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Decision trees classify 85.7% of the speech samples correctly; neural networks classify 86% of 

the speech samples correctly. Schizophrenics’ longer sentences may be a manifestation of lack of 
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number of degree expressions may be a manifestation of lack of theory of mind. The increased 

amount of difficulty words may be a sign of cognitive difficulty with interpreting information. 

Limitations and future research directions are discussed. 
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CHAPTER 1 

INTRODUCTION 

 

The speech of schizophrenics, when disordered, is different from the speech of healthy 

people (Bleuler, 1950; Chaika, 1990; Andreasen, 1979a). As one of the distinguishing 

characteristics of schizophrenia, schizophrenic speech has been studied at length (Bleuler, 1950; 

Chaika, 1990; Andreasen, 1979a, 1979b; Crow, 2000; Docherty, DeRosa, & Andreasen, 1996). 

Many studies of schizophrenic language have been based on human judges’ assessments of 

linguistic abnormalities. Computerized study of schizophrenic language can add accuracy and 

objectivity to existing findings, and also provide reliable tools for further investigation of the 

schizophrenic language. Machine learning techniques have been successfully employed to learn 

and extract linguistic information (Daelemans, Berck, & Gillis, 1997).  

The goal of this thesis is two-pronged. First, it involves using existing software and 

developing new software to measure style and content features of schizophrenic speech. Second, 

it involves using these features to classify schizophrenic and healthy speech via computational 

classifiers, such as decision trees and neural networks. Hence, this study has two parts. In the 

first part, I computationally measure 14 linguistic features in schizophrenic and healthy speech 

samples. The stylistic features include the number of tokens, the number of types, the mean 

sentence length, the mean word length, repetitiousness etc. The content-based features include 

hedging words, degree words, degree expressions, cognitive difficulty words, cognitive difficulty 

expressions, and certainty words. I developed the Extraction of Natural Language Features 
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(ENLF) program to measure seven of the 14 linguistic features used1; the other seven features I 

measured with the Natural Language Analysis Tools (NLAT2) program (Covington, 2002). In 

the second part, I used decision trees (Quinlan, 1986, 1993) and neural networks (McCulloch & 

Pitts, 1943; Rumelhart et al., 1986) to classify the participants into healthy and schizophrenic 

based on their speech samples. 

 

1.1 Hypothesis  

A single reading of a disturbed schizophrenic speech sample can reveal many linguistic 

peculiarities. Andreasen (1979a) reported the following characteristics of disturbed 

schizophrenic speech relevant to my study: 1) poverty of speech, derailment, and tangentiality 

(may cause skewed mean sentence length); 2) neologisms or new word formations (may cause 

skewed mean word length); and 3) perseveration or repetition of words and/or ideas 

(repetitiousness is one of the features I measure). Further, schizophrenics overtly express 

confusion and difficulty processing information, especially when performing cognitive tasks 

(Rosenberg & Tucker 1975, 1979). Some of the difficulty expressions are: I can’t see, it doesn’t 

make sense, I dunno, etc. Given schizophrenics’ cognitive difficulty, I measured schizophrenics' 

level of certainty in their claims. I counted the occurrence of certainty words (i.e. certainly, 

obviously, clearly, surely, evidently, etc.). In addition, from manual word counts, I found that 

schizophrenics exhibit fewer hedging and degree terms3 than healthy participants. Hedges (i.e. 

suggest, hint, imply, presume, conjecture, guess, etc.) are used to make a statement more 

acceptable and to help strengthen the hearer’s willingness to ratify the statement (Huebler, 1983). 

Degree words  (i.e. barely, hardly, scarcely, partially, partly, etc.) modify a claim's strength.  

                                                 
1 The features are explained in the materials and methods chapter. 
2 ENLF and NLAT are explained in detail in the materials and methods chapter. 
3 I use the word ‘term’ to refer to either words and expressions, or both. 
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The hypothesis of this study has two parts. First, based on previous research and on my 

manual word counts on the speech samples, I expect: a) the mean sentence length, the mean 

word length, and the amount of repetition to be different in schizophrenic speech and healthy 

speech; and b) the number of hedging terms, the number of degree terms, of cognitive difficulty 

terms, and of certainty terms to be different in schizophrenic speech and healthy speech. I have 

not found any previous studies of hedging, expression of degree, and expression of certainty in 

schizophrenic speech. Second, I expect that the linguistic features measured by NLAT and ENLF 

will be sufficient in distinguishing schizophrenic from healthy speech using machine learning 

techniques (i.e. decision trees and neural networks). 

 

1.2 Background 

1.2.1 Language and schizophrenia 

The schizophrenic linguistic disturbances have been related to thought disorder, which is 

the central symptom of schizophrenia (Carlson, 2003). The term thought-disorder has been used 

loosely in the schizophrenia literature to refer to different concepts (Andreasen, 1979a); 

narrowly, it has been used to denote a disorder of the form of thought (mistakenly equated with 

speech output), known as formal thought disorder (Andreasen, 1979a). Broadly, it has been used 

to refer to disordered content of thought, including hallucinations and delusions (Andreasen, 

1979a). Based on the (rather underspecified) relation between speech and thought, a popular 

approach to measuring thought disorder has been by measuring the schizophrenic language 

disturbances. This thesis is concerned with schizophrenic speech and its relation to schizophrenic 

thought and cognition. Hence, schizophrenic verbal delusions and hallucinations are outside its 

scope.  
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1.2.2 Cognitive deficits and language disturbances in schizophrenia  

Schizophrenics fail to control their thoughts and actions (Braver & Cohen, 1999). Braver, 

Barch, and Cohen (1999) suggest that the main three areas of schizophrenic cognitive control 

failures are: 1) “selective attention in the face of distraction;” 2) “inhibition of inappropriate 

responses;” and 3) “strategic regulation of behavior based on situational demands.”  Cognitive 

control failures have been linked to impaired attention (Carter, Barch, & Cohen, 1997; Carter & 

Barch, 2000) and working memory (Docherty et al., 1996; Barch, Sheline, Csernansky, & 

Snyder, 2003). Schizophrenia patients show deficits on tasks involving the representation and 

maintenance of context (Barch, Carter et al., 1999a; Barch, Carter et al., 1998; Barch & Carter, 

1998; Barch, Carter, Hatchen, & Cohen, 1999; Cohen, Barch, Carter, & Servan-Schrieber, 1999). 

A relationship has been shown between deficits in working memory and context processing and 

language disturbances in schizophrenia (Barch et al., 1999; Barch, Carter, Braver, & Cohen, 

1997; Cohen , Barch, Carter, & Servan-Schrieber, 1999).  

Frith and Corcoran (1996) and Corcoran, Mercer, and Frith (1995) suggest that 

schizophrenics lack theory of mind (i.e. are unable to represent the mental states of other 

people); the lack of a theory of mind may be behind schizophrenics’ communication failures. 

The apparent link between the representation and maintenance of context and the mastery of 

theory of mind remains yet to be investigated. 

 

1.2.3 The study of language disorder 
 

The schizophrenic language disorders provide a way to study schizophrenic cognition. 

Scales of schizophrenic thought disorder have been built based on analysis of schizophrenic 

speech (Andreasen, 1979a; Chen et al., 1996; Liddle et al., 2002,; Docherty, DeRosa, & 
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Andreasen, 1996). The Scale for the Assessment of Thought, Language and Communication 

(TLC) (Andreasen, 1979a) is the first to define the schizophrenic speech disturbances.  

One type of language analysis employed to study schizophrenic language, and of 

particular relevance to my thesis, is content analysis. Differently from other language studies, 

content analysis studies draw conclusions about a sample’s style and content based on its word 

frequencies. The following are some findings from content analysis of schizophrenic language. 

Schizophrenics tend to have lower adjective-verb quotient, a measure of description in verbal 

expression (Mahler, 1972; Harrow & Quinlan, 1977; Whitehorn & Zipf, 1943; Fairbanks, 1944). 

The same authors find decreased type-token ratio, a measure of vocabulary size, in schizophrenic 

speech.  Thematic content studies (Rosenberg & Tucker, 1975, 1979; Mete et al., 1993; Oxman, 

Rosenberg, Schnurr, Tucker, & Gala, 1988) find concern with one’s own thought processes, 

cognitive difficulty, deviance, distress, and hostility to be predominant themes in schizophrenic 

language. Except for the theme of cognitive difficulty, the results concerning the other themes 

have not been replicated (Mete el al., 1993). In addition, content analysis has been used to 

classify schizophrenics based on their speech. Mete et al. (1993) report an accuracy of above 

76% in distinguishing schizophrenics from other diagnostic groups and healthy participants. 

 

1.3 About this study  

The first part of this thesis can be categorized as a content analysis study. It measures 

linguistic features by counting the frequencies of pre-specific terms.  As a quantitative text 

analysis study, it employs the assumption that words can reveal much about a speaker’s mental 

state and even physical health (Pennebaker & Lee, 2002; Pennebaker, Mehl, & Niederhoffer, 

2003).  
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Content analysis studies are easy to computerize. Hence, they posses a few practical 

advantages; they are less expensive (once automated) and more reliable, accurate, and objective 

than studies employing human judges (Rosenberg, Schnurr, & Oxman, 1990; Rosenberg & 

Tucker, 1979). Oxman, Rosenberg, Schnurr and Tucker (1988) used computerized content 

analysis to classify patients into their respective diagnostic groups with higher accuracy than 

human judges in four out of five cases. A more subtle advantage of computerized studies is being 

able to manipulate large data patterns and find new relationships in the data. For example, back-

propagation neural networks are able to invent new features that are not given in the input, and 

use them to learn the target function (Mitchell, 1997). I will show that equipped with the 

intuitions of human experts, computerized quantitative text studies make promising research 

tools. My approach to content analysis differs in three ways from most existing content analysis 

studies.  

1. ENLF measures the occurrences of pre-specified words and phrases that make up a small 

portion of the whole text.  Previous content analysis studies have matched all the words of 

text into pre-defined psychological categories and themes (Rosenberg, Schnurr, & Oxman, 

1990; Tucker & Rosenberg, 1975; Rosenberg & Tucker 1979; Oxman, Rosenberg, Schnurr 

& Tucker, 1988; Mete et al., 1993). For this purpose, the Gottschalk-Gleser scales 

(Gottschalk & Gleser, 1969), The Dartmouth Adaptation of the General Inquirer/Harvard III 

Psychosocial Dictionary (Stone et al., 1966), and the General Inquirer and Harvard III 

Psychosocial Dictionary (Kelly & Stone, 1975) have been used. One problem with this 

approach is that the themes of schizophrenic language vary from one culture to the next 

(Mete et al., 1993). 

  

 6



2. Most previous computerized content analysis studies (Rosenberg, Schnurr, & Oxman, 1990; 

Tucker & Rosenberg, 1975; Rosenberg & Tucker, 1979; Oxman, Rosenberg, Schnurr & 

Tucker, 1988; Mete et al., 1993) measure word frequencies by using adaptations of the 

General Inquirer Computer Content Analysis Program (Stone et al., 1966). Instead, this study 

employs NLAT and ENLF for statistical analysis of text.   

3. Most previous content analysis studies (Rosenberg, Schnurr, & Oxman, 1990; Tucker & 

Rosenberg, 1975; Rosenberg & Tucker, 1979; Oxman, Rosenberg, Schnurr & Tucker, 1988; 

Mete et al., 1993), investigate either style or content but not both. This thesis looks at both 

the style and content of a text. NLAT and ENLF together measure 14 linguistic features, of 

which 10 are stylistic and four are content-based.  

 

1.4 The rest of this thesis 

 Chapter two presents the materials and methods I used. Chapter three introduces the 

machine learning experiments, specifying the design choices for the decision trees and neural 

networks. Chapter four presents the results of the experiments. Chapter five presents 

plausible interpretations of the results, as well as the limitations, strengths, and the future 

directions of the research presented in the thesis.     
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Part one: linguistic analysis 

Part one of this thesis consists of a corpus study where I measured both novel and previously 

studied linguistic features of schizophrenic speech. I developed the Extraction of Natural 

Language Features (ENLF) program, to measure seven pre-specified linguistic features. I ran 

ANOVA tests on the linguistic features measured by ENLF. In addition, I used Natural 

Language Analysis Tools (NLAT) (Covington, 2002) to measure seven additional linguistic 

features.  

 

2.1.1 The speech sample data 

I used the following three data sets containing healthy and schizophrenic (non thought-

disorder and thought-disordered4) speech samples: the “GSK speech samples 2002,” the “SB 

speech samples,” and the “10 Healthy Controls.” All three data sets have received human 

subjects’ approval from The University of Georgia. Philip McGuire, at the Institute of Psychiatry 

in King’s College London collected the “GSK speech samples 2002” and the “SB speech 

samples.” The conditions under which these two datasets were collected have not been disclosed. 

The data suggest that the patients in the two sets suffer from different stages of schizophrenia 

and may be different in other aspects as well, such as age, medication level, etc. 

                                                 
4 The presence or absence of thought disorder is determined with a battery of cognitive tests. Both non thought-
disordered and thought-disordered schizophrenics can exhibit language disturbances. 
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GlaxoSmithKline collected the “10 Healthy Controls” data set. The conditions of collecting the 

“10 Healthy Controls” have not been disclosed either. In total, I have 44 four speech samples: 14 

healthy participants, 12 non thought-disordered schizophrenics, and 18 thought-disordered 

schizophrenics.  

There are two main limitations pertaining to the data. First, the amount of data is very 

limited. Any result of this thesis will have to be tested on more data. Second, there is much 

linguistic variation between the schizophrenic speech samples. The variation can be due to the 

different manifestations of the schizophrenic language disturbances. 

 The speech samples in all three datasets have been gathered under similar conditions. 

Each participant describes the same four pictures from the Thematic Apperception Test (Murray, 

1943). The Thematic Apperception Test is administered by having a participant verbally describe 

one or more of a series of ambiguous and emotionally complex pictures. The sound recordings of 

the descriptions are transcribed into speech samples. I eliminated the interviewer speech and 

considered valid for analysis a speech sample including all four picture descriptions, before and 

after interviewer’s promptings.  

 

2.1.2 Introducing noisy data 

Noisy data is data that is slightly incorrect due to erroneous measurement. If the noise is 

small, noisy data is not problematic for a classifier. In fact, slightly noisy data can be introduced 

to augment the amount of data in a data poor problem. The noise can be introduced by 

replicating an existing data instance and slightly changing the values of each attribute. The 

change can be done by adding or subtracting 1/100th of an existing value. 
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I introduced noisy data to tackle the following two problems. First, the amount of data is 

limited. The addition of noisy instances enlarges the data set. I added 10 data instances, making a 

total of 54 data instances. Second, in the original data set, there are more than twice as many 

schizophrenic speech samples as there are healthy speech samples. Given the limited data, a 

classifier (decision tree or neural network) may become biased in its classification towards the 

larger set. I added noisy data to make the participants’ subsets equal. Thus, with the addition of 

noisy instances, there are a total of 18 healthy, 18 non thought-disordered and 18 thought-

disordered speech samples. 

 

2.1.3 Linguistic features 

Table 2.1 lists the 16 linguistic features used in this project. NLAT measured features one  

through seven, whereas ENLF measured features eight through 16. Features three (type-token 

ratio) and five (stem-token ratio) are similar in that they measure vocabulary size. They differ in 

that the stem-token ratio is a stricter measure of a speaker’s vocabulary size. The reason is the 

following: A type is a word form. The tokens of a type are the different occurrences of that word 

form in a text (Covington, 2002). Hence, the type-token ratio is a measure of the number of 

different types as compared to how many times those word forms are repeated in a text.  A stem 

is the base form of a word. For example, the stem play- is part of plays, playing, etc. Since the 

same stem is the base form of many words, there are fewer stems than there are types. A speaker 

using more word types with different stems than word types with the same stem has a truly larger 

vocabulary than one who uses the same number of word types but a smaller number of stems. 

Also, features six (repetitiousness) and 16 (text repetition) are similar in that they measure the 

degree of repetitiousness for the entire text.  
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Table 2.1  The linguistic features used in this project 

 

Linguistic Features Motivation For Using Each Feature 
1. Number of Tokens Provides basic statistical information about speech 
2. Number of Types Provides basic statistical information about speech 
3. Type-Token Ratio A measure of speaker’s vocabulary size 
4. Number of Stems Provides basic statistical information about speech 
5. Stems-Token Ratio A stricter measure of the speaker’s vocabulary 
6. Repetitiousness Characteristic of schizophrenic speech 
7. Repetitiousness-Words Ratio Measures repetitiousness as independent from the 

total number of words. The amount of speech output 
of positive and negative symptom schizophrenics 
varies greatly. 

8. Mean Word Length Provides basic statistical information about speech 
9. Mean Sentence Length Schizophrenics ramble; sentences may run together 
10. Hedging Words Schizophrenics appear to∗ use fewer hedging terms 
11. Degree Words Schizophrenics appear to use fewer degree terms 
12. Degree Expressions Schizophrenics appear to use fewer degree terms 
13. Difficulty Words Previous research shows expressed cognitive 

difficulty in schizophrenic language 
14. Difficulty Expressions Previous research shows expressed cognitive 

difficulty in schizophrenic language 
15. Certainty Words Cognitive difficulty may reduce certainty terms 
16. Text Repetition Characteristic of schizophrenic speech 

 

 

 

 

 

 

 

                                                 
∗ This became evident from manual word counts performed on the speech samples. 
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Feature six, takes into account the number of words within which a word repeats itself. 

The basic principle is that the shorter the interval within which a word reoccurs, the higher the 

repetitiousness index. Hence, a word reoccurring after a short interval is more repetitious that a 

word reoccurring after a long interval (Covington, 2002). Feature 16 does not take into account 

the speech interval within which a word repeats itself. It just counts the number of times a word 

is repeated regardless of how recently that word was last uttered. Both features will be useful for 

decision trees and neural networks. When using machine learning techniques for data 

classification it is valuable to have as many features to learn from as possible. 

 

2.1.4 Processing the data 

2.1.4.1 Natural Language Analysis Tools (NLAT)  

I measured the first seven linguistic features by using NLAT (Covington, 2002). Written 

in C Sharp, NLAT is a program for statistical analysis of natural language texts (Covington, 

2002). Table 2.2 lists the linguistic features measured by NLAT. These features are not measured 

with reference to a text unit. 
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Table 2.2  Features measured by NLAT 

 

Linguistic Features Brief Explanation of Each Feature 
1. Number of Tokens Number of different words used 
2. Number of Types Number of different kinds of words 
3. Type-Token Ratio Gives size of speaker’s vocabulary 
4. Number of Stems A stricter estimate of kinds of words 
5. Stems-Token Ratio A stricter estimate of the speaker’s vocabulary 
6. Repetitiousness Amount of repetition in the speech sample 
7. Repetitiousness-Words Ratio Repetition per word 
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2.1.4.2 The Extraction of Natural Language Features (ENLF) Prolog program 

ENLF is a Prolog program that measures stylistic and content-based linguistic features of 

natural language text (Table 2.3). My motivations for choosing each feature are summarized 

below.  

1) Mean Word Length: Schizophrenics routinely make up new words (Andreasen 1979a). In 

addition, this feature provides basic statistical information about speech. 

2) Mean Sentence Length: Verbosity is a well recognized feature of schizophrenic language 

(Andreasen, 1979a; Chaika, 1990). Schizophrenics ramble, derail from the topic, and are 

easily distracted by tangential stimuli (Andreasen, 1979a). If suffering from negative 

symptoms, schizophrenics speak very little (Andreasen, 1979a), or speak normally but utter 

little content. All of these findings point to a possibly skewed mean sentence length.   

3) Hedging Words: I performed manual word counts on the data. These preliminary tests seem 

to indicate that schizophrenics, especially those suffering aggravated thought disorder, use 

fewer hedging terms than healthy participants. 

4) Degree Words/Expressions: Preliminary tests seem to indicate that schizophrenics use 

fewer degree terms than healthy participants. ENLF looks for degree words and expressions 

(both part of degree terms) by different techniques. Hence, the results for each are treated 

individually when performing statistical tests. 

 

 

 

 

 

 14



Table 2.3  Features measured by ENLF 

 

Linguistic Features Brief Explanation of Each Feature 
1. Mean Word Length Mean length of words in speech sample 
2. Mean Sentence Length Mean length of sentences in speech sample 
3. Hedging Words Number of hedging words  
4. Degree Words Number of degree words  
5. Degree Expressions Number of degree expressions 
6. Difficulty Words Number of hardship words  
7. Difficulty Expressions Number of hardship expressions 
8. Certainty Words Number of certainty words  
9. Text Repetition An estimate of a text’s repetitiousness 

 

 

 

 

5) Difficulty Words/Expressions: Previous research has shown that schizophrenics overtly 

express difficulty, or concern with their own thought processes when performing cognitive 

tasks (Rosenberg & Tucker, 1975, 1979; Mete et al., 1993; Oxman, Rosenberg, Schnurr, 

Tucker, & Gala, 1988). ENLF looks for difficulty words and expressions (both part of 

difficulty terms) by different techniques. Difficulty words and difficulty expressions are 

treated individually when performing statistical tests. 

6) Certainty Words: I measured certainty terms because the expression of certainty may be 

effected by cognitive difficulty and diminished confidence in one’s analytic abilities. 

7) Text Repetition: Schizophrenics abnormally persevere on one topic, idea or word, once they 

get fixated on it (Andreasen, 1979a). Schizophrenic speech may have a high repetitiousness 

index. 

ENLF performs four main tasks for each speech sample.  

1. It converts the text into a list of tokens, or a list of all the words used in the speech samples.  
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2. It removes suffixes creating a list of stems.  

3. It looks for specific expressions. ENLF picks out expressions pre-specified in the expression 

lists (Appendix) such as to some extent, more or less, kind of, etc.  

4. It measures seven linguistic features (Table 2.3). The total number of words varies widely 

from one speech sample to the next. To neutralize the effect of text length in each feature’s 

value, ENLF measures features three to seven with reference to a text unit. One text unit is 

arbitrarily chosen equal to 100 words.  

A Features one and two are measured simply by finding the averages of the words and 

sentences in a text.  

B. Features three, four, five, and six are measured by adding together the number of 

occurrences of specific (for each feature) words or expressions in the speech sample. 

ENLF uses different strategies to measure the occurrences of words and expressions. A 

word’s occurrences are measured by counting and adding together each time the word 

occurs in the token list; an expression’s occurrences are measured by counting and 

adding together each time the expression occurs in the expression list derived from 

parsing the text. The words and expressions for each feature are derived from literature 

on hedging, degree, and modality expression in the English language (Huebler, 1983; 

Palmer, 2001; Channell, 1994). I used the Merriam-Webster Thesaurus (Merriam-

Webster Inc., 1989) to expand the lists provided in the literature. The lists contain the 

most used words or expressions for that feature; they are not exhaustive and can be 

expanded to include less frequent words or expressions.  

C. Feature seven is measured by adding together the amount of repetition for each word in 

the text. 
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2.2 Part two: machine learning 

Part two of this thesis consists of a classification study. I use machine learning 

techniques, namely decision trees and neural networks, to classify schizophrenic and healthy 

speech based on linguistic features.  

Both decision trees and neural networks are widely used automated classifiers. Decision 

trees and neural networks have many aspects in common. Each of them has slightly different 

strengths. The following aspects are common between decision trees and neural networks.  

A. In both techniques, the data instances are represented as a set of attribute-value pairs matched 

with a classification, i.e. healthy or schizophrenic (Table 2.4).  

B. Both decision trees and neural networks are powerful computational learners. They 

automatically learn the target function, or the function which maps the inputs to the output(s) 

in a data set (Mitchell, 1997). 

C. Both decision trees and the back-propagation neural networks learn by seeing the inputs and 

the outputs in the training data. They learn by supervision.   

D. The performance of both techniques is tested by presenting the inputs of new data instances 

and predicting the output(s) or the participant’s classification. The accuracy is measured by 

comparing the predicted classification (outputted by the classifier) with the actual 

classification of the data. 
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Table 2.4  Representation of subject am features for machine learning 

 

1. Number of Tokens 617 
2. Number of Types 328 
3. Type-Token Ratio 0.53 
4. Number of Stems 310 
5. Stems-Token Ratio 0.5 
6. Repetitiousness 85.55 
7. Repetitiousness-Words Ratio 0.14 
8. Mean Word Length 4.54 
9. Mean Sentence Length 14.61 
10. Hedging Words 0.79 
11. Degree Words 0.32 
12. Degree Expressions 0.16 
13. Difficulty Words 1.11 
14. Difficulty Expressions 0.32 
15. Certainty Terms 0 

ATTRIBUTES 

16. Text Repetition 220.52 

TARGET ATTRIBUTE        Classification 
 

Thought-Disordered 
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One major difference between neural networks and decision trees is that a decision tree’s 

output reflects the reasoning behind its classification process, which a human observer can 

decipher. The output of a decision tree is simply a collection of steps. Each step (a node in the 

tree) corresponds to a decision point, where the data instances are divided into different groups 

based on the value of the attribute at that node. On the other hand, neural networks output only a 

number that can be interpreted as a classification. There is no information about how the neural 

network arrived at that classification. A human observer cannot tell how the strength of the 

network’s connections or how the hidden nodes’ activation level may represent the networks’ 

classification decisions.  

Despite the poor readability of their process, neural networks do indicate the features they 

find most important in the classification process. Neuroshell 2 considers the features with the 

highest weight to have the most say in classification. Decision trees indicate the features they 

find most important as well. The features with highest information gain, or those that classify the 

largest part of the data (Mitchell, 1997), are the most important in a decision tree’s classification 

process. Hence, by using both decision trees and neural networks, we can see which features are 

important for more than one technique. This proves especially useful if the most important 

features are the same for both decision trees and neural networks.  

 

2.2.1 Decision trees 

Decision trees classify instances by sorting them down a tree of attributes, starting with 

the root node and ending with the leaf nodes. In the graphical representation of a decision tree 

(Table 2.1), the root node is at the top of the chart and the leaf nodes at the bottom.  
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Difficulty Terms 

 

Figure 2.1  Decision tree for healthy and non thought-disordered participants 

 

 

 

 

 

 

 

Schizophrenic (6) 

<= 0.98> 0.98 

Hedging Terms

> 0.78 <= 0.78 

Schizophrenic (3) Mean Sentence Length 

<= 26.3 
> 26.3 

Schizophrenic (2) Healthy (15) 
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Each node in the tree is a test of some attribute, in this case, the linguistic features. The 

attribute with the highest information gain represents the root node. A leaf node represents a 

classification (Mitchell, 1997).  

Once the tree has been built from the training data, it is used to classify new data 

instances. The classification of a new data instance proceeds as follows. Starting from the root 

node, the instance is queried regarding the value of the attribute at that node in the tree. From 

each node descend as many branches as data groups derived from this attribute. The data 

instance to be classified moves down the tree branch corresponding to its attribute value at that 

node. This process is repeated at each node until the leaf node is reached (Mitchell, 1997). 

I used the demo version of See55 software-package to construct 40 decision trees.  See5 

provides automated design options that are very useful in building the decision trees (Figure 2.2). 

Please see the experiments and results chapters for a listing of the decision trees using these 

options. 

1. Winnowing is technique that cuts the attributes which do not contribute to the predictive 

power of a decision tree. If the superfluous attributes are winnowed, the predictive power of 

a tree increases (Mitchell, 1997).  

2. Rulesets is a set of “if-then” rules that represent the classification process. The rulesets option 

produces classifiers that are highly human readable, but it does not affect the classification 

accuracy. I do not find the rulesets option particularly useful for this project. The reason is 

that the features used in this project are meaningful and a tree based on these features is 

already easy to read (Figure 2.1).  

                                                 
5 See5 is the commercial version of the C4.5 decision tree algorithm developed by Ross Quinlan. It is distributed by 
RuleQuest Research Pty Ltd. The See5 demo version is available for free from the internet: 
http://www.rulequest.com/download.html. It allows the classification of only 400 instances. Given this project’s 
limited data amount, the demo software is usable. 
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3. Boosting is an iterative technique for developing complementing decision trees based on the 

same data. The instances that are classified incorrectly in one iteration are taken forward in 

the next iteration, until all the instances are classified correctly. In boosting, many classifiers 

pull their forces together to classify the data (Witten & Frank, 1990).   

4. Cross-validation is often used to derive a reliable error estimate when the dataset is small. 

During cross-validation, the data are partitioned into training and testing groups many times, 

each time using different parts of the data. For each partition of the data a different classifier 

is built; for example, a total of ten classifiers are built for the ten-fold cross-validation. The 

errors from all classifiers are averaged, deriving a relatively solid error estimate for that data 

set (Mitchell, 1997).  

5. The pruning technique monitors the predictive power derived from developing each branch 

in a decision tree. Pruning safeguards against overtraining, or learning the training data too 

well, at the cost of learning the irrelevant information instead of focusing on the general 

trends that can be extrapolated beyond the training set. As the predictive power derived from 

new branches becomes small, that branch is pruned and the tree stops growing in that 

direction.  
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Figure 2.2  See5 classifier design options 
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2.2.2 Neural networks 

Artificial neural networks are very effective learning methods. They can approximate any 

real-valued, discrete-valued, and vector-valued target functions (Mitchell, 1997). A simple neural 

network has an input layer, one or more hidden layer(s), and an output layer, all of which can 

have a varying number of nodes (Figure 2.3).  

Once the neural network has been created from the training data, it is used to classify data 

instances that were not used in training. The classification process proceeds as follows. The 

different attributes’ values for a data instance are fed to the input nodes. The connections 

between the input and the hidden nodes create a weighted sum of these inputs. Based on the 

input’s weighted sum, the hidden nodes’ activation function determines the hidden nodes’ 

output. Further, the connections between the hidden and the output nodes create a weighted sum 

of the hidden nodes’ output. Finally, based on the weighted sum of the hidden nodes’ output, the 

activation of the output nodes determines the network’s output. The output of the neural network 

is a numerical value that represents the classification of that data instance. Based on a pre-

specified threshold, it can be determined whether or not the network classified the instance 

correctly. 
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Figure 2.3  The graphical representation of a simple neural network 
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I used Neuroshell 26 release 3.0 to build 19 neural networks. The process of building a 

neural network has four main stages (Figure 2.4).   

1) Defining inputs and outputs: The inputs to the network are the values of the linguistic 

features for each data instance. The output is a number(s) corresponding to the classification 

of that data instance. Whether there are one or more outputs depends on the output design 

schema. The different design choices are explained in detail in the experiments chapter.   

2) Partitioning the data into subsets: The data is partitioned by random extraction in three 

sets, the training, testing, and validation sets. The training set (50% of data) is used to train 

the network. The testing set (25% of data) is used to stop training. The validation set (25% of 

data) is used to test the network. 

3) Designing the network: I used the three layer back-propagation architecture for all the 

neural networks (Figure 2.5). The design specifications for all the networks are the following.  

A. Input Nodes: 14 

B. Hidden Nodes: 5 (the number is arbitrarily chosen) 

C. Output Nodes: 1, 2, or 3 depending on the network 

D. Activation Function: Logistic 

4) Training the network: I used the following specifications for training each network  

A. Momentum7: 0.1 (suggested by Neuroshell 2) 

B. Learning Rate8: 0.1 (suggested by Neuroshell 2) 

C. Initial Weights: 0.3 (suggested by Neuroshell 2) 

D. Criteria for stopping the training: 200,000 epochs subsequent to the best error                 

 

                                                 
6 Neuroshell II is copyrighted by Ward Systems Group, Inc. 
7 The momentum helps the network to keep in line with what it has previously learned (Smith, 1993). 
8 The learning rate helps the network to explore all the space of weight possibilities (Smith, 1993). 
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Figure 2.4  Neuroshell 2 neural network design window 
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Figure 2.5  Neuroshell 2 three layer back-propagation neural network 
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CHAPTER 3 

EXPERIMENTS 

 

3.1 ANOVAs 

I use SPSS (SPSS Inc., 2004) to run nine univariate ANOVA (analysis of variance) tests, one 

for each features measured by ENLF. An ANOVA looks for significant differences between a 

linguistic feature’s mean value in schizophrenic speech and that feature’s mean value in healthy 

speech (StatSoft Inc., 2004). The Tukey test, is a post hoc test that compares different 

participants’ groups together. The Tukey test makes the following comparisons: 1) healthy vs. 

non thought-disordered; 2) healthy vs. thought-disordered; and, 3) non thought-disordered vs. 

thought-disordered. I run ANOVA and Tukey tests only for the nine features measured by 

ENLF, the software that I developed. 

 

3.2 Decision trees 

A decision tree automatically classifies a participant into healthy or schizophrenic based on 

the characteristics of his or her speech. In order to find trees with high performance, I built a total 

of 40 decision trees with different specifications. I calculated each tree’s classification accuracy 

based on the number of its correct classifications. 
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3.2.1 Inputs and outputs  

The input (for each participant) consists of 14 attribute-value pairs corresponding to the 

linguistic features. The values of the attributes were provided by NLAT and ENLF. The output 

consists of the value of the target attribute or the participant’s classification. The target attribute 

is either schizophrenic with values: yes (for schizophrenic) and no (for healthy), or state with 

values: td (for thought-disordered), ntd (for non thought-disordered), and h (for healthy). 

The decision tree handles the inputs and the outputs differently in the training and testing 

phase. In the training phase the decision tree sees both the inputs and the output for the training 

set speech samples. In the testing phase, the decision tree sees only the inputs. Subsequently, the 

tree predicts a classification of each participant. The output is correct if it matches the actual 

label (yes/no or h/ td/ntd) for that speech samples. 

 

3.2.2 Design specifications for the decision trees 
 

I built a set of five different decision trees for each of eight classification schemas. The 

eight classification schemas are the following.  

1. A binary target-attribute tree distinguishing healthy speech from non thought-disordered 

speech based on noise-free data.  

2. A binary target-attribute tree distinguishing healthy speech from non thought-disordered 

speech based on noisy data.  

3. A binary target-attribute tree distinguishing healthy speech from thought-disordered speech 

based on noise-free data. 

4. A binary target-attribute tree distinguishing healthy speech from thought-disordered speech 

based on noisy data. 
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5. A binary target-attribute tree distinguishing healthy speech from schizophrenic (including 

both non thought-disordered and thought-disordered) speech based on noise-free data.  

6. A binary target-attribute tree distinguishing healthy speech from schizophrenic (including 

both non thought-disordered and thought-disordered) speech based on noisy data. 

7. A three-valued target-attribute tree distinguishing healthy speech from schizophrenic 

(including both non thought-disordered and thought-disordered) speech based on noise-free 

data.  

8. A three-valued target-attribute tree distinguishing healthy speech from schizophrenic 

(including both non thought-disordered and thought-disordered) speech based on noisy data. 

The eight different design specifications are the following. (Please refer back materials 

and methods chapter for an explanation of the design options mentioned below.)  

I. A decision tree with global pruning.  

II. A decision tree with winnowing. 

III. A decision tree with 10-fold cross-validation.  

IV. A decision tree with 10-fold cross-validation and winnowing.  

V. A decision tree with boosting.  

             

3.2.3 Classification and error measurement for decision trees 

The See5 software automatically reports the classification error for a decision tree. The 

See5 default error measure gives an optimistic estimate of the decision tree’s predictive power. 

The reason is that, in See5, the network’s error is measured based on the training data, the same 

data used to build the decision tree. This constitutes a problem because the tree was developed to 
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fit the training data as best as it can. We are interested in how well this tree will classify 

instances not used in training. Thus, we need to test the tree on data it has not used in training.  

The cross-validation technique provides a more realistic estimate of the network’s 

predictive power over examples not used in training. The cross-validation classification error is 

much higher than the training data error. It is worth noting that the cross-validation error 

estimation may be an overly pessimistic one. Cross-validation partitions the data in small sub-

groups. Given our initially small data set, and the large variation between the speech samples, it 

is possible that a) the network is learning less from a smaller training sample, and b) it is 

committing more errors on a smaller testing sample, which may not be representative of what the 

network has learned. The dilemma about what to consider the most accurate performance 

measure would not arise if the classifier had a large data set to work with.  

 

3.3 Neural networks 

Like a decision tree, a neural network automatically classifies a participant into healthy or 

schizophrenic based on the characteristics of his or her speech. I built a total of 19 neural 

networks. The reason for building fewer neural networks than decision trees is that there are 

fewer reliable optimization options for neural networks. Much less is known about the 

classification process in neural networks than in decision trees. The process of building an 

efficient neural network resembles the process of trial and error.  
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3.3.1 Input and outputs 

The input consists of 14 numerical values (corresponding to the linguistic features). The 

output consists of a numerical value(s) corresponding to a participant’s classification. The 

networks have different outputting designs including one, two, or three output nodes.  

Like decision trees, neural networks handle the inputs and the outputs differently in the 

training and testing phase. In the training phase both inputs and outputs are provided. An output 

node is on or off depending on the participant’s classification. In the testing phase the network 

sees only the inputs, and, based on them, it predicts the participant’s classification. Depending on 

the outputting design, an output node can behave as follows. If the network has only one node, a 

correct classification for a schizophrenic is an output > 0.1 and < 0.5; a correct classification for 

a healthy participant is an output >= 0.5 and < 0.9. If the network has more than one node, the 

active node determines a participant’s classification, based on a pre-specified labeling of the 

nodes. The node with the highest activation is considered active and determines the network’s 

classification. Consider a two-nodded network. If the node labeled for the healthy classification 

outputs a 0.75 and the node labeled for the schizophrenic classification a 0.43, the classification 

is healthy.  

 

3.3.2 Design specifications for the neural nets 
 

For comparison purposes, the neural networks partition the data into the same participants’ 

subgroups as the decision trees. I built the following networks. 

1. A two output nodes network to distinguish healthy speech from non thought-disordered 

speech based on noise-free data.  
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2. A two output nodes network to distinguish healthy speech from non thought-disordered 

speech based on noisy data.  

3. A two output nodes network to distinguish healthy speech from thought-disordered speech 

based on noise-free data. 

4. A two output nodes network to distinguish healthy speech from thought-disordered speech 

based on noisy data. 

5. A two output nodes network to distinguish healthy speech from schizophrenic (including 

both non thought-disordered and thought-disordered) speech based on noise-free data. 

6. A two output nodes network to distinguish healthy speech from schizophrenic (including 

both non thought-disordered and thought-disordered) speech based on noisy data. 

7. A three output nodes network to distinguish healthy speech from schizophrenic (including 

both non thought-disordered and thought-disordered) speech based on noise-free data. 

8. A three output nodes network to distinguish healthy speech from schizophrenic (including 

both non thought-disordered and thought-disordered) speech based on noisy data. 

9. A one output node network to distinguish healthy speech from schizophrenic (including both 

non thought-disordered and thought-disordered) speech based on noise-free data. 

10. 10 two output node networks to distinguish healthy speech from thought-disordered for 

cross-validation. 

 

3.3.3 Classification and error measurement for neural networks 

Neuroshell 2 tests the network’s performance on data it has not used in training. This data 

is contained in the validation set. The error on the validation set is computed by comparing a 

network’s classification with the actual classification and by calculating an error/miss every time 
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the two are different. All the errors are added together and divided by the total number of 

participants in the validation set. This yields the network’s percentage error. 

Testing the network’s prediction on the validation set provides a relatively unbiased 

performance measure. However, the original data set is very small. The validation set is a mere 

25% of that data set. Simply, the validation set is very small (containing 9-16 participants). 

Hence, the error on the validation set is not a completely robust measure. For example, a 

different error may be derived if a different set of participants (the data extraction from the main 

data pool is random) are chosen for the validation set. 

I used cross-validation error as a more reliable error measure. Given that in Neuroshell 2 

cross-validation is not automated, I performed manual cross-validation. Manual cross-validation 

is not only very time consuming, but, most importantly, introduces the problem of human error. I 

performed cross-validation only for one network to give a general idea of the amount of cross-

validation error for the neural networks.   
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CHAPTER 4 

RESULTS 

 

4.1 Part one: results from linguistic analysis 

Six of the ENLF’s features do not significantly distinguish schizophrenic speech from 

healthy speech (Table 4.1). This may be in part due to measurement. For example, it is well-

known that schizophrenic speech is highly repetitious (Andreasen 1979). However, the feature 

‘Text Repetition’ does not reach a significant level of difference between schizophrenic and 

healthy speech. Measuring the repetitiousness of every word in the text may not be a good 

measure of repetition in schizophrenic speech. It is possible that healthy speech is overall 

repetitious enough to not be distinguishable (via this method) from schizophrenic speech. In 

hindsight, a measure of the repetition of specific words/ideas many be a more effective measure 

of repetition in schizophrenic speech.  

The non-statistically significant results may offer valuable insight in their own right. For 

example, based on this study, schizophrenics do not use significantly more certainty words than 

healthy people. However, based on this study, schizophrenics use significantly more cognitive 

difficulty words than healthy people. These two results may suggest that, unlike healthy people, 

schizophrenics do not use caution in their claims even in the face of cognitive difficulty. 

The features ‘Mean Sentence Length,’ ‘Degree Expressions,’ and ‘Difficulty Words’ 

reach a significant level of difference between schizophrenic and healthy speech. 
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Table 4.1  ANOVA results for the ENLF features 

 

1. Mean Word Length F(2,41) = .59, p = .56 
2. Mean Sentence Length F (2,41) = 4.77, p =  .014 
3. Hedging Words F (2,41) = 2.58, p = .088 
4. Degree Words F (2,41) = .37, p = .69 
5.Degree Expressions F (2,41) = 5, p = .011 
6. Difficulty Words F (2,41) = 4.02, p = .025 
7. Difficulty Expressions F (2,41) = .74, p = .482 
8. Certainty Words F (2,41) = .17, p = .842 

FEATURES 

9. Text Repetition F(2,41) = .17, p = .845 
 

 

 

 

 

Table 4.2  Tukey results for different comparison groups 

 

FEATURES H. vs. N.T.D.9 H. vs. T.D. N.T.D. vs. T.D. 
1. Mean Word Length p = .67 p = .99 p = .56 
2. Mean Sentence Length p = .03 p = .03 p = .96 
3. Hedging Words p = .89 p = .09 p = .27 
4. Degree Words p = .67 p = .8 p = .96 
5. Degree Expressions p = .04 p = .01 p = .98 
6. Difficulty Words p = .02 p = .12 p = .43 
7. Difficulty Expressions p = .79 p = .45 p = .88 
8. Certainty Words p = .87 p = .86 p = 1 
9. Text Repetition p = .99 p = .84 p = .92 

 
 
 
 

 

                                                 
9 H.: Healthy; N.T.D.: Non thought-disordered; T.D.: Thought-disordered. 
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Mean Sentence Length In Healthy And Schizophrenic 
Speech 
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Figure 4.1  Mean sentence length in healthy and schizophrenic speech 

 

 

 

1. Schizophrenics use longer sentences than healthy participants. F (2, 41) = 4.77, p =  .014. 

Figure 4.1 shows that healthy participants, as a group, use significantly shorter sentences than 

schizophrenic participants. 
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Degree Expressions In Healthy And Schizophrenic Speech
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Figure 4.2  Degree expressions in healthy and schizophrenic speech 

 

 

 

2. Schizophrenics use fewer degree expressions than healthy participants. F(2, 41) = 5, p = 

.011. Figure 4.2 shows that healthy participants, as a group, use significantly more degree 

expressions than schizophrenic participants. 
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Difficulty Words In Healthy And Schizophrenic Speech
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Figure 4.3  Difficulty words in healthy and schizophrenic speech 

 

 

 

3. Schizophrenics use more difficulty words than healthy participants: F (2, 41) = 4.02, 

p=.025.  Figure 4.3 shows that healthy participants, as a group, use significantly fewer difficulty 

words than schizophrenic participants. 
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The feature ‘Hedging Words’ comes close to reaching a significant level of difference in 

schizophrenic and healthy speech (F(2,41); p = .088). Based only on the “SB speech samples” 

(12 speech samples), the feature ‘Hedging Words’ distinguishes schizophrenic speech from 

healthy speech at a significant level (p = .001). However, the feature ‘Hedging Words’ does not 

reach a significant level of difference (p = .088) on the whole data (44 speech samples). 

Linguistic variation may play a large role on the level of significance reached by ‘Hedging 

Words’ over the three data sets. The schizophrenic speech samples can vary greatly from one 

data set to the other. For example, the schizophrenic speech in the “SB speech samples” appears 

to reflect more aggravated thought disorder than the schizophrenic speech in the other two data 

sets. For example, the speech of Subject AM (thought-disordered), from the “SB speech 

samples” data set, sounds like the following: 

Where does she come from, that Bridget Bardot, of Bridget Bardot existence. She looks 

in stain–like angst upon the heavy pyramids which flow.......the light in the background. 

They look, to an extent, barriered and outside the space–like, clown–like warrior of E–

so–e–ski  – born. Heaps upon the fettered, ploughed fields which come to the Eastern 

ottoman manor house of Fiefdom cake. 

In contrast, the speech of Subject JJ (thought-disordered), from the “GSK speech samples 

2002” data set, sounds like this: 

They are farming, the farmer is ploughing his land while his wife stands by and his 

daughter may go to church or she reads a book or something, or the bible, may be she is 

religious or something, you know.  The wife is watching her husband ploughing the field. 

I don’t know what else to say about that really.   

The speech of Subject AM is patently more disturbed than the speech of Subject JJ. 
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4.2 Part Two: results from machine learning 

4.2.1 Results from decision trees experiments 

Table 4.3 summarizes the results of the decision tree experiments. The decision tree  

comparing healthy speech to non thought-disordered speech (with the winnowing feature 

selected) achieves 100% accuracy on the training data. This simply means that a decision tree 

can learn the training data perfectly. As expected, the cross-validation error is higher for most 

trees. A low cross-validation error indicates that the tree performs well on data it has not been 

trained on.  

The tree with the lowest cross-validation error (16.7%) is a two-valued target attribute 

tree that compares healthy speech to all schizophrenic speech. This tree uses noisy data. I 

introduced noisy data in order to augment the data amount. The high performance on noisy data 

indicates that increasing the number of data patterns enhances the performance of a decision tree.   

In addition, two-valued target-attribute trees classify the data more accurately than three-

valued target attribute trees. This result may also be due to the amount of data used by each of 

these classifiers.  
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Table 4.3  Decision trees’ errors 

 

Decision Trees 
Experiments Global 

pruning Winnowing Cross -
Validation 

Winnowing 
& Cross- 

Validation 
Boost 

1. Two-Valued  
Healthy vs. Non Thought-
Disordered  
Noise-Free 

3.8% 
 

0% 
 41.7% 26.7% 0% 

2. Two-Valued  
Healthy vs. Non Thought-
Disordered 
Noisy Data 

2.8% 
 

13.9% 
 

24.2% 
 23.3 % 0% 

3. Two-Valued  
Healthy vs. Thought-
Disordered 
Noise-Free 

3.1% 
 

9.4% 
 

37.5% 
 22.5% 0% 

4. Two-Valued 
Healthy vs. Thought-
Disordered 
Noisy Data 

2.8% 
 

19.4% 
 

26.7% 
 50% 0% 

5. Two-Valued 
Healthy vs. All 
Schizophrenics 
Noise-Free 

2.3% 
 

15.9% 
 

25% 
 27% 0% 

6. Two-Valued 
Healthy vs. All 
Schizophrenics  
Noisy Data 

1.9% 
 

13% 
 

14.3% 
 16.7% 0% 

7. Three-Valued 
Healthy vs. All 
Schizophrenics 
Noise-Free 

11.4% 
 

25% 
 

60% 
 42.5% 0% 

8. Three-Valued 
Healthy vs. All 
Schizophrenics 
Noisy Data 

13% 
 

46.6% 
 

44.3% 
 56.3% 0% 
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4.2.2 Important features for decision trees  

For each tree, I list below the two attributes with the highest information gain. The topmost 

important attributes for all the decision trees are: 

1) Difficulty Words 

2) Hedging Words 

3) Mean Sentence Length  

4) Degree Expressions 

 

4.2.3 Results from neural networks experiments 

Table 4.4 summarizes the results of the neural networks experiments. Table 4.5 

summarizes the cross-validation experiment’s results, including the errors for each of the 10 

networks involved. The best performing neural network (network 2 in Table 4.4) (0.00% error) 

compares healthy speech to non thought-disordered speech based on noisy data.  Such good 

performance is achieved on data from the validation set or data not used in training. However, 

the validation set is small and may not produce a robust error measure. Judging from the cross-

validation experiment, we can expect high cross-validation errors for the other networks as well. 

This result is similar to the cross-validation results for decision trees. Given that the cross-

validation error is a more robust error measure, we can expect neural networks to have an error 

measure of at least 14%.  
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Table 4.4  Neural networks’ errors 

 

Neural Networks  Validation Set Error 
1. Two Output Nodes 
Healthy vs. Non  Thought-Disordered 
Noise-Free   

22.2% 

2. Two Output Nodes 
Healthy vs. Non Thought-Disordered  
Noisy Data 

0% 

3. Two Output Nodes 
Healthy vs. Thought-Disordered  
Noise-Free 

40% 

4. Two Output Nodes  
Healthy vs. Thought-Disordered  
Noisy Data 

10% 

5. Two Output Nodes 
Healthy vs. All Schizophrenics  
Noise-Free 

7.1% 

6. Two Output Nodes 
Healthy vs. All Schizophrenics  
Noisy Data 

25% 

7. Three Output Nodes 
Healthy vs. All Schizophrenics 
Noise-Free 

64.3% 
 

8. Three Output Nodes 
Healthy vs. All Schizophrenics 
Noisy Data 

45% 

9. One Output Nodes 
Healthy vs. All Schizophrenics 
Noise-Free 

8% 
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Table 4.5  Cross-validation error 

 

Networks Validation Set 
Error 

1 20% 
2 0% 
3 0% 
4 20% 
5 0% 
6 50% 
7 25% 
8 0% 
9 0% 
10 25% 

Two output nodes 
 
Healthy vs. Thought-Disordered Schizophrenics 
 
Noisy Data 
 

 

Total (averaged 
error) 14% 
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Another similar characteristic for decision trees and neural networks is the high 

variability of error between the classifiers involved in a cross-validation experiment (usually 10). 

From 10 classifiers (in one cross-validation run), some have a high error (i.e. 25%), whereas 

others have a 0.00% error. This variability means either that the networks built on different 

portions of the data are very different, or that the networks are similar but tested on very different 

data. The error variability in the cross-validation networks is a measure of the data variability. 

The variability of the data is due to the inherent variability in natural language and to the 

variability of the schizophrenic language disorder manifestations. The larger the data set the 

smaller the impact of the data variability on a classifier’s accuracy. 

Again, similarly to decision trees, the networks based on noisy data are more accurate. 

This effect is more pronounced in the neural networks than in the decision trees. For example, a 

network’s error decreases from 22% on noise-free data to 0% on noisy data, or from 40% on 

noise-free data to 10% on noisy data. This result indicates that increasing the amount of data 

dramatically improves the computerized data classification.    

Further, the networks with two output nodes perform better than those with three output 

nodes. This result is the same for decision trees. It suggests that it is more effective for 

classification to compare healthy speech to schizophrenic speech than to compare healthy speech 

to any subgroup of schizophrenic speech individually. 

 

4.2.4 Important features for neural networks 

For each network, Neuroshell 2 ranks the features based on their weights, indicating that the 

features with highest weight have larger impact on classification. I select the two features with 
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the highest weights for each network. The topmost important features (out of 14 features) for all 

the networks are: 

1) Mean Sentence Length 

2) Difficulty Words 

3) Difficulty Expressions 

4) Degree Expressions 

5) Hedging Words 
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CHAPTER 5 

INTERPRETATION AND DISCUSSION 

 

5.1 Interpretation of results 

5.1.1 Significant features 

1. Schizophrenics use longer sentences than healthy participants. This result seems to lend 

support to existing findings of schizophrenics’ lack of discourse planning, derailment and 

rambling (Andreasen, 1979a). Schizophrenics’ longer sentences may be due to 

thoughts/sentences running together. 

2. Schizophrenics use fewer degree expressions than healthy participants. This result may be 

due to schizophrenics making strong claims and failing to modify their discourse to the same 

extent as healthy people. It appears that a schizophrenic is not preoccupied with whether or 

not the hearer will ratify his or her statements. This inference supports the claim that 

schizophrenics have an impaired theory of mind and do not understand well the thoughts, 

intentions and expectations of others (Frith, 1992; Frith & Corcoran, 1996).   

3. Schizophrenics use more difficulty words than healthy participants. This result supports prior 

findings that schizophrenics encounter cognitive difficulty in performing cognitive tasks 

(Rosenberg & Tucker, 1975, 1979). It suggests that schizophrenics are aware of their 

cognitive difficulty. However this inference is not as straightforward as it appears. We expect 

people that experience cognitive difficulty and exhibit healthy levels of self-awareness to be 

cautious in their claims. Based on this study, schizophrenics do not use less certainty words 
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than healthy people. In addition, schizophrenics use significantly fewer degree expressions 

than healthy people. It appears that schizophrenics are aware of their own cognitive 

difficulty, but cannot modify their claims accordingly. This conclusion would be in line with 

findings of schizophrenics’ cognitive control failures (Braver, Barch, & Cohen, 1999b; 

Braver & Cohen, 1999).  

 

5.1.2 Insights from machine leaning 

Decision trees and neural networks have many results in common.  

1. Both machine learning techniques perform better when comparing schizophrenic speech to 

healthy speech than when comparing any subgroup of schizophrenic speech to healthy 

speech. The ‘non thought-disordered’ subgroup is highly correlated to the ‘thought-

disordered’ subgroup for all the linguistic features measured by ENLF (Table 4.2). In other 

words, schizophrenics as a group are, with regards to the ENLF features, more dissimilar 

from healthy participants, than each schizophrenics’ subgroup compared individually to the 

healthy participants.  

2. The same effect may also be due to the fact that, when healthy speech is compared to all 

schizophrenic speech, all the original data is utilized and there are more speech samples to 

learn from. Both techniques’ increased performance on noisy data (noise augments the data) 

shows that the size of the data set has a tangible effect on a classifier’s accuracy. This is a 

very optimistic result. It shows that the linguistic features used in this project are effective for 

classification. In fact the networks perform relatively well, even by conservative performance 

measures (86% accuracy in cross-validation), in the face of the paucity of data. 
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3. Another similarity is that both techniques rank the same features as topmost for 

classification; neural networks rank as very important one feature (‘Difficulty Expressions’) 

that decision trees don’t. The common features are:  

1) Mean Sentence Length (p = .01)  

2) Difficulty Words (p = .02) 

3) Hedging Words (p = .09) 

4) Degree Expressions (p = .01) 

Three out of four features found important from both techniques distinguish healthy speech 

from schizophrenic speech at a statistically significant level. The non-significant feature 

(‘Hedging Words’) has the next best distinguishing level on the feature list. Thus, decision trees 

and neural networks are finding on their own (based on the provided features) the most salient 

information for classifying schizophrenic and healthy speech.  

 

5.2 Discussion 

5.2.1 Limitations 

The small data sample is this project’s biggest limitation. The classifiers based on noisy data 

perform better than the classifiers based only the original data. Also, classifiers using all the data 

perform better than the classifiers that use only subgroups of the data. 

Another limitation is the variability of the speech samples. Part of this variability is inherent 

in natural language and part of it is inherent in the manifestation of schizophrenia. The 

schizophrenic participants do not make homogenous groups based on their symptoms. The 

linguistic abnormalities vary greatly from one participant to the next, making it difficult to group 

participants together. Thus, the labels ‘non thought-disordered’ and ‘thought-disordered’ group 
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together patients with very different linguistic features.  A larger amount of speech samples 

would be a partial remedy to the problem of the inter-data variability. 

A limitation in ENLF’s applicability to classify schizophrenic speech lies in the fact that 

other diagnostic groups, including unipolar and bipolar depression patients, manifest similar 

language disorders, potentially including features measured by ENLF (Andreasen, 1979). This 

limitation may be sidestepped by fine-tuning the program and testing it with the speech of other 

diagnostic groups. 

Last but not least, a possible limitation of this thesis’ text analysis stems from using text 

derived from manual transcriptions of sound recordings. Manual transcription can introduce 

inaccuracies and subjectivity in finding the boundaries of utterances, interpreting a speaker’s 

intonation (i.e. question markers), and in interpreting other speech elements, which subsequently 

are transcribed into the text sample. One way to address this limitation would be to use a 

computerized parser of natural language speech. 

 

5.2.2 What has this thesis achieved? 

This thesis finds three linguistic features that distinguish schizophrenic speech from healthy 

speech at a statistically significant level. I did not find any previous study that reports the same 

findings. Further, in the light of the above-mentioned limitations, the classifiers built here 

perform promisingly well, with a conservative accuracy measure of 86% correct. This level of 

accuracy is 10% higher than the highest classification accuracy of 76% for the schizophrenic 

group (Mete et al. 1993) that I was able to find in the content analysis literature.  

Machine learning techniques, decision trees and neural networks have natural advantages 

over systems based on human judges. They are accurate, objective and reliable. Given their 
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natural strengths and the good classifying accuracy shown in this project, decision trees and 

neural networks are promising techniques for distinguishing healthy speech from schizophrenic 

speech. Future research could focus on finessing the types of features, and on addressing the 

linguistic variation between the speech samples. 

 

5.2.3 Directions for future research 

The current approach to content analysis studies can be taken further in several 

directions. The immediate next step would be to apply this program to more schizophrenic and 

healthy speech samples as they become available. This would be a good way to further test 

ENLF and to potentially notice new results. Along the same lines, ENLF could be applied to the 

ketamine-influenced speech samples. It is hypothesized that the drug ketamine induces 

schizophrenia-like symptoms in speech. The results of running ENLF on ketamine data would be 

one viable test of this hypothesis. 

Further, ENLF could be enhanced to measure other features of natural language. For a 

further stylistic analysis, it would be easy to measure the frequencies of the parts of speech in 

schizophrenic and healthy language. Pennebaker and Lee (2002) find that the occurrence of 

particles – parts of speech that include pronouns, articles, prepositions, conjunctives, and 

auxiliary verbs, can tell much about a person’s psychological state. Another stylistic element to 

investigate would be the ratio of content words to function words. Other measurable stylistic 

elements are filler words, such as um, etc., and new word formations or neologisms, a known 

characteristic of schizophrenic speech (Andreasen, 1979a).  

The measurement of content in novel ways is more involved. It has been noted that 

schizophrenic discourse lacks cohesion (Rochester & Martin, 1979; Abu-Akel, 1998).  One way 
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to measure cohesion would be to devise a measure of semantic distance and or relatedness 

between content words.  
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APPENDIX 

LISTS OF WORDS AND EXPRESSIONS 

 

The following lists were derived from literature on hedging, degree, and modality 

expression in English (Huebler, 1983; Palmer, 2001; Channell, 1994), as well as by using the 

thesaurus (Merriam-Webster Inc., 1989). 

 

 

Hedging Words: 

appear, 

emerge, 

loom, 

show, 

seem, 

suggest, 

hint, 

imply, 

presume, 

conjecture, 

guess, 

pretend, 
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suppose, 

surmise, 

think, 

mean, 

interpret, 

presuppose, 

assume, 

premise, 

imagine, 

conceive, 

fancy, 

realize, 

believe, 

expect, 

gather, 

reckon, 

suspect, 

understand, 

evidence, 

imagination, 

explanation, 

look, 

impression, 
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appearance,  

presumably, 

assumably, 

likely, 

presumptively, 

possibly, 

maybe, 

perchance, 

perhaps, 

necessarily, 

probably,  

supposedly, 

seemingly, 

conceivably, 

may, 

might, 

could, 

can, 

whether, 

if 
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Degree Words: 

some,  

certain,  

various,  

kind,  

sort,  

thing,  

any,  

ever,  

barely,  

hardly,  

scarcely,  

partially,  

partly,  

comparatively,  

enough,  

relatively,  

basically,  

practically,  

technically,  

virtually, 

quite, 

rather, 
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mildly, 

moderately, 

pretty, 

slightly, 

almost, 

nearly 

 

Degree Expressions: 

in many respect,  

in some respect,  

in part,  

to some extent,  

kind of, 

sort of, 

more or less,  

a little,  

a bit 

 

Difficulty Words: 

cannot,  

don’t,  

can’t,  

doesn’t, 
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dunno,  

couldn’t,  

why10,  

where,  

what,  

when,  

who,  

which,  

whose,  

wonder,  

question 

 

Difficulty Expressions: 

for some reason, 

doesn’t look,  

doesn’t match,  

doesn’t make sense,  

not know,  

not sure,  

not clear,  

not obvious 

 

                                                 
10 Question words (including wh-words) are taken to express cognitive hardship. The interviewer, discouraging 
dialogue, asks the subject to briefly describe the picture to the best of his/her ability. Most questions appear to be 
rhetoric and to express the speaker’s confusion. 
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Certainty Words: 

certainly, 

obviously, 

clearly, 

surely, 

evidently, 

must, 

should, 

would, 

will, 

doubtless 
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