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ABSTRACT 

 Conversational gaze behavior is an important component of an embodied conversational 

agent (ECA). Without proper conversational gaze, conversational agents may be less persuasive, 

emotive, and ultimately less believable or usable. While many conversational agent systems have 

been created for one-on-one type interactions, there is a noticeable lack of multi-party-capable 

systems, i.e., systems capable of dealing with more than one user simultaneously.  We present a 

conversational agent system capable of sensing and reacting to the conversational state of 

multiple users using computer vision algorithms for head and mouth motion tracking.   
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CHAPTER 1 

INTRODUCTION 

 

 Multi-party conversations, i.e., situations where three or more people involved in a 

conversation, are commonplace, particularly in face-to-face meetings.  This is because face-to-

face meetings provide non-verbal information sources, comprising typically of eye gaze, body 

posture and gestural cues. These cues allow conversational partners to interact more effectively.  

Such non-verbal information sources are typically less important in one-on-one conversations.  

Whereas in one-on-one conversations, hearing is the dominant sense; in multi-party 

conversations, the visual sense provides the necessary conversational cues to manage the 

complexity of the situation.  This is illustrated by the difficulty of holding a multi-party 

conference call in the absence of video. To be effective in multi-party situations, conversational 

agents must be able to also detect and leverage visual and non-verbal signals. Robust detection 

and interpretation of visual and non-verbal information for multiple users simultaneously 

presents a challenging problem in visual sensing, computer vision and artificial intelligence.  

This paper presents an approach to enable an embodied conversational agent (ECA) to detect and 

respond effectively to the conversational states of multiple conversational partners. 

 The approach uses a set of visual and non-verbal cues to determine the conversational 

states of participants in a multi-party conversation.   Using a camera-based, ECA-mounted, 

hierarchical head and mouth motion tracking system, visual information such as the face 

locations and mouth motions are obtained in real time for each participant.  From this 

information, the ECA derives the conversational state of the multi-party conversation, i.e., 
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Figure 1.1: Two participants interacting with a virtual patient in the examination room 

 

determines who is speaking and listening to whom.  Finally, from the conversational state, the 

ECA selects an appropriate Markov model to drive its own non-verbal behavior. 

 The primary benefit of the approach is that it can produce reasonable non-verbal behavior 

of an ECA with relatively little infrastructure support.  It requires only a single ECA head-

mounted-camera and commodity PC.  Furthermore, it does not require extensive setup beyond 

camera calibration and is largely user-independent.  Thus, the approach can be readily used to 

drive the behavior of a large variety of ECAs, from robotic humans to computer generated virtual 

humans. As shown in Figure 1.1, a prototype has been constructed that consists of a single 

camera mounted directly above an LCD monitor that displays a virtual human.  The camera 

senses the visual states of multiple participants (users) directly in front of the virtual human. The 

non-verbal gaze behavior of the virtual human is then driven by a set of Markov models chosen 

by an ECA. 
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CHAPTER 2 

PREVIOUS WORK 

 

2.1 GAZE BEHAVIOR OF EMBODIED CONVERSATIONAL AGENTS 

 Many non-verbal aspects of ECAs have been explored in the literature, including facial 

expressions, gestures, and posture. The non-verbal channel is deemed vital for social dialogue, 

since it can be used to provide such social cues as attentiveness, affect, attraction, and to mark 

shifts into and out of social activities [1]. Amongst the various non-verbal behavioral aspects of 

ECAs, the current work focuses on eye gaze, which may account for the majority of the non-

verbal information conveyed in face-to-face communication. Eye gaze conveys the level of 

participation and interest of the ECA to the other participants and is used as a mechanism for 

turn-taking [2]. 

 Many researchers have proposed models for ECA gaze patterns and studied the impact of 

the models on users.  Colburn et al. have found that avatars that use a natural gaze model elicit 

changes in viewers’ eye gaze patterns [3].  Garau et al. have investigated the impact of avatar 

gaze on participants' perception of communication quality by comparing a random-gaze avatar 

with an inferred-gaze avatar whose eye gaze adapts to the conversation context [4]. The results 

show that the inferred-gaze avatar significantly outperforms its random-gaze counterpart in terms 

of participants’ subjective responses. Lee et al. proposed an eye movement model based on 

empirical studies of saccades and statistical models of eye tracking data [5]. Their results are 

consistent with those presented in [8] in that inferred gaze is seen to significantly outperform 

random gaze. Fukayama et al. use a two-state Markov model which outputs gaze direction in a 
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place derived from three gaze parameters, i.e., amount of gaze, mean duration of gaze and gaze 

points while averted [6]. They find that the emotional impressions of the ECA formed by the 

users could be manipulated by adjusting the Markov model to fit known conversational 

behaviors. Pelachaud et al. propose an eye gaze model for an ECA that embeds information on 

communicative functions accompanied by statistical information on gaze patterns [7]. Note that 

the aforementioned ECA gaze models do not perform user tracking, and only allow for one-on-

one interaction. In addition, the gaze models described above and the accompanying user studies 

are difficult to generalize to multi-party situations, thus motivating our current work.   

 

2.2 USER TRACKING FOR EMBODIED CONVERSATIONAL AGENTS 

 More current research has employed tracking systems to incorporate the users’ non-

verbal response into the ECA’s non-verbal behavior. Bee et al. present an interactive eye gaze 

model for an ECA by using an eye tracker [8]. They have found that the interactive gaze model 

leads to a better user experience compared to the non-interactive gaze model. Traum et al. have 

used real-time visual processing to enhance the ECA dialogue model for multi-party 

communication [9]. They focus on visual cues such as head orientation, head nods and head 

shakes, and examine how these behaviors influence various aspects of a multi-layer dialogue 

model. However, their study is limited to situations in which there is one human participant and 

two virtual humans involved in a conversation. Vertegaal et al. have developed a multi-agent 

conversational system called FRED which determines the subject gaze by means of an eye 

tracking system mounted below the computer screen [10]. Their experiments show that, on 

average, subjects looked about 7 times more at the individual they listened to and 3 times more at 

the individual they spoke to than at others. They conclude that gaze directional cues could be 

used to indicate conversational attention in multi-party conversations. Nakano et al. analyzed eye 
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gaze and head nods to explain how people use non-verbal signals in the process of grounding 

communication [11]. In experiments with their ECA-based system called MACK, they found 

that subjects were aware of the lack of the conversational grounding ability of MACK.  To 

overcome this limitation, they developed a stereo-camera-based 6-degree-of-freedom head-pose 

tracker to recognize the head-nod and eye gaze of subjects.  

 Greater emphasis has been placed on user tracking for robotic ECAs than for virtual 

ECAs. Dillmann et al. have built a robot assistant, ARMAR II, capable of articulated body 

tracking and recognition of human gestures [12]. Sidner et al. have designed an engaging robot 

capable of tracking the user's face and adjusting its gaze accordingly using algorithms for face 

detection, sound location, speech detection, and object recognition [13]. They found that users 

are typically sensitive to the appropriateness of gestures and respond to changes in head direction 

and eye gaze by changing their own head direction and eye gaze. Matsusaka et al. have 

developed a robot named ROBITA, who can join in the multi-party conversations with two 

people [14]. They enabled the robot with multimodal information recognition abilities and non-

verbal body expression abilities using algorithms for face detection, face recognition, gesture 

recognition and speech recognition. The robot was designed to answer questions about itself 

while adapting its gaze between the conversational participants. 
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CHAPTER 3 

OVERVIEW 

 Our current work fuses a multi-party conversational gaze model with a multi-party 

hierarchical head and mouth motion tracking system to drive an ECA’s conversational gaze 

behavior. Particular emphasis is placed on the detection of who is speaking with whom at any 

particular time in a conversation and adjusting the ECA’s gaze model appropriately.  The general 

system architecture is depicted in Figure 3.1.   

Multi-party hierarchical head 

and mouth tracking system

Multi-party conversational 

gaze model simulation

Camera

Virtual human Robot

 

Figure 3.1: High-level architectural view of the multi-party-capable ECA system. 

 

 A single camera mounted directly above the ECA feeds an image stream to a real-time 

multi-party hierarchical head and mouth tracking system. The tracking system determines the 

location of each head, whether or not the head is frontal facing, and whether or not the lips are 

moving. This information is fed to the conversational gaze model simulation program, which in 
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turn selects a Markov model for the ECA gaze behavior.  The state of the Markov model drives 

the gaze of the ECA that is being presented on a monitor.          
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CHAPTER 4 

HIERARCHICAL HEAD AND MOUTH TRACKING SYSTEM 

 

Head tracking

Lip motion 

analysis

Frontal face detected?

mouth lost?
Yes

No

No
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Face detection

Mouth 

tracking

Template 

matching

Mouth “void” 
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+
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Figure 4.1: Flowchart of the proposed hierarchical head and mouth tracking system 
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The hierarchical head and mouth motion tracking system is divided into 4 phases: 1) face 

detection, 2) head tracking, 3) mouth tracking, and 4) lip motion analysis.  The flowchart of the 

overall system is shown in Figure 4.1.    

 In a hierarchical tracking system, the tracking is a sequence of stages or phases, and 

results from earlier stages ensure the validity of the result and constrain the search regions for 

next stage. If one stage fails, all stages after  that stage will fail, however, earlier stages will 

continue to provide  tracking information. For example, if the face is not detected at the 

beginning, then all the later tracking phases will  not be initialized. For example,  if head tracking 

fails, which means the user is not present, then all the  later tracking phases, i.e., mouth tracking 

and lip motion analysis, should also fail. Likewise, if mouth tracking fails, the  later tracking 

phase, i.e.,  lip motion analysis fails because it will  not generate quality results. Therefore, the 

hierarchical structure will ensure a valid result phase by phase. In addition, previous phases will 

constrain the search regions for the next phase. For example, face detection and head tracking 

will constrain the search region for mouth tracking and mouth tracking will constrain the region 

for lip motion analysis. The benefit of this approach, as opposed to a sensor fusion approach, is 

an increase in overall speed of tracking (by constraining later stage search regions), and a 

reduction in false positives by increasing the possibility that later stage search regions and 

tracking results are valid.   

 

4.1 FACE DETECTION 

 The face detection phase is the starting point for the multi-party hierarchical head and 

mouth motion tracking system. It is used to establish the number of conversational partners, as it 

is assumed that those participants who are proximal to the ECA and looking directly at it are 
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interested in a conversation.  It also used to initialize all the later tracking phases and constrain 

the search region for head tracking and mouth tracking. 

 Numerous approaches have been proposed for face detection. Simple features such as 

color, motion, and texture have been used for face detection in earlier works. However, these 

approaches break down easily because of the complexity of real-world situations. The face 

detection algorithm proposed by Viola and Jones is the most popular amongst the statistical face 

detection approaches [15]. Viola and Jones have proposed a face detection framework based on 

the AdaBoost learning algorithm, which uses Haar-like features to achieve rapid and accurate 

results [16]. The Haar-like feature classifier is trained with a few hundred sample views of 

various faces under different angles and lighting conditions before it can be applied to an input 

image.  Given a particular image region, the classifier labels it as either "face" or "not face".   

The face detection algorithm scans through the image multiple times at various scales to detect 

faces of varying sizes. 

 For the face detection phase of the current work, the Haar-cascade classifier for frontal 

face detection, which is distributed freely with the open-source OpenCV library, is seen to 

provide robust multi-person face detection in real-time.  To initiate the tracking process, the face 

detection algorithm is run on each video frame until a face is found.  For subsequent phases, the 

face detection procedure continues to run as a background thread, providing face detection 

information as needed to the other phases.    

 

4.2 HEAD TRACKING 

 Head tracking is used to determine each conversational participant’s position over time.  

It is also used to judge whether the participant is still in the room, otherwise mouth tracking and 

lip motion analysis have no meaning. The face detection phase only partially provides the needed 
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information for this phase as participants’ faces may not always be directed towards the camera. 

Furthermore, robust face detection is computationally intensive.  On an Intel Core-2 2.5 GHz, 

quad-core processor and given a 640 x 480 frame resolution, the face detection phase runs at 

approximately 13 frames per second.  Therefore, head tracking could be used to locate each 

user’s position no matter where the user is gazing, so that the ECA would know whether the 

person is still there and where she should drive her gaze. 

 Tracking algorithms are classified mainly into two major categories: state space-based 

and kernel-based. Kernel-based tracking algorithms have seen greater applicability in real-time 

video surveillance systems on account of their lower computational overhead compared to their 

state space-based counterparts [17]. In this paper, the Continuously Adaptive Mean Shift 

(Camshift) tracking algorithm, which belongs to the kernel-based category, is chosen for the 

head tracking since it is accurate, robust, fast and computationally efficient [18].  

 

 

Figure 4.2: Head tracking results after backgroud subtraction 

 

 The Camshift tracking algorithm is designed primarily to perform efficient face tracking 

in a perceptual user interface. It is based on an adaptation of the Mean Shift algorithm that, given 

a probability density image, finds the mean (mode) of the distribution by iterating in the direction 

of maximum increase in probability density [18].  The primary difference between the Camshift 

algorithm and the Mean Shift algorithm is that the Camshift algorithm can handle continuously 
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adaptive probability distributions whereas the Mean Shift algorithm is limited to static 

distributions. In the Camshift algorithm, the kernel is a simple step function applied to a skin-

probability map. The skin probability of each image pixel is based on a color feature computed 

using histogram back projection. The color is represented using the Hue component from the 

HSV color model. 

 The Camshift algorithm is initialized by the distribution of colors in the facial region 

detected in the face detection phase.  As an additional step, we make the process more robust by 

eliminating background pixels via simple background subtraction when the system is initialized 

without any users present in the scene.  More complex background-subtraction approaches, e.g. 

[19, 20, 21] could be used if backgrounds are more complex or slightly moving. With the 

Camshift algorithm and background subtraction, the system can track each user’s head position 

in real time. Figure 4.2 depicts the tracking results after applying the background subtraction and 

Camshift algorithms. 

 

4.3 MOUTH TRACKING 

 To track each user’s mouth, a different approach from those used in the face detection 

and head tracking phases was needed.  Face detection does not apply here because it cannot run 

fast enough to capture high frequency lip motion. The head tracking algorithm, Camshift, would 

also be inappropriate because mouth region color is often similar to the skin color.  Thus, in most 

cases, it fails to differentiate the specific mouth region from the whole face and track this region 

particularly. However, the mouth region often contains distinct static features (e.g. the nostrils, 

lip corners, mustaches, etc) that can be used for template tracking.  
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Figure 4.3: Template tracking results. The images are taken from video sequence at frame  

numbers 25, 50, 75, 100, 125 and 150 (13 frames per second). The green rectangle represents the  

nose tracking result, whereas the blue rectangle is the desired mouth region 

 

 Template tracking works best when there are significant static features moving 

throughout an image [22]. Given a selected template image region (typically a small region 

within a starting image), a search region is defined based on anticipated motion from frame to 

frame.  For a particular search region, the template is matched by sliding it, pixel by pixel from 

the top left to the bottom right of the search region, and finding the overall best match.   An 

assumption is made that the features have not changed significantly from frame to frame.   

 Mouth tracking begins when a frontal face is detected. There are two reasons for this. 

First, the mouth is always within the face, so the virtual human has to find the face first. Second, 

when a user wants to talk to the virtual human, he/she is expected to face towards the virtual 

human, and as a result, the frontal face is detected. If this frontal face is not detected mouth 

tracking will cease for that particular participant. 

 While the intent is to track the mouth, a particular image of the mouth region is not 

suitable for use as a template.  The features of the mouth region change frequently over the 
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duration of spoken speech (for example, when the mouth is open or closed, when the teeth are 

visible or invisible etc.) making it difficult to match a static template of the mouth region across 

multiple frames. Consequently, we use the nose region as a template to localize the mouth region.  

There are three reasons for this choice. First, the nose region is relatively stable. Whether one is 

moving or speaking, the features of the nose region are seen to change very slightly. Second, the 

nose has two well defined features (i.e., the nostrils) making it easier to locate. Third, among all 

the features of the face, the nose region is the closest to mouth region, thus minimizing the 

search window required for localizing the actual mouth region.   

 The template matching is performed based on minimization of the sum of squared 

differences (SSD) distance measure between the template and the input video frame.  For a 

displacement (u, v) the distance D(u,v) between the reference template and input video frame is 

defined as:  

                     𝐷 𝑢, 𝑣 =  (𝑓 𝑥, 𝑦, 𝑡 − 𝑇(𝑥 − 𝑢, 𝑦 − 𝑣, 𝑡 − 1))2
𝑥 ,𝑦                        (4.3.1) 

 

 In (4.3.1), f (x, y, t) denotes the grayscale value at position (x, y) at time t in image f, and 

T represents the template. The best match position is determined by finding the minimum 

difference value D(u, v) that is greater than a predefined threshold.  A threshold of 0.3 is used for 

the current work, although this must currently be determined empirically.  

 To track the nose template from frame to frame, a suitable search region must be chosen. 

The search window is the region where the nose would possibly appear in the current frame 

relative to the previous frame.  It should be neither too big (low efficiency) nor too small (low 

accuracy). The size must be empirically determined based on the particular application.  Given 

that the intended application would not have rapid head motion, the search region can be small.  

As an example, a search window that is three times the width and height of the nose template has 
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been sufficient for robust tracking in the multi-party system. Thus the original nose could move 

as far as one-nose-size distance in all directions. Figure 4.3 shows the mouth tracking result after 

applying the template matching algorithm. 

 The search region for mouth tracking is defined and constrained by the face detection 

result. The head tracking result could reduce the search region for the mouth, however, as the 

head tracking will incorporate the user’s neck with the face together, it’s not accurate to estimate 

the search region for mouth due to this displacement. Therefore, results from face detection will 

use to establish the search region for mouth tracking. 

 

4.4 LIP MOTION ANALYSIS 

 To identify the speaking state of each person in the scene, the current system uses a 

heuristic that frequent lip motion indicates speaking whereas non-moving lips indicate silence.  

 Methods for efficient lip contour tracking based on active contours and optical flow have 

been studied in the literature [27,28,29].  These approaches require high resolution images and 

some even require the participant to stand at a fixed position. However, in our system, the video 

images captured are in low resolution because participants stand some distance away from the 

camera and  from each other when engaged in the multi-party conversations. In addition, since 

our goal is   to build a more comfortable atmosphere  to enable multiple users to interact  with 

the ECA, there should be  minimal  restrictions on where he/she stands, how he/she acts, etc. 

Therefore, a more robust approach is proposed  to determine the speaking state of the user based 

on the presence or absence of a “void” in the lip region even when  the user is walking around in 

the room.  If the lips are closed, the mouth region is largely skin and lip tone.  When the lips are 

opened, the mouth region contains the teeth and inner mouth.  The inner mouth is generally 
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darker that the surrounding scene.  Thus, when the lips are opened there is a central region of 

pixels that is highly dissimilar to the mouth region when the lips are closed.    

 

 

Figure 4.4: The change of the inner “void” region during speech. The images are taken from 6 

 consecutive video frames (13 frames per second) 
 

 When users speak, the area of the void will increase and decrease with the opening and 

closing of the mouth. Assuming the user is forming words (not just making a single sound), the 

area will change rapidly.  To detect this phenomenon, the system calculates the change in the 

number of pixels classified as “void” pixels from frame to frame.  If the change is above an 

empirically determined threshold, the user is assumed to be speaking.  The user is determined to 
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be silent when the change is below the threshold for more than 2 seconds. Figure 4.4 shows how 

the inner void changes when the user is speaking from frame to frame. 

 The lip motion analysis algorithm is robust to different users and is computationally 

efficient.  It also works well in the presence of facial hair, where a contour-based lip tracking 

method may be less robust.   However, lip motion is at best only an approximation of speaking.  

To obtain a complete picture, the audio channel must be correlated with the visual channel.  This 

is a potential direction for future work.  
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CHAPTER 5 

EMBODIED CONVERSATIONAL AGENT GAZE MODEL SIMULATION 

 

 The intended purpose of the multi-party tracking system is to provide enough information 

to an ECA, such that the gaze behavior of the ECA is believable.  Believability is influenced by 

many aspects, but the ECA is ultimately limited by the information it can sense about the real 

world.  In multi-party situations, this limitation is particularly noticeable, particularly if the ECA 

does shift its gaze between people with emphasis on the person or people who are speaking.   

Furthermore, when a person is speaking, the ECA gaze will be directed at the mouth region more 

often, as lip motion is typically used to assist a listener in determining the words that are spoken. 

 The following information is provided by the tracking system (over a Virtual Reality 

Peripheral Network (VRPN) interface [23]): 

1) the total number of people detected 

2) whether each person is frontal facing 

3) whether each person is speaking 

 With respect to ECA gaze behavior, simulations may model the user as a single point in 

space.  The effect achieved by this, unfortunately, is interpreted as staring, as though one point 

on the user’s face is more interesting than any other.  A more natural gaze model would have the 

ECA’s gaze shift between various regions of interest on the face.    For example, listeners tend to 

shift gaze between the speaker’s eyes and mouth.  As discussed earlier, previous work suggests 

that non-random gaze models improve conversational flow and ECA believability [8, 10]. 
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Inferred 

situation 

P1 frontal 

facing 

P1 

speaking 

P2 frontal 

facing 

P2 

speaking 

ECA 

speaking 

P1 speaks to 

P2 and ECA 

1 1 0 0 0 

P2 speaks to 
P1 and ECA 

0 0 1 1 0 

P1 speaks to 
ECA 

1 1 1 0 0 

P2 speaks to 
ECA 

1 0 1 1 0 

P1 and P2 
speak to ECA 

1 1 1 1 0 

ECA speak to 
P1 and P2 

1 0 1 0 1 

ECA speaks 
to P1 

1 0 0 0 1 

ECA speaks 
to P2 

0 0 1 0 1 

Table 5.1: Partial map between inferred situation and detected visual features of P1, P2 and ECA  

 

 The approach implemented in this work is to select a gaze model that is appropriate for 

the current situation.  The situation is a function of each participant’s conversational state.                                 

    𝐺𝑎𝑧𝑒 𝑀𝑜𝑑𝑒𝑙 = 𝑓(𝑆, 𝐶𝑆1, 𝐶𝑆2,…𝐶𝑆𝑛)                         (5.0.1) 

 In (5.0.1), S is the speaking state of the ECA (speaking or silent) and CS is the 

conversational state of each participant, (frontal facing or not, and speaking or silent).   

 The reason for this function is to select a different gaze model for each combination of 

visual cues provided by the tracking system.  For a 2-person (in addition to the ECA) case, the 

model is specified by 5 Boolean values: {P1’s frontal face detected or not, P1 is speaking or not, 

P2’s frontal face detected or not, P2 is speaking or not, ECA is listening or speaking} where P1 

and P2 denote the two persons in question.  
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Figure 5.1: A virtual ECA’s gaze movement during a multi-party conversation 

 

 This information can be used to infer a conversational situation. For example, when P1 is 

facing the ECA and silent; P2 is facing the ECA and speaking; and the ECA is silent, this implies 

that the ECA should exhibit behavior indicative of listening to P2.  Some other combinations and 

inferred situations can be found in Table 5.1. Note that not all situations can be inferred from this 

information, such as one participant talking with another.  Such a situation is certainly possible, 

but audio information would be needed to determine this state.  
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 P1 

eyes 

P1 

mouth 

P2 

eyes 

P2 

mouth 
Other 

Update time 

(s) 

P1 eyes 0.16 0.08 0.36 0.20 0.20 1.16 

P1 mouth 0.16 0.08 0.36 0.20 0.20 0.40 

P2 eyes 0.16 0.08 0.36 0.20 0.20 1.93 

P2 mouth 0.16 0.08 0.36 0.20 0.20 0.44 

Other 0.16 0.08 0.36 0.20 0.20 1.60 

Table 5.2: Example transition table of Markov gaze model with gaze transition possibilities and 

gaze duration time 

 

 However, in this case, it is assumed that the majority of the attention is devoted to the 

speaker, not the ECA, and thus the behavior of the ECA is less important.   

 The concept for the gaze models used to drive gaze behavior is based on work by 

Fukayama et al. [6].  The gaze model is a form of a Markov finite state machine.  A Markov 

finite state machine, describes a finite set of states and probabilities of transitioning from one 

state to another.  While the traditional description of a Markov finite state machine does not 

include a time element, we modify this to also define state update times, i.e., how frequently the 

model tries to transition from the current state to another state.   

 Each state in the gaze model determines where the ECA should direct its gaze. There are 

two states for each conversational partner (face and mouth region) as well as a state for “other”, 

meaning gaze at something else.  This could be a random location or could be used to try to take 

a conversational turn.   
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 An example gaze model is shown in Table 5.2 that is used for the conversational situation 

where the ECA listening to the second of two conversational partners.  This gaze model would 

be chosen when person 1 is frontal facing and not speaking, while person 2 is frontal facing and 

speaking, and the ECA is not speaking. Figure 5.1 depicts the ECA with her gaze movement in a 

multi-party conversation. 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

 

 Seven experiments were designed to evaluate the system accuracy under varying 

conditions. Each experiment corresponded to a tracking environment variable. During each 

experiment examining a particular tracking variable, other variables were held constant (unless 

otherwise indicated) at a default value. Results are reported in terms of the impact on the 

performance of each of the four phases (i.e. face detection, head tracking, mouth tracking, and lip 

motion analysis) of the hierarchal head and mouth tracking system.  The seven environment 

variables and their default values are shown in Table 6.1.  

 Environment variable Default value 

1 Face Occlusion No occlusion 

2 Face Rotation     Frontal facing, no rotation 

3 Face Size    100cm to the camera 

4 Background Laboratory background 

5 Facial Features    Asian with clean face 

6 Light Intensity Normal laboratory lighting 

7 Number of Users One 

Table 6.1: Environment variables and their default values  

 These variables are chosen because they are considered to be representative for testing 

the performance of a face tracker. 
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 All experiments were performed on a 2.5 GHz Intel Core 2 Quad CPU with 2GBytes of 

RAM and 2.0 MBytes of cache.  The program was written in the C++ programming language. 

The camera used for all experiments was the Unibrain Fire-I Pro, 640x480 60fps IEEE 1394a 

camera.  

 

6.1 EXPERIMENT1– FACE OCCLUSION 

6.1.1 FACE OCCLUSION DESIGN 

 Face occlusion occurs when a face is partially or fully obscured by another environmental 

object.  Two types of occluding objects were considered for the experiment:  a sheet of paper and 

another face.  The reason that two occluding object types were chosen is that a human face is 

treated differently in the face detection phase from arbitrary objects, meaning that performance 

may be different.  

 

Figure 6.1: Three different users in the test. From left to right are user1, user2, user3. 

 

The experimental design consisted of the percentage of each face covered, the user being 

occluded, the direction of occlusion, and the occluding object type as the independent variables 

and the detection and tracking accuracy as the dependent variable. For the test of paper-over-face, 

a sheet of paper was used to gradually cover the face from left to right and bottom to top. This 

was tested on three different users, see Figure 6.1. For the test of face-over-face occlusion, two 
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users faced the camera, approached each other, and passed each other, see Figure 6.6. This was 

designed because it's a typical occlusion situation which could happen in a multi-party 

conversation, for example a crowd situation.  

 

6.1.2 FACE OCCLUSION RESULTS 

 For the first test, paper-over-face, three users’ face occlusion percentages when the face 

was first not detected are listed in Table 6.2, broken down by the direction of face occlusion.  It 

was found that if more than approximately 33% of the face was covered from left or right side, 

the face detection, mouth tracking and lip motion analysis would fail, as shown in Figure 6.2. If 

more than approximately 20% of the face was covered from top or more than approximately 30% 

of face was covered from bottom, the face detection, mouth tracking and lip motion analysis 

failed as shown in Figure 6.4.  Head tracking performance varied during the experiment in terms 

of a location displacement as shown in Figure 6.3 and Figure 6.5. In the second test of face-over-

face, the results as shown in Table 6.3 were consistent with the first test, varying insignificantly 

between users, see Figure 6.6 and Figure 6.7. 

 

 Face 

covered 

from left 

Face 

covered 

from right 

Face 

covered 

from top 

Face 

covered 

from bottom 

user1 35% 35% 20% 35% 

user2 30%  30%  20%  30%  

user3 35% 35% 20% 30% 

Average 33% 33% 20% 30% 

Table 6.2: Failure coverage of face occlusion when the face is no longer detected for paper-over 

face test 
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 Occluded 

by user1 

Occluded 

by user2 

Occluded 

by user3 

user1 / 35% 35% 

user2 30%  /  35%  

user3 35%  30%  /  

Average 33% 33% 35% 

Table 6.3: Failure coverage of face occlusion when face is no longer detected for face-over-face 

test 

 

 

Figure 6.2: A user used a yellow paper to gradually cover his face from left to right. The face 

coverage of the eight pictures read left to right, top to bottom are 0%, 1%, 15%, 33%, 35%, 60%, 

32%, and 1%. The face detection result is in red rectangle and mouth tracking result is in green 

rectangle. 
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Figure 6.3: The head tracking result (red ellipse) of Figure 6.1. 

 

 

Figure 6.4: A user used a yellow paper to gradually cover his face from bottom to top. Face 

coverage of eight pictures read left to right, top to bottom are 0%, 1%, 30%, 75%, 100%, 70%, 

20%, 5%. The face detection is in red rectangle and mouth tracking is in green rectangle. 
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Figure 6.5: The head tracking result (red ellipse) of Figure 6.4. 

 

 

Figure 6.6: Face detection (red rectangle) and mouth tracking results (green rectangle) of face-

over-face test, when user1 was occluded by front user2. The coverage of user1’s face in pictures 

read left to right, top to bottom are: 0%, 0%, 20%, 50%, 100%, 25%. 
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Figure 6.7: Head tracking results (red ellipse) of user1, who was occluded by front user2 for the 

face-over-face test. The coverage of user1’s face in pictures read left to right, top to bottom are: 

0%, 5%, 50%, 100%, 10%, 1%. 

 

6.1.3 FACE OCCLUSION DISCUSSION 

 In the hierarchical head and mouth tracking system, the face detection is based on the 

Haar-like features. The more face covered, the less face features are available for face detection. 

Thus the face detection will fail when the face is covered above a threshold limit. According to 

the percentages of face failure coverage, it was concluded that nose, eye, and mouth are the most 

important features for face detection. 

The head tracking phase was the most robust during the occlusion experiment.  This is 

because the head tracking phase uses color information, and adjusts as the face region color 

shifts over time.  This means that as the face is occluded, the face region color changes. A 

position displacement occurs, however, when the face is no longer detected, meaning that the 

facial color histogram remains constant.   
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 Mouth tracking and lip motion analysis were not considered in this experiment because 

both phases are entirely dependent on face detection.  This is because the template matching 

requires a face detection to be initialized and mouth tracking is based on the template tracking. 

Lip motion analysis is based on mouth tracking, and thus will also fail when face is not detected. 

Both will immediately recover when a face is detected.  Thus, the tracking results listed in Table 

6.2 apply equally to mouth tracking and lip motion analysis. 

 Through this experiment, it is concluded that head tracking is necessary and more reliable 

in locating the user’s position in terms of head position than face detection under the various 

occlusion situations. Mouth tracking and lip motion analysis is robust to partial face occlusion 

(less than 1/3 of face size), which can be used for identifying the conversational state of user. 

 

6.2 EXPERIMENT2 – FACE ROTATION 

6.2.1 FACE ROTATION DESIGN 

 Two types of face rotation were examined independently in this experiment, i.e., in-plane 

rotation and out-of-plane rotation, because they were widely used for evaluating rotations of face 

detection in 2D and 3D space.  

 The
 
first test examined in-plane face rotation. The user frontal faced the camera and 

rolled his/her face slowly clockwise and counterclockwise in the plane of the camera image. 

Detection and tracking results were observed for each phase.  In addition, the in-plane rotation 

angle was measured in the captured image when the face detection first failed. This test was also 

conducted on three different users as in experiment 1.  

 The second test examined out-of-plane face rotation.  Out-of-plane rotation is more 

difficult to measure, as the angle of rotation is more difficult to measure in the image.  To 

accurately measure this variable, an indirect technique was used.  Users were instructed to look 
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at predefined locations on a wall directly behind the camera and parallel to the camera plane. The 

marked locations were separated by 10cm horizontally and 10cm vertically. Each user stood at 

two distances (100cm and 200cm) away from the camera, centered with respect to the camera 

plane and turned their head gradually and slowly in the four out-of-plane rotation directions, i.e. 

left, right, top, bottom, as shown in Figure 6.8. The reason 100cm and 200cm were chosen is 

because they represented personal distance and social distance respectively. According to Isa N. 

Engleberg [24], personal distance starting around 46 cm from our person and ending about 122 

cm away is used in conversations with friends, to chat with associates, and in group discussions 

while social distance that ranges from 120 cm to 240 cm away from you is reserved for strangers, 

newly formed groups, and new acquaintances. When face detection or tracking first failed, the 

marked dot that the user was currently looking at was recorded. The arctangent of the distance 

between the user and camera and the distance between the camera and that dot determined the 

out-of-plane rotation angle. This angle when the user rotated head to look at a marked dot on the 

wall can be calculated according to (3), where θ is the out-of-plane rotation degree. d1 is the 

distance between the marked dot where the user was looking at and the camera. d2 is the distance 

between the user and the camera. 

                       θ = tan−1(d1 /d2  ) × 180°/π                        (6.2.1) 

 

6.2.1 FACE ROTATION RESULTS 

 The failure angles of face detection for the rotation tests for the three users standing at 

100cm distance to the camera are shown in Table 6.4 and Table 6.7. The average failure angle 

for face detection was approximately 25 degrees for in-plane rotation and 42 degrees for out-of 

plane rotation, being slightly worse for top to bottom rotation than others. These tests are 

depicted in figures [6.9, 6.10, 6.11, 6.12, 6.13, 6.14]. The results of out-of-plane rotation at 
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200cm are shown in Table 6.8, as depicted in Figures 6.15. From this data it can be seen that 

distance does not have a significant effect on the failure angle for typical distances.    

 During the experiment, head tracking did not fail (although it did degrade) as shown in 

Figure [6.10, 6.11, 6.12, 6.14].  In addition, according to Table [6.5, 6.6], mouth tracking and lip 

motion analysis do not fail before face detection in either the in-plane or out-of-plane case. These 

are depicted in Figure [6.9, 6.11, 6.12, 6.13]. 

 

 Face rotates 

Clockwise 

Face rotates 

Counterclockwise 

user1 28° 25° 

user2 25° 24° 

user3 22° 25° 

Average 25° 25° 

Table 6.4: Failure angles of face detection for in-plane rotation test. 

 

 Face rotates 

Clockwise 

Face rotates 

Counterclockwise 

user1 28° 25° 

user2 25° 24° 

user3 22° 25° 

Average 25° 25° 

Table 6.5: Failure angles of mouth tracking for in-plane rotation test. 
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 Face rotates 

Clockwise 

Face rotates 

Counterclockwise 

user1 28° 25° 

user2 25° 24° 

user3 22° 25° 

Average 25° 25° 

Table 6.6: Failure angles of lip motion analysis for in-plane rotation test. 

 

 Rotate to 

left 

Rotate to 

right 

Rotate to 

top 

Rotate to 

bottom 

user1  42 ° 44° 41°  38 ° 

user2 45 ° 42° 45 ° 37 ° 

user3 45° 46° 43 ° 38 ° 

Average 44° 44° 43° 38° 

Table 6.7: Failure angles of face detection for out-of-plane rotation test, tested at 100cm distance 

to the camera. 

 

 Rotate to 

left 

Rotate to 

right 

Rotate to 

top 

Rotate to 

bottom 

user1  44 ° 44° 43°  37 ° 

user2 43 ° 44° 45 ° 38 ° 

user3 44° 45° 41 ° 39 ° 

Average 44° 44° 43° 38° 

Table 6.8: Failure angles of face detection for out-of-plane rotation test, tested at 200cm distance 

to the camera. 
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Figure 6.8: Users were looking at marked dots on the wall in the out-of-plane test. 

 

 

Figure 6.9: A user rotated his face in-plane. Pictures from left to right are face turning clockwise 

at 0°, 24°, 25° and counterclockwise at 15°, 45°. The face detection (red rectangle), mouth 

tracking (green rectangle) results are in the first row and their corresponding lip motion analysis 

results are in the second row. 
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Figure 6.10: A user rotated his face in-plane. Pictures read left to right, top to bottom are face 

turning clockwise at 15°, 45°, 70° and counterclockwise at 30°, 45°, 90°. The head tracking is 

represented by the red ellipse. 

 

 

Figure 6.11: A user rotated his face to left out-of-plane. Pictures from left to right are face 

turning at 10°, 20°, 43°, and 44°. The face detection (red rectangle), mouth tracking (green 

rectangle) results are in first row and the corresponding head tracking result, the red ellipse, is in 

the second row.  
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Figure 6.12: A user rotated his face to right out-of-plane. Pictures from left to right are face 

turning to at 0°, 20°, 43°, 44°. The face detection (red rectangle), mouth tracking (green 

rectangle) results are in first row and the corresponding head tracking result, the red ellipse, is in 

the second row.  

 

 

Figure 6.13: A user rotated his face out-of-plane. Pictures read left to right, top to bottom are the 

face turning at 0°, 20°, 42°, 43° to top and 10°, 20°, 35°, 40° to bottom. The face detection result 

is in red rectangle and mouth tracking result is in green rectangle. 
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Figure 6.14: A user rotated his face out-of-plane to top at 0°, 30°, 50°, 90° and to bottom in 10°, 

30°, 50°, 90°, read left to right, top to bottom. The head tracking result is represented by the red 

ellipse. 

 

 

Figure 6.15: A user stood at 200cm to the camera and rotated his face out-of-plane. Pictures read 

left to right, top to bottom are face turning to right at 0°, 30°, 40°, 45° and left at 10°, 30°, 40°, 

45°. The face detection result is in red rectangle and mouth tracking result is in green rectangle. 
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Figure 6.16: A user looked around (head tracking results represented by red ellipse) in 360°.  

 

6.2.3 FACE ROTATION DISCUSSION 

 The face detection results can be explained in terms of the Haar-classifier training set. In 

this system, a frontal-face training set with little face-rotation in-plane or out-of-plane is used.  

The features used in these sets are not rotation invariant, therefore, when the face rotates out of a 

certain degree, in-plane or out-of-plane, face detection fails.  Similar to experiment 1, when face 

tracking fails, mouth tracking and lip-motion analysis also fail.   

Also similar to experiment 1, head tracking is robust with respect to face rotation because 

the color histogram of the head region remains largely constant as the face is rotated.  Figure 

6.16 shows this as the head rotates 360 degrees.   This supports the conclusion from Experiment1 

that head tracking is more reliable in locating a user’s position in the room than face detection.  

Furthermore, when the face is not detected it is less important what facial features are present, 

but still important to know the general location of another person.  

 Mouth tracking and lip motion analysis did not fail before the face detection failed in the 

experiment. The reason varies by the type of rotation.  For in-plane rotation, the mouth region is 

near the axis (around neck) of the head plane. Therefore, the location of mouth region varies very 
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little during in-plane head rotation so that mouth region estimation is accurate and mouth 

tracking works well.  For out-of-plane rotation, the mouth region locates in the same vertical line 

under the nose, which is not changed in out-of-plane rotation. Therefore, during out-of-plane 

rotation, mouth tracking and lip motion analysis will always work until face detection fails and 

template is lost. However, they both will immediately recover when a face is detected.   

 In conclusion, mouth tracking based on template matching and the lip motion analysis 

based on the mouth tracking are robust to most rotation situations and thus reliable for 

identifying the conversational states of user.  

 

6.3 EXPERIMENT3 – FACE SIZE 

6.3.1 FACE SIZE DESIGN 

 This experiment was designed to determine how robust detection and tracking results are 

with respect to face size. The user was instructed to stand at different distances to the camera and 

speak to the virtual agent at each distance so that face size, in pixels (width x height), would 

chang accordingly. The pixel dimensions of the face represent a face size measure that is 

independent of distance, and camera lens/sensor (assuming square pixels).  The four phases of 

the hierarchical head and mouth tracking system were observed and their corresponding results 

were recorded at each face size. The experiment was conducted on three different users, as in 

Experiment1.  

 

6.3.2 FACE SIZE RESULTS 

 The starting and failure face rectangle dimensions of face detection, head tracking, mouth 

tracking and lip motion analysis are shown in Table 6.9. The face detection, head tracking, 

mouth tracking and lip motion analysis started to work when the user’s face dimension are about 
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180x180 in pixel numbers. When the distance became farther and the face dimensions become 

smaller than 27x27 in pixel numbers, the lip motion analysis failed. Then at approximately 

25x25 pixel numbers of face dimension, mouth tracking failed and finally the face detection 

failed at approximately at dimension of 23x23 in pixel numbers. The accurate failure pixel 

numbers of face dimension for head tracking could not be established as the laboratory setting 

was limited to 500cm distance in which the face dimensions could not be smaller than 20x20.   

The face detection and mouth tracking results are shown in first row in Figure [6.17, 6.18], the 

corresponding head tracking and lip motion analysis results are shown second and third row in 

Figure [6.17, 6.18]. 

 

 User1  User2  User3  Average 

Face detection 

starts  

180 x180 180 x 180 180 x 180 180 x 180 

Head tracking 

starts 

180 x 180 180 x 180 180 x 180 180 x 180 

Mouth tracking 

starts 

180 x 180 180 x 180 180 x 180 180 x 180 

Lip motion 

analysis starts 

180 x 180 180 x 180 180 x 180 180 x 180 

Lip motion 

analysis breaks  

27 x 27 27 x 27 27 x 27 27 x 27 

Mouth tracking 

breaks  

25 x 25 25 x 25 25 x 25 25 x 25 

Face detection 

breaks  

23 x 23 23 x 23 23 x 23 23 x 23 

Head tracking 

breaks  

< 20 x 20 < 20 x 20 < 20 x 20 < 20 x 20 

Table 6.9:  Starting and failure face dimension in pixel numbers for face detection, head tracking, 

mouth tracking and lip motion analysis when user’s face dimensions become smaller 
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Figure 6.17: A user stood at different distances to the camera with different face dimensions 

(120x120, 70x70, 50x50, 40x40 in pixel numbers), read left to right. The face detection (red 

rectangle) and mouth tracking results (green rectangle) are in first row, head tracking results (red 

ellipse) are in second row and lip motion analysis is in third row.  
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Figure 6.18: A user stood at different distances to the camera, resulting in different face pixel 

dimensions (30x30, 27x27, 25x25, 23x23 in pixel numbers), read left to right. The face detection 

(red rectangle) and mouth tracking results (green rectangle) are in first row, corresponding head 

tracking results (red ellipse) are in second row and corresponding lip motion analysis are in third 

row. (note: the last three lip tracking results are all white because the void could not be detected). 

 

6.3.3 FACE SIZE DISCUSSION 

 The face could be detected when it became 180x180 pixels.  This is an imposed 

algorithmic limit to improve performance.  A successful face detection initializes head tracking, 

mouth tracking and lip motion analysis. When the face size decreased, the lip motion analysis 

failed first as the central mouth region is the smallest area being analyzed and thus becomes 

harder to detect and differentiate clearly.  However, face detection, head tracking and mouth 

tracking uses larger features and thus features can be differentiated at greater distances from the 

camera. In a similar vein, mouth tracking was the second to fail because the nose region is the 
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limiting size factor.  Finally, the face detection is limited by small feature sizes. The process is 

shown in Figure 6.17 and Figure 6.18.  

Although the others rely on features, which degrade quickly with decreasing size, head 

tracking relies on color and thus is more robust to changes in face size.  It is expected that head 

tracking could function properly up to a size of only a few pixels, and thus could not be 

adequately measured within the limited space of the laboratory.  Practically, however, one would 

impose a software limit on the size of the head tracking ellipse, which we have set as 15x15.  

 From this experiment, we can conclude that within a certain range of face size, from 

about 30x30 to 180x180 face width in pixel numbers, all the detection and tracking phases work 

well. According to Engleberg [24], conversational distances larger than 240cm, which is 

approximately 50x50 pixel number of face width, belong to public distances which are used for 

speeches, lectures, and theater. Therefore, face dimensions larger than 50x50 in pixel numbers 

(distance less than 240cm) are adequate for detection and tracking in a multi-party conversation 

and thus the hierarchical head and mouth tracking system is robust to different locations where 

users may practically stand.  

 

6.4 EXPERIMENT4 – BACKGROUND  

6.4.1 BACKGROUND EXPERIMENT DESIGN 

 In this experiment, two tests were designed for investigating the influence of background 

subtraction on the detection and tracking results. In the first test, the user walked in the lab 

against a complex background without applying background subtraction. The results were 

observed and investigated to determine if the accuracy would be influenced by the complexity of 

background. In the second test, detection and tracking results were compared before and after 
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applying background subtraction.  The goal was to determine if background subtraction would 

improve the detection and tracking accuracy over the previous case. 

 

6.4.2 BACKGROUND EXPERIMENT RESULTS 

 The first test showed that head tracking was not reliable if a user stood against a complex 

background, especially if there was a region in the background that had the same hue color as 

human face, see pictures in first row of Figure 6.19. In this situation, head tracking results were 

inaccurate. However, the face detection, mouth tracking and lip motion analysis were largely 

robust to background changes as seen in the second row in Figure 6.19. 

 The second test showed that head tracking results were improved greatly by applying 

background subtraction compared to without it, as shown in Figure 6.20. 

 

 

Figure 6.19: A user stood at different positions against a complex background. The head tracking 

result (red ellipse) is in first row and corresponding face detection (red rectangle) and mouth 

tracking (green rectangle) results are shown in second row.  
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Figure 6.20: Comparison of head tracking results before (first row) and after (second row) 

applying background subtraction.  

 

6.4.3 BACKGROUND EXPERIMENT DISCUSSION 

 This experiment showed the necessity of background subtraction for color-based tracking.  

The first test showed that head tracking was not reliable if the user stood against a complex 

background. This is because the head tracking uses the hue color of a face which is unique most 

of the time. However, certain background colors such as orange approximate the hue color of the 

human face, meaning that the head tracking may become inaccurate. 

 The second test shows that background subtraction eliminated errors in head tracking 

caused by the complexity of background. This is because the background is masked so that only 

colors that are part of the user image are used in tracking.  This lets the face color be tracked 

accurately, as seen in the second row in figure 6.20.   
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6.5 EXPERIMENT5 – FACIAL FEATURES 

6.5.1 FACIAL FEATURES EXPERIMENT DESIGN 

 This experiment was designed for investigating whether the face color and facial hair 

would influence the accuracy of tracking results.  The system was tested on 20 different users 

with different face colors, i.e., white, yellow, and black. The users came from different 

background with different race, gender, age. Figure 6.21 shows three examples of them.  

 

6.5.2 FACIAL FEATURES EXPERIMENT RESULTS 

 

Figure 6.21: face detection (red rectangle in first column), mouth tracking (green rectangle in 

first column), head tracking (red ellipse in second column) and lip motion analysis (third column) 

of three users with different skin colors.  
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 The results showed that face detection, head tracking and mouth tracking worked 

normally on all tested users. However, lip motion analysis sometimes failed on users who had a 

darker skin tone and facial hair in the mouth region, as seen in the first row in Figure 6.21.  

 

6.5.3 FACIAL FEATURES EXPERIMENT DISCUSSION 

 For the face detection, the classifier we used was trained with thousands of sample faces 

for people from different race, gender, facial feature, etc. Therefore, face detection worked well 

on all the testing users. Similarly, the head tracking and mouth tracking are based on the face 

template determined from the results of face detection, and thus also performed well, as seen in 

the first and second column in Figure 6.21. However, the lip motion analysis failed when the 

user had very dark skin and strong beard at the mouth region. This is because the dark skin and 

black beard that covered this region made it difficult to differentiate the mouth contour by 

converting the right pixels and identifying the correct mouth “void”.  

 Through this experiment, it is concluded that face detection, head tracking, and mouth 

tracking work well for a wide variety of people, while lip motion analysis is highly dependent on 

the face color and hair features in the mouth region. Lip motion analysis works much better in 

the mouth region which has clear color contrast and simple hair features. This is understandable 

because visual information is often insufficient to determine when a person who has strong hair 

and dark color in the mouth region is speaking, thus audio information must be included to help 

in this situation. In addition, the threshold algorithm for lip motion analysis could be 

automatically adjusted depending on the face color. 
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6.6 EXPERIMENT6– LIGHT INTENSITY 

6.6.1 LIGHT INTENSITY EXPERIMENT DESIGN 

 This experiment was designed to investigate whether detection and tracking results were 

influenced by the intensity of lights. In this test, a user would talk to the virtual human under 

different lighting conditions, as adjusted by light switches in the testing laboratory.  While not a 

rigorous test, it typifies variations in lighting that would be experienced by such a tracking 

system in practice.  

 

Figure 6.22: A user was tested under different light conditions, from light to dark, read left to 

right. The face detection (red rectangle) and mouth tracking (green rectangle) results are in first 

row, the corresponding head tracking results (red ellipse) are in second row and corresponding 

lip motion analysis results are in third row. 



 

49 

6.6.2 LIGHT INTENSITY EXPERIMENT RESULTS 

 The face detection and mouth tracking worked properly, even under very dark lighting, as 

seen in the first row in Figure 6.22. However, the head tracking and lip motion analysis failed in 

dark lighting as seen in second and third row in Figure 6.22. 

 

6.6.3 LIGHT INTENSITY EXPERIMENT DISCUSSION 

 In this experiment, the color-based approaches are shown to be highly sensitive to 

lighting conditions. This makes sense, as perceived material color and lighting are linked. The 

face detection is more robust to the light intensity because it is based on detecting the facial 

feature, as discussed above which is less sensitive to the intensity of light. Similarly, mouth 

tracking is less sensitive to the light conditions because nose template is determined by the face 

detection phase. However, the head tracking and lip motion analysis failed to work under dark 

lights. Head tracking relies the facial regions being a contrasting color from other image regions. 

If the light is not strong enough, the hue color of face is harder to differentiate accurately to 

locate the contour of head.  The lip motion analysis, which based on detecting the changes of 

black “void” in the user’s mouth region, also breaks more easily. This is because the threshold 

algorithm which converts the mouth region into a black “void” and the analysis algorithm which 

identifies the opening and closing of mouth are more dependent on light conditions. Therefore, 

once the light intensity changes, the head tracking and lip motion analysis might fail, especially 

when light is low, as seen in Figure 6.22. 

 Through this experiment, it is concluded that the head tracking and lip motion analysis 

failed to work in dark lighting conditions. However, in a comfortable environment for multi-

party conversation, lighting can be expected to be light enough without much change during the 

course of the conversation. Therefore, the hierarchical head and mouth tracking system can be 
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expected to works well under most normal situations. Furthermore, if better lighting 

independence is desired, the color tracking methods could be automatically adjusted depending 

on light intensity measurements.  

 

6.7 EXPERIMENT7 – NUMBER OF USERS 

6.7.1 USER NUMBER EXPERIMENT DESIGN 

 In this experiment, the total time cost on each of the four components, i.e., face detection, 

head tracking, mouth tracking, lip motion analysis of the hierarchical head and mouth tracking 

system in every frame was measured and compared when the number of user increased. To 

accurately compute the processing time, all visualization effects that showed the captured images 

of detected face, mouth, and lip motion were closed. 

 

6.7.2 USER NUMBER EXPERIMENT RESULTS 

 Thread1 Thread2 

Number 

of users 

detected 

Background 

subtraction 

(ms) 

Head 

tracking 

(ms) 

Mouth 

tracking 

(ms) 

Lip motion 

analysis 

(ms) 

Overall 

system 
(ms) 

Face 

detection 

(ms) 

1 30 12 2 18 62 122 

2 30 24 4 36 94 122 

3 30 36 6 54 126 122 

Table 6.10: The time spend by each component of the hierarchical head and mouth tracking 

system when user number increases from one to three 
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 The times that the system spends performing the computation for each of the four 

tracking phases are listed in Table 6.10.  Results are divided into two threads, one for face 

detection, and one for the remaining operations.  The underlying system for the experiment was a 

multi-core processor, and thus the times can be considered mostly independent.  It can be seen 

that face detection is approximately twice as computationally intensive than the rest of the phases 

combined.   Times for face detection and background subtraction were found to be independent 

of the number of users, while head tracking, mouth tracking, and lip motion analysis appear to 

increase linearly with the number of users.  Combining the components dependent on the number 

of users, the algorithm slows by 32 ms per frame for each additional user.   

 

6.7.3 USER NUMBER EXPERIMENT DISCUSSION 

 This experiment showed that the hierarchical head and mouth tracking system is directly 

proportional to the number of users present.  Performance decreased linearly from 62ms with one 

user to 126ms with three users.   

 Face detection is a fixed time cost in the system.  It is a separate thread in the algorithm 

because the other phases only rely on it for initialization, and then operate independently after 

that time.  When a new face is detected, these other phases can be reinitialized.  If face detection 

were incorporated into the main thread, it would cause the entire system to slow considerably, 

while providing little new information.    

 Background subtraction can be seen as a fixed, but time expensive operation.  However, 

it vastly improves the performance of the head tracking results.  Users of the tracking system 

would need to weigh the tracking accuracy gain against the frame rate reduction.   

 The least amount of time is spent on head tracking, mouth tracking, and lip motion 

analysis.  This is because these parts of the algorithm typically operate on smaller image regions. 
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However, as the number of users increases, more image regions need to be considered, and thus 

the performance of these phases is linearly proportional to the number of users.  

 In summary, the performance of the system reduces as the number of users increases.  

However, the impact for an ECA is likely to be small.  The current system is designed for 

interactions with a few users, but not crowd situations.  In crowd situations, the conversational 

states of each participant are less important than multi-party situations.  In the multi-party 

situations that the system was designed for, the performance will likely be adequate, or if not, 

would be improved significantly by turning off background subtraction (at the expense of 

accuracy).  One concern is that high frequency lip motion may be lost as a result of a slower 

frame rate.  This is somewhat natural, as when multiple speakers are present, attention of a 

conversational participant is inherently divided.   
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

 

 This paper proposes an approach to enable an embodied conversational agent (ECA) to 

effectively detect and respond to multiple conversational partners through computer vision and 

conversational agent behavioral simulation techniques. A hierarchical head and mouth tracking 

system identifies the conversational state of each visible person using only visual information.  A 

multi-party Markov gazing model is proposed that drives an ECA’s gaze behavior based on the 

detected conversational state information. Finally, the tracking system performance is evaluated 

to demonstrate robustness for typical multi-party conversational situations.   

 Our research provides a new direction in developing an ECA that can take part in multi-

party conversational situations. We mainly focused on visual perception and addressed the 

problem of detecting the conversational state of participants through tracking algorithms.  The 

purpose of this information was to enable enhanced non-verbal behaviors, such as gaze behavior, 

of an ECA in multi-party situations; thus, we provided a preliminary gazing model as evidence. 

Furthermore, the tracking system does not require extensive infrastructure support beyond 

camera calibration and is largely user-independent.  Thus, the approach can be readily 

transplanted to other ECAs, from robotic humans to computer generated virtual humans.   

 Our research can be expanded in several directions. First, the impact of an ECA’s gaze on 

the users in a multi-party conversation needs to be investigated; for example, how users feel 

about an ECA’s attention in a multi-party conversation,  whether gaze behavior influences the 

communication quality in multi-party situations, and whether the ECA’s gaze which shifts from 
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the user’s eyes and mouth performs better than merely gazing in the user’s eye when the user is 

speaking to ECA.  

Second, for gaze modeling, the major bottleneck in the current approach is the creation of 

Markov gaze models for each conversational situation.  For two conversational participants plus 

the ECA and five gaze possibilities (face1, face2, mouth1, mouth2, random), a 5 x 5 table of 

transition probabilities are needed for each detected conversational situation (18 are detectable 

for the example interaction). With more users, the size of gaze transition probability table will 

increase exponentially, and the various users’ gaze direction could be much more complicated. 

However, much of the information in the tables is redundant.  Therefore, an automated or greatly 

simplified process is needed to identify and eliminate redundant information.  Moreover some 

inferred situations should be simplified to a point where a multi-party conversation would 

become a crowd situation.  That is, when more than N users are present, a crowd gaze model is 

employed.  This would reduce the number of tables needed. At what point this should happen, 

and how to make the transition gracefully is the topic of further research. 

 Third, for a virtual ECA displayed on a 2D screen, the virtual perspective (an artifact of 

the 3D rendering process) can be adjusted to match only a single user’s viewing perspective.  A 

matched perspective allows for correct gaze angle judgments. Thus, in multi-party conversations, 

those participants whose perspective does not match the virtual perspective will judge the gaze of 

the virtual ECA incorrectly.   To solve this problem, either holographic displays that provide true 

3D (like HoloVizio 3D display system [25]), the use of robotic ECAs (like RoboThespian™) or 

hybrid techniques such as Animatronic Shader Lamps Avatars [26] could be used, 

In addition, to better analyze the conversational states in the multi-party situations, the 

audio perception channel should be incorporated and correlated with the visual perception 
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channel for each person.  This hybrid situation further provides the possibility of audio-visual 

speech recognition.   
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