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Abstract

Whooping cough (pertussis) dynamics provide an interesting disease ecology case study.

Unlike other childhood diseases, the observed patterns of pertussis dynamics are found very

diverse and are not easily captured by simple deterministic models. This has led to the current

understanding that the disease dynamics can only be explained by adding stochasticity into

the models. In this work, we demonstrate that an appropriate deterministic model can explain

pertussis dynamics. The consequences of using the model in making public health decisions

are also discussed.

Whooping cough dynamics also exhibits strong seasonality, which is thought to result from

variation in contact rates. In this research, seasonal change in disease incidence and the

timing of outbreaks are also analyzed using case report data from several UK cities. We

show that birth rates in prior years have a positive correlation with current outbreak sizes

and a negative correlation with current outbreak peak time. A modeling approach is also

used to understand and explain the patterns found in the data.
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Chapter 1

Introduction

Population ecology aims to understand the mechanisms underlying the temporal and spa-

tial distribution of species. Disease ecology, another subfield in Ecology applies ecological

principles to problems in epidemiology. In population disease ecology, the patterns of most

interest are the fluctuations of disease incidence in time and space. Thus, many studies in

this subject can be found focusing on understanding the dynamics of disease incidences.

In epidemiology and disease ecology, the management of infectious diseases is among the

most important issues. There are not only concerns about newly emerging infectious diseases,

such as SARS (Lipsitch et al. 2003; Riley et al. 2003) and the H5N1 strain of avian influenza

(Obenauer et al. 2006; Olsen 2006), but also “re-emergent” diseases such as whooping cough

(Crowcroft & Pebody 2006). Whooping cough, an infectious disease caused by the bacterium

Bordetella pertussis causes an estimated 20-40 million cases and 200,000-400,000 deaths every

year (WHO 1999), mostly in developing countries. In some highly-vaccinated countries like

Australia, Canada and the US, there are also reports that whooping cough incidence has

been increasing in recent years (WHO 1999). These facts highlight that we are still far from

eradicating the disease.

To help predict outbreaks, plan successful vaccination programs and eventually eradicate

infectious childhood diseases, one must understand the nature of disease dynamics. This

involves answering several related questions about disease dynamics in time and space. One of

the main issues is explain temporal patterns of infectious disease dynamics in historical data.

1
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For example, what are the mechanisms responsible for the periodicity of epidemic outbreaks?

Other important questions involves understanding why spatial patterns of epidemics are more

synchronous and regular in the pre-vaccination era than in the vaccine era for some childhood

diseases and vice versa for some others (Rohani et al. 1999). In addition, because vaccination

changes the patterns of epidemic dynamics, it is also essential to understand the dynamical

effects of different vaccination strategies. As direct transmission of infection depends on the

aggregation of individuals, which in reality is not random, there is also a question about

the role of social networks in temporal and spatial patterns of epidemic dynamics. These

questions are linked to one another so answering one question will give insights into the

other.

Mathematical modeling is a powerful tool to help answer those questions. Modeling has

proven to be helpful in conceptualizing and quantifying our ideas about the behavior of a par-

ticular system (Keeling 2005). In epidemiology, the use of models has a long history initiated

by Bernoulli’s work on smallpox in 1760 (Bernoulli 1760) and followed by other important

studies (Hamer 1906; Kermarck & McKendrick 1927; Soper 1929). The development of com-

puters has allowed models to be more helpful regarding their ability to quantitatively solve

various problems as well as give detailed predictions (Levin et al. 1997). Although there

are limits to the capacity and precision of models used, models can still provide insights

into questions aimed at understanding and predicting disease outbreaks or testing different

control strategies (Keeling 2005).

In this thesis, I aim to understand the dynamics and seasonality of whooping cough using a

modeling approach. Whooping cough is a good case study because of its different patterns of

fluctuating incidence observed at different times and in different regions (countries and even

cities). In many UK cities, the temporal dynamics in the pre-vaccination era were irregular

with annual outbreaks punctuated by periods of 2, 2.5 and 3-years. After vaccination was

introduced in 1957, not only did the number of infectious cases change but so did the dynam-
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ical patterns. Longer multi-year cycles have been observed including dynamics with periods

of 3, 3.5 and 4-years (Hethcote 1998; Gomes et al. 1999; Rohani et al. 2000; Broutin et al.

2004). It is then natural to ask what are the underlying mechanisms of these behaviors? Can

the same mechanism give rise to different patterns? Or are different mechanisms involved?

The use of mathematical models has proved invaluable in giving insights into such epidemic

fluctuations. The two main goals of my work presented here include capturing whooping

cough dynamics as observed in real data (focusing on periodicity) and explaining the sea-

sonality of whooping cough dynamics (focusing on seasonality in outbreak size and phase).

These two problems are presented as Chapter two and three of the thesis.

In Chapter two, I focus on explaining and capturing whooping cough dynamics as seen

in historical data. In general, the current understanding is that the main factors deter-

mining patterns of disease dynamics are inherent properties (transmissibility, duration of

exposed/infectious period, etc), and external forces: amplitude of seasonality (changes in

contact rate during school term and vacation) and rate of recruitment (birth and vaccina-

tion) (Anderson and May 1991; Earn et al. 2000; Lloyd 2001a, 2001b; Rohani et al. 1999;

Rohani et al. 2002). Nevertheless, there is not always a general answer for different diseases.

The success of deterministic models in capturing dynamics of several infectious diseases

including measles is obvious (Schenzle 1984; Anderson and May 1991; Bolker and Grenfell

1993; Earn et al. 2000). For pertussis, the story is different. Simple deterministic models

always predict annual cycles of the disease (Rohani et al. 1999, 2002), whereas observed

whooping cough dynamics are very diverse at different times and in different regions. For

example, a mixture of annual cycles and cycles of 2, 2.5 and 3-years are observed in England

and Wales; and periods of 3, 3.5 and 4-years in some other countries (Hethcote 1998; Gomes

et al. 1999; Rohani et al. 2000; Rohani et al. 2002; Broutin et al. 2005a). Interestingly, in

the vaccine era, whooping cough exhibits more regular and spatially synchronized patterns

with periods of 3.5-4 years (Rohani et al. 1999, 2000; Broutin et al. 2005b). The failure of

deterministic models in capturing whooping cough dynamics is believed to be due to the
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fragility of whooping cough attractors. As whooping cough dynamics is too sensitive to be

understood by a purely deterministic model, adding the interplay between stochasticity and

inherent non-linearity is argued to be the reason for the irregular dynamics of whooping

cough.

The argument about the role of stochasticity in whooping cough dynamics, in fact, is just

a part of a larger debate that concerning the relative importance of deterministic and sto-

chastic factors in shaping ecological dynamics. While the deterministic school (Nicholson,

1957) claimed that ecological dynamics are determined by deterministic density-dependent

factors, Adrewathar and Birch (1957) argued that we need to rely on stochastic forces to

understand these dynamical patterns. Although the emphasis in the last century was mostly

on the deterministic approach, there is a growing trend toward uncovering the importance

of stochasticity and the interaction between noise and deterministic nonlinearities in many

ecological systems. These systems include laboratory flour beetle populations (Cushing et al.

1998), sheep populations (Coulson et al. 2001; Grenfell et al. 2001) and infectious diseases

(Schwartz and Smith 1983, Rand and Wilson 1991, Bjørnstad and Grenfell 2001; Keeling et

al. 2001; Rohani et al. 2002; Coulson et al. 2004). As for the case of whooping cough, Rohani

et al. (1999, 2000, 2002) proposed that because whooping cough has a longer infectious period

in comparison with measles it is more prone to the effect of noise, making it impossible to

understand the dynamics by fully deterministic models. This finding has greatly supported

the role of stochasticity in regulating ecological dynamics.

However, the argument about the role of noise in shaping whooping cough can be challenged.

Much of the argument about the role of stochasticity in shaping infectious disease dynamics,

like those of measles and whooping cough, is based on several assumptions. One of them is

that the infection rate and recovery rate are constant which gives rise to the use of exponential

distributions to describe the time for which individuals remain exposed or infectious. This is

a mathematically convenient but biologically unrealistic assumption (Sartwell 1950; Simpson
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1952; Bailey 1954, 1975; Gough 1977; Lloyd 2001a; Lloyd 2001b; Wearing et al. 2005). In

fact, the probability of staying in a class is more likely to depend on the time already spent

in that class. Thus, the distribution of the latent or infectious period is less dispersed around

the mean than expected from the exponential (Lloyd 2001a, 2001b; Wearing et al. 2005),

suggesting that some other distributions should be used to describe exposed and infectious

periods. Will the addition of a more realistic distribution affect the current understanding

of whooping cough dynamics? Chapter 2 will discuss the use of an alternative and more

appropriate model in explaining whooping cough dynamics.

The next chapter (Chapter 3) centers on understanding seasonality of whooping cough.

I chose to study seasonal whooping cough dynamics firstly because seasonality is a very

common phenomenon in epidemiology. Seasonal infections have been observed in a wide

range of diseases not only childhood diseases (measles, chickenpox) but also fecal-oral infec-

tions (cholera, rotavirus) and vector-borne diseases (malaria) (Grassly & Fraser 2006). The

second reason is that understanding seasonal disease dynamics is a critical step toward

understanding and forecasting how long-term climate changes affect human health and other

species in nature (Altizer et al. 2006; Pascual & Dobson 2005). Lastly, as Chapter 2 focuses

on whooping cough dynamics at large scale (tens of years), Chapter 3 can be considered as

a way to explore the dynamics at smaller scale (yearly).

My goal in exploring the seasonality of whooping cough is to explain the differences in

outbreak sizes (the peak number of infected cases) from one outbreak to another of the

same population using UK data. In addition, I also attempt to understand the variation in

outbreak phases (the month in which outbreaks reach their peak) among outbreaks of the

same population and among different populations. Results from data analysis and modeling

of whooping cough seasonality in several UK cities are also compared. The results show that

for whooping cough, there are correlations between birth rates in prior years and current



6

outbreak sizes and phases. Although these are just initial results, they can give some insights

into predicting future outbreaks.



Chapter 2

The dynamics of whooping cough

2.1 Introduction

In recent years, there has been an increased awareness of the threats posed by newly emerging

and high profile infectious diseases, such as SARS (Lipsitch et al. 2003; Riley et al. 2003), the

H5N1 strain of avian influenza (Obenauer et al. 2006; Olsen 2006), HIV (Walker et al. 2003;

Quinn & Overbaugh 2005), and Ebola (Frankish, 2003). In addition to novel pathogens,

however, public health practitioners are concerned about a number of well-established infec-

tious diseases that are re-emerging, defined as pathogens that have been around for a long

time but exhibit increasing incidence and geographic range. These include whooping cough,

multi-drug-resistant TB, dengue fever, West Nile virus and cholera (Daszak et al. 2000;

Morens et al. 2004; Crowcroft & Pebody 2006). Understanding the mechanisms underlying

disease transmission and spread is, therefore, clearly important from a public health per-

spective. Additionally, it has been argued by some that the rare combination of reasonably

well understood natural history, a suite of appropriate mathematical models and abundant

data make infectious diseases an important testbed for ecological theory (Anderson & May

1979; Earn et al. 1998; Keeling & Rohani 2007).

A particularly successful avenue for the study of population ecological questions has been

via the examination of case notifications for the great micro-parasitic infections of childhood,

0This chapter is under review for J. R. Soc. Interface, titled “Noise, Nonlinearity and Seasonality:
the Epidemics of Whooping Cough Revisited” by Hanh TH Nguyen and Pejman Rohani.

7
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including measles, whooping cough, rubella and chickenpox. This has led to a substantial and

important body of work addressing the role of nonlinearity and chaos (Schwartz & Smith

1983; Sugihara & May 1990; Grenfell 1992; Rand & Wilson 1993), stochastic extinction

dynamics (Bartlett 1957; Anderson & May 1982; Keeling & Grenfell 1997; N̊asell 2005), and

the consequences of various sources of heterogeneity, be they temporal (Soper 1929; London

& York 1973; Fine & Clarkson 1982; Edmunds et al. 2000; Keeling et al. 2001), spatial (May

& Anderson 1984; Rohani et al. 1999; Grenfell et al. 2001; Bjørnstad et al. 2002; Xia et al.

2004; Broutin et al. 2005a) or pertaining to the pattern of contacts (Schenzle 1984; Bolker

& Grenfell 1993; Ferguson et al. 1996; Lloyd-Smith 2005; de Gama & Nunes 2006).

The study of childhood disease dynamics has also contributed to the perennial debate con-

cerning the relative importance of deterministic versus stochastic forces in shaping observed

patterns (Bjørnstad & Grenfell 2001; Coulson et al. 2004). For example, using a simple

deterministic model with seasonality in the transmission rate –to mimic the aggregation of

children in schools– Earn et al. (2000) successfully captured the dynamical transitions in

measles epidemics in different cities and eras. They demonstrated that the observed dra-

matic shifts in dynamics are driven by changes in the recruitment rate of susceptibles, as

determined by demographic trends and widespread paediatric vaccination programs. How-

ever, the application of this general approach to explaining the epidemics of whooping cough

has been spectacularly unsuccessful. Classical deterministic models, in realistic regions of

parameter space, always predict annual epidemics (Hethcote 1998; Rohani et al. 1998, 1999,

2002; Bauch & Earn 2003; Greenman et al. 2005), in direct contrast to the variable inter-

epidemic periods documented in case notification data (Fine & Clarkson 1982). Prior to the

onset of mass vaccination campaigns in England and Wales, for example, pertussis dynamics

in different cities contained a significant multi-year signature, which gave way to regular

3.5-4 year epidemics in the vaccine era (Rohani et al. 1999, 2000). These findings are echoed

in studies of pertussis dynamics in different countries (Hethcote 1998; Gomes et al. 1999;

Bauch & Earn 2003; Broutin et al. 2005b).
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To understand the stark contradiction between the dynamics predicted by deterministic

models (rigidly annual epidemics) and those observed in data (a complex mixture of annual

and multi-year outbreaks), Rohani et al. (1999) relaxed the assumption of determinism and

examined event-driven stochastic models. These models exhibited spatio-temporal patterns

that were broadly consistent with patterns in the England & Wales data. Since then, a

number of authors have focused on this question and the general consensus appears to be

that pertussis epidemics result from the interaction between seasonality, nonlinearity and,

importantly, stochasticity (Hethcote 1998; Keeling et al. 2001; Rohani et al. 2002; Bauch &

Earn 2003). This body of work has highlighted the importance of understanding whether

transient dynamics following stochastic perturbations are sustained (if the deterministic

attractor is very weakly stable) or are very short-lived (due to rapid contraction of trajectories

onto the attractor)(Hastings & Higgins 1994; Hastings 2004; Coulson et al. 2004; Noonburg

& Abrams 2005; Caswell & Neubert 2005). Other ecological case studies where the dynamical

importance of the interaction between stochasticity and nonlinearity has been documented

include laboratory populations of flour beetles (Cushing et al. 1998; Reuman et al. 2006),

outbreaks of forest insects (Dwyer et al. 2004), island populations of soay sheep (Coulson

et al. 2001; Grenfell et al. 1998; Brenton et al. 2006), insect host-pathogen interactions

(Bjørnstad et al. 2001) and dungeness crab (Higgins et al. 1997).

To get a handle on the stability properties of the deterministic whooping cough model,

detailed numerical studies have been carried out, concentrating on the fates of perturbations

made to trajectories on the pertussis attractor (Keeling et al. 2001; Bauch & Earn 2003). It

has been demonstrated that small perturbations generate transient dynamics that are multi-

year, with a period of approximately three years. Bauch & Earn (2003) explained these effects

can be detected in time-series data when there are non-resonant peaks in the power spectral

density (as opposed to resonant peaks which are annual and are seasonally driven). Further

examination of these dynamics revealed the presence of an unstable structure (Rohani et al.

2002; Greenman et al. 2005), which was termed the “invasion orbit” by Rohani et al. (2002),
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primarily because its presence was demonstrated by examining the invasion of the disease

into a wholly susceptible population. What has remained unclear since then is precisely what

generated the invasion orbit.

In this chapter, we revisit this problem and examine the dynamical consequences of key model

assumptions, other than determinism. Specifically, the models described above all assume

that the instantaneous probability of leaving the latent and infectious class is constant, giving

rise to latent and infectious periods that are exponentially distributed. This assumption is

mathematically convenient but biologically unrealistic. In fact, the probability of staying

in a class depends on the time already spent in that class, with waiting times that have a

strong central tendency (Sartwell 1950; Simpson 1952; Bailey 1954; 1975; Gough 1977). The

inclusion of appropriate distributions for the latent and infectious periods has been shown to

be important in other contexts (Keeling & Grenfell 1997, 2002; Lloyd 2001a, 2001b; Wearing

et al. 2005; Heffernan & Wahl 2006). We examine household data for pertussis incubation

periods and find that a gamma distribution represents a significantly better fit than the

exponential distribution. We then demonstrate that simple SEIR models with more realistic

distributions of latent and infectious period can explain the qualitative pattern of whooping

cough epidemics. Furthermore, this framework sheds light on the genesis of the invasion orbit

and its dynamical implications.

2.2 The model

We start with the classical SEIR framework in which individuals are grouped into 4 epidemic

classes: Susceptible, Exposed (latent), Infectious and Recovered. For a population of size N,

disease dynamics are given by
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dS

dt
= µN −

(
β(t)I

N
+ µ

)
S (2.1a)

dE

dt
=

β(t)I

N
S − (σ + µ)E (2.1b)

dI

dt
= σE − (γ + µ)I (2.1c)

dR

dt
= γI − µR. (2.1d)

Here, µ gives the per capita birth and death rates. The average exposed and infectious

periods are given by 1/σ and 1/Γ, respectively. The contact rate, β(t), is a function of time

representing the aggregation of children in schools. We use term-time forcing (Schenzle 1984),

which simply means that transmission rate is high during school term (β(t) = b0(1 + b1)),

and low during the holidays (β(t) = b0(1− b1)).

As mentioned above, this model explicitly assumes exponentially distributed latent and

infectious periods. We will refer to the model given by equations (1-4) as SEIRe. While in

principle it is possible to incorporate any distribution into the model, from a computational

perspective, the gamma distribution is especially convenient. Specifically, we can use the

method of stages –also called the linear chain trick– whereby the latent and infectious

periods consist of m and n sequential stages, respectively (Cox & Miller 1965; MacDonald

1978). The number of stages m and n affect the relative variation of the distribution with

the coefficient of variation for the latent and infectious periods given by 1/
√

m and 1/
√

n,

respectively. When these shape parameters are equal to 1, we recover the classical exponen-

tially distributed models and as they approach infinity, waiting times in each class become

fixed.

The coupled ordinary differential equations describing the SEIR model with gamma dis-

tributed latent and infectious periods are given by:
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dS

dt
= µN − (β(t)

I

N
+ µ)S (2.2a)

dE1

dt
=

β(t)I

N
S − (mσ + µ)E1 (2.2b)

dE2

dt
= mσE1 − (mσ + µ)E2 (2.2c)

...

dEm

dt
= mσEm−1 − (mσ + µ)Em (2.2d)

dI1

dt
= mσEm − (nγ + µ)I1 (2.2e)

dI2

dt
= nγI1 − (nγ + µ)I2 (2.2f)

...

dIn

dt
= nγIn−1 − (nγ + µ)In (2.2g)

dR

dt
= nγIn − µR. (2.2h)

Henceforth, we will refer to the model given by equations (5-12) as SEIRΓ

To estimate the parameters m and n, we examined household data on the incubation periods

of whooping cough (Heininger et al. 1998). The data are plotted in figure 2.1, together with

best fit exponential and gamma distributions, estimated using maximum likelihood. As

evidenced by the maximum log-likelihood values, the gamma distribution (with m + n = 5

and a log-likelihood value of -636.42) represents a better fit to the data than the exponential

distribution (with m = n = 1: -706.815). In the next section, we examine the dynamical

consequences of different values of m and n, with a view to resolving the discussion con-

cerning pertussis epidemics.
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Figure 2.1: Frequency histogram showing household incubation data for whooping cough
(data from Heininger et al. 1998). The dotted and solid lines represent best fits to exponential
(m = 1) and gamma (m + n = 5) distributions, respectively. The log-likelihood score for
SEIRe (-706.815) is smaller than SEIRΓ (-636.420)

2.3 Results

In figure 2.2a, we present a bifurcation diagram describing the dynamics of the seasonally

forced SEIRe model as the amplitude of seasonality is varied. The ordinate shows pertussis

incidence on January 1 of each year, hence annual cycles are represented by a single curve in

the diagram. As noted in the Introduction, annual epidemics are predicted for all values of

b1 in the range (0, 0.5]. In contrast, as shown in Figure 2.2b, the gamma distributed model

(SEIRΓ) exhibits a range of dynamical behaviors, with the different colors corresponding

to different stable solutions. When the amplitude of seasonality is small (b1 < 0.2), annual

epidemics are predicted. For b1 in the range (0.2, 0.333], the annual cycle coexists with a

three year cycle. Further increases in b1 result in the coexistence of three attractors, with

periods of 1, 3 and 4 years. Eventually, as b1 exceeds approximately 0.44, the triennial cycle

undergoes a cascade of period-doubling bifurcations, leading to a small window of chaotic

epidemics. In instances where multiple stable attractors coexist with finely structured basins
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of attraction, stochasticity can result in jumps between attractors (Earn et al. 2000). We

plot the basins of attraction for b1 = 0.25 and b1 = 0.4 in the inset panels of Figure 2.2b.

To investigate in more detail the relationship between the seasonal amplitude, the infectious

period and the distribution of the latent and infectious periods, we carried out a series of

bifurcation analyzes (Figure 2.3). Within the context of pertussis dynamics and the studies

by Rohani et al. (2002) and Bauch & Earn (2003), perhaps the key findings are presented in

figure 2.3a. In this figure, we show that the annual cycle is stable throughout the range of

b1−m parameter space we explored. For sufficiently large amplitude of seasonality, however,

values of m, n exceeding unity give rise to the coexistence of the annual attractor with a

triennial cycle. As the variance in the distribution of the latent/infectious periods decreases

(with increasing m, n), the triennial cycle is observed with smaller levels of seasonality.

Figure 2.3a also demonstrates that for very high levels of seasonality and large values of

the shape parameters, attractors with periods of 1, 2, 3 and 4 years coexist. The findings

from this figure raise a key point: starting from the exponentially distributed model, the

qualitative dynamics are highly sensitive to increases in the shape parameters (Lloyd 2001a).

Once m, n exceed approximately 5, however, further increases yield incremental changes in

the bifurcation structure of the model. Therefore, our results are largely insensitive to the

precise values of m and n, as long as they exceed unity. Note that for simplicity, we set

m = n while generating the figure. However, our preliminary findings suggest very strongly

that the distribution of the infectious period is overwhelmingly the key determinant of the

dynamics, as might be expected intuitively (also see Blythe & Anderson 1988).

We also examined how the periodicity of epidemics is influenced by changes in the recovery

rate (Γ) and the shape parameters, when the seasonal amplitude is small (b1 = 0.15; Figure

2.3b) or large (b1 = 0.25; Figure 2.3c). For reference purposes, it is worthwhile to note that for

whooping cough, the recovery rate (Γ) is approximately 26 year−1 and for measles 73 year−1.
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Figure 2.2: Bifurcation diagram for the seasonally forced (a) exponentially (SEIRe) and (b)
gamma-distributed (SEIRΓ) models, showing whooping cough dynamics as a function of the
amplitude of seasonality (b1). In (a), an annual attractor is predicted over the entire interval
0 < b1 < 0.5. In (b), predominantly attractors with period 1, 3 and 4 years are observed.
Above this bifurcation diagram, we plot the basins of attraction for b1 = 0.25 and b1 = 0.4.
Here, the initial number of susceptibles varies from 103 to 105 and initial infectious numbers
from 101 to 103. The annual attractor is depicted in blue, orange represents the 3-year cycle
and red the four-year attractor. Seasonality was incorporated using term-time forcing (for
details see Keeling et al. 2001). Other model parameters are: µ = 0.02yr−1, N = 5 × 106,
1/σ = 8d, 1/γ = 14d, with R0 = 17.
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Figure 2.3: Periodicity of whooping cough dynamics depending on shape parameters (m = n)
and amplitude of seasonality (top); shape parameters and recovery rate (Γ) when seasonality
is b1 = 0.15 (bottom left); and b1 = 0.25 (bottom right). Except for the annual and 2-year
regions in bottom left panel in which there is no overlap between them, the colored regions
overlap, showing coexistence of different stable solutions as the control parameters are varied.
Different initial conditions (susceptible and infectious) are used to capture the coexistence
of different attractors.
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When seasonal forcing is relatively weak (Figure 2.3b), dynamics are always annual as long

as the mean infectious period exceeds 10 days. For mean infectious periods of between 7 and

10 days, biennial outbreaks are predicted unless the exponential distribution is assumed, in

which case annual cycles are observed. As the average infectious period becomes increasingly

shorter (< 7 days), a stable triennial cycle coexists with the biennial cycle when m, n exceed

10. When the amplitude of seasonality is increased (Figure 2.3c), the region of stability for

the triennial cycle expands considerably, coexisting with biennial (30 < Γ < 100) and annual

(20 < Γ < 30) cycles. At the extremities, these boundaries are influenced by the shape

parameters, though the most dramatic shifts occur once m, n exceed one. The figure also

demonstrates that when mean infectious periods are very short (of the order of 3-4 days),

windows of longer period oscillations are observed.

In order to understand how mass vaccination programs and systematic demographic trends

affect pertussis epidemics, in Figure 2.4a we present a bifurcation diagram describing the

dynamics of SEIRΓ with the susceptible recruitment rate as the control parameter (cf Earn

et al. . 2000). To do so, we replaced the µN term in Equation (5) with µ
′
(1− p)N , where p

represents the fraction of newborns immunized and µ
′
denotes the modified per capita birth

rate. The figure bears a striking resemblance to Figure 1 of Earn et al. (2000), which was

produced with parameter values chosen to correspond to measles ! Here, the default parameter

values for pertussis in England & Wales in the 1950s correspond to the coexistence of the

annual and triennial attractors (µ ∼ 0.02). Increases in the vaccination fraction or decreases

in the per capita birth rates give rise to a cascade of bifurcations, resulting in longer epidemic

periods. Similarly, “baby booms” result in biennial dynamics, which at first coexist with and

eventually give way to annual cycles.

We examine the interaction between the dynamical complexity observed in Figure 2.4a and

demographic stochasticity by formulating an exact stochastic analogue of SEIRΓ using

Gillespies direct method (Gillespie 1977; see also Keeling & Rohani 2007). Figure 2.4b
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Figure 2.4: (a) Bifurcation diagram depicting pertussis dynamics as the susceptible recruit-
ment rate (µ

′
(1−p)) is varied in SEIRΓ, using m = 1, n = 5 and b1 = 0.25. For each value of

the recruitment rate, annual samples of I/N from years 151 to 200 are plotted. (b) Analysis of
periodicity using an event-driven stochastic SEIRΓ model, as the recruitment rate is varied
from 0.006 to 0.016. The upper panel depicts results when simulations are started with ini-
tial conditions on the deterministic annual attractor (dark blue line in panel (a)). The lower
panel presents comparable periodicities when simulations were started with initial conditions
on the multi-year deterministic attractor (orange, red, purple, green and cyan lines in panel
(a)). For each panel, the 50 rows represent the periodicity detected using wavelet analysis
in a replicate stochastic time series from year 88 to 100. Inter-epidemic periods with highest
spectral density at any instance are depicted, showing frequent switching between attractors,
especially in the lower panels. Stochastic simulations included an immigration rate of 10 per
million per year.
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demonstrates observed periodicity through time in replicated simulated time-series for dif-

ferent recruitment rates and 50 stochastic replicates. In each instance, for comparison with

case notifications data, we generate 12 years of weekly case notifications, after the first 88

years of simulations are discarded. The dominant period through time was then determined

using wavelet analysis (Torrence & Compo 1998). The figure demonstrates that for a fixed

recruitment rate, there is substantial dynamical variability across realizations. Some runs

exhibit a number of switches between attractors over the 12-year time series (as depicted by

abruptly changing dominant periods through time), while others show a constant period. It

is important to note that the largest inter-epidemic period detected in these data is 4 years,

even when the susceptible recruitment is very small and the deterministic model predicts 58

year cycles (Figure 2.4a). This may be in part due to the shortness of the time-series data

or may, in fact, be due to the instability of the longer-period solutions when a small rate of

immigration is incorporated into the stochastic simulations (cf, Alonso et al. . 2007).

Another approach to studying the intricate whooping cough epidemics is to examine the

topology of the system in the vicinity of the deterministic attractors. This may be achieved

by plotting invasion orbits (sensu Rohani et al. . 2002), which are generated by observing

the trajectories of disease invasion as they approach stable points. We plot the annual sam-

ples of susceptibles and infectives after a single infectious individual is introduced into the

population, starting simulations at different initial times (t0 ∈ [0, 1]). Figure 2.5 shows per-

tussis invasion orbits in the absence of vaccination, using SEIRe and SEIRΓ with b1 = 0.25.

For each sub-figure, the green points represent orbits during the transient approach towards

asymptotic dynamics. The large dots represent stable fixed points, which are color-coded

as in previous figures (blue: annual cycle, orange: 3-year cycle). It is worth noting that the

structures observed by carrying out this kind of invasion analysis are very similar to those

obtained by simply studying the consequences of different initial conditions, as proposed by

Rand & Wilson (1991).
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Figure 2.5: Invasion orbits of whooping cough in the pre-vaccine era. In (a) and (b), we
depict the orbits generated by the SEIRe and SEIRΓ models, both with amplitude of
seasonality b1 = 0.25. The invasion orbits are captured by starting simulations at 1000
different initial times (t0 ∈ [0 : 1]), with a single infective in a population of susceptibles (ie,
S(t0) = 4, 999, 999 and I(t0) = 1). The proportion susceptible and infected at a fixed time
are recorded every year and plotted, ignoring the first 20 years (due to transients). Model
parameters are the same as in previous figures
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The invasion orbits of SEIRe and SEIRΓ exhibit broadly similar structures, once we bear

in mind the fact that changes in the infectious period distribution affect the amplitude of

oscillations and therefore the size of the structures depicted. The key message from this figure

can be gleaned by considering the panel on the right (Figure 2.5b). There is an aggregation

of points near the annual attractor at the center of the invasion orbit. Additionally, there is

a pronounced star shape with 3 prominent branches, corresponding to trajectories near the

stable triennial cycle. Reductions in the amplitude of seasonality or increases in the variance

of the infectious period (Figure 2.2a; Rohani et al. 2002) result in the loss of stability of the

triennial solution. Importantly, however, the star shape is preserved. The clear implication

of this observation is that the “invasion orbit” documented by Rohani et al. (2002) using

SEIRe was simply the “ghost of a departed attractor” (as coined by Earn et al. 2000).

The long transient dynamics documented in Rohani et al. ’s stochastic simulations were due

to the dynamical influence of destabilized attractors. These findings remain qualitatively

unaffected when dynamics in the vaccine era are considered.

2.4 Discussion

For well over a century, epidemiologists have been working towards understanding the period-

icities observed in the case notification data for childhood infections (Ransome 1880; Hamer

1897). It was the work of Soper (1929) on measles epidemics in Glasgow that, as far as

we know, first demonstrated seasonal variation in transmission rates. The first systematic

examination of seasonality in mathematical models arrived almost half a century later in

Dietz’s seminal paper in 1976 (Dietz 1976). Dietz examined conditions under which the peri-

odic changes in contact rates can interact with the inherent oscillatory properties of the

SEIRe system to produce either simple or subharmonic “resonance”. One of the key ques-

tions that he raised in that paper concerned “whether the shape of the distribution of the

latent or infectious period affects the resonance behavior” (Dietz 1976). In this paper, we
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have returned to this question with the specific intention of examining whether changes to

the assumed distribution of the infectious period can account for the observed epidemics of

whooping cough.

Previous attempts at explaining long-term pertussis epidemics have argued for a significant

role of stochasticity (Hethcote 1998; Rohani et al. 1999, 2002; Bauch & Earn 2003). Here, we

have studied the dynamics of the SEIR model, with waiting times in the latent and infec-

tious classes determined by a gamma distribution, with distribution parameters estimated

from household data. Our key finding is that a reduction in the variance in the infectious

period gives rise to stable multi-year solutions. The implication of these results is that appro-

priately formulated deterministic SEIR models are indeed capable of providing a qualitative

explanation for observed pertussis dynamics.

This work also places into context the numerical observations of previous authors (Keeling

et al. 2001; Rohani et al. 2002; Bauch & Earn 2003). The long and multi-year transients

documented in exponentially distributed models of pertussis provided a compelling explana-

tion for the patterns in case notifications data, but their origins remained unexplained. The

results shown in Figures 2.5a & 2.5b show that the underlying cause of longer-period transient

oscillations lies in the destabilization of the triennial attractor as shape parameters approach

unity. This affects our interpretation of the role of stochasticity in this system. Using the

classification of Millonas (1995), Coulson et al. (2004) suggested that epidemics of pertussis

represent an example of “active” noise, where stochasticity interacts with the nonlinearity in

the deterministic clockwork producing patterns that cannot result from either factor alone.

Our findings suggest that possibly whooping cough dynamics may be the result of the less

exciting “passive” treatment of noise, where stochasticity influences the transition among

different deterministic states. Ultimately, the precise interpretation of this question relies on

the accurate estimation of model parameters. This is especially true for the amplitude of

seasonality. Some authors have suggested that for pertussis b1 ∼ 0.15 (Rohani et al. 2002;
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Bauch & Earn 2003), while others have used age-structured arguments to propose a value

closer to 0.25 (Keeling et al. 2001). Unbiased and confident estimation of this parameter is

clearly a significant issue and we return to it below.

An intriguing aspect of this work is the bifurcation diagram shown in Figure 2.4a. We were

surprised by the remarkable similarity between the bifurcation structure in this figure and

that presented by Earn et al. (2000) using SEIRe in the context of explaining dynamical

transitions in measles epidemics. While a detailed analysis of SEIRΓ parameterized for

measles is lacking, the findings of Glass et al. (2003) and our own preliminary results suggest

that the bifurcation diagram in Earn et al. (2000) is altered in significant ways when constant

infectious periods are assumed. The subharmonic resonances resulting from the interaction

between seasonality, the nonlinearity in transmission, and the distribution of the infectious

period may be crucially determined by the epidemiological parameters (Greenman et al.

2005; Choisy et al. 2006). A systematic analysis of this issue remains a priority for future

research.

The recent elegant work by Alonso et al. (2007) has argued for an alternative perspective on

the epidemiology of childhood infectious diseases. These authors point out that the dynamics

of such host-pathogen systems are determined both by the amplitude of seasonality in trans-

mission and the tendency of the endogenous “clockwork” to amplify fluctuations. Focusing

on the SIRe framework, they derived an analytical expression for the power spectral density

of the number of infectious and susceptible individuals, reaching the interesting conclusion

that childhood infectious diseases are in regions of parameter space corresponding to high

noise amplification. It would be interesting to re-examine Alonso et al. (2007)’s proposed

endogenous stochastic resonance idea (or the similar concept of coherence resonance put

forward by Kuske et al. 2007) when more realistic latent and infectious period distributions

are assumed.
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Finally, we have, thus far, side-stepped two potentially important aspects of whooping cough

epidemiology and its modeling. The first is concerned with the ongoing debate about the

frequency and consequences of loss of immunity acquired from natural infection and vac-

cination (Grenfell& Anderson 1989;Wirsing von Köenig et al. 1995; Broutin et al. 2004;

Crowcroft & Pebody 2006). Clearly, of central importance is the question of the duration of

immunity to pertussis, both derived naturally and as a result of vaccination. In the absence

of unambiguous empirical information, parallel work by Wearing & Rohani (submitted) has

attempted to address this question using an extended SEIR model with waning immu-

nity. The aim is to arrive at the most parsimonious estimate of the duration of immunity

by matching global measures such as extinction thresholds and inter-epidemic periods with

those estimated from the England & Wales case notifications data. Model predictions were

found to be most consistent with incidence data for durations of immunity between 25 and 70

years, suggesting that models assuming long-term immunity (eg, SEIR models) can still be

useful in explaining pertussis epidemics. The second aspect relates to the robust estimation

of pertussis model parameters. To address both of these topical and important questions,

we are currently in the process of applying the “maximum likelihood via iterated filtering”

methodology proposed by Ionides et al. (2006) to the waning immunity model of Wearing &

Rohani, as well as the simpler SEIRe and SEIRΓ models discussed here. A better under-

standing of pertussis epidemics will be greatly facilitated by linking mechanistic transmission

models with appropriate inferential methodologies.



Chapter 3

Seasonality of whooping cough: peak sizes and peak timing

3.1 Introduction

Seasonality is observed in a variety of natural systems. Many populations fluctuate with cer-

tain periods driven by different mechanisms, such as delayed density-dependence (Bjørnstad

& Grenfell 2001), trophic interactions (Hanski et al. 1993), periodic environmental forcing

(Bjørnstad & Grenfell 2001; Koelle et al. 2005; Hosseini et al. 2004), or parasites (Hudson

et al. 1999; Tompkins et al. 2003). In epidemiology, cyclic outbreaks of childhood diseases

are found in historical data providing ideal case studies to investigate the underlying mecha-

nisms of disease dynamics. Whooping cough, for instance, exhibits outbreaks in many cities

every one, two, three or more years (Hethcote 1998; Gomes et al. 1999; Rohani et al. 2000;

Broutin et al. 2005). The current understanding is that seasonality via changes in contact

rate due to school terms, plays an essential role in driving periodic disease dynamics (Bolker

& Grenfell 1995; Dushoff et al. 2004).

As seasonality may be an important driver of cyclic outbreaks, understanding how seasonality

affects periodicity is an important step toward understanding childhood disease dynamics.

Furthermore, investigating how seasonality shapes patterns of infectious disease dynamics

may aid in explaining the different patterns of disease dynamics observed in different regions

because academic calendars are often region-specific. Studying seasonality is also of interest

because seasonality may influence pathogen evolution (Ferguson et al. 2003; Kamo & Sasaki

25
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2005). Ultimately, clarifying the links between seasonality and disease dynamics can give

insights into planning vaccination strategies with appropriate vaccination timing (Altizer et

al. 2006).

It is therefore not surprising that the effects of seasonal contact rates on patterns of disease

dynamics have been explored in several studies (London & Yorke 1973; Fine & Clarkson

1982; Finkenstadt & Grenfell 2000; Keeling et al. 2001). One of the fundamental findings is

that increases in the amplitude of seasonal forcing can generate a cascade of bifurcations,

with large cycle associated with stronger seasonal forcing (Dietz 1976; Greenman et al. 2004;

Altizer et al. 2006). Most of these studies involve models that use unrealistic sinusoidal

forcing functions with a period of 1 year (Bolker & Grenfell 1993; Kamo & Sasaki 2005;

Altizer et al. 2006). For childhood diseases like measles or whooping cough seasonal forcing

arises from changes in the contact rate between the school terms and vacations which is more

likely to have the form of a square wave with two uniform values: high transmission during

school term and low otherwise (Keeling et al. 2001; Rohani et al. 2002).

Factors causing seasonal disease dynamics can be divided into intrinsic and extrinsic groups.

One of the main intrinsic causes of seasonality in disease incidence is the variation in trans-

mission term, as in the case of measles (Soper 1929; Fine &Clarkson 1982) and other diseases

such as mumps, chickenpox and influenza (London & Yorke 1973; Bolker & Grenfell 1995;

Dushoff et al. 2004). The seasonal transmission term is in turn caused by periodic changes

of environmental condition, host behavior, host immune competence and abundance of vec-

tors and non-human hosts (Altizer et al. 2006; Grassly & Fraser 2006). However, to a more

detailed level, the reason why variation in outbreak sizes and the timing of a particular disease

in a particular population differ from year to year is not always clear. For infections which

are greatly affected by external factors, changes in seasonal environmental conditions are

responsible for the changes in yearly disease outbreaks. For example, there are strong associ-

ations between epidemic cycles and cycles of temperature (Chew et al. 1998; Checkley et al.
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2000), humidity (Nathason & Martin 1979; Chew et al. 1998), wind (Sultan et al. 2005) and

so on. In contrast, for diseases such as childhood diseases which seasonality is more affected

by intrinsic factors, the answer to the question why there is variation in outbreak sizes and

timing between years is less obvious.

In addition, although there are an increasing number of studies on seasonality, only a small

proportion can give a predictive insight into the disease dynamics under investigation. Among

the studies that have yielded potentially predictive tools is a recent work on measles by Stone

et al. (2007). The authors found that outbreak phase of a year has a correlation with outbreak

size of the following year.

Data on whooping cough in England and Wales present various patterns of seasonality. In

addition to the variety of inter-annual periodicity exhibited by the infection in different

populations (cities), disease outbreaks within each population also vary from year to year.

For example, historical data on whooping cough in Liverpool shows a great variation in

outbreak amplitude and outbreak timing. Given that the population size and the seasonal

transmission term can be assumed to be the same for every year during this period of time,

the question is what is the cause of this variation? This is the driving question of my work

on seasonality.

In this chapter, I analyze data on 3 representative cities in the UK (London, Liverpool

and Sheffield) to seek an explanation for the differences in outbreak sizes and phases. As

recruitment into the population which includes births and immigration, is thought to be

the main force maintaining recurrent epidemics (Anderson & May 1991; Finkenstadt et

al. Grenfell 1998; Earn et al. 2000), it is possible that variation in recruitment could be

responsible for variation in outbreak properties. Thus, my hypothesis is that peak sizes and

peak timing of whooping cough outbreaks are determined by population birth rates. Here
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and henceforth, peak sizes are defined as the peak number of infected cases in an outbreak;

and peak phase is the month in which outbreaks reach their peak.

3.2 Data analysis

Data on whooping cough dynamics in three UK cities: London, Liverpool and Sheffield (figure

3.1) are analyzed. These cities are chosen for several reasons. First, their population sizes are

higher than the critical community size for whooping cough which is 200,000-300,000. This

ensures that the effect of immigration on these cities is weak enough to be ignored in the

analysis and modeling. Second, these three cities are a representative sample of all the cities

with large population sizes with different outbreak timing. We also focus on disease dynamics

before vaccination so that we can study the effects of birth rates without the complication

of instant vaccination.

The average age at infection of whooping cough is 4-5 years (Anderson & May 1991). Thus,

the characteristics of an outbreak (size and phase) in a particular year are not only influenced

by the birth rates of that year but also by those 1, 2, 3, 4 years earlier. In order to take into

account the effect of age at infection on the relationships, these birth rates are averaged for

every 5 continuous years to be considered “corrected birth rates”. A better way to correct

birth rates is to use the age distribution of the disease. This will take into account different

effects of different ages at infection. Incorporating age at infection requires more data on age

distribution for the cities under investigation. Henceforth, we will ignore the annual birth

rates and use the averaged birth rates of every 5 years in analysis.

Data filtering is essential to uncovering patterns in noisy data such as whooping cough case

reports. This is partly due to the fact that stochasticity plays a large role in whooping cough

dynamics (Rohani et al. 1999, 2002) and partly due to errors in reporting infected cases

(Anderson & May 1991). Due to these factors, the real peaks might not exactly be the peek
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Figure 3.1: Weekly case reports for whooping cough in London (red), Liverpool (blue) and
Sheffield (green) in the pre-vaccine era (1944-1956).
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with the highest number of infected cases. To resolve this problem, in this chapter, we use

two methods of filtering data: Band-pass filter and Fast Fourier filter.

A band-pass filter is a way to filter data with an appropriate range of frequencies. In other

words, it will pass desired frequencies within a certain range and reject those outside that

range. Figure 3.2 demonstrates this method for whooping cough weekly cases in Liverpool.

The time series of whooping cough case reports in Liverpool is presented in blue and the

corresponding time series after being filtered is in red. The range of frequencies kept in this

particular time series depends on the periodicity of the time series. For example, as shown

in figure 3.2, in the data regions of one-year and 2-year period, one-year and 2-year band-

pass filters are respectively used. The arrows show the peak of outbreaks detected for the

time-series presented.

Fast fourier filter (FFT filter) is one of low- and high-pass filtering devices in which the

data, after being converted to frequencies using the Fast Fourier Transform, are filtered

appropriately and then converted back using an inverse FFT. Here I design the FFT filter as

a low-pass filter which will keep low frequencies (monthly, annual, biennial, etc) and reject

high frequencies (weekly). Moreover, unlike the band-pass filter mentioned earlier, this filter

is not specific to the time series or different intervals of the time series. Figure 3.3 is an

example of data filtering using FFT filtering method for whooping cough in Liverpool. The

blue time series shows the data before filtering and the red one after being filtered. In this

figure, arrows are also used to indicate peaks of disease outbreaks.

After being filtered, the peaks of outbreaks in different years were analyzed focusing on 2

main characteristics: peak sizes and peak phase. Figure 3.4 presents results of using band-

pass filter with a) relationship between peak sizes and birth rates; b) peak months across

different birth rates; and c) the time interval between every 2 adjacent peaks versus the

difference between the 2 corresponding birth rates.
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Figure 3.2: Data on whooping cough in Liverpool before (blue) and after being filtered (red)
by band-pass filter. Specific band-pass filters are used for data with specific periodicity. The
arrows show the peaks of outbreaks in different years which later were used in analysis.
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Figure 3.3: Data on whooping cough in Liverpool before (blue) and after being filtered (red)
by FFT method. The arrows show the peaks of outbreaks in different years.
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Figure 3.4: Data analysis of seasonality using band-pass filter for London (red), Liverpool
(blue) and Sheffield (green). a) Relationship between peak sizes and birth rates. The p-values
for the linear regression of London, Liverpool and Sheffield are 0.36; 0.13; 0.09, respectively.
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0.91, respectively.
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As high birth rates provide the population with a large number of susceptibles, the trans-

mission rate should also be high. This, in turn should causes the outbreak to occur early

and rapidly reach its peak. Thus, our hypothesis is that a high birth rate will associate with

early peak phase. As we expected the positive correlation between peak sizes and birth rates

was found (figure 3.4 a). Figure 3.4 b shows that the months in which outbreaks reach their

peak are not randomly distributed. Peak months can be organized into 3 groups: winter,

spring and fall as presented in the figure. The reason for this phase aggregation could be the

seasonality of contact rate which is raised high at the beginning of two school terms (Fall and

Spring) and low otherwise. It is also due to the difference between the number of students

admitted in the Fall semester (larger) and that in the Spring semester (smaller).

In addition to the aggregated distribution of peak phases, a negative relationship was also

detected between peak phase intervals (the time interval between the peaks of 2 adjacent

outbreaks) and changes in birth rates (the difference in birth rates between 2 adjacent peaks).

Although this is not statistically significant, the trends are obvious and consistent for these

three cities and other large cities in the UK (not shown here). The correlation between peak

interval and changes in birth rates can be explained using the same argument as used in

explaining the relationship between peak sizes and birth rates. In other words, as birth rates

increase, the rate at which susceptibles are exposed to infection is higher leading the outbreak

to occur earlier. Thus, the outbreak will reach its peak sooner.

With the FFT filtering method, we also found the same patterns as found when using band-

pass filter (figure 3.5). Although they are consistent, patterns found using FFT filters are not

as strong as those found using band-pass filters. This is reasonable as the band-pass filters

are designed individually for each time series and thus are more specific and precise.
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Figure 3.5: Data analysis of seasonality using FFT filter for London (red), Liverpool (blue)
and Sheffield (green). a) Relationship between peak sizes and birth rates. The p-values for
the linear regression of London, Liverpool and Sheffield are 0.36; 0.23; 0.22, respectively. b)
Peak months for different birth rates. c) The relationship between peak time intervals and
changes in birth rates. P-values are 0.88; 0.01; 0.16.
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3.3 Model predictions

Using stochastic versions of the exponential SEIRe and the SEIRΓ model (described in

detail in Chapter 2), we want to compare the patterns observed in the data with model

predictions and compare between models. As seasonality is the important factor in this

analysis and modeling, we use both term-time forcing and sinewave forcing to describe the

shape of the contact rate function. The term-time forcing is as described before in Chapter 2

which basically resembles the real school terms and vacations in the UK and assigns a high

contact rate for school days and low otherwise. The sinewave forcing contact rate assumes

contact rate changes as a cosine function:

β = β0(1± β1 cos(2πt + w)).

Although a sinewave contact rate is not realistic, it is still used in many studies to describe

the seasonal aggregation of children. The main reasons are its simplicity and mathematical

convenience.

We run these models for 80 years using the average birth rate of µ = 0.02 and then change

the birth rate according to the birth rate data of the three cities London, Liverpool and

Sheffield. The interval of these time series that represents the real birth rate changes will be

analyzed and compared with the patterns observed in real whooping cough data.

Figure 3.6 shows the relationship between peak sizes and the corresponding birth rates from

the different models. Similar to the real data, these models also show the positive correlation

between peak sizes and birth rates. The correlations are not statistically significant but show

a consistent trend, which is confirmed for nearly all repeated simulations of other cities in

England and Wales. In addition, as stochasticity can greatly affect whooping cough dynamics,

it is understandable that there is not a strong correlation. The differences between different

models are small.
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Figure 3.6: Relationship between peak sizes and birth rates predicted by different models.
Each subfigure represents 3 stochastic realizations using London parameters. a) exponential
SEIR (SEIRe) with term-time forcing contact rate (p values for red, blue and green line
fittings are 0.87, 0.14 and 0.56, respectively). b) gamma SEIR (SEIRΓ) model with term-
time forcing (p values are 0.45, 0.03 and 0.31). c) SEIRe with sinvewave forcing (0.82, 0.35
and 0.48) and d) SEIRΓ with sinewave forcing (0.07, 0.29 and 0.22)
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The phases at which the outbreaks reach their peaks are also plotted across the range of

birth rates for all the models (figure 3.7). These peak months can also be categorized into

several season groups. Whereas models using term-time forcing predicts the three month

groups winter, spring and fall as seen in the data, the models with sinewave forcing can only

predict the spring and fall months. This result is not surprising given that the term-time

forcing function is more realistic than the sinewave function. Compared to the SEIRe, the

SEIRΓ model achieves better results in capturing the patterns found in the data (figure 3.7a

and 3.7 b) although this improvement is small.

In figure 3.8, we plot the time interval between every two adjacent peaks against the corre-

sponding changes in birth rates. The same patterns as seen in the data are found. However, it

should be noted that not all the stochastic replications of these models give the same results.

In a few cases, negative relationships between these peak intervals and changes in birth rates

are found. However, because in most of these cases the numbers of peaks are small and their

dynamics are subject to stochasticity, it is possible that the reverse results could be found.

In addition to the models described above in which birth rates varied every year, we also

investigate the effect of having constant birth rates on the sizes and phases of disease out-

breaks. The term-time forcing SEIR models are run for 200 years with the same birth rates

using a Monte-Carlo method. Peak characteristics are recorded for the last year of the time

series. The simulation is repeated for different birth rates. The peak characteristics including

peak sizes and phases are plotted against the corresponding birth rates (figure 3.9).

There is clearly a strong positive correlation between birth rates and peak sizes of disease

outbreaks. As the birth rate is higher, the recruitment into the population every year is

higher providing the disease with more susceptibles and later producing more infected cases.

It is almost obvious why the trend in this model is much stronger than that in the previous

ones in which birth rates are changed every year. Firstly, the whole time series have either
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Figure 3.7: Peak months in which the outbreaks reach their peak across a range of birth
rates predicted by different models. a) SEIRe with term-time forcing contact rate. b) SEIRΓ

model with term-time forcing. c) SEIRe with sinewave forcing and d) SEIRΓ with sinewave
forcing
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Figure 3.8: Relationship between peak time intervals and changes in birth rates predicted
by different models: a) SEIRe with term-time forcing contact rate (p values for red, blue
and green fittings are 0.54, 0.0.25 and 0.21, respectively). b) SEIRΓ model with term-time
forcing (0.64, 0.54 and 0.78). c) SEIRe with sinewave forcing (0.41, 0.37 and 0.03) and d)
SEIRΓ with sinewave forcing (0.20, 0.53 and 0.23)
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high or low birth rates for all the years, not switching from one to another. Thus, the

difference between having high birth rates and having low birth rates in this model is much

larger. Secondly, unlike the previous models in which changing birth rates every year can be

considered a perturbation to the system, the system here is more stable and thus the effect

of stochasticity is less severe, which in turn leads to a more consistent pattern.

3.4 Discussion

Predictive methods can greatly help reducing the consequences and costs in preventing and

controlling disease outbreaks. The outbreak characteristics that need to be predicted include

its behavior (how the number of cases change over time); its magnitude (how big the outbreak

will be); and timing: when it occurs or when it reaches the maximum number of cases (peaks).

Answering these questions requires uncovering the driving mechanisms that cause seasonality

of the disease dynamics.

Understanding the mechanisms affecting outbreak sizes and phases is critical in predicting

future outbreaks. There is a variety of factors that can determine how large the outbreak

will be and when it reaches its peak including the peak phases of the previous years, as in

the case of measles (Stone et al. 2007), the level of population immunity and climate changes

in cholera outbreaks (Koelle & Pascual 2004; Koelle et al. 2005), recruitment rates into the

population (birth and immigration), population size, age-structure of the population and so

on. It is important to have an assessment of how these factors influence the dynamics and

shape the characteristics of outbreaks in the coming years. The complete assessment requires

taking into account the effects of all these factors together.

In this chapter, using available data on birth rates and whooping cough infected cases in the

pre-vaccine era, we show the trends in which birth rates in prior years affect peak sizes and

phases in current years. The size of an outbreak increases as the birth rates of the previous
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Figure 3.9: Seasonality predicted by models of constant birth rates. The left panels (a, b, c)
are from SEIRe and the right panels (c, d, f) are from SEIRΓ model. a) and d) Relationship
between peak sizes and birth rates (p values are 0.00 and 0.05); b) and e) Peak phases for
different birth rates; c) and f) Relationship between peak time interval and changes in birth
rate.
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5 years increase. The phase of an outbreak is also dependent on these birth rates. Moreover,

the phases can be categorized into time groups which are determined by the sudden influx

of children into 2 school terms (Fall and Spring semester) after vacations.

Although in most of the cases, the linear regressions are not statistically significant, the trend

is still clear and consistent. As there are only a few real peaks for each time series (regarding

whooping cough data before vaccination), it is almost impossible to have a complete and

strong analysis and understanding of the data. The consistency of the analyzes however

suggest that there is a positive relationship between birth rates and peak size of outbreaks

and a negative relationship between birth rates and outbreak phases in the range of birth

rates available. However, further investigation is needed in order to have a complete and

clear picture of these relationships.
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report 74: 137-144.


