
Calling All Nodes:

Classifying Skype Overlay Control Flows

by

Carl Brett Meyer

(Under the direction of Kang Li)

Abstract

Peer-to-Peer botnets are of particular concern in the world of network security because of

the difficulty involved in identifying the botmaster node in the network. This paper seeks

to address this issue incrementally by developing a statistical model for the control, or

signaling, network flows of the most popular P2P VoIP application, Skype, as a first step

toward identifying known P2P applications for the purposes of whitelisting them in a network

trace. Through construction of a dataset containing real-world Skype traces and real-world

traces for four other popular P2P file-sharing programs, a statistical model is created which

incorportates the flow behaviors of Skype control flows. This statistical model is tested

using four classification algorithms, and the results show a very high accuracy and low false

positive rate for successfully identifying Skype control flows against the control flows of the

other P2P applications.

Index words: Skype, supervised learning, machine learning, network security, botnet

Calling All Nodes:

Classifying Skype Overlay Control Flows

by

Carl Brett Meyer

B.A., University of Georgia, 2002

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2011

c©2011

Carl Brett Meyer

Calling All Nodes:

Classifying Skype Overlay Control Flows

by

Carl Brett Meyer

Approved:

Major Professor: Kang Li

Committee: Roberto Perdisci
Khaled Rasheed

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2011

Acknowledgments

This thesis is dedicated to my loving wife Vanessa, who has been supportive and under-

standing of my time and effort to complete this work. I would also like to thank Dr. Li, Dr.

Perdisci, and Dr. Rasheed for their guidance and inspiration with this project.

iv

Contents

Acknowledgments . iv

1 Introduction . 1

2 Background and Related Work . 6

2.1 Port-based Classification . 6

2.2 Payload-based Classification . 7

2.3 Flow-based Classification . 9

2.4 Machine Learning Methods . 11

2.5 Classification of Skype . 14

3 Data Collection . 17

3.1 Skype testbed . 17

3.2 P2P file-sharing testbed . 22

3.3 Amount of Traffic Collected . 30

4 Data Analysis . 32

4.1 Behavioral Analysis . 32

4.2 Statistical Model . 36

4.3 Control Flow Totals . 40

5 Classification and Results . 42

v

5.1 Classifiers . 42

5.2 Results . 44

5.3 Discussion . 49

6 Conclusion . 50

Bibliography . 52

A README for Skype Dataset . 57

B README for P2P File-Sharing Dataset . 62

C Decision Tree Created From J48 Decision Tree Classifier 68

vi

Chapter 1

Introduction

A botnet is a collection of compromised machines that act under the remotely controlled

influence of an attacker. The compromised hosts, or “bots”, are controlled through the use

of a command and control (C&C) channel by an attacker known as a “botmaster”. Botnets

are commonly used for such purposes as sending spam, Distributed Denial of Service (DDoS)

attacks, click fraud, and identify theft.

Botnets have been a source of consternation to network security professionals for several

years now, and like any malicious application, they have evolved to overcome previous suc-

cessful attempts to subvert and control them. While botnets originally used a centralized

architecture wherein a C&C server would communicate commands over an IRC channel,

the most current permutation perplexing security researchers is the use of a Peer-to-Peer

architecture to distribute the location of the botmaster node, making the controlling unit of

the botnet much harder to locate and shut down. While other types of network intrusion

detection use signature-based mechanisms or blacklists, creating these types of structures for

P2P bots is extremely difficult due to the proliferation of valid P2P programs, and because

many P2P applications use encryption or obfuscation, both well-known to be used in bot

networks as well.

1

Early P2P botnet research involved observation of particularly prevalent botnets which

employ a P2P architecture in order to identify particular unique features of the behaviors

of these botnets so that they could later be identified. In [22], Grizzard et al examine the

behavior of the Trojan.Peacomm botnet, and Holz et al examine a permutation of this botnet

known as Storm in [26]. Both of these works are interested in outlining the distinguishing

features of the system-level and network-level behaviors of the botnet, and they offer an

insight into the statistical features that can be used to detect these types of bots.

More recently, P2P botnet research has focused on identification and classification based

mostly on clustering algorithms to group flows and classify botnet traffic based on its flow

characteristics. In [23], Gu et al use what they term “A-plane” clustering and “C-plane”

clustering to cluster the actions and communication patterns of botnet traffic. After these

initial clustering steps, they employ “Cross-plane correlation” which is used to create a more

general classification scheme for identifying bots within a botnet. In [43], the authors use

clustering of the communication behaviors of P2P botnets to identify them against legitimate

P2P traffic based on the premise that P2P bots must be present for longer durations than

regular P2P application usage in order to maintain the malicious functionality of the botnet,

and to issue and search for commands.

Current research on P2P botnets also includes projections for future growth and mutation

of the P2P botnet phenomenon. One such example is the work done in [34] by Nappa et

al, where the authors describe the potential construction of a botnet on top of the Skype

network. By employing Skype’s native overlay network and encryption mechanisms through

the use of Skype development packages, the authors are able to outline the measures by

which a botnet could be embedded within the Skype overlay network in order to prevent

detection. The authors emphasize that these types of “parasitic overlay” botnets are likely

to be found in the wild soon due to their resilience to detection.

2

As Haq, et al obviates in [25], the rise in popularity of P2P applications in the past

several years has fostered concern over detecting valid P2P programs since there has been

a corresponding rise in malware which employs this same overlay network technique, most

considerably botnets. Therefore, this work is concerned with detecting valid P2P programs

as a first measure towards disallowing botnet traffic by identifying and only allowing non-

malicious applications in firewall infrastructures such as Intrusion Prevention Systems (IPS).

However, since there are a plethora of valid P2P-based applications to choose from, we limit

our scope to detecting one application, in the hopes that the procedures used in this work

will aid in detecting others.

The application chosen for examination in this work is the popular VoIP application

Skype. Skype was chosen for this work because unlike many popular P2P file-sharing pro-

grams, Skype does not have any great conflict with Internet Service Providers (ISP) the

way that the file-sharing programs do. This is because typically ISPs are unhappy about

bandwidth usage incurred by most P2P file-sharing programs, and due to an overwhelming

number of copyright infringement issues that have arisen in previous years, ISPs are not

enthusiastic about the use of P2P file-sharing programs in their networks. Skype, on the

other hand, is an application that generates innocuous VoIP and instant message traffic, and

does not use a great deal of bandwidth to do so. Therefore, Skype seemed a very appropriate

choice for use with this work, since a reliable identification method for Skype would satisfy

the objective to identify a P2P application without bringing into question issues of copyright

law and bandwidth usage.

In this paper, we seek to create a statistical signature for the Skype overlay control pro-

tocol that can be used to whitelist the Skype application in a network trace. Created in 2003

by the engineers behind KaZaA, Skype is the most popular VoIP application worldwide, and

it uses a distributed, P2P architecture to achieve high throughput and reliability for voice,

video, and instant message data. However, Skype uses a proprietary encryption scheme that

3

is enormously difficult reverse engineer (there have not been any fully successful attempts

so far), and is thus very hard to classify, making it extremely difficult to create a whitelist

signature for use in an intrusion detection system. In order to overcome this obstacle, this

paper focuses on the control or signaling protocol used by Skype to maintain its P2P overlay

network. Since the nodes in the Skype network must communicate regularly in order to

advertise that they still exist, the regularity of these transactions can be used to determine

what statistical features are exhibited by these keep-alive messages. In addition, Skype is

configured by default to start up when a client starts their machine, and therefore Skype

can be left running in the background, possibly without the client’s knowledge, while still

transmitting overlay control protocol but not voice, video, or instant message data.

Skype has two main classifications of nodes in its overlay network, supernodes and regular

nodes. Supernodes are machines that contain powerful system resources, high bandwidth,

and are not blocked by a NAT or firewall. The supernodes also form the actual P2P layer of

the Skype topology, since they are organized to facilitate routing between regular nodes, and

they maintain the structure of the network with regards to themselves and the regular nodes

which communicate with them. Therefore, the purpose of using these supernodes is to use

their generous resources to perform maintenance in the overlay network and to reroute data

traffic between nodes to improve the throughput for data streams. This is how Skype is able

to guarantee a high transfer rate with little delay and also provide reliability for their service.

However, this presents another challenge in the case of observing the control protocol, namely

that if an observed node is a supernode, it likely is transmitting data content from other

nodes as well as control traffic. In lieu of this obstacle, this paper addresses the issue of

examining only the overlay control protocol by observing that the aforementioned keep-alive

messages should have a very regular delay interval over a long period of time and a fairly

regular distribution for the size of the packets transmitted, whereas data traffic should have

4

“bursts” or periods of clustered packets followed by long periods of inactivity and variable

sized packets.

To facilitate observation of Skype control flows in action, a dataset containing network

traces of the Skype application was created that mimicked real-world Skype user behavior.

In addition, a dataset containing network traces of several P2P file-sharing applications was

also created, since not only was the intention to identify Skype control flows in a network

trace, but also to ensure that they were not similar enough to the control flows of other P2P

applications to create false positives given an unknown network trace. Therefore, the P2P

file-sharing applications were used to ensure that the stastical model created for the Skype

control flows was particular to Skype, and not statistically similar to other P2P control flows.

Using the regularity of the keep-alive messages in the Skype network, we were able to

identify many IPs which had persistent communication and also had very regular delay

intervals and packet distributions, allowing for the creation of a statistical model for these

control messages. This statistical model was used to create a dataset used for classifying

Skype control flows with several different classification algorithms: Decision Trees, Näıve

Bayes, k -Nearest Neighbor, and Support Vector Machines. Using these classifiers, we were

able to show high accuracy and low false positive rates when classifying Skype control flows

against the control flows of the other P2P applications in the dataset.

The contributions of this work are the two datasets containing network traces of two

experimental testbeds configured to perform as real-world P2P clients, one using Skype, and

one using four popular P2P file-sharing applications, and a statistical model for identifying

the Skype control flows in a network trace. In addition, the datasets used during classification

can be used for further classifcation schemes.

5

Chapter 2

Background and Related Work

2.1 Port-based Classification

The most basic form of classification for a network application is the identification of

well-known port numbers assigned by or registered with the Internet Assigned Numbers

Authority (IANA) [1]. The port numbers can then be examined to determine if a particular

application which employs a standard port number is running on a host machine. However,

according to Karagiannis, et al in [28], while originally port-based classification was possible

in early versions of P2P programs, most P2P programs now either configure a random

port upon initial installation, or allow the user to specify a port of their choice. In either

scenario, classification based on port number becomes impossible if the port number used

by the application is unknown.

Madhukar, et al show in [31] that when port-based classification was used for their clas-

sification studies on traces from 2003 to 2005, 10% to 30% of the traffic in their mixed

application traces belonged to unknown applications, and by Spring 2005, those numbers

had increased to 30% to 70%. Madhukar, et al attribute this unknown traffic to P2P appli-

cations which existed in the traces used but were unable to be identified. As Madhukar, et

6

al were also quick to point out, P2P applications were evolving rapidly during the time of

their study, which was evidenced by the increased amount of unknown traffic over the time

their traces were taken. P2P applications are eager to avoid detection for a variety of rea-

sons, including conflicts with ISPs over bandwidth usage and copyright issues with content

prolifically distributed with these applications, so the use of non-standard port numbers and

payload encryption has become commonplace for many P2P applications.

Port-based classification is particularly ineffective for Skype because during its initial

configuration upon installation, Skype chooses a random port to bind to in the upper port

range for its communication to other Skype nodes. Since the choice of port is random,

there is no heuristic way to determine which port may be using Skype. Also, due to the

mechanisms by which Skype performs NAT and firewall traversal, Skype may use port 80 or

443 for its communication, further obfuscating it with respect to classification by port.

2.2 Payload-based Classification

The employment of packet payloads for the purposes of classifying network applications

comes in the form of different varieties of deep packet inspection (DPI). In this method, the

packet payload is examined for either regular expression matches for different application-

layer protocols or content, or the packet payload is used to create a statistical signature for

the application-layer content of the packet. Regular expression searches tend to be much

faster than statistical signatures, due to the lack of overhead with respect to calculation of

the signature, but in general, DPI methods tend to be slow and create potential bottlenecks

for traffic in high-bandwidth networks when used for real-time applications, making them

unsuitable for real-time in-network classification.

In [33], Moore, et al propose a process by which a non-automated, iterative procedure is

used to classify traffic flows in a 24-hour trace. The authors start by classifying by IANA

7

port number, but show that by using this method 30% of the packets they observed could

not be attributed to a particular application or were misclassified as belonging to the wrong

application. The procedure then iterates through progressively more complex inspection of

the packet payload, beginning with the packet headers and eventually analyzing all of the

bytes in a given packet. Using this methodology, Moore, et al are able to show an extremely

high accuracy in classifying different types of applications, including P2P traffic, although

the last step of their iterative procedure involves human intervention to correctly classify

the traffic flow. Despite this high success rate, this work was done in 2005, and with the

dramatic increase in the amount of encrypted protocols for use with P2P applications since

then, even human inspection of the traffic flows may not render such good results today.

Another DPI method that has displayed successful results in the past is the creation of

regular expression signatures for known protocols in order to produce a match in packet

payloads. To illustrate the effectiveness of regular expression matching, in [38], Sen, et al

create regular expression signatures for eDonkey, KaZaA, BitTorrent, Gnutella, and Direct-

Connect, based on features in the application-level headers of TCP streams. The results are

very impressive, reaching a correct detection rate of over ninety-nine percent for most of the

applications in two network traces taken in 2003. However, since this work was done in 2004,

the application-level headers for the applications studied in this work have been modified,

and most now use some form of encryption.

In [31], Madhukar, et al use the regular expression signatures created in [38] by Sen,

et al to perform a comparison of port analysis, application signatures, and transport-layer

methods. The authors state that despite the accuracy of packet payload signature methods,

there are three primary issues with employing regular expression signatures for P2P applica-

tions. First, payloads may be unavailable for signature generation due to privacy regulations

which make accessing these payloads illegal. Second, the only way that payload signature

matching is effective is if the classifier knows what it is looking for, and since new P2P pro-

8

tocols are being created all the time, the classifier would need to be constantly updated with

new signatures. Third, encryption renders signature matching completely ineffective, and

many P2P applications now employ encryption to avoid detection. This last reason is why a

payload-based signature method is ineffective for use with Skype. Skype uses a proprietary

encryption mechanism to obfuscate the contents of the packets transmitted between nodes

in the Skype overlay network, making a payload signature impossible.

2.3 Flow-based Classification

In the absence of information from packet payloads, network flow behaviors have proven

to be a viable method to classify applications in a trace. Since P2P applications are based

on a distributed overlay network of nodes, this methodology proposes that the behaviors of

the network connections made between the nodes display some regular properties which can

then be used to identify them as P2P traffic.

Karagiannis, et al propose a method in [28] that specifically examines the flow behaviors

of P2P applications in order to perform classification. The authors used a trace containing a

variety of well-known P2P file-sharing applications to select relevant flow features, and then

derived a methodology for classifying these applications based on their flow behaviors. In the

first stage of their classification mechanism, the authors show that P2P applications typically

use both TCP and UDP transport-layer protocols for communication between nodes, so they

identify IP addresses which employ both of these protocols. In the second stage, they look

at the ratio of distinct IP addresses to which a host is connected to distinct port numbers

to which a host is connected in order to find IP address, port number pairs that have a one-

to-one ratio. Because P2P applications communicate with a large number of other nodes in

the overlay network and typically only have one connection to each node, the authors choose

the IP address to port number ratio as distinguishing feature since one IP address connected

9

to a single port is representative of this single connection behavior. Using this classification

scheme, Karigiannis, et al show that they are able to classify 90% of the packets seen in a

traces from May 2003 to April 2004 as P2P traffic, and that they are able to classify 99% of

the P2P flows correctly.

In [29], Karagiannis, et al extend the aforementioned work to create a general framework

for network applications that considers their behaviors at what the authors term the social

level, the functional level, and the application level. The social level takes into account a

host’s behavior with respect to other hosts, specifically how popular the host is and the

community of other hosts to which it is connected. The functional level examines if the host

behaves as a consumer or provider of services, or both in the case of P2P applications. The

application level deals with the transport-layer communications exhibited by a host, and flow

characteristics of the host’s behavior. The behaviors at the application layer are captured

in graphs, which the authors call “graphlets”, that are used to more accurately classify

applications based on their host behaviors. Using these three facets of host behavior, the

authors are able to classify 80% to 90% of the flows seen in three mixed application traces

from 2003 and 2004 with a 95% accuracy rate.

Hu, et al also find success when classifying P2P applications using flow statistics in [27]

by building application profiles which can be used to identify a particular application. The

authors propose a method by which a rule-based profile is built using flow characteristics of

P2P applications, and then applications are classified based on a host-level and flow-level

match. They point out that when constructing their rule sets, that there are two essential

difficulties with using flow properties to identify P2P applications. First, since P2P appli-

cations use network flows for varying purposes, for example to get peer information or to

transfer data, different flows in the same application may exhibit different flow characteris-

tics. Second, flows in a particular application may not have flow statistics specific to that

application, making per-flow statistics ambiguous for identifying a P2P application. Despite

10

these challenges, the authors are able to correctly classify both BitTorrent and PPLive in

network traces from October 2006 to November 2006 and September 2007 to October 2007

with over 92% accuracy in the case of TCP flows, and over 96% accuracy for UDP flows.

While flow behaviors are certainly related to the work on Skype being presented in this

paper, the methods for classifying applications above rely on human interaction in a non-

automated classification scheme to determine the correct application to which a flow belongs.

The goal of this paper, however, is to create a statistical signature for Skype control flows

that can be used in an automated system to identify Skype control traffic. Also, whereas the

previously mentioned approaches consider all types of traffic generated by an application,

both control traffic and data stream traffic, this work focuses only on the control traffic due

to Skype’s use of proprietary encryption measures.

2.4 Machine Learning Methods

Machine Learning encompasses a variety of different statistical methodologies used for

classification, ranging from clustering techniques that determine related features, to decision

trees that determine the gain ratio of the features, to Näıve Bayes classifiers which use a

probabilistic method to give a weighted probability to elements in the feature vector. One of

the most important elements of any Machine Learning technique is that of feature selection

for the problem domain. According to Li, et al, “a feature is a descriptive statistic to

characterize an object; and, ideally, each object exhibits different feature values depending

on the category to which it belongs.”[30] After the relevant features for the problem domain

have been chosen, these features can then be used to construct a model for a particular

object, and subsequently a classifier for recognizing this model among a given dataset.

One method that can aid in the discovery and selection of features to use for classification

is clustering, an unsupervised learning method which groups objects with similar features

11

into clusters based on a distance metric. In [37], Roughen, et al use the Nearest Neighbor and

Linear Discriminant Analysis classification techniques to group traffic flows into Classes-of-

Service for the purpose of examining flow behaviors to guarantee Quality-of-Service. Using

the average packet size and average flow duration as their target flow statistics, the authors

are able to successfully cluster the traffic flows from traces taken in 2001, 2003, and 2004

into four categories: Interactive, e.g. telnet, Bulk data transfer, e.g. FTP-data and KaZaA,

Streaming, and Transactional, e.g. DNS and HTTPS.

In [42], Zander, et al use the Autoclass Bayesian classifier to cluster network flows for

identifying network applications. They also examine which features are best suited to use for

classification, and use a set of features that includes packet inter-arrival time, packet length

mean and variance, flow size, and duration, and use sequential forward selection to evaluate

the contribution of each of the features for classification. While clustering the flows into their

respective applications, including FTP data, Telnet, SMTP, DNS, HTTP, AOL Messenger,

Napster, and the game Half-Life, the authors find that packet length is the most significant

of the features for the applications they chose. The authors achieve accuracy rates of over

85% on average when clustering the flows in to their respective application groups.

Erman, et al also facilitate a clustering process to classify network applications into cate-

gories using network flow statistics in [20]. The authors employ the use of K-Means clustering

to group network flows into clusters and then map them to their respective application cate-

gories using a distance measure heuristic. The results of their offline classification on traces

from 2006 are mixed, as the classifier performs well for HTTP, and Email, but performs

poorly for P2P traffic in one of the traces taken at a university campus. The authors state

that the low accuracy is due to the fact that there is a very small percentage of traffic present

in the trace that belongs to P2P applications, and that not enough examples were present

in order for the clustering mechanisms to work well.

12

Li, et al in [30] do a comparison study of port-based classification, DPI classification,

Näıve Bayes classifier for traffic flows, and a C4.5 tree for traffic flows. Their work focuses

on grouping network applications into categories rather than specific applications, since they

describe how protocols can be used to implement many applications of a given type. Using

a dataset of four day-long traces taken from two different sites and over a period of four

years from 2003 to 2007, their study finds that C4.5 trees produce far better results than the

other methods. However, the accuracy of this method declines overall by almost 10% when

comparing the day in 2003 to the day in 2006, especially in the category of “Bulk” traffic,

which includes file transfer data, where it dropped to as low as 35%. Since the authors point

out that their definition of “Bulk” traffic originated in [37], and since the definition given

in [37] includes FTP and KaZaA traffic, it would seem that this category would also surely

include misclassified P2P traffic which uses encryption mechanisms or unknown protocols.

Also, when using the model built with the 2006 dataset, the accuracy of classifying P2P

traffic in the 2007 dataset drops to 58%, and the authors attribute this reduction to the

fact that the P2P hosts in the 2007 trace are likely using newer versions of the P2P client

software.

Williams, et al compare five Machine Learning algorithms for classifying network flows

in [40], implemented using the Weka Machine Learning [2] suite. The authors test Bayesian

Network, C4.5 Decision Tree, Näıve Bayes using both discretisation (NBD) and kernel den-

sity estimation (NBK), and Näıve Bayes Tree for classifying six applications in traces taken

in 2001 and 2003. The features chosen to use with these methods were flow statistics which

included the protocol, flow duration, flow volume in bytes and packets, packet length (mini-

mum, mean, maximum and standard deviation), and the inter-arrival time between packets,

and these features are used to identify FTP, Telnet, SMTP, DNS, HTTP, and the game Half-

Life. The results produced by the algorithms show very high accuracy, over 95% for most

all but the Näıve Bayes classifiers. However, this work has some serious limitations since the

13

traces used were anonymized, so the authors had no way to verify that their classifications of

the applications were correct. Also, the authors chose the applications to classify based on

well-known port numbers, making the results inapplicable to current network applications

such as P2P file-sharing applications.

Since Machine Learning techniques have shown in the preceding literature to be viable

methods when coupled with flow characteristics to classify network applications, this work

employs a network flow-based approach which facilitates the use of a supervised learning

classifier to identify Skype control flows. However, unlike the aforementioned work, this

paper seeks to generate a flow signature specific to Skype control flows, not a category of

applications.

2.5 Classification of Skype

Previous research on Skype has been focused on both identification and classification,

since the encryption and obfuscation methods employed by Skype make the traffic produced

by the application very hard to decipher. However, none of these previous approaches

attempts to create a classification mechanism for the control traffic which maintains the

P2P infrastructure of Skype, but rather focus on other features for classification.

In terms of identification of Skype control flows, the amount of research is fairly slim. In

[15], Baset, et al describe the nature of the structure and operations of the Skype overlay

network, and discuss the methods by which Skype control traffic is able to traverse NATs and

firewalls, but offers little else about its behavior or content. While describing the nature of

Skype relay traffic wherein voice data is routed through an intermediary supernode, Suh, et

al briefly mention the control traffic in [39], only to state that they are explicitly ignoring it

for their measurements. Similarly, in [24], Guha, et al concern themselves with observing the

behavior of traffic routed through supernodes in order to better measure the Skype overlay

14

network, but again ignore the control traffic in favor of the actual data packets routed to the

supernodes.

The most significant amount of work done on identifying the properties of the Skype

control traffic are several works presented by Mellia, Meo, Rossi and others in [17], [36], [18],

and [35]. [36] and [35] are particularly dedicated to understanding the behaviors of Skype

control traffic, referred to in these sources as signaling traffic, while [17] and [18] offer a

more breadth-oriented view of Skype behavior in general with sections that summarize the

measurements presented in [36] and [35]. While these contributions offer much in the way

of understanding the behavior of Skype control traffic, the authors rely on a classification

technique they developed in [19] to identify Skype traffic flows and therefore determine which

flows do not belong to a data stream based on the bitrate and number of packets sent. The

classification scheme which they developed, however, is designed for use with payloads and

statistical qualities of Skype data traffic in mind, and therefore is not tailored to identify

Skype control flows.

The issue of classification is across the board focused solely on either packet payloads or

flow statistics that are related to the data transfer performed by Skype during voice, video,

or instant message streams. As previously mentioned, in [19] a Chi-Squared test on packet

payload and a Näıve Bayes classifier on the packet length and inter-packet gap are used to

classify Skype data traffic with good results, but these methods do not consider properties

of the control traffic for classification. In [21], Freire, et al measure the effectiveness of

using a Chi-Squared test on Skype traffic that has been re-routed through ports 80 and 443,

presumably because of firewalls or other impediments to the regular Skype flow, in order to

distinguish Skype from other web traffic. This work also focuses on data packet payload,

and does not consider control traffic perhaps because of the acknowledgement in [15] that

Skype control traffic is more robust to NATs and firewalls than its data traffic. Angevine,

et al use AdaBoost and C4.5 to classify Skype traffic in [14] using statistical measurements

15

of Skype traffic flows, but explicitly rule out any flows consisting of one packet, thereby

nullifying any chance of categorizing the control packets since in [36] and [35] the authors

show that single packet control notifications are not uncommon in the Skype overlay network.

A similar methodology is used in [13] by Alshammari, et al, but this time with a whole gamut

of machine learning techniques including the aforementioned AdaBoost and C4.5, but also

Support Vector Machines, Näıve Bayes, and RIPPER, a rule-based algorithm. Here the

single packet flows are not ruled out, but since the classifiers are using input data that

includes an overwhelming majority of data flows and since the features selected include

elements such as the number of packets per flow (incoming and outgoing) and packet length,

the control flows, being vastly different in these respects from the data flows, will surely

be misclassified. Considering all of these methodologies and their general disregard for the

control traffic produced by Skype, the issue of classifying Skype control traffic is still very

open for further investigation.

16

Chapter 3

Data Collection

3.1 Skype testbed

To accomplish the goal of creating a statistical signature for Skype control flows, the

effort to collect Skype traffic was required in order to generate a dataset that could be

used for reliable analysis. The goal of the setup for this dataset was to create as close to

real-world behaviors of the Skype clients in the testbed environment as possible, but in a

controlled manner that could be easily observed so that these behaviors could be used for

classification. Also, it was necessary to run Skype without interaction with other clients in

order to distinguish the control traffic from traffic generated during data streams.

In order to simulate a real-world Skype client’s environment, a total of nine machines

were used, configured into groups that would mimic typical user behavior. Since most Skype

users have some group “friend” connections that their Skype client communicates with,

we decided to recreate this situation through the formation of a graph structure used to

define the associations in the groups of “friend” clients. Shown in Figure 3.1, this graph

was designed to replicate a very small social network of nodes. In the graph, each vertex

represents one of the machines used in the experiment, and the edges represent “friend”

17

superlinux_1 superlinux_2

win7box_2 win7box_4

win7box_3

xpbox_2reglinux_1win7box_1

offcampusbox_1 xpbox_1

Figure 3.1: Friend associations in the Skype testbed environment.

connections between the machines. The boxes in the testbed environment were configured

to be “friends” with each other according to this particular graph structure in order to

generate traffic representative of the network of contacts a typical Skype user would have.

This graph structure was also used for several other purposes. The first was to discover

in the case that the machines designed to be supernodes actually became supernodes, if the

rest of the nodes in the graph would use these two machines as their point of contact with the

supernode overlay network. The second reason for the choice of this graph was that in both

subgraphs there exists a node which is not “friends” with the likely supernode connected

to the rest of the nodes in the subgraph. The facet of interest here was whether these

nodes not connected to the likely supernodes would still communicate with them, especially

if they were in fact supernodes, and if, in that case, they would use them as their default

supernode contact. The third reason for using this graph was that if the likely supernodes

were indeed promoted to supernodes, to examine whether the traffic routed through either

of these supernodes contained traffic from the other subgraph not connected to it.

18

The two machines used as candidates for promotion to supernodes in the Skype over-

lay network both had Intel i7 processors and 8 GB of RAM each and were given public

IP addresses in the university address space with the university firewall disabled. These

measures were used in order to increase the chances that these machines would become

supernodes due to their ample system resources, considerable bandwidth, and no firewall

restrictions. Both of these machines had a clean installation of Ubuntu 10.04 64-bit, and all

automatic updates, printer services, and all other applications disabled. These two machines

are designated superlinux 1 and superlinux 2 in Figure 3.1.

The other seven machines were configured behind a university-firewalled box configured to

create a Network Address Translation (NAT) interface to the other machines connected to it

through a switch. The machines behind the NAT were assigned addresses in different subnets,

and iptables rules were instituted to prevent these machines from communicating with

each other behind the NAT, in order to force them to use an outside node for communication

on the Skype network. This was done to again ensure typical real-world behavior, since most

users behind a NAT-ed router or other device typically communicate to nodes outside their

own NAT-ed address space. Four of the boxes ran Intel Core2 Duo processors with 2 GB of

RAM each, and had a clean install of Windows 7 32-bit with automatic updates disabled.

These machines are labeled win7box 1, win7box 2, win7box 3, and win7box 4 in Figure 3.1.

Another box had these same system resources, but had a clean install of Ubuntu 10.04 32-bit

with automatic updates, printer services, and all other applications disabled. This machine

is labeled reglinux 1 in Figure 3.1. The last two boxes had Pentium 4 processors with 1 GB

of RAM each and had Windows XP SP3 32-bit installed with automatic updates disabled.

These last machines are labeled xpbox 1 and xpbox 2 in Figure 3.1.

On all of the machines in the testbed environment, Skype was the only application run-

ning, other than the scripts used to generate user behavior, in order to ensure no interference

from other applications so that the traffic generated by Skype could be isolated. Also, since

19

192.168.2.2
win7box_1

192.168.1.2
win7box_2

192.168.0.4
reglinux_1

192.168.3.2
win7box_3

192.168.4.2
win7box_4

192.168.5.2
xpbox_2

192.168.6.2
xpbox_1

128.192.76.184
NAT box

128.192.76.182
superlinux_2

128.192.76.181
superlinux_1

University Network WAN

offcampusbox_1

Figure 3.2: Physical topology of the Skype testbed environment.

automatic updates and other services were disabled on all of the machines, this further

ensured that the network traces would likely only include traffic from Skype, and thereby

reducing noise from other applications in the traces for the dataset.

One other box was configured for use with this experiment, which was located off campus,

and was used to receive calls from the boxes in the testbed environment. This box had

Windows XP SP3 installed, and ran a script which answered incoming calls and subsequently

used iTunes to play talk radio from a local Atlanta station through the microphone to

simulate normal VoIP vocal communication. This machine is labeled offcampusbox 1 in

Figure 3.1. The physical topology of the Skype testbed environment is shown in Figure 3.2.

20

Boxes in the NAT were configured so that 2 boxes made calls to the off campus machine,

2 boxes sent instant messages to each other, and the rest simply ran Skype without any

other action. The idea was to capture the VoIP behavior of the Skype traces as well as the

instant messaging behaviors, since these are the typical functions for which users employ

Skype. By examining these behaviors against the control traffic, the assumption was that

the control traffic would become easier to isolate since it presumably does not exhibit the

same behaviors as the data stream traffic.

The challenge, then, was to artificially create client behavior that was believable enough

to make the traffic seem “real”. For this purpose, several scripts were written using AutoIt

[3], a Visual Basic-based scripting tool on the Windows platform which can be configured to

interact with graphical user interfaces. These scripts mimicked two types of normal usage

by Skype users, calls and instant messages. The two boxes in the testbed environment that

were designated to make VoIP calls did so at two hour intervals, and for either five or ten

minutes per call. The choice for these values was somewhat arbitrary, but seemed to be a

reasonably average length for a typical phone conversation. Since the box located off campus

was playing talk radio while the call was active, the boxes that initiated the calls had their

microphones positioned to pick up the speaker output from the call and play it back to

the receiving client, so that voice data was being carried over the data stream between the

boxes, as it would for a normal VoIP conversation. The two boxes that communicated with

each other through the use of instant messages did so at varying intervals, and sent differing

lengths of messages ranging from a few lines to around thirty lines. These two scripts were

also implemented so that the messages were delivered between the clients at fairly interleaved

intervals, so that it would more accurately represent the typical flow of an instant message

communication.

After all of the Skype machines were configured and running, the data collection process

suffered several plights. The most significant was a failure of the campus network over

21

intermittent intervals for two days, which not only interrupted the data collection process,

but resulted in a re-tooling of the AutoIt scripts to make them more robust to network

failures of this type. Also, this interruption prompted the installation of a script on one of

the likely supernode boxes that ran a periodic ping message in order to monitor network

availability. The other problems mostly involved configuration of the scripts, since nuances

of the Skype client interface made scripting troublesome for some actions. Skype employs

very few keyboard shortcut combinations, meaning that the scripts had to interact with

various portions of the client interface using directed mouse clicks to the GUI. Since the

Skype GUI is designed to be dynamically interactive with users, accommodations had to be

made in the scripts for elements that were repositioned during certain actions or behaved

differently if they were inactive for the periods between actions in the scripts. Despite these

troubles, the testbed was eventually brought to a state in which it could continue to collect

data indefinitely in an automated fashion, or until a Skype update or unexpected hardware

failure occurs.

3.2 P2P file-sharing testbed

Four applications were chosen to use for the creation of the P2P file-sharing dataset,

based on the protocols they employ: µTorrent and Vuze, which both use BitTorrent, Frost-

Wire, which uses Gnutella, and eMule which uses eDonkey. Although other P2P file-sharing

protocols exist, the BitTorrent, Gnutella, and eDonkey protocols are the most popular for

freely distributed client software. The clients chosen for the three protocols were selected

because they are currently the most popular of the clients for each of the respective proto-

cols, and more than one BitTorrent client was chosen since BitTorrent is currently the most

widely used of the protocols, and we wanted to examine different implementations to identify

any discrepancies in network behavior between clients which use the BitTorrent protocol.

22

The BitTorrent protocol uses the distribution of parts of files in the “swarm” of nodes in

the BitTorrent network to achieve high availability of files for download. The protocol relies

on the use of .torrent files which contain information about the peers in the “swarm” which

currently have parts of a file available for download. These .torrent files are propagated

through the use of web servers called “trackers” which serve the .torrent files, usually on

ad-laden websites, and keep track of which peers are seeding which pieces of the file in the

network. Downloading a file in a BitTorrent network is a matter of searching trackers and

finding the desired file, then downloading the corresponding .torrent file, at which point the

BitTorrent client is able to identify from which peers in the swarm to download parts of the

file.

The eDonkey protocol is another server-based protocol, in which files are split in to

chunks and identified based on an MD4 sum, and made available on servers in the network.

Any client can install the server software on their machine, making the eDonkey network,

also known as eDonkey 2000, or eD2k, a decentralized architecture since it does not rely on a

few centralized servers to keep information about the files in the network. As an addendum

to the eDonkey protocol, eMule also uses an implementation of the Kademlia distributed

hash table (DHT) for locating files on other peers in the network, and the use of this DHT

allows for faster lookup of files in the network. Unlike BitTorrent, peers to make a direct

file-transfer connection to download an entire file from another peer, instead of downloading

pieces of a file from many peers.

The Gnutella protocol, on the other hand, does not rely on centralized tracker servers.

It instead uses a fully decentralized architecture, and much like Skype, each client stores

a list of active “ultrapeers”, usually numbering around three, with which it communicates.

These ultrapeers store the address of other ultrapeers with which to perform file queries.

When a client searches for a desired file, it queries the active ultrapeers in its internal list

to find desired files, and if none of these ultrapeers have the desired file, they subsequently

23

University Network

192.168.4.2
p2pbox_4

192.168.3.2
p2pbox_3

192.168.2.2
p2pbox_2

192.168.1.2
p2pbox_1

128.192.76.183
NAT box

Figure 3.3: Physical topology of the P2P file-sharing testbed environment.

query their active sibling ultrapeers, which then query the non-ultrapeers they communicate

with. The peers which have the file then make a file transfer connection with the peer that

originally queried for the file, and like eDonkey, download the entire file from the other peer.

Five machines were used to create the testbed for P2P file-sharing applications, all of

which had Intel Core2 Duo processors and 2GB of RAM. The four machines used to act as

P2P clients each had a clean install of Windows XP SP3 with automatic updates disabled,

and the machine used as the NAT for the rest of the machines had a clean install of Ubuntu

Server 10.10. The physical topology of the P2P file-sharing testbed environment is shown in

Figure 3.3, and the machines used as the clients for the applications are labeled p2pbox 1,

p2pbox 2, p2pbox 3, and p2pbox 4.

24

Table 3.1: Fake multimedia files created for use with the P2P clients

Name size (bytes)
Archer.S02E05.HDTV.Rip.avi 190840832
born.this.way.lady.gaga.mp3 3276800
COD-Black-Ops-Keygen.exe 470244
DeadSpace2KeyGen.exe 1052747
Forget You Cee Lo.mp3 3276800
Glee.S02E13.HDTV.Rip.avi 182452224
glee baby.mp3 3276800
Glee Somebody To Love.mp3 3276800
House.S07E10.HDTV.Rip.avi 202375168
Justin-Bieber-Never-Say-Never.mp3 3276800
katy.perry.firework.mp3 3276800
Rihanna-S&M.mp3 3276800
Sipser.Theory.of.Computation.Solutions.Manual.pdf 6553600
wowkeygen.exe 907389
Yogi Bear Movie 2010.avi 759169024

The original intention was for each application to run on the client machines for 7 days,

and to use AutoIt scripts on the client machines to simulate real-world user behavior of file

downloads. In order to avoid copyright issues, the first method for sharing and downloading

files used was to create fake files that resembled media commonly sought by other peers before

the data collection began by manipulating public domain research papers from arxiv.org [4].

These .pdf files downloaded from arxiv.org were then renamed as popular media in order

to entice other file-sharing peers to download them in order to create more traffic during

the experiment. Using the Unix dd function, the file sizes were then padded to resemble

realistic file sizes of the media they spoofed. In all, 15 files were created, and their names

and sizes are listed in Table 3.1. Although this seemed to be a very beneficial approach, it

introduced a few challenges. First, one of the machines had to be dedicated as a “seeding”

client who simply uploaded files to the other clients, while the rest of the clients downloaded

25

files at random intervals. The reason for this was to ensure two things: first, that the files

were actually seeded and available over the network when the scripts running on the clients

attempted to download them, and second, in order to verify that these non-copyrighted files

were indeed the correct files, so that copyrighted material was not accidentally downloaded

instead.

Despite overcoming these limitations during the initial implementation, these measures

were quickly revised after initial setup of the testbed environment, because after the testbed

was configured and two days’ worth of µTorrent data had been collected, the university

implemented new IPS rules in the university firewall which blocked all incoming .torrent file

downloads into the network. The decision was then made that if a solution could be found

to allow exceptions in the firewall, that to avoid any further complications, only open-source

software would be downloaded and shared from the clients in the testbed environment. The

scripts were then re-written to accommodate this alteration, except for FrostWire, due to

the limited availability of reliably non-malware files found during searches for open-source

software on this client. After a lengthy ongoing discussion with the administrators of the

university firewall for several weeks, eventually some modifications had to be made to the

setup of the machines in the testbed environment due to time constraints. The issue with

the firewall rules disallowing .torrent file downloads was not resolved, but a workaround was

developed for the BitTorrent clients, and both the eMule and FrostWire clients were able

to perform their regular functionality despite the firewall issues. The decision was made to

run these applications side by side in the testbed environment, with two boxes running each

application, in order to collect as much traffic as possible for each application in the time

given for the project. The eMule and FrostWire clients were therefore run in parallel for

7 days, and the BitTorrent clients were also run in parallel for 7 days. Below are detailed

accounts for the configuration of each of the clients.

26

3.2.1 µTorrent

µTorrent is the most popular BitTorrent client available today, and it promotes itself

as “a (very) tiny BitTorrent client”. This was the first client configured for the testbed

environment, and it was during the setup and initial days of data collection of µTorrent that

the aforementioned hurdles with the AutoIt scripts and faked .torrent files were addressed

and overcome. The faked .torrent files were uploaded to two different prominent trackers,

and the URLs for the .torrent files from these trackers were used in the scripts. One of

the boxes was configured to simply seed the files so that the trackers would not remove the

links from their sites, as they are apt to do in the case of a file which no peers are currently

distributing. The other three boxes were scripted to download the files at varying intervals,

and the scripts were written to take into account the fact that as more of the boxes in the

testbed environment downloaded and subsequently seeded the files, more parts of the files

would be available to the box downloading the file.

As mentioned previously, after two days of data collection, the university firewall IPS

rules were instated, and all subsequent .torrent file downloads were canceled. Therefore, in

accordance with the desire to avoid further issue with the university’s firewall policies, the

scripts were rewritten to download only open-source content, including several versions of

Ubuntu Linux, several versions of Fedora Linux, Debian Linux, and Open Office. In the

revised scripts, all four boxes downloaded these files at varying intervals, and the URLs for

the .torrent files were provided from the same well-known trackers to which the faked .torrent

files were uploaded. After the files downloaded, the clients then seeded this content to the

rest of the network to generate upload traffic on the client.

In order to still collect traffic for the BitTorrent clients in lieu of the university firewall

rules, the .torrent files for the open source programs listed above were downloaded off campus

and then transferred to the BitTorrent clients manually. Since the firewall rules only blocked

incoming .torrent file downloads, the clients were able to function as normal despite the lack

27

of interaction with a tracker server. There was no discernable difference in the behavior

of the clients when the .torrent files were not downloaded from a tracker, so this measure

proved to be extremely fruitful for the purposes of data collection.

3.2.2 Vuze

Vuze is a popular Java-based BitTorrent client which was formerly known as Azureus.

The AutoIt scripts written for the Vuze clients were designed to perform the same basic

actions as the µTorrent clients, downloading the same open-source files from the same tracker

URLs, but using the semantics of the Vuze application. Due to the university firewall rules

preventing the download of .torrent files, the .torrent files were downloaded off campus and

then manually transferred to the clients as was done with the µTorrent clients, since both

applications share the same basic functionality.

3.2.3 eMule

eMule is the most popular client application which employs the eDonkey network. It

also uses the Kademlia DHT to locate files in the network. Unlike the other clients which

have only one listening port for incoming connections, eMule uses two ports, a TCP listening

port for the eD2k network of eDonkey servers, and a UDP listening port for the Kademlia

network. The Kademlia DHT is used for significantly reducing the search time to find files

in the network, since only O(log(n)) peers in the network are queried for the existence of a

desired file.

eMule’s operation was not affected by the university firewall after some adjustments were

made, so the scripts were written to download the same open-source software distributions

listed above, Ubuntu, Fedora, Debian, and Open Office. These files were scripted to be

28

downloaded at varying intervals, and after their completion, would then seed these files to

rest of the eMule network, creating upload traffic on the client.

3.2.4 FrostWire

FrostWire uses a combination of the Gnutella network and BitTorrent, and is the most

popular remaining Gnutella-based client. It is a sibling software to the very popular LimeWire

file-sharing application, which was the most popular Gnutella-based client for several years.

Originally, LimeWire was intended for use with this project, but as of October 26, 2010, a

federal court order shut down distribution of the LimeWire client software. In lieu of this

action, FrostWire was selected for use with this work.

However, using FrostWire proved to be very challenging when designing scripts to mimic

user behavior. The controls on FrostWire’s graphical user interface were not recognizable

to the AutoIt script, and the AutoIt script could not be configured to direct input to the

FrostWire GUI window. This condition therefore preempted the use of scripts for mimicking

user behavior, but this turned out to be a fitting correlation with another of the troubles with

FrostWire, namely that when developing the scripts, finding open-source files for download

was difficult at best, and when some were found, they turned out to be malware, as reported

by the anti-virus software installed on the machine used to develop the scripts. The decision

was then made to alter some of the conditions of the dataset, and allow for the downloading

of potentially copyrighted content, but only capture 150 bytes of packet payload so as to

not capture the packets in their entirety during the trace, and to erase the files from disk

immediately upon download. This way, the content could not be reconstructed from the

packet payloads found in the dataset, and the content would not be hosted to other peers

from the machines in the testbed environment. Since the statistical flow behaviors were of

main concern during the analysis of the traces, not capturing the entire packet content did

not present a significant setback while analyzing the datasets.

29

Table 3.2: Size of Data Collected for Each Testbed Environment

Application Machine Amount of Data Collected Dates Collected

Skype NAT 11GB 1/31/2011-4/22/2011
superlinux 1 3.3GB
superlinux 2 3.0GB

eMule p2pbox 1 19GB 3/26/2011-4/3/2011
p2pbox 3 20GB

FrostWire p2pbox 2 6GB 3/26/2011-4/3/2011
p2pbox 4 5.1GB

µTorrent p2pbox 1 33.1GB 4/3/2011-4/11/2011
p2pbox 3 19.9GB

Vuze p2pbox 2 10.6GB 4/3/2011-4/11/2011
p2pbox 4 8.3GB

Various video content was downloaded based on availability in the network, and upon

completion, the files were deleted from the disk. The faked files mentioned previously were

used to create upload traffic by sharing them in the designated folder of the FrostWire clients.

This circumvented the issue of distributing copyrighted material over the FrostWire network,

and it gave a useful purpose for the created files.

3.3 Amount of Traffic Collected

Table 3.2 shows the totals for the traffic collected in the Skype and P2P file-sharing

testbed environments. The totals comprise 11 weeks worth of Skype network traces, and 7

days of network traces for each of the P2P file-sharing applications. As is apparent from the

totals, the Skype clients generate far less network traffic even when data streams are present

than the file-sharing programs, and despite the fact that only 150 bytes are being captured

from each packet in the file-sharing traces.

30

Table 3.3: Total Packets Collected in Each Trace

Application Machine TCP UDP

Skype reglinux 1 323203 148913
win7box 1 857842 27865148
win7box 2 1050746 67959
win7box 3 908681 157083
win7box 4 406976 149384
xpbox 1 958740 27895117
xpbox 2 321413 271306

superlinux 1 1439502 1173215
superlinux 2 410145 164684

eMule p2pbox 1 112146047 3374431
p2pbox 3 119109333 3993447

FrostWire p2pbox 2 31701557 7392566
p2pbox 4 26256448 6744909

µTorrent p2pbox 1 33399975 204060033
p2pbox 3 32993651 114145758

Vuze p2pbox 2 41691671 20480443
p2pbox 4 31235095 19935152

In Table 3.3, the total number of packets seen in each trace are shown, divided by protocol.

According to the packet totals, Skype uses primarily TCP connections for instant message

traffic, and UDP streams for VoIP calls. The P2P file-sharing applications generate far more

traffic than the Skype clients, despite the fact that they ran for only 7 days each, as opposed

to 11 weeks of Skype traffic. However, since the P2P file-sharing applications were searching

for and downloading files from many different peers in their networks, it stands to reason

that they should generate a great deal more traffic than the Skype clients, since at most the

Skype clients are actively communicating with only one other peer in the case of the boxes

performing calling and instant messaging behaviors.

31

Chapter 4

Data Analysis

4.1 Behavioral Analysis

While analyzing the network traces, a few facets of the Skype testbed environment were

of particular interest, namely if there was any indication that the machines designed to

be promoted to supernodes displayed network traffic indicative of a supernode status, and

which boxes inside the group behind the NAT communicated with these likely supernodes.

In order to examine the Skype traces for finding the features we were looking for, a Python

script which extracted values for the mean and standard deviation of the bytes per packet

and delay between packets for all flows in the traces which contained more than 100 packets

was run on the traces in order to observe the general behaviors exhibited by the flows. Upon

studying the output of this script, it became clear that while one of designed supernode

boxes (superlinux 1) displayed a highly increased number of connections with many more

IPs than the other boxes, the other designed supernode (superlinux 2) displayed the same

behaviors as the two machines in the NAT which did not run any Skype data traffic. Also,

whereas superlinux 1 showed many flows to and from the NAT, superlinux 2 showed no flows

to or from the NAT. Therefore, we concluded that while it is likely that superlinux 1 was

32

promoted to supernode status, superlinux 2 was not, and that due to the promotion of the

machine to supernode status and the observation of flows to and from the NAT, some of the

overlay control traffic for the NAT machines was created by or routed through superlinux 1.

In addition to this observation, we also identified several types of likely control flows that

existed across the traces for the machines in the testbed environment. The first of these

control flows were TCP flows which transmitted a few bytes per packet and had very regular

intervals, and were transmitted from a variety of different university IP addresses. The second

type of control flow we observed were UDP flows which carried a very consistent packet

size, were transmitted in regular intervals, and like the TCP flows, came from university

IP addresses. However, these UDP flows also existed between the boxes in the NAT that

were “friends” with the machine promoted to supernode status, whereas there were no TCP

connections between the boxes. Therefore, it seemed likely that since “friends” in the Skype

network must communicate their status as online or offline to the other “friends”, that these

UDP flows transmitted this information. On the Windows machines, there was another

consistent TCP flow which exibited very similar behavior to the other TCP flows, but came

from IP addresses registered to Skype.

Another property of the network traces of interest was the port usage for Skype and

the P2P file-sharing programs. Figure 4.1 shows the port usage for the machines running

Skype in the NAT, and the two designed supernodes. As is evidenced by these figures, the

port usage for the Skype application is typically split between the lower port ranges and

the 40000 to 60000 range. This is due to the fact that Skype uses ports 80 and 443 to do

NAT and firewall traversal, but also sets a static listening port in the upper port range upon

initial setup. Thus, in the case of the two machines not behind the university firewall, there

is very little traffic on the lower port range, and there is one port which sees much more

traffic than the others. In the case of the NAT, there are a small handful of ports which

are clearly preferred for usage, and a very large number at 80 and 443. However, there is

33

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r

of
 F

lo
w

s

Port Number

(a) NAT environment

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r

of
 F

lo
w

s

Port Number

(b) superlinux 1, likely promoted to supernode

 0

 50000

 100000

 150000

 200000

 250000

 0 10000 20000 30000 40000 50000 60000 70000

N
um

be
r

of
 F

lo
w

s

Port Number

(c) superlinux 2, not promoted to supernode

Figure 4.1: Port usage of the machines running Skype.

also a generous amount of traffic on ports in the lower range other than 80 and 443, and

it is unclear from observation of the traffic why this is so, but since it occurs only for the

boxes behind the NAT, it seems likely to be an artifact of Skype’s NAT and firewall traversal

functions.

In the case of the P2P file-sharing programs, each program has a listening port in the

upper port range configured upon initial setup, and eMule has two separate listening ports

configured, one TCP port for the eD2k network, and one UDP port for the Kad network.

Figure 4.2 shows the port usage for each of the P2P file-sharing programs, and the BitTorrent

34

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

N
um

be
r

of
 F

lo
w

s

Port Number

(a) µTorrent

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 10000 20000 30000 40000 50000 60000

N
um

be
r

of
 F

lo
w

s

Port Number

(b) Vuze

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
um

be
r

of
 F

lo
w

s

Port Number

(c) eMule

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r

of
 F

lo
w

s

Port Number

(d) FrostWire

Figure 4.2: Port usage of the machines running P2P file-sharing applications.

clients clearly use the listening ports assigned to them for almost all of their traffic flows.

However, in the case of eMule, the port in the upper range assigned for the UDP listening

port for the Kad network seems to not be used at all in favor of the TCP ports assigned to

the machines. The other odd piece to the eMule port usage is that no ports in the upper

range are used, which is especially puzzling since the UDP listening port is assigned in that

range, but the range in which the TCP listening ports are assigned do show port usage.

FrostWire also displays some interesting port usage properties, as the two higher ports on

the graph, 39000 and 49000 were the listening ports configured for the clients, but there

35

are other ports which see a lot of traffic, which could be due to search functionality in the

Gnutella network, or that FrostWire uses these ports to listen for incoming connections, but

initiates connections to other peers on one of the heavily used ports in the graph.

4.2 Statistical Model

In order to create a statistical model for the Skype control flows, we used three basic

premises to identify the Skype control traffic in the traces, which included the fact that the

size of the packets in the control traffic should be more or less constant, the packets should

exhibit a strong periodic behavior, and that the duration of the communication should be

long-lived. These premises were derived from the fact that in any P2P overlay network,

the nodes must send “hearbeat” or “keep-alive” messages to inform the other nodes in

the network that they are still online. Since these “heartbeat” messages are intended only

to advertise that the host is alive, the size of the packets should not vary much. Also,

the “heartbeat” messages must come at regular intervals, and the communication between

hosts must persist for the duration that the hosts are online in order to be aware of each

other. Conversely, any data stream traffic trasmitted over the P2P network should exibit

the properties of having “bursts” of packets, which may not conform to a particular uniform

packet size or periodic behavior, and are likely to be short-lived.

Due to the identification of the classes of flows mentioned above, the assumptions made

for these premises seemed to be confirmed by the flow behaviors in the traces. All of the

machines in the testbed environment had flows which met the three criteria listed above

for our definition of control protocol flows, and the boxes that were trasmitting voice and

instant message data additionally contained flows which matched our definition of data

stream behavior. Given these confirmations of the premises for identification of the control

36

protocol flows, we set about extracting a statistical model from the traces to be used for

training the classifiers.

The first decision to be made about the statisical model was the time window to be

used for capturing statistical flow behaviors. We chose one hour as the decision window

for analyzing a flow for two important reasons. The first was that despite the fact that we

were using an offline classification method, anything longer than an hour seemed to be too

long to make a decision in any classification scheme, since in a typical intrusion detection

system (IDS), decisions about flows are made much more quickly than say, a day’s worth

of flow data. However, using any time window shorter than an hour may have excluded

some control flows, and since our classification scheme was based on the flow statistics, not

on a regular expression match or payload analysis, an hour seemed to meet the condition

for brevity without losing vital data. The second reason was that anything greater than an

hour would have reduced the number of labeled instances in the dataset used for training

the classifier, and since we hoped to maximize the number of labeled instances used during

classification, an hour seemed an appropriate choice given the constraint of requiring enough

time to account for statistical flow behaviors.

After selecting a time window for the instances in the statistical model, several consid-

erations had to be made for the features to be included in the dataset. The first features

chosen were the protocol, TCP or UDP, the bytes per packet (BPP) and the inter-packet

delay (IPD), or time between packets, since these values gave information about the size and

periodicity of the “heartbeat” messages. The mean, standard deviation, and median of the

BPP and IPD were used in the statistical model in order to capture the distributions of these

values over the hour time window. The intuition was that the distributions for these two

values in the case of the control traffic should be very similar between instances. The other

features chosen were the number of flows in the given hour-long window (FPH), the number

of packets per flow (PPF), and the number of bytes per flow (BPF). The mean, standard

37

Table 4.1: Feature Vector for Skype Control Flows

0) IP
1) Protocol
2) FPH
3) mean(PPF)
4) std(PPF)
5) med(PPF)
6) mean(BPP)
7) std(BPP)
8) med(BPP)
9) mean(IPD)
10) std(IPD)
11) med(IPD)
12) mean(BPF)
13) std(BPF)
14) med(BPF)

deviation, and median of the latter two features were included in the statisical model, again

to capture the distributions of these values over the hour time window. The complete feature

vector is shown in Table 4.1.

A Python script was implemented to extract the relevant features for the dataset, using

the Python dpkt module and Argus [5], a software tool for flow analysis of a network trace.

Argus was specifically used for calculating values such as the FPH, PPF, and BPF. This

same script was used with the P2P file-sharing traces, since we assumed the same intuitions

about the properties of the control traffic for the P2P file-sharing applications, based on the

fact that they also employ a P2P architecture and therefore must also rely on “hearbeat”

messages to maintain their overlay network. The output of the script were instances of each

IP which matched the flow properties of the premises mentioned above, and their values for

the features listed above at each hour they matched the criteria.

38

In order to determine which IPs matched the given criteria, the IPs were filtered based

on the flow behaviors they exhibited. First, the IP address and port were used to identify

“bursty” flows by putting the inter-packet delay values into bins, and then calculating if

these values belonged mostly to one bin. The bin size was set to 5 minutes, and in order to

exclude these “bursty” flows, if 90% or more of the values were less than 1 second, the flow

was discarded. Next, the flows were examined based only on IP address, and not by port as

well, in order to examine the packet sizes of the flows irrespective of whether multiple ports

were used during potential control traffic flows. The bytes per packet for one IP were placed

into bins of 30 bytes, and the number of packets per bin in relation to the total number of

packets was used to decide whether to keep the flows. However, to account for flows that

potentially straddled a bin boundary, the bins were aggregated into sets of three, and if 90%

or more of the packets were in the same aggregated bin, the flow was kept. Last, the time

difference between the first timestamp an IP was seen in the trace and the last timestamp

an IP was seen in the trace in the hour window was used to ensure that the flows persisted

for at least 90% of the hour time window in order to keep them.

The script was run on the traces for 9 weeks worth of Skype traffic, and was run for all of

the flows incoming and outgoing for each box. This was done to ensure that the behavior of

the ping/pong element of the “heartbeat” messages was captured in the statistical model,

since the machines have to respond to the “heartbeat” messages sent by the other peers in

the network. The script generated 41,069 instances of Skype control traffic flows to be used

for classification.

The script was also run on each of the P2P file-sharing traces, and in total processed 7

days’ worth of traffic for each application, with 2 boxes per application. During this feature

extraction on the traces, 84,680 instances for the P2P applications were derived. The script

generated 14,179 instances for µTorrent, 32,062 instances for Vuze, 27,274 instances for

eMule, and 11,165 instances for FrostWire.

39

Table 4.2: Percentage of Total Traffic Belonging to Control Flows for Skype Clients

Client TCP UDP

reglinux 1 81.8% 2.03%
win7box 1 23.05% 0.002%
win7box 2 20.45% 1.02%
win7box 3 22.35% 0.2%
win7box 4 47.71% 1.83%
xpbox 1 20.93% 0.002%
xpbox 2 57.68% 1.57%
superlinux 1 22.03% 3.31%
superlinux 2 60.71% 8.53%

4.3 Control Flow Totals

After the features were extracted, one item of interest was how much traffic was labeled

as control flows in the traces for Skype and for the other applications. Table 4.2 shows the

total amount of control traffic for TCP and UDP flows in the traces for each of the Skype

clients. From Table 4.2 we can see that the boxes running no VoIP or instant messaging

data streams have a very large percentage of TCP traffic attributed to control flows, which is

to be expected, and the boxes running data streams have considerably lower percentages of

TCP control flows. These percentages also aid in confirmation of superlinux 1’s promotion

to supernode status and that superlinux 2 was not promoted to supernode status, since

superlinux 1 exhibits properties similar to the boxes with data streams, and superlinux 2

exhibits properties similar to the boxes only running Skype in the background. Another

interesting property of these totals is that UDP data is a very small portion of the control

traffic for the boxes behind the NAT, and it is only slightly higher for the boxes outside the

NAT. The UDP traffic is also a much higher percentage of the traffic for those boxes not

running data streams.

40

Table 4.3: Percentage of Total Traffic Belonging to Control Flows for P2P File-sharing
Clients

Application Client TCP UDP

eMule p2pbox 1 8.23% 3.71%
p2pbox 3 11.87% 3.28%

FrostWire p2pbox 2 7.9% 12.62%
p2pbox 4 8.2% 11.38%

µTorrent p2pbox 1 30.32% 0.1%
p2pbox 3 21.15% 0.12%

Vuze p2pbox 2 25.37% 45.45%
p2pbox 4 22.8% 42.75%

Table 4.3 shows the total amount of control traffic for the P2P file-sharing applications

for the two machines running the application. According to the results, eMule runs a mix of

TCP and UDP control traffic, but has considerably more TCP control traffic. FrostWire also

uses a mix of TCP and UDP, but uses UDP more prominently for its control flows. µTorrent

uses TCP almost exclusively, and the control traffic is of a much higher percentage for both

BitTorrent clients than for the other protocols. Vuze shows much more UDP control flows

than TCP control flows, and like the other BitTorrent client, the control traffic comprises a

significant portion of the total network flows.

41

Chapter 5

Classification and Results

5.1 Classifiers

Four classifiers were used to test how well the statistical model was able to distinguish the

Skype control traffic flows from the P2P file-sharing flows, and the classifiers were chosen

because they have shown to be effective for classifying network flows in previous work.

These selected classifiers were implemented through the use of the Weka Machine Learning

package [2], and included Decision Trees, Näıve Bayes, k -Nearest Neighbor, and Support

Vector Machines (SVM). Since Weka has no native SVM package, the libSVM package [6]

was used, imported into Weka.

Decision Trees use a gain ratio measure to determine which feature in a feature vector

most evenly divides all of the instances, and then repeatedly uses this scheme with all

of the features to create a tree in a very short amount of time that is human-readable

and fast to traverse. Näıve Bayes classifiers measure the probability that a feature in the

feature vector is a positive or negative example given some set of training data, and use

the “näıve” assumption of conditional independence for each trial, or feature, in the feature

vector to calculate overall probability that the instance is positive or negative. k -Nearest

42

Neighbor classifiers are “lazy” learning classifiers which do clustering based on a weighted

vote between the k nearest points to the instance being classified. Support Vector Machines

map a highly dimensional feature vector to a linearly separable space, and use a Maximum

Margin Hyperplane to separate the instances into one category or another based on the

points, or Support Vectors, closest to the Maximum Margin Hyperplane.

The dataset used with the classifiers was comprised of all of the Skype instances extracted,

along with all of the P2P file-sharing application instances that were extracted. In all, the

dataset contained 125,749 instances to be fed into the classifiers. In order to prevent over-

fitting to the training data in the classifiers, 10-fold cross-validation was used for each of the

classifiers.

Due to the computational complexity of generating a model with the SVMs, a subset of

the data was used in order to significantly reduce the time to generate the model. Two days of

each P2P file-sharing application were used, which amounted to 3217 instances for µTorrent,

4139 instances for Vuze, 3352 instances for eMule, and 1775 instances for FrostWire. To

fairly sample from the Skype data so that all of the clients in the testbed environment were

represented in the classification dataset, the 12,482 instances to be sampled were divided

equally amongst the Skype clients, and then randomly sampled from each client, half from

TCP instances and half from UDP instances. After balancing the dataset, a total of 24,965

instances were fed to the SVM classifier.

Four measures were used to evaluate the classifiers, accuracy, true positive rate, false

positive rate, and precision. The accuracy is the number of predictions that are correct

divided by the total number of instances, and is important because it tells us how well

the classifiers did overall. The true positive rate measures how well the classifiers did in

classifying Skype as Skype and P2P traffic as P2P traffic, and similarly, the false positive

rate measures how well the classifiers did in not classifying Skype as P2P traffic or P2P

43

Table 5.1: Skype vs. Non-Skype

Classifier True Positive Rate False Positive Rate Precision Overall Accuracy

J48 Decision Tree 99.8% 0.2% 99.8% 99.8767%
IBK kNN, k=1 99.6% 0.2% 99.6% 99.7702%
Näıve Bayes 98.9% 28.0% 63.1% 80.7513%
SVM 56.2% 0.0% 100% 78.1013%

traffic as Skype. The precision tells us out of the instances classified as belonging to Skype

or P2P traffic, how many were correctly classified.

5.2 Results

5.2.1 Classification

Two different initial experiments were run using this dataset on these classifiers. In the

first experiment, the instances were labeled as “1” for Skype and “-1” for non-Skype in order

to determine how well the classifiers would do in identifying Skype against all of the other

P2P traffic. Table 5.1 shows the results of this experiment, and as is apparent, the Decision

Tree and the k -Nearest Neighbor classifier produced very similar high overall accuracy and

low false positive rates for Skype. The Näıve Bayes classifier performed only slightly worse

the Decision Tree and k -Nearest Neighbor for the true positive rate, but the false positive

rate was extremely high, and the overall accuracy was the lowest of the classifiers. Näıve

Bayes also yielded a poor precision for Skype. The SVM clearly performed much worse than

the rest of the classifiers for the true positive rate of Skype, but the instances it classified as

Skype were always correct, as indicated by the precision. Given these results, the easiest to

44

Table 5.2: Each Application Labeled

Classifier Application True Positive Rate False Positive Rate Precision Overall Accuracy

J48 Decision Tree Skype 99.8% 0.1% 99.8% 97.7336%
eMule 98.5% 0.6% 97.7%

FrostWire 93.9% 0.6% 94.3%
Vuze 96.7% 0.9% 97.2%

µTorrent 95.7% 0.6% 95.6%
IBK kNN, k=1 Skype 99.6% 0.2% 99.7% 92.0143%

eMule 92.1% 1.9% 93.0%
FrostWire 77.0% 2.4% 75.7%

Vuze 89.5% 3.8% 88.9%
µTorrent 87.2% 1.5% 88.0%

Näıve Bayes Skype 98.9% 25.8% 65.1% 41.3427%
eMule 9.6% 0.6% 81.0%

FrostWire 60.9% 41.8% 12.4%
Vuze 1.6% 1.8% 23.4%

µTorrent 10.4% 1.6% 45.9%
SVM Skype 51.3% 0.0% 100% 49.9647%

eMule 29.2% 0.1% 98.8%
FrostWire 15.3% 0.1% 96.8%

Vuze 99.9% 66.0% 32.8%
µTorrent 24.6% 0.0% 99.6%

use classifiers, Decision Tree and k -Nearest Neighbor, are the clear winners, and performed

remarkably well on the dataset.

In the second experiment, each instance was labeled according to which application it

belonged, in order to determine if there would be a significant difference in the results if the

outcome was not a binary classification. Also, since the more general goal of this work was

to create a statistical model to recognize P2P applications, we were interested to see how

well the classifiers did on the features extracted for the other P2P applications. The same

data reduction measures used in the first experiment for the SVM classifier had to be taken

during this experiment due to computational complexity.

The results of the second experiment are shown in Table 5.2, and the Decision Tree again

performed the best on this dataset. The Decision Tree was surprisingly effective at not only

45

Table 5.3: Skype vs. Non-Skype with Correlation-Based Feature Selection

Features Used: Protocol, FPH, med(PPF), med(BPP)
Classifier True Positive Rate False Positive Rate Precision Overall Accuracy

J48 Decision Tree 99.1% 0.3% 99.4% 99.5101%
IBK kNN, k=1 99.1% 0.3% 99.4% 99.5149%
Näıve Bayes 93.6% 45.3% 50.1% 67.4304%

classifying the Skype traffic correctly, but also the other P2P traffic as well. Unfortunately,

the other classifiers did not fare quite as well. Although the k -Nearest Neighbor classifier

performed almost as well as the Decision Tree on Skype, it had some trouble distinguishing

between the other applications, most notably FrostWire. Since FrostWire had the smallest

number of instances in the dataset, this is perhaps not so surprising. The other two classifiers

performed very poorly with this dataset, most notably Näıve Bayes, which fared much worse

than the other classifiers. The low accuracy of the Näıve Bayes classifier and the SVM clearly

shows that these classifiers are not a very good choice for use with this type of flow data.

However, since the Decision Tree performed the best for this experiment and the previous

experiment, it is clearly effective for both binary and multi-class classification for identifying

these control flow signatures.

5.2.2 Feature Selection

In order to determine whether all of the features in the feature vector were relevant

in classifying Skype control flows, two different types of Feature Selection were performed.

The first method was Correlation-Based Feature Selection, which was performed by using

the associated package in Weka, and a subset of four features was returned by this Feature

Selection mechanism as the necessary features for classification: Protocol, Flows Per Hour,

46

Table 5.4: Skype vs. Non-Skype with Features Selected From First Three Levels of the
Decision Tree

Features Used: Protocol, mean(BPP), mean(IPD), std(IPD), mean(BPF), med(BPF)
Classifier True Positive Rate False Positive Rate Precision Overall Accuracy

J48 Decision Tree 99.7% 0.1% 99.7% 99.8107%
IBK kNN, k=1 99.4% 0.3% 99.3% 99.5555%
Näıve Bayes 98.9% 50.7% 48.6% 65.4963%

Median of Packets Per Flow, Median of Bytes Per Packet. Table 5.3 shows the results of

running the classifiers on the Skype vs. Non-Skype dataset with only these four features

included. Due to the computational complexity of running the SVM, and due to its poor

results, the SVM was omitted for the subsequent experiments. Since the results for the other

classifiers are very similar to the results gained by using all of the features, using this feature

subset is proven successful.

The second feature selection method used was based on the Decision Tree created during

the first experiment using the Skype vs. Non-Skype dataset with all of the features included;

this Decision Tree is shown in Appendix C. In order to find the relevant features, the features

found in the first three levels of the Decision Tree were used, and included Protocol, Mean of

Bytes Per Flow, Median of Bytes Per Flow, Mean of Bytes Per Packet, Standard Deviation

of Inter-packet Delay, and Mean of Inter-packet Delay. The results of running the Skype vs.

Non-Skype dataset with these features is shown in Table 5.4, and as with the other feature

selection method, the results are very similar to the results with all features included, again

verifying that this is a successful choice for feature selection.

47

Table 5.5: Skype vs. Non-Skype with Varying Time Window Values

Time Window Classifier True Positive Rate False Positive Rate Precision Overall Accuracy

5 minutes J48 Decision Tree 99.8% 0.4% 99.8% 99.7436%
IBK kNN, k=1 99.8% 0.9% 99.6% 99.6011%
Näıve Bayes 98.2% 46.7% 82.6% 84.371%

2 minutes J48 Decision Tree 98.8% 0.3% 98.5% 99.5564%
IBK kNN, k=1 96.4% 1.2% 94.3% 98.4368%
Näıve Bayes 95.8% 67.1% 22.0% 43.3038%

60 seconds J48 Decision Tree - - - -
IBK kNN, k=1 - - - -
Näıve Bayes - - - -

5.2.3 Time Window Selection

Another property of interest for classification was the time window used to extract the

features. Since we were interested in long-lived connections, the natural question was, how

long is long-lived? Since we wanted to determine whether our time window was an appro-

priate choice, we first extracted features from a subset of the data with the time window set

to five minutes, and then ran the classifiers again. The results are shown in Table 5.5, and

are very similar to the results for the one hour time window, so it seems the selection for the

time window may have been too generous. We wanted to test the limit to the size of the time

window, so we reduced it further, this time to two minutes, and ran the classifiers again.

The results in Table 5.5 again indicate that since the results are very similar to those with

the one hour time window that a time window of as little as two minutes captures enough

behaviors of the Skype control flows to be able to classify successfully. We then reduced

the time window even further, to sixty seconds, but this time the feature extraction resulted

in no meaningful data. This is likely due to the fact that according to our analysis of the

Skype control flows, the time interval between control flows is between 1.5 to 2 minutes.

Therefore, by setting the feature extraction time window too small to capture these flows,

our statistical model cannot effectively capture the control flow behavior at this time win-

48

dow. A time window of two minutes therefore seems to be the optimal value with which to

do classification of Skype control flows.

5.3 Discussion

The high accuracy rates for the the Decision Tree and k -Nearest Neighbor classifiers are

indicative that our statistical model is robust enough to effectively identify Skype control

flows. This is essential to our goal of creating a statistical model for Skype control flows,

since the high accuracy rates indicate that our statistical model is effective in identifying

Skype. The false positive rates for the Decision Tree and k -Nearest Neighbor classifiers is

also particularly reassuring because it shows that Skype can be very accurately classified

using our statistical model, but is also not often confused with the other P2P applications

in the dataset. This is important since our overall goal is to create a statistical model for

the Skype control flows, and a low false positive rate ensures that if a statistical model such

as this one was used for detecting future Skype control flows in the case of a firewall or

IPS, that other applications would not be misclassified as Skype and therefore allowed to

continue potentially malicious behavior. Also, since the Decision Tree performs well for the

other P2P applications on the multi-labeled dataset, this indicates that creating statistical

model for other P2P applications should be possible.

A small subset of the features is also effective for identifying the Skype control flows, and

a time window of 2 minutes is sufficient to accurately identify them as well. These values

could be optimized further, but this is left to future work. Also left to future work is the

issue of why Näıve Bayes and the SVM performed so poorly with these datasets. Since their

accuracy was far lower than the other classifiers, perhaps measures can be taken to adjust

the parameters of these two classifiers to produce better results with these datasets.

49

Chapter 6

Conclusion

In this paper we have presented a classification scheme for identifying Skype overlay

control flows in a network trace. By constructing a dataset containing real-world Skype

traces, we were able to analyze the behavioral features of the Skype control flows and create

a statistical model for the flow behaviors. Using this statistical model, we created a dataset

which could be used to perform classification of these control flows. In order to ensure

the robustness of the statistical model, we also created a dataset containing real-world P2P

file-sharing traces, so that we could verify that the statistical model for the Skype control

flows was particular to the Skype application. During classification, we employed Decision

Trees, Näıve Bayes, k -Nearest Neighbor, and Support Vector Machines to determine how

effective our statistical model was with respect to identifying the Skype control flows against

other P2P control flows. We showed very accurate results, with a 99.87% accuracy and 0.2%

false positive rate, indicating that the statistical model created here effectively captures the

behavior of the Skype overlay control flows.

Since this statistical model has proven effective with Skype overlay control flows, the

likelihood of creating similar models for other P2P applications seems promising. This makes

the task of identifying known valid P2P applications a tangible reality, and presents the first

50

step towards using identification of known P2P applications to disallow potentially malicious

P2P traffic, specifically traffic generated by P2P botnets. This type of identification method

can also be used to perform a behavioral comparison between P2P botnet network activity

and valid P2P network activity, in order to more accurately identify P2P botnet channels,

but this is left to future work.

51

Bibliography

[1] http://www.iana.org.

[2] http://www.cs.waikato.ac.nz/ml/weka/.

[3] http://www.autoitscript.com/site/autoit/.

[4] http://arxiv.org.

[5] http://www.qosient.com/argus/.

[6] http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

[7] http://www.skype.com.

[8] http://www.utorrent.com.

[9] http://www.vuze.com.

[10] http://www.limewire.com.

[11] http://www.frostwire.com.

[12] http://www.emule-project.net.

[13] Alshammari, R., and Zincir-Heywood, A. N. Machine learning based encryption

traffic classification: Identifying ssh and skype. In CISDA ’09: Proceedings of the Second

52

IEEE International Conference on Computational Intelligence for Security and Defense

Applications (Piscataway, New Jersey, 2009).

[14] Angevine, D., and Zincir-Heywood, A. N. A preliminary investigation of skype

traffic classification using a minimalist feature set. In ARES ’08: Proceedings of the

Third International Conference on Availability, Reliability and Security (Washington,

DC, 2008).

[15] Baset, S. A., and Schulzrinne, H. An analysis of the skype peer-to-peer internet

telephony protocol. In IEEE Infocom ’06 (Barcelona, Spain, April 2006).

[16] Biondi, P., and Desclaux, F. Silver needle in the skype.

[17] Bonfiglio, D., Mellia, M., Meo, M., and Ritacca, N. Tracking down skype

traffic. In IEEE INFOCOM ’08 (Phoenix, Arizona, April 2008).

[18] Bonfiglio, D., Mellia, M., Meo, M., and Rossi, D. Detailed analysis of skype

traffic. IEEE Transactions on Multimedia 11, 1 (January 2009).

[19] Bonfiglio, D., Mellia, M., Meo, M., Rossi, D., and Tofanelli, P. Revealing

skype traffic: When randomness plays with you. In ACM SIGCOMM ’07 (Kyoto,

Japan, August 2006).

[20] Erman, J., Mahanti, A., Arlitt, M., Cohen, I., and Williamson, C. Of-

fline/realtime traffic classification using semi-supervised learning. Performance Evalu-

ation 64 (October 2007).

[21] Freire, E., Ziviani, A., and Salles, R. Detecting skype flows in web traffic. In

IEEE Network Operations and Management Symposium (August 2008).

[22] Grizzard, J. B., Sharma, V., Nunnery, C., Kang, B. B., and Dagon, D.

Peer-to-peer botnets: Overview and case study. In USENIX HotBots (2007).

53

[23] Gu, G., Perdisci, R., Zhang, J., and Lee, W. Botminer: Clustering analysis of

network traffic for protocol- and structure-independent botnet detection. In USENIX

Security (2008).

[24] Guha, S., Daswani, N., and Jain, R. An experimental study of the skype peer-

to-peer voip system. In 5th International Workshop on Peer-to-Peer Systems (Santa

Barbara, California, Feburary 2006).

[25] Haq, I. U., Ali, S., Khan, H., and Khayam, S. A. What is the impact of p2p

traffic on anomaly detection? Recent Advances in Intrusion Detection: Lecture Notes

in Computer Science 6307/2010 (2010), 1–17.

[26] Holz, T., Steine, M., Dahl, F., Biersack, E., and Freiling, F. Measurements

and mitigation of peer-to-peer-based botnets: A case study on storm worm. In USENIX

LEET (2008).

[27] Hu, Y., Chiu, D.-M., and Lui, J. C. Profiling and identification of p2p traffic.

Computer Networks 53 (2009), 849863.

[28] Karagiannis, T., Broido, A., Faloutsos, M., and Claffy, K. Transport layer

identification of p2p traffic. In IMC’04 (Taormina, Sicily, Italy, October 2004).

[29] Karagiannis, T., Papagiannaki, K., and Faloutsos, M. Blinc: Multilevel traffic

classification in the dark. In SIGCOMM05 (Philadelphia, Pennsylvania, August 2005).

[30] Li, W., Canini, M., Moore, A. W., and Bolla, R. Efficient application iden-

tification and the temporal and spatial stability of classification schema. Computer

Networks 53 (2009), 790809.

[31] Madhukar, A., and Williamson, C. A longitudinal study of p2p traffic classifica-

tion. In MASCOTS06 (Monterey, California, August 2006).

54

[32] Mitchell, T. M. Machine Learning. WCB/McGraw-Hill, 1997.

[33] Moore, A. W., and Papagiannaki, K. Toward the accurate identification of net-

work applications. In PAM05 (Boston, Massachusetts, 2005).

[34] Nappa, A., Fattori, A., Balduzzi, M., DellAmico, M., and Cavallaro, L.

Take a deep breath: a stealthy, resilient and cost-effective botnet using skype. In

Proceedings of the 7th international conference on Detection of intrusions and malware,

and vulnerability assessment (2010), DIMVA’10.

[35] Rossi, D., Mellia, M., and Meo, M. Following skype signaling footsteps. In IEEE

Telecommunication Networking Workshop on QoS in Multiservice IP Networks (April

2008), IT-NEWS.

[36] Rossi, D., Mellia, M., and Meo, M. Understanding skype signaling. Computer

Networks (November 2008).

[37] Roughan, M., Sen, S., Spatscheck, O., and Duffield, N. Class-of-service

mapping for qos: A statistical signature-based approach to ip traffic classification. In

IMC04 (Taormina, Sicily, Italy, October 2004).

[38] Sen, S., Spatscheck, O., and Wang, D. Accurate, scalable in-network identifica-

tion of p2p traffic using application signatures. In WWW2004 (New York, New York,

May 2004).

[39] Suh, K., Figueiredo, D., Kurose, J., and Towsley, D. Characterizing and

detecting relayed traffic: A case study using skype. In IEEE INFOCOM ’06 (Barcelona,

Spain, April 2006).

55

[40] Williams, N., Zander, S., and Armitage, G. A preliminary performance compar-

ison of five machine learning algorithms for practical ip traffic flow classification. ACM

SIGCOMM Computer Communication Review 36, 5 (October 2006).

[41] Witten, I. H., and Frank, E. Data Mining: Practical Machine Learning Tools and

Techniques, second ed. Elsevier Inc., 2005.

[42] Zander, S., Nguyen, T., and Armitage, G. Automated traffic classification and

application identification using machine learning. In LCN05 (Sydney, Australia, Novem-

ber 2005).

[43] Zhang, J., Perdisci, R., Lee, W., Sarfraz, U., and Luo, X. Detecting stealthy

p2p botnets using statistical traffic fingerprints. In DSN-DCCS ’11 (Hong Kong, China,

June 2011).

56

Appendix A

README for Skype Dataset

*****Skype client information*****

Client login names:

superlinux_1

superlinux_2

reglinux_1

win7box_1

win7box_2

win7box_3

win7box_4

xpbox_1

xpbox_2

offcampusbox_1

Password for all clients is Ugalab537

All clients registered to cbmeyer@uga.edu

*****Hardware info*****

superlinux boxes both have Intel i7 vPro QuadCore 2.80GHz processors,

8GB of RAM

All 4 win7 boxes and reglinux have Intel Core2 Duo 2.13GHz processors,

2GB of RAM

Both xp boxes have Intel Pentium 4 3.00GHz processors, 1GB of RAM

*****IP configuration*****

natbox 128.192.76.184

57

reglinux_1 192.168.0.4

win7box_1 192.168.2.2

win7box_2 192.168.1.2

win7box_3 192.168.3.2

win7box_4 192.168.4.2

xpbox_1 192.168.6.2

xpbox_2 192.168.5.2

superlinux_1 128.192.76.181

superlinux_2 128.192.76.182

offcampusbox_1 97.81.96.137

Each box in the NAT is on its own subnet to prevent communication

between the clients behind the NAT.

*****iptables rules for natbox*****

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

iptables -A FORWARD -s 192.168.0.0/16 -d 192.168.0.0/16 -j DROP

Additionally, the eth0 interface is multi-homed to provide

the default gateway for each of the NATed boxes:

eth1 128.192.76.184

eth0 192.168.0.1

eth0:1 192.168.1.1

eth0:2 192.168.2.1

eth0:3 192.168.3.1

eth0:4 192.168.4.1

eth0:5 192.168.5.1

eth0:6 192.168.6.1

*****tcpdump script*****

Running on superlinux_1, superlinux_2, and the NAT box, scheduled as a

cron job to run at midnight every day.

#! /bin/bash

DATE=$(date +"%Y%m%d")

/usr/bin/killall tcpdump

/usr/bin/nohup /usr/sbin/tcpdump -i eth0 -n -nn -X -s 0 -w $DATE.pcap &

*****ping daemon*****

58

Running on superlinux_2 to determine network availability/latency.

Started 2/17/2011.

#! /bin/bash

while [1]

do

ping -c 5 8.8.8.8

sleep 10

done

*****AutoIt script configurations*****

Calling boxes:

IMPORTANT NOTE - Make sure to enable hotkeys in Skype

(Tools->Options->Advanced->Hotkeys) for use with the calling scripts.

win7box_1 Upon initiation of the script, enters an infinite loop in

which it places a call for 10 minutes then ends the call,

waits for 2 hours 5 minutes, places a call for 5 minutes

then ends the call, waits for 2 hours 10 minutes, and

repeats. The reason for the additional time in the 2 hour

waiting period is to avoid collisions with the other box

making calls. By waiting during the duration of the other

box’s calls, collisions can be avoided.

xpbox_1 Upon initiation of the script, waits for 1 hour 10 minutes,

then enters an infinite loop in which it places a call

for 5 minutes then ends the call, waits for 2 hours 10 minutes,

places a call for 10 minutes then ends the call, waits for

2 hours 5 minutes, and repeats. The collision avoidance

measures are present in the wait times for this script as

in the other so that they work in concert.

Both calling boxes also have microphones hooked up that are positioned

under the speaker on the underside of the machine. The receiving box

off campus will play an iTunes radio feed to simulate voice data over

the Skype network, so the microphones are positioned to pick up the

radio feed so that it will be played back to the receiving box.

Receiving box:

offcampusbox_1 Requires iTunes to run alongside Skype,

specifically with iTunes radio open. Any talk radio station

will do. The script waits in background for an incoming call,

59

then answers the call and presses play on iTunes radio to start

a radio feed. It waits 10 minutes then presses stop on iTunes

to stop the radio feed.

IM boxes:

win7box_2 Upon initiation of the script, enters an infinite loop in

which it sends a short message, waits 10 minutes, sends a long

message, waits 2 hours, sends a long message, waits 1 hour,

sends a short message, waits 2 hours, and repeats. The timing

measures in this script are designed to be complimentary to

the script on win7box_2, so that they communicate in a

back-and-forth manner.

win7box_3 Upon initiation of the script, enters an infinite loop in

which it sends a short message, waits 10 minutes, sends a long

message, waits 2 hours, sends a long message, waits 1 hour,

sends a short message, waits 2 hours, and repeats. The timing

measures in this script are designed to be complimentary to

the script on win7box_3, so that they communicate in a

back-and-forth manner.

*****Notes*****

1/31/2011-2/1/2011

Forgot to disable auto-update for reglinux_1

- gvfsd-http 91.189.89.31, 91.189.89.106, gnome vfs daemon

- fixed 2:25PM 2/1/2011

2/10/2011

Network failure at offcampusbox_1 from 2:30AM-2:30PM

2/14/2011

Campus network failure from 10:30AM-11:00AM

Slow/stopped again 2:00PM

2/15/2011

Campus network slow/stopped again 2:00PM

2/17/2011

Working on scripts

Ping daemon initiated

tcpdump cron job initiated

60

2/18/2011-3/21-2011

win7box_2 sending IMs to wrong client, win7box_4 instead of win7box_3

3/28/2011-3/30/2011

win7box_2 offline as of 4:21, CAT5 cord slightly pulled out

fixed 3/30 @ 1:25

in the interim, win7box_3 sending instant messages to win7box_4

3/31/2011-4/1/2011

superlinux_1 offline, possible dhcp failure?

noticed 9:15AM, fixed 9:35AM

4/5/2011-4/6/2011

superlinux_2 offline, same issue as with superlinux_1

from behavior of win7box_2, offline from 1:18PM on 4/5,

fixed 11:16AM 4/6

due to superlinux_2 failure, win7box_2 sending instant messages

to win7box_4

61

Appendix B

README for P2P File-Sharing

Dataset

*****Hardware info*****

All 4 boxes have Intel Core2 Duo 2.13GHz processors, 2GB of RAM

*****IP configuration*****

natbox 128.192.76.183

p2pbox_1 192.168.1.2

p2pbox_2 192.168.2.2

p2pbox_3 192.168.3.2

p2pbox_4 192.168.4.2

Each box in the NAT is on it’s own subnet to prevent communication

between the clients behind the NAT.

**LOGIN FOR p2pnatbox is natbox

*****iptables rules for natbox*****

for eMule/FrostWire setup

*nat

:PREROUTING ACCEPT [2607038:331546498]

:OUTPUT ACCEPT [40:2720]

:POSTROUTING ACCEPT [0:0]

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p tcp --dport 13000 -j DNAT

62

--to-destination 192.168.1.2:13000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p udp --dport 31000 -j DNAT

--to-destination 192.168.1.2:31000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p udp --dport 39000 -j DNAT

--to-destination 192.168.2.2:39000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p tcp --dport 39000 -j DNAT

--to-destination 192.168.2.2:39000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p tcp --dport 15000 -j DNAT

--to-destination 192.168.3.2:15000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p udp --dport 51000 -j DNAT

--to-destination 192.168.3.2:51000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p udp --dport 49000 -j DNAT

--to-destination 192.168.4.2:49000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p tcp --dport 49000 -j DNAT

--to-destination 192.168.4.2:49000

-A POSTROUTING -s 192.168.4.2/32 -p tcp --sport 49000 -j SNAT

--to-source 128.192.76.183:49000

-A POSTROUTING -s 192.168.4.2/32 -p udp --sport 49000 -j SNAT

--to-source 128.192.76.183:49000

-A POSTROUTING -s 192.168.3.2/32 -p tcp --sport 15000 -j SNAT

--to-source 128.192.76.183:15000

-A POSTROUTING -s 192.168.3.2/32 -p udp --sport 51000 -j SNAT

--to-source 128.192.76.183:51000

-A POSTROUTING -s 192.168.2.2/32 -p tcp --sport 39000 -j SNAT

--to-source 128.192.76.183:39000

-A POSTROUTING -s 192.168.2.2/32 -p udp --sport 39000 -j SNAT

--to-source 128.192.76.183:39000

-A POSTROUTING -s 192.168.1.2/32 -p tcp --sport 13000 -j SNAT

--to-source 128.192.76.183:13000

-A POSTROUTING -s 192.168.1.2/32 -p udp --sport 31000 -j SNAT

--to-source 128.192.76.183:31000

#

-A POSTROUTING -s 192.168.0.0/16 -j MASQUERADE

-A POSTROUTING -o eth0 -j MASQUERADE

for uTorrent/Vuze setup

*nat

:PREROUTING ACCEPT [2607038:331546498]

:OUTPUT ACCEPT [40:2720]

:POSTROUTING ACCEPT [0:0]

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p tcp --dport 21000 -j DNAT

--to-destination 192.168.1.2:21000

63

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p udp --dport 21000 -j DNAT

--to-destination 192.168.1.2:21000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p udp --dport 32000 -j DNAT

--to-destination 192.168.2.2:32000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p tcp --dport 32000 -j DNAT

--to-destination 192.168.2.2:32000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p tcp --dport 41000 -j DNAT

--to-destination 192.168.3.2:41000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p udp --dport 41000 -j DNAT

--to-destination 192.168.3.2:41000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p udp --dport 52000 -j DNAT

--to-destination 192.168.4.2:52000

-A PREROUTING -d 128.192.76.183/32 -i eth0 -p tcp --dport 52000 -j DNAT

--to-destination 192.168.4.2:52000

-A POSTROUTING -s 192.168.4.2/32 -p tcp --sport 52000 -j SNAT

--to-source 128.192.76.183:52000

-A POSTROUTING -s 192.168.4.2/32 -p udp --sport 52000 -j SNAT

--to-source 128.192.76.183:52000

-A POSTROUTING -s 192.168.3.2/32 -p tcp --sport 41000 -j SNAT

--to-source 128.192.76.183:41000

-A POSTROUTING -s 192.168.3.2/32 -p udp --sport 41000 -j SNAT

--to-source 128.192.76.183:41000

-A POSTROUTING -s 192.168.2.2/32 -p tcp --sport 32000 -j SNAT

--to-source 128.192.76.183:32000

-A POSTROUTING -s 192.168.2.2/32 -p udp --sport 32000 -j SNAT

--to-source 128.192.76.183:32000

-A POSTROUTING -s 192.168.1.2/32 -p tcp --sport 21000 -j SNAT

--to-source 128.192.76.183:21000

-A POSTROUTING -s 192.168.1.2/32 -p udp --sport 21000 -j SNAT

--to-source 128.192.76.183:21000

#

-A POSTROUTING -s 192.168.0.0/16 -j MASQUERADE

-A POSTROUTING -o eth0 -j MASQUERADE

Additionally, the eth0 interface is multi-homed to provide the default

gateway for each of the NATed boxes:

eth0 128.192.76.183

eth0:0 192.168.1.1

eth0:1 192.168.2.1

eth0:2 192.168.3.1

eth0:3 192.168.4.1

64

*****tcpdump script*****

Running on natbox

#! /bin/bash

DATE=$(/bin/date +"%Y%m%d%k")

LAST=$(/bin/cat /home/natbox/last.txt)

/usr/bin/killall tcpdump

/usr/bin/nohup /usr/sbin/tcpdump -i eth0 -n -nn -X -s 0 not tcp port 22

-w public_ip.$DATE.pcap &

/usr/bin/nohup /usr/sbin/tcpdump -i eth0:0 -n -nn -X -s 0 not tcp port 22

-w p2pbox1.$DATE.pcap &

/usr/bin/nohup /usr/sbin/tcpdump -i eth0:1 -n -nn -X -s 0 not tcp port 22

-w p2pbox2.$DATE.pcap &

/usr/bin/nohup /usr/sbin/tcpdump -i eth0:2 -n -nn -X -s 0 not tcp port 22

-w p2pbox3.$DATE.pcap &

/usr/bin/nohup /usr/sbin/tcpdump -i eth0:3 -n -nn -X -s 0 not tcp port 22

-w p2pbox4.$DATE.pcap &

/usr/bin/scp /home/natbox/p2pbox*.$LAST.pcap brett@128.192.76.184:~/

/usr/bin/scp /home/natbox/public_ip.$LAST.pcap brett@128.192.76.184:~/

/bin/rm /home/natbox/p2pbox*.$LAST.pcap

/bin/rm /home/natbox/public_ip.$LAST.pcap

/bin/echo $DATE > /home/natbox/last.txt

*****AutoIt script configuration*****

For each the P2P clients, the clients must be configured to use different

ports than the ports used for the other applications.

eMule

Run on boxes 192.168.1.2 & 192.168.3.2

The script is named emule, and it searches for the following open source

software on the Kad network, and downloads it:

Ubuntu 10.10

Ubuntu 10.10 server

Ubuntu 10.04

Ubuntu 9.10

Ubuntu 8.04

Ubuntu 7.10

Fedora 10

65

Fedora 11

Fedora 12

Fedora 13

Fedora 14

Debian

Open Office

Under "Options->Connection" the "Capacities" fields were set to 1000KB/s for

Download and 512KB/s for Upload.

To use the script, under the "Search" tab, the "Type" field must be specified

as "CD-Image" so that only the relevant files being searched for are returned.

Before the script is started, the "Transfers" tab must be selected.

uTorrent

Run on boxes 192.168.1.2 & 192.168.3.2

The script is named "utest", and is configured with the URLs of the torrents

to be downloaded, and the URLs are from BTJunkie and The Pirate Bay.

Vuze

Run on boxes 192.168.2.2 & 192.168.4.2

The script is named "vuze", Same script configuration as with uTorrent, but

with semantics of Vuze.

FrostWire

Run on boxes 192.168.2.2 & 192.168.4.2

AutoIt script will not interact with the GUI. Must do downloads manually.

Chose a variety of .avi files to download due to size and availability.

Mostly chose search terms "glee", "greys anatomy", and "house".

"Fake" files are served to other users in

C:\Documents and Settings\Administrator\My Documents\FrostWire\Shared

To share files, go to "Library" tab, "Shared" under "Shared Files", right

click each file and select "Share File"

Scheduled Task running on boxes 2 & 4, runs at 12:00AM every day.

Administrator password: p2pbox

rmstuff.bat

del "C:\Documents and Settings\Administrator\My Documents\FrostWire\Saved*"

*****Notes*****

66

3/2/2011

Problems with firewall rules began.

3/26/2011

eMule and FrostWire data collection began

4/3/2011

eMule and FrostWire data collection ended ~10:56AM

uTorrent and Vuze collection began ~12:00PM

4/4/2011-4/5/2011

p2pnatbox not sending data to natbox, no space left on device

began 2:00PM on 4/4, fixed 2:00PM 4/5

4/11/2011

uTorrent and Vuze collection ended ~12:00PM

67

Appendix C

Decision Tree Created From J48

Decision Tree Classifier

J48 pruned tree

proto = tcp

| meanbpf <= 1522.5

| | meanipd <= 101.139433

| | | fph <= 41

| | | | stdipd <= 56.83446

| | | | | medbpp <= 54.5: 1 (35290.0)

| | | | | medbpp > 54.5

| | | | | | stdbpp <= 23.084597: -1 (12.0)

| | | | | | stdbpp > 23.084597: 1 (44.0)

| | | | stdipd > 56.83446

| | | | | stdbpp <= 6.462752

| | | | | | meanbpp <= 47.818182

| | | | | | | stdppf <= 2.484619: 1 (4.0)

| | | | | | | stdppf > 2.484619: -1 (2.0)

| | | | | | meanbpp > 47.818182: -1 (108.0)

| | | | | stdbpp > 6.462752

| | | | | | stdipd <= 248.27924

| | | | | | | medbpp <= 57.5

| | | | | | | | medbpp <= 47: 1 (22.0)

68

| | | | | | | | medbpp > 47

| | | | | | | | | meanipd <= 82.63717

| | | | | | | | | | stdbpp <= 156.07976

| | | | | | | | | | | medipd <= 0.478459: 1 (30.0)

| | | | | | | | | | | medipd > 0.478459

| | | | | | | | | | | | medbpp <= 52.5

| | | | | | | | | | | | | stdppf <= 6.898683

| | | | | | | | | | | | | | meanbpf <= 329.833333: 1 (4.0/1.0)

| | | | | | | | | | | | | | meanbpf > 329.833333: -1 (11.0)

| | | | | | | | | | | | | stdppf > 6.898683: 1 (4.0)

| | | | | | | | | | | | medbpp > 52.5: 1 (10.0)

| | | | | | | | | | stdbpp > 156.07976: -1 (6.0)

| | | | | | | | | meanipd > 82.63717: -1 (16.0)

| | | | | | | medbpp > 57.5: -1 (17.0)

| | | | | | stdipd > 248.27924

| | | | | | | medppf <= 12.5: 1 (193.0/1.0)

| | | | | | | medppf > 12.5

| | | | | | | | stdppf <= 6.22703: 1 (9.0)

| | | | | | | | stdppf > 6.22703: -1 (2.0)

| | | fph > 41

| | | | medppf <= 10.5

| | | | | stdbpp <= 21.821075: -1 (783.0)

| | | | | stdbpp > 21.821075

| | | | | | fph <= 56

| | | | | | | stdipd <= 64.398123: 1 (10.0)

| | | | | | | stdipd > 64.398123: -1 (6.0)

| | | | | | fph > 56: -1 (61.0)

| | | | medppf > 10.5

| | | | | medbpp <= 70

| | | | | | fph <= 79: 1 (24.0)

| | | | | | fph > 79: -1 (2.0)

| | | | | medbpp > 70: -1 (41.0)

| | meanipd > 101.139433

| | | stdbpp <= 8.202697

| | | | medbpp <= 59: -1 (2790.0/1.0)

| | | | medbpp > 59

| | | | | medbpp <= 61

| | | | | | medppf <= 6: 1 (3.0)

| | | | | | medppf > 6: -1 (2.0)

| | | | | medbpp > 61: -1 (59.0)

| | | stdbpp > 8.202697

| | | | medipd <= 29.50867: -1 (109.0)

69

| | | | medipd > 29.50867

| | | | | meanbpp <= 76.405405

| | | | | | medipd <= 120.504646

| | | | | | | fph <= 21: 1 (130.0)

| | | | | | | fph > 21

| | | | | | | | medppf <= 6: 1 (21.0)

| | | | | | | | medppf > 6: -1 (4.0)

| | | | | | medipd > 120.504646: -1 (9.0/1.0)

| | | | | meanbpp > 76.405405: -1 (35.0)

| meanbpf > 1522.5

| | medbpf <= 1322

| | | medppf <= 10

| | | | meanbpf <= 1652.9625

| | | | | stdppf <= 14.159251: -1 (18.0)

| | | | | stdppf > 14.159251: 1 (13.0)

| | | | meanbpf > 1652.9625

| | | | | fph <= 35

| | | | | | meanipd <= 32.22501

| | | | | | | meanbpf <= 4135.736434: 1 (8.0)

| | | | | | | meanbpf > 4135.736434: -1 (18.0)

| | | | | | meanipd > 32.22501: -1 (89.0)

| | | | | fph > 35: -1 (311.0)

| | | medppf > 10

| | | | medbpf <= 743: 1 (62.0/1.0)

| | | | medbpf > 743

| | | | | medppf <= 17.5

| | | | | | meanbpf <= 3188.792553

| | | | | | | meanppf <= 17.405941: -1 (9.0)

| | | | | | | meanppf > 17.405941: 1 (7.0)

| | | | | | meanbpf > 3188.792553: -1 (67.0)

| | | | | medppf > 17.5: 1 (5.0)

| | medbpf > 1322

| | | stdbpf <= 10753.29333

| | | | meanbpp <= 75.182692

| | | | | meanipd <= 5.599241

| | | | | | meanbpf <= 36359.7381

| | | | | | | medbpp <= 62.5: 1 (15.0)

| | | | | | | medbpp > 62.5: -1 (2.0)

| | | | | | meanbpf > 36359.7381: -1 (4.0)

| | | | | meanipd > 5.599241

| | | | | | stdppf <= 0.934267

| | | | | | | fph <= 6: 1 (4.0)

70

| | | | | | | fph > 6: -1 (2.0)

| | | | | | stdppf > 0.934267

| | | | | | | stdbpp <= 49.132382: -1 (94.0/1.0)

| | | | | | | stdbpp > 49.132382

| | | | | | | | meanppf <= 12.666667: 1 (2.0)

| | | | | | | | meanppf > 12.666667: -1 (3.0/1.0)

| | | | meanbpp > 75.182692: -1 (1385.0)

| | | stdbpf > 10753.29333: -1 (7003.0)

proto = udp

| meanbpp <= 327.920635

| | stdipd <= 65.90275

| | | medbpp <= 67

| | | | medbpf <= 245

| | | | | fph <= 2

| | | | | | meanbpf <= 135.5: -1 (50.0)

| | | | | | meanbpf > 135.5

| | | | | | | meanbpp <= 44: -1 (16.0)

| | | | | | | meanbpp > 44

| | | | | | | | meanipd <= 3337.122679

| | | | | | | | | stdbpp <= 1: 1 (35.0/1.0)

| | | | | | | | | stdbpp > 1

| | | | | | | | | | meanbpp <= 60.744027: 1 (4.0)

| | | | | | | | | | meanbpp > 60.744027: -1 (2.0)

| | | | | | | | meanipd > 3337.122679

| | | | | | | | | meanbpf <= 137.2: -1 (4.0)

| | | | | | | | | meanbpf > 137.2

| | | | | | | | | | meanbpf <= 142.25: 1 (6.0)

| | | | | | | | | | meanbpf > 142.25

| | | | | | | | | | | stdbpp <= 6.249865: -1 (5.0)

| | | | | | | | | | | stdbpp > 6.249865: 1 (3.0/1.0)

| | | | | fph > 2

| | | | | | medipd <= 849.98734

| | | | | | | medbpf <= 182: -1 (340.0)

| | | | | | | medbpf > 182

| | | | | | | | meanbpf <= 200.428571: -1 (6.0)

| | | | | | | | meanbpf > 200.428571: 1 (31.0/1.0)

| | | | | | medipd > 849.98734: -1 (6944.0/2.0)

| | | | medbpf > 245

| | | | | medbpf <= 259: 1 (139.0)

| | | | | medbpf > 259

| | | | | | stdbpf <= 2.357023: 1 (21.0)

| | | | | | stdbpf > 2.357023

71

| | | | | | | meanipd <= 20.964318

| | | | | | | | medipd <= 18.032503: -1 (24.0)

| | | | | | | | medipd > 18.032503: 1 (40.0)

| | | | | | | meanipd > 20.964318

| | | | | | | | fph <= 3

| | | | | | | | | meanppf <= 2.25

| | | | | | | | | | meanbpf <= 303: -1 (3.0)

| | | | | | | | | | meanbpf > 303: 1 (19.0)

| | | | | | | | | meanppf > 2.25: -1 (2.0)

| | | | | | | | fph > 3: -1 (264.0/2.0)

| | | medbpp > 67

| | | | stdipd <= 5.700382

| | | | | fph <= 2

| | | | | | meanbpf <= 256

| | | | | | | medbpp <= 146: -1 (465.0)

| | | | | | | medbpp > 146

| | | | | | | | meanbpf <= 244: -1 (17.0)

| | | | | | | | meanbpf > 244: 1 (8.0/1.0)

| | | | | | meanbpf > 256: -1 (2240.0)

| | | | | fph > 2: -1 (35238.0)

| | | | stdipd > 5.700382

| | | | | fph <= 6

| | | | | | meanipd <= 849.037902

| | | | | | | medbpp <= 126: -1 (111.0)

| | | | | | | medbpp > 126

| | | | | | | | medbpf <= 294.5: 1 (99.0)

| | | | | | | | medbpf > 294.5: -1 (13.0)

| | | | | | meanipd > 849.037902: -1 (1373.0/3.0)

| | | | | fph > 6

| | | | | | stdbpp <= 11.228639: -1 (10355.0/1.0)

| | | | | | stdbpp > 11.228639

| | | | | | | stdipd <= 22.105046

| | | | | | | | medbpf <= 361

| | | | | | | | | meanipd <= 49.111879: 1 (36.0)

| | | | | | | | | meanipd > 49.111879: -1 (18.0)

| | | | | | | | medbpf > 361: -1 (235.0)

| | | | | | | stdipd > 22.105046: -1 (1428.0)

| | stdipd > 65.90275

| | | fph <= 6

| | | | meanipd <= 1093.239499

| | | | | stdbpp <= 4.066442

| | | | | | medipd <= 659.451454

72

| | | | | | | meanppf <= 2.083333

| | | | | | | | meanbpf <= 217.055556

| | | | | | | | | stdipd <= 77.574621

| | | | | | | | | | meanbpf <= 192.5: -1 (2.0)

| | | | | | | | | | meanbpf > 192.5

| | | | | | | | | | | stdipd <= 77.078171

| | | | | | | | | | | | medipd <= 603.224144: -1 (2.0)

| | | | | | | | | | | | medipd > 603.224144: 1 (34.0)

| | | | | | | | | | | stdipd > 77.078171: -1 (2.0)

| | | | | | | | | stdipd > 77.574621: 1 (143.0)

| | | | | | | | meanbpf > 217.055556: 1 (2469.0/1.0)

| | | | | | | meanppf > 2.083333

| | | | | | | | meanppf <= 3: 1 (35.0)

| | | | | | | | meanppf > 3: -1 (3.0)

| | | | | | medipd > 659.451454

| | | | | | | meanbpf <= 218

| | | | | | | | fph <= 5: 1 (2.0)

| | | | | | | | fph > 5

| | | | | | | | | stdipd <= 86.207937: -1 (8.0)

| | | | | | | | | stdipd > 86.207937: 1 (2.0)

| | | | | | | meanbpf > 218: 1 (35.0/1.0)

| | | | | stdbpp > 4.066442

| | | | | | stdbpp <= 4.964345

| | | | | | | meanppf <= 11.25: 1 (2.0)

| | | | | | | meanppf > 11.25: -1 (2.0)

| | | | | | stdbpp > 4.964345: -1 (21.0)

| | | | meanipd > 1093.239499

| | | | | meanipd <= 1646.836216

| | | | | | medbpp <= 61: 1 (3.0)

| | | | | | medbpp > 61

| | | | | | | medbpp <= 128: -1 (38.0)

| | | | | | | medbpp > 128

| | | | | | | | medbpf <= 259.5: 1 (4.0)

| | | | | | | | medbpf > 259.5: -1 (10.0)

| | | | | meanipd > 1646.836216: -1 (163.0)

| | | fph > 6

| | | | stdbpf <= 8.430747

| | | | | stdbpp <= 0.207512: -1 (589.0)

| | | | | stdbpp > 0.207512

| | | | | | stdbpf <= 0: -1 (23.0)

| | | | | | stdbpf > 0

| | | | | | | medbpf <= 192.5: -1 (11.0)

73

| | | | | | | medbpf > 192.5

| | | | | | | | medbpf <= 344.5: 1 (31.0)

| | | | | | | | medbpf > 344.5: -1 (3.0)

| | | | stdbpf > 8.430747

| | | | | meanbpp <= 51

| | | | | | medbpp <= 48.5: -1 (29.0)

| | | | | | medbpp > 48.5: 1 (7.0)

| | | | | meanbpp > 51: -1 (10189.0/2.0)

| meanbpp > 327.920635

| | meanbpp <= 328

| | | meanipd <= 422.680863: 1 (1902.0)

| | | meanipd > 422.680863

| | | | stdbpp <= 7.5: 1 (21.0)

| | | | stdbpp > 7.5: -1 (4.0)

| | meanbpp > 328

| | | fph <= 2

| | | | meanbpp <= 605.552426

| | | | | meanbpp <= 441.333333: -1 (41.0)

| | | | | meanbpp > 441.333333: 1 (19.0)

| | | | meanbpp > 605.552426: -1 (84.0)

| | | fph > 2: -1 (1228.0)

Number of Leaves : 126

Size of the tree : 251

74

