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ABSTRACT 

Modern ab initio electronic theory provides an accurate method to compute molecular properties 

of subchemical accuracy.  Despite recent advances and developments, many challenges arise that 

require special treatment for particular systems and properties.  Here three theoretical challenges 

are addressed.  First, the need of a high accuracy multireference method is discussed to properly 

describe radical-radical abstraction reactions in chemical combustion.  Second, a warning is 

given against black-box computations by documenting anomalous imaginary frequencies in 

common planar and linear systems when post-Hartree-Fock methods are applied with 

insufficient basis sets.  Third, an analysis is provided to quantify the qualitative concept of 

intramolecular dispersion by examining individual pair correlation energies. 

 
INDEX WORDS: coupled cluster theory, multireference coupled cluster theory, Møller-

Plesset theory, basis set extrapolation, focal point analysis 
 

  



 

 

 

OVERCOMING THREE THEORETICAL CHALLENGES IN HIGH ACCURACY AB INITIO 

ELECTRONIC STRUCTURE THEORY 

 

by 

 

DAVID BRANDON MAGERS 

B.S., Mississippi College, 2009 

 

 

 

 

 

A Dissertation Submitted to the Graduate Faculty 

of The University of Georgia in Partial Fulfillment 

of the 

Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

 

ATHENS, GEORGIA 

2014 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

D. Brandon Magers 

All Rights Reserved 

  



 

 

 

OVERCOMING THREE THEORETICAL CHALLENGES IN HIGH ACCURACY AB INITIO 

ELECTRONIC STRUCTURE THEORY 

 

by 

 

D. BRANDON MAGERS 

 

 

 

 

      Major Professor:  Wesley D. Allen 

      Committee:  Henry F. Schaefer III 
         Gary E. Douberly 
 
 
 
 
 
 
 
 
 
 
 
Electronic Version Approved: 
 
Maureen Grasso 
Dean of the Graduate School 
The University of Georgia 
May 2014 
 



 

iv 

 

 

ACKNOWLEDGEMENTS 

 

Foremost I would like to thank my parents and my brother.  They have been supportive of my 

fascination with math, science, and computers since day one.  My mother’s constant prayer for 

me should not go unacknowledged.  She supported me even when I was at my worst.  My 

brother was a healthy distraction from the daily grind.  His humor and empathy have always 

impressed me.  My father’s insight into my life as a grad student in computational chemistry is 

unmeasurable.    Without him I would not be receiving this degree.  He has been a mentor, an 

advisor, a teacher, and a counselor in numerous ways.  I have followed his footsteps very closely 

in my life and I would not have it any other way. 

 I would like to thank my fiancé.  The first two and half years of our relationship tailed my 

grad school experience, and she has held my hand in support on a daily basis.  On days when I 

wanted to quit, to days when I was full of excitement, she was a constant source of strength even 

from two states away. 

 So many friends have supported me in my quest for a Ph.D.  Thank you to my small-

group friends here in Athens.  Your prayer and support was a rock in the storm.  To my friends I 

left in Clinton, your constant reminders that I need to come “home” showed your love like none 

other. 

 I have had many teachers who have inspired me to pursue a life in science.  I thank my 

high school chemistry teacher Coach West, calculus teacher Mrs. Kyzar, and math team coach 

Mr. Richie.  Also I thank my instructors from undergrad Dr. Gann, Dr. Floyd, and Dr. Bishop. 



 

v 

 To my advisor, Professor Allen, thank you for allowing me to join your research group.  

Your knowledge of quantum mechanics and theoretical methods is unmatched, and I only hope 

that some of that has rubbed off onto me.  Thank you for the freedom to set my own schedule. 

 I thank my fellow CCQC members who have been here with me in this journey.  

Particularly I acknowledge Justin Turney, Jowa Wu, Alexander Sokolov, and Jay Agarwal for 

fruitful conversation and instruction.  



 

vi 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

CHAPTER 

 1 INTRODUCTION AND LITERATURE REVIEW .....................................................1 

   1.1 AB INITIO ELECTRONIC STRUCTURE THEORY .....................................1 

   1.2 GAUSSIAN BASIS SETS .................................................................................4 

   1.3 HARTREE-FOCK THEORY ............................................................................7 

   1.4 MØLLER-PLESSET THEORY ......................................................................10 

   1.5 COUPLED CLUSTER THEORY ...................................................................12 

   1.6 FOCAL POINT ANALYSIS ...........................................................................15 

   1.7 RESEARCH PROSPECTUS ...........................................................................17 

   1.8 REFERENCES ................................................................................................19 

 2 REACTION PROFILES FOR RADICAL-RADICAL HYDROGEN 

ABSTRACTION VIA MULTIREFERENCE COUPLED CLUSTER THEORY .....21 

   2.1 ABSTRACT .....................................................................................................22 

   2.2 INTRODUCTION ...........................................................................................23 

   2.3 METHODS ......................................................................................................28 

   2.4 RESULTS AND DISCUSSION ......................................................................36 

   2.5 CONCLUSIONS..............................................................................................53 

   2.6 REFERENCES ................................................................................................54 



 

vii 

 3 ANOMALOUS IMAGINARY FREQUENCIES IN CYCLIC AND LINEAR 

SYSTEMS DUE TO INSUFFICIENT BASIS SETS .................................................60 

   3.1 ABSTRACT .....................................................................................................61 

   3.2 INTRODUCTION ...........................................................................................61 

   3.3 THEORETICAL METHODS AND COMPUTATIONAL DETAILS ...........63 

   3.4 RESULTS AND DISCUSSION ......................................................................66 

   3.5 CONCLUSIONS..............................................................................................71 

   3.6 REFERENCES ................................................................................................72 

 4 INVESTIGATION OF 1-(1-DIAMANTYL) DIAMANTANE: STABILIZING 

LONG ALKANE BONDS THROUGH INTRAMOLECULAR DISPERSION ........73 

   4.1 ABSTRACT .....................................................................................................74 

   4.2 INTRODUCTION ...........................................................................................74 

   4.3 FORMAL ANALYSIS OF DISPERSION ......................................................76 

   4.4 DISCUSSION ..................................................................................................79 

   4.5 COMPUTATIONAL METHODS ...................................................................87 

   4.6 CONCLUSIONS..............................................................................................88 

   4.7 REFERENCES ................................................................................................89 

 5 SUMMARY AND CONCLUSIONS ..........................................................................91 

   5.1 CONCLUDING REMARKS ...........................................................................91 

APPENDICES 

 A SUPPLEMENTARY MATERIAL FOR CHAPTER 2 ...............................................93 

 B SUPPLEMENTSRY MATERIAL FOR CHAPTER 4 .............................................115 



 

1 

 

 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 AB INITIO ELECTRONIC STRUCTURE THEORY 

 

Over recent years, advances in modern quantum chemistry have made the ambition of 

subchemical accuracy possible.  Today predicting thermochemical properties with accuracy 

better than 1.0 kcal mol–1 is possible through ab initio electronic structure theory, and thus has 

become an effective tool in chemical research.  Computational methods provide a practical 

means for researchers to model reaction mechanisms, thermodynamic properties, kinetic rates, 

and other phenomena without ever entering the laboratory.  These tools can save time and 

money, and in some cases predict properties that are currently unachievable in the laboratory 

with current techniques.  Developing effective computational tools has challenges of its own 

such as maximizing computational power and optimizing software algorithms, while minimizing 

theoretical assumptions.  The following review of electronic structure theory is by no means 

complete.  The reader is encouraged to seek numerous resources for a more in-depth study.1–4 

 Modern quantum chemistry begins with its foundation in the time-dependent Schrödinger 

equation 

 

 �ℏ ���Ψ = ��Ψ (1.1) 

 



 

2 

where Ψ is the wavefuction and �� is the Hamiltonian operator.  If there is no time-dependence in 

the Hamiltonian, the time-independent Schrödinger equation 

 

 ��Ψ = 	Ψ (1.2) 

 

can be reduced from Eq 1.1.  Any physical observable can be expressed mathematically by a 

Hermitian operator.  For a given state, represented by the wave function, the solutions to the 

eigenvalue equation above are thus the observed energy.  However solving this equation is by no 

means trivial, especially as the size of the system described by the wave function grows more 

complex.  Solving the Schrödinger equation exactly is impractical, and thus the use of 

approximate wave functions and Hamiltonians is mandatory. 

 For a system of charged particles the nonrelativistic Hamiltonian in atomic units 

 

 �� = 
�� + 
�� + ���� + ���� + ���� (1.3) 

or 

 �� = −� 12�� ∇��� −�12∇��� + � ���������� −�������� +� 1������  (1.4) 

 

is the sum of the kinetic and potential energy operators of the electrons and nuclei in the system.  

The commonly implemented Born-Oppenheimer, or “clamped nucleus,” approximation assumes 

that since the nuclei are much more massive than the electrons, the nuclei are relatively 

stationary.  This can be justified by classical time scales of the molecular motions.  Classical 

electronic orbits exist on the attosecond time scale, while molecular rotations occur on the 

picosecond time scale and molecular vibrations occur on the femtosecond time scale.  By 



 

3 

applying the Born-Oppenheimer approximation, the kinetic energy operator of the nuclei can be 

treated in a separate Schrödinger equation and the nuclear-nuclear repulsion term can be treated 

as a constant for the purpose for solving for the electronic wave function.  This approximation 

yields the electronic Hamiltonian: 

 

 ��� = −�12∇��� −�������� +� 1������ + ���� (1.5) 

 

Even with this approximation, Eq. 1.2 is still difficult to solve exactly.  The field of modern 

quantum chemistry is built around varying approximations to solutions of the electronic 

Schrödinger equation.  A balance must be found between approximations, accuracy, and 

computational cost. 

 One of the biggest obstacles in solving the electronic Schrödinger equation is accounting 

for electron correlation in the system.  Electrons, having a negative charge, repel each other.  

This instantaneous repulsion is difficult to compute.  To achieve subchemical accuracy often 

over 99% of the total correlation needs to be recovered.  For many-electron systems, the wave 

function depends on three spatial coordinates, r, and one spin coordinate ω.  The wave function 

can be expanded in terms of antisymmetrized products of one-electron functions, or orbitals.  A 

spin orbital is a function of both the spatial and spin coordinates of a single electron.  A spatial 

orbital is a function of only the spatial coordinates.  Spin orbitals can be written as a product of 

spatial orbitals and a spin function corresponding to either α or β spin.  Discussion of 

construction of these spatial orbitals is reviewed in further detail in the next section.  One might 

think that the wave function written in lowest approximation is a product of spin orbitals, each a 

function of the individual electrons.  This is known as the Hartree Product.  There are two major 
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issues with utilizing a Hartree Product as the wave function.  In this approximation, the electrons 

are assumed not to interact with one another and the total wave function is just a product of one-

electron wave functions.  Physically, this is not the case.  Secondly, the Hartree product does not 

obey the Pauli principle, which states that a wave function of fermions must be antisymmetric 

with respect to the interchange of any two particles.  The Pauli principle gives rise to the Pauli 

Exclusion Principle, which states that no two identical fermions can occupy the same quantum 

state simultaneously.  A solution to satisfy the Pauli principle is to write the wave function as a 

Slater determinant given in the general form as 

 

 Ψ�xxxx!, xxxx�, … , xxxx�$ = 1√&! (
)!�xxxx!$ )��xxxx!$ … )��xxxx!$)!�xxxx�$ )��xxxx�$ … )��xxxx�$⋮ ⋮ ⋱ ⋮)!�xxxx�$ )��xxxx�$ … )��xxxx�$( (1.6) 

 

where χ is a spin orbital and x represents the three spatial coordinates and one spin coordinate of 

a single electron applied to a system with N electrons.  Constructing a wave function as a Slater 

determinant means that every individual electron is associated with every orbital, as can be seen 

above.  By including all possible Slater determinates, the exact solution to the Schrödinger 

equation can be found within the space spanned by the spin orbitals. 

 

1.2 GAUSSIAN BASIS SETS 

 

The one-electron functions needed to expand the wave function, Ψ, are often referred to as 

molecular orbitals.  The molecular orbitals are expanded in a basis set, usually atomic orbitals 
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centered on each of the nuclei in the system.  Particularly, Slater-type orbitals (STOs) describe 

atomic orbitals very well.  These hydrogen-atom-like Slater functions 

 

 ,-./012�3, 4, 5$ = &3-4.5/6789 (1.7) 

 

decay exponentially at long range.  N is the normalization constant, a, b, and c dictate the angular 

momentum, ζ controls the size of the orbital, and r is the distance from the nucleus.  The use of 

Slater functions is very accurate; however, practically these functions are difficult to integrate 

computationally. 

 In order to approximate Slater-type orbitals, a linear combination of Gaussian-type 

orbitals can be employed. 

 

 ,-./:12�3, 4, 5$ = &3-4.5/6789; (1.8) 

 

Because they are easier to integrate, Guassian-type orbitals reduce the computational cost, even 

though more of them are needed to describe the molecular orbitals.  The same notation is used 

for Eq. 1.8 as was given in Eq. 1.7.  Unlike Slater functions, Gaussian functions have a zero 

slope at r = 0 and decay much more quickly at long range.  Most of the popular basis sets used 

today employ Gaussian-type orbitals. 

 Though there are hundreds of basis sets available in the literature, a few stand out for 

being popular, but with good reason.  Notably the basis sets constructed by Dunning and 

coworkers5–10 are designed specifically for post-Hartree-Fock correlation methods.  Hartree-Fock 

theory and other methods are described in further detail in following sections.  Dunning basis 
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sets are denoted generally as cc-pVXZ (where X = D, T, Q, 5, 6…), which stands for correlation-

consistent, polarized valence, X-zeta basis set.  Dunning basis sets are employed in the research 

described in Chapters 2, 3, and 4 and thus an in-depth look at their construction is warranted.  

Dunning basis sets are constructed to converge smoothly to the complete basis set limit with 

increasing cardinal number, X.  In over-simplified terms, larger Dunning basis sets give better 

results.  This aspect is extremely useful for a computational chemist’s goal to achieve sub-

chemical accuracy.  By monitoring the convergence of increasing the basis set size, one can 

deduce the error due to utilizing an incomplete basis set.  Also, clever extrapolation schemes and 

analyses are available to predict the complete basis set limit.  One such analysis is described in 

detail in section 1.6 of this chapter. 

 Standard Dunning basis sets all include polarization functions.  Polarization adds some 

needed flexibility to the orbitals.  In a bonding environment, often a nearby atom’s orbitals might 

distort another orbital.  This property is described by mixing atomic orbitals with orbitals of 

higher angular momentum.  For example, an s orbital can be mixed with a p orbital, or a p orbital 

with a d orbital. 

 Often Dunning basis sets are altered to better describe particular systems or situations.  

One of these includes adding diffuse functions.  These augmented Dunning basis sets, denoted 

aug-cc-pVXZ,6 add one additional diffuse function for each angular momentum shell currently 

present in the basis set.  Diffuse functions extend further away from the nucleus, and therefore 

describe systems with lone pairs, anions, or systems with important long range interactions such 

as van der Waals complexes.  Besides adding additional diffuse functions, often times the 

correlation energy contributed by the core electrons plays a non-negligible role.  Standard 

Dunning basis are constructed to leave the core electrons uncorrelated.  In order to do an all-
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electron computation, the cc-pCVXZ Dunning basis sets10 need to be used.  These basis sets are 

designed to correlate the core electrons in post-Hartree-Fock methods. 

 The Dunning series of basis sets are ideal for many correlation methods and are utilized 

in the work described in chapters 2, 3, and 4.  The use of well-constructed basis sets has helped 

improve the quality of electronic structure theory substantially. 

 

1.3 HARTREE-FOCK THEORY 

 

Hatree-Fock (HF) theory is a foundation in ab initio electronic structure methods.  Hartree-Fock 

is the basis for molecular orbital theory and the starting place for many theories that approximate 

the electron correlation.  At its core, HF theory is a first approach to solving the Schrödinger 

equation, though these approximations degrade the accuracy substantially.  Hartree-Fock 

assumes that the wave function can be represented by a single Slater determinant, which falls 

short of the exact solution.  Also HF does not include electron correlation, which is the most 

substantial downfall of the theory.  The electron-electron instantaneous repulsion is ignored, and 

instead each electron feels the average Coulomb potential from all the other electrons together; 

thus, is called a mean field theory.  However, in order to achieve subchemical accuracy, electron 

correlation is crucial and must be included.  Despite its shortcomings, today Hartree-Fock is an 

inexpensive method and an excellent starting place for many other theories.  Hartree-Fock is 

used as a starting point for theories utilized in the research in Chapters 2, 3, and 4. 

 Hartree-Fock assumes the Born-Oppenheimer approximation and utilizes the electronic 

Hamiltonian given in Eq. 1.5.   Commonly this expression can be simplified using a new 

notation 
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 ���< = �ℎ��$� +�>��, ?$�@� + ��� (1.9) 

 

where the first term is the one-electron operator and the second term is the two-electron operator.  

As a reminder, the last term, the nuclear-nuclear repulsion potential energy, is only a constant in 

the Born-Oppenheimer approximation and does not affect the eigenfunctions.  At this point the 

variational theorem is applied, which states that the expectation value of ��� over a normalized 

trail wave function is greater than or equal to the ground-state energy AB. 

  

 	�< =< ΨD���<DΨ >= F GrrrrΨ∗���<ΨJ
7J ≥ AB (1.10) 

 

Because of this theorem, the orbitals can be varied to minimize the energy within the space 

spanned by the orbitals.  The Hartree-Fock energy can be expressed in terms of one- and two-

electron integrals. 

 

 	LM = � < �|ℎ|� >� + 12�O�?|??P − O�?|�?P��  

where < �|ℎ|� >= QGxxxx!)�∗�xxxx!$ℎ�rrrr!$)��xxxx!$ 
and O�?|RSP = QGxxxx!Gxxxx�)�∗�xxxx!$)��xxxx!$ !9T; )U∗�xxxx�$)<�xxxx�$ 

(1.11) 

 

Here )� denotes molecular orbitals.  Some initial orbitals must be given and optimized through 

an iterative process.  The Hartree-Fock equations for the orbitals are 
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 V�xxxx!$)��xxxx!$ = W�)��xxxx!$ 
where V�xxxx!$ = ℎ�xxxx!$ + ∑ Y��xxxx!$ − Z��xxxx!$�  

(1.12) 

 

and f is the Fock operator, J is the Coulomb operator, and K is the exchange operator. 

 The Eq. 1.12 above is difficult to solve, so a basis set is introduced.  Here the molecular 

orbitals are formed by a linear combination of atomic orbitals 

 

 )� = �[\�)]\^
\_!  (1.13) 

 

where )]\ denotes the atomic orbital basis functions and [\� is the molecular-orbital coefficients.  

Substituting Eq. 1.13 into Eq. 1.12 results in the Hartree-Fock-Roothaan equations.11  The result 

is a very solvable equation given as 

 

 � \̀a[a�a = W� �b\a[a�a  (1.14) 

 

simplifying some of the notation into what is called the overlap matrix, S, and the Fock matrix, 

F.  F must be diagonalized to obtain the molecular orbital coefficients, C, and the orbital 

energies, ϵ.  The matrix representation of Eq. 1.14 must be solved iteratively since the Fock 

matrix depends on the orbital coefficients and vice versa.  For this reason, the Hatree-Fock-

Roothaan equations are called a self-consistent-field method. 
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1.4 MØLLER-PLESSET THEORY 

 

As described above, Hartree-Fock theory does not account for electron correlation, the 

instantaneous electron-electron repulsion.  This electron correlation is vital to describe many 

chemical systems and properties, and thus many post-Hatree-Fock correlation methods have 

been developed to improve the solution to the Schrödinger equation.  One of these methods is 

Møller-Plesset perturbation theory.3  This theory begins with a Hartree-Fock computation, and 

then improves the result by treating the difference between the exact and HF Hamiltonian as a 

perturbation.  Unlike Hartree-Fock, Møller-Plesset Perturbation is not variational, and thus is not 

an upper bound to the exact energy. 

 Møller-Plesset perturbation theory begins with an unperturbed reference Hamiltonian 

then adds a perturbation. 

 

 �� = ��B + c��  (1.15) 

 

��B is the reference Hamiltonian, c is an ordering parameter generally set to one, and ��  is the 

perturbation operator.  The perturbation operator is the difference between the instantaneous 

electron-electron interaction and the Hartree-Fock mean field approximation. 

 

 �� = � 1����@� −�dLM��$�  (1.16) 

 

The eigenfunctions and eigenvalues can be expanded in a power series involving the order of 

perturbations. Optimally this expansion series will converge, and thus can be truncated.  
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Unfortunately this is not always the case.  Commonly the expansion is truncated to the second-

order term to give second-order Møller-Plesset perturbation theory.  The formulation of the terms 

up through second-order is described below. 

The reference Hamiltonian is taken as the sum of the Fock operators over all the electrons 

 

 ��B = �V��$�  (1.16) 

 

and thus the zeroth-order energy, 	B�B$, is just a sum of the Hartree-Fock orbital energies.  In a 

closed-shell case, this sum double counts the electron-electron repulsion energy since each 

orbital is doubly occupied.  The first-order correction is the expectation value of the perturbation 

operator, �� , over the reference state, the Hartree-Fock Slater determinant. 

 

 	B�!$ =< ΨBD��DΨB >= −12� < ef||ef >-.  (1.17) 

 

The sum of the zeroth- and first-order correction is, thus,  the Hartree-Fock energy.  The first 

correction to the Hartree-Fock energy does not arise until the second-order perturbation 

correction is included. 

 The second-order correction is  

 

 	B��$ = � | < ΨB�B$|��|Ψ\�B$ > |�	B�B$ − 	\�B$\gB  (1.18) 
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where Ψ\�B$denotes Slater determinants formed from excitations out of the reference wave 

function.  Only double excitations will contribute to the energy.  According to Brillouin’s 

theorem,3 singly excited determinants do not directly interact with the reference wave function.  

Triple and higher order excitations will not contribute because the perturbation is a two-particle 

operator.  The term 	\�B$ is simply the zeroth-order energy of the doubly excited determinant 

found via ��B|Ψ��-. >.  The final second-order Møller-Plesset perturbation energy is given as 

	hi� = 	LM + 	B��$. 
 Møller-Plesset perturbation theory provides a decent estimate of dynamical electron 

correlation improving on Hartree-Fock.  The computational cost is moderate, nominally scaling 

as N5 with system size. 

 

1.5 COUPLED CLUSTER THEORY 

 

As modern quantum chemistry advanced, a huge leap forward was made with the development 

and implementation of coupled cluster theory.12–14  Today coupled cluster theory is widely 

accepted as one of the most accurate ab initio methods to date.  A key aspect to the quality of this 

theory is that in the full expansion including all possible excitations, coupled cluster is equivalent 

to Full Configuration Interaction which is the exact solution to the Schrödinger equation in the 

space spanned by the basis set. 

 The coupled cluster wave function is formed via the exponential of an excitation 

operator, 
� . 
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 DΨjj >= 61� DΨB > (1.19) 

 

Here ΨB is a single Slater reference determinant typically computed by Hartree-Fock.  The 

excitation operator can be written as a summation of different levels of excitation or particle-rank 

 

 
� = 
�! + 
�� + 
�k +	.		.		. (1.20) 

 

where the subscript denotes the number of excitations from the reference wave function.  The 

result of these excitation operators on a single determinant forms singly, doubly, etc. excited 

determinants 

 

 
�!|ΦB >= ���-Φ�-�,-  (1.21) 

 
��|ΦB >= �����-.Φ��-.-@.�@�  (1.22) 

 

where i, j, … denote occupied spin orbitals and a, b, … denote virtual spin orbitals.  The �’s are 

cluster amplitudes that need to be determined.  Employing a similarity transformation, the energy 

and amplitude equations are found by projection forumlas. 

 

 	jj =< ΦBD671���61� DΦB > (1.23) 

 0 =< Φ��…-.…D671���61� DΦB > (1.24) 
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 As shown in Eq. 1.20, the 
�  operator can be expanded to include the excitation of all the 

electrons in the system.  Higher excitation determinants contribute less to the total electron 

correlation, and therefore can be excluded in many instances while still recovering the majority 

of the electron correlation.  This truncation gives coupled cluster its notation.  By including only 

single and double excitations (
� = 
�! + 
��$, the notation is denoted CCSD where S stands for 

single and D stands for double excitations. 

 Two properties that benefit coupled cluster theory is being both size extensive and size 

consistent.  If a method is size extensive, then the energy scales linearly in respect to the size of 

the system.  If a method is size consistent then it correctly gives the energy of two non-

interacting systems separated by distance.  In other words, the energy of the system A + B must 

equal the energy of A plus the energy of B.  Generally this is associated with the dissociation of a 

system into fragments.  Since coupled cluster is based on a Hartree-Fock wave function, it is not 

necessarily size consistent for all systems. 

 As mentioned, increasing the number of excitations, and thus increasing the size of the 
�  

operator, improves the quality of the energy by recovering more of the total electron correlation.  

Unfortunately higher order excitations many times are computationally expensive.  In order to 

reduce computational cost, many times higher excitation orders are approximated with a 

perturbative treatment.  A very popular method is fully computing the coupled cluster single and 

doubles excitation energy and then perturbatively including the triples contribution.  This theory 

is denoted CCSD(T).  For a majority of systems and physical properties, CCSD(T) with a 

reasonable basis set will achieve subchemical accuracy. 
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1.6 FOCAL POINT ANALYSIS 

 

As seen in the sections above, practical applications to solve the Schrödinger equation include 

layers of approximations, and thus mindful construction of molecular wave functions and basis 

sets.  Unfortunately the computational cost to solve the Schrödinger equation exactly with full 

configuration interaction at a complete basis set is too great.  However, as mentioned briefly 

above, Dunning basis sets are designed to systematically converge to the complete basis set limit.  

Also coupled cluster theory converges to the correlation limit, and thus the exact energy.  By 

observing the convergence of systematically improving both the basis set and the correlation 

treatment, the feasibility of achieving these limits is improved greatly.  The focal point 

analysis15–19 (FPA) scheme employs such an approach to achieve the exact result. 

 The focal point analysis targets both the correlation limit as well as the basis set limit.  As 

the number of excitations is increased in the coupled cluster equations the energy approaches the 

FCI energy.  Coupled cluster theory is discussed in more detail in the previous section 1.5.  The 

contribution to the energy from each additional excitation will naturally decrease.  In order to 

observe the convergence to the correlation limit the following hierarchy is generally followed:  

HF, MP2, CCSD, CCSD(T), CCSDT, CCSDT(Q), etc.  The convergence is easily observed by 

computing the increment (δ) between one level of theory and the next step up in the hierarchy.  

For instance, the CCSDT(Q) correction to the energy is the difference from the CCSDT energy: 

 

 pOCCSDT�Q$P = Δ	CCSDT�Q$ − Δ	CCSDT (1.25) 
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As discussed in section 1.5, it is noteworthy that a perturbative treatment of the energy recovered 

by a term in the 
�  operator is just an estimation of the full energy at that level. 

 The focal point analysis requires the use of a collection of basis sets, such as the Dunning 

basis sets, that systematically improve.  In order to achieve the complete basis set limit, a variety 

of extrapolation schemes is utilized throughout the literature.  A standard extrapolation scheme20 

 

 	wLM = x + y67jw (1.26) 

 

for the Hartree-Fock method uses a three-parameter exponential function.  For post Hartree-Fock 

correlation methods, a different extrapolation scheme21 is common.  This extrapolation 

 

 	w/z99 = x + y{7k (1.27) 

 

is a two-parameter function.  For this formula, only the correlation energy is extrapolated and not 

the total energy.  In a standard implementation of these equations, lower levels of theory, such as 

Hartree-Fock and MP2, are computed up through a large basis set, such as cc-pV5Z.  In this 

example, the Hartree-Fock cc-pVXZ (X = T, Q, 5) energies can be extrapolated to the complete 

basis set limit with Eq. 1.26.  While moving up the ladder, incorporating higher excitation levels 

in the coupled cluster computations, the energy increments are expected to converge to the exact 

answer sooner with increasing basis set size.  In essence, at higher levels of theory smaller basis 

sets are used.  This is especially true since the focal point table is written as an incremented 

correction as described by Eq. 1.25 and thus describes the correction to the one-step-lower level 

of theory instead of the total energy. 
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 By monitoring the convergence of the coupled cluster correlation corrections with 

inclusion of higher levels of excitations, while also extrapolating to the complete basis set limit 

at lower levels of theory, the computational cost can be kept affordable while achieving high 

accuracy in estimating the exact energy.  The focal point analysis is a powerful tool to aid the 

computational chemist to achieve the best answer possible.  For example, instead of computing a 

CCSDTQP/cc-pV6Z energy by brute force, which is impossible except for the smallest of 

systems, the FPA approach provides a means to practically achieve high accuracy results. 

 

1.7 RESEARCH PROSPECTUS 

 

The previous sections provide a brief overview of ab initio electronic structure theory.  As the 

reader has probably realized, a lot of approximations are utilized on multiple layers to achieve 

meaningful results.  The casual scientist is warned against using computational chemistry as a 

“black box” tool.  Understanding the mathematics and physics behind the computer screen is 

crucial.  The appropriate level of theory, basis set, and analyses need to be used to answer a 

particular problem.  There are many aspects of electronic structure theory that are difficult for a 

theoretical chemist to answer without a careful look at the problem.  The following chapters in 

this dissertation address three different theoretical challenges for describing physical phenomena.   

In Chapter 2, a multireference coupled cluster theory (Mk-MRCC) is utilized to describe 

potential energy surfaces of radical-radical hydrogen abstraction reactions which are important in 

combustion models.  Mk-MRCC theory is described in detail in that chapter.  For this type of 

reaction between two radicals, standard theoretical approaches fail miserably.  The root of the 

problem comes from single-reference methods, such as coupled cluster, being unable to properly 
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describe two radicals at long range.  This theoretical inability is overcome through the use of 

multireference methods. 

 In Chapter 3, planar and linear molecules are unphysically predicted to be non-planar and 

bent, respectively, by using improper basis sets.  Specifically, the use of post-Hartree-Fock 

methods, such as coupled cluster, with Pople basis sets predict improper geometries for many 

planar and linear systems.  Without knowledge of the correct implementation of these basis sets, 

a computational chemist could succumb to this pitfall.  This theoretical challenge is solved by 

using medium to large correlation-consistent basis sets such as the Dunning basis sets. 

 In Chapter 4, the concept of quantifying intramolecular dispersion in 1-(1-diamantyl) 

diamantane is explored.  Generally dispersion is thought of as an intermolecular property and 

theoretically thought of as a piece of the total correlation energy.  Dispersion is not rigorously 

defined, but it is generally considered to exist in the long-range portion of electron-electron 

correlation interactions.  In order to quantify this property, an analysis of the correlation 

contribution from individual electron pairs was utilized to categorize the total correlation energy 

to either dispersion or non-dispersion.  This method allowed an abstract concept to be quantified 

with ab initio methods.  
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2.1 ABSTRACT 

 

Radical-radical abstractions in hydrocarbon oxidation chemistry are disproportionation reactions 

that are generally exothermic with little or no barrier, yet are underappreciated and poorly 

studied.  Such challenging multireference electronic structure problems are tackled here using 

the recently developed state-specific multireference coupled cluster methods Mk-MRCCSD and 

Mk-MRCCSD(T), as well as the companion perturbation theory Mk-MRPT2 and the popular 

MRCISD, MRCISD+Q, and CASPT2 approaches.  Reaction paths are investigated for five 

prototypes involving radical-radical hydrogen abstraction: H + BeH → H2 + Be, H + NH2 → H2 

+ NH, CH3 + C2H5 → CH4 + C2H4, H + C2H5 → H2 + C2H4, and H + HCO → H2 + CO.  Full 

configuration interaction (FCI) benchmark computations for the H + BeH, H + NH2, and H + 

HCO reactions prove that the Mk-MRCCSD(T) potential energy curves display superior 

accuracy, within mean absolute errors of only 0.2 kcal mol–1. To facilitate studies of combustion 

kinetics, energetics for the CH3 + C2H5, H + C2H5, and H + HCO reactions were computed at 

each level of theory with correlation-consistent basis sets (cc-pVXZ, X = T, Q, 5) and 

extrapolated to the complete basis set (CBS) limit.  The rigorous Mk-MRCCSD(T)/CBS results 

demonstrate unequivocally that these three reactions proceed with no barrier in the entrance 

channel, contrary to some earlier predictions.  Mk-MRCCSD(T) also reveals that the economical 

CASPT2 method performs well for large interfragment separations but may deteriorate 

substantially at shorter distances. 
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2.2 INTRODUCTION 

 

While the role of radical-radical recombination in hydrocarbon combustion is widely 

appreciated,1-5 radical-radical hydrogen abstraction has not received much attention.  As shown 

generically in the following equation, “when one of a pair of encountering radicals has a 

hydrogen atom β to the radical center, two stable molecules are produced when this hydrogen 

atom is abstracted by the other radical:”6  

R·  + HXY·   →  R·· ·H···XY   →  RH + XY  

Such disproportionation reactions are expected to be highly exothermic and devoid of large 

activation barriers. 

 Several studies2, 7-10 have emphasized that disproportionation is a viable radical 

termination reaction.  Early kinetic models argued that alkyl radical disproportionation can occur 

when the radicals approach within ~4 Å.2, 7 Laser photolysis-kinetic spectroscopy studies found 

that disproportionation is competitive with recombination in vinyl-vinyl and vinyl-methyl 

reactions.8-10 The disproportionation of hydroxyl radicals, OH + OH → H2O + O, has been the 

subject of copious experimental11-15 and theoretical16-21  research; however, recent values for the 

rate constant of this reaction have differed by a factor of ~2.11, 12, 15 Relevant to the formation of 

polycyclic aromatic hydocarbons (PAHs) in combustion environments, phenyl radicals were 

observed in shock tube experiments22 to not only recombine but also disproportionate to benzene 

+ benzyne.  An accompanying theoretical kinetic analysis22 showed comparable rates for the 

recombination and disproportionation of phenyl radicals in the temperature range 1000–2000 K. 

Recently discovered “roaming radical” reactions can occur when a covalent bond in an 

energized molecule cleaves homolytically but the two resulting radical fragments remain loosely 
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bound and do not fully separate.  Roaming on the flat, long-range potential energy surface allows 

one radical fragment to abstract a hydrogen atom from the backside of the other to form two 

stable molecular products.23-29 Fundamentally this intramolecular abstraction process is the same 

as the disproportionation reaction outlined above.  The roaming radical mechanism was first used 

to explain the existence of a second molecular channel of formaldehyde dissociation to yield 

vibrationally “hot” H2 and rotationally “cold” CO, in contrast to the highly rotationally excited 

CO produced from the conventional unimolecular TS.29 A similar mechanism was also found in 

the photodissociation of acetaldehyde24, 25 (methyl + formyl radicals) and dimethyl ether (methyl 

+ methoxy radicals).26 In the decomposition of alkanes, the roaming radical mechanism 

generates a significant fraction of non-H-atom products.23, 26-28  Both shock tube experiments and 

ab initio transition state theory computations show that in the dissociation of propane, 10% of the 

products arise from the roaming radical disproportionation CH3· · ·C2H5 → CH4 + C2H4.
28 The 

roaming radical mechanism is also the dominant pathway for isobutane and neopentane 

decomposition at high temperatures (1200-1500 K).27 

Prototypically, radical-radical hydrogen abstraction begins with two open-shell reactants 

and ends with two closed-shell products, and thus the electronic transformation is intrinsically 

multireference in nature.4  An unsound treatment of this challenging electronic structure problem 

can yield incorrect results.  For instance, using single-reference CCSD(F12) theory for the 

phenyl + phenyl system gives disproportionation rates one order of magnitude lower than the 

corresponding recombination rates in the temperature range 1000–2000 K.30 In contrast, 

multireference CASPT2(2,2) computations extrapolated to the CBS limit yield comparable 

disproportionation and recombination rates. 22 
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A recent quantum chemical investigation31 found the methyl + ethyl disproportionation 

reaction to be barrierless with the CR-CC(2,3) and MCQDPT(4,4) methods, whereas CAS(4,4) 

gave a barrier of ~5 kcal mol–1. Previous G2M(CC2)//B3LYP/6-311+G(3df,2p)32 and 

QCISD/6-311+G(2d, 2p)//MP2/6-311+G (2d, 2p)33 computations found that the two radicals first 

form a long-range complex before encountering an energetic barrier of 1.5 – 6 kcal mol–1 in the 

hydrogen abstraction step.  Harding and Klippenstein23, 34 used the CASPT2/aug-cc-pVDZ 

method to map out potential energy surfaces (PESs) for roaming radical kinetics in the systems 

dimethyl ether and acetaldehyde. They reported that the computed reaction rate becomes 

significantly more accurate when a one-dimensional PES correction is used to improve the 

reaction path energetics given by CASPT2/aug-cc-pVDZ.23, 26, 34   

Overall, the previous work on both disproportionation and roaming radical reactions 

highlights the need for definitive multireference electronic structure studies to elucidate radical-

radical hydrogen abstractions. For this purpose, we have applied our state-of-the-art 

multireference coupled cluster method (Mk-MRCC), as well as conventional MRCISD, 

MRCISD+Q, CASPT2, and FCI techniques, to carefully investigate five prototype reactions: 

 

 H + BeH (2
Σ

+) → H2 + Be (1)

 H + NH2 (
2
B1) → H2 + NH (1

∆) (2)

 CH3 + C2H5 (
2
A′) → CH4 + C2H4 (3)

 H + C2H5 (
2
A′)→ H2 + C2H4 (4)

 H + HCO (2
A′)  → H2 + CO (5)
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State-specific Mk-MRCC multireference coupled-cluster theory, originally introduced by 

Mahapatra et al.,35, 36 has been recently developed into a practical method for chemical 

applications.37-42 The Mk-MRCC wave function  of state α is constructed using the 

Jeziorski-Monkhorst ansatz,43 which involves a set of d reference determinants Φ
µ

 within 

some active space acted on by individual exponential operators   e
T̂α

µ

 and multiplied by 

configuration interaction coefficients 
 
c

α

µ : 

 

 (6)

 

As usual, the cluster operators   T̂α

µ  are truncated at a certain excitation level n.  Mk-MRCC 

energies Eα and CI coefficients 
 
c

α

µ  are determined as eigenvalues and eigenvectors of an 

effective Hamiltonian matrix,38 

 

 (7)

where . (8)

 

Sufficiency conditions are applied in Mk-MRCC theory that yield the equations for the cluster 

amplitudes, 

 

Ψ
α
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= c
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∑
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eff
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∆

ij..
ab..(µ) = Φ

ij...
ab...(µ) H

µ
Φ

µ
c

µ
+ Φ

ij...
ab...(µ) e

−T̂ µ

e
T̂ν

Φ
µ

H
µν

eff
c

v
= 0

ν (≠µ )
∑  (9) 

 

in which 
   
Φ

ijL

abL(µ)  is a determinant obtained from Φ
µ

 by a collective excitation from 

occupied orbitals (ij...) to virtual orbitals (ab...) and 

 

H
ν

= e
−T̂α

ν

Ĥ e
T̂α

ν

 (10) 

 

is the familiar coupled-cluster similarity-transformed Hamiltonian for a specific reference ν. 

State-specific Mk-MRCC theory has the advantage of size extensivity, orbital invariance 

except in the active space, and avoidance of the intruder state problem.38  Moreover, the coupling 

terms 
   

Φ
ijL

abL(µ) e
−T̂α

µ

e
T̂α

ν

Φ
µ

 in eq 9 can be evaluated by a simple closed-form expression.38 

Mk-MRCC theory is one among numerous state-specific multireference coupled cluster 

approaches; a recent review nicely compares and assesses these different methods.44  Capabilities 

are available for incorporating triple excitations into Mk-MRCC,40 especially by means of a 

perturbative triples correction that yields a highly accurate Mk-MRCCSD(T) theory.39 The 

number of successful chemical applications of Mk-MRCC theory is growing.45-52 A companion 

multireference perturbation theory (Mk-MRPT2) has also been formulated and implemented,41 

but its accuracy has not been extensively tested or compared with related methods such as 

CASPT2.53, 54 
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2.3 METHODS 

2.3.1 ELECTRONIC STRUCTURE THEORIES 

 

In order to benchmark the Mk-MRCC performance in radical-radical abstraction processes, we 

have selected several prototypes (reactions (1) – (5)) for investigation. For each reaction, one-

dimensional reaction paths were first generated by CASPT2 (second–order complete active 

space perturbation theory) constrained geometry optimizations using the reaction coordinate S = 

R1 – R2, as described in Figure 2.1. For each value of S at intervals of about 0.2 Å, all other 

internal coordinates were optimized.  Our preliminary computations suggest that a simple 

CAS(2,2)55, 56 reference wave function involving a 2-electron-in-2-orbital active space correctly 

describes the reaction in zeroth order, as discussed in the next section. Therefore, we focus here 

on multireference computations with this active space.  

 

 

 

FIGURE 2.1: Radical-radical hydrogen abstraction reactions of eqs 1-5, as described by the 

reaction coordinate S = R1 – R2.  Separated (reactants, products) correspond to S = (+∞,–∞). 
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Several established multireference methods [MRCISD,57, 58 MRCISD+Q (Davidson 

correction),59 CASPT253, 54, 60] were compared to the Mk-MRPT2,41 Mk-MRCCSD,37, 38 and Mk-

MRCCSD(T)39 approaches for computing the energy profiles. The MRCI computations were 

internally contracted as developed by Werner and Knowles.57, 58 All MRCI and CASPT2 

computations adopted the CAS(2,2) natural orbitals for the reference wave function.  Single 

reference  CCSD(T)61, 62 and CCSDT(Q)63, 64 computations were performed to show that even 

high-accuracy single reference approaches gradually break down in the multireference region of 

the reaction paths.  Core electrons were frozen in all of electron correlation methods employed.  

For benchmark purposes, full configuration interaction65-68 (FCI) energies were computed with 

small basis sets for reaction 1, 2, and 5.  For the H + HCO reaction, the cc-pVDZ(sp) basis set 

was employed in which heavy-atom d functions and hydrogen p functions were removed from 

the standard cc-pVDZ69 basis set.  For the H + NH2 reaction, the Pople 6-311G* basis set70, 71 

was used to compute the FCI energies.  The electronic structure methods and basis sets applied 

in each reaction are listed in Table 2.1. 

  In order to facilitate studies of reaction kinetics, energies for reactions 3, 4, and 5 

computed with correlation-consistent basis sets (cc-pVXZ)69 were extrapolated to the complete 

basis set (CBS) limit.72-76 Our analysis shows that the effect of core correlation on the energy 

profile of the entrance channel is quite limited;77 hence, only valence electron correlation was 

treated in this study. In our energy extrapolation scheme, a three-parameter exponential 

function78, 79 was used for the reference CASSCF extrapolations,  

 

 (11) 
  EX

CASSCF = E
CBS

CASSCF + ae
−bX   (X = 3,4,5)
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while the multireference electron correlation energies (ε) were extrapolated using the two-

parameter formula80 

 (12) 

 

In addition, the geometries of both products and radical fragments for reaction 3, 4 and 5 

were optimized at the single-reference CCSD(T)/cc-pCVQZ69 level of theory with the ZPVE 

correction at CCSD(T)/cc-pVTZ.  The overall energies of reaction were probed using CCSD(T) 

with the same energy extrapolation approach in eq 11 and 12. The Mk-MRPT2, Mk-MRCCSD 

and Mk-MRCCSD(T) computations were performed using the PSIMRCC routine81 in the 

quantum chemical program Psi 3.4 version82 as well as Psi4.83 CCSDT(Q) computations were 

carried out using the MRCC program.63 The MRCI, CASPT2, single reference CCSD(T) and full 

CI energies were obtained using the Molpro 2010.1 package.84 The default options of the MRCI 

algorithm in Molpro were kept throughout the computations, while the level shift parameter85 ε = 

0.2 was imposed in CASPT2 iterations to prevent intruder state problems. The vibrational 

frequencies along the reaction path for reactions 3, 4, and 5 were computed using finite 

differences of analytical gradient. The reaction mode was projected out using the DRP procedure 

of Allen et al.86, 87 The Fortran program INTDER12 was used for the projected frequency analysis. 

The results of vibrational analyses along each reaction path are placed in the supporting 

information.  

 

 

 

 

  ε X
= ε

CBS
+ bX

−3    (X = 3,4)
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TABLE 2.1: Theoretical methods employed for radical-radical hydrogen abstraction reactions 

Reaction 
Reaction path geometry 

and frequencies 

Energy profiles 

H + BeH → H2 + Be CASPT2/cc-pVTZ FCI, Mk-MRCCSD(T), Mk-MRCCSD, Mk-MRPT2, 

MRCISD, MRCISD +Q, CASPT2, CCSDT(Q)  

Basis set: cc-pVTZ  

H + NH2 → H2 + NH CASPT2/6-311G* FCI, Mk-MRCCSD(T), Mk-MRCCSD, Mk-MRPT2, 

MRCISD, MRCISD +Q, CASPT2 

Basis set: 6-311G* 

CH3 + C2H5 → CH4 + C2H4 CASPT2/cc-pVQZ Mk-MRCCSD(T), Mk-MRCCSD, MRCISD, 

MRCISD+Q, CASPT2, CCSD(T)  

Basis sets: cc-pVTZ, cc-pVQZ, and CBS limit 

H + C2H5 → H2 + C2H4 CASPT2/cc-pVQZ Mk-MRCCSD(T), Mk-MRCCSD, Mk-MRPT2, 

MRCISD, MRCISD+Q, CASPT2, CCSD(T)  

Basis sets: cc-pVTZ, cc-pVQZ, and CBS limit 

H + HCO → H2 + CO CASPT2/cc-pVDZ(sp) FCI, Mk-MRCCSD(T), Mk-MRCCSD, Mk-MRPT2, 

MRCISD, MRCISD+Q, CASPT2, CCSDT(Q)  

Basis set: cc-pVDZ(sp) 

 CASPT2/cc-pVQZ Mk-MRCCSD(T), Mk-MRCCSD, Mk-MRPT2, 

MRCISD, MRCISD+Q, CASPT2, CCSD(T)  

Basis sets: cc-pVTZ, cc-pVQZ, and CBS limit 
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2.3.2 REERENCE WAVE FUNCTION FOR MULTIREFERENCE TREATMENT 

 

To diagnose the multireference problem, preliminary CAS(4,4) and CAS(2,2) 

computations were performed in the entrance channel of the methyl + ethyl reaction. Table 2.2 

compares the leading CI coefficients in the CAS wave functions.  The C1 and C2 coefficients in 

the CAS(4,4) wave function are very similar to their CAS(2,2) counterparts, while the CAS(4,4) 

C3 and C4 coefficients are quite small. Our analysis covers a wide range of reaction coordinate 

values (S = –3.0 ~ 3.0 Å) to ensure that the CAS(2,2) reference wave function is sufficient for 

dynamically-correlated Mk-MRCC computations along the entire reaction path. Similar 

conclusions are drawn for the other reactions in this study, and the results are provided in the 

supporting information.  

In earlier Mk-MRCC studies, Evangelista et al.38 found that in the simple F· + F· radical 

recombination, the Mk-MRCCSD results are more accurate when localized active MOs are used. 

Our preliminary analysis and Das et al.88 share the same observation.38 Therefore, in this work, 

localized orbitals were constructed from the active CAS (2,2) natural orbitals by the Boys orbital 

localization method.89 This localization scheme was applied for the Mk-MRCC wave functions 

throughout the reaction path. Near the asymptotic limit of the exit channel, the two active 

orbitals become localized on one of the separated products. In reaction 1, as the hydrogen 

abstraction is near complete, the two active electrons will be localized in 2s and 3s orbitals of the 

beryllium atom. Similarly, in reactions 3, 4 and 5, the π and π* orbitals in the C2H4 and CO 

products comprise the active space of Mk-MRCC computations in the asymptotic limit.  

Reaction 2 represents an open-shell singlet system; therefore, the Boys orbital localization 

scheme does not apply for this reaction.  
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TABLE 2.2: Leading CI coefficients (Ci) in the CASSCF/cc-pVTZ wave functions 

along the entrance channel of the methyl + ethyl hydrogen abstraction reaction  

 CAS(2,2)  CAS(4,4) 

S (Å) C1 C2  C1 C2 C3 C4 

–3.0 0.978 –0.207  0.974 –0.206 –0.090 > 0.050 

–1.8 0.978 –0.206  0.974 –0.206 –0.089 > 0.050 

–0.6 0.978 –0.208  0.973 –0.206 –0.088 > 0.050 

–0.2 0.976 –0.217  0.968 –0.213 –0.076 > 0.050 

0.0 0.972 –0.236  0.960 –0.240 –0.065 –0.063 

0.2 0.953 –0.303  0.941 –0.301 –0.074 0.074 

0.6 0.866 –0.499  0.862 –0.490 –0.071 0.051 

1.0 0.793 –0.609  0.792 –0.603 –0.063 > 0.050 

1.4 0.758 –0.653  0.756 –0.648 –0.062 0.054 

1.8 0.738 –0.675  0.735 –0.672 –0.061 0.056 

2.2 0.726 –0.688  0.723 –0.684 –0.060 0.057 

2.6 0.714 –0.700  0.711 –0.696 –0.060 0.058 

3.0 0.713 –0.701  0.710 –0.698 –0.059 0.059 
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FIGURE 2.2:  Boys localization of the active molecular orbitals of the H + BeH and CH3 + C2H5 

systems for S = 1.0 Å. 

 

  

2.3.3 TIKHONOV REGULARIZATION IN MK-MRCC ITERATIONS 

 

In the iterative procedure in Mk-MRCC theory, the cluster amplitudes are updated in 

each cycle using eq 13:38 

 

  

t
ij...
ab...(µ,new) = t

ij...
ab...(µ,old) +

∆
ij...
ab...(µ)

c
µ

α [ f
ii
(µ) + f

jj
(µ) + ...− f

aa
(µ) − f

bb
(µ) + E

α − H
µµ

eff ]
 (13) 

  

The t-amplitude residuals 
  
∆

ij ...
ab...(µ)  are obtained from eq 9 and 

  
f

ij
(µ) is the Fock matrix element 

for orbitals i and j. In eq 13, the CI coefficient cµ
α appears in the denominator. Therefore, Mk-

MRCC iterations could suffer from numerical instability when cµ
α has a small value. Tikhonov 

regularization was employed to resolve this numerical issue.90, 91 A small factor (ω) is introduced 

in cµ
α to avoid the convergence issue, as shown in eq 14:90 
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1

c
µ

α
→

c
µ

α

[(c
µ

α )2 + ω 2]
 (4.14) 

 

Inserting Eq. 14 into the cluster amplitude expression introduces a quadratical deviation from the 

exact Mk-MRCC energy when ω increases, as demonstrated in Figure 2.3 using the geometry at 

S = 0.4 for reaction 4. For all the Mk-MRCC energies we report, if numerical instability is 

observed in the Mk-MRCC iterations, several computations were then performed using different 

ω values and a quadratic extrapolation scheme is applied to obtain the correct energy (ω = 0). 

The extrapolation scheme was tested for ten different geometries and the average error of the 3-

point extrapolated Mk-MRCC energies is ~10–8 hartree.92  

 

 

 

FIGURE 2.3:  Quadratic dependence of cc-pVTZ Mk-MRCCSD and Mk-MRCCSD(T) 

electronic energies of the H + C2H5 system (S = 0.4 Å) on the Tikhonov parameter (ω). The 

reference values E(0) of the Mk-MRCCSD and Mk-MRCCSD(T) energies are –79.4948772 and 

–79.5074588 Eh, respectively.  
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2.4 RESULTS AND DISCUSSION 

2.4.1 H + BeH → H2 + Be 

  

H + BeH (2
Σ

+) is the simplest radical-radical abstraction reaction that produces closed-shell 

products (H2 + Be).   The BeH2 model system38-40, 93 has often served as a test case for 

multireference electronic structure methods. The reaction path was mapped out assuming that H 

approaches the BeH radical along the molecular axis, as shown in Figure 2.1.  

 The potential energy curves of the H + BeH reaction at different levels of theory are 

shown in Figure 2.4. The curve in best agreement with the FCI benchmark is CCSDT(Q). This is 

no surprise because in a four valence electron system with the core frozen, CCSDTQ is 

equivalent to FCI.  Using the CAS(2,2) reference wave function, the MRCCSD(T) treatment 

shows accuracy superior to CASPT2, MRCISD, and MRCISD+Q. The Davidson correction 

improves the MRCISD prediction, but it overestimates the higher-order correlation correction, 

yielding a curve on the negative side of the FCI benchmark. Figure 2.5 shows the error in the 

binding energy relative to FCI at different levels of theory. Except in the PT2 cases, the errors 

only become substantial after the reaction commences in earnest (S < 0.5 Å).  Among the 

multireference methods, Mk-MRCCSD(T) gives the smallest errors overall. The perturbation 

theories (CASPT2 and Mk-MRPT2) underestimate the binding energy significantly for this 

reaction. However, the (T) perturbative treatment clearly improves Mk-MRCCSD(T) over Mk-

MRCCSD. 
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FIGURE 2.4:  Potential energy curves for the entrance channel of H + BeH computed at 

numerous levels of theory with the cc-pVTZ basis set. 
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FIGURE 2.5:  For the entrance channel of H + BeH, energy deviations are plotted with respect to 

FCI for different levels of theory with the cc-pVTZ basis set. 

 

 

2.4.2 H + NH2 → H2 + NH 

 

 The H + NH2 hydrogen abstraction reaction is a particularly interesting benchmark. The 

ground state of the NH2 radical (C2v) is 2B1, as the unpaired electron occupies an out-of-plane b1 

orbital.  When the H radical executes an in-plane attack on an N–H bond (Figure 2.1), the 

unpaired electron of NH2 is thus perpendicular to the direction of abstraction.  If the H radical 

approaches perpendicular to the plane of NH2, recombination to NH3 occurs rather than the 

radical-radical abstraction reaction of concern here.  The in-plane attack yields a triplet (3
A″) 

surface for the H + NH2 system that leads to ground-state H2 + NH(3
Σ

–) products and does not 
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require a multireference treatment.  However, a corresponding open-shell singlet state (a1
A″) 

also occurs that correlates with H2 + NH(1
∆) and requires at least a two-reference treatment to 

properly describe the potential energy profile.  Finally, if one starts with the lowest excited state 

of NH2 having the unpaired electron in the molecular plane, then the reaction proceeds on a b1A′ 

surface.  Our CASPT2/6-311G* computations show that at the S = 0 geometry (Figure 2.1), the 

a
1
A″ and b

1
A′ states lie above the X 

3
A″ state by 0.42 and 1.46 eV, respectively; moreover, the 1∆ 

and 1Σ+ states of the NH product radical are 1.73 eV and 2.82 eV, respectively, above the triplet 

ground state 3Σ– (vertical excitation energies).94 Our benchmark multireference computations on 

H + NH2 will thus focus on the a1
A″ surface. 

 The energy profiles at various levels of theory for hydrogen abstraction on the a1
A″ 

surface are shown in Figure 2.6, and corresponding errors with respect to FCI are plotted in 

Figure 2.7. The performance of each method generally follows the observations made in the H + 

BeH case. CASPT2 does well for the long-range interactions but substantially overestimates the 

hydrogen abstraction barrier in the intermediate region.  Both multireference PT2 theories 

introduce an unphysical deflection in the energy curve near S = –0.4 Å that is not present in the 

MRCI and Mk-MRCC cases. The MRCISD curve exhibits a sizable 1–3 kcal mol–1 deviation 

from FCI, but this error is greatly reduced by the Davidson correction.  MRCISD+Q and Mk-

MRCCSD(T) both reproduce the FCI curve to better than 0.5 kcal mol–1, but the latter method 

performs better for S < 0.4 Å. 
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FIGURE 2.6:  Potential energy profile on the a1
A″ surface for the H + NH2 reaction computed at 

numerous levels of theory with the 6-311G* basis set.  Separated [H + NH2(
2
B1), H2 + NH(1

∆)] 

corresponds to S = (+∞,–∞). 
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FIGURE 2.7:  For the H + NH2 reaction on the a1
A″ surface, energy deviations are plotted with 

respect to FCI for different levels of theory with the 6-311G* basis set. 

 

 

2.4.3 CH3 + C2H5 → CH4 + C2H4 

 

 The methyl + ethyl hydrogen abstraction reaction starts with two, separated doublet 

electronic states and produces closed-shell methane and ethylene products. Numerous results for 

the potential energy profile of the CH3 + C2H5 abstraction reaction are shown in Figure 2.8. The 

overall reaction curve exhibits a similar shape as reaction 1 with the abstraction reaction energy 

–68.92 kcal mol–1. The critical question is whether a barrier exists in the entrance channel. This 

is a particular concern because MRCISD+Q and CASPT2 give markedly different predictions. In 

the CBS limit, MRCISD gives a barrier of 1.2 kcal mol–1 with respect to the pre-reaction 
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complex. With inclusion of the +Q correction, the MRCISD+Q barrier is only about 0.1 kcal 

mol–1 above the complex minimum. In contrast, no barrier exists in the CASPT2 curves, which 

display the deepest interaction potentials for each value of S.   

As expected, single-reference CCSD(T) theory produces unphysical results as the system 

evolves in the reverse direction from CH4 + C2H4 to separated radicals.  The most rigorous Mk-

MRCCSD(T) method yields a curve that monotonically decreases as the reactants approach, with 

no barrier in the entrance channel at all.  This key conclusion bodes well for the importance of 

radical-radical abstractions in combustion chemistry.  Figure 2.9 shows the deviation of the 

binding energy at the various levels of theory with respect to Mk-MRCCSD(T), which gave the 

most accurate results compared to FCI for the H + BeH and H + NH2 benchmarks.  The CASPT2 

predictions appear within 0.5 kcal mol–1 of the Mk-MRCCSD(T) results, but overestimates the 

binding energy. The MRCISD+Q curve is quite poor for this reaction, deviating in the positive 

direction by more than 3 kcal mol–1 from the benchmark.  Although not shown in the figures, the 

Mk-MRCCSD(T) and single-reference CCSD(T) curves are virtually identical when S < –0.1 Å. 

Therefore for the CBS extrapolated energies in reactions 3, 4 and 5, we only report the Mk-

MRCCSD(T) energies in the multireference region. 
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FIGURE 2.8:  Potential energy curves for the entrance channel of CH3 + C2H5 computed at 

numerous levels of theory and extrapolated to the CBS limit. 
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FIGURE 2.9:  For the entrance channel of CH3 + C2H5, energy deviations are plotted with respect to the 

Mk-MRCCSD(T) benchmark;  CBS extrapolations were employed for all methods. 

 

 

Table 3.  Focal point analysisa for the CH3 + C2H5 reaction at S = 0.4 Å 

 
∆Ee[CAS(2,2)] +δ [Mk-MRCCSD] +δ [Mk-MRCCSD(T)] ∆ENET 

cc-pVTZ +8.16 –15.72 –1.33 –8.89 

cc-pVQZ +8.25 –16.17 –1.46 –9.39 

cc-pV5Z +8.29 [–16.33] [–1.51] [–9.55] 

CBS  [+8.31] [–16.50] [–1.56] [–9.75] 

a δ denotes the increment in the energy difference (∆Ee) with respect to the previous level of theory in the 

hierarchy CAS(2,2) → Mk-MRCCSD → Mk-MRCCSD(T).  (Unbracketed, bracketed) numbers result from 

(explicit computations, basis set extrapolations with eqs 12 and 13).  The focal-point table targets 

∆Ee[Mk-MRCCSD(T)] in the complete basis set limit (NET/CBS).   
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2.4.4 H + C2H5 → H2 + C2H4 

 

 The H + ethyl reaction is a simpler example of the same electronic structure 

transformations encountered for methyl + ethyl, and similarly begins as two, separated doublet 

electronics states and produces closed-shell products. In contrast to methyl + ethyl, all the levels 

of theory predict no barrier for H + ethyl hydrogen abstraction at the CBS limit, as shown in 

Figure 2.10.  The potential energy curve monotonically decreases with no long-range van der 

Waals complex and overall –68.54 kcal mol–1 energy of reaction. The benchmark Mk-

MRCCSD(T) curve displays the greatest binding, and CASPT2 closely mimics this result.  In the 

range S = 0.0–1.2 Å, the binding energy difference between CASPT2 and Mk-MRCCSD(T) is 

less than 0.5 kcal mol-1 (Figure 2.11).  In this same range, MRCISD performs poorly, predicting 

binding energies that are too small and in error by almost 5 kcal mol-1 at S = 0.  While the 

Davidson correction once again improves MRCISD considerably, MRCISD+Q still fails to give 

quantitatively reliable predictions. The barrierless and steeply descending entrance channel given 

by Mk-MRCCSD(T)/CBS theory enhances the argument for the importance of radical-radical 

abstraction reactions in combustion. 
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FIGURE 2.10:  Potential energy curves for the entrance channel of H + C2H5 computed at 

numerous levels of theory and extrapolated to the CBS limit. 
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FIGURE 2.11:  For the entrance channel of H + C2H5, energy deviations are plotted with respect 

to the Mk-MRCCSD(T) benchmark;  CBS extrapolations were employed for all methods. 

 

 

TABLE 2.4:  Focal point analysisa for the H + C2H5 reaction at S = 0.4 Å 

 
∆Ee[CAS(2,2)] +δ [Mk-MRPT2] +δ [Mk-MRCCSD] +δ [Mk-MRCCSD(T)] ∆ENET 

cc-pVTZ +3.10 –4.85 –1.25 –0.33 –3.32 

cc-pVQZ +3.10 –5.10 –1.28 –0.37 –3.65 

cc-pV5Z +3.10 [–5.19] [–1.29] [–0.39] [–3.77] 

CBS  [+3.10] [–5.28] [–1.31] [–0.41] [–3.89] 

a For notation, see footnote a of Table 3. 

b The core correlation correction for the binding energy of this geometry is 0.02 kcal mol–1. In the consideration 

of computational expense, only valence electrons were correlated in the reaction energy profile. 
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2.4.5 H + HCO → H2 + CO 

 

 The hydrogen abstraction reaction between formyl radical and hydrogen radical is 

depicted in Figure 2.1. All the multireference methods, regardless of basis set, predict that no 

abstraction barrier exists the entrance channel of H + HCO. An initial series of computations 

(Figure 2.12) was performed with the cc-pVDZ(sp) basis set. This pruned basis set allowed FCI 

computations to be performed for H + HCO.  The final energy profiles (Figure 2.13) were 

obtained via CBS extrapolations at each level of theory. The reaction energy is predicted to be –

88.63 kcal mol–1 at CCSD(T)/CBS using our extrapolation approach. 

 In Figure 2.12, CASPT2 is almost indistinguishable from FCI for S > 0.2 Å, while Mk-

MRCCSD(T) yields a curve shifted slightly to higher energy. However, when the basis set is 

increased from cc-pVDZ(sp) to the CBS limit, CASPT2 exhibits an underestimation of the 

binding energy. The CASPT2/cc-pVDZ(sp) curve (blue) shifts from the negative side of Mk-

MRCCSD(T) (red) in Figure 2.12 to the positive side of both Mk-MRCCSD(T) and MRCISD+Q 

(green) in Figure 2.13.  Similar shifting behavior is also observed for the methyl + ethyl and H + 

ethyl reactions when the basis set increases from cc-pVDZ to cc-pVQZ.  Note that the single-

reference CCSDT(Q) curve in Figure 2.12 maintains accuracy much longer than CCSD(T) as S 

increases, but the perturbative nature of the (Q) treatment eventually causes errors greater than 1 

kcal mol–1 past 1.0 Å. 

 The energy deviation plots (Figure 2.14, cc-pVDZ(sp); Figure 2.15, CBS) demonstrate 

that CASPT2 perturbation theory generates excellent results for the long-range H + HCO 

interaction but deteriorates markedly at shorter range (S < 0.2 Å). In contrast, the error of Mk-

MRCCSD(T)/cc-pVDZ(sp) with respect to FCI is less than 0.6 kcal mol–1 over the whole range 
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of the plot in Figure 2.14 (S > –0.3 Å).  In this comparison Mk-MRCCSD(T) clearly outperforms 

both MRCISD and MRCISD+Q.  In Figure 2.15 the deviation between MRCISD+Q and Mk-

MRCCSD(T) does not exceed 0.5 kcal mol–1, but without the Davidson correction the disparity 

of MRCISD can be larger than 2 kcal mol–1. 

 

 

 

FIGURE 2.12:  Potential energy curves for the entrance channel of H + HCO computed at 

numerous levels of theory using a cc-pVDZ(sp)  basis set. 
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FIGURE 2.13:  Potential energy curves for the entrance channel of H + HCO computed at 

numerous levels of theory and extrapolated to the CBS limit. 
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FIGURE 2.14:  For the entrance channel of H + HCO, energy deviations are plotted with respect 

to FCI for different levels of theory with the cc-pVDZ(sp) basis set. 
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FIGURE 2.15:  For the entrance channel of H + HCO, energy deviations are plotted with respect 

to the Mk-MRCCSD(T) benchmark;  CBS extrapolations were employed for all methods. 

 

TABLE 2.5:  Focal point analysisa for the H + HCO reaction at S = 0.4 Å 

 
∆Ee[CAS(2,2)] +δ [Mk-MRPT2] +δ [Mk-MRCCSD] +δ [Mk-MRCCSD(T)] ∆ENET 

cc-pVTZ –9.98 –3.05 –2.09 +0.61 –14.51 

cc-pVQZ –9.92 –3.51 –1.73 +0.43 –14.74 

cc-pV5Z –9.85 [–3.68] [–1.60] [+0.37] [–14.77] 

CBS  [–9.81] [–3.85] [–1.46] [+0.30] [–14.83] 

a For notation, see footnote a of Table 3. 

b The core correlation correction for the binding energy of this geometry is 0.013 kcal mol–1. In the consideration 

of computational expense, only valence electrons were correlated in the reaction energy profile. 
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2.5 CONCLUSIONS 

 

Our study demonstrates the accuracy of Mk-MRCC theory. With the use of localized orbitals, the 

Mk-MRCCSD(T) energies deviate from FCI by less than 1 kcal mol–1 in reactions 1, 2 and 5. 

Tikhonov regularization with extrapolation to ω = 0 was successful in overcoming Mk-MRCC 

convergence difficulties encountered at some geometries. In the middle-to-long range region of 

the potential energy surface, our computations found the performance of CASPT2 is very good 

in comparison to Mk-MRCCSD(T). However, in the region where electron transfer takes place, 

the results from perturbation theory (Mk-MRPT2 and CASPT2) are less reliable. We have 

reported the rigorous one-dimensional energy profile with the Mk-MRCCSD(T) energy 

extrapolated to the CBS limit and showed that the hydrogen abstractions for H + HCO, H + C2H5, 

and CH3 + C2H5 are all barrierless processes. The ZPVE corrections along the reaction path are 

also provided. 
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3.1 ABSTRACT 

 

Imaginary or low harmonic vibrational frequencies are obtained for a number of planar, linear, 

and quasilinear systems when electron correlation methods are applied with an array of Pople 

basis sets.  These anomalous results are due to insufficiencies in the basis set and not caused by 

the level of theory, as we report divergent results even at the CCSD(T) level.  The disparities 

dissipate with the use of correlation-consistent basis sets such as the Dunning or Atomic Natural 

Orbital series.   

 

3.2 INTRODUCTION 

 

In 2006, Moran et al.
1
 found non-planar minima for benzene and other arenes when performing 

standard quantum chemical computations using Pople basis sets.  Before it was known that 

insufficient basis sets produced non-planar minima, it was first established by several research 

groups that these basis sets produced erroneously low harmonic vibrational frequency values.  

Benzene was found to have over a 30% error in the out of plane ω4 (b2g) bending frequency at 

the MP2/6-311G(d,p) level of theory when compared to experimental results.
2
  Even at the 

higher CCSD(T) level of theory, two anomalously low out-of-plane bending frequencies were 

found for ω4(b2g) and ω5(b2g).
3
  The ANO basis set series was highly recommended to correct for 

this problem.  Results such as these for benzene have been documented for phenol, 

benzaldehyde, and salicylaldehyde.
4
  At the MP2/6-311++G(d,p) level of theory, a computed 

(b1) frequency of 228 cm–1
 for pyridine is much lower than the experimental value of 745 cm–1

.
5
  

The results by Moran et al. followed the same trend with a variety of arenes including benzene, 
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but also found something more alarming altogether, reporting the first computed imaginary 

frequencies for benzene, suggesting a non-planar minimum despite its long established planarity 

in both experimental and computational works.  In recent years, similar non-planar frequencies 

have been found for the nitrogenous bases in DNA and RNA.
6
  Even for the less common arene 

(B6C)
2– anion, this anomalous error appears.

7
  In each case the non-planar nature of the molecule 

was typified by the presence of imaginary, out-of-plane bending frequencies.
1,6,7

  This is not a 

problem when using single determinant methods such as Hartree-Fock (HF); however, these 

imaginary frequencies appear when using post-HF correlated methods such as Møller-Plesset 

second-order perturbation theory (MP2), configuration interaction theory (CI), and coupled 

cluster theory (CC). 

Several solutions to this problem have been proposed.  The first proposal is the use of 

different basis sets altogether.
1
  The use of different, higher-level basis sets can reduce the basis 

set incompleteness error (BSIE) and the basis set superposition error (BSSE), which truly stand 

at the root of the problem.  Saturating the basis sets with s and p valence orbitals and d 

polarization functions is not enough; these functions must all be included in balance and 

preferably with the additional inclusion of higher angular momentum functions such as f 

orbitals.
1
  Possible choices include the correlation consistent Dunning

8
 or atomic natural orbital 

(ANO) basis sets
9
 which are both optimized to minimize the BSIE with post-Hartree-Fock 

methods and did correct the problem for benzene and several other arenes.
1,3,10

  It was expected 

that this trend would continue for the molecules investigated in this paper.  In order to verify this 

prediction, the use of these basis sets was probed for each molecule in this paper.  A second 

proposed solution is the inclusion of a specific BSSE correction.
11

  It is proposed that the non-

planarity problem is truly rooted in intramolecular BSSE.  Therefore a typical correction for such 
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an error, the counterpoise (CP) correction, should fix the problem.  Such corrections are typically 

used for intermolecular interactions where BSSEs are more often seen; however, a typical CP 

correction led to the elimination of imaginary frequencies and generally produced results lining 

up much closer with experimental data.  This work chose not to take this approach due to the 

difficulty of precisely designating fragments within a single molecule, and thus this method is 

not very systematic. 

This paper examines these anomalous results at higher levels of theory, as well as for 

linear and quasilinear molecules.  To this end the harmonic frequencies of several linear, 

quasilinear, and planar molecules were examined at MP2, CCSD, and CCSD(T) levels of theory 

for a large variety of Pople basis sets.  Computations were also run for Dunning and atomic 

natural orbital basis sets in order to see if this provided a solution to the problem as would be 

predicted.  To this end we illuminate which basis sets can avoid these anomalous results while 

managing the computational cost.  We hope to ensure the greatest accuracy and efficiency of 

future computational works on related molecules. 

 

3.3 THEORETICAL METHODS AND COMPUTATIONAL DETAILS 

 

The molecules displayed in Figure 3.1 were characterized using Møller-Plesset second-order 

perturbation theory (MP2), coupled cluster theory with single and double excitations (CCSD), 

and coupled cluster theory with single excitations, double excitations, and perturbative treatment 

of triple excitations (CCSD(T)).  All computations did not correlate the core electrons. 

Acetylene, diacetylene, cyanoacetylene, cyanogen, and triacetylene were constrained to a linear 

geometry; butatriene and ethenone (ketene) were constrained to linear heavy-atom frameworks; 
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and benzene, furan, thiophene, aniline, phenol, and naphthalene were constrained to have planar 

rings.  Each of these constraints represented the energy minimum as previously found by 

experiment.  A geometry optimization and harmonic frequency computation were then executed 

for each of these molecules at each level of theory using the basis sets listed in Table 3.1.  The 

basis sets utilized include multiple Pople,
12

 Dunning,
8,13

 and ANO
9
 basis sets.  All computations 

were run with the CFOUR program package.
14

  Since the geometry was constrained, any 

imaginary frequencies found during these computations demonstrate that the planar or linear 

structure is not a true minimum, despite a preponderance of theoretical and experimental 

evidence to the contrary. 
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FIGURE 3.1:  Systems explored in this work 
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TABLE 3.1:  Summary of the basis sets examined in this work 

All real frequencies for all systems studied 
STO-3g   ANO0 

9
 

cc-pVTZ 
8
  ANO1 

9
 

aug-cc-pVTZ 
13

  ANO2 
9
 

At least one imaginary frequency in a system studied 
3-21G  6-31+G

 a
 6-31++G*

 a
 6-311G  6-311+G**

 a
 

3-21+G  6-31++G
 a
 6-31G** 6-311G*

 a
 6-311++G**

 a
 

3-21++G 6-31G*  6-31+G** 6-311+G*
 a
 aug-cc-pVDZ

 a 13
 

6-31G
 a
 
12

 6-31+G* 6-31++G**
 a
 6-311G**

 a
 

a
 Imaginary frequencies for three or more systems 

  

 

3.4 RESULTS AND DISCUSSION 

 

The computations performed deliver a very clear answer. Planar, quasilinear, and linear 

molecules all experience this anomalous non-planarity/non-linearity problem when using Pople 

basis sets even at higher levels of theory. All molecules examined showed at least one 

imaginary/anomalously low frequency when set to their planar/linear stationary point for one or 

more Pople basis sets. This problem was highly exacerbated by diffuse functions, which tended 

to add imaginary frequencies. It was also clearly worsened in molecules with less rigidity such as 

triacetylene and diacetylene which exhibited many more imaginary frequencies. Polarization 

functions on the other hand seemed to help fix the problem and consistently lowered the number 

of imaginary frequencies computed, or even eliminated them entirely. It was also observed that 

as hypothesized, the use of Dunning and ANO basis sets represents the logical and easy fix to 

this problem. These basis sets showed no imaginary, nor anomalously low frequencies for nearly 

all of the molecules when at their planar/linear minima, evidencing that these were in fact their 
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true minima as previously and widely documented. The lone exception to proper behavior by 

correlation-consistent basis sets was aug-cc-pVDZ which produced imaginary frequencies in 

diacetylene, triacetylene, and butatriene. The cause of the inconsistency is hypothesized to be 

due to the basis set being too rich with s and p functions in comparison with higher level d and f 

functions. 

 One specific example is diacetylene computed at the CCSD/6-311G level of theory.  In 

this case two imaginary frequencies, ω7(πg) and ω9(πu) at 1302i and 264i cm
–1

, respectively, are 

found when the geometry is forced into D∞h symmetry.  A summary of the bending vibrational 

frequencies can be found in Table 3.2.  The ω7(πg) imaginary normal mode was followed to find 

at minimum structure for the system at this level of theory and basis set.  The minimum structure 

is depicted in Figure 3.2, while the ω7(πg) normal mode is represented in Figure 3.3.  A harmonic 

frequency computation on this geometry confirms it is a minimum on the potential energy 

surface.   

 

 

TABLE 3.2:  Diacetylene CCSD/6-311G Bending Frequencies 

Mode Description ω(cm
–1

) 

ω6(πg) C-C-H Bend 522 

ω7(πg) C-C-C Bend 1302i 

ω8(πu) C-C-H Bend 393 

ω9(πu) C-C-C Bend 264i 
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FIGURE 3.2:  Diacetylene optimized geometry at the CCSD/6-311G level of theory. 

 

 

 

 

FIGURE 3.3:  The ω7(πg) bending normal mode of diacetylene at 1302 cm
–1

. 
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 For further analysis, single-points were computed for diacetylene for progressive 

deviations from linearity along the imaginary frequency modes. These same computations were 

run for the cc-pVTZ basis set along the analogous ω7(πg) normal mode.  This analysis comprises 

Figure 3.4. As can be seen, clear non-linear minima are predicted by the total energy 

computations for the 6-311G basis set but not by those for the cc-pVTZ basis set. Furthermore, 

the correct rediction at the HF level and the warped profile of the correlation energy plot for the 

6-311G basis set suggest that the problem must lie within the correlation energy.  In this case the 

6-311G basis set is insufficient at spanning the space needed for an accurate description of the 

correlation energy. 

 The authors highly encourage the use of correlation consistent basis sets when computing 

properties of systems similar to the ones studied here.  In our analysis, the ANO, cc-pVTZ, and 

aug-cc-pVTZ basis sets all lead to no imaginary frequencies for any of the thirteen systems 

investigated.  However, though this moves in the correct direction, this recommendation is not 

full proof.  Imaginary frequencies were found with the aug-cc-pVDZ basis set for multiple 

systems including triacetylene.  The aug-cc-pVDZ basis set contains 4s3p2d functions for carbon 

and 3s2p functions for hydrogen.  As seen in previous work,
1
 saturating the basis set with lower 

angular momentum functions does not correct the problem.  However, once higher angular 

momentum functions are included, such as f orbitals, only real frequencies are found for all 

systems as seen in the cc-pVTZ and aug-cc-pVTZ basis sets. 
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Figure 3.4: RHF energy, CCSD correlation energy, and CCSD total energies with 6-311G and 

cc-pVTZ basis sets along the mode of ω7(πg) in diacetylene.   
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3.5 CONCLUSIONS 

 

Harmonic vibrational frequencies were computed for a selection of planar, linear, and quasilinear 

molecules with a large array of Pople, Dunning, and ANO basis sets at the MP2 and CC levels of 

theory.  In general the use of unbalanced basis sets led to anomalous low or imaginary 

frequencies for all systems studied.  Particularly, Pople basis sets without polarization functions 

do a very poor job at giving reasonable harmonic frequencies.  Correlation-consistent basis sets, 

such as the Dunning or Atomic Natural Orbital series, correct for this error completely.  An 

exception can be seen with the aug-cc-pVDZ basis.  This shows that being too rich in s and p 

functions compared to d and f functions leads to anomalous results.  In all we suggest never 

using Pople basis sets for second derivative properties with post-Hartree-Fock methods and 

instead opt for a more robust series. 
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CHAPTER 4 

INVESTIGATION OF 1-(1-DIAMANTYL) DIAMANTANE: 

STABILIZING LONG ALKANE BONDS THROUGH INTRAMOLECULAR DISPERSION † 
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4.1 ABSTRACT 

 

Dispersion is generally thought of as a qualitative description of an intermolecular force.  In 

theoretical post-Hartree-Fock methods, dispersion is described by long-range electron 

correlation.  In an electronic structure computation, the distinction between intramolecular versus 

intermolecular forces is unnecessary.  Here the concept of intramolecular dispersion in 1-(1-

diamantyl) diamantane is investigated by analyzing individual pair correlation energies with 

localized molecular orbitals.  At the MP2/aug(H)-cc-pVDZ level of theory, 1-(1-diamanytl) 

diamantane is stabilized by intramolecular dispersion across the bridging C–C single bond by 

35.7 kcal mol−1.  This result supports experimental evidence of the system’s unexpected thermal 

stability despite obvious steric crowding.  Unlike in previous work, we find that the H···H 

interactions across the central bridging bond are not the primary source of this stabilization.  

Instead, the intramolecular dispersion stabilization is attributed to general electron correlation 

found in the cages. 

 

4.2 INTRODUCTION 

 

Recent experimental work has synthesized one of the longest alkane bonds to date in diamondoid 

derivatives.1,2  X-ray crystallography revealed an alkane C–C bond length of 1.647 Å in 1-(1-

diamantyl) diamantane1 (Figure 4.1) and 1.71 Å in 2-(1-diamantyl)[121]-tetramantane.2  These 

are much longer than the C–C bond in ethane, the simplest alkane, of approximately 1.53 Å.3,4  

By cleverly constructing systems that possess steric crowding, long alkane bonds can be formed. 
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Steric crowding is a common method for elongating chemical bonds.5  However, two 

problems arise.  First, the strain caused by the steric crowding gets dispersed across multiple 

bonds and angles, making it difficult to localize the strain into a single bond.5,6  Secondly, as the 

bond length increases, the bond dissociation energy (BDE) decreases.7  The latter issue would 

cause one to believe that the bonded diamondoid cages are very unstable due to their long bond 

lengths.  In contrast, 1-(1-diamantyl) diamantane has been shown to be quite thermally stable via 

differential scanning calorimetry with a melting point of 360 °C.1  The unexpected stability of 

these diamondoid systems is attributed to “attractive dispersion interactions”1 or “attractive steric 

interactions.”2  These intramolecular interactions take place across the strained alkane bond 

between the hydrogens.  The hydrogens act as “dispersion energy donors”8 compensating for the 

steric strain.  Diamondoids are not the only systems that have this feature.  The t-butyl groups in 

all meta-tert-butyl substituted hexaphenylethanes have been shown to be more stable than in its 

hexaphenylethane parent despite the additional steric crowding.9 

The idea of H···H interactions being purely repulsive is incorrect as can be seen in the 

methane dimer.10  This interaction curve looks like a standard Leonard-Jones potential, which 

means that the H·· ·H interactions are attractive to the right of the minimum in the potential well.  

The question is if the well depth is significant.  The design of 1-(1-diamantyl) diamantane and 

other similar diamondoids utilizes this attractive interaction to counterbalance the steric 

repulsion of the cages.  This claim is defended by comparing density functional theory (DFT) 

results with dispersion corrected DFT.  For 1-(1-diamantyl) diamantane, B3LYP with the 6-

31G(d,p) basis set overestimates the experimental geometry by 0.027 Å and gives a BDE of 43.9 

kcal mol−1.1  In contrast, B3LYP-D, B97-D, and M06-2X match the experimental geometry 
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better and give BDEs of 70.7, 64.5, and 65.8 kcal mol−1, respectively.  Also, dispersion corrected 

DFT better reproduces geometries of coupled diamondoids.2 

The application of dispersion corrected DFT reveals that dispersion is crucial to 

understanding the nature of coupled diamondoids, as seen above.  The use of ab initio methods 

would be preferred to analyze the nature of electron dispersion; however, we are limited due to 

the size of these systems.  In the present work, we apply correlated ab initio methods to obtain 

the bond dissociation energy and provide a formal analysis of thermochemical dispersion for 

coupled diamondoids, allowing us to quantify the stabilization due to dispersion via analysis of 

pair correlation energies in 1-(1-diamantyl) diamantane. 

 

4.3 FORMAL ANALYSIS OF DISPERSION 

 

Dispersion can be thought of as instantaneous dynamical electron correlation, which is only a 

piece of the total electron correlation.  In order to appropriately quantify dispersion and separate 

it from the other types of electron correlation, we provide the following formal analysis.  The 

notation is as follows:  Di (diamondoid monomer radical), A (generic hydrocarbon radical), E 

(total energy), E° (total energy without dispersion), EHF (Hartree-Fock energy), ε (dispersion part 

of correlation energy), and ε′ = E – EHF – ε (non-dispersion part of correlation energy). 

For the bond dissociation of the diamondoid dimer, 

 Di2 → 2 Di (R1) 

we have 

 ∆E1 = 2 E°(Di) + 2 ε(Di) – E°(Di2) – ε(Di2) = 2 E°(Di) – E°(Di2) + ω(Di2) (4.1) 

 ω(Di2) = 2 ε(Di) – ε(Di2) = dispersion stabilization of C–C bond in Di2  (4.2) 
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The target quantity of the investigation is thus given by 

 ω(Di2) = ∆E1 + E°(Di2) – 2 E°(Di)  . (4.3) 

In equation 4.1 we subdivide the total energy of reaction 1 (R1) into the total energy without 

dispersion (E°) and the dispersion part of the correlation energy (ε).  By solving for ω(Di2) we define 

the dispersion stabilization of the bridging C–C bond in Di2 as the difference of the dispersion 

part of the correlation in R1. 

Now consider 

 2 Di + 2 AH  →  2 DiH + A2 , (R2) 

whose reaction energy is 

 ∆E2 = 2 E°(DiH) + E°(A2) – 2 E°(AH) – 2E°(Di) + ∆ε2 ,  (4.4) 

where 

 ∆ε2 = 2 ε(DiH) + ε(A2) – 2 ε(AH) – 2 ε(Di) . (4.5) 

In reaction R2, the reaction of the diamantane monomer radical (Di) with a generic hydrocarbon 

radical (AH) is given.  Similar to before, the total energy of reaction can be subdivided into the 

total energy without dispersion (E°) and the dispersion part (∆ε2). 

From Eq. (4.4), 

 2 E°(Di) = 2 E°(DiH) + E°(A2) – 2 E°(AH) – ∆E2 + ∆ε2 (4.6) 

and from Eq. (4.3) 

 ω(Di2) = ∆E1 + ∆E2 + E°(Di2) + 2 E°(AH) – E°(A2) – 2 E°(DiH) – ∆ε2 . (4.7) 

Equation 4.6 is a simple rearrangement to solve for 2 E°(Di) in equation 4.4.  Then this equation 

is substituted into Equation 4.3 to form equation 4.7.  As a reminder, the ω(Di2) value is the 

target quantity. 
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However, ∆E1 + ∆E2 equals the energy (∆E3) of the net reaction 

 Di2 + 2 AH → 2 DiH + A2 , (R3) 

so that 

 ω(Di2) = ∆E3 – ∆E3
HF  – ∆ ′ε3  – ∆ε2 (4.8) 

where ∆E3
HF  and ∆ ′ε3  are the Hartree-Fock and non-dispersion correlation contributions to the 

energy of reaction R3, respectively.  By employing R3, ω(Di2) has been simplified from equation 

4.7 to equation 4.8. 

Equation (4.8) is an exact expression with no approximations. 

Reaction (R2) can be broken up into two steps: 

 2 Di + 2 AH  →  2 DiH + 2 A , (R4) 

and  

 2 A  →  A2 . (R5) 

Assumption (1):   

Dispersion is negligible for the energy of the hydrogen-transfer reaction (R4).   

Thus,  

 ∆ε2 ≈ ε(A2) – 2ε(A) = –ω(A2) , (4.9) 

changing Eq. (8) to  

 ω(Di2) = ∆E3 – ∆E3
HF  – ∆ ′ε3  + ω(A2) (4.10) 

This first assumption reduces the complexity of ∆ε2 in the current target equation 4.8. 

Assumption (2):   

Dispersion is negligible for the C–C bond dissociation energy of ethane. 

Accordingly, in Eq. (4.10) choose A = CH3 to obtain the working equation 
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 ω(Di2) = ∆E6 – ∆E6
HF  – ∆ ′ε6  = ∆E6

corr  – ∆ ′ε6  (4.11) 

where the reaction of concern is 

 Di2 + 2 CH4 → 2 DiH + CH3CH3  . (R6) 

From this analysis we can see that to determine the stabilization energy due to dispersion in 1-(1-

diamantyl) diamantane the total energy, the Hartree-Fock energy, and the non-dispersion part of 

the correlation energy of R6 must be found. 

 

4.4 DISCUSSION 

 

The optimized geometry of 1-(1-diamantyl) diamantane can be seen Figure 4.1.  The central C–C 

bond of 1.646 Å is in excellent agreement with the experimental value of 1.647 Å,1 in part due to 

error balancing.  Noteworthy is the comparison of the experimental solid which exhibits a 

thermally averaged distance over the vibrational levels to the gas phase theoretical structure, re.  

By examining deviations in bond lengths in 2,2,3,3-tetramethylbutane in crystal versus gas phase 

geometries, the gas phase bond length of 1-(1-diamantyl) diamantane has been estimated by this 

empirical correction to be 1.655 Å.2  We expect the bond length to decrease with increasing basis 

set size for the computational results, leading towards this empirical estimation. 
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FIGURE 4.1:  Optimized geometry of 1-(1-diamantyl) diamantane at the MP2/cc-pVDZ level of 

theory.  The bridging C–C bond distance is 1.646 Å. 

 

 

A few comments need to be made on the basis set choice.  Since dispersion is a long 

range property, the use of a basis set with diffuse functions is important.  Unfortunately, with the 

addition of diffuse functions comes increased computational cost.  The hydrogen atoms form a 

shell around the globule system, and thus diffuse functions are only needed on the outside of the 

shell.  We denote aug(H)-cc-pVXZ as the standard Dunning basis sets11 with diffuse functions 

only added to hydrogens.  In order to confirm this, energies of reaction were compared for 

propane plus methane yielding two ethanes (Table 4.1).  Removing diffuse functions from the 

carbons has little effect on the energy of reaction with a difference of only 0.17 kcal mol−1 at 

CCSD(T).  Since larger basis sets are not feasible for 1-(1-diamantyl) diamantane, we used the 

branched 2,2,3,3-tetramethylbutane, or hexamethylethane, as a benchmark to see the accuracy of 

the smaller basis aug(H)-cc-pVDZ (Table 4.2).  We conclude that the aug(H)-cc-pVDZ basis set  
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TABLE 4.1:  Energies of reaction of C3H8 + CH4 → 2 C2H6 in kcal mol−1 

 HF MP2 CCSD CCSD(T) 

aug(H)-cc-pVDZa 0.86 2.41 1.92 2.14 

aug-cc-pVDZ 0.87 2.58 2.06 2.31 

a Augmented (diffuse) functions only added to hydrogens. 

 

 

TABLE 4.2:  Energies of reaction of C8H18 + 2 CH4 → 2 C4H10 + C2H6 in kcal mol−1 

 HF MP2 CCSD CCSD(T) 

aug(H)-cc-pVDZa −10.68 5.90 1.52 3.69 

aug(H)-cc-pVTZa −10.88 5.88 1.21 3.58 

a Augmented (diffuse) functions only added to hydrogens. 

 

 

will accurately predict the total correlation energy of C8H18 + 2 CH4 → 2 C4H10 + C2H6, and thus 

for R6, the reaction of concern.  Following the notation in the dispersion analysis above, the total 

correlation energy is given as ∆Ecorr = ∆E – ∆EHF.  The total correlation energy of 

tetramethylbutane with the aug(H)-cc-pVDZ basis set shows a correlation stabilization of 14.37 

kcal mol−1 while with the aug(H)-cc-VTZ basis set gives 14.46 kcal mol−1 at the CCSD(T) level 

of theory.  This is excellent agreement, and we use this as a justification of the use of the aug(H)-

cc-pVDZ basis set for analysis of 1-(1-diamantyl) diamantane. 

Results for BDEs and C–C bond lengths of 1-(1-diamantyl) diamantane at varying levels 

of theory and basis sets can be seen in Table 4.3.  As mentioned before, the B3LYP functional  
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TABLE 4.3:  Bond lengths and bond dissociation energies with zero point vibration energy 

correction of 1-(1-diamantyl) diamantane with varying level of theories and basis sets 

 BDE (kcal mol−1) C–C (Å) 

B3LYP/6-31G(d,p)a 43.9 1.674 

B3LYP-D/6-31G(d,p)a 70.7 1.653 

B3LYP-D3/6-31G(d,p) 50.5 1.670 

B3LYP-CHG/6-31G(d,p) 59.2 1.665 

B97D/6-31G(d,p)a 64.5 1.668 

M06-2X/6-31G(d,p)a 65.8 1.648 

B3PW91/6-31G(d,p) 46.1 1.660 

MP2/cc-pVDZb 75.63 1.646 

CCSD(T)/aug(H)-cc-pVDZb 71.25 — 

Experimenta — 1.647 

a Results from Ref 1 
b ZPVE correction with B3PW91/6-21(d,p) 

 

 

without a dispersion correction performs poorly.1,2  However, it is notable that the inclusion of 

different dispersion corrections (-D,12 -D3,13 and –CHG14) to B3LYP gives large differences in 

BDE and bond length.  Benchmarking DFT for describing coupled diamondoids by analyzing 

rotation barriers has already been done.2  The benchmark study concludes that the B3PW91 

functional is the best at reproducing the physical properties of coupled diamondoids.  This 

conclusion is in contrast with the BDEs shown in Table 4.3. 
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In order to divide the correlation energy into a dispersion and non-dispersion term as 

described in the analysis above, pair correlation energies (PCEs) are computed.  PCEs are the 

correlation energies between any two electrons in a system.  In MP2 and CCSD, the sum of the 

PCEs equals the total correlation at that level of theory and basis set.  These values are 

automatically computed in electronic structure codes for both MP2 and CCSD.  By dividing 

these pair energies into long and short range, dispersion and non-dispersion, categories we can 

quantify the dispersion in 1-(1-diamantyl) diamantane across the C–C bond.  It is necessary to 

localize the canonical molecular orbitals in order to assign electron interactions as being either 

long or short range.  In this analysis we have assigned any electron pair whose localized 

molecular orbitals reside on separate diamantane cages as long and all others as short.  Referring 

back to equation 11, we can then evaluate the dispersion stabilization of the C–C bond in Di2, 

ω(Di2).  At the MP2/aug(H)-cc-pVDZ level of theory, we find that 1-(1-diamantyl) diamantane 

is stabilized by dispersion by 35.7 kcal mol−1.  This dispersion stabilization is higher than the 

26.8 kcal mol−1 predicted by previous work,1 found by subtracting the B3LYP-D total energy 

from the B3LYP energy with a 6-31G(d,p) basis set in the bond dissociation reaction of 1-(1-

diamantyl) diamantane. 
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FIGURE 4.2:  Two Boys localized molecular orbitals centered on C–H bonds present in the pair 

correlation energy analysis. 

 

 

Quantifying the dispersion stabilization in 1-(1-diamantyl) diamantine is not the only 

information we can gather from the pair correlation energies.  Since we have the correlation 

energy of every pair of electrons in localized orbitals in the system, we can determine whether 

the H···H interactions are indeed “dispersion energy donors”8 and a significant contributor to the 

35.7 kcal mol−1 dispersion stabilization.  By summing only the PCEs from the inner H·· ·H 

interactions across the central C–C bond, we find that these contribute only 21.4% of the 35.7 

kcal mol−1 dispersion stabilization, or 7.6 kcal mol−1.  We partitioned the system into three 

physical divisions and computed the dispersion stabilization for only the interactions in each 

division.  The divisions and the dispersion stabilization for each division can be seen in Figure 

4.3 and Table 4.4, respectively.  As expected, as the number of interactions is increased, the 

contribution to the total dispersion stabilization increases.  From this analysis, it is apparent that 

the amount of correlation is highly dependent on distance, which does not come as a surprise.  A 

plot of the pair correlation energy (a.u.) vs the pair distance is laid out in Figure 4.4.  Since the 
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localized molecular orbitals appear as simple C–H and C–C bonds, the center of each bond was 

taken as the center of the orbital and thus the location for an electron.  This plot not only shows 

the high correlation between distance and the correlation energy between two electrons, but 

additionally shows that the inner H···H interactions have no statistical significance compared to 

the other pairs and are indeed spread out among all the pairs. 

 

 

 

 

FIGURE 4.3:  Division of 1-(1-diamantyl) diamantine into three subgroups to analyze the 

dispersion stabilization (Refer to Table 4.4) 

 

 

 

 

 

 

 

 

 

Division One   Division Two   Division Three 
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TABLE 4.4:  Breakdown of the pair correlation energies based on physical divisions (Refer to 

Figure 4.3)  

Subgroup of Dispersion Stabilization 
Percent of Total Dispersion Stabilization 

(35.7 kcal mol-1) 

Inner H---H Interactions 21.4 

Division One Interactions 68.6 

Division Two Interactions 85.4 

Division Three Interactions 98.0 
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FIGURE 4.4: Plot of the pair correlation energy versus the distance of a pair of electrons.  The 

location of an electron was taken as the center of either a C–H or C–C bond which corresponds 

to a localized molecular orbital. 

 

 

4.5 COMPUTATIONAL METHODS 

 

All ab inito computations were carried out with the MOLPRO program package.15  Geometries 

were fully optimized at the MP2 level of theory with a cc-pVDZ basis set.11  The open-shell 

molecules were optimized with an unrestrictued Hartree-Fock (UHF) reference wavefunction.  

Any spin contamination was always negligible.  Single-point energies were computed at the 
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stated levels of theory and basis sets with the geometries mentioned.  Open-shell molecule single 

points were computed with a restricted open-shell (ROHF) reference wavefunction.  DFT 

computations were carried out with the Q-CHEM16 and PSI417 program packages.  The orbital 

localization and pair correlation energy analysis was conducted using the implementation in 

PSI4.  The Pipek-Mezey18 localization scheme was utilized. 

 

4.6 CONCLUSIONS 

 

1-(1-diamantyl) diamantane was analyzed using ab intio theoretical methods to quantify the 

stabilization due to dispersion across the central C–C bond.   Following our formal definition of 

dispersion as described in the text, 1-(1-diamantyl) diamantine is stabilized by 35.7 kcal mol−1 at 

the MP2/aug(H)-cc-pVDZ level of theory.  This energy stabilization is higher than predicted by 

Schreiner et al.1 using DFT methods at 28.6 kcal mol−1.  We also find that the dispersion 

stabilization between any two electrons is highly dependent on the distance between them.  As 

such the inner H···H interactions are not special and do not contribute any more significantly 

than other electron pairs. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 

 

5.1 CONCLUDING REMARKS 

 

Through the use of high accuracy methods such as coupled cluster theory and advanced analysis 

techniques, subchemical accuracy can be obtained to within less than 1.0 kcal mol–1
 for most 

thermochemical properties.  With the rigorous design of coupled cluster, almost all of the 

electron correlation in a system can be recovered.  The use of the correlation consistent basis sets 

series by Dunning and coworkers allows for a systematic progression to the complete basis set 

limit.  Combining these two concepts together, the focal point analysis scheme provides a means 

to monitor the convergence of the correlation treatment and basis set to the exact energy.  This 

analysis provides extremely high accuracy results without the brute force intractable 

computational task that would otherwise be required.  Even with these advances in modern 

quantum chemistry and electronic structure theory, particular care must be made to ensure proper 

description of the system and property computed. 

 In Chapter 2, a detailed study was done on radical-radical abstraction reactions.  These 

reactions are inherently multireference in nature and are poorly treated by standard single 

reference methods.  In this case, the newer Mk-MRCC method was utilized to accurately form a 

wavefunction to describe the system.  Using this method the focal point analysis technique was 
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used to extrapolate the energy of reaction potential energy surfaces to the complete basis set 

limit.  These are the most accurate energy profiles of these systems to date. 

 Chapter 3 described a pitfall in utilizing insufficient basis sets to compute harmonic 

vibrational frequencies for certain classes of planar and linear systems involving π bonding.  For 

a wide range of systems, anomalous results were computed with high level ab initio methods, 

such as MP2 and CCSD(T), due to poor basis sets.  Particularly these unphysical results arise 

when high angular momentum functions are not included.  The use of correlation consistent basis 

sets such as the Dunning or Atomic Natural Orbital series eliminate these problems. 

 In Chapter 4, the qualitative concept of dispersion is quantified in 1-(1-diamantyl) 

diamantane.  Theoretically, dispersion can be considered long range dynamical electron 

correlation.  By analyzing the pair correlation energies from an MP2 computation with localized 

molecular orbitals, the system was found to be stabilized by intramolecular dispersion despite the 

apparent steric repulsion.  This unique analysis sheds light on a class of molecules that are highly 

strained, yet thermally stable. 
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A.1:  PRELIMINARY ANALYSIS 

A.1.1:  VALIDITY OF TIKHONOV QUADRATIC ENERGY EXTRAPOLATION  

 

TABLE A.1: Mk-MRCCSD/cc–pVTZ and Mk-MRCCSD(T)/cc–pVTZ energies from 

Tikhonov quadratic extrapolation vs. explicit computation for H + C2H5 → H2 + C2H4 

 Mk–MRCCSD/cc–pVTZ 

S (Å) 

E(ω) E(ω=0) 
extrapolated 

E(ω=0) 
explicit ω=0.001 ω=0.002 ω=0.003 

0.0 –79.508353301 –79.508353101 –79.508352763 –79.508353369 –79.508353367 

0.1 –79.503446346 –79.503446147 –79.503445815 –79.503446412 –79.503446412 

0.2 –79.499432548 –79.499432339 –79.499431987 –79.499432619 –79.499432618 

0.3 –79.496759668 –79.496759452 –79.496759081 –79.496759743 –79.496759740 

0.4 –79.494877096 –79.494876872 –79.494876492 –79.494877173 –79.494877171 

0.5 –79.493696343 –79.493696115 –79.493695732 –79.493696420 –79.493696420 

0.9 –79.491354977 –79.491354716 –79.491354281 –79.491355064 –79.491355064 

1.0 –79.491091690 –79.491091423 –79.491090972 –79.491091781 –79.491091778 

1.2 –79.490778500 –79.490778225 –79.490776967 –79.490778820 –79.490778591 

1.4 –79.490577950 –79.490577669 –79.490577192 –79.490578046 –79.490578047 

 

 

 Mk–MRCCSD(T)/cc–pVTZ 

S (Å) 

E(ω) E(ω=0) 
extrapolated 

E(ω=0) 
explicit ω=0.001 ω=0.002 ω=0.003 

0.0 –79.521032489 –79.521032418 –79.521032204 –79.521032490 –79.521032489 

0.1 –79.516042142 –79.516042071 –79.516041857 –79.516042142 –79.516042142 

0.2 –79.512407554 –79.512407480 –79.512407256 –79.512407555 –79.512407554 

0.3 –79.509517882 –79.509517805 –79.509517576 –79.509517886 –79.509517882 

0.4 –79.507458761 –79.507458682 –79.507458444 –79.507458763 –79.507458761 

0.5 –79.505973263 –79.505973182 –79.505972940 –79.505973262 –79.505973263 

0.9 –79.503503552 –79.503503461 –79.503503188 –79.503503554 –79.503503552 

1.0 –79.503250117 –79.503250024 –79.503249743 –79.503250118 –79.503250117 

1.2 –79.502899447 –79.502899407 –79.502899117 –79.502899453 –79.502899447 

1.4 –79.502677420 –79.502677302 –79.502677026 –79.502677402 –79.502677420 
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A.1.2: LEADING CI COEFFICIENTS IN CASSCF WAVE FUNCTIONS 

 

TABLE A.2:  Leading CI coefficients (Ci) in CASSCF wave functions along the entrance 

channel of hydrogen abstraction reactions 

CH3 + C2H5 → CH4 + C2H4 

 
CAS(2,2)/cc-pVTZ CAS(4,4)/cc-pVTZ 

S (Å) C1 C2 C1 C2 C3 C4 
–3.0 0.978 –0.207 0.974 –0.206 –0.090 < 0.050 
–1.8 0.978 –0.206 0.974 –0.206 –0.089 < 0.050 
–0.6 0.978 –0.208 0.973 –0.206 –0.088 < 0.050 
–0.2 0.976 –0.217 0.968 –0.213 –0.076 < 0.050 
0.0 0.972 –0.236 0.960 –0.240 –0.065 –0.063 
0.2 0.953 –0.303 0.941 –0.301 –0.074 0.074 
0.6 0.866 –0.499 0.862 –0.490 –0.071 0.051 
1.0 0.793 –0.609 0.792 –0.603 –0.063 < 0.050 
1.4 0.758 –0.653 0.756 –0.648 –0.062 0.054 
1.8 0.738 –0.675 0.735 –0.672 –0.061 0.056 
2.2 0.726 –0.688 0.723 –0.684 –0.060 0.057 
2.6 0.714 –0.700 0.711 –0.696 –0.060 0.058 
3.0 0.713 –0.701 0.710 –0.698 –0.059 0.059 
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H + C2H5 → H2 + C2H4  

 
CAS(2,2)/cc-pVTZ CAS(4,4)/cc-pVTZ 

S (Å) C1 C2 C1 C2 C3 C4 
–2.0 0.978 –0.207 0.978 –0.175 –0.057 –0.056 
–1.8 0.978 –0.207 0.978 –0.175 –0.057 –0.056 
–1.6 0.978 –0.207 0.973 –0.205 –0.105 < 0.05 
–1.4 0.978 –0.207 0.972 –0.205 –0.104 < 0.05 
–1.2 0.978 –0.207 0.978 –0.175 –0.057 –0.056 
–1.0 0.978 –0.208 0.972 –0.205 –0.100 < 0.05 
–0.8 0.978 –0.211 0.970 –0.206 –0.093 < 0.05 
–0.6 0.976 –0.217 0.967 –0.212 –0.080 < 0.05 
–0.4 0.972 –0.236 0.958 –0.242 –0.069 –0.069 
–0.2 0.952 –0.305 0.939 –0.304 0.077 0.077 
0.0 0.919 –0.394 0.910 –0.386 –0.071 –0.071 
0.2 0.876 –0.483 0.871 –0.474 –0.071 –0.055 
0.4 0.834 –0.551 0.831 –0.545 –0.072 < 0.05 
0.6 0.802 –0.597 0.798 –0.593 –0.071 0.053 
0.8 0.779 –0.627 0.775 –0.624 –0.069 0.056 
1.0 0.761 –0.648 0.757 –0.646 –0.068 0.059 
1.2 0.748 –0.663 0.744 –0.661 –0.067 0.060 
1.4 0.739 –0.674 0.735 –0.671 –0.067 0.061 
1.6 0.731 –0.682 0.727 –0.679 –0.066 0.062 
1.8 0.726 –0.688 0.722 –0.685 –0.066 0.062 
2.0 0.721 –0.693 0.718 –0.690 –0.065 0.063 
5.0 0.707 –0.707 0.673 –0.673 –0.207 0.207 
10.0 0.707 –0.707 –0.707 0.707 < 0.05 < 0.05 

 

H + HCO → H2 + CO 

  CAS(2,2)/cc-pVQZ CAS(4,4)/cc-pVQZ 
S (Å)  C1 C2 C1 C2 C3 C4 
–1.6 0.989 –0.145 0.977 –0.112 –0.111 0.077 
–1.0 0.990 –0.143 0.977 –0.113 –0.110 0.077 
–0.7 0.990 –0.141 0.977 –0.114 –0.108 0.077 
–0.2 0.976 –0.216 0.963 –0.217 –0.156 < 0.05 
0.2 0.933 –0.359 0.919 –0.355 –0.157 0.061 
0.6 0.866 –0.501 0.851 –0.493 –0.151 0.088 
1.0 0.803 –0.596 0.789 –0.586 –0.143 0.107 
1.4 0.763 –0.647 0.749 –0.636 –0.138 0.117 
1.8 0.739 –0.673 0.726 –0.662 –0.134 0.122 
2.4 0.721 –0.693 0.708 –0.681 –0.131 0.126 
3.0 0.713 –0.701 0.700 –0.689 –0.129 0.127 
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A.2:  RADICAL-RADICAL HYDROGEN ABSTRACTION REACTION PATHS 

A.2.1:  H + BeH → H2 + Be 

 

TABLE A.3:  Energy (kcal mol–1) relative to separated reactants along the H + BeH reaction 

path for different levels of theory with the cc-pVTZ basis seta 

 
S(Å) CAS(2,2) MRCI MRCI+Q CASPT2 Mk-MRPT2 Mk-MRCCSD Mk-MRCCSD(T) FCI 

–5.0 –45.18 –58.46 –60.46 –54.21 –53.48 –60.19 –59.85 –59.65 
–3.0 –45.05 –58.49 –60.49 –54.23 –53.48 –60.20 –59.88 –59.69 
–2.4 –44.44 –58.22 –60.27 –53.93 –53.14 –59.91 –59.63 –59.46 
–2.0 –43.08 –57.46 –59.59 –53.09 –52.24 –59.14 –58.90 –58.77 
–1.8 –41.78 –56.66 –58.86 –52.21 –51.33 –58.33 –58.09 –58.02 
–1.6 –39.80 –55.37 –57.68 –50.81 –49.88 –57.05 –56.88 –56.80 
–1.4 –36.87 –53.38 –55.83 –48.66 –47.69 –55.02 –54.93 –54.90 
–1.2 –32.71 –50.40 –53.06 –45.52 –44.54 –52.06 –52.03 –52.06 
–1.0 –27.04 –46.11 –48.99 –41.11 –40.19 –47.77 –47.80 –47.92 
–0.8 –19.75 –40.11 –43.17 –35.27 –34.61 –41.60 –41.78 –42.05 
–0.5 –8.03 –27.61 –30.61 –23.88 –22.66 –28.08 –28.65 –29.34 
–0.3 –1.92 –18.29 –20.70 –15.66 –13.69 –18.56 –19.03 –19.73 
–0.1 1.35 –10.79 –12.49 –9.12 –6.94 –10.95 –11.29 –11.88 
0.0 2.03 –8.05 –9.42 –6.72 –4.67 –8.18 –8.46 –8.97 
0.1 2.26 –5.93 –7.02 –4.88 –3.04 –6.03 –6.27 –6.69 
0.2 2.23 –4.33 –5.18 –3.51 –1.93 –4.43 –4.60 –4.96 
0.3 2.04 –3.15 –3.81 –2.52 –1.21 –3.24 –3.37 –3.66 
0.4 1.77 –2.30 –2.80 –1.82 –0.73 –2.38 –2.48 –2.70 
0.6 1.22 –1.24 –1.52 –0.97 –0.28 –1.28 –1.34 –1.49 
0.8 0.77 –0.69 –0.85 –0.55 –0.11 –0.73 –0.77 –0.85 
1.0 0.46 –0.41 –0.50 –0.34 –0.07 –0.44 –0.46 –0.50 
1.2 0.26 –0.26 –0.31 –0.22 –0.06 –0.28 –0.29 –0.32 
1.4 0.14 –0.18 –0.21 –0.16 –0.06 –0.19 –0.19 –0.21 
4.0 0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00 

aThe geometries along the reaction path are optimized at the CASPT2/cc–pVTZ level of theory; the geometry at  
S = 8 Å is taken as the asymptotic limit. 
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FIGURE A.1:  Boys orbital localization angle θloc along the H + BeH reaction path. 
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A.2.2:  H + NH2 → H2 + NH 

 

TABLE A.4:  Energy (kcal mol–1) relative to separated reactants along the H + NH2 reaction 

path for different levels of theory with the 6-31G* basis seta 

S(Å) ROHF MRCI MRCI+Q CASPT2 Mk–MRPT2 Mk–MRCCSD Mk–MRCCSD(T) FCI 

–2.4 26.19 29.41 29.41 31.56 33.21 28.75 29.77 29.95 
–2.2 26.23 29.42 29.42 31.56 33.21 28.76 29.77 29.95 
–2.0 26.38 29.53 29.52 31.65 33.30 28.87 29.87 30.05 
–1.8 26.71 29.81 29.81 31.91 33.56 29.16 30.14 30.33 
–1.6 27.44 30.41 30.38 32.47 34.14 29.75 30.72 30.90 
–1.4 28.75 31.37 31.25 33.31 35.10 30.67 31.60 31.75 
–1.2 31.01 33.00 32.72 34.80 36.73 32.21 33.06 33.18 
–0.9 37.36 37.12 36.13 38.60 40.89 35.92 36.48 36.48 
–0.8 40.40 38.73 37.27 40.03 42.51 37.26 37.65 37.58 
–0.7 43.77 40.13 38.06 41.09 43.76 38.32 38.50 38.34 
–0.6 47.14 40.90 38.23 41.03 43.83 38.80 38.71 38.50 
–0.5 49.48 40.29 37.50 38.51 41.23 38.22 37.83 37.70 
–0.4 48.62 37.73 35.23 34.08 37.08 35.64 35.01 35.27 
–0.2 37.51 30.37 28.58 28.15 31.22 28.45 28.02 28.42 
0.0 25.52 21.50 20.53 20.11 22.27 20.34 20.11 20.34 
0.2 16.11 13.97 13.51 13.08 14.46 13.37 13.26 13.37 
0.4 9.66 8.56 8.37 8.00 8.85 8.27 8.23 8.28 
0.6 5.58 5.03 4.96 4.69 5.20 4.89 4.89 4.91 
0.8 3.14 2.86 2.84 2.66 2.96 2.80 2.80 2.81 
1.0 1.73 1.58 1.57 1.46 1.64 1.55 1.56 1.56 
1.2 0.93 0.84 0.84 0.77 0.88 0.82 0.84 0.83 
1.4 0.48 0.42 0.43 0.39 0.45 0.42 0.43 0.42 
1.8 0.11 0.09 0.09 0.07 0.10 0.08 0.10 0.08 
2.2 0.02 0.01 0.00 0.00 0.01 0.00 0.02 0.00 

aThe geometries along the reaction path are optimized at the CASPT2/6-31G* level of theory; the geometry at  
S = 10 Å is taken as the asymptotic limit. 
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A.2.3:  CH3 + C2H5 → CH4 + C2H4  

 

TABLE A.5:  Energy (kcal mol–1) relative to separated reactants along the CH3 + C2H5 

reaction path for different levels of theory at the CBS limita 

S(Å) CAS(2,2) MRCI MRCI+Q CASPT2 Mk-MRCCSD Mk-MRCCSD(T) 
0.2 3.51 –10.88 –15.31 –18.66 –16.69 –18.59 
0.4 8.31 –2.96 –6.59 –10.31 –8.19 –9.75 
0.6 7.90 0.31 –2.14 –5.06 –3.51 –4.65 
0.8 5.63 0.74 –0.81 –2.72 –1.68 –2.47 
1.0 3.54 0.32 –0.68 –1.89 –1.18 –1.71 
1.2 2.06 –0.11 –0.77 –1.55 –1.05 –1.42 
1.8 0.30 –0.42 –0.64 –0.88 –0.61 –0.73 
2.4 0.34 –0.24 –0.41 –0.50 –0.39 –0.50 
2.6 0.35 –0.23 –0.40 –0.47 –0.40 –0.51 

aThe geometries along the reaction path are optimized at the CASPT2/cc–pVQZ level of theory; the 
geometry at S = 10 Å is taken as the asymptotic limit. 
 

 

 
FIGURE A.2:  Boys orbital localization angle θloc along the CH3 + C2H5 reaction path 
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FIGURE A.3:  The one-dimensional potential energy curve for CH3 + C2H5 in CASPT2 level 

of theory.  
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TABLE A.6:  Projected vibrational frequencies (ω, cm–1) along the CH3 + C2H5 reaction path 

Reaction coordinate S(Å) 
0.2 0.4 0.6 0.8 1.0 1.2 1.8 2.4 2.6 10 

44 42 34 23 14 6 9i 25i 18i 11i 
205 200 159 124 96 73 28 31 22 5i 
262 237 204 170 135 104 38 39 42 5i 
581 457 464 366 282 216 94 44 50 6 
592 547 515 406 308 230 94 75 59 10 
765 608 597 488 370 281 151 112 109 108 
797 751 631 643 590 559 523 515 514 513 
905 796 722 648 610 587 574 568 567 565 
952 874 835 823 819 818 817 820 820 818 

1058 1068 1045 1010 992 988 988 993 993 990 
1171 1120 1077 1119 1114 1105 1093 1092 1092 1091 
1242 1233 1226 1220 1215 1212 1208 1208 1208 1207 
1290 1281 1263 1300 1362 1389 1407 1409 1409 1410 
1339 1369 1415 1437 1437 1437 1438 1438 1439 1439 
1458 1450 1442 1438 1437 1437 1439 1439 1439 1439 
1477 1458 1447 1458 1475 1479 1487 1489 1489 1490 
1483 1479 1474 1472 1479 1490 1501 1502 1503 1503 
1543 1542 1529 1518 1511 1508 1505 1504 1504 1505 
1670 1830 1995 2301 2606 2801 3005 3035 3034 3037 
3100 3116 3126 3115 3111 3110 3116 3119 3119 3123 
3151 3140 3139 3156 3164 3168 3170 3167 3167 3171 
3195 3193 3195 3187 3178 3174 3171 3171 3171 3172 
3240 3225 3204 3198 3201 3204 3207 3209 3209 3209 
3243 3274 3299 3304 3309 3313 3318 3321 3321 3321 
3244 3275 3311 3339 3354 3359 3363 3363 3363 3365 
3297 3296 3313 3341 3355 3360 3363 3364 3365 3365 
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TABLE A.7:  Electronic energies (Eh) for CBS extrapolation at selected points along the CH3 + 

C2H5 reaction path with CASPT2/cc–pVQZ optimized geometries  

S = 0.2 Å 

 

S = 1.0 Å 

 

S = 10.0 Å 

 

  

 
CAS(2,2)  Mk-MRCCSD Mk-MRCCSD(T)  CASPT2  MRCISD  MRCISD+Q 

cc-pVTZ –118.1909431 –118.7717974 –118.7912753 –118.7317432 –118.6945237 –118.7707215 

cc-pVQZ –118.1987700 –118.8054959 –118.8270034 –118.7720646 –118.7247390 –118.8041376 

cc-pV5Z –118.2007577 
  

   

 
CAS(2,2)  Mk-MRCCSD Mk-MRCCSD(T)  CASPT2  MRCISD  MRCISD+Q 

cc-pVTZ –118.1908535 –118.7480461 –118.7656197 –118.7057141 –118.6773170 –118.7482905 

cc-pVQZ –118.1986703 –118.7811540 –118.8006055 –118.7455615 –118.7071352 –118.7811723 

cc-pV5Z –118.2006799 
  

   

 
CAS(2,2)  Mk-MRCCSD Mk-MRCCSD(T)  CASPT2  MRCISD  MRCISD+Q 

cc-pVTZ –118.1962756 –118.7464266 –118.7632647 –118.7029491 –118.6779038 –118.7473796 

cc-pVQZ –118.2042263 –118.7793909 –118.7980397 –118.7426598 –118.7076817 –118.7801630 

cc-pV5Z –118.2062941 
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TABLE A.8:  Relative energies (∆E, kcal mol–1) at selected points along the CH3 + C2H5 

reaction path for each level of theory and basis sets leading to the CBS limita 

S = 0.2 Å 

 
∆E[CAS(2,2)] ∆E[Mk-MRCCSD] ∆E[Mk-MRCCSD(T)] ∆E[CASPT2] ∆E[MRCI] ∆E[MRCI+Q] 

cc-pVTZ 3.35 –15.92 –17.58 –18.07 –10.43 –14.65 
cc-pVQZ 3.42 –16.38 –18.17 –18.45 –10.70 –15.04 
cc-pV5Z 3.47 [–16.52] [–18.37] [–18.57] [–10.78] [–15.16] 

CBS [+3.51] [–16.69] [–18.59] [–18.71] [–10.88] [–15.31] 

 

S = 1.0 Å 

 
∆E[CAS(2,2)] ∆E[Mk-MRCCSD] ∆E[Mk-MRCCSD(T)] ∆E[CASPT2] ∆E[MRCI] ∆E[MRCI+Q] 

cc-pVTZ 3.40 –1.02 –1.48 –1.74 0.37 –0.57 
cc-pVQZ 3.49 –1.11 –1.61 –1.82 0.34 –0.63 
cc-pV5Z 3.52 [–1.13] [–1.65] [–1.84] [+0.34] [–0.65] 

CBS [+3.54] [–1.18] [–1.71] [–1.89] [+0.32] [–0.68] 

a The reference point is the energy of the separated reactants, taken from computations at S = 10.0 Å.  
CBS limits were evaluated using eqs 12 and 13 of the text.  
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A.2.4:  H + C2H5 → H2 + C2H4 

 

TABLE A.9:  Energy (kcal mol–1) relative to separated reactants along the H + C2H5 reaction 

path for different levels of theory at the CBS limita 

S(Å) CAS(2,2) MRCI MRCI+Q CASPT2 Mk-MRPT2  Mk-MRCCSD  Mk-MRCCSD(T) 
0.0 2.77 –8.06 –11.19 –12.28 –11.24 –12.27 –12.75 
0.1 3.68 –5.39 –8.05 –9.26 –7.70 –9.12 –9.53 
0.2 3.86 –3.51 –5.69 –6.85 –5.15 –6.49 –7.19 
0.3 3.59 –2.26 –4.00 –5.02 –3.38 –4.74 –5.28 
0.4 3.10 –1.48 –2.85 –3.69 –2.18 –3.49 –3.90 
0.5 2.56 –1.01 –2.08 –2.75 –1.48 –2.55 –2.94 
0.6 2.04 –0.74 –1.57 –2.10 –1.00 –2.06 –2.20 
0.8 1.22 –0.48 –0.99 –1.31 –0.59 –1.24 –1.38 
0.9 0.92 –0.42 –0.82 –1.07 –0.50 –1.00 –1.12 
1.0 0.69 –0.38 –0.70 –0.88 –0.43 –0.84 –0.93 
1.2 0.37 –0.31 –0.52 –0.62 –0.33 –0.60 –0.65 

aThe geometries along the reaction path are optimized at the CASPT2/cc-pVQZ level of theory; the 
geometry at S = 10 Å is taken as the asymptotic limit. 
 

 

 

FIGURE A.4:  Boys orbital localization angle θloc along the H + C2H5 reaction path 
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FIGURE A.5:  The one-dimensional potential energy curve for H + C2H5 in CASPT2 level of 

theory. 
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TABLE A.10:  Projected vibrational frequencies (ω, cm–1) along the H + C2H5 reaction path 

Reaction coordinate S(Å) 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

459 427 388 344 300 259 221 189 160 
492 475 434 378 322 272 230 194 164 
681 620 555 490 430 377 331 292 258 
794 760 733 706 678 650 624 601 582 
841 832 826 822 820 818 818 817 817 
901 927 965 992 998 995 990 988 986 

1217 1216 1216 1217 1182 1150 1131 1119 1111 
1229 1218 1218 1232 1216 1215 1214 1212 1211 
1340 1366 1319 1242 1274 1311 1340 1361 1376 
1475 1412 1391 1415 1436 1452 1465 1474 1478 
1488 1479 1477 1475 1474 1474 1475 1476 1482 
1552 1552 1540 1531 1524 1518 1515 1512 1510 
1750 1839 1982 2150 2324 2483 2616 2723 2804 
3149 3144 3139 3133 3128 3123 3120 3118 3116 
3195 3196 3197 3198 3200 3195 3190 3185 3182 
3236 3228 3219 3210 3202 3201 3202 3204 3205 
3299 3301 3302 3305 3307 3309 3311 3313 3315 

 
Reaction coordinate S(Å) 

0.9 1 1.2 1.4 1.6 1.8 2 5 10 

136 115 82 58 41 28 19 7i 5i 
139 118 86 63 47 35 27 5i 5i 
230 206 170 146 131 121 115 107 107 
567 554 538 528 522 518 516 513 513 
817 817 817 817 817 817 817 818 818 
986 986 987 988 989 989 990 990 990 

1105 1101 1097 1094 1093 1092 1091 1091 1091 
1210 1210 1209 1208 1208 1207 1207 1207 1207 
1386 1392 1401 1405 1407 1408 1409 1410 1410 
1480 1482 1485 1487 1488 1489 1489 1490 1490 
1487 1491 1496 1499 1501 1502 1502 1503 1503 
1508 1507 1506 1505 1505 1505 1505 1505 1505 
2866 2913 2972 3003 3020 3028 3033 3037 3037 
3116 3115 3116 3118 3120 3121 3122 3123 3123 
3179 3177 3175 3173 3173 3172 3172 3171 3171 
3205 3206 3207 3208 3208 3208 3209 3209 3209 
3316 3317 3318 3319 3320 3320 3320 3321 3321 
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TABLE A.11:  Electronic energies (Eh) for CBS extrapolation at selected points along the  

H + C2H5 reaction path with CASPT2/cc–pVQZ optimized geometries  

S = 0.0 Å 

 

S = 1.0 Å 

 

S = 10.0 Å 

 

 

 

 

 

 

 

 

 
CAS(2,2) 

Mk- 
MRPT2 

 Mk- 
MRCCSD 

Mk-
MRCCSD(T) 

 CASPT2  MRCISD  MRCISD+Q 

cc-pVTZ –79.1185192 –79.4755693 –79.5083534 –79.5210325 –79.4810459 –79.4717598 –79.5124369 

cc-pVQZ –79.1238879 –79.5027729 –79.5312874 –79.5452879 –79.5084290 –79.4929874 –79.5355246 

cc-pV5Z –79.1252832 
  

    

 CAS(2,2) 
Mk- 

MRPT2 
 Mk- 

MRCCSD 
Mk-

MRCCSD(T)  CASPT2  MRCISD  MRCISD+Q 

cc-pVTZ –79.1219121 –79.4594153 –79.4910918 –79.5032501 –79.4639812 –79.4601319 –79.4965282 

cc-pVQZ –79.1272237 –79.4859862 –79.5134658 –79.5268838 –79.4907148 –79.4809998 –79.5191360 

cc-pV5Z –79.1286035 
  

    

 
CAS(2,2) 

Mk- 
MRPT2 

 Mk- 
MRCCSD 

Mk-
MRCCSD(T) 

 CASPT2  MRCISD  MRCISD+Q 

cc-pVTZ –79.1229936 –79.4590165 –79.4900995 –79.5021620 –79.4639812 –79.4601319 –79.4965282 

cc-pVQZ –79.1283200 –79.4854302 –79.5122767 –79.5255766 –79.4907148 –79.4809998 –79.5191360 
cc-pV5Z –79.1297023 
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TABLE A.12:  Relative energies (∆E, kcal mol–1) at selected points along the H + C2H5 

reaction path for each level of theory and basis sets leading to the CBS limita 

S = 0.0 Å 

 
∆E[CAS(2,2)] ∆E[Mk-MRPT2] ∆E[Mk-MRCCSD] ∆E[Mk-MRCCSD(T)] ∆E[CASPT2] ∆E[MRCI] ∆E[MRCI+Q] 

cc-pVTZ +2.81 –10.39 –11.45 –11.84 –11.38 –7.53 –10.48 

cc-pVQZ +2.78 –10.88 –11.93 –12.37 –11.91 –7.84 –10.89 

cc-pV5Z +2.77 [–11.06] [–12.10] [–12.56] [–12.09] [–7.95] [–11.04] 

CBS [+2.77] [–11.24] [–12.27] [–12.75] [–12.28] [–8.06] [–11.19] 

 

S = 1.0 Å 

 
∆E[CAS(2,2)] ∆E[Mk-MRPT2] ∆E[Mk-MRCCSD] ∆E[Mk-MRCCSD(T)] ∆E[CASPT2] ∆E[MRCI] ∆E[MRCI+Q] 

cc-pVTZ +0.68 –0.25 –0.62 –0.68 –0.67 –0.24 –0.50 

cc-pVQZ +0.69 –0.35 –0.75 –0.82 –0.79 –0.32 –0.61 

cc-pV5Z +0.69 [–0.39] [–0.79] [–0.87] [–0.84] [–0.35] [–0.65] 

CBS [+0.69] [–0.43] [–0.84] [–0.93] [–0.88] [–0.38] [–0.70] 

a The reference point is the energy of the separated reactants, taken from computations at S = 10.0 Å.  CBS limits 
were evaluated using eqs 12 and 13 of the text.  
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A.2.5:  H + HCO → H2 + CO 

 

Table S13.  Energy (kcal mol–1) relative to separated reactants along the H + HCO reaction 

path for different levels of theory at the CBS limita 

 
S(Å) CAS(2,2) MRCI MRCI+Q CASPT2 Mk–MRPT2 Mk–MRCCSD Mk–MRCCSD(T) 

–0.2 –32.08 –39.79 –41.61 –37.85 –38.25 –42.40 –41.47 

0.0 –22.53 –29.27 –30.89 –28.29 –29.46 –31.44 –31.36 

0.2 –15.17 –20.46 –21.75 –20.21 –19.98 –22.70 –21.76 

0.4 –9.81 –13.56 –14.48 –13.73 –13.66 –15.13 –14.83 

0.6 –6.11 –8.54 –9.14 –8.86 –8.45 –9.71 –9.44 

0.8 –3.70 –5.21 –5.58 –5.51 –5.00 –6.05 –5.83 

1.0 –2.21 –3.14 –3.37 –3.37 –2.99 –3.66 –3.53 

1.2 –1.32 –1.89 –2.04 –2.05 –1.76 –2.23 –2.16 

1.4 –0.78 –1.14 –1.24 –1.25 –1.06 –1.35 –1.30 

1.6 –0.46 –0.69 –0.76 –0.77 –0.63 –0.82 –0.80 

1.8 –0.28 –0.42 –0.46 –0.47 –0.39 –0.48 –0.47 

1.87 –0.23 –0.36 –0.39 –0.40 –0.32 –0.43 –0.42 

1.95 –0.19 –0.29 –0.32 –0.33 –0.26 –0.35 –0.34 

2.4 –0.06 –0.10 –0.12 –0.12 –0.09 –0.13 –0.13 

2.7 –0.03 –0.06 –0.06 –0.07 –0.05 –0.07 –0.07 

3.0 –0.01 –0.03 –0.04 –0.04 –0.03 –0.04 –0.04 

5.0 0.00 0.00 0.00 0.00 0.00 0.00 0.09 
aThe geometries along the reaction path are optimized at the CASPT2/cc-pVQZ level of theory; the geometry 
at S = 10 Å is taken as the asymptotic limit. 
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FIGURE A.6:  Boys orbital localization angle θloc along the H + HCO reaction path. 

 

 

 
FIGURE A.7:  The one-dimensional potential energy curve for H + HCO in CASPT2 level of 

theory. 
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TABLE A.14:  Projected vibrational frequencies (ω, cm–1) along the H + HCO reaction path 

Reaction coordinate S(Å) 
–0.2 0.0 0.2 0.4 0.6 0.8 1 1.2 1.4 

538 552 529 475 398 316 242 182 135 
992 927 847 827 657 503 377 279 207 

1242 1143 995 899 973 1013 1032 1043 1049 
1499 1567 1795 1949 1925 1907 1897 1892 1889 
2047 2020 1990 2057 2256 2422 2550 2638 2692 
3159 3105 3077 3103 3104 3081 3049 3017 2986 

 

 

Reaction coordinate S(Å) 
1.6 1.8 1.87 1.95 2.4 2.7 3 5 10 

100 74 67 59 30 19 11 10i 9i 
152 113 101 90 46 31 21 15 15 

1053 1055 1056 1056 1058 1058 1059 1059 1059 
1887 1886 1885 1885 1885 1884 1884 1884 1884 
2724 2742 2746 2750 2760 2762 2763 2764 2764 
2958 2935 2927 2920 2890 2877 2869 2861 2861 
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TABLE A.15:  Electronic energies (Eh) for CBS extrapolation at selected points along the H + 

HCO reaction path with CASPT2/cc–pVQZ optimized geometries  

S = 0.0 Å 

 

S = 1.0 Å 

 

S = 10.0 Å  

 

 

 

 

 

 

 

 

 
CAS(2,2) 

Mk- 
MRPT2 

Mk- 
MRCCSD 

Mk- 
MRCCSD(T) 

CASPT2 MRCISD MRCISD+Q 

cc-pVTZ –113.8223359 –114.2075754 –114.2168986 –114.2329475 –114.2130163 –114.1855074 –114.2228974 

cc-pVQZ –113.8310992 –114.2443057 –114.2489252 –114.2674881 –114.2492469 –114.2159838 –114.2555216 

cc-pV5Z –113.8330729 
   

   

 CAS(2,2) 
Mk- 

MRPT2 
Mk- 

MRCCSD 
Mk- 

MRCCSD(T) CASPT2 MRCISD MRCISD+Q 

cc-pVTZ –113.7895406 –114.1664907 –114.1721423 –114.1893712 –114.1734132 –114.1436736 –114.1789834 

cc-pVQZ –113.7984632 –114.2025019 –114.2043630 –114.2233808 –114.2095005 –114.1741813 –114.2115672 

cc-pV5Z –113.8005969 
   

   

 
CAS(2,2) 

Mk- 
MRPT2 

Mk- 
MRCCSD 

Mk- 
MRCCSD(T) 

CASPT2 MRCISD MRCISD+Q 

cc-pVTZ –113.7859422 –114.1620239 –114.1664876 –114.1839616 –114.1683280 –114.1388410 –114.1738660 

cc-pVQZ –113.7948820 –114.1978367 –114.1985824 –114.2178203 –114.2042254 –114.1692258 –114.2062744 

cc-pV5Z –113.7970492 
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TABLE A.16:  Relative energies (∆E, kcal mol–1) at selected points along the H + HCO 

reaction path for each level of theory and basis sets leading to the CBS limita 

S = 0.0 Å 

 
∆E[CAS(2,2)] ∆E[Mk-MRPT2] ∆E[Mk-MRCCSD] ∆E[Mk-MRCCSD(T)] ∆E[CASPT2] ∆E[MRCI] ∆E[MRCI+Q] 

cc-pVTZ –22.84 –28.58 –31.63 –30.74 –28.04 –29.28 –30.77 

cc-pVQZ –22.73 –29.16 –31.59 –31.17 –28.25 –29.34 –30.90 

cc-pV5Z –22.61 [–29.28] [–31.49] [–31.24] [–28.24] [–29.28] [–30.87] 

CBS [–22.53] [–29.46] [–31.44] [–31.36] [–28.29] [–29.27] [–30.89] 

 

S = 1.0 Å 

 
∆E[CAS(2,2)] ∆E[Mk-MRPT2] ∆E[Mk-MRCCSD] ∆E[Mk-MRCCSD(T)] ∆E[CASPT2] ∆E[MRCI] ∆E[MRCI+Q] 

cc-pVTZ –2.26 –2.80 –3.55 –3.39 –3.19 –3.03 –3.21 

cc-pVQZ –2.25 –2.93 –3.63 –3.49 –3.31 –3.11 –3.32 

cc-pV5Z –2.23 [–2.95] [–3.64] [–3.51] [–3.34] [–3.12] [–3.34] 

CBS [–2.21] [–2.99] [–3.66] [–3.53] [–3.37] [–3.14] [–3.37] 

a The reference point is the energy of the separated reactants, taken from computations at S = 10.0 Å.  CBS limits 
were evaluated using eqs 12 and 13 of the text.  
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APPENDIX B 

SUPPLEMENTARY MATERIAL FOR CHAPTER 4 † 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_________________________ 

† D. B. Magers, A. E. Vaughn, J. M. Turney, and W. D. Allen.  To be submitted to Journal of the 

American Chemical Society.  
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A.1: Cartesian coordinates of 1-(1-diamantyl) diamantane at the MP2/cc-pVDZ level of theory 

listed in Å. 

 

C 0.159422348 -0.328639304 -0.807321142 

C -1.079138505 -0.746897472 -1.687546509 

C -0.662961557 -1.000047660 -3.163263796 

C -0.139422513 0.306713404 -3.783358041 

C 1.076131226 0.756822277 -2.946810180 

C 0.637467876 1.012299375 -1.472314771 

C -0.453615107 2.108551157 -1.537282177 

C -1.671037206 1.620891890 -2.334371753 

C -2.190114486 0.321968311 -1.695355982 

C -1.246626368 1.364039893 -3.784413956 

C 1.257677502 -1.409373266 -1.029325076 

C 1.641697284 -1.628419666 -2.495454811 

C 0.406258958 -2.089132626 -3.272834873 

C 2.177585929 -0.303493128 -3.050698782 

H -1.487462496 -1.703568896 -1.322312425 

H -1.574796355 -1.317836726 -3.709227982 

H 0.194149947 0.109314008 -4.822395302 

H 1.452174956 1.720673155 -3.346153370 

H 1.525624309 1.397797333 -0.939043851 

H -0.883351723 2.302750114 -4.244366572 

H -2.105446326 1.009948848 -4.386289288 

H -3.054748413 -0.061250183 -2.272454545 

H -2.554750352 0.528414900 -0.674070840 

H -0.784336546 2.434177561 -0.543755126 

H -0.018621131 2.999721271 -2.032242971 

H -2.463411073 2.392477289 -2.304528589 

H 0.031142531 -3.042252861 -2.853021939 

H 0.653118293 -2.270299391 -4.336440606 

H 2.490066291 -0.416992486 -4.106448853 

H 3.069626144 0.010854358 -2.475107712 

H 2.174694285 -1.127468502 -0.486926865 

H 0.908839743 -2.369474969 -0.603543419 

H 2.430462547 -2.403111604 -2.542292507 

C -0.159422348 -0.328639304 0.807321142 

C 1.079138505 -0.746897472 1.687546509 

C 0.662961557 -1.000047660 3.163263796 

C 0.139422513 0.306713404 3.783358041 

C -1.076131226 0.756822277 2.946810180 
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C -0.637467876 1.012299375 1.472314771 

C 2.190114486 0.321968311 1.695355982 

C 1.671037206 1.620891890 2.334371753 

C 0.453615107 2.108551157 1.537282177 

C 1.246626368 1.364039893 3.784413956 

C -1.257677502 -1.409373266 1.029325076 

C -1.641697284 -1.628419666 2.495454811 

C -0.406258958 -2.089132626 3.272834873 

C -2.177585929 -0.303493128 3.050698782 

H 1.487462496 -1.703568896 1.322312425 

H 1.574796355 -1.317836726 3.709227982 

H -0.194149947 0.109314008 4.822395302 

H -1.452174956 1.720673155 3.346153370 

H -1.525624309 1.397797333 0.939043851 

H 0.784336546 2.434177561 0.543755126 

H 0.018621131 2.999721271 2.032242971 

H 0.883351723 2.302750114 4.244366572 

H 2.105446326 1.009948848 4.386289288 

H 3.054748413 -0.061250183 2.272454545 

H 2.554750352 0.528414900 0.674070840 

H 2.463411073 2.392477289 2.304528589 

H -0.031142531 -3.042252861 2.853021939 

H -0.653118293 -2.270299391 4.336440606 

H -2.490066291 -0.416992486 4.106448853 

H -3.069626144 0.010854358 2.475107712 

H -2.174694285 -1.127468502 0.486926865 

H -0.908839743 -2.369474969 0.603543419 

H -2.430462547 -2.403111604 2.542292507 
 


