
K-Cohomology of

Generalized Severi-Brauer Varieties

by

Patrick Kevin McFaddin

(Under the direction of Daniel Krashen)

Abstract

In 1992, Merkurjev and Suslin provided an explicit description of the group of K1-zero-

cycles of the Severi-Brauer variety associated to a central simple algebra A. This description

was given in terms of the group K1(A) and yields a cohomological description of pairs

consisting of a maximal subfield of A together with an element of this subfield. In this thesis,

we compute the group of K1-zero-cycles of the second generalized Severi-Brauer variety of a

central simple algebra A of index 4 in terms of elements of K1(A) and their reduced norms.

Analogously, this group gives a cohomological description of the quadratic subfields of the

degree 4 maximal subfields of the algebra A. To give such a description, we utilize work of

Krashen to translate our problem to the computation of cycles on involution varieties. Work

of Chernousov and Merkurjev then gives a means of describing such cycles in terms of Clifford

and spin groups and corresponding R-equivalence classes. We complete our computation by

giving an explicit description of these algebraic groups.

Index words: Algebraic K-theory, K-cohomology, algebraic cycles, central simple
algebras, algebraic groups, homogeneous varieties, Severi-Brauer
varieties.
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Chapter 1

Introduction

This thesis focuses on computing the group of K1-zero-cycles on generalized Severi-Brauer

varieties. For a central simple algebra of index 4 and arbitrary degree, we present an explicit

description of the group of K1-zero-cycles of the second generalized Severi-Brauer variety of

the algebra. This group can be realized as the collection of pairs consisting of an element of

the first K-group of our algebra together with a square root of its reduced norm. This com-

putation utilizes results of Chernousov-Merkurjev on K-cohomology of involution varieties

by means of algebraic groups and R-equivalence and work of Krashen relating homogeneous

varieties arising from exceptional isomorphisms.

The theory of algebraic cycles on homogenous varieties has seen many useful applications

to the study of central simple algebras, quadratic forms, and Galois cohomology. Significant

results include the Merkurjev-Suslin Theorem, the Milnor and Bloch-Kato Conjectures (now

theorems of Orlov-Vishik-Voevodsky and Rost-Voevodsky-Weibel) [Voe], and Suslin’s Con-

jecture, recently proven by Merkurjev [Mer14]. These results have been put in the context of

A1-homotopy and motivic cohomology, giving computations in K-theory and K-cohomology

a healthy amount of relevance in modern mathematics.

Despite these successes, a general description of Chow groups (with coefficients) remains

elusive, and computations of these groups are done in various cases. The computations

1



given in this thesis are a continuation of the work of e.g. Chernousov, Karpenko, Krashen,

Merkurjev, Suslin, Swan, and Zainoulline, who have computed K-cohomology groups of

various homogeneous varieties [Bro, CGM, CM01, CM06, Kra10, Mer95, Mer, MS92, PSZ,

Swa]. Many of these computations concern K0-zero-cycles, i.e., Chow groups of zero cycles

modulo rational equivalence, but in general, very few results on the group of K1-zero-cycles

are known.

The study of K-theory goes back to Grothendieck. Higher K-theory and K-cohomology

were defined by Quillen in his seminal paper [Qui], where the first functorial definition of

higher K-groups was given. It was in this paper that Quillen exhibited a spectral sequence

which computes the K-groups of a scheme in terms of K-cohomology groups. Computations

of K-groups and K-cohomology groups were then taken up by a number of researchers over

the next two decades (e.g., Levine, Merkurjev, Sherman, Srinivas, Suslin, Weyman).

Along with their celebrated result on the norm-residue homomorphism [MS82], Merkurjev

and Suslin computed the group of K1-zero-cycles of a Severi-Brauer variety in terms of the

first K-group of the underlying central simple algebra [MS92]. One useful interpretation of

this result is that the pointed maximal subfields of a central simple algebra A, which are

parametrized by a functorially defined K-cohomology group, are likewise encoded by the

group K1(A), given by the abelianized arithmetic of A.

The aim of this present work is to extend this result to generalized Severi-Brauer varieties.

Indeed, we have succeeded in giving an explicit description of the group of K1-zero-cycles on

the second generalized Severi-Brauer variety of an algebra of index 4, with a mild restriction

on the characteristic of the center.

Theorem (5.4.2). Let A be a central simple algebra of index 4 over a field F of characteristic

not 2, and let X be the second generalized Severi-Brauer variety of A. The group A0(X,K1)

can be identified as the group of pairs (x, α) ∈ K1(A)× F× satisfying NrdA(x) = α2.
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By giving a description of the group of K1-zero-cycles for such varieties, we aim to explore

the more subtle question concerning the parametrization of pointed intermediate subfields

of a central simple algebra, i.e., those fields which lie strictly between a maximal subfield

and the center of our algebra. Furthermore, such a study aids in our understanding of which

elements may be realized as norms from these intermediate subfields.

This thesis is organized as follows. In Chapter 2 we provide background on the theory

of central simple algebras over a field and involutions (order 2 anti-automorphisms) defined

on them. The study of central simple algebras with involution should be viewed as a gener-

alization or twisted analogue of classical linear algebra, with central simple algebras playing

the role of matrix algebras and involutions playing the role of bilinear forms. As such, we

may associate many similar or analogous invariants to aid in their study. Two such invari-

ants are the Clifford and discriminant algebras associated to such algebras with involution.

Classically, the Clifford algebra has played a large part in the study of quadratic forms and

therefore symmetric bilinear forms when the characteristic of the ground field is not 2. The

discriminant algebra is a natural construction which aids in the study of induced forms on

exterior powers of a given vector space.

In Chapter 3 we define some algebraic groups and homogeneous varieties, i.e., varieties

which carry an action of an algebraic group. Specifically, we define unitary groups, the

Clifford group, and the spin1 group associated to certain types of algebras with involution.

Again, these are analogous of their classical counterparts which are defined in terms of forms

on vectors spaces. We also present exceptional isomorphisms of certain invariants of groups

of type A3 and D3. We then define generalized Severi-Brauer and involution varieties, both

of which carry the action of an algebraic group. The former is in some sense the main

object of our investigation, although it is completely determined by its underlying central

simple algebra (and field of definition). We finish the chapter by introducing the notion

of R-equivalence, which we use in the following chapter to relate algebraic groups to K-

1This group is often called the spinor group throughout the literature.
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theory and K-cohomology groups. The concept of R-equivalence is an algebraization of a

homotopy-theoretic concept, where paths (or embeddings [0, 1] ↪→ X) are given by rational

morphisms P1 99K X, and may be defined in terms of valuations and specializations.

In Chapter 4 we introduce the tools we shall use to study Severi-Brauer varieties and in

turn their underlying central simple algebras. We begin by defining two flavors of algebraic

K-theory, namely those definitions given by Milnor and Quillen. Each definition has their

advantages and appropriate uses. The first is concretely defined and admits study by ele-

mentary algebraic means. The second gives a functorial definition which can be utilized to

study schemes and which can be put in the context of modern algebraic topology. We give

a brief account of this perspective. This viewpoint has also been used to give Quillen K-

theory a realization in terms of motivic homotopy. After giving a few examples of K-group

computations, we introduce the Brown-Gersten-Quillen spectral sequence which provides a

means of computing the K-theory of schemes in terms of K-cohomology groups. The study

of K-cohomology was axiomatized by Markus Rost and we present a brief description of

this beautiful theory. The study of “Chow groups with coefficients” allows one to define

cohomology groups with coefficients in any “cycle module” analogous to varying coefficient

systems in singular homology.

In Chapter 5 we give a full account of known results on the group of K1-zero-cycles for

(generalized) Severi-Brauer varieties. We begin with the statement and proof of the result

of Merkurjev and Suslin which yields an isomorphism between the group of K1-zero-cycles

on a Severi-Brauer variety SB(A) and the first K-group K1(A) of the underlying central

simple algebra. We then state a few theorems which exhibit the relationship between R-

equivalence and computations of K-theory and K-cohomology groups. In particular, we

present two results of Chernousov and Merkurjev computing K1-zero-cycles from algebraic

groups and R-equivalence. The first result recovers the aforementioned theorem of Merkurjev

and Suslin and the second provides a similar isomorphism for involution varieties of small

index. We then come to the main computation of this thesis, treating the case of the second
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generalized Severi-Brauer variety associated to a central simple algebra of index 4. We

begin with a reduction to algebras of square degree, showing that the cycle computation

respects Brauer classes. We then utilize results of Krashen to transfer our computation from

type A3 homogeneous varieties (generalized Severi-Brauer varieties) to type D3 (involution

varieties). This translation in conjunction with the results of Chernousov and Mekurjev yield

a description of our desired cohomology groups in terms of algebraic groups. We complete

our computation by giving an explicit description of these groups.
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Chapter 2

Central Simple Algebras and

Involutions

Over the past century, the topic of central simple algebras has had a great impact on a vast

subset of mathematics. While seemingly simple objects, their study has in part generated the

development of geometric and homotopical approaches to algebraic questions and is given

by a beautiful blend of algebra and geometry. As we shall see in forthcoming chapters, one

method of study relies on associating geometric objects which encode the one-sided ideal

structure of a given algebra, analogous to the prime spectrum of a commutative ring. With

these associated geometric objects in hand, we further attach algebraic invariants, such as

groups and graded rings, to distinguish which structures may arise in this fashion.

The power and insight that algebraic geometry has granted to the study of commutative

rings through scheme theory must be adjusted to fit these noncommutative objects. Indeed,

the prime spectrum is not suitable for noncommutative rings as it ignores one-sided ideals.

Fortunately, varieties do exist which encode this ideal structure and we will make great

use of them below, even though they do not serve as a true parallel or dual theory as in

the commutative case. To supplement this deficiency, we make use of linear algebra by

introducing involutions and corresponding algebraic invariants.
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2.1 Preliminaries on Central Simple Algebras

All algebras considered will be finite-dimensional, associative, and contain a multiplicative

identity. For an F -algebra A and a field extension L/F , we denote A ⊗F L by AL. If Fsep

denotes a separable closure of F , we write Asep for A⊗F Fsep. The center of an algebra A is

defined to be

Z(A) = {a ∈ A | ab = ba for all b ∈ A}

and is a commutative subalgebra of A. The opposite algebra of A is a central simple algebra

over F given by Aop = {aop | a ∈ A}, with addition defined by aop + bop = (a + b)op,

multiplication by aop · bop = (ba)op, and scalar multiplication by αaop = (αa)op, for a, b ∈ A

and α ∈ F . An algebra is a division algebra if every non-zero element is invertible.

Definition 2.1.1. A central simple algebra over a field F is an F -algebra with no two-sided

ideals other than (0) and (1) and whose center is precisely F .

Example 2.1.2. The matrix algebra Mn(F ) is a central simple F -algebra.

Example 2.1.3. Any division algebra D satisfying Z(D) = F is a central simple F -algebra.

Example 2.1.4. For a, b ∈ F×, let (a, b)F denote the generalized quaternion algebra. It is

an F -algebra generated by 1, i, j, ij which satisfy the relations i2 = a, j2 = b and ij = −ji.

It is a central simple F -algebra of F -dimension 4. Taking F = R and a = b = −1, we recover

Hamilton’s quaternions.

Example 2.1.5. More generally, let a, b ∈ F× and suppose that F contains a copy of the

group µn of nth roots of 1. Let ζ be a primitive nth root of unity. Let Aζ(a, b) be the algebra

given by generators i and j satisfying in = a, jn = b, and ij = ζji. Then Aζ(a, b) is a central

simple algebra of F -dimension n2 and is one example of a cyclic algebra since it splits over

the cyclic extension F ( n
√
b).

7



Example 2.1.6. Even more generally, let L/F be a cyclic extension of degree n with Ga-

lois group Gal(L/F ) generated by σ. Let b ∈ F×. Let A(σ, b) be the algebra with basis

1, X,X2, ..., Xn−1 satisfying Xn = b and Xα = σ(α)X for α ∈ L in addition to

X iXj =


X i+j if 1 ≤ i, j and i+ j < n

bX i+j−n if 1 ≤ i, j ≤ n− 1 and i+ j ≥ n

Then A(σ, b) is the cyclic algebra associated to L/F , σ ∈ Gal(L/F ) and b ∈ F×.

Theorem 2.1.7 (Wedderburn). For an algebra A over a field F , the following are equivalent:

1. A is central simple.

2. There is a finite-dimensional central division algebra over F and an integer n such that

A ∼= Mn(D).

3. If K/F is an algebraically closed field, then AK ∼= Mn(K) for some n.

4. There is a field extension L/F such that AL ∼= Mn(L) for some n.

Moreover, if any of these conditions hold, all simple left (or right) A-modules are isomorphic,

and D is given uniquely up to isomorphism as D = EndA(M).

Proof. See [KMRT, Theorem 1.A] for references.

One corollary of the above result is that the dimension of a central simple algebra is a

square, and we define the degree of A to be deg(A) =
√

dimA. We define the index of A

to be ind(A) = deg(D). We say two central simple algebras over F are Brauer-equivalent

if their underlying division algebras are isomorphic. Any field L satisfying AL ∼= Mn(L) is

called a splitting field of A. An algebra which is isomorphic to a matrix algebra over a field

is called split.
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A basis-free version of Wedderburn’s Theorem states that for every central simple algebra

A, there is a division algebra, unique up to isomorphism, and a D-vector space V so that

A ∼= EndD(V ). In what follows, it will be useful to obtain a description of right ideals of A

in terms of D-subspaces of V [KMRT, §1].

Any D-subspace U ⊂ V determines a right ideal HomD(V, U) ⊂ EndD(V ). Indeed, to

any map V → U , composing with U ↪→ V defines an endomorphism of V which is an element

of A = EndD(V ). We may thus identify

HomD(V, U) = {f ∈ EndD(V ) | Im(f) ⊂ U}.

For any map f ∈ HomD(V, U) and any map g ∈ EndD(V ), the composite f ◦ g is an element

of HomD(V, U) since we clearly have Im(f ◦ g) ⊂ U . Thus, HomD(V, U) is a right ideal of

EndD(V ).

Proposition 2.1.8 ([KMRT], Prop. 1.12). The map U 7→ HomD(V, U) defines a one-to-one

correspondence between subspaces of V of dimension d and right ideals of reduced dimension

d ind(A) in A = EndD(V ).

The reduced dimension of an ideal I ⊂ A is given by rdim(I) = dim(I)/deg(A) (see

Definition 3.4.1).

Given a right ideal I ⊂ A, we may write I = HomD(V, U) for some D-subspace U ⊂ V .

Choosing a complementary subspace U ′ in V , so that V = U ⊕ U ′, let e : V → U be the

projection onto U parallel to U ′. Notice that e ∈ EndD(V ) = A is an idempotent element,

i.e., e2 = e ◦ e = e. Using this prescription, we obtain the following result.

Proposition 2.1.9 ([KMRT], Cor. 1.13). For every right ideal I ⊂ A there exists an

idempotent e ∈ A such that I = eA.

While matrix algebras constitute a nice subcollection of central simple algebras, it is

useful to view central simple algebras as generalized matrix algebras. Indeed, they enjoy
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many features present in matrix algebras, and much of the theory of linear algebra carries

over to central simple algebras (with involution). In particular, there are analogues of the

determinant (called the reduced norm) and the trace (called the reduced trace), which we

now discuss, following [KMRT, 1.6].

For any central simple F -algebra A of degree n, extension of scalars gives an isomorphism

Asep
∼= Mn(Fsep). The association a 7→ a ⊗ 1 ∈ Asep thus defines a map A ↪→ Mn(Fsep).

This map is injective since A is simple, so we may view every element a ∈ A as a matrix in

Mn(F sep).

Definition 2.1.10. The reduced characteristic polynomial of a

PrdA,a(x) = xn − s1(a)xn−1 + s2(a)xn−1 − · · ·+ (−1)nsn(a)

is the characteristic polynomial of the matrix representation of a described above. We define

the reduced norm NrdA(a) and the reduced trace TrdA(a) of a to be

NrdA(a) = sn(a) TrdA(a) = s1(a).

This same definition is valid using any splitting field of A [Wei, III.1.2.4]. Indeed, as

discussed in [Mer92, §2], the reduced norm may be defined by the commutative diagram

A
NrdA //

��

F

��

AL
det // L

for any algebra A and any splitting field L/F of A.

The association a 7→ NrdA(a) defines a homomorphism NrdA : A× → F×, which clearly

factors through the abelianization A×/[A×, A×] = K1(A) (see Example 4.3.4 below). The

resulting map K1(A)→ F× is also denoted by NrdA and its kernel by SK1(A). The reduced

norm and the group SK1(A) have been successfully used to study division algebras and
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their K-groups. See [Mer92] for a good overview. One particularly nice property is that the

reduced norm is compatible with field norms. If L is a subfield of a central simple algebra

A satisfying [L : F ] = deg(A), then we have the following commutative diagram, where the

map L× = K1(L)→ K1(A) is induced by the inclusion of L into A:

K1(L) //

NL/F $$

K1(A)

NrdAzz

K1(F )

2.2 Involutions

In order to transfer a greater number of linear algebraic constructions to the study of central

simple algebras, we define analogues of bilinear and quadratic forms on vector spaces.

Definition 2.2.1. An algebra with involution is a pair (A, σ) where A is a central simple

algebra and σ : A→ A is an anti-automorphism satisfying σ2 = idA.

If A = EndF (V ), then an involution σ on A is the same data as a bilinear form bσ on

V , so that central simple algebras with involution are twisted analogues of vectors spaces

and bilinear forms (see [KMRT, Ch. I]). An involution of the first kind satisfies σ|F = idF ,

while an involution of the second kind induces a nontrivial degree 2 automorphism of F . We

refer to involutions of the second kind as unitary involutions. An involution of the the first

kind which is a twisted form of a symmetric bilinear form is orthogonal. Otherwise, it is

symplectic.

If char(F ) 6= 2, symmetric bilinear forms and quadratic forms determine one another, so

that orthogonal involutions simultaneously give twisted versions of bilinear and quadratic

forms. For char(F ) = 2, quadratic and bilinear forms do not coincide, and one must make

use of quadratic pairs [KMRT, §5.B] to define twisted analogues of quadratic forms.
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For an algebra (A, σ) with involution of the first kind let

Sym(A, σ) = {a ∈ A | σ(a) = a}, Skew(A, σ) = {a ∈ A | σ(a) = −a}.

Definition 2.2.2. A quadratic pair on a central simple algebra A is a pair (σ, f) where σ is

an involution of the first kind on A and f : Sym(A, σ)→ F is a linear map satisfying

1. dimF (Sym(A, σ)) = n(n+1)
2

and TrdA(Skew(A, σ)) = {0}

2. f(x+ σ(x)) = TrdA(x) for all x ∈ A.

Notice that if char(F ) 6= 2, for any a ∈ Sym(A, σ), we may write a = 1
2
(a + σ(a)). The

map f is thus uniquely determined by

f(a) = f(1
2
(a+ σ(a)) = 1

2
f(a+ σ(a)) = 1

2
TrdA(a).

Furthermore, the involution σ must be orthogonal [KMRT, p. 56]. This shows that algebras

with quadratic pair are simply algebras with orthogonal involution over fields of characteristic

not 2.

It will be useful to extend the notion of “unitary involution” to include semi-simple F -

algebras of the form A1 × A2, where each Ai is a central simple over F . The center L of

an algebra with unitary involution (A, σ) will generally be an étale quadratic extension of

F , i.e., either L ∼= F × F or L/F is a separable quadratic field extension. In the first case,

A ∼= A1 ×A2 as above, and in the second case A is a central simple algebra over L. We will

refer to such an algebra as a central simple algebra with unitary involution, even though the

algebra is not necessarily simple and its center is not F (see introduction to [KMRT, §2.B]).

Proposition 2.2.3 ([KMRT], Prop. 2.14). Let (A, σ) be a central simple F -algebra with

involution of the second kind with center L ∼= F×F . Then there is a central simple F -algebra

E such that (A, σ) ∼= (E × Eop, ε), where the involution ε is defined by ε(x, yop) = (y, xop)

and called the exchange involution.

12



2.3 The Clifford Algebra

Given an algebra with quadratic pair (A, σ, f), the Clifford algebra C(A, σ, f) is an F -algebra

which is a quotient of the tensor algebra of A. Its multiplication is defined in terms of the

quadratic pair (σ, f) and it is a twisted form of the even Clifford algebra associated to

a quadratic space. Together with its canonical involution, the Clifford algebra enjoys the

structure of a central simple algebra with unitary, orthogonal, or symplectic involution,

depending on its degree and the characteristic of F (see Proposition 2.3.3). We give a brief

definition, and refer the reader to [KMRT, §8.B] for a complete account of the Clifford

algebra.

Let A denote the underlying vector space of the algebra A. The “sandwich” isomorphism

Sand : A⊗ A ∼−→ EndF (A)

is defined as Sand(a ⊗ b)(x) = axb for a, x, b ∈ A. We define σ2 : A ⊗ A → A ⊗ A by the

following prescription. For any fixed u ∈ A⊗ A, the association

x 7→ Sand(u)(σ(x))

defines a linear map ϕu,σ : A → A, so can be realized as an element of EndF (A). The

sandwich isomorphism identifies EndF (A) with A ⊗ A, and so there is a corresponding

element of A ⊗ A, which we denote σ2(u). That is, σ2 is a map defined by the adjoint

relation

Sand(u)(σ(x)) = Sand(σ2(u))(x).

Definition 2.3.1. The Clifford algebra C(A, σ, f) is the quotient algebra of the tensor alge-

bra T (A) of A:

C(A, σ, f) =
T (A)

J1(σ, f) + J2(σ, f)
.
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The ideal J1(σ, f) is generated by elements of the form s− f(s) where s ∈ Sym(A, σ). The

ideal J2(σ, f) is generated by elements of the form u− Sand(u)(η) such that σ2(u) = u, and

where η is an element of A satisfying f(s) = TrdA(ηs) for all elements s ∈ Sym(A, σ).

Remark 2.3.2. For char(F ) 6= 2, the map f is completely determined by σ, and we write

C(A, σ) for C(A, σ, f).

The Clifford algebra comes equipped with a so-called canonical involution induced by the

involution σ. Define this involution σ : T (A)→ T (A) via

σ(a1 ⊗ · · · ⊗ an) = σ(an)⊗ σ(an−1)⊗ · · · σ(a1).

One checks that the ideals J1(σ, f) and J2(σ, f) are mapped to themselves under σ, so that

we obtain the desired involution, which we also denoted by σ.

The pair (C(A, σ, f), σ) enjoys a variety of structures depending on the degree of A and

the characteristic of F .

Proposition 2.3.3 ([KMRT], Prop. 8.12). Let (A, σ, f) be a central simple algebra with

quadratic pair of degree n = 2m over a field F . The canonical involution σ on C(A, σ, f) is

1. unitary if m is odd,

2. orthogonal if m ≡ 0 (mod 4), and char(F ) 6= 2,

3. symplectic if m ≡ 2 (mod 4) or char(F ) = 2.

2.4 The Discriminant Algebra

If (A, σ) is an algebra with unitary involution of degree n = 2m, the associated discrim-

inant algebra D(A, σ), is a central simple algebra of degree
(
n
m

)
which plays the role of

the exterior algebra. Indeed, extending scalars to Fsep yields Asep
∼= EndF sep(V ) and

D(A, σ)sep = EndFsep(
∧m V ). Just as in the case of the Clifford algebra, the discriminant
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algebra comes equipped with a so-called canonical orthogonal involution, denoted σ. We give

an abbreviated discussion of the discriminant algebra, referring the reader to [KMRT, §10]

and specifically §10.E for the definition. We begin by defining λ-powers of central simple

algebras and collecting some facts about their structure.

Definition 2.4.1. Let A be a central simple algebra of degree n over a field F . Let λ1A = A

and for every integer k = 2, ..., n, define the kth λ-power of A to be

λkA = EndA⊗k(A⊗ksk),

where the elements sk =
∑
π∈Sk

sgn(π)gk(π) are defined as “averages” over elements of the

symmetric group. Here gk : Sk → (A⊗k)× is a group homomorphism from the symmetric

group into the group of units of A⊗k [KMRT, §10.A].

Proposition 2.4.2. The λ-powers satisfy the following properties:

1. The algebra λkA is central simple over F , Brauer-equivalent to A⊗k, and has degree

deg λkA =
(
n
k

)
.

2. There is a natural isomorphism λk EndF (V ) = EndF (
∧k V ).

The λ-powers of a central simple algebra come equipped with canonical involutions, which

we now describe. Recall that A is an algebra of degree n = 2m. By the definition of λmA,

we have a natural isomorphism

λmA⊗F λmA = EndA⊗n(A⊗n(sm ⊗ sm)).

In fact, the element sn ∈ λnA lies in the ideal A⊗n(sm ⊗ sm) [KMRT, Lem. 10.7], and we

may consider the right ideal I = {f ∈ EndA⊗n(A⊗n(sm ⊗ sm)) | f(sn) = {0}}. Of course,

under the isomorphism stated above, this is an ideal of (λmA)⊗2.
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Definition 2.4.3. Let A be a central simple algebra of degree n = 2m. The canonical

involution γ on λmA is the involution of the first kind corresponding to the ideal I under

the correspondence of F -linear anti-automorphisms of λmA and ideals of (λmA)⊗2 satisfying

(λmA)⊗2 = I ⊕ (1⊗ λmA) [KMRT, Thm. 3.8].

Remark 2.4.4. If A = EndF (V ), the canonical involution γ on λmA = EndF (
∧
V ) is the

adjoint involution associated to the bilinear pairing
∧m V ×

∧m V →
∧n V ∼= F .

To any involution τ on A satisfying (τ |F )2 = idF , one may associate an involution τ∧k on

λkA. We omit the specifics on the existence of these involutions and instead refer the reader

to [KMRT, §10.D] for a full treatment.

The involution σ∧m induced by σ commutes with the canonical involution γ [KMRT,

Lemma 10.27], so that θ := σ∧m ◦ γ defines an order 2 automorphism of λmA.

Definition 2.4.5. Let (A, σ) be a central simple algebra with involution of the second kind,

and assume that deg(A) = n = 2m. The associated discriminant algebra D(A, σ) is the

F -subalgebra of θ-invariant elements of λmA. It is a central simple algebra of degree
(
n
m

)
The involutions γ and σ∧m are identical when restricted to the discriminant algebra, and

we denote the common involution by σ, continuing to refer to it as the canonical involution

on D(A, σ).

Remark 2.4.6. We make specific mention of the case L = F × F for use in the proof of

Proposition 5.4.1. In this case, A = E×Eop for a central simple algebra E over F of degree

2m and σ is given by the exchange involution ε (see Proposition 2.2.3). By the discussion

preceding [KMRT, 10.31], we have an isomorphism

D(A, ε) = {(x, γ(x)op) | x ∈ λm(E)} ∼= λmE.

We note, in particular, that by Proposition 2.4.2, the discriminant algebra D(A, ε) is Brauer-

equivalent to E⊗m. Its canonical involution will be denoted by ε, as opposed to σ.
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Chapter 3

Algebraic Groups and Homogeneous

Varieties

By a scheme over F we will mean a separated scheme of finite type over F . An algebraic

variety is an integral scheme. We will freely use the terminology and notation found in [Har,

Hart] concerning, e.g., schemes, varieties, function fields, rational points, rational morphisms,

and birationality. If X and Y are F -schemes, we will denote the product X ×SpecF Y by

X × Y and occasionally by XY .

Let F be a field. An algebraic group G over F is a smooth affine scheme with a group

structure that is compatible with its geometric structure. That is, the multiplication and

inverse maps m : G × G → G and ι : G → G defined by m(g, h) = gh and ι(x) = x−1 are

morphisms of schemes. Alternatively, an algebraic group is a group object in the category

of smooth affine schemes over F .

Using the associated functor of points, schemes and varieties may be viewed as functors

with domain the category of commutative rings. We will make use of this viewpoint, more

often restricting our attention to fields. In particular, we frequently consider an algebraic

group G as a functor L 7→ G(L) from the category of field extensions of F to the category

of groups. Following [CM01], we will utilize GL1(A), SL1(A), Spin(A, σ), etc., to denote the
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groups of F -points of the corresponding algebraic groups GL1(A), SL1(A), Spin(A, σ), etc.

Our main focus will be on these collections of F -points as we often suppress the full algebraic

group structure, although we will continue to refer to these groups as “algebraic groups.” We

only make proper use of this extra structure in the discussion on the role of R-equivalence

in K-cohomology computations in Section 5.2. A good reference for the following material

is [KMRT].

Let A be a central simple algebra over F , and consider the group GL1(A) := A× of

invertible elements in A, called the general linear group of A. The kernel of the reduced

norm homomorphism (see Definition 2.1.10) NrdA : GL1(A)→ F× is denoted SL1(A), called

the special linear group of A.

3.1 Unitary Groups

Let (A, σ) be a central simple algebra with involution.

Definition 3.1.1. A similitude of (A, σ) is an element g ∈ A× such that σ(g)g ∈ F×. The

collection of all similitudes of (A, σ) is denoted Sim(A, σ) and is a subgroup of GL1(A). The

scalar µ(g) := σ(g)g is called the multiplier of g, and the association g 7→ µ(g) defines a

group homomorphism µ : Sim(A, σ)→ F×.

If the involution σ is of unitary type, we denote Sim(A, σ) by GU(A, σ), and call it the

general unitary group of (A, σ). For such a pair (A, σ) and with deg(A) = 2m, define the

special general unitary and special unitary groups

SGU(A, σ) = {g ∈ GU(A, σ) | NrdA(g) = µ(g)m}

SU(A, σ) = {u ∈ GU(A, σ) | NrdA(u) = 1}.

Remark 3.1.2. In the case where A has center L ∼= F×F , there is a central simple algebra E

over F such that (A, σ) ∼= (E×Eop, ε), where ε is the exchange involution (Proposition 2.2.3).
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The special general, and special unitary groups of (A, σ) are then given by [KMRT, §14.2]

SGU(E × Eop, ε) = {(x, α) ∈ E× × F× | NrdE(x) = αm}

SU(E × Eop, ε) = {x ∈ E× | NrdE(x) = 1} = SL1(E).

3.2 The Clifford and Spin Groups

The Clifford Group

The multiplicative group of the Clifford algebra C(A, σ) contains a group Γ(A, σ), called the

Clifford group, whose action on C(A, σ) fixes A ⊂ C(A, σ). The definition of this action

takes some care to define, and we give a brief discussion following [KMRT, §13].

Let (A, σ, f) be a central simple algebra with quadratic pair. There is a linear map

γ = ⊕γn : T (A) → T (A) induced from a representation S2n → GL(A⊗n) [KMRT, Prop.

9.4]. In the split case, where (A, σ, f) = (EndF (V ), σq, fq), the identification of A with

V ⊗F V gives a defition of γ:

γ(v1 ⊗ · · · ⊗ v2n) = γn(v1 ⊗ · · · ⊗ v2n) = v2 ⊗ · · · ⊗ v2n ⊗ v1.

Consider the subset T+(A) of the tensor algebra, given by T+(A) =
⊕
n≥1

A⊗n. The vector

space T+(A) is naturally a left and right T (A)-module, using the multiplication of the tensor

algebra. Let us consider a new left module structure of T+(A). For α ∈ T (A) and v ∈ T+(A),

define α ∗ v = γ−1(u⊗ γ(v)).

Again, we may describe this map explicitly in the split case. Identifying A and V ⊗F V ,

we have (α1 ⊗ · · · ⊗ α2i) ∗ (v1 ⊗ · · · ⊗ v2j) = v1 ⊗ α1 ⊗ · · · ⊗ α2i ⊗ v2 ⊗ · · · ⊗ v2j. Notice that

this is just the usual product in T (A) except v1 is transplanted to the font of the product.
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Definition 3.2.1. The Clifford bimodule of (A, σ, f) is

B(A, σ, f) =
T+(A)

[J1(σ, f) ∗ T+(A)] + [T+(A) · J1(σ, f)]
.

Here, the ideal J1(σ, f) is the two-sided ideal of T (A) given in Definition 2.3.1.

For any a ∈ A, we can realize a as a degree 1 element of T+(A). This defines a map

b : A→ B(A, σ, f). The following result shows that this map recovers some of the essential

structure of A and gives some nice properties of B(A, σ, f).

Theorem 3.2.2 ([KMRT], Theorem 9.7). Let (A, σ, f) be a central simple F -algebra with

quadratic pair.

1. The F -vector space B(A, σ, f) carries a natural C(A, σ, f)-bimodule structure, where

the left action is given by ∗, as well as a natural left A-module structure.

2. The canonical map b : A→ B(A, σ, f) is an injective homomorphism of left A-modules.

Definition 3.2.3 ([KMRT], Def. 13.11). The Clifford group Γ(A, σ, f) is defined by

Γ(A, σ, f) = {c ∈ C(A, σ, f)× | c−1 ∗ Ab · c ⊂ Ab}.

where Ab denotes the image of A under the map b : A→ B(A, σ, f).

Thus, the Clifford group is given by those invertible elements of the Clifford algebra

which conjugate A (as a module) into itself. Let us compare this to the classical case. For

a nonsingular quadratic space (V, q), the special Clifford group Γ+(V, q) is given by

Γ+(V, q) = {c ∈ C0(V, q)
× | c · V · c−1 ⊂ V }.

Of course, the Clifford algebra (as defined in Section 2.3) is a twisted form of the even

Clifford algebra C0(V, q). This invariance under the action of the Clifford algebra translates

to the underlying vector space in this case.
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The Spin Group

We refer the reader to [KMRT, § 8, 13] for all pertinent definitions. As discussed in Sec-

tion 2.3, the Clifford algebra C(A, σ, f) comes equipped with its canonical involution σ.

There is a corresponding multiplier map µ : C(A, σ, f) → F× defined by µ(g) = σ(g)g

(Definition 3.1.1). Denote the restriction of this multiplier map to the Clifford group

Γ(A, σ, f) ⊂ C(A, σ, f) also by µ.

Definition 3.2.4. The spin group Spin(A, σ, f) is defined to be the kernel of the multiplier

map µ, i.e.,

Spin(A, σ, f) = {γ ∈ Γ(A, σ, f) | µ(γ) = 1} ⊂ Γ(A, σ, f)

3.3 Exceptional Identifications

We now wish to make precise the relationship between the Clifford, spin, and unitary groups

arising from the exceptional identifications of algebras of types A3 and D3. We summarize

the discussion on equivalences of groupoids found in [KMRT, §15.D]. We will restrict to the

case where char(F ) 6= 2 for the sake of clarity, as we only make use of the results of this

section under this assumption.

Let A3 denote the category of central simple algebras with unitary involution of degree

4 with morphisms given by maps of F -vector spaces. Let D3 be the category of central

simple algebras with orthogonal involution of degree 6 and maps of F -vector spaces. These

categories are in fact groupoids, i.e., all morphisms are invertible, which follows from the fact

that vector spaces of equal dimension are isomorphic. Let

C : D3 −→ A3
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be the functor which maps an algebra with orthogonal involution (A, σ) to its Clifford algebra

with canonical involution (C(A, σ), σ), as defined in Section 2.3. Let

D : A3 −→ D3

be the functor which maps an algebra with unitary involution (B, τ) to its discriminant

algebra with canonical orthogonal involution (D(B, τ), τ), as defined in Section 2.4.

Recall that a functor F : A → B is an equivalence if F induces a bijection on mor-

phism sets MorA(X,X ′) ∼= MorB(F (X), F (X ′)) (fully-faithful) and every object Y of B is

isomorphic to an object of the form F (X) for some object X of A (essentially surjective).

Theorem 3.3.1 ([KMRT], Theorem 15.24). The functors C and D define an equivalence

of groupoids A3 ' D3.

Under this equivalence, one may recover invariants of algebras with orthogonal involution

by means of invariants of algebras with unitary involution.

Proposition 3.3.2 ([KMRT], Prop. 15.27). Let (A, σ) ∈ A3 and (B, τ) ∈ D3 correspond

to one another under the groupoid equivalence of A3 and D3. Then we have identifications

Γ(A, σ) = SGU(B, τ) and Spin(A, σ) = SU(B, τ).

3.4 Severi-Brauer Varieties

The notion of generalized Severi-Brauer variety was first given by Blanchet in [Bla], and

the following information may also be found in [KMRT, Kra10]. Let A be a central simple

algebra of degree n. Consider the Grassmannian Gr(nk,A) = Gr(nk, n2) of nk-dimensional

subspaces of A, where we consider A as an F -vector space of dimension n2. Among the

elements of Gr(nk,A) are the right ideals of A of dimension nk. The property of being a

right ideal is given by polynomial equations [KMRT, 1.C], so that the collection SBk(A) of

all right ideals of A of dimension nk is closed subvariety of Gr(nk,A).
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Definition 3.4.1. For any integer 1 ≤ k ≤ n = deg(A), the kth generalized Severi-Brauer

variety SBk(A) of A is the variety of right ideals of dimension nk in A. For an ideal I ∈

SBk(A), the integer k is called the reduced dimension of I. Thus, SBk(A) is the variety of

right ideals of A of reduced dimension k. It is a homogeneous variety under the action of

the algebraic group SL1(A).

One may also associate Severi-Brauer varieties to ideals of a central simple algebra, as

discussed in [Kra10, Def. 4.7]. For J a right ideal of A, define SBk(J) to be the collection

of right ideals of A of reduced dimension k which are contained in J . The variety SBk(J)

may be realized as the collection of ideals of an algebra closely related to A, as the following

theorem and proceeding remark dictate.

Theorem 3.4.2 ([Kra10], Theorem 4.8). Let A be a central simple algebra and let JCA be a

right ideal of reduced dimension k. Then there exists a degree k algebra D, Brauer-equivalent

to A such that SBk(J) = SBk(D).

Remark 3.4.3. A porism of the above result is that the algebra D is given by eAe, where

e is the idempotent element of A which corresponds to J (see Proposition 2.1.9).

Proposition 3.4.4 ([KMRT], Prop. 1.17). The Severi-Brauer variety SBk(A) has a rational

point over an extension L of F if and only if ind(AL) | k. In particular, SB(A) = SB1(A)

has a rational point over L if and only if L splits A.

In general, the algebra A does not necessarily split over L if SBk(A) has an L-rational

point. However, the existence of rational points guarantees that the geometry of SBk(A) is

still quite favorable.

Proposition 3.4.5 ([Bla], Prop. 3). The variety SBk(A) has an L-rational point if and only

if the free composite L · F (SBk(A))/L is rational (i.e., purely transcendental).

Remark 3.4.6. Notice that the field L · F (SBk(A)) is the function field of SBk(A)L, con-

sidered as an L-variety. Thus, SBk(A) has an L-rational point if and only if SBk(A)L is a

rational L-variety, i.e., birational to Pk(n−k)L .
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The generalized Severi-Brauer variety SBk(A) is a twisted form of the Grassmannian

Gr(k, n) of k-dimensional subspaces of F n, which will be made precise in the following

theorem [Bla, Cor. 2(i)]. For k = 1, SB1(A) = SB(A) is the usual Severi-Brauer variety

of A, which is a twisted form of projective space Pn−1 ∼= Gr(1, n). It was first defined by

Châtelet [Cha].

Theorem 3.4.7 ([KMRT], Theorem 1.18). For A = EndF (V ), there is a natural isomor-

phism SBk(A) ∼= Gr(k, V ). In particular, for k = 1, SB(A) ∼= P(V ).

In view of this result, we can view Severi-Brauer varieties from a cohomological perspec-

tive. Since generalized Severi-Brauer varieties are twisted forms of Grassmannians, they are

parametrized by the Galois cohomology set H1(F,Aut(Gr(k, n)). A theorem of Chow gives

a description for the automorphism group of the Grassmannian over F :

Aut(Gr(k, n)) =


PGLn(F ) if 2k 6= n or k = 1

PGLn(F )× Z/2 if 2k = n and k > 1

In particular, we see that Severi-Brauer varieties are parametrized by H1(F,PGLn).

Example 3.4.8. As we have seen above, for A = Mn(F ), we have SBk(A) = Gr(k, n). In

particular, SB(A) = Gr(1, n) = Pn−1.

Example 3.4.9. Let A = (a, b)F be a quaternion algebra (Example 2.1.4). Then SB(A) is

given by {(x : y : z) | ax2 + bx2 − z2 = 0} ⊂ P2.

Our main focus will be the case k = 2, the second generalized Severi-Brauer variety

SB2(A) associated to a central simple algebra, which is a form of the Grassmannian Gr(2, n).

3.5 Involution Varieties

Involution varieties were first defined in [Tao], and the following may also be found in [Kra10].

Let (A, σ) be an algebra of degree n with orthogonal involution and let I be a right ideal of
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A. The orthogonal ideal of I with respect to σ is given by

I⊥ = {x ∈ A | σ(x)y = 0 for y ∈ I}.

We say that an ideal I is isotropic if I ⊂ I⊥. Alternatively, an ideal is isotropic if σ(I)·I = (0).

Let IV(A, σ) denote the collection of isotropic right ideals of A of dimension n. We clearly

have inclusions

IV(A, σ) ⊂ SB(A) ⊂ Gr(n,A) = Gr(n, n2).

In fact, IV(A, σ) is a closed subvariety of SB(A), and the above inclusion morphism is

defined by forgetting the isotropy condition. Just as SB(A) is a twisted form of projective

space, IV(A, σ) is a twisted form of a projective quadric. Indeed, if (A, σ) is split (so that

A ∼= EndF (V )), then σ is given by the adjoint involution corresponding to a bilinear form

bσ on V . Such a form defines a quadratic form qσ, and the involution variety is given by

IV(A, σ) = {qσ = 0}.

Involution varieties may also be viewed from a cohomological perspective. Since the

automorphism group of a projective quadric is given by the projective orthogonal group POn,

the cohomology set H1(F,POn) parametrizes involution varieties IV(A, σ), with deg(A) = n.

One may formulate a definition in characteristic 2 [CM01] utilizing quadratic pairs (see

Definition 2.2.2). Let (A, σ, f) be a central simple algebra of degree n with quadratic pair.

A right ideal I ⊂ A is called isotropic if σ(I) · I = 0 and if f(a) = 0 for all I ∩ Sym(A, σ).

We may then define the involution variety IV(A, σ, f) as the collection of all isotropic ideals

of dimension n. If char(F ) 6= 2, then IV(A, σ, f) = IV(A, σ). The involution variety is a

homogeneous variety for the algebraic group O+(A, σ, f) [KMRT, p. 351, §26].

In very special (indeed, exceptional) cases, the varieties defined above coincide. The

following result gives one manifestation of the exceptional identifications of Section 3.3.

Here we assume that the characteristic of F is not 2.
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Lemma 3.5.1 ([Kra10], Lem. 6.5). Let A be a central simple algebra of degree 4 over F .

Then SB2(A) is isomorphic to an involution variety IV(B, σ) corresponding to a degree 6

algebra with orthogonal involution.

Remark 3.5.2. One porism of Lemma 3.5.1 is that the index of B is at most 2. This

fact will allow us to utilize results of Chernousov-Merkurjev concerning K-cohomology of

involution varieties (see Section 5.2).

3.6 R-Equivalence

We follow the discussion given in [CM01, §1.1]. For an irreducible F -variety Y and point

y ∈ Y , consider the function field F (Y ) and local ring Oy at y. Given any other F -variety

X, we have an inclusion X(Oy) ⊂ X(F (Y )). We will say that an element f ∈ X(F (Y ))

is defined at y if it lies in the subset X(Oy). The quotient Oy → F (y) induces a map

X(Oy)→ X(F (y)). For an element f defined at y, we denote the image of f under this map

by f(y), and call it the value of f at y.

Taking Y = P1
F , with function field F (t), an element f ∈ X(F (t)) is defined at a rational

point α ∈ P1
F (F ) if it is defined at the corresponding point of P1

F .

Definition 3.6.1. Let G be an algebraic group over F . An element x ∈ G(F ) is R-trivial

if there is an element f ∈ G(F (t)) defined at t = 0 and t = 1 so that the value of f is the

identity at 0 and x at 1, i.e., f(0) = 1 and f(1) = x.

More geometrically, a point x ∈ G(F ) is called R-trivial if there is a rational morphism

f : P1 99K G, defined at 0 and 1, and with f(0) = 1 and f(1) = x. We can thus view

R-trivial elements x ∈ G(F ) as those which can be connected via a rational curve to the

identity element of G(F ).

The collection of all R-trivial elements of G(F ) is denoted RG(F ) and is a normal sub-

group of G(F ). The quotient G(F )/R = G(F )/RG(F ) is called the group of R-equivalence

classes (for G). Given any extension L/F , the group G(L)/R is defined to be the group of

26



R-equivalence classes of the L-variety GL. A group G is R-trivial if G(L)/R is trivial for all

extensions L/F .

Lemma 3.6.2 ([CM98], Lem. 1.2). Let H be a closed normal subgroup of an algebraic group

G. Then the collection RH(F ) of R-trivial elements of H is a normal subgroup of G(F ).

This lemma will help justify the results of Section 5.2. In particular, we will consider the

cases where G = GL1(A) and H = SL1(A) (Theorem 5.2.6), in addition to G = Γ(A, σ, f)

and H = Spin(A, σ, f) (Theorem 5.2.7).
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Chapter 4

Algebraic K -Theory and

K -Cohomology

Here we present the tools which will be used to study the aforementioned homogeneous

varieties, obtained by associating algebraic invariants to these geometric objects. Information

obtained in this way may in turn be used to study our original algebraic structures of interest,

namely central simple algebras (with involution).

Two flavors of algebraic K-theory are defined below, using constructions given by Milnor

and Quillen. Milnor K-theory of fields has a very simple definition and is given by explicit

presentations in low degrees. Although its definition is claimed to be ad hoc, it arises natu-

rally in the study of Galois and motivic cohomology, and we present one such manifestation.

Quillen K-theory is defined functorially and gives a means of viewing algebraic K-theory

through the lens of modern algebraic topology (as well as motivic homotopy theory), and

a brief summary of this viewpoint is included. We then define K-cohomology, first in a

geometric and sheaf-theoretic attitude, followed by a more axiomatic approach. Throughout

this chapter, all rings and schemes are assumed to be noetherian.
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4.1 Milnor K -Theory

We now give some background on Milnor K-theory, which will play a critical role in the

definitions of K-cohomology and the Rost complex. In a sense, Milnor K-theory is the most

fundamental and simplest part of algebraic K-theory, and its utility and ubiquity continue

to make it a useful object of study. Good references include [EKM, GS06].

Let F be a field. For each n ∈ N, we may form the n-fold tensor product of F×, with

the convention that T 0(F ) = Z:

T n(F ) = F× ⊗Z · · · ⊗Z F
×.

Definition 4.1.1. The nth Milnor K-group KM
n (F ) is the quotient of T n(F ) by the subgroup

generated by elements of the form a⊗ (1− a).

The expression a ⊗ (1 − a) is not an element of T 0(F ) or T 1(F ), so no relations are

imposed on these groups. It follows that KM
0 (F ) = Z and KM

1 (F ) = F×.

The Milnor K-theory ring KM
∗ (F ) is the direct sum of the groups KM

n (F ) over all n ∈ N.

It may also be described as the quotient

KM
∗ (F ) = T (F )/〈a⊗ (1− a) | a ∈ F×〉

of the full tensor algebra T (F ) =
⊕

T n(F ) by the ideal generated by elements of the form

a ⊗ (1 − a). We will denote the image of a1 ⊗ · · · ⊗ an in this quotient by {a1, ..., an} and

refer to these elements as symbols.

Example 4.1.2. As discussed above, KM
0 (F ) ∼= Z and KM

1 (F ) ∼= F× for any field F .

Example 4.1.3 (Milnor K-Theory of Finite Fields). For n ≥ 2, KM
n (Fq) = 0, where Fq

denotes the finite field with q elements. For a proof, see [GS06].

The the fact that a⊗ (1−a) = 0 in KM
∗ (F ) is called the Steinberg relation, and naturally

arises in the study of central simple algebras. Indeed, the generalized quaternion algebra (see
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Example 2.1.4) (a, 1− a)F is split, i.e., isomorphic to a matrix algebra over F . To see this,

we note that its Severi-Brauer variety is given by the solutions of ax2 + (1− a)y2 − z2 = 0.

This projective conic has rational point (1 : 1 : 1), and is thus split, i.e., isomorphic to P1.

For what follows in Section 4.6 on K-cohomology, it will be useful to introduce the residue

homomorphisms in Milnor K-theory.

Let L be a field with discrete valuation v, residue field κ, discrete valuation ring R

and local parameter π. The discrete valuation v : L× → Z can be realized as a map

K1(L)→ K0(κ). Indeed, this may be generalized to higher degree K-groups.

Proposition 4.1.4 ([GS06], §7; [EKM], §100.B). For each n ≥ 1 there exists a unique

homomorphism

∂v : KM
n (L) −→ KM

n−1(κ)

satisfying ∂v({π, u2, ..., un}) = {u2, ..., un} for all local parameters π and all (n − 1)-tuples

(u2, ..., un) of units of R, where ui denotes the image of ui in κ = R/(π).

This map is called the residue homomorphism. In the case n = 1, the homomorphism ∂v

is given by the valuation v, as stated above. For n = 2, the map ∂v is determined by the

tame symbol1 Tv : K2(L)→ K1(κ), as described in [Sri, Ex. 1.15]

Tv({a, b}) = (−1)v(a)v(b)
(
av(b)

bv(a)

)
.

Broader Context

Milnor’s K-groups naturally arise in the study of field arithmetic. Let ` be an integer with

1
`
∈ F and assume that F contains `th roots of unity. Let ζ be a primitive `th root of unity.

The Galois symbol is a map

F× × F× → Br(F )[`]

1Some refer to the residue homomorphism as the tame symbol, for any degree n [GS06]. However, we
will reserve this moniker for the n = 2 case.
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defined by (a, b) 7→ [Aζ(a, b)]. Here Br(F )[`] is the group of `-torsion elements in Br(F )

and Aζ(a, b) is the cyclic algebra of degree ` (see Example 2.1.5). One may show that

the Galois symbol factors through k2(F ) := KM
2 (F )/`KM

2 (F ), and the resulting map is

usually called the norm-residue homomorphism [Sri, I]. We continue to use the notation

kn(F ) = KM
n (F )/`KM

n (F ).

Let us describe this map from another perspective. Let ` ∈ Z+ be an integer relatively

prime to char(F ), and let µ` denote the group of `th roots of unity in (Fsep)×. The Kummer

sequence of G = Gal(Fsep/F )-modules

0→ µ` → (Fsep)×
·`−→ (Fsep)× → 0

yields an exact sequence of Galois cohomology groups

(Fsep)× → (Fsep)× → H1(F, µ`)→ H1(F, (Fsep)×).

Recall that H1(F, (Fsep)×) = 0 by Hilbert’s Theorem 90. Therefore, we have an isomorphism

k1(F )
∼=−−→ H1(F, µ`). Using the cup product in Galois cohomology, we have a map

k1(F )⊗Z k1(F )
∼−→ H1(F, µ`)⊗Z H

1(F, µ`)
∪−→ H2(F, µ⊗2` ),

which once again factors through k2(F ). This is precisely the map defined above using cyclic

algebras. In general, there is a map

kn(F ) = KM
n (F )/`KM

n (F ) −→ Hn(F, µ⊗n` ),

also called the norm-residue homomorphism [Sri, vdK]. This homomorphism has been the

focus of a substantial amount of work done by a great number of people. It was shown

to be an isomorphism when n = 2 by Merkurjev and Suslin, who utilized computations of

31



K-chomology groups of Severi-Brauer varieties [MS82]. Milnor conjectured that this map is

an isomorphism if ` = 2. It has been shown to be an isomorphism in general, a fact that was

originally conjectured Bloch and Kato, and proven by Rost, Voevodsky, and Weibel [Voe].

4.2 Quillen K -Theory

We define Quillen’s higher algebraic K-groups using his Q-construction. While Milnor K-

groups lend to more concrete computations, Quillen K-theory provides the functoriality and

naturality necessary to establish fundamental results, including dévissage, resolution, and

localization sequences. Moreover, this functoriality allows one to define cohomology groups

for the K-theory sheaf on the category of schemes.

Quillen’s brilliant insight was in realizing the collection of K-groups as homotopy groups

of a single topological space. This was a first step in viewing algebraic K-theory from an

algebro-topological perspective, where it has since played a significant role. Good references

for this material include [Qui, Sri, Wei], and we include terminology from [Sch]. For a

realization in terms of algebraic topology, see [EKMM]. For a definition in terms of motivic

homotopy, see [DLRV]. For a definition in terms of additive invariants of derived and dg-

categories, see [Tab].

We begin by defining Quillen’s Q-construction. By an exact category we will mean an

additive category E embedded as a full subcategory of an abelian category A which is closed

under extensions, i.e., if 0 → X → Y → Z → 0 is an exact sequence in A with X and Z

objects of E, then Y is isomorphic to an object of E. An exact sequence in E is then an exact

sequence in A whose objects lie in E, referred to as a conflation (or admissible sequence) of

E.

If a morphism i : A → B arises in a conflation 0 → A
i−→ B → C → 0 of E, we say that

i is an inflation (or admissible monomorphism), and denote it diagrammatically by�. If a
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morphism q : Y → Z arises in a conflation 0 → X → Y
q−→ Z → 0 of E, we say that q is a

deflation (or admissible epimorphism), and denote it diagrammatically by �.

Define QE as the category having the same objects as E, but with a morphism A → B

given by an equivalence class of diagrams A� X � B. Another such diagram A� X ′� B

is equivalent (i.e., defines the same morphism of QE) if there is an isomorphism X → X ′

making the following digram commute:

X

∼=

��

  

  ~~~~

A B

X ′
>>

>>````

Composition of morphisms A� X � B and B � Y � C is given by the pullback diagram

X ×B X ′ // //

����

X ′ // //

����

C

A Xoooo // // B

Quillen’s K-groups of an exact category E are then defined as the sequence of functors

Kn : Ex
Q−−→ Cat

N−−→ sSet
|·|−−→ Top

πn+1−−−→ Ab.

Here, Ex denotes the category of (small) exact categories and exact functors, Cat the category

of (small) categories and functors, sSet the category of simplicial sets and simplicial maps,

Top the category of topological spaces and continuous maps, and Ab the category of abelian

groups and group homomorphisms. The functor N denotes the nerve construction, | · | the

geometric realization, and πn+1 denotes the (n+ 1)th homotopy group, taking the base point

to be the image of the zero object of the exact category E.
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To recover the K-theory of schemes, we can augment the above sequence of functors with

the association X 7→ P(X), where P(X) denotes the exact category of locally free sheaves

of finite rank on a scheme X. We then define Kn(X) = Kn(P(X)). Similarly, we define

Gn(X) = Kn(M(X)), where M(X) denotes the abelian category of coherent sheaves on X.

The K-theory (and G-theory) of a noetherian ring R may be recovered by the same

prescription, taking P(R) to be the exact category of finitely generated projective modules

and M(R) to be the category of finitely generated left R-modules.

Quillen’s K-theory of schemes enjoys a robust structure and we highlight some aspects

here [Sri, V]. For a scheme X, the fully faithful embedding P(X) ⊂ M(X) induces maps

Kn(X) → Gn(X) for all n. This map is an isomorphism if X is regular [Wei, Theorem

V.3.4]. Waldhausen showed that there is a natural product on
⊕
n≥0

Kn(X), which endows

this set with the structure of a graded-commutative ring, similar to Milnor K-theory. The

set
⊕

Gn(X) is then a graded
⊕

Kn(X)-module.

If f : X → Y is a morphism of schemes, the pullback functor f ∗ : P(Y )→ P(X) induces

a homomorphism f ∗ : Ki(Y )→ Ki(X). Thus, Ki may be viewed as a contravariant functor

from schemes to abelian groups. Similarly, if f : X → Y is a flat morphism of noetherian

schemes, the exact functor f ∗ : M(Y ) → M(X) induces a map f ∗ : Gi(Y ) → Gi(X). Thus,

Gi is a contravariant functor from the category of noetherian schemes and flat morphisms

to the category of abelian groups.

For a field F , elements of Kn(F ) satisfy the Steinberg relation a ·(1−a) = 0, encountered

in the definition of Milnor K-groups KM
n (F ) (Definition 4.1.1). It follows that for any field

F there exists a homomorphism KM
n (F ) → Kn(F ) which is an isomorphism for n = 0, 1, 2.

We will denote elements of K2(F ) by {a, b}, just as with Minor K-groups.
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4.3 Examples

Example 4.3.1 (Low Degree K-Theory of Fields). As seen in Example 4.1.2, for a field F ,

we have KM
0 (F ) ∼= Z and KM

1 (F ) ∼= F×. Since Milnor and Quillen K-theory agree for fields

(and in low degree), this recovers the Quillen K-groups. A presentation for K2 of fields is

given by the following result.

Theorem 4.3.2 (Matsumoto, see [Sri, Wei]). If F is a field, then KM
2 (F ) is the abelian

group generated by the collection of symbols {a, b} with a, b ∈ F× subject to the relations

1. Bilinearity: {aa′, b} = {a, b}+ {a′, b}

2. Steinberg Relation: {a, 1− a} = 0 for all a /∈ {0, 1}

Example 4.3.3 (K-Theory of Finite Fields). By Example 4.1.3, for a finite field Fq, we

have K2(Fq) = 0, and in fact KM
n (Fq) = 0 for all n ≥ 2. However, Quillen K-groups of finite

fields are in general nonzero in degrees higher than 2.

Example 4.3.4 (Local Rings [Sri]). Let R be a (not necessarily commutative) local ring,

i.e., R has a unique maximal ideal. Then K0(R) = Z, generated by the free module of rank

1. We have K1(R) ∼= R×/[R×, R×], where [R×, R×] denotes the commutator subgroup of

R×.

Example 4.3.5 (Non-Separated Scheme [Wei], II.8.2.4). Let X be affine n-space with a

double origin, obtained by identifying two copies of An along An\{0}. Then G0(X) ∼= Z⊕Z,

while K0(X) ∼= Z.

Example 4.3.6 (Projective Space [Wei], V.1.5.1). Let X be a quasi-projective scheme and

PnX = PnF ×SpecZ X projective space over X. There is an isomorphism of rings

K∗(PnX) ∼= K∗(X)⊗Z K0(PnZ) ∼= K∗(X)[z]/(zr + 1).
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Example 4.3.7 (Severi-Brauer Varieties [Wei], V.1.6.6). If X is the Severi-Brauer variety

SB(A) corresponding to a central simple algebra A of degree n, there is an isomorphism

K∗(X) ∼=
n−1⊕
i=0

K∗(A
⊗i).

4.4 An Algebro-Topological Perspective

As discussed above, Quillen’s higher K-groups are given as the composition of functors

Ex
Q−−→ Cat

B−−→ Top
πn+1−−−→ Ab,

where B = | · | ◦N is the classifying space functor. The topological space obtained prior to

applying πn+1 will be referred to as the K-theory space, denoted K(E).

To enter the realm of modern algebraic topology, we may instead consider the K-theory

spectrum, which we will also denote by K(E), along with its corresponding stable homotopy

groups. This definition was first given by F. Waldhausen in [Wal], and applies to Waldhausen

categories or categories with cofibrations and weak equivalences, a generalization of the notion

of exact category. We refer the reader to [Wei, IV.8]. In summary, one uses Waldhausen’s

iterated wS·-construction to produce a delooping of the K-theory space obtained in Quillen’s

work. This delooping realizes the K-theory spectrum as an Ω-spectrum or an infinite loop

space [Wei, IV.6].

The main advantage of using Waldhausen’s definition of higher K-theory is that one may

functorially associate a symmetric spectrum K(E) to any exact category E so that tensor

products determine smash products of spectra (see introduction of [Jar]).

With this framework in place, for any scheme X defined over a field F , one may view

the association X 7→ K(VB(X)) as a presheaf on the category SchF of F -schemes with

values in the category Spt of spectra [Jar, §3], where VB(X) denotes the exact category

of vector bundles on X for the big Zariski site of F . We denote this presheaf of spectra
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by K. The category of presheaves of spectra has a nice model structure [Hov], and one

may topologize this presheaf with respect to any choice of topology on SchF by taking an

appropriate stably fibrant model (see the discussion in [Jar, §4]). In particular, Quillen’s

algebraic K-groups of an F -scheme X are obtained as the homotopy groups of the spectrum

RK(X) = RK(VB(X)), where RK(X) a stably fibrant model of K(X) relative to the model

structure on the big Zariski site (SchF )Zar.

4.5 The Brown-Gersten-Quillen Spectral Sequence

We now discuss a spectral sequence which computes K-groups of a regular scheme from

the K-theory of fields which occur on its first page. This naturally leads to definition of

K-cohomology groups and their importance in K-theory computations. A good reference

for the following information is [Sri, Ch. 5].

Given a scheme X, let KX
n (resp. GX

n ) denote the Zariski sheaf on X associated to the

presheaf U 7→ Kn(U) (resp. U 7→ Gn(U)), for U an open subset of X. Using the usual general

framework [Hart, III], we may consider the cohomology groups of X with coefficients in KX
n

(resp. GX
n ), which we denote by Hp(X,Kn) (resp. Hp(X,Gn)) and refer to as K-cohomology

groups.

Theorem 4.5.1 (Brown-Gersten-Quillen). Let X(p) ⊂ X be the set of points of codimension

p in X. There is a fourth-quadrant spectral sequence of cohomological type

Ep,q
1 (X) =

⊕
x∈X(p)

K−p−q(F (x))⇒ G−p−q(X),

which is convergent if X has finite (Krull) dimension.

The utility of this result is in the fact that the K-theory of schemes may be recovered

by K-theory of fields. Note that for X regular, G-theory and K-theory coincide, so the
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above sequence abuts to K-groups. These groups may be computed by making use of K-

cohomology, as the following result asserts.

Proposition 4.5.2. Let X be a regular scheme, so that OX,x is a regular local ring for each

x ∈ X. Then there are canonical isomorphisms

Ep,q
2 (X) = Hp(X,K−q),

where Ep,q
2 (X) is the second page of the Brown-Gersten-Quillen spectral sequence.

We can thus realize the K-cohomology groups Hp(X,Kq) of a d-dimensional scheme X

as cohomology of the Gersten complex

⊕
x∈X(0)

K−q(F (x))→
⊕
x∈X(1)

K−(q+1)(F (x))→ · · · →
⊕
x∈X(d)

K−(q+d)(F (x)),

obtained from the first page of the BGQ spectral sequence by fixing the index q.

Recall that for a regular scheme X of finite type over F , the Chow group CHp(X) of

cycles of codimension p on X modulo rational equivalence is the cokernel the divisor map

[Ful] ⊕
x∈X(p−1)

F (x)× −→
⊕
x∈X(p)

Z.

Of course, F (x)× = K1(F (x)) and K0(F (x)) = Z, so that CHp(X) is recovered by K-

cohomology groups. In fact, we have Bloch’s formula:

Theorem 4.5.3 (Bloch’s Formula [Qui]). Let X be a regular scheme of finite type over a

field F . For each p ≥ 0, there are natural isomorphisms

Hp(X,Kp) ∼= CHp(X).

Remark 4.5.4. If one instead considers dimension p cycles as opposed to codimension p

cycles, Bloch’s formula takes the form Hp(X,K−p) ∼= CHp(X).
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4.6 Chow Groups with Coefficients

We now present a discussion of cycle modules as developed by Markus Rost. The Gersten

complex encountered above may be generalized via an axiomatic approach to produce a

complex for any assignment of “graded abelian group” to “extension of the ground field”

and which satisfies certain data and compatibility rules. These cycle modules are the correct

notion of coefficient system for the algebro-geometric analogue of singular homology, i.e.,

Chow groups of cycles of a given dimension on a scheme or variety. This explains the label

“Chow groups with coefficients.”

Cycle Modules

Cycle modules were first introduced by Rost in [Ros] and good references are [GMS] for use

in producing cohomological invariants and [EKM] for the case of Milnor K-theory.

Definition 4.6.1. A cycle module M over F is a function assigning to every field extension

L/F a graded abelian group M(L) = M∗(L), which is a graded module over the Milnor

K-theory ring KM
∗ (F ) satisfying some data and compatibility axioms. This data includes

1. For each field homomorphism L → E over F , there is a degree 0 homomorphism

rE/L : M(L)→M(E) called restriction.

2. For each field homomorphism L → E over F , there is a degree 0 homomorphism

cE/L : M(E)→M(L) called corestriction (or norm).

3. For each extension L/F and each (rank 1) discrete valuation v on L, there is a degree

−1 homomorphism ∂v : M(L) → M(κ(v)) called the residue homomorphism, where

κ(v) is the residue field of v.

These homomorphisms are compatible with the corresponding maps in Milnor K-theory. See

D1-D4, R1a-R3e, FD, and C of [Ros, Def. 1.1, Def. 2.1].
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Remark 4.6.2. The term “residue homomorphism” is derived from the case where the cycle

module M is given by Milnor K-theory (Proposition 4.1.4).

Example 4.6.3. Utilizing Milnor and Quillen K-theory, the assignments L 7→ KM
n (L) and

L 7→ Kn(L), for any extension L/F , define cycle modules over F , which are denoted KM
∗

and K∗, respectively.

Let X be an F -variety and M a cycle module over F , and set

Cp(X,Mq) =
⊕
x∈X(p)

Mp+q(F (x)),

where X(p) denotes the collection of points of X of dimension p. Using the residue homo-

morphim ∂v, we define a map

∂X : Cp(X,Mq)→ Cp−1(X,Mq)

as follows. For any pair of points y ∈ X(p) and x ∈ X(p−1), let Y = {y}, a closed subvariety

of X of dimension p. If x ∈ Y (so that x is a specialization of y), then the local ring OY,x

of Y at x is a discrete valuation ring, with valuation denoted vx. Set the (x, y)-component

∂
(x,y)
X of

∂X :
⊕
y∈X(p)

Mp+q(F (y))→
⊕

x∈X(p−1)

Mp+q−1(F (x))

to be the residue map

∂vx : Mp+q(F (y))→Mp+q−1(F (x)).

For any pair (x′, y′) ∈ X(p−1)×X(p) which do not satisfy the above conditions, set ∂
(x′,y′)
X = 0.

Homology and Cohomology

We now begin our discussion of invariants produced by the study of cycle modules. The

following result was first shown by Kato for M∗ = KM
∗ [Kat].
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Proposition 4.6.4 ([Ros], Lem. 3.3). For every F -scheme X and cycle module M over F ,

the map ∂X is a differential of C∗(X,M), i.e., (∂X)2 = 0.

We thus obtain a complex

· · · −→ Cp+1(X,Mq)
∂X−→ Cp(X,Mq)

∂X−→ Cp−1(X,Mq) −→ · · ·

with differentials ∂X induced by the residue homomorphisms ∂vx . This is often referred to

as the (homological) Rost complex. We denote the homology group at the middle term by

Ap(X,Mq).

By this prescription we define K-homology groups Ap(X,K
M
q ) of an irreducible F -variety

by taking M∗ = KM
∗ . We define K-cohomology groups Ap(X,KM

q ) of a variety of dimension

d by the formula [EKM, §56]

Ap(X,KM
q ) := Ad−p(X,K

M
d−p).

Alternatively, to any F -variety we may associate a cohomological Rost complex similar to the

homological case, and the groups Ap(X,KM
q ) are given by the cohomology of this complex

[Ros, §5]. Taking the cycle module M∗ to be defined by Quillen K-theory K∗, we obtain the

Gersten complex (see Section 4.5) as a special case of the (cohomological) Rost complex.

The assignment X 7→ A∗(X,K∗) defines a (covariant) functor from the category of

schemes and proper morphisms to the category of bigraded abelian groups and bigraded

homomorphims [EKM, §52.A]. That is, for a proper morphism f : X → Y of schemes there

is a push-forward homomorphism

f∗ : Ap(X,Kq)→ Ap(Y,Kq).

The assignment X 7→ A∗(X,K∗) also defines a contravariant functor from the category of

schemes and flat morphisms to the category of abelian groups [EKM, §52.B]. If g : Y → X
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is a flat morphisms of relative dimension d, there is a pull-back homomorphism

g∗ : Ap(X,Kq)→ Ap+d(Y,Kq−d).

Furthermore, if g : Y → X is a morphism of smooth schemes, then the pull-back homomor-

phism for K-homology induces a pull-back g∗ : Ap(X,Kq) → Ap(Y,Kq) [EKM, §56]. Thus,

the assignment X 7→ A∗(X,K∗) defines a contravariant functor from smooth schemes to

abelian groups.

One extremely useful tool is the Projective Bundle Theorem for K-cohomology. If E → X

is a vector bundle, we let P(E) denote the associated projective bundle.

Theorem 4.6.5 ([EKM], Theorem 53.10). For a vector bundle E → X of rank r there is

an isomorphism
r⊕
i=1

A∗−i+1(X,K
M
∗+i−1)→ A∗(P(E), KM

∗ ).

Remark 4.6.6. Notice that in the case of zero-cycles, the Projective Bundle Theorem yields

an isomorphism A0(X,K
M
∗ ) ∼= A0(P(E), KM

∗ ).

One can recover Chow groups of a scheme X using K-homology. Indeed, by definition

the group CHp(X) is the free abelian group generated by subvarieties of X of dimension p

up to rational equivalence (include fulton definition) Thus,

CHp(X) = coker

 ⊕
x∈X(p+1)

K1(F (x))
∂X−→

⊕
x∈X(p)

K0(F (x))

 ,

since K1(F (x)) = F (x)× and K0(F (x)) = Z. This Chow group is thus the K-homology

group Ap(X,K−p) [EKM, §57.A] (compare to Remark 4.5.4).
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The focus of our main result (Theorem 5.4.2) will be the group of K1-zero-cycles. This

group is given by the following characterization, following our above definition:

A0(X,K1) = coker

 ⊕
x∈X(1)

K2(F (x))
∂X−→

⊕
x∈X(0)

K1(F (x))

 .

Remark 4.6.7. Since Quillen and Milnor K-groups of fields agree in degrees 0, 1, and 2,

the group A0(X,K1) coincides with H0(X,K1), defined in Section 4.5. Furthermore, these

groups may be identified with the group A0(X,K
M
1 ) for (see the end of Section 4.2).

In concrete terms, the group of K1-zero-cycles on a scheme X is given by the collec-

tion of equivalences classes of formal sums
∑

(αx, x), where x is a closed point on X and

αx ∈ K1(F (x)) = F (x)×. Equivalence of cycles is then induced by tame symbols associated

to discrete valuation rings coming from 1-dimensional subvarieties of X and their special-

izations. In general, a KM
n -zero-cycle is a sum

∑
(αx, x) where x ∈ X is closed point and

αx = {a1, ..., an} ∈ KM
n (F (x)), with equivalence similarly induced by residue homomor-

phisms.

In view of our focus being on groups of zero-cycles, the utility of the following result is

clear and will be used in the proof of Lemma 5.3.1.

Proposition 4.6.8 ([KM], Cor. RC.13). For a cycle module M , the groups A0(X,M) and

A0(X,M) are birational invariants of the smooth complete variety X.

We complete this subsection with an example of a cycle module defined usingK-homology.

Example 4.6.9. Let X be an F -variety. The assignment L 7→ A0(XL, K
M
∗ ) defines a cycle

module over F , with the graded structure induced by the graded structure of KM
∗ . We will

denote this cycle module by A0[X,K
M
∗ ]. It was first defined in [Ros, §7] and further studied

in [CM01, Mer14].
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Norms

Analogous to the reduced norm homomorphism NrdA : K1(A) → K1(F ) and its kernel

SK1(A), there are norm homomorphisms defined on groups of KM
n -zero-cycles and the study

of their kernels has been a useful endeavor. This information may be found in [CM01, §1.5]

and will be used in Section 5.2.

Let X be a complete variety over F . For any n ≥ 0 there is a norm homomorphism

Nn : A0(X,K
M
n )→ KM

n (F ) defined by

Nn

(∑
(αx, x)

)
=
∑

NF (x)/F (αx),

where NF (x)/F denotes the field norm corresponding to the the extension F (x)/F , and

NF (x)/F (αx) = {NF (x)/F (a1), ..., NF (x)/F (an)} ∈ KM
n (F ) for αx = {a1, ..., an}. We denote

the kernel of Nn by A0(X,K
M
n ).

We make note that in the case n = 0, we obtain the degree homomorphism

N0 : A0(X,K0) = CH0(X)→ K0(F ) = Z,

whose image coincides with m(X)Z where m(X) = gcd([F (x) : F ]) taken over all closed

points x ∈ X [CM06].

For n = 1 and X the Severi-Brauer variety of a central simple algebra A, there is

an isomorphism A0(X,K1) ∼= K1(A), and the group A0(X,K1) coincides with the group

SK1(A). This will be discussed in detail in Section 5.1.
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Chapter 5

Chow Groups with Coefficients and

Generalized Severi-Brauer Varieties

With all objects and tools for investigation in order, we come to the final chapter and main

results of this thesis. We begin by recalling the theorem and proof of Mekurjev and Suslin

showing that the group of K1-zero-cycles of SB(A) and the group K1(A) are isomorphic.

In some sense, the collection of maximal subfields L ⊂ A and their arithmetic, encoded in

the distinguished element α ∈ L× = K1(A), can be recovered by K1(A). Indeed, elements

of A× generically generate maximal subfields and the subfield arithmetic is recorded by the

abelianized arithmetic of A.

To exhibit howR-equivalence naturally arises in the study ofK-theory andK-cohomology

groups, we present a discussion of Chernousov and Merkurjev relating R-equivalence classes

of algebraic groups to the group of K1-zero-cycles for some homogeneous varieties. We then

present our calculation of the group of K1-zero-cycles for the second generalized Severi-

Brauer variety of an algebra of index 4, beginning with a reduction to algebras of square

degree.
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5.1 The Group of K 1-Zero-Cycles on Severi-Brauer Va-

rieties

The inspiration for the main result of this thesis is attributed to the following theorem.

As such, we include a proof. Recall that the group H0(X,K1) coincides with the groups

A0(X,K1) and A0(X,K
M
1 ) (see Remark 4.6.7).

Theorem 5.1.1 ([MS92]). Let A be a central simple algebra over a field F , let X = SB(A)

be the corresponding Severi-Brauer variety. Then there exists a commutative digram

H0(X,K1)
p

∼
//

N1 &&

K1(A)

Nrd
zz

K1(F )

with a natural isomorphism p. In particular, ker(H0(X,K1)
N1−→ K1(F )) ∼= SK1(A).

Proof. We present the proof found in [Mer92]. We begin by treating the case of a division

algebra D of degree n. For any closed point x ∈ X, the residue field F (x) splits D; hence,

[F (x) : F ] = kn for some k. Therefore, F (x) can be imbedded in the matrix algebra Mk(D)

and there is an induced map on K-groups

K1(F (x))→ K1(Mk(D)) ∼= K1(D).

One checks that we have a commutative diagram

⊕
x∈X(0)

K1(F (x)) //

&& &&

K1(D)

H0(X,K1)

p

::

with surjective homomorphism p.
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For the proof of injectivity of p, one constructs a map in the opposite direction. But we

first wish to understand the structure of the set of closed points of X. Using the associated

functor of points of X, for any field extension L/F , the set X(L) = Mor(SpecL,X) of

L-points of X is in natural bijection with the set of right ideals of DL of dimension n.

Let L ⊂ D be a maximal subfield. The L-vector space HomL(D,L) is a right ideal in

EndL(D) ∼= DL of dimension n and hence defines a morphism SpecL→ X. Let xL be a point

of its image. Then clearly F (xL) ↪→ L, and since F (xL) splits D, we have [F (xL) : F ] ≥ n.

Hence, F (xL) = L and deg(x) = n. The association L 7→ xL thus defines a map from the set

of maximal subfields of D to the set of closed points in X of smallest degree n. This map is

in fact a bijection.

Consider the Zariski-dense subset S = {α ∈ D | F (α) is a maximal subfield in D} of

D×. For α ∈ S, F (α) is a maximal subfield and hence defines a closed point xF (α) ∈ X with

F (xF (α)) = F (α). The inverse of p is first defined on the set S ⊂ D× as

q : S → H0(X,K1), α 7→ (α, xF (α)),

and then extended to D×. It remains to show that q is a homomorphism, i.e., that

(α, xF (α)) + (β, xF (β)) = (αβ, xF (αβ)) ∈ H0(X,K1).

This can be shown by a specialization argument. Consider the field F ′ = F (t), the

algebra D′ = D(t), and elements α ∈ S, f(t) = βt+ 1− t ∈ D(t)×, where β ∈ S. Let

w =
(
αf(t), xF ′(αf(t))

)
−
(
α, xF ′(α)

)
−
(
f(t), xF ′(f(t))

)
∈ H0(XF (t), K1).
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We have w(0) = 0 and w(1) = (αβ, xF (αβ))− (α, xF (α))− (β, xF (β)) and we wish to show that

w(1) = 0. Consider the commutative diagram

H0(X,K1)
i // H0(XF (t), K1)

p

��

//
⊕
y∈A1

H0(XF (y), K0)

p0

��

K1(D(t)) //
⊕
y∈A1

K0(DF (y))

where the upper row is the localization exact sequence. The group CH0(X) = H0(X,K0)

is known to be infinite cyclic and therefore has no torsion. Hence, p0 is injective. A dia-

gram chase shows that w ∈ Im(i), and hence, the specialization of w at all points coincide;

therefore, w(1) = w(0) = 0.

An alternative proof of this theorem was given by Chernousov and Merkurjev [CM01],

utilizing R-equivalence and cohomological invariants, the statement of which is included in

the next section. For any reductive algebraic group G and character ρ : G → Gm, there

is a map α̃F : G(F )/RH(F ) → A0(X,K1), where H = ker(ρ) and X is a variety encoding

algebraic information of G. In certain cases, this map is an isomorphism, e.g., when X is the

involution variety of a central simple algebra of small degree with quadratic pair, or when

X is the Severi-Brauer variety of a central simple algebra.

5.2 R-Equivalence and K -Theory

We now give a description of the relationship between R-equivalence and K-theory, beginning

with an example showing that R-equivalence naturally arises in the computation of algebraic

K-groups. We then give a more general description of work of Chernousov-Merkurjev relating

R-equivalence and K-cohomology using the theory of cohomological invariants (see [GMS,

Mer99]).
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Example 5.2.1 ([CM01, Vos]). Let A be a central simple algebra. The abelianization map

GL1(A) = A× → A×ab = K1(A) induces an isomorphism

GL1(A)/RSL1(A) ∼= K1(A).

Here we define a homomorphism from the group of R-equivalence classes of an algebraic

group to the group of K1-zero-cycles of a corresponding homogeneous variety, following

[CM01]. This map yields an isomorphism which allows us to compute K1-zero-cycles on an

involution variety using algebraic groups.

Let M be a cycle module over F , X an irreducible F -variety of dimension d with generic

point x, and y ∈ X a point of codimension 1. An element u ∈ M(F (X)) is unramified at y

if u is in the kernel of the (x, y)-component

(∂X)
(x,y)
d : Mn(F (X)) = Mn(F (x))→Mn−1(F (y))

of the differential (∂X)d : Cd(X,Mn−d)→ Cd−1(X,Mn−d) of the Rost complex (Section 4.6).

Remark 5.2.2. The collection of all elements in Mn(F (X)) which are unramified at all codi-

mension 1 points of X is subgroup of Mn(F (X)) which coincides with the group A0(X,Mn)

as defined in Section 4.6. This collection may thus be thought of as the group of “unramified

M -valued functions” on X [Ros, p. 338].

Let G be a connected algebraic group over a field F and let M be a cycle module over F ,

regarded as a functor from the category of field extensions of F to the category of abelian

groups.

Definition 5.2.3. An invariant of G in M of dimension d is a natural transformation

G → Md. That is, an invariant is a collection of compatible maps G(L) → Md(L) for any

extension L/F .
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We have projections and multiplication maps p1, p2,m : G×G→ G. We say an element

α ∈ A0(G,Md) is multiplicative if p∗1(α) + p∗2(α) = m∗(α) as elements in A0(G × G,Md),

where the maps p∗i and m∗ are the corresponding pull-back maps discussed in Section 4.6.

Any multiplicative element α ∈ A0(G,Md) defines an invariant α̃ of G in M of dimension d,

as we now describe.

For a point x : SpecL→ G in G(L), set the image of α under the pullback homomorphism

x∗ : A0(G,Md)→ A0(SpecL,Md) = Md(L)

to be α̃L(x). In this way, we obtain a map α̃L : G(L)→Md(L) for any extension L/F . The

collection of all such maps defines a natural transformation α̃ : G → Md. Conversely, any

invariant of G in M of dimension d is obtained from a multiplicative element α ∈ A0(G,Md)

by this prescription.

The main goal of this section to define an invariant G → A0[X,K∗] of dimension 1,

where A0[X,K∗] is the cycle module defined in Example 4.6.9. That is, we wish to define

compatible maps G(L) → A0(XL, K1) for any field extension L/F , for suitable choice of

variety X. In fact, X is a variety which encodes the structure of purely algebraic objects,

as we will see below in a few examples. Using our discussion above, this goal is achieved by

exhibiting a multiplicative element of

A0(G,A0[X,K1]) ⊂ A0[X,K1](F (G)) = A0(XF (G), K1),

where the first inclusion follows from Remark 5.2.2. In other words, we need to exhibit an

unramified multiplicative element α of A0(XF (G), K1).

The choice of element of A0(XF (G), K1) depends on a character ρ : G → Gm which

satisfies certain hypotheses (see [CM01, Prop. 1.3]). One consequence of these assumptions

is that the image of the generic point ξ of G, considered as an element of G(F (G)), under
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the map

ρ(F (G)) : G(F (G))→ Gm(F (G)) = F (G)×

is precisely the element ρ considered as a regular function on G, i.e., an element of F (G)×.

The following result allows us to relate this fact to K-cohomology groups. Recall the defini-

tion of the norm homomorphisms from Section 4.6.

Proposition 5.2.4 ([CM01], Prop. 2.1). For any field extension L/F , the image of the

homomorphism ρ(L) : G(L)→ L× coincides with the image of the norm homomorphism

(N1)L : A0(XL, K1)→ K1(L) = L×.

Since ρ is in the image of ρ(F (G)), there is an element α ∈ A0(XF (G), K1) which satisfies

(N1)F (G)(α) = ρ. By [CM01, §3.1], the element α is unrammified and multiplicative, and

thus defines an invariant α̃ : G → A0[X,K1]. Evaluating α̃ at the base field F yields a

homomorphism α̃F : G(F )→ A0(X,K1). We take H to be the subgroup ker(ρ) of G.

Proposition 5.2.5 ([CM01], Prop. 3.6). The homomorphism α̃F factors through a map

G(F )/RH(F )→ A0(X,K1). Furthermore, α̃F induces a map H(F )/R→ A0(X,K1).

These induced homomorphisms are isomorphisms for certain characters ρ and varieties

X which satisfy specified criteria [CM01, §2]. We present two cases where these hypotheses

are satisfied.

Let A be a central simple algebra of degree n over F and let G = GL1(A). Let the

character ρ : G → Gm be given by the reduced norm, i.e., for every commutative F -

algebra R, the map ρ(R) : GL1(AR) → R× is the reduced norm homomorphism. The

kernel of ρ is SL1(A). Let X be the Severi-Brauer variety of A. The following result recovers

Theorem 5.1.1.
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Theorem 5.2.6 ([CM01], Theorem 6.1). Let A be a central simple algebra over F , X the

Severi-Brauer variety of A. Then there are canonical isomorphisms

K1(A) = GL1(A)/R SL1(A) ∼= A0(X,K1),

SK1(A) = SL1(A)/R ∼= A0(X,K1).

Now let A be a central simple algebra of degree n = 2m, n ≥ 4 with quadratic pair (σ, f).

Let G = Γ(A, σ, f) and let ρ : G → Gm be given by the spinor norm [KMRT, Def. 13.30].

The kernel of ρ is Spin(A, σ, f). Let X be the involution variety IV(A, σ, f) (Section 3.5).

In order for X to satisfy the required criteria, one must take A to have small index.

Theorem 5.2.7 ([CM01], Theorem 6.5). Let A be a central simple algebra over F of even

dimension and index at most 2 with quadratic pair (σ, f) and let X be the corresponding

involution variety. Then there are canonical isomorphisms

Γ(A, σ, f)/R Spin(A, σ, f) ∼= A0(X,K1),

Spin(A, σ, f)/R ∼= A0(X,K1).

5.3 Reduction to Algebras of Square Degree

For an algebra of index p2, we reduce the computation of K1-zero-cycles of SBp(A) to that

of SBp(D), where D is the underlying division algebra of A. In case p = 2, the reduction

to algebras of degree 4 will allow the use of involution varieties in the proof of the main

theorem.

Recall that for J a right ideal of A, SBk(J) is the collection of right ideals of A of reduced

dimension k which are contained in J (see discussion following Definition 3.4.1).

52



Lemma 5.3.1. Let p be a prime and let A = Mn(D) be a central simple algebra of index p2.

Let X = SBp(A), and Y = SBp(D). There is an isomorphism A0(X,K1) ∼= A0(Y,K1).

Proof. Since p2 = ind(A) = ind(AF ) | p2, Proposition 3.4.4 implies that SBp2(A) has an

F -point, i.e., an ideal J of reduced dimension p2. Let eJ be the corresponding idempotent

element of A (Proposition 2.1.9). Define a rational map

ϕJ : SBp(A) 99K SBp(J)

by the association I 7→ eJI ⊂ J , for any ideal I of reduced dimension p. The map ϕJ is

defined on the open locus consisting of ideals I satisfying rdim(eJI) = p.

By Theorem 3.4.2 and Remark 3.4.3, the algebra D := eJAeJ is degree p2, Brauer-

equivalent to A and satisfies SBp(J) = SBp(D). Since ind(A) = p2, the algebra D is division

and A = Mn(D). We denote the resulting map SBp(A) 99K SBp(D) also by ϕJ .

Let η be the generic point of SBp(D) and take L = F (η). Let f be the generic fiber of

ϕJ , i.e., f = SBp(A)L = SBp(AL) is the scheme-theoretic fiber over η. We first show that

f is a rational L-variety. The field L satisfies ind(DL) | p. Since D is Brauer-equivalent to

A, we have ind(AL) | p, so that SBp(A) has an L-rational point, again by Proposition 3.4.4.

By Proposition 3.4.5, the function field of SBp(A)L is purely transcendental over L, so that

f = SBp(A)L is rational. Thus, SBp(D)f is birational to SBp(D)× Pdim f
L .

The group of zero-cycles defines a birational invariant of smooth projective varieties

(Proposition 4.6.8) yielding an isomorphism

A0(SBp(D)f, K1) ∼= A0(SBp(D)× Pdim f
L , K1).

By the Projective Bundle Theorem (4.6.5), and specifically Remark 4.6.6, we have an iso-

morphism A0(SBp(D)× Pdim f
L , K1) ∼= A0(SBp(D), K1).
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The variety SBp(A) is birational to SBp(D)f, isomorphic along the open locus of definition

of ϕJ . Again using the fact that A0(−, K1) is a birational invariant, and combining this fact

with the above isomorphism, we have A0(SBp(A), K1) ∼= A0(SBp(D), K1).

5.4 Main Result

Having reduced to the case of (division) algebras of square degree, we utilize a result of

Krashen (see Lemma 3.5.1) to transfer the computation of zero-cycles of the second general-

ized Severi-Brauer variety to that of an involution variety. This result also guarantees that

the involution variety of interest comes from an algebra of index no greater than 2. We then

make use of Theorem 5.2.7 to translate this computation into an analysis of those algebraic

groups defined in Section 3. We now take F to be a field of characteristic not 2.

Proposition 5.4.1. Let A be a central simple algebra of degree 4 over a field F and let X

be the second generalized Severi-Brauer variety of A. The group A0(X,K1) can be identified

as the group of pairs (x, α) ∈ K1(A)× F× satisfying NrdA(x) = α2.

Proof. By Lemma 3.5.1, SB2(A) is isomorphic to the involution variety IV(B, σ) of a degree

6 algebra B with orthogonal involution σ. In particular,

A0(SB2(A), K1) = A0(IV(B, σ), K1).

Moreover, B is Brauer-equivalent to A⊗2, so that ind(B) ≤ 2. The involution σ is obtained

from the bilinear form ∧2V × ∧2V → ∧4V ∼= F by descent.

Consider the algebra (A×Aop, ε) over F×F with unitary involution defined by exchanging

factors. By Remark 2.4.6, the associated discriminant algebra D(A×Aop, ε) is given by λ2A,

has degree
(
4
2

)
= 6, and is Brauer-equivalent to A⊗2. Furthermore, the canonical involution

ε := ε∧2 on λ2A is also induced by the bilinear form ∧2V ×∧2V → ∧4V ∼= F (Remark 2.4.4),
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yielding an isomorphism (B, σ) ∼= (D(A×Aop, ε), ε) of algebras with orthogonal involution.

Thus, the algebras (B, σ) and (A × Aop, ε) correspond to one another under the groupoid

equivalence of A3 and D3 of Theorem 3.3.1.

Since ind(B) ≤ 2, Theorem 5.2.7 gives a canonical isomorphism

A0(IV(B, σ), K1) ∼= Γ(B, σ)/R Spin(B, σ). (5.4.1)

As (B, σ) ∈ D3 corresponds to (A × Aop, ε) ∈ A3, Proposition 3.3.2 yields exceptional

identifications Γ(B, σ) = SGU(A × Aop, ε) and Spin(B, σ) = SU(A × Aop, ε). Furthermore,

Remark 3.1.2 gives an explicit description

SGU(A× Aop, ε) = {(x, α) ∈ A× × F× | NrdA(x) = α2},

SU(A× Aop, ε) = SL1(A),

with the inclusion of the latter given by inclusion into the first factor x 7→ (x, 1). The

quotient in Equation 5.4.1 can then be identified as

{(x, α) ∈ A× × F× | NrdA(x) = α2}/RSL1(A),

and therefore consists of elements of x ∈ A×/RSL1(A) = GL1(A)/RSL1(A) = K1(A) to-

gether with a square-root α of NrdA(x) in F .

Theorem 5.4.2. Let A be a central simple algebra of index 4 and arbitrary degree over a

field F , and let X be the second generalized Severi-Brauer variety of A. The group A0(X,K1)

can be identified as the group of pairs (x, α) ∈ K1(A)× F× satisfying NrdA(x) = α2.

Proof. The reduced norm respects the canonical isomorphism K1(Mn(D)) = K1(D). We

combine the isomorphisms of Theorem 5.3.1 and Proposition 5.4.1, yielding the desired

result.
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