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Abstract

In a typical functional brain imaging experiment, scientists aim to map the specific areas

of the brain that are activated while subjects perform a designated task (which may be cog-

nitive, motor, or other). For comparison purposes (comparing patients vs. controls, females

vs. males, as some examples), combining the brain maps from the subjects in an efficient

way becomes imperative so that we can get an overall picture of activity for each group.

We use statistical tests that have been developed historically for combining independent

sources of information to create maps for each group of subjects in a neuroimaging study.

These statistical tests follow two basic approaches - combining p-values and meta-analysis.

Through these methods we aim to draw conclusions about the behavioral pattern of two or

more groups with respect to each other. We also want to compare the performance of the

different methods. Group comparisons have been done in the past using “group maps” for

each population through a fixed effects model or a random effects model. This dissertation

explores some pre-existing statistical combination techniques used in combining and inter-

preting “group maps”. We will use parametric and non-parametric approaches to compare

between two or more populations. While combining and comparing brains, there are two

aspects that arise - spatial and statistical. We will only focus on the latter aspect. We will

assume that the voxels of the brain are independent of each other. However, as we conduct



various tests to compare group maps at each voxel, to minimize false positives i.e. voxels

declared active when they are not, we will threshold at each voxel. In this dissertation we

will explore thresholding through false discovery rate, permutation tests and bootstrapping

and we compare these methods to draw a conclusion about which one would be apt to use.

Index words: group comparison, combination tests, thresholding, permutation,
bootstrapping
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Chapter 1

Introduction to Medical Imaging

The recent discovery that magnetic resonance imaging can be used to map changes in flow

of blood in the brain that correspond to mental operations extends traditional anatomical

imaging to include maps of human brain function. The ability to observe both the struc-

tures and also which structures participate in specific functions is due to a new technique

called functional magnetic resonance imaging, fMRI, that provides high resolution, nonin-

vasive reports of neural activity detected by a blood oxygen level dependent signal (Ogawa,

et al, 1990 a and b). This new ability to observe brain function indirectly opens an array of

new opportunities to advance our understanding of brain organization, as well as a poten-

tial new standard for assessing neurological status and neurosurgical risk thereby forming

an important component of much of the current research in cognitive, clinical and social

psychology.

Statisticians play a key role in this research, since the data that are obtained from these

studies are remarkably complex (correlated in time and in space in ways that are still not

fully understood) and massive (a typical number may be hundreds of thousands of time

series which again is composed of possibly hundreds of time points for a single subject, one

for each “voxel” or volume element of the brain). The number of subjects on the other hand

is comparatively small, a situation that creates challenges for statistical inference. A brief

introduction is necessary to understand the use of statistics in this dissertation.

1
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1.1 Science of Medical Imaging

Imaging is the representation or reproduction of an object’s outward form; especially a visual

representation (i.e., the formation of an image). Imaging methodologies and technologies have

been used in various fields - chemical imaging to take simultaneous measurements of spectra,

medical imaging to create images of the human body or parts of it to diagnose and examine

a disease and so on.

Medical imaging is part of biological imaging and incorporates radiology, nuclear medicine,

investigative radiological sciences, endoscopy, (medical) thermography, medical photography

and microscopy (e.g. for human pathological investigations). Measurement and recording

techniques which are not primarily designed to produce images, such as electroencephalog-

raphy (EEG), magnetoencephalography (MEG), electrocardiography (EKG) and others, but

which produce data amenable to be represented as maps (i.e. containing positional informa-

tion), can also be seen as forms of medical imaging (Robb, 1999).

In the clinical context, medical imaging is generally equated to radiology or “clinical imaging”

and the medical practitioner responsible for interpreting (and sometimes acquiring) the

images is a radiologist. Diagnostic radiography designates the technical aspects of medical

imaging and in particular the acquisition of medical images. The radiographer or radio-

logic technologist is usually responsible for acquiring medical images of diagnostic quality,

although some radiological interventions are performed by radiologists. While radiology is

an evaluation of anatomy, nuclear medicine provides functional assessment.

As a field of scientific investigation, medical imaging constitutes a sub-discipline of biomedical

engineering, medical physics or medicine depending on the context: research and develop-

ment in the area of instrumentation, image acquisition (e.g. radiography), modeling and

quantification are usually the preserve of biomedical engineering, medical physics and com-

puter science; research into the application and interpretation of medical images is usually the

preserve of radiology and the medical sub-discipline relevant to medical condition or area of
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medical science (neuroscience, cardiology, psychiatry, psychology, etc) under investigation.

Many of the techniques developed for medical imaging also have scientific and industrial

applications.

Medical imaging encompasses a set of techniques that produce images of the internal aspect

of the body. Medical imaging can be seen as the solution of mathematical inverse problems

- in order to determine the location of the activity within a specific organ, advanced signal

processing techniques are used to estimate the location of that activity’s source, which is

referred to as the inverse problem. (The forward problem is the situation where we know

where the sources are and we are estimating the field at a given distance from them). This

means that cause (the properties of living tissue) is inferred from effect (the observed signal).

In the case of ultrasonography, for instance, the probe consists of ultrasonic pressure waves

and echoes inside the tissue show the internal structure. In the case of projection radiography,

the probe is X-ray radiation which is absorbed at different rates in different tissue types such

as bone, muscle and fat.

Some of the prominent imaging technologies that are available are:

1) Electron microscopy: The electron microscope is a microscope that can magnify very small

details with high resolving power due to the use of electrons as the source of illumination,

magnifying at levels up to 2,000,000 times. Electron microscopy is employed in anatomic

pathology to identify organelles within the cells. Its usefulness has been greatly reduced

by immunohistochemistry but it is still irreplaceable for the diagnosis of kidney disease,

identification of immotile cilia syndrome and many other tasks.

2) Radiographic: Two forms of radiographic images are in use in medical imaging; projection

radiography and fluoroscopy, with the latter being useful for intra operative and catheter

guidance. These 2D techniques are still in wide use despite the advance of 3D tomography

due to the low cost, high resolution, and, depending on application, lower radiation dosages.
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This imaging modality utilizes a wide beam of X-rays for image acquisition and was the first

imaging technique available in modern medicine.

3) Ultrasound: Medical ultrasonography (Udupa and Herman, 2000) uses high frequency

broadband sound waves in the megahertz range that are reflected by tissue to varying degrees

to produce (up to 3D) images. This is commonly associated with imaging the fetus in preg-

nant women. Uses of ultrasound are much broader, however. Other important uses include

imaging the abdominal organs, heart, breast, muscles, tendons, arteries and veins. While

it may provide less anatomical detail than techniques such as CT or MRI, it has several

advantages which make it ideal in numerous situations, in particular that it studies the func-

tion of moving structures in real-time, emits no ionizing radiation, and contains speckle (a

random, deterministic, interference pattern in an image formed with coherent radiation of a

medium). It is very safe to use and does not appear to cause any adverse effects, although

information on this is not well documented. It is also relatively inexpensive and quick to

perform. Ultrasound scanners can be taken to critically ill patients in intensive care units,

avoiding the danger caused while moving the patient to the radiology department. The real

time moving image obtained can be used to guide drainage and biopsy procedures. Doppler

capabilities on modern scanners allow the blood flow in arteries and veins to be assessed.

4) Electroencephalography: Electroencephalography (EEG) (Swartz and Goldenson, 1998) is

the recording of electrical activity along the scalp produced by the firing of neurons within the

brain. In clinical contexts, EEG refers to the recording of the brain’s spontaneous electrical

activity over a short period of time, usually 20 to 40 minutes, as recorded from multiple

electrodes placed on the scalp. In neurology, the main diagnostic application of EEG is in

the case of epilepsy, as epileptic activity can create clear abnormalities on a standard EEG

recording. A secondary clinical use of EEG is in the diagnosis of coma, encephalopathies,

and brain death. EEG used to be a first-line method for the diagnosis of tumors, stroke

and other focal brain disorders, but this use has decreased with the advent of anatomical

imaging techniques such as MRI and CT. Derivatives of the EEG technique include evoked
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potentials (EP), which involves averaging the EEG activity time-locked to the presentation

of a stimulus of some sort (visual, somatosensory, or auditory). Event-related potentials

refer to averaged EEG responses that are time-locked to more complex processing of stimuli;

this technique is used in cognitive science, cognitive psychology, and psycho-physiological

research.

5) Magnetoencephalography: Magnetoencephalography (MEG) (Cohen, 1972) is an imaging

technique used to measure the magnetic fields produced by electrical activity in the brain

via extremely sensitive devices such as superconducting quantum interference devices

(SQUIDs). These measurements are commonly used in both research and clinical settings.

There are many uses for MEG, including assisting surgeons in localizing a pathology, assisting

researchers in determining the function of various parts of the brain, neurofeedback, and

others. In research, MEG’s primary use is the measurement of time courses of activity. MEG

can resolve events with a precision of 10 milliseconds or less. MEG also accurately pinpoints

sources in primary auditory, somatosensory and motor areas, whereas its use in creating

functional maps of human cortex during more complex cognitive tasks is more limited; in

those cases MEG should preferably be used in combination with fMRI. It should be noted,

however, that neuronal (MEG) and hemodynamic (fMRI) data do not necessarily agree

and the methods complement each other. However, the two signals may have a common

source: it is known that there is a tight relationship between LFP (local field potentials) and

BOLD (blood oxygenation level dependent) signals. Since the LFP is the source signal of

MEG/EEG, MEG and BOLD signals may derive from the same source (though the BOLD

signals are filtered through the hemodynamic response).

6) Tomography: Tomography is the method of imaging a single plane, or slice, of an object

resulting in a tomogram. There are several forms of tomography: linear tomography, zonog-

raphy, orthopantomography (OPT or OPG) and computed tomography (CT), or computed

axial tomography (CAT).
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7) Computed tomography: Computed tomography (CT) is a medical imaging method

employing tomography created by computer processing. Digital geometry processing is used

to generate a three-dimensional image of the inside of an object from a large series of two-

dimensional X-ray images taken around a single axis of rotation. MRI scanners on the other

hand produce about the same quality of images without using X-rays, thereby removing the

increased risk of cancer.

8) Positron emission tomography: Positron emission tomography (PET) (Herman, 2009) is a

nuclear medicine imaging technique which produces a three-dimensional image or picture of

functional processes in the body. The system detects pairs of gamma rays emitted indirectly

by a positron-emitting radionuclide (tracer), which is introduced into the body on a bio-

logically active molecule. Images of tracer concentration in 3-dimensional or 4-dimensional

space (the 4th dimension being time) within the body are then reconstructed by computer

analysis. In modern scanners, this reconstruction is often accomplished with the aid of a CT

X-ray scan performed on the patient during the same session, in the same machine. PET

scans are increasingly read alongside CT or magnetic resonance imaging (MRI) scans, the

combination (“co-registration”) giving both anatomic and metabolic information (i.e., what

the structure is, and what it is doing biochemically). Because PET imaging is most useful

in combination with anatomical imaging, such as CT, modern PET scanners are now avail-

able with integrated high-end multi-detector-row CT scanners. Because the two scans can

be performed in immediate sequence during the same session, with the patient not changing

position in between, the two sets of images are more-precisely registered, so that areas of

abnormality on the PET image can be more perfectly correlated with anatomy on the CT

images. This is very useful in showing detailed views of moving organs or structures with

higher anatomical variation, which is more common outside the brain. At the Julich Insti-

tute of Neurosciences and Biophysics, the world’s largest PET/MRI device began operation

in April 2009: a 9.4-Tesla magnetic resonance tomograph (MRT) combined with a positron
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emission tomograph (PET). Presently, only the head and brain can be imaged at these high

magnetic field strengths.

9) Magnetic resonance imaging (MRI): Magnetic Resonance Imaging (MRI)(Udupa and

Herman, 2000), or nuclear magnetic resonance imaging (NMRI), is a medical imaging tech-

nique most commonly used in radiology to visualize the internal structure and function of the

body. MRI provides much greater contrast between the different soft tissues of the body than

computed tomography (CT) does, making it especially useful in neurological (brain), mus-

culoskeletal, cardiovascular, and oncological (cancer) imaging. Unlike CT, it uses no ionizing

radiation, but uses a powerful magnetic field to align the nuclear magnetization of (usually)

hydrogen atoms in water in the body. Radiofrequency (RF) fields are used to systematically

alter the alignment of this magnetization, causing the hydrogen nuclei to produce a rotating

magnetic field detectable by the scanner. This signal can be manipulated by additional mag-

netic fields to build up enough information to construct an image of the body. Since MR

forms the base of the dissertation, I will discuss it more in details in the next two sections.

10) Nuclear medicine: Nuclear medicine encompasses both diagnostic imaging and treatment

of disease, and may also be referred to as molecular medicine or molecular imaging and ther-

apeutics. Nuclear medicine uses certain properties of isotopes and the energetic particles

emitted from radioactive material to diagnose or treat various pathologies. Different from

the typical concept of anatomic radiology, nuclear medicine enables assessment of physi-

ology. This function-based approach to medical evaluation has useful applications in most

subspecialties, notably oncology, neurology, and cardiology.

1.2 History of Magnetic Resonance Imaging

Critical to making Magnetic Resonance Imaging (MRI) a reality was the advent of the

high speed computers needed to handle the enormous quantity and complexity of the com-

putations involved in imaging. In addition to the necessary computing power, three other
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developments contributed to the birth of MRI. One was the work of British electronics engi-

neer Godfrey Hounsfield, who in 1971 built an instrument that combined an X-ray machine

and a computer and used certain principles of algebraic reconstruction to scan the body from

many directions–manipulating the images to produce a kind of cutaway view of the interior.

Unknown to Hounsfield, South African nuclear physicist Allan Cormack had published essen-

tially the same idea in 1963, using a reconstruction technique called the Radon transform.

Although Cormack’s work was not widely circulated, in 1979 he and Hounsfield shared the

Nobel Prize in physiology or medicine for the development of computerized tomography, or

CT. The principles underlying CT are the foundation of many sophisticated imaging methods

in use today.

The other two developments essential to MRI were related to nuclear magnetic resonance

(NMR). One was the conceptualization of NMR as a medical diagnostic tool; the other was

the invention of a practical method for producing useful images from NMR data.

As early as 1959, J. R. Singer at the University of California, Berkeley, proposed that NMR

could be used as a non-invasive tool to measure in vivo blood flow (Singer, 1959). Then in

1969, Raymond Damadian, a physician at Downstate Medical Center in Brooklyn, New York,

began to think of a way to use the technique to probe the body for early signs of cancer.

In a 1970 experiment he surgically removed fast-growing tumors that had been implanted

in lab rats and showed that the tumors’ NMR signals differed from those of normal tissue.

Damadian published the results of his experiments in 1971 in the journal Science (Damadian,

1971).

An essential technical advance that opened up the ensuing widespread application of NMR

to produce useful images was due to chemist Paul Lauterbur, who was then at the State

University of New York at Stony Brook. In 1971, he watched a chemist named Leon Saryan

repeat Damadian’s experiments with tumors and healthy tissues from rats. Lauterbur con-
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cluded that the technique was insufficiently informative for locating and diagnosing tumors

and went on to devise a practical way to use NMR to make images (Oransky, 2007).

Lauterbur’s groundbreaking idea was to superimpose on the spatially uniform static mag-

netic field a second, weaker, magnetic field that varied with position in a controlled fashion,

creating what is known as a magnetic field gradient. At one end of a sample the graduated

magnetic field would be strong, becoming weaker in a precisely calibrated way down to the

other end. Because the resonance frequency of nuclei in an external magnetic field is propor-

tional to the strength of the field, different parts of the sample would have different resonance

frequencies. Thus, a given resonance frequency could be associated with a given position.

Moreover, the strength of the resonance signal at each frequency would indicate the relative

size of volumes containing nuclei at different frequencies and thus at the corresponding posi-

tion. Subtle variations in the signals could then be used to map the positions of the molecules

and construct an image. Today’s magnetic resonance imaging devices impose three sets of

electromagnetic gradient coils on the subject to encode the three spatial coordinates of the

signals.

Across the Atlantic in Britain, Peter Mansfield at the University of Nottingham, England,

had a similar idea. He was looking into using NMR to obtain structural details of crystalline

materials. In work published in 1973, Mansfield and his colleagues also used a field gradient

scheme to develop a MRI technique known as echo-planar imaging, which can rapidly scan

a whole brain (Mansfield et al., 1973).

Meanwhile, Lauterbur’s results, published in 1973, included an image of his test sample: a

pair of small glass tubes immersed in a vial of water. Working with the small NMR scanner

he had created (and using a technique called back projection borrowed from CT scanning),

he continued to image small objects. By 1974, using a larger NMR device, he produced an

image of the thoracic cavity of a living mouse. Mansfield, for his part, had imaged a number

of plant stems and a dead turkey leg by 1975, and by the next year he had captured the
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first human NMR image - a finger. Damadian also was at work producing images. In 1977,

he produced an image of the chest cavity of a live man (Oransky, 2007).

By the early 1980s the flurry of activity around MRI had given rise to a burgeoning com-

mercial enterprise. (“Nuclear” had been quietly dropped from the name in the meantime

because of its unfavorable connotations.) Advances in high-speed computing and supercon-

ductive magnets allowed researchers to build larger MRI machines with enormously improved

sensitivity and resolution and made possible many new applications.

1.3 Science of Magnetic Resonance Imaging

A magnetic resonance imaging instrument (MRI scanner) uses powerful magnets to polarize

and excite hydrogen nuclei (single proton) in water molecules in human tissue. This produces

a detectable signal which is spatially encoded, resulting in images of the body. MRI uses three

electromagnetic fields: a very strong (on the order of units of Teslas, which is the derived

unit of magnetic inductivity) static magnetic field to polarize the hydrogen nuclei, called the

static field; a weaker time-varying (on the order of 1 kHz) field(s) for spatial encoding, called

the gradient field(s); and a weak radiofrequency (RF) field for manipulation of the hydrogen

nuclei to produce measurable signals, collected through an RF antenna (Hacke et al., 1999).

Like CT, MRI traditionally creates a two dimensional image of a thin “slice” of the body

and is therefore considered a tomographic imaging technique. Modern MRI instruments

are capable of producing images in the form of 3D blocks, which may be considered a

generalization of the single-slice, tomographic, concept. Unlike CT, MRI does not involve

the use of ionizing radiation and is therefore not associated with the same health hazards.

However, MRI has only been in use since the early 1980s; although there are no currently

known long-term effects of exposure to strong static magnetic fields, that has been a subject

of some debate. At present there is no limit to the number of scans to which an individual

can be subjected, in contrast with X-ray and CT. However, there are well-identified health
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risks associated with tissue heating from exposure to the RF field and the presence of any

metal in the body, such as pace makers. These risks are strictly controlled as part of the

design of the instrument and the scanning protocols used.

Because CT and MRI are sensitive to different tissue properties, the appearance of the images

obtained with the two techniques differ markedly. In CT, X-rays must be blocked by some

form of dense tissue to create an image, so the image quality when looking at soft tissues will

be poor. In MRI, while any nucleus with a net nuclear spin can be used, the proton of the

hydrogen atom remains the most widely used, especially in the clinical setting, because it

is so ubiquitous and returns a large signal. This nucleus, present in water molecules, allows

the excellent soft-tissue contrast achievable with MRI.



Chapter 2

Functional Brain Imaging

It has long been of interest to researchers to learn about the human brain and its functioning

from the perspectives of development, cognition, social behavior and others. Only in recent

years have technologies been developed that enable observing a working brain, collecting the

data on it and performing analysis to comprehend and address various issues regarding the

location or intensity or extent of the areas that are stimulated in response to a particular

task. Functional Brain Imaging, more specifically Functional Magnetic Resonance Imaging

(fMRI) is one such technique and is the focus of this dissertation.

Functional Magnetic Resonance Imaging (fMRI) is a type of specialized MRI scan for

imaging brain activity and studying the processes underlying the changes in the hemo-

dynamic response (changes in blood oxygenation and flow) related to response in the neural

activity in the human brain.

2.1 History of Functional Brain Imaging

Nearly 30 years ago the introduction of X-ray computed tomography (CT) set in motion a

revolution in medical imaging that changed forever the practice of medicine. The introduc-

tion of CT also proved to be an immediate and powerful catalyst for the development of other

imaging techniques, particularly positron emission tomography (PET) and magnetic reso-

nance imaging (MRI) [for historical perspectives see Webb (1990) and Kevles (1997)]. With

the development of PET and MRI came the opportunity to not only look at the anatomy of

organs within the living human but also to evaluate their function (Raichle, 2000).

12
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With these new imaging techniques, researchers interested in the function of the human

brain were presented with an unprecedented opportunity to examine the neurobiological

correlates of human behaviors. This opportunity along with prescient early support from

the combined resources of some government funding agencies contributed significantly to

the development of the field of cognitive neuroscience, a field of research that combines the

experimental strategies of psychology with various techniques to actually examine how brain

function supports mental activities.

The field of cognitive neuroscience, particularly related to studies involving functional

imaging techniques, has experienced explosive growth over the past 15 years. This is exem-

plified not only by a plethora of published papers in established as well as new journals,

some devoted exclusively to imaging (e.g., NeuroImage, Human Brain Mapping), but also

by the formation of new societies (e.g., the Organization for Human Brain Mapping and the

Cognitive Neuroscience Society). Equally remarkable has been a worldwide movement to

establish research-imaging centers in which expensive imaging equipment (primarily MRI),

along with teams of investigators, is devoted exclusively to research.

The research on brain images relates not only to the scientific importance of the work itself

but also to the fact that the subject matter of cognitive neuroscience touches on subjects

of importance to everyone (e.g., normal as well as disordered memory, attention, language,

motivation, emotion, decision making, and even consciousness). In addition, the imaging

data produced by cognitive neuroscientists are often quite intriguing; observing the brain of

another human at work seems to fascinate scientists and nonscientists alike.

Despite these advances and new findings, researchers and scientists have questioned the

ability of this approach to provide analyses of brain function that are sufficiently refined

to truly enlighten us about the relationship between human behavior and brain function

(Nichols and Newsome, 1999). One of the keys to evaluating such concerns is the ability to
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relate work in cognitive neuroscience and imaging to that which parallels it in other areas of

neuroscience.

Among the most important questions are how to relate functional imaging to the cell biology

and neurophysiology of brain cells and their microvasculature. Additionally, it seems like a

good time to ask whether cognitive neuroscience with its imaging tools has provided us with

new insights into brain function and organization or merely confirmed what we have known

all along (Raichle, 2003). Such issues have been explored for a long period of time. It is useful

to consider the intended goal of functional brain imaging. This may seem self-evident to most,

yet interpretations frequently stated or implied about functional imaging data suggest that,

if we are not careful, functional brain imaging could be viewed as no more than a modern

and extraordinarily expensive version of 19th century phrenology (Nichols and Newsome,

1999).

It is Korbinian Brodmann, one of the pioneers of cytoarchitectonic parcellation of the cere-

bral cortex, whose perspective is appealing even though it was written well in advance of

the discovery of modern imaging technology (Brodmann, 1909). He said “... Indeed, recently

theories have abounded which, like phrenology, attempt to localize complex mental activity

such as memory, will, fantasy, intelligence or spatial qualities such as appreciation of shape

and position to circumscribed cortical zones.” He went on to say “... these mental facul-

ties are notions used to designate extraordinarily involved complexes of mental functions...

one cannot think of their taking place in any other way than through an infinitely complex

and involved interaction and cooperation of numerous elementary activities... in each par-

ticular case (these) supposed elementary functional loci are active in differing numbers, in

differing degrees and in differing combinations... Such activities are... always the result... of

the function of a large number of suborgans distributed more or less widely over the cortical

surface.... ” (for these English translations see Garey (1994), pages 254 to 255).
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With this prescient admonition in mind, the assignment of functional brain imaging becomes

clear: identify multiple regions and their temporal relationships associated with the per-

formance of a well designed task. The brain instantiation of the job will emerge from an

understanding of the elementary operations performed within such a network. The great

strength of functional brain imaging is that it can contribute uniquely to such an assign-

ment by providing a broad and detailed view of the processing architecture of cognitively

engaged networks. Importantly, this can be accomplished in the brain of most interest to us,

the human brain. It is fair to say that functional brain imaging, using increasingly sophis-

ticated experimental and analytical strategies and ever more powerful imaging devices, will

contribute significantly to this important enterprise in studies of humans as well as experi-

mental animals.

A second general point relates to the nature of the functional imaging signal. Functional brain

imaging with fMRI is based on a remarkably consistent relationship between regional changes

in the cellular activity of the brain and changes in the circulation and metabolism of that

region. Scientists have known since the late 1800s that local blood flow in the brain changes

in parallel with changes in cellular activity (Raichle, 1998, 2000). More surprisingly, it was

discovered in the 1980s with PET that these changes in blood flow are not accompanied by

comparable changes in local oxygen consumption (Fox and Raichle, 1986; Fox et al., 1988).

This discrepancy between changes in blood flow and changes in oxygen consumption results

in changes in the local concentration of oxygen in the micro circulation of the brain. Because

MRI signals are sensitive to the oxygenation of blood (Ogawa et al., 1990a,b), this discovery

paved the way for the introduction of fMRI (Bandettini et al., 1992; Kwong et al., 1992;

Ogawa et al., 1992).

Much discussion and debate have centered on the cellular events underlying this apparent

change in brain metabolism (i.e., a relative increase in energy released when glucose is being

converted in the body – this process is termed glycolysis) (Raichle, 1998; Buxton and Frank,

1997; Buxton et al.,1998). Presently, the most parsimonious explanation for this observation
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is that the increase in glycolysis is related to metabolic changes in astrocytes (the star-shaped

neuro-cells in the brain and spinal cord) associated with increased clearance of glutamate –

which plays an important role in human metabolism as it is the most common amino acid

and the main component in many proteins in the human tissues – from the synapse (the tiny

gap between the ends of nerve fibers across which nerve impulses pass from one neuron, a

nerve cell, to another.) (Magistretti et al., 1999; Mintun et al., 2001; Shulman et al., 2001).

It has been suggested recently that the astrocyte is also a critical link between neurons and

blood vessels in orchestrating the changes in blood flow associated with changes in neuronal

activity (Zonta et al., 2003). Present information thus leaves little doubt about the central

importance of the astrocyte in the cell biology of functional brain imaging signals.

Regardless of how the energy consumption of the brain is altered locally to meet its changing

demands, it is critically important to know from a neurophysiological perspective just what

cellular events are associated with the local changes in blood flow, metabolism, and tissue

oxygenation. To many it may seem obvious that these changes must relate to the spiking

activity of neurons because that is what neurophysiologists most commonly measure in

relation to behavior (Kirsten et al., 2004). In fact, the spiking activity of neurons has been

used as the gold standard in assessing the ability of functional imaging signals to track

events of interest within the brain (Hyder et al., 2003; Smith et al., 2003). Surprisingly for

some, it is not the spiking activity of neurons that is important. Rather, synaptic events,

as reflected in local field potentials, are most influential in determining the signals obtained

with functional imaging, a result anticipated by early tissue autoradiographic studies of

metabolism (Sharp, 1976; Sharp et al., 1977; Schwartz et al., 1979). These new findings

obviously pose an interesting challenge when interpreting correspondences within the brain,

or their absence, in the results of functional imaging research.

In closing, it is important to maintain a sense of proportion when it comes to viewing

functional imaging signals. In the average adult human, the brain represents 2 percent of the

body weight. Remarkably, despite its relatively small size, the brain accounts for 20 percent
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of the oxygen, and hence calories, consumed by the body (Clark and Sokoloff, 1999), which

is 10 times that predicted by its weight alone. In relation to this very high rate of baseline

metabolism, functional imaging signals are remarkably small, in metabolic terms usually

less than 5 percent of the ongoing metabolism of the brain, truly modest modulations in

ongoing or baseline activity. Evidence now suggests that this baseline activity may instantiate

important components of brain function (for an introduction to these issues see Gusnard and

Raichle (2001) and Raichle and Gusnard (2002)).

2.2 Science of fMRI

In order to understand the statistical issues inherent in fMRI, it is important to understand

the mechanics, physics and biophysics underlying the data acquisition process.

To start, let’s look at the parts of the MRI machine.

Figure 2.1: MRI system (Jezzard, 1999).

From Figure 2.1, we can see that the three basic components of the MRI machine are:

1) The primary magnet: This is the largest part of the scanner. A permanent magnet, pow-

erful enough to use in an MRI scanner would be too costly to produce and too cumbersome to
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store. The other way to make a magnet is to coil electrical wire and run a current through it.

This creates a magnetic field within the center of the coil. In order to create a strong enough

magnetic field to perform MRI, the coils of the wire must have no resistance; therefore they

are bathed in liquid helium at a temperature of 450 degrees Fahrenheit below zero. This

allows the coils to develop magnetic fields of 1.5 to 3 Tesla (the strength of most medical

MRI machines).

2) The gradient magnets: There are three smaller magnets within an MRI machine called

gradient magnets or coil (as referred in Fig 2.1). These magnets are much smaller that

the primary magnet (about 1/1000 as strong), but they allow the magnetic field to be

altered very precisely. They are the “fine-tuning” part of the MRI machine. The magnet

produces the B0 field (where B0 is the constant, homogeneous magnetic field used to polarize

spins, creating magnetization; the direction of this field defines the longitudinal axis) for the

imaging procedure. Within the magnet are the gradient coils for producing a gradient in B0

in the X, Y, and Z directions. It is these gradient magnets that allow image “slices” of the

body to be created. By altering the gradient magnets, the magnetic field can be specifically

focused on a selected part of the body. The gradient amplifiers (X, Y and Z amplifiers shown

in Figure 2.1) increase the power of the gradient pulses to a level sufficient to drive the

gradient coils. They are also responsible for the “clanging” noise heard during a scan.

3) The radiofrequency coil: Within the gradient coils is the RF coil and it is next to the part

of the body being imaged. There are coils made for shoulders, knees, and other body parts.

The human body is composed primarily of hydrogen atoms (63%); other common elements

are oxygen (26%), carbon (9%), nitrogen (1%), and relatively small amounts of phosphorus,

calcium, and sodium. MRI uses a property of hydrogen atoms called “spin” to distinguish

differences between tissues such as muscle, fat, and tendon. The radiofrequency coil produces

the B1 magnetic field necessary to rotate the atoms (see Figure 2.3) by any degree selected

by the radiofrequency pulse sequence which makes MRI possible. The radiofrequency coil

also detects the signal from the spins within the body. The patient is positioned within the
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magnet by a computer controlled patient table. The table has a positioning accuracy of 1

mm. The scan room is surrounded by radiofrequency shield. The shield prevents the high

power radiofrequency pulses from radiating.

The heart of the imager is the computer. It controls all components on the imager. The

computer interprets the data, and creates images that display the different resonance char-

acteristics of different tissue types. The radiofrequency amplifier increases the pulse’s power

from milliwatts to kilowatts. The computer also controls the gradient pulse programmer

which sets the shape and amplitude of each of the three gradient fields. The gradient ampli-

fier increases the power of the gradient pulses to a level sufficient to drive the gradient coils.

For the purpose of brain imaging, the machine has additional features like headphones to

cut out the noise, video screen for display of the visual tasks and so on (Figure 2.2).

Figure 2.2: fMRI system (Jezzard, 1999).

Magnetic fields affect or attract atomic nuclei with an odd number of protons or an odd

number of neutrons. These nuclei will try to align themselves parallel or anti-parallel to the

field when they are exposed to a strong magnetic field. The parallel orientation has slightly

lower energy than the anti-parallel orientation. Hence more nuclei align themselves in the

parallel orientation, thereby causing an overall magnetization of the object in the field. The
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alignment of the nuclei is not perfect in either direction. If one places an atom within a

magnetic field plane, i.e, subjects it to magnetic forces along two of the three dimensions,

then the nucleus will orbit around the third (vertical) axis. These atoms precess about the

field at a fixed frequency (precession refers to the revolution of the axis of rotation of the

atoms). Each type of nucleus has its own precession frequency and it is linearly proportional

to the strength of the magnetic field. In other words, when one causes nuclei to precess their

spin (Figure 2.3) will cause them to align themselves with the magnetic field. The spin of

a nucleus is just like the ends of a bar magnet in that it can have a positive or negative

value. Two negative or two positive ends of a magnet repel one another, but negative and

positive ends attract each other. Similarly, all the negative spin atoms align themselves

downward towards the feet of the subject, and all the positive atoms align upward towards

the subject’s head. Each atom with a positive spin cancels out (render undetectable) an atom

with a negative spin. There remain, however, a few atoms that do not cancel one another

out. At room temperature, there are always more positive spin atoms than negative spin

atoms. Recorded is also the amplitude of the signal at each voxel in each image.

Figure 2.3: Alignment of spins in a magnetic field, M (Jezzard, 1999).
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Positive spin atoms are in a low energy state. The atoms achieve an equilibrium magneti-

zation value along the direction of the magnetic field, i.e., the Z axis. When radiofrequency

energy (a pulse of magnetic energy) is injected into the system at the frequency of precession

of the nuclei and perpendicular to the main magnetic field, it excites the nuclei, which are

the unmatched ones, temporarily and then the nuclei return to equilibrium state. Associated

with this is the energy which is emitted in order for the nuclei to return to the equilibrium

state, which is at the frequency of precession. So with the radiofrequency signals, only the

nuclei that are near the appropriate precession frequencies will get affected; hence absorp-

tion and emission of energy are termed as selective. It is this key concept of selectivity that

provides magnetic resonance signals. The signal that the fMRI machine detects is the energy

emitted by these unmatched atoms as they make a transition from the higher energy state to

the lower energy state after the radiofrequency pulse. fMRI involves the use of the precession

concept to collect high-resolution images. The strength of the signal is proportional to the

number of nuclei of a specific type. Hence the method allows us to count the nuclei with

particular properties (Lazar, 2008).

The signal intensity of the MR image is determined by four basic parameters: 1) proton

density, 2) T1 relaxation time, 3) T2 relaxation time, and 4) flow. Proton density is the

concentration of protons in the tissue in the form of water and macromolecules (proteins,

fat, etc). The T1 and T2 relaxation times define the way that the atoms revert back to their

resting states after the initial radiofrequency pulse. The most common effect of flow is loss

of signal from rapidly flowing arterial blood.

The amount of time it takes for the atoms to return to their equilibrium value is called the

“spin lattice relaxation time” or T1. T1 is, thus, a measure of the half-life of inverted spins.

If one uses the gradient magnets inside the machine to alter the local net magnetization so

that it is in the XY plane (cutting a very thin virtual slice across the patient), the local

net magnetization rotates the Z axis (takes on positive and negative X and Y values) at a

frequency called the Larmor frequency. The Larmor frequency equals the frequency of the
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atom which would cause a transition between the two energy levels of the nucleic spin. Atoms

that are placed in a magnetic field of given strength, usually denoted by B0, absorb photons

of frequency ω if the atoms have nonzero spin (Lazar, 2008). The frequency of absorption

depends on the gyromagnetic ratio, γ, of the nucleus and is expressed by the Larmor equation:

ω = γB0

By again introducing a pulse of magnetic energy in the form of a radiofrequency pulse that is

specific to the type of atom, the fMRI machine causes the unmatched atoms to resonate. The

resonating atoms absorb the radio energy and go to the higher energy state, i.e., they become

negative spin atoms relative to the XY axis (the transverse axis). The amount of time it takes

for the atoms to return to their equilibrium magnetization value along XY axis (transverse

axis) is called the “spin-spin relaxation time” or T2. T2, as a result, measures the rate of

change of spin phases. Whereas a typical T1 (spin lattice relaxation time) is approximately

1 second, the T2 (spin-spin relaxation time) is usually less than 100ms. This difference in

the relative times is what makes T2 better suited than T1 for functional metabolic imaging.

The T1 relaxation curve can be described by an exponential function, 1− exp−t/T1, where t

is the elapsed time; if M0 is the original magnetization, then Mz, the amount of longitudinal

magnetization at time t following an excitation pulse, is given by

Mz = M0

(
1− exp−t/T1

)
T2 relaxation is the result of gradual loss of phase coherence, and hence it is a result of

heterogeneities in the tissue which is described by an exponential function,exp−t/T2, or

Mxy = M0 exp−t/T2

where M0 is as before and Mxy is the signal loss at time t. Since loss of phase coherence must

occur before equilibrium can be reached, T2 is usually shorter than T1 (Lazar, 2008).

Particularly important for fMRI is the measure of decay of transverse magnetization, T2*

which takes into account two important factors: molecular interactions and inhomogeneities
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in the magnetic field. fMRI creates the images or brain maps of brain function by setting up

and utilizing an advanced MRI scanner in such a way that increased blood flow to the acti-

vated areas of the brain shows up on the MRI scans. The MRI scanners do not actually detect

blood flow or other metabolic processes. Rather, blood flow alterations and/or associated

metabolic processes in brain areas are indirectly inferred from the signal intensity contrast

for a given brain region relative to both normal levels and levels immediately adjacent to

the area in question. The intensity of an MRI signal is determined by the level of magnetic

resonance, which is the BOLD (blood-oxygen level dependent) effect on T2* (Wallis, 2009).

2.3 Data Collection in fMRI

In fMRI, a series of magnetic resonance images is collected over time to gather information

about the neuronal activation in the brain during the course of the scan. These images are

typically three-dimensional as they are divided into volume elements or voxels. A scan ses-

sion involves placing a subject inside the MR machine and asking him/her to perform some

particular task of interest. While the subject performs the task, the scanner takes images of

the working brain, and regions that are activated in response to the stimulus can be detected

using statistical methods that will be discussed below. Magnetic fields are altered to some

extent by the presence of any substance. Many materials exhibit pronounced polarization in

a magnetic field. The degree of this effect is referred to as the “magnetic moment” or “mag-

netic susceptibility”. The magnetic properties of oxygenated and deoxygenated hemoglobin

differ (Pauling, 1935). Spatial and temporal variation in local concentrations of deoxygenated

hemoglobin to oxygenated hemoglobin result in corresponding changes in magnetic suscep-

tibility, which in turn cause the local T2* values to fluctuate. Oxygenated hemoglobin is

diamagnetic (i.e., tends to take a position at right angles to the lines of magnetic force, and

is repelled by either pole of the magnet), while deoxygenated hemoglobin is paramagnetic

(i.e., takes a position parallel and proportional to the intensity of the magnetizing field).

Thus, MRI is able to detect a small difference (a signal of the order of 3 percent) between
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the two types of hemoglobin (Thulborn et al., 1982). This is called a blood-oxygen level

dependent, or “BOLD” signal. Researchers are currently exploring the precise relationship

between neural activity and the BOLD signal.

As the basic story goes: blood is delivered to the brain by arteries and transported from

the brain by veins. Not only is the actual blood volume relatively low in the brain, but the

majority of blood volume is in the capillary bed–the very small vessels that connect arteries

and veins. Capillaries are often so small that hemoglobin travels in single file. Whereas

arterial blood has a high concentration of oxygenated hemoglobin, as the blood cells pass

through the capillary bed the concentration of deoxygenated hemoglobin increases relative

to oxygenated hemoglobin. Thus, a gradient of highly oxygenated hemoglobin to highly

deoxygenated hemoglobin runs across the capillary bed from arteriole to venulle. As a result, a

corresponding gradient in T2* ranges from longer T2* (diamagnetic oxygenated hemoglobin-

rich) to shorter T2* values (paramagnetic deoxygenated hemoglobin-rich). That is to say,

when resting neurons become active, the rate of blood flow to the neighborhood of these

neurons increases as glucose is being delivered to the regions of interest. This is known as

the hemodynamic response. There is a rise in the metabolism of these neurons as the rate of

firing increases which in result enhances the influx of oxygenated blood to the affected regions.

Since active neurons do not consume much more oxygen than resting neurons, oxygen levels

rise in the nearby blood vessels too. Due to the difference in the magnetic properties of the

oxygenated and deoxygenated blood, the magnetic resonance signal from the neighborhood

of a neuron should change as the concentration of oxygenated blood around the neuron

changes. The idea that there exists a correlation between blood flow changes and changes

in brain function had been toyed with for a considerable amount of time (Raichle, 1994).

Magnetic resonance imaging is sensitive enough to detect these functionally induced changes

in blood oxygenation in the human brain (Ogawa et al., 1990; Kwong et al., 1992) and

functional magnetic resonance imaging is a step in further understanding of this process.
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The relevant spatial unit for measuring local T2* for fMRI contrast is called a “voxel”. A

voxel is the smallest unit of MRI reconstruction, and corresponds to a single pixel in an

MRI display image. The relative ratio of deoxygenated to oxygenated hemoglobin within a

voxel determines the T2* value for that voxel. The increase in T2* resulting from increase

in metabolic function causes a corresponding increase in image intensity.

The raw data from an MR scanner are spatial frequency data. Spatial information is deter-

mined from both the phase (longitudinal i.e. T1 and transverse i.e. T2) of the magnetization

and the frequency of the MR signal. By using a gradient magnetic field, the phases and

frequencies of protons in different locations can be localized. The two methods that can

localize the signal being detected by the receiving coil are phase encoding and frequency

encoding, which can be separated according to their timing during the image formation

process. Information from three dimensions, provided by 1) slice excitation, 2) frequency

encoding, and 3) phase encoding, is used to create an image of spatial location based on fre-

quencies and phases. This is encoded, in that a Fourier transform is used to create the image

itself from the raw data–a Fourier transform is the conversion of data in the time domain

(which is how it is collected), into the frequency domain, by modeling it as a sine wave.

The magnetic gradients and radiofrequency pulses focused on a slice allow differentiation of

locations based on the phase and the frequency data collected from each coordinate. The

Fourier transform is needed to convert the raw values into phase and frequency information

that can be displayed as a wave. That is, the data are the coefficients of the Fourier repre-

sentation of the object being imaged. Alternatively we can say that the data are the inverse

Fourier transform of the object. The spatial frequency domain has been called “Fourier

Space”, “frequency space”, or most popularly “k-space”. The process of taking the inverse

Fourier transform to obtain the image (image space as shown in Figure 2.4) has been termed

“data reconstruction”. Letting Ψ be the Fourier transform, we have for an n×m pixel image I,

ψ = Î(kx, ky)
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= n−1m−1
∑
x

∑
y

I(x, y) exp(−i2π(xkx + yky))

So, k-space is a graph of spatial frequency. In k-space, the low frequencies (large values) are

located in the center of the image with the frequencies increasing outward with distance from

the origin i.e. the smaller the value the further from the center the coordinate will be located.

The larger the dimensions to the k-space image (the larger the amount of information in the

periphery), the more detailed the resulting image will appear. In short, the intensity of the

signal determines the central part of k-space (as seen in Figure 2.4 with the darker pixels

indicating larger values), and the level of detail determines the periphery. In fMRI both low

and high frequency information is important.

Figure 2.4: Collected fMRI data (Eddy and McNamee, 2004). The plot on the left shows
the modulus of the k-space data, and the plot on the right shows the modulus of the image.
Darker pixels indicate larger values (the opposite of the “radiological convention” derived
from X-ray images on photographic film).

A typical fMRI data set might consist of a 64 by 64 array of 16 bit complex values recorded

for each of 32 two-dimensional slices, each ranging between 80-200 time points spaced a few

seconds apart. This yields a huge quantity of data collected in a small amount of time. If many
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runs are performed on a single subject over the course of an hour or so, and several subjects

are examined over time, the necessary storage requirements can become quite extensive.

2.3.1 An Example

For purposes of illustrating how the cognitive process works in relation to an activity and

what can be statistically deduced from the images while the subjects perform that activity,

we consider a simple example:

Table 2.1: Examples of a cognitive task - different sentence types for language study.

Sentence type Example
common-simple the writer attacked the king and admitted the mistake
common-hard the writer that the king attacked admitted the mistake

rare-simple the pundit attacked the regent and admitted the gaffe
rare-hard the pundit that the regent attacked admitted the gaffe

An experiment was carried out to examine the role of syntactic and lexical difficulty in the

comprehension of sentences (Keller et al., 1998). There were four experimental conditions

(as shown in Table 2.1): common words (high lexical frequency) in sentences with simple

syntax, common words in sentences with difficult syntax, rare words (low lexical frequency)

in sentences with simple syntax and rare words in sentences with difficult syntax.

Subjects were all native English speakers. The subjects were visually presented with the

sentences and had to answer comprehension (true/false) questions regarding who-did-what-

to-whom. The main interest of the researchers was in the measured activation in the left

temporal language area which would be a direct effect of difficulty in comprehension. This

activity enabled researchers to understand how human beings process and then comprehend

information and extract meaning out of it.

Analysis of the subjects revealed a main effect of lexical frequency, a main effect of syntactic

complexity and an interaction between the two i.e. lexical and syntactic frequencies (Lazar

et al., 1999). Sentences using rare words induce more stimulation in the language area, as
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do sentences with greater syntactic difficulty (main effect). This type of finding is not only

intriguing but is also indicative of the progress in sophistication regarding the information

that can be attained using fMRI.



Chapter 3

Statistics in Functional Magnetic Resonance Imaging

The features that characterize the fMRI data acquired on single subjects are abundance,

noise and high correlation both temporally and spatially. We can think of the data as a time

series, or more generally a movie, of the human brain in action. The complexity as well as

the volume of the data makes statistics an integral part in their analysis, comprehension and

information extraction.

The field of statistics makes valuable contributions to functional imaging research by estab-

lishing procedures for the design of brain imaging experiments and providing tools for objec-

tively quantifying and measuring the strength of scientific evidence provided by the data.

Common research objectives include detecting brain regions that reveal task-related alter-

ations in measured brain activity (detection) and identifying highly correlated brain regions

that exhibit similar patterns of activity over time.

Statistical issues stem from the nature of the problem addressed, for example, what specific

regions in the brain from different subjects in the same cohort are activated while performing

a particular task? Or what is their intensity of activation? Data are collected as images of the

human brain that are acquired over time as the experiment progresses. Since the same person

is involved, that is, the brain of a single individual is doing all the work, all the voxels are

correlated with each other (spatial correlation). And since the images are of the same person

over a short period of time, there is also temporal correlation. Added to these complications,

the data also include random noise (plausible causes would be equipment variability and so

on). Hence the signal to noise ratio becomes very small, making it important to look at the

processes closely. It then becomes imperative to use statistics to analyze data from the cohort

29
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in totality and also to use risk and probability based statements to address the questions of

interest.

This chapter deals with the way in which the raw data from an fMRI experiment are analyzed.

The aim of such analysis is to determine those regions in the image in which the signal changes

upon stimulus presentation. Although it is possible to devise many different techniques for

detecting activation, if these techniques are to be used in practice it is necessary to know how

much confidence can be placed in the results. That is to say, what is the probability that a

purely random response could be falsely labeled as activation. This requires an understanding

of the statistics behind the technique used.

Many of the statistically robust techniques used to analyze fMRI data have been developed

from PET. These try to model the time course that is expected, and determine how well

each voxel’s temporal response fits this model. However, since fMRI experiments allow good

time resolution, it is possible to carry out experiments which determine the order in which

different cognitive events occur. Analysis of the data from such an experiment requires a

“non-directed” technique which makes few assumptions about the timings of the activation

responses expected.

There are three stages to the analysis of the data from any fMRI experiment (Figure 3.1).

Firstly there are the preprocessing steps, which are applied to the data to improve the

detection of activation events. These include registering the images, to correct for subject

movement during the experiment, and so on. There are some well-known and understood

sources of noise, for example scanner drift, head motion, differences in timing of slice acqui-

sition which need to be corrected for. If we analyze the data without correcting for these,

we will get false impressions of the activation patterns in the data. So we make corrections

like smoothing in the preprocessing stage to help clean up the sources of noise that are

understood and can be easily corrected for. This has the effect of improving our ability to

detect relevant activation because it increases the signal to noise ratio. Next, the statistical
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analysis, which detects the pixels in the image which show a response to the stimulus, is

carried out. Finally the activation images must be displayed, and probability values, which

give the statistical confidence that can be placed in the result, quoted.

 

Figure 3.1: Steps involved in the processing of fMRI data.

3.1 Preparing MR Images for Statistical Analysis

There are a number of steps that can be carried out prior to the statistical analysis of the

data. Each of these steps is independent and offers different benefits. The flowchart diagram

in Figure 3.1 shows the sequence in which fMRI data are prepared for analysis.

3.1.1 Preprocessing

Preprocessing is an essential step before analyzing functional brain imaging data because

the measured signal change is very small compared to the total intensity of the functional

magnetic resonance signal and the task related signal change is very small compared to the

total spatial and temporal variability across images - hence changes due to non-task related

sources need to be removed as much as possible prior to statistical analysis.

Areas of brain activity that are found due to specific tasks are dependent on the image to

image changes in the measurements within a voxel. Therefore, to produce valid results these
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changes must be specifically attributable to functional differences in the brain elicited by the

task. Unfortunately, fMRI data are beset with many sources of bias and variability, which

can lead to erroneous detection of regions of brain activity and false conclusions about the

study. Problems in the data can arise from many sources including the MR scanner itself, the

experimental subject, and external interference. The sources of noise in fMRI data can be

quite extensive (Eddy and McNamee, 2004). Although many are covered here, this summary

is not exhaustive. Preprocessing comes into play in minimizing the variability and bias due

to these sources of noise.

(i) Noise from the equipment: One main source of bias and systematic variation in fMRI

data arises from the MR scanner. The performance of an MR scanner can vary, which can

introduce fluctuations in the data, even when the stability measures are well within the

instrumental norms (Weisskoff, 1996). Noise from the equipment can occur as systematic or

random errors.

Sources of systematic error in the data from the equipment include DC shifts and Nyquist

ghosts. DC shifts are also known as baseline errors. This source of data bias is caused by the

miscalibration of the analog-to-digital (A/D) converter; the baseline value is not reported as

zero. Nyquist ghosts, which are present only in echo-planar imaging, also produce systematic

bias in the data. Echo-planar pulse sequences traverse k-space on a boustrophedonic path

(back-and-forth as the ox plows the field). Nyquist ghosts are introduced through the mist-

iming of the oscillating magnetic gradients. The exact time at which the gradient crosses

zero is incorrect. This timing error causes an aliasing effect in the reconstructed image and is

most prominent in the phase-encode or direction of the fMRI scan (leading to a ghost of the

image repeated at the top and bottom of the true image). Both DC shift errors and Nyquist

ghosts that are present in the fMRI data can be corrected to a reasonable extent.

Random errors from the equipment can also introduce problems in the fMRI data. One

source of unpredictable instability results from inhomogeneities in the static magnetic field
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of the equipment. Magnetic field inhomogeneities have been reported as one of the most

prominent sources of distortion in fMRI studies (Jezzard, 1999)). Local variations in the

static magnetic field during fMRI will lead to blurring and pixel shifts, which can introduce

gross geometric distortions in the images. This problem is especially prominent at regional

boundaries in the sample containing different magnetic susceptibility properties, for example,

air-tissue interfaces around the frontal lobes and bone-tissue interfaces.

Additionally, random instability in the MR machine can result from imperfections in the B1

field. The B1 field is ideally a linear magnetic gradient that selects certain regions of tissue

to be excited, thereby leading to the collection of single slices. Again, problems with this

linear magnetic field can lead to blurring and geometric distortions in the data.

(ii) Noise from the experimental subject:

As with other types of human studies, the experimental subjects can lead to large amounts of

bias and variability in the data. While the subjects themselves have a great deal of intrinsic

variability due to differences in brain sizes, shapes, and functionality in general, the subjects

can also introduce additional variability that will “drown out” the desired results from brain

activity if the investigator is not careful.

One important source of noise from the experimental subject is due to head motion. As

previously described, BOLD fMRI studies compare very small regions of brain tissue across

a sequence of images that are taken over the course of several minutes. While BOLD has

the advantage that it requires no exogenous contrast agents, its measurable effects are very

small. Typical changes in the MR signal due to BOLD are on the order of 1-5%, making

this technique highly susceptible to noise. If the subject makes a small movement during the

scan, which can vary in signal value by more than 10%, adjacent voxels cause distortions in

the recorded signal information and can lead to false negative and false positive regions of

activation (Eddy et al., 1996). A typical voxel measures 3mm by 3mm by 3mm, so even a

small amount of motion will “shift” the measured signal into a different voxel.
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Thus, to obtain valid fMRI data, the subject must remain motionless throughout the scanning

period. Motion has been shown to be correlated with stimulus related events during visual

stimulation, thereby contributing to the likelihood that the computed regions of activation

are due to motion artifact rather than neural activity (Hajnal et al.,1994). The amount of

subject motion has also been shown to increase over time during the course of a scanning

session (Green et al., 1996). Additionally, children, elderly subjects, and subjects with mental

disorders tend to move more than healthy young adults, thereby increasing the difficulty of

studying these subjects using fMRI.

A second source of error from the experimental subject is due to “physiological noise”, which

is noise that results from the subject’s heart beat and respiration. This type of complex noise

is thought to interfere with the MR data through various mechanisms. For example, the

pulsatile motions of the brain and cerebral spinal fluid (CSF) induced from pressure changes

during both the cardiac and respiratory cycle lead to volume changes within the head which

cause displacement of tissue (Dagli et al., 1999). Large organ movements due to respiration

are also thought to cause fluctuations in the magnetic field, and effects of the oscillating

cardiac cycle on the BOLD signal response are unknown (Dagli et al., 1999).

There are many other sources of noise associated with the experimental subject. Thermal

noise is caused by atomic vibration that occurs at any temperature above absolute zero.

Susceptibility artifacts arise from local sharp changes in magnetic susceptibility; these occur

at the boundaries of tissue types and are typically greatest at air/tissue boundaries. Chemical

shift artifacts arise from small changes in the Larmor frequency caused by the local chemical

environment.

(iii) External noise:

Interference from outside sources can also lead to distortions and artifacts in the data.

Examples of interference sources include mechanical vibrations from other equipment in the

building or passing vehicles, and 60 (or 50) Hertz RF noise from other nearby electrical
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equipment. These sources are usually considered before installing the MR machines, and

precautions are normally taken. For example, an isolated foundation will reduce the effect

of external sources of vibration; copper shielding will reduce the effect of nearby sources of

microwave radiation, and iron shielding will reduce the effect of nearby electrical equipment

(and help contain the magnetic field itself).

Typical preprocessing steps include (Lindquist, 2008):

(a) Slice timing correction: Corrects for differences in acquisition time within a TR (in

conventional imaging, TR is the time between phases where the effective TR is the time

between images; typical values range from 100 to 4000 ms). This is a temporal correction.

To correct slice-timing errors, experimental analysis modifies the predicted hemodynamic

response so that each slice is compared to a hemodynamic response function with slightly

different timing. Temporal interpolation techniques are used to estimate the amplitude of

the MR signal. The compromise we make here is that the efficiency of temporal interpolation

reduces with increased TR as the sampling frequency is reduced.

(b) Motion correction: Motion correction is done first to minimize motion effects (eg. head

motion) associated with interpolation across adjacent voxels at a cost of slight timing uncer-

tainty. There are two types of artifacts due to motion viz. random movements which produce

a blurry and noisy image and periodic motion which creates ghost images. This correction

is achieved through transformations and/or minimization of squared differences (eg. sum

of squared differences). However the drawbacks with motion correction are: loss of data at

edges of imaging volume, ghosts in image do not change in the same manner as the real data,

distortions may be due to position in field and not position in head, etc.

(c) Coregistration: Coregistration is the process of aligning all image volumes to a refer-

ence volume i.e. coregistration of functional T1-weighted fMRI images is a necessary step

for combining functional information with anatomical information. The benefit of having

coregistered images is that it enables the visualization of functional data by superimposing
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it on a high-resolution anatomical MR image and therefore improves localization of neural

activation loci. The advantages of coregistration are: aids in normalization, allows display of

activation on anatomical images, allows comparison across modalities and necessary if there

are no anatomical images. The disadvantages of coregistration are: may severely distort

functional data and may reduce correspondence between functional and anatomical images.

(d) Normalization: Normalization is a form of coregistration, except that here the image

volumes to be coregistered differ in shape and not as a result of distortion. Normalization

enables us to compare fMRI results across subjects and across different studies. The most

widely used stereotaxic (an external three dimensional frame of reference to locate voxels

within the brain) space is Talairach space (Talairach and Tournoux, 1988). Normalization

algorithms determine the overall size of the brain as well its gross anatomical features to

warp it to the common template. The advantages of normalization are: allows generalization

of results to larger population, improves comparison with other studies, provides coordinate

space for reporting results and enables averaging across subjects. The disadvantages are:

reduces spatial resolution, may reduce activation strength by subject averaging, time con-

suming and could be potentially problematic (doing bad normalization is much worse than

not normalizing).

(e) Spatial smoothing: Smoothing is a process by which the data points are averaged with

their neighbors in an image. Spatial smoothing reduces the high frequency spatial component

in the images. The technique used is normally a Gaussian kernel i.e the normal distribution

function is used to take the weighted average of neighboring points. This is because it has a

very narrow pass band (frequency of interest) and it attenuates all frequency outside it. The

advantages of spatial smoothing are: increase in signal to noise ratio (SNR) and may improve

comparisons across subjects. However the disadvantages are: reduces spatial resolution and

it is challenging to smooth accurately if size/shape of signal is not known.
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(f) Segmentation: Classifies voxels within an image into different anatomical divisions for

easy visual representation, for example, in Figure 3.2 we see gray matter (yellow), white

matter (pink) and cerebro-spinal fluid(CSF)(green).

 

 

Figure 3.2: Segmenting into 3 anatomical divisions viz. gray matter, white matter and CSF
(Bizzell and Belgar, 2002).

(g) Identification of regions of interest (ROI): The ROI-based approach is used to allow

direct, unbiased measurement of activity in an anatomical region, to improve ability to

identify topographic changes (eg., motor mapping, social perception mapping, etc.) and to

complement voxel-based analyzes. This is not strictly a preprocessing step as others and is

heavily dependent on the problem of interest.

(h) Bias field correction: Corrects for intensity nonuniformities (bias) in fMRI images. There

are two models in the literature that correct for bias. The first model involves resetting the

image to a hypothetical ideal. The second model uses a template image with known voxel

intensities and compares the subject image to it. The idea here is that deviations in the

ratios of corresponding voxel intensities identify nonuniformities which can be removed from

the subject image.
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3.1.2 Detection and Estimation

Detection, that is, locating which voxels are activated in response to a given task, and

estimation of the hemodynamic response function are two different topics of interest. Most

of the commonly employed statistical techniques have as their end product a map, usually

referred to as a statistical parametric/non-parametric map of the brain. These maps are a

graphical representation of the output of the statistical analysis at each voxel of the brain:

a map of t-statistics, or F statistics, and so forth. These maps enable us to locate the

voxels that become activated while performing a particular task. Efficient estimation of the

hemodynamic response function not only can be used to arrive at conclusions as to which

voxels should be regarded as active but it might also be of interest on its own. Event-related

designs offer maximum estimation efficiency but poor detection power, while block designs

offer good detection power at the cost of minimum estimation efficiency. However, both these

designs can simultaneously achieve the estimation efficiency of randomized designs and the

detection power of block designs at the cost of increasing the length of an experiment (Liu

et al., 2001).

3.1.3 Thresholding

Acquisition of the statistical parametric/non-parametric maps involves a combination of

statistical models, statistical tests, and corrections for multiple testing. When we aim at

answering the question “Which voxels show significant levels of activation during task com-

pared to the control condition?”, the task of classifying each of the enormous number of

voxels in a typical study as “significantly active” or “not significantly active” is a formidable

problem of multiplicity. This issue of multiplicity is known as the problem of thresholding in

the neuroimaging community.

In any statistical test, a binary decision (fail to reject null/reject null) is made. The true

state of nature is also binary (null is true/null is false). Thus, underlying a series of statistical
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tests and decisions, such as might be taken regarding the voxels in an fMRI dataset, is a

simple two-by-two table (Table 3.1).

Table 3.1: The binary decision of a statistical test - reject the null hypothesis or fail to reject
the null hypothesis - in conjunction with the true state of nature: null is true or null is false.

Choices Fail to reject null Reject null Total
Null True m00 m01 m0.

Null False m10 m11 m1.

Total m.0 m.1 m

In total there are m voxels, where m numbers in the hundreds of thousands for fMRI studies.

Of these, m.1 are declared active, that is, the null hypothesis is rejected. In reality, m0. voxels

are inactive, that is, the null hypothesis is true, and m1. are active. We are truly interested

in the m11 voxels for which the null is rejected, when in fact it is false. These are the true

activations. Different approaches to correcting for multiple testing aim at different types of

control of this unknown number.

A standard quantity to control is the familywise error rate (FWER), which is the probability

of having even one false discovery across all the tests. More recently, methods that control the

false discovery rate (FDR), or the expected proportion of incorrectly rejected null hypotheses,

out of all the voxels that have been declared active, have become increasingly popular. FDR

is less conservative, with greater power than FWER control, at the cost of increasing the

likelihood of obtaining Type 1 errors (Lazar, 2008).

3.2 Statistical Analysis of fMRI Images

In this section, I will give a very brief overview of different approaches to obtaining activation

maps, followed by a slightly more detailed introduction to analysis via the general linear

model (GLM; currently the most popular statistical approach).

After the pre-processing steps, statistical analysis is carried out to determine which voxels

are activated by the stimulus or task. Many techniques have been proposed for statistically
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analyzing fMRI data, and a variety of these are in general use. These techniques can be simple

correlation analysis or more advanced modeling of the expected hemodynamic response to the

stimulus or task. Various possible statistical corrections can be included, such as correction

for smoothness of the measured time series at each voxel. The aim of these various analyses is

to produce an image that shows regions with significant signal change in response to the task.

Each voxel is assigned a value, dependent on the likelihood of the null hypothesis, a relevant

test statistic or equivalently a p-value. Such an image is called a statistical parametric map.

It is most common to analyze each voxel’s time series independently (“univariate analysis”).

For example, the standard GLM analysis is univariate (although cluster-based thresholding,

commonly used at the final inference stage, does use spatial neighborhood information and is

therefore not univariate). There are also “multivariate” methods which process all the data

together; these methods make more use of spatial relationships within the data than does

the univariate analysis (Jezzard et al., 2001).

There is also a distinction between model-based and model-free methods. In a model-based

method, a model of the expected response is generated and compared with the data. In a

model-free method, effects or components of interest in the data are found on the basis of

some specific criteria (for example, the spatial or temporal components should be statistically

independent of each other). This allows for “surprise” in the data, and also the analysis of

data where it is difficult to generate a good model. There are also a few methods which

lie between model-based and model-free, for example (Clare et al., 1999), where the only

“model” information given is the time of the beginning of each stimulation period (the

actual time-course within each period is not pre-specified). A statistical map is generated by

comparing the variance within periods with the variance across periods.

In this section, I demonstrate analysis techniques on an example data set. The experiment

performed was intended to detect activations resulting from a visually cued motor task. The

whole brains of the subjects were imaged, in 16 coronal slices of resolution 3 x 3 x 10 mm3,
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every four seconds. As cued by an LED display, subjects were required to squeeze a ball at

the rate of 2 Hz. The experiment involved 16 s of rest, followed by 16 s of task performance,

repeated 32 times (Zar, 1996).

3.2.1 Subtraction Techniques

One of the simplest methods for obtaining results from a two state fMRI experiment is

to perform a simple subtraction. This is carried out by averaging together all the images

acquired during the “on” phase of the task, and subtracting the average of all the “off”

images. The disadvantage of such a technique is that it is extremely sensitive to head motion,

leading to large amounts of artifact in the image. Figure 3.3a shows a single slice through

the motor cortex from the example data set, and Figure 3.3b shows the result of subtracting

the “off” images from the “on” images. Although signal increase can be seen in the primary

motor cortex, there is also a large amount of artifact, particularly at the boundaries in the

image. This analysis ignores both spatial and temporal correlation.

Such a method does not yield a statistic that can be tested against the null hypothesis, so

instead of straight subtraction it is more common to use a Student’s t-test. This weights the

difference in means, by the standard deviation in “off” or “on” values, giving high t-scores

to large differences with small standard deviations, and low t-scores to small differences with

large standard deviations. The t-score is calculated on a pixel by pixel basis, for a time series

X, using the formula

t =
X1 −X2

S

where

S =

√
S2
p

n1

+
S2
p

n2

and S2
p is the pooled variance

S2
p =

∑(
X1 −X1

)2
+
∑(

X2 −X2

)2

n1 + n2 − 2
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The suffix “1” refers to the n1 images acquired during the “on” period of the task, and “2”

refers to the n2 images acquired during the rest period. Figure 3.3c shows the statistical para-

metric map of t-scores for the sample data set. Again motor cortex activation is clearly seen,

but the movement artifact in the figure 3.3b is slightly reduced compared to the subtraction

technique.

  

Figure 3.3: Use of subtraction techniques to analyze fMRI data. (a) A single slice coronal
image through the primary motor cortex. (b) The mean of the images acquired during the
“off” period of the fMRI experiment subtracted from the mean of the images acquired during
the “on” period. (c) The t-statistical parametric map corresponding to image (b)(Stuart,
1997).

3.2.2 Correlation Techniques

Since we know that the BOLD response is mediated by blood flow, it is possible to improve

the detection of activations by predicting the shape of the response to the stimulus, and cal-

culating correlation coefficients between each pixel time course and the reference waveform.

This is less sensitive to other physiological changes during the experiment, and to move-

ment. For a time course X, and a reference waveform Y , we calculate the usual Pearson’s

correlation coefficient, denoted by r.

The choice of an appropriate reference waveform is vital for the success of this technique

in finding activations. The first approximation might be a square wave, which is high for

scans acquired during the task, and low for scans acquired during rest (Figure 3.4a). Such

a waveform however takes no account of the delay and smoothness of the hemodynamic



43

response which regulates the BOLD contrast. An improvement to this would be to change

the phase of the square wave (Figure 3.4b), with the delay being between 3 and 6 seconds.

This corresponds with the delay in the onset of the hemodynamic response.

To improve the reference waveform further, it is necessary to look more closely at the actual

hemodynamic response. In an experiment such as the one used for the example data set,

where there is both visual and motor activation, it is possible to use the response to one type

of stimulus to form the reference waveform for finding the other. In this case the time series

for one or more pixels in, say the visual cortex is extracted (Figure 3.4c), and correlation

coefficients are calculated between this waveform and that of every other pixel in the image.

Such an analysis detects only those regions in the brain which respond to the stimulus in

the same way as the visual cortex. The major disadvantage of this technique is that it is

particularly sensitive to motion artifact, since if such artifact is present in the reference

waveform then the movement of other regions will be highly correlated. In an attempt to

reduce this, the response in the visual cortex to each stimulus can be averaged together,

producing a mean response to the single cycle. The reference waveform is then made up of

a repetition of these single cycle average responses (Figure 3.4d).

To be more general in predicting the hemodynamic response, so that a reference waveform

can be constructed for any length of stimulus, it is necessary to know the response to a

single stimulus. Friston et al. (1995) suggested that a hemodynamic response function could

be considered as a point spread function (point spread function is the Fourier transform of

any distribution kernel—we usually use Gaussian distribution kernel; point spread function

answers the question, how much blurring would occur if you are trying to image a point),

which smooths and shifts the input function. By deconvolving the response from a known

area of activation with the stimulus function, the hemodynamic response function can be

obtained. The hemodynamic response function is not completely uniform across the entire

brain however, and the shape obtained from one region may not be optimal for another. As

an alternative, the response can be modeled by a mathematical function, such as a Poisson
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Figure 3.4: Various reference functions that can be used to correlate with a pixel time course
to detect activations (Stuart, 1997).
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function (Friston et al., 1994), Gamma-variate function (Lange and Zeger, 1996), Gaussian

function (Rajapakse et al., 1998) or difference of two gamma variate functions (Glover, 1999)

and so on. The Poisson function (see Figure 3.4e) gave a reasonable fit to this example dataset

and hence was used to fit the observed hemodynamic response.

Since in general each slice of the volume imaged is not acquired at the same instant, it is

necessary to accommodate timing differences in the correlation with the reference waveform

(one of the steps in preprocessing involving slice time correction would have eradicated this

issue but that was not done in this example). In order to do this, the relative magnitude

of the activation at the time each slice was acquired is predicted, by convolving the input

stimulus with a Poisson function. Then from this series, the correlation coefficients can be

calculated on a slice by slice basis, constructing the reference waveform from the appropriate

points in the predicted time series.

Examples of the effect of the reference waveform on the resultant analysis are shown in Figure

3.5. This example is used only to illustrate how the correlation technique works. Here, pixels

in the head which correlate to the reference waveforms (shown in Figure 3.4), with r > 0.40

are shown in red, on top of the base image. The square wave correlation is the least effective

in detecting activations (a), however a considerable improvement is obtained by delaying

the waveform by 4 seconds (b). The correlation of the visual cortex with itself (c) is, not

surprisingly, high, but using the average visual cortex response (d) improves the correlation

in the motor cortex. The Poisson function model of the hemodynamic response (e) improves

slightly on the delayed square wave, and is a good model.

3.2.3 General Linear Model

The statistical techniques described above are both parametric and specifically assume that

the observations are taken from normal populations. Most parametric modeling techniques

are special cases of the general linear model. This framework for analyzing functional imaging
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Figure 3.5: Activation images obtained by correlating the test data sets with the reference
waveforms shown in Figure 3.4 (Stuart, 1997).
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data was first developed for PET and then extended for fMRI. Here I will give a brief

overview.

The aim of the general linear model is to explain the variation of the time course

y1, ..., yi, ..., yn, in terms of a linear combination of explanatory variables and an error

term. We will first use GLM in a univariate way, where we consider one voxel only, and the

fitting of models to a single voxel’s time-course. Hence we will consider that the data of

interest comprise a single 1D vector of intensity values. For a simple model with only one

explanatory variable x1, ..., xi, ..., xn, the general linear model can be written

yi = xiβ + εi

where β is the scaling, or slope parameter, and εi is the error term. If the model includes

more variables it is convenient to write the general linear model in matrix form

Y = Xβ + E

where now Y is the vector of observed pixel values, β is the vector of parameters and E is

the vector of error terms. The matrix X is known as the design matrix. It has one row for

every time point in the original data, and one column for every explanatory variable in the

model. In analyzing an fMRI experiment, the columns of X contain vectors corresponding

to the “on” and “off” elements of the stimulus presented. By finding the magnitude of the

parameter in β corresponding to these vectors, the presence or absence of activation can be

detected.

β can be determined by solving the normal equations

XTY =
(
XTX

)
β̂

where β̂ is the best linear estimate of β. Provided that (XTX) is invertible then β̂ is given

by

β̂ =
(
XTX

)−1
XTY
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Such parameter estimates are normally distributed (if error terms are normally distributed),

and since the error term can be determined, statistical inference can be made as to whether

the β parameter corresponding to the model of an activation response is significantly different

from the null hypothesis that there is no contribution of a component in the design matrix

to the value of response.

The general linear model provides a framework for most kinds of modeling of the data, and

can eliminate effects that may confound the analysis, such as drift or respiration, provided

that these can be modeled. The successive steps of every GLM-based method are: modeling

the response at each voxel, then testing a hypothesis (about the parameters of the model)

and representing the observed statistic map thresholded at a given level according to the

point distribution (distribution at a given voxel i.e one random variable) of the statistic or

according to the field distribution (continuous version of a multivariate distribution i.e a

distribution of a vector of random variables) of the statistic (Leibovici and Smith, 2001).

The GLM can refer to a single subject, to a single group or to multiple groups which can

represent different subjects (e.g. male, female) or the same subjects (e.g. placebo, drug A,

drug B in a cross-over design). As stated earlier, the modeling part is univariate, i.e. it

is done separately for each voxel. The paradigm applied is usually well balanced (e.g. the

same number of ‘rest’ and ‘stimulation’ scans in a block-design). The simplest approach

uses only a t-test, and this analysis can be embedded in a general linear model to be able

to take into account covariates in the analysis (Friston et al., 1995). Multi-subject fMRI

experiments can also be expressed in a GLM framework with different forms according to

the approach taken: fixed or random subject analysis which will be discussed in details in

the next chapter. Estimation can be improved using spatial consideration (smoothing) in

order to regain some quality of the estimation (spatially smoothed autocorrelation). In the

context of multi-subject analysis a similar spatial consideration is investigated (Worsley et

al., 2000) to “diminish between-subject variability”.
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Single-Subject Analysis

To illustrate the single-subject fMRI study, one collects, at each voxel, a time series of

responses (intensities of the BOLD signal) to a stimulus, e.g. an ON (condition B) and OFF

(condition A) experiment. This, however, is only one type of design, a block design with two

sets of conditions. There are other types of designs, e.g., more than two sets of conditions in

a block design, event-related, and so on. The same general principles apply in any case, with

appropriate modifications to take account of the design matrix. Let yt, be the time series

observed from t = 1,...,T , at a given voxel. Among the T values observed at this voxel, TA of

them were recorded while under condition A (OFF or rest condition) and TB of them were

recorded while under condition B (ON or stimulation condition) according to the paradigm.

The observations are assumed to be independent and identically distributed (i.i.d.) and to

come from a Normal distribution with the same variance σ2 and means µA and µB for the

two conditions. To decide if there was an activation (at this voxel) during the experiment,

one has to compare the means in the two conditions. If the difference of the means is big

enough relative to its dispersion, one will assume activation. Under the null hypothesis (of

no activation µA = µB):

t0 ∼ tdist (TA + TB − 2)

In fMRI the data is often balanced i.e. TA = TB = T/2. The null is rejected at a chosen level

of α to conclude that the voxel was activated if

p (tdist (TA + TB − 2) ≥ t0) < α

Multi-Subject Analysis

One easy implementation of this analysis is to perform a two-stage procedure. At the first

stage the analysis explained in the previous section is performed for each of the n subjects.

Hence for each subject, we create a statistical map of t-values. The second stage deals with
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combining these maps to answer the question whether there is activation in the population

from which these subjects have been drawn. There are two methods that can be chosen

for this analysis and each gives a different conclusion for the population: fixed subject-effect

analysis allows a conclusion limited to the sample studied and random subject-effect analysis

allows a conclusion that can be extended to the population at large. If the sample is small

then the latter will typically be conservative due to fairly large subject to subject variability;

some alternative approaches have also been developed: “conjunction analysis” (Friston et al.,

1995) and “variance ratio smoothing” (Worsley et al., 2000). Both fixed effect and random

effect analysis are discussed in detail in the next chapter.

Alternatives to the Random or Fixed effect Analysis

Conjunction Analysis

Sometimes it gets difficult to choose either of the two approaches, fixed-effect model or

random-effect model. Also, random-effect model is difficult to apply usually because of over-

estimation of variances due to small samples. To overcome these drawbacks, some alterna-

tives have been investigated. One is the “conjunction analysis” (Friston et al., 1995), which

uses statistical maps from all the subjects to localize where all the subjects activated (at a

chosen level i.e. it is a thresholded map of the minimum map over the subjects (Worsley and

Friston, 2000)). This is to say that in order to show activation at a voxel at the group level,

all subjects have to show activation at that particular voxel. This means that for p-value

group maps, the “least significant” activation has to be below a threshold. Then using simple

probability theory, we can find the proportion of the sample which shows activation at the

previously defined level (in the single-subject analysis). Let (t) denote the tested status of

activation with the experiment and (a) denote the true status of activation, while + indicates

the status that it is activated and - indicates the status that it is not activated, then αc=

proportion of the population which shows activation at the single-subject level

αc = P (allt+)
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= [P (t+)]n

= [P (t+/a−)P (a−) + P (t+/a+)P (a+)]n

= [α (1− γ) + βγ]n

where α is the chosen single-subject level of activation, β is the power or sensitivity of

the experiment, which is not known but can be set at 1 to provide a lower bound of the

proportion γ of the population showing the effect. Setting β = 1 gives

γ ≥ γ1 =
α1/n
c − α
1− α

Thus the conclusion about the population is, for example, with certainty of 0.95 (1− αc), we

can say that at least 80%(γ1) of the population would show activation at level of significance

0.001. However, this is not only stringent but the requirement to show consistent activation

at the voxel level is unrealistic.

Variance Ratio Smoothing

Smoothing the observed variance over the whole brain would produce a better estimate of the

random variance, but that assumes constant underlying variance over the brain. At times the

homoscedasticity assumption will be violated, e.g. difference in white matter and gray matter

(Woolrich et al., 2000). Worsley et al. (2000) suppose that the ratio of random-effects and

fixed-effects variance is locally constant, so that smoothing the ratio would produce a pooled

estimate. The method consists of first performing random and fixed effects analyses, then of

spatially smoothing the ratio of variances obtained with the two methods (random/fixed),

and finally returning to random-effects variance by multiplying the smoothed ratio with

the fixed effects variance before performing the group t test. They estimate the degrees of

freedom for the test as:

dfWratio = 1/ [1/dfratio + 1/dffixed]

= dfratio/ (1 + dfratio/dffixed)
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where

dfratio = dfrandom

[
2
(
FWHMs

FWHMdata

)2

+ 1

]3/2

and FWHMs is the Gaussian smoothing parameter which enables one to move between a

random analysis if set to 0 (no smoothing) and a fixed analysis if set to ∞ (smoothing the

variance ratio to one everywhere). Sensible choices for FWHMs would be not to increase

too much the degrees of freedom comparatively to its no smoothing situation (dfrandom),

an obvious limit being the degrees of freedom of a single subject experiment i.e. dffixed/n.

The value recommended (Worsley et al., 2000) is 15mm for an original smoothness of 6mm

(FWHMdata).

One or two Groups of Subjects

A one-group analysis is a multi-subjects analysis with the obvious restriction that every

subject of the random sample studied is a member of this group. Two-group analysis is

carried out with a two-sample t-test. Under the fixed-effects approach, we have:

β̂1i ∼ N
(
mβ1i

, σ̂2
βε1i

)
i = 1, ..., n1

β̂2i ∼ N
(
mβ2i

, σ̂2
βε2i

)
i = 1, ..., n2

mβ1i
and mβ2i

represent the population mean activation in the two groups. Under the

random-effects approach one will consider estimated mean activation, so we have:

β̂1i ∼ N
(
β1i, σ̂

2
βε1i

)
i = 1, ..., n1

β̂2i ∼ N
(
β2i, σ̂

2
βε2i

)
i = 1, ..., n2

We will consider the activation for a given subject as a random observation of the activation

for the population. β1i = mβ1 + ηi, β1i is random ∼ N
(
mβ1 , σ

2
β1η

)
and β2i = mβ2 + ηi, β2i is

random ∼ N
(
mβ2 , σ

2
β2η

)
.
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For each of the groups, it is a two levels variation (within subject and between subject). So

now we have:

β̂1i = mβ1 + ηi and β̂2i = mβ2 + ηi, i.e. two error terms in each group.

All the first level analysis has been done for every subject in each group. This looks very

similar to the original simple single-subject analysis, but here the sample size of groups may

be quite different. We will test θ = mβ1 −mβ2 = 0, i.e. the population mean activation in

both the groups are same, using a two sample t-test. So we have:

t0 (fixed) ≈ tdist ((n1 + n2) (TA + TB − 2))

or

t0 (random) ≈ tdist ((n1 + n2)− 2)

Here no conjunction analysis approach can be made unless the same subjects are in both

groups (for example, before and after medical treatment) as pairing of subjects across the

groups would be required - in fact this then ends up reverting to a one-group analysis (with

a paired -test). The “variance-ratio method” can, however, be performed.

So, m̂β1 = β̂ ∼ N
(
mβ1 , 1/nσ

2
β1η+β1ε

)
and m̂β2 = β̂ ∼ N

(
mβ2 , 1/nσ

2
β2η+β2ε

)
,

σ̂2
β1η+β1ε

= σ̂2
β1η

+ σ̂2
β1ε

and σ̂2
β2η+β2ε

= σ̂2
β2η

+ σ̂2
β2ε

.

On a side note, when g groups are studied one can also compare them two by two, then

introducing a multiple comparison. If equal variances are assumed, a pooled variance of all

g samples must be used for either method. To do more advanced comparisons, one has to

return to the GLM or ANOVA to be able to test, for example, if all the groups have the

same activation, or if there is a trend in the groups, as one would expect for groups defined

by increasing doses of a treatment. These would involve either F statistics and/or using a

linear function of the parameters estimated in the model, i.e. contrasts.
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3.2.4 Serial t Test

For many experiments, the use of rapid imaging, and carefully designed paradigms, makes the

separation of the order of cognitive events possible. One such example is a paradigm involving

the initiation of movement. In this experiment, the subject is required to respond, by pressing

a hand held button, to the visual presentation of the number ‘5’, and to make no response

to the presentation of a ‘2’. This paradigm presents two differences to conventional, epoch-

based experiments. Firstly, the activations of interest, which are those responsible for the

button pressing, occur at an irregular rate. Secondly, all the cognitive processes involved in

the task, including both the planning and execution of the movement (event-related design),

occur in a time period of a few hundred milliseconds, as opposed to the sustained activation

used in epoch-based paradigms. Such an experiment requires a new form of analysis. Here

two techniques are chosen, both of which make no assumptions about the time course of

activations during the task: the serial t-test, described here, and an analysis of variance

technique, explained in the next sub-section.

The basis of the serial t-test is to define a resting state baseline, and compare the images

acquired at each time point before, during and after the task with this baseline. Figure 3.6

illustrates the technique. For each time point following the stimulus, a mean and standard

deviation image is constructed, as is a baseline mean and standard deviation image. Then a

set of t-statistical parametric maps is formed by calculating, on a pixel by pixel basis, the

t-score (as described in the subsection on Subtraction Techniques) for the difference between

mean image one and the mean baseline image, mean image two and baseline, and so on.

The technique has two major disadvantages. The first is that, in order to achieve a suffi-

cient signal to noise ratio, it is necessary to have many more cycles than in an epoch-based

paradigm (block design with alternating stimulation and rest), thus leading to longer exper-

iments. This can be uncomfortable for the subject, and puts additional demands on the

scanner hardware. There is some scope for bringing the single event tasks closer together,

but there must be a sufficient interval to allow the BOLD signal to return to baseline. This
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Figure 3.6: fMRI analysis using the serial t test (Stuart, 1997).

delay is at least ten seconds in length depending on the individual or the task given (Poll-

mann et al., 2000). The second disadvantage is that the analysis results in many statistical

parametric maps, which have to be interpreted as a whole. However the fact that the tech-

nique makes few assumptions about the data time course makes it a strong technique, and

opens up the possibility of more diverse experimental design, and a move away from the

epoch-based paradigms.

3.2.5 Analysis of Variance

A second technique which does not require any assumptions about the shape of the activation

time course, looks at the changes in variance upon averaging. The technique is based on

simple signal averaging theory. Take, for example, the response measured to a repeated signal

as shown in Figure 3.7. The time series contains two components, one is a genuine response

to the signal, and the other is the random fluctuations due to uncorrelated physiological

events and noise in the image. Upon averaging 32 cycles together, the magnitude of the
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noisy component is reduced but that of the repeated signal is not. The reduction of the

noisy component can be measured by calculating the variance of both the unaveraged and

averaged data set.

 

Figure 3.7: Signal averaging. The variance of the noise in the average signal is n times less
than it is in the original signal, where n is the number of cycles (Stuart, 1997).

To detect regions of activation, the ratio of the variance of the averaged data set to the

variance of the unaveraged data set is calculated for each pixel in the image. For pixels in

regions of purely random intensity variations, this ratio will be around 1
n
, where n is the

number of cycles averaged together. Pixels in regions of activation, however, will have a

significantly higher ratio than this, since the variance of both unaveraged and averaged data

sets is dominated by the stimulus locked intensity variations of the BOLD effect, which does

not reduce upon averaging.

The technique is more formally explained as an analysis of variance (ANOVA). If Xij refers

to the ith time point after the stimulus, of the jth cycle of an experiment:
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timet X11 X12 . . . X1j . . . X1n X1

time2t X21 X22 . . . X2j . . . X2n X2

...
...

...
...

...
...

...
...

timeit Xi1 Xi2 . . . Xij . . . Xin Xi

...
...

...
...

...
...

...
...

timekt Xk1 Xk2 . . . Xkj . . . Xkn Xk

...
...

...
...

...
...

... X

with n cycles and k points per cycle. The null hypothesis is that there is no significant

difference in the means, X̄i. This can be tested by comparing two estimates of the population

variance, σ2, one based on variations in measurements of the same time point, and one based

on the variance between time points.

The variance within measurement of any time point can be calculated by

s2
i =

n∑
j=1

(
Xij −Xi

)2

n− 1

and so the mean variance within time points is given by

σ̂2
W =

k∑
i=1

s2
i

k

=
k∑
i=1

n∑
j=1

(
Xij −Xi

)2

k (n− 1)

and is based on k (n− 1) degrees of freedom. The variance of the time point means is given by

s2
X

=
k∑
i=1

(
Xi −X

)2

k − 1

and since

σ2
X

=
σ2

n
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then σ2 can be estimated by

σ̂2
B = n · s2

X

= n ·
k∑
i=1

(
Xi −X

)2

k − 1

which is based on k − 1 degrees of freedom. Under the null hypothesis, both σ̂2
W and σ̂2

B

independently estimate the population variance σ2. This means that the ratio

F =
σ̂2
B

σ̂2
W

will have an F distribution with k− 1 and k(n− 1) degrees of freedom. If there is any signal

change that is time locked to the stimulus, the value of σ̂2
B will be larger than expected under

the null hypothesis. In the analysis of fMRI data, all the above equations are used to form

an F-statistical parametric map.

3.2.6 The statistical mapping approach

Statistical mapping is used for identifying regionally specific effects (e.g., brain activations)

recorded during functional neuroimaging experiments using neuroimaging technologies such

as fMRI to characterize functional anatomy and disease-related changes. It entails the char-

acteristics below to perform the analysis:

Unit of measurement:

The fMRI scanner produces a “map” of the area being scanned that is represented as an array

of voxels. Each voxel represents the activity of a particular coordinate in three dimensional

space. The exact size of a voxel will vary depending on the technology used, although fMRI

voxels typically represent a volume of 27 mm3 (a cube with 3 mm length sides)

Experimental design:

Researchers are often interested in examining brain activity linked to a specific psychological
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process or processes. An experimental approach to this problem might involve asking the

question “which areas of the brain are significantly more active when a person is doing task

A compared to task B?”. The brain is likely to show changes in activity between tasks due

to factors other than task differences (as the brain is involved with co-ordinating a whole

range of parallel functions unrelated to the experimental task). Furthermore, the signal may

contain noise from the imaging process itself as explained earlier in this Chapter.

To accommodate these random effects, and to highlight the areas of activity linked specifically

to the process under investigation, statistics are used to look for the most significant difference

above and beyond background brain activity. This involves a multi-stage process to prepare

the data, and to subsequently analyze it using some statistical method.

Image pre-processing:

Images from the brain scanner may be pre-processed before any statistical comparison takes

place to remove noise or correct for sampling errors. This has been explained in detail earlier

in this Chapter.

Statistical comparison:

Parametric statistical models are assumed at each voxel, most commonly using the general

linear model to describe the variability in the data in terms of experimental and confounding

effects, and residual variability. Hypotheses expressed in terms of the model parameters are

assessed at each voxel with univariate statistics.

Graphical representations:

Differences in measured brain activity can be represented in a number of ways. Most simply,

they can be presented as a table, displaying coordinates that show the most significant

differences in activity between tasks. However, differences in brain activity are more often

shown as patches of color on an MRI brain “slice”, with the colors representing the location of

voxels that have shown statistically significant differences between conditions. The gradient

of color is mapped to statistical values, such as t-values or z-scores. This creates an intuitive
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and visually appealing means of delineating the relative statistical strength of a given area

of activation. Recently, an alternative approach has been suggested, in which the statistical

map is combined or overlaid with the map of the original difference in brain activity (or, more

generally speaking, with the original contrast) and color codes are attributed to the latter

(Reimold et al., 2006). Differences in activity may also be represented as a “glass brain”, a

representation of three outline views of the brain as if it were transparent. Only the patches

of activation are visible as areas of shading. This is useful as a quick means of summarizing

the total area of significant change in a given statistical comparison (Reimold et al., 2006).

3.3 Introduction to the Thesis

The human brain controls all activities ranging from heart rate, breathing, motor activities,

senses to learning, language, emotion, mood and behavior. This powerful, highly sophisti-

cated organization and system of communication and co-ordinated functionality is achieved

through networks of interconnected neurons which aid in transmitting signals. The human

brain comprises of four lobes: frontal, parietal, temporal and occipital (Figure 3.8). The sur-

face of the brain is referred to as the cortex and there are further subdivisions within each

lobe.

Functional brain imaging has proliferated cognitive research, hence enabling us to understand

differences between two subject populations, between healthy and abnormal brains, between

males and females and so on. Data collection from an fMRI experiment is driven by MR

physics (Buxton, 2002). The MR physics component depends on the nature of the psycholog-

ical stimuli, the particular MR scanner being used, and the location of the expected response.

Scanning parameters, such as the number and orientation of slices to be collected, the time

of repetition, and others, must be chosen before carrying out an experiment. The physics of

the scan will depend on these chosen parameters. The physical method for collecting each

slice of data, termed the pulse sequence, must also be selected. The pulse sequence is a small

program run in the scanner to manipulate the magnetic and radiofrequency fields, and is
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Figure 3.8: The human brain with four lobes (Mysid, 2006).

thus dependent on the type of MR scanner and the pulse sequences available for use. An

fMRI data set from a single session can either be thought of as t volumes, one taken every

few seconds, or as ν voxels, each with an associated time series of t time points (Jezzard et

al., 2001).

For calculation purposes, a voxel is a small square that constitutes only a small fraction of a

slice of the brain in the two-dimensional image produced by the scanner (we will consider the

height of the slice negligible). Each slice is acquired in a grid form, for example each voxel

being 4mm by 4mm of data; each voxel represents the strength or intensity of the magnetic

resonance signal relating to the changes in brain activity as the task is being performed. The

goal of fMRI analysis is to detect, in a robust, sensitive and valid way, those parts of the

brain that show increased intensity at the points in time that stimulation was applied.

It is common to run an experiment multiple times, either on the same subject, or with

multiple different subjects, or both. This can both increase the sensitivity of the overall
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experiment (as more data can lead to increased sensitivity to an effect) or allow the gener-

alization of any conclusions to the whole population. In order to combine statistics across

different sessions or subjects, the first necessary step is to align the brain images from all

sessions into some common space. This leads to a problem which has two aspects. One is the

spatial aspect since different people have different sizes and shapes of the brain and hence the

need to standardize them on a common spatial scale in such a way so as to extract maximum

information. The standard practice to address this problem is to warp and smooth the brain

images of the subjects on to a common atlas such as Talairach coordinates (Talairach and

Tournoux, 1988) or The Montreal Neurological Institute (MNI) Broadmann atlas (Evans

et al., 1992). However, any such warping leads to tremendous loss in real spatial resolu-

tion (Woods, 1996). The second aspect of the problem is statistical and involves methods

of combining information from different subjects in an efficient fashion. In order to avoid

this problem, historically researchers would take average of each slices over all the subjects.

Averaging may not yield a great loss of power in some cases (Cochran, 1954) but some times

it may not truly represent the population. This is because the subjects are picked randomly

and a result from one subject which does not conform with the rest will skew the conclusion

significantly. Averaging allows for accumulation of evidence arising from multiple subjects

who display similar patterns of activation.

In many fMRI experiments, it is desirable to directly compare and contrast different con-

ditions occurring in a voxel within or between subjects. Methods for performing such com-

parisons have been built on the GLM to assess activity in an fMRI study, resulting in a

statistical parametric map. As we have already seen, the GLM can refer to a single subject,

one group of subjects or multiple groups representing different subjects (for e.g. male, female)

or same subjects (for e.g. placebo, drug A, drug B as in cross-over design). Usually multi-

subjects is desirable for any statistical analysis. Hence the question arises as to how we can

combine the data from the brain scans to conclude that there is activation in the population

from which these subjects come from. There are two approaches based on GLM: fixed effects
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approach and random effects approach (explained in details in the “Combined Estimation”

section of Chapter 4). The shortcoming of the former approach is that it considers the errors

of measurement estimated for the subjects as the only source of variation when estimating

the population mean. That is to say that only within-subject variation is accounted for and

there is no consideration of between-subject ; therefore it is valid for only subjects chosen for

a particular experiment (no sampling variation). The latter approach is a valid one, however

it is difficult to be confident in as the sample size used is generally small compared to what

is necessary in estimation (at least 30). This leads to over-estimation of variances. Hence,

conjunction analysis (Friston et al., 1995) or combination methods have been developed for

analyzing a single group of subjects.

This thesis is an extension of analysis on statistical parametric group maps using combination

methods. It develops statistical techniques for comparison of brain function, as measured

by common functional brain imaging procedures, across different groups of experimental

subjects. A crucial question that evolves with multi-subject group comparison based on the

GLM (which is performed at each voxel for each subject) is: “If we find a significant difference

in the two groups then does a truly differentially active voxel come from the same predictor

variables across the two groups or from the same location of the activated voxel in the group

maps?” In order to make valid inter-subject or inter-group comparisons, we will also assume

that the data have been mapped onto a common co-ordinate system. Hence the images from

different subjects are comparable and thereby combinable. This thesis considers the spatial

issue as having been corrected and hence will focus on addressing the statistical issue only.

Ad-hoc graphical procedures, averaging method and the overly-conservative random effects

model are the only resorts for psychologists to understand the differences in brain function

between two or more groups of subjects. Several methods have been developed to combine

data from independent studies which in our case would be each subject. If there is a reliable

effect that can be detected, combining the data from many subjects in a statistically reason-

able way will yield a stronger signal. One of the more difficult and interesting problems in
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this context is comparing the images obtained through functional brain imaging from two

or more different subject populations and deriving conclusions regarding the intensity, mag-

nitude and location of their regions of activation while performing the same cognitive task.

This thesis aims to develop sound statistical methods for such comparisons and will provide

an exploratory tool to contrast the “level of activation” and the “proportion of population

which shows this activation at a specifically defined level” between two or more groups.

That is to say that this thesis will aid researchers in the field of functional neuroimaging to

better answer their real questions of interest regarding differences in brain function and acti-

vation for different groups of subjects. Although the techniques that will be proposed here

have precedence in the neuroimaging literature, the development of efficient, small-sample

methods for the comparison of groups of subjects will represent a significant conceptual and

practical breakthrough in the analysis and effective utilization of fMRI data. The use of

statistical methods that are familiar to researchers in the field, albeit in a new way, will

enhance the attractiveness of these methodologies.



Chapter 4

Combination Methods used in Analyzing Single Group Maps

Group maps created from individual functional maps provide useful summaries of patterns of

brain activation. In this chapter, we will review a number of ideas suggested in the statistics

literature for combining information across studies, where we think of each individual subject

as a study. The goal of all these methods is to combine the information acquired from different

studies in a statistically relevant and meaningful way so that we can make statements about

the population and draw power from accumulation of evidence. As pointed out in Hedges

(1992), there are two main approaches to this problem - combining hypothesis tests and

combining estimates of treatment effects.

4.1 Combining Hypothesis Tests

Combined maps are useful for examining activation regions that are “typical” of a certain

subject population or for comparing average effects of one group of subjects to another

(Friston et al., 1999). The group maps that are created from combining maps of individuals

in that particular group are maps made up of statistics. These statistical parametric (can be

a t-statistic as described in the section “Subtraction Techniques”, an F-statistic where we

take ratios instead of differences as in t-maps, etc.) or non-parametric (Wilcoxon rank sum,

etc.) maps are used for examining differences in brain activity recorded using neuroimaging

technologies such as fMRI.

65
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4.1.1 Combination Tests for Single Groups

Throughout this thesis, I will demonstrate combining methods with t-statistic maps calcu-

lated for each individual subject as a first step from which we will derive the p-value maps.

This is only for the purpose of demonstration since most methods in this section actually

combine the p-values. Any statistic (for example F-statistic) used in creating individual maps

which will yield p-values is a valid input in the combination techniques.

Suppose we have k independent tests of a null hypothesis of observing any kind of true

activation in response to a particular task, with values of a t-test statistic T1,T2,....,Tk and

corresponding p-values p1,p2,.....,pk. A low p-value would indicate a stronger or a more intense

signal. The tests here are one-sided since we are looking for areas of activation. In our context,

k is the number of subjects in an fMRI study. Even though the voxels within a subject are

dependent, the subjects themselves are still independent. Hence independent information is

being combined to form the combination test statistic on each voxel in Talairach space. Since

the brain maps of the individual subjects are corrected for spatial disparity, it is sensible to

combine them and analyze the resultant group map.

The statistical literature has many reasonable methods for combining independent sources

of information. We will describe a few of the simpler combination methods following the

discussion in Lazar et al. (2002) relevant to the work addressed here in the thesis.

(i) The most popular is perhaps Fisher’s combination method (1950) which uses the test

statistic

TF = −2
k∑
i=1

log pi

TF is compared to a χ2 distribution with 2k degrees of freedom. The null hypothesis of no

activation during the imaging study is rejected at a large value of TF relative to the tabulated

χ2 distribution. The p-values are one-sided, the null being absence of any activation, and are

calculated from the t-statistic at each voxel for each of the subject’s t-maps. The combined
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test statistic used to create the group map is a function of p-values of each subject at each

voxel; hence changes in a p-value for any subject will have an impact on the combined test

statistic. If an individual p-value is near 1, then the statistic remains unchanged but the

degrees of freedom increase by 2. If an individual p-value is near 0, then a small change in

the p-value changes the statistic by −2
pi

(Lazar et al., 2002).

(ii) Another p-value combination method put forth by Stouffer et al. (1949) is defined as

TS =
k∑
i=1

Φ−1 (1− pi)√
k

where Φ−1 is the inverse normal cumulative distribution function. The null hypothesis of no

activation during the imaging study is rejected at a large value of TS relative to the tabulated

standard normal distribution. If an individual p-value is 1, then the statistic goes to infinity

and hence it does not carry any information. If an individual p-value is near 0, then a small

change in the p-value changes the statistic by −[
√
kϕ(Φ−1(1− pi))]−1] (Lazar et al., 2002).

(iii) Mudholkar and George (1979) proposed another combination method which is defined as

TM = −c
k∑
i=1

log

(
pi

1− pi

)

where c =
√

3(3k + 4)/kπ2(5k + 2). The null hypothesis of no activation during the imaging

study is rejected at a large value of TM relative to the tabulated t-distribution with 5k+4

degrees of freedom. If an individual p-value is 1, then the statistic goes to infinity and hence

it does not carry any information. If an individual p-value is near 0, then a small change in

the p-value changes the statistic by −c
pi
− c

(1−pi)
(Lazar et al., 2002).

(iv) A commonly used but ad hoc method of combining the brain maps of all the subjects

in a particular study is to average the t-statistics computed for each subject voxel-wise. The

combined statistic is defined as

TA =
k∑
i=1

Ti/
√
k
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The null hypothesis of no activation during the imaging study is rejected at a large value of

TA relative to the tabulated standard normal distribution. Under the null hypothesis, TA is

approximately equal to TS.

These combination tests, with the exception of TA, are based on combining the p-values;

hence the statistics used to derive the p-values need not be similar in any way and can be

based on different kind of measurements. This makes these combination tests very appealing

and quite general in their applicability. Furthermore, the combination tests suggested by

Fisher (1950) and by Mudholkar and George (1979) satisfy an optimality criteria, Bahadur

efficiency (Bahadur, 1967, 1971), related to effective use of data as the number of subjects

increase. The pitfall of these combination tests is that we cannot obtain any information on

the size, direction (from a two-sided test) or consistency of effects (here effect being activation

with respect to a particular task) across the different studies. In our single group studies, we

will concentrate on one-sided tests since we will be looking at areas of activation while we

take less interest in the areas of deactivation. This helps us eliminate one of the drawbacks

as we can draw conclusions based on direction (tests being one-sided).

It is to be noted that the hypotheses based on the combination tests are:

H0: there is no activation in a particular voxel of the brain during an imaging study across

all the subjects i.e effect= 0.

Ha: there exists activation in a particular voxel of the brain for every subject i.e effect> 0.

Hence the null hypothesis can be rejected on the basis of a non-zero effect in any one of the

subjects, which can also be a false positive effect.

4.2 Combining Estimates of Treatment Effects

“Meta-analysis” refers to the statistical technique for amalgamating, summarizing, and

reviewing previous quantitative studies that have similar designs and measure the same

outcome of interest. By using meta-analysis, a wide variety of questions can be investigated,
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as long as a reasonable body of primary research studies exists. Selected parts of the reported

results of primary studies are entered into a database, and these “meta-data” are “meta-

analyzed”, in similar ways to working with other data — descriptively and then inferentially

to test certain hypotheses. Meta-analysis allows for inference about size, direction and con-

sistency of effects, unlike the combination methods described in the previous section (Cohen,

1988).

Meta-analysis can be used as a guide to answer the question ‘does what we are doing make

a difference to X?’, even if ‘X’ has been measured using different instruments across a range

of different people. Meta-analysis provides a systematic overview of quantitative research

which has examined a particular question. The appeal of meta-analysis is that it in effect

combines all of the published and relevant research on one topic into one large study with

many participants. However publication bias is a thorny issue in meta-analysis (Cohen, 1988)

which may seriously distort attempts to estimate the effect under investigation. Publication

bias is the term for what occurs whenever the research that appears in the published literature

is systematically unrepresentative of the population of completed studies. Simply put, when

the research that is readily available differs in its results from the results of all the research

that has been done in an area, readers and reviewers of that research are in danger of drawing

the wrong conclusion about what that body of research shows (Rothstein et al., 2005). Also

it is difficult to find all the relevant studies needed to conduct a particular meta-analysis.

The danger is that in amalgamating a large set of different studies the construct (response

variable) definitions can become imprecise and the results difficult to interpret meaningfully.

Not surprisingly, as with any research technique, meta-analysis has its advantages and dis-

advantages. Advantages lie in derivation and statistical testing of overall factors (overall

effectiveness of interventions), generalization to the population of studies, the impact of

independent variables and the strength of relationship between variables, ability to control

for between-study variation and higher statistical power to detect an effect than in “n = 1

sized study sample”, and yet like any research, ultimately its value depends on making some
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qualitative-type contextualizations and understandings of the objective data where the con-

clusions are based on exploratory analysis and hence are not quantitative in nature. One

erroneous or poorly conducted study can place the results of the entire meta-analysis at risk.

On the other hand, setting almost unattainable criteria and criteria for inclusion can leave

the meta-study with too small a sample size to be statistically relevant. Striking a balance

can be a little tricky, but the whole field is in a state of constant development.

The steps in conducting meta-analysis are:

1. Developing a research question and identifying studies.

2. Selecting studies (“incorporation criteria”): based on quality criteria (e.g. the requirement

of randomization and blinding in a clinical trial), selecting specific studies on a well-specified

subject (e.g. the treatment of breast cancer) and/or deciding whether unpublished studies

are included to avoid publication bias.

3. Deciding which dependent variables or summary measures are allowed: for instance, dif-

ferences (discrete data), means (continuous data), etc.

4: Selecting a model: fixed effects model or random effects model.

5. Calculating a summary effect and interpreting the results in the light of findings.

The last two steps are relevant to this thesis. The most common meta-analysis models are

the one-factor fixed effects and random effects models. Generally, a neuroimaging study

with more than one or two subjects will have a place for both types of analysis. For our

purpose, a “subject” in an fMRI experiment is a “study” in a meta-analysis. The fixed effect

model answers the question whether the studies included in the meta-analysis show that

the treatment or exposure produced the effect on average. Methods of fixed effect meta-

analysis are based on the mathematical assumption that a single common (or “fixed”) effect

underlies every study in the meta-analysis. In other words, if we were doing a meta-analysis

of odds ratios, we would assume that every study is estimating the same odds ratio. Under

this assumption, if every study were infinitely large, every study would yield an identical

result. This is the same as assuming there is no (statistical) heterogeneity among the studies
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i.e. we are measuring the same effect. The random effects model answers the question, on

the basis of the studies that are examined, is it possible to comment that the treatment or

the exposure will produce a result? A random effects analysis makes the assumption that

individual studies are estimating different treatment effects. In order to make sense of the

different effects we assume they have a distribution with some central value and a degree of

variability. The idea of a random effects meta-analysis is to learn about this distribution of

effects across different studies. By convention most interest is focused on the central value,

or mean, of the distribution of effects. It is also important to know the variability of effects.

A random effects model is computationally more intense than a fixed effects model.

If important diversity or heterogeneity in the review is identified or suspected, there are sev-

eral options. One option is that of not performing a meta-analysis. An unwise meta-analysis

can lead to highly misleading conclusions. If we have clinical, methodological or statistical

heterogeneity it may be better to present as a systematic review using a more qualitative

approach to combining results, or to combine studies only for some comparisons or out-

comes. The decision should, of course, be made at the question formulation stage (Cochrane

Collaboration, 2002). A random effects model is a better approach in case of heterogeneity

between the studies in the review. However there is a great deal of debate between statisti-

cians about whether it is better to use a fixed or random effect meta-analysis. The debate

is not about whether the underlying assumption of a fixed effect is likely but more about

which is the better trade off, stable robust techniques with an unlikely underlying assump-

tion (fixed effect) or less stable, sometimes unpredictable techniques based on a somewhat

more likely assumption (random effects). Sometimes the point estimate of the treatment

effect differs between fixed and random effects because of publication or quality related bias.

This may indicate that careful investigations are required, perhaps with expert methodolog-

ical input. Whatever statistical model we choose, we have to be confident that clinical and

methodological diversity is not so great that we should not be combining studies at all. This

is a judgment, based on evidence, about how we think the treatment effect might vary in
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different circumstances. This judgment is a common source of disagreement about the results

of meta-analyses.

The typical study proceeds with a type of model called the hierarchical model, in which both

fixed and random effects are considered. Single-subject analyses are generally carried out with

a fixed-effects model, where only the scan-to-scan variance is considered. Those analyses

generally yield some type of summary measure of activation, for example a t statistic. Once

those summary measures are collected for each subject, then, a random-effects analysis can

be performed on the summaries, looking at the variance between effect sizes as a random

effect. Again, only a single source of variance is considered at a single time. For the most

part, the rule of thumb is: use fixed effects model for single-subject analyses (to leverage

the greater power of this approach) and any analysis involving a group of subjects that we

would like to express something about the population should be random-effects (Cochrane

Collaboration, 2002).

If we can consider that the studies are measuring the same effect and the variances of the

subjects are homogeneous, then a suitable statistical model would be

yi = θ + εi

where yi is the effect observed in study i or one subject in an fMRI study, θ is the common

mean effect and εi is the error in the ith study. The errors are independent and normally

distributed with mean 0 and variance σ2
θ .

Under this fixed effects model, θ̂ provides an estimate for the common mean θ through a

weighted average of the yi.

θ̂ =

∑k
i=1wiyi∑k
i=1wi

,

Here the weights, wi, are inversely proportional to the estimated variance of each study

i.e. wi = 1/σ̂2
θ . The estimate θ̂ is approximately Normally distributed with mean θ and
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estimated variance 1/
∑
wi. We can test whether the common mean, θ, is different from zero

or not through a t-type statistic given by

TX =
θ̂√

1/
∑
wi

and rejecting the null hypothesis for large values of TX relative to the tabulated t-distribution

with k− 1 degrees of freedom. If the errors have a variance of 1, then the fixed effects model

is equivalent to Stouffer’s method, that is, TS is the unweighted version of TX . An extreme

subject might be one that shows the same level of activity in both conditions, and almost no

variation. For this model, such a subject will have a very large weight and an effect size of

0, so will contribute nothing to the numerator of θ̂, but the denominator will be very large,

hence TX will be close to 0 (Lazar et al., 2002).

The random effects model may be used for heterogeneous studies (for example each subject

performed different cognitive tasks) or as a result of rejecting homogeneity of the effect θ

for the fixed effects model. In any situation, most of the time between subject variability is

much greater than within subject variability. Furthermore, as stated earlier in this section,

the interest lies in making inference about the hypothetical population at large from which

the subjects were drawn rather than restricting conclusions to the sample. Even though we

have to compromise on power, the above reasons provide a good base for considering the

random effects model over the fixed effects model. The differences between the observed

yi are now assumed to come from experimental error, as before, and from real differences

among the studies, so that the true effect in study i is a sample from a “hyperpopulation”

of treatment effects. The model has the form

yi = θi + εi

θi = θ + ei

where the εi are usually taken to be normal with mean 0 and variance σ2
i , the ei are taken to

be normal with mean 0 and variance σ2
θ , and all ei and εi are independent. We can use other
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distributions of the error terms but the Normal distribribution is not only convenient but

also the most widely used. When σ2
θ = 0, this model reduces to the fixed effects model. Under

this random effects model, θ̂∗ provides an estimate for θi through a weighted average of the yi:

θ̂∗ =

∑k
i=1w

∗
i yi∑k

i=1w
∗
i

,

Here the weights, w∗
i = 1/(s2

i + σ̂2
θ) and s2

i is an estimate of σ2
i = E[(yi− θi)2]. Now there are

two sources of uncertainty, whose sum has to estimated; as a result, random effects models

are more complicated than fixed effects models. There are different ways of estimating σ2
θ ,

one of which was proposed by Hedges (1992)

σ̂2
θ = S2 −

∑
s2
i

k
,

where S2 is the sample variance of y1, y2, ........, yk. The drawback of this estimator is that it

can be negative, in which case the standard recommendation is to truncate to 0. There are

other estimators that do not possess this undesirable property but they are computation-

ally complicated requiring an iterative procedure (for example, Rao and Kleffe, 1988). Any

method of estimating the variance components, together with θ̂∗, can be used to build a test

for the hypothesis that θ = 0. For the random effects model, an unusual subject such as the

one described for the fixed effects will influence the estimate of σ2
θ , but will otherwise not

contribute to the outcome.

The standard errors for the fixed effects estimate, θ̂, tend to be smaller than those for the

random effects estimate, θ̂∗ since the latter takes into account the variability across studies.

The variance of θ̂ is

1∑
i 1/σ

2
i
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whereas the variance of θ̂∗ is

1∑
i 1/(σ

2
i + σ2

θ)

For σ2
θ = 0, the variances of the above two models coincide, but otherwise, the random effects

estimate has a larger variance.

4.3 Multiple Testing in fMRI

Regardless of which specific methods are used to combine functional images across subjects,

it is important to adjust for multiplicity and significance level due to the involvement of a

large number of voxels when creating a statistical parametric or non-parametric map. In fMRI

studies, as stated earlier, data analysis is usually done voxel-wise with all statistical tests

conducted separately and simultaneously. These voxel-by-voxel tests increase of the chance

that at least one of the conclusions is wrong. Therefore a family of statistical tests suffers

one serious problem: type I error rate is greater than that of the error on an individual test.

To control this problem, a multiple testing correction (similar to multiple testing correction

in the traditional ANOVA sense) is desirable during group analysis. Different approaches to

correcting for multiple testing aim at different types of control of this (unknown) number.

A standard quantity to control is familywise error rate (FWER), which is the probability

of having even one false discovery among all the tests. The familywise approach fixes α

for the whole family (brain) of tests. For example in a brain with 10,000 voxels, a fixed

type I error of 0.05 would lead to false detection of 500 active voxels on average simply

by chance even if the null hypotheses were true everywhere. By significantly lowering the

individual type I error, we can achieve control of the total type I error. A corrected type I

error of p means that among 100 such voxels on average 100p% of them would have a false

detection. The cost of the approach is a loss of power on the individual tests, increasing type

II error. The Bonferroni correction (Miller, 1981) is such a familywise multiple-comparison

correction used when multiple dependent or independent statistical tests are being performed
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simultaneously, but it is overly conservative in the case of fMRI analysis. For example, in

fMRI analysis, tests are done on over 100000 voxels in the brain. For α = 0.05, the Bonferroni

method would require p-values to be smaller than .05/100000 to declare significance. A

further complication in neuroimaging studies is that the data are available in two coordinates

— the original acquisition space and Talairach space. It would be wrong to calculate the

Bonferroni correction on the original data and then apply this criterion to the transformed

voxels in Talairach coordinates, or vice versa, because the number of voxels changes when

we go from one set of coordinates to the other and the correlation structure of the data

is also affected (the switch to Talairach space induces dependence among voxels beyond

that already present in the data). The extreme conservativeness of the Bonferonni method,

coupled with its inability to take into consideration the particular features of fMRI data

(such as switching between the original and smoothed co-ordinate systems), requires other

techniques for error control.

There are five thresholding methods that are currently implemented in many fMRI studies:

cluster thresholds, in which a contiguous collection of voxels all need to be declared significant

at a prespecified level (also the number of voxels in a cluster has to be prespecified) in order

for the cluster as a whole to be retained; random field methods, which use the theoretical

behavior of random fields to determine deviations from null behavior; thresholds obtained

by permutations, in which the theoretical results of the random field theory are replaced by

empirical ones; procedures for controlling the false discovery rate (FDR) instead of FWER,

which is advantageous in terms of power, ease of use, adaptability, and interpretability;

and an ad hoc method, which involves setting the threshold by eye estimation, based on

the practitioner’s experience and knowledge. In this thesis, we will restrict ourselves to

multiplicity adjustment through control of false discovery rate.
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4.3.1 Multiple Testing of voxels through control of the False Discovery

Rate

Whereas the Bonferroni correction controls for the familywise error rate, other types of error

control are possible. In the context of fMRI specifically, it is not reasonable to control the

familywise error rate, since scientists care about the overall picture of activation, and not any

one particular voxel. The drawbacks of the Bonferroni correction addressed in the previous

section contribute to its unsuitability as a multiplicity adjustment. Another correction, of

increasing popularity in the recent statistical literature at large, is to control the False Dis-

covery Rate (FDR). This is a rate for the proportion of tests falsely declared significant, out

of all tests declared significant (Benjamini and Hochberg, 1995). It quickly became apparent

that this powerful, intuitive, and easy to implement procedure would have widespread

applicability for the analysis of large datasets. For testing k hypotheses H1, H2, ....., Hk,

the first step is to order the p-values corresponding to the hypotheses from the smallest

to largest. The ordered p-values are written as p(1), p(2), ....., p(k), with H(i) denoting the

null hypothesis with p-value p(i). Let q be the desired false discovery rate, that is, the rate

of false discovery that the researcher is willing to tolerate, and let r be the largest i for which

p(i) ≤
iq

kc(k)
,

where c(k) differs according to the correlation structure of the tests. For independent tests,

or when the tests follow a technical condition (positive dependence), c(k) = 1. The form of

c(k) used to accommodate an arbitrary joint distribution of p-values is

c(k) =
k∑
i=1

1/i ≈ log k + γ,

where γ ≈ 0.577, Euler’s constant. Then reject H1, H2, ....., Hr. If no hypotheses are rejected,

that is, the criterion defined by the inequality equation is not met for any i, then the false

discovery rate is zero. While there is a tendency to set q values similar to standard p-values,

such as 0.05, there is in fact no special reason for doing so. We can choose the value of
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q depending on the problem. Naturally, researchers tend to want low proportions of false

discoveries, preferring that all discoveries be scientifically meaningful and real, but it should

be emphasized that this is not an achievable goal. The q value provides a straightforward

way of exploring this point together with the scientist.

An interesting aspect of this latter procedure is that it does not require that the test statistics

be independent or even of the same kind. Since the voxels in an individual subject’s brain are

almost certainly not independent, this is a desirable feature. When all null hypotheses are

true, the false discovery rate is the same as the familywise error rate, hence the controlling

parameter q may be chosen at conventional levels for significance testing. Furthermore, the

method is adaptive, in the sense that the chosen thresholds change (become more or less

conservative) with the strength of the signal. This would solve the difficult problem of finding

thresholds that work for all subjects under all conditions - instead of trying to find such a

threshold, which is likely to be arbitrary and ad hoc, the researcher can keep the tolerated

level of false discoveries at a constant across subjects and experiments, and the appropriate

thresholds will be determined by the data.



Chapter 5

Comparing Two Group Maps using Combination Methods

Extending the use of combination methods to compare two different sample groups and

generalize to their respective populations is the main focus of this thesis. The previous

chapter explains in detail various methods used for creating statistical maps for a single

group of subjects. As discussed before, these group maps combine the information from

each subject in a sample to form a summary of the overall pattern of activation in the

brain, in response to a particular task. Areas of activation can be identified and we can

also quantify the sensitivity of different methods to unusual subjects (those whose level or

extent of activation is extremely high or extremely low compared to rest of the subjects in

the group; those who exhibit activity in an aberrant location in the brain; and so forth)

(McNamee and Lazar, 2004).

A common approach for data analysis in fMRI literature, which is used for everything from

analyzing the data from a single subject to comparing the results across groups of subjects,

is the linear model, and in particular the random effect model. However this method has a

few drawbacks:

1. Since we are estimating two variances, if we have fewer than approximately 10-12 sub-

jects per group, we will lack sufficient power for a realistic analysis. Since the random effects

model uses up more degrees of freedom, it will have much less power for very small groups

of subjects.

2. This model will answer the question if all subjects “activate” in the same location and

with roughly the same magnitude. That is to say that the effect that the researcher desires

to detect should be consistently exhibited across subjects at the same location in the brain

79
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for the random effect model to be implemented.

3. It also assumes that the design is balanced, or the design matrices are identical for each

subject. This implies that the length of time and design used should be the same for each

subject, particularly the number of scans per subject. The reason for this is that the con-

tribution to the first-level estimate of the variance should be comparable across subjects.

However, the actual order of scans can be randomized or changed across subjects (unless we

have reason to believe that a particular order invokes a reaction not otherwise seen) without

invalidating the “sameness” assumption.

4. It is computationally intensive and estimating the variances is not easily done.

5. It is conservative.

6. It requires means and standard deviations of each condition from each subject; the indi-

vidual t-maps, for instance, do not suffice for these operations (Beckmann et al., 2003).

Hence, both in terms data storage and computation, this procedure is very demanding.

None of the conditions required for the random effects approach are likely to hold in all

fMRI studies. First, it is often difficult to recruit subjects, particularly from clinical (patient)

populations, and to retain them throughout the course of the study. Furthermore, scanning

each individual subject is time-consuming and expensive. As a result, many fMRI studies

include a relatively small number of subjects. Finding statistically powerful methods for

small samples that will be applicable in this context is therefore critical. Due to individual

differences, even after the brain images of all subjects have been transformed into a common

coordinate system, it is also unrealistically optimistic to expect to find consistent activation

at the voxel level. Hence, methods that are more “liberal” in their approach to combining

information are required. We want to answer the slightly less stringent question “do the

subjects all activate in the same general location?”. Several methods at the single group

level were introduced in the previous chapter. I will use the techniques already listed and

extend them to compare the group maps derived from two different samples. I will explore

these through distribution theory or parametric methods as well as through non-parametric
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methods, namely, permutation tests and bootstrapping. In order to compare the group maps

through distribution theory, I will either take the ratio or difference of the combined test

statistics and look at their distributional form. After comparing the group maps I will use

multiplicity corrections when testing at each voxel, so as to minimize false positives and

conclude which voxels are active.

Here the inference will be based on the combined statistic of the group maps at each voxel.

All we can test in a voxel by voxel analysis is whether the level of activation is the same in

both the groups. Since we will not be testing at the level of the image as a whole, we will

not be able to draw any conclusion regarding the overall activation “pattern”. This analysis

will not examine the effect of particular subjects on the group comparison. At each voxel we

are testing:

H0: there is no difference in the activation of the two groups.

H1: there is a difference in the activation of the two groups.

5.1 Combination Methods using Distribution Theory

In comparing two classes of subjects, taking ratios or differences (perhaps with appropriate

modification) of the two group maps using the combination methods introduced in the pre-

vious chapter often leads to a known distribution whose results can be easily interpreted. All

the methods listed below are calculated at each voxel of the group maps. Here the tests are

two sided as we are looking for the effect of activation in one group compared to another in

terms of location, size and intensity of the signal.

(i) Using the test statistic from Fisher’s combination method (1950), we get two group maps

TF1 = −2
k1∑
i=1

log p1i

TF2 = −2
k2∑
i=1

log p2i
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p1i and p2i are p-values derived from the t-test statistic group maps of two samples with k1

and k2 number of subjects respectively. TF1 and TF2 compare to χ2 distribution with 2k1

and 2k2 degrees of freedom respectively. These two test statistics can be compared through a

known distribution, namely the F-distribution, with degrees of freedom related to the sizes of

the two group maps. The null hypothesis of no difference between the two groups is rejected

at a large value of the above calculated F relative to the tabulated F distribution. More

precisely, the F-test is usually performed to only look at the upper tail, but in our case a

small p-value resulting from taking the ratio of two χ2 could mean that the group in the

denominator shows more activation than the group in the numerator at a particular voxel.

But it could also be due to random noise which can persist even after noise correction. Hence

we need to perform this test twice for each comparison - once with the “first” group in the

numerator, and once with the “second” group in the numerator.

(ii) An addendum to Fisher’s method can be used to analyze two group maps. The drawback

of the F -test is that it will not be able to pick up the tail probabilities of the group in the

denominator or to separate effect from random noise. So in order to analyze the effect of one

group relative to the other, we need to calculate two F ratios thereby doubling the number

of tests. The proposed modification addresses that drawback, however, it works only for two

equal sample sizes. After we combine the data into two group maps from two samples of

equal size k, we have

TF1 ∼ χ2
2k

TF2 ∼ χ2
2k

Define R = TF1

TF2
, and

V = max (log(1 +R), log(1 + 1/R))− log(2k); then

V + log(2k) ∼ Beta prime distribution or Beta distribution of the second kind (Johnson,

1995) with location parameter k and shape parameter k.

Also, V + log(2k) ∼ log-F distribution (Jones, 2006) where R ∼ F (2k, 2k).
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(iii) Using the test statistic from the p-value combination method that was put forth by

Stouffer et al. (1949), we get two group maps

TS1 =
k1∑
i=1

Φ−1(1− p1i)√
k1

TS2 =
k2∑
i=1

Φ−1(1− p2i)√
k2

TS1 and TS2 both follow a standard Normal distribution. Therefore we can compare them

through their difference, which will follow a Normal distribution with mean 0 and variance

2. The null hypothesis of no difference between the two groups is rejected if there is a

big departure from the mean in either tail of the above calculated Normal relative to the

tabulated Normal(0,2) distribution.

(iv) Using the test statistic of Mudholkar and George (1979) we get

TM1 = −c1
k1∑
i=1

log

(
p1i

1− p1i

)

TM2 = −c2
k2∑
i=1

log

(
p2i

1− p2i

)

where c1 =
√

3(3k1 + 4)/k1π2(5k1 + 2) and c2 =
√

3(3k2 + 4)/k2π2(5k2 + 2). TM1 and TM2

follow t distributions with 5k1 + 4 and 5k2 + 4 degrees of freedom respectively. Press (1969)

and Garthwaite and Crawford (2004) considered ratios and differences of t-distributions,

respectively. However in neither case is there a closed form for the resultant distribution;

they can be studied using non-parametric techniques. In this thesis, I have compared the

results from the test statistics from distribution theory derived to compare the group maps

with the non-parametric methods. I have not looked at any test statistic which does not

have a closed form and I will consider it as part of my future work. In addition, there are a

few well known transformations to the t distribution and specifically, Chu’s transformation
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(Bailey, 1980) leads to upper bounds and approximate values for tail probabilities that are

reasonably accurate for degrees of freedom as low as two. These two test statistics, TM1

and TM2, can be compared by applying Chu’s transformation and then taking the difference

of the transformed maps. This difference follows a Normal distribution with mean 0 and

variance 2.

Chu’s transformation is given as

Z1 = ±(k1 − 0.5) log(1 +
X2

1

k1

)

Z2 = ±(k2 − 0.5) log(1 +
X2

2

k2

)

where X1 ∼ tk1 and X2 ∼ tk2 .

Then Z1 ∼ Normal(0, 1) and Z2 ∼ Normal(0, 1).

The null hypothesis of no difference between the two groups is rejected if there is a big depar-

ture from the mean in either tail of the above calculated Normal relative to the tabulated

Normal(0,2) distribution.

(v) A commonly used but ad hoc method of combining the brain maps of all the subjects in

a particular study is to average the t-statistics from the t-maps computed for each subject

voxel-wise. The combined statistic is defined as

TA1 =
k1∑
i=1

T1i/
√
k1

TA2 =
k2∑
i=1

T2i/
√
k2

T1i and T2i are t-values from the t-test statistic group maps of two samples with k1 and k2

number of subjects respectively. TA1 and TA2 both follow a standard Normal distribution

and hence they can also be compared through their difference which will follow a Normal

distribution with mean 0 and variance 2. The null hypothesis of no difference between the
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two groups is rejected if there is a big departure from the mean in either tail of the above

calculated Normal relative to the tabulated Normal(0,2) distribution.

(vi) Another technique popularized by Haar-Fisz (Fryzlewicz et al., 2006) uses the basics

of Fisher’s combination method. After we combine the data into two group maps from two

samples with sizes k1 and k2, we have TF1 ∼ χ2
2k1

and TF2 ∼ χ2
2k2

Define,

R =
TF1 − TF2

TF1 + TF2

Then, R ∼ 2Y − 1, where Y ∼ Beta(k1, k2). Here the null hypothesis of no difference of two

groups as a proportion of the total effect from the two groups is rejected at a large value of

calculated R relative to tabulated 2Beta(k1, k2)− 1.

5.2 Combination Methods using Non-parametric Methods

Limiting ourselves to conclusions derived from tests related to distribution theory takes away

the flexibility of interpreting results. Furthermore distribution theory restricts us from per-

forming extensive exploratory analysis and looking at the data from various angles using any

type of statistic. Employing a different mathematical operation, to compare the two groups,

without the restrictions imposed by distribution theory, may give better results as well as an

easy interpretation. The non-parametric methods implemented here are conceptually simple,

rely only on minimal assumptions, deal with the multiple testing issue, and can be used when

the assumptions of a parametric approach are untenable. These are some of the motivations

for using non-parametric methods. Here we will explore the use of computationally intensive

statistical methods, permutation tests and bootstrapping, to address the question of com-

paring fMRI group maps across groups of subjects without taking into consideration typical

assumptions underlying a parametric statistical analysis.

The overly conservative nature of the Bonferroni correction was noted by Blair and Karniski

(1994). As an alternative they proposed the permutation test. The permutation test is one
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of a family of methods known collectively as resampling procedures (Efron, 1982). Taking

advantage of the speed of modern computing systems, these methods construct an explicit,

non-parametric model of the actual distribution from which a set of observations has been

drawn. The reasoning behind the non-parametric methods implemented in this thesis can

be developed from an examination of more traditional tests. For example, we consider a

single subject fMRI experiment, where a single subject is scanned repeatedly under “rest”

and “activation” conditions. Here a parametric method of fMRI data analysis with null

hypothesis being no difference between the two conditions is measured through, for example,

the t-statistic. If the null is true (and assuming that the effect of autocorrelation is negligible),

the two conditions are interchangeable; any ordering of the conditions will produce similar

results.

The permutation test uses such re-orderings (or “resamplings”) of the conditions to construct

an empirical estimate of the distribution from which the test statistic has been drawn. All

the conditions (here the subjects) are pooled together and re-assigned labels as “control”

and “patients” at random. On each of a large number of iterations, the sequence of the

observations is randomized, and the test statistic is calculated with respect to the data in

this randomized sequence. Each iteration produces one point in the empirical distribution.

The probability that the test statistic will be less than or equal to a certain value k under

the null hypothesis can then be computed as the rank of k within the empirical distribution,

divided by the number of points in the distribution (Blair and Karniski, 1994).

Another resampling technique implemented here is bootstrapping where the re-assignment of

labels is done with replacement. In bootstrapping, the random sampling is done with replace-

ment from each of the two groups and we do not implement “prior mixing” of the samples

as in permutation tests. However there are some differences between the two resampling

techniques. A permutation test exploits special symmetry that exists under the null hypoth-

esis to create a permutation distribution of the test statistic. For example, in comparing

two groups, when testing whether they come from the same distribution, all permutations
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of the order statistic of the combined sample are equally probable. As a result of this sym-

metry, the actual significance level (ProbH0(tobserved >= ttabulated)) from a permutation test

is exact: in our case of the two sample problem, it is the exact probability of obtaining a

test statistic as extreme as the one observed, having fixed the data values of the combined

sample. In contrast, the bootstrap explicitly estimates the probability mechanism under the

null hypothesis, and then samples from it to estimate the actual significance level. This esti-

mate has no interpretation as an exact probability, but like all bootstrap estimates is only

guaranteed to be accurate as the bootstrap resamples goes to infinity. On the other hand,

the bootstrap hypothesis does not require special symmetry that is required for a permu-

tation test, and so can be applied much more generally. For example, in our two sample

case, the permutation test can only test for equality in two population distributions while

the bootstrap can test equality of means and equality of variances, or equality of means

with possibly unequal variances (Efron and Tibshirani, 1993). The bootstrap method shows

superior performance over permutation method for fMRI data analysis when the statistic

in question is a simple linear “smooth” statistic such as the mean (Moonen and Bandetti,

1999). However we will use bootstrapping for thresholding purpose too.

Given the assumptions used for the data permutation/bootstrapping approach, it can only

be applied to some data sets. It is not always practical to randomly allocate experimental

conditions and many times the data at hand are not randomized. For example, we can

not randomly assign subjects to be patients or controls. Hence in such instances where

there is no explicit randomization of conditions to scans, it is imperative to make weak

distributional assumptions to justify bootstrapping or permuting the labels on the data.

Usually, the assumption that is made is that the samples drawn for the two groups come

from populations whose distributions have the same shape or are symmetric. In general

practice, one of the two cases in which permutation/bootstrapping can be used is across-

subject (independent data) which we have been using here to combine our datasets. Map-wise
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threshold provided by the discussed two non-parametric methods will always be less than or

equal to that provided by FDR theory or Bonferroni correction. The additional benefits are:

1. Non-parametric methods do not require assumptions regarding the smoothness of the data

or their stationarity. These assumptions are required for FDR approaches, and are often

invalid for data sets with limited degrees of freedom. Therefore, non-parametric approaches

are “robust”.

2. Methods to account for cluster-size in map-wise thresholds are not available for low-degree

of freedom t or F maps. Non-parametric approaches can use cluster size as a criterion without

resort to additional assumptions.

3. Analyses conducted with low degrees of freedom (such as across-subject random effect

analyses) suffer from poor accuracy in specifying the error. Improved error estimation can

be obtained by performing local spatial averaging of the error term across voxels, creating

a pseudo t-map (instead of using the square root of the estimated variance of the change in

BOLD contrast signals as the denominator while performing the t-statistics. This suggests

pooling the variance estimate at a voxel with those of its neighbors to give a locally pooled

variance estimate as a better estimate of the actual variance. The model has the same form

at all voxels, hence the variance estimates have the same degrees of freedom at all voxels,

and the locally pooled variance estimate is simply the average of the variance estimates in

the neighborhood of the voxel in question.) Solutions do not exist within distribution theory

to asses the map-wise significance of pseudo t-maps or any statistic that does not conform

to any distribution theory. Non-parametric approaches can handle this variance smoothing

approach without additional assumptions.

We will apply permutation tests and bootstrapping to all the combination methods listed in

Section 6.2. In this thesis, we calculate a two sample t-statistic at each voxel; two samples

being “rest” and “activation” conditions when a single subject performs a particular task.

Hence we create t-maps for the individual subjects in both the groups. Using the combination
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method, we get a combined test statistic and then using distributional theory, we get a test

statistic to compare the groups at each voxel. Under the null hypothesis of no difference

between the two groups, it should not matter if a subject belongs to one group or the other.

Since we assume independence between the subjects, we can interchange subject labels.

We re-assign the subjects randomly into two groups and calculate the test statistic used

to compare the two groups. We repeat the resampling and re-allocation procedure 5000

times to get 5000 such test statistics that compare the two groups at each voxel. Hence

at each voxel, we get an empirical distribution from those test statistics and can calculate

the p-value for the original test statistic based on this permutation or bootstrapped based

empirical distribution. If the omnibus null hypothesis is true (and assuming that the effect

of autocorrelation is negligible), the labels on the subjects are interchangeable with respect

to the voxel statistic under consideration, then the labels are exchangeable with respect

to any statistic summarizing the voxel statistics or any statistic summarizing the subjects

in each group at each voxel. Hence given the empirical distribution, voxels with statistics

exceeding the threshold provided by the original statistic exhibit evidence against the voxel’s

null hypothesis. The irregularities of the observed data are maintained in the permuted data

sets and are included in the estimation of permuted probability.



Chapter 6

A Data example

6.1 Description of an fMRI Experiment

The University of Georgia Psychology Department permitted us to statistically evaluate and

analyze fMRI data collected from 15 healthy subjects (controls), 16 schizophrenia patients

and 13 relatives of the patients. Data were collected in the scanner while the subjects per-

formed antisaccade tasks. To illustrate an antisaccade task, we will consider a block design

constituting alternate periods of fixation and periods of task. A study of antisaccade (a sac-

cade is a rapid eye movement) performance requires the subject to fixate on a central target;

a novel visual stimulus appears unpredictably in the left or right periphery, and the task is to

inhibit a reflexive saccade, in response to the stimulus, toward the target and then to make

a voluntary saccade to the opposite periphery. Failure to inhibit a reflexive saccade toward

the peripheral target is considered an error. Analysis focused on p-value maps derived from

t-statistic maps, comparing activation during time periods of performing the task versus

time periods of rest (in this case, fixation).

Thirty-eight axial slices for each subject were collected from the bottom of the brain to the

top, each composed of a field of view of 24cm by 24cm. Stimulus was presented and taken

away at regular alternating intervals (22.4 seconds of fixation alternating with 22.4 seconds

of antisaccades) in blocks of 9 time points. This paradigm was repeated 9 times. All of the

data were placed on to the common Talairach atlas. Each slice is 40x48 voxels, and the time

course for each voxel is 81 TRs long. Figures 6.1, 6.2, 6.3 and 6.4 give a general idea about

the data matrix and the image pattern indicating fluctuations in brain activation due to the

presence or absence of the stimulus.

90
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Figure 6.1: Layout of the acquisition matrix for each subject. Each square represents 40x48
voxels in the data matrix.

Figure 6.2: Image of activation of the voxels across 8 time points for the first slice for the
first control subject at every tenth time point. Highest voxel values are exhibited through
brightest red colors.

     

Figure 6.3: Image of activation of the voxels for the fifth, tenth, fifteenth and twentieth slices
for the first control subject. The images shown spans nearly the whole brain: the bottom of
the brain, near the brain stem, to the top of the brain.
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Figure 6.4: When graphed over time, a particular voxel increases or decreases its value based
on the response triggered by the stimulus. This figure illustrates a typical voxel, 32nd by 32nd

voxel of the tenth slice for the first control subject across all the time points is indicative of
the wavelength function of activation with alternating presence of stimulus.

6.2 Comparison of Combining Methods through Distribution Theory

In this section we present the results of six methods for combining information on the data

from 15 control subjects (Group A) and 16 schizophrenic patients (Group B) and analysing

differences between these two groups. We examine the behavior of the following procedures:

• Fisher’s method;

• Stouffer’s method;

• Mudholkar and George’s method;

• Average t method;

• Haar-Fisz method;
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• random effects model;

In this comparison we ignore the time series nature of the data by collapsing the measure-

ments at each voxel into a t-statistic, which averages over time assuming independence. A

slice from the middle of the brain was chosen (Slice 23) to represent each technique, the same

slice for all cases. Here we are calculating the t-statistic at each voxel for each subject where

the numerator is the difference of the BOLD signal change. This difference is the product

of the baseline MR signal intensity and the percentage BOLD signal change, hence it is

imperative that we choose the slice showing most contrast. In other words, slices of interest

are chosen according to where the task related activation should be the greatest. Not all

the slices of the brain contain voxels that respond to the particular task; hence in order to

perform any analysis we choose a slice where we can actually see activation. Slice 23 seems

to be one such slice.

6.2.1 Results

First, we calculated t-maps (two sample t-test based on alternating periods of activation and

periods of rest) and subsequently p-value maps (we assume that the tests are two-sided since

we are looking for areas of activation), on the individual subjects in each of the groups for slice

23. Plotting the p-value maps for each individual showed that only about 990 out of the 1920

voxels in the slice represent brain; the rest are air, and these are often clipped out, however

we do not do this here. It has been noted that the air voxels serve a very useful (statistical)

purpose (Lazar et al., 2002). After thresholding, if there is much apparent activation detected

outside the brain, in the air, then the threshold is set very high (since small p-values are

significant) because it is permitting too many false discoveries (outside the brain should all

be in the null hypothesis by definition). If there is little or no activation outside the brain

after thresholding then greater confidence is placed in the analysis techniques.
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Figure 6.5: Ordered p-values from the distributions of the different comparison methods,
derived from the combination techniques in Section 6.2, used to compare two groups.
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Figure 6.6: Chi-square maps of control and patient groups derived using Fisher’s combination.

From the individual p-value maps, we created group maps for controls and patients (each

group separately) using the combination methods described in Section 6.2. Figure 6.6 shows

examples of group maps using Fisher’s combination technique. Then using distribution theory

as described earlier, we performed the tests to compare the two groups at each voxel. Here

we performed two-sided tests. The largest p-values in the upper right corner of Figure 6.5

most likely come from those voxels outside the brain i.e. the air voxels. Small values, at the

bottom left corner of each plot, correspond to the voxels for which the null hypothesis of no

difference between the two groups should be rejected. Now arises the question of thresholding

to decide that the given voxel is differentially active in the presence of multiplicity. The

question becomes complicated if we are interested in comparing different methods because

it is further evident from inspection of the graphs that this can be done in at least two

ways in addition to the various more complex methods stated in Section 4.3. We can either

pick a significance level and all the voxels below that line will be declared active (equivalent

to doing Bonferroni multiplicity adjustment) or we can pick some number of voxels and all
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voxels to the left of the line would be considered active (this is similar to using false discovery

rate procedure).

There are a number of characteristics that can be observed from Figure 6.5. The curves

representing comparative methods for average t and random effects model are similar to

each other but different from the rest which are similar in appearance among themselves.

The methods differ in how long the initial plateau near zero lasts and how quickly the value

1 is reached. They have similar qualitative properties.

Table 6.1: The table displays the p-value of the rth ordered voxel for each of six methods and
various values of r. For instance, using Fisher’s method to combine and compare the two
groups of subjects, the 48th most significant voxel has a p-value of approximately 0, while
using Stouffer’s method, the 48th most significant voxel has a p-value of 0.0691.

Method
with rth
value

Fisher Stouffer Mudholkar-
George

Average t Haar-
Fisz

Random
Effect

48 0 0.05 0.0691 0 0.0000087 0.02129
96 0.0000002 0.1333 0.1588 0.00001695 0.0145 0.04081
192 0.000526 0.2737 0.3221 0.0108 0.1006 0.0884
384 0.0877 0.6171 0.5927 0.4043 0.3004 0.18013
768 1.0 1.0 1.0 0.2043 0.5 0.40175

Table 6.1 shows the significance levels corresponding to designating a fixed number of voxels

to be active, with that number increasing from 48 voxels, or 2.5 percent of all voxels, to

768, or 40 percent of all voxels. For all methods, the most significant voxels are very highly

significant, with p-values near 0. The effect of averaging in the Average-t method is to smooth

out any signal that is not too strong and consistent across subjects. All the methods can

pick up patterns of activity that are manifested by some, but not all, subjects.

Figure 6.7 displays each of the comparison methods (the test statistics derived from com-

paring the two groups using the combination methods) and the areas of activation that are

found in the brain thresholded at α = 0.01, corrected for multiplicity using FDR. The images

produced by Fisher, Stouffer and Mudholkar-George are quite close to each other but they

are not very informative regarding the existence of any difference between the two groups.
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Figure 6.7: Thresholded two group comparative maps using all combining methods, for a
threshold corresponding to the 1920 voxels. The top rows shows Fisher with controls as
numerator and schizophrenic patients as denominator and vice-versa; the second row shows
Stouffer and Mudholkar and George; the third row shows Haar-Fisz and Average t; the fourth
row shows the random effects model.
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Edge effect exists in all the images. The Haar-Fisz image seems to have more activation that

the others.

Table 6.2 presents the second way of comparing the procedures used for comparing the two

group maps, that is, the numbers of voxels that would be picked up by each of the methods,

for a given significance level. This is equivalent to drawing a horizontal line across each of

the plots in Figure 6.5 at the same height. The first column in the table gives the significance

level that was applied to the individual voxel tests based on false discovery rate procedure

over 1920 brain voxels in slice 23.

Table 6.2: The table displays the number of voxels declared differentially active for each
of the six methods and various significance levels. For instance, using Fisher’s method of
combining data and then taking the ratio of the two group maps, and a significance level
of 0.05, 197 voxels will be declared differentially active, whereas by using the Average-t
method, 57 voxels will be picked out as differentially active. This has been corrected for
multiple testing using FDR.

q-value
FDR
adjusted

Fisher Stouffer Mudholkar-
George

Average t Haar-
Fisz

Random
Effect

0.05 197 43 48 57 173 105
0.01 132 29 28 32 125 20

Based on Table 6.2, Fisher and Haar-Fisz methods can be grouped together and Stouffer

and Mudholkar-George can be grouped together in terms of picking out nearly the same

number of “differentially active” voxels. We can see the clear distinction between the ratio

based comparison methods versus difference based procedures.

6.3 Comparison of Combining Methods through Non-parametric Methods

6.3.1 Using Permutation Tests

In contrast to the theoretical approach, which relies on various rather strong assumptions

such as having images that are smooth, and uniformly so, as well as the need to make

multiplicity adjustments, the permutation method relies solely on exchangeability under the
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null hypothesis. The main motivation for using the permutation approach in this thesis is

to study the behavior of the test statistics derived from the comparative methods, i.e. to

understand the empirical distributions under the null hypothesis that there is no difference

between the two groups. I will conduct a comparative study of the non-parametric methods

with FDR.

The basic idea, even in the neurological context, is a familiar one. If there is no difference

between experimental conditions (that is, under the null hypothesis), then the labels “con-

trols” and “patients” can be thought of as arbitrary in the sense that any observation arising

from the “patients” group could just as readily have been an observation from the control

group, and vice versa. Thus, in order to assess the significance of the difference actually

observed in the data at a particular voxel, one can create an empirical distribution by per-

muting the labels among the subjects in the two groups. For each such permutation the

relevant test statistic is computed, and the observed value of the statistic is then compared

to the permutation distribution.

Our main interest lies in finding out whether there is a functional anatomical difference

between two groups of subjects. So we resort to consideration of the null hypothesis that

there is no difference between groups. Two related questions then have to be addressed.

What measure(s) of difference between two groups are likely to be most informative about

departure from the null hypothesis? How can we ascertain the distribution of a potential

test statistic under the null hypothesis?

These two questions leads us towards multiple testing. To obtain an adjusted threshold, all

voxels need to be considered simultaneously, that is, the permutations need to be carried out

at the level of images. Ideally, we would like to look at the level of entire images, or perhaps

images dissected into regions. In relation to the first of these questions, Nichols and Holmes

(2001) describe a way of doing this through the use of the maximal statistic. Essentially, the

maximal statistic is as the name implies, the maximum voxel value in an image which acts as



100

the summary of the image as a whole. Nichols and Holmes considered two types of threshold:

a single threshold test and suprathreshold cluster test. The former thresholds data at a global

or overall level through computing the permutation distribution of the maximal voxel statistic

over the volume of interest i.e. it is a measure of the difference between groups in volume of

a given region of interest, while the latter thresholds at a cluster level through computing

the permutation distribution of the sum of maximal voxel statistics in a cluster or a group

of clusters. Though both tests consider the entire image volume, we will not apply either the

global test or the cluster level test because in this thesis we do not have apriori knowledge of

any areas of interest or contiguous voxels of activation (clusters). Also in the above two cases,

functionally distinct regions may be merged and activations may be missed, the threshold

must be chosen in advance, the choice of cluster-forming threshold is arbitrary and trying

several thresholds increases the number of performed tests, cluster size tests favor big regions

over small regions and activated voxels are not localized within detected clusters. We will

test voxel-by-voxel to pick out differences between the two groups assuming independence

among subjects. This voxel-by-voxel test has good localization power but relatively poor

sensitivity to the cluster level test. However it serves our purpose of detecting the difference

in two groups.

Multiple Testing using Permutation Tests

After combining the subjects from each group using any of the combination statistics, we

have devised tests for comparing the groups. Hence at each voxel we have produced a p-

value related to that particular statistic. Let that p-value be pk, for the null hypothesis Hk
0 ,

where the superscript k indexes the voxels. In these group comparison maps we do not have

any a priori knowledge as to which voxels will exhibit differential activation to a particular

task. If we would have known that, we could have simply tested at that voxel using an

appropriate level α test. Hence arises the problem of multiplicity of testing. If we consider

α = 0.05, clearly, 5% of the voxels are expected to have p-values less than α = 0.05. However

these p-values are uncorrected p-values since we require a test procedure maintaining strong
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control over map-wise Type I error. An intuititve and easily implemented solution is through

non-parametric resampling (Westfall and Young, 1993).

Frequently, non-parametric approaches are less powerful than their parametric counterparts

when the assumptions for the latter are true. However in the context of assessing statistical

images from fMRI, permutation methods perform at least as well as parametric methods on

real data (Arndt et al., 1996). For noisy statistic images, such as t-statistic images with low

degrees of freedom, the ability to consider pseudo t-statistics constructed with locally pooled

(smoothed) variance estimates affords the permutation approach with some additional power

(Holmes, 1994).

There are, however, additional considerations when using the non-parametric approach with

a maximal statistic to account for multiple testing. For the single threshold test to be equally

sensitive at all voxels, the (null) sampling distribution of the chosen statistic should be

similar across voxels. For instance, the simple mean difference statistic could be considered

as a voxel statistic, but areas where the mean difference is highly variable will dominate the

permutation distribution for the maximal statistic. The test will still be valid, but will be

less sensitive at those voxels with lower variability. So, for an individual voxel a permutation

test on group mean differences is equivalent to one using a two-sample t-statistic (Edgington,

1995).

Results

Assumptions:

For a valid permutation test the only assumptions required are those to justify permuting

the labels. Clearly the experimental design, model, statistic and permutations must also be

appropriate for the question of interest. For a randomization test the probabilistic justifi-

cation follows directly from the initial randomization of condition labels to scans. In the
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absence of an initial randomization, permutation of the labels can be justified via weak dis-

tributional assumptions. Thus, only minimal assumptions are required for a valid test. In

contrast to parametric approaches where the statistic must have a known null distributional

form, the permutation approach is free to consider any statistic summarizing evidence for the

effect of interest at each voxel. The consideration of the maximal statistic over the volume

of interest then deals with the multiple testing problem.

The key steps in performing a permutation analysis:

1. Null Hypothesis: Specify the null hypothesis.

2. Exchangeability: Specify exchangeability of observations under the null hypothesis.

3. Statistic: Specify the statistic of interest, usually broken down into specifying a voxel-level

statistic deduced from comparison methods using the combination methods.

4. Relabeling: Determine all possible relabelings given the exchangeability scheme under the

null hypothesis.

5. Permutation Distribution: Calculate the value of the statistic at each voxel for each rela-

beling, building the permutation distribution voxel-by-voxel.

6. Significance: Use the permutation distribution and the critical value derived from the

comparative test statistic from the original data, thresholding for the statistical image is

done at voxel-level.

Null hypothesis:

The permutation test considers the data to be a random realization from some distribution,

which is the same approach used in a parametric test (except that a particular parametric dis-

tribution is specified). Here the data are fixed and we use the randomness of the experimental

design to perform the test. Although the machinery of the permutation and randomization

tests are the same, the assumptions and scope of inference differ.

Each subject has an image expressing activation to a particular task, the difference of the

task and the rest condition estimates. We make the weak distributional assumption that the



103

values of the subject difference images at any given voxel (across subjects) are drawn from

a symmetric distribution (the distribution may be different at different voxels, provided it is

symmetric). The null hypothesis is that these distributions are centered on zero.

Exchangeability:

The conventional assumption of independent subjects implies exchangeability. We consider

subject labels of +1 and -1, indicating unflipped or flipped labels of the data. Under the null

hypothesis, we have data symmetric about zero, and hence for a particular subject the label

of the observed data can be flipped without altering its distribution. With exchangeable

subjects, we can flip the labels of any or all subjects’ data and the joint distribution of all

of the data will remain unchanged.

Statistic:

In this example we use a permutation thresholding test.

Voxel-level summary statistic:

We are interested in searching over the whole brain for significant changes. We will use the

comparative methods described in Section 6.2. This will enable us to compare parametric

and non-parametric methods. However we can use any statistic to look at the relationship

between the two groups.

Relabeling enumeration:

Based on our exchangeability under the null hypothesis, we can flip the sign on all of our

subjects’ data. We chose 10,00 random permutations of a total of 31 subjects from two groups,

randomly re-assigned their labels on 31 subjects and subdivided them into two groups of 15

controls and 16 patients.

Permutation distribution:

For each of the 10,000 relabelings, we computed the comparative test statistics at each

voxel. So for each permutation or relabeling, we have a comparative test statistics map for

two groups and draw our conclusion based on the value of the comparative statistics from the
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original data as the critical value. The test is made at each voxel based on the permutation

distribution. Figure 6.8 shows the permutation distributions for each comparison method,

based on the 10000 relabelings.

Significance threshold:

P-values are calculated in order to declare a voxel as “active” based on the permutation

distribution and the critical value from the original comparative maps. The empirical distri-

bution and the critical values are calculated at each voxel and hence the thresholding is done

at the voxel-level; hence a p-value is assigned at each voxel for the comparative methods.

The overall permutation distribution from all voxels of the various comparison methods

for comparing two groups under H0 is shown in Figure 6.8. It is overlaid with the “true”

theoretical distribution for that particular comparison method.

Both theoretical and permutation tests were used to assess the probability of each observed

voxel statistic under the null hypothesis, and the observed effects maps were thresholded at a

size of a two-tailed tests with α = 0.01. Since no true difference is expected to exist between

the two groups under the null distribution, all significant voxels identified by the size of

the two-tailed tests at 0.01 should be false positives. In other words, the observed number

of positive tests (significant voxels) should equal the predicted number of false positive

tests. Figure 6.8 shows that for all the comparison methods, the number of positive tests

observed by the theoretical distribution is generally less than the expected number given

by the permutation distribution, implying that permutation tests may be more efficient in

finding false positives. We can also say that the theoretical distribution overestimates the

probability of positives. Correspondence between observed and expected positive tests was

closer for comparative methods using Fisher’s and Haar-Fisz’s combination techniques than

for the other combination techniques using differences.
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                                    Fisher                                                                                           Stouffer   

                    

                        Mudholkar-George                                                                               Haar-Fisz 

                                                          

                                                                                           Average-t 

Figure 6.8: Histograms depicting the permutation distribution derived from the combined
statistics used to compare two groups (colored in red). The clear histograms represent the
true distributions of the combined statistic used to compare two groups. The top rows shows
Fisher and Stouffer; the second row shows Mudholkar and George and Haar-Fisz; the third
row shows Average t.
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Figure 6.9 shows the quantile-quantile plot of true distribution with the permuted distribu-

tion. It shows that Haar-Fisz’s methods conform more to the true distribution than rest of

the methods. Stouffer and Mudholkar-George both look similar.

               

                                Fisher                                                                            Stouffer 

           

                Mudholkar and George                                                                Haar-Fisz  

                                                                    

                                                                                              Average-t 

 
Figure 6.9: QQ plot of the true distribution versus the permuted distribution.
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6.3.2 Using Bootstrapping

In bootstrapping there are two sources of error:

1. Error caused by resampling from an empirical cumulative distribution function formed

from the initial data set.

2. Error caused by carrying out only a finite number of resamples. For messier problems when

the test statistic has a complicated, analytically intractable, distribution the bootstrap would

be a reasonable way to address that.

The key steps in performing a bootstrap analysis:

1. Null Hypothesis: Specify the null hypothesis.

2. Exchangeability: Specify exchangeability of observations under the null hypothesis.

3. Statistic: Specify the statistic of interest, usually broken down into specifying a voxel-level

statistic deduced from comparison methods using the combination methods.

4. Relabeling: Determine all possible relabeling given the exchangeability scheme under the

null hypothesis.

5. Bootstrap Distribution: Calculate the value of the statistic for each relabeling, building

the bootstrap distribution.

6. Significance: Use the bootstrap distribution and the critical value derived from the com-

parative test statistic from the original data, thresholding for the statistical image is done.

Results

Null hypothesis:

H0: The distributions of the (voxel values of the) groups’ difference images have zero mean.

Exchangeability:

The conventional assumption of independent subjects implies exchangeability under the null

hypothesis.
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Statistic:

In this example we use a bootstrap thresholding test.

Voxel-level summary statistic:

We are interested in searching over the whole brain for significant changes. We will use the

comparative methods described in Section 6.2. This will enable us to compare parametric

and non-parametric methods. However we can use any statistic to look at the relationship

between the two groups.

Relabeling enumeration:

Based on our exchangeability under the null hypothesis, we can randomly sample subjects

with replacement from each of the two groups so that we have 15 controls and 16 patients;

hence a subject may be repeated more than once in a group. We repeat this random allocation

10,00 times.

Bootstrap distribution:

For each of the 10,000 bootstrappings at each voxel, we compute the comparative test statis-

tics. So for each bootstrap, we have a comparative test statistic image or map. We note the

value of the comparative statistics for the original data at each voxel as the critical value.

Figure 6.9 shows the bootstrap distributions for each comparison method, based on the 10000

relabelings.

Significance threshold:

P-values are calculated in order to declare a voxel as “active” based on our the bootstrap

distribution and the critical value from the original comparative maps. The empirical distri-

bution and the critical values are calculated at each voxel and hence the thresholding is done

at the voxel-level; hence a p-value is assigned at each voxel for the comparative methods.

Figure 6.10 shows the bootstrap distribution against the “true” theoretical distribution of

the statistic derived from comparing the two groups using the combination tests.
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                               Fisher                                                                                                Stouffer 

                                   

                         Mudholkar-George                                                                               Haar-Fisz 

                                                  

                                                                                      Average-t                                                                                                    

Figure 6.10: Histograms depicting the bootstrapped distribution derived from the combined
statistics used to compare two groups (colored in red). The clear histograms represent the
true distributions of the combined statistic used to compare two groups. The top rows shows
Fisher and Stouffer; the second row shows Mudholkar and George and Haar-Fisz; the third
row shows Average-t.
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Both theoretical and bootstrap tests were used to assess the probability of each observed

voxel statistic under the null hypothesis, and the observed effects maps were thresholded at a

size of a twotailed tests with α = 0.01. Since no true difference is expected to exist between

the two groups, all significant voxels identified by the size of the two-tailed tests at 0.01

should be false positives. In other words, the observed number of positive tests (significant

voxels) should equal the predicted number of false positive tests. Figure 6.10 shows that

for all the comparison methods, the number of positive tests observed by the theoretical

distribution is slightly more than the expected number given by the bootstrap distribution,

implying that bootstrap tests are a little more conservative in finding false positives. We

can also say that the theoretical distribution underestimates the probability of positives.

Correspondence between observed and expected positive tests was nearly the same across

all the comparative methods.

Figure 6.11 shows the quantile-quantile plot of the true distribution with the permuted

distribution. It shows that Haar-Fisz’s methods conform more to the true distribution than

do the rest of the methods. Stouffer and Mudholkar-George again have similar performance.

6.4 Discussion

The aim of this thesis is to compare groups of subjects, each subject performing the same

task, through distribution theory and non-parametric methods. Theoretically, parametric

methods are not suitable since time points are known to be highly correlated and there

is usually a small number of subjects (Lage-Castellanos et al., 2009). However the appro-

priateness of the use of univariate analysis and the treatment of the temporal dimension

was discussed in Kiebel and Friston (2004), concluding this approach is a useful strategy;

the univariate t-test does not allow identification of time points where relevant differences

between the experimental conditions appear but it can identify locations where there is dif-

ferent response to the stimulus. These t-maps form the basis of this thesis to enable us to

compare the groups. Specifically, we have estimated comparative test statistics at each voxel
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                                Fisher                                                                            Stouffer 

           

                Mudholkar and George                                                                Haar-Fisz  

                                                                    

                                                                                              Average-t 

 
Figure 6.11: QQ plot of the true distribution versus the bootstrap distribution.
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and tested each of these against null distributions derived from distribution theory, repeated

permutation of the observed data (which in our case is the individual p-value map) and

resampling using bootstrapping. We applied FDR correction to the original data set when

comparing groups using distribution theory. GLM is the most prevalent method to do so but

for reasons stated in Section 5.1, we have explored other methods. The combination tech-

niques addressed here not only enables us to combine p-values from any statistic to create

group maps but also they are easy to calculate (even for large number of subjects) and tend

to be more liberal in admitting activation, which in our case is ideal since we are exploring

the data rather than predicting it. However, we need to keep in mind that the combination

methods using p-value maps are often influenced by individual subject behavior.

In order to compare the efficacy and sensitivity of various comparative tests, derived from

different combination techniques, in detecting a difference between the two groups, we have

created “overlap” maps. These maps show regions of activation during a particular task for

patients and controls. If they do not follow the same activation pattern, it will enable us to

visually detect the differences between the two groups and corroborate our results from the

parametric and the non-parametric approaches with this visual tool for detecting differences

between the two groups. Figure 6.12 is a color coded map that shows where the two groups are

individually activated in response to the same task and where they overlap. For this figure,

individual group maps were created using Fisher’s method of combining data. Our aim in

this study is to look for differences in the maps i.e. where they do not overlap. The figure

only looks at the comparison methods using Fisher’s and Haar-Fisz’s methods of combining

data. Similarly, Figure 6.13 is a color coded map where individual group maps were created

using Stouffer’s method of combining data. This figure only looks at the comparison methods

using Stouffer’s and Average-t methods of combining data. Figure 6.14 is a color coded map

where individual group maps were created using Mudholkar-George’s method of combining

data. This figure only looks at the comparison methods using Mudholkar-George’s method

of combining data.
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Figure 6.12: The number ‘1’ or the color yellow shows the significantly active voxels for
controls. The number ‘2’ or the color sky blue shows the significantly active voxels for
schizophrenic patients. The number ‘3’ or the color dark blue shows the significantly active
voxels where the two groups overlap. The map is created using Fisher’s combination method.

                                            

Figure 6.13: The number ‘1’ or the color yellow shows the significantly active voxels for
controls. The number ‘2’ or the color sky blue shows the significantly active voxels for
schizophrenic patients. The number ‘3’ or the color dark blue shows the significantly active
voxels where the two groups overlap. The map is created using Stouffer’s combination
method.
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Figure 6.14: The number ‘1’ or the color yellow shows the significantly active voxels for
controls. The number ‘2’ or the color sky blue shows the significantly active voxels for
schizophrenic patients. The number ‘3’ or the color dark blue shows the significantly active
voxels where the two groups overlap. The map is created using Mudholkar-George’s combi-
nation method.

Here we will compare the figures described in the previous paragraph with the FDR adjusted

comparative maps using distribution theory. Comparing Figures 6.12 and 6.7, we can see

that Fisher and Haar-Fisz have been able to detect the signals within the brain fairly well.

Comparing Figures 6.13 and 6.7 and Figures 6.14 and 6.7 respectively, we can see that

Stouffer, Average-t and Mudholkar-George detect the signals towards the periphery but can

not detect much towards the inside of the brain. Figures 6.8 and 6.10 showing the distribution

of real data after performing the comparison tests against the true distribution also indicate

that the true distribution fits better to Fisher and Haar-Fisz than the others. From the

real data comparative study, we can say that the ratio methods for comparing two groups

give better evidence at looking at the difference in two groups than the difference methods.

Mudholkar-George underwent two transformations (logit and Chu’s normalizing)and hence a
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lot of signal loss is expected in that regard. Table 6.6 also shows that Fisher’s and Haar-Fisz’s

comparison methods are more liberal in detecting any difference between the two groups than

Stouffer’s, Mudholkar-George’s and Average-t, both at FDR adjusted q-values of 0.05 and

0.01.

Looking at differences between the two groups at each voxel involves a high number of

hypotheses being tested simultaneously which increases the risk of Type I error. Thresh-

olding or multiple testing, referring to identifying the voxels which are “truly” activated in

response to a task and not falsely triggered, is also considered in this thesis. Some works

have proposed Bonferroni correction (Yandell, 1997), FDR (Genovese, Lazar and Nichols,

2002) and the use of computer-intensive methods based on permutation test (Westfall and

Young, 1993). FDR correction is a common practice in this regard and it is addressed for

the comparative test statistics using distribution theory. We also addressed non-parametric

methods like permutation tests and bootstrapping to look at the problem of thresholding

and compare these with FDR across all the comparative tests using the various combina-

tion techniques. The map-wise threshold provided by a permutation analysis is more lenient

than that provided by Bonferroni correction or even FDR. In some cases, it can be substan-

tially more lenient, while still providing appropriate tabular control of the false positive rate

(Nichols and Holmes, 2001). The non-parametric methods actually control family-wise error

rate in our case.

Under the null hypothesis of no difference between the two groups, the comparison among

FDR and non-parametric methods controls the same test statistics. In this scenario the power

is zero by definition since there cannot be any Type II error, i.e. none of the hypotheses can

be mistakenly classified as null since all of them are truly null hypotheses. But from Figures

6.12, 6.13 and 6.14, we see that this is not the case. Table 6.3 and Figure 6.15 compares the

differentially active voxels in the two groups using False Discovery Rate, permutation tests

and bootstrapping for all the combination methods used to compare two groups of subjects.

The α value selected is 0.01.
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  Permuted Fisher                                 Original Fisher(FDR corrected)          Bootstrap Fisher

          

  Permuted Haar-Fisz                            Original Haar-Fisz (FDR corrected)    Bootstrap Haar-Fisz 

          

  Permuted Average-t                           Original Average-t(FDR corrected)     Bootstrap Average-t 

          

  Permuted Stouffer                              Original Stouffer (FDR corrected)       Bootstrap Stouffer 

          

  Permuted Mudholkar-George            Original Mudholkar-George               Bootstrap Mudholkar-George 

                                                                    (FDR corrected) 

Figure 6.15: Thresholded maps comparing two groups for all the combining methods. The
maps on the left are the empirical distributions from permutation tests thresholded with the
observed ones. The maps in the middle are derived from comparing the two groups using
the original data and FDR corrected. The maps on the right are the empirical distributions
from bootstrapping thresholded with the observed ones.
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Table 6.3: The table displays the number of voxels declared significant for each of the five
methods using three methods for multiple testing at 0.01 level of significance. For instance,
using Fisher’s method of combining data and then taking the ratio of the two group maps,
and using FDR approach for multiple testing, 132 voxels will be declared differentially active,
whereas by using the Bootstrap for the same method, 34 voxels will be declared differentially
active.

Combination
Methods

Number of
significant
voxels from
Permutation
tests

Number of
significant
voxels from
Bootstrap

Number of
significant
voxels from
FDR

Fisher 56 34 132
Stouffer 26 17 29
Mudholkar-
George

25 19 28

Haar-Fisz 60 43 125
Average-t 23 12 32

Table 6.3 shows the number of rejected null hypothesis (out of 1920 voxels) or significant

voxels indicating existence of a difference between two groups for three choices of thresholds.

There is a consistency of results among the three thresholding choices across all the compar-

ison methods, FDR being the most liberal and bootstrapping being the least in declaring a

voxel differentially active. This could be because the non-parametric methods control FWER

which is known to be more conservative than controlling the FDR. All the voxels declared

differentially active by bootstrapping subset are in both the permutation and the FDR sub-

sets. However not all the voxels declared differentially active by permutation thresholding

are in the FDR subset - most of them are but not all. The critical value for rejecting the null

hypothesis being the same for the two non-parametric methods, we can make a statement

about the variability of the comparative test statistics; we can say that the variability of the

comparative test statistics in permutation distribution is more than that of bootstrapping

and hence, we see more differentially active voxels for permutation than bootstrapping. This
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is also vindicated in Figures 6.8 and 6.10 as we compare the permutation distributions from

various comparison methods with their true null distribution respectively. We believe that

the permutation subset is likely to be closer to the true subset, not only because it is an

exact test while bootstrapping is an approximate test but also since it makes use of a pooled

variance estimate of the comparative test statistics measured at each voxel and the two

sample sizes are nearly the same. Figures 6.9 and 6.11 shows how close the permuted and

bootstrap distribution are close to the true distribution. Fisher’s and Haar-Fisz’s comparison

methods conform more to the true distribution than the rest of the methods. Also, we can

see that the lower quantiles for the bootstrap distribution is much lower than the permuted

distribution when both are compared to the true distribution suggesting that bootstrap is

more conservative in finding true positives than permutation tests.



Chapter 7

Simulation Study

To compare patterns of activation in two groups, I have considered 10 subjects as controls

(Group 1) and 7 as schizophrenic patients (Group 2). P-value maps are simulated from

Uniform(0,1) distribution under the null hypothesis; these p-values are assumed to have been

generated from the t-statistic maps comparing activation during time periods of stimulation

versus time periods at rest. Each p-value map is composed of 64 by 64 voxels for each subject.

Three types of simulations were performed for each comparison method based on their size,

intensity and location of activation using both distributional theory and non-parametric

methods. We looked at the performance of different comparison methods and the multiple

testing methods. We will look at Simulation 1 more extensively than the other two since

lessons learned are similar in all cases.

1. Simulation 1: The two groups vary in their intensity of activation when performing a

particular task while their location and size of activation remains the same.

2. Simulation 2: The two groups vary in their size (the extent or the number of voxels

activated in a particular region) of activated region when performing a particular task while

location and intensity of activation remain the same.

3. Simulation 3: The two groups vary in their location of activation when performing a

particular task while intensity and size of activation remain the same.

119
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7.1 Results from Simulations

7.1.1 Simulation 1

Three regions of interest are arbitrarily chosen to represent activation in two groups which

vary in their intensity only. The intensity, measured in p-values, in the planted patches

of activation for the schizophrenic patients varied between (0,0.02) and the intensity of

the controls varied between (0,0.04). We explored the simulated data of the two groups

looking for differentially active voxels through distributional theory, permutation tests and

bootstrapping using the comparison methods described in Section 6.2.

  

Figure 7.1: Template showing how the stimulation regions are planted in the first simulation
study.

Figure 7.1 shows the planted stimulation regions for patients and controls in the first sim-

ulation study. The stimulated regions and their size remain the same for two groups while

only the magnitude of stimulation varies. Figure 7.2 shows the activated voxels for the two

groups; we can detect the locations where the voxels are activated for each group and hence
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where the difference in activation lies when thresholded at 0.01. This figure does not reveal

whether one group is performing better than the other in terms or intensity or magnitude

of the signal strength.

                               

  Fisher                                                                                                Stouffer 

                            

 Mudholkar-George                                                                          Haar-Fisz 

                                                          

                                                           Average-t 

Figure 7.2: This is for Simulation 1. The color yellow shows the significantly active voxels
for patients. The color sky blue shows the significantly active voxels for controls. The color
dark blue shows the significantly active voxels where the two groups overlap.

Table 7.1 shows number of voxels detected to be differentially active using FDR to correct for

multiplicity. The q-values chosen as thresholds to detect false positives are chosen to be 0.05

and 0.01. Table 7.2 illustrates the comparison of the three multiple testing methods through

the five comparison methods used to compare two groups. Figures 7.3 and 7.4 demonstrate

how each of the comparison methods behave for the three multiple testing methods.
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 Permuted Fisher  ( first simulation)                                           Original Simulated Fisher 

                             

Permuted Haar-Fisz ( first simulation)                                       Original Simulated Haar-Fisz                                     

                          

Permuted Average-t (first simulation)                                        Original Simulated Average-t 

                            

Permuted Stouffer (first simulation)                                            Original Simulated Stouffer 

                         

Permuted Mudholkar-George (first simulation)                         Original Simulated Mudholkar-George 

Figure 7.3: Thresholded maps comparing two groups for all the combining methods. The
original maps are simulated for 10 controls in one group and 7 patients in the other. The
maps on the left are the empirical distributions from permutation tests thresholded with the
observed ones. The maps on the right are derived from comparing the two groups using the
original data and FDR corrected.
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 Bootstrap Fisher (first simulation)                                               Original Simulated Fisher 

                              

Bootstrap Haar-Fisz (first simulation)                                            Original Simulated Haar-Fisz 

                           

Bootstrap Average-t (first simulation)                                            Original Simulated Average-t 

                       

Bootstrap Stouffer (first simulation)                                              Original Simulated Stouffer

                     

Bootstrap Mudholkar-George (first simulation)                        Original Simulated Mudholkar-George 

Figure 7.4: Thresholded maps comparing two groups for all the combining methods. The
original maps are simulated for 10 controls in one group and 7 patients in the other. The
maps on the left are the empirical distributions from bootstrapping thresholded with the
observed ones. The maps on the right are derived from comparing the two groups using the
original data and FDR corrected.
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Table 7.1: The table displays the number of voxels declared differentially active for each of
the five methods at various significance levels. This is for the first simulation. For instance,
using Fisher’s method of combining data and then using ratio of the two group maps, and a
significance level of 0.05, 481 voxels will be declared differentially active, whereas by using
the Stouffer method, 1108 voxels will be regarded as differentially active.

q-value
FDR
adjusted

Fisher Stouffer Mudholkar-
George

Average t Haar-
Fisz

0.05 481 1108 1348 2911 457
0.01 396 993 1179 2935 385

7.1.2 Simulation 2

The planted stimulation regions for patients and controls in the second simulation study are

similar to Figure 7.1, the differences being that the two groups varied in size of activation to

a particular task, though hovering around the same region as shown in the template, and the

magnitude of stimulation is the same in both the groups unlike the first simulation study.

Figure 7.5 shows the activated voxels for the two groups; we can detect the locations where

the voxels are activated for each group and hence where the difference in activation lies when

thresholded at 0.01. This figure does not reveal whether one group is performing better than

the other in terms or intensity or magnitude of the signal strength.

To show that the results are consistent over various simulations, I am furnishing the values

and images (Figure 7.6) for the comparison done with Fisher’s method combining data and

then using the ratio of the two group maps to compare the two groups. For the Fisher’s

method, at q-value of 0.01, 150 voxels will be declared differentially active using FDR

approach for multiple testing, 123 voxels will be declared differentially active using per-

mutation tests for multiple testing and 107 voxels will be declared differentially active using

bootstrapping for multiple testing. Figure 7.6 demonstrates how sensitive the methods used

to correct for multiple testing are with respect to each of the comparison methods.
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  Fisher                                                                                                Stouffer 

                            

 Mudholkar-George                                                                          Haar-Fisz 

                                                          

                                                           Average-t 

Figure 7.5: The color yellow shows the significantly active voxels for patients. The color
sky blue shows the significantly active voxels for controls. The color dark blue shows the
significantly active voxels where the two groups overlap.
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Table 7.2: The table displays the number of voxels declared significant for each of the five
methods using three methods for multiple testing at 0.01 level of significance. This is for the
first simulation. For instance, using Fisher’s method of combining data and then using the
ratio of the two group maps, and using FDR approach for multiple testing, 396 voxels will
be declared differentially active, whereas by using the Bootstrap for the same method, 384
voxels will be declared differentially active.

Combination
Methods

Number of
significant
voxels from
Permutation
tests

Number of
significant
voxels from
Bootstrap

Number of
significant
voxels from
FDR

Fisher 387 384 396
Stouffer 859 776 993
Mudholkar-
George

851 705 1179

Haar-Fisz 366 366 385
Average-t 2332 1879 2935

7.2 Discussion

The tables and images presented from the simulation studies demonstrates the sensitivity and

ability of each of the procedures discussed in Section 6.2 in comparing the two groups. The

first simulation studied here extensively looks at the sensitivity of each of the comparison

methods in detecting a difference between the groups since all that was varied was the

intensity while the location and size of the planted patches remained the same. Images of

the original simulated data from Figures 7.3 and 7.4 (for first simulation study) showing the

five comparison methods and Figure 7.6 (for second simulation study) showing the Fisher’s

comparison method illustrate that the comparison methods were able to detect the planted

patches where the difference between the two groups actually lies even though the difference

was small, on average. The various colors represent the difference in intensity or magnitude

of the signal between the two groups. When we corroborate that information with Figure

7.2 for simulation study 1 and Figure 7.5 for simulation study 2, we can see that all the
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 Permuted Fisher (Simulation 2)          Original simulated data                      Bootstrap Fisher 

Figure 7.6: Thresholded maps comparing two groups for all the combining methods. This
is for the second simulation data. The original maps are simulated for 10 controls in one
group and 7 patients in the other. The maps on the left are the empirical distributions from
permutation tests thresholded with the observed ones. The maps in the middle are derived
from comparing the two groups using the original data and FDR corrected. The maps on
the right are the empirical distributions from bootstrapping thresholded with the observed
ones.

comparison methods were able to detect the planted patches but the level of sensitivity in

detecting the differences between the two groups varied. This figure was used to only get an

overview whether there was a difference in activation between the two groups or not. It does

not reveal whether one group was better than another in terms of intensity or magnitude of

signal strength. Table 7.3 and Table 7.4 puts a perspective to that level of sensitivity with

regard to how many true differential activations each comparison method has been able to

detect since we know the truth from our simulated data.

In Table 7.3 and 7.4, the first and last rows depict the accuracy of detecting a true differential

activation for each of the comparison methods while the second and the third rows depict

the mistakes made with each of those methods. The tables suggest that comparison using

Fisher’s and Haar-Fisz’s techniques made the least mistake in declaring a voxel differentially

active while the numbers of voxels that were not detected to be differentially active when

they are truly so was worst for average-t. The comparison method using Haar-Fisz’s and
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Table 7.3: The “truth” table for simulation study 1 displays true difference and false difference
between the two groups at 0.01 level of significance and FDR adjusted for multiple testing.

True discovery vs.
False discovery

Fisher Stouffer Mudholkar-
George

Average-
t

Haar-
Fisz

Number of voxels that
were truly different were
discovered

347 234 216 110 347

Number of voxels that
were truly different were
not discovered

35 148 166 272 35

Number of voxels outside
the planted patches were
discovered as different

49 759 963 2825 38

Number of voxels out-
side the planted patches
were not discovered as
different

3665 2955 2751 889 3676

Fisher’s method of combining data discovered most truly differentially active voxels and less

number of false alarms. So overall comparison method using ratio techniques have been able

to balance the Type I and the Type II error and hence been able to detect the maximum

number of true differentially active voxels.

It is a very powerful fact that whenever the two sample sizes are approximately equal, the

permutation method provides an estimated test statistic null distribution which is asymp-

totically correct and may in fact be more efficient for small sample sizes (by using pooled

estimates of the covariance matrix). However, the permutation method suffers from a bias

where the estimated null distributions of the mean of the test-statistics used to compare the

two groups do not have their means as zero if the two sample sizes are unequal, unless the



129

Table 7.4: The “truth” table for simulation study 2 displays true difference and false difference
between the two groups at 0.01 level of significance and FDR adjusted for multiple testing.

True discovery vs.
False discovery

Fisher Stouffer Mudholkar-
George

Average-
t

Haar-
Fisz

Number of voxels that
were truly different were
discovered

58 36 27 10 59

Number of voxels that
were truly different were
not discovered

3 25 34 51 2

Number of voxels outside
the planted patches were
discovered as different

92 201 257 1283 79

Number of voxels out-
side the planted patches
were not discovered as
different

3943 3834 3778 2752 3956

observed difference in means is zero (Pollard and van der Laan, 2003). However for bootstrap

method the bias is independent of the observed difference but can be anti-conservative if the

errors are not homogeneous. From my limited simulation, we can also see from Table 7.2 that

none of the multiple testing methods were able to detect “all” the true differentially active

voxels. However all the voxels that were detected by each of the multiple testing methods

represent true differential activation. Similar to real data, FDR was least conservative and

bootstrap the most.



Chapter 8

Conclusion and Recommendations

In this thesis I have discussed five methods (namely, Fisher, Stouffer, Mudholkar-George,

Average-t and Haar-Fisz) used to combine data from multiple subjects and then compare

two group maps. I have made a comparative study of these with the popular random effects

model using real data only for distribution theory. All the five combination methods are based

on combining p-values obtained from a combined statistical hypothesis test. The random

effects model is based on the data itself in the form of t-tests.

The comparative maps and tables showing the performance of each of these methods in

comparing two groups leads to the issue of which method should be used. Averaging of t-

statistics (or other statistics) at each voxel over multiple subjects uses the data efficiently

but it smooths away much of the signal and hence a lot of information across the subjects

is lost. However usage of pseudo-t will give a better variance estimation but we will not

be able to use distribution theory in this regard because there does not exist any known

reference distribution. Among the other p-value based methods, Fisher and Haar-Fisz takes

a logarithm, Stouffer takes an inverse cumulative distribution and Mudholkar-George takes

a logit transform and then normal approximation to t-distribution to combine and compare

two group maps. The random effect model is based on a weighted average which is done to

smooth over the realigned voxels (Lazar et al., 2002). Working with transformations on real

data always leads to some loss of information as in the case of the combination techniques

explored here. But their advantage over the random effects model is that the computation

and mathematical manipulations are not complicated.
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Fisher and Haar-Fisz use a ratio of statistics to compare the two groups; hence these tests

do not give us the magnitude of the difference in the combined signal strength for the

two groups as do Stouffer, Mudholkar-George and Average-t but rather a proportion of

the numerator group combined signal relative to the denominator. In other words, under

alternative hypothesis, the ratio tests look at the relative difference in the strength of the

signal i.e. difference in intensity of one group with respect to another while the difference tests

look at the absolute difference in magnitude of the signal strength of one group compared

to another. In some cases not related to fMRI, it has been shown that a closer fit to reality

is sometimes achieved if comparisons are a function of differences than ratios (Hirshleifer,

1989). On the other hand for another unrelated example, it has been shown that if the data

are linear with slope which changes under motivational bias strongly argues against difference

comparator mechanisms and in favor of ratio comparators (Gibbon and Fairhurst, 1994).

Fisher’s method is easy to implement and has a convenient distributional form but it has

some disadvantages. It can yield inconsistent results with even simple overall tests like the

sign test of the null hypothesis of a 50:50 split (Siegel, 1956). Thus for a large number of

studies, if the vast majority showed results in one direction then by the sign test, we would

reject the null hypothesis even if the consistent p-values were not very much below 0.5.

However in these situations, the Fisher method would not yield an overall significant p-value

(Mosteller and Bush, 1954). Another problem with Fisher’s method is that if two studies

with equally and strongly significant results in opposite directions are obtained, this method

supports the significance of either outcome. Thus p-values of 0.001 for A > B and 0.001 for

B > A combine to a p < .01 for A > B or B > A (Adcock, 1960). Despite these limitations

Fisher’s method still remains the best known and most discussed among all the methods

for combining probabilities (Rosenthal, 1978). Many authors and most notably Rosenthal

concluded that there does not exist any best method under all conditions (Birnbaum, 1954),

but the one that could be used under the largest range of conditions is the method of adding
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Z scores. Hence the statement points towards Stouffer’s method and somewhat towards

Average-t.

Fisher and Haar-Fisz were able to detect the signals within the brain fairly well. Comparing

Figures 6.11 and 6.7 and Figures 6.12 and 6.7 respectively, we can see that Stouffer, Average-t

and Mudholkar-George detected the signals towards the periphery which were likely artifacts

but did not detect much inside the brain. The true distribution fitted better to Fisher and

Haar-Fisz comparison methods than the others. From the real data comparative study, we

can say that the ratio methods for comparing two groups were better at detecting differences

than the difference methods. Mudholkar-George underwent two transformations, logit and

Chu’s normalizing, and hence a lot of signal loss is expected in that regard. Fisher’s and

Haar-Fisz’s comparison methods were liberal in detecting any difference between the two

groups more than Stouffer’s, Mudholkar-George’s and Average-t’s, both at FDR adjusted q-

values of 0.05 and 0.01. We derive similar conclusions from looking at the simulation studies.

Since we had planted areas of activation which would be our regions of interest, we did not

expect all the voxels to conform to the null distribution. The tables and images from the

simulation studies showed that Fisher and Haar-Fisz were able to detect the difference in two

groups better than others. However it can be noted that Stouffer, Mudholkar-George and

Average-t furnish near-similar results and seemed to be quite close in their approach. With

the evidence from real data and simulated study, it would be more appropriate to compare

two groups using Fisher’s combination technique to get group maps and then taking the

ratio of the two Fisher maps.

From the real data study, there is a consistency of results among the three thresholding

choices across all the comparison methods: FDR being the most liberal and bootstrapping

being the least in declaring a voxel differentially active i.e. bootstrapping exerts a stronger

control of the type I error than the FDR method. Using real data, all the voxels declared

differentially active by bootstrapping subset were in both the permutation and the FDR

subset. However all the voxels declared differentially active by permutation subset were not
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in the FDR subset - most of them were but not all. The variability of the comparative test

statistics in permutation distribution was more than that of bootstrapping and hence, we

saw more differentially active voxels for permutation than bootstrapping. Using simulated

data, we saw the similar trend in detecting differentially active voxels among the three mul-

tiple testing methods and all the voxels declared differentially active by the non-parametric

methods were in the FDR subset. We believe that the permutation subset is likely to be

closer to the true subset, not only because it is an exact test while bootstrapping is an

approximate test but also since it makes use of a pooled variance estimate of the compar-

ative test statistics measured at each voxel and the two sample sizes are nearly the same.

The computation complexity of the non-parametric methods were also higher than that of

FDR and the estimation usually took 20 times as long to get thresholds from a permutation

method than to do the FDR thresholding. The FDR method may be a good alternative but

with the advent of fast computing, permutation test gives a better result. Permutations tests

are very flexible and intuitive with requirement of minimum assumptions for valid inference

and will work under heterogeneous error. Also permutation tests provide a viable alternative

analysis method to parametric approaches when the assumptions of the latter are not met.



Chapter 9

Future work

9.1 Extension to three or more groups

We have explored the possibility of comparing three groups without having to do pairwise

comparisons. We have two methods to do so:

1. The group maps overlaid so that we have a qualitative but not quantitative way of under-

standing where the difference in activation lies with respect to each group.

2. Use of non-parametric one-way ANOVA: Kruskal Wallis method.

The source populations for the three or more group maps may not be normal in our case of

fMRI study. An appropriate non-parametric alternative to the one-way independent-samples

ANOVA can be found in the Kruskal Wallis test. It does, however, assume that the observa-

tions in each group come from populations with the same shape of distribution, so if different

groups have different shapes (one is skewed to the right and another is skewed to the left,

for example, or they have different variances), the Kruskal Wallis test may give inaccurate

results (Fagerland and Sandvik 2009). But that should not be our case since we will use the

same combination method to combine the data in each group with the belief that individual

maps in a group are comparable and hence combinable. Like many non-parametric tests,

the Kruskal-Wallis test is performed on ranked data, so the measurement observations are

converted to their ranks in the overall data set. The loss of information involved in substi-

tuting ranks for the original values can make this a less powerful test than its parametric

counterpart. The null hypothesis is that the samples come from populations such that the

probability that a random observation from one group is greater than a random observation
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from another group is 0.5 i.e. the group maps comes from the same population and hence

there is no significant difference among them. The Kruskal Wallis test does not test the null

hypothesis that the populations have identical means or have equal medians. The Kruskal

Wallis test statistic, H is given by:

H =
12

n (n+ 1)

k∑
i=1

R2
i

ni
− 3 (n+ 1)

where Ri = sum of the ranks for group i for i = 1, 2, ..., k. H represents the variance of

the ranks among groups, with an adjustment for the number of ties. H is approximately

chi-square distributed. If the sample sizes are too small, H does not follow a chi-squared

distribution very well, and the results of the test should be used with caution. N less than 5

in each group seems to be the accepted definition of ‘too small’.

The real data set also contains a third group: relatives of schizophrenic patients comprising

13 subjects who performed the same anti-saccade task. Figure 9.1 is the color coded map

showing the difference in activation patterns in the three groups. The combining method

used to derive each group map is Fisher’s.

Figure 9.2 demonstrates the capability of the Kruskal Wallis test to detect the difference

in activation patterns in the above mentioned three groups at 0.01 level of significance and

FDR corrected.

Comparing figures 9.1 and 9.2, we want to see Kruskal Wallis being able to detect the signals

represented by ‘2’ (orange),‘3’ (yellow) or ‘4’ (light green). We can see that Kruskal Wallis

has been able to detect signals more towards inside of the brain than towards the periphery.

However, it does not provide a conclusive evidence that it has been able to fully detect the

activation patterns in the three groups that differs one from the other. This area can be

explored more and will be the focus of more of my future research.
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Figure 9.1: The number ‘2’ or the color orange shows the significantly active voxels for con-
trols. The number ‘3’ or the color yellow shows the significantly active voxels for schizophrenic
patients. The number ‘4’ or the color light green shows the significantly active voxels for
relatives of schizophrenic patients. The number ‘5’ or the color turquoise blue shows the sig-
nificantly active voxels where the controls and schizophrenic patients overlap. The number
‘6’ or the color sky blue shows the significantly active voxels where the controls and their
relatives of schizophrenic patients overlap. The number ‘7’ or the color light blue shows the
significantly active voxels where the schizophrenic patients and their relatives overlap. The
number ‘9’ or the color dark blue shows the significantly active voxels where the three groups
overlap.
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Figure 9.2: The image depicting the p-values derived from Kruskal-Wallis test which is FDR
corrected at 0.01 level of significance.

9.2 Addendum to Fisher’s

An addendum to Fisher’s method (H. Ombao; communicated personally to N.Lazar) can be

used to analyze two group maps. The drawbacks of Fisher’s method detailed in the previous

chapter can be corrected using this method. After we combine the data into two group maps

from two samples of equal size k, we have

TF1 ∼ χ2
2k

TF2 ∼ χ2
2k

We define, R = TF1

TF2

We define, V = max (log(1 +R), log(1 + 1/R))− log(2k)

Then, V+log(2k) ∼ Beta prime distribution or Beta distribution of second kind (Johnson,
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1995) with location parameter k and shape parameter k.

Also, V + log(2k) ∼ log-F distribution (Jones, 2006) where R ∼ F (2k, 2k).

The disadvantage of this method is that it works only for two equal sample sizes. I have tried

derivations to get a closed theoretical distribution for this so that we can apply distribution

theory to compare two group maps but that was not feasible. However, with the usage of

permutation tests and bootstrapping for comparison purposes, once again we need not be

bound by a statistic that has a closed or known distributional form and hence it will be

feasible for us to perform comparative study using non-parametric methods.

9.3 Edge Effect correction

The “edge effect” refers to the phenomenon that the comparison methods seem to mostly

pick out voxels along the edge of the brain as being different between the two groups, but

this is an artifact of the Talairach transformation not warping the individual maps to be

exactly the same size and shape. So all that is being picked up are the edges, where one

group map has voxels and the other doesn’t. Edge effects complicate the analysis of fMRI

data where we need to consider spatial processes. Many formulas relating to spatial processes

are affected by the finiteness of the region of interest.

We tried a few methods to correct it:

1. Truncating the area outside the brain or the air voxels and re-calculating our combined

statistic and subsequently the statistics to compare the group maps. We assumed that all

the activity is concentrated within the brain and hence extraneous information from the air

voxels will only inflate our results. However this method did not yield any satisfactory result

because the tests were done at each voxel and not on clusters or regions of interest.

2. Following the footsteps of spatial statistics where edge effect can be minimized by statis-

tical tests based on the distance to the apparent nearest neighbor, we weighted the individual

p-value maps so that less weight was placed on the periphery of the brain and more towards



139

the center. The weighting was adhoc. However in the process of doing so, we have warped

the brain by a large margin and hence much of the real information was lost and hence after

comparing the group maps, we have not been able to see any satisfactory result. This is a

serious issue which can be addressed through spatio-temporal modeling of the fMRI data.

9.4 Assessing effect of individual subjects on group comparison

It is informative to look at fMRI group maps which provide a collective summary of a

specific subject population and to use them to compare activation regions between two or

more groups. However, variability exists among subjects belonging to one particular group

— some individuals may exhibit higher levels and more pervasive regions of activity than

others. These individuals may significantly influence the group maps and we would want

to know whether and by what degree the high-activators affect the group maps than low-

activators. If the population is not homogeneous as in this case, the scientific conclusion may

be biased by one or a few subjects in a group. McNamee and Lazar’s (2004) paper states

that “ A 1992 National Research Council report on combining information compared, from a

statistical perspective, various popular methods based on p-values (such as Fisher’s method)

and on statistical models (such as fixed and random effects). The report indicated that some

methods may indeeed be sensitive to the results of a single study, although the issue was not

addressed in much detail. Researchers in statistics and in psychology who have compared

combining methods have tended to do so from perspective of power and basic attributes

such as ease of implementation. Thus from statistical point of view, not much is known that

will provide a practical guidance to experimenters who wish to understand the robustness

of their results. With respect to fMRI data, research in this area is also rather sparse (Page

920).”

In order to explore the sensitivity of the comparative statistics, as addressed in Section 6.2,

to individual data values from two groups and the effect of an individual on the statistic,

we will approach it using “jackknife”. The jackknife method or “delete one diagnostic” was
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first introduced by Quenouille (1949) as a method to estimate the bias of a one-sample

estimator and thus obtain a bias-reduced jackknife estimator. From this method, we not

only gain a better understanding of how the influence of one or more subjects manifests

itself in comparison maps but we also learn which methods are particularly susceptible to

such influence. This procedure is implemented by first calculating the complete comparative

statistical maps (CCSM) based on all subjects in two groups and then calculating “leave-

one-out” comparative statistics maps (LOOCSM) leaving out each of the individual subjects

from any one of the two groups in turn. We can then quantify and define the impact through

four disparity measures derived from taking the difference between the former and the latter

maps and define it — the value of the difference is binary because after FDR correction,

the comparative maps show voxels of activation, denoted by 1, and voxels of inactivation,

denoted by 0. Thus the possible values in our case will be 1, 0 and -1.

The four disparity measures are defined as follows (McNamee and Lazar, 2004):

1. Enhancing voxels: counts the number of voxels that were added (or enhanced) in the

CCSM when the subject was included in the analysis.

2. Diminishing voxels: counts the number of voxels that were taken away (or diminished)

from the CCSM when the subject was included in the analysis.

3. Relative effect: computes the ratio of the sum of the enhancing and diminishing voxels to

the total number of active voxels in the CCSM.

4. Percent overlap: measures the proportion of voxels in the individual subject’s FDR thresh-

olded t-map that are present in CCSM. This measure is not based on LOOCSM.

9.5 Modeling variance in combination tests

Random effect model models variance. In a multi-subject group setting, the subject to subject

variability is accounted for in the random effect model but in order to make more statistically

sound comparison between it and the combination tests, we can modify the p-value combining

methods such that we are looking at the absolute difference or proportion of the signals
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between two groups in units of standard deviation. Hence each combining techniques will

need to be uniquely standardized so that we can incorporate the notion of between-subject

variability.
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