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ABSTRACT

A strong need exists for the development of methodologies for compositional
and structural analyses of complex carbohydrates. Vibrational spectrometry isa
valuable and powerful tool for the interrogation of many chemical systems, both
qualitatively and quantitatively and is applicable to the analyses of complex
carbohydrates. Carbohydrates play numerous critical roles in biochemical systems, and
they are ubiquitous components of living organisms. Biologically, their role as a source
of energy for physiological processesis essential. More profoundly, however, they play
crucia roles in the maintenance of cellular structural integrity and biosynthesis, and
oligosaccharides are required for the direction of these processes and aso behave as
chemical messengers. Oligosaccharides are difficult and expensive to extract from
biological sources, and, typically, only very small quantities are available for analysis.
Therefore, a sensitive analytical method that can interrogate microgram quantities of
sampleis necessary.

A methodology to determine the composition of N-linked mammalian
oligosaccharides was devel oped with the use of Fourier transform infrared
microspectrometry combined with chemometrics. Thisinitial methodology was later
modified for compositional and structural elucidations by single-bounce attenuated total
reflection spectrometry. These results demonstrated predictions with less than four
percent error in both validation and double blind studies.

Various sources of (1-3)-b-D-glucans have been found to have
tumor-necrotizing effects in mammals. Many of these anti-tumor glucans contain this
structure as a backbone with O-6-linked b-glucosyl branches with a degree of branching
of 1:3. A method of the structural analysis of intact polysaccharides was investigated
by Fourier transform infrared spectrometry/attenuated total reflection spectrometry.
The system was comprised of maltose and cellulose standards, as the sole
monosaccharide subunit in these polysaccharides is D-glucose. The results indicate very
high predictability of the relative extent of alpha and beta linkage.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

The key to the existence of all biological speciesisfound in the role that
carbohydrates play in nature. Carbohydrates are essential for energy production and
storage as well as for the provision of mechanical support for cellular structures.™* The
oxidation of carbohydratesis the principle metabolic mechanism for energy production
throughout the biosphere.®> Cellulose, the most abundant biopolymer, the exoskeletons
of various insects, and the cell walls of bacteria, fall under the umbrella of
carbohydrates.®

Carbohydrates also are in demand for avariety of industrial applications. Most
notably, the food industry relies upon carbohydrates, particularly starch, for the
production of sweeteners, bakery goods, beverages, gums, etc. Despite the introduction
of synthetic materials, the textile industry largely still depends on cellulose for
manufactured goods. The pharmaceutical industry has flourished from its devel opment
of synthetic vitamins and antibodies, both of which rely heavily upon carbohydrates for
their synthesis. Finally, the chemical industry has benefited from the generation of
monosaccharides, polysaccharides, and other related compounds in pure form. "%

Complex carbohydrates, in particular, have been shown to be valuably bioactive
viatheir participation in biochemical and physiological interactions within biological

systems.™*** Proteins that contain carbohydrates, which are covalently bonded, are



called glycoproteins. Carbohydrate structures associated with glycoproteins, commonly
referred to as glycans, can be in the form of monosaccharides, disaccharides,
polysaccharides, and oligosaccharides, and affect the physiochemical and biological
functions of the glycoprotein.***> Thisis achieved by changing the properties of the
glycoprotein by varying the structure of the glycan. They can aso direct the protein
folding and subunit assembly,*® and are significant in their effect on immunological

119 modification of the transmission signals for cellular response,® and their

properties,
influence on the activity of hormones and enzymes.?** For example, the recruitment of
leukocytes to injured tissue was found to occur through its interaction with its cell
surface carbohydrate, Sialyl-Lewis [NeuSAca2-3Gabl-4(Fucal-3)GIcNACc], and
endothelial cell selectins. The selectins are expressed in reaction to cytokines released
during the inflammatory response.?** Asaresult of these findings, an increased
interest in the development of saccharide-based anti-inflammatory and anti -cancer
drugs has commenced. Furthermore, variations in protein glycosylations have been
demonstrated to be valuable molecular markersin the diagnosis of a number of human
diseases.”?° Finally, complex carbohydrates compose the backbone of
deoxyribonucleic acid, consisting of four repeating nucleotides that contain
2-deoxy-D-erythro-pentofuranose, which encodes information with regard to
transcription and replication for the development of new cellsin biological systems.?
With increasing awareness of the biological activity of complex carbohydrates, a
growing demand has incurred for asimple, rapid, accurate, and inexpensive method to

characterize both the composition and structure of complex carbohydrates.*”*3! The



isolation of glycans from glycoproteinsis difficult and expensive, and therefore, the
sample quantity typically available for analysisis considerably limited.3*

The full characterization of glycoproteins requires several determinations. The
primary structure as well as the conformation of both the protein and the carbohydrate
side chains, which are attached, isto be elucidated. In addition, the pattern of
carbohydrate heterogeneity at each glycosylation site, the location of each glycosylation
site, and the anomeric specificity of the linkages, are typically desired. Whereas the
determination of the protein structuresisrelatively easy and well established, the
complete characterization of the carbohydrate structures continues to be problematic.

Part of the challenge in the elucidation of carbohydrate structures is attributed to
the excessive variability of potential structures. A large number of saccharide chain
variations can be brought about by a small number of monosaccharide units.
Carbohydrate moieties can be linked to the protein via any of four hydroxyl groups per
monosaccharide, and they can exist in either form of two anomeric forms and involve
either pyranose or furanose rings. As aresult, two monosaccharides can form as many
as thirty-two disaccharides, whereas, two amino acids can only form two dipeptides.
The number of carbohydrate structures increases geometrically as the number of
monosaccharide units increase because branching becomes a possibility when there are
more than two units present. *

In addition, complex carbohydrates can be divided into two groups assigned by
its linkage site on the protein. N-Linked oligosaccharides are attached to the amide
group of an asparagine side chain in an Asn-X-Ser(Thr) sequence with

N-acetyl-D-glucosamine as the reducing terminal monosaccharide. O-Linked



oligosaccharides are linked to the hydroxyl group of a Ser or Thr residue in the
polypeptide backbone, and the reducing terminal monosaccharide is usually
N-acetyl-D-galactosamine.® N-Linked oligosaccharides contain acommon
pentasaccharide core structure, Mama 1-6(Mana 1-3)Manb1-4GIcNAcb1-4GIcNAC.
N-Linked oligosaccharides are typically larger than O-linked oligosaccharides and are
divided into three categories. high mannose-type sugar chains, complex-type sugar
chains, and hybrid-type sugar chains.*®> Examples are shown in Figures 1.1 through 1.3.

The isolation of the glycan from the glycoprotein is a crucial step for the
characterization of the carbohydrate. Thisisolation resultsin the release of the glycan
from the protein to form a pool of intact oligosaccharides, which, ideally, can be
subsequently separated from each other. Both of these tasks, particularly the latter, are
very challenging. The former task can be achieved either enzymatically or chemically.

Two types of enzymes are known and are now commercially available for
release of asparagine-linked oligosaccharides from the glycoprotein. Thefirst,
peptide-N-(N-acetyl -b-glucosaminyl)-asparagine amidase, severs the GICNAc-Asn
linkage to provide an intact oligosaccharide that possesses areducing terminal. The
second, endo-b-N-acetyl -D-glucosaminidase, hydrolyzes the bond between the two
glucosamine residues, and therefore, one of the N-acetyl-D-glucosamine units remains
attached to the protein.***’

The release of oligosaccharides from glycoproteins can be achieved chemically
for both N-linked and O-linked oligosaccharides with either hydrazine or
trifluoromethanesulfonic acid. The former is able to differentiate between N-linked and

O-linked oligosaccharides and provides the oligosaccharides with reducing termini.



Figure 1.1 Example structures of high mannose-type oligosaccharides.
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Figure 1.2 Example structures of complex-type oligosaccharides.
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Figure 1.3 Example structures of a hybrid-type oligosaccharide and a bisected

oligosaccharide.
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Trifluoromethanesulfonic acid, however, will preserve the intact protein whereas
hydrazine will inevitably degrade it.®®

Because the monosaccharide constituents of complex carbohydrates have similar
structures, it is very difficult to separate heterogeneous glycoforms into homogeneous
oligosaccharides. Freguently, the oligosaccharide composition only differs by one
monosaccharide, and sometimes only the anomeric linkages vary in cases where the
composition isidentical.

The separation of complex carbohydrates has been attempted by a number of
different methods. Among these are several common chromatographic methods such as
gas chromatography, thin-layer chromatography, high-performance liquid
chromatography, and supercritical fluid chromatography. 3334 A|so, methods have
been applied which depend upon both size and charge. Although high-pH
anion-exchange chromatography with pulsed amperometric detection is an obvious
choice for charged species,™>***’ for uncharged oligosaccharides, gel-permeation
chromatography and ion-exchange chromatography in a borate buffer, only if the sugars
have cis-hydroxy! groups, which allow for the formation of charged borate complexes,
are sometimes successful. For the elucidation of any carbohydrate structure, it is
essential to analyze its monosaccharide composition. Two major restrictions obstruct
the separation and detection of the monosaccharide subunits. First istheir weak
absorption in the ultraviolet region, which is attributed to the presence of only a small
fraction of an aqueous saccharide solution in the carbonyl form, which renders the
solution insufficiently chromophoric.® Furthermore, there is the inconvenience

imparted by their lack of fluorescence since the transition states are too high in energy
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to be observed at wavelengths longer than 190 nm.* In some cases, these problems can
be circumvented by the derivatization of the carbohydrates prior to separation and
detection.*°

Mass spectrometry and gas chromatography/mass spectrometry have been
applied to monosaccharide compositional analysis of oligosaccharides that are
depolymerized after being subjected to hydrolysis.**** Unfortunately, mass
spectrometry is not inherently capable of distinguishing monosaccharides that are
isobaric, such as glucose and mannose, which it is often that monosaccharides only
differ in their stereochemistry. Therefore, it is usually necessary to apply a separation
technique, such as gas chromatography, prior to mass-spectrometric analysis.*°>>® |n
addition, ionization of pure monosaccharides is not easily achieved and, therefore, it
usually requires the derivatization of the sample to assist in ionization and detection by
mass spectrometry. 16>+

Nuclear magnetic resonance spectrometry has gained prominence as a method
for compositional and structural elucidation of complex carbohydrates,!#333°¢% A
large amount of starting material, however, isrequired and is often unfeasible to obtain
from biological samples. Many complex carbohydrates have over 500,000 distinct *H
environments, and to achieve aresolution of 0.5 part per million, a 10" Hertz nuclear
magnetic resonance spectrometer, which currently does not exist, would be required.®
Finally, the rate at which the data from a single sample could be interrogated could
cause the duration of an experiment to exceed aday for the acquisition of useful

information. In addition to the inconvenience imposed by the excessive time

consumption, this long an acquisition period poses a great challenge for any instrument
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in the maintenance of a constant homogeneous magnetic field, which would be
necessary to preserve background stability. Both nuclear magnetic resonance
spectrometry and mass spectrometry are time-consuming, involve expensive
instrumentation, and require highly specialized expertise for both operation and data
interpretation.

Obvioudly, the introduction of arapid, sensitive, accurate, inexpensive, and
simple technique would be quite welcome to address the critical need for carbohydrate
analysis. Fourier transform infrared spectrometry has been used in the past to
investigate carbohydrates in the food and beverage industries.®**2 |t has not been
used routinely, until recently, to analyze biological complex carbohydrates. By using
Fourier transform infrared microspectrometry, small amounts of sample can be
interrogated with high sensitivity. This technique offers an advantage over previous
methods in several respects. It does not suffer from the inability to discern isomeric and
isobaric molecules that mass spectrometry does, nor does it suffer from the slow rate of
data acquisition or insensitivity from which nuclear magnetic resonance possesses. In
addition, it does not require the level of expertise needed for either of the former
techniques, and the instrumentation can be acquired and maintained for afraction of the
cost. Visual qualitative analysis of monosaccharides and polysaccharides by infrared
spectrometry is nearly impossible since the vibrational spectrathey produce in the
infrared region contain no unique bands to distinguish individual saccharide species
from each other. Compositional analysis of oligosaccharides is further hindered
because the monosaccharides from which they are composed appear very similar to one

another and contain overlapping bands. The spectra of monosaccharide mixtures with
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varying concentration do contain minor variations even though they are indiscernible to
visual interpretation. Recent advances in statistics and computer algorithms circumvent
thisrestriction by offering an alternative for the interpretation the data and reliable
extraction of useful compositional and structural information.

This dissertation discusses a new approach for the analysis of complex
carbohydrates with vibrational spectrometry in the mid-infrared region. The following
chapter describes the design of a novel methodology to determine the composition of
mammalian N-linked oligosaccharides quantitatively by Fourier transform infrared
microspectrometry. Chapter three takes this approach a step further through the
application of another infrared spectrometric technique, attenuated total reflection
spectrometry, which, for this application, proved to be superior to, and ultimately
simpler than, the microspectrometric technique. A discussion of the theory and
instrumentation of attenuated total reflection is provided in the introduction of the third
chapter. Finally, chapter four investigates the potential of infrared spectrometry to
analyze structural differences among several intact glucans. Again, the approach is
guantitative and further exploits the advantages of attenuated total reflection
spectrometric technology. Glucans are chosen because not only are they acritical initial
step toward the analysis of intact oligosaccharides, but also glucans, themselves, are
important for cancer research and are being investigated for their anti-tumor
properties.’®1%% A method to analyze them accurately and efficiently would be

invaluable to the medical community and the overall quality of life.
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Fourier Transform Infrared Microspectrometry
Fourier transform infrared microspectrometry unites the areas of vibrational
spectrometry and microscopy. In the scientific community, it has become afavorable
method for the analysis of biological samples, asit is capable of measuring small areas
of large samples. In fact, improvements in sample synthesis and purification have
allowed it to be used for the measurement of small sample quantities approaching the
picogram level. Infrared microspectrometric techniques are useful for awide range of
sample types especially those encountered in the forensic, textile, polymeric, and
biological fields.?®%°
Infrared microscope systems usually have a computer-interfaced video cameras
incorporated into them, which allow an image of the sample to be visually displayed
and stored in adatabase. Often, the stage of the microscope, where the sample resides,
is acomputer-interfaced translation stage, which allows spectral profiling of adesired
area of asample at about 20-mm resolution and provides for applications that involve
automated stage movement. Infrared microscopes differ from conventional
microscopes in that they contain two beam paths. One beam path isfor infrared
radiation, and the other is for visual observation. The two beam paths, however, share
the same condenser, and they intersect at a remote aperture. The apertureislocated at
an intermediate focus rather than the focus at the sample, as the focus of the beam is
smaller at the latter location. Asaresult, the radiation is restricted to a much smaller
area thereby reducing the scattering. When asampleisin focus, its conjugate imageis
focused at the remote aperture, its visible image can be seen through the optical

microscope, and itsinfrared interferogram is sent to the detector, which isusually a
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small element (100 x 100 mm to 200 x 200 nm) mercury cadmium telluride detector to
maximize sensitivity.® The microscope allows the operator to switch between the two
modes without repositioning or refocusing the sample since the same cassegrain
objective is used for the visible and infrared radiation. When the microscopeisin the
viewing mode, the helium-neon laser and infrared radiation from the spectrometer are
blocked from reaching the sample. Likewise, when the microscope isin the infrared
gpectral collection mode, visible radiation from the illuminator does not reach the
sample.’’

Infrared microscope accessories are capable of the measurement of both
transmission and reflection spectra. In Figure 1.4, the optical path for viewing the
sample in transmission mode is shown. Mirror 1 redirects light from the illuminator up
through cassegrain 1, which condenses the beam to a suitable size for the sample and
focusesit at the sample location. The light from the sample is collected by cassegrain 2
and directed through the remote aperture after which the beam has an unobstructed path
to the optical microscope. A transmission spectrum can be collected by the system as
shown in Figure 1.5. Mirror 3, instead of receiving visible radiation from the
illuminator, receives the infrared radiation from the spectrometer directed by mirror 2, a
toroidal flipping mirror. Mirror 1, the detector mirror, is positioned into the beam
above the remote aperture. Cassegrain 3, the mercury cadmium telluride detector
cassegrain, condenses the beam onto the detector where the interferogram is collected.”’

In order to view the sample through the optical microscope when the systemis
in reflection mode, which is shown in Figure 1.6, mirror 4 (arelay mirror) directs light

received from the illuminator down one side of cassegrain 2 to the sample.



Figure 1.4
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The path of the optical beam in an infrared microscope when viewing in

transmission mode.
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Figure 1.5
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The path of the infrared beam in an infrared microscope when collecting

a spectrum in transmission mode.
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Figure 1.6
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The path of the optical beam in an infrared microscope when viewing in

reflection mode.
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Cassegrain 2 collects the radiation from the sample and sends it through the remote
aperture to the optical microscope. When the system is in this mode, the sample is
shielded from the radiation of both the helium-neon laser and the infrared source of the
spectrometer. To collect a spectrum in reflection mode, as shown in Figure 1.7,

mirror 2 directs the infrared radiation from the spectrometer to mirror 3, rather than
directing to mirror 4, and the sample receives no visible radiation from the illuminator.
Mirror 4 directs the beam down through one side of cassegrain 2 to reflect off the
sample, and cassegrain 2 collects the reflected radiation and directs it through the
remote aperture. Mirror 1 is positioned above the remote aperture, and the beam is
directed through cassegrain 3, which focuses it onto the detector where the
interferogram is attained.®’

The size of a sampleimage is determined by an aperture, usually called aremote
aperture or targeting aperture. In the absence of the aperture, the infrared microscope
would allow alarge percentage of the radiation to pass through the sample and produce
spectra from regions that are not of interest. That is, the beam may be too largein
diameter to examine a limited region of the sample. A second aperture under the stage
also rejects alarge portion of unwanted infrared radiation to reduce scattering effects
and consequently reduce spectral impurities. The minimum sample size that can be
examined is between 10 and 15 nm in diameter, which is limited by diffraction effects
rather than by the signal-to-noise ratio, which is often an important performance

criterion for macroscopic measurements.®®



Figure 1.7
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The path of the infrared beam in an infrared microscope when collecting

a spectrum in reflection mode.
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Chemometrics

For analytical chemistry, the field of relating measurements made on a chemical
system via application of mathematical or statistical methods has evolved into a
discipline of its own known as chemometrics. Infrared spectra of mixtures often
contain numerous overlapping bands, especially when the mixtures are of closely
related compounds, such as monosaccharides. Fortunately, developmentsin statistics
and computer algorithms have generated an abundance of calibration methods. Many
of these methods have expanded the capabilities of quantitative analytical techniquesto
address increasingly difficult problems, such as spectrometric carbohydrate analysis.®*

Calibration, as described herein, is a procedure that relates instrumental
measurements to analytes of interest and requires a known relationship between these
measurements and the quantity of the analytes present. *™ Throughout this work, the
Bouguer-Beer-Lambert Law, which states that the concentration, C, of an analyteis

directly proportional to the measured absorbance, A, will provide this required

relationship unless otherwise stated. That is,

A=€EnC

where € s the absorptivity coefficient of the analyte (constituent), and b is the optical

pathlength through the sample.”®"?

The ultimate goal of spectrometric quantitative analysisisto create a calibration
equation or series of equations with a set of standard spectra of known composition.
The spectra of such a set and the calculated equation or series of equationsis caled a
calibration set or training set. Once the calibration equations have been determined,

they can be used to predict the same quantities in an unknown sample, provided that the
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unknown sample is measured under the exact same conditions on the same instrument
asthe calibration set. Furthermore, the set of standard mixtures should reflect the
composition of the unknown as closely as possible and span the range of expected
concentrations.

Throughout this work, a calibration method known as Partia Least Squaresis
used almost exclusively. It is necessary to develop a practical conceptualization of the
method to appreciate the information it provides and the advantages it offersin
comparison to an abundance of other statistical methods. It is hoped that in the
following discussion, the basic principles behind Partial Least Squares are elucidated
sufficiently such that any misconceptions that the mathematics are mystically rooted are
dispelled. Inaddition, several its predecessors are explored, by necessity, not only to
achieve this end but also to underscore its strengths and weaknesses that differentiate it
from other widely accepted methods. If there is further interest or adesire for amore
mathematically rigorous discussion of any or all of these techniques, the works cited

throughout the final section of the chapter are highly recommended.” "

Classical Quantitation: Least Squares Regression. The most straightforward
and readily understood statistical method is the linear regression. The area, or height, of
a selected spectral region is assumed to be related to the concentration of the
constituents of the sample. Thisrelationship is described by a polynomial equation
such as:

C=B4(Area) + By

or



28

C = By(Height)? + By(Height) + By
where C is the concentration of a constituent of interest, and B isacalibration
coefficient. Thereisonly one measurement per sample used to solve the equations,
which makes this an example of a univariate model .%°

Least Squares Regression is a technique in which model equations are solved via
peak area, or height, of standards with a known constituent concentration. The
coefficients are calculated such that the residuals between the known spectral responses
and the predicted responses are minimized. Predicted spectral responses are
extrapolated from the values on the calibration curve at known concentrations. Itis
possible to obtain more than one calibration coefficient, and the minimum number of
calibration samples needed to solve the equation is equal to the number of calibration
coefficients in the model. The peak areas, or heights, in the equation can be used to
predict the concentration of a constituent in unknown samples that contain the same
constituent.®

The main advantages of this technique are its relative simplicity and the ability
to calculate very rapidly with current computer technology. This method is useful
primarily for sasmples that consist of only afew pure compounds. There are, however,
several limitations to this method.

Spectral bands that are specifically characteristic of the constituents of interest
arerequisite. Also, sample purity iscrucia; impurities or other constituents that
produce overlapping bands with the constituent of interest will produce large errors.
Finally, adifficulty arisesin the selection of the appropriate polynomial degree, as not

al spectrometric systems adhere to linear relationships.®
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Multivariate Statistical Methods: Classical L east Squares and Multiple
Linear Regression. A technique that allows a much larger portion of the spectrum to
be exploited than the Least Squares Regression model is Classical Least Squares. As
with the former method, Classical Least Squares is founded on the principle of the
Bouguer-Beer-Lambert Law. Reexamination of the Bouguer-Beer-Lambert Law
equation indicates that, if the pathlength is held constant, which is common in
spectrometric measurements, it can be incorporated into a single term with the
absorptivity coefficient. This substitution yields the following equation:
A =K, C
And, after rearrangement, prediction of an unknown constituent concentration istrivial:
C=A//K,
where A, isthe spectral response at a given wavelength, C is the concentration of the
constituent of interest, and the absorptivity coefficient and pathlength are represented as
asingle absorptivity constant at the same wavelength, K. Aswith the previous
technique, a series of measurements may be taken at different concentrations, and a
best-fit line through all of the data points may be calculated. The situation is
compounded when more than one constituent is present. In cases where there are two
nortinterfering constituents, it is necessary to account for the absorbance of each
constituent independently, which may be expressed by the equations that follow:
A=K, Cy
A=Ky, Gy
where C, and C,, are the concentrations of constituents a and b in the mixtures, K,

and K, are the absorptivity constants, and A, and A, are the absorbances. The sum of
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A, and A, is the total absorbance for the mixture. For each additional constituent in the
mixture, there must an additional equation introduced, since, as with any algebraic
solution, there must be as many equations as unknowns. The above equations,
however, reflect neither the dependence of the absorptivity constants on wavelength nor
the absorbances that result. The equations that follow demonstrate the dependence of
the total absorbance of a mixture upon wavelength:
A1 =Kai1 G+ Kpj1 G
A2 =Kq2 Ca+ Kpi2 Gy

where K, 1 and Ky, | ; are the absorptivity constants for constituents a and b at
wavelengthl 1, K, 2 and Ky, |, are the absorptivity constants for the respective
constituents at wavelengthl ,, and A,; and A, are the absorbances at the respective
wavelengths. The same mixture may yield variations in absorbance at different
wavelengths due to the incongruence of absorptivity constants for each constituent and
to their dependence on wavelength, % 7072808283

In addition, it is necessary to introduce another variable to compensate for errors
that are always present in real measurements. Electronic noise, instrumental error, and
sample handling error are among a host of other possible variations. The equations that
follow take these into consideration:

A1 =Ka1 G+ Kp 1 G+ By
A2=Ka2 G+ Kp12G + Ei2

where E,; ; and E, , are the residuals between the actual absorbances and the least squares

fit values for each of the measured wavelengths. E,; and E,, essentially serve the same

function as the offset coefficientsin a Least Squares Regression model. If there are
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more than two components present or more than two wavelengths used, then the system
of equations that result can be solved vialinear algebra. In this manner, the preceding
equations can be represented in matrix terms as:
Ag.m = Cmny Kmiy + Ean
where | isthe number of calibration spectra, mis the number of constituents, and nis
the number of selected wavelengths. It followsthat A isan | x n matrix of calibration
gpectra, C isan mx n matrix of constituent concentrations, K isan m x | matrix of
absorptivity constants, and E isan | x n matrix of absorbance offset. The K matrix is
computed from the following equation:
K=AC*
where C isthe inverse of the constituent concentration matrix. Determination of the
inverse of an m x n matrix requires mand n to be equal, which is not the case unless the
number of constituents is the same as the number of samples. In the above equation,
however, when overdetermination of the dataforcesm? n,*® theinverse of C may be
substituted by its pseudo-inverse in the manner below:
K =A(C@)*Ce
where K isthe least squares estimate of K in which the residuals are minimized, and C¢
isthetranspose of C. Once K isknown, evenisit is not square, it can be used to
determine the concentration of an unknown constituent concentration, u, by:
u = (KK)*Kx
where x is the spectrum of an unknown sample.®%808283
Classical Least Squares, also known as K matrix, has a number of advantages

over the Least Squares Regression method. One is that wavelength selection is not
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necessary so long as the number of wavel engths exceeds the number of constituentsin
the mixtures. In addition, inclusion of alarge number of wavelengths produces an
averaging effect in the model, which causes it to be less susceptible to noise present in
the data. Furthermore, moderately complex mixtures can be modeled, and, asin Least
Squares Regression, the calculations are fast. Finally, if the Bouguer-Beer-Lambert
Law isnortlinear, it can be approximated as being linear over afinite range of
concentrations. A nonzero intercept at zero concentration occursin the linear region of
the curve. This can be incorporated into the model by placing an extrarow of onesinto
the C matrix and an extra column of constants for the intercept into the K matrix while
the A matrix remains unaffected.®®

The overwhelming disadvantage from which Classical Least Squares suffersis
that the equations must be calibrated for every constituent present in the mixtures. This
constraint arises from the dependence of the absorbance at a particular wavelength on
the sum of all of the constituent absorbances. As stated previously, the absorbance of a
constituent is the product of its concentration and absorptivity constant. If the
concentration of any constituent is omitted, then the predictions may bein error. Asthe
mixtures become increasingly complex, the predictions of the model will further suffer.
If contaminants reside in the mi xtures measured for analysis that either are not present
in the calibration mixtures or are present in the calibration mixtures but not considered,
then the ability of the model to make predictions may be critically diminished.
Furthermore, this problem may also occur if there are chemical interactions among the
constituents, as even slight amounts of reaction byproducts of unknown concentrations

may adversely affect the calibration. Classical Least Squares performs best when
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applied to both systems that have little or no inter-constituent reactions and systems that
are not exceedingly complex and of which the composition is completely known.”" 848
In real world systems, it is unlikely to possess complete knowledge of the
composition of a sample mixture. In addition, the analysis of only afew of al of the
constituents that exist in a highly complex mixture is often desired. In these cases,

Classical Least Squares will not function well. One alternative arises through the

rearrangement of the Bouguer-Beer-Lambert Law and expression of it as follows:
C=A//€b

Combination of the absorptivity coefficient and pathlength into one constant and re-
expression in matrix terms yields:
C=AP+E

where C isthe matrix of constituent concentrations, A, isthe matrix of absorbancesat a
specific wavelength | , P isthe matrix of unknown calibration coefficients that relate the
constituent concentrations to the absorbances, and E is the matrix of concentration
errors. This expression of the Bouguer-Beer-Lambert Law allows the concentration to
be afunction of absorbance at a series of wavelengths. Thisisunlike Classical Least
Squares, where absorbance at a particular wavelength is calculated as an additive
function of concentrations. In the system of equations below, it is apparent that the
matrix of coefficients can be properly calculated even if the concentrations of all of the
other constituents are unknown.

Ca=Ai1Pan t AP+ B

Co=A11Poi1 +A2Py 2+ B
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The P matrix is calculated vialinear algebra in manner analogous to the determination
of the K matrix in the former method, and, if the A matrix is not square, then the
calculation must be made by the substitution of A™* with the pseudo-inverse of A. This
method is known as Multiple Linear Regression, Inverse Least Squares, or P matrix. It
appears to be panaceafor al quantitative analysis schemes because the sample
composition with respect to only the constituents of interest is sufficient for calibration,
provided that the appropriate wavel engths, which correspond to the absorbances of the
desired constituents, are selected. Multiple Linear Regression is a multivariate method,
that is, the dependent variable is solved from a calculated solution from multiple
independent variables.”"®

In univariate models, a wavelength must be selected where al but one of the
constituents have absorptivity constants equal to zero, and hence, the selected
wavel engths can be used to solve separate equations for each constituent. In real
measurements, wavel ength selection, even when it is possible, is seldom
straightforward, as many sample systems contain overlapping bands, and therefore, the
equations for all constituents must be solved simultaneously. Thisrestriction isan
inherent weakness of univariate methods. Multivariate methods, with which a series of
equations are solved by use of many measurements per sample for asingle calibration,
have a distinct advantage in that they permit the inclusion of spectral absorbances over a
broader range of wavelengths. Therefore, the solutions are more robust due to the
effects of averaging. The main advantage of multivariate methods, however, isthat it is

possible to calibrate for a desired constituent without the need to account for any
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interferences that occur in the spectra. As aresult, they are more useful than univariate
methods for systems that consist of highly complex mixtures.®

Unfortunately, there is a stipulation sufficiently profound to impose a
considerable obstacle for the application of Multiple Linear Regression. The number of
wavelengths selected cannot be greater than the number of training samples. Although
the number of wavelengths selected can be easily augmented by inclusion of a greater
number of calibration mixtures, this apparent remedy will lead to the problem of
collinearity. In other words, as more samples are added to the calibration set,
near-linear relationships between absorbances at multiple wavelengths begin to occur,
which will induce a mathematical solution that is unstable with respect to each
constituent.”® Furthermore, overfitting arises when too many wavelengths are included,
which causes the calibration to model noise that is unique to the training set, hence, a

deficiency in the predictive accuracy for unknown samples results.®®

Continuum Regression Statistical Methods. Principle Components
Regression and Partial Least Squares. Another approach, which may combine some
of the separate advantages of Classical Least Squares and Multiple Linear Regression,
is founded on a principle known as spectral decomposition. The concept relies upon the
assumption that the spectra of real samples are comprised of many different variations,
and that there is only a finite number of independent variations that contribute to the
spectral data. It is expected that the largest variations in the spectra of the training set
may be changes that are attributed to different concentrations of the constituents of the

mixtures. If it were possible to calculate a set of variation spectra, they could be used,
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by multiplication by different scaling factors and subsequent co-addition, to reconstruct
a spectrum that closely resembles the spectrum of an unknown mixture.*

These variation spectrawill be referred to throughout this work as loadings, but
they are also commonly known as eigenvectors, loading vectors, principle components,
factors, or spectral loadings. The scaling factors that are used to reconstruct unknown
spectra are called scores or eigenvalues, but the former term will be used herein
exclusively. Asthe calculated loadings come from the original training set, they must
be related to the concentrations of the constituents in the mixtures. If the same loadings
can be used to predict unknown samples, then the only difference among the spectra of
different mixtures would be the scores.

The scores take the place of the absorbances in either of the previous two
statistical methods discussed. Because the representation of the spectrais reduced to a
few scores from a multitude of wavelengths, the implementation of the Multiple Linear
Regression modification to the Bouguer-Beer-Lambert Law may provide the ability to
calculate concentrations among the presence of interfering constituents. In addition, the
advantages of Classical Least Squares are retained in that the entire wavelength domain
may be included in the calculation. All continuum regression methods share this
premise, and the differences among these models, including the two discussed below,
lay in the manner in which the loadings are calculated.®* Note in particular that these
models are based on variations in relative absorbances and not the absolute
absorbances.

One method that uses this model of spectral variation to create the calibration

equations is Principle Components Regression. The first step of this method, that is, the
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calculation of al of the possible variations, is Principle Components Analysis. Before
Principle Components Analysis may be applied to the data, the spectra are typically
mean-centered. That is, the average spectrum is determined and subtracted from each
of calibration spectra. This allows greater emphasis to be given to differences among
the spectra and less attention to be given to common spectral features. Removal of the
mean simply eliminates the most common variations before the data undergoes
Principle Components Analysis.”

Principle Components Analysisis essentialy an iterative elimination of each
independent variation from the calibration datain series. In this manner, it is possible
to produce a set of loadings that represent the variations of absorbances that are
common throughout the entire set. The matrices that result from the fully processed
calibration are shown in the ssimplified matrix expression of the model equation that
follows:

A = ik Lk + Eap
wherei isthe number of calibration spectra, j isthe number of data points used for the
calibration, and k is the number of loadings. It followsthat A isani x| matrix of
spectral absorbances, Sisan i x k matrix of scores, L isak xj matrix of loadings, and E
isani xJ matrix of residual spectra, that is, the error in the ability of the model to
predict the calibration absorbances. Several algorithms have been developed to
calculate the loadings from a set of data. Two common ones are Decomposition of
Covariance and Non-Linear Iterative Partial Least Squares. Detailed descriptions of
these and other algorithms, such as Single Value Decomposition and Successive

Average Orthogonalization, may be found elsewhere in the literature.” In general,
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the Decomposition of Covariance algorithm is the fastest to calculate, but often
produces numerical errors, and, therefore, the Non-Linear Iterative Partial Least
Squares algorithm, which is more robust, iswidely utilized and is typically the one that
is chosen for most commercial software packages that support continuum regression
statistical methods.

The above equation is reminiscent of the Classical Least Squares model
equation in that the entire spectrum may be included in the model. The scores and
loadings, however, are used in place of the concentration and absorptivity constant
matrices. Since the concentration matrix has not played arole in the model calculation,
Principle Components Analysis cannot be used unaccompanied for prediction. The
loadings, which represent spectral variations common to all of the calibration spectra,
are employed to calculate a regression model from which constituent concentrations
may be predicted. Theloadingsinthe L matrix cannot be used to represent the original
data without the scores matrix, S. The scoresin the S matrix are unigue to each
spectrum, and they correlate to a given set of loadings. Therefore, it is possibleto
perform aregression of the concentration matrix C directly against the scores matrix, S,
by:

Ciniy = By Sy + Eni)
wherei isthe number of calibration spectra, h is the number of constituents used for the
calibration, and k is the number of loadings. It followsthat Cisan h xi matrix of
constituent concentrations, B isan h x k matrix of the regression coefficients, Sisak xi

matrix of scores from the Principle Components Analysis nodel, and Eisan h x|
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matrix of residuals. Asinthe Multiple Linear Regression method, the coefficient
matrix can be solved by:
Bihiy = Cniy (Siy Stiy) St
The name, Principle Components Regression, comes from these two steps, which
combine Principle Components Analysis and Multiple Linear Regression, to calculate
the calibration equations. A single unified equation to represent the Principle
Components Regression can be produced by rearrangement of the matrix model
eguation so that the scores are a function of the spectral absorbances and loadings:
Sti) = Adij) Fi)
F is an orthonormal matrix in that the product of itself and its transpose is the identity
matrix. Therefore, it is not necessary to use the inverse of F to solve this equation. The
final equation emerges when the concentration equation and scores equation are
combined:
Cni) = B Ajy Féeiyt Eqniy
where Cisan h xi matrix of constituent concentrations, B isan h x k matrix of the
regression coefficients, A isai xj matrix of spectral absorbances, and Fisak xj matrix
of loadings. In addition, it istypical in the second step to add an extra unit vector
column to the scores matrix to accommodate the inclusion of an offset coefficient in the
regression.®
There are, however, several drawbacks to this method. Although it is presumed
that the variations in the spectral data are the result of variations in the constituents of
interest, there is no guarantee of a direct correspondence. Furthermore, the predictive

ability of thismodel will be adversely affected if there are collinear constituent
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concentrations. This meansthat if arelatively large number of calibration samples must
be incorporated into the model, then precautions must be taken to ensure that the
constituent concentrations in the training samples are adequately randomized.?’

Another spectral decomposition method, and the one that is used primarily in
this study, is Partial Least Squares. It issimilar to Principle Components Regression
except that, rather than decomposition of the spectra into loadings and scores and then,
as a separate step, regression against the concentration information, the concentrations
are introduced into the decomposition process. Asaresult, spectrathat contain higher
constituent concentrations are more heavily weighted than those of low concentrations
are weighted. The incentive is to incorporate more concentration information into the
first few loadings.

Thisinclusion brings about two separate sets of scores and loadings. One set is
for the spectral data scores S and for the loadings L s which represent the common
variations in the spectra. The other set isfor the concentration data scores T and for the
loadings L1, which represent the variations in the spectra that correspond to the
regression components. A calibration model is constructed by relation of the two sets
of scoresto each other. Thisis done as a single step, which is unlike the two-step
process used in the Principle Components Regression method. Partial Least Squares
performs the spectral decomposition and the concentration data decomposition
simultaneously, and, as each loading is cal culated, the scores are exchanged before the
contribution of the loading is removed from the data. Following this, the reduced
matrices are used to calculate the next loading, and the entire process is repeated

iteratively until the desired number of loadingsis produced. The model equations
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which result are considerably complex mathematically, and, as they are beyond the
scope of this discussion, the algorithms used for the calculation of the Partial Least
Squares model may be found elsewhere in the literature."#8%9%98

The primary advantage of Partial Least Squaresis that the spectral vectors are
directly related to the concentration of the constituents of interest. Two forms of Partial
Least Squaresexist: PLS-1 and PLS-2. The difference between these is that, while
PLS-1 calculates a separate set of scores and loadings for each constituent, PLS-2
calibrates for all of the constituents ssmultaneously. PLS-1, for the most part, is more
robust than PLS-2 because a model generated by PLS-2 cannot be optimized for each
constituent individually. The advantage of PLS-1 is more pronounced when the ranges
of constituent concentrations are disparate. The calculation time requirement with
respect to PLS-1 relative to PLS-2, however, increases dramatically as the number of
explicitly modeled constituents increases.

Although Partial Least Squares has generally been shown to outperform
Principle Components Regression, particular care must be taken to avoid collinear
constituent concentrations. Furthermore, it is essential that the calibration set reflect the
range of concentration variability expected in unknownsamples. Both, however,
provide the advantage of permitting overdetermination of the data as with Classical
Least Squares by including full spectral coverage; they also produce the advantage of
partial composition regression provided by Multiple Linear Regression. Partial Least
Squares may be used for highly complex mixtures, as not only must solely the
constituents of interest be known to apply the calibration, but also, in some cases,

predictions on samples that include contaminants not found in the training samples may



be undertaken. As no definitive guidelines exist with regard to selection of the
calibration technique best suited for a particular system, reasonable intuition and

conventional wisdom often may be the only tools available for that determination.

42
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Abstract

Carbohydrates are an important class of biochemical compounds.

Compositional analysis of mammalian N-linked oligosaccharidesis performed routinely
with gas chromatography and combined gas chromatography/mass spectrometry.
Infrared spectrometry has not been used frequently in the study of oligosaccharides.
Nonetheless, infrared spectrometry can be applied quite effectively because each unique
structure, with the exception of optical isomers, has a corresponding distinct infrared
spectrum. Even large sugars that only have minor structural differences produce
distinct infrared spectra.

Thisinvestigation involves the rapid and accurate determination of
monosaccharide composition in complex carbohydrates. Oligosaccharides are
depolymerized in order for the individual monosaccharides to be quantified by Fourier
transform infrared microspectrometry. The representative monosaccharides found in
mammalian N-linked oligosaccharides are b-mannose, D-gal actose, L-fucose,
N-acetyl-D-glucosamine, N-acetyl -D-neuraminic acid, and N-acetyl-D-galactosamine. A
common impurity is D-glucose and is therefore included in the study. A quantitative
model was developed by the application of partial least squares regression methods to
the spectra of mixtures of these seven monosaccharides, which mimic the composition
of the oligosaccharides to be depolymerized. The standards and samples for prediction
were subjected to acid methanolysis and peracetylation. Methanolysis was chosen over
simple hydrolysis to protect N-acetyl-D-neuraminic acid. In addition, the peracetylated
product is highly soluble in methylene chloride, which is an ideal solvent for direct

deposition onto an infrared transparent window.
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A representative set of samples was prepared and analyzed. Only the region
from 1850 cni' to 850 cmi* was used to build the partial least squares model. In
addition, the spectra were baseline-corrected and normalized. Severa regions for
normalization were investigated in order to minimize the dependence of a particular
region on any factors other than the thickness of the deposit. Leave-one-out predictions
demonstrated the validity of the data set. The model was further validated by an
external set of mixtures that were not incorporated into the original calibration model.
Finally, predictions of unknown samples produced excellent results that surpassed the
performance of the conventional gas chromatographic and combined gas

chromatographic/mass spectrometric methods for analysis.
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I ntroduction

A strong need exists for the development of methodologies for compositional
analyses of complex carbohydrates.* Vibrational spectrometry is a valuable and
powerful tool for examination of many chemical systems for both qualitative and
guantitative analyses and is applicable to the analyses of complex carbohydrates. Such
amethod is presented.

Carbohydrates play numerous important roles in biochemical systems, and they
are ubiquitous components in living organisms. Biologically, their role as a source of
energy for physiological processesis essential. More profoundly, however, in addition
to playing crucia rolesin maintenance of structural integrity and biosynthesis, it has
been found that oligosaccharides are required for the direction of these processes and
also behave as chemical messengers.? It is the latter of these properties that guides this
study towards the compositional and structural analysis of mammalian N-linked
oligosaccharides. It should be noted that oligosaccharides are necessary for immune
response and are present in more than fifty percent of mammalian proteins.
Oligosaccharide extractions are costly, and, typicaly, only very small quantities are
available for analysis. Therefore, a sensitive analytical method that can interrogate
microgram or smaller quantities of sampleis critical.*

The selected methodol ogy involves the determination of the percent
composition of each of seven different monosaccharides that occur in N-linked
oligosaccharides. The monosaccharides of interest are D-mannose, D-gal actose,
L-fucose, N-acetyl-D-glucosamine, N-acetyl-D-neuraminic acid type VI,

N-acetyl-D-galactosamine, and D-glucose. These seven were chosen as they, with the
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exception of D-glucose, are the most common monosaccharide subunits encountered in
the analysis of N-linked mammalian oligosaccharides. Glucoseisincluded in the
domain sinceit is an impurity that is often encountered in oligosaccharide assays.
Structural representations of these seven monosaccharides are presented in Figures 2.1
and 2.2.

Severa methods have been developed for compositional and structural analysis
of complex carbohydrates, including gas chromatography/mass spectrometry®® and
nuclear magnetic resonance.** Although both of these methodol ogies are valuable
tools for the determination of structure and composition for awide range of compounds,
each has inherent drawbacks. One disadvantage that both of these techniques have in
common is the considerable expense of the instrumentation and the high level of
difficulty in the development of automated routine analyses.®

Gas chromatography/mass spectrometry has been used routinely for analysis of
oligosaccharides.*®*® It is not, however, an ideal tool for these compositional analyses
for severa reasons. First, mass spectrometry cannot be used effectively without the
separation of the components of interest prior to analysis.® For example, galactose and
mannose, although structurally incongruent, are isobaric and, therefore, are not well-
suited for distinction by mass spectrometry.’® Gas chromatography requires
derivatization of the analytes, which introduces absolute errors in these quantitative
analyses as great as twenty percent. The errors may be attributed to the inability to
control derivatization rates.

Nuclear magnetic resonance possesses several advantages in the areas where

mass spectrometry is insufficient, such asits ability to distinguish compounds of



Figure 2.1

The structures of four of the seven monosaccharides.
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Figure 2.2

The structures of the remaining three of the seven monosaccharides.
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identical molecular weights; however, it poses other inherent challenges. First, and
foremost, isitsintrinsic insensitivity as a detector. Nuclear magnetic resonance requires
greater sample mass than is economically feasible in order to obtain an adequate signal
intensity. In addition, quantitative analysis, which requires reproducible spectral
interrogation, is thwarted by the relative inability to maintain a homogeneous magnetic
field in nuclear magnetic resonance. It is nearly impossible to obtain identical spectra
from the same sample upon multiple acquisitions. Although nuclear magnetic
resonance seldom poses a problem for qualitative analysis, reproducible data are a
prerequisite for statistical analysis.”®**

In contrast, Fourier transform infrared spectrometry is a sensitive analytical tool
with awide variety of applications. Fourier transform infrared spectrometry can
frequently identify chemical species unequivocally where other analytical techniques
cannot provide definitive structural and compositional information. Furthermore, itisa
rapid and simple technique, which makes it a valuable tool for process analysis and
quality control. The instrumentation isrelatively inexpensive and is stable enough to
permit automated analyses.

Infrared spectra are highly reproducible and absorbance correlates to sample
concentration. Therefore, Fourier transform infrared spectrometry is well-suited for use
in quantitative analysis. Least squares regressionis only useful for systems that involve
mixtures of compounds that have few components and whose infrared spectra do not
have overlapping absorption bands. Multivariate analysis, particularly partial least

sguares, works very well in conjunction with vibrational spectrometric analysis.
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Fourier transform infrared spectrometry has received little attention for analysis
of carbohydrates with the possible exception of sugar concentrations in food products
and beverages.** Near-infrared spectrometry combined with multivariate quantitative
analysis has been the recipient of considerable development in the last decade.?**

Only relatively recently has mid-infrared spectrometric analysis, in conjunction with
partial least squares, begun to see greater acceptance for awider range of applicationsin
the literature. 3%’

Complex carbohydrates have sufficiently similar spectrathat visual
interpretation of the spectra of a mixture of sugarsis not possible. Minor variationsin
the spectra, however, are adequate in order for partial least squares to distinguish
varying concentrations of constituentsin a mixture reliably and with high precision.
Unlike mass spectrometry, infrared spectrometry can differentiate among structural
isomers, and, although it shares the inability to distinguish optical isomers,
determination of optical isomersis not necessary for carbohydrate analysisin
mammalian systems. In addition, as there is no interaction among the saccharide
constituents of the system being analyzed, the quartitative methodology is reduced in
complexity. Asaresult, the requirement with respect to the size of the standardization
set necessary to build the multivariate calibration model is relaxed in relation to the size
of a set in which the components would interact.

For the analysis of oligosaccharide composition, it isonly requisite to determine
the relative concentration of each of the seven common monosaccharide structures that

are contained in the overall structure. If the oligosaccharides are depolymerized, then

the mixture that results is a ssmple mixture of monosaccharides, which may be
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considered as a simple mixture of seven separate constituents despite there being five
potential forms of each monosaccharide. These five different forms are shownin
Figure 2.3. This permits the design of a standardization set that can be produced from
mixtures of commercially available monosaccharides. Such a sample set isrequired for
partial least squares analysis to serve as the calibration model.

The standardization set is an unbiased representation of monosaccharide
compositions that spans the expected range of relative monosaccharide content present
in typical oligosaccharide structures. The spectra of all of the mixturesin the
standardization set and the known concentrations of all of the constituents present in the
mixtures serve as the basis for the partial least squares calibration model. Once the
calibration model isbuilt, it is tested first by a subset of the standardization set, then, it
istested for validation by an external sample set. If the oligosaccharide samples are
depolymerized prior to analysis, then the model subsequently can be used for
composition prediction.

An important aspect of method development for routine analysisis cost
efficiency. Isolation of oligosaccharide samplesis considerably expensive. Therefore,
it is essentia that the technique only require small sample quantities. To attain this
goal, infrared microspectrometry is employed. This method permits analysis of
microgram quantities of analytes, however, in order to use an infrared microscope
system, several accommodations must be made.

Direct deposition is a suitable technique for infrared microspectrometric
analysis; direct deposition of agueous solutions of hygroscopic sugars, however, is not

feasible. To circumvent this restriction, a modest adjustment in sample preparation can



Figure 2.3

The structures of the five possible forms in which monosaccharides

exist. Mannoseis used in this example.
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be implemented. Specifically, use of a highly volatile solvent system sufficiently
addresses the problem of solvent elimination during sample deposition.

The preparation of the standards entails acid methanolysis and peracetylation to
yield methyl glycosides. Note that in all cases where N-acetyl-D-neuraminic acid is
concerned, the methanolysis reaction always produces a methyl ester of the C-1
carboxyl group, and the resulting methyl ester methyl glycoside is unaffected by the
subsequent per-N,O-acetylation. In theinterest of brevity, however, the products of all
of the standards discussed in the present chapter as well as subsequent chapters will
simply be referred to as “methyl glycosides’ throughout. The structure of a methyl
glycoside is shown in Figure 2.4. The objective of these processes is two-fold.
Methanolysis will depolymerize the polysaccharides into their monosaccharide
subunits. Furthermore, peracetylation effectively substitutes acetyl groups in the place
of every hydroxyl group on the saccharides. The resulting methyl glycosides are
considerably more hydrophobic, and thus, they are soluble in nonpolar organic solvents,

which is preferable for direct deposition.

Experimental
Sample Preparation. Eighty-eight monosaccharide mixtures, which contain
two to all seven congtituents, were prepared as the standardization set, aswell as an
additional twenty monosaccharide mixtures for the validation set. The monosaccharide
constituents are D-mannose, D-gal actose, L-fucose, N-acetyl-D-glucosanine,
N-acetyl-D-neuraminic acid type VI, N-acetyl-D-gal actosamine, and D-glucose. The

sugars and all of the other reagents and solvents were purchased from



Figure 2.4

The structures of the products of methanolysis and peracetylation.

Mannose is also used here as an example.
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Sigma-Aldrich Co., St. Louis, MO, with the exception of the 3 N methanolic
hydrochloric acid which was purchased from Supelco, Bellefonte, PA. The weight
percentage ranges were selected to mimic the composition of mammalian N-linked
oligosaccharides that may be encountered in biological systems. Some of the ranges
reach beyond what is typically encountered to increase the robustness of the model,
however. Tables 2.1 through 2.4 list the specific composition for each of the
eighty-eight training set samples. The weights of individual sugars were assessed to
+0.05 mg precision on a high precision analytical balance (Ohaus Corporation, Florham
Park, NJ) and diluted with 18 MW water such that the resulting concentration is
4 mg/mL. The stocks were pipetted in the appropriate volumes to achieve the
prescribed composition for each of the standard mixtures. This was accomplished viaa
series of Eppendorfa Autoclavable Pipettes (Brinkman Instruments, Inc., Westbury,
New Y ork), with which volumes of 10— 100 L, 20 —200 L, or 100 — 1000 i can be
delivered. Inall cases, each sample consisted of two milligrams of each mixture in
500 L of water. The mixtures were contained in 17 mm x 63 mm borosilicate glass
via s with polytetrafluoroethylene-lined caps (Fisher Scientific, Pittsburgh, PA). The
vials were transported to and placed in alow-temperature freezer (—80 °C). After
freezing, the samples were placed in alyophilizer until the solvent was completely
removed.

The methanolysis and peracetylation procedures are as follows:. Into each of the
samples, 1 mL of 1 N anhydrous methanolic hydrochloric acid was pipetted. Particular

care was taken to ensure that the vial caps were barely finger-tight immediately after



Table2.1

The composition of calibration samples one through twenty-two.
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Table2.1

Sample Gal Man Fuc GIcNAc | Neus | GaNAc Glu
1 10% 15% 45% 4% 10% 6% 10%
2 20% 35% 25% 5% 0% 7% 8%
3 30% 55% 0% 6% 6% 0% 3%
4 40% 16% 0% 7% 20% 5% 12%
5 5% 36% 44% 8% 5% 2% 0%
6 0% 56% 24% 9% 7% 4% 0%
7 50% 17% 0% 10% 0% 20% 3%
8 8% 37% 0% 9% 12% 0% 34%
9 18% 57% 0% 8% 8% 4% 5%
10 28% 18% 23% 7% 4% 14% 6%
11 35% 38% 0% 6% 14% 0% 7%
12 7% 58% 0% 5% 17% 0% 13%
13 12% 19% 42% 4% 11% 12% 0%
14 14% 39% 22% 11% 0% 0% 14%
15 13% 59% 0% 12% 0% 16% 0%
16 45% 20% 0% 13% 18% 0% 4%
17 0% 40% 41% 6% 9% 0% 4%
18 0% 60% 21% 6% 2% 11% 0%
19 3% 21% 0% 16% 3% 34% 23%
20 0% 41% 0% 17% 23% 9% 10%
21 0% 61% 0% 18% 0% 0% 21%
22 0% 22% 20% 19% 2% 10% 27%




Table2.2

The composition of samples twenty-three through forty-four.
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Table2.2
Sample Gal Man Fuc GIcNAc | Neus | GaNAc Glu
23 9% 42% 0% 20% 16% 13% 0%
24 2% 62% 0% 21% 0% 0% 15%
25 1% 23% 39% 22% 0% 15% 0%
26 0% 43% 19% 23% 15% 0% 0%
27 0% 63% 0% 24% 13% 0% 0%
28 6% 24% 0% 25% 0% 0% 45%
29 0% 44% 38% 5% 5% 6% 2%
30 0% 64% 18% 5% 0% 2% 11%
31 16% 25% 0% 28% 31% 0% 0%
32 5% 45% 0% 30% 0% 0% 20%
33 0% 65% 0% 5% 0% 5% 25%
34 17% 26% 17% 15% 25% 0% 0%
35 4% 46% 0% 14% 10% 10% 16%
36 0% 66% 0% 13% 15% 0% 6%
37 0% 27% 36% 12% 22% 0% 3%
38 0% 47% 16% 11% 0% 26% 0%
39 0% 67% 0% 10% 23% 0% 0%
40 23% 28% 0% 9% 0% 7% 33%
41 0% 48% 35% 8% 3% 0% 6%
42 0% 68% 15% 7% 0% 0% 10%
43 27% 29% 0% 6% 0% 35% 3%
44 0% 49% 0% 5% 29% 0% 17%




Table2.3

The composition of samples forty-five through sixty-six.
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Sample

Gal

Man

Fuc

GIcNACc

NeuS

GaNAc

Glu

45

0%

69%

10%

4%

11%

6%

0%

46

14%

30%

14%

5%

25%

0%

12%

a7

7%

50%

0%

6%

6%

9%

22%

48

9%

70%

0%

7%

7%

3%

4%

49

8%

31%

33%

8%

0%

6%

14%

50

0%

51%

13%

9%

16%

0%

11%

51

0%

71%

0%

10%

9%

6%

4%

52

21%

32%

0%

9%

10%

4%

24%

53

0%

952%

32%

8%

0%

3%

5%

0%

2%

12%

7%

0%

0%

9%

55

32%

33%

0%

6%

15%

14%

0%

56

11%

53%

0%

5%

11%

11%

9%

57

2%

3%

0%

4%

0%

5%

16%

58

8%

34%

31%

4%

23%

0%

0%

59

3%

54%

11%

4%

0%

28%

0%

60

0%

74%

0%

5%

0%

0%

21%

61

0%

5%

0%

5%

10%

5%

5%

62

0%

85%

0%

5%

0%

10%

0%

63

0%

90%

0%

5%

5%

0%

0%

0%

80%

8%

5%

0%

0%

7%

65

0%

70%

10%

6%

4%

0%

10%

66

0%

60%

0%

6%

0%

0%

34%




Table2.4

The composition of samples sixty-seven through eighty-eight.
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Table2.4

Sample Gal Man Fuc GIcNAC Neus | GaNAc Glu
67 36% 50% 0% 6% 8% 0% 0%
68 7% 40% 27% 7% 19% 0% 0%
69 19% 30% 11% 7% 0% 33% 0%
70 37% 20% 0% 7% 0% 26% 10%
71 9% 10% 0% 8% 12% 11% 50%
72 0% 15% 10% 8% 0% 50% 17%
73 22% 25% 5% 8% 37% 0% 3%
74 0% 35% 0% 8% 0% 0% 57%
75 0% 45% 0% 9% 46% 0% 0%
76 11% 55% 9% 9% 5% 0% 11%
77 0% 65% 4% 9% 0% 22% 0%
78 0% 75% 0% 10% 15% 0% 0%
79 0% 86% 0% 5% 0% 0% 9%
80 8% 17% 8% 11% 50% 0% 6%
81 1% 27% 3% 12% 0% 41% 16%
82 5% 37% 0% 13% 45% 0% 0%
83 3% 47% 0% 14% 0% 36% 0%
84 0% 57% 7% 16% 0% 0% 20%
85 0% 67% 2% 15% 0% 16% 0%
86 0% 77% 0% 5% 18% 0% 0%
87 0% 87% 0% 5% 0% 0% 8%
88 24% 14% 11% 12% 39% 0% 0%
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addition of the reagent to maintain an anhydrous system by the minimization of its
exposure to atmosphere. The vias were heated for twenty minutes in order to soften the
polytetrafluoroethylene lining, after which the caps were further tightened. The
reaction was maintained in a thermostatic heat block at 80 °C for 24 hours.

Both the acid elimination with nitrogen gas and the rinse of the remaining
mixtures with anhydrous methanol were executed in an N-evaporator (Organomation
Associates, Inc., Berlin, MA). Equa amounts of pyridine and acetic anhydride were
dispensed to each sample. The caps were retightened, and the reaction was permitted to
continue overnight at room temperature and in the absence of light. After the reaction
was complete, the reagents were eliminated, and the products were rinsed with toluene
in amanner congruent to the acid elimination and methanolic rinse. Finally, the excess
toluene was eliminated under low vacuum (viscous flow region), and the products were

stored in alow-temperature freezer (-16 °C).

Data Acquisition and Computation. The methyl glycoside mixtures were
dissolvedin 150 pL of methylene chloride. Calcium fluoride (CaF,) windows (Spectral
Systems, Inc., Hopewell Junction, NY) were utilized as the infrared transparent
windows for the deposition method discussed in the introduction. For each deposit, a
window was heated by a two hundred watt incandescent lamp positioned approximately
20 cm above the surface. Additionally, a vacuum airflow was supplied about 10 mm
above the face of the window by a disposable pipette affixed to a rough pump by means

of Teflon tubing as shown in Figure 2.5. A 1-pL aliquot of the diluted product was



Figure 2.5

A drawing of the arrangement of the apparatuses used in direct

deposition.
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deposited, with the use of amicro capillary (Drummond Scientific Co., Broomall, PA),
onto the window directly below the disposable pipette. The window, after deposition,
was positioned onto the stage of a Perkin-Elmer i-Seriesinfrared microscope that is
coupled to a Spectrum 2000 Fourier transform infrared spectrometer (Perkin-Elmer,
Norwalk, CT). The window was repositioned with the microscope stage control such
that an appropriate 50 um x 50 um region of the deposit intersected the optical path.
The aperture was set to contain a50 pm x 50 um areaaswell. A mercury cadmium
telluride detector was chosen for detection, and the instrument collected transmission
spectra from 4000 cm* to 700 cmit at 4 cmi* resolution. Each 100-scan data set was
Medium NortonBeer apodized, Fourier transformed, and converted into absorbancein
the respective sequence. Thiswas realized for each of the samples, and the resulting
spectra were truncated at 1850 cmi* and 850 cmi®. A two-point linear
baseline-correction, incorporating both leveling and zeroing functions, was applied to
each spectrum with 1850 cmi* and 850 cm™* designated as the reference points. Each
spectrum was unit area normalized over the entire domain from 1850 cm* and 850 cmi*
before being placed into the training set. This was accomplished by integrating the area
under the spectrum over the entire domain and rescaling such that the resulting areaiis
equal to unity since only the relative concentrations are of interest.

A partial least squares algorithm, specifically PLS-1, was used to create a model
from the eighty-eight training spectra. GRAMS PLSIQ4& version 5.2 (Galactic
I ndustries Corporation, Salem, NH) was used for the statistical computations. The
algorithm calculated iterations up to and including the possible eighty-five factors,

utilized mean-centering, and performed a cross-validation adjusted to leave one
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spectrum out at atime for each of the iterations. Selection of the appropriate number of
factors for each of the constituents further optimized the final calibration model. Once
the model was constructed, predictions were made on each of the internal spectra, the
validation spectra, and, later, on a set of unknown spectra. The results, including
predicted concentration, root-mean-square deviations, coefficients of determination,
F-ratios, and prediction residual error sum of squares, were imported into a spreadsheet

where error analysis was tabul ated.

Results and Discussion

Although solvent elimination can be adequately achieved, merely ensuring
complete solvent elimination is not the only challenge presented by direct deposition.
For spectral quantitative analysis, it is necessary to suppress any deviations or artifacts
in the spectra attributed to anything other than chemical composition. According to the
Bougeur-Beer-Lambert Law, pathlength and concentration also affect absorption. In
sample deposits, relative concentration variability is eliminated since only the pure
analytes of interest are present. Pathlength, however, is governed by the deposit
thickness as the spectra are measured by transmission. Thisvariableis partially
resolved by creating deposits that contain a pathlength gradient. Thisresultsin a
nonuniform thickness of the deposit. A non-uniform thickness permits selection of an
area of the deposit with the desired approximate thickness for spectral acquisition.
Sample area selection, however, does not entirely provide pathlength reproducibility, as
it isinaccurate and difficult to undertake. Correction for pathlength inconsistenciesis

essential and is provided by spectral unit area normalization over the region of interest.
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Figures 2.6 and 2.7 show the infrared spectrum of a sample before and after
normalization.

A substantial parameter to be considered, when a multivariate calibration model
is constructed, is the spectral range. It is necessary to select the range such that the
highest correlation occurs between the absorbances in the spectra and the concentrations
of the constituents. In addition, it is not advisable to include regions that have weak or
no absorbance as this will result in a pronounced deficiency in the signal-to- noise ratio.
Another consideration for the selection of the spectral regionsisthe desire to avoid
selection of regions where the absorbance may be non-linear. In particular, although
PLS-1 isrobust enough to correct for some nortlinearity, selection of nontlinear regions
is detrimental to the model. Monitoring the spectrain the training set during
interrogation, however, aleviates the problem of non-linearity viajudicious selection of
the location within the sample deposit for analysis. The selected area must supply a
great enough absorbance signal to produce a maximal signal-to-noise ratio, yet the
signal should not be excessively intense where non-linearity is introduced into the
absorbance-to-concentration relationship. The carbonyl band is the strongest and is
within the included wavelength region. Therefore, particular care must be exercised to
ensure that too strong an absorption, i.e., greater than 0.5 absorbance units, does not
occur in the spectrum at 1650 cm prior to normalization. #°

For the set of training spectra, the region that exhibited the greatest correlation
between absorbance and concentration is the region between 1850 cmi* to 850 cm™. A
two-point linear baseline-correction provides the best results. There are no bands that

absorb at either 1850 cmi® or 850 cni®. Thus, these two points are most attractive to



Figure 2.6

A baseline-corrected and truncated spectrum of a peracetylated

monosaccharide mixture prior to normalization.
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Figure 2.7

A baseline-corrected and truncated spectrum of a peracetylated

monosaccharide mixture after normalization.
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select for baseline-correction considering, as they both are the bandpass extrema, they
not only allow for the entire domain to be spanned, but also supply no chemical
information into their absorbance values. In addition to baseline-correction,
normalization demonstrates improvement in the model considerably. Although the
method of interrogation allows the operator to locate an appropriate area of the sample
that has a suitable thickness, neither this method nor the method of direct deposition is
sufficiently precise to ensure a consistent pathlength among the standard mixtures. The
improvement normalization provides is ascribed to the correction of the inconsistencies
of the pathlengths within the training set due to the inability to create reproducibly thick
deposits.

After the partial least squares model was built, aleave-one-out internal
cross-validation was performed. Table 2.5 presents the root-mean-square deviations for
each congtituent. The prediction was derived from the model where the optimal number
of factors was assigned. Plots of the actual concentration versus predicted
concentration for each constituent are presented in Figures 2.8 through 2.14. The
optimal number of factors was determined by examining the F-ratio for every number
of factors, that is, value of f, aswell as consideration of where the first local minimafor
the values of the predicted residual error sums of squares occur. Figures 2.15
through 2.21 are plots of the number of factors versus the predicted residual error sum
of the squares for each constituent. The coefficients of determination, R, for each of
the constituents, D-galactose, D-mannose, L-fucose, N-acetyl-D- glucosamine,

N-acetyl-D-neuraminic acid, N-acetyl-D-gal actosamine, and D-glucose, are 0.9514,



Table2.5

The root-mean-squared deviations, coefficients of determination, and

number of factors for the seven monosaccharide constituents.
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Table2.5
Constituent SquIZr%(():lt g/ls?r;ﬁ on ggg:;ﬁ: fl;fi g:] Number of Factors

Ga 2.84% 0.9514 14
Man 3.39% 0.9567 13
Fuc 2.94% 0.9553 12
GIcNAC 1.75% 0.9400 17
NeuS 2.80% 0.9394 14
GaNAc 1.88% 0.9704 15
Glu 2.02% 0.9624 12




Figure 2.8

A plot of actual concentration versus predicted concentration for

D-galactose.
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Figure2.9

A plot of actual concentration versus predicted concentration for

D-mannose.
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Figure2.10 A plot of actual concentration versus predicted concentration for

L-fucose.
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Figure2.11

A plot of actual concentration versus predicted concentration for

N-acetyl-D-glucosamine.
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Figure2.12 A plot of actual concentration versus predicted concentration for

N-acetyl-D-neuraminic acid.
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Figure2.13 A plot of actual concentration versus predicted concentration for

N-acetyl-D-galactosamine.
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Figure2.14 A plot of actual concentration versus predicted concentration for

D-glucose.
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Figure2.15 A plot of predicted residual error sum of squares versus the number of

factors for D-galactose.
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Figure2.16 A plot of predicted residual error sum of squares versus the number of

factors for b-mannose.
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Figure2.17 A plot of predicted residual error sum of squares versus the number of

factors for L-fucose.
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Figure2.18 A plot of predicted residual error sum of squares versus the number of

factors for N-acetyl -D-glucosamine.
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Figure2.19 A plot of predicted residual error sum of squares versus the number of

factors for N-acetyl-D-neuraminic acid.
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Figure2.20 A plot of predicted residual error sum of squares versus the number of

factors for N-acetyl -D-galactosamine.
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Figure2.21 A plot of predicted residual error sum of squares versus the number of

factors for D-glucose.
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0.9567, 0.9553, 0.9400, 0.9394, 0.9704, and 0.9624, respectively. The valuesof f
selected for each of the above constituents are 14, 13, 12, 17, 14, 15 and 12,
respectively. These results were verified with a validation set.

The average error of prediction for each of the seven constituents among the
twenty samples in the validation set are 5.36%, 5.56%, 5.48%, 2.36%, 3.41%, 3.75%,
and 3.55%, respectively. Table 2.6 presents the average error of prediction among all
constituents for each sample. None of these results yields an absolute error greater than
six percent. Although the errors are much larger than the errorsin the internal
predictions, they are still significantly smaller than the expected errorsin gas
chromatography/mass spectrometry compositional analysis. After passing validation, a
set of ten unknowns was predicted with the model. These samples were prepared at the
Complex Carbohydrate Research Center at the University of Georgiato provide ablind
study; their preparation adhered to the procedure applied to the training and validation
sets, and their composition was undisclosed to the analyst. The results from the blind
study, of which the prediction range was comparable to that of the validation set, are
presented in Table 2.7.

Several methods to enhance the robustness of the model were investigated.
Alternate baseline-correction methods, such as polynomial fits of varying orders,
superchop methods, e.g., ultrasmoothing, and alternative linear interpolations,
underwent exploration for their viability. None of these alternatives, however, provided
as robust amodel as the linear two-point correction applied at the extrema of the

selected calibration region of the spectra.



122

Table 2.6 The average percent error of prediction for all seven constituents for

each of the twenty validation samples.
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Table 2.6
Valigation Sample Error of Prediction Valigation Sample Error of Prediction
Number Number
1 3.06% 11 6.38%
2 4.74% 12 2.68%
3 2.23% 13 5.73%
4 5.20% 14 1.92%
5 3.41% 15 3.27%
6 3.22% 16 3.12%
7 7.68% 17 2.96%
8 7.71% 18 3.21%
9 6.93% 19 3.13%
10 3.58% 20 4.13%
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Table2.7 Errors of prediction in percent for each constituent in each of the ten

unknown samples.
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Table2.7

# Ga Man Fuc GIcNAc | Neu5 | GaNAc Glu

1 0.73% 1.66% 1.82% 1.87% 2.67% 4.31% 3.48%
2 2.37% 5.02% 1.94% 0.25% 0.00% 3.89% 4.83%
3 0.24% 5.19% 2.76% 3.72% 0.19% 5.32% 3.26%
4 2.37% 2.32% 3.88% 1.12% 2.86% 2.87% 1.91%
5 5.87% | 13.23% | 4.91% 0.72% 5.94% 6.83% 1.63%
6 1.28% 1.74% 6.08% 2.27% 4.48% 3.35% 0.00%
7 163% | 4.27% 3.19% 2.91% 1.46% 0.52% 0.30%
8 10.18% | 11.04% | 6.80% 0.00% 1.51% 7.28% 0.00%
9 11.12% | 8.80% 9.78% 158% | 10.07% | 4.95% 4.57%
10 6.65% 7.18% 9.10% 7.64% 8.78% 0.31% 5.50%
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In addition to alternate baseline-correction methods, other data pretreatment
methods to compensate for anomalies in the spectrawere investigated. A common
method is to use the first or second derivative spectrain the training set. This
essentially allows instrumental drift to be ignored or at least to be de-emphasized. This
method was unsuccessful as an order of magnitude of noise isintroduced into the
spectrum for every second derivative computed. One preprocessing method, however,
which demonstrates success, and therefore, was employed in the final model, is
mean-centering. Mean-centering builds the model from the differences between each
spectrum and the average of all of the spectrain the set. It reduces the prevalence of the
common features among the spectra while placing emphasis on the unique
characteristics of each spectrum. When mean-centering is not included in the
calibration method, the coefficients of determination, R?, for each of the constituents,
D-galactose, D-mannose, L-fucose, N-acetyl-D-glucosamine, N-acetyl -D-neuraminic
acid, N-acetyl-D-galactosamine, and D-gal actose, decline to 0.9415, 0.9420, 0.9453,
0.9315, 0.9248, 0.9634, and 0.9573, respectively. In addition, the standard errors of
prediction for all of the constituents increase. These findings support the contention
that meancentering enhances the method.

Finally, aternative methods of normalization were investigated to correct for
pathlength differences among the sample deposits. One option was to normalize the
spectra over the area of the carbonyl band (~1650 cmi?). This approach seemed
promising because it was postulated that the characteristics of the carbonyl bands are
unaffected by the isomeric differences among the monosaccharides. No significant

improvement was observed, however, by the utilization of thistechnique, and it was
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therefore abandoned. In addition, normalization of the spectra by the intensity of a
single point rather than the area of aregion was explored. It was found, however, that
the use of this procedure was detrimental to the calibration. Therefore, only unit

normalization over the entire domain is employed in the final model.

Conclusions

The predictions made for al of the constituents in this study were reasonably
accurate; however, one possible source of error may be attributed to the purity of the
stock. N-acetyl-D-neuraminic acid, for example, is not commercially synthesized in
high purity and is therefore isolated from either sheep submaxillary glands or E. coli.
N-acetyl-D-neuraminic acid produced from E. coli was used in thisinvestigation. The
manufacturer reports that the purity of this monosaccharide is only ninety-eight percent.

There are several other sources of error in the analysis other than the impurities
present in the starting materials. The greatest source of error is associated with the
sample preparation itself. The model cannot be more accurate than the accuracy of the
known composition of the training set from which it is built. Although pathlength
discrepancies present during infrared analysis may be a profound source of error, the
sample preparation elicits further investigation. The preparation is suspect as the solid
monosaccharides are hygroscopic and, during mass determination, are exposed to
atmospheric conditions for no less than several minutes. Another consideration, in
addition to the inherent problem of exposure to water vapor, is the precision of the
analytical balance. The balance provides three confident significant figures; however,

due to a considerable amount of deviation in the last significant digit (one hundredth of
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amilligram), this digit is highly questionable. Furthermore, the use of three different
pipettes, while necessary, introduces a bias with regard to the accuracy of each. The
systematic error of theindividual pipettes results in the further propagation of error.

The next logical source of error is the discrepancy in pathlength attributed to
variations of the deposit thickness. Although the technique allows for a reasonable
thickness gradient within a single deposit, selecting the same thickness for every sample
acquisition is nearly impossible. A good approximation is made by monitoring the
infrared response during relocation of the stage control. Ideally, a spot is deemed
appropriate if the maximum absorbance is no more than 0.5 absorbance units.
Unfortunately, the local variation in thickness within the 50 mm x 50 mm data
acquisition areais essentially indeterminate by both the infrared spectra and the display
through the visible objective. Although it is desirable to collect full spectra at the
highest signal possible, thus maximizing the signal-to-noise ratio, exceeding the
prescribed limit, i.e., entering the range of overabsorbance, however, will result in
spectral response where the apparent absorbance and actual absorbance do not adhere to
the linear relationship expressed by the Bougeur-Beer-Lambert law. Non-compliance
with the Bougeur-Beer-Lambert Law may have catastrophic effects on the calibration
model. Although reasonable provisions are made to safeguard against this scenario, it is
difficult to guarantee the nonoccurrence of local maxima in deposit thickness that
exceed the range of linear response.

Normalization, to some extent, removes the error attributed to pathlength
differences and improves the calibration, but it is not a panacea for non-uniform

deposits. Normalization does not correct for the distortions that arise from the
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nontuniformity of the deposit surface. Distortions due to surface effects require further
investigation for remedy. Finally, the infrared microscope has many off-axisbeam
paths that further compromise pathlength consistency.

PLS-1 isthe most suitable algorithm for use with this system. Although PLS-2
isafaster calculation, especialy as the number of constituentsincrease, itisonly as
robust as PLS-1 when the domain isidentical among all of the constituents. The
precision of this method does exceed both gas chromatography/mass spectrometry and
nuclear magnetic resonance in compositional analysis. Other statistical procedures
were investigated to optimize the results, but none surpassed the performance of PLS-1.

In future work, it is proposed that both the methods of analysis and the sample
preparation be subjected to reexamination. One important point isto assess the
maximum storage time of the standards and reagents before their decomposition is
initiated. It has been determined that the 3 N methanolic hydrochloric acid stock is the
first of al of the chemical supplies to be compromised under long term storage despite
refrigeration and separate dilutionsto 1 N for individual experiments. As a precaution,
this reagent is replaced every six months, and all other reagents and standards are
replenished annually.

Perhaps of greater significance is that the Fourier transform infrared analysis
itself will be subjected to revision to the extent that it is proposed that the microscope
setup be abandoned entirely in favor of an aternate methodology. A separate
investigation, as will be discussed in the following chapter, is underway in an attempt to
eliminate some of the difficulties in using infrared microspectrometry. It will utilize the

measurements, made by a Harrick Split-Pead single-bounce attenuated total reflection
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accessory interfaced to the spectrometer, to construct the statistical models. The new
method may eliminate both the need to baseline-correct and to normalize spectrafrom
the analyzed samples. Asaresult, this may increase the reproducibility of the spectra

and minimize the influence of environmental fluctuations on the system.
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CHAPTER 3

ANALYSISOF N-LINKED OLIGOSACCHARIDESBY FOURIER
TRANSFORM INFRARED SPECTROMETRY/ATTENUATED TOTAL
REFLECTION SPECTROMETRY

In the preceding chapter, a method for the determination of the monosaccharide
composition of N-linked mammalian oligosaccharides was investigated and developed.
It isan entirely novel approach to complex carbohydrate anaysis, and although it has
demonstrated the feasibility of infrared microspectrometry, which is an attractive tool
for reasons discussed previously, as a methodology for carbohydrate analysis,
considerably more investigation is necessary to improve its efficacy. This chapter
explores a second approach to the same question, undertaken to improve the previous
method and is intended to resolve several areas of difficulty that were encountered
during the prior work. One area of concern involves the deficiencies associated with
the predictive performance that are related to the preparation of standard mixtures of
monosaccharides.

Initially, monosaccharide mixtures were prepared by weighing the
predetermined quantity of each of the pure, dry monosaccharides directly into the
reaction vial for that mixture. This procedure has since been characterized as
inappropriate for mainly two reasons. The first regards the precision of the analytical

balance. Even if the balance assesses reliably a given mass within a tolerance of
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+ 0.05 mg, which is characteristic for a high precision analytical balance, for a
two-milligram sample, the error with respect to percent composition may be no less
than 2.5%. The second problem isthat the dry, powdered monosaccharides are
hygroscopic, which introduces additional error. Because it takes no less than ten
minutes to prepare a given mixture, the effect of water absorption may be pronounced
and easily increase the expected error by several percent. Thisintroduction of water
into the monosaccharide mixtures is a'so a concern as it may adversely affect the
peracetylation reaction. After the mixtures of monosaccharides are dissolved into
water, however, it was determined by gravimetric analysis that lyophilization nearly
removes all of the moisture. This creates a sufficiently anhydrous condition for the
peracetylation to take place unencumbered.

The inclusion of lyophilization into the sample procedure allowed the use of
stock solutions, which alleviated some uncertainty with regard to the mass
determination of the individual components during preparation. Dilutions of the
individual sugars to prepare the stock solutions could be assessed with higher precision
because a greater massis used in the preparation, which yields a smaller relative error in
mass determination by an analytical balance. Also, the use of micropipettes for
dilutions reduces the error by an order of magni tude relative to the error incurred by an
analytical balance operating in the milligram region. The use of agueous stocks resulted
in the period of exposure of the monosaccharides to atmosphere during mass
determination to diminish to a fraction of the ti me encountered during the previous
method. Finally, it became apparent that implementation of the mass determinationin a

dry box is neither practical nor necessary.
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Another area of concernisin relation to the infrared microspectrometry itself.
For this investigation, a method that utilized attenuated total reflection spectrometry in
lieu of infrared microspectrometry was developed. The use of asingle-reflection
attenuated total reflection accessory may actually reduce the sample size requirement.
In addition, attenuated total reflection spectrometry permits the use of a deuterated
tri-glycine sulfate detector, which responds more linearly to radiational intensity than
does amercury cadmium telluride detector.? Finally, the necessity for normalization is
eliminated since the pathlength is held constant in attenuated total reflection
spectrometry if the condition is met that the depth of penetration is exceeded by the

thickness of the sample and is discussed in greater detail in the subsequent section.

Attenuated Total Reflection Spectrometry

Total internal reflection is a phenomenon that can be observed during ordinary
experiences. In aglass of water, for example, if one looks through the surface of the
water at a small angle from normal incidence, then the surface of the glass under the
surface of the water appears to be completely silvered, and it is not possible to see
objects on the other side of the glass.®>* The radiation striking the glassis completely
reflected, and the objects behind the glass do not receive the radiation from this optical
pathway. The phenomenon ceases to occur, however, when an object is either brought
into contact with the outside reflecting surface of the glass or brought into very close
proximity. The destruction of this phenomenon results from the establishment of a
standing wave normal to the reflecting surface in the denser medium, and an evanescent

nonpropagating field is generated in the less dense medium of which the amplitude
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decays exponentially with the distance from the surface. A criterion that must exist for
total internal reflection to take place is that the angle of incident radiation g must exceed
the critical angle qc. The critical angle varies as afunction of the ratio of refractive
indices of the two media in the following manner:

gc = arcsin(hy/hy)
where h isthe refractive index of the denser medium and h, is the refractive index of
the scarcer medium.® Figure 3.1 isagraphical representation of the conditions needed
for total internal reflection to take place.

There are many applications of total internal reflection, such as the ability to
greatly enhance the image contrast in fingerprinting techniques;> however, the specific
application relevant to the present work isin regard to the application of total internal
reflection to vibrational spectrometry, known as attenuated total reflection
spectrometry. This name arises from the occurrence of attenuation in the evanescent
wave at frequencies that an object absorbs the radiation when it is brought into contact
with or in the proximity of the reflecting surface. This technique has found a
considerable amount of usein the infrared wavelength region.®*® Sinceinfrared
spectrometry has become one of the most powerful analytical techniques, the increased
need for the ability make surface and bulk analysis has grown significantly. There has
been tremendous development in attenuated total reflection accessories to accompany
infrared spectrometry.®®3? Unlike other accessories designed for infrared
spectrometry, these accessories offer a number of important advantages. Mainly,
attenuated total reflection spectrometry is not hindered by many of the sampling

problems from which transmission experiments suffer. Quite often, samples are not
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Figure 3.1 A representation of total internal reflection and the criteriarequired for

the phenomenon to occur.
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Low refractive index medium, n,

High refractive index medium, n,
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sufficiently thin optically for transmission measurements. The preparation of the
samples to make them suitable for transmission experiments usually compromises the
sample, or at least alters the morphology of the samples, through dilution or
compression. Figures 3.2 and 3.3 represent the orientation of a sample measured by
transmission spectrometry and attenuated total reflection spectrometry, respectively.

Little preparation is needed for the implementation of total attenuated total
reflection experiments, asit is only necessary to place a sample into contact with the
accessory. Typically, only minor pressure application is required for intimate contact
with the sample, thereby preserving the integrity of the sample. Asaresult, this
technique can be applied to minute samples in the forms of liquid, irregularly shaped
solids, powders, etc., so long as sufficient contact between the accessory element and
the sampleismaintained. The distance from the surface of the element where the
evanescent wave is generated is on the order of micrometers, which makes attenuated
total reflection insensitive to the bulk thickness of a sample, and therefore the analysis
of thick or strongly absorbing materials becomes possible.

An important parameter in attenuated total reflection spectrometry is the depth
of penetration d,,, which is the distance that the evanescent wave extends into the
sample. The depth of penetration, which is also wavelength dependent, is defined as the
distance from the element/sample interface where the intensity of the evanescent wave
decaysto l/eof itsinitial value at the interface and is determined as follows:

d, =1 /(2phy(sing-(ho/h1)H)"?
where| isthe wavelength of the incident radiation, and q is the angle of incidence >33

Figure 3.4 shows an approximation of the relationship of the intensity of an evanescent
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Figure 3.2 The orientation of sample measured by a transmission experiment.
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Figure 3.3 The orientation of a sample measured by an attenuated total reflection

experiment.
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Figure 3.4 The depth of penetration of an evanescent wave into asample. The

darkness of the shading represents the intensity of the evanescent wave.
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wave into a sample with the distance from the sample/element interface. The effective
pathlength is the depth of penetration multiplied by the number of reflections. Aswith
transmission spectra, where the spectral intensity is directly proportional to the
thickness of the sample through which the radiation passes, in attenuated total reflection
spectrometry the effective pathlength is directly proportional to the spectral intensity.
This dissertation is only concerned with single-reflection (or single-bounce) total
attenuated reflection; therefore, for the purpose of discussion herein, the effective
pathlength and depth of penetration are rendered equivalent.

The choice of material for the composition of the internal reflection element has
several consequences. The refractive index of the element isinherent to its composition
and has two main effects on the spectrometry. Thefirst isthat as the refractive index of
the internal reflection element material increases the critical angle increases as well.
Thisis of particular importance when measuring samples with high refractive indices,
sinceit is advisable that the angle of incidence greatly exceeds the critical angle to
avoid distortions in the spectra.®® Secondly, as can be seen from the equation above, a
higher refractive index of the internal reflection element will decrease the depth of
penetration thereby decreasing the intensity of the spectrum. Additionally, the choice of
material for the internal reflection element determines the spectral range that can be
acquired.* Finally, suitable elements must not be composed of materials that interact
chemically with the samples. For mid-infrared attenuated total reflection spectrometry,
germanium and silicon are common internal reflection element materials, and they have

refractive indices of 4.0 and 3.5, respectively.®®
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Finally, the sample contact efficiency and area of the sample contact have an
impact on quantitative analysis. It isimperative that both of these values be as close to
100% as possible. For liquid samples, the contact efficiency is very high because the
liquid will adhere uniformly to the surface of the internal reflection element. The
sample must also completely cover the active area of the element in order for the
spectraintensities to be maximized, and more importantly, in order for the spectrato be
reproducible. Not only must the area be completely covered, but also the thickness of
the sample over the entire area must exceed the depth of penetration to ensure that the
effective pathlength remains constant. The reproducibility of the effective pathlength is
of paramount importance for the performance of the statistical analysis on the spectral
data

Infrared spectra acquired by attenuated total reflection spectrometry do not
exactly resemble the optical constants of the material, the index of refraction, nor the
attenuation index, but rather they are a complicated composite of these factors.>**8
Thisis not a serious problem, however, because the spectra are highly reproducible, and
reference libraries of spectraexist for purposes of comparison. Figures 3.5 and 3.6
show a transmission spectrum and an attenuated total reflection spectrum, respectively,
of the same material. The depth of penetration, as stated earlier, is wavelength
dependent in that as the wavel ength increases so does the depth of penetration. Often
spectrometers have a mathematical attenuated total reflection correction routine that can
be applied to the data to make the reflection spectra more closely resemble the
transmission spectra. A spectrum that has undergone such a correction is shown in

Figure 3.7. In the present case, although the correction is useful for the analyst, who
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Figure3.5 A transmission spectrum of a peracetylated monosaccharide mixture.
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Figure3.6  An attenuated total reflection spectrum of a peracetylated

monosaccharide mixture.
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Figure 3.7 An attenuated total reflection spectrum of a peracetylated
monosaccharide mixture after undergoing a correction routine to make

the spectrum resemble a transmission spectrum.
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may have a preconceived expectation of the visual characteristics of the transmission
spectrum, this correction has a negligible effect on the results generated through
guantitative analysis.

Numerous internal reflection element designs exist. They fall into two main
categories: single-reflection and multiple-reflection. The multiple-reflection el ements
have several types of configurations including fixed-angle plate, shown in Figure 3.8,
variable-angle plate, unipoint, V-shaped, modified hemicylinder, and cylindrical rods
and fibers.®*?*3 Multiple reflection elements are not used in the present study, and
therefore this discussion will be confined to single-reflection elements.

Single-reflection internal reflection elements are available in a number of
different geometries. Among the varieties of single-reflection elements that have a
variable-angle geometry are the hemicylindrical and hemispherical designs.>?*2"3 The
configuration of a hemicylindrical element collimates the optical beam to a diameter
equal to the radius of the element, and the beam condensation is only in one dimension
at the reflecting surface. Although this may be suitable for measuring bulk materialsin
situations where the sample contact is easily maintained, thisis not optimal for
measuring small amounts of sample. To overcome this limitation, the geometric design
selected for thisinvestigation is a hemispherical configuration. This geometry isa
hemisphere with a cone-shaped section at the top that plateaus to facilitate contact with
the sample. In addition to this advantage, beam condensation is provided by this design
thereby increasing the sensitivity in the examination of small samples (Figures 3.9

and 3.10).%° The smallest active area commercially available in an internal reflection
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Figure3.8 A schematic of afixed-angle plate multiple-bounce internal reflection

eement.
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Figure3.9 A schematic of a hemispherical internal reflection element.



161

Side View of Hemispherical Internal Reflection Element
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Figure3.10  Another perspective of a hemispherical internal reflection element.
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element is about 250 mm, which isfound in the Harrick Split-Pead single-bounce
attenuated total reflection accessory (Harrick Scientific Corporation, Ossining, NY).
This accessory aso conveniently fits directly into the sample compartment of the
spectrometer. For measuring solid samples, a pressure applicator is available to assist
in the maintenance of sample/element contact for reproducible effective pathlengths. In
direct deposition, however, the pressure applicator is not necessary, as the sample will
adhere to the surface of the element upon solvent elimination. Figure 3.11 shows how
the optical beam travels through the Split-Pead accessory from the infrared
spectrometer. Mirrors 1 and 2 direct the infrared beam toward mirror 3, whichisan
eliptical mirror, and the beam is focused onto the internal reflection element. Then the
beam is collected by mirror 4, which isan elliptical mirror as well, and directed to

toward mirrors 5 and 6 to be sent on to the detector.

Experimental

Sample Preparation. Eighty-six monosaccharide mixtures were prepared for
the standardization set, as well as an additional twenty monosaccharide mixtures for the
validation set. The monosaccharide constituents are D-mannose, D-galactose, L-fucose,
N-acetyl-D-glucosamine, N-acetyl-D-neuraminic acid type VI,
N-acetyl-D-galactosamine, and D-glucose. The standards and all of the other reagents
and solvents were purchased from Sigma-Aldrich Co., St. Louis, MO, with the
exception of the 3 N methanolic hydrochloric acid which was purchased from Supel co,

Bellefonte, PA. The weight percentage ranges were selected to mimic the composition



165

Figure3.11 A diagram showing the optical pathway through a Split-Pead attenuated

total reflection accessory.
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of mammalian N-linked oligosaccharides. Some of the ranges surpass what is normally
encountered in oligosaccharide analysis, however, in order to increase the robustness of
the model. Table 3.1 lists the compositional range for each constituent in the eighty-six
training set samples. The weights of individual sugars were determined with +0.05 mg
precision on a high precision analytical balance (Ohaus Corporation, Florham Park, NJ)
and subsequently diluted with 18 MW water to make standard solutions via a series of
Eppendorfa Autoclavable Pipettes (Brinkman Instruments, Inc., Westbury, New Y ork)
to achieve the prescribed composition for each mixture such that the resulting sugar
concentration is4 mg/mL, i.e., two milligrams of each saccharide mixture in 500 ni of
water. The mixtures were contained in 17 mm x 63 mm borosilicate glass vials with
polytetrafluoroethylene-lined caps (Fisher Scientific, Pittsburgh, PA). Thevialswere
transported to and placed in alow-temperature freezer. After freezing, the solvent was
completely removed from the sample vialyophilization.

The methanolysis and peracetylation procedures are as follows: Into each
reaction vial, 1 mL of 1 N anhydrous methanolic hydrochloric acid, which was diluted
from 3 N methanolic hydrochloric acid with high-performance liquid chromatography
grade methanol, was pipetted. Particular care was taken to ensure that the vial caps
were barely finger-tight immediately after addition of the reagent to minimize the
exposure of the samples to atmospheric moisture. After heating for twenty minutes, the
vial caps were tightened, and the reaction was maintained in a thermostatic heat block
at 80 °C for 24 hours.

Both the acid elimination with nitrogen gas and the rinse of the remaining

mixtures with anhydrous methanol were executed in an N-evaporator (Organomation
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Table3.1 Range of composition for each constituent in the calibration sample set.
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Table3.1
Constituent Minimum Composition Maximum Composition

Ga 0% 50%
Man 5% 90%
Fuc 0% 45%
GlIcNAC 5% 30%
Neus 0% 40%
GaNAc 0% 50%
Glu 0% 50%
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Associates, Inc., Berlin, MA). Equa amounts of pyridine and acetic anhydride were
dispensed into each sample. The caps were retightened, and the reaction was permitted
to continue overnight at room temperature and in the absence of light. After the
reaction was compl eted, the reagents were eliminated, and the products were rinsed
with toluene. Finally, the excess toluene was eliminated under vacuum, and the

products were relocated to a low -temperature freezer.

Data Acquisition and Computation. The instrumentation used to perform
single-reflection attenuated total reflection/Fourier transform-infrared spectrometry was
aDigiLab FTS 4000 Fourier transform infrared spectrometer (DigiL ab Laboratories,
Randolph, MA) interfaced to aHarrick Split-Pead single-reflection attenuated total
reflection accessory. The accessory has a silicon hemispherical interna reflection
element with a 250 nm diameter active area and a 45° angle of incidence. The
Split-Pead accessory is designed to fit into the sample compartment of the spectrometer
and maintain sufficient purge for data collection. Figures 3.12 and 3.13 are schematics
of the Split-Pead accessory.

The methyl glycoside mixtures were dissolved in 60 pL of methylene chloride.
A 1-pL aliquot of the diluted mixture was deposited, with the use of a micro capillary,
directly onto the silicon element of a Split-Pead accessory taking care to ensure that the
flat portion of the internal reflection element was entirely covered. The spectrum was
monitored until the solvent completely evaporated after which the data acquisition

commenced. A deuterated tri-glycine sulfate detector was used, and the spectrometer
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Figure3.12 A Split-Pead accessory drawn in correct proportion. Thisdiagram
provides another perspective on the arrangement of the opticsinside.

(Copyright Harrick Scientific Corporation)
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Figure3.13 Theoutside of a Split-Peaé accessory drawn in correct proportion. This
diagram provides a perspective on the placement of the accessory into an

infrared spectrometer. (Copyright Harrick Scientific Corporation)
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collected reflection spectrafrom 4000 cm™* to 400 cm™ at 4 cmi* resolution. Each
100-scan data set was Medium Norton-Beer apodized, Fourier transformed, and
co-added. The spectrometer scanning speed, electronic filter, and undersampling ratio
were set to 5 kHz, 1.2 kHz, and 2, respectively. The resulting spectra were truncated
at 1850 cnmi* and 850 cm™. A two-point linear baseline-correction, using both leveling
and zeroing functions, was applied to the spectrawith 1850 cmi* and 850 cni*
designated as the reference points.

The Partial Least Squares algorithm, PLS-1, was used to create a model from the
eighty-six training spectra. GRAMS PLSIQ4& version 6.0 was used for the statistical
computations. The agorithm calculated iterations up to and including the eighty-three
possible factors, utilized mean-centering, and performed a cross-validation adjusted to
leave out one spectrum at a time during each of the iterations. The model was further
optimized by appropriate selection of the number of factors for each of the constituents.
Once the model was constructed, predictions were made on each of the internal spectra,
the validation spectra, and the set of unknown spectra. The results, including predicted
concentration, root-mean-square deviations, coefficients of determination, F-ratios, and
prediction residual error sum of squares were imported into a spreadsheet where error

analysis was tabulated.

Results and Discussion
The results provided by the single-reflection attenuated total reflection
methodology demonstrated its superiority to infrared microspectrometry for this

application. Table 3.2 presents the root-mean-square deviation for each of the
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Table 3.2 The root-mean-squared deviations, coefficients of determination, and

number of factors for the seven monosaccharide constituents.
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Table 3.2
Constituent SquIZr%(():lt g/ls?r;ﬁ on ggg::g: ﬁg\:i 8:1 Number of Factors

Ga 1.13% 0.9923 12

Man 0.99% 0.9976 9
Fuc 0.87% 0.9977 10
GIcNAC 0.74% 0.9859 16
NeuS 0.94% 0.9922 15
GaNAc 0.89% 0.9943 14
Glu 0.84% 0.9945 12
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constituents. After being optimized, it produced correlation coefficients for each of the
constituents, D-galactose, D-mannose, L-fucose, N-acetyl-D-glucosamine,
N-acetyl-D-neuraminic acid, N-acetyl-D-gal actosamine, and D-glucose, equal to 0.9923,
0.9976, 0.9977, 0.9859, 0.9922, 0.9943, and 0.9945, respectively. Plots of actual
concentration versus predicted concentration for each constituent are presented in
Figures 3.14 through 3.20. The values of f selected for each of the above constituents
are12, 9, 10, 16, 15, 14, and 12, respectively. Figures 3.21 through 3.27 are plots of the
number of factors versus the predicted residual error sum of the squares for each
constituent, which assisted in the determination of the appropriate number of factors.
These results were verified with a validation set.

The average error of prediction for each of the constituents among the twenty
samplesin the validation set are 2.83%, 2.86%, 2.62%, 1.05%, 3.33%, 2.26%, and
1.80%, respectively. Table 3.3 indicates the average error of prediction among all of
the constituents for each validation sample. None of these yields an absolute error
greater than four percent. The results from the blind study, of which the prediction
range was comparable to that of the validation set, are presented in Table 3.4. Finally,
lactose, which is a disaccharide that consists of D-galactose and D-glucose, was
analyzed and resulted in errors of prediction of 0.83% and 2.72% for D-galactose and

D-glucose, respectively.

Conclusions
There is no question that single-reflection attenuated total reflection

spectrometry outperformed the infrared microspectrometric technique. Infrared
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Figure3.14 A plot of actual concentration versus predicted concentration for

D-galactose.
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Figure3.15 A plot of actual concentration versus predicted concentration for

D-mannose.
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Figure3.16 A plot of actual concentration versus predicted concentration for

L-fucose.
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Figure3.17 A plot of actual concentration versus predicted concentration for

N-acetyl-D-glucosamine.
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Figure3.18 A plot of actual concentration versus predicted concentration for

N-acetyl-D-neuraminic acid.
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Figure3.19 A plot of actual concentration versus predicted concentration for

N-acetyl-D-galactosamine.
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Figure3.20 A plot of actual concentration versus predicted concentration for

D-glucose.
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Figure3.21 A plot of predicted residual error sum of squares versus the number of

factors for D-galactose.
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Figure3.22 A plot of predicted residual error sum of squares versus the number of

factors for b-mannose.
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Figure3.23 A plot of predicted residual error sum of squares versus the number of

factors for L-fucose.
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Figure3.24 A plot of predicted residual error sum of squares versus the number of

factors for N-acetyl-D-glucosamine.
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Figure3.25 A plot of predicted residual error sum of squares versus the number of

factors for N-acetyl-D-neuraminic acid.
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Figure3.26 A plot of predicted residual error sum of squares versus the number of

factors for N-acetyl -D-galactosamine.
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Figure3.27 A plot of predicted residual error sum of squares versus the number of

factors for D-glucose.
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Table 3.3 The average percent error of prediction for all seven constituents for

each of the twenty validation samples.
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Table 3.3
Valigation Sample Error of Prediction Valigation Sample Error of Prediction
Number Number
1 2.61% 11 3.79%
2 2.31% 12 1.47%
3 1.76% 13 2.74%
4 3.66% 14 2.04%
5 1.92% 15 3.04%
6 1.31% 16 3.86%
7 3.24% 17 2.70%
8 1.65% 18 1.36%
9 1.36% 19 3.23%
10 2.36% 20 1.44%
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Table3.4 Errors of prediction in percent for each constituent in each of the ten

unknown samples.
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Table3.4

# Ga Man Fuc GIcNAc | Neu5 | GaNAc Glu

1 4.53% 0.97% 1.83% 2.04% 2.65% 2.37% 2.66%
2 0.63% 3.03% 0.27% 0.89% 3.96% 2.33% 2.25%
3 0.86% 0.72% 1.12% 0.35% 3.45% 0.00% 1.30%
4 3.86% 1.40% 0.99% 2.17% 0.91% 0.58% 0.38%
5 5.29% 3.41% 0.43% 0.70% 5.25% 1.69% 1.79%
6 7.06% 5.58% 1.35% 1.55% 0.56% 1.47% 0.48%
7 0.37% 1.69% 3.36% 0.40% 7.73% 7.19% 0.12%
8 1.96% 0.62% 0.83% 0.79% 3.94% 0.00% 0.49%
9 4.76% 1.44% 5.09% 1.66% 4.02% 4.47% 2.05%
10 6.95% | 839% | 0.00% | 051% | 535% | 248% | 0.00%
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microspectrometric studies in this area of research will most likely be abandoned in
favor of single-reflection attenuated total reflection spectrometry. Not only isthis
methodology more accurate, but also it is also much easier and less time-consuming to
execute. A number of reasons account for these advantages. The Split-Pea& accessory
benefits from a more reliably constant background; i.e., upon repeated background
acquisitions, the spectrum drifts far less than it does in its microspectrometric
counterpart. Asthe accessory fitsinto the sample compartment of the spectrometer, the
system is sealed more extensively, and therefore the accessory shares a common purge
with the spectrometer. Furthermore, the optical path never deviates from the purged
system since the sampleis dried to the surface of the reflection element and is reflected
back into the accessory without ever entering the outside atmosphere. On the other
hand, during operation of an infrared microscope, since the seal of the purgeringis
somewhat questionable, the proximty of the operator to the instrument, and the number
of other people present, substantially affects the background signal.

Another advantage from which single-reflection attenuated total reflection
spectrometry benefits is the maintenance of a constant effective pathlength through the
sample. Thisisthe case so long as the thickness of the sample exceeds the depth of
penetration of the infrared beam. This conclusion was ensured empirically by laying
multiple deposits onto the internal reflection element until no further increase in
absorption is observed in the infrared spectrum. The concentration of the mixtureis
constant after the solvent elimination has concluded, and only the pure sample matrix
remains. The only other degree of freedom impacting the sample quantity subjected to

interrogation is the area of the sample. This areais defined by the size of the internal
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reflection element, which is constant, and attention is given to ensure that the active
area of the element is completely covered during each interrogation. Therefore, the
only remaining variable that affects spectral absorption isthe chemical composition of
the mixtures.

Additionally, single-bounce attenuated total reflection is much less
time-consuming than measurements made by the infrared microscope system. It is not
necessary to search for a suitable spot on the sample deposit for data acquisition since
inhomogeneities regarding the surface of the deposit are inconsequentia due to the
sample/element interface being constrained to the fixed geometry of the element. In
this manner, the sample/atmosphere interface is never interrogated. In addition, the
heater/vacuum apparatus is rendered obsolete. The heating aspect is not needed
because the internal reflection element receives enough thermal energy, provided by the
source of the spectrometer, to maintain the sample/solvent system above ambient
temperature and promotes solvent elimination. In addition, the vacuum function is no
longer necessary to influence the profile of the upward facing surface of the sample
deposit.

The throughput of the internal reflection element, when properly aligned, is
approximately 15% of the total energy.?®*?® Asaresult, it is possible to use a deuterated
tri-glycine sulfate detector. Two advantages are offered by a deuterated tri-glycine
sulfate detector. A wider spectral range can be acquired in comparison with that which
can be measured by a mercury cadmium telluride detector. More significantly,
deuterated tri-glycine sulfate detectors respond much more linearly over awider range

of spectral intensities, and are, therefore, more viable candidates for quantitative
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applications. Finally, using the hemispherical configuration of the internal reflection
element, beam condensation is provided, which ultimately reduces the sample mass
requirement for the successful implementation of the technique. These strengths may
facilitate the devel opment of future extensions of this application.

The amount of spectral preprocessing is reduced, in comparison to that which is
required for microspectrometric application, as it is no longer necessary to normalize
the spectra. In fact, normalization did not significantly improve the results. Aswith the
infrared microscope system, several computational techniques and processes were
investigated, but PLS-1 was the best performing statistical algorithm for this
application, and the utilization of standard spectra that had undergone two-point linear
baseline-correction with leveling and zeroing functions applied to the extrema of the
spectral range included in the calibration (1850 crmi* to 850 cnit) provided the optimum
results. Overall, the amount of time required for analysis of an unknown specimen is
reduced from over an hour, asin the case of infrared microspectrometry, to about five
minutes. Attenuated total reflection spectrometry is the preferred method for further
investigations on different systems.

The predictive errorsin this application may be contributed by the
compositional accuracy of the standardization set. The validation set and unknown set
produced errors comparable to the standardization set. The use of three different
pipettes, while necessary, introduces a bias with regard to the accuracy of each. Even
after the pipettes are calibrated within tolerances specified by the manufacturer and
reproducibly deliver the same volume within these tolerances, the use of three different

pipettes creates a bias since each may be calibrated to a different point of the range of
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allowable tolerances. In addition, the precision of a given pipette fluctuates across the
range of volume delivery for that pipette.

In future work, it is desirable to be able to automate the direct deposition
method. Work on this has already commenced in our laboratory, and it is expected to
be applicable to this methodology. Other areas that are to be addressed include the
design of a calibration transfer method so that the analyses can take place, using
spectrometers other than the one on which the calibration model was generated. Not
only is thisimportant for minimizing the number of times a calibration model has to be
generated in other laboratories with other spectrometers, but it is also important to
addressinevitable long-term instrumental drift. Currently, a calibration model needs to
be regenerated every six months before predictive accuracy begins to significantly
deteriorate. A calibration transfer method may allow for future unknown spectrato be
collected and corrected in order to resemble the spectrum as though it had been
collected at the time of the standardization set measurements. Finally, when a
calibration method is successfully implemented, it would be considerably convenient to
automate the interrogation method. This may result in an overall semi -automated

method for the entire analytical process.
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CHAPTER 4

THE DETERMINATION OF GLUCAN STRUCTURE BY FOURIER
TRANSFORM INFRARED SPECTROMETRY/ATTENUATED TOTAL

REFLECTION SPECTROMETRY

"Melkowits, R.B. and J.A. de Haseth. 2002. To be submitted to Analytical Chemistry.
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Abstract

Various sources of (1-3)-b-D-glucans have been found to have tumor-
necrotizing affect in mammals. Many of these anti-tumor glucans contain this structure
as a backbone with O-6-linked b-glucosy! branches with a degree of branching of 1:3.
A preliminary investigation determined the feasibility of collecting the reflection
spectrum of a powder on aHarrick Split-Pead attenuated total reflection accessory with
asdilicon internal reflection element. Mixtures of the glucans are measured in crystalline
form to eliminate the effects of hydrogen bonding that may occur if in an agueous
solution. The results demonstrate a high degree of reproducibility of data on single
analyte interrogations measured at the appropriately selected mechanical pressures.

This study is an investigation for the extraction of bonding information from
infrared attenuated total reflection spectra of polysaccharides. A set of standardsis
generated by the measurement of the infrared spectra of simple polysaccharides and
correlation of the binding properties through partial least squares regression.
Information on the monosaccharide composition is omitted as al of the standards share
a common monosaccharide subunit composition. The binding properties investigated
include the ratio of apha bonds to beta bonds.

The system which the investigation involved was maltose and cellulose.
Maltose is a polysaccharide comprised solely of alpha-linked D-glucose, and celluloseis
the beta version of maltose. So far, it has been determined that the following sugars are
commercialy available: maltobiose, maltotriose, maltotetraose, maltopentaose,
maltohexaose, maltoheptaose, cellobiose, cellotriose, cellotetraose, and cellopentaose.

The results provided accurate and reproducible predictions of relative number of alpha
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and beta linkages in glucan polysaccharides. The results may be applied to intact

polysaccharides of biological significance.
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I ntroduction

The lack of attention historically given to complex carbohydrates by the
pharmaceutical and academic communities probably has resulted from the
underestimation of the biological significance of this class of naturally occurring
compounds. One of the most significant realizations in the study of carbohydratesin
recent years is the recognition within the medicinal research community that they may
be a tremendous source of drug discovery leads.”® One such lead is that complex
carbohydrates, polysaccharides in particular, have been demonstrated to possess
antigenic properties against tumor development and pneumococcal and meningococcal
infections, aswell as other infections.”

The focus of the current study is the structural determination of glucan
polysaccharides. Analogues of (1-3)-glucan polysaccharides are potential candidates as
therapeutics for they possess a considerable level of immunostimulant activity.™?
Fungal (1-3)-b-D-glucans have attracted much chemical and pharmaceutical attention in
the last twenty years. Other natural sources of (1-3)-b-D-glucans have been found to
have tumor-necrotizing effectsin mammals. Many of these anti-tumor glucans contain
this structure as a backbone containing O-6-linked b-glucosyl branches with a degree of
branching of 1:3.3 That is, the ratio of branching residuesto al the (1-3)-linked
D-glucose residues of the backbone isequal to 1/3.

Extensive studies on a variety of fungal glucans have demonstrated the wide
range of structural diversity that exists with regard to the arrangement of the O-6-linked
b-glucosy! branching. For example, Ganoder ma lucidumis a highly-branched,

insoluble fungal glucan with a degree of branching equal to 4:5, whereas Auriculalria
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auricula, another fungal glucan, has a degree of branching of only 1:16.% It has also
been suggested that the arrangement of the O-6-linked b-glucosyl side chains plays a
substantial role in the tumor growth inhibitory activities of various (1-3)-b-D-glucans.”
Obviously, based on these examples, the structure of polysaccharidesis critical to their
medicinal applications, and, therefore, it would be of significant value to determine
structural information of polysaccharides by a method that is both accurate and
cost-effective.

A number of methods has been applied for the structural analysis of
polysaccharides, including gas chromatography/mass spectrometry®** and nuclear
magnetic resonance spectrometry.*??° Although both of these methodologies are
valuable tools for the determination of structure and composition for a wide range of
compounds, each has inherent drawbacks. Disadvantages that both of these techniques
have in common are the considerable expense of the instrumentation and the high level
of expertise required for operation and interpretation of the data, as well as the difficulty
for the development of automated routine analyses.®*

Gas chromatography/mass spectrometry has been used routinely for analysis of
complex carbohydrates. %% It is not, however, an ideal tool for these analyses for
several reasons. First, mass spectrometry typically cannot be used effectively without
the separation of the components of interest prior to analysis.® Gas chromatography
typically requires derivatization of the analytes, which introduces considerable error.
The error may be attributed to the inability to control derivatization rates or extents of

derivatization for multiple analyses.
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Nuclear magnetic resonance spectrometry possesses several advantagesin the
areas where mass spectrometry is insufficient, such asits ability to distinguish
compounds of identical molecular weights; however, it poses other intrinsic drawbacks.
Most notably isitsinherent insensitivity as a detector. Nuclear magnetic resonance
spectrometry requires a large sample mass in order to achieve a sufficient
signal-to-noiseratio. In addition, it suffersfrom the relative challenge to maintain a
homogeneous magnetic field in nuclear magnetic resonance spectrometers. Therefore,
itisdifficult to obtain identical spectrafrom the same sample upon multiple
acquisitions.

Fourier transform infrared spectrometry hes received little attention for analysis
of carbohydrates with the possible exception of sugar concentrations in food products
and beverages.>?* It is, however, a sensitive analytical tool with awide variety of
applications. Fourier transform infrared spectrometry can frequently identify chemical
species unequivocally, where other analytical techniques cannot provide definitive
structural and compositional information. Furthermore, it isarapid and simple
technique, which makes it a valuable tool for process analysis and quality control. The
instrumentation is relatively inexpensive and is stable enough to permit repeated
automated analyses.

Complex carbohydrates have sufficiently similar spectrathat visual inspection
of the spectra, such as those of glucan polysaccharides to determine the structure, is
nearly impossible. Minor variations in the spectra, however, are adequate for a
statistical approach such as partial least squares to distinguish isomers that differ in only

one linkage reliably and with high precision. In this study, it is shown that statistical
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methods are not necessarily limited to the determination of concentrations of
components in a mixture, and, in fact, they may be powerful tools for structural
elucidation with appropriate design of the model.

An important aspect of method development for routine analysisis
cost-efficiency. Isolation of biological samplesis considerably expensive. Therefore, it
is essentia that the technique require only small sample quantities. To meet this
requirement, infrared spectrometry is joined by single-reflection attenuated total
reflection spectrometry. Attenuated total reflection spectrometry permits the analysis of
microgram quantities of sample. Recently, there has been tremendous development in
attenuated total reflection accessories to accompany infrared spectrometry, and these
accessories offer anumber of important advantages over conventional infrared
spectrometric systems.

Mainly, attenuated total reflection spectrometry alleviates many of the sampling
problems from which conventional infrared transmission experiments suffer. As many
samples are not sufficiently thin optically for transmission measurements, special
preparations to the sample typically have to occur. The preparation of the samplesto
make them suitable for transmission experiments often compromises the sample, or at
least alters the morphology of the samples, by dilution or compression. Little
preparation is needed for attenuated total reflection experiments, asit is only necessary
to place a sample in contact with the accessory. Usually, only minor pressure
application isrequired to ensure adequate contact with the sample, thereby preserving

the integrity of the sample. Asaresult, this technique can be applied to minute samples
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of polysaccharides, which are in powder form, so long as intimate contact between the
accessory element and the sample is maintained.

The smallest active area commercialy available in an interna reflection element
isabout 250 mm, which is found in the Harrick Split-Pea& single-bounce attenuated
total reflection accessory (Harrick Scientific Corporation, Ossining, NY) with asilicon
internal reflection element. The geometry of the internal reflection element isa
hemisphere with a cone-shaped section at the top that plateaus to facilitate contact with
the sample. In addition to this advantage, beam condensation is provided by this
configuration, thereby increasing the sensitivity in the examination of small samples.
This accessory is also convenient because it fits directly into the sample compartment of
the spectrometer and shares a common purge with the instrument. This enables
measurements of multiple samples without breaking the system purge, which resultsin
the preservation of a highly stable background. In addition, the sample contact area and
depth of penetration are intrinsic to the geometry and composition of the internal
reflection element, and as aresult, remain constant throughout the study. Thisassistsin
the reproducibility of the effective pathlength, and thereby reduces the extent of spectral
preprocessing, such as normalization, that is necessary for statistical analysis. Asthe
samples to be interrogated are solids, a pressure applicator may be employed to assist in
the maintenance of sample/element contact efficiency, which also contributes to the
reproducibility of effective pathlengths. An advantage of interrogation of the
polysaccharides in crystalline form is the elimination of the effects of hydrogen bonding

on the spectra that may occur in aqueous assays.
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This study is confined to the analysis of (1-4)-b-D-glucans and
(1-4)-a-D-glucans, i.e., cellulose and maltose, respectively. These two classes of
glucans are selected mainly due to their commercia availability. As attenuated total
reflection infrared spectrometry is shown to determine the ratio of beta linkagesto alpha
linkages in mixtures of these two compounds, then it is also suggested that it will be
able to determine other linkages, such as 1-2, 1-3, and 1-6, when mixtures of glucans

containing these linkages are prepared as standards.

Experimental

Sample Preparation. Twenty-four glucan polysaccharide mixtures were
prepared for the standardization set, as well as an additional five glucan polysaccharide
mixtures for the validation set. The polysaccharide constituents were maltobiose,
maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, cellobiose,
cellotriose, cellotetraose, and cellopentaose, and were all purchased from
Sigma-Aldrich Co., St. Louis, MO. The weights of individual sugars were determined
with £0.05 mg precision on a high precision analytical balance (Ohaus Corporation,
Florham Park, NJ) and diluted with 18 MW water to make standard solutionsviaa
series of Eppendorfa Autoclavable Pipettes (Brinkman Instruments, Inc., Westbury,
New Y ork) to achieve the prescribed composition. The composition of the standard
mixturesis shown in Tables 4.1 and 4.2. The mixtures were contained in
17 mm x 63 mm borosilicate glass vias with polytetrafluoroethylene-lined caps (Fisher

Scientific, Pittsburgh, PA). The vials were transported to and placed in a
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Table4.1 The composition of the first twelve samples of the standardization set.
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Table4.1
Sample Alpha-Linked Constituent | Beta-Linked Constituent

1 85% maltobiose 15% cellobiose
2 70% maltotriose 30% cellobiose
3 45% maltopentaose 55% cellobiose
4 15% maltoheptaose 85% cellobiose
5 70% maltotetraose 30% cellotriose
6 55% maltopentaose 45% cellotriose
7 45% maltohexaose 55% cellotriose
8 30% maltoheptaose 70% cellotriose
9 30% maltobiose 70% cellotetraose
10 15% maltotriose 85% cellotetraose
11 85% maltotetraose 15% cellotetraose
12 70% maltopentaose 30% cellotetraose
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Table4.2 The composition of the remaining twelve samples of the standardization

Set.
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Table4.2
Sample Alpha-Linked Constituent | Beta-Linked Constituent

13 45% maltobiose 55% cellopentaose
14 30% maltotriose 70% cellopentaose
15 15% maltotetraose 85% cellopentaose
16 85% maltopentaose 15% cellopentaose
17 55% maltoheptaose 45% cellopentaose
18 100% maltotriose none

19 100% maltotetraose none

20 100% maltopentaose none

21 100% maltohexaose none

22 none 100% cellobiose
23 none 100% cellotriose
24 none 100% cellotetraose
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low-temperature freezer. After freezing, the water was removed from the samples via
lyophilization.

Data Acquisition and Computation. The instrumentation used to perform
single-reflection attenuated total reflection/Fourier transform-infrared spectrometry was
aDigiLab FTS 4000 Fourier transform infrared spectrometer (DigiL ab Laboratories,
Randolph, MA) equipped with a Harrick Split-Pead single-reflection attenuated total
reflection accessory. The accessory has a silicon hemispherical interna reflection
element with a 250 nm diameter active area and a 45° angle of incidence. The

Split-Pead accessory is designed to fit into the sample compartment of the spectrometer
and maintain sufficient purge for data collection. A pressure applicator was used to
press the mixtures directly onto the silicon element of a Split-Pead accessory, with care
taken to ensure that the flat portion of the internal reflection element was entirely
covered. The spectrum was monitored until the maximum 500 kg/cn? of pressure was
exerted, after which the data acquisition commenced. A deuterated tri-glycine sulfate
detector was used, and the spectrometer collected reflection spectra from 4000 cm™
to 400 cmi' at 4 cm™ resolution. Each 100-scan data set was Medium Norton-Beer
apodized, Fourier transformed, and co-added. The spectrometer scanning speed,
electronic filter, and undersampling ratio were set to 5 kHz, 1.2 kHz, and 2,
respectively.

The partial least squares algorithm, PLS-1, was used to create a model from the
twenty-two training spectra. GRAMS PLSIQ4a version 6.0 was used for the statistical
computations. The algorithm calculated iterations up to and including the twenty-one

possible factors, utilized meancentering and multiplicative scatter correction, and
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performed a cross-validation adjusted to leave out one spectrum at a time during each of
theiterations. The spectral regions selected for analysis between 3250 cmit

and 2700 cm™* and between 1500 cmi* and 660 cmi®. The model was further optimized
by the appropriate selection of the number of factors. Once the model was constructed,
predictions were made on each of the internal samples, the validation samples, and a set
of three unknown samples. The results, including predicted composition,
root-mean-sguare deviations, coefficients of determination, F-ratios, and prediction
residual error sum of squares were imported into a spreadsheet where error analysis was

tabul ated.

Results and Discussion

Figure 4.1 is a spectrum of one of the calibration mixtures. Conventional
baseline-correction was not used in this study, as all of the samples are solid powders.
The baseline curvature in the spectrais due to light scattering effects caused by the
inhomogeneous distribution of particles both in size and in orientation with respect to
the incident beam of radiation. The degree of scattering is dependent on wavelength
and, therefore, is not uniform throughout the spectrum; that is, its influence is generally
more pronounced at longer wavelengths. To compensate for this effect, multiplicative
scatter correction is utilized prior to partial least squares analysis.

This correction method is based on the supposition that the wavelength
dependency of the scattering is independent of the wavelength dependency of
absorption due to chemical composition.?>?® The removal of the effects of scattering is

attempted by the linearization of each spectrum to an ideal spectrum. In this case, the



Figure 4.1

A reflection spectrum of one of the calibration mixtures.
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average of all of the calibration spectra serves as an estimate of an ideal spectrum. A
linear regression of the spectral responses in each calibration mixture against the
corresponding pointsin the average spectrum is calculated. Multiplicative scatter
corrected spectra are subsequently produced by the subtraction of the offset value of the
regression from the original spectra, then the division of the differences by the slope
value from the regression. By adjusting the slope and offset of the original datato the
average spectrum, the variation due to chemical composition is preserved while the
major source of random variation among the spectrais minimized. In this set, two
spectral regions are used for the calibration model and are multiplicative scatter
corrected separately to ensure the calculation of the correct slope, as the regions are
discontinuous.

The selection of the spectral regions for inclusion in the model was based upon
the value of the coefficient of determination at different wavelengths. The correlation
spectrum in Figure 4.2 shows the justification of the selection of the two discrete
regions at 3250 cmi* to 2700 cm™* and 1500 cm™ to 660 cm™. The ability of the model
to predict the relative presence of alpha linkages and beta linkagesis very high. The
coefficient of determination produced by the model is 0.9985, the optima number of
factors chosen is five, the root-meansquared deviations for the standardization set is
1.608%. The errors of prediction of each of the calibration mixtures are given in
Table4.3. A plot of predicted values versus actual valuesis shownin Figure 4.3, and a
plot of the predicted residual error sum of squares versus the number of factorsis

presented in Figure 4.4. These results were verified with a validation and an unknown
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Figure 4.2 The correlation spectrum for the calibration model.
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Table4.3 The errors of prediction for the standardization set.
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Table4.3
Sample Err(;:) ;)L ;D(raefibc)ti on Sample Err(]z; :)1;) }D(r:f:;:)tion
1 2.25% 13 2.65%
2 1.67% 14 1.36%
3 1.09% 15 6.42%
4 0.11% 16 2.73%
5 0.38% 17 0.52%
6 0.08% 18 2.20%
7 0.68% 19 0.52%
8 0.74% 20 1.99%
9 2.13% 21 1.52%
10 2.91% 22 0.47%
11 0.13% 23 3.34%
12 1.50% 24 0.05%
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Figure4.3 A plot of actual b/(a+b) versus predicted b/(a+b).
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Figure4.4 A plot of predicted residual error sum of squares versus the number of

factorsfor b/(a+b).



244

P/ +B)

T
18

T
12

2.8+

2.2+

® <

sarenbg jo E1:m [enpISY PII0IPaI]

Number of Factors



245

set. The results from the validation set and the unknown set are presented in Tables 4.4
and 4.5, respectively.
Conclusions

The ability of infrared spectrometry to make structural determinations of
complex carbohydrates has been demonstrated unequivocally in this study. Several
other statistical algorithms were investigated for their feasibility; however, partial least
sguares outperformed both principle component regression and multiple linear
regression. Asthereisonly one constituent determined in this system, the results from
the PLS-1 and PLS-2 algorithms were identical, and neither had an advantage with
respect to the time required for the completion of the calculation. In addition,
mean-centering enhanced the model considerably. Other methods of scatter correction,
such as standard normal variate correction, both with and without detrending, were
investigated, but none surpassed multiplicative scatter correction.

The scope of thisinvestigation was limited by the commercial availability of
standards. Future studies will focus on the acquisition of other standards, which will
require synthesis, to extract further structural information from polysaccharides by
Fourier transform infrared spectrometry/single-bounce attenuated total reflection
spectrometry. The next logical step would be an investigation of linear glucans that
contain both alpha and beta linkages in the same molecule. 1n addition, it can be
surmised from the results of this investigation that the prediction other linkages, e.g.,
1-2, 1-3, and 1-6, will be atrivial matter once standards of sufficient variety are
acquired. Once that proves successful, investigation of the degree of branching for this

class of compounds would be quite attractive. Finally, an investigation of
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Table4.4 The average percent error of prediction for each of the five validation

samples.
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Table4.4
Validation Sample | Actua b/(a +b) | Predicted b/(a +b) | Error of Prediction
1 0.00% 0.00% 0.00%
2 55.00% 56.02% 1.02%
3 70.00% 70.72% 0.72%
4 15.00% 14.58% 0.42%
5 30.00% 31.13% 1.13%
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Table4.5 The average percent error of prediction for each of the three unknown

samples.



Table4.5
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Unknown Sample | Actual b/(a +b) | Predicted b/(a +b) | Error of Prediction
1 0.00% 1.37% 1.37%
2 45.00% 44.41% 0.59%
3 22.00% 21.80% 0.20%
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polysaccharides containing different monosaccharide compositions should establish a
powerful means by which infrared spectrometry/attenuated total reflection spectrometry

may determine structures of intact oligosaccharides.
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CHAPTER S5

FUTURE STUDIES

The main goal of the research described in this dissertation is the design of a
methodology for the analysis of complex carbohydrates, including monosaccharides,
oligosaccharides, and polysaccharides, by Fourier transform infrared spectrometry.

M onosaccharide component analysis of oligosaccharides has been done routinely by gas
chromatography/mass spectrometry for at |east two decades.*® This method requires
the derivatization of the monosaccharide mixtures, which result fromdepolymerization
of the oligosaccharides, into volatile species before undergoing separation by gas
chromatography. Although high-pH anion-exchange chromatography/pul sed
amperometric detection has since been used,”® it is not an information-rich technique.
That is, it does not possess the potential of vibrational spectrometry, as demonstrated
herein, to alow for the structural elucidation of complex carbohydrates.

In this dissertation, Fourier transform infrared microspectrometry was
established as a viable method for the performance of quantitative analysis of
carbohydrates in conjunction with partial least squares regression. The technique was
considerably enhanced, however, when single-bounce attenuated total reflection
spectrometry was utilized instead of microspectrometry. The method that was
developed by its application provided higher sensitivity and detection of smaller sasmple

guantities, and there was no longer a need to normalize the spectra, as was necessary
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during the microspectrometric method. This resulted in a superior analytical method, as
it was more accurate and simpler to implement. Further development of Fourier
transform infrared spectrometry/single-bounce attenuated total reflection spectrometry
for routine analysis of carbohydrates demands the devel opment of a calibration
correction method that compensates for long-term instrumental drift. Thiswill
eliminate the need to regenerate the calibration model every several months and will
permit the analysis to be transferable to other instruments and laboratories.

Perhaps the most profound findings in this research were provided by the
simplest experiments. The results obtained from the measurement of neat samples of
glucan polysaccharides demonstrated the power of infrared spectrometry and clearly
points the direction in which future studies will progress. The accuracy in the
prediction of the characterization of alpha and beta linkages in polysaccharidesis
extraordinary, especially when one considers that this was done completely
independently of the length of the polysaccharide, which was randomized.
Unfortunately, the scope of this study was limited by the variety of polysaccharide
standards that are commercially available. Other polysaccharides, however, may be
synthesized for future investigation. It is extremely likely that 1-2, 1-3, 1-4, and 1-6
linkages in glucan polysaccharides, with the availability of standards that contain a
variety of these configurations, may be discerned with the same level of success as the
characterization of a and b linkages. Finally, models built with variationsin
monosaccharide subunit species within the polysaccharides should establish a powerful
means through which infrared spectrometry/attenuated total reflection spectrometry

may determine structures of intact oligosaccharides.



257

Refer ences

Torto, N.; Cohen, A.; Gorton, L.; Laurell, T.; van der Hoeven, R. Laboratory

Robotics and Automation 1998, 10 (6), 361-367.

Hachey, D. L.; Parsons, W. R.; McKay, S.; Haymond, M. W. Anal. Chem. 1999,

71 (20), 4734-4739.

Karlsson, N. G.; Nordman, H.; Karlsson, H.; Carlstedt, |.; Hansson, G. C.

Biochemical Journal 1997, 326, 911-917.

Huyghuesdespointes, A.; Yaylayan, V. A.; Keyhani, A. Journal of Agricultural

and Food Chemistry 1994, 42 (11), 2519-2524.

Leskovsek, H.; Perko, S.; Zigon, D.; Faganeli, J. Analyst 1994, 119 (6),

1125-1128.

Tevesz, M. J. S.; Schwelgien, S. F.; Smith, B. A.; Hehemann, D. G.; Binkley, R.

W.; Carter, J. G. Veliger 1992, 35 (4), 381-383.

Huang, Y.; Mechref, Y.; Novotny, M. Carbohydrate Research 2000, 323 (1-4),

111-125.



258

8. Solbriglebuhn, H. Zuckerindustrie 1992, 117 (12), 979-983.

0. Deruiter, G.; Schols, H.; Voragen, A.; Rombouts, F. Anal. Biochem. 1992, 207

(1), 176-185.



