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This study investigated the conceptions of function enacted by problems and
exercises in 35 mathematics textbooks for seventh- and eighth-grade students from 18
countries participating in the Third International Mathematics and Science Study
(TIMSS). The notion of conception used was that of Balacheff: a quadruplet conssting of
problems, operations, representation systems, and control structures. A coding system
was developed that had 10 codes for problems (given by the use of function in the
problem), 35 for operations, 9 for representation systems, and 9 for control structures.
Von Eye' s Configura Frequency Anadlysis was used to determine types and antitypes of
configurations.

Five conceptions of function were identified as promoted in the textbooks:
symbaolic rule, ordered pair, socid data, physica phenomena, and controlling image. The
different characteristics of the conceptions suggested that different school practices were
associated with each conception. Groups of countries were identified whose textbooks
shared Smilar characterigtics. Across countries, the textbooks fell into four clusters
according to the predominant conceptions and uses of function: rule oriented, abstract
oriented, abstract oriented with gpplications, and applications oriented. The results
suggested that (8) there is no canonica curriculum for teaching function and (b) there are
no traditions of organizing mathematics textbook content on function.

Ten items from the TIMSS achievement test were coded and compared with the
tasksin the textbook clugters. Performance on the item by studentsin countries using
textbooks promoting the same conception was also examined. The results suggested that
(a) the test did not reflect any country’ s ditribution of conceptions and (b) using a
textbook belonging to a particular cluster or promoting a certain conception did not
provide an advantage to students. Thus, at the micro level of textbook content, thereis no

evidence that one organization is better than other in terms of student achievement.



Arguments linking student achievement on the TIMSS test to the use of specific
textbooks were challenged.
The study illugtrated the gpplication of the four-dimensond definition of

conception to three questions about textbook content in mathematics. It suggests possible

gpplications to other mathematica notions and other areas of research in mathematics

education.
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CHAPTER 1

RESEARCH PROBLEM

“In a riddle whose answer is chess, what is the only
prohibited word?’
| thought a moment and replied, “ The word chess.”
“Precisely,” said Albert. “The Garden of Forking
Pathsis an enormous riddle, or parable, whose theme
is time; this recondite cause prohibits its mention. To
omit a word... is perhaps the most emphatic way of
stressing it.”

Jorge Luis Borges (1996)

“It was working as a mathematician that | came to learn the right definition of
function,” he said.

“And which oneisit?’ | asked with some amusement.
“That's agood question. [Long pause] Y ou know what? Maybe there is more than

one right definition; it depends on what you need it for.”
About ayear ago, | had this didogue with a mathematician when | was explaining with
some difficulty what my dissertation topic was about. We had been chatting about the
evolution of function, the differences between Newton's and Leibniz' s gpproaches,
Dirichlet’s definition, and, findly, the work of Bourbaki. Then he spoke about “the right
definition.” Our diaogue became, in some ways, paradigmatic of my research. This
mathemétician saw severd right definitions for function, and he redized that their
rightness depended on their use. | had been wondering if that could be true for school
mathemétics,

| wasinterested not only in distinguishing one definition from another but o in
how the curriculum uses those definitions. Are the definitions just tokens presented for
the sake of completeness, or do they play a congtituent role in building a ussful notion of

function? In other words, does the curriculum provide contexts in which the definitions of



functions are used in meaningful ways? This study was designed to suggest waysto
address these questions.

The purpose of this chapter isto give arationde for sudying functionsin school
meathematics by comparing textbooks from different countries and at the same time to
present the evolution of the problem under investigation that ended with the formulation
of the research questions. | also provide the theoretical framework that supported the

studly.

Functions and School Mathematics

The notion of function isamaost important one for mathemetics. It evolved from
being a numericd entity (as represented by Babylonian tables) to become an equation
(for Leibniz and Euler), an arbitrary correspondence between numerica intervas (for
Dirichlet), and findly a correspondence between any pair of not necessarily numerica
sets (adetailed account of its evolution is presented in chapter 2). Thislast definition,
launched at the beginning of the twentieth century by Bourbaki, brought “a coherence
and amplicity of viewpoint which did not exist before and led to discoveries ... that
[made] possible mgor advances in mathematics (Buck, 1970, p. 237). Thus, for example,
something as Smple as the addition of natura numbers could now be expressed asa
functionfrom N x N into N, that assigned to each ordered pair (a, b) in N x N the naturd
number a + b. That amplification of the definition “ made mathematicians redize that the
rigorous study of functions [extended] beyond those used in caculus and in andyss’
(Even, 1989, p. 47).

In 1908, Felix Klein, interested in the unification of the school mathematics and
aware of the importance of the notion of function, advocated the introduction of
functiond thinking at dl school levels (Sierpinska, 1992, p. 32). Klein was “successful in
getting Germany to include andytic geometry and cdculusin the secondary school
curriculum, and other European countries followed suit” (Kilpatrick, 1992, p. 135). The



trend, though dower, was aso present in the United States (Cooney & Wilson, 1993, p.
137; an expanded account is given in chapter 2).

In the late 1950s, the Sputnik phenomenon marked the beginning of an era of
curriculum development projects guided by mathematicians. The new math movement
that swept the globe made a stronger commitment to the use of function as a unifying
concept for school mathematics. Mathematicians were convinced that teachers who were
willing to “introduce the st definitions for relation and function in one or more of their
classes’ would find that “the results may be rewarding” (May & Van Engen, 1959, p.
110). But they could not foresee that the results, pedagogicaly speaking, might be
anything but rewarding. What had been unifying for mathemétics began to create many
problems for school mathematics.

The areathat has benefited the most from these curricular innovetions has been
the field of mathematics education itsdlf (Stanic & Kilpatrick, 1992). In the case of
functions, the incorporation of the set-theoretica definition into school mathematics
simulated researchers in mathematics education to investigate the connection between
the “unifying” definition and the difficulties that sudents face when atempting to use it
(Eisenberg, 1991, p. 141). Research devoted to understanding several aspects related to
its teeching and learning include: the meanings given to it by sudents (Vinner, 1992), by
teachers (Norman, 1992), and by prospective teachers (Cooney & Wilson, 1993); therole
of representations (Janvier, 1987; Romberg, Fennema, & Carpenter, 1993); the nature of
the notion (Freudenthal, 1983; Sfard, 1991) and of the difficultiesinvolved in teeching
and learning it (Artigue, 1992; Sierpinska, 1992); and the role of technology (Tdl, 1991),
among others.

Recent reform movements attempted in many countries justify the teaching of
function because of its fundamenta character. The rapid development of technology
(e.g., graphing cdculators) has aso made an impact on suggestions for the teaching of
functions (see chapter 2). In North America, for example, Curriculum and Evaluation

Sandards for School Mathematics of the National Council of Teachers of Mathematics



(NCTM, 1989) suggested that teachers use more intuitive approaches to the teaching of
function that would help students better understand its meaning (see, e.g., Standard 8 on
patterns and functions, Standard 9 on algebra, and Standard 10 on statistics for grades 5-
8, pp. 98-108). In spite of al these efforts, however, complaints about students' poor
understanding of functions at the college leve continue to be heard (Carlson, 1998),
which suggests that there is discrepancy between expectations as to what should be
learned about functions at the school level and what is actudly learned. Functions are,
indeed, dill adifficult topic to teach.

Thus, on the one hand, function is recognized as a fundamenta notion for
organizing mathematical knowledge and, on the other, efforts to make its definition more
understandable appear to be faling. The chalengeis ill there asto why it is so difficult
for sudents to learn the notion of function and to take advantage of its unifying power.

All new curriculum development projects produce their own textbooks in which
the goals, expectations, and philosophy of the project are put into action. In the United
States, publishers produce textbooks for students, teachers' editions, batteries of tests,
black-line masters for the overhead projector, extra worksheets, and other material
considered necessary to put the curriculum into action. In most other countries, the
student’ s textbook is likely to be the only resource available. In any case, though, the
student’ s textbook guides classroom activity and a the same time legitimates the
knowledge to be taught (Chevalard, 1985). Neither the teacher nor the student islikely to
chdlenge it. Despite the gppeding language of textbooks, they are actudly written for
teachers (DOrfler & McLone, 1986), who may play adecisve role in choosing the book
in those countries in which that decison is not centraized. Other decisionsthet are
available for the teachersinclude how the topics are organized, the order in which the text
isfollowed, and the choice of exercises that the students are supposed to solve. The initia
questions that guided the present study concerned what exactly is available about
functions in textbooks and what the implications are for the meaning of function.



My experience as a sudent and as a curriculum developer in Colombia had shown
me that there could be differences within a school system in the approach to function
taken in textbook materids. In addition, my experience as a graduate student in the
United States had indicated that there could aso be differences across countries. |
decided to undertake an inquiry about differencesin the presentation of function in

textbooks from different countries.

TIMSS

The issue of differencesin presentation of various topics of school mathematics
was addressed by the curriculum analys's component of the Third Internationd
Mathematics and Science Study. TIMSS, sponsored by the International Association for
the Evauation of Educationd Achievement (IEA), was the most important internationa
survey of educationa outcomes in the 1990s. The main part of TIMSS involved 48
countries. It had two components. achievement and curriculum. The achievement
component tested students in science and mathemeatics at three moments of schooling: the
primary level (grades 3 and 4), the lower secondary level (grades 7 and 8), and the upper
secondary level (the last year of schooling). The curriculum component collected
curriculum guides, textbooks, and teachers materids at these grades and in-depth
information on curriculum sequencing, in both science and mathematics.

The results of the curriculum analysis presented a mixed picture of the
implications for achievement of the emphases given to the topics. The data were analyzed
only in terms of the way in which topics were handled in generd: space typically devoted
to each topic, number of topics per year, presence or absence of topicsin curriculum
guides and textbooks, number of textbook blocks devoted to particular topics, and so
forth. The information published in the reports (Schmidt, McKnight, Cogan, Jekwerth, &
Houang, 1999; Schmidt, McKnight, & Raizen, 1997; Schmidt, McKnight, Vaverde,
Houang, & Wiley, 1996) does not alow adescription of differencesin the organization
and presentation of particular curriculum topics that might help explain the sudents



achievement. | decided to reandyze the textbooks to describe differencesin the
presentation of functions in textbooks from different countries. This decision leadsto the
guestion of why one would conduct atextbook andyss.

Textbook Anayss

Textbooks have many purposes. They “expound the body of acceptable theory”
(Kuhn, 1970, p. 10); they are powerful mediafor teaching and learning (Tanner, 1988, p.
141); they “determine what is school mathematics (in asimilar way to syllabuses and
examindions)” (Dorfler & McLone, 1986, p. 93); they are essentid for “effective
learning in developing nations’ (Farrell & Heyneman, 1994, p. 6360), and “together with
examinations and assessments, serve an accountability and control function” (Woodward,
1994, p. 6366). Textbooks seem to be an indispensable aid for the beginning teacher, who
is“more likely to depend upon forma textbook methods than teachers with severa years
of experienceg’ (Whipple, 1931, pp. 24-25, cited by Tanner, 1988, p. 116). They provide a
source of exercises and ass gnments even to teachers who do not use them for other
pUrpoSes.

The empirical study of textbook content has been judtified mainly by an interest in
predicting the outcome of students' learning as measured by tests. The textbook and test
content are matched to see how similar they are, and alarge discrepancy is used to
explain low student achievement (Freeman et d., 1983). Thisway of looking at textbooks
has been criticized, first, because it assumes that the tests used are valid and reliable
(Keitel & Kilpatrick, 1998) and, second, because it does not acknowledge that the
teacher, the other students, and the ingtruction play a critical role in shaping what is
finaly accomplished in acdlassoom (Stodol sky, 1989). What students learn from
textbooks and the practicdity of that learning are mediated by the school context
(teacher, peers, ingruction, assgnments). Thus, the textbook is a source of potential
learning. It expresses what has been called the intended curriculum (the gods and
objectives for mathematics intended for learning at anationa or regiond leve; Travers &



Westbury, 1989, p. 6), which impliesthat an andysis of textbook content becomesin
some way's a hypothetica enterprise: What would happen if ...? becomes the beginning of
the inquiry. What would students learn if their mathematics classes were to cover dl the
textbook sections about functionsin the order given? What would students learn if they
had to solve dl the exercises in the textbook? Would they learn what a function is?
Would that learning work well in characterizing function?

Thus, | was interested in whether different definitions of function could coexist
within school mathematics, as the mathematician of my anecdote suggested, and |
decided to focus on how those definitions were made available in textbooks. | considered
that the best textbooks to check the presence of those definitions would be those intended
for the grades in which function typicaly begins to appear explicitly in school

mathemeatics. For thisreason, | concentrated on seventh- and eighth-grade textbooks.

Theoretica Framework

If the textbook isto be the object of a study, the researcher must determine what
aspects of the textbook to focus on. Theoretical and methodologica tools are needed to
accomplish the task of deciding what to look at in the textbook. | chose the notions of
conceptions (Baacheff, in press) and prototypical domains of application (Biehler, in
press) of functions. The works from which these notions come address the meaning of
school mathematics concepts. In this section, | discuss the two terms and how they were

interpreted in this study to operationalize the research questions.

Conceptions

In this document, following the French tradition, the word knowing isused as a
noun to digtinguish the sudents persona congtructs from knowledge, which refersto
intellectua congtructs recognized by a socid body. Although both terms refer to
intangible congructs, the knowings are particular to the individuds that have them
Different Stuations generate different interactions between the subject (i.e., the cognitive
dimension of aperson) and the milieu (only those festures of the environment thet relate



to the knowledge at stake), and in consequence lead to different knowings. The different
interactions explain the coexistence of multiple knowings by a subject. Contradictory
knowings can coexig, either at different times of a subject’s history or because different
gtuations enact different knowings. In both cases, what isisomorphic to the observer—
probably the teacher—is not for the learner.

To tackle the problem of the existence of these contradictory knowings,
(Bdacheft, in press) proposed a definition for conception asfollows:

A conception isaquadruplet (P, R, L, S), where Pisa set of problems, R isa set

of operators, L is arepresentation system, and S isa control structure. P contains

those problems for which the given conception provides tools to elaborate a

solution. R contains those activities needed to smulate the procedures used by the

students to tackle the problems. The representation system is defined as the tools
needed to alow the formulation and use of the operators. The control structure
can be understood as the metacognitive procedures available to the sudent by
which he or she can check that his or her actions are legitimate and correct.

With these definitions, it is possble to gpesk of the domain of validity of a
knowing as the union of the domains of validity of the related conceptions. Asthe
conceptions correspond to the expression of a subject’ s knowings enacted by a Situation
the definition alows the co-existence of more than one, possibly contradictory, knowings
in the subject.

Thisview impliesthat variations in the set of problems that learners face, together
with the operators, the representations, and the metacognitive strategies needed to
organize the work, lead to different conceptions of function. For example, the problems
that Newton faced, mostly based on physica experiments, in contrast to the problems that
Dirichlet faced, analyses of the convergence of Fourier series, required and used a
different set of operators, representations, and control structures, which in turn made it
possible for Newton and Dirichlet to operate with two different conceptions of function.
The interest in establishing the foundations of mathemétics a the beginning of the

twentieth century and the appearance of set theory led to a different set of problems,



operators, representations, and control systems, which resulted in yet another conception
of function.

Asaway to characterize the issue of more than one definition, | chose to Sudy
the possible conceptions enacted by a textbook. Astheissue of the set of problemsis
fundamental—they must be chosen to dlicit a particular conception—I chose to andyze
textbook exercises with the purpose of describing the possible conceptions these
exercises could enact. Consder Table 1, which presents the conceptions in two exercises
from two hypothetica textbooks. The two problems yield two different conceptions of
function. The need for a physical modd for the firgt Stuation, together with the need for
manipulation of the model, produces a sense of the variation in the period as consequence
of the change in the length of the pendulum; the reverse interpretation seemsillogica
(how does the length vary when the period varies?). In the second problem, the
relationship is given. The sudent is asked to make it explicit in a different representation.
This second conception seems more powerful mathematically; the relaionship stands by
itsdlf independently of a possble context from which it originated. The reationship can
be established in either way (e.g., abscissa depending on ordinate). Even though from the
standpoint of the Bourbaki- Dirichlet definition the two conceptions are equivadent, it is
likely that for the student they are separate entities. The differences in the operators and
representations used contribute to seeing them as separate.

The issue of the characterization of the problemsis crucid for establishing the
conceptions. | introduced a second notion, prototypical domains of application, to assst

in characterizing the set of problems.

Prototypica Domains of Application of Function

Biehler (in press) stresses that a concept may have different meaningsin different
disciplines, and that those meanings are determined by the differences in practicesin each

discipline. Regarding the task of teaching mathematics as a socia endeavor, he argues



Table 1

10

Example of a Characterization of Two Conceptions of Function

Component

Conception 1

Conception 2

P: Problems

R: Operators

L: Representation
System

S: Control
System

Conception

Determine the relationship between the
period of a pendulum and the length of its
am.

The student needs to act on areal

pendulum. Using a stopwatch, the student
needs to take and record several measures

of the period as the length of the
pendulum varies. Depending on the
accuracy of the measures, it might be

necessary to use an average for estimating

the actual period.

Numerical and symbolic.

The student may need to take severd
measures for the same height to control
for possible errors.

Function as dependency relationship
(cause and effect). The number of
oscillations per unit time decreases as the
length of the arm increases. The student
may be able to determine the type of
dependence and the expression relating
the two quantities.

Determine the relationship between the
abscissa and the coordinate of the
given ordered pairs. Seven pairs of
ordered pairs, with integer abscissas
running from —3 to 3 are given
{(-3,-6), (-2, -4), (-1,-2),(0,0),

1, 2), (2 4), (3 6)}.

The student needs to find an algebraic
expression that takes the abscissa and
transformsit into the ordinate of an
ordered pair. The expression must
work for every ordered pair of the set.
Beginning with the pairs with postive
abscissas, the student needs to notice
that the ordinate is twice the abscissa
The student needs to write an
expression for the relationship, using x
for the abscissaand y for the ordinate.
In a different approach, the student
draws the set of pointsin the Cartesian
plane and uses the information to build
the expression, either taking into
consideration properties of the line
depicted or using formulas for dope
and intercept.

Symbolic and eventualy numerica
and graphical.

The expression must work for every
pair in the list. Depending on how the
problems are embedded in the lesson,
the student may find it irrelevant to
have more than two ordered pairsto
determine the relationship.

Function as an abstract entity, with a
correspondence determined by arule
that relates two numbers. In this case it
is clear that it isa matter of convention
which number is called x and which is
cdledy. It isalso feasble to begin with
the ordinate and by the same procedure
find an expression for the abscissa.
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that the teaching of amathematica concept cannot be limited to the meaning given insde
the sphere of academic mathematics. Consequently, it is necessary to incorporate the

meanings given to the concept in other practices aswell:

As mathematics education, however, has to base its curricular decisonson a
broader picture of mathematics than that of academic mathematics, we consder
the reconstruction of meaning, the development of a synthesizing meaning
landscape of a mathematical concept, to be an important task for the didactics of
mathematics that could serve as a theoretical background for curriculum design
and implementation.

For Biehler, three dements are condtitutive of the meaning of amathematical concept:
the domains of application of the concept (its use ingde and outside mathematics), its
relation to other concepts and its role within a conceptual structure (atheory), and the
tools and representations available for working with the concept.

Using as an example the concept of function, Biehler (in press) identifiesthe
“prototypica ways of interpreting functions (prototypica domains of gpplication) which
summarize essential aspects of the meaning(s) of functions.” These are natura laws,
causal reations, congtructed relations, descriptive relations, and data reductions.

The relation between the quantity and price of a certain article is a constructed

relation: it isimposed by fiat (Davis & Hersh, 1980, p. 70). Using a parabola for

describing the curve of a cannon ball has the character of aphysica (naturd) law.

Contrary to this use, aparabolaused in curve fitting may just provide a data

summary of the curvature in alimited interval. Using functions for describing

time dependent processes are different from using functions for expressing causa

rdaions timeisnot a“cause’ for acetan movement. ... In many datistica

applications, functions are used to describe structure in a set of data that cannot be
interpreted as anatura law.
Biehler notes that the concept of causa relation has been abandoned in mathematicsin

favor of a

“functiona relation” between two quartities (Sierpinska, 1992). This may be due
to philosophica reasons but aso to smple pragmatic ones: If wehavea 1-1
correspondence, we can invert the cause-effect functiond relaion to infer the
‘causes from the effects.



The decison to invert the rdation is rooted in the academic practice of mathematics; in
disciplines such as phydcs, it might not make sense.

Biehler's characterization of prototypical domains of application of function, that
IS, its uses, was indrumentd for mein initiating a characterization of the problemsin a
textbook that eventudly can be solved by the student. These different uses gave mea
stepping stone to use in characterizing the problems needed to define the conceptions that
could be dicited by textbook exercises. With these theoretica positions established, |
formulated the research questions that guided the study.

Research Questions

The original question about possible definitions of function in school mathemétics
was narrowed down to consider only those present in textbooks. As practices within a
country can be smilar, looking at more than one country offers the possibility of diciting
different definitions across countries. | consdered that the best textbooks to check the
presence of those definitions would be those intended for the grades in which function
typicaly beginsto appear explicitly in school mathematics, thus giving me the possibility
of sudying students' first encounters with the definition. My interest in elaborating the
TIMSS findings led me to choose those countries participating in TIMSS whose
textbooks | could read. Findly, because what matters is how students perceive a
definition of function | found that an gppropriate theoretica characterization of that
perception about function was the sudents' conception of function. The definitions are
fixed, but what students concelve is not. These precisons led me to phrase my first

research question in terms of conceptions as follows:

1. What conceptions of function are suggested by the seventh- and eighth
grade mathemeati cs textbooks of selected countries participating in
TIMSS?
Because conceptions belong to human subjects, this question is posed to indicate that the

application of Balacheff’s framework to a textbook leads to conjectures about
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conceptions that could potentialy be held by a student who used the textbook; in this
senseit is an abuse of the definition. For Balacheff, the use that | propose “leads to
conjectures about the spheres of practice’ rather than to conceptions (personal
communication, April 26, 2000). Because of the exploratory character of thisfirst
question, | chose to assume that the analysis would yield conjectures about conceptions.
The avalahility of textbooks from severa countries, with more than one textbook
from some countries, led me to a question about the differences to be found across the

textbooks of the countries considered. | posed the following research question:

2. What patterns of conceptions are present in textbooks from different
countries?
This question was aimed at disclosing the results of possible influences due to politica
traditions; it could be possible, for example, that textbooks from Spanish spesking
countries are Smilar because of the links maintained with Spain; amilarly, English
gpesking countries might have textbooks that are alike as many of them share deep roots
with the United Kingdom.

One might discover the possible advantages of one conception over others by
observing students solving problems associated with different conceptions. Given the
characteristics of the textbooks chosen, this issue was addressed by looking at how
students potentialy exposed to particular conceptions performed on the function itemsin
the TIMSS test. Thus | formulated the following research question:

3. What isthe relation between the conceptions suggested by the textbooks
of acountry and its sudents performance on items related to functions on
the TIMSS test for seventh- and eighth-grade students?

As posed, these questions referred to textbooks and their content concerning functions.
They did not ded with claims about actud teaching or learning but only with potentia
implications for both of them.

In Chapter 2, | present areview of the literature related to functions, textbooks,

and international comparisons. Chapter 3 contains the description of the methodol ogy
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used to conduct the study. Chapter 4 presents the results of the andyses, organized by the
three research questions. Chapter 5 contains conclusions, implications, and

recommendations derived from the study.

14



CHAPTER 2

REVIEW OF LITERATURE

At times | found pages where whole sentences were
legible; more often, intact bindings, protected by
what had once been metal studs.... Ghosts of books,
apparently intact on the outside but consumed within;
yet sometimes a half page had been saved, an incipit
was discernible, atitle.

Umberto Eco (1980)

This chapter isdivided into three sections. In the first section | discussthe
literature on the concept of function grouped according to its history; the history of its
teaching; views of function held by students, teachers, and prospective teachers; the
nature of the function concept; and the ways function can be known. The second section
is devoted to the literature on textbooks. The third section concernsinternational

comparisons of textbooks.

The Concept of Function

Much research has been conducted on the concept of function. I limit the
discussion below to very few works, referring the reader to more extensive discussons. |
focused on the history of the concept because how working mathematicians shape the
concept affects how it is transmitted. | looked at the history of its teaching because how it
is taught affects what teachers and students know about it. | looked at the views held by
students, teachers, and prospective teachers because those views condtitute what it is
known about the concept. The confluence of dl these dements determines both the
ontology and epistemology of the concept, thet is, its nature and the ways available to
know it. | discuss briefly works that propose explanations of these two fundamental
questions about function, What is afunction? And how do we get to know it?
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History of the Concept

Early versons of the concept of function can be traced to the Babylonians and
their use of tables for finding reciprocals, squares, square roots, cubes, and cube roots
(Kline, 1972). This numericd treatment of functions, however, did not influence the
development of the concept nearly as much as, for example, the dgebraic notation
developed by Viéte or the development of anadytic geometry begun by Descartes. Kleiner
(1989), in his account of the evolution of the concept of function, uses three images to
describe the successive changes that the concept has undergone: geometrical, algebraic,
and logical. The congtituent eements of these images are curve, formula, and
correspondence (p. 282).

Lebniz introduced the term function in 1694 “to denote any quantity connected
with a curve, such as the coordinates of a point on the curve, the dope of the curve, the
radius of curvature of the curve, and so on” (Eves, 1990, p. 611). Bernoulli in 1718 and
Euler in 1748 then described a function as an analytic expression, that is, an equation or
formulainvolving variables and constants (Eves, 1990; Kleiner, 1989). Fourier’ swork on
heet flow published in 1822 marked another important change in the definition. Before
then, it had been accepted that “if two andytic expressons agree on an interva, they
agree everywhere’ (Kleiner, p. 285). Fourier’s result showed that it was possible to usea
series of sines and cosines to gpproximate any function on agiven interva and thus that it
was possible for “two functions given by different anaytic expressons[to] agree on an
interval without necessarily agreeing outside the interva” (p. 290). Dirichlet undertook
the task of revisng Fourier’ swork and in 1829 produced a new definition of function,
introducing the concept of correspondence:

y isafunction of avarigble x, defined onaninterva a < x < b, if to every vadue of
the variable x in thisinterva there corresponds a definite value of the variabley.
Also, it isirrdlevant in what way this correspondence is established. (Luzin, 1998,
p. 264)

Dirichlet’sfunction, D(x), where
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D(X) = i dc when x-is_ reti pnd
id when xis irrationd

presented with the purpose of showing the necessary condition for the representability of
afunction by its Fourier series, represented an important bresk with the previous
definitions of function because it was * not given by an andytica expresson (or by
severd such), nor wasit acurve drawn freehand; [it] wasthe first example of afunction
that is discontinuous everywhere; and [it] illustrated the concept of afunction asan
arbitrary paring” (Kleiner, 1989, p. 292). Bourbaki’ s definition of function, which
gppeared in 1939, extended the definition to sets (not necessarily numericd) instead of

intervas

Let E and F be two sets, which may or may not be digtinct. A relation between a
variable dement x of E and avaridble dement y of F is cdled afunctional
rlationinyif, fordl x T E, thereexistsauniquey 1 F whichisinthegiven
relaion with x.

We give the name of function to the operation which in this way associates
with every dement x I E thedementy T F whichisin the given rdation with x;
y is said to be the value of the function a the d ement x, and the function issaid to
be determined by the given functiond reaion. Two equivaent functiond
relations determine the same function. (Kleiner, 1989, p. 299)
Bourbaki adso gave a definition of function as a set of ordered pairs. Iniit, the function f is

asubset of the Cartesian product E x F suchthat if (ag, ba) T f, (a, bp) T f, and a; = ay,
then by = b,. More recent developments related to functions (L, functions, distributions,
and category theory, see Kleiner, 1989) have not affected school mathematics and are not
conddered here. What is generdlly acknowledged is that the concept “ pervades much of
mathematics and [that] since the early part of the twentieth century, various influentid
mathematicians have advocated the employment of this concept as the unifying and

centra principle on the organization of dementary mathematics courses” (Eves, 1990, p.
612). How much of this employment has been accomplished is discussed in the next
section.
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History of Teaching the Concept

Theideathat functions should be a unifying concept for the teaching of school
mathematics seems to have gppeared in the early 1900s with the work of Felix Klein,
“who in 1908 in his Meran Programme advocated that functiona thinking should
pervade dl of mathematics and, at school, students should be brought up to functiona
thinking (funktionales Denken)” (Sierpinska, 1992, p. 32). Cooney and Wilson (1993),
identified at least three moments in the implementation of functiond thinking in school
mathematics: from the early 1920s until the 1950s, from the 1950s until the 1990s, and
after the 1990s. In the 1920s fostering functiond thinking was a priority, judtified
because it was required to understand and appreciate mathemeatics and because functions
“were prominent in the red world” (p. 137). Barber (1924), in abook intended for high
school teachers, suggested the following for the teaching of linear functionsin the ninth
grade:

When aproblem is met in which the quantities cannot reedily be expressed in
terms of one unknown, we have found the reason for two unknowns and the linear
pair. The solution should be graphicd at firdt, reviewing the knowledge of graphs,
and gpplying it to the new situation. The graph isthe bridge between dgebra and
geometry. It isagood plan to ask the pupil to draw a graph through points where
X is2 more than 3 timesy, and then to write an equation expressing the same
relation. In preparing to draw the graph, he will make atable of values which

meet the conditions. He will sense a certain relaionship of table, equation, and
graph. Thisisapart of what is meant by the expresson functional relationship,
which isavery important generaization of mathemétics. The teacher will do well
to have it in mind as a somewhat remote objective for the child’ s thinking, but it

is not important to use the word function in the ninth-grade class. The rlaionship
of the three parts of the pupil’swork should be mentioned, but that isdl. (pp.
102-103).

This example, aswell asthose provided by Cooney and Wilson (1993), seemsto show a
mismatch between what was advocated—functions as an organizing concept of school

mathematics—and the actual expressions of that advocacy. Not only did teachers seem to
think that the concept should be taught in the higher grades (Bredich, 1928, p. 54), but
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the textbook content seem to be geared to skillsrehearsal (Cooney & Wilson, 1993, p.
141), very much in the spirit suggested by the example.

The new math movement that swept dmost the entire globe at the end of the
1950s saw the implementation of sets as organizing concept of mathematics and of
school mathematics; structure and precision were to be emphasized. In 1958, the
European Economic Cooperation Adminigtration (EECA) (which became the
Organisation for Cooperation and Economic Development, OECD)

gathered in France a group of representatives from 20 countries with the god of

establishing mgjor guiddines for what became the reform of New Mathematics.

Policies necessary for implementing the reform were dso discussed. ... The

purpose was to give unity to mathematics, usng sets, relations, functions, and

operations as basic concepts, as well as fundamenta structures of groups, rings,
fields, and vector spaces. The need to adopt modern symbolism was aso

established. (Ruiz & Barrantes, 1993, p. 1)

Consequently, preparation and trandation of textbooks, curriculum changes, and training
of teachers were promoted across the globe. May and van Engen (1959), in an article
intended for teachers, criticized the definition of function given by Webster’s New
International Dictionary (amagnitude so related to another magnitude that to vaues of
the latter there correspond vaues of the former, very smilar to Euler’ s definition), caling
it vague and not useful for the mathematician' s or teacher’ s use: The definition “ does not
satisfy the requirements for precise satements demanded by the mathematical world.
Neither does such a satement satisfy the requirements of good teaching. Vague
satements do not facilitate communication between pupil and teacher” (p. 110). They
advocated the use of the set theoretica definition because “thisis a definite entity; one
you can dmost put your hands on” (p. 110).

Large curriculum projects were devel oped and implemented during this era(e.g.,
the School Mathematics Study Group in the United States, the School Mathematics
Project in the United Kingdom, and a number of projectsin Latin America; Howson,
Keitd, & Kilpatrick, 1981, p. 133; see also Ruiz & Barrantes, 1993, p. 3). However, the

diffusion of these projects was problematic:
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Inthe diffusion ... much waslogt. The variety of new work and the rigoroudy
deductive methods were reduced or watered down; and topics such as set theory
and dgebraic dructure lost their role as ‘rdlationd’ links and became mere
inventories of concepts. (Howson et a., 1981, p. 134)
Strong reactions were heard from mathematicians (e.g., Cdandra s paper, pp. 5-9, and
Kline's paper, pp. 13-16 in Moise e al., 1965; see dso Thom, 1985) who believed that
the logicd, structurd, and forma gpproach was detrimentd for the intuitive
understanding of mathematical concepts (Thom, 1985, pp. 71-73) and from mathematics
educators, who saw the cognitive difficulties that the set theoretical approach posed for
both teachers and students (Cooney & Wilson, 1993, p. 144; Eisenberg, 1991, p. 141).
The publication of the Curriculum and Evaluation Standards for School
Mathematics (Nationa Council of Teachers of Mathematics, 1989) in the United States

reinforced the unifying character of function:

One of the centra themes of mathematics is the study of patterns and functions.
This study requires students to recognize, describe, and generdize patterns and
build mathematical models to predict the behavior of rea-world phenomena that
exhibit the observed pattern. The widespread occurrence of regular and chaotic
pattern behavior makes the sudy of patterns and functions important.... In
informa ways, sudents develop an understanding that functions are compaosed of
variables that have adynamic reaionship: changesin one varigble result in
change in another. (p. 98)

But NCTM advocated aless forma and more intuitive approach to the teaching of
function:

To establish a strong conceptua foundation before the formal notation and
language of functions are presented, students in grades 9-12 should continue the
informa investigation of functions that they started in grades 5-8. L ater, concepts
such as domain and range can be formulated and the f(x) notation can be
introduced, but care should be taken to treat these as naturd extensionsto the
initid informa experiences. (p. 154)

The Principles and Sandards of School Mathematics (NCTM, 2000) took a stronger
position with respect to the unifying character of functions. It described for each grade
group the expectations set with respect to functions within an agebra standard. In Grades



Pre-kindergarten to 2, students should be introduced to patterns—numerical, geometricd,
or related to ther daily activities—and be able to notice, produce, and continue them (p.
91). The requirements for Grades 3 to 5 included the production of numerica and
geometrica patterns and the ability to describe them “mathematicaly in words or
symbols’ (p. 159). In Grades 6 to 8, sudents were to become familiar with linear
functions when andyzing congtant rate of change (p. 223); students were expected to
handle severd representations and to study features such as dope and intercept in rdation
to those representations (p. 224). In Grades 9 to12, the repertoire of functions was
broadened to include exponentid, polynomid, rationd, logarithmic, periodic functions,
recursive and explicitly defined functions, and functionsin two variables, and to consider
arithmetical operations between functions as well as composition and inversion (p. 298).
The four aspects that are discussed under the agebra standard have a functiond
orientation.

The rapid evolution of hand—held technology computing has made it eesier to
develop undergraduate courses in which function is a central concept (Demana & Waits,
1990; Demarois, McGowen, & Whitkanack, 1997; Gomez, Mesa, Carulla, Gomez, &
Valero, 1995; North Carolina School of Science & Mathematics, 1998). The Visud
Mathematics curriculum (Center for Educational Technology, 1995) is a technology-
intengve curriculum for secondary school mathematics in which the concept of function
“dlows the organization of agebra curriculum around mgor idess rather than technical
manipulaions’ (Yerushdmi, 1997, p. 167). Schwartz (1991) tates:

We took the position that mathematically and pedagogicdly the primitive and
fundamental object of the school subjects of algebra, trigonometry, probability
and datistics, pre-caculus and caculusisthe function. In fact, we take a stronger
position—we maintain that the function is the only pedagogicaly necessary and
desirable object in these subjects. (p. 303)

The centrd curriculum idea of the project isto consder three dimensons. mathematical
objects (which include point, linear functions, absolute value, quadratic, power,
relationd, periodic, and transcendenta functions), mathematical actions (modding,

21



transforming, and comparing), and mathematical big ideas (representation, conjecture,
proof, invariance, symmetry, boundedness, betweenness, continuity, frame of reference,
and scae). The project has designed computer programs (e.g., The Algebra Sketchbook,
Yerushami & Shternberg, 1993; The Function Supposer, Schwartz, 1991) to fit their
goas (p. 316).

Gomez et d. (1995) developed their precaculus curriculum by choosing seven
longitudinal topics—Iinear, quadratic, cubic, polynomid, rationd, radicd, and
transcendentd functions—and treating them through eight transver sal topics: work
within the graphica representation, work within the symbolic representation, relation
between manipulations, characteristics of the function, characterigtics of the family of
functions, systems of equations, inequalities, and applications (p. 14). The resulting
matrix is both an organizationa and a pedagogica tool; the matrix alows teechersto
keep a perspective on what is expected to be accomplished and at the same time helps
Students contrast and make connections between and across the functions and their
properties. The course was designed to take advantage of the availability of the graphing
caculator and incorporated dmogt dl of the themes of a course on agebra and
trigonometry.

These gpproaches based on technology offer sudents tools for dedling with
different aspects of functionsthat are not explicit in the definition (e.g., shape or zeroes).
It might be possible, however, that the use of those tools constrains the path towards the
development of alogicd definition of function, as the relations defined are mogtly given
by rules. How well sudents have fared through these changes is the topic of the next
section.

Students Views of Function

The research into sudents understanding of function is very extensve, which is
not surprising given the importance of the concept in mathematics. Students' poor
understanding of the concept has fueled much of this research (Eisenberg, 1991, p. 141).



Research conducted in the 1960s and 1970s highlighted aspects of understanding such as
the point-wise view of function, in which students can plot and read points from agraph
but are unable to “think of afunction as it behaves over intervals (interva-wise) or in a
globd way” (Janvier, 1978; Marnyanskii, 1965/1975, cited by Even, 1989, p. 17). Inthe
1980s, the most important work wasthat of Vinner (1983), which has been considered
semina for much of the research conducted afterward. It provided a picture of what
Students understood about functions that also seemed to be common to the studentsin
many other countries (Tal, 1986). Vinner coined the expressions concept image (what
the individua thinks when aterm is mentioned) and concept definition (how the
individua defines aterm) to characterize problems of understanding mathematica

concepts:

My basic assumption is that to acquire a concept means to form a concept image
for its name. To understand a concept means to have a concept image for it.
Knowing by heart aconcept definition does not guarantee understanding of the
concept. ... Very often the concept image is entirely shaped by some examples
and it does not fit the concept definition. (Vinner, 1992, p. 199)

Inastudy carried out with 146 high school students (65 in tenth grade and therest in
eleventh grade) in Jerusdem who were taught Dirichlet’s definition of function, Vinner
(1983) found that the students believed the following:

The correspondence should be systematic and established by arule;
arbitrary correspondences are not considered functions;

The function must have an agebraic expression, formula, or equetion; it is
amanipulation carried out on the independent variable in order to obtain
the dependent variable;

A function has two representations, a graphica one (either acurveina
Cartesan plane or an arrow diagram) and a symbolic one given by

y = f(x);

A function cannot have more than one rule; a piece-wise function
corresponds to more than one function;

A domain cannot be asingleton; arule with one exception isnot a
function; the domain must be condtituted by contiguous intervas,
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A correspondence not given by aruleisafunction if the mathematicad
community has o established it;

The graph of afunction isregular and systematic; and

A function must be a one-to-one correspondence.

Vinner found that even when the sudents could recdl the Dirichlet definition of function

correctly, they aso held some of the images described above. He caled this phenomenon
compartmentalization; “two items of knowledge which are incompetible with each other
exig in your mind and you are not aware of it” (Vinner, 1992, p. 201). Vinner considered

that the Dirichlet definition was part of the problem, as did Eisenberg (1991):

At the definition leve the function concept can be introduced in avariety of
contexts, through arrow diagrams, tables, algebraic description, as black input-
output box, as ordered pairs, et cetera. Of all of these approaches, the
pedagogically weakest and non-intuitive one seems to be the approach using
ordered pairs. Here, afunction is defined as a certain sort of set; onewhichis
made up of ordered pairs in which no two ordered pairs have the same first
element and different second dements. This seemingly innocent definition proved
to conjure up al kinds of logigtic and epistemologica problems, which incredibly,
were often addressed explicitly in some school curricula (p. 141)

More recent research, justified in part by the reported separation between the
graphica and symbolic representations of function (Janvier, 1987), has dedt with
promoting the understanding of the concept with the technology of graphing calculators
and computers (Mesa, 1996; Mesa & GOmez, 1996). Ruthven (1990) suggested thet the
graphing caculator may help in the interpretation of graphs—building precise symbolic
descriptions; usng sdient information such as orientation, position of extreme vaues,
zeroes, and asymptotes, and relating the features of a graph to a symbolic expression (p.
91). Dick (2000) pointed out that the zooming option of the graphing calculator might
help students understand holes in the graphs of functions (such asy = (x*— 1) / (x + 1)),
the locd linearity of functions (eg., Sn x near the origin), and the behavior of dope
fields. Spreadsheets have aso been proposed as atoal to help students understand the
concept of function. Sutherland (1994) reports the use of spreadsheets for helping
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students to write expressions for rules defining functions, to find their inverses, and to
find equivaent dgebraic expressions. She emphasizes how the opportunity that the
students have to experiment with a spreadsheet and check the results of their
experimentation helps them find agebraicaly correct expressions.

Promising results obtained using computing technology (Carulla, 1996; Gomez et
al., 1995; Schwartz, 1992, Y erushdmi, 1997) have highlighted the importance of the
curriculum and the environment in which the technology is used. In many programs,
group work, holistic assessment, and explorations with open-ended tasks are promoted,
which makesit difficult to know to which change the results should be attributed.
Because a the end what mattersis students understanding, however, al these
gpproaches have been welcomed by the mathematics education community.
Nevertheess, as with most changes proposed in education, how teachers put them into
action may determine their success or failure. How teachers and prospective teachers

understand functionsis the topic of the next section.

Teachers and Prospective Teachers Views of Function

| discuss two studies that have addressed the views held by teachers (Norman,

1992) and prospective teachers (Even, 1989) about functions. Norman (1992),
interviewed ten mathemeti cs teachers who were working toward a degree in mathematics
educeation. The purpose of the interview was to ascertain their concept images and
concept definitions of function as defined by Vinner (1983). Norman found that teachers

Preferred to use the graph of the rdation (a) to establish whether it was a

function or not, or (b) to test characteristics such as continuity or

differentiability;

Tended to think of functiona Stuaions asinvolving only numerica inputs

and outputs;



Had a concept definition aligned with the Dirichlet definition of function
but were unable to dedl with necessary and sufficient conditions that
determine a function; and

Had difficulty envisoning physica stuationsthat entail functiond
relationships.

Norman aso found that the teachers felt comfortable with and were knowledgesbl e about
their textbook’ s introduction and development of function but that they had an image
fixation, acommitment to asngle view of function.

Even (1989) gave a questionnaire to 152 prospective teachersin their last year of
preparation and then interviewed 10 of them. She found discrepancies between their
concept images (both “modern” and “old” images) and their concept definition of
function (as an equation). The participants in her study

Viewed functions mainly as equetions,

Thought that graphs of functions should be “nice” (continuous) and
smooth (differentigble);

Did not accept that correspondences could be arbitrary;

Regected the notion of congtant function, such asf(x) = 4; and
Thought that the domain and range of a function should be sets of

numbers only.

When asked about definitions that they would give to their students, these prospective
teachers
Tended not to use modern terms (e.g., relation, mapping, and
correspondence);
Used the idea of amachine or black box to illugtrate a transformation
process; and

Usad the verticd line test to characterize functions.
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The prospective teachers had difficulty relating symbolic and graphica representations.
When asked about genera properties of the parameters of an equation defining a
function, they tended to base their conclusions on very few examples. They held a point-
wise view of functions and were unable to recognize important characteristics of
functionsin relation to their grgphs. They interpreted composition of functions as
multiplication; arbitrarily used an “undoing” process to find inverses; did not know the
relation between the graphs of afunction and itsinverse; and had difficulty dedling with
trigonometric, exponentid, logarithmic, power, and root functions. Even (1989)
attributed these results to alack of “rich relationships that characterize conceptud
knowledge’ (p. 266). The prospective teachers had the knowledge but were unable to
connect the different pieces to make it accessible.

These studies of peopl€e’ s views of function have been criticized conceptudly and
methodologicaly. Conceptudly, the studies have tacitly accepted that students should
learn the Dirichlet-Bourbaki definition of function, implying thet it isthe “right”
definition of function. Markovits, Eylon, and Bruckheimer (1986, pp. 18-19) summarize
the disadvantages of this definition in school mathematics from a practica (sets are not
used in sciences or gpplications) and a mathematica (such a definition is not required
until the sudy of andysis or topology) point of view. Methodologicaly, there are two
main criticisms. In the first place, the distinction between concept images and concept
definitionsis not eedly distinguished: “When a student defines a concept, isthe
definition a concept definition or averba description of a concept image? The researcher
does not have meansto distinguish them!” (Hooper, 1996, p. 7). In the second place, the
environment established by the interviewer (or the test) invites the subject to give an
answer that he or she thinks the interviewer is seeking. Thus when answering the
question “What isafunction?” the student returns to what he or she is supposed to know
about the definition rather than to express his or her own understanding of the concept.
Researchers codification of students answers as “fuzzy” isaso an indication of



deficienciesin both the questioning process and the interpretation framework (Baacheff,
in press).

These accounts of the history of function and its teaching and of students,
prospective teachers , and teachers views of the concept of function have helped clarify
the nature of and ways of knowing the concept from a pedagogica point of view. A
concise description of these developmentsis given in the next section.

What Is a Function, and How Do Learners Come to Know It?

Sfard (1991) used the concept of function to propose amodd for the nature of
mathematical concepts and how students acquire them. She ascribed a dud nature to
concepts, an operationa and dynamic aspect (associated with the ability to carry out
procedures) and a structural and static aspect (associated with the ability to see the
concepts as objects). She claimed that both aspects are essentia condtituents of a
mathematical concept. To be able to see a concept as a mathematical object, itis
necessary to follow a continuum from interiorization (the student associates the concept
with the procedures) to condensation (the student can see the procedures as entities) to
reification (the student can see the concept as an entity independent of its associated
procedures). She noted that historically the concept of function had followed the same
path, which could be taken as an indication that in development operationa conceptions
take precedence over structurd ones. That precedence in turn has instructiona
implications. “New concepts should not be introduced in structurd ways [and] a
structura conception should not be required aslong as the student can do without it”
(Sfard, 1992, p. 69).

A smilar description of the way in which the concept of function isacquired is
given by Breidenbach, Dubinsky, Hawks, and Nichols (1992; see dso Dubinsky & Hardl,
1992), who defined the terms prefunction, action, process, and object to describe the
stages of cognitive development of the concept. With a prefunction conception, the
individua is not able to display “much of afunction concept”; an action conception
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“implies a repesatable mentd or physica manipulation of objects’; a process conception
involves a dynamic transformetion of quantities, with the individua being able to “think
about the transformation as a complete activity” applied to some objects that resultsin
new objects; when the conception of function isthat of object, it “is possible to perform
actionsonit, in generd actionsthat trandform it” (Dubinsky & Harel, 1992, p. 85). Note
the amilarity of the stages of action, process, and object to that of interiorization,
condensation, and refication given by Sfard. These authors have shown the importance
of procedura work for the act of learning mathematica concepts. At the sametime, they
show that neither a completely structura gpproach nor onethat is exclusvely procedura
will help students learn a concept. Instead, it is more desirable to promote an interplay
between the two.

These works that attempt to understand students cognitive processes can be
cdled psychological because their problem isto explore what sudents have in their
minds about functions. Because of the obvious difficulty of knowing whet isin other
persons minds, an dternative isto study the kind of knowledge produced within the
Stuationsin which a student acts. The work of Sierpinska (1992) and Freudenthal (1983)
(and Baacheff’s, in press, conceptualization described in the previous chapter) represents
this dternative.

Sierpinska (1992) identified 16 epistemol ogical obstacles (Bachelard, 1938/1983)
that appear in the process of understanding the concept of function—some of them rooted
initshistoricd development—together with the acts of understanding that are needed to
overcome them. Thus, for example, the view that mathematicsis not concerned with
practical problemsisan episternologica obstacle about the philosophy of mathematics
that is overcome by the “identification of changes observed in the surrounding world as a
practica problem to solve’ (p. 31). These obstacles should be seen as necessary part of
the learning process and not as something that should be avoided, because it is through
overcoming them that learning occurs. “The only dterngtive to painful learning [that

occurs when acts of understlanding are carried out] seemsto be no learning at al”



(Sierpinska, 1992, p. 58). Sierpinska s work suggested explanations of the problems
when students acquire the concept of function that are not necessarily rooted in students
lack of interest or ability in mathematics but in difficulty with the concept itsdf and with
our perception of the world.

Freudentha (1983) proposed a similar conceptuadization by spesking about the
importance of phenomena for the teaching of mathematica concepts:

Phenomenology of amathematica concept, structure or idea means describing it
in relation to the phenomena for which it has been created, and to which it has
been extended in the learning process of mankind, and, asfar asthis description is
concerned with the learning process of the young generation, it isdidactical
phenomenology, away to show the teacher the places where the learners might
gep into the learning process of mankind. (p. ix)
In hisDidactical Phenomenol ogy of Mathematical Structures, Freudenthal (1983)
devoted a chapter to the concept of function in which he showed the connections of the
concept between different types of phenomena: mathematica, socid, physicad, and
didactica (pp. 491-578). Hiswork showed that the “logical smplicity” of mathematical
gructures did not imply developmenta primacy, an implicit assumption of the new math
reform. Hiswork offered an dternative to the study didactic processes as they occur in
relation to the mathematics and to the context of its teaching, explaining sudents failures

in terms of that relation and not in terms of their inability (see dso Vergnaud, 1991).

Summary

The evolution of the concept of function has followed an interesting path,
changing how people understand mathematics. The rapid changes that occurred in
mathematics once the logica definition of the concept was introduced were echoed in
school mathemeatics, generating difficult problems for the mathematics education
community, problems that stimulated new lines of research in the field. The research has
provided images of students, teachers', and prospective teachers understanding of
function, images shaped by teaching practices, by mathematica discoveries, and by
peopl€e' s cognitive capabilities. The research has also suggested aternative gpproachesin



which lessforma presentations are fostered, with technology playing an important role.
The textbook, however, remains an object overlooked by researchers on functions.
Textbooks synthesize what is known about a concept from multiple perspectives.
historical, pedagogical, and mathematica. As documents, they provide valuable
information about the potential learning that could occur in the classroom and thusan
investigation of textbook content is necessary not only to complement the set of images
of function but aso to help explain its rdation to the difficulty of learning the concept.

The issue of research on textbooks is the topic of the next section.

Textbooks

Three yearbooks of the Nationa Society for the Study of Education have been
devoted to textbooks: the thirtieth (Whipple, 1931), the eighty-eighth (Jackson &
Horoutunian-Gordon, 1989), and the eighty-ninth (Elliot & Woodward, 1990). Compared
with other areas, however, and despite the strong association of textbooks with
curriculum, the research that has been conducted with textbooks has been limited. Almost
ahaf century ago, Cronbach (1955) proposed ideas for a systematic research program on
textbooks, arguing that the research that * has examined the contribution of text materids
... has been scattered, inconclusive, and often trivia. Philosophica study of texts hasled
to equdly insubstantial results’ (p. 4). In eaborating this program, McMurray (1955, p.
29) identified four different kinds of verba communication, namely description,
prescription, generdization, and theory. McMurray advocated a textbook that would
contain a baance of each type of verbal communication; texts that were too precriptive
or decriptive would not hep students gain reasoning skills. By making explicit the
different types of communication, he hoped to help teachers evauate the qudity of
textbooks and researchers analyze their content.

Some years later, the gppearance of programmed salf-ingructiond medialed
Lumsdaine (1963) to declare that textbooks were not an “amenable’ object of research,

given that the textbook “does not control the behavior of the learner in away which
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makesit highly predictable as avehicle of ingtruction [and] does not initsdf generate a
describable and predictable process of learner behavior” (p. 586). He foresaw that
programmed sdlf-ingructiona media would cause the “decling, if not the demise, of the
textbook, as now conceived” (p. 586). The decline has not occurred, but developmentsin
electronic communication may pose another threet to the textbook “as now conceived.”

The difficulty of “controlling” the textbook as a variable may account for the
scarcity of research on textbooks. Most of the research on textbooks conducted in the
United States has andyzed textbooks in biology, history, geography, and especidly
reading. This phenomenon has been observed in France, too. Choppin’s 1980 survey
(cited by Johnsen, 1993) found that content analyses have dominated French textbook
research, usudly from asociologica perspective (ideologies, vaue systems, way's of
describing society are questioned), and have centered on primary textbooks more than
secondary. With respect to school subjects, the most common have been French asa
mother tongue, philosophy, geography, and above dl history because “historians and
sociologists would probably encounter mgor problemsiif faced with the task of analyzing
books in mathematics and physics’ (Johnsen, 1993, pp. 59-60).

In mathemeatics, researchers have looked at the content of the textbook from a
sociologica perspective (Dowling, 1998), a the level of agreement of the curriculum
present in the textbook with that of tests (Freeman, Belli, Porter, Floden, Schmidt, &
Schwille, 1983) or with the NCTM Standards (Chandler & Brosnan, 1994), at the
relation between textbook content and ingtruction (Flanders, 1987; Flanders, 1994,
Freeman & Porter, 1988; Freeman & Porter, 1989; Kuhs & Freeman, 1979; Kuhs,
Schmidt, Porter, Floden, Freeman, & Scwille, 1979), and at the emphases on certain
topics present in elementary school textbooks (Li, 2000; Remillard, 1991; Stigler, Fuson,
Ham, & Kim, 1986). The sociologicd studies—which have principaly andyzed bias
regarding gender and minorities—have had an immediate impact on publishers and
authors, who have been discouraged from using stereotypes (e.g., women doing
housawork and men doing office work) and have increasingly included minorities doing



mathematica work (e.g., portraying mathematicians from severd cultures). The sudies
that link textbooks with achievement have demongtrated the importance of the role of the
teacher as amediator between what isin the textbook (Stodolsky, 1989) and students
performance on tests, corroborating in some ways Lumsdaine s observation about the
role of the textbook in instruction.

With respect to teachers use of the textbook, SIMS, the Second I nternational
Mathematics Study (Burstein, 1993; Robitallle & Garden, 1988; Travers & Westbury,
1989), and TIMSS, the Third Internationa Mathematics and Science Study (Beaton et d.,
1996), have shown that teachers tend to report high percentages of textbook usein their
classroom. Other studies have found that teachers use of textbooks decreases asthey
gain experience (Bal & Feman-Nemser, 1988; Stodolsky, 1989). It dso seemsthat a
consderable number of exercises are assigned from textbooks—which might explain the
high percentage of textbook use reported by teachersin SIMS and TIMSS,

Another areain which mathematics textbooks have been studied is with respect to
the didactic transposition (Chevallard, 1985), that is, the process by which the knowledge
developed by mathematiciansis transformed into teachable knowledge. Balacheft
(persona communication, April 1999) points out thet this transformed knowledge is a
different kind of knowledge that deserves careful analysis. Van Dormolen (1936)
characterized aspects of atextbook such as correctness of content (without mistakes,
consstency, clarity, and genuineness), globa perspectives (cursory and conceptua
preparation), and adaptation to student’ s ability (pp. 160-161). Hisinterest wasto discern
the match between the textbook content and mathematics. Kang and Kilpatrick (1992)
looked at the relationship between didactic trangposition, mathematics ingtruction, and
ways of knowing in mathematics as seen in U. S. textbooks.

Following Herbst (1995), these works can be characterized as external critiques,
in them, the textbook is trested “as a piece of technology ingde the educational system,”
(p. 2) “atechnologica product, a container, or afunne of the mathematics to be learned”
(p. 3). Those andlyses “refer the textbook to its externd environment, that being the
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educationd system, the mathemetics of the mathematician, or the process of
trangposition” (p. 3). In contrast, internal critiques consider the textbook as an
“environment for congtruction of knowledge’ (p. 3); the interactions of the elements
ingde the textbook (e.g., diagrams, examples, and explanations) are seen “as a product of
the conflict between the temporal and spatia nature of texts’ (p. 3). Examples of the
latter kind of study are Otte (1986, p. 176), who andyzed the relationship between
illugtrations and explanations, and Herbst (1995), who andyzed the number lineas a
metaphor for the real numbersin a series of Argentinean mathematics textbooks.

In summary, textbooks are consdered a crucia part of schooling, afundamenta
curricular agent. The textbook seemsto play an important role for novice teachers and
seems to be the source of many exercises for sudents. The extent to which the content of
ameathematics textbook matches or fails to match tests or curricular documents such as
the NCTM Standards has been used to explain sudents performance on tests of that
content. Research on sociologica aspects of textbooks has made textbook writers more
aware of the implications of gereotypes. But there is little information on how particular
topics are presented in textbooks. One exception is Howson (1995), who offers an
interesting but limited account of possible difficultiesin the presentations of selected
topics in textbooks from eight countries (this work is discussed in the next section, see p.
41). Thereis dso little information about the coherence and the relations among other
topicsin atextbook. In the case of function, thereislittle information about issues such
as how the topic isintroduced, what definitions are given to the student, what examples
and exercises students are asked to do, what conceptions are privileged, or what
advantages or potentia problems might arise with various presentations. These issues are
crucid for underganding the difficulties in the teaching of function discussed in the
previous section. Although an andysis of a series of textbooks in one country might
provide some answers, aspects that may not be obvious become explicit only when
comparing textbooks from savera countries. In the next section, | discuss cross-nationa

studies that have focused on mathematics and textbooks.



International Comparisons

Mathemeatics education has been a centrd area of comparative international
research. Mathematics has dways held a privileged postion in the school system,
infact, it isone of the few subjects that is taught in most school systems
worldwide (Howson & Wilson, 1986).... Thisuniversa status and importance of
mathematics, the smilarity of mathematics curricula worldwide, and the supposed
link between the study of mathemetics or science and the development of a
nation’s economic strength (Walberg, 1983) make studies of internationa
comparison in mathemeatics education of important interest to researchers,
educators, and policy makers. (Robitaille & Nicol, 1994, pp. 405-406)

This quotation captures part of the rationde that has guided internationa studiesin
mathematics. Two organizations, the Internationa Association for Educationd
Achievement (IEA) and the Organization for Cooperation and Economic Development
(OECD), have conducted a series of large-scale internationa comparisons of different
elements of school mathematics, focusing on sudents achievement. | have limited this
discussion to the IEA studies.

Thefirg IEA study of mathematics (First Internationa Mathematics Study,

FIMS) was conducted in the 1960s (Husén, 1967); the second (SIMS) in the early 1980s
(Burgtein, 1993; Robitaille & Garden, 1988; Travers & Westbury, 1989), and the third
(TIMSS), which included science, was conducted in the early 1990s (Beaton et al., 1996;
Mulliset d., 1997; Mulliset d., 1998). (A summary of findings of the first two sudies

can befound in Robitaille and Nicol (1994)

The varigble opportunity-to-learn (OTL) was used in FIMSto indicate the
opportunity that students had to learn the mathematics necessary to respond correctly to a
given test item. It was measured by asking teachers to rate items according to whether
they have taught the related content to students. In FIMS, there was a* positive
relationship between students achievement on an item and the opportunity to learn the
content of thet item” (Robitaille & Nicol, 1994, p. 408). The results of FIMS were useful
for noting the “tremendous variability between countriesin many varigblesthat are
important to schooling in generd, and to the teaching and learning of mathematicsin
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particular” (p. 408). There were criticisms with respect to the operationdization of the
OTL variable, asit was “too bound to the form of specific items and more representative
of teachers judgment of items rather than content categories of which theitemisan
example’ and therefore could not be considered as “surrogate for nationa curriculum”
(Schmidt & McKnight, 1995, pp. 344-345).

SIMSincluded a more intengve curriculum analyss than FIMS. Curriculum was
andyzed through athree-level framework that included the educationa system, the
school and classroom, and the student. At the first level, the goas a anationd or
regiond leve for mathematics to be learned were caled the intended curriculum. The
interpretation of the curriculum by teachersin the classroom was cdlled the implemented
curriculum. Findly, what students learned as determined by their achievement on tests
was caled the attained curriculum. The study also took into consideration curricular
contexts (indtitutiona settings, school and classroom conditions and processes, and
student behavior) and curricular antecedents (educationd system features and
conditions, community, school and teacher characteristics; and student background
characterigtics), to provide a comprehensive andysis of the three levels of the curriculum
(Travers & Westbury, 1989, p. 6-9). One mgor finding dedlt with an gpparent declinein
the study of geometry and increase in the study of agebra since FIMS. The new math
reform movement that sporead worldwide during the 1960s and 1970s apparently
explained this trend. Differences across countriesin tracking practices were found, but
they were not enough to explain differencesin achievement (Robitallle & Nicol, 1994, p.
410).

One important lesson that was drawn from these two studies concerns the
difficulty entailed in comparing achievement results across countries. Countrieswith
amilar intended curricula showed different patterns of achievement. This result was dso
found in TIMSS. Neither FIMS nor SIMS included an analysis of textbooks, athough
SIMS reported a high rate of teachers use of textbooks (Robitaille & Garden, 1988, p.
53-61).
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TIMSS included an ambitious curriculum andysis project that sought information
about curricular and textbook organization in mathematics and science in the 48
participating countries. Initia results of that project are reported in Schmidt, McKnight,
Vaverde, Houang, and Wiley (1996) and in Schmidt, McKnight, and Raizen (1997). The
SIMS mode was modified to include the potentially implemented curriculum, an
intermediate level between the school system and the classroom, that included textbooks
and other organized curriculum materids and that attempted to acknowledge, anong
other factors, the role of the teecher in mediating the implementation of the curriculum
(Schmidtt et al., 1996, p. 174).

Two ligtings of topics, the science and mathemeatics curriculum frameworks, were
developed to give coherence to the TIMSS curriculum analyss (Martin & Kelly, 1997,
pp. 5-7). The mathematics framework has 10 main topics with 24 subtopics. Some of the
main topics contain two levels of specificity. For example, Topic 6 (Functions, Relations,
and Equations) isdivided into Topic 1.6.1 (Patterns, Relations, and Functions) and Topic
1.6.2 (Equations and Formulas). Topic 1.6.1 is then divided into 11 subtopics: Number
Patterns, Relations and Their Properties; Functions and Their Properties, Representation
of Relations and Functions, Families of Functions—Graphs and Properties; Operations
on Functions, Related Functions—Inverse, Derivative, etc.; Rdationship to Functions
and Equetions, Interpretation of Function Graphs; Functions of Severd Variables, and
Recursion. The available reports, however, do not consider the eleven subdivisions.

In the TIMSS curriculum andysis the researchers found a* pervasive variaion”
(Schmidt et d., 1997, p. 165) among countriesin terms of the topics that were included in
the textbooks and in the number of topics that were sudied in a given year. Some
countries had few topics each year (and in consequence teachers might devote
considerable time to each), and others had alarge number of topics each year, some of
which were repegated across grades. Each textbook was divided into blocks (smaller
segments within alesson that could be narrative, informative graphic blocks related or
nor related to ingructionad narrative, exercises and question sets, suggested activities,
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worked mathematical examples, or other; Schmidt et d., 1996, p. 200). The proportion of
atextbook (the percentage of blocks into which the book was partitioned) “devoted to a
particular topic was used as an indicator of the emphasis on that topic within a particular
grade’ (Schmidt et ., 1996, p. 113). Schmidt et a. acknowledge that these data suggest
“possible rough bounds on emphasis’ because teachers decide what use to make of
textbooks and whether to cover dl the information in them. Unfortunately, the report

does not include information as to textbook use for the subtopic of Patterns, Relations,
and Representations, because this topic was not “commonly intended and emphasi zed”

(p. 115) at the eighth-grade leve.

Large-scale studies have been criticized because they handle the results of
Sudents achievement asa“horserace” in which the public is told who won (had the
highest score), which assumes that such a comparison is possible (Rotberg, 1998, p.
1030). In dl these studies, there has been a tacit assumption that the tests were fair to dl
the students, that student populations and ingtructiona practices were homogeneous
within countries, that thereis a canonica curriculum in mathematics, and that &l
countries are happy with their mathematica ingruction (Atkin & Black, 1997, Keitel &
Kilpatrick, 1998). The curriculum mode (intended, implemented, and attained) has been
seen as disrespectful to teachers, whose intentions are not considered and who are
assumed to blindly follow “plans drawn by others’ (Kilpatrick & Davis, 1993, p. 206).
The impact that these studies have on policy has been strongly questioned, as the
implication that successful neighbors are to be imitated might not be the solution to any
country’ singructiond problemsin mathematics (Atkin & Black, 1997, p. 22; Keitd,
2000).

Smdler-scale international studies have offered more detailed accounts of
particular topics in school mathematics and have been pursued mostly to complement the
results observed in the large-scale studies. | report on the results of six of the former.

Schutter and Spreckelmeyer (1959) found that the American curriculum as seenin
arithmetic textbooks lagged approximately two years behind curriculafrom European
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countries (Austria, Belgium, Bulgaria, Czechodovakia, Denmark, England, France, East
and West Germany, Greece, Holland, Hungary, Irdland, Itay, Poland, Rumania, Russia,
Spain, Sweden, Switzerland, and Yugodavia). Ther analyss of the content of the
examples and problems posed to the students at each comparable grade (determined by
pupils age) showed that European textbooks were

carefully planned and [presented] a well-structured curriculum, with explanations
tailored to fit the experience and background of the children who [studied] the
texts. At every stage, students [were] encouraged to use both the information that
[was| available and their own reasoning abilities to verify their work. Appedsto
flexibility of mind and to cregtive thinking [were] made to agrester degree thanin
American textbooks. (p. 32)
They recommended arevison of arithmetic programs (pp. 34-35) so that their materids
would devote more time to the sudy of arithmetic in the dementary school by including
more chalenging work, explicit gpplication of fundamenta laws of number operation
(e.g., digributive property), explicit connections among arithmetical ideas, and more
emphasis on early and gradud development of geometrical concepts and by deleting
informationa arithmetic (e.g., insurance, business, and budget). This study was important
inthat it used arithmetica problems as indicators of the content and the possble
connections enacted within arithmetica topics. One mgor weakness, however, is that no
clear guides with respect to the method of sdlection of the tasks are provided (“samples
that were typicd of their sourcetexts” p. 2), nor are the criteriafor andyzing them,
which to some extent suggests that the report sought evidence to support the new math
movement. Max Beberman, in the introduction to the report, praisesthe
recommendations as “dl children (and thisincludes American children) have a genuine
need for working with aogtractions. ... The most successful mathematics curriculum will
be the one which caters to this need for playing with idess’ (p. iii).
Stevenson and Bartsch (1992) andyzed surface (e.g., number of pages and length
of chapters) and content characteristics of elementary and secondary mathematics

textbooks from Japan and the United States. They selected the most popular series used
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in each country (it was difficult to accomplish this a the secondary leve in the United
States because of the lack of comprehensive gatidtics, p. 116). By determining the
number of concepts and the place where they gppeared for the first time in the textbooks,
they could establish amilarities and differences between both curriculain terms of

content and timing. At both levels, dementary and secondary, Stevenson and Bartsch
found thet

Japanese textbooks tend to be tersaly written, while the American textbooks
contain information that is not necessary for developing the concepts under
consderation... [They] appear to be written so that understanding the content of

the lesson is less dependent upon what happens in mathematics class. (p. 125)
The American textbooks also used a step- by-step approach (p. 109). Although the content
of the curriculawas smilar, Japanese textbooks introduced concepts and skills earlier
than American textbooks, which implies that Japanese children have more timeto
practice concepts and skills than American children and indicates that Japanese children
are expected to master them faster than the American children (pp. 132-122). This study
suggests that the “ canonical curriculum” (Howson & Wilson, 1986, cited by (Kilpatrick,
1992, p. 139) expresesitsdf differently within countries. Thus, a study of these
differences is worth pursuing because they may relate to achievement.

Sigler, Fuson, Ham, and Kim (1986) anayzed the difficulty of different types of
addition and subtraction word problems by comparing four American text series with one
series from the Soviet Union (Grades 1 to 3). They used atwo-dimensiond framework
(semantic structure of the story—change, combine, compare, and equaize—and position
of the unknown in the equation representing the Sory) to characterize the difficulty of the
word problems present in the textbooks. They found that (a) the Soviet textbooks
included more two- step problems than the American textbooks; (b) the number of one-
and two- step problems decreased across gradesin the Soviet series, whereas it increased
in the American series; and (c) the Soviet textbooks tended to include a similar amount of

word problems of al the types whereas the American textbooks tended to favor three of



the smplest ones (pp. 163-165). This sudy isimportant because it highlights the
importance of incorporating research results from psychology (“variaion [and] repetition
[are] crucid for learning,” p. 169) and from mathematics education (problem
characterization) into textbook construction, and because it shows the feasibility of
conducting empirica studies with textbooks problems.

Howson (1995), as part of TIMSS, did a quditative andys's of the content of
eghth-grade textbooks from elght countries (England, France, Japan, the Netherlands,
Norway, Spain, Switzerland, and the United States), andlyzing six topicsin particular
(place value and decimals, fractions and proportionality, geometry, linear equations,
measurement, and data andyss). His analyssincluded both surface characteristics (such
as length and number of lessons and availahility of review sections) and content
(motivetion and organization). The U.S. textbook, for example, “contained over three
hundred units—each requiring one to three periods of classtime! Thereis materia here
for three grades work” (p. 28), but the Japanese textbook did not contain “work on
arithmetic and indeed no review at dl. This omission looks somewhat sngular unless
students in Japan have retentive powers not possessed by their peers elsewhere” (p. 51).
He discusses differences in mativations for introducing some topics, such as
multiplication of whole numbers or geometry, and some problems inherent in them (eg.,
the modd of the witch's cauldron for negative numbers from the Netherlands, p. 66). He
aso found that “the English, French, and U.S. texts go further than most in offering a
wider range of learning Situations, should the teacher wish to take advantage of these” (p.
87). The most important implication of Howson's sudy isthat it is not possible to assume
that “if atopicisintroduced in severd countriesthen it is aways treated in the same
manner and with the same degree of emphasis’ (p. 66), which suggests that the different
pedagogical resources available in each country to teach particular topics are worth
knowing. One limitation is that Howson seems to ignore other aspects that might
influence how textbooks are written (e.g., extreme societa pressuresto excd in

mathematics in Japan require children to attend after school programs in which students
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review and practice what is being learned; thus, the textbooks do not need to provide
review sections that are common in textbooks from other countries).

Li (1999) andyzed the agebra content and the problems in nine eighth-grade
textbooks from China, Hong Kong, Singapore, and the United States. Two features of
content presentation and organization were andyzed: the inclusion and organization of
units (content ingtruction, content review, cooperative learning, problem solving,
technology, more practice, content extension, tests, other) and the ingtructiond
gpproaches (explanations, worked examples, illugtrations, and to-be-solved—TBS—
problems). Three features of TBS problems were andyzed: mathematics (the same asin
the unit where the problems are, different, or mixed), context (illustrated or purely
mathematical), and performance requirements (type of response—explanation required or
not—and cognitive demands—conceptua understanding, routine procedures, complex
procedures, problem solving, other; see pp. 98-107).

Li found differences within the American textbooks in terms of content covered
and Smilaritiesin ther tendency to split the content into various smdl units, put less
emphasis on content ingtruction but more on student practice, and provide more problem-
solving activities. The Asian textbooks tended to offer larger chapters that presented the
agebra content from a pure mathemeti cs perspective. The U.S. nonalgebra textbooks
placed “less emphasis and lower requirement on agebra content than [did] the textbooks
from East Asa’ (p. 124). The U.S. textbooks tended have a grester variety of TBS
problems than the East Asian textbooks, which included asingle type of TBS problem
that emphasized the performance of routine proceduresin a purdly mathematical context
(pp. 125-126). Li dso contrasted eighth-grade students' performance on five TIMSS
items and concluded “textbooks' variations in mathematics requirements can provide
partid explanations of differentia student performance across educationa systems’ (p.
iv).

Methodologicaly, Li’s approach isinnovative, as it combines both content and
problem analyses. The quantitative measures used in Li’s study, though, were limited to
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such measures as space devoted to atopic, number of chapters, and number and nature of
section titles. These measures act as proxies for both qudity of content and organization.
Even though they can be appropriate a a macro leve, they can mask the role that the
actuad content and organization play in presenting the mathematics. If a common section
cdled “ graphing systems of linear equations’ were to appear in five textbooks, that
commondity would not guarantee that dl five books would trest the topic in the same
way or that the conceptions enacted would be the same. Also, lessingtructiona content in
atextbook does not necessarily imply a poorer treetment of atopic.

Li provides extensive descriptions of the severd features he consdered, an effort
that is valuable for disclosing patterns of content organization (e.g., content explanation
may come before or after aworked example; worked examples may have illustrative
contexts or verba explanations, TBS sets are opportunities for practice; the content is
introduced ether with a problem that has a real-world like context or with an explanation
of the mathematical knowledge, pp. 157-171). Li’simplication, however, that the Adan
textbooks account for much of the higher students' performance on the TIMSS algebra
related items can be chalenged. In a situation in which the outcomes of two countries are
so different (in this case, students performance on the TIMSS test for the United States
and the Adan countries) it is not very difficult to attribute that a difference to particular
agpectsin which their corresponding textbooks differ. Perhaps there are other countries
whose textbooks look similar to the East Asian textbooks and whose students do not
perform as well asthe Asan students. The researcher needs to look for both confirmatory
and disconfirmatory cases before making a generdization of thiskind.

In astudy involving the problems following the sections on addition and
subtraction of integersin five U.S. and four Chinese textbooks, Li (2000) applied a three-
dimensona framework (see Table 2) to andyze problem requirements. All the
dimensions provided measures of complexity of the problem. The mathematica
dimension referred to the number of operations required for solving the problem. The

contextua dimension described the type of information provided in the problem. The



performance dimension accounted for the type of response and the cognitive demands of
the problem. Li found that the textbooks from the two countries were Smilar with respect
to the first two dimensions. In both, the mgority of problems required asingle
compuitation procedure and used a purely mathematical context (p. 238). U.S. textbooks,
however, offered more problems that required conceptua understanding and explanations
or solutions than the Chinese textbooks. The Chinese textbooks offered more problems
requiring procedural practice than the U.S. textbooks. Li interpreted thisresult asa
demondtration of the influence of the NCTM Standards on the U.S. textbooks (pp. 238-
239).

Table 2

Dimensions of Problem Requirement.

Mathematical
Single computation procedure required
Multiple computation procedures required
Contextual
Purely mathematical context in numerical or word form
[llustrative context with pictoria representation or story
Performance
Response type
Numerical answer only
Numerical expression only
Explanation or solution required
Cognitive requirement
Procedura practice
Conceptua understanding
Problem solving
Special requirements

Note Adapted from Li, 2000, p. 237.

Li’s(2000) study isimportant in thet it shows the viability of usng problem
andysis to describe sdlient features of content demands and cognitive requirements of the
textbooks. One limitation is that the dements of the framework used to analyze problems
are taken as separate entities and not in relation to each other. Thus, it might be possible
that a cognitive requirement such as “problem solving” istied to the response type
“solution required” when an “illustrative context” is provided and that in those cases a
“multiple computation” isrequired. As the categories seem interdependent, the issue of



how the categories appear separatdly is lessimportant than the issue of how and why they
appear together.

Large- and samdl-scae internationa studies show that there are important
differencesin content presentation across countries and that these differences might have
an impact on sudents' achievement on tests. Large-scale studies have been useful in
showing generd trends, which in some cases have been further explored with smdl-scale
sudies. The information and suggestions that have been produced as aresult have
nurtured the fied in many productive ways by suggesting better methodol ogies and more
interesting problems to study. Nevertheless, | find interesting the sdection of countries
againg which U. S. textbooks are compared. During the new math movement, the United
States focused on European and Soviet textbooks; and during the formation of the
European Union and the Asian miracle, Jgpan, China, Taiwan, Singapore, and the
European countries were sudied. All efforts to find explanations for the intriguing
phenomenainvolving textbook content and use from the natural competitors of the
United States are welcome, but the dismissal of the andlys's of textbooks from other
countries—in fact, from any developing country—serioudy limits the generdizability of
the findings of these sudies and their implications for the U.S. curriculum.

| find it intriguing that since the 1950s studies have consistently reported that the
content presented in U.S. mathematics textbooks is fragmented. Theissue of why this
characterigtic has not changed in 50 yearsis less important than the issue of why
researchers till conduct studies that report the same “finding” repeatedly. This lack of
progress reflects the minima advancement in our techniques for anayzing textbooks and
the limited status that the textbook has as “a piece of technology insde the educationd
system” (Herbst, 1995, p. 2), instead of being “an environment for construction of
knowledge” (p. 3). With this study, | wanted to contribute to both aspects of the anayss

of textbooks.



CHAPTER 3

METHOD

The world was so recent that many things lacked
names, and in order to indicate them it was necessary
to point.
Gabrid Garcia-Mérquez (1969)
This chapter is organized into five sections. The first section describes the
procedure used to select the textbooks; the second describes the process of designing the
coding system, with some examples; the third discusses the reorganization of the
categories of the eements of the conceptions, with a brief description of the Configurd
Frequency Analysis program, CFA (von Eye, 1990, 2000), used to identify and
characterize them; the fourth presents the procedures used to connect the information
from the TIMSS achievement test with the conceptions; and the last discusses my own

biases when conducting this research.

Textbook Sampling

Accessto the TIMSS textbook archives a Michigan State University was made
possible through the auspices of William Schmidt, director of the TIMSS curriculum
anaysis project. The archive contains textbooks and curriculum guides in mathemetics
and science from 48 countries. The firgt criterion for selecting a textbook wasthat | could
read it. | therefore selected dl the English, French, German, Portuguese, and Spanish
meathematics textbooks in the archive. These textbooks came from twenty countries.
Argenting, Audrdia, Austria, Canada, Colombia, the Dominican Republic, England,
France, Germany, Hong Kong, Ireland, Mexico, New Zedland, Portugal, Scotland,
Singapore, South Africa, Spain, Switzerland, and the United States.
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The second criterion was that the textbooks were intended for seventh grade or
higher. That diminated the one textbook from France. It wasincluded in the origina
coding but was dropped later when | discovered that it was intended for fourth grade.

The third criterion was that the textbook contained sections devoted to functions. |
looked in the table of contents for words or phrases such as functions, linear functions,
graphing in two coordinates, graphing in the Cartesian plane, tables, patterns, and
relations, and | aso looked under the entry corresponding to function in theindex (only
the textbooks of Canada and the United States provided an index). This criterion
eliminated the textbooks from two countries, the Dominican Republic and Germany.
Because some countries had more than one textbook, | numbered the textbooks in each
country dphabeticaly by author. A list of the 35 titles and authors of the sdlected
textbooks, together with the grades for which they were intended, is provided in
Appendix A.

In each textbook, al pages of those sections marked as being related to functions
were photographed with adigita camera, which alowed me to handle the pages asfiles
in acomputer, thus facilitating the andyss. The procedure also saved the considerable
amount of time that photocopying would have taken. The Statistical Package for the
Socia Sciences (SPSS, 1997) software was the basic tool used to record the data from the
textbooks. Table 3 lists the textbooks with their intended grades, the number of pages
andyzed, and the number of exercisesinitialy sdected for the andyss

Table 3

Intended Grades, Number of Pages, and Exercises Analyzed in Each Textbook

Textbook Grade No.of No. of Textbook Grade No. of No. of
pages exercises pages  exercises
Argentinal 8 22 18 Scotland2 10 24 86
Australial 8 29 26 Singaporel 8 20 41
Australia2 9 24 89 SouthAfrical 10 45 0
Audtralia3 7 26 14 SouthAfrica2 7 15 22
Austrial 8 6 14 SouthAfrica3 9 14 40
Canadal 8 6 25 Spainl 8 19 7
Colombial 8 30 87 Switzerlandl 9 18 338
Colombia2 8 2 27 Switzerland2 7 8 36




Textbook Grade No.of No. of Textbook Grade No. of No. of
pages exercises pages  exercises
Englandl 8 17 31 Switzerland3 9 15 51
England2 8 17 23 Switzerland4 7 9 22
HongK ongl 8 12 12 UnitedStatesl 7 12 174
Irelandl 8 13 53 UnitedStates? 8 12 207
Ireland2 9 20 72 UnitedStates3 7 11 160
Mexicol 8 42 36 UnitedStates4 8 12 195
NewZeadandl 12 12 116 UnitedStates5 7 7 A
NewZeaand2 12 26 41 UnitedStates6 8 12 93
Portugd 1 8 26 56 UnitedStates? 9 30 345
Scotlandl 11 11 48 Tota 644 2564

Except for the textbooks from the United States, al the pages photographed were
consecutive, and for only two textbooks, Australia3 and Switzerland2, were the pages
under asingle heading. The textbooks with the largest number of exercises tended to be
from the United States. The U.S. textbooks numbered the exercises differently from those
in the textbooks from other countries. For example, in the U.S. textbooks, each missing
entry in atable was counted as an exercise. Figure 1 presents an exercise from an
Audrdian book that deals with tables and four Smilar exercises from an American
textbook. The exercises ask the student to find afunctiond relationship between the
entriesin atable; the previous examples and exercises have dedt with Smilar Stuations.
Whereas for the Audtrdian textbook thereis only 1 exercise and six tables, for the
American textbook there are 34 exercises for eight tables. | did not attempt to adjust the
number of exercises from the United States; | decided to use the textbook’ s own
definition of an exercise in the andyses.

| chose not to andlyze problems that did not dedl explicitly with functions or
relations even if they were included in a section with such atitle. Such problemsincluded
arithmetic problems, exercisesin Smplifying algebraic expressions, and exercises dedling
with geometric properties of figures that appeared under headings like “Review.” That
reduced the sample by 303 exercises (73% were from textbooks from the United States,
16% from Audtrdia3, and 11% from the Colombian textbooks). Unreadable pagesin the
origind or in the photograph were discarded; these corresponded to 8 exercises
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62. In each of the following tables [six tables are provided]
(i) Find the relationship between the y-coordinate and the x-coordinate;
(ii) Copy and complete the table
X 1 2 3 4
y 3 6
A(13) B(2,6) C@3, ) D@4, )

Source: Augtrdial, p. 407, Exercise 62.
Complete each table [eight tables are provided)]

Hikers Canoeing
1 1
2 2
3 3
4 5.
6. 5
7. 6
7 8.

Source: UnitedStates], p. 40, Exercises 5t0 8.

Figure 1. Two ways of numbering exercises.
(from Switzerlandl, Switzerland3, Portuga 1, and SouthAfrica3). The find number of
exercises was 2253. In this report, the problems and exercises from the textbooks are al

referred to as tasks.

Coding System

Baacheff (in press) defined a conception as a quadruplet (see p. 8 of chapter 1). |
used the labels P for the tasks, O for the operations required to solve the tasks, R for the
representations used, and S for the control structures—contrals, for short—for the means
available for the student to determine that he or she has an answer and that it is correct. In
English, the word control portrays the idea of “ power or authority to guide or manage’
(Merriam Webster’ s College Dictionary); thet is not its intended meaning in this study.
Instead, control refersto posshilities avalable for the student for legitimating solutions
and verifying answers. In thisreport, | refer to P, O, R, and S asthe dements of the
quadruplet or the eements of the conception.

The development of the categories for coding each element of the quadruplet was
alengthy process that | accomplished in four steps. Firdt, | selected one task from the first




section of each textbook to analyze in depth. | worked each task, following as much as
possible the textbook presentation that preceded the exercise section and developing
categories for each eement of the quadruplet. Second, | used the resulting categories to
code the remaining tasks in al the first sections of each textbook, looking for new
categories and refining the properties of each. | followed a constant compar ative method
(Glaser & Strauss, 1967) in which | described the sdlient features of the categories for an
element and at the same time looked for possible bregks or mismatches that could lead to
the creation of anew category. This second step involved 518 tasks and resulted in 133
categories. Because there were so many categories, the third step consisted in merging
categories within common groups, thus yieding a smaler, more manageable number of
categories for each dement. Thefina step was to test the coding system by having other
raters use it to code tasks. The details are provided in the following sections. | have
included examples taken from the textbooks. Appendix B contains the original of those
examples from books in languages other than English for which | have provided a
trandation together with the versons of one example in English thet is abbreviated

below.

Development of Categories

Because every problem section contained more than one task, | needed a
procedure for selecting the first tasks to be anadyzed to create the categories. | wanted to
maximize the differences among tasks to obtain a variety of posshilities. | selected those
tasks having the most questions because | assumed that longer tasks would provide more
different types of questions than single-question tasks. In the cases of tasks with the same
number of questions, | chose the first even-numbered task. Next, | read the text content
that preceded the task and worked it using as a guide what was suggested by the text. |
produced a narrative response, based on the solution and on the preceding text content, to
each of the following four questions:

A. What isthe use given to function in the task?



B. What does the student need to do to solve the problem?

C. Which representations are necessary to solve the problem?

D. How does the student know that he or she has gotten an answer and that the answer is
correct?

The following is an example of the narratives produced:

Colombia 1, p. 140, Tasks 5-9.

For Exercises 5 to 9 represent in the Cartesian plane the relationship whose
solution isthe given set.

5 R={(X,y) | x,y>0aXx,yeR}

6.Q={(x,y)[ly=-xrxeZ}
7.5={(x,y) |ly=xaxeN}
8.T={(x,0)|xT R}
9.H={(O,y) |yl R}

The task does not dedl with functions but with solution sets of relations as ordered
pairs, described symbolically and by how they are represented in the Cartesian
plane. It uses symbolic and graphica representations. There are no Smilar
examples solved previoudy: the closest one gives ardation in words and the
problem there is to graph the relation and to write the solution set in symbals. In
that example there is only one point plotted in the Cartesian plane. It seemsthat to
solve the exercise the student does not need to plot many points, at least not many
gpecific points, athough it islikely that the Sudent may do that. Note that the
emphasis seems to be on making the students recognize the differences in systems
of numbers chosen for each set. If a student chooses for set R points such as (1, 1),
(1,2) and so forth, he or she will be corrected—probably by the teacher—because
R represents dl the red numbers; that is, non-integer numbers are to be
considered too. Then he or she needs to shade the whole first quadrant. The set Q
is made up of the points with integer coordinates that lie on aline with dope—1
that passes through the origin. The student will probably need to write ordered
parsin the form (x, - X) before plotting. Set Sis made up of the points with
integer coordinates thet lie on the line with dope 1 passing through the origin and
in the first quadrant; it does not consider the point (0, 0). Thesets T and H
correspond to the x- and y-axes, respectively. The student will basically need to
pick numbers, probably integer numbers, check whether the number satisfiesan
initid condition (isintegrd, red, postive, naturd); find another number that

could be paired with it (Isit positive? Isit the same? Isit its additive inverse? Isit
zero?); and then plot the pair in the Cartesan plane. By applying this procedure a
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number of times—how many is not clear from the task but from previous work it
seems that four or five times would be enough—a representation in the Cartesan
plane will be obtained. Controls: in order to know if a plotted et is correct, the
student might need to choose an arbitrary point in the plane that is not represented
in the set and test whether the point meets the conditions given by the set
definition. The work that has been done before does not guide the sudent in this
way, though. In fact, one of the examples consstsin locating four ordered pairsin

the Cartesian plane (only one of these points has a nor-integer coordinate, 2 ).
The other one was described above; so it is not clear that the student knows how
he or she can verify tha the answer was correct. The presentation is devoted to
giving precise definitions related to the Cartesian plane (unequivocal
correspondence between R x R and the Cartesan plane; definitions for quadrants,
abscissa, coordinate, and domain of the relation). It islikely that the student will
decide to retest the points obtained to check that they meet the conditions
proposed. (First analysis, p. 3)

Biehler's (in press) definition of prototypica uses of a concept was fundamentd
for characterizing the answers to Question A. He proposed the following uses: natural
law (e.g., aparabola as a representation of the curve of a cannon bal), constructed
relations (e.g., to express a price depending on a quantity), descriptive (eg., functions
invalving time-dependent processes), and data reduction (e.g., functions in satitics).
After working severa of the tasks, | found that this classification did not include tasks
lacking ared context: namey, when the function was treated as a set of ordered pairs (as
in the previous example) or as arule, when a pattern (with numbers or figures) was
sought, or when there was a proportion involved. | treated each of these as a category.

Among the tasks that enacted relations that could be classified as congtructed
using Biehler's characterization were cases in which the content of the task used
geometrica definitions or principles (e.g., Smilarity). That suggested an additiond
category. Thefollowing is an example from England2:

The dide projector puts a picture on the screen. The sSize of the picture changes as
you move the projector. The picture gets bigger and bigger as you move the
projector further away. When the projector is 300 cm from the screen, the picture
is 120 cm high. Here are figures for other distances [atable with six vaues for
distance and height is given|.
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1. Draw two axes on graph paper. Mark the across axis from 0 to 500 and the up
axisfrom 0 to 200. Labd the across axis * Distance from screen in cm’. Label
the other axis correctly. Use the figures in the table [given| to plot points.

(& What do you notice about the points you have plotted?
(b) Useyour ruler to draw the graph through the points.

(c) Usethegraph to find the height of the picture when the projector is
350cm from the screen.

(d) How far isthe projector from the screen when the picture is 50cm
high? (p. 15, Task G1)

The category geometrical was used in such cases. Biehler's“descriptive relation” was
renamed cause and effect and was used to characterize the cases in which the task dedlt
with physical phenomena not dependent on time. In the end, | had 9 categories: cause and
effect, congtructed, data reduction, proportion, geometrica, pattern, rule, set of ordered
pairs, and time. | kept arecord of dl the different instances of uses within each category.
These ligts of examples of uses were crucid in fully characterizing the categories for uses
of function (see Table C1 in Appendix C).

A similar process was followed to develop the categories for operations and
controls. | compared manudly the narratives of dl the problems looking for common
words and comparable activities and processes. When a common activity or process
appeared, a short name was assigned and written on an index card, with an abreviation
and a brief description. The continuous comparison of the narratives and the
dasgfication of the ingtances alowed me to refine the descriptions, congtructing terms
and sentences that encompassed groups of operations and of controls. Thus, for example,

the operation locate points in a graph wasinitidly described asfollows:

Begin with an ordered pair; the first component is located on the x-axis, and a
mark isdrawn at that point; a perpendicular line through that mark is traced; the
second component is located on the y-axis, and amark isdrawn at that point; a
horizontd lineistraced through the mark; the point of intersection is the point
sought.

The control use check pointswas described asfollows:



There are sentences giving the expected answers; there are warnings asto what is
not a result; the answers to subsequent tasks contradict the answer obtained; there
is another person performing the same activity.

The mgjority of the descriptions for the operations were taken from the textbooks
themselves because many described thoroughly the processes that the students were
expected to perform in the tasks. Asfor representations, | began with those given by

Ba acheff—symbolic and graphical—and added those presented in the textbooks. The
new categories included table, picture, arrow diagram, and number line. There were so
cases in which none of these representations was used and in which both the task and the

solution required naturd language, as in the following example from Scotland2:

In which of the following can you say that one quantity isinversely proportiona
to the other?

a. Thetimetaken to deliver abatch of lesflets, and the number of people
deivering them.

Company sdes, and the money spent on advertisng.
The distance walked at steady peed, and the time taken.
The distance walked in a certain time, and the speed.

The number of people on ajob, and the time taken to do it. (p. 144, Task
1A)

® o 0 o

This representation was called verbal. The last type of representation corresponded to
cases in which there were equations thet involved naturd language, asin the following

examplefrom Spainl:

There are 8 liters of agas a a pressure of 1 atmosphere. The temperatureis
constant. Under these circumstancesiit is known that:

Pressure x Volume = Congtant
P x V = Congtant
Fill thetable

(p. 99, Task 6)
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This representation was cdled semi-symbolic. At this point | had 30 operations, 8
representations, and 8 controls, but each of these had subcategories (e.g., the symbolic
representation could be alist of ordered pairs, aformula, an equation, or a set), which
meant that the actual numbers of codes was larger. There were, in dl, 87 codes for

operations, 25 for representations, and 12 for controls.

Anadysis of First Sections and Category Reduction

| then coded dl the tasksin thefirst sections of exercises of each textbook, a total
of 518 tasks. Each task received one code for use of function and one or more codes for
each of the other three dements, as it was possible that a task required more than one
operation, representation, or control. The codes were assigned considering both what the
student was asked to do and what he or she needed to do to work the task. The following
example, from Switzerland3 illustrates the need for this digtinction:

Produce graphs and descriptions with the functions defined by the following
equations [only oneis shown; for the complete verson, see Appendix B]:

;N

3) y:¥%x+1 X£O0

f2x+1 x>0
(p. 72, Task 23)

Although the task explicitly requires only that the student produce a graph and its
description, the student needs to determine the domain of the rdaion and find the image
of particular dements of that domain (e.g., the image of 0 to find the y-intercept and of
another couple of dementsto fully determine the lines). Two additiona operations,
therefore, were assigned to the task besides those explicitly required.

This process helped to refine the coding system by providing better descriptions
for each category and enlarging the set of examples for the uses of function. | reorganized
the operations; one category disappeared, and two subcategories became categories

(rehear se notation was dropped; hame point on axis was a subcategory of locate point in
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graph; and use proportionality within entries was a subcategory of find relation between
two (sets of) numbers). After refining the system, | had 9 codes for prototypical uses of
function (uses, for smplicity), 31 for operations, 8 for representations, and 8 for controls.
For practica purposes, | then dropped dl the subcategories.

Testing of the Coding Procedure

With this set of codes, | produced a document that other people could use to code
tasks. | randomly sdlected 11 tasks from the pool of 518 tasks (using the random function
in SPSS) and created seven groups of 4 tasks and one group of 2 tasks. Eight tasks were
assigned to three groups and 3 tasks to two groups to guarantee that each task was coded
by at least two people. There were tasks from dl the languages (English, Spanish,
Portuguese, and German). | sent an eectronic message (see Appendix D) to 30
colleagues asking for their collaboration in using the coding procedure and providing
feedback about it. Nine people agreed to test the coding system: five university faculty
members (one a the University of Michigan and four at the University of Los Andes),
each of whom was knowledgeable about the research problem and the process | was
using, and four graduate students in mathematics education (three at the University of
Georgiaand one a the Royad Danish School of Educationd Studies). Three of the
students were second-year doctoral students, and the other was afifth-year doctora
student.

| sent each person two Acrobat PDF (Adobe Systems, 1987) files, one containing
the tasks to be coded and other containing the coding procedure. Of the nine colleagues, |
got feedback from saven. The tasks written in German were not analyzed because the
coders did not understand the tasks. From the 11 tasks selected, only 8 were coded.

Because one purpose of the test was to fine-tune the categories, the coders were
alowed to create new codes if the ones provided were not enough. This was done with
the purpose of exhaudting the possible definitions of the categories. Therefore, in addition
to assigning the codes | had devel oped, the coders proposed four new categories.
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Calculation would be any operation thet refers to the process of operating on numbers
(e.g., subtraction). Continuity would be a contral that alows the student to assume
continuity in finding a value associated with a function (e.g., when the sudent isto find a
pre-image of afunction defined by atable or aset of ordered pairs, and the imageis not
one of the vaues given). A representation would be numerical if it were used to describe
manipulation with numbersin any number system. Findly, implicit/explicit would be a
variant case of the usesfor ardation. Of these four, only the first three were incorporated
into the final coding system. The last one was ignored because it would have created two
subcategories, implicit and explicit, for each of the uses proposed, and those
characterigtics not only would have been difficult to distinguish but aso would have
added more complexity to an aready complex system.

Although initidly intended to be atest of interrater agreement, this test did not fit
that purpose. In the first place, the raters used their own understanding and knowledge
coming from their different backgrounds to solve the tasks, which implied thet they did
not aways use the solution that was fostered in the lesson from which the task was taken.
In the second place, the coders were dlowed to modify the coding system but could not
share the modifications with each other. The coding was a solitary task. | did not have
access to his or her solutions, which made it more difficult for me to discover the
rationale behind their code assgnment. However, the test was useful for designing a
different rdiability test.

Firgt, I produced more examples of code assignments. Then | asked two doctord
gudentsin higher education from the Univeraity of Michigan and one in mathematics
education from Michigan State University to participate in an individua one-hour
interview. | chose 5 of the 8 tasks (one in Spanish, the othersin English) and gave the
coders the whole chapter from which the task was taken and a revised coding procedure.
Each coder was given time to sdlect atask, check the chapter in which it was embedded if
he or she wanted to, solve the task adoud, and assign the codes to their solutions. |

encouraged the coders to make explicit their rationale in each case by asking why a code



could be assigned or why not. | did not atempt to negotiate their assgnment with them,
but | did provide explanations about what | meant by some of the codes. The interviews
were audiotaped. After each interview, | listened to the tape, went over the solutions and
my notes, adjusted the coding system, and revised the coding of the five tasks.

The agreement between the codes assigned by the interviewees and my coding
was 80% after the first interview, 85% after the second, and 100% after thelast. The
procedure helped me produce better descriptions for dmost dl the codes. Using the new
codes, | recoded the 518 tasks. About 20% of the codes were modified.

| am aware that the rdiability and vaidity of coding are crucia for the study. The
fine-tuning test and the reliability test helped me to provide better examples for each code
and explanations of its meaning, which gave me confidence in the vaidity of the reults.

A third test that | carried out was to select Six tasks at random and recode them 2 weeks
after the modified coding system was completed. In this test, the agreement between the
codesthat | assigned at different times was 100%, which means that my own coding was
consistent.

Fina Coding Procedure

| used the modified coding system to code the tasks in the remaining sections. A
total of 2304 tasks were coded (this figure included the French textbook that was later
dropped because it did not met the grade requirement). As | was coding these tasks, |
found that | needed to add five new codes. graph for uses of function; change form, find
composite, and operation between functions has characteristic, for operations, and use
calculator or a computer, for controls. These codes were needed for tasksin severd fina
sections of upper-grade textbooks from New Zedand and the United States (twelfth grade
and ninth grade, respectively). The following task from NewZedandl illustrates the code
graph inits use of function:

Here isthe graph of afunction f. Which of the graphs (a)- (€) is the graph of the
inversefunction 2?2
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a) b)
/
0) d)
\
€
(p. 29, Task 8)

Appendix C presents the complete coding system—with examples of uses of the codes—
which congsts of 10 codes for uses of function, 36 codes for operations, 9 for

representations, and 9 for controls.

Examples of Coding

The following tasks illustrate the coding. A comma separates each eement of the
conception; a hyphen separates codes within an e ement.
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A Task From the Geometrical Use of Function

Is there proportiondity between the length of the edge of a cube and (a) the sum
of the lengths of its edges? (b) Its surface area? (c) Its volume? (Mexicol, p. 195,
Task 3)

The student needs to determine the type of relationship that exists between the two given

variables; he or she may need to use drawings and test particular numerical casesto

determine whether the proportiondity is direct or not. Thetask is coded GR, DTR, V-N-
P, UAR.

GR

DTR

V-N-P

UAR

Geometrical relation. Used to code content that refers to geometric figures and
their characteristics.

Determine type of relationship. The student needs to determine whether the
relation between two sets of numbersis direct, indirect, linear, or nonlinear, or
whether there is no relation.

Verbal. The task uses a description of a Situation using natural language (e.g., @
pound of apples costs 30 cents) or requires the student to interpret a situation with
natural language.

Numerical. The task does not require any symbols; instead, it requires numbers.
Pictorial. The task uses drawings of machines, maps, geometrical shapes and
figures, photos, or pictograms (frequency diagram where the y-axisis not
present), pies (only one variable is sketched) or any other kind of drawing.

Use alternative (given or not given) representations. The student can use other
representations (e.g., resultsin atable vs. results with a formula or a graph, a set
of ordered pairs as an arrow diagram). These can be explicitly givenin the
statement of the task or can be result of something the student was asked to do.

A Task From the Pattern Use of Function

Each of the following set of points represents alinear pettern in the Cartesian
plane. By plotting each set of points and using arule, find the coordinates of the
next two points in the paitern.

{('31 -6)! (-2! '4)’ ('11 '2)! (O’ O)’ (11 2)}

(Audtrdial, pp. 255-256, Task 3. There are 13 more items like this one that
follow; see thefull text in Appendix D)

The task was classified as a pattern use because the setting allows the student to find the

next two points by following the pattern given by the abscissa and ordinate of each

ordered pair: beginning with —3 and increasing by ones for the abscissas and beginning

with —6 and increasing by twos for the ordinates. The student needsto plot the pointsin a
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Cartesian plane; he or she will thereby know that the answer is correct if dl the points are
on aline. The task was coded PR, LPCP-RPCP, G-S, LFLUR.

PR Pattern relation. Used to code content in which given a sequence the question isto
find the general term (or an expression for the nth element) of the sequence.

LPCP- Locate pointsin graph. The student needs to locate points in a graph; a graph can be

RPCP  any of the types defined in the section about representations. Whenever a Cartesian
planeis involved the code must be applied if both eements of the ordered pair are
known and need to be located. If that is not the case (e.g., the time at which the
temperature is 50°C), then use the operation FIP. LPCP always requires NPOX when
a Cartesan planeisinvolved.
Read points from graph. The student needs to read the coordinates of a point or a set
of points from agraph. A graph can be of any of the types defined in the section about
representations. Whenever a Cartesian plane is involved the code must be applied if
both elements of the ordered pair have to be determined (e.g., the coordinates of the
maximum value of arelation). If that is not the case, then use the operation FIP (e.g.,
the time at which the temperature is 50°C). RPCP always requires NPOX when a
Cartesian planeis involved.

GS Graph in two axes. It can be a Cartesian plane, afrequency diagram, a histogram, a
broken line (time series), or a scatterplot.
Symbolic. The task uses expressions with only symbols. This includes arithmetical
notation, sets (e.g., {x | x>0,x T N}), ordered pairs, equations (e.g., f(x) = X + 1;
y=x+11(2)=x+ 1), mappings (f: x ® x + 1), or intervals.

LFLUR Look for likely or unlikely results. The student can use indicators in the statement of
the task (e.g., the student obtains a number too big or too small for agiven scdein a
Cartesian plane, or he or she is getting decimals or negative numbers when whole or
positive numbers are expected, or a set of pointsin a Cartesian plane are not aligned
on aline) or use previous knowledge (e.g., the sides of a square have the same
length).

A Task From The Constructed Relation Use

Mai’s parents allow her to watch 12 hours of TV each week during vacations.
Find three solutions to her new equation: y = 12 — (1/2) x.

(UnitedStatest, p. 153, Task 17. Note: x stands for the number of haf-hour TV
shows)

The text preceding the task used the context of televison viewing as avehicle for
developing ideas about graphing linear equations. The standard procedure given in the
text required that the student salect three values for x and find the corresponding vaue for
y. The student might possibly use atable or plot pointsin a Cartesian plane, but that
might be unlikely because in this exercise the indructions “make atable and graph” are
not explicitly given. The section is about linear equations, which may help as a control
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for the correctness of the answer if the points plotted do not lie on agtraight line. The task
was coded CR, FIP, S-G-T, DC-UAR.

CR Constructed relationship. Used to code content that refersto ‘real life' Situations other
than cause/effect, time, data reduction, and geometrical. In these relationsit is
somehow arbitrary which variable is called dependent and which one independent. An
interchange of the roles of the variables originates equally vaid—for the context—
relationships.

FIP Find element of the range or of the domain of a relationship. The student needs to
find in the range of the relation a value (or element) associated with a given element
of the domain, or find a domain element associated with a range element, or both.

This includes finding one more ordered pair of the relationship, in which the student
might need to choose an eement of the domain and find its corresponding value in the
range through the relation. It includes algebraic manipulations that involve for x in

f(x) = k, where k isagiven vaue, or finding f(m) where mis an algebraic expression,
finding the solution of f(x) = f~*(x), or finding asymptotes. This code is also used
when the student needs to find the function that results from the operation of two
given functions; the process can be made through operating component by component
in atable or by operating on the expressions that define the relation. Thisincludes
finding, for example, the image when x = 0 and the pre-image when y = 0, with dl the
agebraic manipulation that may be required. There is no restriction on the
representation used for the pair.

SGT (SGseeabove)

Tabular. The task uses atable. The table can be given, asked for, or arequisite for the
process of keeping track of the entries.

DC- (UAR see above.)

UAR Double check. The student either repesats the process used to obtain the answer (e.g.,
relocates points in the Cartesian plane) or reverses the process to get something that is
given in the statement of the task (undoes the sequence of operations).

Data Andyss

| congtructed an SPSSfile for handling the data, with each entry corresponding to
atask. | created variables for country, language, intended grade, textbook number,
textbook section, task number in the textbook, and use of function. These variables
required 7 columnsin the file. To handle the other e ements of the quadruplet, | crested
26 more columns—10 for operations, 8 for representations, and 8 for controls—to alow
for multiple codes for these elements. In the end | used 7 columns for operations (i.e,
there were tasks that received as many as seven operation codes), 5 for representations,
and 5 for controls. Each different combination of operations, of representations, and of
controls recelved a code. | obtained 396 different combinations of operations, 70 of
representations, and 74 of controls. Thislarge number of combinations created difficulty
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in data handling and interpretation. | reorganized the exigting combinations into new
categories according to severd criteriato facilitate the analyss and interpretation. The
process was different for each dement. The following four sections describe these

reorganizations.

Uses of Function

The ten coding categories were combined into five categories by smilarity of the
relations between function dements as follows. The usesthat referred to physicd
phenomena, cause-and- effect relations, and time relations were grouped into a new
category caled physical to capture the character of these relations. Because they rlate to
human activity, data- reduction relations and constructed relations were grouped into a
new category caled social. Geometrica reations, graphtdefined reations, and pattern
relaions were grouped into a new category called figural, to highlight the crucid role of
images and patterns for defining functions with these relations. Rule and direct
proportion/proportion relation were grouped together into the category rule. Set of
ordered pairs was |eft as a separate category.

Operations

The basic criterion for reorganizing the categories of operations wasthe
frequency of assgnment. | determined the number of countries for which those
operations were the most frequently assigned, as determined by a configura frequency
analysis (CFA, see p. 66). The configurd frequency analyss marks astypes those cdlsin
a contingency table that show afrequency that is larger than would be expected by
chance. If acdl frequency isless than would be expected by chance, the cell iscdled an
antitype. In this case, and as an initid way to disclose patterns of code assgnment, | was
interested in tagging those operations that were types, taking into congderation the
composition of the sample. | considered only the data from seventh- and eighth grade
textbooks, which covered 24 textbooks from 15 countries and 32 operations (the codes

find composite, give period, operation has given characteristic, and trace regression line



were not assigned to the tasks of the seventh- and eighth- grade textbooks). | divided the
operations into three groups according to the frequency of the countries in which CFA
yielded atype. In each case, | was able to characterize the operationsin the group. Table
4 presents the three groups of operations together with the number of countries for which
those operations were labeled as types.

Table4

Operations Grouped by Frequency of Countries in Which They Were Types

Group Number of countries

Operations requiring manipulation of the relation
Locate point in a graph (LPCP)
Find images and pre-images (FIP)
Read point from a graph (RPCP)

Operations attempting to characterize the relation
Find relation between two sets of numbers (FR2N)
Compare without calculation (CWC)
Determine domain and range (DDR)
Fill table (FT)
Describe shape in graph (DSCP)
Relation is function (RIF)

Operations involving numerical and concrete activities
Perform a computation (CALC)
Carry out experiment (COE)
Measure (M)
List elements of the relation (LER)
Give definition (GD)

~N N ©

NNNROOTO
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To use the three operations marked as types by 7 to 9 countries, an explicit
relaion must be known. The operations dso give particular instances of the rdation (a
vaue or a point); generd features may be obtained by a repeated gpplication of these
operations. | called this group of operations manipulate (in the sense of “utilize
illfully,” Merriam Webster’ s College Dictionary); they do something with the relation.
In contrast, the operations that were labeled as types for 2 to 6 countries do not need an
explicit definition for the relation and attempt to make its features explicit. | cdled this
group appreciate (in the sense of “ grasp the nature, worth qudity, or significance of”;
a0, “judge with heightened perception or understanding: be fully aware of,” Merriam
Webster’s College Dictionary); they tell something about the relation. The group of



operations that were labeled as types by one country only may or may not need an
explicit definition of the relation and are to some extent peripherd to the rdation itsdlf. |
cdled this group cal culate because they do something for the relation. | characterized the
combinations as having operations in the manipulation group only, in the gppreciation
group only, in both the appreciation and manipulation group, in dl three groups, or in no
group (other). These five categories were used to characterize dl the combinations of

operations.

Representations

Because there were 70 combinations of representations, | explored severa
dternatives for reorganizing them. There were some tasks that used only one
representation, but the mgority used at least two, which made it difficult group them. A
compromise was needed to bal ance the need for diversity and the need to highlight
particular characterigtics of the combinations. | chose to emphasize the use of the
symbolic representation and created three groups. The firgt group, caled symbolic,
contained those combinations that used ether a symbolic or a semi-symbolic
representation only. The second group, called symbolic and other, contained those
combinations that used the symbolic representation in conjunction with any other
representation (graph, table, picture, number line, arrow diagram, verbd, or numerica);
the last group, other, contained those combinations that did not use a symbolic
representation. With this classfication, it was not possible to make claims about the use
of representations other than symbolic ones, but the classification was good enough to
characterize the conceptions, which was the main purpose of the study.

Controls

The case of the controls was similar to that of the representationsin that there were 74
combinations, but in this case it was possible to regroup the combinations according to
the nature of the activitiesinvolved. | defined three groups of controls. The first group

encompassed activities that rely on the solution process only. These were double check,



compare with previous examples or exercises, and use checkpoints The second group
referred to activities requiring use of the mathematical content that was at stake. These
were mor e than one point (or the verticd line test), continuity, and use alternative
representations. Thefind group, use a computer or a (graphing) calculator, look for
likely or unlikely results and use given information, encompassed activities that seem to
be related to the didactical contract (Brousseau, 1997). Use a computer or a (graphing)
cadculator was defined as a control because the student might be using the instrument to
look for familiar results—established by the didactical contract (see dso Mesa & Herbs,
1997).

To auitably group the 74 combinations, | characterized each combination
according to the three types of controls. A given combination could have controls of one
type only (process, content, or contract) or acombination of two or three types. From
these seven possibilities, | chose to highlight those combinationsin which the content
was important. With thisin mind, | created three categories: content and other contained
al the combinations that had at least one control of the content type; process-contract,
which contained the combinations with controls of these two types only; and process,

which contained the combinations with controls of the process type only.

Configurd Frequency Andyss

Because dl the variablesin this study were categoricd, | used cross tabulations to
provide the basic input for subsequent analyses. Configural Frequency Analysis (CFA) is
adaaandyss technique developed by von Eye (1990). The andysisisrelated to data
mining processes (DuMouchd, 1999) in which the researcher isinterested in the most
frequent configurations of events that occur in large databases. Examples are groups of
products most commonly bought in supermarkets, groups of words that tend to go
together, and groups of adverse effects reported by types of drugs (p. 178). The CFA
provides severa datigtica tests that alow the researcher to determine whether the
differences between observed and expected configuration frequencies are statisticaly



ggnificant. The program provides a Bonferroni adjustment to protect the test-wisea (von
Eye, 2000, p. 3).

| applied CFA to afour-way table (uses of function, operations, representations,
and controls) with 225 (5 x 5 x 3 x 3) possible configurations for the sample of tasks
from the seventh- and eighth-grade textbooks with a = .05 asthe level of Sgnificance. |
used the resulting types and antitypes to characterize the conceptions enacted by this

sample of tasks.

Textbooks and the TIMSS Achievement Test

To examine the performance of students who might have used the textbooks, |
sdlected theitems related to functions from the released set of TIMSS test items for the
seventh and eighth grade (IEA, 1997b). | chose from the TIMSS categories of algebra;
geometry; data representation, analysis, and probability; and proportiondity (p. vii) al
the items that were Smilar to tasks presented in the textbooks. Those items that asked the
student to describe ardation, to interpret a Cartesan graph of areation, to anayze a
pattern by finding an element, or to ded with proportiondity were marked as possible
itemsto be consdered. | selected the 10 items that fit these descriptions and coded them
using the procedure developed for the study. The items and their codes are reproduced in
Appendix E.

Because Mexico and Argentinadid not have data from the TIMSS achievement
test (Mexico chose not to make the results public; Argentinadid not administer the test), |
did not include their textbooks in the analyss of achievement. The achievement test
anaysisincluded 13 countries and 22 textbooks.

Each country’ s performance on each of the 10 items was obtained from the
TIMSS dmanac (IEA, 1997a), which provided the percent of correct answers and the
gtandard error for each sample of students. This information was used to build 95%
confidence intervals for the percent of correct answers for each item for each country to
establish the extent to which observed differences across countries were setisticaly
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sgnificant. The sgnificance test used the Dunn-Bonferroni adjustment for multiple
comparisons based on the number of countries involved, as suggested by Gonzalez (1997,
pp. 151-152), which yielded a critica vaue of 2.96. Similar intervals were congtructed
for the average percent of correct answers for the ten items as a group.

There were two difficultiesin linking the sudent data with the textbook data.
Fird, the TIMSS textbook andys's had used the officid nationd textbooks when they
were avallable or ese the most widdy used commercia textbook in each country
(Schmidt et d., 1996, p. 9). That decison implied that for countries in which more than
one textbook was used, the textbook used by some of the participating students was not
present in the sample. Also, even though the teacher questionnaire contained a question
about the textbook used by the students who took the test, that information was not
andyzed in TIMSS because it was too diverse (L. Cogan, persona communication,
March 6, 2000). Thus it was impossible to determine the textbook used by a specific
student taking the test in those countries in which more than one text was used. Audtria,
Hong Kong, Singapore, and Spain were the only countries in the sample that had, &t the
time of the test, a nationdly centraized decision process about textbooks and used only
one book. Any inferences about the connection between conceptions present in textbooks
and patterns of performance in the TIMSS test, therefore, required considerable caution.

Sources of Bias

Researchers views, knowledge, and bdliefs affect the way in which they conduct
research studies from selecting aresearch topic to interpreting and presenting their
results. | was not an exception. My preparation as mathematician and engineer put mein
contact with two different gpproaches to function, the abstract and the logicd, that have
shaped my own conceptions of it. The mathematics curriculum that | had as a school
sudent practicaly banned geometry, and as an undergraduate | had only one course on
non-Euclidean geometry. | believe that this meager exposure to geometrica thinking
affected two aspects of the study. In the first place, | looked for functions only in chapters



that were devoted to dgebra; it did not occur to me that | might find a geometrica
treatment of functionsin chapters devoted to geometry or in geometry textbooks. This
bias affected the sampling process. Second, when | was solving the tasks in each
textbook, the first solutionsthat | thought of used algebraic gpproaches supported by
graphs in the Cartesian plane when possible. My confrontation with the textbook content
showed me that | needed to re-solve the tasks, giving preference to what was presented in
the textbooks. My bias againgt geometric gpproaches could have affected the definition of
the categories, despite my efforts to contral its influence.

| tend to be sympathetic toward atistical anadyses. For that reason, | made a
strong commitment to find satistical evidence that the patterns and differences that | was
observing were not due merely to chance. This approach might have affected the results
of the study: | could have dismissed interesting patterns that did not reach the .05 leve of
ggnificance, which might be detrimental for an exploratory study such asthisone.

Because | was raised in adeveloping country that has been negatively affected by
the policies of economicaly and geopoaliticaly powerful countries, | tend to look with
sympathetic eyes a countries that are in a Stuaion smilar to mine and tend to be harsh
toward countries that dominate the world' s destiny. This bias might have influenced my
interpretations of the results of this Sudy, asit was difficult for meto befair to the

textbooks on their own terms.



CHAPTER 4

RESULTS

After Columbus one should not be surprised if one
does not solve the problem one has set out to solve
Imre Lakatos (1976)
The data collected were used to address the three research questions:
1. What conceptions of function are suggested by the seventh- and eighth-grade
mathematics textbooks of selected countries participating in TIMSS?
2. What patterns of conceptions are present in textbooks from different
countries?
3. What isthe relation between the conceptions present in the textbooks of a
country and its students performance on items related to functions on the

TIMSStest for seventh- and eighth-grade students?

The chapter isdivided into four sections. The first presents an overview of the
characterigtics of the tasks and the results of the Configura Frequency Andysis (CFA)
program (von Eye, 2000) for the sample of tasks from the seventh- and eighth-grade
textbooks. The second presents data on how the conceptions distribute within textbooks
from each country. The third presents a comparison between the conceptions present in
the textbooks of each country and the performance on selected items of the TIMSS
achievement test. The last presents some results that were not directly related to the
research questions but that provided va uable information about the textbooks.

Conceptions in Seventh- and Eighth- Grade Textbooks

Below | present the frequencies and percentages of occurrence of each eement of

the conception corresponding to the sample of tasks from the seventh and eighth-grade
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textbooks. Then | use the results of the CFA program to examine how the elements
defining a conception interrelate.

Elements of the Quadruplet

The purpose of looking at the elements of the quadruplet separately is twofold. |
wanted firgt to illugtrate tasks in each category and second to give the reader a sense of
how the categories were distributed across categories. This descriptive information helps
in understanding the data. The resultsin this section are based on a sample of 1319 tasks
from 24 seventh- and eighth-grade textbooks from 15 countries.

Uses

The element uses had five categories. rule, set of ordered pairs, physicd, socid,

and figurd. The following are examples of tasks with each of these five uses.

Rule: Trace the grgph of the following functions in the same coordinate system:
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y=-3Xx+2,y=2Xx+2,y=-x+2,y=2,y=2x + 2, y=3x + 2. (Mexicol, p. 219,

Task 1)

Set of ordered pairs: State thedomain and rangeof R={(1, 1), (2, 4), (3, 9), (4,
16)} . Write down the couplesof R™. (Ireland2, p. 62, Task 1)

Social: Represent graphicaly the following function: In certain city the cost of a
taxi fareisgiven by:

Initia charge: $150.00.
Cogt of trip: $5.00 for every 100 m.
Time spent waiting is not consdered. (Colombia2, p. 248, Task 4)

Physical: Make atable of six vaues using the relaion. Then draw a graph.
a. Phil runs9 km/h.

b. Gaylecycles 16 km/h.

c. Thetrain travels 90 kmv/h. (Canadal, p. 311, Task 4)

Figural: A formulato produce consecutive odd numbersis 2n — 1 wheren3 1.

a) Draw up atableto produce ordered pairs which satisfy this formulafor
1£n£8.

b) Graph thisinformation. (SouthAfrica3, p. 177, Task 6)
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The categories are listed above in descending order of frequency across dl the
textbooks. Table 5 presents the frequencies and percentages of uses of function in the
tasks. The most frequent uses were rule and set of ordered pairs. Only one third of the
uses corresponded to those involving concrete contexts: namely, social, physica, and
figurd. Socid uses were dmogt twice as frequent as physical uses, which suggeststhat at
these grade levels physica phenomenain which functions can be defined do not play a
very important role.

Table 5

Frequency and Percentage of Tasks by Uses of Function

Uses Frequency %

Rule 556 42

Set of Ordered Pairs 319 24

Socid 227 17

Physical 136 10

Figura 81 6
Total 1319

Rule was by far the most frequent use (it grouped Stuations in which either a
proportion or atransformation of an input to obtain an output was involved and there was
no context included). One possible reason for this result might be didactica: Because the
notion of correspondence is so fundamentd to the definition of function, and because the
seventh and eighth grades mark the trangition period from arithmetic to algebra,
transformation of numbers by means of basic operations seem to fit the double purpose of
defining vaid functions, with a notion of correspondence as transformation or
congrained variaion, while at the same time linking known operations with the new idea
of correspondence. In this way the burden of considering apparently unredistic casesin
which the correspondence can be arbitrary is overcome. This purpose might also explain
why the rule use was more frequent than the set-of-ordered-pairs use, in which such
arbitrary correspondences take place but may seem unredlistic to a student who has been

moving dowly from a concrete to an abstract stage of reasoning.



The s&t-of-ordered- pairs use had a surprisingly high frequency, which might be
due to the interest of authors in keeping their textbooks updated mathematicaly: If the
most sophisticated definition is available, why not present it? It could be possible too that
in some cases the influence of the new math movement might have been operating.
Textbooks with copyrights from the 1970s or early 1980s might have shown this
tendency. | expanded on thisissue in the section devoted to the patterns of textbook
conceptions (see p. 96).

The figura use of function accounted for only 6% of the tasks. This category
included geometricd, pattern, and graph relations. One possible reason for the few
ingtances of this use might be linked to the separation between geometry, arithmetic, and
agebrain school mathematics curricula. The textbooks tended to contain separate
chapters for geometry, and it might be possible that within those chapters, functions did
not get much attention. In addition, the low frequency of geometrical uses could bea
result of the new math movement, which dmost diminated geometry from school

mathematics in severd countries (Ruiz & Barrantes, 1993).

Operations

The operations dement had five categories: manipuate only; manipulae and
appreciate; manipulate, appreciate, and caculate; appreciate only, and others. Below |
provided examples of three tasksillugtrating three of these categories.

In the following task, from Englandl, the needed operations belonged to the

manipulation group:
A girl walksfor 3 seconds at 4 m/s and then runsfor 5 seconds a 9 my/s.

a. Copy and complete thistable.
Timein seconds 0({1{2|3|4 |5|6|7|8

Diganceinmetes | 0| 4 21

b. Draw the distance-time graph. (p. 17, Task F2)
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In a previous exercise the student has been told how to use anumber line to represent the
distance that a person walks at different speeds. With that technique, the need to caculate
is overridden. The student merely needs to read off the number line the distance walked
after marking the gppropriate number of line segments of sizes4 and 9:
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seconds 0 1 2 3 4 5 6 7 8
000090009 000l 00000 000009 -00-0-0-0-0-00—Jo 0009000000009 o

) ) ) 3 3 4 3

meters 0 4 ) 12 21 30 39 43 52

For Part b, the student needs to locate the pairs from the table in a Cartesian plane.

Operations in the manipulation group do not require very eaborate activities. The
relaion is given, and the ingtructions are very precise as to what the sudent hasto do
with the functions. Thisinformation leaves little room for other activitiesin which the
student might need to draw information from other sources or congder the relationsfrom
adifferent perspective.

An example of atask with operationsin the gppreciation category isthe
following, taken from UnitedStatesl:

Explain what hgppens to x in each function:

1Lfx)=x+4 2.f(x)=(U2x+9 3.f(x)=x>+x 4. f(x)=(x/7) +5.
(p. 560, Tasks 1 to 4)

The process of describing the transformation to be applied to the variable x impliatly
characterizes the function that defines the transformation; the student does not need to
perform caculations, or to find particular vaues of the functions or its graph.

The following task, taken from Singaporel, requires manipulate, appreciate, and
caculate operations:

Draw the graph of each of the following equations on the same graph paper: (i)
y==xXx+6(i)y=x-2 (ii)y=—x+10 (iv) y=x+ 2. Wha figureis formed by
these four lines? Write down the co-ordinates of the vertices of this figure. (p.

197, Task 5)



75

In thistask, the student needs to determine points that belong to the lines and use them to
trace the lines, operations that belong to the manipulation group. He or she also needs to
describe the resulting figure, arhombus, an operation from the gppreciation group. He or
she needs to verify that the figure isindeed arhombus, most likely by measuring lengths
and angles, an operation from the caculate group. Finaly, he or she needs to establish the
coordinates of the vertices, probably by estimation with reca culation with the equations,
operations from the manipulation group again.

In this sample, alarge proportion of the tasks (38%) used combinations of the
operations belonging to the manipulation group only (find images and pre-images, and
locate and read points from a graph). Table 6 presents the frequencies and percentages of
combinations of operations. The large number of operations in the manipulation group
can be linked to the fact that the Cartesian plane is often introduced in Grade 7 or 8.
Thus, finding values of numbers through a rdlaion to form pairs that will later be located
in a Cartesan plane and reading points from it become standard tasks that students need

to master.

Table 6

Frequencies of Combinations of Operations in the Tasks

Combination of Operations Frequency %
Manipulate only 496 38
Manipulate-Appreciate 321 24
Manipulate-Appreciate-Calculate 243 18
Appreciate only 241 18
Others 18 1
Total 1319

The proportion of tasks requiring only operations that tell something about the
function—namely, from the appreciation group (find the relations between two sets of
numbers, determine domain and range, describe shape of the graph of the reation,
compare without calculations, determine if ardation is function, and fill atable)—was
about hdlf that from the manipulation group. This difference means there were rdatively

few ingtances in which the function was consdered the object of an operation. This result



might be suggesting that in these grades, when functions are introduced, the textbooks
need to fulfill the demand of familiarizing the students with the notion by giving them
opportunities to interact with the notion. The result may indicate a tendency by textbook
authors to familiarize students with the tool (asin a concrete experience) before moving
to afurther abstraction in which the function is considered as an object.

About one fourth of the tasks required a combination of operations from the
gppreciation and manipulation groups (e.g., arequest for, say, domain and range might be
followed by a second question in which the student needed to sketch a graph for the
functions given). In comparison, rdatively few tasks required operations from the
caculation group (carry out experiment, measure, caculate, list the eements of the
relation, and give definition) in combination with operations from the other two groups.

Only 1% of the tasks did not make use of any of the operationsincluded in these
groups. At Grades 7 and 8 more sophisticated operations with functions seem to play a
secondary role because the notion is just being introduced. Operations such asfind an
inverse or acomposite or produce a proof were not typical when these textbooks dealt
with functions (for alist of these operations, refer to table C2 in Appendix C).

Thus, even though a considerable proportion of tasks required very few smple
operations (38% from the manipulation group only), asizable proportion (60%) required
more eaborated combinations of operations with different levels of complexity.

Representations

The representations eement had three categories. symboalic only, symboalic with
another representation, and nonsymbolic. About afifth of the tasks required only a
symbolic representation, and dmost haf required it in combination with other
representations: graphica (23%), graphical and numerical (8%), numerical (7%), verba
(6%), and combinations of dl these (4%). Thus the symbolic representation was
overwhemingly prominent in this sample of tasks (see Table 7). A possible explanation
of this result has to do with the fact that the curriculum of the grades considered in the
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study may be designed to provide a trangition from arithmetic to algebra. Symbolization
is, inaway, aprerequisite for carrying out the trangtion, and equations and functions
provide a context for symbol use. The high frequency of the combination of symbolic and
graphic representations might aso be due to the fact that the Cartesian planeis being
introduced in these grades, which requires both representations.

Table7

Frequencies of Combinations of Representations

Combination of Representations Frequency %

Symboalic only 254 19
Symbolic with another representation 628 48
Nonsymbolic 438 33
Total 1319
Controls

The dement of controls had three categories: process only, process and contract,
and content and others. In 55% of the cases, the only means available for the student to
check that an answer was obtained and that it was correct was based on the process of
solution. About 30% of the tasks used controls based on the didactica contract and on the
process of solution, and only 17% required controls based on the content of the task—
aone or in combination with the other two types of controls. These resultsindicate that
the tasks related to functions in these textbooks provided relatively few opportunities for
the students to use the content to verify the correctness of their answers. In addition, the
results show that overall there were few opportunities for the studentsto learn, apply, and
enlarge their metacognitive strategies, to move from the stage in which they do what they
are told to do to a stage in which they control what can be done. Table 8 presentsthe
frequencies and percentages of combinations of controls.

Tables 5 to 8 suggest that alarge number of tasks in the sample portrayed
functions as rules, used a reduced set of operations, with mainly a symbolic

representation, and with controls based on the solution process of the task. Because a



conception was defined as a combination of four eements, however, an analyss of the

configurations of elements was needed to corroborate this result.

Table 8

Frequencies of Combinations of Controls

Combination of Controls ~ Frequency %

Process 726 55

Process-Contract 364 28

Content and others 230 17
Totd 1319

Configurations of Elements

The CFA for the configurations of the four elements of the quadruplet yielded 24
types and 4 antitypes (see Appendix F). To determine what these 28 configurations were
portraying, | grouped them by use. The configurations within each use followed patterns
that helped me to characterize the conceptions associated with each particular use. For
example, there were Sx configurations with arule use; three of them were types (3111,
3321, and 3322) and three antitypes (3131, 3331, 3332). The third digit of these
configurations corresponds to the combinations of representations. In the antitype
configurations, nonsymbolic representations were dways assgned. | interpreted this fact
as an indication that tasks in which the function is used as arule do not require
nonsymboalic representations; in other words, the casesin which they do require
nonsymbolic representations are so rare—the program flags them as antitypes—that the
opposite characterigtic should be the norm. Thus, nonsymbolic representations do not
gopear by themsdves when dealing with functions defined by rules.

Thus | defined five conceptions: symbolic rule, ordered pair, social data, physical

phenomena, and controlling image. In the following five sections, | describe the

characterigtics of each conception.

Symboalic Rule

In the tasks that belong to a symbolic-rule conception the use of functionisasa
rule. If manipulation operations are used, the representation sdlected is symbolic. If
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manipulation and appreciate operations are used, the symbolic representation is not the
only representation required. In any case, the task does not require controls based on the
content.

Thus, within this conception two kinds of tasks appear. In both kinds, the task
provides an equation that defines the function without a reference to a particular redl
dtuation. However, in one of them, say Task A, the student only needs to apply the
transformation given in order to obtain particular vaues of the function, usng the
symbalic representation only, whereas in the other, Task B, the sudent appliesthe
transformation, tells something about the function, and uses another representation that
supports the symbolic one. In both tasks, the sudent may verify his or her solutions by
repesting the calculation or by contrasting the results with hints given by the setting of
the tasks. Function machine tasks are of the first kind, wheress tasks in which the
Cartesan planeis being introduced are of the second. The following is an example of
Task A, taken from Portugd 1, which can be consdered paradigmatic of the tasks
enacting these conceptions:

Consder afunction h defined ash (x) = 2x + 1.
1. Findh (-1), h (0),and h (2)
2. Find x such that h(x) = 11. (p. 67, Task 4)

Inthistask, thereis an input x that is transformed by certain procedure—multiply by 2
and then add 1—to obtain an output; there is no reference to an externa context. The
student has to obtain particular vaues of the function (at —1, 0, and 1) and a number, a
vauefor x, such that the function is 11 when the transformation is applied to that
number. The only representation used is symbolic. The student has to repest the
procedure that was given in the preceding text (subgtitute the vaues into the equation),
which, a the same time, acts as the indication that an answer was obtained. It is unlikely
that the student will determine by himsdf or hersdf whether the answer is correct. If he
or she gets an indication in this sense, the path to follow would be to repeat the process.



The characterigtics of tasksin this conception were suggested in the previous
section: rule use, symbolic representation, and process controls were more frequent than
other categories. The operations were dmost equaly divided between manipulate
operations only and manipulate and gppreciate operations. This result, which might have
been expected, seemed to result from a combination of severd factors: The need to give
meaning to the nation of correspondence while a the same time linking the work in
arithmetic to the work in adgebraleads to an emphasis on procedures that combines
familiar activities (performing numeric trandformations) with unfamiliar activities
(assigning vauesto variables or getting used to the Cartesian plane). Because it might be
easer for sudents to accept the notion of a controlled assgnment of vaues (controlled in
the sense that the student knows what he or she is doing) than an arbitrary assgnment (as
in the case of relations defined with Venn diagrams), the possibilities for the assgnment
are reduced to equations involving arithmetic operations and powers (i.e., polynomid
expressions). In addition, the lack of context is useful in that it reduces the burden of
interpreting the stuation. Thus these tasks were abundant (20% of the tasks), sSmple
(because they used smple operations and mainly one representation), fulfilled a
familiarization purpose (needed to advance in the abstraction process), and did not
require sophisticated methods to legitimate the answer; the process and the task setting
acted as the control Structure.

Ordered Pair

In the tasks that belong to this conception, the use of function is as a set of
ordered pairs. They require manipulate or appreciate operations or a combination of the
three types and they use any of the possible representations and controls.

In this conception the tasks offered the most aternatives for the e ements of the
configuration. That is not surprising, given thet the set theoreticd definition of function is
the most flexible, mathematically speaking. The tasks may be solved using only the

symbalic representation or using a combination of a set and other representations (e.g., an
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arrow diagram, a number line, or a Cartesian plane). Because one common operation
dedls with determining whether a given relaion is a function, the controls maybe based
on the conditions defining a function, that is, a content type of control. The following

example taken from Irdlandl illustrates one such task:

The domain of therdation R={(x, y) |y = X%} is{1, 2, 3, 4}. What isthe range or

R? List the couplesof R™:. (p. 182, Task 6)

In thistask, operations of al three types are needed. The student needs to use the relation
to find the values of the relation at each point of the domain, which in turn will determine
the range; these correspond to manipulate and appreciate operations. The listing of the
elements of the inverse relation (exchange the ordered pairs) corresponds to a caculate
operation. In this example, the representation used is symbolic, and the controls available
are the procedures themsalves; the student might repeet the calculationsif there were a
hint thet there is a mistake in the solution.

Fourteen percent of the tasks fell into this group. Thisis alarge percent, which
could be explained by the effects of the new math movement, as the mgority of the
textbooks in the sample were produced during the late 1970s and the 1980s. That the set
theoretica use of function was associated with dl the categories of the quadruplet could
be related to the overarching character of the definition. The use of al types of operations
serves the purpose of showing that the function can be something that is usable and
something that one can discuss; the use of severa representations serves the purpose of
showing that arbitrary correspondences are possible, something that cannot be shown
when the rule of assgnment is explicitly given (with an dgebraic expression, for
example); and the use of severd controls aso serves the purpose of calling attention to
the processes associated with the definition and to the conditions by which the function

exigs.



Socia Data

In the tasks that belong to the socid-data conception, the use of function issocid
(as congtructed relations or data reduction relations). The task requires appreciation
operaions aone or in combination with manipulation operations. It uses nonsymbolic
representations mainly, athough the symbolic representation can be combined with other
representations. Controls are based either on the content or on the process plus the
didactical contract.

The tasks that belonged to a socid- data conception in this sample did not
necessarily involve symbolic representations. The relations tended to be defined through
tables, graphs, or words, and the task might not ask for a symbolic expression. The
presence of red contexts in many of the tasks might explain why both manipulate and
appreciate operations were often needed: The task might offer the sudent the possibility
of operating with the function so as to become more familiar with it, but interpreting the
results requires an examination of the function as an object. The context acts as a means
of controlling, @ther by limiting the reasonableness of an answer (most of the Stuations
ded with positive numbers only) or by asking for an interpolation of vaues, which
invariably assumes the continuity of the reations depicted. The following task taken from
UnitedStates4 illustrates one of such tasks:

Make atable for [the] relaion: A car gets 26 milesto agdlon of fud. Show the

relationship of the number of miles driven to the number of galons of fud used.

(p. 457, Task 17)
The task is numericd; the preceding text contains asmilar example that usesintegrd
positive numbers and describes the relation without symbols; these uses are thus
determined by the contract. The described relation—miles driven per gdlons used—acts
asacontrol for the calculation of the entriesin the table (if the number of milesdriven
does not incresse as the number of gallons increases, then there is amistake).

These tasks stisfied the purpose of providing meaning to the correspondence that
defines afunction as a dependence between two variables that relate to the sudent’s
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world, fulfilling in this way amoativationa objective too. The tasks tended to be used for
moativation, which might explain the reduced emphasis on symboalic representation. The
text preceding these tasks might present adefinition of function as a set of ordered pairs
and give definitions for domain and range; in some cases, these names were not used
agan in thetasks, or if they were, they appeared without a reference to an externa
context helping in this way to create a separation of the practicesin usng the definition:

A relation isagroup of ordered pairs. A relation can be shownin atableor a
graph. [A graph and atable are provided showing sx integral values for number
of gallons (x) and cost in dollars (y) of ethanol fudl.]

The domain of ardation isthe set of dl thevaduesof x. Therange of ardationis
the st of dl thevaues of y. (UnitedStates4, p. 456)

Observe that in these definitions the variables are referred to as x and y and not as number
of gallons and cost in dollars. The tasks that followed the definition and that dealt with
ordered pairs used a symbolic representation, whereas the tasks with a context required
nonsymboalic representations. Only 7% of tasks belonged to this conception.

Physicd Phenomena

In the tasks that belong to this conception the use of function is physica (cause-
effect or time relationships). The task requires manipulate operations done or in
combination with gppreciate and caculate operations, or it requires operations outsde
these types. The task does not use symbolic representation. The controls are based elther
on the content in combination with other types or on the process only.

The tasks belonging to a physica- phenomena conception (4% of the total) shared
common characteristics with those belonging to a socid- data conception. Beside a
difference in the use of function, important differences are that for the physical-
phenomena conception, the controls were based on the content or the process rather than
on the contract, and the operations used were not necessarily within the three main
groups (e.g., determine the type of relation between the variables and use proportionaity
to find vaues in atable). The tasks belonging to this conception required the students to



collect data from experiments (e.g., timing a pendulum, England2, p. 16), which might
explain why the process and the content were so frequently used as controls. Students
unexpected results for the task could be attributed to the data collection processes or
taken as fdgfiers of conjectures posed (in the case of the pendulum the conjecture that
the smaller the angle the longer the period, for example, would be fasfied by the
unexpected result that the period is the same for every initid angle). The following
example taken from Mexicol illustrates atask belonging to this conception:

The following table shows the distance traveled by a car after the brake is pressed

over adry road; for example, acar driving at 40 kilometers per hour will need
18.6 meters to reach a complete stop. Is there proportiondity between the speed

and the stopping distance?
Speed Stop Distance
(in km/h) (inm)

40 18.6
50 26.5
60 35.7
70 46
80 575
0 70.7
110 101
130 135.6

(p. 197, Task 5)

This task was contained in chapter on direct proportion, and the student had at hand two
drategiesto test the proportionality: Find the ratios of corresponding entries and produce
graphs. The tabular presentation suggests the ratio gpproach. The student might need to
repesat the procedure for dmost dl the entries because the ratios (distance/speed) of the
smaller numbers seem to group around 0.5. By finding dl the ratios, the student shows
that there is no (direct) proportiondity. In this case, the processis fundamentd to the

solution and for establishing the correctness of the answers.
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Contralling Image

In the tasks that belong to this conception, the use of function isfigurd
(geometrica, graph defined, or pattern relations). The tasks use operations of al types,
but they do not use manipulate or appreciate operations done. Nonsymbolic
representations are used amogt exclusively, and the task uses any of the types of controls.
Three percent of the tasks belong to this category.

The few ingances in which the symbolic representation is used in combination
with other representation correspond to cases in which the symbols are not manipulated;
they act aslabelsasin expressonslike A=b " hfor the area of arectangle with base b
and height h. The main difference between the controlling-image conception and the
socid-data and physical- phenomena conceptions, however, isthat the tasks belonging to
the controlling-image conception do not require operations from one type only. This
difference may indicate a greater complexity in these tasks, which is supported by the
fact that dl types of controls were available. The following task from Switzerland2 is an

example

Angular Haight
Draw a semicircle with radius 10cm. Draw severd anglesx (0 £ x £ 180°) with

y
X

origin a the center of the circleand onevside lying on the horizontd radius.

For each angle x determine the height y. Draw an approximate graph. Describe the
behavior of the curve. (p. 131, Task 18B)

Thistask, which the student has to solve without using trigonometric relations, uses x and
y aslabdsfor the angle and the height, respectively. The student is not asked to find a
relation between the two variables of angle and height. To solve the task the student has
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to collect data by measuring severa angles and then measuring the corresponding
heights. The set of vaues obtained has to be plotted, and a description of the graph,
which will be continuous because of how the angles vary, must be obtained. Thus,
despite the function not being explicitly exposed, the student uses the relation (to plot the
points), discussesiit (by describing the graph), and does something for it (collecting the
data). The picture given in the task helpsto illudirate thet for an angle of 0° the height is
0 cm and that for an angle of 90° it is 10 cm, which will act as control for the values

obtained for the height (it must be between 0 and 10).

Summary of Findings on Conceptions

Table 9 gives the percentages of tasks belonging to each conception. The
proportion of tasks for the symboalic-rule and ordered-pair conceptions—in which thereis
no context involved—is amost twice the percentage of tasks for the conceptions that
involve a context. One explanation may bethat it is easer to set up alarger number of
tasks when there is no context. Red applications require alot more work. It is difficult to
congtruct tasks that satisfy academic purposes and at the same time resemble the redl
gtuation from which they are derived. Similarly, tasks involving physical phenomena
may be more difficult to set up than tasksinvolving socid phenomena because the former
may involve Stuaions that are less familiar to the students or more difficult for teachers
to explain. The low percentage of tasks in the geometry conception might be a
conseguence of the separation of subjects that is common between arithmetic, geometry,
and agebra. Because function tends to be considered an dgebratopic, it islesslikely that
geometric Stuations or patterns involving numerica sequences would be treated under a
functiona perspective.

In the tasks belonging the conceptions in which the use of function was not rule or
set of ordered pairs—function without a context—the role of the symbolic representation
was minor. Tasks belonging those contextua conceptions may fulfill amotivationa
purpose; the need to handle the context imposes other demands (as part of amodeling
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Table 9

Percentages of Tasks Within Each Conception

Conception %
Symbalic rule 20
Ordered pair 14
Socid data 7

Physical phenomena 4
Contralling image 3

process, for example) that relegate the issue of symbolic manipulation to a secondary
gatus.

The tasks in the symboalic-rule conception were the only ones that did not take
advantage of the content as control. Three activities were included under the content
category of controls (more than one point—the vertical line test, MT1P, continuity, CON,
and use alternative representations, UAR). UAR could not be assigned to the tasks
because within this conception the only representation used was symbolic. MT1P was not
assigned because in these tasks the rdation, given symbolicaly, dways represented a
function. Thus any correspondence interpreted as a dependence relation aways defined a
function, and therefore the necessary condition of unique assgnment became
superfluous. The student does not need to provide a method to test that the relation
satiSfies the condition within the symbolic representation. CON was not assigned because
the tasks tended to ask for discrete values of the relations, even for continuous reltions.

It could be the case that textbook authors for these grades consider the treatment of
continuity in symbolic expressions for functions to be beyond sudents' leve of
understanding.

With respect to operations, the physical-phenomena and controlling-image
conceptions were the only ones that required operations from al the sets. A possible
explanation is related to the level of complexity that these tasks manifest because of the
introduction of amore specidized context as compared to the contexts present in the

tasks belonging to the socid-data conceptions.



The classfication into five conceptions reved's the most frequent interrelations of
the four eements defining a conception. The requirement that four eements of the
quadruplet be analyzed at atime reduced the number of casesin each cdl of the
associated contingency table, which in turn reduced the possibility of classfying alarger
fraction of the tasks. That only 48% of the tasks were accounted for in this classification
indicates that there are other interrelations that, as a group, did not congtitute extreme
cases. To dicit these interrelations, it would be necessary to have amuch larger sample
of tasks.

Altogether, these results imply the existence of a separation of practices enacted
by these tasks that is strongly associated with the uses given to function within each task
and that results in different potentia conceptions of functions that the students might
learn. This separation has implications for the ways in which students generate their own

conceptions of function.

Patterns of Conceptions Across Textbooks and Countries

Because the tasks came from different textbooks within the countries, a natura
question concerned the smilarities between the conceptions of function across countries:
Were there patterns of conceptions? Because there were cases in which there was more
than one textbook in a country, the results are discussed at the textbook leve.

The question of patterns of conceptions was addressed by studying the
disgtribution of tasks diciting each conception at the textbook leve. | did not perform a
CFA for each textbook, because the extremely smdll ratio of sample size to the number of
cdisin afive-way table (of book by use by operation by representations by controls)
would have made the test too powerful and, consequently, the results unsuitable for
interpretation (von Eye, 2000, p. 9). Thus, no statistical andysis was carried out beyond
the calculation of frequencies and percentages of tasks diciting particular conceptions.

The section is divided into two parts. In the first part, | describe how the tasks

were distributed across textbooks according to conception. Because not al tasksfdl into
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aparticular conception, afurther classfication consdering the most frequent use of
function was added to create clusters of textbooks. The results of this process are

discussed in the second part.

Conceptions Within Textbooks

Table 10 shows the proportion of tasks from each textbook that contributed to the
characterization of each conception. The table is aphabetica by country. The Canadian
textbook, for example, had 25 tasks. Of these, 4% (1) hed a configuration within arule
use of function that was labeled as an antitype by the CFA program; thus this task
enacted a conception of function that was not common to the symbolic-rule conception of
function, as the tasks required nonsymbolic representations when the function was used
asarule. Another 4% (1) had a configuration within the socid use of function that was
labeled as atype by the CFA program; thus this task dlicited a conception of function that
required appreciation operations either done or in combination with manipulation
operations, without exclusive use of symbolic representation, and with controls based on
the content or on the didactica contract. Eight percent of tasks enacted a physica-
phenomena conception, and another 8% a controlling-image conception. In al, 24% of
the tasks of the Canadian textbook could be classified according to the five conceptions
found. The remaining 76% of the tasks had configurations that, when consdered in the
pooled sample, did not have a more than expected frequency of occurrence, in other
words, the interrelation of the four elements of the conception in those tasks could be
expected by chance at the pooled-sample level.

At the textbook level, one might well have expected different interrelations to
play out. The reduced sample size did not permit asatistical analys's like the one carried
out with the pooled sample. Even without such an analys's, however, the proportionsin
the table showing each textbook’ s contribution to the characterization of each conception
reved interesting features of the textbooks.



Table 10

Percentage of Tasks in Each Textbook Eliciting Each Conception

90

Textbook No.of  Symbolic Ordered par Sociad data  Physica Contralling
tasks rule phenomena image

Argentinal 18 17 17
Australial 27 3 11 4
Australia3 26 4 15 31
Austrial 14 7 57
Canadal 25 4 4 8 8
Colombial 57 5 47
Colombia2 28 7 4 4 4 4
Englandl 31 65
England2 23 57
HongKongl 12 25
Irelandl 73 3 37
Mexicol 32 6 3 3 6
Portugal 1 52 12 6 17 2
Singaporel 41 27 27
SouthAfrica2 22 (36)
Spainl 77 39 3
Switzerland2 A 6 3 3 15 3
Switzerland4 22 18 (14)
UnitedStatesl 174 16 3 29
UnitedStates? 123 27 21 17
UnitedStates3 88 5 51
UnitedStates4 180 29 16 6 1
UnitedStates5 38 45 5 3
UnitedStatesb ) 53 (1)

Note: Entriesin parentheses indicate the proportion of tasks with configurations labeled as

antitypes.

All but five textbooks contained tasks that promoted a symbolic-rule conception,

and about half contained tasks that promoted an ordered-pair conception. Tasksin the

symbalic-rule conception use functions as arule, require manipulation of the relaion
with a symboalic representation or manipulation and appreciation with additiond
representations, and base the controls on the process of solution. The ordered-pair

conception uses function as a set of ordered pairs and combinations of al the

representations, operations, and controls. Aswas discussed earlier these conceptions were

the most commonly promoted. Li (1999), in hisandysis of to-be-solved problemsin

eghth-grade textbooks from East Asan (China, Hong Kong, Singapore) and the United

States found that the configuration “ same mathematics content as introduced in the



chapter, pure mathematical context, no explanation required, application of routine
procedures’ was the most frequent in each of the textbooks analyzed (pp. 180-183). This
result is congstent with the results in this sudy for Singgporel, UnitedStates2,
UnitedStates4, and UnitedStates. In these textbooks, the proportion of tasks promoting
ether asymbolic-rule or an ordered-pair conception was high. The discrepancy in the
textbook from Hong Kong appears to have occurred because the sections analyzed were
different in each study. Functions are not treeted as an agebratopic in the eight-grade
textbook from Hong Kong ; they are treated through applicationsin statistics.

Five countries provided more than one textbook at the seventh and eighth grades:
Austrdia, Colombia, England, Switzerland, and United States. The textbooks from
Augdrdiaand from England had very smilar digtributions of tasks in each conception;
this smilarity was probably due to the fact that in each country the authors of those
textbooks were the same. Each author or group of authors has a particular agenda (in
most cases shaped by curriculum guides) that they tend to follow asthey write a series of
textbooks. The textbooks from Colombia and from Switzerland were intended for the
same grade but had different authors; and in each case one of the textbooks had tasks in
al the conceptions, whereas the other has tasks in only two of them. The pairs
UnitedStatesl- UnitedStates2, UnitedStates3- UnitedStates4, and UnitedStates5-
UnitedStatess, which were three different series of seventh and eighth-grade textbooks,
were each written by a different group of authors, and they showed different distributions
of conceptions.

In the case of the United States, the textbooks also showed differences across
grades within the series. In every case, there was an increase in tasks belonging to the
symboalic-rule conception from the seventh grade to the eighth grade. Thisincrease
suggests an interest in fostering rigor as the students advance in their study of function.

Table 10 aso shows the contribution of the textbooks to antitype configurations.
An antitype indicates a configuration that was less frequent than would be expected by

chance. Antitypes were used to corroborate the descriptions of the conceptions: Their
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characteristics were S0 rare that they helped to highlight (or make evident) characteristics
of the most frequent configurations. For a textbook, an antitype exemplifies
configurations that are different in critical agpects from those used to characterize the
corresponding conception. In the case of the South African and Canadian textbooks, the
tasks in the antitype use arule, but they do not use a symboalic representation. The
following is an example of this Stuation taken from SouthAfrica2; the Canadian tasks are

comparable:

Examine [the] following number machine. When you are sure that you know how
the machine works copy the table into your book and complete it by filling in the

vaues of the outputs (y).
3 I
id 21
input(x) |12 |3 |4
output (y)

(p. 290, Task 1)

In thiskind of task, the function machine exemplifies the trandformation that affects the
numbers that enter the machine. It performs an arithmetic operation that is dso made
vigblein thelabd (+7) on the machine. The student needs to apply the transformation to
each number of the table, after checking that the label (+7) does correspond to the
transformation of adding 7 to the numbers that enter the machine. Note that the symbols x
and y do not play arole as variables; they act merely as names for input and output. This
task was labeled as numerical for its representation. The student might redo the
computations to make sure that the transformed values are correct.

In the case of the Swiss and U.S. textbooks, the use of function in the antitype
tasksis socid, but the tasks use manipulate operations only and the controls are based on

the process only, asin the following example from UnitedStatest:
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Mai is alowed to watch atotal of 10 hours of TV during the school week. Some
shows are a hdf hour long and some are an hour long.

lOf\
]
%_r+y =10
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€ -3
04 5 10 15 20

Find the three points graphed above. Which ordered- pairs solutions to the

equation do these points represent? (p. 152, Task 3)
This task seemsto serve the purpose of giving the students practice in reading points
from the Cartesian plane. The word find in the task isto be taken literdly (in the origind
there are three red dots where the black dots are), and once the points, actudly dots, are
found, the student needs to write the corresponding ordered pairs. The graph does provide
a checkpoint through one of the points, which is dready labeled (10, 5). The choice of the
numbers in this ordered pair seem to be intended to show that the 10 corresponds to the
10 on the x-axis and goes first in the ordered pair, and the 5 must be located on the y-axis
and goes second in the ordered pair. The other pointsin the graph are located on the axes,
which would facilitate the discrimination as to which number goes in which place. The
dot that correspondsto (0, 9) is not a solution to the equation. It istreated asif it were,
however, which suggests that there was a printing error and that the authors meant to
highlight the pair (0, 10). The use of the processindicates that if an answer was obtained
and amistake detected, redoing the process would help as a check. Thus there is only one
operation needed, read points from the graph, which is a manipulate operation, and only
one way to control the solution, through the process.

Only 14 tasks were labeled as antitypes (about 1%), which | considered to have a
negligible effect on the andyss of percentages and frequencies that follows. The
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characterigtics of the antitypes, however, were crucid in characterizing the conceptions
enacted by the tasks in these textbooks, as was discussed previoudy.

Completing the Picture: Tasks Not Eliciting a Conception

For each textbook, the set of tasksthat did not lead to ditinctive conceptions and
that therefore were not consdered in Table 10 were dassified by use of function, and the
most frequent use was used to characterize the textbook. By looking at smilaritiesin
both the conceptions enacted and the predominant use of function in the remaining tasks,
| determined four clusters of countries. Those textbooks whose tasks belonged to a
symboalic-rule conception and for which the mgority of the other tasks had arule use
composed the first cluster, caled rule oriented. Textbooks with tasks belonging to a
symboalic-rule or ordered-pair conception and for which the mgority of the other tasks
had arule use or a set-of-ordered-pairs use formed the second clugter, called abstract
oriented. Textbooks whose tasks belonged to the controlling-image, socid-data, or
physi cal- phenomena conception and to ether or both of the symbolic-rule or ordered-pair
conception composed the third cluster called abstract oriented with applications.
Textbooks whose tasks belonged to the controlling-image, socid-data, or physical-
phenomena conception and for which most of the other tasks had ether afigurd, socid,
or physica use composed the fourth cluster, caled applications oriented. Table 11
presents these clugters, together with the intended grade and the percentage of the tasks
contributing to each conception or use of function.

More than haf of the textbooks were abstract oriented with gpplications, one sixth
were abstract oriented, one sixth were gpplications oriented, and the rest were rule
oriented. The textbooks tended to offer more tasksin which both abstractions and
applications were used than Stuations in which the function was treated as an abstract
entity only. This tendency might well be connected to the grades for which these
textbooks were intended, grades that are seen as trangitiond between the primary grades,

in which more work is done with concrete objects and stuations, and the secondary



grades, in which more abstract work is expected. The contribution of these textbooks to
developing an abstract practice of functions, however, cannot be neglected: 20 textbooks
(83%) had tasks belonging to a symbolic-rule conception or used function asarule, and
13 (57%) had tasks belonging to an ordered-pair conception or used function as a set of
ordered pairs. Although many books offered a variety of Stuations in which different
practices of functions occurred, they still emphasized abstract uses of function.

Table 11
Clusters of Textbooks With Percentage of Tasks by Conceptions and Use of Function

Cluster Textbook Grade SR-R OP-SOP SD-S PP-P CI-F
Rule Oriented SouthAfrica2 7 58
Switzerland4 7 "
United Statesb 8 69
Abstract Colombial 8 5 80
Oriented Irelandl 8 3 9%
Singaporel 8 59 27
UnitedStates3 7 27 51
Abstract Argentinal 8 30 17 17
Orientedwith  Australial 8 33 11 4
gpplicaions A gtralia3 7 15 31 31
Austrial 8 14 21 57
Colombia2 8 46 4 4 4 4
Mexicol 8 47 3 3 6
Portugal 1 8 12 6 42 2
Spainl 8 78 3
Switzerland2 7 6 3 35 3 3
UnitedStatesl 7 55 3 29
UnitedStates? 8 4 21 17
UnitedStates4 8 54 16 6 1
UnitedStatesb 7 45 31 3
Applications  Canadal 8 40 8 8
Oriented Englandl 8 100
England2 8 79
Hong Kongl 8 100

Note. SR-R = Symbolic-rule conception or rule use; OP-SOP = Ordered-pair conception
or set-of-ordered-pairs use; SD-S = Social-data conception or socia use; PP-P =

Phys ca- phenomena conception or physica use; Cl-F = Contralling-image conception or
figurd use
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All but one textbook from the Spanish and Portuguese- spesking countries
bel onged to the abstract-with-applications clugter. The amilarity in languages and culture
may have given educators in these countries common experiences. They may have taken
gmilar approaches to teaching mathematics, which may have been reflected in how these
textbooks posed tasks about functions. The conjecture about the influence of common
experiences, however, did not apply to textbooks written in English. Textbooks from
three countries in which Englishis the language of ingtruction (England, Hong Kong, and
Canada) were in the applications-oriented clugter; textbooks from Audrdiaand the
United States were in the abstract- oriented-with-applications cluster, and textbooks from
Singapore and the United States were in the abstract-oriented cluster. Thusin the case of
the countries that share some common background—being former English colonies—the
distribution of conceptions and uses of function within textbooks was not uniform.

All but one of the textbooks from continental Europe bel onged to the abstract-
oriented-with-applications cluster. There may be a cross-country influence that made
these countries' textbooks smilar with respect to function use. If Spanish- gpesking
countries tend to be influenced by Spain, that could explain why al but one of the
textbooks written in Spanish belonged to this cluster too. In the case of the Audtrdian
textbooks, the influence is not clear (but one could ask why the South African textbook is
not in this dlugter, given South Africal s links to continental Europe).

Searching for possible explanations for the cluster organization of textbooks, |
looked at the copyright dates of the textbooks. The textbooks andyzed were al
copyrighted between 1972 and 1993. One might expect that textbooks with copyright
dates in the 1970s and 1980s would tend to be abstract-oriented because of the influence
of the new math movement, which advocated aforma gpproach to the teaching of
mathematics. In the abstract- oriented cluster, however, two textbooks were copyrighted
in 1987 (Irdlandl and Singaporel) and two in 1992 and 1993 (UnitedStates3and
Colombial). Thus the expectation that older textbooks are abstract oriented cannot be
supported. In this cluster, more than 76% of the tasks in the textbooks belonged to the
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symbalic-rule and the ordered-pair conceptions and used function asarule or aset of
ordered pairs. Perhaps in some countries there was an interest in maintaining certain
content to cater to teachers who were used to this kind of approach. It could be, however,
a consequence of congraints that did not alow arapid production of new textbooks for
some countries (e.g., small readership, competing priorities in the case of state

publishing, protectionist practices, strict copyright laws, or shortage of paper for printing;
Farrd & Heynemann, 1994, pp. 6362-6365).

In Colombia, Switzerland, and the United States, the country’ s textbooks were
spread over two or three clusters. In countriesin which decisions about textbook use are
not centraized (Colombia and the United States), publisherstend to offer avariety of
aternatives so that teachers can salect or suggest a textbook based on their experience. In
the case of Switzerland, the difference in gpproachesin the two textbooks can be
attributed to ways of dedling with tracking practices. Both textbooks were intended for
the medium/high track. Switzerland4, however, incorporated content for two grades. The
first haf of the textbook was intended for seventh graders; the second half, for eighth
graders (W. Durandi, persond communication, June 22, 2000). The section andyzed in
this study corresponded to the introduction of functions, whose tasks were smilar to the
those from the South African textbook (see p. 92) and belonged to thefirst part of the

textbook.

Conceptions and Achievement

To address the question of the relation between conceptions promoted by textbooks and
student performance, the data from students' performance on selected items of the
TIMSS achievement test for each of the participating countries were compared with the
conceptions fostered by the tasks in the textbooks of that country.

The codes for the ten items selected from the released set of TIMSS achievement
test, organized by use of function, are shown in Table 12. The digtribution of uses of

function in these items does not resemble the digtribution found in the tasks analyzed in
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this study (see Figure 2). In only two items, J 18 and L-14, isfunction ssen asarule, in

four the use of function isfigurd, three are physicd, and only oneis socid.

Table 12
Items Related to Function on the TIMSS Achievement Test

Item  Description Use of Operations Representations Controls
function
J18  Number missng from Rule Manipulate- Nonsymbolic ~ Process-
table appreciate-calculate content
L-14 Missngvduesin Rule Manipulate Nonsymbolic ~ Process (A)
proportiondity table
-04  Number sequence Figura Manipulate- Symboalic-others Process-
appreciate-calculate contract
-08  Pointonaline Figura Manipulate- Nonsymbolic ~ Process-
appreciate-calculate contract-
content
J16  Likey coordinates of P Figural Manipulate-calculate Nonsymbolic Process
S01  Sequenceof triangles Figura Manipulate- Symbalic-other  Process
appreciate-calculate
V-02 Priceof renting office  Social Manipulate- Nonsymbolic ~ Process
space appreciate-calculate
L-11 Totd distancetraveled Physical Manipulate-calculate Nonsymbolic ~ Process (T)
by bdll
O-01 Speed of car from Physical Manipulate Nonsymbolic ~ Process
graph
R-08 Distance car will travel Physical Manipulate Nonsymbolic  process-
content (T)

Note. (A) indicates that the item was similar to tasks in the textbooks with a configuration labeled as
an antitype. (T) indicates that the item was similar to tasks in the textbooks with a configuration
labeled as atype.

Figure 2 dso shows the digtribution of uses of function in the tasks in three other
textbooks that were selected because the distribution of tasks in those textbooks were
gmilar to the TIMSS items in the proportion of physica or figurd uses of function. Even
in the case of these countries, however, there are striking differences with respect to the
overd| digtribution of uses. The dataimply that the textbooks in this sudy had avery
different emphasis on conceptions of function than did the function itemsin the test.
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Figure 2. Digtribution of uses of function in the TIMSS function items, in the tasks in the sample
of 24 textbooks and in tasks from three textbooks.

The test items do not mirror the textbook tasks uses of representations either.
Almog dl the items require nonsymboalic representations (numericd, graphica, and
tabular), and when a symbolic representation is required it is not in combination with a
rule use of function. The distributions of operations and of controls do resemble the
distributions observed for the tasks of the study. The test Stuation, however, was
different from a Stuation in which the student is solving a textbook task, because the test
provided multiple-choice items. If the student reaches a solution thet is not among the
choices, he or sheimmediately knows that there is a mistake. The choices act as
checkpoints. In solving atextbook task or an open-ended test question, the student does
not necessarily have these checkpoints available. Also, when choices were provided, the
student might use the choices provided in the item and test their reasonablenessinstead of
following a certain process (e.g., in Item J- 16, the student might have plotted the points
given in the choices instead of looking for the coordinates of the point). There were seven
multiple-choice items, and they were given the code use-checkpoints.

Thusthe TIMSS items, as a set, do not share the same characteristics as those

depicted by the tasksin the textbooks. Only two items, L-11 and R-08 (aphysicd



conception), had atype configuration. Englandl, England2, and Switzerland2 had tasks
with the same configuration as Item L-11, and Austrial, Canadal, Englandl, England2,
and Portugd, had tasks with the same configuration as Item R-08. | conjectured that the
students from those countries with textbooks containing tasks with the same type
configurations would perform better on items enacting those configurations than would
the students from other countries.

To determine the differences in achievement across countries, | constructed 95%
confidence intervas around the mean percentage of correct answers by item and by
country to get an estimate of the true percentage of correct responses for the two items L-
11 and R-08. The digtribution across countries of performance on the items with 95%
confidence intervalsis presented in Figures 3 and 4 for Grades 7 and 8 separately. In the
figures, the countries are ordered by performance on the item, and the names of those
countries with textbooks having the physica phenomenon conception are underlined. A
(T) isused to mark those countries in which at least one textbook contained tasks having
atype configuration Smilar to that of the item.

ltem L-11

A rubber bal rebounds to half the height it drops. If the ball is dropped from a
rooftop 18m above the ground, what isthe total distance traveled by the time it
hits the ground the third time?

A. 31.5m

B. 40.5m

C. 45m

D. 63m

(IEA, 1997D, p. 37)

On Item L-11, the performance of the English students at both levels was not
datidicaly different than the performance of other students (see Figure 3). The Swiss
eighth graders outperformed those from Portugal, the United States, and Colombia, but
the performance of the Swiss seventh graders was not significantly better that that of
students in those same countries. The textbooks from England and Switzerland had tasks
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Figure 3. Percentage of correct answers on Item L-11 at Grades 7 and 8 by country, with 95%
confidence intervals. Countries with textbooks whose tasks belong to the physical phenomenon
conception are underlined. A (T) beside a country name indicates that at least one textbook from
that country had tasks with a type configuration smilar to that of the item.

with the same configuration of use of function, operations, representations, and controls
as Item L-11, with the Swiss textbooks intended for the seventh grade and the English
textbooks intended for the eighth grade. At neither of these grades did the students from
Switzerland or England those countries outperform the students from al other countries.
Of the gx countries having books with tasks that belonged to a physica phenomenon
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conception, Portugal and Colombia showed the lowest performance. Thus, as a group the

students from countries with textbooks having the physical phenomenon conception did

not perform better on this item than the studentsin countries with textbooks diciting

other conceptions. Across grades there are not many differences.

ltem R-08

The graph shows the distance traveled before coming to a stop after the brakes are
goplied for atypicad car traveling at different speeds.
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A car istraveling 80 km per hour. About how far will the car travel after the

breaks are applied?
A. 60m
B. 70m
C. 8m
D. 100m

(IEA, 1997b, p. 101)

On Item R-08, the students in England, Canada, and Austria, countries with

textbooks that had tasks with the same configuration as the item, performed Satistically

better than four countries, Portuga, South Africa, Colombia, and Spain at both grades

(see Fgure 4). Of the six countries that had textbooks with tasks that belonged to the

physica conception, only two, Portugal and Colombia, exhibited low performance at

both grades. Thus for this item there might be some benefit for some students whose



103

textbooks had tasks belonging to a physical- phenomenon conception. On thisitem, there

was an improvement in performance across grades for some countries.
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Figure 4. Percentage of correct answers on Item R-08 at Grades 7 and 8 by country, with 95%
confidence intervals. Countries with textbooks whose tasks belong to the physical phenomenon
conception are underlined. A (T) beside a country name indicates that at |east one textbook from
that country had tasks with a type configuration similar to that of the item.

In summary, for Items L-11 and R-08, which had a configuration in a physica-
phenomena conception of function, students in countries with textbooks containing tasks

that belong to the same configuration performed better, about the same, and worse than



students from the other countries, which might or might not have had textbooks with
tasks belonging to the same conception of function. Thusit is not possible to conclude
that countries that have textbooks with tasks promoting a physica conception have an
advantage on test items diciting the same conception.

The Items As a Group

Asinformation based on only one item can be inconclusive, | repested the
analysis usng the entire set of function items. | found the average percent correct for the
10 function items for the students in grades seven and eight, usng 95% confidence
intervas (see Figure 5) in order to determine whether there were patterns of achievement
that could be related to the textbook clugters. | did not find a clear pattern regarding the
cluster organization of textbooks and students' achievement on the items. Therewas a
dight improvement from seventh to eighth grade, but at both grades the students from
Spain, Portugd, Colombia, and South Africa obtained the lowest scores—and were
outperformed by at least two other countries—and the students from the other countries
performed about the same (there are not many significant differencesin their scores).
Thus, it is not possible to claim from these data that exposure to atextbook with a certain
orientation improves students performance on these items. It is clear that other factors
must be operating beyond just the use of a certain textbook.

That some countries within agiven cluster performed better and some worse than
others can be a consequence of two different factors. In the first place, the existence of
more than one textbook for the same grade in some countries (Switzerland and Colombia,
for example) implies that there were students who might not have used the textbook
during their school year, and thus they might not have been exposed to those conceptions.
Because the performance score for a country reflects the attainment of al studentsin the
country, it isdifficult to interpret the results without examining particular ssgments of the
student population. Such information was not available for this study.
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In the second place, and even in the cases in which the decisions regarding
textbook use was centralized (Austria, Hong Kong, Singapore, and Spain), it might be
that only avery smal fraction of the tasks in atextbook were done by the students. The
decision asto which tasks were used in instruction depended on the teacher and his or her
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Figure 5. Average percentage of correct answers on ten function items at Grades 7 and 8 by
country, with 95% confidence intervals.

teaching Stuation. This observation implies that the everyday activity within a classroom
creates another set of practices about function that do not resemble the ones described



here. A subsequent study of the practices of function as revealed by the interaction
between teachers, sudents, the textbook, and other resourcesin rea classrooms might
explore the relation between textbook conceptions and conceptions enacted in the

classroom.

Additiond Obsarvations

As part of the process of answering the questions, | made several observations
that were indirectly connected to the research questions.

A Limited Set of Examples for Physica Stuations

Only 136 tasksin the textbooks presented a functiona relation that was related to
some physica Stuation, ether a cause-and-€effect Stuation or a Stuation involving time
as a continuous variable (see Table 5, p. 72). There were 16 different cause-and- effect
relaions (e.g., dengity of water versus its temperature, Hooke's law, or Ohm'’slaw) and
13 different time relations (e.g., Speed versus distance, speed versustime, or time versus
distance) with severa contexts (e.g., people, cars, or trainsin the time reations). Thus,
each possible example in which function was used in physical phenomena occurred in
four to five tasks, which implies that these examples were more or less sandard across
the countries.

In contrast, there were about 145 different Situations that defined socid uses of
function (e.g., number of items versus their price, percentages of discounts of items,
recipes, scalesin maps, height, weight, see Table C1) for 227 tasks. These numbers mean
that each stuation could be used in one or possibly two tasks at most. Thus, socid
environments gpparently offer amore prolific source of problemsfor illugtrating
functions than the physica world does, and the limited number of rdations derived from
the physicad world may dlow their exploration from different perspectives in these tasks.
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Number of Sections Not Devoted to Tasks

The number of sections in the textbooks that did not contain tasks ranged from O
for the English textbooks to 14 for the Spanish textbook, with an average of 5. The
English textbooks were work booklets without explanations for the students. The other
textbooks contained text that explained or illustrated related content. Not dl the
textbooks contained task sectionsimmediately after these explanatory sections (e.g.,
Switzerland2 had a very concise basics section—Grundlagen—at the beginning of the
task section and an el aborated presentation in the second part of the book without any
task following it). These apparently smple differences suggest different strategies across
countries for organizing content about functions, and these Strategies seem different from

those described by Li (1999, p. 157).

Surface Characteristics

That textbooks come in different Sizes and shapes has been reported in severa
other studies (Howson, 1995; Li, 1999; Schutter & Spreckelmeyer, 1959), and the
textbooks in this study illustrated the same variation. | found that amost every seventh:
and eighth-grade textbook contained pictures, drawings, and photographs apparently
related to the content but without any information necessary for solving the task (e.g., the
picture of acar in atask about distance traveled per unit of time or the photograph of a
plant in atask about length of the leaves of plants). Only four textbooks—Colombial
(which has Sde boxes labdled “think!” with logic puzzles), Irdandl, Singaporel, Spainl,
and Switzerland2—did not contain such illugtrations. Thus despite these exceptions, it
seems that there is a strong tendency toward making the content presentation gppedling to
the students in these grades.
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CHAPTER 5

CONCLUSIONS

“Yes, | suppose you'd be over when that was done,”
Alice said thoughtfully: “but don’t you think it would
be rather hard?
“1 haven't tried it yet,” the Knight said, gravely; “so |
can't tell for certain—but I'm afraid it would be a
little hard.”

Lewis Carroll (1964)

The concept of function has dramaticdly changed the landscape of mathematics,
and mathematicians congder it akey concept. Itsintroduction into school mathematics,
however, has proved to be a chdlenge. Many efforts to help students understand the
concept have not been successful. These two issues—that function is akey concept for
mathematics and that students seem to have consderable difficulty understanding it—
have spawned much research. Researchers in mathematics education have studied various
agpects of the process of teaching and learning functions a different levels—by students,
teachers, and prospective teachers—and have dso investigated the nature of and the ways
of thinking about functions. My experience as curriculum developer in Colombia has
shown methe crucid role that textbooks play in teaching and learning any topic. They
contain particular views about the mathemetics students should learn. Across countries
there are important differences and amilaritiesin how textbooks treset functions that are
worth investigating. One attempt to disclose these smilarities and differences was
pursued by the curriculum analys's component of the Third International Mathematics
and Science Study, TIMSS. TIMSS did not address textbook content for particular topics
in school mathematics. It did, however, assemble a vauable collection of documents that
dlow in-depth studies of how topics are organized in the mathematics curricula of some
48 countries.

The present sudy was designed to answer the following research questions:
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1. What conceptions of function are suggested by the seventh- and eighth-grade
meathematics textbooks of selected countries participating in TIMSS?

2. What patterns of conceptions are present in textbooks from different
countries?

3. What isthe relation between the conceptions suggested by the textbooks of a
country and its students performance on items related to functions on the
TIMSStest for the seventhr and eighth-grade students?

From the TIMSS curriculum database, | selected 35 textbooks for seventh grade
or higher that were written in English, French, German, Portuguese, or Spanish and that
had specific sections devoted to functions. Balacheff’s (in press) definition of conception
(aquadruplet congisting of problems, P, operations, O, and representations, R, needed to
solve those problems, and controls, S, required to legitimate the solution and to determine
that it is correct) and Biehler's (in press) characterization of the prototypica uses of
function were used to congtruct a system for coding exercises in the sections on functions
in the textbooks.

The development of the coding system was a four-step process. | wanted to
characterize the dements that define a conception as it would be dicited by students who
solved dl the problems—or tasks—on functions in each textbook. In the first step, |
solved one task in the first section of each textbook according to the process suggested by
the book, and | wrote a narrative answering four questions (What use is given to function
in the task? What does the student need to do to solve the problem? What representations
are necessary to solve the problem? How does the student know that he or she has an
answer and that it is correct?). The narratives were used to formulate an initid set of
codes for the quadruplet of prototypical uses, P; operations, O; representations, R; and
controls, C. In the second step, | gpplied these codesto all tasksin thefirst sectionsin
each textbook. The purpose was to find new categories and refine the characterization of
the existing ones. The coding of 518 tasks resulted in a set of 133 categories, which, in
the third step, were reorganized to obtain a more managegble set. In the fourth step, the
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system of 9 codes for uses of function, 31 for operations, 8 for representations, and 8 for
controls was given to seven people from three countries (Colombia, Denmark, and the
United States) who used it to code up to three tasks. As aresult, improved
characterizations were produced, and new codes were added. The revised system was
tested with in-depth interviews with three people who used the system and provided
feedback about it. The find coding system consisted of 10 codes for uses of function, 36
for operations, 9 for representations, and 9 for controls. | gpplied the coding procedure to
each task in every section on functions in the sdlected textbooks. In all, 2304 tasks were
coded. Each task received one code for use of function and a combination of codes for
each of the other three elements of the conception.

In the data analysis the categories for each eement of a conception were grouped
to facilitate the andyss. The grouping characterized the combinations of codes assgned
to operations, representations, and controls.

The frequencies of observed quadruplets were tested tatistically with the
Configural Frequency Andysis program (von Eye, 2000) to identify those quadruplets
that were more frequent (types) and less frequent (antitypes) than would be expected by
chance. The dasgfication of types and antitypes by use of function resulted in
conceptions that the tasks in seventh and eighth- grade textbooks could potentialy enact
in astudent, which addressed Question 1. To address Question 2, | used the classfication
of conceptions in atextbook together with the uses of function in that textbook to identify
common patterns. To address Question 3, | located ten items from the TIMSS
achievement test for seventh and eighth graders and compared students achievement in
countries whose textbooks had tasks enacting the same conceptions as the items with

sudents achievement in the countries whose textbooks did not have such tasks.

The Conceptions of Function

Five conceptions are promoted by the tasks of the textbooks andyzed: symbolic
rule, ordered pair, socia data, physica phenomena, and controlling image.
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Symbalic Rule

The most common conception of function across textbooks was the symbolic-
rule, which was enacted by 20% of the tasks. It presents functions asrules. It requires the
students either to manipulate the function with a symbolic representation or to gppreciate
some aspect of the function using symbolic and other representations. It relies on the
solution process to legitimate the solution and to verify its correctness. Tasks enacting a
symbolic-rule conception seem to fulfill afamiliarization purpose, serving asalink
between the arithmetic of previous grades and the algebra of secondary school. Thus
what they ask from the students tends not to be very demanding. The correspondence that
defines the function is never counterintuitive, because the rule gives it astructure. The
sudent is never confronted with the problem of determining whether a given symbolic
expression is a function because the rule guarantees that it is. If the task makes use of the
verticd lineted, thereisinvariably an dternative representation (e.g., agraph or an
arrow diagram). Tasks enacting this conception do not address the issue of continuity.
Most of the expressions used are linear polynomiass, but some are quadratic and cubic.

Theissue of discontinuous functionsis never a gake.

Ordered Pair

The next most frequent conception in the textbooks, enacted in 14% of the tasks,
was the ordered pair. Tasks enacting this conception use function as a set of ordered pairs
and vary the most widely across the other three dimensions of the conception. This
variety shows the power of the set theoretical definition of function: representations can
be symbalic (a set), arrow or number line diagrams, graphical, or verba; the student can
be asked to manipulate, appreciate, or calculate; the student can legitimate a solution
through the solution process, clues given by the didactical contract (Brousseau, 1997), or
the content at stake. The raison d' éire of these tasks is to determine whether or not a
relaion is afunction. Nonsymbolic representations are invariably used to address that
issue. The tasks address both mathematical and nonmathematica Stuations (see Table C1



in Appendix C), and the correspondences illugtrate arbitrary or counterintuitive

assgnments that are not present in the other conceptions.

Socia Data

The tasks enacting a socid-data conception, 7% of the tasks, use functions as
constructed relations (dependence relations that apply to red-life Stuations that are not
causd or time related) or as data- reduction reaions (those involving Setigticd data). The
tasks require the student to gppreciate the relation only or in combination with a
manipulation. They do not necessarily require symbolic representations, and the controls
are based either on the content of the task or on the process of solution and the didactical
contract. The use of contexts related to the student’ s world satisfies amotivationa
purpose and at the same time provides an interpretation of an arbitrary correspondence
between sets as a bi- directiond dependence relation. Such tasks can be seen as helping
the student toward formdizing the arbitrariness of the correspondence. The context also
hel ps the student to legitimate a solution because the answers obtained must make sense
within the particular context.

Physicd Dependence
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The 4% of the tasks enacting a physica-dependence conception used function asa

time or a cause-and-effect rdaion. The task might require manipulations only,
manipulations, appreciations, or calculations, or none of these operations. It does not use
symbalic representations. The controls are based ether on the content in combination
with other types of control or on the process only.

An interesting feature of these tasksis the absence of symbalic representations.
The tasks address content that technicaly belongs to physics and not to mathemetics.
Perhaps to make these physica Stuations more manageable for students and teachers,
textbook authors downplay aforma trestment in favor of showing how therelation
works. For that purpose, tables, graphs, and diagrams play a dominant role. In this



conception, the relation defining a function is unidirectiona (because the use of function

can be cause-and-effect dependence or atime dependence).

Contralling Image

The use of function in the 3% of tasks having a controlling-image conception is
geometrical, graph, or pattern. The operations may be of any type except that they are
never just manipulations or gppreciations aone. The representations are dmost
exclusvely nonsymbolic, and al types of controls may be present. The tasks enacting

this conception seem to require amore set of operations from the student and to use the

symbols as |abels rather than to represent variables. In these tasks, the context provided is

mathematical expressed through a geometric figure, agraph, or a pattern (figurd or
numericd). The context plays a conditutive role for the task and helps to legitimate the

ol ution Processes.

The Function of Conceptions

The five conceptions accounted for 48% of the tasks in the textbooks. The
conceptions require various actions, representations, and controls from students, which
suggests that the practices associated with each conception are different, which in turn
explanswhy these different conceptions can coexist smultaneoudy without being
contradictory. The symbolic-rule conception is the only onein which symbolic
representations are dominant and in which the tasks proposed do not alow questions

about the necessity for ardation to be afunction or about the possibly pathological

nature of the assgnment. The other conceptions involve more representations, and except

for the ordered pair, the relaion is never counterintuitive. Context plays an important role

for those controls based on the content (e.g., by using severd representations) and the
didactica contract (by establishing the plausibility of a solution). Context isdso
associated with the use of nonsymbolic representations.

The use of a context in tasks on function raises an important issue. It is helpful to

provide a context so that students can relate to their experience the mathemeatics to be
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learned. However, the presence of a context determines a particular conception of
function, one in which the correspondence is not counterintuitive, symbols are tokens,

and the controls not based on the procedures of solution are shaped by the context. The
use of a context may act as an obstacle for sudents in making the trangtion to amore
sophisticated conception of function just asit did for mathematicians when Dirichlet
proposed the idea of an arbitrary assgnment (see p. 16). The obstacle might arise not
only for students but also for teachers (who might prefer to use a graph of areation to
determine whether it is afunction; Norman, 1992) and for prospective teachers (who may
not believe that the correspondence should be arbitrary or that the domain and range may
not be sets of numbers).

The symboalic-rule conception was present in the most textbooks (71%,) and the
physical- phenomena and contralling-image conceptions in the fewest. This difference
could be due to textbooks authors' interest in including topics such as probability and
gatistics, which would require the dimination of other topics. The most likely topicsto
be diminated appeared to be those for which the teachers might fed less prepared: the
new math topics introduced in the 1960s and those topics that cross subjects (such as
physics or biology), both of which would require stronger preparation. The preparation of
teachersis an important issue because countries need to satisfy the increasing demand for
more prepared teachers as the years of compulsory education increase and the ratio of
pupils to teachers decreases.

If the symbalic-rule conception is the most common one that seventh and eighth
graders encounter in their textbooks, it is not surprising thet they believe that the
correpondence defining a function should be systematic; that the function must have an
agebraic expresson, formula or equation; and that a function is a manipulation carried
out on the independent variable in order to obtain the dependent variable (Vinner, 1983).
Nor it is surprising that experienced teachers think that functiond Stuationsinvolve only
numerica variables and have difficulty envisoning physcd Stuations thet entail
functiona relationships (Norman, 1992), or that prospective teachers view functions



mainly as equations and tend to use the ideaof a machine or black box to illugtrate a
transformation process (Even, 1989). Rather than showing a defect in students,
teachers', and prospective teachers understanding of functions, these results suggest why
those views arise in the firgt place. It is not a problem of inadequate definition of
function—the participants in these other studies were taught Dirichlet’s definition of
function—Dbut rather an indication of how that definition had been made operationa for
them. Also if dl these conceptions coexig, it islikey that they will emerge when the
gppropriate stuation enacts them, which may account for the gpparently contradictory
and compartmentalized images and definitions that students, teachers, and prospective
teachers exhibit in research studies. Of course, the symbolic-rule conception, then, may
act as an obgtacle to a conception that would admit arbitrary assgnments or arbitrary sets
(ones that are not necessarily numerical), multiple representations, or controls not based
on procedures only. It is apparent that at these grades such properties of function are not
relevant.

Limited asthey are, these conceptions may play an important role in making
function ble to students. They may help students congtruct a more flexible
conception of function. As Sierpinska (1992) notes, the absence of obstaclesimplies that
learning does not occur. One problem with the ordered-pair conception may be that
because it is S0 trangparent, comprehensive, and generd, the student may not distinguish
which features of a function are relevant to know and when those features can be used.
When the correspondence between the argument of afunction and itsvaueis
counterintuitive, the student might not be able to interpret the relation. At least with the
other conceptions the student knows what to do and what to expect. Because these
conceptions are more congtrained, they may offer the student a more secure ground for
learning. In particular with arule to use or a context in which operate, the student can

explore what afunction isin avariety of ways.
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Patterns of Conceptions Within and Across Countries

| established four clusters of textbooks that captured the patterns to be seenwithin
and across countries: rule oriented, abstract oriented, abstract oriented with gpplications,
and agpplications oriented. In the rule-oriented textbooks, more than 50% of the tasksin
each textbook enacted a symbolic-rule conception of function or at least used function as
arule. In the abstract-oriented cluster, more than 78% of the tasks within each textbook
elicited an ordered-pair or a symbolic-rule conception of function. The abstract-oriented-
with-gpplications cluster contained about half of the textbooks, and beside the symbolic-
rule conception, their tasks dicited at least one of the contextua conceptions and in some
cases an ordered-pair conception. The textbooks in the applications-oriented cluster did
not have tasks that eicited the symbadlic-rule or ordered-pair conception. It appears that
textbook authors think it desirable for students to be exposed to tasks that dicit different
conceptions of function. On the one hand, some or al of these conceptions may present
obstacles to the development of amore flexible conception on the part of the students. On
the other hand, multiple views—even conflicting ones—should be welcomeiif they can
be used as springboards toward more flexibility.

The purpose of the research question on patterns was to disclose curricular
influences across countries. One conjecture was that textbooks from former colonies of
Spain might be similar in their gpproaches to function to those of the textbook from Spain
and amilarly that the gpproaches in textbooks from former colonies of England might be
smilar to those from England. Neither of these conjectures was supported by the data.
The four clustersin which the textbooks were organized contained textbooks from
different regions, moreover, in saverd cases textbooks from the same country werein
separate clugters. Thisfinding indicates that when it comes to functions, there may be no
such thing as a canonicd curriculum in school mathematics. It seemsto be fdse—and
thisresult is aso supported by the TIMSS curricuum andyss—that mathematicd
content is expressed in the same way across the globe. The TIMSS andysis found that the
only commonly intended and emphasized topic in the eighth- grade textbooks from 42
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countries was that of equations-related algebra (Schmidt et al., 1997, p. 115). The
emphases were different across countries, with Spain devoting more than 35% of the
textbook blocks to the topic, and South Africa devoting about 1% of the textbook blocks
(p. 117, Figure 7.3). | found the same sort of differencesa amicro leve, when andyzing
aparticular topic. The absence of acanonical curriculum raises the obvious question of
the pertinence of international comparisons based on achievement testing. It has become
increasingly clear that any comparison of achievement destines many countriesto a
falure. It ssemsimpossible to build atest that will reved what students know about
meathematics while accounting for curriculum differencesin arationd way (Keitel, 2000;
Keitd & Kilpatrick, 1998). If students in one country are exposed to certain set of
conceptions, and students of another country to another set, how can atest be built to
show what both groups of students know, and not what both do not know, which is what
isactudly happening?

The falureto find a clear-cut pattern organizing the textbooks of these countries
leads to the question of why thislack of pattern occurs. In the countries in which thereis
anaiond curriculum but a decentrdized decision about textbook use (e.g., Colombia), it
is possible to produce textbooks that are essentidly different. Tracking may be one
reason that textbooks within a country are different (e.g., Switzerland), but it may be that
other undisclosed factors are operating (textbooks from the United States do not all
belong to the same clugter, even when they arein the same series, and there are no
tracking practicesin Colombia). Thus, the issue seems to be more than just the smilarity
between the textbooks; other factors are determining what isin the textbooks and in turn
what sudents can learn from them. The issue of within-country variability is certainly
one that deserves attention, especialy for the United States, which may be considered as
acollection of 50 countries (as an asde, the number of textbooks and documents that the
US provided for the TIMSS analysis is comparable to the number of documents provided
by the other 47 countries). A more detailed andyss, either in the United States or in other
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countriesin which the variability is present might help identify those factors influencing
variability by specifying different expressons of those factorsin different countries.

Conceptions and Performance

| faced many difficulties in addressing the nature of the relaion between
conceptions suggested in textbooks and students' achievement in the TIMSS test. In the
first place, the itemsthat | selected from the test, as a group, enacted a set of conceptions
shared by few tasks from these textbooks. The figurd and physica uses were
overrepresented, and the rule and socia uses were underrepresented. The use of function
asa st of ordered pairs was not present on the test. No item used only the symbolic
representation; in fact, only two items used it in combination with other representations.
The digtribution of operations and controls, in contrast, resembled that of the tasks in the
textbooks. Thus, the test items did not seem to be testing the same conceptions of
function that were enacted by the tasks in the textbooks from the participating countries.
In the second place, for countries with more than one textbook, it was not possible to
trace which students used which book, and for the countriesin which only one textbook
was used—Austria, Hong Kong, Singapore, and Spain—there was no indication that
potential exposure to textbook tasks enacting the same conceptions as those enacted by
theitemsled to better performance. There were items in which the students from these
countries outperformed, performed about the same as, or performed worse than the
students from the other countries. In the third place, the students' exposure to any
particular conception was aways potentia. There was no guarantee that the students,
even in countries having only one textbook, would work al the tasks or thet the
conception enacted would be exactly that promoted by the tasks. Teachers, peers, the
knowledge & stake, and even the culture of school and society play arolein shaping
those conceptions.

Any subsequent study that would carefully consider the advantages of being
exposed to one conception or another should begin by establishing the conditionsin



which each conception is made available to students so as to determine whether or not the
Stuations are comparable. Simply borrowing atextbook used by studentsin countries
labeled “high achieving” in TIMSS is disrespectful both to the donor system and to the
recipient system. Such atextbook “implant” fails to take into consderation the particular
histories, traditions, societd, cultura, or other powerful reasons that affect each country’s
educationd system. For example, after the U.S. Secretary of Education, Richard Riley,
visited Singapore, whose seventh and eighth graders did very well on the TIMSS
achievement test, newspaper accounts indicated that some schoolsin severd U.S. states
had adopted Singapore mathematics textbooks (Dizon, 2000; Quek, 2000). Studentsin
the country of Brune follow a mathematics curriculum amost identica to thet of
Singapore, and many Brunelan secondary students tend to use mathematics textbooks
written and published in Singapore. Because these same students do not perform nearly
aswdl| as Singaporean students on the O-level and A-leve examinations set by the
Cambridge Examination Board, it seems clear that textbooks aone do not account for the
superior performance of Singaporean students (M. A. Clements, persond

communication, May 4, 2000).

There are no smple remedies for the difficulties many students have on tests of
mathematics achievement, but researchers may not have been asking the right questions
ether. Students from some countries perform consstently better on international tests,
and students from other countries perform consistently worse. It has been suggested that
the potentid exposure to textbooks with certain characteristics may have benefits for
sudents achievement from particular countries (e.g., for Asian countries, see Li, 2000).
Isthat the case for dl the countries whose textbooks share those certain characteristics?
In the present study, | found that it is not the case, at least for the specific topic of
functions. It has been suggested, instead, that extra-curricular practices may have a
greater impact on student achievement on tests than the textbook does. Besides private
lessons taken by Singaporean students, their school system is very sdective because it
“exports low-achievers and only imports high-achievers’ (Keitel, 2000, p. 18). In Japan
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about 70% of the lower secondary students attend the Juku, an after-school program
where “besides working on math drills and other exercises, sudents [learn] to solve
problems and take practice exams when admission tests approach” (Japan Information
Network, 1998). This activity may have a strong influence on student performance.

| hinted in this report that conclusions about achievement based on sngle
curricular eements are problematic. The data that are available from internationa studies
alow oneto build cases supporting contradictory resuts. The claim that the U.S.
textbooks are substantidly different from the textbooks from other countries seemsto be
based on globd characteristics of the textbooks rather than on how the textbooks
introduce and develop particular topics. The tasks in the U.S. textbooks in this sample
promoted conceptions of function smilar to those of the tasksin 11 textbooks from other
countries (see Table 11, p. 95), and no clear pattern of achievement can be derived from

them.

Other Reaults

| found that relatively few dStuations were used in these textbooks to ded with
functions in the physical world; that textbooks may be only work booklets or may present
extended explanations after the problem sections; and that most textbooks use pictures or
photographs to enhance their presentation. These results suggest that there is much
variability across textbooks with respect to how the information is presented, but that
such variation is very limited when attending to what knowledge is presented. Analyses
of superficia aspects of textbooks have suggested that there are important differences
across countries. Analyses of what the particular content is éliciting, however, show that
there are no big differences, which leads me to conjecture that an analysis of thetitles of
the sections of chapters devoted to a particular topic (Li, 1999) can aso be mideading. It
isonly through amicroscopic andyssthat actud differences or amilarities can be
uncovered. Thereisagreat need to move beyond the superficia anayss of textbooks

toward more content- centered analyss.
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Methodologica Observations

The framework for identifying conceptions present in textbooks that | developed
for the present study reveaed that some textbooks had tasks that enact a variety of
conceptions of function that might be smultaneoudy available for sudents. The process
of developing the coding system and coding the tasks put me in contact with the many
different ways of presenting mathematical idess to students, idess that were captured by
the framework because | solved the tasks after a conscientious reading of the textbooks.

In this study, | did not define in advance the categories of the constructs used to
analyze the textbooks; rather, | built their meaning from what the textbooks contained.
By building up the categories and their meaning from the textbook content, | could reved
particular features that might otherwise be overlooked when imposing a predefined set of
caegories. Difficulties arise when the textbooks are booklets or workbooks. In these
cases, the authors' intentions have to be extrapolated from the tasks or from
accompanying documents. Fortunately, the TIMSS database has supporting documents
that alows one to trace those intentions.

It isuseful to have the authors' intentions documented, but when faced with
solving atask on functions, it is one's own conception of function that takes precedence
and that is reflected in the solution of the task (N. Balacheff, personal communication,
December 12, 1999). To overcome this difficulty, it is critica to produce as many
dternative solutions as possible, and then with the textbook in hand, estimate the
plausibility of those approaches. Textbooks eventually privilege certain gpproaches over
others (as do teachers, and eventually students).

| aimed at category exhaustion, and for that reason | also looked at textbooks for
grades 9, 10, and 12. It turned out that some operations—not many—in textbooks for
these grades were not present in the seventh- and eighth grade textbooks. | suspect that
had | begun with alarger sample of textbooks from the higher grades, | might well have
found a somewhat different set of categories. Thus, the framework developed for the
present study is based onwhat the textbooks in the sample offered the students at Grades



7 and 8. An gpplication of the framework to a different group of textbooks would likely
yidd adifferent set of uses, operations, representations, and controls.

The framework is very powerful because, as| defined it, a conception requires a
particular configuration of four eements. It may have been too powerful for the deta
available in the present study. Such a peciaized tool makesit difficult to detect patterns
when the sample is smdl (DuMouchel, 1999, von Eye, 2000). In other words, the
quadruplet may have restricted the possibility of finding patterns. It might prove
interesting to study the patterns that occur with pairs or triples of the dements. Thus, for
example, an andyds of the combinations of uses and representations might illustrate the
extent to which uses of function as rules require other types of representations, and an
andysis of operations versus controls might illustrate the groups of operations associated
with a particular type of control.

The formulation and shaping of the categories of controls was an especidly
difficult step in developing the framework. The reason is that textbooks rarely provide
clues asto why topics are treated the way they are treated, or why one procedure is more
effective than another. Very few textbooks provide explicit indications for the sudentsto
control their activities (e.g., U. S. textbooks) or problems that are solved in more than one
way (e.g., Mexicol), or recommendations as to what the answers should look like (e.g.
the English textbooks). Thus the metacognitive strategies associated with controls are
difficult to discern from the tasks in textbooks. It may be that these Strategies are
typicdly |eft for the teacher to illudtrate.

An issue related to the coding process has to do with the sdlection of thetask asa
unit of andlysis. By making that choice, | was able to perceive the specific characterigtics
of the conception for atask. | could not, however, account for what a given group of tasks
together might accomplish. An andysis of task sequences would require an gpproach
amilar, for example, to that used by Stigler et d. (1986), who counted the changesin
complexity across groups of ten consecutive arithmetic problemsin U.S. and Soviet

textbooks. It might have been that by coding task by task, | lost Sght of phenomena such
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as controls that depend on how the tasks were linked. Certainly the flow of the set of
problems was lost by the approach | took.

Regarding the rdiability of thefina coding system | developed, because my
principa god was to make Balacheff’ s framework operationd, | amed at getting the
broadest possible coverage; | wanted to obtain a comprehensive framework. When |
decided to explain the coding procedure to other people to see whether they could
reliably useit, | began to redize how important it was to be explicit about the meaning of
the categories. | wanted the framework to be usable by other people, people who might
not even be geographicaly cose. | found that the coding was feasible and at the same
time that repeated gpplications and uses by more people would clearly resultin an
improved framework, one that would account not only for the most sdlient features of the
elements but aso for the most important festures. 1t would be interesting to test the
applicability of the framework to a different set of textbooks. What new uses might
appear? What new operations, representations, and controls might there be? Does this
framework redly give a comprehendgve picture of what is asked about functionsin
seventh and eighth- grade mathemati cs textbooks around the world?

| used both quditative and quantitative methods to organize and andyze the data
collected. Qualitative methods helped in the development of the categories for the coding
system (through constant comparison) and quantitative methods alowed me to test that
the patterns | observed were not due merdly to chance (with the Configurd Analyss
Program). Thiswork illustrates a successful combination of two apparently different
orientations in research methods that hel ped to explore and andyze textbook
mathematical content and that may eventudly help to predict their impact on classroom
processes. Thework aso illudtrates the potentia of working with large data sets and the
feaghility of such enterprise.

The categories developed needed to be reorganized in order to facilitate the
analyss. Because of the nature of the coding system, the regrouping made in this
particular sudy highlighted some aspects of the data but at the same time hid others. It is
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important, though, that the coding was dready done so that other reorganizations and
anadyses (e.g., the different operations) could be carried out that would show other
interesting patterns in these data.

Implications of the Study

By conducting this study | wanted to explore the possibility of smultaneoudy
analyzing textbooks both as * environments for construction of knowledge” and as pieces
of technology insde educationd systems (Herbst, 1995, p. 3). One product of this study,
the coding system, together with the anadlysis of the configurations (of conceptions of
function) present in textbook tasks, amed at performing the firgt type of anadyss. The
comparison across different educational systems outlined possible paths for the second
type of andysis. In the following sections | aborate on severa dternatives that could
make use of Smilar andyses, consdering the implications of the study for research, for
international comparisons, for textbook authoring, for curriculum development, and for
teaching.

Implications for Research

The framework developed in the present study provides a powerful tool that
alows researchers to study severd aspects related to the teaching and learning of
functionsin particular and mathematicsin generd. As shown in the study, the framework
contributes to the study of the relationship between the four components that define a
conception. This characterigtic of the definition, which condtitutes its strength, requires a
large number of casesto obtain Satidicaly significant results. In this study, | addressed
the issue by pooling the tasks from dl the textbooks. One possibility would have been to
drop one of the components. Being aware of the need to consider the four components
smultaneoudy, however, is an important requirement in developing a better
understanding of how the interrel ationships of these aspects are manifested.
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Quantitative empirica research in mathematics education is less common
nowadays than in the pag, in part because of the technica difficultiesinvolved in
collecting, organizing, and andyzing the complex information inherent in the phenomena
andyzed. In their attempts to smplify the enterprise, researcherstend to sacrifice in
depth anayses and look for superficia characteristics. The development of more
powerful tools—faster and larger computers, advancements in software development for
data organi zation, and techniques associated with data mining (e.g, CFA)—offer the
possibility to dedl with complex interrdaions, which would in turn hep in the building
of stronger theoretica frameworks to nurture the development of mathematics education
as astientific discipline. The assumption that phenomena associated with teaching and
learning mathematics are such that they cannot stand rigorous statigtica analyses or that
they are not suitable for prediction might be acting asavicious circle: Because we
believe that we should not andyze the phenomena with these techniques, then we do not
use them or use them superficidly; consequently, we do not test their potentid, or we get
superficid andysesthat assure us that the gpproaches should not have been used in the
firgt place. That vicious circle needs to be broken.

Follow-up research derived from this study might take any of severd paths. Much
discussion and investigation are needed of how these conceptions interrelate, in other
words, how students live with them, and how the conceptions evolve towards more
flexibility. Immediate questions are how to trace the presence of these conceptions. What
should the problems look like so that important aspects of function are at stake? What
combinations of operations, representations, and controls should be available to the
students, so that they can effectively put those aspects into action? In other words, it is
the problem of how to pose a question for which function isthe solution, a problem
envisoned by Baacheff (in press).

Because little information is available as to how teachers use textbooks in their
teaching, and in particular for teaching functions, the framework can provide atool

researchers could use to study how teachers treat textbook content as suggested by
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Stodolsky (1989). For example, when teachers go over homework based on textbook
exercises, do they propose different uses of functions? Do they use multiple
representations? Do they make explicit the operations involved? Do they model
metacognitive activities for the sudents, illustrating how to legitimate the solution

process or verify that a solution is correct? And how are these eements combined? There
may be interesting contrasts between what is in the textbooks and teachers' actions and
decisons with respect to how exercises are solved.

The Principles and Standards of School Mathematics (NCTM, 2000) offers new
dternatives to the teaching of key areas of school mathematics, whose implicationsin
terms of students' conceptions have yet to be explored. One exampleis, How isthe
trangtion made in the document from contextua conceptions of function towards abstract
ones? What obstacles are associated with particular conceptions of function and what acts
of understanding (Sierpinska, 1992) are offered to overcome them? Answersto these
questions would give us an honest perspective on the significance of these gpproaches
that would ease the trangtions to projects based on these documents.

The enterprise of refining and enlarging the framework by andyzing a different
set of textbooks will tell what conceptions are potentidly available, shaping our
knowledge about functions. A possible study would code textbooks from different time
periods. Changes in the digtribution of the categories could provide valuable information
about the evolution of the potential conceptions in school mathematics. A further
investigation that anayzed the data for the upper grades might reved new conceptions
that appear or old ones that disgppear as students advance in school mathematics. Such
studies would help in building a more robust framework that at the same time would
enlarge our pedagogica subject matter knowledge (Shulman, 1986) about functions.

The method that | followed could be used to detect conceptions of other key
concepts of school mathematics (e.g., multiplication or areain the e ementary grades, or
probability in secondary school mathemeatics) promoted in textbooks as away to
exemplify the domains of vaidity of those concepts. These conceptions could be traced a



students advance through the school years. The method could aso be used to study how
exposure to functiona thinking in earlier grades could provide a foundation for students
understanding of functions when forma definitions are presented.

It would be interesting to study whether teachers tend to privilege a particular
conception of function and the reasons for that preference. It could be that textbooks they
have used as students have played an important role, but dso it could be that their own
experience as teachers has determined their selection of a particular conception. An
interesting avenue would be to explore whether teachers are aware of dl these different,
gpparently competing, conceptions, or whether there are others that emerge when they
solve particular sets of problems. Such analyses would have an impact on thewaysin
which functions are taught in methods courses for teachers because their results would
help teachers evaluate their content knowledge about functions.

Thissudy aso illudrates thet it is possible to conduct external and interna
critiques of textbooks (Herbst, 1995). My andlysis looked at functions as presented in
textbooks—an internd andyss—but it also amed at explaining the reasons that some of
the differences exised—an externd andyss—as textbooks play an important role in the
schooling system. This study, however, showed that characteristics of textbooks aone do
not account for the differences observed, which implies that a future sudy should
consder the collection of other complementary information about issues such as textbook
production in each particular system, authors statements about the textbooks, or actual
textbook use by students and teachers.

Findly, ance the timein which the TIMSS curriculum materids were collected a
number of new projects (some of them influenced by the NCTM Sandards, others
relying on technology) have appeared, not only in the United States, but in other
countriesaswell. | conjecture that a smilar analysis with more recent textbooks that have
organized the middle-school mathematics curriculum around functions (eg., Demarais,

McGowen, & Whitkanack, 1997; Gomez et d., 1996; Lappan, Fey, Fitzgerad, Frid, &
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Phillips, 1998; Y erushdmi, 1997) would show adifferent set of potential conceptions as

aresult of the evolution in how problems abut functions are posed in these projects.

Implications for Internationad Comparisons

Information on how other countries' textbooks trest functionsis valuable for
understanding the complexity of ways of gpproaching functions used in the United States.
For example, in other countries, physica Stuations are more often emphasized; an
inquiry into the reasons for promoting that emphasis might prove useful for understand
why we use the tasks and approaches we do.

Ketd (2000) warns us about the perils of globalization asit

corresponds with ideologica shifts to neo-liberalism, economic rationdism,

where educators are replaced by business people, and education becomes object

of aderegulated training market whereiit is just treated as tradable good with an

exchange vaue. (p. 3)

If globdization of economiesis an imperative, then it is mandatory for the United States
to set an example by being knowledgesable not only about its competitors advancements
but also about those of other countries that contribute to the world economy. That might
help to provoke a shift towards inter nationalization, which “keepsitsinvitationa
characterigtics and dlows to maintain the autonomy of al partners” Asdiversity
increases, understanding other peopl€ s cultures is a necessary condition for avoiding
judgments based on decontextualized aspects of school mathematics (e.g., test
achievement or a curriculum “that is a mile wide and an inch degp”).

Many lessons can be drawn by looking at countries that have different conditions
from those in the United States or its competitors because such andyses highlight hidden
assumptions that may be taken for granted by the dominant countries (e.g., thet after-
school time is spent in the same ways by dl school children). As| was carrying out the
test of the coding system, | took the opportunity to conduct the test with researchers with
different backgrounds and learned how such an interchange could contribute to disclosing

their own assumptions about school mathematics. Although language can be a stronger



barrier than distance, it is up to us as community committed to learning to overcome

language barriers.

Implications for Curriculum Deve opment

An informed decison about which conceptions should be promoted must guide
the design of any curriculum project that uses functions as an organizing concept. As new
projects emerge, it is fundamenta to establish their potentia in terms of what can be
learned. The framework that | developed helps in establishing those potentia conceptions
apriori, 0 that developers might foresee and predict difficulties that they could address
before making a big investment in textbook production and during the process of

dissamination of ther textbooks.

Implications for Textbook Authoring

As severd other studies have demondirated, thereis more to learning a
mathematica concept than Smply remembering the “bare bones’ definition of the
concept. How the definition is made operational as reflected in the exercises thet students
solve can shape sudents conceptions of function in Sgnificant ways. Thus textbook
authors should be aware not only of how the elements of a conception play out in their
exposition but also of how they are enacted in the exercises proposed. The scarcity of
controls available to the students is probably one of the most pressing problemsto
address. Questions such as the following should be presented, illustrated, and reinforced
in textbooks: Did | solve the problem that | had at the beginning? Could | think of a
different way to solve this problem? How can | be sure that there are not other solutions
or answers? Although teachers might present these questions themselves, if textbooks are
to be used as areference, they should contain them too. Students who for various reasons
cannot attend a regular lesson should have aso the opportunity to encounter these

questions.
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Implications for Teaching

Teachers could benefit from adopting a framework such as the one developed in
this sudy to andyze textbook content. Nowadays teachers have a proactive role in the
decisgons concerning textbook use, and in consegquence atool that would help them to
disclose what different textbooks are offering to them and to their students in terms of
conceptions would be very useful. The use of the framework would alow them to make
better decisions regarding textbook adoption.

In the classroom, the framework would be hel pful before, during, and after
teachers teach alesson or group of lessons on functions. The framework may help
teachers design tasks that would dlicit particular conceptions about functionsin their
students. Also, knowing that some conceptions are inevitable and desirable obstacles for
promoting learning about functions might help them to organize their teaching sequences
accordingly.

While teaching functions, teachers might use the framework to probe and guide
sudents' thinking about functions. It would be possible to, for example, ask whether
more operations or representations could be used and why, or whether the answers
obtained are legitimate or not.

Particular problems could be used to assess students' conceptions of function
(Have they changed? Are there new conceptions?) and to eval uate teacher’ s organization
of the activities they use to teach functions.

Coda

Bdacheff’s (in press) and Biehler’'s (in press) theoretica developments have been
proposed for studying peopl€ s cognitive activities, in particular, the meaning that
students and teachers give to mathematics concepts in relation to the practice of teaching
and learning mathematics. | borrowed these devel opments to study an apparently static
element of the curriculum, the textbook. Even though this gpplication might seem
ingppropriate, asit is difficult to envison the actua cognitive activities that a textbook by
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itself could promote, the process of making those definitions operationd illustrates their
potentia for systematic gpplication. | believe that soon mathematics educators will begin
systematicdly corroborating the many theoretica and not- so-theoretica developments
that the discipline is producing today. That corroboration will build and sustain our
knowledge about the complex phenomenon of teaching and learning mathematics.
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APPENDIX A

TEXTBOOKSUSED IN THE STUDY

Beow isalig of the 35 textbooks that were used in the study classified by country and

the grade for which they were intended. WWhen more than one textbook for a country was
used, they are listed dphabetically by author.

Country Grade Textbook

Argentinal 8  Sadovsky, P., Melguizo, M. P., & Wadman, C. (1989). Matematicas 2.
Buenos Aires: Santillana.

Australial 8 Lynch, B. J, Par, R. E., & Keating, H. M. (1980/1988). Maths 8.
Melbourne: Longman Cheshire.

Australia2 9 Lynch, B. J, Par, R. E.,, & Keating, H. M. (1979/1991). Maths 9.
Melbourne: Longman Cheshire.

Australia3 7 Lynch,B. J, Par, R. E.,, & Keating, H. M. (1981/1991). Maths 7.
Melbourne: Longman Cheshire.

Austrial 8  Albrecht, R., Gutschi, H. P., Langgner, D., & Wiltsche, H. (1991).
Lebendige Mathematik, Band 4. Vienna: Hoelder-Pichler-
Tempsky.

Canadal 8 Conndy, R. D., Lesage, J., Martin, J. D., O'Shea, T., Charp, J. N. C,,
Bedttie, R. H., Bilous, F., Bober, W. C., Drogt, D. R., Hope, J. A.,
Lee R, & Tossl, S. (1988). Journeys in Math 8. Scarborough,
Ontario: Ginn Publishing Canada.

Colombial 8 Londofio, N., Guarin, H., & Bedoya, H. (1993). Dimensi6n matematica
8. Bogot& Norma.

Colombia2 8 Villegas, M. (1991). Matematica 2000. Bogota: Editoria Voluntad.

Englandl 7/8 School Mathematics Project. (1984/1991). Speed 1: Graphs. Cambridge:
Cambridge University Press.

England2 7/8 School Mathematics Project. (1984/1991). Graphs 2: Graphs.
Cambridge: Cambridge University Press.

Hong Kongl 8 Chan,L.K.F, Leung,C.T., & Wise, S. R. (1988/1992). Mathematics
for Hong Kong. Hong Kong: Canotta.

Irelandl 8 Morris, O. D. (1987/1992). Text & Tests, 1. Dublin: Celtic Press.

Ireland2 9  Morris, O. D. (1988/1991). Text & Tests, 2. Dublin: Cdltic Press.

Mexicol 8 Alarcdn, J, Lucio, M. G,, Parra, B. M., Rivaud, J. J., Waldegg, G., &
Rojo, A. (1991/1994). Matematicas 2. Mexico, DF: Fondo de
Cultura Econémica.

New Zealandl 12 Barton, D., Johnson, W., & Laird, S. (1989/1992). Delta Mathematics.
Auckland: Longman Paul.

New Zealand2 12 Barton, D. (1986/1991). Sgma Mathematics. Auckland: Longman Paul.

Portugal 1 8 FereiraNeves, M. A., & Carvalho-Brito, M. L. (1992). Matematica 8.

Lisbon; Porto Editora
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Country Grade Textbook

Scotlandl 11 Howat, R. D., Mullan, E. C. K., Nisbet, K., & Brown, D. (1989/1992).
Mathematics in action 5S. Glasgow: Thomas Nelson and Sons.

Scotland?2 10 Howat, R. D., Mullan, E. C. K., Nisbet, K., & Brown, D. (1988/1990).
Mathematics in action 4A. Mussaburgh: Blackie-Chambers.

Singaporel 8 Seng, T., Keong, L. Yeg, L. (1987). New Syllabus. Mathematics 2.
Singapore: Shing Lee.

South Africal 10 Laridon, P. E. J. M., Burgess, A. G., Jawurek, A. M., Kitto, A. L., Pike,
M. J., Rhodes-Houghton, R. H., & Rooyen, R. P. v. (1988/1993).
Classroom Mathematics Standard 8. Isando: Lexicon.

South Africa2 7  Laridon, P. E. J. M., Brown, M., Jawurek, A., Kitto, A., Stafford, H.,
Strauss, J,, Strimling, L., & Wilson, H. (1990/1991). Classroom
Mathematics Standard 5. Isando: Lexicon.

South Africa3 9 Laridon, P. E. J. M., Burgess, A. G,, Kitto, A., Pike, M. R., Strauss, J.,
Strimling, L., & Wilson, H. (1986/1993). Classroom Mathematics
Standard 7. Isando: Lexicon.

Spainl 8 Gil,J, Garcia, P., Vazquez, C., & Mascaro, J. (1984). Mateméticas 8.
Madrid: Santillana

Switzerlandl 9  Hohl, W., Egli, B., Mockli, H., & Rick, H. R. (1987/1992). Arithmetik
und Algebra 3. Zurich: Lehrmittelverlag des Kanton Zrich.

Switzerland2 7  Holzher, E., & Ineichen, R. (1972/1986). Arithmetik und Algebra 1.
Zirich: Sabe.

Switzerland3 9 Holzher, E., & Ineichen, R. (1973/1988). Arithmetik und Algebra 3.
(Vol. sekundarschulen and polygimnasien). Zirich: Sabe.

Switzerland4 7  Déler, H., Gebauer, P., & Zinn, J. (1992). Algebra 1. Zirich: Orel
Flsdi.

United Statesl 7 Bolger, L., boyer, C., Hamada, R., Leiva, M., Linduist, M. M.,
Robitaille, D., Swafford, J., van de Walle, J. (1991). Exploring
Mathematics Grade 7. Glenview, IL: Scott Foresman.

United States2 8 Bolger, L., boyer, C., Hamada, R., Leiva, M., Linduist, M. M.,
Robitaille, D., Swafford, J., van de Walle, J. (1991). Exploring
Mathematics Grade 8. Glenview, IL: Scott Foresman.

United States3 7  Fenndl, F., Ferrini-Mundy, J., Ginsburg, H, Murphy, S., Tate, W.
Cavanagh, M., Altieri, M. B., Sammons, K., Long, D., Sherman,
C., & Vogdi, B. (1992). Mathematics 7. Morristown, NJ: Silver,
Burdett & Ginn.

United States4 8 Fenndl, F., Ferrini-Mundy, J., Ginsburg, H, Murphy, S, Tate, W.
Cavanagh, M., Altieri, M. B., Sammons, K., Long, D., Sherman,
C., & Vogdi, B. (1992). Mathematics 7. Morristown, NJ: Silver,
Burdett & Ginn.

United States5 7  Eicholz, R., O'déffer, P., Fleenor,C., Charles, R., Young, S. & Bernett,
C. (1993). Mathematics grade 7. Reading, MA: Addison-Wedey.

United Statesb 8 Eicholz, R., O'déffer, P., Fleenor,C., Charles, R., Young, S. & Bernett,
C. (1993). Mathematics grade 8. Reading, MA: Addison-Wedley.

United States7 9 Brown, R. G., Dolciani, M. P., Sogenfrey, R. H., & Cole, W. L.

(1990/1994). Algebra structure and method, Book 1. Boston:
Houghton Mifflin.




APPENDIX B

ORIGINAL TEXTS OF SELECTED TASKS

This appendix contains the origina texts of tasks cited in the report that |
trandated into English and the complete text of atask from Audtradia cited in the report.
They are ordered by country, within a country by textbook, and within a textbook by the
page from which the task was taken.

Austraial, pp. 255-256, Task 3:

Each of the following set of points represent alinear pattern in the Cartesan
plane. By plotting each set of points and using arule, find the coordinates of the
first two pointsin the pattern.

a {(-3-8),(-2-4),(-1,-2),(0,0), (1, 2)} b. {(-3,3),(-2 2),(-1,1),(0,0), (1, -1)}

c. {(3.9,(26), (-1 3), (00, -3} d. {(-3-15), (2.-10). (-1, -5), (0. 0), (L, 5}
e {(-3-2,(-2-1),(-1,0),(0 1), (1 2} f. {(-3-9),(-2-4), (-1,-3), (0, -2), (1, -1)}
g {(-3-6),(-2-5),(-1,-4),(0,-3), (1, -2)} h. {(-3-1),(-2,0), (-1, 1), (G, 2), (1, 3}

I {('3!4)’ ('2’ 3)! (-l, 2)1 (O! 1)1 (1! 0)} I {('3’ 0)! ('21 '1)1 ('lv '2)! (01 '3)! (1! '4)}
K. {(_31 _7)! (_21 _5)! ('1, _3)1 (01 -1)1 (11 1)} l. {(-3! _n! (-2! _4)! (-1! _1)1 (01 2)! (1! 5)}
m. {(-39),(-27),(-1,9), (0,3, (1 1)} n. {(-38),(-29),(-1,2), (0 -1), (1, -4}

Augtrial, p. 189, Task 999

a Vevollsandige die Wertetabellte (Zuordnungstabelle).

Geschwindigkeit x in kmvh 60 30 ‘ 20 ‘ 15 ‘ 12 ‘ 10 ‘ 5
Fahrzeit y in Stunden fur 1
dieselbe Strecke

b. Sielle die Zuordnung in Fig. 169 graphisch dar!
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h~I\ Fahrzeit y
10—
5_
T T Geschwindigkeit x
I N A B | >
10 =0 in km/h

Fig. 169

Colombial, p. 140, Tasks 5-9.

Enlosgercicios5 a9, representar, en € plano cartesano, larelacion cuyo
conjunto solucion es indicado:

5. R={(Xy)|x, y>0"x,yeR}
6.Q={(x,y) |ly=-x,"xeZ}
7.5={(x,y) |ly=x"xeN}
8.T={(x,0)|xeR}
9.H={(0y) |yeR}

Colombia2, p. 248, Task 4

Representar gréficamente la siguiente funcion:

En cierta ciudad € precio de la carrera de un taxi se cobra de acuerdo con la
dguiente tarifa

Banderazo: $150.00
Costo de recorrido: $5.00 por cada 100 m.

No setiene en cuenta d tiempo de espera.
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Mexicol, p. 195, Task 3. r

¢Hay proporciondidad entre lalongitud de la arista de un cubo y:
a. lasumadelaslongitudes de las arigas?
b. d areatotd delasupeficie dd cubo?
c. € volumendd cubo?

Mexicol, p. 197, Task 5

Ladguiente tabla muestra la distancia de frenado de un vehiculo en suelo seco en
funcion de lavelocidad; por gemplo, un vehiculo que va a 40 kilémetros por hora
necesita 18.6 metros parafrenar. ¢Hay proporciondidad entre lavelocidad y la

distancia de frenado?

Ve ocidad Distancia de frenado

(en knvh) (enm)
40 18.6
50 26.5
60 357
70 46
80 575
20 70.7
110 101
130 135.6

Mexicol, p. 219, Task 1

Dibujalas gréficas de las siguientes funciones en un mismo ssemade ges
coordenados.

Yy=-3X+2,y=2X+2,y=-X+2,y= 2,y=2X+2,y=3x+ 2

Portugall, p. 67, Task 4

Condgdereafuncao h assm definida
h(x)=2x+1

1. Cdeule h (-1), h (0) eh (1)

2. Determine x de modo que h(x) = 11.

Spainl, p. 99, Task 6

Setienen 8 litros de un gas ala presion de 1 atmosfera. Latemperatura se
mantiene congtante y se sabe que en estas condiciones se verifica:

Presién x Volumen = Congtante
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PxV = Congante
Completalatabla

Switzerland2, p. 131, Task 18B

Winkelhthe

Zeichne einen Halbkreis mit den Radius 10 cm. Zeichne verschiedene Winkd x

(0 £ x £ 180°) mit dem Scheitd im Kreismittepunkt und einem Schenkd ds
waagrechten Strahl nach rechts.

Bestimme fUr jeden Winkd x die zugehtrige Hohe y. Zeichne einen moglichst
genauenGraph. Diskutiere den Verlauf der Kurve.

Switzerland3, p. 72, Task 23

Zeichne und beschreibe die Graphen mit den folgenden Funktionsgleichungen.

N

1
al)y:bxﬂ X£0
f2x+1 x>0

+2 Xx£-1
-1£x<1

dy=f 1 x=0
12-x x>0



APPENDIX C

CODING PROCEDURE

This agppendix presents the final document used to code the tasks in the sample. It
isdivided into four sections, one for each dement defining a conception. In the case of
the prototypical uses of function, the examples span those Stuations that were found in
the sample of textbooks. In the other cases, only few characteristic examples were added
to illustrate the gpplication of a code.

Generd Indructions

Each task is given four types of codes, one for each dement defining a
conception: a unique code for prototypical uses of function, one or more codes for
operations, one or more codes for representations, and one or more codes for controls.
Each of theseis discussed in the following sections. Assign the codes only after solving
each exercise and taking into congderation the content of the chapter in which the

exercise was embedded.

P Codes. Prototypica use of function

This code refers to the content that is being addressed by the task. Table C1
presents the available codes with a description and examples of contents that have

received those codes.

Table C1

P Codes. Prototypical Uses of Function in the Task

Code Name and description Examples
CER Cause/effect relationship Atmospheric pressure vs. boiling point
Used to code content that refers  Density of water/ice vs. temperature
to physica phenomena other Depth under the surface of the earth vs. temperature (°C)

than time related and in which Electrical resistance vs. length of wire
the behavior of onevariableis ~ Force on spring vs. number of units compressed

149



150

Code

Name and description

Examples

CR

an effect of the behavior of the
other (itisadirectiona
relationship)

Constructed relationship
Used to code content that refers
to “red life’ Stuations other
than cause/effect, time, data
reduction, and geometrical. In
these relationsit is somehow
arbitrary which variable is
called dependent and which one
independent. An interchange of
theroles of the variables
produces equally vaid—for the
context—relationships.

Force to stretch a string vs. weight (Hooke's Law)

Force vs. elongation of a rubber band

Height of ball dropped vs. height of bounce

Length of pendulum vs. period

Mass vs. volume

Ohm'’s law

Pressure (pascals) that a diver supports vs. depth (m) under
the sea

Resistance vs. intensity (current)

Voltage vs. intensity (current)

Volume of agas vs. aimospheric pressure

Weight vs. elongation of a spring

Amount of cereal vs. number of coupons
Amount of gas (liters) vs. distance traveled (km)
Amount of heat logt vs. width of window
Amount of money vs. number of coins
Amount of monthly shopping vs. month
Amount of paint vs. area of walls

Amount of gtring in a ball

Area of page vs. number of pages in booklets
Canadian dollars vs. American dollars
Cost of buying balloons vs. whistles

Cost of gas and telephone consumption
Cogt of ingdling pipelines vs. km

Cost of pearsvs. weight

Cogt of printing books vs. number of books
Cost of telephone calls vs. minutes
Discounts vs. price

Distance vs. taxi fare

Distances on a Ferris wheel

Divide jackpot among buyers

Goods bought vs. discount

Gradesin test vs. standardization

Grades vs. number of pupils

Growth of British railways vs. year

Height (cm) vs. height (in)

Height of ski jJump vs. horizontal distance
Height of water in bottle vs. volume
Height vs. weight

Imports vs. country

Interest for capital vs. number of days
Length of fencing vs. length of paddock (m)
Liters of water vs. cost

Meters of fabric vs. cost

Miles vs. decimeters

Milesvs. gdlon of gas

Net value of fishery

Number of athletes vs. time to run 100m
Number of batteries vs. duration
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Code

Name and description

Examples

Number of books vs. cost

Number of boys vs. number of girls

Number of bulbsvs. lifetime

Number of cards vs. time to produced them (hours)

Number of cars sold in Canadian or American dollars

Number of catering hours vs. price

Number of copiesvs. time

Number of cutsin astring vs. number of resulting pieces

Number of days vs. number of workers needed to finish a
job

Number of dm® of copper vs. mass

Number of frames vs. cost

Number of hours vs. cost of renting a truck

Number of hours vs. fitness club rates

Number of lamps vs. connections to circuit breskers

Number of leaves vs. length

Number of liters of orange juice vs. liters of water

Number of machines to do ajob vs. number of days

Number of nails vs. weight

Number of nights vs. price

Number of pencils vs. cost

Number of people watching a game vs. hours of game

Number of pillsvs. weight (kg)

Number of players vs. weight

Number of pulse beats vs. time

Number of representatives vs. votes obtained

Number of stereosvs. sales

Number of tickets vs. profits

Number of tickets vs. subscription price

Number of videosto rent vs. number of vouchers

Number of women working vs. year

Percent of meat vs. price

Percentage paid vs. amount |eft to pay

Percentages of discounts

Postage vs. weight

Pounds of grapes per price

Price of car vs. age of car (or time owned)

Price of car vs. year produced

Price of different metals

Price per pack vs. number of goods

Price vs. weight of packages

Quantities of recipe for 4, 6, 8, 12 people

Rent vs. number of months

Scaleinamap

Score vs. goal conversion

Ship type vs. use

Tax deduction over incidental costs

Taxi fare vs. km traveled

Temperature (°C) vs. region

Temperature above vs. below surface of water
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Code Name and description Examples
Temperature Celsius vs. Fahrenheit or vs. Réamur
Temperature Celsius vs. temperature Fahrenheit
Time vs. cost of parking
Type of carsvs. speeds
Units of gas vs. cost
Units of power per user vs. cost
Units of power vs. cost
Volume of classroom vs. number of students
Volume of water vs. height in atube
Wage vs. hours worked
Weight (kg) vs. weight (Ib.)
Weight vs. age (months) of babies
DPPR Direct proportion/proportion  Fill atablein such away that thereisadirect proportion
relation. between the entries
Used to code content where
there is an explicit reference to
aproportion or a direct
proportion without context.
DRR Data reduction relation Amount of cement vs. sand

Used to code statistical
Stuations; in Situations
involving two varigbles it may
be possible to have more than
one outcome for a given vaue
of avariable.

Assets from atotal

Change of price of movie vs. year

Consumer price index vs. year

Cost of parking vs. hour

Diameter of number of tree trunks

Diameter of treetrunk vs. age

Distance (m) vs. height (km) (of mountains)

Fud consumption vs. make of vehicle

Grades in two subjects (math & physics)

Height of number of people

Height of mother and father vs. height of girl and boy

Height vs. age of atree

Interest rates vs. year

Number of acceleration units of atrain model vs. number
of coachesin thetrain

Number of cards produced vs. hour

Number of children vs. family

Number of children stacking chairs vs. time in minutes

Number of computers vs. price

Number of employees vs. sdaries

Number of inhabitants per year in atown (or population vs.
year)

Number of papers delivered vs. time

Number of planes leaving vs. day of the week

Number of hours of sun vs. day

Number of tractors vs. country

Number of turkeys vs. country

Number of turnsvs. distance traveled vs. a wheel

Number of unitsvs. price
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Code

Name and description

Examples

GDR

GR

Graph defined relation

Used to code content where the
relation is presented in agraph
whose two axes are neither
labeled nor numbered.

Geometrical relation.

Used to code content that refers
to geometric figures and their
characteristics.

Parent’ s vs. son’s age

Peoplein line vs. timeto help each

Population in five countries

Population in one country vs. five years

Pounds vs. dollars

Precipitation (rainfal) vs. month in two places

Price index vs. year

Price of advertisement vs. number of items announced
Price vs. height of Christmas tree

Prize vs. number of winners

Students vs. make of father’s car

Temperature of a person at 4 times aday for two days
Vehicles used vs. number of people

Weight of number of people

Y ear of car vs. price

Year vs. change in salary

+y

Angle vs. hoursin aclock

Height of atower of cubes vs. number of cubes, visible or
invisble faces, edges, and vertices

Intersection of straight lines vs. perpendicularity

Length of circumference vs. radius

Length of edge of a cube vs. sum of length of edges,
surface area and volume of cube

Length of secant vs. distance to radius

Length of sides of a square vs. area

Linear projection of a segment

Measure of angle vs. height of ray in unit circle

Measure of angles of atriangle are proportiona to a
sequence of numbers

Order of points or lines vs. distance to a point

Perimeter of rectangle with fixed area vs. length of sides

Point ison line

Position of squares or cubes

Radius vs. area of circle; radius squared vs. area of circle;
area of circle vs. volume of cylinder

Side vs. area of largest kennel

Similarity: Measure lengths in parallel lines cut vs.
transversal lines, produce drawings at different scales,
different sizes of projections (height, areq) vs. distance
to projector

Surface area of box
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Code Name and description Examples
PR Pattern relation Expression for triangular numbers
Used to code content inwhich ~ Number of sides of a polygon vs. number of diagonas
given a sequence the questionis  Number of triangles inside an n-sided polygon (diagonas
to find the genera term (or an from avertex)
expression for the nth element)  Sum of consecutive odd numbers
of the sequence.
RR Rule relation Absolute value
Used to code content in which Al polynomids
an input is transformed by Computer programming work: the student needs to write a
certain procedure to obtain an computer/calculator program to produce particul ar
output and in which a context is outputs
not provided. Function machines
Does the x-axis represent a linear application? (The student
needs to produce an expression for the application and
justify thet it isalinear gpplication)
Multiply by an operator
P(x)/Q(x), where P and Q are polynomials with coefficients
inR.
Periodic functions with period 1, piece-wise on [a, atl), a
inR.
Piece-wise functions
Radical functions
Step functions (defined parametricaly, f(x) = a, x in (a -1,
al,ainZz)
Trigonometric
xy =k
SOP Set-of-ordered-pairsrelation  All possible sums of integer numbers less than 30

Used to code content where a
list of ordered pairsis given or
requested.

Any pair assgnment
Brotherhood

Cantons vs. regions
Family tree vs. color blindness
Inequdities in the plane
Intersection and subsets
Invention vs. inventor
Isadivisor of

Isafifth of

Isathird of

Is equivalent fraction

Is factor of

Is half of

Isless than

Is older than

Issmaller than

Isthe same age as
Isthe same as

Istwo less than

Is younger than

Locate pointsin a Cartesian plane
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Code

Name and description

Examples

TR

Time relation.

Used to code content that refers
to physical phenomena where
timeisinvolved and the

variable is treated continuoudly.

Relatives (father, wife, husband, daughters, boys,
grandfather, descendant)

Riversvs. states

Siblings and brothers

Ways of drawing cards from a box

xRy if the sum of the digits of x is equal to sum of the digits
of y

Accdleration vs. number of trains

Height of candle vs. time (h) it takes to burn out

Reaction time to catch a bar vs. distance where the bar is
caught

Rpm of apulley vs. diameter

Speed (km/h) vs. distance (m): of a car before stopping
once the brake is pressed, of sound of alightning flash,
of an echo

Speed (M/s) vs. time: attained vs. a car after the accelerator
is pushed completely, of filling a container with some
liquid; of different birds, of joggers, according to the
number of faucets needed to fill atank

Speed vs. rpm

Speed vs. speed (of two objects/people moving)

Time (h, m, s) vs. temperature (°C, °F)

Time in minutes sun reaches highest point in sky after 12m

Time vs. distance: vs. afreely moving/falling object, vs. a
ball rolling on an inclined surface, vs. a car on the road,
of ahot-air balloon

Time vs. height of water in ajar

Time vs. volume for filling a pool

Each task will be given only one P code. If more than one code seemsto gpply,

write them down, and then choose the one that in your view is more predominant.

Provide an explanation for whatever code you choose.

O Codes. Operations

Operations refer to the activities that the students need to do in finding a solution

to the problem. Note that a sudent might or might not follow a sandard way to solve a

problem; nevertheless, the information that is provided aong with the problem is

intended to give an idea of the mogt likely aternatives that a student may choose. He or

she might choose a smpler way or repeat what was given in the text. | am looking for

those dtrategies that would be privileged in the textbook.
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Thislig is very long even though it is not comprehengve. If you think that there

are operations that are not listed, make a note explaining why none of the O codes given

is appropriate. Then choose the code or codes that are closest to what you intend to

express, and tel me what ismissng in them. Table C2 presents alist of the O codes, with

adefinition and some examples.

Table C2

O Codes. Operations That the Students Can Perform to Solve the Task

Code Definition

CALC Calculate
The student needs to operate with numbers (e.g., add, subtract, multiply, divide, square
anumber, or find the square root, take log).

CDhuU Compute with different units
The student needs to convert units by applying a proportiona relationship between
measures or aformulato express aresult (e.g., speed given in m/s and answer is
needed in k/h)

CF Change between symbolic forms
The student needs to perform algebraic manipulations on a symbolic expression to
obtain another one.

COE Carry out experiment
The student needs to perform a series of steps to collect data (either statistical or
physical). Applies also to the case in which the student needs to write a computer
program.

CWC  Comparison without calculation
The student needs to produce a conjecture based on the observation of information
avallablein task. Thereis no proof or calculation required (e.g., segments are
proportiond, lines with a sope of 0 are horizontal, one group outperforms another
one).

DDR Determine domain or range
The student needs to find the domain, the range, or both of arelation. This can be part
of aprocess and might not be explicitly stated in the task.

DSCP Describe shapein a graph
The student needs to describe the shape obtained after joining certain pointsin a
Cartesian plane (e.g., squares, stars, and triangles). This includes examining the graph
asawhole and aso looking at particular intervals (e.g., observe minimum and
maximum values, intercepts, sections where the relation is increasing or decreasing and
so forth) with the aim of describing those features.

DTR Determine type of relationship
The student needs to determine whether the relation between two sets of numbersis
direct, indirect, linear, or nonlinear, or whether there is no relation.

FA Find average
The student needs to find the average of a set of data.

FC Find the composite of two functions

The student needs to determine the function that is the composite of two functions,
with no restriction on the representation used.



157

Code

Definition

i

FIP

FISX

FNEC

FPN

FR2N

FS

Find inverse relation

The student needs to determine the inverse relation from a given one. This can be part
of aprocess and might not be explicitly stated in the task. It does not apply to the case
when only a pre-image is sought (in which case FIP is used).

Find element of the range or of the domain of a relationship

The student needs to find in the range of the relation a value (or element) associated
with a given element of the domain, or find a domain element associated with arange
element, or both. This includes finding one more ordered pair of the relationship,

where the student might need to choose an element of the domain and find its
corresponding value in the range through the relation. It includes algebraic
manipulations that involve solving for x in f(X) = k, where k isa given vaue, or finding
f(m) where mis an algebraic expression, finding the solution of f(x) = f~(x), finding
asymptotes. This code is aso used when the student needs to find the function that
results from the operation of two given functions; the process can be carried out by
operating component by componert in atable or by operating on the expressions that
define the rdation. Thisincludes finding, for example, the image when x = 0 and the
pre-image when y = 0, with all algebraic manipulation that may be required. Thereis
no restriction on the representation used for the pair.

Function is <certain characteristic>

The student is given afunction, and he or she needs to establish if it satisfies a given
characteristic (e.g., is bijective, isinjective, is surjective, hasinversg, is the identity, is
constant, is increasing, is decreasing).

Find non-explicit characteristic

The student needs to demonstrate or prove that a particular object in the situation has a
certain characteristic (e.g., a parallelogram is a square, intercept with y-axis hasan
abscissa of 0, there is a rectangle with maximum area, or f—(3) is the solution of

f(x) = 3).

Find percentage or number

The student is given a situation, in which he or she needs to determine a percentage of
occurrences of a certain event, or he or sheis given the percentage and needs to find
the number that would correspond to it in the Situation.

Find the relation between two (sets of) numbers

The student needs to explain or produce an expression or a description of the relation
between two given numbers or between two sets of numbers. The operation includes
the variable identification and the process of writing down the expression (using any
representation). To find the relation the student may recall previous knowledge (e.g.,
formulas for areas, volumes, perimeters) or base the solution on the information given
(e.g., use proportionality). The relation can be given in any representation as described
in the section on representations.

Find slope

The student needs to find (by a calculation, by aformula, by inspection) or locate (e.g.,
in asymbolic expression) the dope of astraight line.

Fill table

The student needs to either create or complete a partialy filled table of values. If a
relation is given or asked for (via any representation), this operation has to go together
with FIP because the student will need to find images and pre-images through a
relation in order to fill out the table. FT goes by itself when it is a step inside a data
collection process: the relation isto be determined afterwards, using the information in
the table.
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Code

Definition

GD

GECE

GP

GU

LER

LPCP

NPOX

NV

OISX

RIF

RPCP

Give cardinal
The student needs to count the number of elements of a set.

Give definition
The student needs to produce a definition based on the reading of the text (e.g., define
argument, ordered pair, abscissa).

Give examples and counterexamples
The student needs to find examples of cases that satisfy a given situation, cases where a
proposed situation does not hold, or both. Used a so when the student needs to make up
a story about a particular situation (e.g., a bath in a bathtub, or changing speeds of
racers)

Give period
The student needs to find or give the period of afunction that is known to be periodic.
Give unit
The student needs to give the unitsin which a certain element is measured.

List the elements of a relation
The student needs to produce alisting of al the elements of the relation. Note that this
applies to relations where the domain is afinite set (e.g., afamily tree with
grandparents, parents, and children).

Locate pointsin graph
The student needs to locate points in a graph; a graph can be any of the types defined in
the section on representations. Whenever a Cartesian plane is involved, the code must
be applied if both elements of the ordered pair are known and need to be located. If that
is not the case (e.g., the time at which the temperature is 50°C), then use the operation
FIP. LPCP aways requires NPOX when a Cartesian plane isinvolved.

Measure
The student needs to apply a measurement procedure (e.g., in the Cartesian plane,
variablesin an experiment).

Name point on axis
The student needs to determine a number on an axis, either by reading it from the scale
given or by doing an interpolation. It may or may not require a calculation (by means

of adding a certain number a needed number of times).

Name variables
The student needs to identify the given variablesin a Situation (or representation) or to
establish them. It is not necessary to use this code if FR2N is used.

Operationis

The student needs to verify that an operation between relations satisfies a certain
property (e.g., the operation is commutative, associative, €tc.).

Prove

The student needs to produce a proof of a statement either given in the text or produced
by the student.

Relation is function?

The student needs to determine if arelation is afunction or not.

Read points from graph

The student needs to read the coordinates of a point or a set of points from agraph. A
graph can be of any of the types defined in the section on representations. Whenever a
Cartesian planeis involved, the code must be applied if both elements of the ordered
pair have to be determined (e.g., the coordinates of the maximum value of arelation).

If that is not the case, then use the operation FIP (e.g., the time at which the
temperature is 5°C). RPCP always requires NPOX when a Cartesian plane isinvolved.
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Code Definition

TRIG  Apply trigonometric identities/formulas
The student needs to use basic trigonometric relations between angles and sides of
triangles to find unknown values of sides or angles.
TRIL  Traceidentity line
The student needs to draw in a Cartesian plane the line y = x for a particular purpose
(e.g., compare with lines of different dope, find an inverse, find a composite function).
TRL Traceregression line
The student needs to trace aregression line through a cloud of points.
UPWE Use proportionality within entries
The student needs to use the fact that a given relation is proportional.

R Codes: Representations

These codes refer to the representations that are present or required in atask. |
have identified 9 different possible representations, which are described in Table C3.
Each task can receive more than one R code because through the solution the student may

need to use saverd of them.

Table C3
R Codes. Representations Enacted in the Task

Code Description

AD Arrow diagrams
The task uses arrow diagrams, in either one or two bubbles.

G Graph in two axes
The task uses a Cartesian plane, frequency diagram, histogram, broken line (time
series), or scatter-plot.

N Numerical
The task does not require any symbols; instead, it requires numbers.

NL Number line
The task requires a number line.

P Pictorial
The task uses drawings of machines, maps, geometrical shapes and figures, photos, or
pictograms (frequency diagram where the y-axis is not present), pies (only one variable
is sketched) or any other kind of drawing.

SS Semi symbolic
The task uses expressions that contain both words and symbols. (e.g., cost of x pounds
of apples=0.3 x x).

S Symbolic
The task uses expressions with only symbols. Thisincludes arithmetical notation, sets
(eg., {x|x>0,xT N}), ordered pairs, equations (e.g., f(x) = x + 1,y =x + 1,
f(2) =x+ 1), mappings (f: X ® x + 1), or intervals.

T Tabular
The task uses atable. The table can be given, asked for, or arequisite for the process of
keeping track of the entries.
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Code Description

Vv Verbal
The task uses a description of a Situation using natural language (e.g., a pound of apples
costs 30 cents) or requires the student to interpret a situation with natural language.

C Codes. Contrals

Controls codes are used to characterize the process of solving atask considering
the ways in which the student can control that the solution produced is correct or not. The
codes attempt to answer the question, How does the student know that his or her answers
are correct? Even though these codes strongly depend on what is given in the text, and |
acknowledge that coding a task without its context makes this assgnment difficult, |
think that there are activities that belong to the task that can help to establish the
correctness of aresult. Consider the case of locating points of alinear patternin a
Cartesan plane. If a the end the student finds out that not dl the points lie on a sraight
line, then he or she can tell that there is amistake in the operation of locating pointsin the
graph. That is the nature of the control function. The codes are listed in Table CA4.

Table C4

C Codes. Controls Available to Determine the Correctness of a Solution

Code Description

CLC Use calculator or computer to check the answer
The student is told to create a program so that he or she can check his or her answers, or
to observe a graph in the calculator.

CPE Compare previous examples or problems
The student has performed similar operations and can use them in this particular
Stuation. (Note: This code can be assigned only when more than one problem is
available to code from the same section in a textbook.)

CON Continuity is assumed
The student uses the fact that a function is continuous to determine the likeliness or
unlikeness of aresult. Also the situation is such that if continuity is not assumed, the
problem cannot be solved (e.g., the student has atable of values—of a polynomia
function—and he or she needsto find the image of a vaue that is not in the table)

DC Double check
The student either repeats the process used to obtain the answer (e.g., relocates points in
the Cartesian plane) or reverses the process to get something that is given in the
statement of the task (undoes the sequence of operations).
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Code

Description

LFLUR

MTI1P

UAR

UCP

UGl

Look for likely or unlikely results

The student can use indicators in the statement of the task (e.g., the student obtains a
number too big or too small for agiven scalein a Cartesian plane, or he or sheis getting
decimals or negative numbers when whole or positive numbers are expected, or a set of
pointsin a Cartesian plane are not aligned on aline) or can use previous knowledge (e.g.,
the sides of a square have the same length).

More than one point (vertical line test)

The student has to determine if an element of the domain of arelation has one and only
one e ement assigned from the co-domain of the relation.

Use alternative (given or not given) representations

The student can use other representations (e.g., resultsin atable vs. results with a
formula or a graph, a set of ordered pairs as an arrow diagram). These can be explicitly
given in the statement of the task or can be result of something the student was asked to
do.

Use checkpoints

The statement of the task offers answers to previous questions, warns the student about
what is not a correct answer, suggests looking at the following tasks, or suggests
checking with a partner who is doing the same task.

Use given information.

The statement of the task gives additiona information that can be used to test aresult and
that might not be relevant to the solution of the problem (e.g., if thereis only $100 to
spend—then the domain of the relation has to be restricted)




APPENDIX D

MESSAGES FOR CODERS

The first test of the coding procedure was carried out by eectronic mail. The
messages inviting people to participate, giving the details about the coding process and
summarizing the experience, are provided here.

Electronic message inviting people to collaborate in the coding process:

Fri, 12 Nov 1999

Hello There,

I would like to know who of you would be interested in helping me with a test of a coding system
that | developed for my study. | will send you ‘clear' specifications as what to do to code four
mathematics problems related to functions taken from textbooks around the world (languages
include English, French, German, Portuguese, and Spanish, although the samples for this test
may contain up to 3 different languages--of course | will be sensitive to your preferences). The
procedure includes to read the problem, to solve it as an 7th to 8th grader would solve it, assign 4
types of codes, and then give me some feedback on how you did the assignment. | anticipate a
two-hour work total. The problems are not difficult at all.

| would appreciate any help that you can give me, | will provide more details for those who might
be interested.

THANKS A LOT!

Vilma Mesa.

Electronic message explaining the process of coding:

Mon, 15 Nov 1999

Dear All,

Thanks for your willingness to help me with this test of the coding process.

With this message | am sending an acrobat file that contains the codes that | have developed
together with instructions for applying them.

You will receive three or four tasks to code in one acrobat file attached to a second e-mail. 11
tasks were randomly selected from a pool of 541 problems. | made groups taking into
consideration your language proficiency. (I will elaborate on this point in each particular case).
For each of you the procedure is the same:

0. Read through the coding procedure. If you have questions, e-mail me, | will answer them right
away.

1. Be sure that you can read the tasks. For some of you it will be difficult because the picture
included it is not very clear. If that is the case for you, please write down what you can 'read' from
the text of the task--it does not have to be an exact or literal translation, but what are you 'reading
in it. This will allow me to contrast to the notes of other coders with my notes about those cases.
2. Solve the task. Keep notes as long as you proceed; that will help you to justify your code
assignment.

3. Proceed with the code assignment as indicated in the coding procedure.
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4. E-mail me your coding. You don't have to include the text of the task; please follow the format
that | included in the coding procedure file. You can write directly in the body of an e-mail
message or send your formats as an attachment, preferably in an RTF file.

If you have any difficulties, please let me know.

Thanks a lot,

Vilma Mesa

Electronic message reporting the results of the process:

Mon, 29 Nov 1999

Dear All,

Thanks a lot for your kind collaboration in the test of my coding system. The whole process was
very valuable for me to unveil both problems and good points about it.

As | expected we have a good agreement on the first category, Prototypical uses of functions:
94% and not so good agreement on the others (33%, 53% and 50%, comparing your overall
coding to mine), even though | was expecting higher figures these codes. | attribute this outcome
to two important issues:

1. In the case of operations, the meaning of some of the codes overlap the uses of others; some
of you helped me describing what you were looking for and what you used instead, which allowed
me to make explicit what | was thinking on in the first place. As a result some codes have
disappeared, some have been expanded to represent broader uses, and | have paired some of
them to describe particular situations.

2. | did not provide you with the material that comes before the task that you solved. That puts
you in a different position from mine. Because | have access to that previous work | can decide
which solution--from all the possible available--is more likely to be followed by a student, which
causes me to introduce codes (for example, fill a table) that you could probably find unnecessary.
On the good side, | found that the system does help to discriminate tasks (an “interesting” task is
getting more codes than a not-so interesting one--I am working on this idea; right now it does not
mean much).

Given this, | will carry out another experience on a 1-1 basis with people around here (an
interview with audio recording). | will provide two (out of four) tasks plus the section in which that
task is presented. | will ask the person to solve the task and afterwards | will provide a list for the
person to chose the codes for the categories, asking for the reasons for doing that. By using this
procedure | will be also checking the validity of the coding system (an issue raised by some of
you).

| really appreciate the time that you gave me for doing this. Thank you very much.

Vilma Mesa.



APPENDIX E

ITEMS FROM THE TIMSS ACHIEVEMENT TEST

Ten items were selected from the released set of items for Population 2 in the
TIMSS study. | provide below their identification code, content category, and the
performance expectation according to the TIMSS framework (International Association
for the Evaluation of Educationa Achievement, 1997). | dso provide the coding for each
item, following the coding procedure | developed. When more than one solution was
possible, the find coding aggregated dl the possible codes for the operations,

representations, and controls for the severa solutions proposed.

Item |-04, Algebra, Solving Problems

The numbersin the sequence 2, 7, 12, 17, 22, ... increase by fives. The numbers
inthe sequence 3, 10, 17, 24, 31, ... increase by sevens. The number 17 occursin
both sequences. If the two sequences are continued, what is the next number that
will be seen in both sequences?
Coding: The rdation deds with the identification of two different petterns, both
numerical, whose construction procedure is known (increase by fives, increase by
sevens). The prototypica use of function is pattern relation, PR. There are two solutions
that students could have used. To find the common element in both sequences, the
student might gpply the construction procedures for both sequences (finding the images
through the rdlations, adding fives or sevens, FIP). In that case, alist can be produced to
find the common eement (list the dements of the rdaion, LER). The cdculations
needed are coded as CALC. The student might aso attempt to write an expression for the
two sequences (FR2N), and using the fact that 5 and 7 are relative primes, find the
number associated with the next seventh pogition for the first sequence and with the fifth
position in the second, FIP). The item requires anumerica representation for the first
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solution, and symbolic and numericd representations for the second. The student can
doublecheck the computations (DC), but he or she knows that the answer is found once
the two sequences give the same number. The student is looking for likely results
(LFLUR). The item was coded as. PR, FIP-FR2N-LER-CALC, S-N, DC-LFLUR.

Item 1-08, Geometry, Solving Problems

A draight line on a graph passes through the points (3, 2) and (4, 4). Which of
these points dso lies on the line?

. (L)
. (24)
. (56)
. (6,3)

(6,5)

mooOowmX>

Coding: In this case the student might locate the two given points on the Cartesan
plane (LPCP), and from there, by trid and error, check each of the aternatives offered to
see which point is more likely to be on the line that joins the two points (LPCP, G,
LFLUR-UCP-CON). As an dternative, the student might follow the pattern for the
abscissas 3, 4, 5, and the coordinates, 2, 4, 6. This approach uses the fact that consecutive
firat differences of coordinates are congtant in linear functions (the dope is congtant). In
this case, the student lists the e ements of the relation and once the pair (5, 6) is found the
student knows that an answer has been found (LER-CALC, N, DC-UCP-CON). As
another approach, the student might establish the linear relation and by tria and error
check the alternatives offered (FR2N-FIP-CALC, S, DC-UCP-CON). The item was
coded as: PR, LPCP-LER-FR2N-FIP-CALC, N-G, UCP-DC-UAR-LFLUR-CON.

Iltem J-16, Geometry, Performing Routine Procedures

Which of the following are most likely to be the coordinates of point P?
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Y,
A. (812 20
B. (8,8)
C. (12,8) Po
D. (12,12) 10
0" 10 0

Coding: Thereisno explicit rdation given here; the item dedls with managing the
Cartesian plane. The content of reference is coded as relation defined by a graph (GDR).
The student needs to read the coordinates of the point by naming two vaues on the axes,
esimation is needed to identify those points, but the Size of the estimation is guided by
the aternatives suggested in the answers (RPCP-NPOX-CALC, N-G, UCP-DC). The
item was coded: GDR, RPCP-NPOX-CALC, N-G, UCP-DC

Item J-18, Algebra, Parforming Routine Procedures

The table represents arelation between x and y.
Whét isthe missing vaue in the table?

moow>

2
3
4
5
6

N[ BN X

= .
B~ k<

Coding: By checking that the firgt differences of both abscissas and coordinates
arecongtant, (1-4=4—-7=-3and 1-7 = 7 — 13 =— 6), the sudent can either write an
expresson for the linear function, finding the dope (6/3 = 2) and the intercept (—1) and
substituting 2, to get 3 (FR2N-FS-FIP), or locate the pointsin a Cartesian plane and
assuming continuity find an gpproximate ordinate vaue for an abscissaof 2 (as 3). The
item was coded as RR, FR2N-FS-FIP-CALC-LPCP, T-N-G, CON-DC-UCP-UAR.



Iltem L-11, Algebra, Solving Problems

A rubber bal rebounds to half the height it drops. If the ball is dropped from a
rooftop 18m above the ground, what isthe total distance traveled by the time it
hits the ground the third time?

A. 31.5m
B. 40.5m
C. 45m
D. 63m

Coding: The context of reference is a cause-and- effect relaion. The student needs
to apply the transformation of the heights twice in order to get the heights needed for the
addition; adrawing might help to darify the Stuation. The heights to be added are 18m,
9m twice, and 4.5m twice, to get 45m. The item was coded as. CER, FIP-CALC, N-P,
DC-UCP.

Iltem L-14, Proportionality, Performing Routine Procedures

Thetable showsthe values of x and y, where x is proportiona toy.

x |3 |6 |P
y |7 [Q [3
What arethevduesof P and Q?

P=14and Q=31
P=10and Q= 14
P=10and Q=31
P=14and Q=15
P=15and Q= 14

moowy

Coding: The prototypicd use of function is coded as direct proportion relation,
because there is no context (DPPR). The student needs to find the constant of
proportiondity (UPWE) and then use that number to find the values of P and Q (FIP).
The trestment is bascaly numerica, and the student can doublecheck his or her answer
if what is obtained is not in the list of possible answers. The find coding was. DPPR,
FIP-UPWE, T-N, DC-UCP.
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Iltem O-01, Data Representation, Anaysis and Probahility, Solving Problems

The graph shows the distance traveled before coming to a stop after the brakes are
gpplied for atypica car traveling at different speeds.

W20 M40 s 60 70 B0 W
Clor Speed dkilometers por hor

A car traveling on a highway stopped 30m after the brakes were applied. About
how fast was the car traveling?

A. 48 km/h
B. 55km/h
C. 70km/h
D. 160 km/h

Coding: Thisisareation that involves time as a continuous varigble (TR). The
student needs to find the pre-imeage of 30 under the relation given by the graph. The
procedure is based on the graph and the student can doublecheck his or her answer if
what is obtained is not in the list of possible answers. Thefind coding of the item was
TR, FIP-NPOX-RPCP, G, DC-UCP.

Iltem R-08, Data Representation, Analysis and Probability, Solving Problems

The graph shows the distance traveled before coming to a stop after the brakes are
applied for atypica car traveling at different speeds.
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A car istraveling 80 km per hour. About how far will the car travel after the
bresks are applied?

A. 60m
B. 70m
C. 86m
D. 100 m
Coding: Thisitem received the same codes as the previous one, except for the
control activities. The student needs to assume that the graph can be extended
continuoudly to be able to find the image of 80 (the graph ends near the point (75, 60)).

The coding was TR, FIP-NPOX-RPCP, G, DC-UCP-CONT.

Iltem S-01, Algebra, Solving Problems

Here is a sequence of three amilar triangles. All of the smdl triangles are
congruent.

I\

2
Figurel Fgure2 Figure3

a.  Complete the chart by finding how many small triangles make up each figure:
Figure Number of small

triangles
1 1
2
3

b. The sequence of similar trianglesis extended to the 8" Figure. How many small
triangles would be needed for Figure 8?

Coding: The prototypicd use of function is pattern; the student can follow the
pattern some steps more (COE) to fill in the appropriate cells of the table. The pattern at
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figure n corresponds to the sum of the first n odd numbers. This expression can be used to
find the number of triangles for the eighth figure. The item was coded as PR, FIP-COE-
FT, T-S-N-P, DC-UCP.

ltem V-02, Data Representation, Anayss, and Probability, Solving Problems

The following two advertisemerts appeared in a newspaper in a country where the
units of currency are zeds.

Building A Building B
Office space available Office space available
85-95 sguare meters 35-260 sguare meters
465 zeds per month 90 zeds per square meter

per year
100-120 sguare meters
800 zeds per month

If acompany isinterested in renting an office of 100 square metersin that country
for ayear, a which office building, A or B, should they rent the office in order to
get the lower price? Show your work.

Coding: The prototypical use of function in thisitem is as congiructed relation
between the variables areafor rent (in square meters) and cost of renting the space (in
zeds). The student needs to find the vaue of one variable (cost) given the vaue of the
other (100 square meters). He or she needs to establish that 100 belongs to the domain of
the reation and in the case of Building A, that only one of the dternatives can be used.

All the information is provided without any recourse to symbols. Two caculaions are
needed in order to make adecison. Thefind coding was CR, FIP-DDR-CALC, V-N,
DC.



APPENDIX F

TYPESAND ANTITYPES

The results of the CFA program are presented below in an edited form of the
actud listing produced by the program. A four-digit number represents the
configurations, the second column of the table. Thefirgt digit refers to the prototypica
use of function (1=set of ordered pairs, 2=physica; 3=rule; 4=figurd; 5=socid). The
second digit refers to operations (1=manipulate only; 2=gppreciate only; 3=manipulate
and gppreciate only; 4=calculate with manipulate or appreciate or done; 5=other
operations not in manipulate, gppreciate, or caculate). Thethird digit refersto
representations (1=symbolic only; 2=symbolic combined with another representation;
3=any combination of representations not including the symbolic). The fourth digit refers
to the control activities (1=based on the process only; 2=based on the process and the
contract; 3=based on the content only or in combination with process, or contract-based
control activities). For example the configuration 1121 indicates an use of function as st
of ordered pairs, requiring only manipulation operations, usng symbolic representation in
combination with other representations, and basing the cortrol of the correctness of the
answers on the process of solution only.

The third column gives the observed frequency of the configurations. The fourth
configuration gives the expected frequency under the assumption of independence of
assgnments. Statidtic isthe value of the z-test Satistic that was chosen for this particular
andysis. Thetest-wise a is protected using a Bonferroni adjustment, calculated asa f/t,
wheret isthe number of tests. In this case, witha5 x 5 x 3 x 3 table, a* = 0.00022. The
next column gives the one-tailesd probabilities of the tests Satistic. Type indicator gives
the designation of agiven configuration as atype or antitype. Log Pis the Poisson
probability that the observed cell frequency is smdler than the expected cell frequency.
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The configurations are ranked according to the size of this probability, the smaller the
probability, the higher the rank.

Number Config- Observed Expected Satigic Probability Type  LogP Rank

uraion frequency frequency indicator
1 1121 54 31.013 4128 .00001832  Type 3.978 18
2 1122 35 15.592 4915 .00000044  Type 4.806 12
3 1211 24 6.136 7211  .00000000  Type 7.429 6
4 1223 13 4.797 3.746 00009001  Type 2.854 24
5 1233 24 3.369 11240 .00000000 Type 12533 4
6 1411 19 6.162 5172  .00000012 Type 4.603 14
7 1432 17 5.354 5033 .00000024  Type 4.341 16
8 2133 14 2.969 6.402 .00000000  Type 5.520 10
9 2333 10 1.931 5806 .00000000  Type 4.458 15
10 2431 16 4.569 5348 .00000004  Type 4.616 13
11 2433 8 1.451 5436  .00000003  Type 3.867 19
12 2531 3 340 4563 .00000252  Type 2.294 29
13 3111 127 22066 22338 .00000000 Type 52327 1
14 3131 8 38.138 -4880 .00000053 Antitype 6.629 8
15 3321 65 35.320 4994 00000030  Type 5.341 11
16 3322 59 17.758 9.787 00000000 Type  13.992 3
17 3331 1 24809 -4780 00000088 Antitype 6.503 9
18 3332 0 12.473 -3532 .00020649 Antitype 2.799 25
19 4323 12 1.658 8.032 .00000000  Type 6.707 7
20 4332 18 1.843 11902 .00000000 Type 11784 5
21 4432 6 1.385 3921 .00004403  Type 2518 28
22 4531 2 205 3966 .00003661  Type 1.737 41
23 4533 1 .065 3664 .00012399  Type 1.201 51
24 5121 4 22.306 -3.876 .00005313 Antitype 3.799 20
25 5232 43 3.835 19.999 .00000000  Type  29.305 2
26 5233 10 2423 4867 .00000057  Type 3.663 21
27 5322 20 7.295 4704  .00000128 Type 4118 17

28 5333 11 3.238 4314 .00000803  Type 3.264 22




APPENDIX G

CONFIDENCE INTERVALS

This gppendix contains graphs of the 95% confidence intervals for the percentage
of correct responses for seven of the ten TIMSS items selected, organized by groups of
participating countries. Two figures, one for grade seven and the other for grade eight,
followed by atable of vaues, are given for each item. The items are organized by their
TIMSS identification, and the countries are ordered by percentage of correct responses.

The names of the countries are abbreviated as follows:

Austrdia ASL

Audria oSsT

Canada CAN
Coombia COL

England ENG
Hong Kong HNK
Ireland IRL

Portugal POR
Singapore SIN
South Africa SAF
Span SPA
Switzerland  SWI
United States USA
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Item 1-04

Item [-04, Seventh Grade

Figural

60

40 |- } |' |[ i_ I_ i_ |-

” |

0 J

IRL [ SIN | swi [OST [CAN [ENG [ASL [USA [HNK |SPA [COL |POR |SAF

Lower 435 | 43.1 | 435 | 40.9 | 40.5 | 31.1 | 325 [ 29.9 | 29.1 | 28.5 | 10.7 | 10.3 | 1.3
Upper 60.5 | 58.9 | 56.5 | 55.1 [ 53.5 | 50.9 | 45.5 [ 48.1 | 44.9 [ 415 | 37.3 | 21.7 | 87
-%Correct | 52 | 51 [ 50 | 48 | 47 | 41 | 39 | 39 | 37 | 35 | 24 | 16 5

Item 1-04, Eighth Grade

Figural
80
60 !‘ | | ] ] ]
o r r L
40 | |' I’ i'
20
0 ]
SIN | IRL |OST |CAN | SWI |ENG [HNK |SPA [ASL [USA [POR [cOL [SAF
Lower 54.6 | 48.2 | 48.8 | 49.5 | 47.4 | 43.8 | 39.9 [ 386 | 39.1 | 34.6 [ 27.9 | 16.8 | 2.2
Upper 69.4 [ 65.8 [ 65.2 | 62.5 | 62.6 | 64.2 [ 54.1 [ 53.4 | 50.9 | 49.4 [ 42.1 | 41.2 [ 15.8
=% Correct | 62 | 57 [ 57 | 56 | 55 | 54 | 47 | 46 | 45 | 42 | 35 | 29 9
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Item 1-08

Item [-08, Seventh Grade
Figural

80
60 lf |_
40 S S S N - |
20 | i_
0
ENG |HNK|ASL [ SIN [oST|swi | IRL |CAN|SPA [USA [sAF[coL|POR
Lower 47.8|43.9 [40.2 [39.6 |38.1|38.1 |37.4 |37.1]|28.8|29.1 218110 7.4
Upper 68.2 | 58.1 [53.8 | 54.4 [53.9 [ 53.0|52.6 [48.9 [45.2 |44.9 [34.2]37.0]2256
a%Correct | 58 | 51 | 47 | 47 [ 46 | 46 | 45 [ 43 | 37 | 37 | 28 | 24 | 15
Item 1-08, Eighth Grade
Figural
80
60 -1 | |
N R B T
40 |. L |L i'
20 i
0
SIN |[ENG |OST |ASL | SWI [HNK[CAN | IRL |USA |SPA |POR|COL [SAF
Lower 52.5 | 44.5 | 44.7 | 45.9 [ 43.4 [ 42.1 | 43.3 | 38.6 | 35.9 |31.6 [27.9 [15.8 | 18.8
Upper 65.5 | 65.5 [ 63.3 | 56.1 [58.6 [57.9 | 54.7 | 53.4 [ 46.1 [46.4 [42.1 [40.2 312
-%Correct | 59 | 55 [ 54 | 51 [ 51 [ 50 [ 49 [ 46 [ 41 [ 39| 35 | 28 | 25
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Item J-16

Item J-16, Seventh Grade

Figural
100
80 i' i'
60 |- !' i,
40 i.
| T b
0
CA PO
SIN [HNK[ENG [OST |ASL|USA | " " [SPA [SWI [ IRL |COL | " |SAF
Lower 70.1 | 65.5 [57.7 | 55.9 | 48.5 [ 39.4 | 30.4 | 21.5 [21.2|20.8 | 14.4 [ 13.6 | 8.3
Upper 81.9 [82.5(76.3 | 74.1 [65.5|58.6 | 45.6 | 34.5 [34.833.2 | 29.6 | 24.4|15.7
-%Correct | 76 | 74 | 67 | 65 | 57 | 49 | 38 | 28 [ 28 | 27 | 22 [ 19 | 12
Item J-16, Eighth Grade
Figural
100
0 {4
60 S S
I I [ |_ [
40 L
o
20 } :
0
SIN [HNK [ENG|ASL [OST | swi |USA |CAN | IRL |SPA [POR|COL |SAF
Lower 87.3 | 725 [71.4 | 57.8 | 55.1 [52.2 | 50.9 | 45.1 | 40.9 | 32.5 | 22.8 [10.2 | 8.9
Upper 94.7 | 89.5 [ 86.6 [ 70.2 | 70.9 [ 65.8 | 65.1 |60.9 [59.1 | 455 | 35.2 [ 27.8 [19.1
-%Correct | 91 [ 81 [ 79 | 64 | 63 [ 59 | 58 | 53 [ 50 | 39 | 29 [ 19 | 14
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Item J-18

Item J-18, Seventh Grade
Rule

80

60 ’.

o by o

20 |.

0

ENG [ASL |HNK [CAN|[SIN | IRL | swI [USA |OST [coOL [sPA |POR [SAF
Lower 411 | 43.8 387 | 329 | 33.8 [ 288 | 30.5|28.9 | 258 | 24.8|26.2 | 255 20.3
Upper 60.9 | 56.2 | 57.3 | 47.1 | 46.2 | 45.2 | 435 43.1 | 42.2 [ 41.2 [ 30.8 | 38,5 [ 31.7
-% Correct | 51 | 50 | 48 | 40 | 40 [ 37 [ 37 | 36 [ 34 [ 33 [ 33 [ 32| 26
Item J-18, Eighth Grade
Rule

80

60 |- I= )- |-

40 S - | f

20 ;

0

ASL |HNK|ENG | SIN |OST | swiI |CAN | IRL [SPA |USA |COL [POR|SAF

Lower 47.8 | 43.9 | 41.4 | 421|359 [ 36.8 | 37.5 | 33.6 [ 32.6 | 33.1 | 26.7 | 26.2 | 16.3
Upper 60.2 | 62.1 | 60.6 | 57.9 | 54.1 | 563.2 | 50.5 | 48.4 | 47.4 | 44.9 | 45.3 | 30.8 | 27.7
=% Correct | 54 | 53 | 51 | 50 | 45 [ 45 [ 44 | 41 [ 40 [ 39 [ 36 [ 33 [ 22
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ltem L-14

Item L-14, Seventh Grade

Rule
60
50
40 r |_
30 |
20 [ L | | | |
L L A O O
10 I
0
SIN [HKN |CAN| IRL [ swiI |UusA |POR|ASL |SPA|OST |ENG|SAF |[coL
Lower 338|255 | 175|151 (141|128 | 181|121 |11.2| 7.1 | 96 | 93 | 46
Upper 50.2 [ 38.5 [ 30.5 | 26.9 [ 25.9 [ 25.2 | 24.9 [ 23.9 [ 20.8 [ 22.9 [ 204 | 16.7 | 15.4
.%Correct | 42 | 32 [ 24 [ 21 [ 20 [ 19 [ 10 | 18 [ 16 [ 15 | 15 [ 13 | 10

Item L-14, Eighth Grade

Rule
60
a0 1 lf
} |' |' S S
" T
0
SIN HKN | SWI |CAN| IRL |ASL |[POR |[USA |ENG |OST |SAF |[COL |SPA
Lower 39.1 2981222 ]20.1]19.1 172|145 |155] 12.1 9.5 9.0 4.8 5.8
Upper 549 | 46.2 1 358 | 31.9 |1 309 | 268|275 | 245|239 | 265 |17.0 | 17.2 | 14.2
=% Correct 47 38 29 26 25 22 21 20 18 18 13 11 10




Item O-01

Item O-01, Seventh Grade
Physical

60 |. |' |' | | | ,
Tt
20 i_ i,
0 SWI | ENG | HNK | ASL | OST J USA | SIN | CAN | IRL | SPA | POR | SAF | coL
Lower 58.8 | 58.1 | 56.8 | 55.5 | 50.8 | 50.8 | 49.9 | 48.8 | 42.6 | 31.4 | 31.2 [ 11.6 | 98
Upper 752 | 73.9 | 732 | 685 | 672 | 67.2 | 64.1 | 61.2 | 57.4 | 466 | 448 | 22.4 | 222
- %Correct | 67 66 | 65 62 59 | 59 57 55 50 | 39 38 17 | 16

Item O-01, Eighth Grade
Physical

80—
60 S o
40 cC b
20 F—+
0 SWI OSsT ASL USA ENG SIN CAN HNK IRL POR SPA coL SAF
lower 70.5 67.8 | 67.2 66.6 | 60.2 61.3 | 60.6 57.9 | 56.2 41.6 | 39.6 12.4 | 10.5
upper 83.5 80.2 | 76.8 77.4 | 77.8 72.7 | 71.4 72.1 | 69.8 56.4 | 54.4 27.6 | 23.5
= %Correct 77 74 72 72 69 67 66 65 63 49 47 20 17
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Item S-01, Part a

Item S-0l1a, Seventh Grade

Figural
100
80 + IL L L | | [l
I I I F i |' |' |_
60 !-
o |
20 L
I
0
OST [HNK | SIN | ASL [ENG |USA [SPA [ IRL |CAN | SWI [POR | COL |SAF
Lower 856 | 76.6 | 75.4 | 741 | 722 | 723 | 68.9 | 66.8 | 658 | 64.2 | 54.6 | 34.0 | 11.9
Upper 96.4 | 914 | 906 | 859 | 858 | 83.7 | 831 | 79.2 | 782 | 778 | 69.4 | 56.0 | 26.1
=% Correct | 91 84 83 80 79 78 76 73 72 71 62 45 19

Item S-01a, Eighth Grade

Figural

100

) I N i

60 I.

40

20 IL

0

OST | ASL [HNK [ENG [ SIN |USA [ SPA | SWI |CAN | IRL |POR |COL | SAF

Lower 819|812 (79.2|788|76.6|77.2 763|743 |685|68.8]| 636|341 129
Upper 100.1( 90.8 | 92.8 | 87.2 | 87.4 | 86.8 | 83.7 | 85.7 | 81.5| 81.2 | 784 | 579 | 27.1
= % Correct | 91 86 86 83 82 82 80 80 75 75 71 46 20
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Item S-01, Part b

Item S-01b, Seventh Grade

Figural

60

40 !' i_

20 I' |' |' (R R |

I [ I [ f
0 [ t F
-20
SIN |ENG | ASL [OST [SPA [ USA |HNK|CAN | IRL | SWI |COL |POR | SAF
Lower 351288196 | 208|189 | 159 | 126 | 133 | 11.2 | 108 | -6.6 18 0.5
Upper 50.9 | 452 | 344 | 332|331 | 261 | 27.4 | 247 | 248 | 232 | 206 | 10.2 | 55
=% Correct | 43 37 | 27 27 | 26 21 20 | 19 18 17 7 6 3
Item S-01b, Eighth Grade
Figural

80

60

wlt b1

I r i |- b |_

20 , bt :

0 E

-20

ENG | SIN [HNK [ASL [OST [USA | SPA |CAN | IRL |SWI | POR | COL | SAF

Lower 42.1 | 40.4 (3241309291 (26.2269]|17.6 |120.5]16.3| 7.9 | -0.6 | -0.7
Upper 57.9 | 55.6 | 51.6 | 45.1 | 40.9 | 39.8 | 37.1|32.4 | 29.5 (27.7|18.1 | 226 | 6.7
- % Correct | 50 48 42 38 35 33 32 25 25 22 13 11 3
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Item V-02

Item V-02, Seventh Grade

Social

60

50 |r

40

30

” Y F

10 -

0 I' |‘ B

-10

SIN |HNK | ASL | IRL |OST |USA [CAN | swi [ ENG | SPA [POR | SAF | COL
Lower 416 | 185 (135|135 | 125 | 88 | 118|118 | 78 | 37 | 20 | -03 | -01
Upper 56.4 | 315 | 225 | 225 | 215 | 21.2 | 202 | 202 | 16.2 | 83 6.0 43 21
=% Correct | 49 25 18 18 17 15 16 16 12 6 4 2 1
Item V-02, Eighth Grade
Social

60

50 |-

40

30 |_

20 [ I' |' |' L !

T f

10 F

0 F k

-10

SIN |HNK| SWI | IRL | OST |CAN [ASL | ENG|USA [ SPA |POR [ SAF | COL

Lower 493 299|218 | 185|199 | 192|186 | 143 ] 135 | 11.3 | 55 -11 | -04
Upper 60.7 | 441 | 302 | 315 301 | 288 | 254 | 25.7 | 225 | 187 | 105 | 51 24
=% Correct | 55 37 26 25 25 24 22 20 18 15 8 2 1

182



