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CHAPTER 1 

INTRODUCTION 

 

A game engine is a software component that controls the basic subsystems of a video 

or computer game.  Common game systems include graphics, audio, physics, collision 

detection, artificial intelligence, networking, and input.  Game engines are often, but not 

always, separated from the game logic so that different games can be written with the same 

engine.  A game engine is combined with game logic and artistic content (such as 3D models, 

textures, music, sound effects, and scripts) to form a complete game. 

Game engines are sometimes written specifically for a certain game, and other times 

they are designed for a particular type of game genre.  The Unreal Engine [42], for example, 

is primarily designed for first-person shooters (although it has been used in other types of 

games).  Others are written to be more general-purpose, such as Gamebryo [14]. 

This work describes the background, software architecture, and performance 

characteristics of MAGE, a general-purpose game engine.  MAGE takes a different approach 

than many other game engines by using an architecture that allows external libraries to load 

at run-time and to supply the functionality of all the game systems.  This is known as a 

plugin-based architecture.  MAGE ties all the systems together into one cohesive package.  

This approach allows developers to choose existing third-party components known as 

middleware, which fit their needs the best, while still using the MAGE interface. 
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MAGE uses an architecture that enables the use of highly specialized middleware 

libraries.  The reasoning behind this is that the best libraries focus on doing one thing and 

doing that one thing well.  The performance evaluation section of this work tries to determine 

the validity of one important part of that assumption by comparing the performance of 

MAGE to other game engines that are similar in scope. 
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CHAPTER 2 

RELATED WORK 

 

The design and architecture of game engines are well understood in commercial 

circles, but the amount of research in academia on this subject is limited.  Although there is a 

wealth of publications in the areas related to game development such as computer graphics, 

audio processing, networking, artificial intelligence, and rigid-body dynamics, there has been 

little work done with games themselves and how they interact with these other fields.  Part of 

the reason for this is that game development hasn’t been taken seriously as an academic topic 

until recent years.  As researchers have realized that games can be used for purposes other 

than entertainment and that game development poses interesting and unique theoretical 

problems, the amount of interest in the field has increased. 

A good overview of game engine development is presented in the paper describing 

the NetImmerse engine [23].  This article gives a good overview of the subject and the 

challenges facing anyone attempting to design a game engine.  NetImmerse is designed to be 

a general-purpose game engine, one that is not tied to a particular genre.   NetImmerse 

provides a layer of software that hides the underlying implementation details of OpenGL [25] 

and DirectX [9].  This is known as an abstraction layer.  NetImmerse uses a scene graph, a 

hierarchical data structure used for efficiently culling graphical objects that are not in view, 

for scene organization. 
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A work that deals with the general software architecture of game engines is Jeff 

Plummer’s master’s thesis [21].  In it, he describes the concept of a “system of systems”, 

where off-the-shelf components are loosely coupled to form a complete game engine.  This is 

a similar approach that MAGE takes.  Plummer explains the architecture in great detail via 

UML diagrams and through a prototype system he created. 

The design and architecture of a more complete game is described in Hadwiger’s 

Master’s thesis [26].  In the thesis, he describes the Parsec game engine, which was created 

for a multiplayer space combat game.  His engine differs from MAGE because it is very 

specialized for the particular type of game being made, whereas MAGE is more a general-

purpose engine.  Hadwiger’s results are compelling since his game was fully playable and 

had an extensive user base. 

In addition, there are several books on game development.  Most of these book focus 

on developing the individual components present in a game engine, so they usually have 

quick overviews of computer graphics, physics, etc.  A book that focuses more on the game 

engine itself is David Eberly’s work [8].  It describes the design of his Wild Magic software 

and provides a fascinating look at the development of a high-performance game engine.  

Although it contains information specific to fields like graphics, it also contains relevant 

information about game engine architecture in general. 

Panda3D [28] is the software system that probably most closely resembles MAGE’s 

feature set.  Initially developed for a Disney massively multiplayer online game, it is now 

open source software that is co-developed by Carnegie Mellon University’s Entertainment 

Technology Center and Disney.   In addition to the Disney game, it has been used for class 
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projects at Carnegie Mellon.  It is under active development and focuses on ease of use and 

rapid development. 

VR Juggler [2] is one of the most prominent Virtual Reality (VR) application 

development frameworks.  It was developed at Iowa State University’s Virtual Reality 

Applications Center.  VR Juggler runs on a number of different platforms and supports a 

wide variety of VR devices.  Like MAGE, it offers a variety of modular components that 

implement various pieces of functionality.  Although not a game development platform, VR-

Juggler does allow the development of virtual environments (VEs) like MAGE-VR [4]. 
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CHAPTER 3 

GAME ENGINE COMPONENTS 

 

Much of a game engine’s functionality is defined by its components.  Although the 

types of components in a game engine can vary, there are several components that are 

common to most modern game engines.  The following sections describe the various 

components and how they affect MAGE.  Note that currently the game artificial intelligence, 

networking, scripting, and graphical user interface systems are not implemented in the 

present version of MAGE.  They will be added in future releases (see Ch. 7 for details). 

 

3.1 Core 

The game engine core is responsible for coordinating the various systems and 

providing functionality like logging, math routines, timers, and other utility functions used 

throughout the engine.  The core uses the concept of notifying objects of events, known as 

message passing, to keep different systems synchronized.  For example, when a game 

object’s transform (its position, rotation, and scale) changes, its graphical, audio, and 

physical components need to be notified.  The core also is responsible for correctly 

initializing and de-initializing the different systems in the proper order.  In MAGE, the core 

loads systems as dynamically linked libraries on demand, which can be controlled by a 

configuration file or programmatically. 
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3.2 Resource Manager 

A resource manager is responsible for managing the external assets used by a game.  

These assets can be artistic assets like 3D models, textures, or music files, or they can be 

scripts, which define certain behaviors during gameplay.  Because game resources are often 

large and take up significant memory, they are usually loaded on demand and unloaded again 

when they are no longer needed.  Some games load all the resources for a level at the 

beginning of a level, using a loading screen and making the user wait until the loading is 

completed.  Other games load everything on the fly, so that the user doesn’t have to sit 

through a loading screen.  This is usually accomplished by having a background thread that is 

constantly loading and unloading resources.  This approach provides a more seamless 

experience for the user, but it entails more technical complexity and causes poorer run-time 

performance because of the overhead of the background thread.  Without proper resource 

management, games can suffer from long loading times and poor performance. 

Resource managers often have to manage data from three primary sources.  The 

simplest case is when the resource is on a hard disk drive.  If the resource is small enough, it 

can be loaded entirely into memory.  If it is not small enough, it must be streamed from the 

disk.  This is often case for music files, which can be several megabytes in size.  Another 

source is external media, which today is usually CD-ROMs or DVDs.  Since these data 

sources are often much slower than hard disk drives, resources are usually copied to the hard 

disk drive when the game starts or, in the case of game consoles that don’t have hard disk 

drives, they are streamed as the game is running.  The third source of resource data is the 

network.  For some games, resources may be stored on a server and they must be 
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downloaded before they are used.  Since remote servers are much slower than the previous 

two sources, the resources from servers are usually downloaded in advance. 

Additionally, resources can come in different forms.  Resources are often compressed 

when they are stored on disk and uncompressed as they are loaded into memory.  Since a 

modern game’s resource set are often in the gigabyte range, it becomes necessary to 

compress them.  Game resources are also often encrypted so as to protect the assets from 

people who may try to hack the game or steal the content.  This is very important in 

multiplayer games where cheating can ruin the gaming experience for many people. 

 MAGE currently has basic resource management support for graphics and audio files.  

It can load both compressed and uncompressed resource from the local disk.  Since all 

loading and unloading of resources in MAGE is explicit, it does not currently have an 

intelligent system that automatically unloads resources when memory is scarce. 

 

 

Figure 1: A particle effects demo of MAGE using the OGRE graphics system. 
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3.3 Graphics System 

The graphics system is responsible for managing the visual output of the game.  

Graphics can be three-dimensional, two-dimensional, or text.  Most modern games are three-

dimensional, although some games use a fixed-position camera to simulate two-

dimensionality.  Graphics systems can usually display a wide variety of object types, such as 

3D models, lights, shadows, textures, and particle systems.  Figure 1 shows an example of 

some of these effects.  Graphics engines are often the most complex aspect of a game engine, 

so many game engines are designed around the needs of the graphics engine. 

MAGE only supports 3D graphics engines, and furthermore stipulates that the engine 

must be scene graph-based.  Scene graphs are discussed in detail in section 4.8. 

 

3.4 Audio System 

Audio systems manage the aural outputs of a game.  These can include sounds, 

character dialog, and background music.  Smaller sound files can usually be loaded into and 

directly played from memory, but longer audio clips, such as character speech and songs, 

often need to be streamed from the disk.  Modern audio systems can simulate 3D sounds, 

where sounds can seem to come from different directions in relation to the listener.  

Advanced audio systems can also simulate the Doppler effect, which is the phenomenon 

where the pitch of a sound drops sharply after the source passes the listener.  

MAGE supports both streamed and unstreamed audio.  It supports 3D audio and the 

Doppler effect for unstreamed sounds.  MAGE can also play a wide variety of audio file 

formats. 
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3.5 Input System 

The input system is the mechanism through which the player controls the game.  

Traditional computer games supported keyboards and mice, but modern games can 

additionally support console-style controllers, joysticks, and motion-sensing controls.  Input 

systems usually support customization, so that the player can select the effect of each input 

signal.  MAGE currently supports just basic keyboard and mouse inputs. 

 

3.6 Collision Detection System 

The collision detection system reports collisions between objects in the game world 

back to the game engine.  This information can be used in several ways.  One common use is 

keeping game objects on the ground and keeping them from going through world objects.  

The collision detection system can also be used for game artificial intelligence, so that an AI-

controlled character can simulate vision by casting a ray in the direction she is facing.  If the 

ray intersects an object, then the AI character can “see” that object. 

The collision detection system is often integrated with the physics system, which is 

the approach that MAGE uses.  Collision detection can be considered to be the first phase of 

physics simulation, because physics is usually simulated after it is determined that objects 

have collided. 
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Figure 2: MAGE running a physics simulation of tumbling boxes using the Newton physics 

library. 

 

 

3.7 Physics System 

The physics system simulates the effects of physics on game objects.  The most basic 

form involves simulating the behavior of object collision, but advanced physics systems can 

simulate joints, object breakage, and springs.  There are two general types of physics 

simulations: rigid body and soft body dynamics.  Rigid body dynamics can only use objects 

that do not deform, but results in less computationally expensive physics calculations.  Soft 

body physics can simulate object deformation, but their use in current games is infrequent 

because of the computational costs. 

MAGE currently supports basic physics simulations of game objects’ responses to 

collision.  MAGE also allows developers to tune several parameters that give fine-grained 
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control of how an object behaves after a collision.  These parameters include mass, gravity, 

softness, and bounciness.  Figure 2 shows MAGE using the Newton physics system in action. 

 

3.8 Game Artificial Intelligence System 

Game artificial intelligence (AI) is a system that gives the characters in the game the 

appearance of intelligent behavior.  Game AI is different than traditional AI because 

characters in a game don’t necessarily need to be intelligent.  Instead, they must merely give 

the impression to the user that they are behaving intelligently.  This can be accomplished by 

using shortcuts based on the system’s knowledge of the game world.  For example, a game 

designer may mark certain game engines as objects that provide good cover, so that when an 

AI-controlled character comes under fire, he might hide behind a designated cover object.  

This appears to the user that the character was intelligent enough to know the object provided 

cover, but in reality this was pre-designated. 

 

3.9 Networking System 

A networking system allows a player to play against others using network 

communication.  Depending on the requirements of the game, the network system may use a 

client/server architecture, a peer-to-peer architecture, or some combination of both.  Games 

also may support anywhere from two to several thousand players in a game world, depending 

on the game type.  A networking system must remain responsive with a congested network, 

or the quality of the user experience will degrade dramatically.  Furthermore, a network 

system usually provides some level of cheat prevention so that one player cannot ruin the 

experience of others. 
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3.10 Scripting System 

Many games provide some sort of scripting system so that designers can write game 

logic by designers in a high-level (and usually interpreted) programming language.  Since 

game logic is usually not a performance bottleneck, the use of a slower language does not 

usually impact the overall game performance significantly.  The benefit is that designers can 

rapidly iterate through different designs without worrying about a long edit-compile-debug 

process. 

 

 

Figure 3: A fairly complex GUI from Maxis's SimCity 4. 
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3.11 Graphical User Interface System 

Graphical user interfaces (GUIs) in games usually mimic traditional 2D style GUIs 

used in operating systems, but are often rendered in a 3D environment.  GUIs in games range 

from the very basic, for games that use GUIs for simple menus, to the advanced, such as in 

detailed simulation games where the user is presented with a multitude of options.  Figure 3 

shows an example of one such complex game GUI, with hierarchical windows and many 

buttons.  Like the scripting system, a GUI system is absent from MAGE and may be added as 

part as a higher-level game library in the future.  
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CHAPTER 4 

SOFTWARE ARCHITECTURE 

 

4.1 History of Game Engine Architecture 

The video game industry began in the 1970’s with big releases such as Pong [37] in 

1972 and Asteroids [5] in 1979.  Some games during this time, like Pong, did not have any 

software because the hardware on which they ran lacked microprocessors and the games 

were built directly into the electronic components of the hardware.  For games that did have 

microprocessors, their software architecture consisted of monolithic programs written in 

assembly language.  This type of architecture was forced by the constraints of the software 

and hardware of the time.  The machine code generated by the mainstream high-level 

languages like Fortran and Cobol was not efficient enough for the limited hardware of early 

arcade machines.  At the time, CPU clock speeds were low and RAM capacity was small.  In 

such a constrained environment, it was necessary for a programmer to hand-tune each game 

for the particular hardware the game ran on.  Also, since the early games were on arcade 

machines, each new game usually ran on different hardware and therefore each game had to 

be rewritten to run on the new hardware.  Finally, the games of the time were fairly simple 

and were developed by one or two programmers.  Since games were simple, there was not a 

need to put much thought into software architecture. 

Although the first traces of game engines were developed in the 1980’s with 

LucasArts’ SCUMM [39] and Infocom’s Z-machine (a text game engine) [18], the games of 
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that decade were predominantly written either in pure assembly or some mix of C and 

assembly; C was the first programming language to gain widespread acceptance with game 

developers because of its focus on high performance.  Software reuse was still typically 

minimal, perhaps due to the lack of hardware abstraction and standards.  Another possible 

contributing factor to the lack of reuse is that game engines typically are written for a 

particular genre and video games were too young to have such delineated genres. 

The birth of the concept of the modern game engine arguably occurred with the 

release of id Software’s Doom [10] in 1993.  Doom popularized the idea of licensing game 

engines, where companies would pay another company to use their game engine to create 

their own game.  This approach saved developers time and money because they could focus 

on creating their game instead of developing the underlying components.  Doom’s model of 

development continues today, with game companies releasing games using their proprietary 

game engines, which they then license to other companies.   

In the intervening time, there have been significant changes to the field of game 

development.  The programming language of choice has transitioned from C to C++, 

evidenced by the fact that Doom 3, released eleven years after the original, was written in 

C++ [11].  The transition to C++ was necessary for the industry because as games grew more 

complex, with source code lines numbering in the hundreds of thousands, it became more 

difficult to manage monolithic C programs without the benefits of modularization, 

inheritance, data encapsulation, and polymorphism that object-oriented programming offers. 

Another important trend that has surfaced in recent years is the idea of middleware 

components.  Instead of licensing entire game engines, companies now can license individual 

game engine components that they combine together to create a custom game engine.  The 
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benefits of this approach are flexibility and specialization.  Licensing entire game engines 

usually dictates the type of game that can be developed, whereas individual components can 

be used to create a greater variety of games.  Also, middleware components tend to be more 

powerful because middleware companies usually specialize in developing just one 

component, which they can focus their energies on.  Products like Havok [17] (for physics) 

and fmod [13] (for audio) are examples of popular middleware components.  Middleware has 

become so specialized that there exists components solely for rendering trees [40]. 

But middleware is not restricted to individual components.  Products such as 

Renderware [38] and Gamebryo [14] are general-purpose game engines that, theoretically, 

can be used for any type of game.  These products may not have the same power as genre-

specific game engines, but they offer developers much more flexibility. 
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Figure 4: MAGE Architectural Overview.
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4.2 MAGE’s Plugin-Based Architecture 

MAGE follows the example of commercial general-purpose game engines by providing a 

system that can be used to develop many common types of game.  However, MAGE takes the 

concept of middleware one step further by using middleware components to provide the actual 

game engine functionality.  Furthermore, MAGE does not limit which middleware components 

can be used, instead allowing the possibility for many components to be integrated, as long as an 

interface that allows one component to communicate with another component, known as a 

wrapper, can be written to plug the middleware into the MAGE system.  Thus, MAGE 

introduces a new type of game engine framework, one that does not provide any implementation 

on its own, but allows the user to tie various pieces of middleware into one cohesive package.  In 

a sense, MAGE is not a game engine in itself, but a framework for building customized game 

engines, and is similar in concept to Plummer’s idea of a “system of systems” [21].  An overview 

of MAGE’s architecture is shown in Figure 4. 

The concept of a game engine framework supported by multiple middleware components 

is manifested in MAGE in the form of systems and plugins.  Systems are the parts of the game 

engine that provide a distinct type of functionality.  In MAGE, some of the supported system 

types are graphics, audio, physics, and input.  Other possible types of systems are graphical user 

interfaces, artificial intelligence, game scripting, and content management.  These systems will 

be detailed in the future work section.  Each system in MAGE is given a specific interface and 

purpose, so the coupling between each system in minimized.  Each system’s implementation is 

provided by middleware components in the form of plugins. 

In MAGE, plugins are dynamically linked libraries that are loaded at run-time to provide 

the implementation for specific systems.  The power of MAGE’s plugin system is that the user 
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can choose which plugin to use for each system.  Additionally, the user can choose not to use 

plugins for certain systems, if the functionality for those systems that are not required by the 

game.  Since the plugins are loaded at run-time, the plugins can be switched on the fly without 

recompiling the application. 

MAGE’s plugin-based architecture offers developers increased flexibility.  Before 

development of the game has begun, the development team can choose which libraries to use 

with MAGE.  If a developer wants to use a library that isn’t currently supported by MAGE, the 

developer can wrap the library in a plugin format that conforms to the MAGE interface to allow 

the library to be used within MAGE.  This flexibility is important, because middleware 

components for the same system have different strengths.  For example the Irrlicht [19] engine is 

extremely fast, but it doesn’t offer the cutting edge graphical features of OGRE [31]. 

Another aspect of the flexibility of MAGE’s plugin-based architecture is that 

development teams can switch components mid-development.  If the developer wants to switch 

audio libraries during a project, this can be done by changing one line in a script file and, if the 

audio library is not currently supported, by writing a wrapper to for the new audio library.  The 

same thing can be done with any of MAGE’s systems.  Since new middleware components are 

released frequently, the ability of MAGE to adapt to new third-party libraries is important. 

 

4.3 Tradeoffs for MAGE’s Flexibility  

Although switching middleware components in MAGE is literally a matter of changing 

one line in a text file that specifies different parameters, known as a configuration file, some 

effort must be spent to use the new piece of middleware correctly.  The reason for this is because 

the behavior for each component is different.  The volume of a sound will vary from one audio 



 21

library to the next.  Physics engines require different tuning parameters to get realistic and 

consistent behavior.  Switching graphics engines, in particular, requires extra effort because 

usually all the artistic content must be modified for the new engine.  But in general, MAGE’s 

design assumes the user may want to switch libraries mid-development. 

Another significant design issue that faces the development of the MAGE is creating a 

common interface to the heterogeneous third-party middleware libraries without sacrificing 

features of the underlying libraries.  The gap in the feature set between various libraries usually 

varies depending on the complexity of the implemented system.  Graphics libraries, for example, 

tend to have the most variance in their features, whereas input libraries have the least.   

MAGE’s solution to this problem is to expose as many features as possible from the 

underlying middleware components.  If a supported library does not have one or more features of 

one of the other supported libraries, the plugin for that library will throw an exception if the user 

attempts to use that piece of functionality.  A concrete example of this behavior is with the 

graphics system’s animation blending, which is a method of smoothly combining animations.  

OGRE supports animation blending, while the version of Irrlicht used in MAGE does not.  

Rather than not exposing this feature to the user, MAGE allows the user to attempt to perform 

animation blending, but if the Irrlicht plugin is being used, the plugin will throw a special 

MAGE_EXCEPT_UNSUPPORTED exception. 

Another way that MAGE handles disparate functionalities is by providing data files to 

game objects that have many parameters.  Data files, in this case, are files that specify the 

properties of an object.  Data files are used for the material systems in OGRE and Irrlicht, 

because they have many parameters, most of which don’t overlap.  Rather than creating a 

different set of functions that would only be compatible with one library but not the other, 
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MAGE adds a material data file syntax and parser to Irrlicht (but not to OGRE, since OGRE 

already supports material data files).  The material data file specifies attributes like the textures 

used, ambient lighting, and the type of alpha blending to use.  MAGE also supports specifying 

meshes and material systems with data files for Irrlicht.  

 

4.4 Middleware Supported by MAGE 

The key to MAGE’s success depends on the quality of the middleware components it 

uses for its plugins.  MAGE makes use of OGRE [31] and Irrlicht [19] for graphics, OIS [32], 

OGRE, and Irrlicht for input, OpenAL [34] and fmod [13] for audio, OPAL [33] (which in turn 

uses ODE [30]) and Newton [29] for physics, the Polhemus Liberty [36] driver for the motion 

tracker, and the CyberGlove [7] driver for the virtual glove.  It should be noted that MAGE 

offers two different plugin implementations for most of its systems.  This is to ensure that 

MAGE’s interface for these systems are generalized enough to encompass more than one system.  

It is also worth noting that many of the underlying libraries are available at no cost, allowing 

MAGE users to develop games at little to no cost. 

 

4.5 Virtual Reality Extensions to MAGE 

MAGE-VR is an extension to MAGE that adds support for technologies typically 

associated with Virtual Reality (VR).  MAGE treats VR devices as specialized input and output 

devices.  This abstraction allows MAGE to support VR capabilities without many modifications 

to the core library. 

The extensions to MAGE that comprise MAGE-VR are simply a few additional systems 

and plugins that are treated just like any other system within MAGE.  In MAGE-VR, the 
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additional systems are input systems for virtual reality gloves and 3D trackers.  Virtual reality 

gloves are gloves equipped with sensors that determine the position and rotation of the wearer’s 

fingers, palm, and wrist.  A 3D tracker is a sensor placed on a user to determine their position 

and rotation in space relative to the base station.  The plugins that implement these systems 

support the Immersion CyberGlove and the Polhemus Liberty motion tracker.  Once these 

systems are in place, they are included seamlessly with MAGE’s existing systems.  For example, 

in the sample VR application included with the MAGE distribution, the user can use the 

CyberGloves with attached motion tracker to move a virtual hand in the VE.  The user can use 

that hand to push objects that will behave in a physically realistic manner using the physics 

system. 

 

 

audioSys->getStream("music")->play(); 

 

meshNode = gfxSys->getRootSceneNode()>createChild("robot"); 

Mesh* mesh = gfxSys->createMesh("robot", meshNode, me); 

meshNode->setPosition(0, 0, 50); 

mesh->setCastShadows(true); 

mesh->getAnimation("walk")->setEnabled(true); 

 

Sound* sound = audioSys->createSound("footsteps", meshNode, 

"footsteps"); 

sound->setLoop(true); 

sound->play(); 

 

lightNode = gfxSys->getRootSceneNode()->createChild("light0"); 

Light* light = gfxSys->createLight("light0", lightNode); 

lightNode->setPosition(0, -50, 40); 

 

Figure 5: Sample source code for creating a music stream, a mesh, a sound, and a light. 
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4.6 MAGE’s Object-Oriented Design 

Object-oriented programming is at the core of MAGE’s design philosophy.  The clean 

separation of different components in MAGE is made possible by the encapsulation of each 

system.  Each system in MAGE has minimal coupling.  This is possible because game engines 

are made up of heterogeneous systems that are tied together for the purposes of the game, but can 

exist on their own.  This minimized coupling allows developers to safely swap out plugins 

without disturbing the state of the rest of the application.  There are some interdependencies 

between systems, but MAGE is carefully designed so that the impact of the coupling is 

diminished.  For example, the input system depends on the graphics system to provide a handle 

to the rendering window, so that it can capture mouse and keyboard events.  MAGE handles this 

interdependency by having the input system request the window handle from the graphics system 

once on initialization, but the two systems never interact after that point. 

The wrapping of each component into a plugin is accomplished through the use of 

inheritance and polymorphism, which are concepts from object-oriented programming.  

Inheritance is a method of creating classes by using the behavior of existing classes.  

Polymorphism is a method of varying object behavior based on the object’s type.  Each system 

and all the game objects the system can create are specified in abstract base classes that 

individual plugins must inherit and implement.  The polymorphism is evident when each system 

displays different behavior depending on the underlying plugin that is loaded.  The abstraction 

has many benefits to the developer using MAGE.  Using the provided interfaces, any library can 

be integrated into MAGE.  When developing an application with MAGE, the developer doesn’t 
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have to worry about such details as the different 3D vector and matrix formats of each library, 

since these details are abstracted out. 

 

4.7 MAGE’s Use of C++ 

MAGE, like most games and games engines today, is written in C++.  An example of 

using MAGE source code can be seen in Figure 5.  Although there are a growing number of 

projects using higher-level languages like Java and C# for game programming, almost all 

commercial games continue to use C++.  The reason for this is that Java and C# support many 

features that improve programmer productivity at the expense of runtime performance.  One 

good example of this is garbage collection.  Garbage collection frees the programmer from 

cleaning up objects herself, but it can stall a game at inopportune times, which is unacceptable 

for applications that must meet soft real-time requirements. 

It is possible, however, that game engines will transition to higher-level languages, just as 

the programming language of choice for game programmers has changed from assembly to C to 

C++.  But since this requires substantially faster hardware, it will take at least several years for 

this to become a reality.  In the meantime, a good approach to gain the benefits of high-level 

languages while retaining the performance of C++ is to use language bindings for scripting.  

Scripting has been used for years to allow non-programmers to design game logic and gameplay 

mechanics.  Typically, only the most high-level functions of the game are made scriptable, 

therefore exposing only a little bit of functionality to the user.  It is conceivable, however, that 

the entire game engine can have language bindings, therefore allowing the developer to write the 

game in their language of choice.  For more information about this topic, see the “Future Work” 

section. 
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Figure 6: A diagram of a simple scene graph, with scene nodes in ovals and attachable objects in 

rectangles. 

 

 

4.8 Scene Graph-Based Design 

An important part of MAGE design is its handling of game objects.  Game objects are 

discrete objects that can be moved in the 3D environment.  Examples of game objects are 3D 

models, sounds, and collision proxies, which are shapes that estimate the boundary of an object.  

Game objects are created by systems, with plugins providing implementations for all of the game 

objects. 

An unusual aspect of MAGE’s design is that all the game objects, including the non-

visual ones, are organized in a scene graph, which is a tree-like structure for creating a hierarchy 

of graphical objects (see Figure 6).  Scene graphs are commonly used for graphics engines, but 

they are useful in game engines for two major reasons. Firstly, some things in real life can be 

described naturally in terms of hierarchies, such as a wheel to a car or branches to a tree. With 

this type of hierarchy, it is easy to move and rotate grouped objects by simply cascading changes 
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in transform down the tree.  For example, if we move a car from a parking lot to the highway, we 

want the tires to go with it.  Child scene nodes can still move independently of their parent scene 

nodes, so that a tire could rotate when the car is turning, without causing the rest of the 3D car 

model to turn.  The second reason to use scene graphs is to making frustum culling more 

efficient.  Frustum culling is a method of removing objects that aren’t in view.  If a parent scene 

node is not in the view frustum, then both the parent and its children are not rendered (since the 

parent’s bounding box encloses the children), therefore cutting down on processing time. 

Scene graphs are typically used strictly as a method of organizing graphical structures.  

MAGE uses the scene graph for all other game objects because it helps both the spatial and 

logical organization of the game world.  It helps spatially because some objects that should be 

moved together can just be attached to the same scene node.  For example, if there is a man 

walking down the street while singing in the 3D environment, we can just create a scene node 

with a 3D model of the man with the sound of the song attached.  Therefore as the scene node is 

moved down the street, both the model and the sound will move with it.  The scene graph is also 

useful for logical organization because if two game objects should logically be grouped together, 

they can be attached to the same scene node.  When that scene node is destroyed, both the game 

objects will be destroyed as well. 

 

4.9 Focus on Rapid Application Development 

MAGE has a strong focus on rapid application development for maximizing the 

efficiency of the programmer and minimizing the development time of the game or virtual reality 

application.  This is accomplished by providing high-level functionality specifically targeted for 

game and virtual reality application developers.  Little “shortcuts” are sprinkled throughout the 
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library to save the developers from having to perform the tedious tasks themselves.  There are 

many examples of this targeted functionality.  One example is in the case when the developer 

wants to play a sound when two objects collide.  This is a very common scenario for game 

developers, so MAGE simplifies the process by allowing the user to play sounds at the point of 

collision.  This is contrasted with the tedious task of having to allocate the sound object 

manually, position the sound at the point of collision, play the sound, and then destroy the sound 

object. 

 

4.10 MAGE’s Behavior During a Typical Run 

In this section, the behavior of a MAGE application during an average run will be 

described.  During initialization, the user will specify which plugins are to be loaded for use.  

This can be either specified at compile-time or at run-time, using a simple configuration script.  

The order of loading plugins can be important if there are dependencies among them, so MAGE 

will automatically load certain plugin to fulfill dependencies, even if they are not explicitly 

specified by the user.  As each plugin is loaded, the underlying libraries will perform their own 

initialization routines.  For graphics libraries, this usually involves loading models, textures, and 

other resources from files, creating a render window with an appropriate pixel buffer, 

constructing a scene manager, and instantiating a camera. 

After all the plugins have been loaded and the libraries have finished initializing, 

MAGE’s main game loop begins.  In this loop, the user has the chance to perform operations 

before all the various systems have been ticked for that frame by using the start frame callback.  

After the frame started signal has been sent, all the systems are updated the time passed since the 

last frame as the only parameter.  The time is used for animation, stepping through the physics 
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simulation, and constructing Doppler effects (the phenomenon one hears when an ambulance 

with its sirens on passes them) for the audio system.  After the update signal has been sent, the 

end frame signal is fired, allowing the user to perform operations at the end of the frame. 

When the application is ready to terminate, MAGE begins unloading plugins (in the 

reverse order of creating them) and destroys the instantiated libraries.  Then MAGE frees up all 

the resources it has allocated itself and exits. 
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CHAPTER 5 

PERFORMANCE EVALUATION 

 

5.1 Performance Considerations 

MAGE’s architecture poses many interesting design issues, since MAGE’s flexibility and 

power do not come without tradeoffs.  The first and possibly the most obvious one is the issue of 

performance, because the increased levels of abstraction in a software system usually cause a 

decrease in performance.  In MAGE, these performance penalties are manifested in several areas.  

The most important one is the additional overhead of extra virtual function calls.  In game 

engines with either built-in systems or with fixed middleware components, the function calls to 

the systems can be made directly and efficiently.  By contrast, MAGE must make polymorphic 

function calls, which have overhead of virtual function tables and late-binding [22].  A virtual 

function table is a data structure used to store all the virtual functions present in a given class 

hierarchy.  Late-binding is the concept of associating an object with its type at runtime. 

Another sacrifice in performance MAGE makes for the sake of flexibility is the message 

passing and type conversions between systems.  One common example of this occurrence is 

when the user decides to move a scene node from one position to another.  This will necessitate 

the notification of the underlying graphics engine of the change and the conversion of the 3D 

vector structure from the MAGE format to one the graphics engine can understand.  If the scene 

node also contains a 3D sound (a sound with a three dimensional position and rotation), the 

audio system must in turn be notified and the vector then needs to be converted to the audio 
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system’s format, and so on.  Although these type conversions can be made relatively efficient by 

inlining the function calls or by writing them in assembly, they are frequent enough to cause 

slowdowns in the client application.  These type conversions would not be necessary if the 

system components were integrated into the main game engine. 

 

 

 

 

Figure 7: Comparison of frame rates for Java3D, MAGE-VR, and OGRE for (a) simple scenes 

and (b) complex scenes. 
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5.2 Results of Performance Evaluation 

Performance issues are of utmost importance to games and virtual reality applications 

since these applications must, by definition, run at interactive speeds.  However, performance 

cannot be deduced by simply analyzing the design of the software system.  The performance of 

the software must be measured, tested, and verified. 

In this section, we describe the results of our tests comparing the frame rates of identical 

scenes rendered in MAGE, OGRE, and Java3D [20] (see the MAGE-VR paper for more details 

on these results [4]).  The purpose of these tests is to demonstrate how much overhead MAGE 

adds to the underlying rendering components and how MAGE compares to a high-level graphics 

package written in Java.  We measure overhead by comparing a version of MAGE using OGRE 

as the active rendering plugin to OGRE running by itself.   Since OGRE only handles graphics 

and basic input, MAGE incurs a small performance penalty from adding an extra layer of 

abstraction, but allows it to handle VR input devices, audio, collision detection, and physics in a 

single integrated framework.  Finally, we evaluate MAGE to Java3D to compare MAGE’s 

performance to a high-level graphics package. 

Frame rates are affected by other applications and operating system services running on 

the test machine.  For this reason, frame rates represent an estimation of performance of the 

libraries being tested.  Furthermore, graphics are just one part of an interactive system that can 

cause latency, but they are indicative of the relative performance between MAGE and Java3D. 

The test machine used for experimentations was a single-processor 3.2 GHz Pentium 4 

with 1 gigabyte of RAM and a 256 MB Geforce 6800 graphics card.  The operating system used 

was Windows XP.  For the MAGE tests, OGRE was used as the underlying graphics library and 

all other plugin systems were disabled.  For Java3D, the JWSU toolkit was used for handling 
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basic scene creation and input handling [24].  For each test, the camera was fixed on one or more 

instances of a single model.  The model was loaded in the OGRE mesh file format for MAGE 

and OGRE and in VRML for Java3D.  DirectX was used for all tests and the graphics are 

rendered in a 640 x 480 window with 32-bit color. 

 

 

Figure 8: A model made up of 6,000 triangles that was used in the tests. (Model courtesy of De 

Espona Infografica) 

 

 

The first four tests, shown in Figure 7a, compared the frame rates obtained while 

rendering relatively simple scenes.  One of the models used for the test is shown in Figure 8.  In 

the first test, the scene was composed of one simple model made up of 308 triangles.  In this test, 

MAGE’s frame rates are 2.11 times that of Java3D’s.  MAGE added a modest overhead of 7% 

compared to OGRE’s frame rates.  The second test, with approximately 3000 triangles, showed 

MAGE’s frame rates to be 7.88 times that of Java3D’s frame rate and with 4% overhead 

compared to OGRE by itself.  The third test with about 24,000 triangles showed MAGE 7.51 
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times the frame rate of Java3D and MAGE’s frame rate was 0.4% below OGRE’s.  The final 

simple test was a scene with 60,000 triangles and MAGE maintained 15.49 times the frame rate 

as Java3D with an 8.4% overhead compared to OGRE. 

The final two tests, shown in Figure 7b, demonstrated complex scenes that have a large 

number of triangles on screen at once.  In the first test, a scene with approximately 238,000 

triangles on screen at once was used.  The test showed MAGE having 7.78 times the frame rate 

as Java3D with an overhead of less than 1%.  The final stress test was a scene with 600,000 

triangles, and MAGE obtained 16.70 times the frame rate as Java3D with an overhead of 9.5%. 

Our comparisons show that MAGE outperforms Java3D in both simple and complex 

scenes and incurs little overhead over just using OGRE graphics.  Furthermore, the tests show 

that MAGE generally scales better than Java3D as the scene gets more complex.  This is an 

important factor that will allow game and VR application developers using MAGE to implement 

highly detailed worlds while still maintaining high frame rates. 

 

5.3 Analysis of Performance Results 

From the performance results, MAGE adds little overhead to its underlying libraries, 

outperforms an engine with similar features, and vastly outperforms Java3D.  The reason MAGE 

is able to reach this level of performance is because its flexible architecture allows the developer 

to choose the highest performing libraries instead of being locked into one type of system.  Even 

though this flexibility adds some overhead, it is evident from the OGRE and MAGE 

comparisons that this overhead is minimal.  The reason for this is because the computationally 

expensive operations in rendering far outweigh the cost of the extra layer of abstraction. 
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CHAPTER 6 

APPLICATIONS USING MAGE 

 

 

 

Figure 9: A screenshot of SemanticSpy. 

 

 

6.1 SemanticSpy 

SemanticSpy [3] is tool for visualizing the activities of persons of interest around the 

world in a multimedia environment using semantic data.  SemanticSpy is intended for use by 

anti-terror and law enforcement agencies for tracking suspects as they travel and perform 

activities such as making phone calls or attending meetings.  By visualizing the movement and 
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habits of various individuals, the user may be able to notice suspicious patterns that they may not 

otherwise notice if they were viewing the data as just text.  

SemanticSpy demonstrates the use of MAGE for providing a multimedia environment by 

displaying three-dimensional models, playing audio files, and providing interactivity for the user.  

A screenshot of SemanticSpy is shown in Figure 9.  The three-dimensional models are used for 

displaying an interactive globe that can be rotated to show the travel routes of a suspect.  Models 

are also used to show the modes of transportation used by the suspect, such as the model of the 

car or plane the suspect is traveling in.  This may provide actionable information by law 

enforcement agencies if, for example, they see a suspect traveling in the same plane type on 

several occasions.  This may indicate that the suspect is planning an attack on board such a plane 

in the future. 

SemanticSpy also uses audio to convey pertinent information to the user.  The most 

important use of audio is for playing back phone calls or other conversations of the suspects.  

Phone calls may contain important bits of information that may lead to clues about nefarious 

plans the suspect may be planning. 
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Figure 10: An early screenshot of Battlecrest. 

 

 

6.2 The Battlecrest Project 

Battlecrest, shown in Figure 10, is a space combat game with a focus on realism that is 

currently in early stages of development.  The project is meant to be a proof-of-concept that a 

commercial-quality game can be developed using MAGE.  The game will make extensive use of 

physics to simulate spacecraft operating in a zero gravity environment. 
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CHAPTER 7 

FUTURE WORK AND CONCLUSION 

 

MAGE is presently not a complete engine.  Several features must be implemented before 

it will be comparable to commercial-quality engines.  MAGE requires extensive development to 

extend existing systems and to add crucial new ones.  Fortunately, many of these missing 

features are either currently in development or will be developed in the near future. 

 

 

 

Figure 11: Crazy Eddie's GUI running through OpenGL. 
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7.1 Graphical User Interface System 

One of the systems in development is the graphical user interface (GUI) system.  GUIs in 

3D environment are difficult to integrate into MAGE because they are usually tied to the 

graphics engine being used, which contradicts MAGE’s design philosophy of reducing the 

dependencies between systems.  This can be overcome by using a GUI system that is not 

dependent on any single render system.  There are very few of these systems available, the most 

prominent probably being Crazy Eddie’s GUI System [6], show in Figure 11.  The difficulty in 

integrating such a GUI system is creating an abstract interface to a GUI system, which have 

many different functions.  One approach to tackle this problem is by using data files, which is 

described in Section 3.3. 

 

7.2 Game Artificial Intelligence System 

Another important system that is absent from MAGE is artificial intelligence (AI).  AI in 

the context of game development is actually a narrow subset of the field of AI.  More about 

game AI can be found in [1], [27], and [41].  One of the challenges of integrating AI into MAGE 

are that AI systems are usually very game-specific and MAGE is intended to be a general 

purpose engine.  Also there is a dearth of free general-purpose game AI systems, so one will 

probably be built from scratch for MAGE.  Commercial options do exist, however, like the 

Renderware AI system [38].  There are options for specific areas of game AI, like pathfinding, 

where OpenSteer [35] is a good example. 
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7.3 Language Binding and Scripting 

A language binding is a way of allowing the programmer to use one language to call 

methods for a software system written in a different, usually lower-level language.  This allows 

the programmer to use a high-level scripting language to reduce development time while still 

maintaining the performance characteristics of the underlying software system.  Panda3D is an 

excellent example of using language binding in practice.  Although the core Panda3D engine is 

written in C++, the engine has Python [15] language bindings, allowing the programmer to 

develop Panda3D applications with Python.  This allows the programmer to rapidly prototype 

games using Python, without needing to recompile the game every time a change is made, since 

Python is an interpreted language.  Since the rendering and other computationally expensive 

operations are still done in the core Panda3D library, the game achieves acceptable performance. 

Scripting is the technique of using language bindings for very high-level game logic, 

allowing game designers without much experience in programming to develop their own scripts.  

Scripting is used extensively in modern games, with the Half-Life [16] series of games being a 

famous example.  Scripting is an important part of the content pipeline, which is discussed 

below. 
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Figure 12: A 3D model exported to the OGRE format from the FBX format. 

 

 

7.4 Tools for the Content Pipeline 

The game engine is just one part of developing a complete game.  The artistic content is 

what completes the game.  This content includes assets like levels, 3D models, textures, shaders, 

GUI elements, fonts, music files, sound effects, and game scripts.  Importing these assets from 

the digital content creation tools into the game engine is a significant task.  To do this, MAGE 

relies on individual libraries to provide exporters for popular formats in their domain.  OGRE 

provides exporters for many major 3D modeling programs and Irrlicht supports a few popular 

model formats, including the OGRE format.  The audio libraries support loading .wav and .ogg 
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files.  Standardized physics formats are still in their infancy and physics libraries have varying 

levels of support for them, but they may be an important feature in the future. 

Just being able to use the assets in the game engine is not sufficient, however.  Artists and 

designers must be able to see their changes made in their tools represented in the engine as 

quickly as possible, or it will quickly become a bottleneck in the game development process.  

There are various techniques to accomplish this task.  One is to provide tools that allow 

designers to view different types of content in a single application.  For example, if there is a 

scene in the game where an armored car crashes into a bank, the designer would want to see the 

models of the car and the bank, hear the sounds of the crash, and view the physics of the impact. 

The process of exporting artistic assets from the tools in which they were created and 

allowing these assets to be viewed and edited quickly in the game is called the content pipeline.  

Optimizing this content pipeline is an important task for game development teams.  MAGE 

currently relies on the libraries themselves for basic content pipeline functionality, but in the 

future will provide more robust tools.  One early step in this goal is the FBX exporter (see Figure 

12), which exports the FBX animation format [12] to the OGRE mesh format. 

 

7.5 Networking System 

Networking is an important feature for today’s online multiplayer games.  In the future, a 

networking system will be added to MAGE that supports the automatic replication of game 

objects to multiple clients of the network.  The goal is to make adding multiplayer capabilities to 

developers using MAGE as transparent as possible. 
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7.6 Portability 

Currently MAGE only builds under Microsoft Windows.  Making MAGE portable across 

different platforms is an important task.  Although a significant amount of work is required to 

realize the goal, it is a manageable problem since all the underlying libraries used by MAGE are 

cross-platform.  This means just the MAGE core needs to be ported to other platforms.  

Furthermore, MAGE’s interaction with the underlying OS and hardware is minimal and is 

currently confined to the resource management system. 

 

7.7 Conclusion 

MAGE’s plugin-based architecture offers developers flexibility and power by allowing 

them to choose the libraries that fit their needs.  By choosing the high-performance libraries, 

MAGE can maintain excellent frame rates, even with very complex scenes.  This is because 

MAGE has a very low overhead and most of the frame time is spent in the underlying libraries. 

This flexible architecture allows MAGE to be used for a variety of different games types.  

Through MAGE-VR, MAGE can also support virtual reality devices with few modifications to 

the core library. 

 



 44

 

 

REFERENCES 

 

[1] Alexander Nareyek, “Intelligent Agents for Computer Games.” In Marsland, T. A., and 

Frank, I. (eds.), Computers and Games, Second International Conference, CG 2000, 

Springer LNCS 2063, 414-422. 

 

[2] Allen Bierbaum, Christopher Just, Patrick Hartling, Kevin Meinert, Albert Baker, and 

Carolina Cruz-Neira, “VR Juggler: A Virtual Platform for Virtual Reality Application 

Development.”  IEEE VR 2001, Yokohama, Japan, March 2001. 

 

[3] Amit Mathew, Amit Sheth, and Leonidas Deligiannidis, "SemanticSpy: Suspect Tracking 

Using Semantic Data in a Multimedia Environment." In. Proc. of the IEEE International 

Conference on Intelligence and Security Informatics (ISI-2006), May 23-24 2006, San 

Diego, CA, 492-497.  

 

[4] Amit Mathew and Leonidas Deligiannidis, “MAGE-VR: A Software Framework for 

Virtual Reality Application Development.” Proc. of the 2005 International Conference on 

Modeling, Simulation and Visualization Methods (MSV'05), June 2005, 191-197. 

 

[5] Asteroids. Video Game. Atari Corporation, 1979. 

 

[6] Crazy Eddie’s GUI System, http://www.cegui.co.uk/, 2004. 

 

[7] CyberGlove product, Immersion Corporation, 2008.  

 

[8] David Eberly, 3D Game Engine Architecture: Engineering Real-Time Applications with 

Wild Magic. Morgan Kaufmann Publishers Inc. 2004. 

 

[9] Microsoft DirectX. Microsoft Corporation, 2008. 

 

[10] Doom. Video Game. Id Software, 1993. 

 

[11] Doom 3 Engine. Id Software, 2003.  

 

[12] FBX animation format, Autodesk, http://www.autodesk.com/fbx/, 2006.  

 

[13] Fmod, Firelight Technologies, http://www.fmod.org, 2006.  

 

[14] Gamebryo, Emergent Game Technologies, http://www.emergent.net/, 2008.  

 



 45

[15] Guido Van Rossum, Python Tutorial, Technical Report CS-R9526, Centrum voor 

Wiskunde en Informatica (CWI), Amsterdam, May 1995. 

 

[16] Half-Life. Video Game. Valve Software, 1998.  

 

[17] Havok. Havok.com Inc. 2008.  

 

[18] Infocom’s Z-machine, Activision, 1979.  

 

[19] Irrlicht Engine, http://irrlicht.sourceforge.net, 2005.  

 

[20] Java3D, http://java.sun.com/products/java-media/3D/, 2006. 

 

[21] Jeff Plummer, “A Flexible and Expandable Architecture for Computer Games.”  Master’s 

Thesis. Arizona State University. 2004. 

 

[22] Karel Driesen, Urs Hölzle, “The direct cost of virtual function calls in C++.” Proc. of the 

11
th

 ACM SIGPLAN Conference on OOPSLA, 1996, 306-323.  

 

[23] Larry Bishop, et al, “Designing a PC Game Engine.” Computer Graphics and 

Applications, IEEE. Jan/Feb 1998, 18:1, 46-53. 

 

[24] Leonidas Deligiannidis, Gamal Weheba, Krishna Krishnan, and Michael Jorgensen, 

"JWSU: A Java3D Framework for Virtual Reality".  Proc. of the International 

Conference on Imaging Science, Systems, and Technology (CISST03). June 2003, 312-

319. 

 

[25] Mark Segal, Kurt Akeley, “The Design of the OpenGL Graphics Interface,” Silicon 

Graphics, 1994. 

 

[26] Markus Hadwiger, “Design and architecture of a portable and extensible multiplayer 3d 

game engine.” Master’s Thesis, Institute of Computer Graphics, Vienna University of 

Technology, 2000. 

 

[27] Michael Van Lent et al, “Intelligent Agents in Computer Games,” Proceedings of the 

National Conference on Artificial Intelligence. Orlando, FL, July 1999, 929-930. 

 

[28] Mike Goslin, Mark R. Mine, "The Panda3D Graphics Engine," Computer, vol. 37, no. 10, 

Oct 2004, 112-114. 

 

[29] Newton Game Dynamics, http://www.newtondynamics.com/, 2006. 

 

[30] Open Dynamics Engine (ODE), http://www.ode.org/, 2001.  

 

[31] OGRE, http://www.ogre3d.org/, 2006. 

 



 46

[32] OIS, http://sourceforge.net/projects/wgois/, 2006.  

 

[33] OPAL, http://opal.sourceforge.net/, 2005.  

 

[34] OpenAL, http://www.openal.org/, Creative Labs, 2006. 

 

[35] OpenSteer, http://opensteer.sourceforge.net/, 2004.  

 

[36] Polhemus Liberty, Motion tracker. Polhemus, http://www.polhemus.com/, 2006.  

 

[37] Pong. Video Game. Atari Corporation, 1972. 

 

[38] RenderWare, Criterion Software, 2008.  

 

[39] Script Creation Utility for Maniac Mansion (SCUMM), LucasArts, 1987.  

 

[40] SpeedTree, Interactive Data Visualization Inc., http://www.speedtree.com/, 2008.  

 

[41] Steven Woodcock, “Game AI: The State of the Industry” in Game Developer Magazine, 

August 2001. 

 

[42] Unreal Engine, Epic Games Inc, http://www.unrealtechnology.com/, 2008.  

 


