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ABSTRACT 

A strong need exists for the development of methodologies for compositional 
and structural analyses of complex carbohydrates.  Vibrational spectrometry is a 
valuable and powerful tool for the interrogation of many chemical systems, both 
qualitatively and quantitatively and is applicable to the analyses of complex 
carbohydrates.  Carbohydrates play numerous critical roles in biochemical systems, and 
they are ubiquitous components of living organisms.  Biologically, their role as a source 
of energy for physiological processes is essential.  More profoundly, however, they play 
crucial roles in the maintenance of cellular structural integrity and biosynthesis, and 
oligosaccharides are required for the direction of these processes and also behave as 
chemical messengers.  Oligosaccharides are difficult and expensive to extract from 
biological sources, and, typically, only very small quantities are available for analysis.  
Therefore, a sensitive analytical method that can interrogate microgram quantities of 
sample is necessary.   

A methodology to determine the composition of N-linked mammalian 
oligosaccharides was developed with the use of Fourier transform infrared 
microspectrometry combined with chemometrics.  This initial methodology was later 
modified for compositional and structural elucidations by single-bounce attenuated total 
reflection spectrometry.  These results demonstrated predictions with less than four 
percent error in both validation and double blind studies. 

Various sources of (1-3)-β-D-glucans have been found to have 
tumor-necrotizing effects in mammals.  Many of these anti-tumor glucans contain this 
structure as a backbone with O-6-linked β-glucosyl branches with a degree of branching 
of 1:3.  A method of the structural analysis of intact polysaccharides was investigated 
by Fourier transform infrared spectrometry/attenuated total reflection spectrometry.  
The system was comprised of maltose and cellulose standards, as the sole 
monosaccharide subunit in these polysaccharides is D-glucose.  The results indicate very 
high predictability of the relative extent of alpha and beta linkage. 
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CHAPTER 1 

 
INTRODUCTION AND LITERATURE REVIEW 

 

 The key to the existence of all biological species is found in the role that 

carbohydrates play in nature.  Carbohydrates are essential for energy production and 

storage as well as for the provision of mechanical support for cellular structures.1-4  The 

oxidation of carbohydrates is the principle metabolic mechanism for energy production 

throughout the biosphere.5  Cellulose, the most abundant biopolymer, the exoskeletons 

of various insects, and the cell walls of bacteria, fall under the umbrella of 

carbohydrates.6 

 Carbohydrates also are in demand for a variety of industrial applications.  Most 

notably, the food industry relies upon carbohydrates, particularly starch, for the 

production of sweeteners, bakery goods, beverages, gums, etc.  Despite the introduction 

of synthetic materials, the textile industry largely still depends on cellulose for 

manufactured goods.  The pharmaceutical industry has flourished from its development 

of synthetic vitamins and antibodies, both of which rely heavily upon carbohydrates for 

their synthesis.  Finally, the chemical industry has benefited from the generation of 

monosaccharides, polysaccharides, and other related compounds in pure form.7-10 

 Complex carbohydrates, in particular, have been shown to be valuably bioactive 

via their participation in biochemical and physiological interactions within biological 

systems.11-13  Proteins that contain carbohydrates, which are covalently bonded, are 
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called glycoproteins.  Carbohydrate structures associated with glycoproteins, commonly 

referred to as glycans, can be in the form of monosaccharides, disaccharides, 

polysaccharides, and oligosaccharides, and affect the physiochemical and biological 

functions of the glycoprotein.14,15  This is achieved by changing the properties of the 

glycoprotein by varying the structure of the glycan.  They can also direct the protein 

folding and subunit assembly,16 and are significant in their effect on immunological 

properties,17-19 modification of the transmission signals for cellular response,20 and their 

influence on the activity of hormones and enzymes.21,22  For example, the recruitment of 

leukocytes to injured tissue was found to occur through its interaction with its cell 

surface carbohydrate, Sialyl-Lewis [Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAc], and 

endothelial cell selectins.  The selectins are expressed in reaction to cytokines released 

during the inflammatory response.23-25  As a result of these findings, an increased 

interest in the development of saccharide-based anti-inflammatory and anti-cancer 

drugs has commenced.  Furthermore, variations in protein glycosylations have been 

demonstrated to be valuable molecular markers in the diagnosis of a number of human 

diseases.25-29  Finally, complex carbohydrates compose the backbone of 

deoxyribonucleic acid, consisting of four repeating nucleotides that contain 

2-deoxy-D-erythro-pentofuranose, which encodes information with regard to 

transcription and replication for the development of new cells in biological systems.2 

 With increasing awareness of the biological activity of complex carbohydrates, a 

growing demand has incurred for a simple, rapid, accurate, and inexpensive method to 

characterize both the composition and structure of complex carbohydrates.17,30,31  The 
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isolation of glycans from glycoproteins is difficult and expensive, and therefore, the 

sample quantity typically available for analysis is considerably limited.31-33 

 The full characterization of glycoproteins requires several determinations.  The 

primary structure as well as the conformation of both the protein and the carbohydrate 

side chains, which are attached, is to be elucidated.  In addition, the pattern of 

carbohydrate heterogeneity at each glycosylation site, the location of each glycosylation 

site, and the anomeric specificity of the linkages, are typically desired.  Whereas the 

determination of the protein structures is relatively easy and well established, the 

complete characterization of the carbohydrate structures continues to be problematic. 

 Part of the challenge in the elucidation of carbohydrate structures is attributed to 

the excessive variability of potential structures.  A large number of saccharide chain 

variations can be brought about by a small number of monosaccharide units.  

Carbohydrate moieties can be linked to the protein via any of four hydroxyl groups per 

monosaccharide, and they can exist in either form of two anomeric forms and involve 

either pyranose or furanose rings.  As a result, two monosaccharides can form as many 

as thirty-two disaccharides, whereas, two amino acids can only form two dipeptides.  

The number of carbohydrate structures increases geometrically as the number of 

monosaccharide units increase because branching becomes a possibility when there are 

more than two units present.33 

 In addition, complex carbohydrates can be divided into two groups assigned by 

its linkage site on the protein.  N-Linked oligosaccharides are attached to the amide 

group of an asparagine side chain in an Asn-X-Ser(Thr) sequence with 

N-acetyl-D-glucosamine as the reducing terminal monosaccharide.  O-Linked 
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oligosaccharides are linked to the hydroxyl group of a Ser or Thr residue in the 

polypeptide backbone, and the reducing terminal monosaccharide is usually 

N-acetyl-D-galactosamine.34  N-Linked oligosaccharides contain a common 

pentasaccharide core structure, Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc.  

N-Linked oligosaccharides are typically larger than O-linked oligosaccharides and are 

divided into three categories:  high mannose-type sugar chains, complex-type sugar 

chains, and hybrid-type sugar chains.35  Examples are shown in Figures 1.1 through 1.3. 

The isolation of the glycan from the glycoprotein is a crucial step for the 

characterization of the carbohydrate.  This isolation results in the release of the glycan 

from the protein to form a pool of intact oligosaccharides, which, ideally, can be 

subsequently separated from each other.  Both of these tasks, particularly the latter, are 

very challenging.  The former task can be achieved either enzymatically or chemically. 

 Two types of enzymes are known and are now commercially available for 

release of asparagine-linked oligosaccharides from the glycoprotein.  The first, 

peptide-N-(N-acetyl-β-glucosaminyl)-asparagine amidase, severs the GlcNAc-Asn 

linkage to provide an intact oligosaccharide that possesses a reducing terminal.  The 

second, endo-β-N-acetyl-D-glucosaminidase, hydrolyzes the bond between the two 

glucosamine residues, and therefore, one of the N-acetyl-D-glucosamine units remains 

attached to the protein.36,37 

 The release of oligosaccharides from glycoproteins can be achieved chemically 

for both N-linked and O-linked oligosaccharides with either hydrazine or 

trifluoromethanesulfonic acid.  The former is able to differentiate between N-linked and 

O-linked oligosaccharides and provides the oligosaccharides with reducing termini. 



 5
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Example structures of high mannose-type oligosaccharides.
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Figure 1.2 Example structures of complex-type oligosaccharides. 
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Figure 1.3 Example structures of a hybrid-type oligosaccharide and a bisected 

oligosaccharide. 
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Trifluoromethanesulfonic acid, however, will preserve the intact protein whereas 

hydrazine will inevitably degrade it.38 

 Because the monosaccharide constituents of complex carbohydrates have similar 

structures, it is very difficult to separate heterogeneous glycoforms into homogeneous 

oligosaccharides.  Frequently, the oligosaccharide composition only differs by one 

monosaccharide, and sometimes only the anomeric linkages vary in cases where the 

composition is identical. 

 The separation of complex carbohydrates has been attempted by a number of 

different methods.  Among these are several common chromatographic methods such as 

gas chromatography, thin-layer chromatography, high-performance liquid 

chromatography, and supercritical fluid chromatography.31,33,39-45  Also, methods have 

been applied which depend upon both size and charge.  Although high-pH 

anion-exchange chromatography with pulsed amperometric detection is an obvious 

choice for charged species,15,46,47 for uncharged oligosaccharides, gel-permeation 

chromatography and ion-exchange chromatography in a borate buffer, only if the sugars 

have cis-hydroxyl groups, which allow for the formation of charged borate complexes, 

are sometimes successful.  For the elucidation of any carbohydrate structure, it is 

essential to analyze its monosaccharide composition.  Two major restrictions obstruct 

the separation and detection of the monosaccharide subunits.  First is their weak 

absorption in the ultraviolet region, which is attributed to the presence of only a small 

fraction of an aqueous saccharide solution in the carbonyl form, which renders the 

solution insufficiently chromophoric.48  Furthermore, there is the inconvenience 

imparted by their lack of fluorescence since the transition states are too high in energy 
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to be observed at wavelengths longer than 190 nm.49  In some cases, these problems can 

be circumvented by the derivatization of the carbohydrates prior to separation and 

detection.30 

 Mass spectrometry and gas chromatography/mass spectrometry have been 

applied to monosaccharide compositional analysis of oligosaccharides that are 

depolymerized after being subjected to hydrolysis.50,51  Unfortunately, mass 

spectrometry is not inherently capable of distinguishing monosaccharides that are 

isobaric, such as glucose and mannose, which it is often that monosaccharides only 

differ in their stereochemistry.  Therefore, it is usually necessary to apply a separation 

technique, such as gas chromatography, prior to mass-spectrometric analysis.32,52,53  In 

addition, ionization of pure monosaccharides is not easily achieved and, therefore, it 

usually requires the derivatization of the sample to assist in ionization and detection by 

mass spectrometry.16,54,55 

 Nuclear magnetic resonance spectrometry has gained prominence as a method 

for compositional and structural elucidation of complex carbohydrates.14,33,53,56-59  A 

large amount of starting material, however, is required and is often unfeasible to obtain 

from biological samples.  Many complex carbohydrates have over 500,000 distinct 1H 

environments, and to achieve a resolution of 0.5 part per million, a 1012 Hertz nuclear 

magnetic resonance spectrometer, which currently does not exist, would be required.60 

Finally, the rate at which the data from a single sample could be interrogated could 

cause the duration of an experiment to exceed a day for the acquisition of useful 

information.  In addition to the inconvenience imposed by the excessive time 

consumption, this long an acquisition period poses a great challenge for any instrument 
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in the maintenance of a constant homogeneous magnetic field, which would be 

necessary to preserve background stability.  Both nuclear magnetic resonance 

spectrometry and mass spectrometry are time-consuming, involve expensive 

instrumentation, and require highly specialized expertise for both operation and data 

interpretation. 

 Obviously, the introduction of a rapid, sensitive, accurate, inexpensive, and 

simple technique would be quite welcome to address the critical need for carbohydrate 

analysis.  Fourier transform infrared spectrometry has been used in the past to 

investigate carbohydrates in the food and beverage industries.8,9,61,62  It has not been 

used routinely, until recently, to analyze biological complex carbohydrates.  By using 

Fourier transform infrared microspectrometry, small amounts of sample can be 

interrogated with high sensitivity.  This technique offers an advantage over previous 

methods in several respects.  It does not suffer from the inability to discern isomeric and 

isobaric molecules that mass spectrometry does, nor does it suffer from the slow rate of 

data acquisition or insensitivity from which nuclear magnetic resonance possesses.  In 

addition, it does not require the level of expertise needed for either of the former 

techniques, and the instrumentation can be acquired and maintained for a fraction of the 

cost.  Visual qualitative analysis of monosaccharides and polysaccharides by infrared 

spectrometry is nearly impossible since the vibrational spectra they produce in the 

infrared region contain no unique bands to distinguish individual saccharide species 

from each other.  Compositional analysis of oligosaccharides is further hindered 

because the monosaccharides from which they are composed appear very similar to one 

another and contain overlapping bands.  The spectra of monosaccharide mixtures with 
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varying concentration do contain minor variations even though they are indiscernible to 

visual interpretation.  Recent advances in statistics and computer algorithms circumvent 

this restriction by offering an alternative for the interpretation the data and reliable 

extraction of useful compositional and structural information. 

This dissertation discusses a new approach for the analysis of complex 

carbohydrates with vibrational spectrometry in the mid-infrared region.  The following 

chapter describes the design of a novel methodology to determine the composition of 

mammalian N-linked oligosaccharides quantitatively by Fourier transform infrared 

microspectrometry.  Chapter three takes this approach a step further through the 

application of another infrared spectrometric technique, attenuated total reflection 

spectrometry, which, for this application, proved to be superior to, and ultimately 

simpler than, the microspectrometric technique.  A discussion of the theory and 

instrumentation of attenuated total reflection is provided in the introduction of the third 

chapter.  Finally, chapter four investigates the potential of infrared spectrometry to 

analyze structural differences among several intact glucans.  Again, the approach is 

quantitative and further exploits the advantages of attenuated total reflection 

spectrometric technology.  Glucans are chosen because not only are they a critical initial 

step toward the analysis of intact oligosaccharides, but also glucans, themselves, are 

important for cancer research and are being investigated for their anti-tumor 

properties.18,19,29  A method to analyze them accurately and efficiently would be 

invaluable to the medical community and the overall quality of life. 
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Fourier Transform Infrared Microspectrometry 

 Fourier transform infrared microspectrometry unites the areas of vibrational 

spectrometry and microscopy.  In the scientific community, it has become a favorable 

method for the analysis of biological samples, as it is capable of measuring small areas 

of large samples.  In fact, improvements in sample synthesis and purification have 

allowed it to be used for the measurement of small sample quantities approaching the 

picogram level.  Infrared microspectrometric techniques are useful for a wide range of 

sample types especially those encountered in the forensic, textile, polymeric, and 

biological fields.27,63-65 

  Infrared microscope systems usually have a computer-interfaced video cameras 

incorporated into them, which allow an image of the sample to be visually displayed 

and stored in a database.  Often, the stage of the microscope, where the sample resides, 

is a computer-interfaced translation stage, which allows spectral profiling of a desired 

area of a sample at about 20-µm resolution and provides for applications that involve 

automated stage movement.  Infrared microscopes differ from conventional 

microscopes in that they contain two beam paths.  One beam path is for infrared 

radiation, and the other is for visual observation.  The two beam paths, however, share 

the same condenser, and they intersect at a remote aperture.  The aperture is located at 

an intermediate focus rather than the focus at the sample, as the focus of the beam is 

smaller at the latter location.  As a result, the radiation is restricted to a much smaller 

area thereby reducing the scattering.  When a sample is in focus, its conjugate image is 

focused at the remote aperture, its visible image can be seen through the optical 

microscope, and its infrared interferogram is sent to the detector, which is usually a 
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small element (100 x 100 µm to 200 x 200 µm) mercury cadmium telluride detector to 

maximize sensitivity.66  The microscope allows the operator to switch between the two 

modes without repositioning or refocusing the sample since the same cassegrain 

objective is used for the visible and infrared radiation.  When the microscope is in the 

viewing mode, the helium-neon laser and infrared radiation from the spectrometer are 

blocked from reaching the sample.  Likewise, when the microscope is in the infrared 

spectral collection mode, visible radiation from the illuminator does not reach the 

sample.67 

 Infrared microscope accessories are capable of the measurement of both 

transmission and reflection spectra.  In Figure 1.4, the optical path for viewing the 

sample in transmission mode is shown.  Mirror 1 redirects light from the illuminator up 

through cassegrain 1, which condenses the beam to a suitable size for the sample and 

focuses it at the sample location.  The light from the sample is collected by cassegrain 2 

and directed through the remote aperture after which the beam has an unobstructed path 

to the optical microscope.  A transmission spectrum can be collected by the system as 

shown in Figure 1.5.  Mirror 3, instead of receiving visible radiation from the 

illuminator, receives the infrared radiation from the spectrometer directed by mirror 2, a 

toroidal flipping mirror.  Mirror 1, the detector mirror, is positioned into the beam 

above the remote aperture.  Cassegrain 3, the mercury cadmium telluride detector 

cassegrain, condenses the beam onto the detector where the interferogram is collected.67 

In order to view the sample through the optical microscope when the system is 

in reflection mode, which is shown in Figure 1.6, mirror 4 (a relay mirror) directs light 

received from the illuminator down one side of cassegrain 2 to the sample.   
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Figure 1.4 The path of the optical beam in an infrared microscope when viewing in 

transmission mode.
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Figure 1.5 The path of the infrared beam in an infrared microscope when collecting 

a spectrum in transmission mode.
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Figure 1.6 The path of the optical beam in an infrared microscope when viewing in 

reflection mode.
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Cassegrain 2 collects the radiation from the sample and sends it through the remote 

aperture to the optical microscope.  When the system is in this mode, the sample is  

shielded from the radiation of both the helium-neon laser and the infrared source of the 

spectrometer.  To collect a spectrum in reflection mode, as shown in Figure 1.7, 

mirror 2 directs the infrared radiation from the spectrometer to mirror 3, rather than 

directing to mirror 4, and the sample receives no visible radiation from the illuminator.  

Mirror 4 directs the beam down through one side of cassegrain 2 to reflect off the 

sample, and cassegrain 2 collects the reflected radiation and directs it through the 

remote aperture.  Mirror 1 is positioned above the remote aperture, and the beam is 

directed through cassegrain 3, which focuses it onto the detector where the 

interferogram is attained.67 

The size of a sample image is determined by an aperture, usually called a remote 

aperture or targeting aperture.  In the absence of the aperture, the infrared microscope 

would allow a large percentage of the radiation to pass through the sample and produce 

spectra from regions that are not of interest.  That is, the beam may be too large in 

diameter to examine a limited region of the sample.  A second aperture under the stage 

also rejects a large portion of unwanted infrared radiation to reduce scattering effects  

and consequently reduce spectral impurities.  The minimum sample size that can be 

examined is between 10 and 15 µm in diameter, which is limited by diffraction effects 

rather than by the signal-to-noise ratio, which is often an important performance 

criterion for macroscopic measurements.66 
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Figure 1.7 The path of the infrared beam in an infrared microscope when collecting 

a spectrum in reflection mode.
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Chemometrics 

 For analytical chemistry, the field of relating measurements made on a chemical 

system via application of mathematical or statistical methods has evolved into a 

discipline of its own known as chemometrics.  Infrared spectra of mixtures often 

contain numerous overlapping bands, especially when the mixtures are of closely 

related compounds, such as monosaccharides.  Fortunately, developments in statistics 

and computer algorithms have generated an abundance of calibration methods.  Many 

of these methods have expanded the capabilities of quantitative analytical techniques to 

address increasingly difficult problems, such as spectrometric carbohydrate analysis.68,69 

 Calibration, as described herein, is a procedure that relates instrumental 

measurements to analytes of interest and requires a known relationship between these 

measurements and the quantity of the analytes present.70,71  Throughout this work, the 

Bouguer-Beer-Lambert Law, which states that the concentration, C, of an analyte is 

directly proportional to the measured absorbance, A, will provide this required 

relationship unless otherwise stated.  That is,  

A = εbC 

where ε is the absorptivity coefficient of the analyte (constituent), and b is the optical 

pathlength through the sample.70-72 

 The ultimate goal of spectrometric quantitative analysis is to create a calibration 

equation or series of equations with a set of standard spectra of known composition.  

The spectra of such a set and the calculated equation or series of equations is called a 

calibration set or training set.  Once the calibration equations have been determined, 

they can be used to predict the same quantities in an unknown sample, provided that the 
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unknown sample is measured under the exact same conditions on the same instrument 

as the calibration set.  Furthermore, the set of standard mixtures should reflect the 

composition of the unknown as closely as possible and span the range of expected 

concentrations. 

 Throughout this work, a calibration method known as Partial Least Squares is 

used almost exclusively.  It is necessary to develop a practical conceptualization of the 

method to appreciate the information it provides and the advantages it offers in 

comparison to an abundance of other statistical methods.  It is hoped that in the 

following discussion, the basic principles behind Partial Least Squares are elucidated 

sufficiently such that any misconceptions that the mathematics are mystically rooted are 

dispelled.  In addition, several its predecessors are explored, by necessity, not only to 

achieve this end but also to underscore its strengths and weaknesses that differentiate it 

from other widely accepted methods.  If there is further interest or a desire for a more 

mathematically rigorous discussion of any or all of these techniques, the works cited 

throughout the final section of the chapter are highly recommended.73-79 

 

Classical Quantitation:  Least Squares Regression.  The most straightforward 

and readily understood statistical method is the linear regression.  The area, or height, of 

a selected spectral region is assumed to be related to the concentration of the 

constituents of the sample.  This relationship is described by a polynomial equation 

such as: 

C = B1(Area) + B0 

or 
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C = B2(Height)2 + B1(Height) + B0 

where C is the concentration of a constituent of interest, and B is a calibration 

coefficient.  There is only one measurement per sample used to solve the equations, 

which makes this an example of a univariate model.80 

 Least Squares Regression is a technique in which model equations are solved via 

peak area, or height, of standards with a known constituent concentration.  The 

coefficients are calculated such that the residuals between the known spectral responses 

and the predicted responses are minimized.  Predicted spectral responses are 

extrapolated from the values on the calibration curve at known concentrations.  It is 

possible to obtain more than one calibration coefficient, and the minimum number of 

calibration samples needed to solve the equation is equal to the number of calibration 

coefficients in the model.  The peak areas, or heights, in the equation can be used to 

predict the concentration of a constituent in unknown samples that contain the same 

constituent.80 

 The main advantages of this technique are its relative simplicity and the ability 

to calculate very rapidly with current computer technology.  This method is useful 

primarily for samples that consist of only a few pure compounds.  There are, however, 

several limitations to this method.   

Spectral bands that are specifically characteristic of the constituents of interest 

are requisite.  Also, sample purity is crucial; impurities or other constituents that 

produce overlapping bands with the constituent of interest will produce large errors.  

Finally, a difficulty arises in the selection of the appropriate polynomial degree, as not 

all spectrometric systems adhere to linear relationships.81 
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Multivariate Statistical Methods:  Classical Least Squares and Multiple 

Linear Regression.  A technique that allows a much larger portion of the spectrum to 

be exploited than the Least Squares Regression model is Classical Least Squares.  As 

with the former method, Classical Least Squares is founded on the principle of the 

Bouguer-Beer-Lambert Law.  Reexamination of the Bouguer-Beer-Lambert Law 

equation indicates that, if the pathlength is held constant, which is common in 

spectrometric measurements, it can be incorporated into a single term with the 

absorptivity coefficient.  This substitution yields the following equation: 

Aλ = Kλ C 

And, after rearrangement, prediction of an unknown constituent concentration is trivial: 

C = Aλ/Kλ 

where Aλ is the spectral response at a given wavelength, C is the concentration of the 

constituent of interest, and the absorptivity coefficient and pathlength are represented as 

a single absorptivity constant at the same wavelength, Kλ.  As with the previous 

technique, a series of measurements may be taken at different concentrations, and a 

best-fit line through all of the data points may be calculated.  The situation is 

compounded when more than one constituent is present.  In cases where there are two 

non-interfering constituents, it is necessary to account for the absorbance of each 

constituent independently, which may be expressed by the equations that follow: 

Aa = Ka Ca 

Ab = Kb Cb 

where Ca and Cb are the concentrations of constituents a and b in the mixtures, Ka 

and Kb are the absorptivity constants, and Aa and Ab are the absorbances.  The sum of 
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Aa and Ab is the total absorbance for the mixture.  For each additional constituent in the 

mixture, there must an additional equation introduced, since, as with any algebraic 

solution, there must be as many equations as unknowns.  The above equations, 

however, reflect neither the dependence of the absorptivity constants on wavelength nor 

the absorbances that result.  The equations that follow demonstrate the dependence of 

the total absorbance of a mixture upon wavelength: 

Aλ1 = Ka,λ1 Ca + Kb,λ1 Cb  

Aλ2 = Ka,λ2 Ca + Kb,λ2 Cb 

where Ka,λ1 and Kb,λ1 are the absorptivity constants for constituents a and b at 

wavelength λ1, Ka,λ2 and Kb, λ2 are the absorptivity constants for the respective 

constituents at wavelength λ2, and Aλ1 and Aλ2 are the absorbances at the respective 

wavelengths.  The same mixture may yield variations in absorbance at different 

wavelengths due to the incongruence of absorptivity constants for each constituent and 

to their dependence on wavelength.69,70,72,80,82,83   

In addition, it is necessary to introduce another variable to compensate for errors 

that are always present in real measurements.  Electronic noise, instrumental error, and 

sample handling error are among a host of other possible variations.  The equations that 

follow take these into consideration: 

Aλ1 = Ka,λ1 Ca + Kb,λ1 Cb + Eλ1 

Aλ2 = Ka,λ2 Ca + Kb,λ2 Cb + Eλ2 

where Eλ1 and Eλ2 are the residuals between the actual absorbances and the least squares 

fit values for each of the measured wavelengths.  Eλ1 and Eλ2 essentially serve the same 

function as the offset coefficients in a Least Squares Regression model.  If there are 
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more than two components present or more than two wavelengths used, then the system 

of equations that result can be solved via linear algebra.  In this manner, the preceding 

equations can be represented in matrix terms as: 

A(l,n) = C(m,n) K(m,l) + E(l,n) 

where l is the number of calibration spectra, m is the number of constituents, and n is 

the number of selected wavelengths.  It follows that A is an l x n matrix of calibration 

spectra, C is an m x n matrix of constituent concentrations, K is an m x l matrix of 

absorptivity constants, and E is an l x n matrix of absorbance offset.  The K matrix is 

computed from the following equation: 

K = AC-1  

where C-1 is the inverse of the constituent concentration matrix.  Determination of the 

inverse of an m x n matrix requires m and n to be equal, which is not the case unless the 

number of constituents is the same as the number of samples.  In the above equation, 

however, when overdetermination of the data forces m ≠ n,66 the inverse of C may be 

substituted by its pseudo-inverse in the manner below: 

K = A(C′C)-1C′ 

where K is the least squares estimate of K in which the residuals are minimized, and C′ 

is the transpose of C.  Once K is known, even is it is not square, it can be used to 

determine the concentration of an unknown constituent concentration, u, by: 

u = (K′K)-1Kx 

where x is the spectrum of an unknown sample.69,80,82,83 

 Classical Least Squares, also known as K matrix, has a number of advantages 

over the Least Squares Regression method.  One is that wavelength selection is not 
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necessary so long as the number of wavelengths exceeds the number of constituents in 

the mixtures.  In addition, inclusion of a large number of wavelengths produces an 

averaging effect in the model, which causes it to be less susceptible to noise present in 

the data.  Furthermore, moderately complex mixtures can be modeled, and, as in Least 

Squares Regression, the calculations are fast.  Finally, if the Bouguer-Beer-Lambert 

Law is non-linear, it can be approximated as being linear over a finite range of 

concentrations.  A nonzero intercept at zero concentration occurs in the linear region of 

the curve.  This can be incorporated into the model by placing an extra row of ones into 

the C matrix and an extra column of constants for the intercept into the K matrix while 

the A matrix remains unaffected.66 

 The overwhelming disadvantage from which Classical Least Squares suffers is 

that the equations must be calibrated for every constituent present in the mixtures.  This 

constraint arises from the dependence of the absorbance at a particular wavelength on 

the sum of all of the constituent absorbances.  As stated previously, the absorbance of a 

constituent is the product of its concentration and absorptivity constant.  If the 

concentration of any constituent is omitted, then the predictions may be in error.  As the 

mixtures become increasingly complex, the predictions of the model will further suffer.  

If contaminants reside in the mi xtures measured for analysis that either are not present 

in the calibration mixtures or are present in the calibration mixtures but not considered, 

then the ability of the model to make predictions may be critically diminished.  

Furthermore, this problem may also occur if there are chemical interactions among the 

constituents, as even slight amounts of reaction byproducts of unknown concentrations 

may adversely affect the calibration.  Classical Least Squares performs best when 
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applied to both systems that have little or no inter-constituent reactions and systems that 

are not exceedingly complex and of which the composition is completely known.77,84-87 

 In real world systems, it is unlikely to possess complete knowledge of the 

composition of a sample mixture.  In addition, the analysis of only a few of all of the 

constituents that exist in a highly complex mixture is often desired.  In these cases, 

Classical Least Squares will not function well.  One alternative arises through the 

rearrangement of the Bouguer-Beer-Lambert Law and expression of it as follows: 

C = Aλ/ελb 

Combination of the absorptivity coefficient and pathlength into one constant and re-

expression in matrix terms yields: 

C = AλP + E 

where C is the matrix of constituent concentrations, Aλ is the matrix of absorbances at a 

specific wavelength λ, P is the matrix of unknown calibration coefficients that relate the 

constituent concentrations to the absorbances, and E is the matrix of concentration 

errors.  This expression of the Bouguer-Beer-Lambert Law allows the concentration to 

be a function of absorbance at a series of wavelengths.  This is unlike Classical Least 

Squares, where absorbance at a particular wavelength is calculated as an additive 

function of concentrations.  In the system of equations below, it is apparent that the 

matrix of coefficients can be properly calculated even if the concentrations of all of the 

other constituents are unknown. 

Ca = Aλ1 Pa,λ1 + Aλ2 Pa,λ2 + Ea 

Cb = Aλ1 Pb,λ1 + Aλ2 Pb,λ2 + Eb 
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The P matrix is calculated via linear algebra in manner analogous to the determination 

of the K matrix in the former method, and, if the A matrix is not square, then the 

calculation must be made by the substitution of A-1 with the pseudo-inverse of A.  This 

method is known as Multiple Linear Regression, Inverse Least Squares, or P matrix.  It 

appears to be panacea for all quantitative analysis schemes because the sample 

composition with respect to only the constituents of interest is sufficient for calibration, 

provided that the appropriate wavelengths, which correspond to the absorbances of the 

desired constituents, are selected.  Multiple Linear Regression is a multivariate method, 

that is, the dependent variable is solved from a calculated solution from multiple 

independent variables.77,88 

In univariate models, a wavelength must be selected where all but one of the 

constituents have absorptivity constants equal to zero, and hence, the selected 

wavelengths can be used to solve separate equations for each constituent.  In real 

measurements, wavelength selection, even when it is possible, is seldom 

straightforward, as many sample systems contain overlapping bands, and therefore, the 

equations for all constituents must be solved simultaneously.  This restriction is an 

inherent weakness of univariate methods.  Multivariate methods, with which a series of 

equations are solved by use of many measurements per sample for a single calibration, 

have a distinct advantage in that they permit the inclusion of spectral absorbances over a 

broader range of wavelengths.  Therefore, the solutions are more robust due to the 

effects of averaging.  The main advantage of multivariate methods, however, is that it is 

possible to calibrate for a desired constituent without the need to account for any 
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interferences that occur in the spectra.  As a result, they are more useful than univariate 

methods for systems that consist of highly complex mixtures.89 

Unfortunately, there is a stipulation sufficiently profound to impose a 

considerable obstacle for the application of Multiple Linear Regression.  The number of 

wavelengths selected cannot be greater than the number of training samples.  Although 

the number of wavelengths selected can be easily augmented by inclusion of a greater 

number of calibration mixtures, this apparent remedy will lead to the problem of 

collinearity.  In other words, as more samples are added to the calibration set, 

near-linear relationships between absorbances at multiple wavelengths begin to occur, 

which will induce a mathematical solution that is unstable with respect to each 

constituent.78  Furthermore, overfitting arises when too many wavelengths are included, 

which causes the calibration to model noise that is unique to the training set, hence, a 

deficiency in the predictive accuracy for unknown samples results.83 

 

Continuum Regression Statistical Methods:  Principle Components 

Regression and Partial Least Squares.  Another approach, which may combine some 

of the separate advantages of Classical Least Squares and Multiple Linear Regression, 

is founded on a principle known as spectral decomposition.  The concept relies upon the 

assumption that the spectra of real samples are comprised of many different variations, 

and that there is only a finite number of independent variations that contribute to the 

spectral data.  It is expected that the largest variations in the spectra of the training set 

may be changes that are attributed to different concentrations of the constituents of the 

mixtures.  If it were possible to calculate a set of variation spectra, they could be used, 
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by multiplication by different scaling factors and subsequent co-addition, to reconstruct 

a spectrum that closely resembles the spectrum of an unknown mixture.90 

 These variation spectra will be referred to throughout this work as loadings, but 

they are also commonly known as eigenvectors, loading vectors, principle components, 

factors, or spectral loadings.  The scaling factors that are used to reconstruct unknown 

spectra are called scores or eigenvalues, but the former term will be used herein 

exclusively.  As the calculated loadings come from the original training set, they must 

be related to the concentrations of the constituents in the mixtures.  If the same loadings 

can be used to predict unknown samples, then the only difference among the spectra of 

different mixtures would be the scores. 

 The scores take the place of the absorbances in either of the previous two 

statistical methods discussed.  Because the representation of the spectra is reduced to a 

few scores from a multitude of wavelengths, the implementation of the Multiple Linear 

Regression modification to the Bouguer-Beer-Lambert Law may provide the ability to 

calculate concentrations among the presence of interfering constituents.  In addition, the 

advantages of Classical Least Squares are retained in that the entire wavelength domain 

may be included in the calculation.  All continuum regression methods share this 

premise, and the differences among these models, including the two discussed below, 

lay in the manner in which the loadings are calculated.91  Note in particular that these 

models are based on variations in relative absorbances and not the absolute 

absorbances. 

 One method that uses this model of spectral variation to create the calibration 

equations is Principle Components Regression.  The first step of this method, that is, the 
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calculation of all of the possible variations, is Principle Components Analysis.  Before 

Principle Components Analysis may be applied to the data, the spectra are typically 

mean-centered.  That is, the average spectrum is determined and subtracted from each 

of calibration spectra.  This allows greater emphasis to be given to differences among 

the spectra and less attention to be given to common spectral features.  Removal of the 

mean simply eliminates the most common variations before the data undergoes 

Principle Components Analysis.90 

 Principle Components Analysis is essentially an iterative elimination of each 

independent variation from the calibration data in series.  In this manner, it is possible 

to produce a set of loadings that represent the variations of absorbances that are 

common throughout the entire set.  The matrices that result from the fully processed 

calibration are shown in the simplified matrix expression of the model equation that 

follows: 

A(i,j) = S(i,k) L(k,j) + E(i,j) 

where i is the number of calibration spectra, j is the number of data points used for the 

calibration, and k is the number of loadings.  It follows that A is an i x j matrix of 

spectral absorbances, S is an i x k matrix of scores, L is a k x j matrix of loadings, and E 

is an i x j matrix of residual spectra, that is, the error in the ability of the model to 

predict the calibration absorbances.  Several algorithms have been developed to 

calculate the loadings from a set of data.  Two common ones are Decomposition of 

Covariance and Non-Linear Iterative Partial Least Squares.  Detailed descriptions of 

these and other algorithms, such as Single Value Decomposition and Successive 

Average Orthogonalization, may be found elsewhere in the literature.73,92  In general, 
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the Decomposition of Covariance algorithm is the fastest to calculate, but often 

produces numerical errors, and, therefore, the Non-Linear Iterative Partial Least 

Squares algorithm, which is more robust, is widely utilized and is typically the one that 

is chosen for most commercial software packages that support continuum regression 

statistical methods. 

 The above equation is reminiscent of the Classical Least Squares model 

equation in that the entire spectrum may be included in the model.  The scores and 

loadings, however, are used in place of the concentration and absorptivity constant 

matrices.  Since the concentration matrix has not played a role in the model calculation, 

Principle Components Analysis cannot be used unaccompanied for prediction.  The 

loadings, which represent spectral variations common to all of the calibration spectra, 

are employed to calculate a regression model from which constituent concentrations 

may be predicted.  The loadings in the L matrix cannot be used to represent the original 

data without the scores matrix, S.  The scores in the S matrix are unique to each 

spectrum, and they correlate to a given set of loadings.  Therefore, it is possible to 

perform a regression of the concentration matrix C directly against the scores matrix, S, 

by: 

C(h,i) = B(h,k) S(k,i) + E(h,i) 

where i is the number of calibration spectra, h is the number of constituents used for the 

calibration, and k is the number of loadings.  It follows that C is an h x i matrix of 

constituent concentrations, B is an h x k matrix of the regression coefficients, S is a k x i 

matrix of scores from the Principle Components Analysis model, and E is an h x i 
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matrix of residuals.  As in the Multiple Linear Regression method, the coefficient 

matrix can be solved by: 

B(h,k) = C(h,i)(S′(k,i) S(k,i))-1S′(k,i) 

The name, Principle Components Regression, comes from these two steps, which 

combine Principle Components Analysis and Multiple Linear Regression, to calculate 

the calibration equations.  A single unified equation to represent the Principle 

Components Regression can be produced by rearrangement of the matrix model 

equation so that the scores are a function of the spectral absorbances and loadings: 

S(k,i) = A(i,j) F′(k,j) 

F is an orthonormal matrix in that the product of itself and its transpose is the identity 

matrix.  Therefore, it is not necessary to use the inverse of F to solve this equation.  The 

final equation emerges when the concentration equation and scores equation are 

combined: 

C(h,i) = B(h,k) A(i,j) F′(k,j)+ E(h,i) 

where C is an h x i matrix of constituent concentrations, B is an h x k matrix of the 

regression coefficients, A is a i x j matrix of spectral absorbances, and F is a k x j matrix 

of loadings.  In addition, it is typical in the second step to add an extra unit vector 

column to the scores matrix to accommodate the inclusion of an offset coefficient in the 

regression.66 

 There are, however, several drawbacks to this method.  Although it is presumed 

that the variations in the spectral data are the result of variations in the constituents of 

interest, there is no guarantee of a direct correspondence.  Furthermore, the predictive 

ability of this model will be adversely affected if there are collinear constituent 
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concentrations.  This means that if a relatively large number of calibration samples must 

be incorporated into the model, then precautions must be taken to ensure that the 

constituent concentrations in the training samples are adequately randomized.87 

 Another spectral decomposition method, and the one that is used primarily in 

this study, is Partial Least Squares.  It is similar to Principle Components Regression 

except that, rather than decomposition of the spectra into loadings and scores and then, 

as a separate step, regression against the concentration information, the concentrations 

are introduced into the decomposition process.  As a result, spectra that contain higher 

constituent concentrations are more heavily weighted than those of low concentrations 

are weighted.  The incentive is to incorporate more concentration information into the 

first few loadings. 

 This inclusion brings about two separate sets of scores and loadings.  One set is 

for the spectral data scores S and for the loadings LS which represent the common 

variations in the spectra.  The other set is for the concentration data scores T and for the 

loadings LT, which represent the variations in the spectra that correspond to the 

regression components.  A calibration model is constructed by relation of the two sets 

of scores to each other.  This is done as a single step, which is unlike the two-step 

process used in the Principle Components Regression me thod.  Partial Least Squares 

performs the spectral decomposition and the concentration data decomposition 

simultaneously, and, as each loading is calculated, the scores are exchanged before the 

contribution of the loading is removed from the data.  Following this, the reduced 

matrices are used to calculate the next loading, and the entire process is repeated 

iteratively until the desired number of loadings is produced.  The model equations 
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which result are considerably complex mathematically, and, as they are beyond the 

scope of this discussion, the algorithms used for the calculation of the Partial Least 

Squares model may be found elsewhere in the literature.74,86,93-98 

 The primary advantage of Partial Least Squares is that the spectral vectors are 

directly related to the concentration of the constituents of interest.  Two forms of Partial 

Least Squares exist:  PLS-1 and PLS-2.  The difference between these is that, while 

PLS-1 calculates a separate set of scores and loadings for each constituent, PLS-2 

calibrates for all of the constituents simultaneously.  PLS-1, for the most part, is more 

robust than PLS-2 because a model generated by PLS-2 cannot be optimized for each 

constituent individually.  The advantage of PLS-1 is more pronounced when the ranges 

of constituent concentrations are disparate.  The calculation time requirement with 

respect to PLS-1 relative to PLS-2, however, increases dramatically as the number of 

explicitly modeled constituents increases. 

 Although Partial Least Squares has generally been shown to outperform 

Principle Components Regression, particular care must be taken to avoid collinear 

constituent concentrations.  Furthermore, it is essential that the calibration set reflect the 

range of concentration variability expected in unknown samples.  Both, however, 

provide the advantage of permitting overdetermination of the data as with Classical 

Least Squares by including full spectral coverage; they also produce the advantage of 

partial composition regression provided by Multiple Linear Regression.  Partial Least 

Squares may be used for highly complex mixtures, as not only must solely the 

constituents of interest be known to apply the calibration, but also, in some cases, 

predictions on samples that include contaminants not found in the training samples may 
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be undertaken.  As no definitive guidelines exist with regard to selection of the 

calibration technique best suited for a particular system, reasonable intuition and 

conventional wisdom often may be the only tools available for that determination. 
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Abstract 

Carbohydrates are an important class of biochemical compounds.  

Compositional analysis of mammalian N-linked oligosaccharides is performed routinely 

with gas chromatography and combined gas chromatography/mass spectrometry.  

Infrared spectrometry has not been used frequently in the study of oligosaccharides.  

Nonetheless, infrared spectrometry can be applied quite effectively because each unique 

structure, with the exception of optical isomers, has a corresponding distinct infrared 

spectrum.  Even large sugars that only have minor structural differences produce 

distinct infrared spectra.   

This investigation involves the rapid and accurate determination of 

monosaccharide composition in complex carbohydrates.  Oligosaccharides are 

depolymerized in order for the individual monosaccharides to be quantified by Fourier 

transform infrared microspectrometry.  The representative monosaccharides found in 

mammalian N-linked oligosaccharides are D-mannose, D-galactose, L-fucose, 

N-acetyl-D-glucosamine, N-acetyl-D-neuraminic acid, and N-acetyl-D-galactosamine.  A 

common impurity is D-glucose and is therefore included in the study.  A quantitative 

model was developed by the application of partial least squares regression methods to 

the spectra of mixtures of these seven monosaccharides, which mimic the composition 

of the oligosaccharides to be depolymerized.  The standards and samples for prediction 

were subjected to acid methanolysis and peracetylation.  Methanolysis was chosen over 

simple hydrolysis to protect N-acetyl-D-neuraminic acid.  In addition, the peracetylated 

product is highly soluble in methylene chloride, which is an ideal solvent for direct 

deposition onto an infrared transparent window. 
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A representative set of samples was prepared and analyzed.  Only the region 

from 1850 cm-1 to 850 cm-1 was used to build the partial least squares model.  In 

addition, the spectra were baseline-corrected and normalized.  Several regions for 

normalization were investigated in order to minimize the dependence of a particular 

region on any factors other than the thickness of the deposit.  Leave-one-out predictions 

demonstrated the validity of the data set.  The model was further validated by an 

external set of mixtures that were not incorporated into the original calibration model.  

Finally, predictions of unknown samples produced excellent results that surpassed the 

performance of the conventional gas chromatographic and combined gas 

chromatographic/mass spectrometric methods for analysis. 
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Introduction 

 A strong need exists for the development of methodologies for compositional 

analyses of complex carbohydrates.1  Vibrational spectrometry is a valuable and 

powerful tool for examination of many chemical systems for both qualitative and 

quantitative analyses and is applicable to the analyses of complex carbohydrates.  Such 

a method is presented. 

 Carbohydrates play numerous important roles in biochemical systems, and they 

are ubiquitous components in living organisms.  Biologically, their role as a source of 

energy for physiological processes is essential.  More profoundly, however, in addition 

to playing crucial roles in maintenance of structural integrity and biosynthesis, it has 

been found that oligosaccharides are required for the direction of these processes and 

also behave as chemical messengers.2  It is the latter of these properties that guides this 

study towards the compositional and structural analysis of mammalian N-linked 

oligosaccharides.  It should be noted that oligosaccharides are necessary for immune 

response and are present in more than fifty percent of mammalian proteins.  

Oligosaccharide extractions are costly, and, typically, only very small quantities are 

available for analysis.  Therefore, a sensitive analytical method that can interrogate 

microgram or smaller quantities of sample is critical.1 

The selected methodology involves the determination of the percent 

composition of each of seven different monosaccharides that occur in N-linked 

oligosaccharides.  The monosaccharides of interest are D-mannose, D-galactose, 

L-fucose, N-acetyl-D-glucosamine, N-acetyl-D-neuraminic acid type VI, 

N-acetyl-D-galactosamine, and D-glucose.  These seven were chosen as they, with the 
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exception of D-glucose, are the most common monosaccharide subunits encountered in 

the analysis of N-linked mammalian oligosaccharides.  Glucose is included in the 

domain since it is an impurity that is often encountered in oligosaccharide assays.  

Structural representations of these seven monosaccharides are presented in Figures 2.1 

and 2.2. 

Several methods have been developed for compositional and structural analysis 

of complex carbohydrates, including gas chromatography/mass spectrometry3-8 and 

nuclear magnetic resonance.9-17  Although both of these methodologies are valuable 

tools for the determination of structure and composition for a wide range of compounds, 

each has inherent drawbacks.  One disadvantage that both of these techniques have in 

common is the considerable expense of the instrumentation and the high level of 

difficulty in the development of automated routine analyses.3 

 Gas chromatography/mass spectrometry has been used routinely for analysis of 

oligosaccharides.4-9,18  It is not, however, an ideal tool for these compositional analyses 

for several reasons.  First, mass spectrometry cannot be used effectively without the 

separation of the components of interest prior to analysis.3  For example, galactose and 

mannose, although structurally incongruent, are isobaric and, therefore, are not well-

suited for distinction by mass spectrometry.19  Gas chromatography requires 

derivatization of the analytes, which introduces absolute errors in these quantitative 

analyses as great as twenty percent.  The errors may be attributed to the inability to 

control derivatization rates.   

Nuclear magnetic resonance possesses several advantages in the areas where 

mass spectrometry is insufficient, such as its ability to distinguish compounds of  
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Figure 2.1 The structures of four of the seven monosaccharides.
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Figure 2.2 The structures of the remaining three of the seven monosaccharides. 
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identical molecular weights; however, it poses other inherent challenges.  First, and 

foremost, is its intrinsic insensitivity as a detector.  Nuclear magnetic resonance requires 

greater sample mass than is economically feasible in order to obtain an adequate signal 

intensity.  In addition, quantitative analysis, which requires reproducible spectral 

interrogation, is thwarted by the relative inability to maintain a homogeneous magnetic 

field in nuclear magnetic resonance.  It is nearly impossible to obtain identical spectra 

from the same sample upon multiple acquisitions.  Although nuclear magnetic 

resonance seldom poses a problem for qualitative analysis, reproducible data are a 

prerequisite for statistical analysis.20,21 

In contrast, Fourier transform infrared spectrometry is a sensitive analytical tool 

with a wide variety of applications.  Fourier transform infrared spectrometry can 

frequently identify chemical species unequivocally where other analytical techniques 

cannot provide definitive structural and compositional information.  Furthermore, it is a 

rapid and simple technique, which makes it a valuable tool for process analysis and 

quality control.  The instrumentation is relatively inexpensive and is stable enough to 

permit automated analyses. 

 Infrared spectra are highly reproducible and absorbance correlates to sample 

concentration.  Therefore, Fourier transform infrared spectrometry is well-suited for use 

in quantitative analysis.  Least squares regression is only useful for systems that involve 

mixtures of compounds that have few components and whose infrared spectra do not 

have overlapping absorption bands.  Multivariate analysis, particularly partial least 

squares, works very well in conjunction with vibrational spectrometric analysis. 
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 Fourier transform infrared spectrometry has received little attention for analysis 

of carbohydrates with the possible exception of sugar concentrations in food products 

and beverages.22,23  Near-infrared spectrometry combined with multivariate quantitative 

analysis has been the recipient of considerable development in the last decade.24-31  

Only relatively recently has mid-infrared spectrometric analysis, in conjunction with 

partial least squares, begun to see greater acceptance for a wider range of applications in 

the literature.32-37 

Complex carbohydrates have sufficiently similar spectra that visual 

interpretation of the spectra of a mixture of sugars is not possible.  Minor variations in 

the spectra, however, are adequate in order for partial least squares to distinguish 

varying concentrations of constituents in a mixture reliably and with high precision.  

Unlike mass spectrometry, infrared spectrometry can differentiate among structural 

isomers, and, although it shares the inability to distinguish optical isomers, 

determination of optical isomers is not necessary for carbohydrate analysis in 

mammalian systems.  In addition, as there is no interaction among the saccharide 

constituents of the system being analyzed, the quantitative methodology is reduced in 

complexity.  As a result, the requirement with respect to the size of the standardization 

set necessary to build the multivariate calibration model is relaxed in relation to the size 

of a set in which the components would interact. 

 For the analysis of oligosaccharide composition, it is only requisite to determine 

the relative concentration of each of the seven common monosaccharide structures that 

are contained in the overall structure.  If the oligosaccharides are depolymerized, then 

the mixture that results is a simple mixture of monosaccharides, which may be 
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considered as a simple mixture of seven separate constituents despite there being five 

potential forms of each monosaccharide.  These five different forms are shown in 

Figure 2.3.  This permits the design of a standardization set that can be produced from 

mixtures of commercially available monosaccharides.  Such a sample set is required for 

partial least squares analysis to serve as the calibration model. 

 The standardization set is an unbiased representation of monosaccharide 

compositions that spans the expected range of relative monosaccharide content present 

in typical oligosaccharide structures.  The spectra of all of the mixtures in the 

standardization set and the known concentrations of all of the constituents present in the 

mixtures serve as the basis for the partial least squares calibration model.  Once the 

calibration model is built, it is tested first by a subset of the standardization set, then, it 

is tested for validation by an external sample set.  If the oligosaccharide samples are 

depolymerized prior to analysis, then the model subsequently can be used for 

composition prediction. 

An important aspect of method development for routine analysis is cost 

efficiency.  Isolation of oligosaccharide samples is considerably expensive.  Therefore, 

it is essential that the technique only require small sample quantities.  To attain this 

goal, infrared microspectrometry is employed.  This method permits analysis of 

microgram quantities of analytes; however, in order to use an infrared microscope 

system, several accommodations must be made. 

Direct deposition is a suitable technique for infrared microspectrometric 

analysis; direct deposition of aqueous solutions of hygroscopic sugars, however, is not 

feasible.  To circumvent this restriction, a modest adjustment in sample preparation can  
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Figure 2.3 The structures of the five possible forms in which monosaccharides 

exist.  Mannose is used in this example. 
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be implemented.  Specifically, use of a highly volatile solvent system sufficiently 

addresses the problem of solvent elimination during sample deposition.   

 The preparation of the standards entails acid methanolysis and peracetylation to 

yield methyl glycosides.  Note that in all cases where N-acetyl-D-neuraminic acid is 

concerned, the methanolysis reaction always produces a methyl ester of the C-1 

carboxyl group, and the resulting methyl ester methyl glycoside is unaffected by the 

subsequent per-N,O-acetylation.  In the interest of brevity, however, the products of all 

of the standards discussed in the present chapter as well as subsequent chapters will 

simply be referred to as “methyl glycosides” throughout.  The structure of a methyl 

glycoside is shown in Figure 2.4.  The objective of these processes is two-fold.  

Methanolysis will depolymerize the polysaccharides into their monosaccharide 

subunits.  Furthermore, peracetylation effectively substitutes acetyl groups in the place 

of every hydroxyl group on the saccharides.  The resulting methyl glycosides are 

considerably more hydrophobic, and thus, they are soluble in nonpolar organic solvents, 

which is preferable for direct deposition. 

 

Experimental 

Sample Preparation.  Eighty-eight monosaccharide mixtures, which contain 

two to all seven constituents, were prepared as the standardization set, as well as an 

additional twenty monosaccharide mixtures for the validation set.  The monosaccharide 

constituents are D-mannose, D-galactose, L-fucose, N-acetyl-D-glucosamine, 

N-acetyl-D-neuraminic acid type VI, N-acetyl-D-galactosamine, and D-glucose.  The 

sugars and all of the other reagents and solvents were purchased from  
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Figure 2.4 The structures of the products of methanolysis and peracetylation.  

Mannose is also used here as an example. 
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Sigma-Aldrich Co., St. Louis, MO, with the exception of the 3 N methanolic 

hydrochloric acid which was purchased from Supelco, Bellefonte, PA.  The weight 

percentage ranges were selected to mimic the composition of mammalian N-linked 

oligosaccharides that may be encountered in biological systems.  Some of the ranges 

reach beyond what is typically encountered to increase the robustness of the model, 

however.  Tables 2.1 through 2.4 list the specific composition for each of the 

eighty-eight training set samples.  The weights of individual sugars were assessed to 

±0.05 mg precision on a high precision analytical balance (Ohaus Corporation, Florham 

Park, NJ) and diluted with 18 MΩ water such that the resulting concentration is 

4 mg/mL.  The stocks were pipetted in the appropriate volumes to achieve the 

prescribed composition for each of the standard mixtures.  This was accomplished via a 

series of Eppendorf Autoclavable Pipettes (Brinkman Instruments, Inc., Westbury, 

New York), with which volumes of 10 – 100 µL, 20 – 200 µL, or 100 – 1000 µL can be 

delivered.  In all cases, each sample consisted of two milligrams of each mixture in 

500 µL of water.  The mixtures were contained in 17 mm x 63 mm borosilicate glass 

vials with polytetrafluoroethylene-lined caps (Fisher Scientific, Pittsburgh, PA).  The 

vials were transported to and placed in a low-temperature freezer (–80 ºC).  After 

freezing, the samples were placed in a lyophilizer until the solvent was completely 

removed. 

The methanolysis and peracetylation procedures are as follows:  Into each of the 

samples, 1 mL of 1 N anhydrous methanolic hydrochloric acid was pipetted.  Particular 

care was taken to ensure that the vial caps were barely finger-tight immediately after
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Table 2.1 The composition of calibration samples one through twenty-two. 
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Table 2.1 

Sample Gal Man Fuc GlcNAc Neu5 GalNAc Glu 

1 10% 15% 45% 4% 10% 6% 10% 

2 20% 35% 25% 5% 0% 7% 8% 

3 30% 55% 0% 6% 6% 0% 3% 

4 40% 16% 0% 7% 20% 5% 12% 

5 5% 36% 44% 8% 5% 2% 0% 

6 0% 56% 24% 9% 7% 4% 0% 

7 50% 17% 0% 10% 0% 20% 3% 

8 8% 37% 0% 9% 12% 0% 34% 

9 18% 57% 0% 8% 8% 4% 5% 

10 28% 18% 23% 7% 4% 14% 6% 

11 35% 38% 0% 6% 14% 0% 7% 

12 7% 58% 0% 5% 17% 0% 13% 

13 12% 19% 42% 4% 11% 12% 0% 

14 14% 39% 22% 11% 0% 0% 14% 

15 13% 59% 0% 12% 0% 16% 0% 

16 45% 20% 0% 13% 18% 0% 4% 

17 0% 40% 41% 6% 9% 0% 4% 

18 0% 60% 21% 6% 2% 11% 0% 

19 3% 21% 0% 16% 3% 34% 23% 

20 0% 41% 0% 17% 23% 9% 10% 

21 0% 61% 0% 18% 0% 0% 21% 

22 0% 22% 20% 19% 2% 10% 27% 
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Table 2.2 The composition of samples twenty-three through forty-four. 
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Table 2.2 

Sample Gal Man Fuc GlcNAc Neu5 GalNAc Glu 

23 9% 42% 0% 20% 16% 13% 0% 

24 2% 62% 0% 21% 0% 0% 15% 

25 1% 23% 39% 22% 0% 15% 0% 

26 0% 43% 19% 23% 15% 0% 0% 

27 0% 63% 0% 24% 13% 0% 0% 

28 6% 24% 0% 25% 0% 0% 45% 

29 0% 44% 38% 5% 5% 6% 2% 

30 0% 64% 18% 5% 0% 2% 11% 

31 16% 25% 0% 28% 31% 0% 0% 

32 5% 45% 0% 30% 0% 0% 20% 

33 0% 65% 0% 5% 0% 5% 25% 

34 17% 26% 17% 15% 25% 0% 0% 

35 4% 46% 0% 14% 10% 10% 16% 

36 0% 66% 0% 13% 15% 0% 6% 

37 0% 27% 36% 12% 22% 0% 3% 

38 0% 47% 16% 11% 0% 26% 0% 

39 0% 67% 0% 10% 23% 0% 0% 

40 23% 28% 0% 9% 0% 7% 33% 

41 0% 48% 35% 8% 3% 0% 6% 

42 0% 68% 15% 7% 0% 0% 10% 

43 27% 29% 0% 6% 0% 35% 3% 

44 0% 49% 0% 5% 29% 0% 17% 
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Table 2.3 The composition of samples forty-five through sixty-six. 
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Table 2.3 

Sample Gal Man Fuc GlcNAc Neu5 GalNAc Glu 

45 0% 69% 10% 4% 11% 6% 0% 

46 14% 30% 14% 5% 25% 0% 12% 

47 7% 50% 0% 6% 6% 9% 22% 

48 9% 70% 0% 7% 7% 3% 4% 

49 8% 31% 33% 8% 0% 6% 14% 

50 0% 51% 13% 9% 16% 0% 11% 

51 0% 71% 0% 10% 9% 6% 4% 

52 21% 32% 0% 9% 10% 4% 24% 

53 0% 52% 32% 8% 0% 3% 5% 

54 0% 72% 12% 7% 0% 0% 9% 

55 32% 33% 0% 6% 15% 14% 0% 

56 11% 53% 0% 5% 11% 11% 9% 

57 2% 73% 0% 4% 0% 5% 16% 

58 8% 34% 31% 4% 23% 0% 0% 

59 3% 54% 11% 4% 0% 28% 0% 

60 0% 74% 0% 5% 0% 0% 21% 

61 0% 75% 0% 5% 10% 5% 5% 

62 0% 85% 0% 5% 0% 10% 0% 

63 0% 90% 0% 5% 5% 0% 0% 

64 0% 80% 8% 5% 0% 0% 7% 

65 0% 70% 10% 6% 4% 0% 10% 

66 0% 60% 0% 6% 0% 0% 34% 
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Table 2.4 The composition of samples sixty-seven through eighty-eight. 
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Table 2.4 

Sample Gal Man Fuc GlcNAc Neu5 GalNAc Glu 

67 36% 50% 0% 6% 8% 0% 0% 

68 7% 40% 27% 7% 19% 0% 0% 

69 19% 30% 11% 7% 0% 33% 0% 

70 37% 20% 0% 7% 0% 26% 10% 

71 9% 10% 0% 8% 12% 11% 50% 

72 0% 15% 10% 8% 0% 50% 17% 

73 22% 25% 5% 8% 37% 0% 3% 

74 0% 35% 0% 8% 0% 0% 57% 

75 0% 45% 0% 9% 46% 0% 0% 

76 11% 55% 9% 9% 5% 0% 11% 

77 0% 65% 4% 9% 0% 22% 0% 

78 0% 75% 0% 10% 15% 0% 0% 

79 0% 86% 0% 5% 0% 0% 9% 

80 8% 17% 8% 11% 50% 0% 6% 

81 1% 27% 3% 12% 0% 41% 16% 

82 5% 37% 0% 13% 45% 0% 0% 

83 3% 47% 0% 14% 0% 36% 0% 

84 0% 57% 7% 16% 0% 0% 20% 

85 0% 67% 2% 15% 0% 16% 0% 

86 0% 77% 0% 5% 18% 0% 0% 

87 0% 87% 0% 5% 0% 0% 8% 

88 24% 14% 11% 12% 39% 0% 0% 
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addition of the reagent to maintain an anhydrous system by the minimization of its 

exposure to atmosphere.  The vials were heated for twenty minutes in order to soften the 

polytetrafluoroethylene lining, after which the caps were further tightened.  The 

reaction was maintained in a thermostatic heat block at 80 ºC for 24 hours. 

Both the acid elimination with nitrogen gas and the rinse of the remaining 

mixtures with anhydrous methanol were executed in an N-evaporator (Organomation 

Associates, Inc., Berlin, MA).  Equal amounts of pyridine and acetic anhydride were 

dispensed to each sample.  The caps were retightened, and the reaction was permitted to 

continue overnight at room temperature and in the absence of light.  After the reaction 

was complete, the reagents were eliminated, and the products were rinsed with toluene 

in a manner congruent to the acid elimination and methanolic rinse.  Finally, the excess 

toluene was eliminated under low vacuum (viscous flow region), and the products were 

stored in a low-temperature freezer (-16 ºC). 

 

Data Acquisition and Computation.  The methyl glycoside mixtures were 

dissolved in 150 µL of methylene chloride.  Calcium fluoride (CaF2) windows (Spectral 

Systems, Inc., Hopewell Junction, NY) were utilized as the infrared transparent 

windows for the deposition method discussed in the introduction.  For each deposit, a 

window was heated by a two hundred watt incandescent lamp positioned approximately 

20 cm above the surface.  Additionally, a vacuum airflow was supplied about 10 mm 

above the face of the window by a disposable pipette affixed to a rough pump by means 

of Teflon tubing as shown in Figure 2.5.  A 1-µL aliquot of the diluted product was  
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Figure 2.5 A drawing of the arrangement of the apparatuses used in direct 

deposition. 
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deposited, with the use of a micro capillary (Drummond Scientific Co., Broomall, PA), 

onto the window directly below the disposable pipette.  The window, after deposition, 

was positioned onto the stage of a Perkin-Elmer i-Series infrared microscope that is 

coupled to a Spectrum 2000 Fourier transform infrared spectrometer (Perkin-Elmer, 

Norwalk, CT).  The window was repositioned with the microscope stage control such 

that an appropriate 50 µm x 50 µm region of the deposit intersected the optical path.  

The aperture was set to contain a 50 µm x 50 µm area as well.  A mercury cadmium 

telluride detector was chosen for detection, and the instrument collected transmission 

spectra from 4000 cm-1 to 700 cm-1 at 4 cm-1 resolution.  Each 100-scan data set was 

Medium Norton-Beer apodized, Fourier transformed, and converted into absorbance in 

the respective sequence.  This was realized for each of the samples, and the resulting 

spectra were truncated at 1850 cm-1 and 850 cm-1.  A two-point linear 

baseline-correction, incorporating both leveling and zeroing functions, was applied to 

each spectrum with 1850 cm-1 and 850 cm-1 designated as the reference points.  Each 

spectrum was unit area normalized over the entire domain from 1850 cm-1 and 850 cm-1 

before being placed into the training set.  This was accomplished by integrating the area 

under the spectrum over the entire domain and rescaling such that the resulting area is 

equal to unity since only the relative concentrations are of interest. 

 A partial least squares algorithm, specifically PLS-1, was used to create a model 

from the eighty-eight training spectra.  GRAMS PLSIQ version 5.2 (Galactic 

Industries Corporation, Salem, NH) was used for the statistical computations.  The 

algorithm calculated iterations up to and including the possible eighty-five factors, 

utilized mean-centering, and performed a cross-validation adjusted to leave one 
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spectrum out at a time for each of the iterations.  Selection of the appropriate number of 

factors for each of the constituents further optimized the final calibration model.  Once 

the model was constructed, predictions were made on each of the internal spectra, the 

validation spectra, and, later, on a set of unknown spectra.  The results, including 

predicted concentration, root-mean-square deviations, coefficients of determination, 

F-ratios, and prediction residual error sum of squares, were imported into a spreadsheet 

where error analysis was tabulated.   

 

Results and Discussion 

 Although solvent elimination can be adequately achieved, merely ensuring 

complete solvent elimination is not the only challenge presented by direct deposition.  

For spectral quantitative analysis, it is necessary to suppress any deviations or artifacts 

in the spectra attributed to anything other than chemical composition.  According to the 

Bougeur-Beer-Lambert Law, pathlength and concentration also affect absorption.  In 

sample deposits, relative concentration variability is eliminated since only the pure 

analytes of interest are present.  Pathlength, however, is governed by the deposit 

thickness as the spectra are measured by transmission.  This variable is partially 

resolved by creating deposits that contain a pathlength gradient.  This results in a 

non-uniform thickness of the deposit.  A non-uniform thickness permits selection of an 

area of the deposit with the desired approximate thickness for spectral acquisition.  

Sample area selection, however, does not entirely provide pathlength reproducibility, as 

it is inaccurate and difficult to undertake.  Correction for pathlength inconsistencies is 

essential and is provided by spectral unit area normalization over the region of interest.   
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Figures 2.6 and 2.7 show the infrared spectrum of a sample before and after 

normalization.  

A substantial parameter to be considered, when a multivariate calibration model 

is constructed, is the spectral range.  It is necessary to select the range such that the 

highest correlation occurs between the absorbances in the spectra and the concentrations 

of the constituents.  In addition, it is not advisable to include regions that have weak or 

no absorbance as this will result in a pronounced deficiency in the signal-to-noise ratio.  

Another consideration for the selection of the spectral regions is the desire to avoid 

selection of regions where the absorbance may be non-linear.  In particular, although 

PLS-1 is robust enough to correct for some non-linearity, selection of non-linear regions 

is detrimental to the model.  Monitoring the spectra in the training set during 

interrogation, however, alleviates the problem of non-linearity via judicious selection of 

the location within the sample deposit for analysis.  The selected area must supply a 

great enough absorbance signal to produce a maximal signal-to-noise ratio, yet the 

signal should not be excessively intense where non-linearity is introduced into the 

absorbance-to-concentration relationship.  The carbonyl band is the strongest and is 

within the included wavelength region.  Therefore, particular care must be exercised to 

ensure that too strong an absorption, i.e., greater than 0.5 absorbance units, does not 

occur in the spectrum at 1650 cm-1 prior to normalization.38-40 

For the set of training spectra, the region that exhibited the greatest correlation 

between absorbance and concentration is the region between 1850 cm-1 to 850 cm-1.  A 

two-point linear baseline-correction provides the best results.  There are no bands that 

absorb at either 1850 cm-1 or 850 cm-1.  Thus, these two points are most attractive to  
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Figure 2.6 A baseline-corrected and truncated spectrum of a peracetylated 

monosaccharide mixture prior to normalization. 
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Figure 2.7 A baseline-corrected and truncated spectrum of a peracetylated 

monosaccharide mixture after normalization. 
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select for baseline-correction considering, as they both are the bandpass extrema, they 

not only allow for the entire domain to be spanned, but also supply no chemical 

information into their absorbance values.  In addition to baseline-correction, 

normalization demonstrates improvement in the model considerably.  Although the 

method of interrogation allows the operator to locate an appropriate area of the sample 

that has a suitable thickness, neither this method nor the method of direct deposition is 

sufficiently precise to ensure a consistent pathlength among the standard mixtures.  The 

improvement normalization provides is ascribed to the correction of the inconsistencies 

of the pathlengths within the training set due to the inability to create reproducibly thick 

deposits. 

After the partial least squares model was built, a leave-one-out internal 

cross-validation was performed.  Table 2.5 presents the root-mean-square deviations for 

each constituent.  The prediction was derived from the model where the optimal number 

of factors was assigned.  Plots of the actual concentration versus predicted 

concentration for each constituent are presented in Figures 2.8 through 2.14.  The 

optimal number of factors was determined by examining the F-ratio for every number 

of factors, that is, value of f, as well as consideration of where the first local minima for 

the values of the predicted residual error sums of squares occur.  Figures 2.15 

through 2.21 are plots of the number of factors versus the predicted residual error sum 

of the squares for each constituent.  The coefficients of determination, R2, for each of 

the constituents, D-galactose, D-mannose, L-fucose, N-acetyl-D-glucosamine, 

N-acetyl-D-neuraminic acid, N-acetyl-D-galactosamine, and D-glucose, are 0.9514,  
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Table 2.5 The root-mean-squared deviations, coefficients of determination, and 

number of factors for the seven monosaccharide constituents. 
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Table 2.5 

Constituent Root Mean 
Squared Deviation 

Coefficient of 
Determination Number of Factors 

Gal 2.84% 0.9514 14 

Man 3.39% 0.9567 13 

Fuc 2.94% 0.9553 12 

GlcNAc 1.75% 0.9400 17 

Neu5 2.80% 0.9394 14 

GalNAc 1.88% 0.9704 15 

Glu 2.02% 0.9624 12 
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Figure 2.8 A plot of actual concentration versus predicted concentration for 

D-galactose.
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Figure 2.9 A plot of actual concentration versus predicted concentration for 

D-mannose. 
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Figure 2.10 A plot of actual concentration versus predicted concentration for 

L-fucose.
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Figure 2.11 A plot of actual concentration versus predicted concentration for 

N-acetyl-D-glucosamine.
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Figure 2.12 A plot of actual concentration versus predicted concentration for 

N-acetyl-D-neuraminic acid. 
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Figure 2.13 A plot of actual concentration versus predicted concentration for 

N-acetyl-D-galactosamine. 
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Figure 2.14 A plot of actual concentration versus predicted concentration for 

D-glucose. 
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Figure 2.15 A plot of predicted residual error sum of squares versus the number of 

factors for D-galactose. 
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Figure 2.16 A plot of predicted residual error sum of squares versus the number of 

factors for D-mannose. 
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Figure 2.17 A plot of predicted residual error sum of squares versus the number of 

factors for L-fucose. 



 112
                                                                                                                

 

 

 



 113
                                                                                                                

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 A plot of predicted residual error sum of squares versus the number of 

factors for N-acetyl-D-glucosamine. 
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Figure 2.19 A plot of predicted residual error sum of squares versus the number of 

factors for N-acetyl-D-neuraminic acid. 
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Figure 2.20 A plot of predicted residual error sum of squares versus the number of 

factors for N-acetyl-D-galactosamine. 
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Figure 2.21 A plot of predicted residual error sum of squares versus the number of 

factors for D-glucose. 
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0.9567, 0.9553, 0.9400, 0.9394, 0.9704, and 0.9624, respectively.  The values of f 

selected for each of the above constituents are 14, 13, 12, 17, 14, 15 and 12, 

respectively.  These results were verified with a validation set. 

The average error of prediction for each of the seven constituents among the 

twenty samples in the validation set are 5.36%, 5.56%, 5.48%, 2.36%, 3.41%, 3.75%, 

and 3.55%, respectively.  Table 2.6 presents the average error of prediction among all 

constituents for each sample.  None of these results yields an absolute error greater than 

six percent.  Although the errors are much larger than the errors in the internal 

predictions, they are still significantly smaller than the expected errors in gas 

chromatography/mass spectrometry compositional analysis.  After passing validation, a 

set of ten unknowns was predicted with the model.  These samples were prepared at the 

Complex Carbohydrate Research Center at the University of Georgia to provide a blind 

study; their preparation adhered to the procedure applied to the training and validation 

sets, and their composition was undisclosed to the analyst.  The results from the blind 

study, of which the prediction range was comparable to that of the validation set, are 

presented in Table 2.7. 

Several methods to enhance the robustness of the model were investigated.  

Alternate baseline-correction methods, such as polynomial fits of varying orders, 

superchop methods, e.g., ultrasmoothing, and alternative linear interpolations, 

underwent exploration for their viability.  None of these alternatives, however, provided 

as robust a model as the linear two-point correction applied at the extrema of the 

selected calibration region of the spectra. 
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Table 2.6 The average percent error of prediction for all seven constituents for 

each of the twenty validation samples. 
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Table 2.6 

Validation Sample 
Number Error of Prediction Validation Sample 

Number Error of Prediction 

1 3.06% 11 6.38% 

2 4.74% 12 2.68% 

3 2.23% 13 5.73% 

4 5.20% 14 1.92% 

5 3.41% 15 3.27% 

6 3.22% 16 3.12% 

7 7.68% 17 2.96% 

8 7.71% 18 3.21% 

9 6.93% 19 3.13% 

10 3.58% 20 4.13% 
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Table 2.7 Errors of prediction in percent for each constituent in each of the ten 

unknown samples. 
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Table 2.7 

# Gal Man Fuc GlcNAc Neu5 GalNAc Glu 

1 0.73% 1.66% 1.82% 1.87% 2.67% 4.31% 3.48% 

2 2.37% 5.02% 1.94% 0.25% 0.00% 3.89% 4.83% 

3 0.24% 5.19% 2.76% 3.72% 0.19% 5.32% 3.26% 

4 2.37% 2.32% 3.88% 1.12% 2.86% 2.87% 1.91% 

5 5.87% 13.23% 4.91% 0.72% 5.94% 6.83% 1.63% 

6 1.28% 1.74% 6.08% 2.27% 4.48% 3.35% 0.00% 

7 1.63% 4.27% 3.19% 2.91% 1.46% 0.52% 0.30% 

8 10.18% 11.04% 6.80% 0.00% 1.51% 7.28% 0.00% 

9 11.12% 8.80% 9.78% 1.58% 10.07% 4.95% 4.57% 

10 6.65% 7.18% 9.10% 7.64% 8.78% 0.31% 5.50% 
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In addition to alternate baseline-correction methods, other data pretreatment 

methods to compensate for anomalies in the spectra were investigated.  A common 

method is to use the first or second derivative spectra in the training set.  This 

essentially allows instrumental drift to be ignored or at least to be de-emphasized.  This 

method was unsuccessful as an order of magnitude of noise is introduced into the 

spectrum for every second derivative computed.  One preprocessing method, however, 

which demonstrates success, and therefore, was employed in the final model, is 

mean-centering.  Mean-centering builds the model from the differences between each 

spectrum and the average of all of the spectra in the set.  It reduces the prevalence of the 

common features among the spectra while placing emphasis on the unique 

characteristics of each spectrum.  When mean-centering is not included in the 

calibration method, the coefficients of determination, R2, for each of the constituents, 

D-galactose, D-mannose, L-fucose, N-acetyl-D-glucosamine, N-acetyl-D-neuraminic 

acid, N-acetyl-D-galactosamine, and D-galactose, decline to 0.9415, 0.9420, 0.9453, 

0.9315, 0.9248, 0.9634, and 0.9573, respectively.  In addition, the standard errors of 

prediction for all of the constituents increase.  These findings support the contention 

that mean-centering enhances the method. 

Finally, alternative methods of normalization were investigated to correct for 

pathlength differences among the sample deposits.  One option was to normalize the 

spectra over the area of the carbonyl band (~1650 cm-1).  This approach seemed 

promising because it was postulated that the characteristics of the carbonyl bands are 

unaffected by the isomeric differences among the monosaccharides.  No significant 

improvement was observed, however, by the utilization of this technique, and it was 
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therefore abandoned.  In addition, normalization of the spectra by the intensity of a 

single point rather than the area of a region was explored.  It was found, however, that 

the use of this procedure was detrimental to the calibration.  Therefore, only unit 

normalization over the entire domain is employed in the final model. 

 

Conclusions 

 The predictions made for all of the constituents in this study were reasonably 

accurate; however, one possible source of error may be attributed to the purity of the 

stock.  N-acetyl-D-neuraminic acid, for example, is not commercially synthesized in 

high purity and is therefore isolated from either sheep submaxillary glands or E. coli.  

N-acetyl-D-neuraminic acid produced from E. coli was used in this investigation.  The 

manufacturer reports that the purity of this monosaccharide is only ninety-eight percent. 

 There are several other sources of error in the analysis other than the impurities 

present in the starting materials.  The greatest source of error is associated with the 

sample preparation itself.  The model cannot be more accurate than the accuracy of the 

known composition of the training set from which it is built.  Although pathlength 

discrepancies present during infrared analysis may be a profound source of error, the 

sample preparation elicits further investigation.  The preparation is suspect as the solid 

monosaccharides are hygroscopic and, during mass determination, are exposed to 

atmospheric conditions for no less than several minutes.  Another consideration, in 

addition to the inherent problem of exposure to water vapor, is the precision of the 

analytical balance.  The balance provides three confident significant figures; however, 

due to a considerable amount of deviation in the last significant digit (one hundredth of 
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a milligram), this digit is highly questionable.  Furthermore, the use of three different 

pipettes, while necessary, introduces a bias with regard to the accuracy of each.  The 

systematic error of the individual pipettes results in the further propagation of error. 

 The next logical source of error is the discrepancy in pathlength attributed to 

variations of the deposit thickness.  Although the technique allows for a reasonable 

thickness gradient within a single deposit, selecting the same thickness for every sample 

acquisition is nearly impossible.  A good approximation is made by monitoring the 

infrared response during relocation of the stage control.  Ideally, a spot is deemed 

appropriate if the maximum absorbance is no more than 0.5 absorbance units.  

Unfortunately, the local variation in thickness within the 50 µm x 50 µm data 

acquisition area is essentially indeterminate by both the infrared spectra and the display 

through the visible objective.  Although it is desirable to collect full spectra at the 

highest signal possible, thus maximizing the signal-to-noise ratio, exceeding the 

prescribed limit, i.e., entering the range of overabsorbance, however, will result in 

spectral response where the apparent absorbance and actual absorbance do not adhere to 

the linear relationship expressed by the Bougeur-Beer-Lambert law.  Non-compliance 

with the Bougeur-Beer-Lambert Law may have catastrophic effects on the calibration 

model.  Although reasonable provisions are made to safeguard against this scenario, it is 

difficult to guarantee the nonoccurrence of local maxima in deposit thickness that 

exceed the range of linear response. 

Normalization, to some extent, removes the error attributed to pathlength 

differences and improves the calibration, but it is not a panacea for non-uniform 

deposits.  Normalization does not correct for the distortions that arise from the 
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non-uniformity of the deposit surface.  Distortions due to surface effects require further 

investigation for remedy.  Finally, the infrared microscope has many off-axis beam 

paths that further compromise pathlength consistency. 

PLS-1 is the most suitable algorithm for use with this system.  Although PLS-2 

is a faster calculation, especially as the number of constituents increase, it is only as 

robust as PLS-1 when the domain is identical among all of the constituents.  The 

precision of this method does exceed both gas chromatography/mass spectrometry and 

nuclear magnetic resonance in compositional analysis.  Other statistical procedures 

were investigated to optimize the results, but none surpassed the performance of PLS-1. 

In future work, it is proposed that both the methods of analysis and the sample 

preparation be subjected to reexamination.  One important point is to assess the 

maximum storage time of the standards and reagents before their decomposition is 

initiated.  It has been determined that the 3 N methanolic hydrochloric acid stock is the 

first of all of the chemical supplies to be compromised under long term storage despite 

refrigeration and separate dilutions to 1 N for individual experiments.  As a precaution, 

this reagent is replaced every six months, and all other reagents and standards are 

replenished annually. 

Perhaps of greater significance is that the Fourier transform infrared analysis 

itself will be subjected to revision to the extent that it is proposed that the microscope 

setup be abandoned entirely in favor of an alternate methodology.  A separate 

investigation, as will be discussed in the following chapter, is underway in an attempt to 

eliminate some of the difficulties in using infrared microspectrometry.  It will utilize the 

measurements, made by a Harrick Split-Pea single-bounce attenuated total reflection 
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accessory interfaced to the spectrometer, to construct the statistical models.  The new 

method may eliminate both the need to baseline-correct and to normalize spectra from 

the analyzed samples.  As a result, this may increase the reproducibility of the spectra 

and minimize the influence of environmental fluctuations on the system.  
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CHAPTER 3 

 

ANALYSIS OF N-LINKED OLIGOSACCHARIDES BY FOURIER 

TRANSFORM INFRARED SPECTROMETRY/ATTENUATED TOTAL 

REFLECTION SPECTROMETRY 

 In the preceding chapter, a method for the determination of the monosaccharide 

composition of N-linked mammalian oligosaccharides was investigated and developed.  

It is an entirely novel approach to complex carbohydrate analysis, and although it has 

demonstrated the feasibility of infrared microspectrometry, which is an attractive tool 

for reasons discussed previously, as a methodology for carbohydrate analysis, 

considerably more investigation is necessary to improve its efficacy.  This chapter 

explores a second approach to the same question, undertaken to improve the previous 

method and is intended to resolve several areas of difficulty that were encountered 

during the prior work.  One area of concern involves the deficiencies associated with 

the predictive performance that are related to the preparation of standard mixtures of 

monosaccharides. 

 Initially, monosaccharide mixtures were prepared by weighing the 

predetermined quantity of each of the pure, dry monosaccharides directly into the 

reaction vial for that mixture.  This procedure has since been characterized as 

inappropriate for mainly two reasons.  The first regards the precision of the analytical 

balance.  Even if the balance assesses reliably a given mass within a tolerance of 
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± 0.05 mg, which is characteristic for a high precision analytical balance, for a 

two-milligram sample, the error with respect to percent composition may be no less 

than 2.5%.  The second problem is that the dry, powdered monosaccharides are 

hygroscopic, which introduces additional error.  Because it takes no less than ten 

minutes to prepare a given mixture, the effect of water absorption may be pronounced 

and easily increase the expected error by several percent.  This introduction of water 

into the monosaccharide mixtures is also a concern as it may adversely affect the 

peracetylation reaction.  After the mixtures of monosaccharides are dissolved into 

water, however, it was determined by gravimetric analysis that lyophilization nearly 

removes all of the moisture.  This creates a sufficiently anhydrous condition for the 

peracetylation to take place unencumbered.   

 The inclusion of lyophilization into the sample procedure allowed the use of 

stock solutions, which alleviated some uncertainty with regard to the mass 

determination of the individual components during preparation.  Dilutions of the 

individual sugars to prepare the stock solutions could be assessed with higher precision 

because a greater mass is used in the preparation, which yields a smaller relative error in 

mass determination by an analytical balance.  Also, the use of micropipettes for 

dilutions reduces the error by an order of magnitude relative to the error incurred by an 

analytical balance operating in the milligram region.  The use of aqueous stocks resulted 

in the period of exposure of the monosaccharides to atmosphere during mass 

determination to diminish to a fraction of the time encountered during the previous 

method.  Finally, it became apparent that implementation of the mass determination in a 

dry box is neither practical nor necessary. 
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 Another area of concern is in relation to the infrared microspectrometry itself.  

For this investigation, a method that utilized attenuated total reflection spectrometry in 

lieu of infrared microspectrometry was developed.  The use of a single-reflection 

attenuated total reflection accessory may actually reduce the sample size requirement.  

In addition, attenuated total reflection spectrometry permits the use of a deuterated 

tri-glycine sulfate detector, which responds more linearly to radiational intensity than 

does a mercury cadmium telluride detector.1,2  Finally, the necessity for normalization is 

eliminated since the pathlength is held constant in attenuated total reflection 

spectrometry if the condition is met that the depth of penetration is exceeded by the 

thickness of the sample and is discussed in greater detail in the subsequent section. 

 

Attenuated Total Reflection Spectrometry 

Total internal reflection is a phenomenon that can be observed during ordinary 

experiences.  In a glass of water, for example, if one looks through the surface of the 

water at a small angle from normal incidence, then the surface of the glass under the 

surface of the water appears to be completely silvered, and it is not possible to see 

objects on the other side of the glass.3,4  The radiation striking the glass is completely 

reflected, and the objects behind the glass do not receive the radiation from this optical 

pathway.  The phenomenon ceases to occur, however, when an object is either brought 

into contact with the outside reflecting surface of the glass or brought into very close 

proximity.  The destruction of this phenomenon results from the establishment of a 

standing wave normal to the reflecting surface in the denser medium, and an evanescent 

nonpropagating field is generated in the less dense medium of which the amplitude 
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decays exponentially with the distance from the surface.  A criterion that must exist for 

total internal reflection to take place is that the angle of incident radiation θ must exceed 

the critical angle θC.  The critical angle varies as a function of the ratio of refractive 

indices of the two media in the following manner: 

θC = arcsin(η2/η1) 

where η1 is the refractive index of the denser medium and η2 is the refractive index of 

the scarcer medium.3  Figure 3.1 is a graphical representation of the conditions needed 

for total internal reflection to take place. 

 There are many applications of total internal reflection, such as the ability to 

greatly enhance the image contrast in fingerprinting techniques;5 however, the specific 

application relevant to the present work is in regard to the application of total internal 

reflection to vibrational spectrometry, known as attenuated total reflection 

spectrometry.  This name arises from the occurrence of attenuation in the evanescent 

wave at frequencies that an object absorbs the radiation when it is brought into contact 

with or in the proximity of the reflecting surface.  This technique has found a 

considerable amount of use in the infrared wavelength region.6-15  Since infrared 

spectrometry has become one of the most powerful analytical techniques, the increased 

need for the ability make surface and bulk analysis has grown significantly.  There has 

been tremendous development in attenuated total reflection accessories to accompany 

infrared spectrometry.9,16-32  Unlike other accessories designed for infrared 

spectrometry, these accessories offer a number of important advantages.  Mainly, 

attenuated total reflection spectrometry is not hindered by many of the sampling 

problems from which transmission experiments suffer.  Quite often, samples are not 
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Figure 3.1 A representation of total internal reflection and the criteria required for 

the phenomenon to occur. 
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sufficiently thin optically for transmission measurements.  The preparation of the 

samples to make them suitable for transmission experiments usually compromises the 

sample, or at least alters the morphology of the samples, through dilution or 

compression.  Figures 3.2 and 3.3 represent the orientation of a sample measured by 

transmission spectrometry and attenuated total reflection spectrometry, respectively. 

Little preparation is needed for the implementation of total attenuated total 

reflection experiments, as it is only necessary to place a sample into contact with the 

accessory.  Typically, only minor pressure application is required for intimate contact 

with the sample, thereby preserving the integrity of the sample.  As a result, this 

technique can be applied to minute samples in the forms of liquid, irregularly shaped 

solids, powders, etc., so long as sufficient contact between the accessory element and 

the sample is maintained.  The distance from the surface of the element where the 

evanescent wave is generated is on the order of micrometers, which makes attenuated 

total reflection insensitive to the bulk thickness of a sample, and therefore the analysis 

of thick or strongly absorbing materials becomes possible. 

An important parameter in attenuated total reflection spectrometry is the depth 

of penetration dp, which is the distance that the evanescent wave extends into the 

sample.  The depth of penetration, which is also wavelength dependent, is defined as the 

distance from the element/sample interface where the intensity of the evanescent wave 

decays to 1/e of its initial value at the interface and is determined as follows: 

dp = λ/(2πη1(sin2θ-(η2/η1)2)1/2) 

where λ is the wavelength of the incident radiation, and θ is the angle of incidence.3,33,34  

Figure 3.4 shows an approximation of the relationship of the intensity of an evanescent  
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Figure 3.2 The orientation of sample measured by a transmission experiment.
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Figure 3.3 The orientation of a sample measured by an attenuated total reflection 

experiment.
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Figure 3.4 The depth of penetration of an evanescent wave into a sample.  The 

darkness of the shading represents the intensity of the evanescent wave.
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wave into a sample with the distance from the sample/element interface.  The effective 

pathlength is the depth of penetration multiplied by the number of reflections.  As with 

transmission spectra, where the spectral intensity is directly proportional to the 

thickness of the sample through which the radiation passes, in attenuated total reflection 

spectrometry the effective pathlength is directly proportional to the spectral intensity.  

This dissertation is only concerned with single-reflection (or single-bounce) total 

attenuated reflection; therefore, for the purpose of discussion herein, the effective 

pathlength and depth of penetration are rendered equivalent. 

 The choice of material for the composition of the internal reflection element has 

several consequences.  The refractive index of the element is inherent to its composition 

and has two main effects on the spectrometry.  The first is that as the refractive index of 

the internal reflection element material increases the critical angle increases as well.  

This is of particular importance when measuring samples with high refractive indices, 

since it is advisable that the angle of incidence greatly exceeds the critical angle to 

avoid distortions in the spectra.29  Secondly, as can be seen from the equation above, a 

higher refractive index of the internal reflection element will decrease the depth of 

penetration thereby decreasing the intensity of the spectrum.  Additionally, the choice of 

material for the internal reflection element determines the spectral range that can be 

acquired.4  Finally, suitable elements must not be composed of materials that interact 

chemically with the samples.  For mid-infrared attenuated total reflection spectrometry, 

germanium and silicon are common internal reflection element materials, and they have 

refractive indices of 4.0 and 3.5, respectively.6,9   
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Finally, the sample contact efficiency and area of the sample contact have an 

impact on quantitative analysis.  It is imperative that both of these values be as close to 

100% as possible.  For liquid samples, the contact efficiency is very high because the 

liquid will adhere uniformly to the surface of the internal reflection element.  The 

sample must also completely cover the active area of the element in order for the 

spectra intensities to be maximized, and more importantly, in order for the spectra to be 

reproducible.  Not only must the area be completely covered, but also the thickness of 

the sample over the entire area must exceed the depth of penetration to ensure that the 

effective pathlength remains constant.  The reproducibility of the effective pathlength is 

of paramount importance for the performance of the statistical analysis on the spectral 

data. 

Infrared spectra acquired by attenuated total reflection spectrometry do not 

exactly resemble the optical constants of the material, the index of refraction, nor the 

attenuation index, but rather they are a complicated composite of these factors.3,4,18  

This is not a serious problem, however, because the spectra are highly reproducible, and 

reference libraries of spectra exist for purposes of comparison.  Figures 3.5 and 3.6 

show a transmission spectrum and an attenuated total reflection spectrum, respectively, 

of the same material.  The depth of penetration, as stated earlier, is wavelength 

dependent in that as the wavelength increases so does the depth of penetration.  Often 

spectrometers have a mathematical attenuated total reflection correction routine that can 

be applied to the data to make the reflection spectra more closely resemble the 

transmission spectra.  A spectrum that has undergone such a correction is shown in 

Figure 3.7.  In the present case, although the correction is useful for the analyst, who  
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Figure 3.5 A transmission spectrum of a peracetylated monosaccharide mixture. 
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Figure 3.6 An attenuated total reflection spectrum of a peracetylated 

monosaccharide mixture. 
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Figure 3.7 An attenuated total reflection spectrum of a peracetylated 

monosaccharide mixture after undergoing a correction routine to make 

the spectrum resemble a transmission spectrum. 



                                                                                                                                                       156
 



                                                                                                                                                       157
 

may have a preconceived expectation of the visual characteristics of the transmission 

spectrum, this correction has a negligible effect on the results generated through 

quantitative analysis. 

 Numerous internal reflection element designs exist.  They fall into two main 

categories: single-reflection and multiple-reflection.  The multiple-reflection elements 

have several types of configurations including fixed-angle plate, shown in Figure 3.8, 

variable-angle plate, unipoint, V-shaped, modified hemicylinder, and cylindrical rods 

and fibers.19-24,35  Multiple reflection elements are not used in the present study, and 

therefore this discussion will be confined to single-reflection elements. 

 Single-reflection internal reflection elements are available in a number of 

different geometries.  Among the varieties of single-reflection elements that have a 

variable-angle geometry are the hemicylindrical and hemispherical designs.3,26,27,33  The 

configuration of a hemicylindrical element collimates the optical beam to a diameter 

equal to the radius of the element, and the beam condensation is only in one dimension 

at the reflecting surface.  Although this may be suitable for measuring bulk materials in 

situations where the sample contact is easily maintained, this is not optimal for 

measuring small amounts of sample.  To overcome this limitation, the geometric design 

selected for this investigation is a hemispherical configuration.  This geometry is a 

hemisphere with a cone-shaped section at the top that plateaus to facilitate contact with 

the sample.  In addition to this advantage, beam condensation is provided by this design 

thereby increasing the sensitivity in the examination of small samples (Figures 3.9 

and 3.10).26  The smallest active area commercially available in an internal reflection 
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Figure 3.8 A schematic of a fixed-angle plate multiple-bounce internal reflection 

element. 
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Figure 3.9 A schematic of a hemispherical internal reflection element.



                                                                                                                                                       161
 

 

 

 

 



                                                                                                                                                       162
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Another perspective of a hemispherical internal reflection element.
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element is about 250 µm, which is found in the Harrick Split-Pea single-bounce 

attenuated total reflection accessory (Harrick Scientific Corporation, Ossining, NY).  

This accessory also conveniently fits directly into the sample compartment of the 

spectrometer.  For measuring solid samples, a pressure applicator is available to assist 

in the maintenance of sample/element contact for reproducible effective pathlengths.  In 

direct deposition, however, the pressure applicator is not necessary, as the sample will 

adhere to the surface of the element upon solvent elimination.  Figure 3.11 shows how 

the optical beam travels through the Split-Pea accessory from the infrared 

spectrometer.  Mirrors 1 and 2 direct the infrared beam toward mirror 3, which is an 

elliptical mirror, and the beam is focused onto the internal reflection element.  Then the 

beam is collected by mirror 4, which is an elliptical mirror as well, and directed to 

toward mirrors 5 and 6 to be sent on to the detector. 

 

Experimental 

Sample Preparation.  Eighty-six monosaccharide mixtures were prepared for 

the standardization set, as well as an additional twenty monosaccharide mixtures for the 

validation set.  The monosaccharide constituents are D-mannose, D-galactose, L-fucose, 

N-acetyl-D-glucosamine, N-acetyl-D-neuraminic acid type VI, 

N-acetyl-D-galactosamine, and D-glucose.  The standards and all of the other reagents 

and solvents were purchased from Sigma-Aldrich Co., St. Louis, MO, with the 

exception of the 3 N methanolic hydrochloric acid which was purchased from Supelco, 

Bellefonte, PA.  The weight percentage ranges were selected to mimic the composition 
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Figure 3.11 A diagram showing the optical pathway through a Split-Pea attenuated 

total reflection accessory. 
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of mammalian N-linked oligosaccharides.  Some of the ranges surpass what is normally 

encountered in oligosaccharide analysis, however, in order to increase the robustness of 

the model.  Table 3.1 lists the compositional range for each constituent in the eighty-six 

training set samples.  The weights of individual sugars were determined with ±0.05 mg 

precision on a high precision analytical balance (Ohaus Corporation, Florham Park, NJ) 

and subsequently diluted with 18 MΩ water to make standard solutions via a series of 

Eppendorf Autoclavable Pipettes (Brinkman Instruments, Inc., Westbury, New York) 

to achieve the prescribed composition for each mixture such that the resulting sugar 

concentration is 4 mg/mL, i.e., two milligrams of each saccharide mixture in 500 µL of 

water.  The mixtures were contained in 17 mm x 63 mm borosilicate glass vials with 

polytetrafluoroethylene-lined caps (Fisher Scientific, Pittsburgh, PA).  The vials were 

transported to and placed in a low-temperature freezer.  After freezing, the solvent was 

completely removed from the sample via lyophilization. 

The methanolysis and peracetylation procedures are as follows:  Into each 

reaction vial, 1 mL of 1 N anhydrous methanolic hydrochloric acid, which was diluted 

from 3 N methanolic hydrochloric acid with high-performance liquid chromatography 

grade methanol, was pipetted.  Particular care was taken to ensure that the vial caps 

were barely finger-tight immediately after addition of the reagent to minimize the 

exposure of the samples to atmospheric moisture.  After heating for twenty minutes, the 

vial caps were tightened, and the reaction was maintained in a thermostatic heat block 

at 80 ºC for 24 hours. 

Both the acid elimination with nitrogen gas and the rinse of the remaining 

mixtures with anhydrous methanol were executed in an N-evaporator (Organomation  
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Table 3.1 Range of composition for each constituent in the calibration sample set. 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                       169
 

 

 

Table 3.1 

Constituent Minimum Composition Maximum Composition 

Gal 0% 50% 

Man 5% 90% 

Fuc 0% 45% 

GlcNAc 5% 30% 

Neu5 0% 40% 

GalNAc 0% 50% 

Glu 0% 50% 
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Associates, Inc., Berlin, MA).  Equal amounts of pyridine and acetic anhydride were 

dispensed into each sample.  The caps were retightened, and the reaction was permitted 

to continue overnight at room temperature and in the absence of light.  After the 

reaction was completed, the reagents were eliminated, and the products were rinsed 

with toluene.  Finally, the excess toluene was eliminated under vacuum, and the 

products were relocated to a low-temperature freezer. 

 

 Data Acquisition and Computation.  The instrumentation used to perform 

single-reflection attenuated total reflection/Fourier transform-infrared spectrometry was 

a DigiLab FTS 4000 Fourier transform infrared spectrometer (DigiLab Laboratories, 

Randolph, MA) interfaced to a Harrick Split-Pea single-reflection attenuated total 

reflection accessory.  The accessory has a silicon hemispherical internal reflection 

element with a 250 µm diameter active area and a 45º angle of incidence.  The 

Split-Pea accessory is designed to fit into the sample compartment of the spectrometer 

and maintain sufficient purge for data collection.  Figures 3.12 and 3.13 are schematics 

of the Split-Pea accessory. 

 The methyl glycoside mixtures were dissolved in 60 µL of methylene chloride.  

A 1-µL aliquot of the diluted mixture was deposited, with the use of a micro capillary, 

directly onto the silicon element of a Split-Pea accessory taking care to ensure that the 

flat portion of the internal reflection element was entirely covered.  The spectrum was 

monitored until the solvent completely evaporated after which the data acquisition 

commenced.  A deuterated tri-glycine sulfate detector was used, and the spectrometer  
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Figure 3.12 A Split-Pea accessory drawn in correct proportion.  This diagram 

provides another perspective on the arrangement of the optics inside.  

(Copyright Harrick Scientific Corporation) 
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Figure 3.13 The outside of a Split-Pea accessory drawn in correct proportion.  This 

diagram provides a perspective on the placement of the accessory into an 

infrared spectrometer.  (Copyright Harrick Scientific Corporation) 
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collected reflection spectra from 4000 cm-1 to 400 cm-1 at 4 cm-1 resolution.  Each 

100-scan data set was Medium Norton-Beer apodized, Fourier transformed, and 

co-added.  The spectrometer scanning speed, electronic filter, and undersampling ratio 

were set to 5 kHz, 1.2 kHz, and 2, respectively.  The resulting spectra were truncated 

at 1850 cm-1 and 850 cm-1.  A two-point linear baseline-correction, using both leveling 

and zeroing functions, was applied to the spectra with 1850 cm-1 and 850 cm-1 

designated as the reference points. 

The Partial Least Squares algorithm, PLS-1, was used to create a model from the 

eighty-six training spectra.  GRAMS PLSIQ version 6.0 was used for the statistical 

computations.  The algorithm calculated iterations up to and including the eighty-three 

possible factors, utilized mean-centering, and performed a cross-validation adjusted to 

leave out one spectrum at a time during each of the iterations.  The model was further 

optimized by appropriate selection of the number of factors for each of the constituents.  

Once the model was constructed, predictions were made on each of the internal spectra, 

the validation spectra, and the set of unknown spectra.  The results, including predicted 

concentration, root-mean-square deviations, coefficients of determination, F-ratios, and 

prediction residual error sum of squares were imported into a spreadsheet where error 

analysis was tabulated.   

 

Results and Discussion 

The results provided by the single-reflection attenuated total reflection 

methodology demonstrated its superiority to infrared microspectrometry for this 

application.  Table 3.2 presents the root-mean-square deviation for each of the  
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Table 3.2 The root-mean-squared deviations, coefficients of determination, and 

number of factors for the seven monosaccharide constituents. 
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Table 3.2 

Constituent Root Mean 
Squared Deviation 

Coefficient of 
Determination Number of Factors 

Gal 1.13% 0.9923 12 

Man 0.99% 0.9976 9 

Fuc 0.87% 0.9977 10 

GlcNAc 0.74% 0.9859 16 

Neu5 0.94% 0.9922 15 

GalNAc 0.89% 0.9943 14 

Glu 0.84% 0.9945 12 
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constituents.  After being optimized, it produced correlation coefficients for each of the 

constituents, D-galactose, D-mannose, L-fucose, N-acetyl-D-glucosamine,  

N-acetyl-D-neuraminic acid, N-acetyl-D-galactosamine, and D-glucose, equal to 0.9923, 

0.9976, 0.9977, 0.9859, 0.9922, 0.9943, and 0.9945, respectively.  Plots of actual 

concentration versus predicted concentration for each constituent are presented in 

Figures 3.14 through 3.20.  The values of f selected for each of the above constituents 

are 12, 9, 10, 16, 15, 14, and 12, respectively.  Figures 3.21 through 3.27 are plots of the 

number of factors versus the predicted residual error sum of the squares for each 

constituent, which assisted in the determination of the appropriate number of factors.  

These results were verified with a validation set. 

The average error of prediction for each of the constituents among the twenty 

samples in the validation set are 2.83%, 2.86%, 2.62%, 1.05%, 3.33%, 2.26%, and 

1.80%, respectively.  Table 3.3 indicates the average error of prediction among all of 

the constituents for each validation sample.  None of these yields an absolute error 

greater than four percent.  The results from the blind study, of which the prediction 

range was comparable to that of the validation set, are presented in Table 3.4.  Finally, 

lactose, which is a disaccharide that consists of D-galactose and D-glucose, was 

analyzed and resulted in errors of prediction of 0.83% and 2.72% for D-galactose and 

D-glucose, respectively. 

 

Conclusions 

There is no question that single-reflection attenuated total reflection 

spectrometry outperformed the infrared microspectrometric technique.  Infrared  
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Figure 3.14 A plot of actual concentration versus predicted concentration for 

D-galactose. 
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Figure 3.15 A plot of actual concentration versus predicted concentration for 

D-mannose.
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Figure 3.16 A plot of actual concentration versus predicted concentration for 

L-fucose.
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Figure 3.17 A plot of actual concentration versus predicted concentration for 

N-acetyl-D-glucosamine.
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Figure 3.18 A plot of actual concentration versus predicted concentration for 

N-acetyl-D-neuraminic acid. 
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Figure 3.19 A plot of actual concentration versus predicted concentration for 

N-acetyl-D-galactosamine. 
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Figure 3.20 A plot of actual concentration versus predicted concentration for 

D-glucose. 
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Figure 3.21 A plot of predicted residual error sum of squares versus the number of 

factors for D-galactose. 
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Figure 3.22 A plot of predicted residual error sum of squares versus the number of 

factors for D-mannose.
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Figure 3.23 A plot of predicted residual error sum of squares versus the number of 

factors for L-fucose. 
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Figure 3.24 A plot of predicted residual error sum of squares versus the number of 

factors for N-acetyl-D-glucosamine.
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Figure 3.25 A plot of predicted residual error sum of squares versus the number of 

factors for N-acetyl-D-neuraminic acid.
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Figure 3.26 A plot of predicted residual error sum of squares versus the number of 

factors for N-acetyl-D-galactosamine.
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Figure 3.27 A plot of predicted residual error sum of squares versus the number of 

factors for D-glucose.
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Table 3.3 The average percent error of prediction for all seven constituents for 

each of the twenty validation samples. 
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Table 3.3 

Validation Sample 
Number Error of Prediction Validation Sample 

Number Error of Prediction 

1 2.61% 11 3.79% 

2 2.31% 12 1.47% 

3 1.76% 13 2.74% 

4 3.66% 14 2.04% 

5 1.92% 15 3.04% 

6 1.31% 16 3.86% 

7 3.24% 17 2.70% 

8 1.65% 18 1.36% 

9 1.36% 19 3.23% 

10 2.36% 20 1.44% 
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Table 3.4 Errors of prediction in percent for each constituent in each of the ten 

unknown samples.
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Table 3.4 

# Gal Man Fuc GlcNAc Neu5 GalNAc Glu 

1 4.53% 0.97% 1.83% 2.04% 2.65% 2.37% 2.66% 

2 0.63% 3.03% 0.27% 0.89% 3.96% 2.33% 2.25% 

3 0.86% 0.72% 1.12% 0.35% 3.45% 0.00% 1.30% 

4 3.86% 1.40% 0.99% 2.17% 0.91% 0.58% 0.38% 

5 5.29% 3.41% 0.43% 0.70% 5.25% 1.69% 1.79% 

6 7.06% 5.58% 1.35% 1.55% 0.56% 1.47% 0.48% 

7 0.37% 1.69% 3.36% 0.40% 7.73% 7.19% 0.12% 

8 1.96% 0.62% 0.83% 0.79% 3.94% 0.00% 0.49% 

9 4.76% 1.44% 5.09% 1.66% 4.02% 4.47% 2.05% 

10 6.95% 8.39% 0.00% 0.51% 5.35% 2.48% 0.00% 
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microspectrometric studies in this area of research will most likely be abandoned in 

favor of single-reflection attenuated total reflection spectrometry.  Not only is this 

methodology more accurate, but also it is also much easier and less time-consuming to 

execute.  A number of reasons account for these advantages.  The Split-Pea accessory 

benefits from a more reliably constant background; i.e., upon repeated background 

acquisitions, the spectrum drifts far less than it does in its microspectrometric 

counterpart.  As the accessory fits into the sample compartment of the spectrometer, the 

system is sealed more extensively, and therefore the accessory shares a common purge 

with the spectrometer.  Furthermore, the optical path never deviates from the purged 

system since the sample is dried to the surface of the reflection element and is reflected 

back into the accessory without ever entering the outside atmosphere.  On the other 

hand, during operation of an infrared microscope, since the seal of the purge ring is 

somewhat questionable, the proximity of the operator to the instrument, and the number 

of other people present, substantially affects the background signal. 

 Another advantage from which single-reflection attenuated total reflection 

spectrometry benefits is the maintenance of a constant effective pathlength through the 

sample.  This is the case so long as the thickness of the sample exceeds the depth of 

penetration of the infrared beam.  This conclusion was ensured empirically by laying 

multiple deposits onto the internal reflection element until no further increase in 

absorption is observed in the infrared spectrum.  The concentration of the mixture is 

constant after the solvent elimination has concluded, and only the pure sample matrix 

remains.  The only other degree of freedom impacting the sample quantity subjected to 

interrogation is the area of the sample.  This area is defined by the size of the internal 
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reflection element, which is constant, and attention is given to ensure that the active 

area of the element is completely covered during each interrogation.  Therefore, the 

only remaining variable that affects spectral absorption is the chemical composition of 

the mixtures. 

 Additionally, single-bounce attenuated total reflection is much less 

time-consuming than measurements made by the infrared microscope system.  It is not 

necessary to search for a suitable spot on the sample deposit for data acquisition since 

inhomogeneities regarding the surface of the deposit are inconsequential due to the 

sample/element interface being constrained to the fixed geometry of the element.  In 

this manner, the sample/atmosphere interface is never interrogated.  In addition, the 

heater/vacuum apparatus is rendered obsolete.  The heating aspect is not needed 

because the internal reflection element receives enough thermal energy, provided by the 

source of the spectrometer, to maintain the sample/solvent system above ambient 

temperature and promotes solvent elimination.  In addition, the vacuum function is no 

longer necessary to influence the profile of the upward facing surface of the sample 

deposit. 

 The throughput of the internal reflection element, when properly aligned, is 

approximately 15% of the total energy.26,28  As a result, it is possible to use a deuterated 

tri-glycine sulfate detector.  Two advantages are offered by a deuterated tri-glycine 

sulfate detector.  A wider spectral range can be acquired in comparison with that which 

can be measured by a mercury cadmium telluride detector.  More significantly, 

deuterated tri-glycine sulfate detectors respond much more linearly over a wider range 

of spectral intensities, and are, therefore, more viable candidates for quantitative 
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applications.  Finally, using the hemispherical configuration of the internal reflection 

element, beam condensation is provided, which ultimately reduces the sample mass 

requirement for the successful implementation of the technique.  These strengths may 

facilitate the development of future extensions of this application. 

 The amount of spectral preprocessing is reduced, in comparison to that which is 

required for microspectrometric application, as it is no longer necessary to normalize 

the spectra.  In fact, normalization did not significantly improve the results.  As with the 

infrared microscope system, several computational techniques and processes were 

investigated, but PLS-1 was the best performing statistical algorithm for this 

application, and the utilization of standard spectra that had undergone two-point linear 

baseline-correction with leveling and zeroing functions applied to the extrema of the 

spectral range included in the calibration (1850 cm-1 to 850 cm-1) provided the optimum 

results.  Overall, the amount of time required for analysis of an unknown specimen is 

reduced from over an hour, as in the case of infrared microspectrometry, to about five 

minutes.  Attenuated total reflection spectrometry is the preferred method for further 

investigations on different systems. 

The predictive errors in this application may be contributed by the 

compositional accuracy of the standardization set.  The validation set and unknown set 

produced errors comparable to the standardization set.  The use of three different 

pipettes, while necessary, introduces a bias with regard to the accuracy of each.  Even 

after the pipettes are calibrated within tolerances specified by the manufacturer and 

reproducibly deliver the same volume within these tolerances, the use of three different 

pipettes creates a bias since each may be calibrated to a different point of the range of 
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allowable tolerances.  In addition, the precision of a given pipette fluctuates across the 

range of volume delivery for that pipette. 

 In future work, it is desirable to be able to automate the direct deposition 

method.  Work on this has already commenced in our laboratory, and it is expected to 

be applicable to this methodology.  Other areas that are to be addressed include the 

design of a calibration transfer method so that the analyses can take place, using 

spectrometers other than the one on which the calibration model was generated.  Not 

only is this important for minimizing the number of times a calibration model has to be 

generated in other laboratories with other spectrometers, but it is also important to 

address inevitable long-term instrumental drift.  Currently, a calibration model needs to 

be regenerated every six months before predictive accuracy begins to significantly 

deteriorate.  A calibration transfer method may allow for future unknown spectra to be 

collected and corrected in order to resemble the spectrum as though it had been 

collected at the time of the standardization set measurements.  Finally, when a 

calibration method is successfully implemented, it would be considerably convenient to 

automate the interrogation method.  This may result in an overall semi-automated 

method for the entire analytical process. 
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THE DETERMINATION OF GLUCAN STRUCTURE BY FOURIER 

TRANSFORM INFRARED SPECTROMETRY/ATTENUATED TOTAL 
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Abstract 

Various sources of (1-3)-β-D-glucans have been found to have tumor-

necrotizing affect in mammals.  Many of these anti-tumor glucans contain this structure 

as a backbone with O-6-linked β-glucosyl branches with a degree of branching of 1:3.  

A preliminary investigation determined the feasibility of collecting the reflection 

spectrum of a powder on a Harrick Split-Pea attenuated total reflection accessory with 

a silicon internal reflection element.  Mixtures of the glucans are measured in crystalline 

form to eliminate the effects of hydrogen bonding that may occur if in an aqueous 

solution.  The results demonstrate a high degree of reproducibility of data on single 

analyte interrogations measured at the appropriately selected mechanical pressures. 

 This study is an investigation for the extraction of bonding information from 

infrared attenuated total reflection spectra of polysaccharides.  A set of standards is 

generated by the measurement of the infrared spectra of simple polysaccharides and 

correlation of the binding properties through partial least squares regression.  

Information on the monosaccharide composition is omitted as all of the standards share 

a common monosaccharide subunit composition.  The binding properties investigated 

include the ratio of alpha bonds to beta bonds. 

 The system which the investigation involved was maltose and cellulose.  

Maltose is a polysaccharide comprised solely of alpha-linked D-glucose, and cellulose is 

the beta version of maltose.  So far, it has been determined that the following sugars are 

commercially available:  maltobiose, maltotriose, maltotetraose, maltopentaose, 

maltohexaose, maltoheptaose, cellobiose, cellotriose, cellotetraose, and cellopentaose.  

The results provided accurate and reproducible predictions of relative number of alpha 
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and beta linkages in glucan polysaccharides.  The results may be applied to intact 

polysaccharides of biological significance. 
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Introduction 

 The lack of attention historically given to complex carbohydrates by the 

pharmaceutical and academic communities probably has resulted from the 

underestimation of the biological significance of this class of naturally occurring 

compounds.  One of the most significant realizations in the study of carbohydrates in 

recent years is the recognition within the medicinal research community that they may 

be a tremendous source of drug discovery leads.1-3  One such lead is that complex 

carbohydrates, polysaccharides in particular, have been demonstrated to possess 

antigenic properties against tumor development and pneumococcal and meningococcal 

infections, as well as other infections.4 

 The focus of the current study is the structural determination of glucan 

polysaccharides.  Analogues of (1-3)-glucan polysaccharides are potential candidates as 

therapeutics for they possess a considerable level of immunostimulant activity.1,2  

Fungal (1-3)-β-D-glucans have attracted much chemical and pharmaceutical attention in 

the last twenty years.  Other natural sources of (1-3)-β-D-glucans have been found to 

have tumor-necrotizing effects in mammals.  Many of these anti-tumor glucans contain 

this structure as a backbone containing O-6-linked β-glucosyl branches with a degree of 

branching of 1:3.3  That is, the ratio of branching residues to all the (1-3)-linked 

D-glucose residues of the backbone is equal to 1/3. 

 Extensive studies on a variety of fungal glucans have demonstrated the wide 

range of structural diversity that exists with regard to the arrangement of the O-6-linked 

β-glucosyl branching.  For example, Ganoderma lucidum is a highly-branched, 

insoluble fungal glucan with a degree of branching equal to 4:5, whereas Auriculalria 
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auricula, another fungal glucan, has a degree of branching of only 1:16.3  It has also 

been suggested that the arrangement of the O-6-linked β-glucosyl side chains plays a 

substantial role in the tumor growth inhibitory activities of various (1-3)-β-D-glucans.5  

Obviously, based on these examples, the structure of polysaccharides is critical to their 

medicinal applications, and, therefore, it would be of significant value to determine 

structural information of polysaccharides by a method that is both accurate and 

cost-effective. 

 A number of methods has been applied for the structural analysis of 

polysaccharides, including gas chromatography/mass spectrometry6-11 and nuclear 

magnetic resonance spectrometry.12-20  Although both of these methodologies are 

valuable tools for the determination of structure and composition for a wide range of 

compounds, each has inherent drawbacks.  Disadvantages that both of these techniques 

have in common are the considerable expense of the instrumentation and the high level 

of expertise required for operation and interpretation of the data, as well as the difficulty 

for the development of automated routine analyses.6,21 

 Gas chromatography/mass spectrometry has been used routinely for analysis of 

complex carbohydrates.7-12,22  It is not, however, an ideal tool for these analyses for 

several reasons.  First, mass spectrometry typically cannot be used effectively without 

the separation of the components of interest prior to analysis.6  Gas chromatography 

typically requires derivatization of the analytes, which introduces considerable error.  

The error may be attributed to the inability to control derivatization rates or extents of 

derivatization for multiple analyses.   
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Nuclear magnetic resonance spectrometry possesses several advantages in the 

areas where mass spectrometry is insufficient, such as its ability to distinguish 

compounds of identical molecular weights; however, it poses other intrinsic drawbacks.  

Most notably is its inherent insensitivity as a detector.  Nuclear magnetic resonance 

spectrometry requires a large sample mass in order to achieve a sufficient 

signal-to-noise ratio.  In addition, it suffers from the relative challenge to maintain a 

homogeneous magnetic field in nuclear magnetic resonance spectrometers.  Therefore, 

it is difficult to obtain identical spectra from the same sample upon multiple 

acquisitions. 

 Fourier transform infrared spectrometry has received little attention for analysis 

of carbohydrates with the possible exception of sugar concentrations in food products 

and beverages.23,24  It is, however, a sensitive analytical tool with a wide variety of 

applications.  Fourier transform infrared spectrometry can frequently identify chemical 

species unequivocally, where other analytical techniques cannot provide definitive 

structural and compositional information.  Furthermore, it is a rapid and simple 

technique, which makes it a valuable tool for process analysis and quality control.  The 

instrumentation is relatively inexpensive and is stable enough to permit repeated 

automated analyses. 

Complex carbohydrates have sufficiently similar spectra that visual inspection 

of the spectra, such as those of glucan polysaccharides to determine the structure, is 

nearly impossible.  Minor variations in the spectra, however, are adequate for a 

statistical approach such as partial least squares to distinguish isomers that differ in only 

one linkage reliably and with high precision.  In this study, it is shown that statistical 
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methods are not necessarily limited to the determination of concentrations of 

components in a mixture, and, in fact, they may be powerful tools for structural 

elucidation with appropriate design of the model.   

An important aspect of method development for routine analysis is 

cost-efficiency.  Isolation of biological samples is considerably expensive.  Therefore, it 

is essential that the technique require only small sample quantities.  To meet this 

requirement, infrared spectrometry is joined by single-reflection attenuated total 

reflection spectrometry.  Attenuated total reflection spectrometry permits the analysis of 

microgram quantities of sample.  Recently, there has been tremendous development in 

attenuated total reflection accessories to accompany infrared spectrometry, and these 

accessories offer a number of important advantages over conventional infrared 

spectrometric systems. 

Mainly, attenuated total reflection spectrometry alleviates many of the sampling 

problems from which conventional infrared transmission experiments suffer.  As many 

samples are not sufficiently thin optically for transmission measurements, special 

preparations to the sample typically have to occur.  The preparation of the samples to 

make them suitable for transmission experiments often compromises the sample, or at 

least alters the morphology of the samples, by dilution or compression.  Little 

preparation is needed for attenuated total reflection experiments, as it is only necessary 

to place a sample in contact with the accessory.  Usually, only minor pressure 

application is required to ensure adequate contact with the sample, thereby preserving 

the integrity of the sample.  As a result, this technique can be applied to minute samples 
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of polysaccharides, which are in powder form, so long as intimate contact between the 

accessory element and the sample is maintained. 

The smallest active area commercially available in an internal reflection element 

is about 250 µm, which is found in the Harrick Split-Pea single-bounce attenuated 

total reflection accessory (Harrick Scientific Corporation, Ossining, NY) with a silicon 

internal reflection element.  The geometry of the internal reflection element is a 

hemisphere with a cone-shaped section at the top that plateaus to facilitate contact with 

the sample.  In addition to this advantage, beam condensation is provided by this 

configuration, thereby increasing the sensitivity in the examination of small samples.  

This accessory is also convenient because it fits directly into the sample compartment of 

the spectrometer and shares a common purge with the instrument.  This enables 

measurements of multiple samples without breaking the system purge, which results in 

the preservation of a highly stable background.  In addition, the sample contact area and 

depth of penetration are intrinsic to the geometry and composition of the internal 

reflection element, and as a result, remain constant throughout the study.  This assists in 

the reproducibility of the effective pathlength, and thereby reduces the extent of spectral 

preprocessing, such as normalization, that is necessary for statistical analysis.  As the 

samples to be interrogated are solids, a pressure applicator may be employed to assist in 

the maintenance of sample/element contact efficiency, which also contributes to the 

reproducibility of effective pathlengths.  An advantage of interrogation of the 

polysaccharides in crystalline form is the elimination of the effects of hydrogen bonding 

on the spectra that may occur in aqueous assays. 
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This study is confined to the analysis of (1-4)-β-D-glucans and 

(1-4)-α-D-glucans, i.e., cellulose and maltose, respectively.  These two classes of 

glucans are selected mainly due to their commercial availability.  As attenuated total 

reflection infrared spectrometry is shown to determine the ratio of beta linkages to alpha 

linkages in mixtures of these two compounds, then it is also suggested that it will be 

able to determine other linkages, such as 1-2, 1-3, and 1-6, when mixtures of glucans 

containing these linkages are prepared as standards. 

 

Experimental 

Sample Preparation.  Twenty-four glucan polysaccharide mixtures were 

prepared for the standardization set, as well as an additional five glucan polysaccharide 

mixtures for the validation set.  The polysaccharide constituents were maltobiose, 

maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, cellobiose, 

cellotriose, cellotetraose, and cellopentaose, and were all purchased from 

Sigma-Aldrich Co., St. Louis, MO.  The weights of individual sugars were determined 

with ±0.05 mg precision on a high precision analytical balance (Ohaus Corporation, 

Florham Park, NJ) and diluted with 18 MΩ water to make standard solutions via a 

series of Eppendorf Autoclavable Pipettes (Brinkman Instruments, Inc., Westbury, 

New York) to achieve the prescribed composition.  The composition of the standard 

mixtures is shown in Tables 4.1 and 4.2.  The mixtures were contained in 

17 mm x 63 mm borosilicate glass vials with polytetrafluoroethylene-lined caps (Fisher 

Scientific, Pittsburgh, PA).  The vials were transported to and placed in a  
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Table 4.1 The composition of the first twelve samples of the standardization set.
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Table 4.1 

Sample Alpha-Linked Constituent Beta-Linked Constituent 

1 85% maltobiose 15% cellobiose 

2 70% maltotriose 30% cellobiose 

3 45% maltopentaose 55% cellobiose 

4 15% maltoheptaose 85% cellobiose 

5 70% maltotetraose 30% cellotriose 

6 55% maltopentaose 45% cellotriose 

7 45% maltohexaose 55% cellotriose 

8 30% maltoheptaose 70% cellotriose 

9 30% maltobiose 70% cellotetraose 

10 15% maltotriose 85% cellotetraose 

11 85% maltotetraose 15% cellotetraose 

12 70% maltopentaose 30% cellotetraose 
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Table 4.2 The composition of the remaining twelve samples of the standardization 

set. 
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Table 4.2 

Sample Alpha-Linked Constituent Beta-Linked Constituent 

13 45% maltobiose 55% cellopentaose 

14 30% maltotriose 70% cellopentaose 

15 15% maltotetraose 85% cellopentaose 

16 85% maltopentaose 15% cellopentaose 

17 55% maltoheptaose 45% cellopentaose 

18 100% maltotriose none 

19 100% maltotetraose none 

20 100% maltopentaose none 

21 100% maltohexaose none 

22 none 100% cellobiose 

23 none 100% cellotriose 

24 none 100% cellotetraose 
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low-temperature freezer.  After freezing, the water was removed from the samples via 

lyophilization. 

Data Acquisition and Computation.  The instrumentation used to perform 

single-reflection attenuated total reflection/Fourier transform-infrared spectrometry was 

a DigiLab FTS 4000 Fourier transform infrared spectrometer (DigiLab Laboratories, 

Randolph, MA) equipped with a Harrick Split-Pea single-reflection attenuated total  

reflection accessory.  The accessory has a silicon hemispherical internal reflection 

element with a 250 µm diameter active area and a 45º angle of incidence.  The 

Split-Pea accessory is designed to fit into the sample compartment of the spectrometer 

and maintain sufficient purge for data collection.  A pressure applicator was used to 

press the mixtures directly onto the silicon element of a Split-Pea accessory, with care 

taken to ensure that the flat portion of the internal reflection element was entirely 

covered.  The spectrum was monitored until the maximum 500 kg/cm2 of pressure was 

exerted, after which the data acquisition commenced.  A deuterated tri-glycine sulfate 

detector was used, and the spectrometer collected reflection spectra from 4000 cm-1 

to 400 cm-1 at 4 cm-1 resolution.  Each 100-scan data set was Medium Norton-Beer 

apodized, Fourier transformed, and co-added.  The spectrometer scanning speed, 

electronic filter, and undersampling ratio were set to 5 kHz, 1.2 kHz, and 2, 

respectively. 

The partial least squares algorithm, PLS-1, was used to create a model from the 

twenty-two training spectra.  GRAMS PLSIQ version 6.0 was used for the statistical 

computations.  The algorithm calculated iterations up to and including the twenty-one 

possible factors, utilized mean-centering and multiplicative scatter correction, and 
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performed a cross-validation adjusted to leave out one spectrum at a time during each of 

the iterations.  The spectral regions selected for analysis between 3250 cm-1 

and 2700 cm-1 and between 1500 cm-1 and 660 cm-1.  The model was further optimized 

by the appropriate selection of the number of factors.  Once the model was constructed, 

predictions were made on each of the internal samples, the validation samples, and a set 

of three unknown samples.  The results, including predicted composition, 

root-mean-square deviations, coefficients of determination, F-ratios, and prediction 

residual error sum of squares were imported into a spreadsheet where error analysis was 

tabulated. 

 

Results and Discussion 

Figure 4.1 is a spectrum of one of the calibration mixtures.  Conventional 

baseline-correction was not used in this study, as all of the samples are solid powders.  

The baseline curvature in the spectra is due to light scattering effects caused by the 

inhomogeneous distribution of particles both in size and in orientation with respect to 

the incident beam of radiation.  The degree of scattering is dependent on wavelength 

and, therefore, is not uniform throughout the spectrum; that is, its influence is generally 

more pronounced at longer wavelengths.  To compensate for this effect, multiplicative 

scatter correction is utilized prior to partial least squares analysis. 

This correction method is based on the supposition that the wavelength 

dependency of the scattering is independent of the wavelength dependency of 

absorption due to chemical composition.25,26  The removal of the effects of scattering is 

attempted by the linearization of each spectrum to an ideal spectrum.  In this case, the  
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Figure 4.1 A reflection spectrum of one of the calibration mixtures. 
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average of all of the calibration spectra serves as an estimate of an ideal spectrum.  A 

linear regression of the spectral responses in each calibration mixture against the 

corresponding points in the average spectrum is calculated.  Multiplicative scatter  

corrected spectra are subsequently produced by the subtraction of the offset value of the 

regression from the original spectra, then the division of the differences by the slope 

value from the regression.  By adjusting the slope and offset of the original data to the 

average spectrum, the variation due to chemical composition is preserved while the 

major source of random variation among the spectra is minimized.  In this set, two 

spectral regions are used for the calibration model and are multiplicative scatter 

corrected separately to ensure the calculation of the correct slope, as the regions are 

discontinuous. 

The selection of the spectral regions for inclusion in the model was based upon 

the value of the coefficient of determination at different wavelengths.  The correlation 

spectrum in Figure 4.2 shows the justification of the selection of the two discrete 

regions at 3250 cm-1 to 2700 cm-1 and 1500 cm-1 to 660 cm-1.  The ability of the model 

to predict the relative presence of alpha linkages and beta linkages is very high.  The 

coefficient of determination produced by the model is 0.9985, the optimal number of 

factors chosen is five, the root-mean-squared deviations for the standardization set is 

1.608%.  The errors of prediction of each of the calibration mixtures are given in 

Table 4.3.  A plot of predicted values versus actual values is shown in Figure 4.3, and a 

plot of the predicted residual error sum of squares versus the number of factors is 

presented in Figure 4.4.  These results were verified with a validation and an unknown  
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Figure 4.2 The correlation spectrum for the calibration model. 
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Table 4.3 The errors of prediction for the standardization set.
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Table 4.3 

Sample Error of Prediction 
for β/(α+β) 

Sample Error of Prediction 
for β/(α+β) 

1 2.25% 13 2.65% 

2 1.67% 14 1.36% 

3 1.09% 15 6.42% 

4 0.11% 16 2.73% 

5 0.38% 17 0.52% 

6 0.08% 18 2.20% 

7 0.68% 19 0.52% 

8 0.74% 20 1.99% 

9 2.13% 21 1.52% 

10 2.91% 22 0.47% 

11 0.13% 23 3.34% 

12 1.50% 24 0.05% 
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Figure 4.3 A plot of actual β/(α+β) versus predicted β/(α+β). 
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Figure 4.4 A plot of predicted residual error sum of squares versus the number of 

factors for β/(α+β).
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set.  The results from the validation set and the unknown set are presented in Tables 4.4 

and 4.5, respectively. 

Conclusions 

 The ability of infrared spectrometry to make structural determinations of 

complex carbohydrates has been demonstrated unequivocally in this study.  Several 

other statistical algorithms were investigated for their feasibility; however, partial least  

squares outperformed both principle component regression and multiple linear 

regression.  As there is only one constituent determined in this system, the results from 

the PLS-1 and PLS-2 algorithms were identical, and neither had an advantage with 

respect to the time required for the completion of the calculation.  In addition, 

mean-centering enhanced the model considerably.  Other methods of scatter correction, 

such as standard normal variate correction, both with and without detrending, were 

investigated, but none surpassed multiplicative scatter correction. 

 The scope of this investigation was limited by the commercial availability of 

standards.  Future studies will focus on the acquisition of other standards, which will 

require synthesis, to extract further structural information from polysaccharides by 

Fourier transform infrared spectrometry/single-bounce attenuated total reflection 

spectrometry.  The next logical step would be an investigation of linear glucans that 

contain both alpha and beta linkages in the same molecule.  In addition, it can be 

surmised from the results of this investigation that the prediction other linkages, e.g., 

1-2, 1-3, and 1-6, will be a trivial matter once standards of sufficient variety are 

acquired.  Once that proves successful, investigation of the degree of branching for this 

class of compounds would be quite attractive.  Finally, an investigation of  
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Table 4.4 The average percent error of prediction for each of the five validation 

samples.
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Table 4.4 
 
 

Validation Sample Actual β/(α + β) Predicted β/(α + β) Error of Prediction 

1 0.00% 0.00% 0.00% 

2 55.00% 56.02% 1.02% 

3 70.00% 70.72% 0.72% 

4 15.00% 14.58% 0.42% 

5 30.00% 31.13% 1.13% 
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Table 4.5 The average percent error of prediction for each of the three unknown 

samples.
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Table 4.5 

 

Unknown Sample Actual β/(α + β) Predicted β/(α + β) Error of Prediction 

1 0.00% 1.37% 1.37% 

2 45.00% 44.41% 0.59% 

3 22.00% 21.80% 0.20% 
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polysaccharides containing different monosaccharide compositions should establish a 

powerful means by which infrared spectrometry/attenuated total reflection spectrometry 

may determine structures of intact oligosaccharides. 
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CHAPTER 5 

 

FUTURE STUDIES 

 The main goal of the research described in this dissertation is the design of a 

methodology for the analysis of complex carbohydrates, including monosaccharides, 

oligosaccharides, and polysaccharides, by Fourier transform infrared spectrometry.  

Monosaccharide component analysis of oligosaccharides has been done routinely by gas 

chromatography/mass spectrometry for at least two decades.1-6  This method requires 

the derivatization of the monosaccharide mixtures, which result from depolymerization 

of the oligosaccharides, into volatile species before undergoing separation by gas 

chromatography.  Although high-pH anion-exchange chromatography/pulsed 

amperometric detection has since been used,7-9 it is not an information-rich technique.  

That is, it does not possess the potential of vibrational spectrometry, as demonstrated 

herein, to allow for the structural elucidation of complex carbohydrates. 

 In this dissertation, Fourier transform infrared microspectrometry was 

established as a viable method for the performance of quantitative analysis of 

carbohydrates in conjunction with partial least squares regression.  The technique was 

considerably enhanced, however, when single-bounce attenuated total reflection 

spectrometry was utilized instead of microspectrometry.  The method that was 

developed by its application provided higher sensitivity and detection of smaller sample 

quantities, and there was no longer a need to normalize the spectra, as was necessary 
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during the microspectrometric method.  This resulted in a superior analytical method, as 

it was more accurate and simpler to implement.  Further development of Fourier 

transform infrared spectrometry/single-bounce attenuated total reflection spectrometry 

for routine analysis of carbohydrates demands the development of a calibration 

correction method that compensates for long-term instrumental drift.  This will 

eliminate the need to regenerate the calibration model every several months and will 

permit the analysis to be transferable to other instruments and laboratories. 

 Perhaps the most profound findings in this research were provided by the 

simplest experiments.  The results obtained from the measurement of neat samples of 

glucan polysaccharides demonstrated the power of infrared spectrometry and clearly 

points the direction in which future studies will progress.  The accuracy in the 

prediction of the characterization of alpha and beta linkages in polysaccharides is 

extraordinary, especially when one considers that this was done completely 

independently of the length of the polysaccharide, which was randomized.  

Unfortunately, the scope of this study was limited by the variety of polysaccharide 

standards that are commercially available.  Other polysaccharides, however, may be 

synthesized for future investigation.  It is extremely likely that 1-2, 1-3, 1-4, and 1-6 

linkages in glucan polysaccharides, with the availability of standards that contain a 

variety of these configurations, may be discerned with the same level of success as the 

characterization of α and β linkages.  Finally, models built with variations in 

monosaccharide subunit species within the polysaccharides should establish a powerful 

means through which infrared spectrometry/attenuated total reflection spectrometry 

may determine structures of intact oligosaccharides. 
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