furthermore, by the April 14th teaching episode,

he appeared to be operating consistently with such a scheme.

Conjecture J2a. Attempting to produce three-halves during Protocol 2, Josh

partitioned a copy of the ruler into three parts, broke it into three pieces, and immediately

dragged one of the pieces below the other two. He conjectured (Conjecture J2a) that his

actions had produced three-halves because, using his part-whole fractional scheme, he

could conceive of each piece as being one-half of the two pieces that were left together

on top of the third piece. His uncertainty about the production was indicated by his

wavering between referring to the pieces as being one-half and one-third.

I have hypothesized that Josh’s actions and Conjecture J2a were based on a novel

use of splitting because he had used partitioning and iteration simultaneously in his

production of the pieces. He had used partitioning to produce the three pieces, but with

the goal of establishing one of them as a half that he could iterate three times to make

three-halves. Moreover, he was simultaneously able to recognize the piece as being one-

third of the ruler and one-half of the other two pieces. While such recognition refuted his

conjecture and introduced the constraint of considering fractions relative to the unit bar, it

also indicated that Josh had used a splitting operation because the piece contained records

of two different wholes.

I further hypothesized that Conjecture J2a, and the problematic situation of

considering improper fractions as iterations of unit fractions, would engender partitive

fractions and a (general) partitive fractional scheme, beyond a partitive unit fractional

scheme. But Josh did not seem to construct any non-unit partitive fractions before

Conjecture J4. So, I revise my hypothesis and claim that Conjecture J2a contributed to
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Josh’s continuing development of partitive unit fractions and his construction of a

partitive unit fractional scheme. First of all, the new constraint (mentioned above) might

contribute to Josh’s conception of the importance of explicitly considering the number of

iterations of a fractional part in the ruler in determining the part’s fractional name.

Indeed, Josh’s actions over the next two teaching episodes (March 21st and March 24th)

indicate that Josh had constructed such a concept, and during Protocol 11 (March 28th),

Josh explicitly referenced the sizes of a fraction stick relative to two different wholes.

Secondly, Josh’s actions in forming and testing Conjecture 2b indicate that Josh had

constructed one-half as a partitive unit fraction.

Conjecture J2b. In his second attempt at producing three-halves, Josh broke a

copy of the ruler into six parts and joined three of them, apparently conjecturing that he

could satisfy the goal of making three-halves by producing one-half using three parts.

Conjecture J2b also included Josh’s anticipation that the whole would need six parts if

three parts were to be like a half. This indicates that Josh could conjecturally treat one-

half as a partitive unit fraction, but the 3 in three-halves now seemed to refer to the

number of parts making up a unit fraction rather than the number of iterations of one-half

or the number of parts that he needed to produce in the ruler.

Once again Josh had used both partitioning and iteration in his production. He

partitioned the ruler into six parts with the understanding that three of those parts could

be iterated in the ruler twice. His use of the two operations together indicates another

conjectural use of splitting. The conjecture resulted in Josh’s construction of a fraction

commensurate with one-half.
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Conjecture J3. Having produced a four-eighteenths stick, Josh and Sierra were

surprised to find that it measured two-ninths. I challenged them to explain this during

Protocol 9. Josh conjectured that the four-eighteenths stick would fit evenly into the ruler,

establishing it as a simpler fraction. He dragged the four-eighteenths stick across the

ruler, making marks to keep track of the iterations (as illustrated in Figure 14). When I

asked him what he was doing, he referred to a previous experience (that of Conjecture

J2b and Protocol 3) in which he had noticed a three-to-one relationship between the parts

in a stick and the numerator of its measure: “Remember last time? One of these bars

equaled up to three things.”

Josh formed an abduction, attributing the surprising measure of the four-

eighteenths stick to the generalization of a peculiar aspect of a previous experience. In the

previous experience, he had used iteration conjecturally to establish a three-part stick as

being one-half of the six-part ruler. This introduced the possibility of fraction sticks

having simplified measures. In forming Conjecture 3, Josh attributed the surprising

measure to a similar simplification of the expected fractional measure and again used

iteration conjecturally. This time, the fraction stick and its measure were more

complicated and he was unable to mentally iterate the four-eighteenths stick within the

ruler.

Josh’s abductive operations fit those of a partitive unit fractional scheme for

composite units, except that he experienced the constraint of having two of the smaller

units left over after producing four units of units. His realization of the constraint

indicates that Josh had indeed been involved in units coordination. So, I hypothesized

that Josh’s conjecture might contribute to his construction of a partitive unit fractional
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scheme for composite units, as well as a partitive unit fractional scheme, and might

engender commensurate fractions. In fact, apart from his trouble with fractional language,

Josh demonstrated the operations of a commensurate fractional scheme during the next

protocol (Protocol 10). And, between Protocols 12 and 13 (March 28th), Josh acted

successfully with the operations of a partitive unit fractional scheme for composite units,

including a coordination of the units of units in the ruler.

Conjecture J4. Toward the end of the March 28th teaching episode, I challenged

Josh and Sierra to produce a stick that would measure two-thirds, without using three

parts in the ruler. During Protocol 13, Josh responded by producing a three-ninths stick

and measuring it as one-third. He then began to drag the three-ninths stick across the

ruler, reasoning aloud: “There’s one-third, and then you have another one-third… I’m

going to pull six out of it… because if I put one more it would be six. So, it may be two-

thirds.” He conjectured that if three parts made one-third, then six parts would make two-

thirds.

At the end of my synthesis of Conjecture J3, I mentioned that Josh could

coordinate units of units in the ruler in order to produce commensurate fractions. But in

iterating a composite unit in the ruler and coordinating the units, Josh had always referred

intermediate productions in terms of whole units, rather than fractional units. For

example, during Protocol 10 (March 24), he counted his iterations of a five-part stick,

“that’d make that ten… it’d be fifteen… it’d be twenty,” in order to justify that the stick

was one-fourth of the ruler. The novelty of Conjecture J4 was that he used units

coordination to identify a non-unit fraction produced by his iteration of a composite unit

fraction.
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Conjecture J4 involved a conjectural use of Josh’s units coordinating operations

available within his partitive unit fractional scheme, which had already been emerging

partitive unit fractional scheme for composite units. The conjecture resulted in a

functional accommodation in that scheme, constructing a partitive unit fractional scheme

for composite units that included the units coordination of fractional units with the ruler. I

hypothesized that the conjecture would engender a partitive fractional scheme. After all,

Josh already seemed to have a partitive conception of two-thirds. Furthermore, his

partitive unit fractional scheme for composite units already contained the operations of a

(general) partitive fractional scheme for composite units. Indeed, over the next three

episodes (March 31st, April 14th and April 16th) Josh’s actions provided several

indications for both new schemes, and his difficulty with fractional language dissipated!

Conjecture J5. During the teaching episode on April 25th, I challenged Sierra to

determine the fractional size of an unpartitioned two-fifths stick. After repeating the stick

beyond the ruler (producing six-fifths), she did not know what to do. Josh picked up

where she left off by cutting off the extra piece, except that, in using CUTS, the piece

was not exactly one-fifth. So, when Josh iterated the piece in the ruler, it did not fit

evenly either. He continued this recursive process of cutting and iterating until he had

produced the thirty-one part stick illustrated at the top of Figure 15, closely

approximating the length of the ruler. Protocol 18 records his subsequent actions,

beginning with his act of counting parts and saying resolutely (though with uncertainty),

“maybe thirty-one bars.” Once I reminded him to consider the size of the fraction, he

lined it up with the thirty-one part stick and determined that it was “twelve out of thirty-

one.”
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Josh conjectured that he could use the pieces extending beyond the ruler as co-

partitions of the fraction stick and the ruler in order to determine the size of the fraction

stick. Each time he attempted to use one of these extended pieces, he found a new one to

use in its place. In his actions of cutting and repeating, Josh lost the original goal,

supplanting it with one of evenly partitioning the ruler. His conjecture and actions were

products of his conjectural operations, which included iteration and the manner of

operating demonstrated in Protocol 17. He posited hypothetical pieces to use in iteration

within the ruler. The extended pieces were viable options because they represented the

peculiarity of the situation—the pieces that wouldn’t fit.

Josh acted similarly in Protocol 19 (May 20th), during which his actions also

affirmed that Josh had constructed a partitive fractional scheme. I attribute that

construction to Conjecture J5, but note that his actions of finding co-partitions seemed to

help him in making estimates of partitive fractions.
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Chapter 9: Conclusions

Originally, I intended to work with pairs of students at three different stages of

fractional development. Based on the assumption that I would be working with such

pairs, I hypothesized that the students’ zones of potential construction would be more

alike within pairs than across pairs, and that this hypothesis could be affirmed by

considering students’ actual constructions in the teaching experiments. Having found

only one higher-stage student (Hillary) and one middle-stage student (Will), the three

pairs that I formed included one heterogeneous pair (Hillary and Will) and two lower-

stage pairs, of which I have only reported on one (Josh and Sierra). Whereas that lower

stage pair was homogenous in terms of the students’ construction of the schemes

illustrated in Figure 4 in Chapter 3, one of the students (Josh) seemed to have splitting

operations available. So, it will be at least as interesting to consider zones of potential

construction within pairs as it will be to consider them across pairs.

The first few episodes of the teaching experiment provide indication for the

schemes that the four students had constructed. Hillary had constructed a partitive

fractional scheme and a splitting operation. Will had constructed a partitive unit

fractional scheme and splitting operations were in his zone of potential construction. Josh

could split but had not yet constructed a partitive unit fractional scheme. So, I placed him

in the lower-stage pair with Sierra. Like Josh, Sierra’s only fractional scheme, with which

she could name fractional parts, was a part-whole scheme. The only significant difference

between my models Josh and Sierra’s fractional schemes was that Josh’s part-whole

scheme seemed to be a part-whole fractional scheme, whereas Sierra’s was a part-whole
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partitioning scheme. The distinction between the schemes is that a student with a part-

whole fractional scheme compares fractional parts back to the whole. So, although I

knew that Hillary and Will formed a heterogeneous pair, Josh and Sierra seemed quite

compatible at first, in terms of their constructed fractional schemes.

If we consider the available operations of the students at the beginning of the

teaching experiments, apart from established fractional schemes, Josh and Hillary were

very similar. Both of them were splitters and had demonstrated that they could produce

experiential units of units, reasoning multiplicatively with constructed parts. So,

comparing the constructions of these students to each other and to those of Sierra, in

particular (because she had not even developed fractional iteration), will test whether

students of similar operational development have similar zones of potential construction.

It may be especially interesting to compare Josh and Sierra’s constructions because they

differed significantly in terms of available operations, but not in terms of fractional

schemes. Because Hillary and Will were at different stages in terms of their fractional

schemes (higher-stage and middle-stage, respectively), a comparison of their

constructions in the teaching experiment will also test my original hypothesis: Students at

different stages in terms of their available fractions schemes will demonstrate more

pronounced differences in their zones of potential construction. It may be particularly

interesting to compare Josh and Will’s constructions because Josh was more advanced

operationally (he was already a splitter at the beginning of the teaching experiment), but

Will was more advanced in terms of constructed schemes (he had already constructed a

partitive unit fractional scheme).
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Comparing Actual Constructions

I provide this section to summarize the students’ actual constructions that can be

attributed to conjecturing activity. Then I can compare the power of their conjectures

relative to their operational development, initial stages in terms of schemes, and zones of

potential construction. I focus on comparisons between Hillary and Will, Will and Josh,

Josh and Sierra, and Hillary and Josh for the reasons provided at the end of the previous

section. These comparisons serve to test the hypotheses mentioned there. They also

answer questions about whether students actualize their zones of potential construction

through conjecturing activity and whether there are qualitative differences between the

conjecturing activity of students operating at different stages.

Hillary. From the beginning of the teaching experiment, I had hypothesized that a

reversible partitive fractional scheme and an iterative fractional scheme were within

Hillary’s zone of potential construction. As I learned more about her ability to coordinate

units of units, I also hypothesized that a commensurate fractional scheme was within her

zone of potential construction. Whereas she may have constructed the first scheme before

the teaching experiment, the third scheme was constructed by way of a complementary

fractional comparison scheme that Hillary formed as a functional accommodation in her

partitive fractional scheme. In forming Conjecture H1, she had abducted a new use of

disembedding operations within her partitive fractional scheme. Conjecture H2b was

based on a way of operating that served as a functional accommodation in the

intermediate scheme (her complementary fractional comparison scheme) in order to form

a commensurate fractional scheme.
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Although it is difficult to attribute engendered schemes to any particular event,

Hillary’s generalizing assimilations using her partitive fractional scheme (Conjectures

H3a and H3b) seemed to engender the construction of an iterative fractional scheme. By

the end of the teaching experiment and possibly engendered by Conjectures H5 and H6

(respectively), Hillary had also constructed a reversible partitive fractional scheme for

composite units and a reversible commensurate fractional scheme.

It seems that through most of the teaching experiment, we had been acting in

situations involving schemes and operations that were within Hillary’s zone of potential

construction. After all, by the end of the teaching experiment, she had constructed each of

the schemes that I had placed in that zone. Moreover, she had constructed two of those

three schemes (and many others!) through conjecturing activity.

Hillary and Will. Will’s conjectures were not generally as powerful or

constructive as those of Hillary because they often resulted in constructions that were not

as operationally flexible or permanent as hers. I have referred to these constructions as

procedural schemes. Conjectures W1 and W2, for instance, resulted in procedures that

were based on generalizing assimilations of Will’s whole number operations and ratio

reasoning. I will elaborate on the limitations of such procedures and procedural schemes

in the implications section.

To the extent that Will was able to assimilate aspects of problematic situations

using his fractional schemes, he was successful in making accommodations in those

schemes, resulting in more powerful fractional schemes. Conjectures W3a and W3b, for

instance, seemed to engender an accommodation in his partitive unit fractional scheme,
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which might have engendered the construction of a partitive unit fractional scheme for

composite units.

Conjectures W4a, W4b, W5, and W6 (Chapter 6, pp. 236-239) were Will’s

responses to tasks that involved improper fractions, commensurate fractions, and

reversible partitive fractions. Because Will had not yet constructed a partitive fractional

scheme, these tasks that I posed involved ways of operating that were beyond his zone of

potential construction. Because Will had demonstrated a pronounced ability to construct

procedures that emulated Hillary’s fractional schemes, I did not know, at that time, that

the tasks were inappropriate for Will. In response to such situations, Will constructed

procedures using his whole number operations in making generalizing assimilations of

Hillary’s actions. My misunderstanding of Will’s actions and his propensity for

constructing procedures created a cycle of stagnation in Will’s learning that only abated

toward the end of the teaching experiment, when I realized that Will’s actions were

contextually based. After that time, I began using tasks explicitly designed to engender

partitive fractions, and Will’s operations in forming Conjecture W7 seemed to do just

that.

So, the initial differences between Hillary and Will’s available operations (Will

was not yet a splitter) and stages of fractional scheme construction (Will had not yet

constructed a partitive fractional scheme) contributed to profound differences in their

actual constructions. This indicated that their zones of potential construction were quite

different due to disparities in their operations or fractional schemes. In fact, I have

argued that much of the teaching experiment was composed of interactions between me

and the students (task design and interpretations of students’ actions) that were within



344

Hillary’s zone of potential construction, but outside of Will’s zone of potential

construction.

Will and Josh. We might say that Josh had powerful but latent fractional

operations because he had not yet coordinated his ways of operating into schemes (not

even a partitive unit fractional scheme) for resolving problematic fractional situations.

From this perspective, it should have come as no surprise that Josh constructed several

powerful fractional schemes during the teaching experiment. Will, on the other hand, had

demonstrated a propensity for constructing procedural schemes, which often

circumvented his need to construct fractional schemes. I have suggested that this

propensity was due, in part, to the fact that the problematic situations of the teaching

experiment with Hillary and Will involved ways of operating that were outside of Will’s

zone of potential construction. This was not the case for Josh in the teaching experiment.

Not only did the tasks in the teaching experiment involve schemes that were

within Josh’s zone of potential construction, but he had many operations available to use

in abducting and conjecturing in general. Conjecture J1 involved the abduction

(conjectural evocation with the goal of explaining a surprising situation) of Josh’s

partitioning operation, Conjecture J3 involved the abduction of his iterating operation,

and Conjectures J2a and J2b involved a novel use of splitting. Those conjectural

operations engendered a partitive unit fractional scheme, a partitive fractional scheme for

composite units, and a commensurate fractional scheme. So, before the end of March,

Josh was already operating more powerfully than Will. As an accommodation

engendered by Conjecture J4, Josh also constructed a partitive fractional scheme before

Will did (if Will did at all).
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Throughout most of the teaching experiment, Josh experienced difficulty in

naming fractions. For example, in Protocol 5, he referred to a four-nineteenths stick as,

“19 out of 4… I meant 4 out of 19.” In Protocol 7, he was similarly confused after his

iteration of a unit fraction: “9 out of… Uh. 1 out of 9, I think.” Because his difficulty was

most pronounced when he was attempting to iterate fractions within the unit bar, I

hypothesized that Josh’s struggles with fractional language ran parallel to his struggles in

moving from a part-whole conception of fractions to a partitive conception of them. In

fact, his struggles with language only dissipated after Conjecture J4, the conjecture that

engendered his partitive fractional scheme.

Josh had powerful operations from the start of the teaching experiment but no

fractional schemes other than his part-whole fractional scheme. His construction of

fractional language did seem to run parallel to his construction of fractional schemes and

this construction was rapid. However, it would be precarious to attribute Josh’s relative

success to his operational superiority over Will because Will was working with a

different partner on different tasks. If Josh had been working with Hillary, it is possible

that he would have experienced the same kind of stagnation in his constructions. I can

say that Will’s superiority over Josh in terms of initial fractional schemes was insufficient

for actualizing superior constructions.

Josh and Sierra. I have mentioned that Sierra demonstrated a propensity for

forming abductions in the teaching experiment. Whereas many of them did not involve

fractional operations and were not constructive, three of her five conjectures presented in

Chapter 8 (Conjectures S2, S3, and S5, Chapter 6, pp. 327-329, 330-331) were

constructive fractional abductions. I have suggested that Sierra’s abductions were
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prevalent among her conjectures because she was often unable to act independently in the

teaching experiment and was left in the position of explaining Josh’s actions.

At the beginning of the teaching experiment, Josh seemed to have constructed a

part-whole fractional scheme. Moreover, because Josh was a splitter, he was able to

conceive of situations involving partitioning as situations that also involved iteration.

Sierra’s only scheme for naming fractions was a part-whole partitioning scheme. So,

whenever Josh acted using iteration and partitioning operations, Sierra was able to

assimilate those actions using her partitioning operation. Indeed, in forming two of the

three abductive conjectures mentioned above (Conjectures S2 and S3), Sierra had

abducted her partitioning operation to explain Josh’s actions. Conjecture S1 involved

Sierra’s conjectural use of partitioning to assimilate the actions of her partner at that time

(Cory), and two of those first three conjectures (Conjectures S1 and S3) resulted in

accommodations in her partitioning schemes. Throughout the teaching experiment, she

had been unable to construct schemes involving iteration.

As a result of Conjecture S4, Sierra did construct a part-whole fractional scheme

as a functional accommodation in her part-whole partitioning scheme, but this scheme

does not involve iteration either. Her final conjecture (Conjecture S5) was an abduction

that occurred independently of Josh’s actions and involved her disembedding operation.

Partitioning and disembedding operations were fractional operations that Sierra seemed

to have developed before her initial interview. So, her conjectures involved only the

coordination of existing operations in new ways to satisfy new goals. These coordinations

constructed new schemes through functional accommodation. There is no indication that

any of her conjectures engendered the development of new schemes or operations. And, I
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hypothesize that the construction of new fractional operations, such as iteration, could

only result from engendered development rather than functional accommodation. Their

construction might rely upon the third kind of reflective abstraction in which concepts at

one level of abstraction are projected and reorganized at a higher level. Steffe (1991b)

referred to this as metamorphic accommodation and provided the example given in

Chapter 1.

Sierra was able to use conjectural operations to construct new fractional schemes,

but her schemes were limited to ones that did not involve iteration or splitting. Whereas

Josh’s initial schemes were not very different from Sierra’s, his available operations were

clearly superior. I attribute his success, relative to Sierra, to such operations. This affirms

the hypothesis that students’ zones of potential construction are determined, at least in

part, by their available operations.

Hillary and Josh. I have argued that Hillary and Josh were very similar

operationally (as splitters) but that Hillary had constructed many more fractional

schemes. In their respective teaching experiments, both students were engaged in tasks

that involved ways of operating that were within their respective zones of potential

construction. Based on their actual constructions, it appears that there was a difference

between their zones. But Josh made remarkable progress and it seemed that his zone of

potential construction at the end of the teaching experiment was very similar to that of

Hillary at the beginning. In fact, he had constructed every fraction scheme with which

Hillary had begun and more. So, it seems that the differences between Hillary and Josh’s

zones of potential construction were temporal and shrinking.



348

Summary. Considering the pair-wise comparisons, it seems that splitting

operations contribute more than fractional schemes in determining students’ zones of

potential construction, and perhaps I should have defined the three stages of development

in terms of operations rather than fractional schemes. Hillary and Josh’s actual

constructions were remarkably similar considering the initial differences in their

fractional schemes, and this was not due to any lack of constructive activity on Hillary’s

part. In comparing the construction of students who were operationally different, the

student that was more operationally advanced actualized a greater zone of potential

construction each time, even when, in the case of Josh and Will, the other student began

with more fractional schemes.

I have hypothesized that the students’ zones of potential construction would be

actualized through their conjectural activity. To varying degrees, each student did

actualize her or his zone of potential construction through conjecturing. This was most

remarkable with Hillary and Josh. Their partners’ constructions (especially Will’s)

suffered because some of the tasks were not within their zones of potential construction,

and they coped with this by constructing procedures and inventing abductive

explanations. This observation informs another important research question.

In designing my study, I asked whether students at different stages (as determined

by the fractional schemes outlined in Figure 4, p. 60) would make qualitatively different

conjectures. Considering the conjectures of Hillary and Josh, this does not seem to be the

case; both students used their available operations in forming generalizing assimilations

and abductions, resulting in functional and engendering accommodations. Rather,

students’ zones of potential construction relative to the tasks posed seem to determine
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qualitative aspects of their conjectures. Problematic situations that were beyond a

students’ zone of potential construction provoked conjectures that involved inadequate

ways of operating. Even when a student was successful in resolving such problematic

situations (as Will often was), the result was not a permanent and flexible way of

operating.

Characterization of Conjecture

In Chapter 2, I characterized conjecture as a student’s spontaneous construction

that the student is motivated to test because its usefulness is uncertain. This

characterization is more open than that of Chazan and Houde’s (1989); most notably, I do

not require that the conjecture be explicitly stated. Considering the conjectures presented

in Chapters 6 and 8, it was useful to omit such a requirement because the students were

rarely able to succinctly verbalize their conjectures, and yet they were able to test and use

them in constructing new schemes. Such conjectures remind us that, while Glasersfeld

(1998) was correct to say that conscious accommodations are abductions, not all

conjectures should be considered as conscious accommodations, nor should they all be

considered as abductions (as I argue later in this section).

Whereas many of the conjectural operations presented in Chapters 6 and 8 led to

the construction of new ways of operating, not all of them were accommodations, nor

were all of them conscious acts. Consider, for example, Conjecture H6, in which Hillary

conjecturally coordinated her reversible partitive fractional and commensurate fractional

schemes in order to conjecturally compose seven units of two in an unpartitioned seven-

eighths bar and to join one more unit of two to produce the unit bar. I am sure that she

was aware of her attempts to posit parts within the fraction bar because she said as much
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in Protocol 26, but was she aware that she produced seven units of two in the fraction

bar? And, was she aware that her conjecture would engender a new way of operating?

Finally, because her conjectural operations only engendered the eventual construction of

new schemes, can they be considered as accommodations? I cannot answer these

questions confidently based on my observations of Hillary’s actions, but I can confidently

say that she was conjecturing because she was operating uncertainly in new ways to

resolve and to test her solution to a problematic situation.

Glasersfeld’s assertion about consciousness is important because conjectures

emerge in novel situations and, by their nature, are uncertain. The extent to which the

conjecturer is aware of the uncertainty is the driving force behind the conjecturer’s

critique and test of the conjecture (Peirce, 1998). Furthermore, the motivation for

conjecturing appears to be generated by the need to achieve a goal state without an

established means for doing so. In other words, the need to eliminate a perturbation

provokes conjectural activity, and “need creates consciousness” (Piaget, 1955, 231). I

prefer to use the term awareness, rather than consciousness, because consciousness has

so many philosophical implications. The conjectures presented in Chapters 6 and 8

certainly illustrate a raised level of awareness when students are engaged in conjecturing

activity. For example, considering Conjecture H6 again, it seems unlikely that Hillary

would be aware that she needed to find something that would divide into seven pieces if

she had simply assimilated the situation using a reversible commensurate fractional

scheme (which she had not yet constructed). Later in this chapter, we will examine cases

in which conjectures resulted in students’ raised awareness about aspects of a situation

that served to modify schemes.
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Glasersfeld referred to abduction as “the mainspring of human creativity” (1998,

p. 10) and implied that all conjectures are abductions. There is a way in which we could

claim that all conjectural operations fit the abductive pattern. Conjectural operations

allow students to act as if they know how to reach a cognitive goal that would be beyond

their ability to reach otherwise. We might consider Conjecture W1 to be an abduction

because Will’s conjectural use of the adding one more operation in a fractional situation

made it possible for him to produce an eight-sevenths bar from a seven-sevenths bar.

That is, a production that at first seemed confusing to Will became a matter of course

once he applied the conjectural operation of adding one more part to the given seven-

sevenths bar. However, I reserve the use of the term abduction for conjectures where a

student is trying to explain a surprising observation.

In my view, conjectural operations are abductive if and only if they produce a

result that explains the surprise. In explaining a surprise, a student would be aware of the

conjecture, its role in explaining, and possibly even her novel way of operating. Perhaps

this is why Glasersfeld referred to abductions as “accommodations done consciously”

(1998, p. 9). As an example of such an accommodation, consider Conjecture H1 in which

Hillary’s conjectural use of her disembedding operation fit the pattern of abduction. She

used disembedding to produce the complement of a two-thirds bar (thus, maintaining the

unit bar) to explain the surprising measure of a six-ninths bar. She seemed explicitly

aware of the complements of fractions, both in forming Conjecture H1 and in subsequent

applications of the resulting scheme, her complementary fractional comparison scheme.

Conjectures are uncertainties that occur in response to perturbation. Indeed,

uncertainty itself is a kind of perturbation. So, we might ask whether provoking students
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to experience perturbations is sufficient to foster conjecturing activity. We might also ask

whether all conjecturing activity fosters learning and development. The answer to both

questions would be no. There are other responses to perturbation besides conjecturing,

and, even when conjecturing activity does occur in response to a perturbation, some

conjecturing activity is unconstructive.

Students between the ages of nine and eleven years (the students in my study were

eleven) are prone to syncretism in reasoning (Piaget, 1955). As an example, on March

20th, Hillary and Will had been attempting to produce the bars representing the mixed

number for seven-fourths. Will pulled a one-fourth bar and a three-fourths bar from the

seven-fourths bar and claimed that he had produced one and three-fourths. At first,

Hillary appeared uncomfortable with Will’s production, but then agreed with his

subsequent explanation. Hillary’s assimilation of Will’s explanation and her conception

of one and three-fourths called the same schema so that one implied the other without her

deductively examining the details of the situation further.

Part of the reason for Hillary’s agreement in the previous example was that

Hillary had developed a particularly agreeable disposition in working with Will.

Conjecture H5, for instance, was Hillary’s vain attempt to justify Will’s claim that seven-

twelfths would measure as four-sixths. When she considered Will’s idea, she was able to

make some sense of it by considering four apparently equally sized parts. Hillary tended

to agree with Will simply because she could understand his reasoning, even when it was

very different from her own. Such social and affective dispositions introduce important

implications for fostering conjecture, which I will discuss in the final (implications)

section of this chapter.
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Social and affective dispositions aside, there are other ways that perturbations

might be eliminated. If a situation provokes a student to operate in a way that is radically

different than her present ways of operating, the student might not attend to some aspects

of the situation that she otherwise would and use schemes that are more elementary than

others that she has available. I refer to this as regression. For example, during the March

12th teaching episode, I asked Hillary to tell me how much the old unit bar would

measure if her three-fourths bar were to be used as the new unit bar. Hillary began to

focus on the fourth part in her bar and claimed that her bar would be one-fourth. Whereas

she lacked an iterative fractional scheme with which to meaningfully interpret the task,

she could have used her partitive fractional scheme to recognize that the old unit bar

could not be one-fourth of her bar. But instead, she had relied on a part-whole fractional

scheme to name one-fourth. This sort of regression was common to both Hillary and Will

when dealing with complicated tasks involving improper fractions, until Hillary had

begun to produce improper fractions.

Even when the students did respond to perturbation with conjecturing activity,

their conjectures were not always constructive. In particular, attempts to induce ways of

operating that are outside of a student’s zone of potential construction were often met

with the construction of procedures and procedural schemes. Such responses were

especially common among Will’s conjectures. I will describe these responses and

elaborate on potential factors provoking them in the implications section.

Whence Conjecture?

Analogy. Polya (1954a) suggested that conjectures are constructed through

analogy, “identifying specific relationships between the respective components of two
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systems” (p. 13). Glasersfeld (1998) agreed that this was plausible, but did not go so far

as to say that analogy was the root of conjecture. He said that analogies involve intuiting

a rule based on a single observation (p. 7). I begin with an example of a conjecture that fit

Polya and Glasersfeld’s characterizations, so that I can examine their role in the

conjecturing of the students in my study.

In Conjecture W6, having observed Hillary’s production of the unit bar from an

unpartitioned two-thirds bar, Will attempted to produce the unit bar from a two-fifths bar

by partitioning it into two parts and joining on three more of those parts. His actions fit

Polya’s assertion about analogy concerning systems, interpreted here as experienced

situations. Will was specifically aware of the relations that he was forming between a

new situation and one in which he had observed Hillary acting. He used the relations that

he identified in order to construct a procedure for acting in the new situation. This pattern

is also closely aligned with Glasersfeld’s assertion about analogy: Will had intuited a rule

for acting based on a single observation.

Conjectures like Conjecture W6 often resulted in procedures that only allowed the

student to act as if he had constructed particular fractional schemes and concepts. This

may be symptomatic of analogies in general; the only operational novelties involved are

those of assimilation. In the case of Conjecture W6, there was a sequence of assimilations

of Hillary’s actions that served as a sequence of steps for acting in similar situations.

Whereas Will’s assimilations in the context of attempting to understand Hillary’s actions

served to raise his awareness about his actions in trying to emulate Hillary’s actions, he

did not experience any new constraints in operating as he might in a generalizing

assimilation.



355

Generalizing assimilation as conjecture. A generalizing assimilation is the

assimilation of a novel situation through which the trigger of the scheme is

accommodated (generalized) to include similar situations. Steffe and Thompson (2000)

have suggested that teachers might encourage generalizing assimilations by varying the

contextual details of problems that involve familiar ways of operating. In the next

section, we will examine the potential effects of generalizing assimilations in terms of

accommodations in schemes. For now, I only mention that generalizing assimilation can

introduce new constraints to a student’s way of operating, which can both modify the

trigger of the scheme used in assimilation and engender operational change. Conjecture

W3a, Will’s assimilation of a situation involving composite units within his partitive unit

fractional scheme, is an example of a generalizing assimilation that introduced a new

constraint—that composite units sometimes do not exhaust the whole. Other conjectures

that can be considered as generalizing assimilations are Conjectures W1, W2, H3a, H3b,

and H5 (Chapter 6, pp. 232-234, 243-244, 246-247). In the other two cases with Will

(Conjecture W1 and W2), the generalizing assimilations resulted in procedures that did

not contribute to Will’s fractional knowledge, further supporting my claim that not all

conjectural activity is constructive.

From the examples mentioned above, we see that generalizing assimilations were

a common conjectural response to perturbation for Hillary and Will. I claim that this was

due to the fact that Hillary and Will had constructed more fractional schemes with which

to assimilate various situations. Moreover, in working with Hillary, Will was inclined to

assimilate her actions using whole number schemes when his fractional schemes were

inadequate. If we were to consider generalizing assimilations involving operations
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(without specialized schemes), many of Josh’s conjectures would fit the description of

generalizing assimilations. For example, Conjectures J2a and J2b might be considered as

generalizing assimilations using his splitting operation. In Conjecture J2a, Josh used

splitting to produce a three-thirds bar that he could also treat as three-halves. Attempting

to produce three-halves introduced a problematic situation in which Josh had not used

splitting before, and so his assimilation of the situation using splitting might be

considered a generalizing assimilation. However, operations, by themselves, do not have

as much structure as schemes. They do not provide a pattern for acting in a situation to

achieve a goal; they only provide for action in transforming one object into another. So,

Josh’s conjecture cannot be described as a generalizing assimilation that used splitting to

take into account the various aspects of the situation. It would be just as appropriate to

consider Conjecture J2a as an abduction, but I have already argued against such a loose

use of terms.

Glasersfeld (1998) alluded to analogy as a potential response to perturbation when

he wrote of “formerly disregarded aspects of the triggering situation being taken into

consideration.” I refer to generalizing assimilation in that regard. The key difference

between assimilation and generalizing assimilation is that assimilation never takes into

consideration those aspects of the situation that do not trigger the scheme; the student

does not notice them. Consider again Conjecture H5 (already mentioned in describing

Hillary’s agreeability). The situation of trying to predict the measure of a seven-twelfths

bar did not trigger Hillary’s commensurate fractional scheme, presumably because she

could not produce equal composite units from the seven twelfths. But when Will

suggested that the bar might measure four-sixths, Hillary made a generalizing
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assimilation using her commensurate fractional scheme by considering two equal

composite units within the seven-twelfths part and two more in its complement. This was

an assimilation in which she was aware of novel aspects of the situation, and being

aware of the novel aspects involved in her use of the scheme gave her more control to use

the scheme flexibly.

Abduction, perceptual judgment, peculiarities, abducted rules. Glasersfeld (1998)

suggested that one plausible response to a perturbation is to re-examine the situation that

provoked the perturbation and identify peculiar details about it. Indeed, such activity

accounts for much of the students’ activity in explaining surprising observations—i.e., in

forming abductions. As with syncretism of reasoning and some of the generalizing

assimilations mentioned above, many of these abductions seemed to do little in terms of

constructing new schemes. For example, Will blamed surprising measures on the position

of the “unit bar” label (Protocol 2) and the direction of partitioning (Protocol 7). I have

noted that Will, in particular, was continually inventing rules like this to explain

surprising situations in which his existing schemes and procedures did not produce the

desired results. His rules can be considered abductions, but they were not insightful in the

context of fractions.

Other times, the students’ abductions helped them to gain insight into “the

structure of a problem and the function of statements” (Lakatos, 1976, p. 121). This was

the case when Hillary (Protocol 1) explained why a bar had measured eight-sevenths

instead of eight-eighths as she had predicted: “because we added on.” Of course, such

insights do not have to be conjectural, but may be perceptual judgments in which a

student notices something he had not noticed before and attributes, with certainty, its role
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in the situation. During the March 20th teaching episode with Hillary and Will, for

example, Will eventually realized why he needed four one-fourth parts to produce the 1

in one and three-fourths: “It was a whole entire thing—a unit bar.” Also, just before

forming Conjecture J1, Josh realized why a part that was a half of one-half of the ruler

did not measure one-third as he had expected: “Because [the parts are] not even.” These

are insights based on perceptual judgments, which, unlike abductions or other

conjectures, are unquestioned at the time they are made.

Sierra had a particular affinity for forming abductions, perhaps because she was

operationally lagging behind Josh, whose actions she attempted to explain after he had

completed them. For example, after Josh had produced four-eighteenths and measured it

as two-ninths, Sierra explained (Protocol 9) that this was so because, “2 times 9 is 18, and

there’s eighteen parts in there.” This is another example of an unconstructive abduction; I

will further examine Sierra’s propensity for them in comparing her actual constructions to

those of Josh.

Sierra was able to use abductions constructively too, particularly when her

abductions involved fractional operations. In fact, this was the case for each of the

students. In Chapter 2, I referred to the use of operations in following the pattern of

abduction as abducting. I now return to that terminology and examine a few examples of

how abducting generated conjectures.

In forming Conjecture S2, Sierra abducted her disembedding and number addition

operations to constitute a three-part stick as one-half because she had no available

scheme for producing one-half from three parts. By coordinating the two abducted

operations, she was able to link the goal of producing one-half with the situation of
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having three parts. She formed a similar abduction in Conjecture S3. In Conjecture S5,

she used disembedding to link an established relationship (between number of parts used

in the ruler and the sizes of the unit fractions produced) to an unestablished one (between

the sizes of the complements of the unit fractions). This time the link involved the use of

only one operation to translate an unfamiliar relationship into a familiar one. Conjecture

J1 was an abduction that depended on Josh’s recognition of a peculiarity. His notice of

the peculiarity was a product of the perturbation that he had experienced (in the sense that

Glasersfeld suggested), and the peculiarity called Josh’s iteration operation, which he

used abductively. Other examples of abduction include Conjectures H1, H4 and J3 (pp.

240-242, 244-246, 335-336). Will alone appeared not to engage in abducting, perhaps

due to his propensity for generalizing procedures from his observations of Hillary’s

actions.

In saying that naïve conjectures are preceded by pre-naïve conjectures and

refutations, Lakatos (1976) may have been referring to conjecturing as the means of

learning and development: We build from previous operations and schemes by

conjecturing. I have not made such a contention. Indeed, I have interpreted Lakatos’

remarks as referring to the origins of conjecture. He seemed to suggest that conjectures

come from conjectures. I have provided examples to demonstrate that this is not always

the case, citing generalizing assimilation, abducting, and the use of existing operations in

new ways or new situations to conjecturally satisfy a goal. However, I have also cited

examples in which one conjecture followed from another. For instance, I have mentioned

that Conjecture S3 opened the possibility for Sierra to consider partitions within a part
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being distributed across the whole, which was instrumental in her formation of

Conjecture S4.

Considering Lakatos’ remarks further, conjectures can be formed and refined

through a series of miniature conjectures that serve to transform the goal of a situation. In

Conjecture H1, Hillary and Will formed these miniature conjectures in interaction. Both

Hillary and Will experienced perturbations at the surprising measure of a six-ninths bar.

Will began with a miniature conjecture that took form in his question, “Is two-thirds the

same as six-ninths?” In assimilating Will’s question, Hillary’s partitive fractional scheme

was evoked to estimate the size of a two-thirds bar. This transformed her goal of

explaining the surprising measure to one of comparing the two bars, which she was able

to do by conjecturally using her disembedding operation.

In Conjecture W7, Will used his partitioning operation to conjecturally transform

an unfamiliar situation to a familiar one. His original goal had been to reproduce the unit

bar from an unpartitioned five-fourteenths bar. He had a scheme available to produce the

unit bar if the fraction bar were partitioned, so he formed a new goal of producing the

appropriate partitions in the fraction bar and conjecturally partitioned it into five parts.

But in transforming a goal through a series of miniature conjectures, a student can loose

track of the larger goal. This was the case in Conjecture J5 when Josh became so

involved in recursively positing and iterating pieces that he never named the fraction he

had originally intended to name and was, instead, satisfied with evenly partitioning the

ruler. Such examples illustrate what Polya (1957) must have meant when he said, “Many

a guess has turned out to be wrong but nevertheless useful in leading to a better one” (p.

99).
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Wherefore Conjecture?

Poincaré (1952) claimed, “we can only ascend through mathematical induction”

(p. 16). I am now prepared to refute that claim, at least as it might be applied to the

construction of schemes, by citing specific constructions resulting from students’

conjecturing activity. In this section, I consider students’ constructions resulting from two

broad categories of conjecture: generalizing assimilations and abducting. I then provide

examples of constructions resulting from conjecturing in general. These examples also

refute Fodor’s (1980) tenet that conjecturing is an inductive process, by presenting “a

notion of learning incredibly different” from that of induction (mathematical or

otherwise) and deduction (p. 149).

Results of generalizing assimilations. In the previous section, I mentioned some

possible results of generalizing assimilations. Obviously, a student’s successful

generalizing (conjectural) assimilation of a new situation into an existing scheme should

modify the trigger of the scheme. This is, in part, because in acting conjecturally, a

student’s awareness about their activity is raised. Not only does this make the student

more aware that she is acting in a new situation, but it also raises her awareness about

the details of the situation and how she is acting, often introducing new constraints to her

ways of operating. Below, I offer examples of these three possible results from

generalizing assimilations (modification in the triggers of schemes, raised awareness of

situations and actions, and the introduction of new constraints to operating).

In Conjecture W3a, Will was aware that he was operating in a new situation as he

would in situations involving unit fractions. This raised awareness may have contributed

to the modification of the scheme’s trigger (to include situations involving composite
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units) because, when he was challenged with a similar situation in forming Conjecture

W3b, he acted immediately using the scheme. Furthermore, when he acted on Conjecture

W3b, he explicitly attended to the units of units that he was producing through his

iterations of five-elevenths and experienced the constraint of being unable to exhaust the

ruler. These two conjectures might engender Will’s eventual construction of a partitive

unit fractional scheme for composite units. I have already mentioned Hillary’s raised

awareness due to her generalizing assimilation of Conjecture H5. She became aware of a

new constraint because her assimilation failed to produce the desired result, but this new

constraint served as a functional accommodation in her commensurate fractional scheme.

Considering the new constraints that students experienced in operating reinforces

my claim in Chapter 1 that operations change through operating. Indeed, the operations

of Will’s partitive unit fractional scheme had changed because he conjecturally used it in

a new situation and experienced a new constraint. Recognizing the constraint provoked

Will to produce experiential units of units using the scheme, which he eventually

abstracted as a units coordination operation within his partitive unit fractional scheme.

Results of abducting and other conjectures. Conjectures H1, H4, S3, J1, and J3

(pp. 240-242, 244-246, 328-329, 331-333, 335-336) were abductions that yielded new

ways of operating. My analysis of these conjectures has demonstrated that abducted

operations often engender the construction of new schemes. Consider as examples,

Conjectures J1 and J3. Other examples that fit neither abducting not generalizing

assimilation follow.

Conjecture J1 involved Josh’s abduction of his partitioning operation to

conjecturally partition an unevenly partitioned fraction in order to make the partitions
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even and produce one-fourth. Because Josh was a splitter, his actions of partitioning

translated to actions of iterating and engendered his construction of a partitive unit

fractional scheme. Conjecture J3 involved Josh’s abduction of iterating operations to

explain the measure of a four-eighteenths stick and also engendered a scheme, a partitive

unit fractional scheme for composite units.

Many of the conjectural operations presented in Chapter 6 and 8 do not fit the

pattern of abducting, nor are they generalizing assimilations. Some of them served as

functional accommodations in schemes, as in Conjectures H2b, S1, and S4 (pp. 242-243,

326-327, 329-330). Others engendered accommodations in schemes, as in Conjectures

H2a, H6, and J4 (pp. 242, 247-248, 336-337). All of them affirm that conjectural

operations can result in the construction of schemes. I will use a couple of the examples

already presented in this section to summarize how conjectural operations do this, thus

providing an answer to one of my main research questions: “How might conjectural

operations engender accommodations in schemes?”

Sometimes, conjectural operations played an even more direct role than

engendering accommodations in schemes. Not only do conjectural operations engender

accommodations, but in being acted upon, they often serve as the accommodation itself. I

have described how Hillary’s generalizing assimilation in Conjecture H5 introduced a

new constraint in her ways of operating that constituted a functional accommodation in a

scheme. I have argued that Will’s generalizing assimilation in Conjecture W3a raised his

awareness about his experience of a situation, modifying the trigger of his partitive unit

fractional scheme. When conjectural operations do engender accommodations, this

appears to occur through the reflective abstraction of novel actions used in the situation.
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Such was the case in Conjecture W3b, through which Will eventually constructed units

coordination as part of his partitive unit fractional scheme, possibly engendering a

partitive unit fractional scheme for composite units.

Modalities of conjecturing and testing. I conclude this section by answering some

questions implied by the work of Arzarello et al (1998). Their work described an

ascending modality of forming a conjecture and a descending modality of testing

(proving) it, and they suggested that abduction was the means of switching from the

ascending modality to the descending modality. I complicated this question by

considering students’ conjectural operations rather than their explicitly stated conjectures.

After considering the conjectural operations of the students in my study, the question of

how students switch seems much more clear. I would say now that the descending

modality begins the moment that a student begins acting out her conjectural operations.

This may even precede any verbalization on the part of the student. Indeed, students’

verbalized conjectures may be part of their actions in testing the conjecture. For example,

Sierra began testing Conjecture S5 long before she could describe it, and her attempts to

do so (Protocol 16) seemed to increase her confidence in the conjecture.

The ascending modality is only the conjectural evocation or coordination of the

operations involved. This may be the reason Peirce (1998) said that, “the different

elements of the hypothesis were in our minds before; but it is the idea of putting together

what we never dreamed of putting together that flashes the new suggestion” (227). This

does not imply that all possible conjectural operations are determined, as an operational

translation of Fodor’s paradox would suggest; I have already argued that operations

change through operating, particularly through conjecturally operating.
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The question that remains is why, in conjecturing, students call particular schemes

or operations instead of others that are available to them. Skemp (1989) offered the

following suggestion concerning the calling of schemas: Schemas form a sort of casting

net that associates past experiences in operating and connects to (coordinates) other

schemas (pp. 131-141). Perhaps students’ initial assimilations of problematic situations

using schemes similarly connect to other schemes and operations. Those schemes and

operations, then, might be used in conjecturally operating. If additional aspects of a

situation are recognized once the student had experienced the perturbation of being

unable to resolve the problematic situation, assimilations of those aspects may resonate

with additional schemes and operations, which then may be used in conjecturally

operating. In fact, in each conjecture that we have examined, we can find connections

between the students’ initial assimilation of the problematic situation and the conjectural

scheme or operation used. For example, in Conjecture W1, I have argued that Josh

assimilated eight-sevenths as a ratio of whole numbers, and then he used the conjectural

operation of adding one more, which was a whole number operation that he had used in

previous situations to make 8 from 7.

Implications

In considering the implications of my study on conjecturing, it is important to

keep in mind that this study was conducted in the context of working with fractions,

using dynamic software. TIMA:Bars and TIMA:Sticks were designed to provide

occasions for cleaner and quicker actions than students could otherwise perform with

drawings or construction paper. Still, students’ perceptions of the fractional situations, as

well as the available means for them to act on their conjectures, included perceptions of
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the software. This first concern may have been minimized by my focus on students’

operations. While the schemes and operations that students used may have been triggered

by contextual details and limitations in working with the computer programs, I was using

the students’ specific actions to make inferences about changes to the constraints in their

ways of operating. As a second concern, conjecturing activity in working with fractions

may differ from other mathematical conjecturing activity and, of course, conjecturing in

general. This second concern is minimized to the extent that students’ fractional

operations generalize to operations in other situations, just as fractional operations are,

themselves, constructive generalizations of whole number operations.

It is also important to consider that I worked with four students who, as

individuals, represented only themselves. But my models of them serve as epistemic

students that teachers may use to make inferences about the conjectural operations of

their students, if teachers can interpret their students’ actions to be similar to those

described here. Comparing and contrasting the epistemic students that I have created and

described should inform decisions that teachers make in attempting to promote learning

and development through conjecturing activity.

Fostering constructive conjecturing. In order to study students’ conjectural

operations as a teacher-researcher, I needed to encourage and foster conjecturing. Indeed,

my second major research question involved determining how students develop

conjecturing dispositions. In characterizing and describing students’ conjectures in this

chapter, I have noted several factors contributing to or inhibiting constructive

conjecturing activity. I summarize those factors here while elaborating on others in order

to inform future research, as well as classroom teaching.
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I have mentioned a few social factors contributing to conjecturing. In particular,

Hillary’s disposition of agreeability in working with Will often resigned her simply to

concur with his assertions, halting her potentially constructive conjectural activity. Other

times when Will made conjectural assertions, she abandoned her activity in working

toward a goal to begin conjecturing as to why Will’s assertion was viable, as in

Conjecture H5. Still other times his assertions seemed to trigger her assimilation of the

situation using a different scheme, as in Conjecture H1. All but the first were potentially

constructive responses to her interactions with Will.

Perhaps the most constructive contribution provided by Hillary’s interactions with

Will was that she had begun focusing on the numbers of parts in fractions, as he did. At

the beginning of the teaching experiment, she had been focused on the relative sizes of

fraction bars, often ignoring the parts within the bars. Will’s focus was quite the opposite,

and, in assimilating his arguments, Hillary began to use her whole number operations

more, coordinating them with her fractional operations. This seemed to be a key factor in

her construction of a commensurate fractional scheme.

So, interaction with peers and even Hillary’s agreeable disposition were

particularly positive factors in generating constructive conjectural activity. I suggest that

teachers encourage students to verbalize their conjectures so that other students might

build from those assertions. But it is equally important for teachers to encourage students

to be skeptical about such assertions, attempting to explain why they are viable or not.

At the end of Chapter 2, I mentioned several potential affective issues that might

affect conjecturing, including confidence and frustration (Skemp, 1989). Will and Josh

exhibited frustration when they experienced difficulty in acting on their conjectures,
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during Protocols 6 and 19 of their respective teaching experiments. Their frustration

halted their activity, and they were resigned to guess at an expected result of their actions.

For example, in Will’s case, he was trying to iterate a three-ninths bar within the unit bar

by dragging the three-ninths bar to determine its measure. When he experienced

frustration in trying to drag it without overlaps, he simply agreed with Hillary’s previous

assertion that it was one-third. Frustration also stifled activity during much of the March

18th teaching episode with Josh and Sierra. I have attributed this to the nature of the tasks

posed in that teaching episode: Many of the tasks involved the production of improper

fractions and were well outside of the students’ zones of potential construction. From

these examples, I draw two conclusions about how to avoid student stagnation in

conjecturing activity: Design tasks that are within the students’ zones of potential

construction, and provide intermittent opportunities for students to break from task-based

activity and engage in mathematical play with the available actions in their mathematical

environment.

In working with pairs of students, I was able to provide individual attention that

may have minimized differences among the students’ levels of confidence. Still, I can

make a few comments about Will, the only student to exhibit a high level of confidence

through most of the teaching experiment. Will was willing to act conjecturally, even in

situations that were well outside of his zone of potential construction. This was probably

a contributing factor to his construction of procedures for acting, and it was certainly a

factor in my overestimations of his ways of operating. So, while confidence may foster

conjecturing activity, the activity is not always constructive activity. In fact, Will seemed
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to form more conjectures than the other students but demonstrated the least progress in

terms of new ways of operating.

Conjecturing is about achieving goals by uncertain means. Skemp (1989) claimed

that pleasure accompanies experiences that bring students toward a goal state. To the

extent that cognitive goals can be considered as miniature goal states, pleasure should

accompany constructive conjecturing. In fact, Piaget (1969) claimed that affect provides

the energetics of all cognitive activity and is inseparable from it. Furthermore, I have

noted throughout my analysis that expressions of excitement accompanied students’

conjectures. Although fun may not be the reason teachers encourage conjecturing,

student enjoyment during mathematical activity serves as a good indicator that the

activity is constructive.

Finally, it is important to consider the ages of the students when trying to foster

conjecturing activity. Whereas I have demonstrated sixth-grade students’ ability to

operate conjecturally, I expect that conjecturing activity among younger students would

be qualitatively different. I have provided examples in Chapter 1 that fourth-grade

students are capable of operating conjecturally too, but developmental issues, like

syncretism of reasoning, may be more of a factor among them.

ZPD and ZPC. I have hypothesized that Will’s propensity for constructing

procedural schemes interfered with his construction of a partitive fractional scheme.

Because he had constructed a partitive unit fractional scheme by the beginning of the

teaching experiment, it seems that the more general scheme should have been in his zone

of potential construction. But until the end of the teaching experiment, the tasks that I

posed did not engender that scheme. I claim that the tasks that I posed were within Will’s
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zone of proximal development [ZPD], but they involved ways of operating that were

outside of his zone of potential construction [ZPC]. I attribute Will’s propensity for

constructing procedural schemes to this claim. And, I note that tasks at the end of the

teaching experiment took into account Will’s ways of operating, involved new ways of

operating that were within his ZPC, and engendered a partitive fractional scheme.

As the teacher-researcher, I designed tasks accounting for Hillary’s ways of

operating and potential reorganizations of her schemes and operations. In other words,

she and I were working within her ZPC. Will’s actions indicated that he could act as

Hillary did, and I inferred that Will had constructed the same operations that Hillary had

constructed. I argue that, by definition, Will and I were working within his ZPD, and, at

the time, because of the inferences I had made, I thought that we were working within his

ZPC. Because ZPD emphasizes an expert’s mathematics and the student’s actions,

teachers using this zone may create the same kind of cycle of stagnation that I did in

working with Will. The problem is that, in describing learning, ZPD does not account for

students’ operations, assimilations, and accommodations.

“For real understanding,” Wertheimer (1945) claimed, “one has to re-create…the

structural inner relatedness, the requiredness” (p. 194) of a situation. From a scheme-

theoretic perspective, operations provide the structural inner relatedness and requiredness

of problem solving situations, but Will seemed unable to reorganize his existing

operations to construct ways of operating that indicated understanding of the tasks that I

was posing. His actions in the teaching experiment indicate that he was often able to act

as Hillary did, but lacked the inner relatedness that would allow him to operate flexibly,

modifying his operations to account for variances in the tasks and problematic situations.
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His actions were based on procedures and procedural schemes that served as a sequence

of steps that he could follow.

For example, in forming Conjecture W4a, Will was able to produce a seven-

fourths bar, but he did not understand that the parts in the bar were each one-fourth of the

ruler. Such procedures were invented in the social context of assimilating Hillary’s

actions with his whole number knowledge and ratio reasoning, relating the numerators

and denominators in such fractions to the number of parts needed in the unit bar and the

fraction bar. He could not assimilate Hillary’s actions using his fractional operations

because he had not yet constructed a partitive fractional scheme. Limitations in his

understanding of the situation were indicated by similar attempts at producing improper

fractions with some variation in the context, as was the case in his actions surrounding

Conjecture W4b.

Based on Will’s actions in forming Conjecture W4a and producing a seven-

fourths bar, I might conclude that Will had learned to produce improper fractions through

his interactions with Hillary and that he would soon develop iterative fractions. After all,

Will’s actions and that conclusion fit Vytgotsky’s (1978) description of a “social learning

that precedes ontological development,” one lagging behind the other (p. 90). Indeed, I

did draw such a conclusion in working with Will, and it was to Will’s detriment. Hillary

had been working with Will at a “level of potential development as determined through

problem solving in collaboration with more capable peers,” otherwise known as Will’s

ZPD (p. 86). But what he learned was not a flexible way of operating, and the

development that was supposed to lag behind (the construction of iterative fractions) did

not develop during the teaching experiment.
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Will could not develop iterative fractions from the procedures that he had learned

in working with Hillary because (as I noted in my analysis of Protocol 17) he lacked the

fractional operations to insightfully evaluate them. In my analysis of Protocol 19, I noted

that Will’s ability to resolve perturbations by acting with procedures, and his inability to

identify reasons for their limitations, circumvented the need for operational changes that

might have otherwise served in constructing a commensurate fractional scheme. In other

words, his procedures resulted from his assimilations of Hillary’s actions as the students

worked on tasks that were within Will’s ZPD, but involved ways of operating that were

not within his ZPC. To illustrate the difference between students’ constructions caused by

the disparity between their ZPD and ZPC, I contrast Will’s actions with those of Hillary

during Conjectures W5 and W6.

As a result of Conjecture W5, Will constructed a procedural scheme for reversing

ratios. In many situations, he used the procedural scheme to act just as Hillary would with

her reversible partitive fractional scheme. This indicates that the latter scheme was at

least in Will’s ZPD. In fact, Will could use his procedural scheme to generalize some

contextual details, such as the specific numbers in the fractional measure, but his actions

in forming Conjecture W6 indicate that his scheme depended on other contextual details,

such as starting from a partitioned fraction bar that does not have a simplified measure.

In forming Conjecture W6, Will abandoned his procedural scheme for a new one,

bringing into question whether his procedural schemes were permanent enough to call

schemes at all. And, there was still contra-indication at the end of the teaching

experiment that Will had constructed the reversible partitive fractional scheme.
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Similar examples can be found in my analysis of Sierra’s actions too (e.g.

Protocol 13). Both Sierra and Will had a motivation to assimilate their partners’ actions

using operations that were not insightfully related to the situation. This was due to the

power of their partners’ operations and my failures as a teacher. While the tasks that I

posed were usually in the ZPD for each student in each pair, they involved ways of

operating that were often in the ZPC for only one student in each pair.

Implications for further research. Because I was focused on provoking conjecture,

rather than promoting learning, it took several teaching episodes before I noticed that

Will was not building new operational schemes from old one, and instead was

constructing procedures that seemed to operate independently of each other. This

problem would be compounded in a classroom of twenty-five students. I would like to

conduct future research with whole classes, attempting to design tasks provoking

conjecturing activity. I could then consider learning within the social dynamic of the

classroom, while attempting to identify students operating as Will had versus those

students operating as Hillary had. Teaching experiments could be conducted with

individual students outside of the classroom to test my hypotheses about their conjectural

operations and operational change. Building from the models of conjecturing and

findings of this study, such future studies would have more direct implications for

classroom instruction, specifically on how teachers can foster conjecturing activity in the

classroom that would result in operational development.
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Appendix A: Interviews Tasks

1. a. Mark off 1/5 of the bar.

b. Mark off 4/5 of the bar.

2. a. Suppose that you share this candy bar with 6 other people. Cut off your share.

b. Do you think that your part is one of 7 equal parts? Show me that it is one of 7

equal parts.

3. a. If you cut off 2/7 of this candy bar, how much will be left over?

b. (Hiding all but 3/7 of the bar). What fraction of the bar is hidden?

4. a. This is my piece of string. It is twice as long as your piece. Make your piece.

____________________

b. How does the length of your string compare to the length of mine?

c. (Repeat a. with “five times as long”)

d. (Repeat b.)
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5. This string is 3/4 as long as the string I want you to make. Make your string.

____________________

6. Here is a piece of string. Make a string that is 4/3 as long as this string.

____________________

7. This string is 5/4 as long as the string I want you to make. Make your string.

____________________

8. Show me 1/4 of 1/2 of this bar.

What fractional part of the bar is filled?

9. a. Pretend this is a rectangular cake and that I take half of it. Cut off my half.

b. Now you take 1/3 of the leftover part. Cut off your share.

c. What fraction of the whole do you have?

d. What fraction of the whole is left over?
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10. a. Cut this bar into thirds.

b. Now cut one third so that it is one sixth of the whole.

c. How can you tell whether it is one sixth of the whole?
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Appendix B: Example from Spreadsheet

4/21/2003hw students give problems for t
Time Mouse Activity Schemes

0:00:00 make 7/8 using 16 parts
0:01:15w pulls 8 from 16 and 7 from 8 part-whole
0:03:15w iterates in unit bar. W: 2 and 1/16 pufs for cu's
0:05:00w measures 7/16 "bc I took 7 parts out of 16" pw
0:05:30 what is it 7/8 of?
0:07:00w "well, if you reduce 16 you get 8"
0:08:00 `
0:08:30w makes 7/8 and compares to 16/16 to draw 14 size
0:10:15 what fraction is half of 14/16? W: 7/8
0:11:00w shades 14/16 by 4's, then 2's to find half
0:12:30w pulls 7 W: 7/14

0:13:30
students discuss and count 14. H had thought there were 16 and
then agreed w/ 7/14!

0:15:30wh
pose for t: large #'s, h/v, recursive part/pull, wipe, rotate, big
cover

0:21:00 t measures 1/8 and iterates to 8/8
0:22:50hw pose for t: 32x32 h/v, recursive pulling until 1 part, rotate

0:26:00 t
measures 1/1024, "1024=32x32" repeats 32 v, measures 1/32
and repeats 32 h

0:31:15hw
W: "we need to get a number that can be reduced (like 14/16)
but with a high number"

0:32:30hw W thinks 32 h and 20 something v won't be able to multiply

0:34:00hw
restarts with smaller numbers bc of slow CPU. 18h/16v. Pulls
some and measures 1/16

0:36:00hw
W: "cut that in half" to make harder. H pulls differently and
stilll measures 1/36

0:37:30hw
pulls, measures 1/32. pulls 2 of those, measures 1/96. pulls 2 of
3, measures 1/144

0:38:30hw want to get a non-unit fraction so I can't just add more

0:39:30 t
measures 11/36. W wants to save this one (thinks it's a good
one)

0:40:00 End


