LONG-TERM EFFECTS OF LOOPING ON THE TRANSITION TO MIDDLE SCHOOL

by

RUTH ANNE MAYO

(Under the direction of Dr. C. Thomas Holmes)

ABSTRACT

This study was conducted to determine the impact of looping on the transition to middle school from elementary school. The transition for students has often been a difficult time because of the changes occurring in the middle school student’s life. Not only are the school buildings, teachers, administrators, and students unfamiliar, but the emotional, social, and intellectual changes in children of this age often contribute to decreased confidence, confusion, anxiety, and lower academic achievement.

Looping, which is at least a two-year placement where a teacher moves with his or her class to the next grade, was used as a transition from elementary school to middle school by Hampton Elementary School and Henry County Middle School during the years of 1996 and 1997. During each of the years, two classes from Hampton Elementary School entered the middle school in the sixth grade with their fifth-grade classmates and teachers to form a middle school team. The researcher followed the treatment and control groups through middle school to see if there were significant differences in the relationship of looping into the middle school with the same class and teacher and in their success in school. Covariance and independent samples t-tests were conducted to determine if there were statistically significant differences in the areas of achievement, attendance and discipline between the treatment and control groups.

There were no differences in the total math and reading comprehension ITBS mean scores between the treatment and control groups. When yearly averages were compared in reading and mathematics, there were significant differences for the sixth grade, seventh grade, and the eighth grade, with the treatment group having higher mean scores each year. Reading yearly averages showed statistically significant differences in the sixth and seventh grades, but there was no difference by the time the students finished the eighth grade. Attendance and discipline showed no statistical difference for all three years. The only difference found was in the area of yearly averages.

INDEX WORDS: Looping, Transition to middle school, Multiyear teaching, Multiyear placement, Continued progress, Multiyear student-teacher relationships
LONG-TERM EFFECTS OF LOOPING ON THE
TRANSITION TO MIDDLE SCHOOL

by

RUTH ANNE MAYO

B.S., Georgia State University, 1974
M.Ed., Georgia State University, 1982
Ed.S., Georgia State University, 1988

A Dissertation Submitted to the Graduate Faculty of The University of Georgia
in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF EDUCATION

ATHENS, GEORGIA

2002
© 2002

Ruth Anne Mayo

All Rights Reserved
LONG-TERM EFFECTS OF LOOPING ON THE
TRANSITION TO MIDDLE SCHOOL

by

RUTH ANNE MAYO

Approved:

Major Professor: C. Thomas Holmes

Committee: William W. Swan
Sally J. Zepeda
Nancy Mims
Brad Courtney

Electronic Version Approved:

Gordhan L Patel
Dean of the Graduate School
The University of Georgia
August 2002
DEDICATION

This dissertation is dedicated to my parents, John and Millie Pipkin. Thank you for your constant encouragement and loving support. You have instilled in our entire family the immeasurable value of an education. You have modeled a work ethic that has inspired me to complete such an enormous task. Thank you.
ACKNOWLEDGMENTS

I would like to acknowledge the contributions of some individuals who helped make the completion of this dissertation possible. First of all, I have appreciated the direction of my major professor, Dr. C. Thomas Holmes, and the entire committee. Their insight, guidance, and patience were invaluable. My thanks go out to Pam Consolie and Ellen Benton for their encouragement and support through this process. I am indebted to Peggy Roby for the timeless effort in assisting in data collection, as well as for her endless encouragement. Molly McDonald was a constant source of encouragement and provided valuable assistance in editing this project, for which I am grateful. I appreciate Ramona Allen and Ann Ware for assisting in the area of technology. Finally, I want to thank my children, Shiree and Gary. Their love and belief in me played a major role in making this endeavor a reality.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>2</td>
</tr>
<tr>
<td>Problem of the Study</td>
<td>3</td>
</tr>
<tr>
<td>Purpose of the Study</td>
<td>3</td>
</tr>
<tr>
<td>Justification of the Study</td>
<td>4</td>
</tr>
<tr>
<td>Research Questions</td>
<td>5</td>
</tr>
<tr>
<td>Research Hypotheses</td>
<td>5</td>
</tr>
<tr>
<td>Limitations of the Study</td>
<td>6</td>
</tr>
<tr>
<td>Organization of the Study</td>
<td>6</td>
</tr>
<tr>
<td>2 REVIEW OF THE LITERATURE</td>
<td>8</td>
</tr>
<tr>
<td>Looping</td>
<td>8</td>
</tr>
<tr>
<td>History of Looping</td>
<td>9</td>
</tr>
<tr>
<td>Research on Benefits of Looping</td>
<td>12</td>
</tr>
<tr>
<td>Concerns about Looping</td>
<td>28</td>
</tr>
<tr>
<td>Transition to Middle School</td>
<td>32</td>
</tr>
<tr>
<td>Summary of Review of Literature</td>
<td>39</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>RESEARCH DESIGN AND PROCEDURES</td>
</tr>
<tr>
<td></td>
<td>Problem Restatement</td>
</tr>
<tr>
<td></td>
<td>Null Hypotheses</td>
</tr>
<tr>
<td></td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>Variables</td>
</tr>
<tr>
<td></td>
<td>Data Collection Procedures</td>
</tr>
<tr>
<td></td>
<td>Data Analysis</td>
</tr>
<tr>
<td>4</td>
<td>FINDINGS AND ANALYSIS OF DATA</td>
</tr>
<tr>
<td></td>
<td>Description of the Sample Groups</td>
</tr>
<tr>
<td></td>
<td>Description of the Treatment</td>
</tr>
<tr>
<td></td>
<td>Presentation of the Data</td>
</tr>
<tr>
<td>5</td>
<td>SUMMARY, DISCUSSION, AND CONCLUSION</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>Recommendations for Further Study</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

2.1 Academic Achievement Studies .. 40
2.2 Attendance Studies .. 41
2.3 Discipline Studies ... 42
2.4 Attitudes and Relationships Studies 43
3.1 ITBS Reading Comprehension in Fifth Grade 47
3.2 ITBS Math Total in Fifth Grade 47
3.3 Absences in Fifth Grade ... 48
3.4 Disciplinary Office Referrals in Fifth Grade 48
4.1 Number of Participants in Study 51
4.2 t-Tests at Fifth Grade Level ... 53
4.3 Group Statistics - Mathematics and Reading ITBS 55
4.4 8th Grade ITBS - Total Math Scores 56
4.5 8th Grade ITBS - Reading Comprehension 56
4.6 Group Statistics - Mathematics and Reading Yearly Averages 57
4.7 6th Grade Math Yearly Averages 58
4.8 7th Grade Math Yearly Averages 58
4.9 8th Grade Math Yearly Averages 59
4.10 6th Grade Reading Yearly Averages 59
4.11 7th Grade Reading Yearly Averages 60
4.12 8th Grade Reading Yearly Averages 60
4.13 Group Statistics - Attendance ... 61
4.14 6th Grade Attendance .. 62
CHAPTER 1

INTRODUCTION

The transition for students from elementary school to middle school is a critical event in the life of a child’s education. It has often been a difficult time because of the many changes occurring in the child’s life. Not only were the school buildings, teachers, administrators, and students unfamiliar to the students, but also the emotional, physical, social, and intellectual changes in children of this age often contributed to decreased confidence, confusion, anxiety, and lower academic achievement. Midgley, Anderman, and Hicks (1995) stated that the early adolescent years were characterized by a negative shift in motivational orientation for a number of children. Middle school classrooms, compared with elementary classrooms, were characterized by a greater emphasis on teacher control and fewer opportunities for student decision-making and autonomy (Eccles & Midgley, 1989). Providing stability in young people’s lives has been as critical in the middle school years as it has been at any time during a child’s school years (Lincoln, 1997). After the transition to middle school, some students gave up more quickly and put forth less effort, and their grades declined (Eccles & Midgley, 1989). Traditional middle schools have been typically larger, less personal, and more formal than elementary schools (Wigfield & Eccles, 1994).

Looping has been called multi-year teaching or multi-year placement (Grant & Johnson, 1995). A teacher moves with his or her students to the next grade level, rather than sending the students to another teacher at the end of the school year (Burke, 1997;
Grant, Johnson, & Richardson, 1996). It is a philosophical change, but not a major school restructuring, that requires no new building or alterations in physical space. Looping only requires teachers willing to try and enough materials and time to plan and organize a two-year curriculum cycle. Some loops are two consecutive years while others may be three or more years. Looping allows teachers and administrators to move into a change that produces a minimum of fear, anxiety, and frustration for children, parents, and teachers (Grant & Johnson, 1995).

A program designed to facilitate the transition of students moving from elementary school to middle school was implemented at Hampton Elementary School in Henry County during the three years of 1996-97, 1997-98, and 1998-99. For the three years, two fifth-grade classes looped to the sixth grade with their teachers and classmates to form a middle school team at Henry County Middle School. The students in the two looping classes stayed together with their teachers from the fifth grade in elementary school through the sixth grade in middle school. After the sixth grade, the teachers returned to the elementary school, and the students were randomly dispersed into the seventh grade classes. The students who were not in the looping classes were randomly placed in other classes in the sixth, seventh, and eighth grades.

Definition of Terms

The following definitions apply to this study:

Looping - a two-year, or more, teaching assignment in which a teacher moves with his or her students to the next grade level, rather than sending the students to another teacher at the end of the school year; also called multi-year teaching, multi-year placement, and multi-year grouping
Discipline referrals - Number of times a student was referred to the office for disciplinary reasons during a school year and was assigned in-school suspension or out-of-school suspension

Problem of the Study

This study was conducted in order to determine the impact of looping on the transition to middle school from elementary school. Previous research showed that the transition to middle school was stressful for many students and was connected with increases in psychological symptoms and declines in feelings of self-worth (Eccles, et al., 1993; Simmons & Blyth, 1987). These researchers attributed the stress of the transition to middle school to increased academic demands and social comparisons, unfamiliar peers and teachers, and failure to meet developmental needs for autonomy and self-management. The administration of Hampton Elementary School and Henry County Middle School perceived the transition to middle school an even more critical time since the enrollment in the middle school reached 1,700 with 38 mobile classrooms during 1999. Test scores at the middle school had decreased during the years of 1995 and 1996, and discipline referrals had increased.

Purpose of the Study

The purpose of this study was to determine the effectiveness of looping as a method of transitioning students from elementary school to middle school. Effectiveness was determined by the following:

1. Statistically significant higher attendance rates;
2. Statistically significant lower rates of discipline referrals; and
3. Statistically significant higher achievement in mathematics and reading.
The researcher followed the treatment and control groups through middle school to see if there were significant differences in the relationship of looping into middle school with the same class and teacher and in their success in school. The findings would enhance the limited research on the looping approach to transitioning students from the elementary school to the middle school and would enable administrators to make better decisions on whether or not to implement this approach.

Justification of the Study

Researchers have found positive results for students in looping classrooms. The results included increased student and staff attendance, decreased discipline referrals, decreased special education referrals (Grant, et al., 1996), and increased student achievement (Burke, 1996; 1997; Grant, et al., 1996; Lincoln, 1997; Simel, 1995; Swisher, 1997; Yang, 1997). Most research conducted on looping has been within schools with looping across grade levels. This study was conducted on looping across schools - elementary to middle school.

In this study, looping was used as an approach for the transition of students from elementary school to middle school. Types of approaches that have been most frequently used to assist with the transition of students into middle school have included meetings with parents and students, middle school counselors speaking to fifth grade students, and visits to the middle school. The researcher determined if this approach to transitioning students to middle school was worth the disruption that it caused the elementary school. Six teachers participated in the study over the three years. During this time, two of the six teachers decided to stay at the middle school instead of returning to the elementary school after the looping year. The reasons stated included more planning time in middle school, only two
subjects for which to plan and teach in middle school, and more challenge to make a
difference with the students in middle school. The researcher sought to determine if the
looping approach to transition to middle school had lasting effects through the eighth grade.

Research Questions

What effects does the looping process from the fifth grade in elementary school to
the sixth grade in middle school have on student achievement?

1. Is there a statistically significant difference in the ITBS reading comprehension and
total math scores in the eighth grade for the treatment and control groups?

2. Is there a statistically significant difference in the 6th, 7th, and 8th grade yearly
averages in mathematics and reading for the treatment group and the control group?

3. Does the looping process from the fifth grade in elementary school to the sixth
grade in middle school statistically significantly increase student attendance in the
sixth, seventh, and eighth grades as compared to the control group?

4. Does the looping process from the fifth grade in elementary school to the sixth
grade in middle school statistically significantly decrease the number of office
discipline referrals in the sixth, seventh, and eighth grades as compared to the
control group.

Research Hypotheses

Hypothesis 1:

There is a statistically significant difference in the ITBS reading comprehension and
total math scores in the eighth grade between the treatment group and the control group.
Hypothesis 2:

There is a statistically significant difference in the yearly averages of teacher grades in reading and mathematics in the sixth, seventh, and eighth grades between the treatment group and the control group.

Hypothesis 3:

There is a statistically significant difference in the number of student absences during the sixth, seventh, and eighth grades between the treatment group and the control group.

Hypothesis 4:

There is a statistically significant difference in the number of office referrals during the sixth, seventh, and eighth grades between the treatment group and the control group.

Limitations of the Study

1. The study was limited to only two years of fifth grade students who attended a single elementary school during the 1995-96 and 1996-97 school years. The 1997-98 fifth grade class attended sixth and seventh grades at Henry County Middle School and then the eighth grade at Luella Middle School; therefore, they were not included in the study.

2. The study was limited to only one school system in Georgia.

3. ITBS was only given in the fifth and eighth grades. It was not given in the sixth and seventh grades.

Organization of the Study

This study was organized into five chapters. Chapter I introduced the problem of study, defined terms, presented the research questions and hypotheses, and listed
limitations. Chapter II contains a review of the literature on looping and a section on the transition to middle school. This chapter includes sections on the background of looping, benefits of looping, concerns about looping, and transition to middle school. Chapter III presents the methodology of the study, including a description of the research sample, data collection procedures, and data analysis procedures. Chapter IV presents a description of the findings of the research and an interpretation of the findings. Chapter V provides a summary of the study, a discussion of the findings, conclusions of the study, and recommendations for further research.
CHAPTER 2
REVIEW OF THE LITERATURE

Chapter II presents a literature review on looping and the transition to middle school. The looping review is divided into the following headings: History of Looping, Looping in the United States, Research on Benefits of Looping, and Concerns about Looping. The transition to middle school section reviews findings from studies of how students adjust during the transition to middle school and during the following years in middle school.

Looping

Burke (1996) stated that looping is one means “to make sure that every child has the time to connect with the classroom, feel a part of all that goes on and have the time it takes to succeed in school” (p. 34). The importance of bonding between students and teachers was argued by Glasser (1997) who stated that individuals are primarily driven by the following four needs: the need to belong, the need for power, the need for freedom, and the need for fun. These needs cannot be ignored in schools and may only be satisfied through involvement with others who care about each other (Glasser, 1997).

Looping has also been known by the following labels (Forsten, Grant, Johnson, & Richardson, 1997; Grant & Johnson, 1995; Grant, et al., 1996):

• Continued progress
• Multiyear student-teacher relationships
• Teacher-student progressions
History of Looping

Despite positive practitioners, the experience of European school systems, and favorable research, looping was still uncommon in the United States in the 1990's (Burke, 1997). The early twentieth century Austrian educator, Steiner, founder of the Waldorf Schools, developed schools where the teacher followed the class throughout the elementary grades (Barnes, 1991; Ogletree, 1974). The Waldorf School was first founded to educate the children of domestics who worked for the Waldorf Astoria cigarette factory in Stuttgart, Germany (Grant, et al., 1996). This type of school was found in 35 countries throughout European and North American countries (Barnes, 1991). The teacher stayed with a group of children from the first grade through the eighth grade. The approach was based on the relationship of the teacher rather than the instructional material (Barnes, 1991).

Zahorik and Dichanz (1994) found that German schools emphasized theories rather than statistics and included multiyear grouping. In German elementary schools, heterogeneous groups of students were formed in the first grade and remained together with the same teacher for the next four years. The schools were based on the premise that interactions over several years gave teachers a better opportunity to know the students’
ways of learning, behavior patterns, interests, emotional stability, and social skills (Zahorik & Dichanz, 1994). Teachers then planned instructional activities to fit the styles of learning, provided materials and resources, and offered appropriate assistance to each child (Oxley, 1994).

Ratzki and Fisher (1990) found that in Cologne, West Germany, the Koln-Holweide school utilized teaching teams of six to eight teachers and incorporated the “Team-Group Plan”. Students and teachers remained together for six years from grades 5 through 10 with the teaching team responsible for approximately 90 students in three classes. Children from the three classes were then divided into small heterogeneous groups of five to six students called “table-groups,” which established close relationships and permitted its members to help each other with their class work. To achieve success for the group, every individual was responsible for his or her own work as well as that of the other members.

The Koln-Holweide school in Cologne was one of the largest in West Germany with approximately 2,000 students and 200 teachers (Ratzki & Fischer, 1990). The dropout rate was less than 1% as opposed to a national West German average of 14%. In addition, 60% versus 27% nationally scored well enough on a high school examination to attend a four-year college (Chapp, 1999; Ratzki & Fisher, 1990).

Wynne and Walberg (1994) stated that in the state of Bavaria in Germany, multiyear grouping was the most predominant approach at the secondary level. Students were organized into grade-level groups; the approach was based on the belief that group cohesion was of more educational benefit than individual programs. A student who failed in one major academic area was moved down in all subjects so that all students from a
grade were always taking course work together. These educators believed that group cohesion stimulated greater learning among all students (Wynne & Walberg, 1994).

In Japan, elementary teachers stayed with their classes for two years or more and the classes remained together for the entire elementary school (Barris-Sanders, 1997; White, 1987b; Wynne & Walberg, 1994). High school teachers in Japan stayed with a class throughout the four years in each subject area (Wynne & Walberg, 1994). The students were divided into units that remained together for the entire school. The Japanese students stayed with the group and were rarely not promoted with their age group (Barris-Sanders, 1997). White (1987b) wrote that the Japanese emphasized the relationship between pupil and teacher. The Japanese believed it was more important for teachers and students to know one another than for teachers to be specialists in one grade level or subject (Wynne & Walberg, 1994).

Israel and Jamaica also used looping as an organizational structure for their schools. Jamaica used looping where the students were placed into divisions and remained with the same classmates and teacher throughout their elementary school years (Wynne & Walberg, 1994). Snarey (1987) wrote that kibbutz education in Israel provided a sense of community and belonging. Children were organized into small age-graded peer groups that remained from childhood until service in the Israeli army. Each group was named and functioned in the same manner as that of a family. The group was given a house parent, who oversaw the socialization in the living and work activities. Roth (1973) wrote that establishing deep relationships and attachments to significant adults, such as house parents and teachers, was considered a necessity in kibbutz education to the formation of a child’s personality and gave a permanent foundation to adult life. Snarey (1987) stated that the
formal education of groups in the kibbutz became the responsibility of one or more full-time teachers who remained for several years.

Looping in the United States

Goldberg (1990/1991) stated that looping in the United States first appeared in New York by Meier, a teacher and teacher trainer. The key component that Meier stated made successful schools was a better relationship between students and their teachers (Meier, 1995). Meier was given the opportunity by the New York City School System to begin an elementary school without any standards. She established a plan by which students remained with the same teacher for two years. Meier (1995) wrote, “Since relationships take time to build, we keep kids and teachers together for two years” (p. 27). A commitment by teachers and students was made at the beginning of the first year (Goldberg, 1990/1991). Based on the 1974 data of the development of an elementary school by Meier and founded on the concept of looping, two more elementary schools were opened by Meier using the looping approach. In 1985, Meier expanded looping to the secondary level because she realized the same relationship needs of students were an important part of any educational experience (Meier, 1995). The high school was organized into two-year divisions. The students stayed with the same team of teachers for both years (Goldberg, 1991).

Research on Benefits of Looping

Lincoln (1997) stated that student success was determined, in part, by the teacher’s knowledge and understanding of the student’s learning style, academic strengths and weaknesses, and personality traits. Rappa, superintendent of the Attleboro, Massachusetts, School System, began looping during the late 1980’s (Grant, et al., 1996; Hanson, 1995).
He asked 26 elementary and middle school teachers to stay with a group of students for two years. The pilot program proved successful with favorable statistics and was established in all the schools in Attleboro. All classroom teachers in grades one through eight were required to accept a two-year assignment with the same children (Hanson, 1995). Dr. Rappa stated that the benefits of looping included the following (Grant, et al., 1996):

- Student attendance in grades two through eight increased from 92% average daily attendance to 97.2% average daily attendance.
- Retention rates decreased by over 43% in grades two through eight.
- Discipline referrals and suspensions, especially at the middle school, declined significantly.
- Special education referrals decreased by over 55%.
- Staff attendance improved from an average of 7 days absent per staff member per year to less than 3 days per staff member per year.

Rappa (Grant, et al., 1996) also reported that teachers in the Attleboro School System were administered a survey to determine if they perceived positive aspects of the looping program implementation. Reported advantages stated by the teachers included less anxiety on the part of the children during the second year of the two-year loop, an extra month of teaching time at the beginning of the second year, and a strong bond between teachers and students.

Orchard Lake Middle School in West Bloomfield, Minnesota, used a three-year looping or teacher-student relationship model. Peterson described the school as a “school-within-a-school” (Burke, 1996, p. 361). Students entering the sixth grade were placed with the same core teachers for math, science, social studies, and language arts from grade
six through grade eight. In 1993, Peterson piloted the program with 54 students and 2 teachers. The study found that the looping program improved student attendance, increased student involvement in school activities, raised student grade-point averages, and increased parental interest in their children’s education (Burke, 1996).

Research conducted on the looping program at the Berino School for the school year 1995-1996 involved eight classes. The mean test scores on the Iowa Test of Basic Skills (ITBS) and Language Acquisition Scale (LAS) of the students in the looping classes were compared to the scores on the same tests of the students in the non-looping classes. The comparisons revealed the looping students outperformed the non-looping students. Of the 36 comparisons, 97% favored the looping program. On the ITBS, looping students performed better than non-looping students in all areas compared. On the LAS, looping students made higher level scores than students in non-looping classes (Yang, 1997).

Denault (1998) interviewed and surveyed teachers from four Massachusetts communities and observed elementary classrooms with experience in looping. A summary of the major findings included the following:

- Looping builds a strong sense of a community of learning.
- The home-school link is strengthened.
- Students who loop show numerous gains within the affective domain with additional benefit to those identified as being at-risk.
- Teachers found time was saved in transitions between grades and allowed for increased time-on-task and opportunities to expand the curriculum.

In East Cleveland, Ohio, schools and Cleveland State University teamed to pilot the Project F.A.S.T.(Families Are Students and Teachers), which included multiyear teacher-
student assignments (Burke, 1997). Students in the program exhibited statistically
significant higher reading and mathematics achievement scores on standardized tests than
students in traditional grade classes. The looping teachers also reported an increased sense
of ownership for student outcomes and a heightened sense of efficacy as a result of their
increased decision making autonomy. Parents reported being more respected by teachers,
having more confidence in the teachers and administrators, and being more likely to seek
the school’s assistance with their children (Burke, 1997).

Jankoski (1996) conducted a study of three elementary classrooms in the Beaufort
County School District in South Carolina to study the effectiveness of looping in promoting
social, emotional, and academic growth in the classroom as perceived by the students,
parents, and teachers. Comparisons were made of the children in the second, fourth, and
fifth grades at mid-year. The Basic Self-Report of Personality, a parent questionnaire and
survey, and interviews were used in the study. The findings showed that children who were
part of the looping classrooms progressed further in the subjects of mathematics and
reading. The teachers stated that student achievement exceeded that of any previous class
of children. The majority of parents, teachers, and students agreed that looping provided a
secure learning environment that promoted cognitive, affective, and social growth and
development. Jankoski (1996) attributed the gains in Beaufort County to the increased
time to teach grade-level material and the better understanding by teachers of children’s
affective and cognitive characteristics. The increased time-on-task was coupled with the
two-year academic plans that even provided for summer activities.
Academic Benefits of Looping

All the above studies showed positive results in looping classrooms. The benefits included academic improvement, student social and emotional growth, teacher growth and satisfaction, and more parental involvement. Researchers stated that the academic benefits were derived from time saved at the beginning of the second year, more opportunities for bonding between teachers and students and between teachers and parents, more time for slower learners to learn basic skills without the need for retention or special education referrals, and increased time-on-task through summer learning (Burke, 1997; Grant, et al., 1996). The time saved at the beginning of the second year was accomplished by not having to repeat routine procedures and practices; re-establish behavior expectations; or develop individual and group accountability, responsibility, and independence in the learning environment (Grant, et al., 1996). Burke (1996) noted in his study in West Germany where students and teachers stayed together for six years that the time at the beginning of the school year when teachers normally get to know the students was not needed and academic issues were immediately addressed. Learning was thought to have a continuation from the year before with very little review. The teachers knew each student and their academic levels. Newburg (1995) re-enforced that the length of the relationship between teacher and student enabled a better assessment of an individual’s learning style, skills, and interests.

Lincoln (1997) stated that student success was partly determined by the teacher’s knowledge and understanding of the student’s learning style, academic strengths and limitations, and personality traits. The teacher spent less time assessing where students were academically. Zahorik and Dichanz (1994) suggested that teachers were aware of the preferred learning style of each student and could immediately make adjustments for each
The students even knew each other better and could better identify the students to ask for assistance.

Grant and Johnson (1995) pointed out that looping reduced the stress of decision-making at the end of the first year. Looping offered the opportunity for a teacher to continue evaluating a student before referring the child to special education for an evaluation or before recommending retention of the student. A two-year program was more flexible than a single-grade where the curriculum tends to be too rigid for children who are “differently-abled” (Grant & Johnson, 1995).

Superintendent Rappa from the Attleboro, Massachusetts, School System, which has been looping in grades one through eight since 1980's, reported that special education referrals decreased significantly by over 55%, and 43% fewer students were retained in the same grade (Grant, et al., 1996). In a survey conducted by George with middle school teachers who had been involved with looping, 90% of the respondents stated that the multiyear relationship improved the achievement of less successful students (Lawton, 1996).

Rappa, Superintendent of the Attleboro School System in Massachusetts, also reported that attendance increased from 92% average daily attendance (ADA) to 97.2% ADA in grades two through eight (Grant, et al., 1996). At Langley Park-McCormick Elementary School in Maryland, the overall attendance improved in the 1995-96 school year after looping to 96.9% (Haslinger, 1996). Burke (1996) cited an example in a three-year looping commitment at Orchard Middle School in West Bloomfield, Minnesota. The students experienced improved school attendance along with higher grade-point averages.
Grant, et al., (1996) noted that looping offered an opportunity for continued learning throughout the summer break. Teachers at Attleboro School System in Massachusetts constructed activity packets that reinforced reading and writing in conjunction with exploration of insects, rocks, and weather patterns (Grant, et al., 1996). In Marcet’s and Manning’s classes at Cyril K. Brennen Middle School in Attleboro, the teachers assigned a book review project. The students each had to read a book, report on it, then create a project based on the book. A calendar with different math and science activities was also sent home with the children to choose a certain number to do each week. The students kept a journal of all the activities and the results, and then they chose a favorite activity to share with the class (Grant, et al., 1996). Leary, principal of Cyril K. Brennen Middle School, said the following about continued learning in the summer months (Grant, et al., 1996):

One of the biggest pieces of the two-year model has to be the summer maintenance program in between the two years, and what can be offered to maintain some of the things the students have learned. When you first begin (the multiyear assignment) you don’t think of a summer program as an important component of it, but as you get more involved or committed, you realize it’s very important. (p. 121)

After District 34 in Antioch, Illinois, began piloting a two-year teacher-student relationship model in the fall of 1994 the superintendent stated (Burke, 1996):

It just makes no sense for teachers and children to have to learn a brand new set of expectations from one another every ten months. When you consider how much quality learning time is lost at the start of each school year in the traditional single-year arrangement. (p. 361)

Social and Emotional Benefits of Looping

When students experienced looping, social and emotional benefits were found. Grant and Johnson (1995) stated, “For a lot of children today, their teacher is often the
most stable, predictable adult in their lives” (p.100). When the teacher was the same person for two years, there was stability for the child. By the middle of the first year, the children knew what the teacher expected, what the rules were, and what pleased and annoyed the teacher. It took time to find out the interests, learning styles, and personalities of each child. At the beginning of the second year, the teacher knew who was shy or aggressive and what needs each child possessed. The teacher and child have established a working relationship the child can trust (Grant & Johnson, 1995). Jacoby (1994) wrote that since the trust between the looping teacher and students was already there by the second year, the teacher was able to offer more constructive criticism on students’ academic work without damaging the relationship between teacher and student. Burke (1997), Hanson (1995), and Grant, et al. (1996) listed the following social benefits for looping:

- A diminished apprehension about a new school year
- More time to establish positive peer relationships
- Increased support for students who require school as a social safety net
- Sense of school and group as a community
- Increased opportunities for shy students to develop self-confidence
- Stability
- Continuity of the group for social skills and cooperative learning
- Better skills to solve conflicts and work as team members
- Time spent on developing social skills and cooperative group strategies
- Strong support system
- Teacher serves as a long-range role model, mentor, advisee, and friend.
A multiyear relationship enabled the development of a strong support system for children, which was considered critical to countering the negative effects that many children experience through change of residence, family structure, or economic status (Hanson, 1995). Haslinger (1996) cited the benefits looping had for immigrant families. It offered the immigrants an extended period of time to become comfortable with their teachers and adjust to a new school environment. When there was a sense of community, confidence resulted that permitted the sharing of customs and stories from their countries. The rapport which developed among the children and teacher further eliminated stereotypes.

Haslinger (1996) reported an example of a school that found positive reasons to continue looping. Langley Park-McCormick Elementary School in Hyattsville, Maryland, was comprised of fourth, fifth, and sixth grades. Their 610 students came from 37 countries and spoke 25 languages. Sixty-five percent were recent immigrants, 87% qualified for free lunches, and only 18% had parents who had a high school diploma. Looping was implemented so that a teacher followed the class from the fourth through the sixth grades. The school officials cited the benefit as stability for the students. Immigrant and homeless children and their families relied on the initial relationship with the classroom teachers. The teachers nurtured relationships with children and were able to identify individual student strengths and weaknesses.

Lincoln (1997), a teacher at Tolland Middle School in Connecticut, wrote that stability in the middle school years was more important than at any time in the students’ academic years. With the weakening of adult-child relationships in today’s society due to conditions such as single parents, blended families, and families where both parents work,
the looping model provided an additional measure of stability by building stronger relationships between students and teachers. In the looping classes at Tolland Middle School, eighth grade students earned higher grades in language arts than did the non-looping classes. The state writing competency scores increased from 41% in the sixth grade looping classes to 79% in the eighth grade.

Crosby (1998), a teacher at Robert J. Coelho Middle School in Attleboro, Massachusetts, stated that looping offered the opportunity for mutual trust between the teacher and students. Trust and a sense of community were created within the team. Team members were taught to be responsible, caring individuals. In Crosby’s class, the two-year teams set up a community. They made rules that governed the community and had team meetings to discuss important issues. Students stated they had a stake in what the team did and encouraged each other to try their best.

Mazzuchi and Brooks (1992) quoted teachers at the Academy School in Brattleboro, Vermont, as stating that keeping children in the same classroom provided a sense of security for shy and quiet children that enabled risk-taking and self confidence. Group support contributed to problem solving and also carried over in a positive manner to other areas, such as the playground. The security of the looping classroom had also been found to provide comfort for children dealing with extended illnesses or the loss of a loved one as the entire class shared in these matters and “became such a strong, established group that they dealt with any issues that came up in a loving, supportive way” (Mazzuchi & Brooks, 1992, p. 61).

According to Zahorik and Dichanz (1994), long-term relationships resulted in an emotional and intellectual climate that encouraged thinking, risk-taking, and involvement in
the class. Schaps, Lewis, and Watson (1996) stated that “when students feel they belong and have influence, they are more likely to conform to the school’s values, including hard work and learning” (p. 30). This sense of belonging statistically significantly decreased disciplinary office referrals as students developed pride not only within their group but also the larger environment of the school. Lincoln (1997) cited the reason of improved discipline as the students, teachers, and parents had a greater vested interest in problem solving (Lincoln, 1997).

Tabachini (2000) conducted a study to determine if multiyear grouping for two years would have a positive effect on student-school related anxiety, self-concept, self-efficacy, and a stronger sense of community among students, teachers, and parents. The data were taken from five traditional classrooms and five looping classrooms from one elementary school located in the Northeastern School District in northern York County, Pennsylvania. The Piers-Harris Children’s Self-Concept Scale and interviews with teachers and parents were used. Based on the perceptions of teachers, there was a statistically significant difference in terms of reduced school-related anxiety at the beginning of the second year of the looping experience. They also stated that looping created a stronger sense of community among students, teachers, and parents. Based on the parents’ perceptions, there was also a statistically significant difference regarding looping students in terms of school-related anxiety at the beginning of the second year of the looping experience. Parents also believed the self-efficacy of their children improved in relation to improved academic progress and student confidence about their own academic performance (Tabachini, 2000).
Checkley (1995) found that much of a young child’s learning was based on relationships. A multiyear grouping gave children the time to build the personal relationships they could not accomplish during a nine-month teacher-student relationship. Miner (1998) used participant observation to study two first- and second-grade looping classes. The data collection included detailed field notes, 23 interviews of the two teachers, more than 30 classroom observations, and detailed biographies of the participating teachers. The classroom observations took place over a six-month period. The major themes that emerged included the suggestion that spending more than one year with the same students created a more family-centered learning climate, positive social development, individual and group responsibility, and the development of life-long learners. The data concluded that “looping allows teachers and administrators to move into a change that produces minimum fear, anxiety, and frustration, not only for students, but also for parents and themselves” (Miner, 1998, p. 122).

Swisher (1997) designed a study to compare students’ attitudes in a looping classroom and a regular non-looping classroom. School districts and schools in the states of Arkansas, Minnesota, Nevada, New Hampshire, Ohio, and Washington participated. The sample consisted of 39 second-grade students, 151 third-grade students, 61 fourth-grade students, 32 fifth-grade students, and 26 sixth-grade students for a total of 309 elementary school students. One hundred fifty-two of the students were in looping classes, and 157 were in non-looping classes. A School Attitude Measure was used in the areas of Motivation for Schooling, Academic Self-Concept-Referenced Based, Student’s Sense of Control over Performance, Students’ Instructional Mastery, and Academic Self-Concept-Performance Based. On only one of the scales, Academic Self-Concept-Performance
Based, the looping sample students showed a statistically significant difference in positive attitudes than their non-looped peers. The other four scales showed no statistically significant difference.

Snyder (1998) analyzed the effects of a multiyear schedule on middle school students in the areas of academic achievement and school motivation. The Stanford Achievement Test, 9th edition, and the Texas Assessment of Academic Skills were used to measure academic growth, and the Study Attitudes and Methods Survey was used to measure school motivation. The study showed no statistically significant differences in academic achievement or motivation except in the area of “Alienation Toward Authority.” Students appeared to be more positive about their feelings toward the learning environment in a multiyear schedule than a traditional school.

Teacher Benefits of Looping

Crosby (1998) wrote that a teacher was able to know the strengths and weaknesses of students and targeted acceleration or remediation based on individual needs. A teacher gained instructional time by bridging the summer gap by assigning students specific projects that fit into the curriculum. The gain was up to four months over the two-year span. Jacoby (1994) stated that she spent the first six weeks of the first year teaching her students how to behave appropriately. By having two concurrent years with the same children, students had the time to learn to care about others.

A child’s development was seen in a less fragmented way and in a more natural setting when it occurred over time (Mazzuchi & Brooks, 1992). Being with the same children for two years helped teachers recognize major changes in a student’s personality. A teacher was more likely to recognize the danger signals and became pro-active when a
student began experimenting with drugs, alcohol, or other at-risk behaviors (Crosby, 1998). Teachers and students knew one another well enough to know what was acceptable and what was not (Elliot, 1998). They had at least two years to cover curriculum, content, and skills with more flexibility and creativity. While looping, the teachers were also more accountable for student progress and achievement (Lincoln, 1997).

Teachers at Linder Elementary School in Oak Ridge, Tennessee, stated there was less pressure on students to learn all curriculum objectives in one year. If they did not master some of them, they received help over the summer or at the beginning of the second year of the looping cycle (Little & Dacus, 1999).

Simel (1998) conducted a survey and interviews with the teachers in Fort Wayne, Indiana, who practiced looping to increase student achievement. Thirty-four teachers in 11 Fort Wayne schools were selected to participate. The teachers’ responses in focus groups were audio taped and transcribed. Teachers reported less anxiety at the beginning of the second year because they knew their students’ strengths and weaknesses. Most teachers reported that rapport with the parents was positive and were pleased with the degree of parental involvement. The students encouraged each other and were pleased when students achieved goals.

Burke (1996) stated that research on school effectiveness suggested that long-term teacher-student relationships improved both student performance and job satisfaction for teachers. Doda found from one group of teachers who taught the same students for three years that approximately 70% of the teachers found looping a positive experience which allowed them to use more positive approaches to classroom management. Ninety-two percent said they knew more about their students; 69% described their students as more
willing to participate voluntarily; and 85% stated that the students were better able to see themselves as important members of a group, to feel pride in that group, and to feel pride in the school as a whole. Eighty-four percent reported more positive relationships with parents, and 75% reported increased empathy with colleagues. The reactions of students in this study were equally favorable and grew more positive with each successive grade level. Student opinion surveys indicated teachers were more caring, understanding, and patient. Ninety-nine percent of the parents in this study requested that their children have the same teacher as the previous year (Burke, 1996).

In the 1995-96 school year, George, Shewey, and Heeney (1996) identified middle schools in the country that were utilizing some form of multiyear grouping. A total of 63 schools were identified with 105 teachers and administrators completing and returning the survey regarding their perceptions of a multiyear assignment. Over 84% of the teachers and administrators reported improved classroom management, and 74% reported improved teacher-student relationships. Seventy-two percent of the teachers and administrators believed the teachers were more responsible for the success of their students. Eighty percent of the teachers reported more positive relationships with parents. Out of the 1,100 student respondents, 78% stated that spending more than one year with the same teacher and classmates helped them get to know their peers better, and 57% reported being a part of a team in a long-term relationship improved their self-confidence and self-esteem. Sixty-four percent of the 586 parent respondents believed their children remaining with the same teacher for more than a year had a positive academic effect on the children, and 61% indicated a desire to have a similar arrangement for their children who would eventually enter the middle school. However, 58% of the parents reported a multiyear experience did
not help them get to know their child’s teacher better. All three groups reported looping enhanced long-term relationships and a greater sense of community. They also agreed that the long-term relationship increased interpersonal knowledge, caring, and trust between teachers and students (George, et al., 1996).

Parent Satisfaction with Looping

Skinner (1998) conducted a survey with parents whose children experienced looping. The parents strongly supported looping and cited better parent-teacher and student-teacher relationships. Parents stated looping promoted the cognitive, affective, and social growth and development of their children. They also stated their children experienced less stress, were more comfortable with the teachers, and had a positive attitude toward school due to the looping relationships. Hanson (1995) found that parents expressed more comfort with parent-teacher conferences and wanted the opportunity to better understand the teacher’s instructional style and classroom expectations. George, et al. (1987) said that parents at one lower socio-economic middle school that implemented looping stated there was a higher level of communication with teachers.

Brandt (1998) conducted a study by collecting data from interviews, document analysis, questionnaires, and observations. The population consisted of two elementary classrooms in the Danville Area School District in north central Pennsylvania. Data collection took place over an 18-month period. Questionnaires were given to 20 students and 20 parents. Students were also observed in the classroom. Field notes were maintained throughout the project. Parents noted that the looping classroom had an emotional stability, an academic advantage, and a lack of anxiety before the second year.
In a study investigating the satisfaction of students and parents with the classroom environment created by looping, McIntyre (2000) surveyed students and parents in three Virginia school districts using the looping concept. The results showed that students and parents were overwhelmingly satisfied with their looping experiences. The majority of the parents noted their children were happy and had made continued progress during the two years of looping and would recommend looping to other parents. Most of the students expressed satisfaction with themselves, their peers, and their teachers. Students said they learned at school and were proud of the work they completed at school.

Concerns about Looping

For Parents and Students

In Attleboro, Massachusetts, where looping was used in all classes in first through eighth grades, less than 1% of the parents requested that their children be transferred out of the classroom after the first year of the two-year assignment (Grant, et al., 1996). However, there were concerns for parents, students, teachers, and administrators about the looping process. The greatest potential disadvantage of looping regularly mentioned was an inappropriate match between the teacher and the student which lasted for two years (Burke, 1997). To avoid a long-term mismatch between teacher and student in a looping class, the teacher and administration, as a matter of policy, need to review each student’s placement with the parent(s) and student at the end of the first year and decide whether to continue or change the class assignment for that student (Grant, et al., 1996). Simel (1998) supported research that gave parents and teachers the choice at the beginning of the school year as well as flexibility in changing assignments during the year if it was in the best interest of the child.
There was also concern of a poor quality teacher for an extended period of time. Even the best students would be impacted, and students with special needs for additional assistance would have greater academic deficits (Grant, et al., 1996). Wynne and Walberg (1994) said that the existence of looping might be a valuable stimulus for quality control. Schools in which student and teacher shifts are common may tolerate some inadequate teachers for a brief period. In looping, incompetence would be distributed to only a few. Such unevenness would make it necessary to consistently stress quality throughout the whole faculty.

Parents stated that another disadvantage was that children in the looping classes were exposed to fewer instructional strategies and fewer points of view (Lincoln, 1997). Jankoski (1996) found in her study that the familiarity that developed between the teacher and student sometimes allowed for more acting out by some children and provided the advantage of knowing just how far they might press the limits of inappropriate behavior.

Another concern was a class out of balance with difficult children or a disjointed group. Grant and Johnson (1995) and Hanson (1995) suggested dividing up the class at the beginning of the second year and found that it did not help any children in such a class to keep them together for two years. The composition of the class adversely affected the group’s potential to learn. Teachers were not able to overcome negative perceptions classmates had about some children. Students who were consistently ridiculed and ostracized by their peers were at a disadvantage by remaining with the class a second year. The teacher needed to assess the opportunities a child may have to develop new friendships within a different classroom setting (Grant, et al., 1996).
A fourth concern was that of students joining the looping class during the second year. This put the student in an uncomfortable situation where all rules and procedures were set and social circles established during the first year of the looping process (Little & Dacus, 1999).

In looping classrooms, there was also a risk of delaying a referral for special education (Grant & Johnson, 1995). There were children in the looping process who needed more than a little extra time. A child with a learning disability may not have been obvious and may have required special services. The fact that the multiyear teacher was able to delay a high-stakes decision like special education or retention should not have prevented him or her from doing the kind of on-going assessment and evaluation of students that would determine a learning disability (Grant, et al., 1996).

Chapp (1999) found that some parents believed that the looping experience did not allow sufficient opportunity for their child to get to know other children very well within the same grade level. In Jankoski’s (1996) study, data showed that the responses from children in grades two, four, and five confirmed strong relationships within the home-base classroom and less prevalence of friendships with those from other classrooms. In particular, second-grade children showed the lowest percentage with 27% having friends in other classrooms, although 100% of the parents from the grade believed that they knew their child’s friends better. In the fourth grade, only 30% of parents believed they knew their child’s friends better while fifth grade parents affirmed this point by 60%. It was noted that even though there were fewer friends from other classrooms for all grades, the children overall had more friends than before (Jankoski, 1996).
Although there were parental concerns with a two-year assignment for their children, most research pointed to positive results when looping. Simel (1998) suggested the following when placing children:

- No more than five new students should be placed in a looping classroom during the second year.
- Children with unstable home lives should be given priority for looping.
- All involved should be given a choice of whether or not a student is included in the looping cycle.

For Teachers

Teachers also had concerns when deciding to commit to a looping classroom. Teachers noted that looping took an additional investment of time for the teacher to learn the curriculum of a new grade level (Forsten, et al., 1999; Grant, et al., 1996). The extra time commitment forced a level of flexibility with instruction that was more child-centered, motivational, and relevant (Grant, et al., 1996). There must be more insight to the curriculum when one is responsible for more than just one grade level. The teacher also had to learn about the ages and stages of the students at both grade levels. Grant, et al. (1996) stated that children’s development needs and behavior patterns change dramatically from one year to the next. Strategies that were successful at one stage may not work for the next grade level.

Another concern was that teachers found the new grade level had state- or locally-mandated testing, new curriculum content, or new promotional standards (Forsten, et al., 1999; Grant, 1996). Standardized testing, most often mandated at grades three, five and eight in the state of Georgia, might add tremendous pressure on a teacher. Specific
curriculum content may require additional training on the part of the teacher, and specific promotional standards might restrict a teacher’s decision-making power in regards to her students’ progress. A teacher moving up a grade level may find class size increases or find he or she is now without a teaching assistant (Forsten, et al., 1999).

Thibodeau, assistant superintendent of the Attleboro Public School District, stated that even though he was an advocate of looping, he stated about teachers, “They don’t want to learn another grade curriculum, or they don’t want to leave a team where they’re already working well” (Million, 1996, p. 3). Bryan, a principal in Philadelphia stated, “Teachers are so accustomed to teaching the same grade level, many don’t want to change” (Million, 1996, p. 4). Comments like these reflect the insecurity of working not only in a team setting but also in a new curricular and content areas. The evaluation of job performance and resulting new level of responsibility becomes a concern, as such evaluations could be determined through longitudinal interpretations of standardized test scores (Hanson, 1995). This challenge not only requires teachers to work with children in new ways but also interact and share with colleagues the materials, resources, and strategies. Sizer, head of the Coalition for Essential Schools, was a proponent of role change and says that if teachers “take the responsibility for much more than their piece of the puzzle - if they can see beyond the walls of their classrooms, and move toward becoming generalists - then kids’ lives will improve” (Newburg, 1995, p. 715).

Transition to Middle School

Providing stability in young people’s lives may be as critical in the middle school years as it is at any time during a student’s career (Lincoln, 1997). Diemert (1992) stated that the transition from elementary school to middle school was exciting, stressful, scary,
and fun all at once for young adolescents. In Diemert’s study, a needs assessment was given to a heterogeneous class of 23 fifth graders in a middle school. He found that social and procedural needs were considered the most important by the students, and the lack of assistance from adults was perceived by 95.4% of the respondents as highest for certain social needs. The results indicated that needs of early adolescents were not always adequately addressed during the transition to middle school. One hundred percent of the female respondents and 90% of the male respondents stated that knowing a teacher to talk to if confused about something was important. The girls identified as important knowing the rules and having a clear concept of how they were to travel around the building. Boys identified as important knowing the rules, teacher expectations in terms of behavior, and getting books and supplies ready for different classes. Both boys and girls cited knowing how to get extra help from teachers as being important (Diemert, 1992).

Eccles and Midgley (1989) found that after the transition from elementary school to middle school many students feel less positive about their academic potential and the value of schooling. They give up more quickly and put forth less effort, and their grades decline (Eccles & Midgley, 1989). Fenzel (1989) examined school-related strains that elementary school students encountered during the transition to middle school. The findings suggested that elementary school preparation and gender significantly affect the quality of the middle school transition. Demands made upon students in elementary school differed between schools. These differences affected the quality of the adjustment students made to middle school. In the study, it was suggested that elementary school teachers make demands upon students for independent homework that approximate those made by middle school teachers. Boys were more stressed in elementary school but not in middle school (Fenzel,
Rowlison and Felner (1988) said that receiving support from important others in stressful times or during difficult transitions, or knowing that others are available if needed provided protection from stress.

In a later study by Fenzel (2000) on the transition to middle school in a small city school district in upstate New York, the Early Adolescent School Role Strain Inventory was used to determine stress during the transition to middle school. One hundred sixteen fifth-grade students were in the sample. The results included the following (Fenzel, 2000):

- Young adolescents who perceived themselves as more capable of making friends prior to the school transition were indicated to be less vulnerable to the potentially damaging effects of peer strain during the early part of the transition.
- Over a longer period of time, results indicated that feelings of self-worth were enhanced by social support from close friends.
- Beneficial relationships with peers that included intimate sharing was an important developmental task of early adolescence and a skill that was shown to be related to changes in feelings of self-worth during the middle school transition.
- Multiple sources of strain played an important role in early adolescent development with respect to self-evaluation.
- Young adolescents who lack social competence with peers or close-friend support were not destined to experience higher levels of peer strain following the transition to middle school. If one built feelings of self worth by achieving success in other competency domains that were important to
them, they were able to compensate for the lack of social skills that helped facilitate peer acceptance or close-friend support.

- Young adolescents who possessed relatively low feelings of self-worth, in addition to shortcomings in social competence or the support of one or more close friends, had more vulnerability to increase strain in peer relations in the new school.

- Perceiving higher levels of teacher support in elementary school was related in general to greater increases in school strain during early transition, and this was especially true for those who reported lower levels of self-worth perceptions.

- Academic results indicated the need for educators to address stressors specific to work load and relationships with teachers very early in the first year of middle school.

Previous research showed that the transition to middle school was stressful for many students and was connected with increases in psychological symptoms and declines in feelings of self-worth and in school performance. Researchers pointed to the following factors that contributed to the stress of the transition to middle school: increased academic demands and social comparisons, exposure to unfamiliar peers and teachers, and practices that failed to meet early adolescent’ developmental needs for autonomy and self-management (Eccles, et al.,1993; Simmons & Blyth, 1987). When using social resources in times of stress, early adolescents seek support from peers, parents, and other significant adults in their lives. Research has indicated that peer support might be especially well suited to moderating stress related to social adjustment to school, but parents and teachers
are more likely to provide beneficial support in the area of strain related to academic demands (Berndt, 1999; Harter, 1993; Hirsh & DuBois, 1992). Wentzel (1996) found that perceived support from teachers is a significant predictor of young adolescents’ motivation and academic achievement.

Wigfield and Eccles (1994) said that traditional middle schools are typically larger, less personal, and more formal than elementary schools. Middle school teachers are often more subject matter specialists and usually have more students in their classes. In a study conducted by Wigfield and Eccles (1994), the results indicated the following:

- Children’s self-esteem did not change during elementary school but decreased following the middle school transition.
- Early adolescents’ self-esteem was lowest immediately following the transition to middle school and increased during the seventh-grade year.
- Early adolescents’ mathematics, English, social, and sports competence beliefs became more negative immediately following middle school transition.
- Early adolescents ranked social activities and sports activities ahead of math and English and reported liking English the least. They ranked social activities as the most liked and most important. They ranked sports activities as least important but second in interest.

Eccles, Midgley, and Adler (1984) found that the change of school environment from elementary to middle school had a significant impact on students’ self-beliefs. They reviewed evidence showing that many early adolescents become more negative about school and themselves following the transition to middle school. They become more
anxious about school and have lower academic intrinsic motivation. Eccles, et al. (1993) said these changes in early adolescents’ attitudes and beliefs are due in part to changes in the school environment that occur following the transition to middle school.

The Carnegie Council on Adolescent Development described the period of transition to middle school as one in which young people are highly receptive to positive intervention (Odegaard & Heath, 1992). In a study during the Spring of 1991, 225 fifth and sixth grade students from 5 elementary schools representing several school districts within the urban and suburban areas of a Midwestern community were surveyed by Odegaard and Heath (1992). The questions on the survey were concerned with relationships, physical space, and practices. The most significant anxieties from the students included space concerns centered around a new and larger building, contact with older and possibly rougher students, and heavy homework assignments. The issues most attractive to the elementary students moving to middle school included having their own lockers, having different teachers, eating in the cafeteria, moving to different rooms, having an athletic program, and making new friends.

Anderman and Midgley (1996) also found that for many children, the nature of the learning environment changes in a negative way during early adolescence. There was a decline in academic efficacy and task goals, a lack of stability in both math and English efficacy, and a decline in the end of year grades. The results from Wenz-Gross, Siperstein, Untch, and Widaman (1997) gave the same results:

- Higher academic stress and less emotional support from the family were related to lower academic self-concept and higher peer stress.
• Emotional support from the family moderated the influence of peer stress on feelings of depression.

As part of a study conducted by Midgley and Urdan (1992) during the 1990-1991 school year, teachers and parents in a school system were asked if they thought children’s attitudes about learning changed after they moved to middle school, how they changed, and why they changed. Most of the respondents agreed that this is a time when attitudes toward learning changed. Parents and teachers cited reasons as social pressures and social needs, family influences, and physiological changes. The most common response by both parents and teachers related to growing peer pressure at this stage of life and the need to satisfy social needs rather than academic needs. Teachers and parents recognized the importance of support from parents for academics. Teachers also mentioned that the work is more difficult and complex in middle school and that this is particularly difficult for underachieving students (Midgley & Urdan, 1992).

Another study examined the answer to the following two questions (Wentzel, 1997):

• To what extent do adolescents’ perceptions of caring teachers predict efforts to achieve positive social and academic outcomes at school?

• How do middle school students characterize a caring, supportive teacher?

It was found that perceived caring from teachers was related significantly and positively to students’ pursuit of social responsibility goals and to students’ academic efforts. Teachers who care were described as demonstrating democratic interaction styles, developing expectations for student behavior, modeling a caring attitude toward their own work, and providing constructive feedback. The results of the study provided evidence in support that
students are more likely to engage in classroom activities if they feel supported and valued by their teachers (Wentzel, 1997).

Summary of Review of Literature

From the review of the literature, implementation of looping across grade levels has a positive effect on student achievement. The benefits include academic improvement for students, social and emotional growth, teacher growth and satisfaction, and parental involvement. Reading and mathematics test scores showed positive gains. Researchers reported positive opinions by administrators, teachers, and parents. Students and staff attendance increased, discipline referrals decreased, and special education referrals decreased.

Researchers also reported that parents, teachers, and students agreed that looping provided a secure learning environment that promoted cognitive, affective, and social growth and development. The studies showed that teachers were able to know the strengths and weaknesses of students and targeted individual needs, especially during the second year of the loop. Teachers gained instructional time by bridging the summer gap and by assessing and reviewing less at the beginning of the second year.

Tables 2.1, 2.2, 2.3, and 2.4 summarize the results of the studies discussed in Chapter II in the areas of academic achievement, attendance, discipline, and attitudes and relationships.

Research also showed that students especially need stability when in middle school. The studies suggested that middle school is often a time that results in higher academic stress and less emotional support from families. Students often become anxious about school and have shifts in attitudes toward school work.
Table 2.1
Academic Achievement Studies

<table>
<thead>
<tr>
<th>Author/Date</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burke, 1996</td>
<td>Raised student grade-point averages</td>
<td>^</td>
</tr>
<tr>
<td>Burke, 1997</td>
<td>Students in the looping classes had higher reading and math scores on standardized tests.</td>
<td>^</td>
</tr>
<tr>
<td>Denault, 1998</td>
<td>Interviews & surveys indicated increased academic achievement was attributed to time saved between grades.</td>
<td>^</td>
</tr>
<tr>
<td>Grant, et al., 1996</td>
<td>Retention rates decreased by 43%; special education referrals decreased by 55%.</td>
<td>^</td>
</tr>
<tr>
<td>Grant & Johnson, 1995</td>
<td>Looping reduced special education referrals.</td>
<td>^</td>
</tr>
<tr>
<td>Jankoski, 1996</td>
<td>Teachers and students perceived student academic growth in reading & math on Basic Self-Report of Personality.</td>
<td>^</td>
</tr>
<tr>
<td>Lawton, 1996</td>
<td>90% of respondents stated looping improved achievement of less successful students.</td>
<td>^</td>
</tr>
<tr>
<td>Lincoln, 1997</td>
<td>Students had higher language arts scores. Writing competence scores increased from 41% in 6th grade to 79% in 8th grade.</td>
<td>^</td>
</tr>
<tr>
<td>Simel, 1995</td>
<td>Student achievement increased during looping because less anxiety and teachers knew students at beginning of 2nd year.</td>
<td>^</td>
</tr>
<tr>
<td>Snyder, 1998</td>
<td>Looping students showed no difference on SAT-9 and Texas Assessment of Academic Skills.</td>
<td>0</td>
</tr>
<tr>
<td>Tabachini, 2000</td>
<td>Looping showed academic progress; survey verified parents believe self-efficacy of their children improved academic progress.</td>
<td>^</td>
</tr>
<tr>
<td>Yang, 1997</td>
<td>Looping students outperformed on ITBS math and reading and on LAS.</td>
<td>^</td>
</tr>
</tbody>
</table>

^ = positive effect
0 = no effect
- = negative effect
<table>
<thead>
<tr>
<th>Author/Date</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burke, 1996</td>
<td>Looping improved student attendance</td>
<td>^</td>
</tr>
<tr>
<td>Crosby, 1998</td>
<td>Looping offered mutual trust between teacher & students; attendance increased.</td>
<td>^</td>
</tr>
<tr>
<td>Grant, et al., 1996</td>
<td>Student attendance increased from 92% ADA to 97.2% ADA.</td>
<td>^</td>
</tr>
<tr>
<td>Haslinger, 1996</td>
<td>Stability provided by looping increased student attendance.</td>
<td>^</td>
</tr>
<tr>
<td>Tabachini, 2000</td>
<td>Looping caused less-school related anxiety and a stronger sense of involvement and community.</td>
<td>^</td>
</tr>
</tbody>
</table>

^ = positive effect
0 = no effect
- = negative effect
Table 2.3
Discipline Studies

<table>
<thead>
<tr>
<th>Author/Date</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandt, 1998</td>
<td>Parents stated looping classroom had emotional stability.</td>
<td>^</td>
</tr>
<tr>
<td>Grant, et al., 1996</td>
<td>Discipline referrals and suspensions decreased by</td>
<td>^</td>
</tr>
<tr>
<td>Haslinger, 1996</td>
<td>Looping gave stability in classroom, especially with immigrant children.</td>
<td>^</td>
</tr>
<tr>
<td>Jankoski, 1996</td>
<td>Looping caused familiarity between teacher and students that allowed for more behavior problems.</td>
<td>_</td>
</tr>
<tr>
<td>Little & Dacus, 1999</td>
<td>In survey, teachers stated there was less pressure on students when looping.</td>
<td>^</td>
</tr>
<tr>
<td>Lincoln, 1997</td>
<td>Looping statistically decreased office referrals.</td>
<td>^</td>
</tr>
<tr>
<td>Schaps, Lewis & Watson, 1996</td>
<td>Students conform to school’s value because they feel they belong and have influence; looping decreased office referrals.</td>
<td>^</td>
</tr>
<tr>
<td>Zahorik & Dichanz, 1994</td>
<td>Looping encouraged thinking, risk-taking, and involvement in class, even on the playground.</td>
<td>^</td>
</tr>
</tbody>
</table>

^ = positive effect
0 = no effect
- = negative effect
<table>
<thead>
<tr>
<th>Author/Date</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burke, 1996</td>
<td>70% of teachers and 99% of parents found looping to be positive.</td>
<td>^</td>
</tr>
<tr>
<td>Chapp, 1999</td>
<td>Looping did not allow for opportunity to know students outside class.</td>
<td>_</td>
</tr>
<tr>
<td>Checkley, 1995</td>
<td>Looping reduces anxiety & frustration for students and parents.</td>
<td>^</td>
</tr>
<tr>
<td>George, Shewey, & Heeney, 1996</td>
<td>On survey in 14 states, teachers and students in middle schools had positive perceptions about long-term relationships.</td>
<td>^</td>
</tr>
<tr>
<td>Hanson, 1995</td>
<td>On survey, parents expressed more comfort with parent-teacher relationships and had opportunity to understand teacher’s instructional style.</td>
<td>^</td>
</tr>
<tr>
<td>Jankoski, 1996</td>
<td>On survey, parents, teachers, and students agreed looping provided secure learning environment.</td>
<td>^</td>
</tr>
<tr>
<td>Mazzuchi & Brooks, 1992,</td>
<td>Looping built group support to problem solve.</td>
<td>^</td>
</tr>
<tr>
<td>McIntyre, 2000</td>
<td>In survey, parents and students satisfied with looping experience.</td>
<td>^</td>
</tr>
<tr>
<td>Snyder, 1998</td>
<td>No difference was shown on the Study Attitudes and Methods Survey.</td>
<td>0</td>
</tr>
<tr>
<td>Swisher, 1997</td>
<td>School attitudes showed no difference.</td>
<td>0</td>
</tr>
</tbody>
</table>

^ = positive effect
0 = no effect
- = negative effect
CHAPTER 3
RESEARCH DESIGN AND PROCEDURES

This study was conducted to determine if looping with the same teacher and students from the fifth grade in elementary school to the sixth grade in middle school had a statistically significant effect on the students in regard to student achievement, discipline, and attendance. Most research on looping has been conducted within schools from grade to grade. This study was conducted across schools with the loop being from elementary school in fifth grade to sixth grade in middle school.

This chapter presents the research design and procedures followed in the study. Information is presented under the following headings: Problem Restatement, Null Hypotheses, Sample, Variables, Data Collection Procedures, and Data Analysis.

Problem Restatement

The purpose of this study was to investigate the effects looping had on students in middle school when looping was used as a transition approach to middle school. The transition for students from elementary school to middle school is a critical time in the life of a student’s education. It has often been a difficult time because of the many changes occurring in the child’s life. The study followed the treatment and control groups through middle school to see if there was any statistical significance in the relationship of looping into middle school with the same class and teacher and in their success in school. Effectiveness was determined by higher attendance rates, lower rates of disciplinary referrals, and higher achievement in mathematics and reading.
Null Hypotheses

Ho:1 There is no statistically significant difference in the mean ITBS reading comprehension and math total scores in the eighth grade between the treatment group and the control group.

Ho:2 There is no statistically significant difference in the teacher-grade yearly averages in reading and mathematics in the sixth, seventh, and eighth grades between the treatment group and the control group.

Ho:3 There is no statistically significant difference in the mean number of student absences during the sixth, seventh, and eighth grades between the treatment group and the control group.

Ho:4 There is no statistically significant difference in the mean number of office referrals during the sixth, seventh, and eighth grades between the treatment group and the control group.

Sample

The sample of students for the study consisted of the fifth grade classes of Hampton Elementary School in Henry County, Georgia, during the years of 1995-96 and 1996-97. Both classes attended Henry County Middle School in Henry County, Georgia, for their sixth, seventh, and eighth grade years. Even though looping to the middle school was implemented for three years, the fifth-grade class of 1997-98 were excluded from the sample because they were given the Stanford Achievement Test, 9th edition (SAT-9), instead of the ITBS, and they also attended a new school, instead of Henry County Middle School, for their eighth-grade year. The treatment group consisted of 85 students in the looping classes. There were 44 boys (52%) and 41 girls (48%) in the treatment group.
during the fifth-grade year. The control group were the students who were not in the looping classes for their sixth-grade year. They were randomly dispersed into the various sixth-grade classes. There were a total of 111 students in the control group with 59 boys (53%) and 52 girls (47%).

All students in the treatment and control groups attended Hampton Elementary School in the fifth grade and then attended Henry County Middle School for the sixth, seventh, and eighth grades. During the years these students were in Henry County Middle School, the enrollment peaked to approximately 1,700 students with 38 mobile classrooms. Hampton Elementary School’s enrollment in 1995-96 was approximately 720. In 1996-97, it increased to 780 with seven mobile classrooms.

While at Hampton Elementary School, students were assigned to classes with an approximate equal number of boys and girls; an approximate equal number of students with behavior problems; and an approximate equal number of high, middle and low achieving students in regard to gifted, remedial and fourth grade yearly averages in mathematics, reading, and language arts. Tables 3.1, 3.2, 3.3, and 3.4 show percentages of students, means, and standard deviations for the treatment and control groups in regards to ITBS reading comprehension and math total scores, absences, and discipline referrals while in the fifth grade before the looping process began. The two groups were approximately equal in all three areas before beginning the study.

Parents of the students who would be looping with the same teacher and students to middle school were given the option of not participating in the looping process. According to the principal of Hampton Elementary School, only one parent chose to withdraw his child from the looping classes.
Table 3.1
Comparison of Treatment Group and Control Group
ITBS Reading Comprehension in Fifth Grade

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Under 25th *NPR</th>
<th>Over 75th *NPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>111</td>
<td>47.45</td>
<td>24.31</td>
<td>25(22%)</td>
<td>18(16%)</td>
</tr>
<tr>
<td>Group 2</td>
<td>85</td>
<td>50.08</td>
<td>23.08</td>
<td>17(20%)</td>
<td>13(15%)</td>
</tr>
</tbody>
</table>

*NPR = National Percentile Rank
Group 1=Control Group
Group 2=Treatment Group

Table 3.2
Comparison of Treatment Group and Control Group
ITBS Math Total in Fifth Grade

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Under 25th *NPR</th>
<th>Over 75th *NPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>111</td>
<td>49.68</td>
<td>28.12</td>
<td>20(18%)</td>
<td>30(27%)</td>
</tr>
<tr>
<td>Group 2</td>
<td>85</td>
<td>49.45</td>
<td>27.92</td>
<td>24(28%)</td>
<td>20(24%)</td>
</tr>
</tbody>
</table>

*NPR= National Percentile Rank
Group 1=Control Group
Group 2=Treatment Group
Table 3.3
Comparison of Treatment Group and the Control Group
Absences in Fifth Grade

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>% 0-5 Days</th>
<th>% 20 + Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>111</td>
<td>11.15</td>
<td>10.48</td>
<td>43.2%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Group 2</td>
<td>85</td>
<td>9.92</td>
<td>9.06</td>
<td>38.8%</td>
<td>12.9%</td>
</tr>
</tbody>
</table>

Group 1=Control Group
Group 2=Treatment Group

Table 3.4
Comparison of Treatment Group and Control Group
Disciplinary Office Referrals in Fifth Grade

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>0 Referrals</th>
<th>5 + Referrals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>111</td>
<td>.91</td>
<td>2.29</td>
<td>85(76.6%)</td>
<td>6(5.4%)</td>
</tr>
<tr>
<td>Group 2</td>
<td>85</td>
<td>.71</td>
<td>2.16</td>
<td>69(81.2%)</td>
<td>3(3.5%)</td>
</tr>
</tbody>
</table>

Group 1=Control Group
Group 2=Treatment Group
Variables

Dependent Variables

The dependent variables for this study are the following:

1. Number of discipline infractions determined by in-school suspensions and out-of-school suspensions
2. Attendance determined by number of days attended during the year
3. Achievement in reading and mathematics determined by the ITBS reading comprehension and math total scores and yearly averages in reading and mathematics

Independent Variable

The independent variable for this study was the use of looping as the approach during the transition to middle school from elementary school.

Data Collection Procedures

After receiving permission by the Henry County Board of Education, the researcher gathered data on the treatment group and the control group. Test scores for each student were obtained from the Test Trax computer system. Absences, discipline data, and reading and math yearly averages were found using the Henry County School System’s AS400 data system. All student data were kept confidential.

Data Analysis

Data were analyzed for hypothesis one using independent samples t tests and covariance. These tests were used to determine if there were statistically significant differences between the treatment and control groups in terms of ITBS reading
comprehension mean scores and total math mean scores in the eighth grade. Results which achieved a $p < .05$ alpha level were interpreted as statistically significant.

Data for hypothesis two were also analyzed using independent samples t tests and covariance for each year of the study. This test was used to determine if there was a statistically significant difference between students in terms of yearly averages in reading and mathematics for the sixth grade, the seventh grade, and the eighth grade. A result which achieved a $p < .05$ alpha level was determined as significant.

Data for hypotheses three and four were analyzed using descriptive statistics, independent samples t-tests, and covariance for each year of the study. The descriptive statistics were used to show significant comparisons of the data for the experimental and control groups. The independent samples t-tests and covariance for each year were used to determine if there were statistically significant differences between the two groups in terms of attendance and disciplinary office referrals for the sixth, seventh, and eighth grades. Results which achieved a $p < .05$ alpha level were interpreted as significant.
CHAPTER 4
FINDINGS AND ANALYSIS OF DATA

The results of the study are presented in this chapter. A review of the sample groups, a description of the treatment, the data, and an analysis of the data will be presented.

Description of the Sample Groups

The expected treatment group consisted of 85 students, and the expected control group consisted of 111 students. Since the data for the study were collected for a four-year period of time, the participants who did not attend Henry County Middle School through the eighth grade were not included in the data.

Table 4.1
Number of Participants in the Study

<table>
<thead>
<tr>
<th>Group</th>
<th>Possible Participants</th>
<th>Actual Participants</th>
<th>% of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111*</td>
<td>80**</td>
<td>72%</td>
</tr>
<tr>
<td>2</td>
<td>85*</td>
<td>57**</td>
<td>67%</td>
</tr>
<tr>
<td>Total</td>
<td>196*</td>
<td>137**</td>
<td>70%</td>
</tr>
</tbody>
</table>

*Attended Hampton Elementary during 5th grade
**Attended Henry County Middle School during their 6th, 7th, and 8th grades
1=Control Group
2=Treatment Group
Table 4.1 shows the number of possible participants and actual participants for the control group and the treatment group. Out of the 196 students who attended Hampton Elementary School during their fifth-grade year during 1995-96 and 1996-97, only 137 stayed at Henry County Middle school for all of their sixth, seventh, and eighth grades. Eighty students were in the control group (Group 1) and did not loop with their teachers and classes. These students were randomly dispersed into the sixth grade classes when first entering Henry County Middle School. The treatment group (Group 2) consisted of 57 students who looped with their classes and teachers from the elementary school to the middle school.

Description of the Treatment

Looping was implemented by the experimental group, or Group 2, during their fifth and sixth grade years. Data were collected for the two groups on ITBS reading comprehension and total math in the fifth grade and then again in the eighth grade; sixth, seventh, and eighth grade teacher-given yearly averages in reading and mathematics; attendance using absences in a year; and the number of in-school and out-of-school suspensions to keep track of the discipline.

Group 2, or the experimental group, looped together for their sixth grade year. Parents were given the option of enrolling their children in another class in sixth grade instead of their children looping with their classes and teachers. According to the principal of the elementary school, only one parent in the two years combined chose to put his or her child in another class. After the sixth grade, the students were randomly dispersed into the seventh and eighth grade classes. Group 1 was the control group. These students were randomly dispersed into the other sixth-grade classes. After the sixth-grade year, Group 1
and Group 2 students were randomly dispersed into the seventh grade classes and then again into the eighth grade classes.

Presentation of the Data

The two groups of students who finished the sixth, seventh, and eighth grades at Henry County Middle School were compared using independent samples t-tests at the fifth-grade level to see if the two groups were the same at the beginning of the research. Table 4.2 shows the results of the t-tests. The two groups were the same in the areas of the ITBS total mathematics scores and the attendance rates while in the fifth grade. However, the two groups started out differently in the areas of ITBS reading comprehension scores and discipline rates. Since the treatment group and the control group were not the same at the beginning, the researcher decided to focus on covariance instead of independent samples t-tests for all four hypotheses.

Table 4.2

<table>
<thead>
<tr>
<th>t</th>
<th>df</th>
<th>Sig.</th>
<th>Mean Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITBS-R-5</td>
<td>-2.12</td>
<td>135</td>
<td>.036</td>
</tr>
<tr>
<td>ITBS-M-5</td>
<td>-.423</td>
<td>135</td>
<td>.060</td>
</tr>
<tr>
<td>ATT-5</td>
<td>1.337</td>
<td>135</td>
<td>.184</td>
</tr>
<tr>
<td>DIS-5</td>
<td>2.690</td>
<td>135</td>
<td>.006</td>
</tr>
</tbody>
</table>

R-5=Reading Comprehension in the 5th grade
M-5=Math Total in the 5th grade
ATT-5=Attendance rate in 5th grade
DIS-5=Disciplinary referrals in 5th grade
Hypothesis 1

Ho:1 There was no statistically significant difference in the ITBS reading comprehension and math scores in the eighth grade between the experimental group and the control group.

Table 4.3 gives the group statistics for the students’ ITBS total math scores in the fifth grade and then in the eighth. Group 2, or the looping group, began and ended with higher ITBS mathematics total and reading comprehension mean scores. Table 4.4 gives the comparison of the ITBS total math in the eighth grade of the two groups using the covariance. The significance, .109, is almost significant at p< .10. At p≥.05, it is determined to not be significant. When comparing the two groups on the eighth grade ITBS reading comprehension mean scores, Table 4.5 shows the significance to be .717, with p≥.05 using the covariance. Therefore, the null hypothesis of no difference between the groups was accepted for both reading and mathematics in relation to ITBS mean scores.
Table 4.3
Group Statistics - Mathematics and Reading ITBS

<table>
<thead>
<tr>
<th>Test</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>S.D.</th>
<th>S. E. Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITBS-M-5</td>
<td>1</td>
<td>80</td>
<td>52.36</td>
<td>23.58</td>
<td>2.64</td>
</tr>
<tr>
<td>ITBS-M-5</td>
<td>2</td>
<td>57</td>
<td>54.28</td>
<td>19.98</td>
<td>2.65</td>
</tr>
<tr>
<td>ITBS-M-8</td>
<td>1</td>
<td>80</td>
<td>48.91</td>
<td>24.47</td>
<td>2.74</td>
</tr>
<tr>
<td>ITBS-M-8</td>
<td>2</td>
<td>57</td>
<td>53.96</td>
<td>23.95</td>
<td>3.17</td>
</tr>
<tr>
<td>ITBS-R-5</td>
<td>1</td>
<td>80</td>
<td>49.11</td>
<td>23.58</td>
<td>2.64</td>
</tr>
<tr>
<td>ITBS-R-5</td>
<td>2</td>
<td>57</td>
<td>57.26</td>
<td>19.98</td>
<td>2.65</td>
</tr>
<tr>
<td>ITBS-R-8</td>
<td>1</td>
<td>80</td>
<td>44.54</td>
<td>24.47</td>
<td>2.74</td>
</tr>
<tr>
<td>ITBS-R-8</td>
<td>2</td>
<td>57</td>
<td>52.51</td>
<td>23.95</td>
<td>3.17</td>
</tr>
</tbody>
</table>

Group 1=nonlooping students
Group 2=looping students
ITBS-M-5=ITBS total math scores in grade 5
ITBS-M-8=ITBS total math scores in grade 8
ITBS-R-5=ITBS reading comprehension scores in 5th grade
ITBS-R-8=ITBS reading comprehension scores in 8th grade
Table 4.4
Comparison of Group 1 to Group 2
8th Grade ITBS - Total Math Scores

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
<th>p#05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>60664.50</td>
<td>1</td>
<td>60664.50</td>
<td>387.25</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>406.95</td>
<td>1</td>
<td>406.95</td>
<td>2.60</td>
<td>.109</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>20991.82</td>
<td>134</td>
<td>156.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>439047.00</td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Covariate=ITBS-M-5
Dep. Variable=ITBS-M-8

Table 4.5
Comparison of Group 1 to Group 2
8th Grade ITBS-Reading Comprehension

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
<th>p#05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>48991.97</td>
<td>1</td>
<td>48991.97</td>
<td>215.67</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>29.88</td>
<td>1</td>
<td>29.88</td>
<td>.13</td>
<td>.717</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>30440.16</td>
<td>134</td>
<td>227.165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>395278.00</td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Covariate=ITBS-R-5
Dep. Variable=ITBS-R-8
Hypothesis 2

Ho:2 There is no statistically significant difference in the yearly averages in reading and mathematics in the sixth, seventh, and eighth grades between the experimental group and the control group.

Group statistics for reading and mathematics yearly averages for the sixth, seventh, and eighth grades are given for Group 1 and Group 2 in Table 4.6. Group 2 had consistent higher means for both mathematics and reading for all three years. The mean scores decreased as the students increased in grade levels.

Table 4.6
Group Statistics - Mathematics and Reading Yearly Averages

<table>
<thead>
<tr>
<th>Test</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>S.D.</th>
<th>S. E. Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math-6</td>
<td>1</td>
<td>80</td>
<td>81.68</td>
<td>10.75</td>
<td>1.20</td>
</tr>
<tr>
<td>Math-6</td>
<td>2</td>
<td>57</td>
<td>87.46</td>
<td>6.54</td>
<td>.87</td>
</tr>
<tr>
<td>Math-7</td>
<td>1</td>
<td>80</td>
<td>80.50</td>
<td>11.07</td>
<td>1.24</td>
</tr>
<tr>
<td>Math-7</td>
<td>2</td>
<td>57</td>
<td>84.30</td>
<td>8.58</td>
<td>1.14</td>
</tr>
<tr>
<td>Math-8</td>
<td>1</td>
<td>80</td>
<td>78.46</td>
<td>9.93</td>
<td>1.11</td>
</tr>
<tr>
<td>Math-8</td>
<td>2</td>
<td>57</td>
<td>82.12</td>
<td>10.37</td>
<td>1.37</td>
</tr>
<tr>
<td>RD-6</td>
<td>1</td>
<td>80</td>
<td>81.65</td>
<td>9.76</td>
<td>1.09</td>
</tr>
<tr>
<td>RD-6</td>
<td>2</td>
<td>57</td>
<td>85.98</td>
<td>7.32</td>
<td>.97</td>
</tr>
<tr>
<td>RD-7</td>
<td>1</td>
<td>80</td>
<td>82.31</td>
<td>11.10</td>
<td>1.24</td>
</tr>
<tr>
<td>RD-7</td>
<td>2</td>
<td>57</td>
<td>88.44</td>
<td>7.92</td>
<td>1.05</td>
</tr>
<tr>
<td>RD-8</td>
<td>1</td>
<td>80</td>
<td>80.99</td>
<td>9.54</td>
<td>1.07</td>
</tr>
<tr>
<td>RD-8</td>
<td>2</td>
<td>57</td>
<td>84.81</td>
<td>9.63</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Group 1=nonlooping students
Group 2=looping students
Math-6=Math grades in 6th grade
Math-7=Math grades in 7th grade
Math-8=Math grades in 8th grade
RD-6=Reading grades in 6th grade
RD-7=Reading grades in 7th grade
RD-8=Reading grades in 8th grade
When comparing the two groups in terms of teacher-given mathematics yearly averages, Tables 4.7, 4.8, and 4.9 show a statistically significant difference in all three grade levels in mathematics with $p \leq 0.05$. The covariance was conducted with the covariate being the ITBS total math mean score in the fifth grade. During the sixth grade year, the significance was .000, the seventh grade year was .025, and the eighth grade was .042. The null hypothesis was rejected in the area of mathematics for hypothesis two.

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>3683.03</td>
<td>1</td>
<td>3683.03</td>
<td>62.96</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>968.71</td>
<td>1</td>
<td>968.71</td>
<td>16.56</td>
<td>.000*</td>
</tr>
<tr>
<td>Error</td>
<td>7838.66</td>
<td>134</td>
<td>58.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>981155.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05
Covariate=ITBS-M-5
Dep. Variable=Math Yearly Averages in Grade 6

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>3645.85</td>
<td>1</td>
<td>3645.85</td>
<td>48.11</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>388.21</td>
<td>1</td>
<td>388.21</td>
<td>5.12</td>
<td>.025*</td>
</tr>
<tr>
<td>Error</td>
<td>10154.08</td>
<td>134</td>
<td>75.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>937273.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05
Covariate=ITBS-M-5
Dep. Variable=Math Yearly Averages for Grade 7

Table 4.7
Comparison of Group 1 and Group 2
6th Grade Math Yearly Averages

Table 4.8
Comparison of Group 1 and Group 2
7th Grade Math Yearly Averages
Table 4.9
Comparison of Group 1 and Group 2
8th Grade Math Yearly Averages

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>1603.25</td>
<td>1</td>
<td>1603.25</td>
<td>17.594</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>386.02</td>
<td>1</td>
<td>386.02</td>
<td>4.24</td>
<td>.042*</td>
</tr>
<tr>
<td>Error</td>
<td>12210.78</td>
<td>134</td>
<td>91.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>890740.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<.05
Covariate=ITBS-M-5
Dep. Variable=Math Yearly averages for Grade 8

Tables 4.10, 4.11, and 4.12 show a comparison of reading yearly averages for the sixth, seventh, and eighth grades using the covariance and p<.05. The only statistically significant difference found was in the seventh grade with the significance at .004. The sixth grade was close at .051. Therefore, the null hypothesis was rejected for the area of reading in the sixth and seventh grades; however, the null hypothesis was accepted for the eighth grade.

Table 4.10
Comparison of Group 1 and Group 2
6th Grade Reading Yearly Averages

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>2994.36</td>
<td>1</td>
<td>2994.36</td>
<td>53.27</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>217.72</td>
<td>1</td>
<td>217.72</td>
<td>3.87</td>
<td>.051*</td>
</tr>
<tr>
<td>Error</td>
<td>7532.83</td>
<td>134</td>
<td>56.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>965265.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<.05
Covariate=ITBS-R-5
Dep. Variable=Reading yearly averages for Grade 6
Table 4.11
Comparison of Group 1 and Group 2
7th Grade Reading Yearly Averages

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>2245.55</td>
<td>1</td>
<td>2245.55</td>
<td>27.33</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>689.20</td>
<td>1</td>
<td>689.20</td>
<td>8.39</td>
<td>.004*</td>
</tr>
<tr>
<td>Error</td>
<td>7532.83</td>
<td>134</td>
<td>56.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>965265.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05
Covariate=ITBS-R-5
Dep. Variable=Reading yearly averages for Grade 7

Table 4.12
Comparison of Group 1 and Group 2
8th Grade Reading Yearly Averages

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>1806.08</td>
<td>1</td>
<td>1806.08</td>
<td>22.88</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>197.14</td>
<td>1</td>
<td>197.14</td>
<td>2.50</td>
<td>.116</td>
</tr>
<tr>
<td>Error</td>
<td>10575.78</td>
<td>134</td>
<td>78.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>947057.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05
Covariate=ITBS-R-5
Dep. Variable=Reading yearly averages for Grade 8
Hypothesis 3

Ho:3 There is no statistically significant difference in the number of office referrals during the sixth, seventh, and eighth grades between the experimental group (Group 2) and the control group (Group 1).

Group statistics for attendance are found in Table 4.13. Attendance for each student was calculated on the number of days the student was absent from school each year. Group 2, the treatment group, had a lower mean for absences and a lower standard deviation each year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>S.D.</th>
<th>S. E. Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATT-5</td>
<td>1</td>
<td>80</td>
<td>8.93</td>
<td>7.45</td>
<td>.83</td>
</tr>
<tr>
<td>ATT-5</td>
<td>2</td>
<td>57</td>
<td>7.33</td>
<td>5.95</td>
<td>.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.44</td>
<td>8.78</td>
<td>.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.88</td>
<td>6.77</td>
<td>.90</td>
</tr>
<tr>
<td>ATT-7</td>
<td>1</td>
<td>80</td>
<td>12.78</td>
<td>9.33</td>
<td>1.04</td>
</tr>
<tr>
<td>ATT-7</td>
<td>2</td>
<td>57</td>
<td>10.88</td>
<td>9.18</td>
<td>1.22</td>
</tr>
<tr>
<td>ATT-8</td>
<td>1</td>
<td>80</td>
<td>15.79</td>
<td>11.51</td>
<td>1.29</td>
</tr>
<tr>
<td>ATT-8</td>
<td>2</td>
<td>57</td>
<td>10.65</td>
<td>9.05</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Group 1=nonlooping students
Group 2=Looping students
ATT-5=number of days absent in 5th grade
ATT-6=number of days absent in 6th grade
ATT-7=number of days absent in 7th grade
ATT-8=number of days absent in 8th grade
Tables 4.14, 4.15, and 4.16 show the covariance calculated for attendance means to compare the treatment group and the control group. The only statistically significant difference was in the eighth grade year with the significance of .016, with $p < .05$. The null hypothesis was accepted for the sixth and seventh grades but was rejected for the eighth grade attendance means.

Table 4.14

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>3821.53</td>
<td>1</td>
<td>3821.53</td>
<td>105.75</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>57.89</td>
<td>1</td>
<td>57.89</td>
<td>1.60</td>
<td>.208</td>
</tr>
<tr>
<td>Error</td>
<td>4842.30</td>
<td>134</td>
<td>36.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23621.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$p < .05$

Covariate=Attendance in Grade 5
Dep. Variable=Attendance in Grade 6

Table 4.15

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>3816.92</td>
<td>1</td>
<td>3816.92</td>
<td>65.68</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>14.56</td>
<td>1</td>
<td>14.56</td>
<td>.25</td>
<td>.618</td>
</tr>
<tr>
<td>Error</td>
<td>7787.17</td>
<td>134</td>
<td>58.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>31404.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$p < .05$

Covariate=Attendance in Grade 5
Dep. Variable=Attendance in Grade 7
Table 4.16
Comparison of Group 1 and Group 2
8th Grade Attendance

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>3346.87</td>
<td>1</td>
<td>3346.87</td>
<td>38.28</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>521.58</td>
<td>1</td>
<td>521.58</td>
<td>5.97</td>
<td>.016*</td>
</tr>
<tr>
<td>Error</td>
<td>11715.50</td>
<td>134</td>
<td>97.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>41466.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p #05
Covariate=Attendance in Grade 5
Dep. Variable=Attendance in Grade 8

Hypothesis 4

Ho:4 There is no statistically significant difference in the number of student absences during the sixth, seventh, and eighth grades between the experimental group and the control group.

Group statistics are presented in Table 4.17 for the treatment group and the control group. Discipline referrals were calculated by the number of office referrals that gave consequences of in-school or an out-of-school suspensions. Tables 4.18, 4.19, and 4.20 show the comparisons for each year between Group 1 and Group 2. There was no statistically significant difference in any of the three grade levels. The sixth-grade year gave a significance of .902, the seventh grade year gave a level of .162, and the eighth grade year gave .206. At p #05, the null hypothesis was accepted for Hypothesis 4.
Table 4.17
Group Statistics - Discipline Referrals

<table>
<thead>
<tr>
<th>Year</th>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>S.D.</th>
<th>S. E. Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS-5</td>
<td>1</td>
<td>80</td>
<td>.54</td>
<td>.94</td>
<td>.11</td>
</tr>
<tr>
<td>DIS-5</td>
<td>2</td>
<td>57</td>
<td>.16</td>
<td>.59</td>
<td>7.83E-02</td>
</tr>
<tr>
<td>DIS-6</td>
<td>1</td>
<td>80</td>
<td>1.00</td>
<td>1.69</td>
<td>.19</td>
</tr>
<tr>
<td>DIS-6</td>
<td>2</td>
<td>57</td>
<td>.44</td>
<td>1.31</td>
<td>.17</td>
</tr>
<tr>
<td>DIS-7</td>
<td>1</td>
<td>80</td>
<td>1.39</td>
<td>2.20</td>
<td>.25</td>
</tr>
<tr>
<td>DIS-7</td>
<td>2</td>
<td>57</td>
<td>.44</td>
<td>1.30</td>
<td>.17</td>
</tr>
<tr>
<td>DIS-8</td>
<td>1</td>
<td>80</td>
<td>1.50</td>
<td>2.38</td>
<td>.27</td>
</tr>
<tr>
<td>DIS-8</td>
<td>2</td>
<td>57</td>
<td>.53</td>
<td>1.38</td>
<td>.18</td>
</tr>
</tbody>
</table>

Group 1=nonlooping students
Group 2=looping students
DIS-5=number of in-school and out-of-school suspensions in grade 5
DIS-6=number of in-school and out-of-school suspensions in grade 6
DIS-7=number of in-school and out-of-school suspensions in grade 7
DIS-8=number of in-school and out-of-school suspensions in grade 8

Table 4.18
Comparison of Group 1 and Group 2
6th Grade Discipline

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>209.95</td>
<td>1</td>
<td>209.95</td>
<td>251.00</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>1.278E-02</td>
<td>1</td>
<td>1.278E-02</td>
<td>.02</td>
<td>.902</td>
</tr>
<tr>
<td>Error</td>
<td>112.09</td>
<td>134</td>
<td>.836</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>413.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p#05
Covariate=Discipline in Grade 5
Dep. Variable=Discipline in Grade 6

64
Table 4.19
Comparison of Group 1 and Group 2
7th Grade Discipline

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>233.03</td>
<td>1</td>
<td>233.03</td>
<td>129.04</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>3.57</td>
<td>1</td>
<td>3.57</td>
<td>1.98</td>
<td>.162</td>
</tr>
<tr>
<td>Error</td>
<td>241.99</td>
<td>134</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>640.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p #05
Covariate=Discipline in Grade 5
Dep. Variable=Discipline in Grade 7

Table 4.20
Comparison of Group 1 and Group 2
8th Grade Discipline

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
<td>247.36</td>
<td>1</td>
<td>247.36</td>
<td>108.02</td>
<td>.000</td>
</tr>
<tr>
<td>Dep. Variable</td>
<td>3.705</td>
<td>1</td>
<td>3.71</td>
<td>1.62</td>
<td>.206</td>
</tr>
<tr>
<td>Error</td>
<td>306.85</td>
<td>134</td>
<td>2.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>750.00</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p #05
Covariate=Discipline in Grade 5
Dep. Variable=Discipline in Grade 8
Table 4.21 gives a summary of the results of each hypothesis. Hypothesis 2 is the only hypothesis that gives a statistically significant difference each year in mathematics yearly averages and in reading for the sixth and seventh grades. The other hypotheses accept the null hypothesis.

<table>
<thead>
<tr>
<th></th>
<th>6th Grade</th>
<th>7th Grade</th>
<th>8th Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis 1</td>
<td>Reading</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypothesis 2</td>
<td>Reading</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hypothesis 3</td>
<td>Attendance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypothesis 4</td>
<td>Discipline</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

+ = Statistically Significant Difference; rejected null hypothesis
0 = No Difference; accepted null hypothesis
CHAPTER 5
SUMMARY, DISCUSSION, AND CONCLUSION

Summary

Looping, as a transition from elementary school to middle school, was implemented by Hampton Elementary School and Henry County Middle School during the years of 1996 and 1997. During each of the years, two classes from Hampton Elementary School entered Henry County Middle School in the sixth grade with their fifth-grade classmates and teachers. The purpose of this study was to determine if the students participating in the looping approach to transition to middle school have statistically significant higher achievement rates based on ITBS math total and reading comprehension scores, mathematics and reading yearly averages, attendance rates, and number of discipline office visits resulting in in-school and out-of-school suspensions. The researcher wanted to determine not only the effects the looping transition to middle school made in the sixth grade but also long-term effects in the seventh and eighth grades. The data were gathered from the elementary school and the middle school for the fifth, sixth, seventh, and eighth grade years. The treatment group was compared to students who also attended the fifth grade at Hampton Elementary School the same years. The control group were randomly dispersed into sixth grade classrooms instead of looping with their classmates and teachers. The sample for the treatment group and the control group were then determined by the students who attended Henry County Middle School all three years during the sixth, seventh, and eighth grades.
Discussion

The possible number of participants who attended fifth grade at Hampton Elementary School during the years 1995-96 and 1996-97 was 196 students. During the fifth grade years with the 196 students, the treatment group and the control group were closer in equality in terms of mean scores. When independent samples t-tests were conducted on the two groups for ITBS reading comprehension scores in the fifth grade, the statistics were $t=-.77$ and $p=.441$. The mean scores for the two groups were 47.45 for the control group and 50.08 for the treatment group. When conducting an independent samples t-test for the ITBS math total scores for the fifth grade year, $t=.06$ and $p=.953$. The mean scores were 49.68 for the control group and 49.45 for the treatment group. The mean score for the control group was slightly higher than the treatment group. However, the sample of students decreased because 31 students from the control group and 28 students from the treatment group transferred out of Henry County Middle School before finishing the eighth grade. If all the expected sample had remained, the results may have been more in favor of the treatment group.

Researchers stated that looping increased achievement in reading and mathematics (Burke, 1996; Grant, et. al., 1996; Lincoln, 1997; and Zahorik & Dichanz, 1994). These same researchers attributed the gains made by students in looping classrooms to the time saved at the beginning of the second year; the bonding between the teacher and students; more time for slower learners to learn skills; and the teachers’ knowledge and understanding of the students’ learning styles, academic strengths and limitations, and personality traits.
This study investigated four research questions. The first question investigated if students looping to the sixth grade with their teachers and classmates would have statistically significant higher ITBS reading comprehension and math total mean scores than the control group. The scores for the ITBS were only gathered in the fifth and eighth grades because the ITBS was not given in the sixth and seventh grades in Henry County. Since an independent samples t-test for the fifth grade ITBS reading comprehension mean scores showed the two groups were already different, a covariance was used to take out any differences that existed in the beginning. Significance, at the .05 level, was determined with F= .132 and p=.717. These statistics accept the null hypothesis. There was no difference in the treatment group and the control group in the ITBS reading comprehension scores.

When the covariance was conducted for the eighth grade ITBS mathematics total score, the significance at the .05 level was determined to be F= 2.60 and p=.109. The significance was close at the .10 level; however, the researcher concludes that the null hypothesis must also be accepted for mathematics. There were no statistically significant differences in the ITBS reading comprehension and math total scores for the 2 groups.

The second research question sought to determine if there was a statistically significant difference in the reading and mathematics yearly averages between the treatment group and the control group. Covariance were conducted on both mathematics and reading. The fifth-grade ITBS reading comprehension mean score and the ITBS total math mean score were used as the covariates. A statistically significant difference was shown each year of the study in mathematics yearly averages. In the sixth grade year, the statistics were F=16.56 and P=.000; in the seventh grade the statistics were F=5.12 and p=.025, and
in the eighth grade the statistics were \(F=4.24 \) and \(p=.042 \). Therefore, the researcher rejected the null hypothesis for the area of mathematics yearly averages. When the covariance was conducted for the three years of reading yearly averages to compare the treatment group with the control group, a statistically significant difference was found in the sixth and seventh grades. The seventh grade was the most significant with \(F=8.388 \) and \(p=.004 \). The sixth grade had a significance of \(F=3.87 \) and \(p=.051 \), which is close to the .05 significance. At .10 level, it is significant. By the eighth grade, there was no significance with \(F=2.50 \) and \(p=.116 \).

The students in the looping classes made more significant gains in the area of mathematics. This may have occurred since mathematics is sequential, and with looping no time was lost at the beginning of the sixth-grade year. Superintendent Rappa of the Attleboro, Massachusetts, school district stated that when students are not allowed to loop with their teachers, time is lost at the beginning of each year getting to know one another (Grant, et. al., 1996). With the extra time saved, the looping classes were able to continue their math study at the beginning of the sixth-grade year.

The third research question sought to determine if the looping approach to the transition of students to middle school would increase student attendance in the sixth, seventh, and eighth grades as compared to the control group. The two groups started the same in fifth grade with \(t=1.39 \) and \(p=.167 \). After conducting a covariance for grades sixth, seventh, and eighth grades, only the eighth grade year showed a statistically significant difference with \(F=5.95 \) and \(p=.016 \). The covariate was the fifth grade attendance rate. The researcher concludes that the treatment group just had a higher attendance rate during their eighth grade year and does not contribute this significance to
looping since there was no difference in the sixth and seventh grades. However, since the treatment group had higher mathematics scores, more of the students in this group were placed in the higher mathematics classes, such as Algebra I, in the eighth grade. This may have attributed to the higher attendance rate.

The fourth research question sought to determine if the transition to middle school using the looping approach significantly decreased the number of office referrals giving the consequences of in-school or out-of-school suspensions. When an independent samples t-test was administered for the fifth grade, the researcher found that the two groups were already different with t=2.895 and p=.004. Since they were already different, covariance were conducted for all three years. No statistically significant difference was found in the sixth, seventh, or eighth grade. The null hypothesis was accepted for disciplinary office referrals in all three years.

The treatment group began in fifth grade with approximately 89% of its students with no disciplinary office referrals; and in the eighth grade, the same group had 81% with no significant disciplinary office referrals. The control group began in the fifth grade with approximately 69% of its students with no disciplinary office referrals and ended in the eighth grade with 56% with no disciplinary office referrals. Both groups showed a decrease in the number of students with no disciplinary office referrals which gave a consequence of in-school or out-of-school suspensions. The treatment group decreased by only 8%, and the control group decreased by 13%.

Conclusions

Based on the literature review, students using the looping approach to advance from one grade level to the next outperformed their peers in academic achievement, had better
attendance in school, and had less discipline problems (Burke, 1996; Grant, et al., 1996; Lincoln, 1997). The results of this study based on attendance and discipline rates conflicted with the research. There was no difference between the treatment group and the control group in disciplinary office referrals that resulted in in-school and out-of-school suspensions. Discipline referrals are too subjective among teachers to use with quantitative research. Attendance rates in the study also showed no significance until the eighth grade. The researcher attributed the difference in the eighth grade to the fact that more students from the treatment group were in the more advanced and challenging mathematics classes in the eighth grade, and the students wanted to come to school for the challenging work.

In terms of academic achievement, the two groups did not show a statistically significant difference at the .05 level when comparing the treatment group and the control group in reading comprehension and total mathematics ITBS, but the total math ITBS scores were close at the .10 level. When comparing the reading and mathematics yearly averages, the study showed statistically significant differences in both reading and mathematics. During the sixth and seventh grades, the looping classes made significantly higher in reading, but did not in the eighth grade. However, the students in the looping classes made more gains in mathematics for all three years. This may have occurred since mathematics is sequential and with looping no time was lost. At the beginning of the sixth grade year, the teachers in the nonlooping classes did not know which students knew the mathematical concepts or which concepts they knew. The teachers in the looping classes did not have to spend time evaluating the students’ knowledge of mathematics, the mathematical concepts the students had mastered, student learning styles, and student behavior patterns. When looping with a class, the teacher knew what he or she needed to
re-teach and teach in more depth. The teacher began teaching with new concepts at the beginning of the year instead of six weeks later. Students were challenged and their interests were held. Students saw they were making progress instead of repeating the previous year’s work.

The researcher concluded that the looping approach to the transition to middle school should not be continued based on two concerns. The first concern was that the gains were not significant with the normed-referenced test, ITBS, but gains were shown on yearly averages with teacher-given mathematics and reading yearly averages. Since grades are more subjective due to teacher difference, the researcher has concerns because the standardized test showed no gains.

The second concern for the researcher was two of the teachers who looped with their classes to Henry County Middle School did not return to the elementary school. The reasons stated by the two teachers were more available planning time, less subjects to teach, and the desirable ages of the students. Looping to another school splits teams of teachers. When looping teachers decide not to return to the elementary school, the school must replace those teachers.

Recommendations for Further Study

The following are recommendations for further study:

1. The quantitative research did not disaggregate scores based on at-risk or ESOL students. In the future, research needs to disaggregate the scores for these groups.

2. The study did not address the teacher’s role or teacher characteristics. There may be some teachers more suited to looping than others.
3. This study addressed discipline by the number of office referrals resulting in out-of-school and in-school suspensions. The researcher suggests to find another way to study the discipline effectiveness.

4. Data from this study are from one elementary and one middle school in Georgia. A more representative sample needs to be completed to allow for greater generalizability.
REFERENCES

77
Million, J. (1996). To loop or not to loop? Tis a question for many schools. *NAESP Communicator, 19*(6), 1-7.

