
FINDING LONGEST PATHS IN HYPERCUBES: 11 NEW LOWER BOUNDS FOR

SNAKES, COILS, AND SYMMETRICAL COILS

by

SETH MEYERSON

(Under the Direction of Walter D. Potter)

ABSTRACT

Abstract— Since the problem's formulation by Kautz in 1958 as an error detection tool,

diverse applications for long snakes and coils have been found. These include coding theory,

electrical engineering, and genetics. Over the years, the problem has been explored by many

researchers in different fields using varied approaches, and has taken on additional meaning. The

problem has become a benchmark for evaluating search techniques in combinatorially expansive

search spaces (NP-complete Optimizations).

In two papers, the second building upon the first, we present an effective process for

searching longest induced paths: open (snakes), closed (coils), and symmetric closed (symmetric

coils) in n-dimensional hypercube graphs. Stochastic Beam Search, a non-deterministic variant

of Beam Search, provides the overall structure for our search, while graph theory based

techniques are used in the computation of a generational fitness value. This novel fitness value is

used in guiding the search. We present eleven new lower bounds for the Snake-in-the-Box

problem for snakes in dimensions 11, 12, and 13; coils in dimensions 10, 11, and 12; and

symmetric coils in dimensions 9, 10, 11, 12, and 13. The best known solutions of the unsolved

dimensions of this problem have improved over the years and we are proud to make a

contribution to this problem as well as the continued progress in combinatorial search

techniques.

INDEX WORDS: stochastic beam search; snake-in-the-box; combinatorial optimization;

graph search; hypercube; heuristic search

FINDING LONGEST PATHS IN HYPERCUBES: 11 NEW LOWER BOUNDS FOR

SNAKES, COILS, AND SYMMETRICAL COILS

by

SETH MEYERSON

BS, Appalachian State University, 1996

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2015

© 2015

Seth Meyerson

All Rights Reserved

FINDING LONGEST PATHS IN HYPERCUBES: 11 NEW LOWER BOUNDS FOR

SNAKES, COILS, AND SYMMETRICAL COILS

by

SETH MEYERSON

Major Professor: Walter D. Potter

Committee: Krzysztof J. Kochut

Khaled Rasheed

Electronic Version Approved:

Julie Coffield

Interim Dean of the Graduate School

The University of Georgia

May 2015

iv

DEDICATION

 To my family – Catharine, Elisabeth, Ben, Sam, Dad and Debbie

v

ACKNOWLEDGEMENTS

I thank Dr. Walter Potter for introducing me to the amazing world of computational

intelligence, and challenging me to work on and supporting my efforts to set new lower bounds

for the well-studied problem at the center of this document. I thank Dr. Khaled Rasheed and Dr.

Lakshmish Ramaswamy for their patience, guidance, and encouragement, both with the problem

and the University of Georgia’s Computer Science Master’s program. I thank friend and

colleague Tom Drapela for his invaluable help with this project- from white board, to the IDE,

and as an editor and contributor to the two published papers contained in this thesis. Thank you to

Will Whiteside for the idea of applying graph algorithms to the problem. I thank Dustin Cline and

Thomas Horton for their contributions to this project, and the Institute for Artificial Intelligence.

This study was partially supported by resources and technical expertise from the University of

Georgia Computer Science Department. Particularly Ken for “have you thought about doing this

in parallel?” This study was also partially supported by resources and technical expertise from the

Georgia Advanced Computing Resource Center (GACRC), a partnership between the University

of Georgia’s Office of the Vice President for Research and Office of the Vice President for

Information Technology.

 I thank friends Tom Werth, and Seamus Narron, who supported and shared my journey at the

University of Georgia.

Finally, I thank my beautiful wife Catharine for her unwavering love and support as I made my

way through the University of Georgia’s Computer Science Master’s program, including this

thesis – I could not have done it without her.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

CHAPTER

 1 INTRODUCTION AND LITERATURE REVIEW ...1

 2 FINDING LONGEST PATHES IN HYPERCUBES, SNAKES AND COILS4

 3 11 NEW LOWER BOUNDS FOR SNAKES, COILS, AND SYMMETRICAL

COILS..…………………………………………………………………………..26

 4 CONCLUSION ..54

REFERENCES ..59

1

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

The Snake-in-the-Box problem (SIB) is a computationally hard problem concerned with

finding longest induced (achordal) paths through an n-dimensional hypercube (or n-cube) graph.

Finding longest induced paths is well known to be NP-complete (Garey, 1979). A hypercube

graph consists of a set of binary numbered nodes {0…2n-1} in which two nodes are adjacent if

and only if their binary values differ by exactly one bit.

An achordal path is a path in which each node in the path is only adjacent to its immediate

predecessor and successor nodes within the path. In the SIB problem, open achordal paths are

called snakes, and closed achordal paths are called coils. For snakes, any path which cannot be

extended is called a maximal path, with the longest of these being the longest maximal path. The

longest maximal snake for any n-cube is the snake solution (absolute bound) for SIB in

dimension-n. Similarly, the longest possible coil for any n-cube is the coil solution (absolute

bound) for dimension-n. For these and other SIB terms and definitions, please visit the UGA

Institute for Artificial Intelligence’s webpage (Potter, 2014).

Introduced by Kautz in 1958, the Snake-in-the-Box problem (SIB) has been extensively

studied for over 50 years. The problem has found relevance in many fields including coding

theory (Kautz, 1958), electrical engineering (Klee, 1970), analog to digital conversion (Hiltgen,

2000), precision high speed rotational measurement devices (Zhang, 2008), disk sector encoding

2

(Blaum, 2001), rank modulation schemes for charge distribution in multi-level flash memories

(Yehezkeally, 2012), and genetics related to embryonic development (Zinovik, 2010).

In addition the problem has become a benchmarking tool for combinatorial search.

Contributions have been made by experts in diverse fields such as computer science,

mathematicians, artificial intelligence, social informatics, and chemical engineering. The

approaches to the problem have been just as diverse.

For dimensions n < 7, snake and coil solutions were computed via exhaustive search by

Davies (Davies, 1965). Solutions for n = 7 were determined via genetic algorithm by Potter

(Potter, 1994) and later verified by the exhaustive techniques of Kochut (Kochut, 1996) which

we will be building upon.

For dimensions n > 7, exhaustive search has not been feasible for finding solutions due to the

exponential growth of the problem as dimensionality increases. It is estimated that it would take

many years of computing time to exhaustively search dimension 8 (Kinny, 2012).

In lieu of this, non-exhaustive techniques, both computational search and mathematical

construction based approaches, have been applied to improving the known lower bounds of

higher dimensions. These include: genetic algorithms (Potter, 1994), hybrid genetic algorithms

(Carlson, 2010), nested Monte Carlo Search schemes (Kinny, 2012), particle swarm optimization

(Brooks, 2012), population-based stochastic hill-climbers (Casella, 2005), distributed heuristic

computing (Juric, 1994), neural networks (Bishop, 2006), hybrid evolutionary algorithms

(Casella, 2005) and mathematical constructive techniques (Adelson, 1973)(Abbott, 1991)(Wynn,

2014). With technical improvement in searches, and improvements in computing power, the

lower bounds for these higher dimensions have inevitably improved. We are pleased to make

our contribution to the SIB problem and combinatorial search.

3

Chapter 2 contains paper titled “Finding Longest Paths in Hypercubes, snakes and coils”

published in the proceedings of the IEEE Symposium on Computational Intelligence for

Engineering Solutions, CIES ’14 held in Orlando, FL. In Chapter 2 we apply a new search

technique (new to SIB) along with a novel approach to evaluating the fitness of sub solutions

through graph based searches of the remaining hypercube space. This results in several new

lower bounds in dimensions 10-12 of the problem.

Chapter 3 contains a paper titled “Finding Longest Paths in Hypercubes, 11 New Lower

Bounds: Snakes, Coils, and Symmetric Coils.” which will appear in the proceedings of The 28th

International Conference on Industrial, Engineering and Other Applications of Applied

Intelligent Systems, (IEA/AIE’15). In chapter 3 we build upon on our work in chapter 2. We

develop new graph theory based evaluations of the hypercube state resultant from sub-solutions

in order to improve the predictive fitness value used to prune the inevitable combinatorial

explosion. In chapter 3 we also develop a related approach for searching for longest symmetrical

coil solutions. Our efforts yield eleven new record lower bounds for the problem; the records in

dimensions 9-13, encompassing snakes, coils, and symmetrical coils.

In chapter 4 we conclude with a summary and few observations and predictions about the

problem and a tip of our hat to Abbott.

4

CHAPTER 2

FINDING LONGEST PATHES IN HYPERCUBES, SNAKES AND COILS
1

1
 Meyerson, S., Whiteside, W., Drapela, T., and Potter, W.D., “Finding Longest Paths in

Hypercubes: Snakes and Coils,”in Proceedings of the IEEE Symposium on Computational

Intelligence for Engineering Solutions, IEEE CIES'14, pp. 103-109, Orlando, FL, December,

2014 – Reprinted here with permission of publisher

5

Abstract

Since the problem's formulation by Kautz in 1958 as an error detection tool, diverse applications

for long snakes and coils have been found. These include coding theory, electrical engineering,

and genetics. Over the years, the problem has been explored by many researchers in different

fields using varied approaches, and has taken on additional meaning. The problem has become a

benchmark for evaluating search techniques in combinatorially expansive search spaces (NP-

complete Optimizations).

We present an effective process for searching for long achordal open paths (snakes) and

achordal closed paths (coils) in n-dimensional hypercube graphs. Stochastic Beam Search

provides the overall structure for the search while graph theory based techniques are used in the

computation of a generational fitness value. This novel fitness value is used in guiding the

search. We show that our approach is likely to work in all dimensions of the SIB problem and

we present new lower bounds for a snake in dimension 11 and coils in dimensions 10, 11, and

12. The best known solutions of the unsolved dimensions of this problem have improved over

the years and we are proud to make a contribution to this problem as well as the continued

progress in combinatorial search techniques.

1. Introduction

The Snake-in-the-Box problem (SIB) is a computationally hard problem concerned with

finding longest induced (achordal) paths through an n-dimensional hypercube (or n-cube) graph.

Finding longest induced paths is well known to be NP-complete [1]. A hypercube graph consists

of a set of binary numbered nodes {0…2
n
-1} in which two nodes are adjacent if and only if their

binary values differ by exactly one bit. Fig. 1 illustrates a 3-dimensional hypercube.

6

Figure 1: 3-dimensional hypercube (with embedded coil in bold).

An achordal path is a path in which each node in the path is only adjacent to its immediate

predecessor and successor nodes within the path. In the SIB problem, open achordal paths are

called snakes, and closed achordal paths are called coils. For snakes, any path which cannot be

extended is called a maximal path, with the longest of these being the longest maximal path. The

longest maximal snake for any n-cube is the snake solution (absolute bound) for SIB in

dimension-n. Similarly, the longest possible coil for any n-cube is the coil solution (absolute

bound) for dimension-n. For these and other SIB terms and definitions, please visit the UGA

Institute for Artificial Intelligence’s webpage [2].

Introduced by Kautz in 1958, the Snake-in-the-Box problem (SIB) has been extensively

studied for over 50 years. The problem has found relevance in many fields including coding

theory [3], electrical engineering [4], analog to digital conversion [5], precision high speed

rotational measurement devices [6], disk sector encoding [7], rank modulation schemes for

charge distribution in multi-level flash memories [8], and genetics related to embryonic

development [9].

7

For dimensions n < 7, snake and coil solutions were computed via exhaustive search by

Davies [10]. Solutions for n = 7 were determined via genetic algorithm by Potter [11] and later

verified by the exhaustive techniques of Kochut [12] which we will be building upon.

For dimensions n > 7, exhaustive search has not been feasible for finding solutions due to the

exponential growth of the problem as dimensionality increases. It is estimated that it would take

many years of computing time to exhaustively search dimension 8 [13]. In lieu of this, non-

exhaustive techniques, both computational search and mathematical construction based

approaches, have been applied to improving the known lower bounds of higher dimensions.

These include: genetic algorithms [11], hybrid genetic algorithms [14], nested Monte Carlo

Search schemes [15], particle swarm optimization [16], population-based stochastic hill-climbers

[17], distributed heuristic computing [18], neural networks [19], hybrid evolutionary algorithms

[17] and mathematical constructive techniques [20] [21] [22]. With each successive technical

improvement, enhanced by increases in computing power, the lower bounds for these higher

dimensions continue to be improved. Table I shows the solution lengths of n-snakes and n-coils

for n < 7. [23].

TABLE 1: Absolute Bounds

Dimension

Snakes Coils

1 1 0

2 2 4

3 4 6

4 7 8

5 13 14

6 26 26

7 50 48

Length

8

2 Stochastic Beam Search Overview

We apply a new search method, Beam Search (new to SIB): a non-deterministic search,

combining elements of graph search with techniques common to evolutionary computing. Beam

search is a heuristic search algorithm for combinatorial optimization problems which has been

extensively studied in artificial intelligence and operations research [24]. “An optimization of

the best first search graph search algorithm where only a predetermined number of paths are kept

as candidates. The number of paths is the "width of the beam". If more paths than this are

generated, the worst paths are discarded. This reduces the space requirements of best first

search.” [25] The term "beam search" was coined by Raj Reddy, at Carnegie Mellon University

in 1976. Beam Search is related to breadth-first search and is also similar to best-first search. Our

search progresses by level through a structured snake or coil search tree containing all possible

valid sub-paths, called sub-solutions. With each iteration of the search, a new level of the search

tree is explored. At each level every newly encountered valid node is added to the path. Each

unique node addition to a sub-solution requires an addition to the next new population of sub-

solutions. Each sub-solution in the new population is evaluated using a heuristic fitness function,

the less fit solutions (branches) are discarded (pruned) in order to reduce the number of sub-

solutions to a fixed limit; the beam width. Like many heuristic approaches, beam search cannot

guarantee that the optimal solution will be found, but properly applied it can give good or even

excellent results in exponentially expansive search spaces [26].

Fig. 2 shows beam search through successive expansion of selected solutions. The

‘hypercubes’ within the circles represent the candidate solutions that have been selected for

continued exploration in the next iteration.

http://foldoc.org/best+first+search
http://foldoc.org/graph+search+algorithm
http://en.wikipedia.org/wiki/Raj_Reddy
http://en.wikipedia.org/wiki/Carnegie_Mellon_University

9

Figure 2: Beam Search

The non-selected (un-circled) solutions are discarded. The beam width in this case is 2. Notice

there is no selection while the number of leaf nodes is less than the beam width.

Stochastic Beam Search differs from a Beam Search only in how the decision to prune is

made. A standard implementation of beam search would rank and retain only the fittest sub-

solutions that fit within the beam width. Stochastic Beam Search is also guided by fitness, but

provides for randomness similar to the tournament selection process commonly used in Genetic

Algorithms (GA). Stochastic selection will be described in more detail later.

We search for long snakes and coils separately taking advantage of some specific

optimizations that allow for a better coil search. A summary of our implementation of Stochastic

Beam Search with tailored fitness metrics for the SIB problem is described in the following

steps.

2.1 Initialization

When searching for both snakes and coils, we begin with a population of one candidate sub-

solution, the valid snake described by the node sequence {0, 1, 3, 7}. At this length any other

valid sequence is merely an isomorphic duplication of this sequence. Like many others [12],

10

[11], [15], [14] we begin our search with node 0. See the UGA AI website for definitions of

Canonical form [2]. There is no need for any other solution in the initial population as any other

sub-solutions at this length would entail isomorphic redundancy.

2.2 Construction Step

We construct a new population of sub-solutions from the previous population of sub-solutions

by extending the length of each sub-solution in the old population with the addition of a valid

next node. If there is more than one valid extension for a sub-solution in the old population, a

new sub-solution is created in the new population for every valid extension. Thus each new sub-

solution is created from a parent sub-solution and differs from other sub-solutions with the same

parent only by its newly appended node. This iterative scheme generates successive populations /

levels of snake sub-solutions that are exactly one node longer than the sub-solutions of the

previous population. The previous population is discarded. If no valid next node is available for a

sub-solution, then this sub-solution is terminal and no descendant of it will appear in the new

population. If a valid next node does not conform to Kochut’s Constraint (Canonical form) [12],

described later, then we do not create this sub-solution in the new population. This step occurs in

parallel across our population.

2.3 Fitness Evaluation

Just before each validly constructed sub-solution is added to a new population, we evaluate its

hypercube state in order to assign a fitness value. In our implementation, the fitness evaluation

of sub-solutions takes place within the construction step. Our construction step is in parallel so

fitness calculations are also in parallel, which is important since our fitness calculations are

relatively expensive.

11

2.4 Selection

SIB is a classic combinatorially explosive problem. Constructing all valid sub-solutions as

described above for many successive levels in the search tree will predictably result in our

process running out of resources; RAM currently being the most important. In order to obtain

solutions in a reasonable amount of time, we limit the maximum number of solutions (branches)

that are retained from any iteration to a fixed number that stays within available RAM. We use a

stochastic selection method to reduce the population of sub-solutions to the beam width. We take

a number of random samples of sub-solutions and discard the least fit. We continue to do this

while the population is greater than the beam width. Once the population of sub-solutions equals

the beam width, we revisit the construction step above.

3 Details

In our process of extending solutions within the structure of beam search, we add nodes at

only one end of the snake or coil sub-solutions. We call this end the head. This differs from the

literature; however we feel that the growing end is intuitively best described as the head, and the

static end as the tail. The static end in our process is always node 0. This is a common approach

for reducing symmetry under Kochut’s Constraint [12].

In our process, during the construction step, we create a new sub-solution by adding new valid

next nodes to the sub-solution. Nodes are valid to be added if they are adjacent to the head and

available. Available nodes are nodes that are not in the sub-solutions and have not been

disqualified from future addition to the sub-solution by being adjacent to the path at some point

other than the head or tail. The valid addition must also pass a check based on Kochut’s

Constraint before being added. Kochut’s Constraint is a symmetric duplication reduction

technique. If multiple nodes are valid additions to a sub-solution, then multiple new sub-

12

solutions are created in a new population, one for every new head node added. If no nodes can be

added then, no sub-solution will result in the new population from this parent snake / coil sub-

solution. Thus each snake / coil sub-solution can become many, one, or zero new sub-solutions

in a new population of one node longer sub-solutions. When no sub-solution can be extended any

further, the process terminates. All snakes in this concluding generation are by definition

maximal snakes or coils and the longest found in this ‘run’ of our implementation.

3.1 Kochuts’s Constraint

We use Kochut’s Constraint as an additional restriction on what constitutes a valid next node

to be added to a sub-solution for both snakes and coils. This has been proven previously to

correctly eliminate isomorphic duplication. Unsurprisingly, using the constraint in our

experiments had an appreciable effect on results. From an implementation standpoint, we simply

never create solutions that do not abide by Kochut’s Constraint.

Kochut’s Constraint as applied in our implementation:

 Start all sub-solutions at the 0 node.

 Create only sub-solutions that conform to the canonical representation. See the UGA

AI Website for the definition of canonical form [2].

3.2 Coil

 From the standpoint of our process; a coil is exactly like a snake except that it has a known

end point. A coil’s last node must be adjacent to its origin node. All of our snakes / coils begin at

0, so a coil must end in nodes adjacent to the 0 node. We call these nodes adjacent to the origin

of a coil sub-solution, coil nodes [2].

If during the construction step in our process, a valid node to be added to a sub-solution is a

coil node, then the resulting sub-solution is not added to the new population. It is a maximal coil

13

solution because no other nodes can be validly added to this solution after the coil node is added.

If a maximal coil is a long enough solution to be of interest, it is reported. This is identical to the

coil termination process that Kochut described [12] when he exhaustively searched dimension 7

for snakes and coils.

3.3 Available Nodes as Primary Fitness Component

 Many non-exhaustive searches / heuristics have used available nodes as the fitness value or a

component of a fitness value / payout [15] [27]. Available nodes are also foundational in our

approach as well. The number of available nodes remaining is an excellent way to value the

ability of a sub-solution’s potential to grow. In fact the available nodes remaining are by

definition the upper bound for how much longer a given sub-solution can be extended. Our early

approaches to the problem using available nodes as a fitness function combined with a beam

width of 100,000 yielded snakes with 94 lengths in dimension 8. This is in contrast to identical

trials with random selection yielding snakes with lengths of 77.

3.4 Reachable Available Nodes are Better Still

While the quantity of available nodes is a good component of fitness, it can be improved. The

first question we ask is, “Are all available nodes reachable?” The answer is no. Consider

Carlson’s record length 98 snake in dimension 8 [14]. This solution includes 3 nodes which are

available but cannot be reached. We call these isolated nodes. We reduce the available node

count for sub-solutions by the isolated nodes. In our experience, as dimensionality increases,

isolated nodes are more common and more difficult to avoid. Reachability takes on even more

importance as dimensionality of the problem increases. We use the number of reachable

available nodes as the primary component of fitness for the lengthening sub-solutions.

14

Starting with available nodes, we do a depth first search from the head of the snake / coil sub-

solutions through the set of available nodes. Only available nodes that can be reached from the

head node in a depth first search are reachable available nodes. The number of reachable

available nodes is an improvement as a fitness value over available nodes. Testing for reachable

available nodes immediately detects nodes that can no longer become part of an eventual

maximal snake or coil. This information allows our process to preferentially select for continued

exploration other sub-solutions with a similar number of available nodes, but with fewer isolated

nodes. With the number of reachable available nodes as the primary fitness component we

achieve 97 length snakes in dimension 8 with a beam width of 400,000.

Ascertaining reachability of the available nodes has O (|V|*|E|) time complexity where |E| is

the hypercube dimensionality and |V| is the number of available nodes. The number of available

nodes is a continually decreasing quantity that we believe should be gathered for calculating

even the most basic fitness value. Improving on the available node count by using reachable

available nodes has proven to be a differentiator worth the computational expense, which allows

us to carry better solutions forward for further exploration.

3.5 Coil Search Optimization

As we have discussed, in order for a sub-solution to become a coil, there must be coil nodes

left in the sub-solution’s set of available nodes. Since we already calculate the set of nodes that

are reachable from the current head node of a coil sub-solution, it is a constant time step to verify

that the coil nodes are reachable. If a newly constructed sub-solution contains (Java HashSet

“.contains”) at least one coil node in the set of reachable available nodes, then at least one coil

node remains reachable. The solution is then added to the new population and subjected to

selection. If the solution does not contain at least one coil node, it is discarded as it cannot be a

15

coil. This dramatically reduces the search space and thus the branching factor that our search

must cope with. The performance of our coil search predictably improves. This is a natural

extension of Kochut’s coil search logic when combined with our reachable available node fitness

measure.

3.6 Connectivity (Skin) Measure: Contribution to Fitness

We define skin or skin nodes as the nodes that are adjacent to the path, and not adjacent to the

head or tail of the snake. Skin nodes are disqualified from becoming part of the growing snake or

coil sub-solution. We often think of the SIB problem as a skin sharing problem. That is,

maximizing the number of times a disqualified node is used as skin by snakes and coils.

Once we have the set of reachable available nodes for a sub-solution, we perform one final

assessment. As a selection tie breaker, we poll the reachable available nodes to determine how

many other available nodes each reachable available node is adjacent to. From this we determine

the number of unavailable nodes (skin nodes) that each must be adjacent to. For example in

dimension 8, each node has 8 adjacent nodes. If 2 of these are available, then the skin count

would be 6. We take this count of skin for every reachable available node in a sub-solution and

sum it.

High numbers of skin connections among a sub-solution’s reachable available nodes suggest a

low cost in reachable available nodes in future extensions. We use this value as a tie breaker

between solutions with equivalent reachable available nodes. If two solutions have equivalent

numbers of available nodes, our process preferentially selects for future exploration those

solutions with available nodes more connected to skin nodes.

16

3.7 Stochastic Selection

When the number of candidate solutions has grown larger than the beam width through the

construction step discussed above, we reduce the number of solutions to the beam width.

Through an iterative stochastic method we randomly select a number (tournament size) of sub-

solutions and discard the least fit individual. This operation is similar to GA tournament

selection, but in reverse. We call this process reverse tournament selection.

We experimented with a strictly greedy approach to selection before arriving at the GA

inspired stochastic reverse tournament selection process. Results improved for selection with

some randomness. For example, in dimension 8, with a strictly greedy approach of retaining the

highest ranking finesses within the beam, and a beam size of 100,000, we achieved snakes of

length 96. When the stochastic element is added to selection we achieved snakes of length 97.

Similar improvements were seen in all trials of dimensions 6-13.

In our approach to calculating fitness, the very best solutions at times in their development

may not have the highest fitness. If this were not the case, then a strictly greedy approach would

yield the best results. Of note, Beam Search with stochastic selection repeatedly delivers

solutions of the same length, given a specific beam width, while the actual snakes / coils that are

found may vary each time the program is run.

3.8 Hardware

We ran trials and set records on several different multicore machines. A circa 2005 server

class machine with 64 GB RAM and 16 cores, a Virtual Machine running on modern equipment

with 26 much faster cores (2100 MHz), and 64 GB RAM, and a personal laptop with 8 cores and

22 GB ram. While records were initially broken with other machines, all of the new SIB lower

17

bounds presented here were set on the Virtual Machine with 26 dedicated cores, hosted on a

modern server class machine provided by the University of Georgia Computer Science IT Group.

Beam search is readily parallelizable, and we took advantage of this. None of the records set,

or trials run took more than 5 days with 26 cores. For example the new coil lower bound set in

dimension 12 took 2 days of actual time and over 1300 hours of core time (2.3 days * 24 Hours *

26 Cores* 95% avg. core usage). This record setting run utilized at most 59 GB of RAM with a

beam width of 50,000 sub-solutions.

Table 2: Snake and Coil Records for Non-Exhaustively Searched Dimensions 8 – 13

 3.9 Representation

We represented the sub-solutions as a linked list of integers matching the nodes in the path.

This approach was very memory intensive and we used as much as 64 GB in our trials. Memory

is the current limiting factor of our process and implementing a more efficient representation

such as the bit map approach described by Diaz-Gomez [28] is a high priority.

4 Results

We found new lower bounds for snakes in dimension 11 and coils in dimensions 10, 11, and

12. We matched the lower bounds for snakes in dimensions 8, 9, 10, 12 and coils in 8 and 9. In

Table II., from [23], the numbers in parenthesis are the previous lower bounds before our work.

Dimension

Snakes Coils

8 98 96

9 190 188

10 370 (348) / 358

11 (695) / 705 (640) / 666

12 1280 (1238) / 1268

13 2466 2468

Length

18

An up to date list of snake, and coil absolute and lower bounds is maintained at The University

of Georgia SIB Records Page [23]. An example solution for each new lower bound is included

below.

Examples of Record Snakes and Coils:

Snake, Dimension 11, length 705

0123452310325312345231032642543013452340245210347643012513543013452341064032

531240234524023186132543213523013254321356425401452340245210471023452402345135

230461043254310345315210345298254301251354301345234016403253154320425432017213

452340216013254321352301325432135602842304601432543103453152103467430125420432

54310345246531042152013524572642543204254A932042543204213523046014325431034531

521034674301254204325431034524623013254321352301325432109801234523103253123452

310326425430134523402452103476430125135430134523410640325312402345246297230432

543103453152103456123451347145234024516015413423013504301356273241352432017430

A913218A152032541053612704325410423125162042345312345042543217043056125420342

135427

Coil, Dimension10, Length 358

0120314305431452036205420631436053041021305341207306325305423501430532543052

650120314305432782345034130210562503452350341053245035236276435143054320436032

043503204170276523540650239134503413021056250345235034105324503523603702413503

120140350634136024502630254134503413021387312031430543142503602542063143603504

10213053145743021503106324521532563051263241352

19

Coil, Dimension 11, Length 666

0120314305431452036205420631436053041021305314207241345034135426324135034524

312452103410870143012542134254305314236245021053425305431271425430531453052632

413450341352314365341392314305431427024135031201403506341360245026302541345034

130210780120314305431452036205420631436053041021305347503543120135463410213053

14236245024625421436A504102132612031430543145203620542063143624314704134503413

589531430543142702413503120140350634136024502630254134503413078031430543145203

620542063143605304102130534753054203102452340256345305289510341362314305431452

07803610341028714524306317813603420418A1405426A2450294359405415946154139A3145

120523A9325397536278620481405495340542784304

Coil, Dimension 12, Length 1268

0120314305230413423052062302534521450413012047025034130250346035103410214504

130123621452182412543520326025032431403250341302165210314371034124352412503521

426354021031405412543520398302534521450413012045362412530521425342140317305412

543520326025032405203143052304681305203142641021450413012046732413014752615307

4305214051034125462412543520A9025345214504130120476402103140541201462413025031

864032503413025042305206230253452145037130412435241250352142635402103140541254

081402143015341301295210314054125430153624125305214253421438234521450260421403

105271534521450413012046025034130250342041254824125435264250310214036901526153

BA351625741031423764021031405412014624130250318640325034130250423052062302534

521450371304124350324125305216510314052862412543520326541021430153413021952103

140541254301536241253052142534214382345214502604214031052715345214504130120460

2503413025034204125482412543526425031021403693052A7642145041301204536241253052

20

142534572450264021674039630412046205412543528952345214502604214031052715241034

054125049204120642054125432092405214523503B4052103BA3012508798052013AB310250

3674BA4723102503AB3052019B326305201592052642061035463502340512B0367BA723A92

38720670378397168450257852056012032782437B362BA260A241206435145205B12052643B

A439A65A93A1631024920124578A1

21

5 Conclusions

Our approach was largely inspired by efforts in [14], [17], [28], [18], and [11] to use a GA to

improve known lower bounds on this difficult problem. The GA will usually yield good

solutions to the SIB problems, and by applying more computation effort, the solutions can be

improved to a point, however; the GA applied to the SIB problem runs into diminishing returns.

Our approach to fitness relentlessly selects dense risky solutions that are highly likely to dead

end, but are the only prospects for an excellent result. We generate tens of thousands of these

‘risky’ solutions expecting the vast majority of them to fail. The few that don’t fail are expanded.

Symmetrical redundancy could have degraded our process by clogging it with functionally

identical solutions. Fortunately we were able to avoid considering any solution that does not

adhere to Kochut’s Constraints; In effect making this portion of the search space ‘invalid’.

The Beam Search is a very simple technique to implement. There are few parameters to set.

No extensive tuning is required. The only parameters settable in our implementation were the

reverse tournament size and beam width. The beam width, while settable, is bounded by memory

constraints and, predictably, larger beam widths produce better results. Additionally, our process

requires no backtracking or recursive calls.

Determining which available nodes are actually reachable further improves our ability to

predict a sub-ultimate quality. Formerly undetectable ‘exclusive or’ forks in the search space are

now obvious as soon as one of the exclusive paths is taken, allowing us to preferentially choose

sub-solutions without such a flaw. Reachability as it applies to coil nodes further shrinks the

search space by permitting us to discard potential coil sub-solutions without loss when its coil

nodes become unreachable.

22

6 Future Work

6.1 Representation

Our current implementation is limited because of our list representation. We plan to move to a

Diaz-Gomez bit-map type approach [28]. This will greatly reduce the memory requirements for a

given beam width. We anticipate being able to increase the beam width by at least a factor of

100.

6.2 Concurrent Stochastic Selection

Selection is not concurrent in our implementation. Once we improve the representation

allowing us a dramatic increase in beam width, an increased and the number of solutions will be

pruned in each iteration. This will make a lack of concurrency in selection more of an issue. We

plan to implement a method that performs stochastic selection in parallel; possibly within

buckets, or partitions of a randomized population list.

6.3 Fitness Function

In our future work we plan to explore more graph theory based improvements to our fitness

function. We have some ideas for detecting unusable dead ends that can be reached but not

returned from and how detecting these cases may help improve the predictive value of our fitness

function.

ACKNOWLEDGMENT

We would like to thank Dustin Cline and Thomas Horton for their important contributions to

this project, Snake-in-the-Box research, and the Institute for Artificial Intelligence. This study

was partially supported by resources and technical expertise from the University of Georgia

Computer Science Department.

23

REFERENCES

[1] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-

completeness, San Francisco: Freeman, 1979.

[2] W. Potter, "Snake-In-The-Box Dictionary," 2014. [Online]. Available:

http://ai1.ai.uga.edu/sib/sibwiki/doku.php/dictionary. [Accessed 08 September 2014].

[3] W. Kautz, "Unit-distance Error-Checking Codes," IRE Trans Electronic Computers,

Vols. EC-7, no. 2, pp. 179–180, 1958.

[4] V. Klee, "What is the Maximum Length of a d-Dimensional Snake?," The American

Mathematical Monthly, vol. 77, no. 1, pp. 63-65, 1970.

[5] A. Hiltgen and K. Paterson, "Single Track Circuit Codes," IEEE Transactions on

Information Theory, vol. 47, pp. 2587–2595, 2000.

[6] F. Zhang and H. Zhu, "Determination of optimal period of absolute encoders with single

track cyclic gray code," in Journal of Central South University of Technology, New

York, 2008.

[7] M. Blaum and T. Etzion, "Use of snake-in-the-box codes for reliable identification of

tracks in servo fields of a disk drive". U.S. Patent 6496312, 2002.

[8] Y. Yehezkeally and M. Schwartz, "Snake-in-the-Box Codes for Rank Modulation," in

Proceedings of the 2012 IEEE International Symposium on Information Theory, July 1-6,

Cambridge, Piscataway, 2012.

[9] I. Zinovik, Y. Chebiryak and D. Kroening, "Periodic Orbits and Equilibria in Glass

Models for Gene Regulatory Networks," IEEE Transactions on Information Theory, vol.

56, no. 2, pp. 805–82, 2010.

[10] D. Davies, "Longest ‘separated’ paths and loops in an n cube," IEEE Transactions on

Electronic Computers, vol. 14, p. 261, 1965.

[11] W. Potter, J. Robinson, J. Miller and K. Kochut, "Using the Genetic Algorithm to Find

Snake- In-The-Box Codes," in In Proceeding of the 7th International Conference on

Industrial & Engineering Applications of Artificial Intelligence and Expert Systems,

1994, May 31 - June 03, 1994, Austin, Newark, 1994.

[12] K. Kochut, "Snake-In-The-Box Codes for Dimension 7," Journal of Combinatorial

Mathematics and Combinatorial Computing, vol. 20, pp. 175–185, 1996.

24

[13] D. Kinny, "New Approach to the Snake-In-The-Box Problem," in ECAI 2012 - 20th

European Conference on Artificial Intelligence. Including Prestigious Applications of

Artificial Intelligence (PAIS-2012) System Demonstrations Track, Montpellier, France,

August 27-31 , 2012, Amsterdam, 2012.

[14] B. Carlson and D. Hougen, "Phenotype feedback genetic algorithm operators for heuristic

encoding of snakes within hypercubes," in Genetic and Evolutionary Computation

Conference, GECCO 2010, Proceedings, July 7-11, Portland, New York, 2010.

[15] D. Kinny, "Monte-Carlo Search for Snakes and Coils," in 6th International Workshop,

MIWAI 2012, Ho Chin Minh City, December 26-28, Proceedings, New York, 2012.

[16] P. Brooks, "Particle Swarm Optimization and Priority Representation (MS Thesis).,"

Artificial Intelligence, University of Georgia at Athens (201012), 2012.

[17] D. Casella and W. Potter, "Using Evolutionary Techniques to Hunt for Snakes and

Coils," in Proceedings of the IEEE Congress on Evolutionary Computation, September 2-

4, 2005, Edinburgh, UK, Piscataway, 2005.

[18] M. Juric, W. Potter and M. Plaskin, "Using PVM for Hunting Snake-In-The-Box Codes,"

in Proceedings of the 7th Conference of the North American Transputer Users Group,

October 23-25, Athens, Amsterdam, 1994.

[19] J. Bishop, "Investigating the snake-in-the-box problem with neuroevolution," Dept. of

Computer Science, The University of Texas at Austin, 2006.

[20] L. Adelson, R. Alter and T. Curtz, "Long Snakes and a Characterization of Maximal

Snakes on the d-cube," in Proceedings of the Fourth Southeastern Conference on

Combinatorics, Graph Theory, and Computing, Florida Atlantic University, Boca Raton,

March 5-8, Winnipeg, 1973.

[21] H. Abbott and M. Katchalski, "On The Construction of Snake In The Box Codes,"

Utilitas Mathematica, pp. 97-116, 1991.

[22] E. Wynn, "Constructing circuit codes by permuting initial sequences," 8 January 2012.

[Online]. Available: http://arxiv.org/abs/1201.1647. [Accessed 5 June 2014].

[23] W. Potter, "SIB Records," 2014. [Online]. Available:

http://ai.uga.edu/sib/sibwiki/doku.php/records. [Accessed 5 June 2014].

[24] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, New York: Prentice-Hall,

1995.

http://ai.uga.edu/sib/sibwiki/doku.php/records

25

[25] D. Howe, "Beam Search," 3 December 2007 . [Online]. Available:

http://foldoc.org/beam+search. [Accessed 1 June 2014].

[26] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach: 3rd Edition, Upper

Saddle River: Prentice Hall, 2010.

[27] D. Tuohy, W. Potter and D. Casella, "Searching for Snake-in-the-Box Codes with

Evolved Pruning Models," in Proceedings of the 2007 International Conference on

Genetic and Evolutionary Methods, GEM 2007, June 25-28, Las Vegas, Athens, 2007.

[28] P. Diaz-Gomez and D. Hougen, "Genetic Algorithms for Hunting Snakes in Hypercubes:

Fitness Function Analysis and Open Questions," in Seventh ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD 2006), June 19-20, Las Vegas, Los Alamitos,

2006.

http://foldoc.org/beam+search

26

CHAPTER 3

FINDING LONGEST PATHS IN HYPERCUBES: 11 NEW LOWER BOUNDS FOR

SNAKES, COILS, AND SYMMETRICAL COILS
2

2
 Meyerson, S., Drapela, T., Whiteside, W., and Potter, W.D., “Finding Longest Paths in

Hypercubes, 11 New Lower Bounds: Snake, Coils, and Symmetric Coils,” Proceedings of the

28th International Conference on Industrial, Engineering and Other Applications of Applied

Intelligent Systems, (IEA/AIE’15), Springer Verlag, Seoul, Korea (To Appear) 2015 – Reprinted

here with permission of publisher.

27

Abstract

Since the problem's formulation by Kautz in 1958 as an error detection tool, diverse

applications for long snakes and coils have been found. These include coding theory, electrical

engineering, and genetics. Over the years, the problem has been explored by many researchers in

different fields using varied approaches, and has taken on additional meaning. The problem has

become a benchmark for evaluating search techniques in combinatorially expansive search

spaces (NP-complete Optimizations).

We build on our previous work and present improved heuristics for Stochastic Beam

Search sub-solution selection in searching for longest induced paths: open (snakes), closed

(coils), and symmetric closed (symmetric coils); in n-dimensional hypercube graphs. Stochastic

Beam Search, a non-deterministic variant of Beam Search, provides the overall structure for our

search. We present eleven new lower bounds for the Snake-in-the-Box problem for snakes in

dimensions 11, 12, and 13; coils in dimensions 10, 11, and 12; and symmetric coils in

dimensions 9, 10, 11, 12, and 13. The best known solutions of the unsolved dimensions of this

problem have improved over the years and we are proud to make a contribution to this problem

as well as the continued progress in combinatorial search techniques.

Keywords: stochastic beam search, snake-in-the-box, combinatorial optimization, graph search,

hypercube, heuristic search

28

1 Introduction

 The Snake-in-the-Box problem (SIB) is a computationally hard problem concerned with

finding the longest induced path through an n-dimensional hypercube (or n-cube) graph. Finding

longest induced paths is well known to be NP-complete. A hypercube graph consists of a set of

binary numbered nodes {0… 2
n-1

} in which two nodes are adjacent if and only if their binary

values differ by exactly one bit. An induced path (achordal path) is a path in which each node in

the path is adjacent only to its immediate predecessor and successor nodes within the path. In the

SIB problem, open achordal paths are called snakes, and closed achordal paths are called coils.

For snakes, any path which cannot be extended is called a maximal path, with the longest of

these being the longest maximal path. The longest maximal snake for any n-cube is the snake

solution (absolute bound) for SIB in dimension-n. Similarly, the longest possible coil for any n-

cube is the coil solution (absolute bound) for dimension-n. Symmetric coils are a special case of

coil, where the transition sequence for the first half of the path is equal to the transition sequence

for the second half of the path. Transition sequence notation describes paths using the bit

positions that change between two nodes. Figure 1 shows the symmetrical coil described by the

node sequence {0, 1, 3, 7, 6, 4, 0} and the transition sequence 012012. For these and other SIB

terms and definitions, please visit the UGA Institute for Artificial Intelligence’s webpage [1].

 Introduced by Kautz in 1958, the Snake-in-the-Box problem has been extensively studied for

over 50 years. The problem has found relevance in many fields including coding theory [2],

electrical engineering [3], analog to digital conversion [4], precision high speed rotational

measurement devices [5], disk sector encoding [6], rank modulation schemes for charge

29

distribution in multi-level flash memories [7], and genetics related to embryonic development

[8].

Figure 1: 3-dimensional hypercube (with a symmetrical coil in bold)

For dimensions n < 7, snake and coil solutions were computed via exhaustive search by

Davies [10]. Solutions for n = 7 were determined via genetic algorithm by Potter [11] and later

verified by the exhaustive techniques of Kochut [12] which we will be building upon. See table

1, below.

 For dimensions n > 7, exhaustive search remains infeasible for finding solutions due to the

exponential growth of the problem as dimensionality increases. It is estimated that it would take

many years of computing time to exhaustively search dimension 8 [12]. In lieu of this, non-

exhaustive techniques, both computational search and mathematical construction based

approaches have been applied to improving the known lower bounds of higher dimensions.

These include: genetic algorithms [10], hybrid genetic algorithms [13], nested Monte Carlo

Search schemes [14], particle swarm optimization [16], population-based stochastic hill-

30

climbers [16], distributed heuristic computing [17], neural networks [18], hybrid evolutionary

algorithms [16] and mathematical constructive techniques [19, 20, 21].

Table 1: Current SIB Absolute Bounds

With each successive technical improvement, enhanced by increases in computing power, the

lower bounds for these higher dimensions continue to be improved. For solution lengths of n-

snakes, n-coils, and n-symmetrical coils for n ≤ 7, as well as current lower bounds non-

exhaustively searched for 8 ≥ n ≤ 13 see [22].

2 Overview of Our Previous Work

 Building on our previous work [23], we again implement our non-deterministic variant of

Beam Search, which we refer to as Stochastic Beam Search, which combines elements of graph

search with methods common to evolutionary computing. Our Stochastic Beam Search (SBS)

differs from BS solely in how the decision to prune is made. Whereas BS retains only the

absolute best sub-solutions at each step, SBS provides for randomness similar to the tournament

selection process commonly used in Genetic Algorithms (GA) to determine which sub-solutions

31

are retained. Basic tournament selection retains only the single best sub-solution from among a

randomly selected subset of a population. SBS tournament selection, on the other hand, is a

reverse tournament selection that discards only the single worst sub-solution found in each

tournament. Tournaments continue to be run while the population of sub-solutions exceeds the

beam width. Figure 2 shows a beam search with a beam width of 2 progressing through

successive expansions of selected sub-solutions. Each column shows the number of candidate

sub-solutions generated in that iteration, with the circled sub-solutions representing the candidate

sub-solutions that have been selected for continued exploration in the next iteration. The

unselected (un-circled) solutions are discarded. Notice there is no selection while the number of

leaf nodes is less than the beam width.

Figure 2: Beam Search

 In our previous work, we extended the excellent “available nodes” metric [14] [25] by

determining which available nodes were actually reachable from a sub-solution’s head. We

called these “reachable available nodes”. Our base implementation in our previous work

searched only for snakes. To search for coils we added an additional check to our base fitness

32

function which allowed us to discard any sub-solution that did not retain the possibility of

becoming a coil based on end point existence. For more information on our previous path

exploration optimization and fitness function see [23].

3 Improvements to Representation and Selection

 The beam width is constrained by RAM for practical reasons. In order to use a wider beam

that considers many more sub-solutions, we needed to reduce our application’s memory

footprint. We improved our sub-solution representation from a linked list to a bitmap in which a

sub-solution is stored as an array of bits rather than a list of integers or shorts. This new

representation offered a huge improvement over the previous linked list. Using this

representation netted a memory savings of greater than 96%. A representation like this was first

suggested by [26]. This improvement allowed us to dramatically increase our beam size, and

moved the bottleneck of our process from memory to processing.

Because of this improvement in our representation we were able to increase the beam width

from 50,000 to 1,000,000 sub-solutions for searches in dimension 12. Correspondingly, we

improved on our previously reported new lower bound in dimension 12 [23] by 8 nodes.

4 Improvements to Fitness for Coil Search

Here we present our latest fitness improvements for searching for coils. Our symmetrical coil

search is addressed in Section 5.

33

4.1 Removing Dead End Nodes

 In our previous work, we introduced connectivity values for reachable available nodes [23].

The connectivity value of a reachable available node is equal to the number of reachable

available nodes that are adjacent to it. Dead End Nodes are reachable available nodes with only

one reachable available node neighbor, and thus have a connectivity value of 1. Dead end nodes

may only become: (1) the terminating node of a snake, (2) a skin node to its sole reachable

available node neighbor, or (3) an isolated node [23].See figure 3 below.

Path of Coil

Dead End (Not Coil
Node)

Adjacent to only one
Available Node

Adjacent to more than
one Available Node

Figure 3: Dead end nodes.

 Dead ends correlate to exclusive OR forks in the pool of reachable available nodes. These are

points where large numbers of nodes that were previously additive to the fitness value as

reachable nodes, become isolated once the path of the snake or coil passes this fork. Being able

to efficiently detect and measure the impact of an exclusive OR fork as soon as it appears in a

34

sub-solution’s hypercube is of great predictive value in determining which sub-solutions should

be carried forward for further consideration (fitness and selection).

 In coil search, the end points of our search process are adjacent to our start node (node 0). We

call these nodes coil-forming nodes [23]. For coils, any dead end node that is not a coil-forming

node is an unusable dead end and cannot be part of a valid coil solution. We remove these nodes

from the total of reachable available nodes that serves as our primary fitness value. Removing

dead end nodes from reachable available nodes in our fitness calculation, with a beam width of

100,000, yielded length 92 coils in dimension 8.

4.2 Extension of Dead End Concept - Blind Alleys

 A natural next step to identifying and removing dead end nodes is to look for sub-paths which

lead without alternatives to dead ends. We call such paths blind alleys. See Figure. 4. Any

reachable available node that is adjacent to a dead end node and only one other reachable

available node is a blind alley node. Furthermore, any node that would become a dead end upon

the removal of a dead end node is also a blind alley node. In coil search, we have known end

points, so we can remove all dead ends that are not coil nodes without concern.

35

Dead End Node
Not a coil node

Hypothetical future path
of Coil

Blind Alley Nodes
Nodes that touch a
dead end node or
touch another dead
end alley node and
only one other node

Figure 4: Blind Alley Nodes

Reducing our fitness value by the number of blind alley nodes can be done efficiently. For

each dead end node removed, we need only determine if its reachable available node neighbor(s)

has become a dead end node. If so, we remove this node from the sub-solution reachable

available node set. We repeat this process until no more dead end nodes are found in the sub-

solution graph.

 Once we have completed the removal of unreachable available, dead end, and blind alley

nodes, the remaining nodes form a much better basis for fitness than available nodes alone.

When we use a fitness value refined by removing dead end and blind alley nodes from the count

of the reachable available nodes set, we are able to routinely match the record of length 96 coils

in dimension 8 with a beam width of only 100,000 sub solutions.

36

4.3 Concurrent Stochastic Selection

 Because our improved representation enables us to increase the beam width of our search, our

previous serial selection process becomes a pressing core utilization bottleneck. To address this

constraint, we implement a concurrent selection process. We first randomize the order of our

population of sub-solutions, then partition the population and conduct separate concurrent

tournaments within each partition; reducing the population of each partition until the total

population of all partitions is less than or equal to the beam width. We first randomize the order

of the population of sub-solutions because, without this step, the more closely related sub-

solutions are to each other, the closer in the population list they appear. This would create a

positional bias that has nothing to do with our mission of finding the best possible solution. We

found performance to be better when we incurred the small computational expense of

randomizing the order of the population list before partitioning the list and performing selection.

4.4 Hardware

We ran trials using several different multi-core systems: a virtual machine backed by 48 cores

and 100 GB RAM; multiple nodes of a GACRC cluster with 12 and 32-core processors with up

to 64 GB of memory; and a personal laptop with 8 cores and 22 GB RAM.

Our current implementation utilizes processing resources at very close to 100%. The only

serial parts of our process are the randomization, partitioning, and recombination steps of the

selection process; and the partitioning and recombination steps of the sub-solution construction

process.

37

Our most intensive search (processors × time) was for a new coil lower bound for dimension

13. This was achieved on a GACRC 32-core computing node with 64 GB RAM available and

completed in 28 days, or 870 core days; calculated as core-count × core-usage% × time with an

estimated core-usage of 97%. Less than half of the available RAM was used.

5 Specific to Symmetric Coil Search

 Our long symmetric coil finding implementation is based on our long coil finding approach,

and differs from previous approaches that either grow individual n-dimensional snakes and then

attempt to “double” them to form coils / symmetrical coils in n+1 [21], or search for snakes and

occasionally find coils.

 In our process we specifically set out to find / build long symmetrical coils. Within a single

sub-solution, we simultaneously “grow” two valid, bit transition identical, sub-snakes in a single

hypercube. Within this sub-solution, we refer to these sub-snakes as snake1 and snake2. When

we refer to the sub-solution, we are referring to both snake1 and snake2 together. The objective

is to link the head of snake1 to the tail of snake2, and the head of snake2 to the tail of snake1 in

order to create a long valid symmetrical coil.

 To remain valid, neither snake1 nor snake2 may violate the others or its own achordal path

constraints. In addition sub-solutions that are retained after each construction step retain the

potential to be linked; one or more of snake1’s available coil-forming nodes remains reachable

by snake2’s head node, and one or more of snake2’s available coil-forming nodes remains

reachable by snake1’s head node. There is one last constraint we impose on the growing sub-

38

solution. Snake1 must conform to our previous implementation of Kochut’s symmetry reducing

constraint [11] [23].

 During each construction step, new valid sub-solutions are constructed from a previous sub-

solution by adding a single node to the head of snake1. Then a new valid node is added to the

head of snake2. This new addition to snake2 must share the bit shift position of the node added

to snake1 (relative to the previous node in snake1). We call this relationship of the addition of a

new head to snake1 and the next addition to snake2 a symmetrical move. If no valid symmetric

move is available for snake2 then this partially constructed and invalid child is discarded.

 In contrast to our coil and snake process, we initialize our process with more than a single

sub-solution. We create an initial population containing every valid sub-solution in which snake1

starts at node 0 and snake2 starts at some other valid node in the hypercube. Sub-solutions are

not created where snake1 and snake2 are adjacent. If the two nodes are adjacent, then this would

represent an achordal constraint violation.

5.1 Construction Phase

 For every sub-solution in the current population, and for each available node that can be

validly added to snake1 as a new head, we perform the steps below.

1. For each reachable available node adjacent to the current head of snake1: If snake2 has a valid

symmetrical move, we add the corresponding node to be the new head of snake2; otherwise,

the new sub-solution is discarded, as it can never form a symmetrical coil.

2. If the node newly added to snake1 is one of snake2’s coil-forming nodes, the sub-solution has

terminated in a symmetrical coil solution. Symmetrical coil solutions long enough to be of

39

interest are reported. If the sub-solution (now two nodes longer than its parent) has not

terminated, it is added to the successor population.

3. After all members of the current population have been processed to this point, the successor

population replaces the current population.

5.2 Fitness evaluation phase

For every sub-solution in the successor population, we perform the following steps in order to

compute its fitness value:

1. Find the set of available nodes reachable from the head of snake1, and separately the set of

available nodes reachable from the head of snake2. As we do for regular coils, we allow coil-

forming nodes to be added to the reachable available node sets; however, reachability

exploration is not continued from these nodes. As a coil-forming node is the last node to be

added to any coil solution, any nodes reachable only through adjacency to it are effectively

unreachable in the context of coils.

2. If none of snake2’s coil-forming nodes are in the reachable available node set of snake1, we

discard the sub-solution; as it can never form a symmetrical coil. This one constant time

check drives a large reduction in the number of solutions considered.

3. Ascertain if the two sets of reachable available nodes are equal or disjoint. Because of the

symmetry of the hypercube and of our search, the reachable available node sets of snake1

and snake2 will either be equal or disjoint. If equal, all reachable available nodes are

reachable from the heads of snake1 and snake2, and our fitness evaluation will not require

adjustment. If disjoint, the set of all reachable available nodes is split into two distinct

subsets, which (again because of symmetry) are functionally identical. To account for this,

40

we will double the fitness value at the end of the fitness evaluation phase. In either case

(disjoint or equal), because of symmetry, we only need to work with Snake1’s reachable

available node set from this point forward.

4. Remove blind alley nodes from snake1’s reachable available node set using snake2’s coil-

forming nodes as our end points; just as we do for standard coils.

5. Calculate a connectivity value as in [23] from the remaining nodes in snake1’s reachable

available node set.

6. Lastly, double the fitness value if the reachable available node sets were determined to be

disjoint in step 3.

5.3 Termination

 As previously described in all of our approaches, the construction and fitness evaluation

processes continue until there are no longer any sub-solutions in the population.

6 Results

 We found new lower bounds for snakes in dimensions 11, 12, and 13; coils in dimensions 10,

11, and 12; and symmetrical coils in dimensions 9, 10, 11, 12, and 13. Table 1 shows current

lower bounds for dimensions 8–13. Parenthetical values indicate previously known lower

bounds. Asterisks indicate where we have improved on our previously published [23] records.

An up to date list of snake and coil, absolute and lower bounds, is maintained at The University

of Georgia SIB Records Page [22]. Please find examples for lower bounds from our results for

snakes, coils, and symmetrical coils in section 9. Table 2 contains lower bounds for non-

41

exhaustively searched dimensions of SIB. The numbers in parenthesis indicate the previous

record before our work. The numbers with asterisks indicate where we have surpassed our

previous record lower bounds.

Table 2: Current SIB Lower Bounds

7 Conclusions

 Our approach was largely inspired by efforts in [13], [16], [25], [17], and [10] to use a GA to

improve known lower bounds on this difficult problem. The GA will usually yield good

solutions to the SIB problems, and by applying more computation effort, the solutions can be

improved to a point; however, the GA applied to the SIB problem runs into diminishing returns.

Our use of fitness relentlessly selects dense solutions that are highly likely to dead end, but are

the best prospects for an excellent result. We expand upon the small fraction we are able to

practically process that we judge through fitness as good prospects. Improvements in the

predictive value of our fitness function resulted in new lower bounds in several dimensions and

TABLE II. SNAKE, COIL, AND SYMMETRICAL COIL RECORDS FOR NON-
EXHAUSTIVELY SEARCHED DIMENSIONS 8–13.

Dimension

Snakes Coils
Symmetric

Coils

8 98 96

9 190 188 (180) 186

10 370 (*358) 362 (340) 362

11 (*705) 707 (*666) 668 (640) 662

12 (1280) 1302 (*1268) 1276 (1128) 1222

13 (2466) 2520 2468 (1898) 2354

Length

94

42

solution classes (snakes / coils / symmetrical coils) while increasing the beam width process by

50–100 times yielded only small improvements in results.

Exploiting the inherent constraints of specific solution classes (specifically coils and

symmetrical coils) in the Snake-in-the-Box problem enabled us to dramatically reduce the

effective search space, and to impose powerful checks on the validity of sub-solutions. For

example, the symmetrical coil aspect of the SIB problem is the most constraining. We checked

that sub-solutions could reach coil-forming end points and thus retain coil forming potential. We

also checked sub-solutions conformance to the symmetrical property of symmetric coils. If the

sub-solution did not pass these checks, it was discarded. This left us with a small fraction of the

search space that we would have had to traverse without the intelligent application of known

constraints. This approach explains the particular strengths of our process when applied to coils

and symmetrical coils. We are particularly pleased with the improvements achieved in

symmetrical coil lower bounds in dimensions 9–13, which saw lower bounds improvements of 6,

12, 22, 94, and 456 nodes respectively.

Beam search is an excellent platform to experiment with approaches to assess the state of the

hypercube (fitness functions). Once the beam width is sufficiently large, small changes in the

efficacy of the fitness function led to large performance changes. We expect that more

algorithms common to graph search may merit application to this problem.

8 Future Work

In future work we plan to explore more graph theory based improvements to our fitness

function. One of the most promising we are testing is articulation point / bi-connected

43

component detection algorithms. The techniques we have described including potential future

work with articulation points may lend themselves to searching for snakes using defined end

points; and could include techniques like our symmetric coil search, where multiple sub-

solutions with many different end points are considered within the same search; much like

considering multiple start points for complimentary symmetrical snakes.

9 Examples of Record Snakes, Coils, and Symmetrical Coils

9.1 Snakes

Snake, Dimension 11, Length 707

012345231032531234523103264254301345234024521034764301251354301345234106403

253124023452402318613254321352301325432135642540145234024521047102345240234513

523046104325431034531521034529825430125135430134523401640325315432042543201721

345234021601325432135230132543213560284230460143254310345315210346743012542043

254310345246531042152013524572642543204254A9320425432042135230460143254310345

315210346743012542043254310345246230132543213523013254321098012345231032531234

523103264254301345234024521034764301251354301345234106403253124023452462972304

325431034531521034527314510651420432541327012345231032531234523103789601254321

520312543527043254104231251640243253123450425432137403423145230251A812319A463

1034053103

Snake, Dimension 12, Length 1302

012031401203521403120140365304102130410531041321750120314012035210432631023

140135014031201403873041021304105310413201362345304130210413053725014031203523

44

140260410213041253021041302972031401203521403120140365304102130410531041320780

231401350140312014035630410213041382065305210432530561204501284123140123713041

02130413610350125140125312631023140126A23501403120140356304102130412530210413

027920314012035214031201403653041021304105310413207250314012365231041321036530

463410213483120352140312014036530410213041053104132173102134012530210413029720

3140120352140312014072041308503140123563062310630413216712314BA01350140312014

035630410213041253021041302792031401203521403120140365304102130410531041320725

031401236523104132103653046341021348312035214031201403653041021304105310413217

310213401253021041302972031401203521403120140720413081401326021041321651231401

23586932104132A823140123653210413058031401206B02104130297203140120BA02104132

A8234023563204305803402396321041308230140356304103820314012038642314013651B01

23AB2A7314750358120143891341047904109302310B256230410BA014031A53104128B214

03295230425B2403129A2130426524031AB130410B5014024950240321039482140295786392

304105A0140328A234024684204321069143240319B124B3417924B2918BA3823A01453410

2952049741B70B261201A693123410213290A5380950324139128B64B816B83719012031

Snake, Dimension 13, Length 2520

2520012031401203521403120140365304102130410531041320725031401203140356301231

401325130410213041387314031201403152310413210365304152104150314012572104132104

630410213041254204601403120140970410213041053104132104630410213041385314031201

403152402103623041251401203140125721041325302130410215630410213041251401203140

185104132146540154651273041302104130A82104130210415214031201403653041021304105

310413219812314013501403120140356304102130413853140312014031541365312031403501

45

253057210413253021304102156304102130412514012031403873041302104137502104130210

465401203140129821041302104564012031401205402130410213820413021041B81401203140

37A304130210415214031201403653041021304105310413219812314013501403120140356304

102130413853140312014031541365312031403501253057210413253021304102156304102130

412514012031403873041302104137502104130210465401203140129821041302104564012031

401205402130410213803401203473140312035231401AB1041325310230410B4031402804136

2314018B104130210413BA314012031403A930413021041781401203140270410213041053104

132014630410213041251401203140180314032103523140378304130243054021304108403142

641021304584031201495410213041027652403140C5041304A01403124B21041302104152140

312014036530410213041053104132198123140135014031201403563041021304138531403120

140315413653120314035012530572104132530213041021563041021304125140120314038730

413021041375021041302104654012031401298210413021045640120314012054021304102138

2041302104167140120314035630413253021304102A4203140280410213041374302104169140

12031402704102130410531041320146304102130412514012031403BA3041302104152140312

014036410231401350140312014072041302104187140120314035630413253021304137430480

140312045021041302104AB401203140120540213041028420347314031203523140365304130

210413098342031403BA30413021041A9140120314012640147641021304136430214C871C24

031402A0764102130458403120149541021304136430210415214031201AC1021304854031428

C42130418A1403147104130214C15631784234894312019610213065032CB230456403120168

102130A5031201459410213408540312014654102130B80312037204792B72402730213458431

42041BA146A96402134024A046A412031401981041302105901203140269C364120318913219

5012034102C631A681541023185132C54620A24023493CA206CA13219A09C4321945A20A3

58138B40346B432014B65A8541245840341059234124690431691489C3851043204503624069

46

032019810218C2403146B41382189012642198340129813941804C70AC62430246A98B630986

40218912014908B094102134085403120149A0142130410A24105912319514659869431A0320

891041A219A0432014A741261471A025A124035A3028A405436B8013502405145642CB6821

804235125930960283608914694C309714703901AB64163A93BA76B230

9.2 Coils

Coil, Dimension10, Length 362

(See Symmetric Coil 10)

Coil, Dimension11, Length 668

0123024012301502103402306503204301230510214075401230560321025032013402301502

106501235432078530120356032102503210340230150210650123074032105601205103210451

650230560315321098012352054012301502106501230170210420321056012051032043012305

20123061586103210420321A912302401230150210650123098032105601205103210430235294

123065032103602305470532034012301502106501230584053210560120510320421032053012

306503210960123015021065012358320560230520123065032064023015021065012308603206

7156125132431023521490614012069860210415023056089065032194123051201A5037023051

076207502352102960214319612036732785280236120673059306926014078012345320526A82

160152305107921841234530752034123453205275632

47

Coil, Dimension 12, Length 1276

0120314305230413423052062302534521450413012047025034130250346035103410214504

130123621452182412543520326025032431403250341302165210314371034124352412503521

426354021031405412543520398302534521450413012045362412530521425342140317305412

543520326025032405203143052304681305203142641021450413012046732413014752615307

4305214051034125462412543520A9025345214504130120476402103140541201462413025031

864032503413025042305206230253452145037130412435241250352142635402103140541254

081402143015341301295210314054125430153624125305214253421438234521450260421403

105271534521450413012046025034130250342041254824125435264250310214036901526153

BA351625741031423764021031405412014624130250318640325034130250423052062302534

521450371304124350324125305216510314052862412543520326541021430153413021952103

140541254301536241253052142534214382345214502604214031052715345214504130120460

2503413025034204125482412543526425031021403693052A7642145041301204536241253052

142534572450264021674039630412046205412543528952345214502604214031052715241034

054125049204120642054125432092405214523503B4052103BA3012508798052013AB310250

3674BA4723102503AB3052019B326305201592052642061035463502340512B0367BA723A92

38720670378397168450257852056012032782437B362BA260A24120643B46234BA436501AB

109B29152653160246375276506954021078A1B

48

9.3 Symmetrical Coils

Note that half of these transition sequences are provided.

Symmetric Coil, Dimension 9, Length 186

0123412541054350214036415435021045340234123573154123410435415234510264105435

02104354014321078

Symmetric Coil, Dimension 10, Length 362

0123403250315065123043254315401523104573403125134150452430160430125140513052

304321681234032503123403125147512304325431540152310361340325047324304521543150

312034027015213403850413219

Symmetric Coil, Dimension 11, Length 662

012031042054012403604217420310428724013021981203104210A90124013021742031042

03490420310420A401240360428620310458401302403A9034203104854013024390A92031042

845024063042018213024394063402603A15310620152062802406342189106576019812436042

0862034903104269A4302431035630268024063421806A9624810420912081268136804218406

92860A302403104A7602687A

Symmetric Coil, Dimension 12, Length 1222

01234210521620125765210870125985210A12590521BA12509523025A125B128321781256

7521BA1257652147AB125BA5842103B52162012382032576523016521681248256752102612

30183078365236A328423A6325985236A3259652375B123756123A632569521A7123B419814

B3217A124821A7123710523A63257107584570175236A32506523708732596523A63210570A

32501732492371B79432549738425732439542375612568524610645732495784173240370875

B712863A7123A7B073021891258425627524634BA17521A714823A17521A26598542347A3B

49

967321426521428321784103483216736285219B16A71AB10762701B5289750A58423A426A1

25028571A72B38245AB71A72A5671245B617250620B972692A723654257301428125A85238

03B85BA6381B

Symmetric Coil, Dimension 13, Length 2354

01234523103263123763218712398321A9123BA321CB014325431034730123673210860123

983210A90123452310329A23013289231032782301326714301B0376326B1086143983210A90

1236732109A012389321B0614398328B10A901239834B9035431034730123673210860123983

21C910B23412391389321068012376321036C3013463103293123673492103293891237632103

701984108390129A216813483278210860138032103674860B3068012376321037430134C234B

23843106801237632103748930127032673213084301376310326310C213781276231036231B6

236728476310326308637684308613C032178123673213480341C8635218607630683263C4367

308603A530680376305C0367308609A0680376301A51036730863968738603621469A3103670

873128376C12368037630132672841791065709482A5219549A230AC318410A6014827608946

27A82762C52672860917C06701482760C26721706315A01AC306703CA132768523016801289

085634607280396410A1826451861469258468218637087A073016A82652108635C306801586

9468218A5601469A6398678C03109701234563091068015438A03261063708A0760182562170

B8760315A10A93670586936850A372B0680B29486230873069316927307913A946093801849

175236801843062943268230728430549348370190B837B801278125306358019468123612A39

23162A14A2847327C4810A3063190632A927BA074316AB3067A97603796807601263486076

57430750917843950830A1C381086039B8273B

50

ACKNOWLEDGMENTS

We thank Dustin Cline and Thomas Horton for their important contributions to this project,

Snake-in-the-Box research, and the Institute for Artificial Intelligence. This study was partially

supported by resources and technical expertise from the University of Georgia Computer Science

Department. This study was also partially supported by resources and technical expertise from

the Georgia Advanced Computing Resource Center (GACRC), a partnership between the

University of Georgia’s Office of the Vice President for Research and Office of the Vice

President for Information Technology.

51

REFERENCES

[1] W. Potter: Snake-In-The-Box Dictionary (2014) [Online]. Available:

http://ai1.ai.uga.edu/sib/sibwiki/doku.php/dictionary. Accessed 2014, Jun. 5.

[2] W. Kautz: Unit-distance Error-Checking Codes. IRE Trans. Electron. Comput, vol. EC-7,

no. 2, pp. 179–180, 1958.

[3] V. Klee: What is the Maximum Length of a d-Dimensional Snake?. In: The Amer. Math.

Monthly, vol. 77, no. 1, pp. 63–65, 1970.

[4] A. Hiltgen and K. Paterson: Single Track Circuit Codes. In: IEEE Trans. on Inform.

Theory, vol. 47, pp. 2587–2595, 2000.

[5] F. Zhang and H. Zhu: Determination of optimal period of absolute encoders with single

track cyclic gray code, in: J. of Central South University of Technology, vol. 15, no. 2

Suppl., pp. 362–366, 2008.

[6] M. Blaum and T. Etzion, "Use of snake-in-the-box codes for reliable identification of

tracks in servo fields of a disk drive," U.S. Patent 6 496 312, December 17, 2002.

[7] Y. Yehezkeally and M. Schwartz: Snake-in-the-Box Codes for Rank Modulation. In:

IEEE Trans. Information Theory, vol. 58, no. 8, pp. 5471–5483, 2012.

[8] I. Zinovik, Y. Chebiryak and D. Kroening: Periodic Orbits and Equilibria in Glass

Models for Gene Regulatory Networks. In: IEEE Trans. Information Theory, vol. 56, no.

2, pp. 805–820, 2010.

[9] D. Davies: Longest ‘separated’ paths and loops in an N cube. In: IEEE Trans. Electron.

Comput, vol. 14, p. 261, 1965.

[10] W. Potter, J. Robinson, J. Miller and K. Kochut: Using the Genetic Algorithm to Find

Snake- In-The-Box Codes. In Proc. 7th Int. Conf. Industrial & Engineering Applications

of Artificial Intelligence and Expert Systems, Austin, TX, 1994, pp. 421–426.

[11] K. Kochut: Snake-In-The-Box Codes for Dimension 7. In: J. Combinatorial Math. and

Combinatorial Computing, vol. 20, pp. 175–185, 1996.

[12] D. Kinny: A New Approach to the Snake-In-The-Box Problem. In Proc. 20th European

Conf. Artificial Intelligence, ECAI-2012, Montpellier, France, 2012 © The Author. doi:

10.3233/978-1-61499-098-7-462

52

[13] B. Carlson and D. Hougen: Phenotype feedback genetic algorithm operators for heuristic

encoding of snakes within hypercubes. In: Proc. 12th Annu. Genetic and Evolutionary

Computation Conf., GECCO ‘10, Portland, Oregon, 2010, 791–798.

[14] D. Kinny: Monte-Carlo Search for Snakes and Coils. In: Proc. 6th Multi-Disciplinary Int.

Workshop on Artificial Intelligence, MIWAI-2012, Ho Chin Minh City, Vietnam, 2012,

271–283.

[15] P. Brooks: Particle Swarm Optimization and Priority Representation: M.S. thesis,

Artificial Intelligence, Univ. Georgia, Athens, 2012.

[16] D. Casella and W. Potter: Using Evolutionary Techniques to Hunt for Snakes and Coils.

In: Proc. IEEE Congress on Evolutionary Computation, CEC ‘05, Edinburgh, Scotland,

2005, pp. 2499–2505.

[17] M. Juric, W. Potter and M. Plaskin: Using the Parallel Virtual Machine for Hunting

Snake-in-the-Box Codes. In: Proc. 7th Conf. North American Transputer Research and

Applications Conf., NATUG-7, Athens, GA, 1994, 97–102.

[18] J. Bishop: Investigating the snake-in-the-box problem with neuroevolution. Dept. of

Computer Science, Univ. Texas, Austin, 2006.

[19] L. Adelson, R. Alter and T. Curtz: Long Snakes and a Characterization of Maximal

Snakes on the d-cube. In Proc. 4th SouthEastern Conf. Combinatorics, Graph Theory,

and Computing, Congr. No. 8, Boca Raton, FL, 1973, pp. 111–124.

[20] H. Abbott and M. Katchalski: On the Construction of Snake in the Box Codes. Utilitas

Mathematica, vol. 40, pp. 97-116, 1991.

[21] E. Wynn: Constructing circuit codes by permuting initial sequences. In: Proc. 20th

European Conf. Artificial Intelligence, ECAI-2012, Montpellier, France, 2012 © The

Author. doi: 10.3233/978-1-61499-098-7-468 [Online]. Available:

http://a{}rxiv.org/abs/1201.1647. Accessed 2014, Jun. 5.

[22] W. Potter: SIB Records (2014) [Online]. Available: http://ai.uga.edu/

sib/sibwiki/doku.php/records. Accessed 2014, Jun. 5.

[23] S. Meyerson, T. Drapela, W. Whiteside and W. Potter: Finding longest paths in

hypercubes, snakes and coils. In Proc. 2014 IEEE Symp. Computational Intelligence for

Engineering Solutions, CIES’14, pp. 103-109, Orlando, FL, 2014.

[24] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, New York: Prentice-Hall,

1995.

http://ai.uga.edu/

53

[25] D. Tuohy, W. Potter and D. Casella: "Searching for Snake-in-the-Box Codes with

Evolved Pruning Models. In Proc. 2007 Int. Conf. Genetic and Evolutionary Methods,

GEM 2007, Las Vegas, NV, 2007, pp. 3–9.

[26] P. Diaz-Gomez and D. Hougen: Genetic Algorithms for Hunting Snakes in Hypercubes:

Fitness Function Analysis and Open Questions. In: 7th ACIS Int. Conf. Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing,

SNPD 2006, Las Vegas, NV, 2006, pp. 389–394.

54

CHAPTER 4

CONCLUSION

1. Recap

Our approach was largely inspired by efforts in (Klee, 1970), (Casella, 2005), (Tuohy, 2007),

(Juric, 1994), and (Potter, 1994) to use a GA to improve known lower bounds on this difficult

problem. The GA will usually yield good solutions to the SIB problems, and by applying more

computation effort, the solutions can be improved to a point; however, the GA applied to the SIB

problem runs into diminishing returns. The authors believe that it is extremely difficult to

construct crossover schemes that contribute to results with a GA as applied to this problem.

Carlson found a way around this, creating and prioritizing a list of construction rules (Carlson,

2010). By using the first rule in order of priority that creates a valid next additional node in the

snake sequence. This list could be crossed over in a meaningful way with other such lists. Our

reaction to the same issue was to avoid completely an inter-sub-solution communication function

like crossover, or local best / best ever of particle swarm. Our process has no inter-solution

communication, only inter-solution competition.

We use a fitness based heuristic to selects dense solutions that are highly likely to dead end,

but are the only prospects for an excellent result. We generate millions of these solutions

expecting the vast majority of them to fail. We invest computational effort in those most likely to

give exceptional results. Our process is unique in that it assesses the remaining material (nodes)

in the hypercube, scoring its potential to be grown into an exceptional solution. We believe that

55

we have only scratched the surface on the opportunity that computationally cost effective graph

theory based approaches to assessing the hypercube represent.

Increasing the beam width in our process by 50–100 times netted only a small return, while

small improvements in the predictive value of our fitness function resulted in new lower bounds

in several dimensions and solution classes (snakes / coils / symmetrical coils).

Exploiting the inherent constraints of specific solution classes (particularly coils and

symmetrical coils) in the Snake-in-the-Box problem enabled us to dramatically reduce the

effective search space. Once the space is reduced, then we apply heuristics to select from a still

intractable number of solutions. Imposing powerful new validity based checks on the

combinatorial explosion of sub-solutions led directly to lower bounds in many dimensions and

classes of the problem. For example, the symmetrical coil aspect of the SIB problem is the most

constraining. We were able to assess whether a sub-solutions could reach coil-forming end points

and thus retain coil forming potential. If not we discarded the sub-solution. We also only created

sub-solutions that adhered to the symmetrical property of symmetric coils. This left us with a

small fraction of the search space that we would have had to traverse without the intelligent

application of known constraints.

These innovations explain the particular strengths of our process when applied to coils and

symmetrical coils; symmetrical coils which are the most constrained by definition. We are

particularly pleased with the gains achieved in dimensions 9–13, which saw lower bounds

increases of 6, 12, 22, 94, and 456 nodes respectively.

In general, beam search is an excellent platform to generate strictly valid sub-solution where

the problem representation allows for valid incremental additions to a sub-solution. Beam search

allowed us to separate valid solution generation from fitness / selection. Once we had an engine

56

to generate strictly valid sub-solutions that adhered to Kochut’s Constraint, we focused our

efforts entirely on processing improvements — memory efficiency and parallelism — and

improving the predictive value of our fitness calculations.

Increasing the number of solutions considered (beam width) by orders of magnitude led to

diminishing improvement, while seemingly small adjustments in the way fitness was calculated

led to large to jumps in performance.

2 Future

If we can find and apply enough valid constraints to these problems, while increasing the

amount of computation force applied, perhaps we can exhaustively explore dimensions eight or

greater. On the way to constraining the problem enough to make exhaustive search feasible we

have found such constraints predictably improve the performance of our heuristic and probably

others, resulting in the improved lower bounds published here.

In future work we plan to explore more graph theory based improvements. One of the most

promising is articulation point detection algorithms. An articulation point detection algorithm

efficiently, O (V+E), locates nodes of an undirected graph, in our case the remaining valid

reachable nodes of a hypercube, where removal of a single node will break the graph into at least

two unconnected parts. Since articulation point detection will also identify blind alleys and dead

end nodes as they are special cases of articulation points, the current expense of blind alley

detection would be eliminated. An efficient implementation of articulation point detection will

be a net computational expense reduction versus our current process.

Again, an articulation point is a point that if removed will break a graph into two or more

unconnected sub-graphs. This is of particular interest to our problem because each articulation

57

point found represents an exclusive fork in the possible paths of a snake or coil. A sub-solution

may pass through an articulation point to a sub-graph defined by this point, but may never return

to its previous subgraph or any other subgraph defined by this articulation point because of the a-

chordal constraint. Applying this insight to our current fitness calculation process, which is

strongly based on remaining reachable nodes in the hypercube, we would remove all the nodes in

the smaller sub graph(s) defined by an articulation point. In other words, we would eliminate all

subgraph nodes defined by this point, except for the largest sub-graph, for the purpose of

determining fitness.

This approach can be even more powerful when applied to coils and symmetrical coils. As we

have discussed, coils and symmetrical coils have known end points. If any of the sub-graphs

delineated by an articulation point does not contain an end point, then it cannot be part of the

eventual coil or symmetrical coil solution. These sub-graphs nodes can be eliminated from the

reachable available node count as they can never be part of a valid coil solution.

Since a snake or coil sub-solution cannot be extended any longer than the remaining

reachable available nodes left in the hypercube, implementing articulation point detection should

not only improve the predictive value of fitness, but may make exhaustive calculation of longest

snakes, coils, and symmetrical coils feasible.

Another possible approach that includes articulation point detection would be to search

for snakes using defined end points. This would include techniques like our symmetric coil

search, where multiple sub-solutions with many different end points are considered within the

same search; allowing competition among solutions based on end points. This might also

include an orderly search by start point (node 0) and by all other valid end points in the

hypercube, each taken one at a time, further constraining the search.

58

A final related approach would be to use the symmetrical coil finding approach without a

symmetry constraint. Applying articulation point detection to this approach would improve this

as well, though this would involve additional complexity in implementation where we previously

relied on the symmetry constraint.

3 A Different Tack - Mathematical Construction / Abbott Acknowledgment

Abbott set many record lower bounds for the problem and whose last standing record; a

coil in dimension 13 was set in 1991 (Abbott, 1991), has stood for 22 years. We were confident

that we would re-set most lower bounds for snakes, coils, and symmetrical coils for dimensions

10-13 and certainly thought we would set new lower bounds for the longer standing current high

dimension lower bounds. For the most part his was true, but despite vastly superior hardware,

and the benefits of Abbott’s and other’s research, we were not able to improve upon Abbott’s

record coil of length 2468 in dimension 13. We applied our process to the dimension 13 coil

problem several times; finally using nearly 23,000 hours of 2 GHZ core time. We tied Abbott’s

lower bound for coils in dimension 13 twice, but were unable to surpass it. Perhaps we should

include a bias in future work, one of the primary assumptions of a mathematical approach,

Abbotts’s approach; many of the best solutions are orderly.

http://www.thesaurus.com/browse/acknowledgment

59

H. Abbott and M. Katchalski, "On the Construction of Snake in the Box Codes," Utilitas

Mathematica, vol. 40, pp. 97-116, 1991.

L. Adelson, R. Alter and T. Curtz, "Long Snakes and a Characterization of Maximal Snakes on

the d-cube," in Proc. 4th SouthEastern Conf. Combinatorics, Graph Theory, and Computing,

Congr. No. 8, Boca Raton, FL, 1973, pp. 111–124.

J. Bishop, "Investigating the snake-in-the-box problem with neuroevolution," Dept. of Computer

Science, Univ. Texas, Austin, 2006.

M. Blaum and T. Etzion, "Use of snake-in-the-box codes for reliable identification of tracks in

servo fields of a disk drive," U.S. Patent 6 496 312, December 17, 2002.

P. Brooks, "Particle Swarm Optimization and Priority Representation," M.S. thesis, Artificial

Intelligence, Univ. Georgia, Athens, 2012.

B. Carlson and D. Hougen, "Phenotype feedback genetic algorithm operators for heuristic

encoding of snakes within hypercubes," in Proc. 12th Annu. Genetic and Evolutionary

Computation Conf., GECCO ‘10, Portland, Oregon, 2010, 791–798.

D. Casella and W. Potter, "Using Evolutionary Techniques to Hunt for Snakes and Coils," in

Proc. IEEE Congr. on Evolutionary Computation, CEC ‘05, Edinburgh, Scotland, 2005, pp.

2499–2505.

D. Davies, "Longest ‘separated’ paths and loops in an N cube," IEEE Trans. Electron. Comput.,

vol. 14, p. 261, 1965.

M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-

completeness, San Francisco: Freeman, 1979.

A. Hiltgen and K. Paterson, "Single Track Circuit Codes," IEEE Trans. on Inform. Theory, vol.

47, pp. 2587–2595, 2000.

M. Juric, W. Potter and M. Plaskin, "Using the Parallel Virtual Machine for Hunting Snake-in-

the-Box Codes," in Proc. 7th Conf. North American Transputer Research and Applications

Conf., NATUG-7, Athens, GA, 1994, 97–102.

W. Kautz, "Unit-distance Error-Checking Codes," IRE Trans. Electron. Comput., vol. EC-7, no.

2, pp. 179–180, 1958.

References

60

D. Kinny, "A New Approach to the Snake-In-The-Box Problem," in Proc. 20th European Conf.

Artificial Intelligence, ECAI-2012, Montpellier, France, 2012 © The Author. doi: 10.3233/978-1-

61499-098-7-462

V. Klee, "What is the Maximum Length of a d-Dimensional Snake?" The Amer. Math. Monthly,

vol. 77, no. 1, pp. 63–65, 1970.

K. Kochut, "Snake-In-The-Box Codes for Dimension 7," J. Combinatorial Math. and

Combinatorial Computing, vol. 20, pp. 175–185, 1996.

W. Potter. Snake-In-The-Box Dictionary (2014) [Online]. Available:

http://ai1.ai.uga.edu/sib/sibwiki/doku.php/dictionary. Accessed 2014, Jun. 5.

W. Potter, J. Robinson, J. Miller and K. Kochut, "Using the Genetic Algorithm to Find Snake-

In-The-Box Codes," in Proc. 7th Int. Conf. Industrial & Engineering Applications of Artificial

Intelligence and Expert Systems, Austin, TX, 1994, pp. 421–426.

Y. Yehezkeally and M. Schwartz, "Snake-in-the-Box Codes for Rank Modulation," IEEE Trans.

Information Theory, vol. 58, no. 8, pp. 5471–5483, 2012.

I. Zinovik, Y. Chebiryak and D. Kroening, "Periodic Orbits and Equilibria in Glass Models for

Gene Regulatory Networks," IEEE Trans. Information Theory, vol. 56, no. 2, pp. 805–820, 2010.

F. Zhang and H. Zhu, "Determination of optimal period of absolute encoders with single track

cyclic gray code," J. of Central South University of Technology, vol. 15, no. 2 Suppl., pp. 362–

366, 2008.

