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ABSTRACT 

 Recent usage data suggest job applicants are completing online selection assessments 

using mobile devices (e.g., Smartphones) in greater numbers. Advancements in mobile 

technology’s functionality, affordability, and mobility have quickly made mobile devices the 

medium of choice for accessing the Internet. Thus, these devices offer logistical advantages for 

organizations looking to extend their recruiting and selection efforts to a demographically and 

geographically wider range of potential job applicants. However, organizations must determine 

that the constructs predictive of future job performance are being measured similarly when 

applicants complete assessments using mobile devices. In an effort to replicate and extend 

previous findings on the utility of this new technology in a selection context, this study used two 

large, applied samples of job applicants in a hospitality organization to examine the measurement 

equivalence of selection assessments delivered on mobile and non-mobile devices (e.g., personal 

computers). Measurement invariance tests conducted with multi-group confirmatory factor 

analysis suggest that mobile versions of a cognitive ability-type assessment, two biodata 

assessments, a multimedia work simulation, and a text-based situational judgment test are 

equivalent to non-mobile versions at the configural, scalar, and residual variance level. The 

results also found that mobile device user latent means are approximately half a standard 



deviation lower than their non-mobile counterparts for the situational judgment test. Implications 

for technology-enhanced selection assessment at the practitioner and organizational levels are 

discussed.  
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CHAPTER 1 

INTRODUCTION 

Two growing trends surrounding technology-enhanced assessment have resulted in the 

delivery of online selection assessments via mobile devices. First, computerized versions of 

selection assessments have been found to be psychometrically equivalent to traditional paper-

and-pencil versions (Arthur, Glaze, Villado, & Taylor, 2010; Meade, Michels, & Lautenschlager, 

2007; Noyes & Garland, 2008; Potosky & Bobko, 2004), and as such, many modern selection 

assessments are configured for computerized delivery by default. Second, the widespread 

adoption and use of unproctored Internet-based testing (UIT) as a cost-effective alternative to 

computerized, proctored testing has made many selection assessments accessible online through 

standard web browsers (Ployhart, 2006; Reynolds & Rupp, 2010; Tippins, 2009). Although the 

universal appropriateness of UIT is still being debated (Tippins, 2009), many agree that this 

process has the psychometric and logistic advantages of increased consistency (e.g., standardized 

delivery of items) and improved efficiency (i.e., lowered costs, increased response and scoring 

times, increased access for a greater number of applicants) in delivering selection assessments 

(Naglieri et al., 2004, Ployhart, 2006, Tippins et al., 2006).  

As a result, the past decade has seen an increasing number of organizations use UIT to 

build online selection systems that are affordable, scalable, and meet their talent management 

needs (Tippins, 2011). Specifically, a recent survey of HR professionals from a diverse spectrum 

of industries responded that 70% of organizations currently use online assessments for external 

hiring, and 60% of organizations deliver these assessments remotely (Fallaw, Kantrowitz, & 
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Dawson, 2012). The overarching trend for organizations is to provide access to online, 

unproctored selection assessments to meet dynamic business and applicant demands (SIS 

International Research, 2012).  

As online versions of selection assessments currently enjoy unprecedented levels of 

ubiquity (Frauenheim, 2011), mobile device technology, such as Smartphones and tablet 

computers, are now being used to access assessments due to its affordability and convenience in 

accessing the Internet. Initial reports on mobile device adoption expect that mobile Internet 

traffic will grow faster than the desktop Internet usage rate, and that there will be more users 

connecting to the Internet via mobile devices versus desktop personal computers (PCs) over the 

next 5 years (Morgan Stanley, 2009). Specifically, a recent domestic technology trend review 

predicted that mobile data traffic in the U.S. will increase by a factor of 20 between 2010 and 

2015 (Cisco, 2012). This source also reports that in 2011 the number of Internet-connected tablet 

computers increased by 34 million units. This is especially meaningful as each tablet computer 

generates 3.4 times the data traffic as the average Smartphone.  

To facilitate the discussion on mobile devices in a selection context, a definition and 

description of the features and characteristics of mobile devices must be established. In the 

current study, mobile devices in general, and Smartphones in particular, as opposed to the 

standard “non-mobile” PC desktop computer, are defined as portable, handheld devices that have 

multi-functional computing capability and Internet accessibility.  Laptops are considered non-

mobile devices in the current study; although portable, laptops are not handheld and function 

more closely to a standard desktop computer.  

Aside from basic functionality differences between mobile and non-mobile devices (e.g., 

keyboard and mouse manipulation versus touch screen manipulation), another prominent 
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difference worth noting is screen size. Desktop and laptop computer monitors can have a wide 

variety of full screen resolutions, but the size most commonly accepted as “standard” is a 

1024x768 pixel density, which generally equates to a viewable screen size of at least 13.3 inches 

for PCs and 17.8 inches for Macintosh computers (measured diagonally). Typical Smartphones 

such as Androids™ or iPhones™ have 480 x 300 full screen pixel resolutions in the landscape 

orientation and 320 x 460 full screen resolutions in the portrait orientation. Phones from different 

manufacturers often vary in screen size from 3.5 inches to 5 inches, although a recent trend has 

seen Smartphones growing in size to screen sizes greater than 5 inches (Crook, 2011). 

Functionally, Smartphones are able to access Internet websites, such as those that host online 

selection systems, using native mobile browsers, such as the Android™ mobile Internet browser 

or Apple Mobile Safari™. Due to these potential functional differences, and the recent trend of 

job applicants turning to mobile devices as the medium of choice for accessing online selection 

instruments, examining the psychometric comparability of selection assessments delivered on 

mobile and non-mobile devices is necessary. 

Purpose of the Current Study 

Although many organizations find themselves caught in the mobile technology current, 

no published studies have examined the potential psychometric or practical differences between 

the new mobile device deliveries of online selection assessments and their now more 

“traditional” computer-based, non-mobile deliveries. This is troubling, as empirical, practical, 

and legal standards demand that potential differences be identified before new delivery mediums 

are fully implemented (Naglieri et al., 2004; Scott & Mead, 2011). Specifically, domestic and 

international testing guidelines that often inform legal requirements call for differing assessment 

delivery mediums to be tested for equivalence (e.g., American Educational Research 
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Association, American Psychological Association, & National Council on Measurement in 

Education, 1999; American Psychological Association, 1986, 2010; Society for Industrial & 

Organizational Psychology, 2003; International Test Commission, 2005). Although equivalency 

studies of mobile and non-mobile devices exist in the education and learning literatures (e.g., 

Churchill, 2011; Clough, Jones, McAndrew, & Scanlon, 2007; Echeverria et al., 2012; Masri, 

2012; Triantafillou, Georgiadou, & Economides, 2008), no published research concerning 

mobile device equivalency in a selection context currently exists. Therefore, establishing 

equivalence between these devices at both the latent construct and observed levels is critical for 

organizations seeking to implement selection assessments that are reliable, valid, and legally 

defensible (Reynolds & Rupp, 2010; Potosky & Bobko, 2004).  

An important first step in determining the utility of new technology-enhanced selection 

assessments is demonstrating the equivalence between new and traditional media. In other 

words, the selection assessment delivered on the new technological medium must be shown to 

accurately identify and capture the same psychological constructs (e.g., conscientiousness, 

emotional intelligence, procedural knowledge) as the traditional medium and not introduce 

method-related, construct-irrelevant variance (Arthur & Villado, 2008). However, all too often it 

is assumed that a selection measure maintains its construct-validity regardless of its delivery 

medium. This can result in interpretational confounding (Anderson & Gerbing, 1988), or the 

assigned meaning of an a priori hypothesized construct being different than the measured 

construct. Because interpretational confounding can change the inferences made from selection 

assessments, the assumption that the construct validity is generalizable between two delivery 

mediums must be supported before meaningful structural relationships can be deciphered (Scott 

& Mead, 2011). 
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Establishing the psychometric or measurement equivalence/invariance (ME/I) of two 

measurement methods is a critical prerequisite before making between-group observed score 

comparisons (Anderson & Gerbing, 1988; Horn & McArdle, 1992; Steenkamp & Baumgartner, 

1998; Vandenberg & Lance, 2000). This statistical assumption feeds into an important practical 

assumption: when the equivalence between mobile and non-mobile devices can be determined, 

organizations can have greater confidence in the selection decisions made from using the 

inferences provided by an assessment. In the future, organizations may also be able to identify 

ways mobile devices can benefit the selection process. For instance, mobile devices may allow 

new accessibility to previously untapped applicant pools, or they may allow for the development 

of new selection tools that can leverage computing features novel to a mobile device’s platform 

(e.g., touch screen capabilities). 

Initial research efforts have discovered that mobile device-based deliveries of 

assessments intended to measure non-cognitive predictors of job performance are equivalent to 

non-mobile device-based deliveries (e.g., Doverspike, Arthur, Taylor, & Carr, 2012; Morelli, 

Illingworth, Scott, & Lance, 2012), but as these findings represent a narrow view of potential 

assessments, this research needs to expand to include other types of predictors. Therefore, a 

purpose of the current study was to not only replicate past ME/I findings for non-cognitive 

assessments, but also expand these findings by testing the ME/I assumption between mobile and 

non-mobile devices for cognitive ability assessments. 

Due to the functional differences (e.g., screen resolution and user manipulation) between 

mobile and non-mobile devices, a lack of invariance could also be possible for other previously 

untested performance predictors, such as those that simulate work environments that are typical 

for a given job (Adler, 2011; Christian, Edwards, & Bradley, 2010; Morelli et al., 2012; Scott & 
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Mead, 2011). Specifically, hardware characteristics, presentation characteristics, response 

requirements, and technological issues that differ between devices could introduce construct-

irrelevant variance for similarly capable applicants who complete work simulation-type 

assessments. Consequently, another purpose of the current study was to expand the assessment 

types that are evaluated for equivalence to include multimedia work simulations and situational 

judgment tests. 

In summary, job candidates are accessing organizational web portals with mobile devices 

at an increasing rate and in some cases, requesting access to online selection assessments via 

mobile devices. Reynolds and Rupp (2010) predicted the importance of this issue by stating that, 

“…the demand for the delivery of assessments on mobile platforms may become the most 

significant opportunity and challenge to assessment over the next decade” (p. 612). Therefore, 

the overall purpose of the current study was to establish the measurement equivalence of these 

selection assessments across mobile and non-mobile devices. The following sections give a brief 

overview of the relevant selection assessments, summarize the cognitive, non-cognitive, and 

computerized work simulation equivalency literatures, and provide testable hypotheses regarding 

mobile and non-mobile device equivalence. 
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CHAPTER 2 

LITERATURE REVIEW AND HYPOTHESES 

Overview of Selection Assessments 

 Selection assessment can be broadly defined as “evaluating an individual’s fitness for 

hire, promotion, or similar personnel action,” and “…has been recognized for centuries” 

(Thomas, 2004, p. 1). Undoubtedly, assessing the knowledge, skills, abilities, and individual 

characteristics that are essential to successful job performance has been a primary concern for 

organizational researchers and practitioners since the early days of industrial-organizational 

psychology (e.g., Otis, 1920). In essence, when certain criteria are met (e.g., reliable, valid, 

defensible, efficient) these assessments are acting as meaningful predictors of job performance 

(Cascio & Aguinis, 2005). However, when the term predictor is used, an important distinction 

should be made between the predictor construct and the predictor method (Arthur & Villado, 

2008). The predictor construct is defined as the explicit behavioral domain that is thought to be 

predictive of the job-specific, performance-related behavioral domain (Binning & Barrett, 1989). 

Whereas the predictor method is the means by which the targeted construct is sampled (Arthur & 

Villado). Due to the common interchangeability and the definitional importance of these terms, 

and for purpose of discussion regarding the equivalence of mobile device delivered selection 

assessments, the following is a brief overview of the selection assessments relevant to the current 

study with each distinguished as either a predictor construct or method.  

 Three broad categories of selection assessments that tap a variety of constructs are 

cognitive ability tests, non-cognitive assessments, and work simulations. The first, cognitive 
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ability tests are self-explanatory in that they are intended to measure the general mental ability 

construct. To summarize the rich and varied literature on general mental ability, the construct has 

multiple sub-facets (e.g., fluid intelligence, crystallized intelligence, general memory and 

learning, etc.; Carroll, 1993), but the general measure of intelligence, g, is considered to be one 

of the best predictors of future job performance in that it predicts a candidate’s ability to learn 

and apply critical job knowledge (Neisser et al., 1996; Schmidt & Hunter, 1998). Predictor 

methods for this construct exist in multiple off-the-shelf versions such as the Wonderlic 

Personnel Test (Wonderlic, 2000) or the Test of Learning Ability (TLA; ePredix, 2001), but 

many practitioners and organizations may create customized measures of g within their own 

organizational contexts. Although the use of this construct is not without its limitations or 

criticisms due to potential systematic sub-group differences and low face validity with applicants 

(e.g., Chan, Schmitt, DeShon, Clause, & Delbridge, 1997; Murphy, Cronin, & Tam, 2003), this 

predictor construct’s high predictive validity and utility have incentivized the ubiquitous 

development and delivery of computerized versions of its various predictor methods. 

 Next, the group of non-cognitive selection predictors can be described as interviews, 

personality assessments or inventories, and biodata measures. This wide variety of predictor 

methods are designed to tap an equally diverse number of predictor constructs. For instance, 

biodata measures, which are described as tools that use previous life experiences, attitudes, 

preferences, values, or self-assessed skills to predict future job-related behaviors (Breaugh, 2009; 

Mumford & Owens, 1987; Mumford & Stokes, 1992), can be designed to measure a number of 

different individual difference domains, such as personality or vocational interests (Stokes & 

Cooper, 2004). For this reason, biodata should be considered a predictor method that can be used 

to sample one or many predictor constructs (Arthur & Villado, 2008). Biodata has also been a 
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useful choice for selection professionals due to a relatively high predictive validity coefficient 

and its incremental validity over more traditional personality measures (Mount, Witt, & Barrick, 

2000; Schmidt & Hunter, 1998). Biodata has also demonstrated low adverse impact among 

protected sub-groups and thus is often included with larger, computerized selection assessment 

batteries delivered online.  

 The final selection assessment category consists of work simulations. As Thornton and 

Rupp (2004) summarized, work simulations have a long history in selection assessment and 

“…are a type of situational test (Anastasi & Urbina, 1997) in which the stimulus material 

presented to the examinee is moderately similar to actual organizational settings and problems” 

(p. 319). These are predictor methods that can measure a host of predictor constructs, which tap 

job-related performance dimensions. Simulations, such as the situational judgment test (SJT), 

can vary in their fidelity to organizational settings. The text-based version of the SJT has been 

typically called “low-fidelity” (Motowidlo, Dunnette, & Carter, 1990) in that it only provides a 

description of a hypothetical scenario set in an organizational setting and asks respondents to 

choose the most viable behavioral response. SJTs are also a special case for a simulation in that 

they measure a variety of predictor constructs. For instance, empirical findings have 

demonstrated that SJTs tap “SJT-dominant constructs”, which have been described as a type of 

practical intelligence or judgment (Schmitt & Chan, 2006). Research has also shown that SJTs 

provide incremental validity over other selection predictors, such as cognitive ability or 

personality; however, due to their common multidimensionality (i.e., intended constructs 

measured in addition to the SJT-dominant constructs), defining interpretable factors for SJTs can 

be more difficult (Schmitt & Chan). Nonetheless, SJTs have been a popular choice for online 

selection assessment batteries in that they are useful performance predictors, have face validity 
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and applicability to the targeted job, and are easy to computerize and deliver via online platforms 

(e.g., Hense & Janovics, 2011).  

In sum, the selection assessments that make up today’s online selection batteries 

generally fall into one of three categories: cognitive ability, non-cognitive assessment, and work 

simulation. Although researchers commonly refer to these assessments and the constructs they 

are intended to measure synonymously, examples of each assessment category and the constructs 

they are intended to measure were briefly described to distinguish the predictor constructs from 

the predictor measures (Arthur & Villado, 2008). Focusing on this distinction helps develop a 

contextual framework for the sections below, which use evidence from each selection assessment 

category’s literature to generate testable hypotheses concerning equivalence between mobile and 

non-mobile deliveries. 

Equivalence of Computerized Cognitive Assessments 

Although little research exists regarding the equivalency of mobile and non-mobile 

delivered cognitive assessments, two closely related literatures can help inform the current 

research: the literature comparing traditional paper-and-pencil versions to computerized versions, 

and the educational literature, which has examined equivalence of learning assessments on 

mobile devices. An initial study examining performance group differences between mobile and 

non-mobile versions of a cognitive ability test administered in a selection context is also 

discussed. 

 As the computerization of assessments became more popular in the late 1970s and early 

1980s, the initial equivalence literature comparing paper-pencil and computerized versions 

focused on the adaption of existing cognitive tests (e.g. Sacher & Fletcher, 1978; Greaud & 

Green, 1986). Mead and Drasgow’s (1993) meta-analysis of 159 correlations between traditional 



11 

paper-and-pencil versions and computerized versions (123 from timed power tests, 36 for 

speeded tests) provides a helpful synopsis of the research conducted at that time. They 

discovered that a .95 correlation existed between the mediums for the timed power tests, and a 

.72 correlation between the mediums for the speeded tests. This finding suggested that cognitive 

assessments delivered on a computer were largely equivalent to the traditional paper-and-pencil 

medium, but speed was found to be a meaningful moderator of medium equivalence.  

Since these early studies were published, technological advances in computerized 

assessments have forced researchers to revisit these initial findings. For instance, computerized 

versions have been examined for potential differences created by interface characteristics, such 

as screen legibility (e.g., screen size, screen resolution, font size, line length and spacing, white 

space) and device functionality (e.g., scrolling requirements, item presentation). Also, user 

characteristics, such as race and ethnicity, memory capability, and computer familiarity and 

computer anxiety, have also been examined for their potential effect on performance differences 

(See Leeson, 2006 for a review of these issues). Overall, recent evidence suggests that user 

characteristics have small or inconclusive effects on performance differences between computer 

and paper-pencil versions, and technological advancements in computer hardware have 

eliminated noticeable differences caused by interface characteristics (e.g., legibility and 

functionality; Lesson, 2006). Other summaries of the available research suggest that on the 

occasions where these interface or context differences are discoverable, they do not have a 

meaningful impact on performance or equivalence (e.g., Waters & Pommerich, 2007). 

Specifically, a majority of post-1992 studies have found that modern computer displays allow for 

most cognitive tasks (e.g., reading speed, accuracy, and comprehension, and memory processing) 
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designed for a paper-and-pencil medium to be transferable to a computer-based medium (Noyes 

& Garland, 2008; Scott & Mead, 2011). 

For a contemporary example, Whiting and Kline (2006) examined the equivalence 

between paper-and-pencil and computerized versions of the Test of Workplace Essential Skills 

(TOWES). Although this study matched two independent student groups for each device, the 

TOWES measures adult worker proficiency in reading, document use, and numeracy using job-

related workplace documents designed to recreate the working environment. A simple 

comparison of the observed means and variances between each device group revealed that there 

were no significant performance differences and the rank order correlations were largely 

equivalent. In addition, results from a general reaction survey administered to each group 

discovered that respondents felt the computerized version was easy to use. 

Along with the potential legibility and functionality differences across computer 

hardware types, another potential source of non-equivalence for mobile device-delivered 

cognitive assessments involves the mobility and variability of their administration context. This 

issue has largely been studied within the unproctored, Internet-based testing (UIT) literature 

(e.g., Arthur et al., 2010). Organizations have quickly implemented UIT after recognizing its 

cost-savings, efficiency, and logistical advantages for testing applicants, especially when the 

organization’s goal is to attract and efficiently and equitably screen a more demographically and 

geographically diverse workforce. However, the increased usage of UIT quickly created an 

academic debate surrounding its integrity, reliability, and validity (Tippins, 2009). Although this 

debate continues, a bulk of the UIT-related literature suggests that in general, cognitive ability 

tests are not adversely affected by their completion by applicants in an unproctored setting (e.g., 

Arthur et al., 2010; Huff, 2006; Nye, Do, Drasgow, & Fine, 2008).  
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Because organizational researchers have yet to specifically examine the implications of 

delivering unproctored, Internet-based selection tests on mobile devices, other disciplines must 

be sampled to help predict their equivalency in a selection context. Specifically, the educational 

and technology literatures have shown how mobile devices offer new ways to facilitate and 

assess student learning (Cochrane, 2010; Echeverria, et al., 2012; Keskin & Metcalf, 2011; 

Masri, 2012). Some examples include mobile devices effectively delivering content via 

multimedia design components (Churchill, 2011), acting as an efficient method for quizzing 

students (Segall, Doolen, & Porter, 2005), and being a viable medium for computer-adaptive 

testing (Triantafillou et al., 2008). Although not a perfect proxy for determining the equivalency 

of mobile devices in a selection context, the findings from the educational literature suggest that 

mobile devices may be equivalent to paper-and-pencil formats when delivering text-based or 

multimedia content that measures cognitive ability. 

Perhaps the best example of mobile device measurement equivalency for cognitive ability 

tests from the educational literature is a study conducted by Schroeders and Wilhelm (2010). 

Their study compared handheld computer, notebook (i.e., laptop computer), and paper-and-

pencil versions of verbal, numerical, and figural reasoning ability tests among a student sample. 

The authors used an experimental design and confirmatory factor analysis to determine if the 

test’s delivery medium introduced construct-irrelevant variance to the measurement of the test 

constructs. Specifically, the authors had participants complete the cognitive ability measures on 

each device and then compared the notebook and handheld computer versions to the 

conventional paper-and-pencil version by setting the paper-and-pencil as the referent in a 

correlated-trait-correlated-method-minus-one model. This procedure decomposes the variance 

into three distinct factors: trait, method, and error. Five competing nested models were then 
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compared to see if method factors accounted for unexplained variance and significantly 

improved the CFA model fit. Interestingly, the model that best fit the data included three 

correlated test content factors (e.g., verbal, numerical, combined) and two uncorrelated, nested 

media factors for notebook and handheld computers. When considered alone, this result suggests 

nonequivalence between these two device types in that unique medium-related latent factors 

could be attributing to observed individual differences across devices. Schroeders and Wilhelm 

later postulated that these method effects could be produced by perceptual demand differences 

between devices; namely, processing and manipulating test content using smaller screens and a 

stylus could introduce construct irrelevant variance for the handheld computer version of the test. 

However, Schroeders and Wilhelm also noted that these method factors had low reliabilities 

(notebook binary reliability = .33; binary handheld computer reliability = .34), and reasoned this 

could be an indication that these factors do not make meaningful contributions to the prediction 

of individual differences for cognitive ability tests delivered on devices with smaller screens.  

Although method factors were modeled, and this is the only known study that has examined 

measurement equivalence of cognitive tests on a mobile device, the results leave open the 

possibility that handheld computers (i.e., mobile devices) are a viable option for delivering 

computerized cognitive ability tests. 

Because no published research exists on the measurement equivalence for unproctored 

cognitive selection assessments delivered on mobile and non-mobile devices, a preliminary, 

unpublished study by Doverspike et al. (2012) must be reviewed. Specifically, this study 

provides initial findings comparing observed performance means between job applicant groups. 

To compare these device types, the authors sampled approximately 20,000 applicants who 

completed a general mental ability test on mobile devices and standard computers in a selection 
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context. Effect sizes comparing mobile and non-mobile test scores for verbal, numerical, and 

combined verbal and numerical observed means suggested that applicants performed worse in all 

three sections when completing the test on a mobile device. This finding suggests that 

performance differences may exist between device types, but it is important to note that the 

general mental ability test used in this study was timed, and that speededness is a previously 

identified moderator of performance (Mead & Drasgow, 1993). Therefore, it is difficult to 

determine if the observed performance decrements were a function of the test format, the device, 

or an interaction between the two. In addition to this limitation, this study did not establish the 

measurement invariance of each administration medium before making across device group 

comparisons. Again, this is important because not establishing measurement invariance opens 

the possibility of interpretational confounding (Anderson & Gerbing, 1988) or incorrectly stating 

that meaningful group differences exist between devices when there are no differences between 

latent factor means. Although these limitations restrict the generalizability of the findings, this 

study provides a useful first glimpse into the projected group differences between applicants who 

use these devices to complete a timed cognitive ability test in a high-stakes testing scenario and 

those who do not. 

Summary. Computerized versions of cognitive ability tests have evolved tremendously 

since their development in the mid 1970s and 80s. These early studies found that computerized 

versions were generally equivalent to paper-and-pencil versions, but that speededness was a 

significant moderator. Since these studies, advancements in computer technology and online 

testing have minimized or erased previously observed medium-related differences and have 

opened up new avenues for online assessment delivery via mobile devices. Although 

experimental findings generated from educational student samples suggest that these devices 
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most likely do not introduce medium-related error into the assessment process, no research exists 

on the possible latent measurement differences for cognitive-ability selection tests in an 

unproctored context.  

Equivalence of Computerized Non-Cognitive Assessments 

With the successful adaptation of computerized cognitive assessments from conventional 

paper-and-pencil versions, test developers modified online selection systems to include non-

cognitive constructs, such as attitudes, personality, and work orientation. Typically, when the 

assessment of any construct is computerized researchers debate the appropriateness and merits of 

using either proctored, unproctored, offline, or online versions. Although some findings favor the 

psychometric properties of computerized versions over paper-and-pencil versions (i.e., better 

distributional properties, more variance, higher internal consistency reliabilities, stronger item 

intercorrelations; Ployhart, Weekley, Holtz, & Kemp, 2003), existing comparison studies have 

shown that computerization, proctoring, or using an online version of a non-cognitive assessment 

has little impact on the equivalence between cross-medium versions (e.g., Coyne, Warszta, 

Beadle, & Sheehan, 2005; Mead & Blitz, 2003; Meade et al., 2007; Richman, Kiesler, Wesiband, 

& Drasgow, 1999). 

For example, Chuah, Drasgow, and Roberts (2006) compared the measurement 

equivalence of a paper-and-pencil version, a proctored computerized version, and an unproctored 

online version of a personality assessment measuring neuroticism, extroversion, agreeableness, 

and conscientiousness. Using 728 student participants in a traditional lab study setting, Chuah et 

al. randomly assigned each participant to one of the three conditions and analyzed the 

measurement properties of the responses using Item Response Theory (IRT).  They discovered 
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no significant differences between the three medium types—a follow-up equivalence test using 

multiple group confirmatory factor analysis (MGCFA) also supported the IRT findings.  

Meade et al. (2007) also examined whether paper-pencil and Internet administrations of a 

personality test are psychometrically equivalent. In a randomized-experimental design, 

participants were assigned to either a Choice or No-Choice condition (in the Choice condition 

participants were allowed to choose a medium whereas in the No-Choice condition they were 

randomly assigned to a medium). Participants then completed 11 personality scales taken from 

the Occupational Personality Questionnaire; the 11 scales were chosen for their relatedness to 

organizationally relevant outcomes. The authors controlled for choice and compared the fit of 

each personality scale’s measurement model separately using a means and covariance structure 

analysis. They discovered that for each of the 11 personality scales, metric invariance (i.e., the 

relationships of the items to the latent factor, and a fundamental type of invariance needed to be 

considered equivalent) was supported across formats. However, when the equivalence between 

people allowed to choose their device and those not allowed to choose was examined, 3 of the 11 

scales did not show metric forms of measurement invariance. This result indicated that when 

choosing a medium is held constant, Internet versions of non-cognitive assessments can be 

equivalent to paper-and-pencil formats. 

Though these findings suggest that transferring a non-cognitive assessment to an 

alternative medium may not adversely affect the equivalence of that assessment, there is almost 

no available research on the equivalency of non-cognitive assessments delivered via mobile 

devices. However, a recent unpublished study conducted by Morelli et al. (2012) has 

demonstrated that mobile and non-mobile devices display measurement equivalence for a non-

cognitive assessment delivered to an applicant sample. In their study, Morelli et al. (2012) 
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sampled 1 million individuals who applied for a sales job at a large national retail chain. Out of 

this larger sample, 5,000 individuals, or less than 1% of the total sample, used a mobile phone or 

tablet computer to complete the online assessment. Biodata items delivered in an unproctored, 

online test were used to assess six non-cognitive constructs related to successful performance of 

the job (e.g., conscientiousness, customer service orientation, integrity, interpersonal skills, stress 

tolerance, and teamwork). The authors compared the psychometric equivalence of non-mobile 

devices (i.e., PCs, Macintosh computers, gaming consoles) to mobile devices (i.e., Smartphones, 

tablet computers) for each construct independently using MGCFA, in addition to observed mean 

comparisons. They discovered that the cross-device comparisons demonstrated the fundamental 

types of measurement invariance (i.e., configural and metric invariance) as well as the more 

restricted types of measurement invariance (e.g., scalar invariance and invariance of 

uniquenesses). The authors also found no practically significant observed mean differences 

between the five device groups, except for the gaming console device group, which had a lower 

overall mean than all other device types that was practically meaningful.  

Summary. The studies sampled in this section have shown evidence that suggests the 

same non-cognitive construct is measured whether the test is delivered via paper-and-pencil or 

via a computer. An initial study also suggests that there are may be no medium-related 

differences at the latent measurement level between mobile and non-mobile devices (Morelli et 

al., 2012). Although this study provides a useful starting point for understanding mobile and non-

mobile device equivalence, the Morelli et al. study was limited to a text-based, non-cognitive 

assessment. As more organizations implement other types of selection tools for job applicants, 

sources of construct-irrelevant variance related to a lack of standardization across device 

mediums could be introduced (Scott & Mead, 2011). 
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Equivalence of Computerized Work Simulations 

To this point, the literature relevant to mobile device-delivered measures for specific 

constructs such as cognitive ability (Schroeders & Wilhelm, 2010) and conscientiousness 

(Chuah, Drasgow, & Roberts, 2006) has been discussed. However, in many currently 

implemented selection batteries, other computerized measures are now included to predict job 

performance by assessing non-construct-specific work-related knowledge, skills, abilities, and 

other characteristics. These measures are often described as “methods” in that they predict future 

performance by measuring applicants reactions to simulated work activities or scenarios most 

likely encountered on the job (Christian, Edwards, & Bradley, 2010; Roth, Bobko, McFarland, & 

Buster, 2008). In increasing numbers, computerized assessments that recreate work-related tasks 

are being delivered using multimedia content and online platforms (e.g., McNelly, Ruggeberg, & 

Hall, 2011). Multimedia assessments typically include images such as video or photographs 

sometimes accompanied by sound or verbal interactivity, such as recorded messages or webcam 

responses. 

Early comparison studies of computerized work simulation tasks, including multimedia 

versions, explored the equivalency of respondent perceptions and attitudes for paper-and-pencil 

versions (Richman-Hirsch, Drasgow, & Olson-Buchanan, 2000; Weichmann & Ryan, 2003). 

Interestingly, these studies discovered that computerized versions of these work simulations were 

perceived by respondents as more face valid and engaging. Also, more contemporary studies 

have examined performance differences in educational testing scenarios and have found that 

converting static, text-based information into multimedia formats increases student test 

performance as individual item difficulty increases (Hao, 2010; Lai, Chen, & Chen, 2008). This 

result is most likely due to multimedia testing formats decreasing the reliance on more 
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cognitively difficult tasks, such as reading comprehension, and increasing the amount of 

information that is supplied to the test taker. 

Although informative, these studies have not yet examined how delivering similar 

multimedia content across devices with varying hardware and software capabilities may impact 

the reception and processing of that content. Using Leeson’s (2006) “mode effect” dimensions, a 

reasonable expectation is that smaller screen sizes and lower screen resolutions would inhibit a 

respondent’s ability to fully use the extra information delivered via multimedia images. In other 

words, Leeson summarized that smaller screen sizes and resolutions would negatively impact 

performance by requiring more scrolling and manipulation of a computerized image. Clearly, 

accessing multimedia content via a smaller and more difficult to manipulate screen on a mobile 

device may negatively impact applicant performance, but it is not clear that this increased 

difficulty will translate to latent measurement differences in the job-related skill being tested. 

Another work simulation example is the SJT, which has been described as a series of job-

related scenarios where respondents are asked to either rate or choose the most effective action to 

take in response to each scenario (Motowidlo et al., 1990). SJTs have gained increased 

popularity in that they tend to have moderate incremental validity over other selection predictors 

and demonstrate lower sub-group differences than other selection predictors (Clevenger, Pereira, 

Harvey, Wiechmann, & Schmitt, 2001; Lievens & Sackett, 2006). Undoubtedly, applicants are 

also accessing these types of assessments on mobile devices if SJTs are included as part of a 

larger, unproctored, online selection battery. Thus, as with any other format change, testing best 

practice dictates that equivalency should also be determined for this testing method (Joinson, 

1999; Ployhart et al., 2003; American Educational Research Association et al., 1999).  
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Existing SJT comparison studies have primarily focused on three areas regarding 

equivalence: 1) contextual effects, such as the differences between applicant versus incumbent 

responses or behavioral versus knowledge-related response instructions (Mackenzie, Ployhart, 

Weekley, & Ehlers, 2010; McDaniel, Hartman, Whetzel, & Grubb, 2007), 2) differences in 

predictive validities between video versus paper-and-pencil versions (Chan & Schmitt, 1997; 

Lievens & Sackett, 2006; Olson-Buchanan & Drasgow, 2006), and 3) the impact of 

administration medium on applicant reactions  (Richman-Hirsch, Drasgow, & Olson-Buchanan, 

2000). These separate research streams have found differences in incremental validities, sub-

group differences, and applicant reactions suggesting that significant version changes for SJTs 

have often implied a lack of equivalence.  

For instance, Lievens and Sackett (2006) examined if the predictive validity of a video-

based SJT that was intended to measure interpersonal and communication skills would transfer if 

converted to a written format. The SJT was administered as part of an admissions exam for a 

Belgian medical school. The scores from two applicant pools, one administered the video-based 

version and one administered the same content in a written version, were compared. Lievens and 

Sackett discovered that the predictive validity of the video-based version was not comparable to 

the written version, and the written version was more highly correlated with a cognitive ability 

measure. The authors determined that the higher fidelity of the video-based SJT to the 

performance criterion contributed to the higher validity coefficient. Although this finding did not 

focus on the interrelationships of the items in the measure, it is important as it suggests 

dramatically converting the delivery format of the SJT could produce performance differences 

between groups. However, it remains unclear if this finding applies when the basic format is 
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unchanged but the delivery device held constant (e.g., video-based items displayed on a 

computer versus video-displayed items displayed on a television). 

Unfortunately, little research has been conducted comparing SJTs across delivery 

mediums when the SJT format stays constant (Olson-Buchanan & Drasgow, 2006). This makes 

postulating expected sources of invariance difficult to pinpoint, but given the instance where the 

content type stays constant (i.e., text-based content delivered on different media), a reasonable 

expectation would be that the SJT would function similarly to other cognitive and non-cognitive 

measures. The main difference between these versions is the increased cognitive load put on the 

applicant by the longer and more involved item scenarios and responses associated with SJTs. 

Summary. Computerized work simulations such as online, multimedia work simulations 

and situational judgment tests have seen an increase in popularity and application due to their 

relatively high fidelity to workplace tasks, incremental validity over other more traditional 

performance predictors, low sub-group differences, and positive reactions by job applicants. 

However, the number of studies comparing the equivalency of these tests across delivery 

mediums has been low and what studies do exist suggest that changing formats for these 

assessments may introduce medium-related effects on performance scores. Thus, it is imperative 

that new research be conducted to determine how applicants may perform differently for 

assessments using simulated images or scenarios when accessed on untested hardware types. 

The Current Study 

In review, new advances in computer and online technology have created the next 

iteration of assessment delivery mediums, particularly mobile devices (e.g., Smartphones). The 

existing equivalency literature comparing computerized or online versions of cognitive and non-

cognitive assessments reveal that these mediums are generally equivalent to paper-and-pencil 
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versions (e.g. Schroeders & Wilhelm, 2011). Also, mobile device-related findings from the 

closely-related educational literature and an initial, unpublished study demonstrate that cognitive 

and non-cognitive assessments delivered via mobile devices to job applicants may be equivalent 

to standard computers. However, the latent level comparisons for cognitive constructs must be 

examined and the initial results on non-cognitive construct equivalence must be replicated using 

a different sample of job applicants and job families. Therefore, the following hypotheses have 

been developed by leveraging the initial findings on mobile device equivalence and the 

inferences that can be made from the existing literature:  

H1: Mobile and non-mobile devices will have equivalent measurement models for the 

cognitive ability assessment. 

H2: Mobile and non-mobile devices will have equivalent measurement models for the 

assessment of non-cognitive constructs. 

In contrast to the previously described measures of cognitive ability and non-cognitive 

constructs, which assume that the applicant’s test-taking experience will stay reasonably 

consistent across mobile and non-mobile devices, computerized work-simulations do not share 

the same assumption by default. Although accessing a test using two different devices does not 

necessarily make them non-equivalent, differences between devices such as screen size may 

affect the standardization of the testing experience, which is a prerequisite for equivalence (Scott 

& Mead, 2011). Because a multimedia assessment may be impacted by mobile device-related 

changes in interface characteristics (e.g., smaller screen size or poorer screen resolution) and 

device functionality (e.g., increased scrolling requirements), the following hypothesis is 

predicted:  
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Hypothesis 3: The measurement models for mobile and non-mobile devices will not 

exhibit full factorial invariance when displaying assessments with multimedia 

components (e.g., images), but may exhibit partial factorial invariance. 

In comparison, when a SJT is primarily text-based, a reasonable expectation is that it will 

function similarly to a cognitive or non-cognitive assessment across devices. Therefore, the 

following hypothesis is predicted: 

Hypothesis 4: Mobile and non-mobile devices will have equivalent measurement models 

for a text-based situational judgment test. 
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CHAPTER 3 

METHOD 

Procedure 
 

This research was conducted by gathering archival response data from an unproctored, 

online selection battery (assessment titles and job family names have been changed to maintain 

the host organization’s confidentiality). The selection battery was developed by a team of 

external consultants tasked with measuring the cognitive and non-cognitive predictors of future 

job performance for positions in a large, multi-national organization in the hospitality industry. 

To examine the widest array of selection measures, two job families from the overall battery 

were selected for the current study: Internal Service and Maintenance (ISM) and Customer 

Facing (CF). The positions in the ISM job family can be best described as skilled and semi-

skilled hourly positions such as food preparation, housekeeping, and building and grounds 

maintenance. Positions in the CF job family are hourly positions that typically interact with 

customers on a daily basis, such as bell hops or front desk receptionists. The consulting team 

conducted concurrent criterion-related validation studies for each job family as part of the 

original development process to establish that the assessments were psychometrically sound and 

predicted job performance. The final assessments were integrated into the organization’s web 

portal and made available to applicants in January 2010. The data made available for this study 

included all applicant responses from April 2011 to September 2012. 

All of the assessments were designed to be administered online in an unproctored testing 

environment and were accessed via the participating organization’s website. To enhance 

assessment security, alternate forms of each assessment were developed and the presentation of 

the items was randomized within each test form across applicants. There was no limitation as to 
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what device, browser, or operating system applicants were allowed to use. When the applicant 

accessed the web portal, their selected language, form of assessment, all response data, browser, 

operating system and device type (e.g., PC, Android™ phone) were recorded. Therefore, 

applicants for both job families were not randomly assigned to the different device types (i.e., 

mobile, non-mobile), instead, applicants self-selected into each experimental condition or group 

by choosing to complete the Internet-based assessment battery using a particular device. 

Sample 

Two samples were used in this study, each representing individuals based domestically in 

the United States and who were applying for a particular job family within the hospitality 

organization. The first job family sample represented applicants to the Internal Service and 

Maintenance jobs. Of these applicants, a total of 11,169 completed the online selection battery 

using a mobile device (i.e., Smartphone; for example iPhone™, Android™ phone, Blackberry™) 

and 209,272 completed the online selection battery using a non-mobile (i.e., PC) device.  

The second job family represented applicants to the Customer Facing jobs. Of these 

applicants, a total of 13,023 applicants completed the selection assessment battery using a mobile 

device and 375,054 applicants completed the selection battery using a non-mobile device.  

Demographic data were not available for either sample. 

These sample sizes represent the applicants from both job family samples who met the 

following criteria: applicants must have (a) completed the online assessment through the 

organization’s web portal, (b) had device data available, (c) completed the assessment only once 

and with only one device type, (d) completed the same form (Form A) and language (English) 

version of a particular assessment, and (e) had responses that were complete for all items and 

demonstrated variability that was greater than zero.  
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Assessments 

 The selected assessments in the ISM job family selection battery included a cognitive 

ability-type assessment labeled Learning, a biodata assessment of a competency labeled 

Conscientiousness, a biodata assessment of a competency labeled Customer Service Orientation, 

and a multimedia (i.e., images) work environment simulation  that measured a competency 

labeled Neatness. The examined assessment from the CF job family selection battery included a 

SJT that measured the Customer Service competency. Each assessment was developed by an 

external team of organizational testing experts tasked with measuring the essential competencies 

for the organizational positions as defined by a job analysis. Although alternate forms were 

created for each assessment, the current study focused on a consistent form within a particular 

job family. Table 1 provides a summary description of the assessment type, the item type, 

scoring, number of items, and associated job family for each assessment. 

Cognitive ability assessment. The cognitive ability Learning assessment consisted of 11 

items measuring an applicant’s ability to learn and follow instructions. The assessment presented 

applicants with written instructions for how a guest room or facility area should be arranged or 

maintained. The applicants were then shown a series of pictures that represented varying degrees 

of adherence to these rules; job experts created and scored these pictured scenes. Applicants 

were asked to determine how well each picture followed the written instructions by indicating 

how many “mistakes” were made in the photograph. Audio narration of the written instructions 

and questions were provided to reduce the reliance on literary skills and no time limit was 

imposed. The items were dichotomously scored as either 1 (correct) or 0 (incorrect). 
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Table 1 
     

       Description of Assessments           

  Title Type Item Type Scoring 

Number of 

Itemsa 

Job 

Family 

1. Learning Cognitive ability Multiple Choice Dichotomous 11 ISM 

2. Conscientiousness Competency Biodata Polytomous 12 ISM 

3. Customer Service Orientation Competency Biodata Polytomous 8 ISM 

4. Neatness Competency Multimedia/Simulation Polytomous 10 ISM 

5. Customer Service  Competency SJT Polytomous 10 CF 

Note: a = Number of items for the chosen form of the operationally delivered assessment; ISM = Internal Service and 

Maintenance; CF = Customer Facing; SJT = Situational Judgment Test. 
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During the original assessment development, the final item list was retained based on 

identifying items that had moderate point-biserial correlations (i.e., greater than .30 and less than 

.80) and no sub-group mean differences. The reported internal consistency coefficient, based on 

a composite reliability coefficient (Nunnally & Bernstein, 1994), generated from a validation 

sample (n = 372) was α = .81. 

 Biodata assessments. The biodata assessments measured the competencies 

Conscientiousness (n = 12) and Customer Service (n = 15), by evaluating life and work 

experiences from a historical perspective (e.g., Mumford & Owens, 1987; Mumford & Stokes, 

1992; Nickels, 1994). This involved asking applicants about their values, opinions, and attitudes 

as related to their past experiences specific to the constructs measured in the assessment battery. 

Biodata items were text-based and rationally keyed by the assessment developers on a +1, 0, and 

-1 scale. A response of +1 represents being high on the attribute measured, a response keyed 0 

indicates being neither high nor low on the attribute, and -1 represents being low on the 

measured attribute. There was no time limit imposed for this component. Although each of these 

assessments demonstrated adequate internal composite reliability coefficients (α = .80, .89), the 

test developers retained items primarily on the basis of predictive validity versus explanatory 

aspects of a theoretical model of the applicant population. 

 Multimedia work simulation. Next, the test developers identified a competency that 

acted as a relevant predictor of performance for the ISM jobs during the job analysis, which they 

labeled Neatness. As a result, a quasi-work simulation was created to measure an applicant’s 

determination of the neatness of a photographed hotel area. A variety of guest rooms and facility 

areas that ranged from very neat to very messy, as determined by job experts familiar with 

company standards, were photographed and shown to applicants. Applicants were then asked to 
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determine, on a 1 (very messy) to 5 (very neat) Likert-type scale, the neatness or messiness of the 

photographed area. Because of the heavy use of photographs, this predictor assessment can be 

labeled as a multimedia test in a simulated work environment. A total of 40 items were originally 

developed (composite α = .59); however, during the validation process, the test developers 

discovered that this assessment was measuring multiple constructs and decided to retain items 

based on rating agreement levels between subject matter experts. Therefore, only 10 items were 

available from the chosen version of the Neatness assessment delivered to the ISM job family 

(Table 1). 

 Situational judgment test. Lastly, a situational judgment test (SJT) was developed to 

measure a Customer Service competency for the CF jobs. SJTs are designed to recreate 

ecologically valid scenarios that an incumbent may face on the job along with a multiple choice 

list of potential behavioral responses. The test development team created the assessment by 

gathering critical incidents reported by job experts, drafting initial items and responses, and then 

validating the items by subject matter experts rating the realism and performance relatedness of 

each scenario. In a similar fashion to the biodata items, the SJT response options were rationally 

keyed on a +1, 0, and -1 scale; however, in this case a response option scored as a +1 represents 

a behavior reflective of the competency, a 0 represents a neutral behavior, and -1 represents a 

behavior not reflective of the competency. Again, similar to the biodata items, the final SJT item 

set (n = 10) was retained based primarily on each item’s criterion-related validity and less on 

each item’s psychometric components (composite α = .50). 

Data Analysis   

Measurement invariance tests. To verify the measurement equivalence/invariance across 

different testing formats, such as mobile and non-mobile devices, a sequence of nested models 
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can be tested using multi-group confirmatory factor analysis (MGCFA; Steenkamp & 

Baumgartner, 1998; Vandenberg & Lance, 2000). Instead of examining equivalence across item-

level parameters, such as in differential item functioning, MGCFA (Vandenberg, 2002) was 

chosen as the appropriate analysis methodology in the current study for the following reasons. 

MGCFA is particularly useful when determining ME/I at the scale level. MGCFA also uses fit 

indices that can streamline comparisons between groups, and it allows for comparisons with 

similar research on the equivalency of assessments delivered on mobile devices (Cole, Bedeian, 

& Feild, 2006; Morelli et al., 2012; Raju, Laffitte, & Byrne, 2002; Reise, Widaman, & Pugh, 

1993). 

 The typical model testing sequence recommended by Vandenberg and Lance (2000) for 

continuous outcome variables begins with estimating a baseline model that compares the pattern 

of fixed and free factor loadings for each group (i.e., configural invariance). Next, a series of 

more restricted nested models are compared to the baseline model to test for potential sources of 

invariance. These models first test the equivalence among the factor loadings (i.e., metric 

invariance), then the item intercepts (i.e., scalar invariance), the measurement errors (i.e., 

uniqueness/residual variance invariance), and the invariance of the latent factor variances and 

covariances (Cole, Bedeian, & Feild, 2006; Steenkamp & Baumgartner, 1998; Vandenberg & 

Lance, 2000). Metric invariance tests for potential differences in the rating scales across devices 

and is determined by constraining the factor loadings to equality, whereas scalar invariance tests 

for potential differences in the item intercepts (observed means) across devices. To identify 

scalar invariance, the metric invariance constraint is imposed in addition to constraining the item 

intercepts to equality. Configural, metric, and scalar invariance tests ensure that the psychometric 

properties of a scale or measure are equivalent across groups (French & Finch, 2006). Then, if 
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the three previous invariance tests are supported, researchers may also test the uniqueness and 

factor variance/covariance equivalence to determine if measures are tapping equivalent latent 

constructs with similar levels of measurement error. 

While the previously described measurement invariance test sequence, which typically uses 

the maximum likelihood (ML) estimator, work well for reasonably normal, continuous data 

(French & Finch, 2006; Meade & Lautenschlager, 2004), using this same sequence and 

estimation procedure with ordinal data could lead to a number of problems. For instance, ordinal 

data do not meet the ML assumption of multivariate normality; violating this assumption can 

result in distorted factor structure estimations when using multiple groups, attenuated standard 

error estimates, and misleading ME/I tests (Lubke & Muthén, 2004; Flora & Curran, 2004).  

These issues were addressed in the current study by estimating model parameters for ordinal 

data using a robust weighted least squares estimator. Specifically, the mean- and variance-

weighted least squares estimator (WLSMV; Kline, 2011) utilized in Mplus version 5.1 was used 

(Muthén & Muthén, 2010). The WLSMV estimator is more suitable for ordered-categorical 

items in that it analyzes tetrachoric correlation matrices for dichotomous items and polychoric 

correlation matrices for polytomous items. These correlations assume an underlying continuous 

distribution exists for the ordinal scoring of an item set, which prevents the item parameters from 

being underestimated (Flora & Curran, 2004). WLSMV also does not violate the multivariate 

normality assumption of ML estimation and has been shown to generate more accurate model 

test rejection rates and factor loadings than ML when using ordinal data, particularly when the 

observed variables only have 2 or 3 response categories (Beauducel & Herzberg, 2006).  

In addition, a modified ME/I test sequence described by Muthén and Muthén (2010) was 

followed to address the complications with ordinal data, such as the ordered-categorical outcome 
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variables used in the current study (i.e., Likert-style items; rationally scored three-point scales; 

Millsap & Yun-Tein, 2004). The testing sequence recommended by Muthén and Muthén consists 

of two model tests. First, the configural test is conducted by freely estimating the thresholds and 

factor loadings in both groups, and fixing the factor means to 0 and the residual variances to 1 

for identification purposes. Next, the scalar invariance test is conducted by fixing the thresholds 

and factor loadings to equality across groups; the residual variances and factor means are fixed in 

one group and freed in the other. The metric test is skipped in this testing sequence because the 

factor loadings and item intercepts (i.e., the item thresholds for categorical data) must be freed or 

constrained together to account for item characteristics curves containing both components 

(Millsap & Yun-Tein, 2004; Muthén & Christoffersson, 1981). With categorical data, thresholds 

are used instead of item intercepts because they designate the point on the latent response 

variable where a particular answer category is designated if the threshold is met or unmet (Kline, 

2011).  

In addition to the two model tests proposed by Muthén & Muthén (2010) a third and more 

restrictive invariance test of the residual variances was conducted. Although this test has 

traditionally been considered overly restrictive and impractical in most instances (Steenkamp & 

Baumgartner, 1998), Millsap and Yun-Tein (2004) recommended this test as being part and 

parcel of the complete test of ME/I as it includes all of the relevant item parameters. These 

relevant item parameters are the item thresholds (υ) and the factor model parameters; 

specifically, the latent intercepts (τ), factor loadings (Λ), and residual variances (Θ). 

Conceptually, this test a necessary condition for ME/I in that it demonstrates the scalar 

invariance results are not being distorted or clouded due to systematic error (e.g., unmeasured 

variables) effects related to group membership (DeShon, 2004; Wu, Li, & Zambo, 2007). 
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Assuming that the previously described nested model tests indicate complete invariance 

between the device groups, a final model constraining the factor variances to equality under the 

scalar model constraint was compared across groups. Although this test was not considered a 

nested invariance model test (Millsap & Yun-Tein, 2004), model equivalence for the factor 

variances establishes the homogeneity of variance assumption, which allows meaningful latent 

mean differences to be made (Ployhart & Oswald, 2004). Estimating the latent mean differences 

is a powerful indication of potential performance differences across devices (Mueller, Liebig, & 

Hattrup, 2007) and an important type of comparison to make when changing test formats (Scott 

& Mead, 2011). 

To summarize, Mplus v5.1 and the WLSMV estimator were used to conduct the following 

nested ME/I tests for ordered-categorical data: configural invariance, scalar invariance, and the 

invariance of the residual variances between groups.  The Theta parameterization in Mplus was 

used to allow the manipulation of the residual variances (Muthén & Muthén, 2010). A fourth, 

non-nested model, which constrained the factor variances to equality between groups, was also 

conducted to establish the homogeneity of variance assumption and facilitate the detection of 

meaningful group differences between the factor means.  

Model fit tests. Typically, χ
2
 difference tests between each nested model (e.g., metric 

invariance model within the configural invariance model) are conducted to approximate a lack of 

ME/I as evidenced by a significant reduction in fit (Meade et al., 2007). Because the WLSMV 

estimator computes χ
2 

values and degrees of freedom (df) in a different manner than ML, the χ
2 

statistic and degrees of freedom cannot be used to compute the Δ χ
2 

statistic. Therefore, the 

DIFFTEST feature in Mplus was used to approximate the change or deterioration in model fit 
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using the χ
2 

statistic; here, a significant Δ χ
2 

value indicates a significant deterioration of fit 

between the nested models. 

 However, the χ
2 

statistic is overly sensitive to sample size and may not always be an 

appropriate indication of poor model fit (Brannick, 1995). Thus, the change in the comparative 

fit index (ΔCFI) was used as an alternative for comparing the fit between models (Chueng & 

Rensvold, 2002). A recent ME/I simulation study conducted by Meade, Johnson, and Braddy 

(2008) recommended a cutoff criterion for evaluating ΔCFI values to be less than or equal to 

.002.  

In addition to the CFI, the Tucker Lewis Index (TLI) and the root mean squared error of 

approximation (RMSEA) fit indices were also used to determine appropriate model fit for the 

individual models. The following criteria were used regarding these fit indices to determine if a 

model was appropriately fitting the observed data: 1) RMSEA values were less than or equal to 

.08, and 2) CFI and TLI values were greater than or equal to .95 (Hu & Bentler, 1999).  
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CHAPTER 4 

RESULTS 

Assessment Dimensionalities and Descriptive Statistics 

 Before testing the ME/I hypotheses, exploratory and confirmatory factor analyses (EFA; 

CFA) using Mplus v5.1 (Muthén & Muthén, 2010) were conducted for each assessment. Both 

analyses were conducted on holdout samples to determine the dimensionality and final item set 

for each assessment. These preliminary analyses were performed for several reasons.  

First, the applied nature of the data required a re-examination of the underlying factor 

structure for each assessment.  As with most applied data, the original test developers’ main goal 

focused more on differentiating between applicants and less on defining a formal factor structure. 

Thus, a determination and confirmation of the factor structure imposed on the final, delivered 

item set was a necessary prerequisite to specifying a stable measurement model for the 

configural ME/I test (Vandenberg & Lance, 2000).  

Second, the internal consistency coefficients reported by the test developers do not 

guarantee unidimensionality. As is the case with Cronbach’s alpha, an internal consistency 

measure only tests the interrelatedness of the items and not the first factor saturation, or 

unidimensionality, of the items (Cortina, 1993). As a result, the composite reliability coefficients 

reported by the test developers help give a frame of reference for how the items relate to one 

another, as well as how cohesive the item set was among the validation sample, but an analysis 

of the underlying factor structure is necessary to help describe the assessments at the latent level. 
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 Finally, establishing each assessment’s dimensionality simplifies the interpretation of the 

ME/I test results; EFA and CFA allow a researcher to reduce the observed items into a more 

parsimonious single factor solution for each assessment in the study. As the purpose of the 

current study was to investigate the equivalence of a given assessment delivered across different 

device types, a single factor solution extracted by EFA, and confirmed by CFA, allowed for the 

most direct interpretation of the ME/I results. In other words, extracting multiple factors would 

have made interpreting the factors incumbent on the item content; this was less desirable when 

the focus was on the devices versus the assessments themselves. 

Due to the categorical nature of the data, the EFAs and CFAs used WLSMV (Muthén & 

Muthén, 2010; Woods, 2002) as opposed to ML. Holdout samples from each job family sample 

(e.g., ISM and CF; n = 500) were also used for the EFA of each assessment. Initially, WLSMV 

estimates were conducted on the full item sets for each assessment, and one through three factor 

solutions were examined for simple structure and interpretability. Oblique (promax) rotation was 

used because it was assumed any extracted factors would be correlated (Bandalos & Boehm, 

2009). As previously noted, the objective of this initial analysis was to determine the factor 

structure of the full item set for each assessment and then reduce the items to a single factor 

solution by examining the communalities, eigenvalues, and scree plots. Items were selected 

using the following criteria: .20 for communalities and .32 for factor loadings (Kim & Mueller, 

1978; Tabachnick & Fidell, 2001). Items that did not meet these cutoffs for a single factor or 

cross-loaded on more than one factor were removed. The resulting item sets were then re-

examined using one to three factor solutions to verify their unidimensionality. Specifically, item 

sets that resulted in one factor solutions with eigenvalues greater than 1, displayed one-factor 

scree plots (i.e., Cattell test), and had non-significant chi-square values were selected for follow-
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up CFAs. An examination of the number of items retained (Table 3) reveals that each assessment 

had to be reduced to determine a final item set that maintained a unidimensional factor structure. 

To confirm the single factor solution of the reduced item sets, a CFA was also performed 

using Mplus v5.1 and the WLSMV estimator on separate holdout samples (n = 300) for each 

device group and job family (ISM mobile; ISM non-mobile; CF mobile; CF non-mobile). The 

final item sets were constrained to a single factor solution for each assessment and model fit was 

determined using the following goodness-of-fit indices: the χ
2
 statistic, the CFI, the TLI, the 

RMSEA, and the weighted root mean square residual (WRMR) (Tanaka, 1993; Hu & Bentler, 

1999; Yu, 2002). Non-significant χ
2 

values were considered evidence for a well fitting model, 

whereas the following criteria were used for the alternative fit indices: 1) RMSEA values less 

than or equal to .08, 2) CFI and TLI values greater than or equal to .95 (Hu & Bentler, 1999), 

and 3) WRMR values less than or equal to 1.0 (Yu, 2002). Appendices A and B supply the 

standardized factor loadings for each assessment’s reduced item set. 

Table 2 provides the fit index results for each model. All but two of the CFA models 

(Conscientiousness non-mobile and Neatness non-mobile) had non-significant chi-square values. 

Although the Conscientiousness non-mobile and Neatness non-mobile models  exhibited 

significant  χ
2
 values, the alternative fit indices suggested that the one-factor solution for these 

items met a priori determined cutoff criteria. These results suggested that for each device group, 

an item set from each assessment’s originally distributed and scored item pool could be 

associated with a single latent factor. This greatly aided in testing the measurement equivalence 

of the most parsimonious models possible. 
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Table 2

Measurement Models of Reduced Item Assessments

χ
2 

df RMSEA TLI CFI WRMR

Learning-NM 2.88 5 .000 1.00 1.00 .370

Learning-M 4.68 5 .000 1.00 1.00 .460

Conscientiousness-NM 20.61* 8 .072 .958 .963 .767

Conscientiousness-M 7.95 8 .000 1.00 1.00 .499

CSO-NM 3.66 4 .000 1.00 1.00 .324

CSO-M 6.11 4 .042 .994 .996 .487

Neatness-NM 17.39* 5 .091 .965 .975 .616

Neatness-M 5.22 5 .012 .999 .999 .341

Customer Service SJT-NM 8.49 5 .048 .930 .956 .560

Customer Service SJT-M 4.81 5 .000 1.00 1.00 .463

Note: All models used the WLSMV (weighted least squares mean and variance 

adjusted) estimator for categorical data. CSO = Customer Service Orientation; NM = 

Non-mobile device; M = Mobile device; df = degrees of freedom; χ
2
 = chi-square; 

RMSEA = root mean squared error of approximation; TLI = Tucker-Lewis index; CFI 

= comparative fit index; WRMR = weighted root mean square residual. * p  < .05, all 

other chi-squares are not significant at p  > .05.

  

Table 3 provides scale-level descriptive statistics, distributional properties, and internal 

consistency estimates. Although not the comparative focus for the device groups, the scale 

means and standard deviations are provided for descriptive purposes and appear comparable. The 

scale-level range, skewness, and kurtosis are also supplied for each assessment. They also appear 

comparable and are not markedly different than zero (significance tests for normality are not 

generally informative for large samples; Tabachnick & Fidell, 2001). The internal consistency 

values for the cognitive ability, biodata, and simulation assessments were computed using an 

ordinal Cronbach’s alpha based on tetrachoric and polychoric correlations (Gadermann, Guhn, & 

Zumbo, 2012). These reliability coefficients ranged from .70 to .86 in the mobile group and .71 

to .87 in the non-mobile group.
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Table 3

Descriptive Statistics for Reduced Item Assessments

Construct k Mean SD Min Max Skewness Kurtosis α Mean SD Min Max Skewness Kurtosis α

Learning 5 2.66 1.41 0 5 -0.01 -0.91 0.71 2.66 1.41 0 5 -0.04 -0.89 0.71

Conscientiousness 6 3.94 1.85 -5 6 -0.72 -0.11 0.81 4.01 1.86 -6 6 -0.80 0.02 0.82

Customer Service 5 3.75 1.58 -4 5 -1.18 0.56 0.86 3.74 1.61 -5 5 -1.21 0.63 0.87

Neatness 5 12.07 2.46 5 25 0.00 0.00 0.70 12.16 2.54 5 25 0.05 -0.02 0.73

Customer Service SJT 5 2.48 1.56 -4 5 -0.51 -0.01 0.51 2.87 1.54 -5 5 -0.68 0.21 0.55

Note: k  = number of items; n = device ISM sample size/device CF sample size; α = tetrachoric/polychoric ordinal alpha.

PCs

(n  = 209,272/375,054)

Smartphones

(n = 11,169/13,023)
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Although these reliability coefficients are somewhat lower than recommended by empirical 

standards (Lance, Butts, & Michels, 2006), these coefficients appear comparable between 

groups. 

The SJT ordinal alpha was .51 in the mobile Smartphone group and .55 in the non-mobile 

PC group. It is worth noting that the EFA and CFA conducted on the Customer Service SJT was 

able to reduce the items to an approximately unidimensional factor; but, due to the 

multidimensionality commonly found with SJTs there are most likely other plausible alternative 

models than the observed items chosen as the final SJT factor. The lower internal consistency 

estimates for this assessment, seen in Table 3, also bear this out. However, these findings are not 

unusual as SJTs have been shown to measure multiple constructs at once and typically have 

lower internal consistencies, yet still be viable measures of job performance (Lievens & Sackett, 

2006; Schmitt & Chan, 2006). Appendices C-G provide the inter-item tetrachoric and polychoric 

correlation matrices for the reduced item assessments. 

Measurement Equivalence/Invariance 

 Once stable, single factor measurement models among the observed items for each 

measure were specified, the hypotheses were tested by examining the equivalence of the 

measurement models for each selection assessment across the mobile and non-mobile device 

groups. To summarize the data analysis strategy previously described, multiple group analyses 

were conducted via a series of hierarchically nested CFA models. The models were constrained 

in a sequential fashion to identify potential sources of invariance among the factor loadings and 

thresholds, as prescribed by Muthén and Muthén (2010). The first model, labeled configural, 

allows the factor loadings and thresholds to be estimated freely while constraining the residual 

variances to 1 in both groups (for identification purposes) and the factor means to 0. The second 
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model, labeled scalar, then constrains the factor loadings and thresholds to equality and allows 

the factor mean and residual variances to be freely estimated in the comparison group (i.e., the 

mobile Smartphone device group). Lastly, as prescribed in Millsap and Yun-Tein (2004), the 

third model, labeled residual variances, followed the constraints of the Scalar model but instead 

constrains the residual variances to equality in both device groups. 

 Because the χ
2
 test is overpowered due to sample size, the criterion of .002 for the ∆CFI 

was used as the primary indication of significant decrement in fit between models. Each model 

was estimated simultaneously for both groups to compare the fit indices already described. The 

change in chi-square, computed using the DIFFTEST feature in Mplus v5.1, is also reported to 

follow standard ME/I reporting protocol and to demonstrate a significant reduction in fit between 

the nested models. 

 Invariance tests for assessments delivered to ISM job family. Table 4 provides the 

model test results for the single factor measurement models constrained to the three levels of 

invariance. The assessments included the cognitive ability Learning assessment, the 

Conscientiousness biodata assessment, the Customer Service Orientation biodata assessment, 

and the simulated, multimedia Neatness competency assessment. The χ
2 

statistic is provided to 

follow standard reporting procedure (Jackson, Purc-Stephenson, & Gillaspy, 2009), but it is 

worth repeating that the value calculated with the WLSMV estimator cannot be used for standard 

χ
2 

difference tests. Thus, the ∆χ
2 

values indicate a significant deterioration in fit with the more 

restricted models. 
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Table 4

ME/I Model Tests for ISM Job Family

χ
2 

df RMSEA TLI CFI Δχ
2
/df ΔCFI

Learning

L1 Configural 659.40 10 .024 .988 .993 --

L2 Scalar 620.34 13 .021 .991 .993 8.46*/3 .000

L3 Residual variances 589.86 17 .017 .994 .994 33.15*/5 -.001

Conscientousness

T1 Configural 2497.05 18 .035 .990 .991 --

T2 Scalar 1958.32 25 .026 .994 .993 91.02*/9 -.002

T3 Residual variances 1962.83 30 .024 .995 .993 78.21*/6 .000

Customer Service

C1 Configural 1410.24 10 .036 .996 .997 --

C2 Scalar 868.52 13 .024 .998 .998 105.83*/6 -.001

C3 Residual variances 917.97 17 .022 .999 .998 74.68*/5 .000

Neatness

N1 Configural 5791.43 10 .072 .971 .979 --

N2 Scalar 4317.13 24 .040 .991 .985 361.27*/15 -.006

N3 Residual variances 4256.40 28 .037 .992 .985 116.91*/5 .000

Note: ISM = Internal Service and Maintenance; df = degrees of freedom; χ
2 
= chi-square; 

RMSEA = root mean squared error of approximation; TLI = Tucker-Lewis index; CFI = 

comparative fit index. * p  < .05
 

Examination across assessments suggests the fit of each assessment’s baseline configural 

model to the data was good. The alternative fit indices for each model met commonly accepted 

cutoffs: TLI ≥ .95, CFI ≥ .95, RMSEA ≤ .08. For instance, the Learning assessment had a 

RMSEA (.024), a TLI (.988), and a CFI (.993) that all demonstrated good fit for the configural 

model. Again, proper fit of this model to the data indicates an acceptance of the baseline ME/I 

model; in other words, each group is measuring the same construct due to a similar pattern of 

free and fixed factor loadings. It should be noted that as expected, each model had significant χ
2 

values at p < .01 (L1: χ
2 

[10] = 659.40; C1: χ
2 
[10] = 1410.24; T1: χ

2 
[18] = 2497.05; N1: χ

2 
[10] 

= 5791.43), but these significant values are not interpretable due to sample size. 
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 The following model constraints fixed the factor loadings and thresholds to equivalence 

across the device groups (L2, C2, T2, and N2). Overall, the alternative fit indices and χ
2 

values 

displayed the same pattern of results. The χ
2 

values were significant, as expected when using 

large sample sizes, but the alternative fit indices demonstrated good fit for these model 

constraints. For instance, the Conscientiousness assessment (T2) displayed very good fit indices 

for the scalar invariance model: RMSEA (.026), TLI (.994), and CFI (.993). Imposing these 

constraints resulted in a deterioration of fit from the configural model as evidenced by the 

significant Δχ
2 

values; but again, the change in CFI values did not cross the accepted cutoff value 

suggesting that this deterioration in fit was not meaningful. In fact, each assessment 

demonstrated a slight increase in CFI value between the configural and scalar models. The 

adequate fit indices and inconsequential reduction in fit suggest that the equivalence of factor 

loadings and thresholds can be supported for each assessment. In other words, similar latent 

constructs are being assessed whether an applicant completed an item with a mobile or non-

mobile device, and these devices do not have meaningful observed item mean differences. 

 Lastly, Table 4 also reports the most restrictive invariance model test (L3, T3, C3, and 

N3), invariance of the residual variances, which constrains the latent residual variances to 

equivalence across device groups for each selection assessment. The high alternative fit index 

values and lack of reduction in fit indicated by the ∆CFI indicated that constraining all item 

parameters to equality, as prescribed by Millsap and Yun-Tein (2004), resulted in virtually no 

meaningful change from the scalar model. This suggests that these assessments are displaying 

strict measurement invariance; in other words, the scalar invariance finding is not being clouded 

by unwanted systematic effects (Wu, Li, & Zumbo, 2007). 
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 Regarding the latent means, a final model constraining the factor variances to equality 

was fit to the data and estimated for both groups simultaneously. The differences in latent factor 

means was also estimated by fixing the latent mean to 0 for the non-mobile PC group (i.e., 

treating non-mobile devices as the comparison group),  and allowing the mobile group latent 

mean to be freely estimated. Table 5 summarizes the model fit results and the latent mean 

differences between the device groups. Adequate fit indices for this model across assessments 

indicated that the homogeneity of variance assumption was upheld for each assessment delivered 

to ISM applicants. Because this assumption was upheld, latent factor mean differences were also 

reported in Table 6. Standardized mean differences between device groups reported in Table 6 

can be interpreted as z-scores and indicate, in standard deviations, whether mobile device 

applicant responses on average are higher or lower than the non-mobile device applicants. 

Mobile applicants had higher latent mean values for the Learning (.027, p > .05) and Customer 

Service (.002, p > .05) assessments; however, neither of these differences was significant. In 

comparison, the Conscientiousness and Neatness assessments demonstrated significantly lower 

latent means (converted to z-scores) for the mobile device group (-.039, p < .05; -.037, p < .05), 

but the absolute values of these differences appear to be small. 

 Overall, these results support hypotheses 1 and 2—the cognitive ability and non-

cognitive competency assessments appear to be equivalent across mobile (Smartphones) and 

non-mobile (PCs) devices as expected. However, the results did not support hypothesis 3, which 

expected that the use of images for the Neatness assessment would drive a failure to identify 

complete invariance across device types. Instead, the adequate fit indices for each nested model 

and a lack of meaningful deterioration in fit across invariance models meant that these devices 

appear to be equivalent, even though images were primarily used to complete the assessment. 
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Table 5

Equal Factor Variances Model Fit Indices and Factor Mean Differences Between Devices

Measure χ
2 

df RMSEA TLI CFI Mean Diff p

Learninga 555.61 13 .019 .992 .994 .027 .070

Conscientiousnessa 1737.6 24 .025 .995 .994 -.039 .004

Customer Servicea 754.98 13 .023 .999 .998 .002 .910

Neatnessa 3375.77 21 .038 .992 .988 -.037 .001

Customer Service SJTb 711.45 18 .014 .988 .989 -.402 .000

Note: a = ISM job family sample; b = CF job family sample; df = degrees of freedom; χ
2 

= chi-square; 

RMSEA = root mean squared error of approximation; TLI = Tucker-Lewis index; CFI = comparative fit 

index; Mean Diff = standardized mean differences between non-mobile and mobile groups.

 

Invariance tests for assessment delivered to CF job family. Table 6 presents the results of the 

invariance tests for the Customer Service SJT delivered to the Customer Facing job family 

applicants. Although these results follow a similar pattern, they are presented separately to 

indicate that these results were gathered from a different sample. Again, for these invariance test 

results the focus is not on the value of the χ
2 

statistic or the significance of the change in χ
2 

values, but the alternative fit indices and the change in CFI value. 

Table 6

ME/I Model Tests for CF Job Family

χ
2 

df RMSEA TLI CFI Δχ
2
/df ΔCFI

Customer Service SJT

S1 Configural 561.00 11 .016 .984 .991 --

S2 Scalar 585.93 17 .013 .990 .991 67.65*/6 .000

S3 Residual variances 625.38 18 .013 .990 .990 6.19*/1 .001

Note: CF = Customer Facing; SJT = Situational Judgment Test; df = degrees of freedom; χ
2 

= 

chi-square; RMSEA = root mean squared error of approximation; TLI = Tucker-Lewis index; 

CFI = comparative fit index. * p < .05
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Fitting the configural model to the data for this job family resulted in good fit according 

the reported indices. The high alternative fit indices demonstrated that the data fit well to the 

unconstrained model (RMSEA = .016; TLI = .984, CFI = .991). ME/I was also supported at the 

scalar level when adequate fit indices and the change in CFI were below the accepted cutoffs 

(∆CFI ≤ .002).  

 The invariant residual variances model also demonstrated equivalence between groups.  

Although there was a decrement in fit for the χ
2
 statistic (S3: Δχ

2 
[18] = 6.19, p < .05) and the 

ΔCFI value (.001), this decrement was not substantial enough to reject the equivalence of these 

models. Thus, invariance tests among the three relevant item parameters indicated complete 

invariance between mobile and non-mobile device groups. These results supported hypothesis 4, 

which expected that the text-based SJT would be equivalent across device types.  

 Table 5 provides the equivalent factor variance fit indices and latent mean differences for 

the Customer Service SJT. The alternative fit indices did not cross the accepted cutoffs already 

stated, which indicates the homogeneity of variance assumption was met. However, the latent 

mean difference was significant and indicated that mobile device applicant users were .402 

standard deviations lower than their non-mobile counterparts. This finding suggests that the 

mobile device group performed significantly worse than the non-mobile device group. 

Summary. The preliminary exploratory and confirmatory factor analyses reduced the 

item sets for each of the original assessments to more interpretable, unidimensional item sets that 

fit the data reasonably well. The descriptive statistics and distributional properties were reviewed 

for potential differences and appeared comparable based on a visual inspection. The hypotheses 

were tested using nested, hierarchical ME/I models for ordered-categorical data (Muthén & 

Muthén, 2010; Millsap & Yun-Tein, 2004). With the exception of hypothesis 3, the ME/I model 
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results supported the hypotheses. The hierarchically nested models displayed good alternative fit 

indices and did not demonstrate significant reductions in fit across nested models. Latent mean 

differences for the cognitive, biodata, and multimedia assessments were either non-significant or 

negligible. However, the absolute value of the latent mean difference between mobile and non-

mobile applicants who completed the SJT was both noticeable and statistically significant. 

Overall, the cognitive ability, biodata, and work simulations examined in this study appear to be 

equivalent whether delivered on mobile or non-mobile devices. 
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CHAPTER 5 

DISCUSSION 

A necessary prerequisite for adapting selection assessments to new media is to establish 

that the construct, knowledge, skill, ability, or competency being measured is not altered by the 

medium. The purpose of this study was to determine if this prerequisite was met when a 

selection assessment is delivered on mobile technology. To represent the selection tools being 

utilized in common assessment batteries, a cognitive ability-type assessment, two biodata 

assessments, a multimedia work simulation, and a situational judgment test were examined for 

their measurement equivalence across an applicant group that used a mobile device medium 

(Smartphone; e.g., iPhone™, Android™ phone) and a non-mobile device medium (PC). The 

overall results from the measurement invariance tests confirmed that each assessment appeared 

to be invariant across the restricted model tests. For all assessments, the more restricted models 

exhibited decrements in model fit, but a review of the alternative fit indices and change in 

comparative fit index revealed these differences were not practically meaningful. In other words, 

complete factorial invariance was supported for each assessment type. In the proceeding section, 

these overall results are evaluated in terms of the hypotheses for the individual assessments, 

along with the major contributions of the current study to the selection assessment literature.   

Major Contributions 

The tests of measurement invariance at the configural, scalar, and residual variance levels 

supported the hypotheses that the cognitive ability assessment, two biodata assessments, and SJT 

would be equivalent across devices. These results, when taken together with the lack of support 
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for the multimedia work simulation hypothesis of non-equivalence, make three important 

contributions to the literature: 1) the current study is the first to examine three previously 

untested personnel selection assessments, 2) the current study replicates and expands initial 

results on mobile device equivalence, and 3) the results from the available sample and the chosen 

statistical analysis are strong indications of true medium comparability. 

First, the examination and support of hypotheses one, three, and four represent the first 

known research attempt to examine the equivalence of a cognitive ability assessment, 

multimedia assessment, and SJT delivered on a mobile device in a selection context.  In 

particular, the support of complete factorial invariance across devices for the cognitive ability 

Learning assessment implies that the factor structure and parameter values were consistent across 

both medium deliveries. In other words, the differences in device functionality were not altering 

the type of ability being measured, changing the applicants’ conceptualization of the measured 

ability, or creating meaningful performance differences. This is an important expansion from 

previous studies that have either not compared mobile devices to non-mobile devices for 

cognitive ability assessments (e.g., Chuah et al., 2006; Whiting & Kline, 2006; Schroeders & 

Wilhelm, 2011) or have not examined the ME/I for handheld, mobile devices in a selection 

context (e.g., Schroeders & Wilhelm, 2010). 

Although the hypothesis regarding the multimedia work simulation for the Neatness 

competency was not supported, the finding that this type of assessment was equivalent across 

device types in a selection context is also an important contribution to the online selection 

assessment literature. Higher fidelity assessments that use images or video to better approximate 

the job environment are being utilized in greater numbers (Burke, Mahoney-Phillips, Bowler, & 

Downey, 2011), and previous studies examining these types of assessments have not considered 
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their delivery via mobile devices in particular. A reasonable expectation was that the smaller 

screen size would interact with this type of assessment to introduce construct-irrelevant variance 

to the construct measurement (Leeson, 2006). However, the nested invariance model results in 

the current study imply that the technical burdens (e.g., content display requirements, user 

manipulation) placed on the devices by the static images used in the assessment were not enough 

to generate a detectable lack of invariance (Reynolds, 2011). Possibly, this result is an indication 

that the screen resolutions and functionality of mobile devices are following the same 

developmental pattern standard computer monitors followed 30 years ago. Over time, computer 

monitor technology gradually approximated the resolution and functionality of paper-and-pencil 

versions, thereby lessening their originally discovered lack of invariance (Noyes & Garland, 

2008; Waters & Pommerich, 2007). In a similar fashion, the screen size and resolutions of 

mobile devices may have already approximated the same readability and functionality as 

standard computer monitors. Thus, the finding from the current study is a major contribution in 

that it examines the mobile delivery of a previously untested, yet popular, assessment tool and 

demonstrates that the available technology can consistently deliver static images used in similar 

contexts. 

The current study is also the first known examination of a SJT delivered on mobile 

devices. Despite the unique challenges inherent to SJTs (e.g., difficulty in establishing construct 

validity; little evidence on stability of scores; complexity of item stems and options; Schmitt & 

Chan, 2006), the findings supported the hypothesis that the text-based SJT would be equivalent 

across mobile and non-mobile device groups. This finding stands in contrast to other equivalence 

studies that have discovered criterion-related validity, applicant reaction, and performance 

differences across different media for various SJT adaptations (e.g., Mackenzie et al., 2010; 
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Lievens & Sackett, 2006). Yet, the current study focused on the interrelationships among a 

homogenous item set that was reasonably detectable across groups and shared the same item 

format type (i.e., text-based). Put another way, previous SJT studies have either not examined the 

construct validity across groups via measurement model tests, or have examined the 

measurement equivalence of SJTs that have differing item format across groups (i.e., video-

based items versus text-based items). Therefore, the results from the current study are uniquely 

positioned to answer the question about SJT equivalence when the item format is maintained; 

this will be especially salient as more technologically sophisticated mediums evolve. A 

surprising finding was that the nested model tests suggested equivalence, but the substantive 

latent mean test revealed that the mobile device users scored almost half a standard deviation 

lower than their non-mobile counterparts. The root cause of this difference is difficult to pinpoint 

in a non-experimental study, but it could be that reading the longer and more complicated items 

stems and responses on a smaller screen requires the user to scroll to a greater degree. This could 

potentially place a higher cognitive load on the applicant, which in turn could drive potential 

group performance differences across devices (Leeson, 2006). Regardless of the cause, this 

exploratory finding may be important for future efforts to establish the appropriateness of 

delivering newer SJT iterations on mobile devices. 

The second major contribution of the current study is that previous results from an initial 

mobile-device equivalency study were replicated and expanded for the non-cognitive constructs 

(Morelli et al., 2012). Hypothesis two expected that the non-cognitive assessments (i.e., biodata 

assessments of Conscientiousness and Customer Service) would be equivalent across device 

groups. Indeed, the adequate alternative fit indices across the constrained ME/I models 

demonstrated that these assessments were invariant for Smartphones and PCs. This finding was 
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expected and reasonable as the current study shares a number of similarities with the Morelli et 

al. (2012) study for how ME/I was tested. Specifically, both studies utilized a large sample of 

actual job applicants, both studies examined the Conscientiousness and Customer Service 

competencies measured with biodata items, and both studies used assessments that were text-

based, non-speeded, and delivered on similar online platforms. However, an important 

distinction and expansion from the Morelli et al. study was that the current study examined new 

assessment items in an untested job family and applicant pool. Specifically, manual labor-type 

jobs in a hospitality organization were examined versus the sales jobs in a retail organization 

examined in Morelli et al. This is important as triangulating equivalence results from various 

assessments, organizations, and job families helps generalize the current study’s results and give 

consumers of this information more confidence that text-based assessments of non-cognitive 

performance predictors are appropriate for mobile device delivery in an unproctored, online 

setting. 

The methodological strengths of the current study make up the third major contribution to 

the selection and assessment literature. These included using a large sample of job applicants 

completing assessments in a high-stakes testing scenario, an examination of content and 

criterion-valid assessments, and the use of MGCFA to establish ME/I at the latent construct 

level. A limitation of previous studies that have examined mobile or handheld computer device 

equivalence is that their samples have consisted of students in a classroom setting (e.g., 

Churchill, 2011; Muhanna, 2011; Schroeders & Wilhelm, 2010). Although a high-stakes testing 

scenario can be simulated using students, the findings from these studies may not be completely 

generalizable to the job applicant population. The current study, however, had population-level 

data representative of job applicants completing assessments in a high-stakes selection test, albeit 
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online and unproctored. In a similar vein, the assessments were designed, validated, and 

implemented for organizational use in predicting job performance for individual job families. 

This context and the available sample are important in that the findings are more informative for 

researchers or practitioners who want to know how assessments similarly designed and 

implemented will perform when delivered on a mobile device. Thus, these findings are 

particularly generalizable to a selection setting where an assessment battery is designed for 

organizational use. 

The use of MGCFA to examine group differences at the measurement versus the 

structural level is another methodological strength of the current study worth noting. As has been 

heavily discussed and stressed in the literature, establishing invariance at the measurement level 

is a crucial, yet often ignored, prerequisite to examining the observed differences between groups 

or the interrelationships between variables (e.g., Horn & McArdle, 1992). At best, failing to 

establish this type of invariance may lead a researcher to discover and report mean and 

dispersion level differences between groups when there are no actual group differences at the 

latent mean level. At worst, a researcher may make and report untenable findings about group 

differences when the variables of interest are not equivalent at the configural model level (i.e., 

the same construct is not being measured in each group). The strategies used in the current study, 

such as fitting the three levels of measurement invariance models to the data and using an 

estimator appropriate for ordinal data (Muthén & Muthén, 2010), are strong indications of 

measurement invariance for each of these assessments across device types. This analytical 

strategy is a major difference from the Doverspike et al. (2012) study, which found that there 

were differences between mobile and non-mobile device users when the observed means and 

dispersion values for a speeded cognitive ability assessment were compared. This seemingly 
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contradictory finding could be explained by the speededness of the test used in the Doverspike et 

al. study as the observed means in the current study were identical.  However, the current results 

demonstrate the importance of examining the variance-covariance structure. Had Doverspike et 

al. examined the measurement models for equivalence, the results may have indicated that the 

relative standing of individuals on a given assessment is not affected by the delivery medium at 

the latent level, even if observed mean differences suggest otherwise (Schroeders & Wilhelm, 

2011).  

Practical Implications  

Technology-enabled selection assessments, like those delivered on mobile devices, must 

meet the same qualifications of any high-quality assessment. As Scott and Mead (2011) outline, 

a high-quality assessment must “provide a precise and consistent measure of the characteristics it 

is intended to measure…” (p. 23). Accordingly, the most salient practical implication of the 

current study is that the results add to the growing body of knowledge that assessments delivered 

on mobile devices remain consistent and precise. This finding by itself has important 

implications for practitioners and organizations that have already implicitly or explicitly 

encouraged the use of mobile devices in completing online selection assessments. 

A growing body of equivalency evidence for these devices may be useful for 

practitioners who offer automated, online solutions to clients who need to screen large numbers 

of applicants in a cost effective way. Although it is preferable to test for measurement 

equivalence for each assessment and sample (Meade et al., 2007), these results give practitioners 

some foundation on which observed-level group comparisons can be more confidently made. For 

instance, practitioners use observed item and scale means to validate the inferences taken from 

the assessment, develop norms and cutoff scores, and make general talent management 

recommendations (Sackett, 2010). Practitioners must also assess the observed item means of 
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demographic sub-groups to detect potential disparate or adverse impact in an effort to promote 

fairness in selection decisions and ensure their assessments are legally defensible (American 

Educational Research Association et al., 1999; Equal Employment Opportunity Commission, 

Civil Service Commission, Department of Labor, & Department of Justice, 1978; Society for 

Industrial & Organizational Psychology, 2003). Along these lines, it is noteworthy that the 

findings from the current study are consistent with the previous invariance study on the 

equivalence of non-cognitive predictors (Morelli et al., 2012), which have less adverse impact on 

protected groups (Hough, Oswald, & Ployhart, 2001). Overall, practitioners who are equipped 

with the information that a wide variety of selection assessments (e.g., cognitive ability, 

multimedia assessments, biodata assessments, SJTs) have been tested for measurement 

equivalence on mobile devices may have more confidence in leveraging these important 

observed level statistics under varying selection scenarios.  

Equivalent technology-enabled assessments can also have important implications for 

organizations. Online assessments have large returns on investment for organizations in that they 

can screen, assess, and aggregate large amounts of applicant data in a fair and consistent manner 

(Reynolds, 2011). The economy of scale enabled by online assessments, and the ability to access 

these assessments via devices that are familiar and readily available to potential applicants, help 

save an organization valuable resources and be an efficient method for selecting the best 

candidates--both important strategic and competitive organizational advantages.  If organizations 

understand that the selection assessments that are currently being accessed via mobile devices 

are psychometrically equivalent, they can embrace and leverage this technology, which may 

serve a dual purpose. 
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First, allowing or encouraging applicants to use mobile devices to access and complete 

online applicant screening tools can help an organization keep pace with new human resources 

(HR) initiatives and job applicant demands. Specifically, a growing majority of HR practitioners 

and leaders are calling for computerized talent management processes (e.g., recruiting, selection, 

and promotion) to be “mobile friendly” (Auerbach, 2013). For example, HR consulting 

companies such as Kronos are already capitalizing on this growing trend by developing a self-

serve talent management computer application built for tablet computers called the Kronos 

Workforce Tablet (Priddle, 2013). Building and implementing mobile friendly talent 

management processes may be especially important for selecting future job candidates over the 

coming years as a recent Pew Research survey reported that one in four teens are “cell-mostly” 

in their Internet access (Madden, Lenhart, Duggan, Cortesi, & Gasser, 2013). Thus, empirical 

research, such as the current study, which can guide and inform mobile friendly talent 

management initiatives, will have important implications for the organizations who decide to 

implement them. 

Second, the evidence in this study concerning mobile device equivalence may also be 

helpful for organizations looking to increase their multinational or diversity and inclusion 

recruiting or selection efforts. Mobile devices have a unique advantage in that they are generally 

more available and affordable to a larger percentage of the global population than are standard 

desktop or laptop computers. In many cases, certain demographic or regionally-based groups 

may only have access to online applicant screening tools via a mobile device (Morgan Stanley, 

2009). To highlight this trend, a Cisco (2012) industry report found that during 2011 global 

mobile traffic increased 230 percent, which equated to a doubling for a fourth consecutive year.  

Of course, new equivalence studies must be conducted using global job applicant samples before 
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mobile devices can be recommended in this way (Adler, 2011), but the results from this study 

provide a useful starting point for this continuing effort. 

Limitations and Future Research 

There were several limitations with this study that warrant further research. First, 

although using applied organizational data provided a large available job applicant sample and a 

variety of selection assessments that were extremely powerful, generalizable, and valid for the 

jobs at hand, there were certain limitations to using archival data. Namely, using applied, 

archival data restricted the quantity and quality of the variables available. As noted in the 

description of the assessments, the testing experts used the most cost-efficient and utilitarian 

methods available to develop items that most appropriately met the client’s needs; therefore, 

most items were developed with less concern for their latent factor structure or empirical scoring. 

As a result, the analyses had to accommodate scales that had a less than desirable number of 

items available, which also likely attenuated the ordinal internal consistency for each assessment 

(Cortina, 1993). Additional research is recommended on mobile deliveries of empirically 

developed scales that have a more robust item pool and a more established psychometric history 

in the literature. 

Similarly, using applied, archival data restricted the study design to be quasi-

experimental. Because applicant responses and device type was recorded automatically by the 

online testing system, participants were not randomly assigned to conditions. This design aspect, 

coupled with the lack of demographic data for either sample, made it impossible to empirically 

test if potential invariance could be driven or explained by sample composition or sub-group 

differences (this concern is lessened in light of findings from previous research which found no 

sub-group differences between mobile and non-mobile devices; Morelli et al., 2012). 
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Incidentally, the results suggested assessments were equivalent across devices and did not 

necessitate identifying sources of non-invariance. However, future research that utilizes a truly 

experimental design with controlled conditions (e.g., random assignment, controlling for choice 

of device) may help ascertain under what circumstances mobile device usage could demonstrate 

a lack of invariance. To illustrate, a previous study that controlled for medium choice (i.e., paper-

and-pencil versus computer) found that forcing respondents to complete a measure or scale on a 

medium they would not choose may lead to a lack of invariance (Meade et al., 2007). Similarly, 

if future studies were to employ a multiple measurements design, where respondents completed 

an assessment on both or all mediums, after which correlations and reliabilities are compared, a 

stronger case for mobile device equivalence could be made (Scott & Mead, 2011). 

Lastly, the generalizability of the results is limited to the assessment types and job 

families that were available. Future research should replicate the novel findings of the current 

study; in particular, the cognitive-ability assessment, multimedia work simulation, and SJT 

results. More research is needed to determine if other cognitive ability tests, such as those that 

use mathematical reasoning, longer or more difficult items, or a speeded format, respond 

similarly as the relatively simple Learning assessment used in the current study. Also, higher 

fidelity and more technologically complex work simulations and SJTs are already being 

implemented (Adler, 2011; Olson-Buchanan & Drasgow, 2006). Thus, further research possibly 

using differential item functioning or item response theory methods are needed to corroborate 

these initial findings with the newest selection assessment iterations.  

Additional Areas for Future Research and Conclusion 

 This study represents an important effort to stay ahead of or at least catch up with the 

technological curve in technology-enhanced selection and talent management. However, even as 
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this project is completed, technological evolutions in user experiences and data management 

capability have already created new opportunities for future research to address untested 

psychometric issues related to online selection assessments. As such, the following additional 

areas for future research are offered in an attempt to keep pace with this technological change.  

First, new research is encouraged to answer the next wave of invariance questions that 

arise as selection and assessment-related technology becomes more interactive and sophisticated 

(i.e., mobile friendly). The current trend is to develop online selection assessment batteries and 

platforms that are accessible by the most commonly available hardware and software, but the 

next generation of technology-enhanced selection systems could be built specifically for mobile 

platforms (Reynolds & Rupp, 2010). Thus, future research should blend current efforts to 

explore mobile-device related research questions, such as computer adaptive testing specifically 

designed for use on mobile phones (Triantafillou et al., 2008), with other empirical attempts to 

address issues surrounding selection and pre-employment tests specifically.  

As noted previously, the newest generation of realistic job previews are being delivered 

online via unproctored, Internet-based assessment centers (Olson-Buchanan & Drasgow, 2006). 

Additional research is also needed in this area to determine if screen sizes, resolutions, and 

native software on mobile devices are equivalent to those on non-mobile devices for these more 

technologically complex selection tools.  In a similar way, the latest technology-enhanced HR 

trends are arguing for the greater use of “gamification” and “crowd-sourcing” for talent 

management tools (Handler, 2011; Hauenstein, 2012). Therefore, future research on mobile 

device equivalence should also attempt to preemptively address these cutting edge trends. 

 Perhaps the most pressing question for future research to answer is the following: What 

device-driven group performance differences occur when international applicants use mobile 
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devices in a selection setting? Some research already suggests that there are culturally-based 

distinctions as to how individuals use mobile devices. Specifically, this research proposes that 

culture partially determines whether individuals use a mobile device primarily as a 

communication tool, as a handheld gaming device, or as a desktop or laptop computer 

replacement (Baron & Segerstad, 2010). If national culture does in fact influence mobile device 

usage, an applicant’s culture could potentially be interacting with the type of device chosen to 

insert construct-irrelevant variance into the measurement of a selection predictor. Consequently, 

additional research is needed to help expand the findings from domestic samples to include 

cross-cultural samples made up of international applicants. Expanding the research questions 

beyond the scope of the current study will be important over the coming years as organizations 

develop their selection tools for a greater global audience. 

In sum, many researchers who understand the issues surrounding technology-enhanced 

assessment have alluded to the increased utility of mobile devices for candidate selection (Adler, 

2011; Mead, Buchanan, & Drasgow, 2011; Reynolds & Rupp, 2010). In fact, the current study 

began with Reynolds and Rupp’s astute observation that “…the demand for the delivery of 

assessments on mobile platforms may become the most significant opportunity and challenge to 

assessment over the next decade” (p. 612). Indeed, the usage data support Reynolds and Rupp’s 

prediction made only three years ago—job applicants are in fact completing selection tools over 

the Internet using mobile devices in steadily increasing numbers. Therefore, this study stands as 

one of the first attempts to address this important and widespread trend. Establishing the 

equivalence of common selection assessments adds to the growing knowledge base on the 

appropriateness of this new technology and is intended to act as a guidepost for the technological 

iterations to come.  
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Appendix A 

          

            Standardized Factor Loadings of ISM Assessments               

 

Learning 

 

Conscientiousness 

 

CSO 

 

Neatness 

  Mobile Non-Mobile   Mobile Non-Mobile   Mobile Non-Mobile   Mobile Non-Mobile 

Learn3 .782 .698 

         Learn4 .532 .577 

         Learn5 .440 .382 

         Learn10 .534 .620 

         Learn11 .564 .641 

         Consc1 

   

.750 .795 

      Consc3 

   

.683 .519 

      Consc5 

   

.526 .560 

      Consc6 

   

.675 .703 

      Consc9 

   

.575 .701 

      Consc12 

   

.699 .822 

      Custom1 

      

.749 .809 

   Custom2 

      

.342 .695 

   Custom5 

      

.690 .859 

   Custom6 

      

.858 .816 

   Custom8 

      

.853 .869 

   Neat2 

         

.380 .479 

Neat3 

         

.738 .748 

Neat5 

         

.476 .581 

Neat6 

         

.412 .411 

Neat9 

         

.665 .759 
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Appendix B 

   

     Standardized Factor Loadings of CF Assessment 

 

Customer Service SJT 

    Mobile Non-Mobile     

CustSJT1 0.279 0.529 

  CustSJT2 0.402 0.476 

  CustSJT6 0.610 0.477 

  CustSJT7 0.408 0.625 

  CustSJT9 0.278 0.464 

   

Appendix C 

     

Inter-item Tetrachoric Correlations for Learning Assessment 

    1 2 3 4 5 

1. Learn3 - .43 .26 .45 .37 

2. Learn4 .39 - .25 .33 .32 

3. Learn5 .28 .23 - .28 .24 

4. Learn10 .41 .32 .30 - .39 

5. Learn11 .38 .31 .29 .42 - 

Note: Inter-item correlations for the PC group lie below the diagonal, inter-

item correlations for the Phone group lie above the diagonal. All correlations 

are significant at p < .05. 

 

 

Appendix D 

      
        Inter-item Polychoric Correlations for Conscientiousness Assessment 

     1 2 3 4 5 6 

1. Consc1 - .47 .38 .56 .38 .56 

2. Consc3 .49 - .23 .41 .41 .48 

3. Consc5 .42 .27 - .38 .26 .38 

4. Consc6 .57 .43 .40 - .40 .53 

5. Consc9 .39 .43 .29 .40 - .43 

6. Consc12 .58 .49 .42 .53 .46 - 
Note: Inter-item correlations for the PC group lie below the diagonal, inter-item 

correlations for the Phone group lie above the diagonal. All correlations are significant at p 

< .05. 
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Appendix E 

     

       Inter-item Polychoric Correlations for Customer Service Orientation 

Assessment 

    1 2 3 4 5 

1. Custom1 - .33 .61 .68 .69 

2. Custom2 .43 - .41 .37 .42 

3. Custom5 .60 .47 - .61 .70 

4. Custom6 .68 .43 .60 - .73 

5. Custom8 .69 .49 .67 .72 - 

Note: Inter-item correlations for the PC group lie below the diagonal, inter-

item correlations for the Phone group lie above the diagonal. All correlations 

are significant at p < .05. 

 

Appendix F 

     

       Inter-item Polychoric Correlations for Neatness Assessment   

    1 2 3 4 5 

1. Neat2 - .38 .30 .24 .31 

2. Neat3 .41 - .31 .23 .48 

3. Neat5 .35 .36 - .30 .31 

4. Neat6 .28 .25 .33 - .32 

5. Neat9 .34 .50 .37 .36 - 

Note: Inter-item correlations for the PC group lie below the diagonal, inter-

item correlations for the Phone group lie above the diagonal. All correlations 

are significant at p < .05. 

 

Appendix G 

     

       Inter-item Polychoric Correlations for Customer Service SJT   

    1 2 3 4 5 

1. CustSJT1 - .20 .19 .19 .13 

2. CustSJT2 .25 - .19 .16 .08 

3. CustSJT6 .23 .24 - .21 .18 

4. CustSJT7 .24 .22 .23 - .14 

5. CustSJT9 .15 .11 .17 .17 - 

Note: Inter-item correlations for the PC group lie below the diagonal, inter-

item correlations for the Phone group lie above the diagonal. All correlations 

are significant at p < .05. 

 


