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Abstract

Robot localization under extreme occlusion is a common scenario in the real world. Examples

include an autonomous car following another car along long stretches of highways, robot

assistants following a human around, hospitality robots, robot pets, etc. The challenge here

is that the robot’s sensors get occluded to a large degree and for substantial amounts of

time by the leader that the robot is trying to follow. In this scenario, localization using a

usual MCL particle filter gets worse over time since observations consistently keep deviating

from static expectations. In this thesis I present an Advanced Weighting approach for the

Nested Particle Filter, to maintain localization under extreme occlusion while simultaneously

tracking the leader. I also adapt KLD sampling to Nested MCL, which makes this approach

highly scalable by allowing for dynamic variation in particle counts at both levels of nested

particles, instead of ad-hoc static counts.
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Chapter 1

Introduction and Background

Robot Localization has been recognized over and over again as one of the most critical chal-

lenges that needs to be tackled in order to make robots viable in the real world. Monte Carlo

Localization or MCL has proved to be one of the most successful methods for efficient and

reliable localization [9]. Coupled with models that account for real world noise and unex-

pected sensory occlusions, and along with methods like Mixture MCL, localization can be

made quite robust, such that it performs well even in crowded real-world environments[10, 8].

The augmentation of MCL with KLD sampling allows for an approach that is computation-

ally efficient and highly scalable and flexible[8, 1].

Despite all these robust techniques for handling noise and unexpected dynamic objects

in the environment, the MCL approach performs badly in a scenario that is all too common:

the follower behavior. This behavior can be seen in many different situations such as an

autonomous car following another car in a convoy-like formation on long patches of a highway,

or a robot assistant following a human around in settings like hospitals, laboratories, nursing

homes, or even a robot pet that follows a child around the house. Maintaining it’s self

localization while simultaneously tracking the ”leader” is quite a common task, which is not

handled sufficiently just by sensor models that assign noise to unexpected observations. In
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this scenario, occlusion of the sensors occurs to a large degree and for extended durations

of time, which causes localization to get worse and worse over time. There have been a few

attempts at accounting for sensory occlusion as described in [2] and [5]. In [2], they mainly

deal with localization errors due to unpredictable and sporadic occlusion, and come up with

sensor models that filter out noise based on a probability model of expected sensory readings.

This does not help us in a scenario where the sensory occlusion is persistent and forms a large

portion of our sensory input. The problem is that if the sensory occlusion does not go away for

extended durations of time then modeling such noise based on a predetermined assumption

of sensor’s probability of measurements does not help. In [5], they designed a system for

accounting for occlusion in the Robocup environment. They deal with a sensory model that

relies on color-based processing of sensory data, which also needs 360-degree sensory vision.

Obviously, this is a setting that is not always easily available in most robots. We introduce

a more generalized algorithm that will work in most common environments, with less than

360 degree sensory input as well as simplistic external leader detection mechanisms, that are

independent of the algorithm.

In this thesis, we introduce an Advanced Weighting method that modifies expectations

based on the location of the leader. This method not only maintains localization of the

follower throughout the follower behavior, but also simultaneously tracks the leader during

this time. We further introduce a modification to the traditional Nested Particle Filter that

makes it significantly more scalable and efficient. The leader in our scenario can be a human,

a robot or any other kind of agent. We use two identical robots for our experiments to keep

things simple. The leader is interchangeably called the ”leader” or ”robotj”, and the follower

is called either the ”follower” or ”roboti”. Throughout the thesis, we are only concerned with

the localization and tracking that happens within roboti, so whenever we talk about robotj’s

particles, we are talking about the second level particles within first level particles of roboti

that are being used to track robotj.
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1.1 What is ”Robot Localization”?

The problem of robot localization pertains to determining the location and orientation of a

robot in a given know environment. Consider that we are given a map of an environment

in which the robot is placed. The problem of figuring out the (x, y, θ) of the robot that

corresponds to its true location on that map is the ”localization problem”[8]. The ”map”

that is given to the robot can either be a blueprint of the environment obtained from external

sources, or a learned map that is generated by running the robot through the environment

performing a ”map learning” task using ”Simultaneous Localization and Mapping” or SLAM

algorithms, that can generate maps of the given environment. Any of the competent SLAM

algorithms such as the ones described in [8] could work well. We use the gmapping package

that is part of the Robot Operating System [7]. Gmapping implements a grid-based SLAM

approach as described in [4] and [3]. In the current context, we are only interested in

localization, and not the map learning task. So, we perform the map learning beforehand.

We then assume that the robot is given a map of the environment. To be specific, we use

a grid based map that informs the robot which areas of the environment are ”occupied” by

obstacles such as doors, walls, pillars, and other objects that can obstruct movement.

Robot Localization is a difficult problem to solve for several different reasons-

• Robot sensors are noisy and not always reliable.

• Robot movement and odometry information has noise in it.

• Real world environments have dynamic components to it that are hard to predict such

as humans moving around, furniture locations that keep changing, doors and windows

that open and close, changing lighting conditions within indoor as well as outdoor

environments.
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1.2 Nested Particle Filtering

1.2.1 Overview of Monte Carlo Localization

Monte Carlo Localization or ”MCL” is an approximate method for localization. It is based

on the Markov assumption that the robot’s position and orientation or ”pose” at any given

time t is dependent only on it’s location at time t-1 and the action at time t-1. This Markov

assumption is based on a static assumption of the robot’s environment. Which means that

while the robot is moving, everything else in the environment is assumed to remain static.

The belief over the robot’s pose is represented by a probability distribution over the

environment space at time t-1, which acts as a ”prior”. This distribution can either be

given to the robot beforehand, or the robot could have no information about its location to

begin with, in which case it is represented by a uniform distribution over the entire map.

In MCL, this is represented by sampling over the prior distribution, where each sample is a

hypothesis about the robot’s pose at time t-1. These hypotheses are called ”particles” which

contain the location and orientation of the robot, along with a ”weight” which represents

the likelihood of that particular hypothesis being true. In case of initial distributions, the

weights are uniform. This is called the ”Sampling” step.

Then, based on the action that the robot takes which is given by the odometry, particles

are transitioned forward to the next time step t. New samples are thus generated by sampling

from the Transition Model. This generates another set of particles from the prior based

purely on the transition model. This is the ”propagation” step.

Now, the set of particles generated from the propagation step need to be reconciled

with the real world sensory input. This is because the transition model introduces noise,

since the precise action cannot be given by the robot’s odometry. Thus, the distribution

represented by the unweighted newly propagated particles has a divergence from the true

posterior distribution.
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We now use the sensor model to do ”Importance Weighting” over the propagated par-

ticles. This is done by comparing the observational expectations of each particle with the

actual observations that are recorded by the sensors. The particles whose expectations match

the observations closely receive high weights, and the ones that differ receive lower weights.

After the importance weighting is done, the particles along with their weights together rep-

resent an approximation of the true posterior distribution at time t. This is the ”Weighting”

step.

Resampling with replacement is then performed over this posterior distribution to get

a new set of particles that represents the new belief about the location of the robot. The

probability of a particle getting resampled is proportional to its weight. This ensures that

only the poses which are closest to the truth are carried forward into the next iteration, and

we don’t waste resources in keeping track of weak particles. This is the ”resampling” step.

All the above steps Sample → Propogate → Weight → Resample are performed re-

peatedly for every iteration until the particles start converging to a location. Once the

particles sufficiently converge near the true location of the robot we can say that the robot

is ”localized”.

1.2.2 Nested MCL

Now that we have briefly reviewed the typical MCL algorithm, let us look at the Nested

MCL algorithm. The Nested Particle Filter or ”NPF” for short, is a Particle Filter modified

to not only localize the subject robot (roboti), but to also simultaneously track another agent

(robotj), using logic that is similar to the one used for localizing roboti. The Nested Particle

Filter (NPF) as introduced in [6], was used mainly for estimating the location of an opponent

to predict which landmark will be moved by the opponent. This is useful because if we can

predict which of the landmarks has moved, we can then use that information to ignore that

landmark in landmark based localization. In this thesis, we use NPF in a different way . We
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Figure 1.1: Nested Particle Structure

use the information about the leader’s location to maintain self-localization by accounting

for the resultant sensory occlusion. We are not concerned with any movement in landmarks

that might or might not happen due to the leader.

We insert a pool of particles that represents roboti’s hypotheses about the possible loca-

tion of robotj into each particle of roboti. Its like saying ”If I am at a location (xni, yni, θni),

then robotj’s location must be given by a set of particles

{(x1j, y1j, θ1j), (x2j, y2j, θ2j), ..., (xnj, ynj, θnj)} ”. These particles in the second level pools

are called ”Level-2 Particles” since they are all nested inside the first level particles of roboti.

We call particles at the first level ”Level-1 Particles” and the second level particles ”Level-2

Particles”. Please refer to figure 1.1 for some more clarity.

The Sample→ Propogate→ Weight→ Resample steps are modified to become recur-

sive for the Nested Particle Filter or ”NPF”.
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Propagation

Propagation of level-2 particles is carried out a little differently from the propagation of

level-1 particles. For level-1 particles, we receive information about the robot’s action. This

information is used to propagate all the level-1 particles forward. But for level-2 particles,

since there is no communication between the two robots, we have no information about the

action taken by robotj to propagate the level-2 particles within roboti. Instead we make

an assumption about the Transition Model for robotj and propagate the level-2 particles

according to this Transition Model.

The Transition Model that is assumed in our case is a naive probability based model.

It assigns a probability of 90% for an action of moving straight ahead, and a probability

of 5% each to turning by 30 degrees on either right or left. This is the general case. For

ensuring that level-2 particles do not move through walls, we make another assumption. The

probability of moving straight is proportional to the distance of a level-2 particle from the

nearest obstacle directly in front of it. This means, if a level-2 particle has an obstacle up

close in front of it at the minimum safe distance specified, then the level-2 particle will have

0% probability of going straight and 50% probability of turning in either direction. Also, we

assume that robotj moves at the same speed as roboti

Weighting

Weighting of level-2 particles is divided into 2 parts:

1. When the leader (robotj) IS VISIBLE to the follower (roboti):

When the leader is visible to the follower, weighting for level-2 particles is done using

the usual zero centered Gaussian with mean located at a pose where the parent level-1

particle observes the leader. Of course, if the level-2 particle is calculated to be in

an exceptional location like inside a wall then it is penalize with a pre-determined
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low weight. This predetermined low weight is calculated from the Gaussian using a

”maximum occupancy distance” (max occ dist) that is passed as a parameter to the

algorithm.

2. The leader is NOT VISIBLE to the follower:

This weighting scheme is called ”Negative Weighting”, since the absence of an observa-

tion of the leader serves to determine weights of level-2 particles. The way this works

is-

• If a level-2 particle is in the visible field relative to its parent level-1 particle, then

we give it a predetermined low weight, using the max occ dist. This is because

we know that the leader is not visible although it would have been visible if it

was at the location of this particular level-2 particle.

• Similarly, a level-2 particle that is not in the field of vision of its parent level-

1 particle when the leader is NOT visible gets a pre-determined higher weight

(calculated using max occ dist/2). This is because the level-2 particle complies

with the expectation that the leader is not visible when it is not observed.

The procedure for both Propagation and Weighting is very similar. For both, we do a

simple recursive traversal through each level-1 particle and its corresponding level-2 pool,

propagating and weighting as we go.
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Figure 1.2: Nested Particle Recursive Updates

For example, for weighting, the steps would be as follows:

1. For each level-1 particle

(a) Go to the level-2 pool within the level-1 particle (child pool)

(b) Weight each Level-2 Particle within the level-2 pool using the observed location

of robotj

(c) Return to the parent level-1 particle and weight this particle using the sensory

observations.

2. Repeat until all level-1 particles and their corresponding level-2 particles have been

weighted.

3. Stop
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Resampling

The Resampling procedure is similar, but there is a subtle difference. Here, we have to

resample a level-1 particle first, and then resample the level-2 particles that belong to the

corresponding level-2 pool. We cannot process the level-2 particles first like in propagation

or weighting because its necessary to first know if the parent level-1 particle will survive

resampling. This proceeds as follows:

1. Resample a level-1 particle from the pool of weighted level-1 Particles, with probability

of getting resampled proportional to the level-1 particle’s weight.

(a) Go to the level-2 pool within the resampled level-1 particle (child pool)

(b) Resample from within the level-2 pool using the weight of each level-2 particle.

Resample level-2 particles until the preset maximum level-2 population limit is

reached.

2. Repeat until the preset maximum level-1 particle population is reached.

3. Stop

NOTE: The population limit is a preset parameter and is a per-pool limit set for each

level of nesting. So its different for level-1 particles and level-2 particles.

You might have noticed that in NPF, the individual steps of Propagation, Weighting

and Resampling each happens like a Depth First Search tree traversal algorithm where each

level-1 particle is a parent node and the level-2 particles can be thought of as leaf nodes. It

is also worthwhile to note that just as in tree traversal, we can traverse the entire tree with

either Depth First Search or Breadth First Search and still visit all the nodes since these

are both complete search strategies. There is a way of improving efficiency of this traversal

when it pertains to Nested Particle Filtering. We will discuss this in greater detail in the

latter section on Adaptive NPF.
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1.3 Mixture MCL

The problem with Nested PF is that tracking the leader (robotj) using level-2 particles is

not easy, since we cannot afford to have lots of level-2 particles per level-2 pool. Besides the

meager level-2 particle counts, we have more problems with tracking such as two layers of

noise which get added to tracking performance. At the first level, level-1 particles themselves

have noise coming from localization inaccuracies. When we move deeper to the second level

of particles, this noise gets carried forward and more noise pertaining to tracking is added

to it. The second level noise comes from sources such as noise in observations of robotj, our

lack of knowledge about robotj’s odometry, etc. All these shortcomings result in having very

few or some times no level-2 particles at all that are anywhere close to the true location of

robotj. This is similar to the ”Kidnapped Robot” problem in robot localization where the

robot localizes to a wrong location and is then unable to recover because it does not have

any particles anywhere near its true location.

One of the ways to deal with these issues is to use Mixture MCL, which is a more robust

method and is capable of dealing not only with the kidnapped robot problem, but also works

well with a fewer particles.

1.3.1 Sampling from the Dual

The idea of mixture MCL is to sample a small fraction of the particles from the observation

function instead of the transition function, and ”mix” these samples with the ones sampled

from the transition function [10]. Sampling from the observation function is called as sam-

pling from the ”Dual”. It involves generating samples that would match most closely with

the observations, and then using the transition function to weight the generated samples,

instead of the other way around. We adapt this approach to nested particle filtering based

on the observations of the leader (robotj) that are constantly being received.
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We generate a small fraction (5%) of level-2 samples from the observed pose of robotj

when it is visible, and insert them along with other level-2 samples generated from the

transition function. These samples, since they are generated from the observed location of

robotj, tend to match more closely with the true location of robotj even if other particles

diverge significantly. Since a major portion of the scenario we are concerned with involves

directly observing the leader at close distances, these samples tend to remain close to the

true pose especially during the convoy-like behavior. This proves to be extremely helpful in

maintaining tracking accuracy of the level-2 particles.

The performance of tracking is significantly improved with mixture MCL, even with mea-

ger level-2 particle counts, and goes a long way in aiding the Advanced Weighting approach

which depends heavily on tracking accuracy. In our experiments, we will compare the per-

formance of the Advanced Weighting approach with and without the use of Mixture MCL

for tracking, to highlight its importance.
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Chapter 2

Advanced Weighting

2.1 The need for Advanced Weighting

Now, let us go back to the scenario where the robot needs to localize itself while following a

leader which could be a human, or another robot or some other kind of agent. This scenario

poses a challenge to robot localization, because there is large scale sensory occlusion that

occurs in following around another dynamic agent for such extended durations of time. The

current approaches to localization, even with robust sensor models that account for noise

cannot handle such a scenario. Random unexpected noise, which is what is used in both

the Beam Model and the Likelihood Field Model is not a sufficient factor to account for

persistent large scale occlusion [8]. Also, if we wanted to simply figure out which portion

of the sensory input was coming from the leader, and which portion was coming from the

static obstacles, we could perhaps remove the leader and look at the sensory readings, then

in turn remove the obstacles and look at the sensory readings. This would allow us to isolate

sensory readings coming from the leader. But this approach is naive and would only work in

a simulation where removing individual obstacles or leader is easily accomplished, but not

in the real world.
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Because of this, traditional localization methods that work in a usual setting that has

only random sporadic noise, do not work here. What happens when the robot needs to

break away from the follower behavior to perform some other task? If it does not maintain

its localization during the follower behavior, then after the follower behavior ends, the robot

is left clueless regarding its whereabouts, and hence unable to move around in the given

environment. This is the reason why we need to use Advanced Weighting.

2.2 Likelihood Field Model

Although the Advanced Weighting (AW) method can be used with other sensory models as

well, the Likelihood Field model has been chosen in this case due to its efficiency, speed and

ease of implementation.

Let us review the Likelihood Field model in brief as described in [8, pg 169], so as to

help in understanding it’s adaptation of AW. The key idea of Likelihood Field model is to

project the end points of a range sensor scan into the global coordinate space of the given

map of the environment. Since we already have the particle poses for the robot as well as

the angle of the projected sensor beam and its range reading, we use simple trigonometric

transformations to project these end points forward onto the map from the particle pose.

Once the end points are found, we check to see whether the end point location corresponds

to an obstacle on the map, since obstacles are what generate range readings. An ”occupied”

location at an end point represents an observation that matches expectations, and vice-versa.

Let xt = (x y θ)T be the robot’s pose at time t as represented by a particle. Let zkt be

the measurement by sensor beam k at time t. Let (xzkt yzkt ) denote the end point calculated

from the range reading zkt . Also, let m represent the map of the given environment.

There are 3 types of sources of noise that are assumed-

• Measurement noise: This noise corresponds to the discrepancies within the sensor
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when taking measurements. In the 2D space that we consider, it can be calculated by

measuring the distance (dist) between the end point location and the nearest known

obstacle on the map. The probability of this particular measurement is then calculated

by a zero-centered Gaussian which represents the sensor noise:

phit(z
k
t |xt,m) = εσhit(dist) (2.1)

• Failures: any max-range readings are modeled by a constant large probability pmax.

• Unexplained Random Noise: A uniform distribution prand is used to model this.

The likelihood for this sensor reading is then given by-

p(zkt |xt,m) = zhit · phit + zrand · prand + zmax · pmax

Here, zhit, zrand and zmax are parameters of the sensor model, that are derived indepen-

dently. Refer to [8] for more details about their derivation.

The final probability of the particle is then calculated by multiplying the likelihoods of

all the individual sensor readings. This is the same as in the beam model.

The problem with this model is that dynamic agents like people or other robots in the

environment which could cause short readings are not modeled. The assumptions about

random noise are sufficient if the noise is low, but it cannot account for persistent large scale

occlusions of the kind that we are trying to address in our approach.
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Figure 2.1: Occluding beam detection

2.3 Using Level-2 Particle Weights

The way to account for the persistent occlusions during a follower behavior is to create

another likelihood field based on the location of the leader, similar to the one for the static

obstacles, and use it to calculate the probabilities for the sensory beams that experience the

occlusion.

We already have a set of level-2 particles within each level-1 particle, which represents

our belief about the location of the leader. This belief can act as the likelihood field for

observations of the leader. Hence, we can use this belief to calculate the probabilities of the

occluding sensor beams.
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2.3.1 Detecting the occluding beams

The first step is to figure out which sensor beams are getting occluded due to the leader.

This can be determined by using an external detection mechanism. For example a color

blob detector from a color sensing camera, or some other feature detection tool, which gives

us the relative location and visible size of the leader from the follower. Using the size and

the relative location of the leader, it is a matter of simple trigonometry to figure out which

sensor beams will be occluded.

For each sensor beam, let the angle between the beam and the relative location of the

leader be ∆θ. This angle is given by-

∆θ = abs(θleader − θbeam)

θleader is provided by the external leader detector, and θbeam is know since it is part of

the robot’s sensory characteristics.

Let the observed size of the leader be sl and the observed distance of the leader be zl.

Now, to know if the beam is getting occluded by the leader we check the following simple

trigonometric condition-

∆θ ≤ arctan (
(sl/2)

zl
)

If the above condition is true, then we can assume that the beam is getting occluded.

This means the range reading is coming from a hit to the leader rather than something else.

Note: It is possible that the hit is not coming from the leader despite these calculations,

which can happen due to several reasons. Handling of these discrepancies is discussed in more

detail in the next part where we use the level-2 particle poses for finding the likelihoods of

occluding beams.
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Figure 2.2: Two different likelihood fields for occluding and non-occluding beams
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2.3.2 Calculating likelihoods of occluding beams

Once we have determined which of the sensor beams are getting reading from the leader, we

can use the alternate likelihood field represented by the level-2 particles to perform weighting

for these occluding beams specifically. We still need to handle noise that is encountered in

sensor readings to make Advanced Weighting possible. Based on the assumption of noise

made for the usual Likelihood Field model, we determine the following types of sources of

noise for Advanced Weighting:

• Measurement noise

• Sensor failure

• Unexpected random measurements

• False positives in identification of occluded beams

Note: False negatives in identification might also be present, but they do not cause

noise for the Advanced Weighting part. They will cause noise for the usual likelihood

weighting, but assuming that the false negatives are a negligible proportion of the

sensor readings, they will likely be handled by the assumptions of noise by the standard

likelihood field model.

Measurement Noise

The very first thing that we need to take care of is the measurement noise, which is intrinsic

to any sensor. We use similar logic for handling this as we did with the usual Likelihood field

model earlier. With reference to equation 2.1, we make a few modifications to the equation

for occluding beams. Let zkot represent the measurement received from an occluding beam

”k” at time t. Let mlevel−2 represent the belief over the location of the leader. We calculate

the distance (distlevel−2) between an occluding beam’s end point and the nearest level-2
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particle, similar to the distance to the nearest obstacle calculated in the usual Likelihood

field model. The probability is then calculated by again using a zero-centered Gaussian using

this distance as follows:

phit(z
ko
t |xt,mlevel−2) = εσhit(distlevel−2)

In equation 2.1 the belief over the locations of obstacles is represented by an ”occupancy

grid” represented by the map m which tells us whether or not an obstacle is present at a

particular location. This belief is given to us as being true at the location of the calcu-

lated nearest obstacle specified by the map m. Hence, we do not have to worry about the

probability of the obstacle being truly at that location.

The level-2 particles on the other hand, do not represent that the leader is actually present

at that particular location. They represent a hypothesis about the leader being there, and

come with a weight that represents the probability about that hypothesis being true. Just

as xt represents the location of the current level-1 particle that is being weighted, xlevel−2
t

represents the location of the level-2 particle nearest to the end point of the sensor beam,

from which we calculate distlevel−2.

So The phit in this case is really given by:

phit(z
ko
t , x

level−2
t |xt,mlevel−2) = phit(z

ko
t |xt, xlevel−2

t ,mlevel−2) · p(xlevel−2
t |mlevel−2)

Here, mlevel−2 is the pool of level-2 particles, representing a belief about leader’s location.

Since phit is independant of mlevel−2 given the nearest level-2 particle location...

= phit(z
ko
t |xt, xlevel−2

t ) · p(xlevel−2
t |mlevel−2)

20



Substituting the respective values of each term...

= εσhit(distlevel−2) · bellevel−2(xlevel−2
t )

Now, since the belief over the leader’s location at xlevel−2
t , or bellevel−2(xlevel−2

t ), is given by

the weight of the level-2 particle at xlevel−2
t we can write...

= εσhit(distlevel−2) ·Weightlevel−2(xlevel−2
t )

Noise due to sensor failures:

Same as Likelihood Field model. We assign a large likelihood pmax to these max range sensor

readings, when present.

Noise due to unexplained random measurements:

Same as Likelihood Field model. We assume a constant uniform probability prand.

False positives in identification of occluded beams:

These can be caused due to things like the presence of physical holes in leader which cause

sensor beams to pass through, or due to errors in leader detection mechanism, etc. When

they occur, they are usually readings from sensor beams that actually never hit the leader,

but are still determined to be occluding beams. These types of readings are hard to detect

and model. A way to detect these ”false positive” occluding beams is to check for the closest

level-2 particle distance. If this distance is larger than a threshold max-occupancy distance,

we assume that the sensor reading is not coming from the leader. We use the usual likelihood

calculation method for these false-positive sensory readings, instead of using the Advanced

Weighting method. Note: The max-occupancy distance is a parameter that is specified at the
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beginning, and is also used in the standard Likelihood Field model to cut off the Gaussian

after a large enough distance when the probability values start becoming negligible.

2.4 Experiments to test Advanced Weighting

2.4.1 Experimental Setup

We use two robots for our experiments. Both are turtlebots 2.0 robots, equipped with a

kobuki base and a kinect sensor that has a laser range finder and a color-sensing camera.

The robots have a differential drive mechanism with 3 wheels, which allows for in-place

rotation for turns.

The algorithm implementation is done using the open source Robot Operating System

(ROS) on Ubuntu Linux [7]. The version specification is ROS Electric on Ubuntu 11.10. The

AMCL package from ROS repositories is used as a starting point for the implementation,

with modifications added for Advanced Weighting and Nested Particle Filtering. The KLD

sampling part of the AMCL package is kept intact to allow for efficient level-1 particle

localization, so that the level-1 particle count can be scaled down when the robot is well

localized. For the moment, we will not use KLd sampling to adapt level-2 particle population

sizes. KLD sampling will be discussed in more detail in chapter 3 . For now, it suffices to

say that it is a more efficient version of the MCL algorithm that adapts the level-1 particle

count as needed to vastly improve efficiency without compromising localization accuracy.

The external mechanism used for leader detection is a colored blob detection package

called ”cmvision”, which gives us the location of the detected colored blob relative to the

camera frame. We use one of the robots as the leader. To make the leader detectable by the

follower, we put a distinctly colored light-weight box on top of it, and also put colored paper

around it . Based on the relative angle and range at which the leader is detected, we are

able to find the relative location of the leader from the follower. This is used for determining
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which laser beams are hitting the leader. These are the beams which we will use for the

Advanced Weighting part.

The experiments are done in simulation using the 3D simulation package Gazebo within

ROS. We use two separate 3D environments that are constructed to-the-scale using Google’s

”Sketchup” software, from the blueprints of University of Georgia’s Boyd GSRC building.

The two environments used for the simulations are the 1st floor and 5th floor.

2.4.2 Settings used for the experimental runs

The different stages that we use for the experiments are designed to replicate a real world

follower scenario that we are concerned with. We ensure that the occlusion is significant

and for long durations of time during the experiments. We use different configurations of

particle counts at the two levels. We also perform tests without Mixture MCL for the level-2

particles. Thus, we test the effect of all these different configurations on the performance of

NPF with Advanced Weighting (or ”NPF-AW”).

Stages of the experiment

The pattern of experiments on both the 1st floor and 5th floor environments is similar. Each

experimental run is divided into 3 parts:

1. Initial semi-global localization: The follower robot robot starts off in a location

where it cannot see the leader, and it is not localized to begin with. But it has some idea

about the general area that it starts in, which is represented by a Gaussian distribution

of particles centered in the general area of the follower with a very large covariance.

The follower seeks to reach a waypoint, from where it will be able to spot the leader.

2. Convoy Stage: Once the follower spots the leader, it will attempt to get into a

convoy like formation, trying to follow the leader, maintaining a constant close distance
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Figure 2.3: Experiment Stages on Floor 1 Learned Map
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Figure 2.4: Experiment Stages on Floor 5 Learned Map

(between 0.5m-1m) to the leader during this time. The leader will lead the follower to

another waypoint.

3. Seeking final goal: Upon reaching the general area of the second waypoint, the

follower will break away from the convoy and try to reach a final goal location.

Note: Since the follower might not be well-localized at the end of the convoy stage,

we specify a wide region around the second waypoint, which should be consistently

detectable by the follower as a cue to start seeking the final goal.

If the follower maintains its localization during this trajectory, it will be able to easily

find a path to the final goal and reach it successfully. On the other hand, if its localization

gets thrown off, it will either never find a path to the final goal or repeatedly keep trying
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to find a path until a pre-determined time limit is reached. We set this time limit to be 10

minutes, which is quite generous in both the environments and allows sufficient time for the

follower to do multiple attempts at reaching the final goal.

Configurations used

The maximum number of level-1 particles is set to 5000, which was found to be an optimal

number necessary for the initial semi-global localization part. Please note that the actual

level-1 particle count goes down once the follower localizes itself near the end of the initial

semi-global localization stage. The is due to KLD sampling at the 1st level of particles.

The level-2 particle counts per pool are constant throughout, since we have not inculcated

KLD sampling for level-2 particles yet. We set different numbers of level-2 particles per level-

1 particle to see what effect it has on the performance. The different level-2 particle counts

used are 10, 5 and 1.

And lastly, we perform experiments with mixture MCL turned off for the level-2 particles,

with 10 level-2 particles per level-1 particle. We perform 50 runs with each combination of

particle counts for floor 1, and 30 runs for floor 5.

2.4.3 Performance measures

• Localization accuracy: We measure the Mean Squared Error for level-1 particles of the

follower, measured from the true pose of the robot given by the simulator. This is a

good measure of the follower’s localization accuracy.

• We carry out 50 runs with each configuration for the 1st floor, and 30 runs with each

configuration for the 5th floor. We measure the percentage of successful outcomes of

each configuration of the experiment.
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Final outcomes have the following categories:

Successful: Reached the final goal

Unsuccessful: Unable to find path to final goal

Unsuccessful: Timed out after repeated attempts at reaching final goal

2.4.4 Experimental results and discussion

If we compare simple NPF versus NPf-AW across any of the measures, it becomes obvious

that Nested PF with Advanced Weighting (NPF-AW) performs better in every case. This is

true for either of the two experimental environments. The point to be noted from graphs 2.6

and 2.8 is that Advanced Weighting needs sufficient level-2 particles in the level-2 pools for

maintaining level-1 particle localization. These level-2 particles also need to be tracking the

leader sufficiently well in order to maintain level-1 particle localization, as is made obvious

by the deterioration in performance when Mixture MCL for level-2 particles is turned off.

This means that in an ideal scenario we need atleast 5,000 level-1 particles and 10 level-2

particles per pool. So, for taking full advantage of Advanced Weighting, we need atleast

5, 000 + 50, 000 = 55, 000 combined total of particles.
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Figure 2.5: Effect of Advanced Weighting on Mean Squared Error of level-1 particles on floor
1
This figure compares Mean Squared Error for level-1 particle localization with and without
Advanced Weighting for Floor 1 Experiments. Clearly, the error is maintained at a lower
level due to Advanced Weighting as the occlusion persists. The initial spike in localization
error for NPF-AW with 5000x10 particles is due to the fact that 55,000 total particles is a
huge computational load, which causes the algorithm to run a little slower per-step of the
updates. This is why the follower is not always fully localized at the start of the follower
phase, causing a spike in initial localization error. This irregularity is also evident from the
huge variation in the localization error towards the beginning.
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Figure 2.6: Varying configurations with Advanced Weighting on floor 1
Comparison of different configurations of the Nested Particle Filter with Advanced Weighting
(NPF-AW) for Mean Squared Error of level-1 particle localization on Floor 1 Experiments.
As the tracking gets worse due to fewer level-2 particles or level-2 particles not tracking well,
the localization error gets larger.
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Figure 2.7: Effect of Advanced Weighting on Mean Squared Error of level-1 particles on
floor-5
Comparison of Mean Squared Error for level-1 particle localization with and without Ad-
vanced Weighting on Floor 5 Experiments. Clearly, the error is maintained at a lower level
due to Advanced Weighting as the occlusion persists.
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Figure 2.8: Varying configurations with Advanced Weighting on floor 5
Comparison of different configurations of NPF-AW for Mean Squared Error of level-1 particle
localization on Floor 5 Experiments. As the tracking gets worse due to fewer level-2 particles
or level-2 particles not tracking well, the localization error gets larger.
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Figure 2.9: Comparison of Success Rates with and without Advanced Weighting
Comparison of Success Rates between various configurations of the NPF-AW approach and
NPF (without Advanced Weighting). It is clear that NPF-AW, when provided with sufficient
level-2 particles that are tracking the leader well, performs significantly better.
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Chapter 3

Adaptive NPF

One of the main concerns with Nested PF is that the number of particles needed to have

viable tracking as well as localization is extremely high. The usual Nested Particle Filter as

described in section 1.2 does not scale well for larger pools of level-2 particles or if we want

to track more than one other robot. Take for example, the best performing configuration

from the experiments at the end of chapter 2. We needed to use 5000 level-1 particles and

10 level-2 particles per level-1 particle, bringing the total combined particle count to

5,000 level-1 + 5,000x10 level-2 = 55,000 total particles

Besides, during the initial stage of the experiments, the level-2 particles were not really

much useful since we were still trying to localize the level-1 particles before we could even

attempt to track the leader. 55,000 is an extremely large number of particles to update at

every iteration. Moreover, what if we needed to scale this up to track another leader? What

if we needed to insert another level of nesting? The number of particles required goes up

exponentially with each new level of nesting. The problem here is that we are using a static

count of particles that is set at the beginning as an ad-hoc parameter to the algorithm. In

this chapter we introduce a way of making this approach more scalable.
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3.1 Adaptive MCL using KLD sampling

KLD sampling has been proved to be an excellent method for determining how many particles

are needed to approximate the true posterior to a sufficient degree of accuracy [1, 8]. The

name KLD-sampling comes from Kullback-Leibler Divergence, which gives a measure of the

difference between two probability distributions. In KLD sampling, the logic is that given a

statistical bound on the quality of an approximation of the true posterior distribution, we

can determine how many samples are needed to achieve that quality. The bounds specified

are thus: If we are given an error ε and a probability 1−δ, then KLD sampling can determine

how many samples we need so that with probability 1−δ the error between the true posterior

and the sample-based approximation is less than ε. ε and δ are provided as parameters to

the KLD-sampling algorithm, and for each iteration of filtering, KLD sampling tells us how

many samples we need to generate.

We then only resample as many particles as we need. This allows us to scale down

the number of level-1 particles (roboti’s particles) as they start localizing well. This frees

up more space and computational power to insert more particles into tracking the leader

(robotj). Thus, instead of specifying the particles at either level of the particle filter, we just

specify one combined population limit which represents the maximum combined number of

particles that we can handle. Initially we use all these particles to only localize the follower,

not allocating any level-2 particles to track the leader. The heuristic assumption here is that

if the follower itself is not localized first, then it’s very difficult to accurately track the leader

at the same time. Once the follower is localized to such a degree that its particle count gets

reduced sufficiently, then that space becomes available to insert level-2 particles. Thus, we

start inserting level-2 particles that will track the leader.

This allows us to dynamically scale the particle counts up or down at both the levels.

It makes the algorithm a lot more efficient. It also allows us to insert a lot more particles
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at the level-2 particle level than what we can afford to set when using static population

limits. Thus, it becomes possible to track the leader using a lot more particles, and improves

tracking.

3.1.1 KLD Sampling

There is an efficient implementation of the KLD sampling algorithm that has been inculcated

into MCL. It works on-line during the resampling step, using a moving threshold to determine

after generating each new sample if more samples need to be generated.

This moving threshold for KLD sampling, as proved in [1], is given by:

Mx :=
k − 1

2ε

{
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

}3

(3.1)

Where,

Mx is the moving threshold

k is the number of map grid cells with atleast one particle

ε is the permissible error

1− δ is the probability of the error

z1−δ represents the upper 1− δ quantile of the normal distribution
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3.1.2 Adaptive MCL algorithm

The threshold in equation 3.1 is used to determine after a new sample is taken, whether we

need to generate more samples. A concise version of the algorithm using this threshold is as

follows:

1. Propagate all the particles forward using the motion model

2. Weight the particles using observations

3. Resampling step:

(a) Sample a new particle based on the probability proportional to the particles weight

(b) Add the new sample to the current pool of particles.

(c) Check to see if the threshold for KLD sampling is reached, or if the maximum

particle population is reached.

If either of the two is reached, stop.

Otherwise sample more particles.

3.2 KLD Sampling for Nested PF

We use the KLD sampling algorithm discussed in section 3.1.2 and adapt it for nested particle

filtering. We have to make a few modifications to the resampling step of the Nested Particle

Filter. Recall that resampling in NPF happens like a Depth First Search tree traversal. The

level-1 particle gets resampled first, immediately followed by resampling of level-2 particles

within that particular level-1 particle, before moving on to other level-1 particles.

Now, the problem with KLD sampling in this approach is that we cannot find out how

many particles we need at the 1st level of particles until we finish resampling level-1 particles.

Thus, if the level-1 particle count is adaptively reduced due to better localization, we have
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no way of knowing this until the end of level-1 particle resampling. But by this time, level-2

particles will already have been resampled if we follow the DFS traversal strategy.

In order to take advantage of any changes in level-1 particle counts, and insert more

level-2 particles accordingly, we need to change our resampling strategy from a Depth First

to a Breadth First traversal. So, all the level-1 particles will get resampled first, without

touching the level-2 particle pool within each level-1 particle. After resampling of level-1

particles ends, we get a count of the level-1 particles that have been resampled. We then go

one level down, and resample level-2 particles from each level-2 particle pool.

We modify the maximum permissible population limit per-level-2-pool of the level-2

particles according to the following formula:

population limitlevel−2 =
population limittotal − currrent countlevel−1

currrent countlevel−1

(3.2)

Where,

population limitlevel−2 is the maximum permissible level-2 population

that can be supported

population limittotal is the combined population limit that is set at the

beginning

currrent countlevel−1 is the current level-1 particle count after level-1

particle resampling

Note that the chief function of the above formula is to calculate how much space remains

after resampling level-1 particles, and divide it equally among all the level-2 pools.

Using the above formula and the BFS traversal strategy,we can now show how KLD

sampling can be used for varying population limits of level-2 particles as part of the NPF

resampling step. The Propagation and Weighting steps in NPF remain as they are, and we
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can still use Advanced Weighting as-is.

Adaptive Resampling for NPF-

1. Resample all level-1 particles first, keeping their corresponding level-2 particle

pools intact.

2. Calculate the new population limit for level-2 particles (opulation limitlevel−2)

according to the equation 3.2.

3. Loop through each resampled level-1 particle

(a) Go to the level-2 pool of the current level-1 particle

(b) Resample from this level-2 pool until either the KLD threshold is reached

or population limitlevel−2 is reached

4. Stop.

Using this adaptive approach for level-2 particle resampling, the Nested Particle Filter

can be made highly scalable. We will perform experiments using this Scalable NPF algorithm

combined with Advanced Weighting to measure the efficiency of this approach.
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3.3 Experiments to test Adaptive NPF with Advanced

Weighting

3.3.1 Experimental setup

The experimental setup for testing Adaptive NPF with Advanced Weighting (ANPF-AW)

is the exact same as for the earlier (NPF-AW), including tests with mixture MCL turned

off. The only difference we make in the configuration is that we vary the combined max-

imum population instead of the level-2 particle counts. The 3 different settings used for

ANPF-AW are with 5000, 750 and 400 max combined population. Please note that 750

and 400 populations are not sufficient for consistently localizing even level-1 particles. We

encountered about 25% and 70% success rate for localization with 400 and 750 particles

respectively in the initial semi-global localization stage. These success rates are too low,

especially considering that we get close to 100% success rate with 5000 particles. So, using

such a low particle counts is not advisable in general. But, since we are only concerned with

the convoy-stage localization performance, we use these acutely low particle counts with

the specific purpose of hindering the performance of the ANPF-AW algorithm during the

convoy stage. Hence, we only consider the experimental runs where the initial semi-global

localization does succeed, and the follower moves to the convoy stage.

For each different setting we perform 50 runs with floor 1 and 30 runs with floor 5 as

before.

3.3.2 Experimental results and discussion

The main aim of experiments to test Adaptive NPF with Advanced Weighting is to measure

its performance in comparison to the simple NPF with Advanced Weighting. This is because

except for the adaptive resampling that we use in ANPF-AW, the remaining algorithm is
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identical to NPF-AW. We are also going to compare the performance with the basic NPF

algorithm to highlight the performance improvement.

In addition to Mean Squared Error of level-1 particles and the success rates we measured

earlier, we also measure the performance of tracking itself. We will compare the percentage

of level-2 particles that are within 1m of the true pose of the leader. This is a good measure

of the tracking performance. Also, since it is a comparison of proportions of level-2 particles,

the variation in total level-2 particle counts is accounted for. We show that the tracking

performance is consistently better for Adaptive NPF-AW than simple NPF-AW. This also

makes it obvious how the tracking performance deteriorates when we turn off Mixture MCL

for level-2 particles.
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Figure 3.1: Mean Squared Error of level-1 particles on floor 1 using Adaptive NPF with
Advanced Weighting
This figure compares Mean Squared Error for level-1 particle localization with and without
Adaptive NPF for Floor 1 Experiments. We can see that the performance of Adaptive NPF
with Advanced Weighting is similar to that of NPF-AW when given enough particles. In
fact, with ANPF-AW we need almost 10 times fewer particles than with NPF-AW for similar
performance.
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Figure 3.2: Mean Squared Error of level-1 particles on floor 1 with different configurations
for Adaptive NPF with Advanced Weighting
This figure compares Mean Squared Error for level-1 particle localization using ANPF-AW
for Floor 1 Experiments. We are comparing performance with the different configurations.
It is easy to see that ANPF-AW relies on sufficient level-2 particle counts for maintaining
localization as well. This is evidenced by the deterioration in performance when the total
particle count is acutely low. Similarly, it also performs poorly when the level-2 particles are
not tracking the leader well enough, as is seen when the Mixture MCL for level-2 particles
is turned off.
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Figure 3.3: Mean Squared Error of level-1 particles on floor 5 using Adaptive NPF with
Advanced Weighting
This figure compares Mean Squared Error for level-1 particle localization with and without
Adaptive NPF for Floor 5 Experiments. We can see that the performance of Adaptive NPF
with Advanced Weighting is similar to that of NPF-AW when given enough particles. In
fact, with ANPF-AW we need almost 10 times fewer particles than with NPF-AW for similar
performance.
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Figure 3.4: Mean Squared Error of level-1 particles on floor 5 with different configurations
for Adaptive NPF with Advanced Weighting
This figure compares Mean Squared Error for level-1 particle localization using ANPF-AW
for Floor 5 Experiments. We are comparing performance with the different configurations.
It is easy to see that ANPF-AW relies on sufficient level-2 particle counts for maintaining
localization. This is evidenced by the deterioration in performance when the total particle
count is acutely low. Similarly, it also performs poorly when the level-2 particles are not
tracking the leader well enough, as is seen when the Mixture MCL for level-2 particles is
turned off.
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Figure 3.5: Tracking Performance on both floors
This figure compares the tracking performance of ANPF-AW with other configurations. It is
quite clear from the above two graphs that tracking performance gets improved significantly
with ANPF-AW. The ANPF-AW graph dominates all other approaches and configurations.
This is even more notable since we are measuring the ”percentage” of level-2 particles that
are within 1m of true pose. This means that this performance is relative, regardless of how
many total level-2 particles are present. The actual count of level-2 particles within 1m will
be drastically higher for ANPF-AW since we have more level-2 particles in this approach
overall.
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Figure 3.6: Comparison of Success Rates with Adaptive NPF-AW
Comparison of Success Rates between various configurations of the ANPF-AW approach and
NPF and NPF-AW. We can see that ANPF-AW can perform just as good as NPF-AW with
total number particles that is almost 10 times lower than NPF-AW.
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Figure 3.7: Experiment run times for different algorithms and settings
These charts compare the run times of each algorithm and configuration on both the floors.
We can see that the algorithms and configurations that have better success rates are also
the ones that have shorter average run times. This means they finish faster. Since they also
have higher success rates, these charts show that on an average they succeed, and succeed
quickly.
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Figure 3.8: Comparison of success rates in physical runs
Comparison of simple NPF and Adaptive NPF with Advanced Weighting on both the floors.
The rates are lower than in simulations, but still consistent with expectations. The likely
reason for lower success rates in physical runs is due to noisier environmental factors than in
simulations. Things like lighting conditions, terrain discrepancies, etc. cause greater noise
in physical environments.

3.3.3 Physical Experiments

The final algorithm, Adaptive Nested Particle Filter with Advanced Weighting (ANPF-AW)

was implemented and tested on a physical robot. We performed 10 runs each with ANPF-AW

and the basic NPF algorithm, using the best configurations from simulations for each. We

used 5,000 level-1 particles and 10 level-2 particles per pool for the simple NPF algorithm.

For ANPF-AW we used 5,000 combined total of particles.

Since we cannot know the true poses when performing physical runs, we used the success

rate to measure performance. We used the actual 1st floor and 5th floor corridors for our

physical experiments, with the same configurations as in the simulations. Refer to chart 3.8

for success rates of the two algorithms in physical runs.

These success rates are slightly different from the simulated experiments, but not in-

consistent with expectations. This validation by physical experiments is further proof that

ANPF-AW is a significant improvement over the usual NPF.
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Chapter 4

Conclusion and future work

From all the experimental results and performance evaluations shown in this thesis, it be-

comes clear that our final algorithm ”Adaptive NPF with Advanced Weighting” or ”ANPF-

AW” performs significantly better than the existing algorithms under extreme sensory occlu-

sion, and is highly scalable compared to the usual Nested Particle Filtering approach. This

algorithm includes two innovations. The first one is Advanced Weighting which is a method

for maintaining localization under extreme sensory occlusion. The second contribution is

the Adaptive resampling approach that has been adapted for Nested Particle Filters. This

second contribution makes Nested MCL highly scalable, and improves tracking performance.

Some of the things that can be done in the future with this approach are to test it

in an even more rigorous setting and evaluate it’s performance. For example, we could

try tracking multiple other robots, with a more crowded environment involving many more

humans generating sensory noise.

Also, the advanced weighting part can be made even more efficient by using heuristic

models for nearest-neighbor detection of level-2 particles. This could speed up the advanced

weighting calculations significantly.
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