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CHAPTER 1 

INTRODUCTION 

The Elements of Statistical Learning is a popular book on data mining and machine 

learning written by three statistics professors at Stanford.  The book is intended for researchers in 

the field and for people that want to build robust machine learning libraries and thus is 

inaccessible to many people that are new into the field.   

On Amazon, roughly 1 out of 5 people
1
 find the book too difficult to read and went as far 

as to call the book a “disaster”.  There are many instances of the expressions “it is easy to show” 

or “the exercise is left to the reader”.  Often times for the novice reader, these problems are not 

so easy to show.  My goal in writing the thesis is to provide clarity to the book for novice 

readers.  Therefore, my goal is not to reproduce the book, but to act as a supplement that covers 

parts of the book the author overlooks.  In particular, my contributions are as follows: 

 Derive problems that are overlooked  (“it is easy to show”). 

 Provide solutions to exercises that can be understood to the novice reader. 

 Provide R code that the reader can copy and paste. 

With that said, there is a level requirement for reading this thesis.  Specifically, I assume 

that the reader is has taken courses in calculus, probability, linear algebra, and linear regression.  

I will assume that the reader is comfortable with calculus topics such as gradients, derivatives, 

and vector spaces.  For probability, an understanding of random variables, probability mass 

functions, cumulative distribution functions, expectation, variance and covariance, and basic 
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multivariate distributions is required.  For linear algebra, the reader should have a solid 

understanding of basic matrix operations, inverses, norms, determinants, eigenvalues and 

eigenvectors, and definiteness of matrices.  And for linear regression, the reader should be 

familiar with sum-of-squared errors, least squares estimation of parameters, and general 

hypothesis testing. 

This thesis is an introduction and covers Chapters 2 (Overview of Supervised Learning), 

3 (Linear Regression), and 4 (Classification).  An updated copy with Chapters 7(Model 

Validation), 8 (Model Inference), 9 (Additive Models), and 10 (Boosted Trees) is intended by 

mid-January.   

This manual is in no way complete and will be an ongoing project after graduating.  

Please refer to the site
1
 below if you are interested in new updates or contributing to the project.  

Suggestions and comments for improvement are always welcome! 

 

 

 

 

 

 

 

 

1
http://eslsolutionmanual.weebly.com 

http://eslsolutionmanual.weebly.com/
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CHAPTER 2 

OVERVIEW OF SUPERVISED LEARNING 

2.1 Introduction 

This section goes over mathematical notation, least squares and nearest neighbors, 

statistical decision theory, and the bias-variance decomposition.   

2.2 Mathematical Notation 

The mathematical notation adopted in this guide is identical to the one used in the book 

and is summarized below. 

 We bold matrices: 𝐗 ∈ 𝑅𝑛×𝑝 is a matrix with n rows and p columns. 

 We denote the jth column of matrix 𝐗 as 𝐱𝑗: 

 𝐗 = [

| | |
𝐱1 𝐱2 ⋯ 𝐱𝑝

| | |

]. 

 We denote the ith row of matrix 𝐗 as 𝐱𝑖
𝑇: 

𝐗 =

[
 
 
 
− 𝐱1

𝑇 −

− 𝐱2
𝑇 −

⋮
− 𝐱𝑛

𝑇 −]
 
 
 

 

 Generic vectors are capitalized 𝑋 and observed vectors are in lowercase 𝑥. 
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 The ith observation of vector 𝑥 is denoted 𝑥𝑖: 

𝑥 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] 

 We denote 𝑌 as a quantitative output and takes values in the real numbers.   

 We denote 𝐺 as a qualitative output.  

In the text, there are many terms that are not explained so we will try to define them here.  

We denote 𝑥𝑖 as the input variable (also called features) and 𝑦𝑖 the output variable (also called 

target) that we are trying to predict.  A training example is the pair (𝑥𝑖 , 𝑦𝑖) and the training set is 

a list of 𝑛 training examples {(𝑥𝑖, 𝑦𝑖) ∶ 𝑖 = 1,2, … , 𝑛} often denoted 𝑻 in the text. 

Given a training set, our goal is to learn a function (also called model) 𝑓: 𝑋 → 𝑌 so that 

our function is “good” at mapping the inputs to the corresponding outputs.  We will define what 

“good” means in Section 2.4.  Supervised learning refers to these types of functions with labeled 

data. 

2.3 Least Squares and Nearest Neighbors 

On page 12 in Equation 2.6, the author provides the unique solution to the coefficient 

vector 𝛽 as follows 

   �̂� = (𝐗T𝐗)−1𝐗𝑇𝑦.                                                                  (1) 
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Recall that in linear regression, we find the solution to the parameter vector 𝛽 by minimizing the 

sum-of-squared-errors written as follows 

𝑅𝑆𝑆(𝛽) = ∑(𝑦𝑖 − 𝛽0 − ∑𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2

.

𝑁

𝑖=1

                                      (2) 

Now define the vector 𝛽 = 〈𝛽0, 𝛽1, … , 𝛽𝑝〉 so that 𝛽 ∈ 𝑅𝑝+1.  It is important to note that we have 

included the intercept term in the vector and thus the corresponding observed values 𝑥𝑖 have an 

implicit 1 as its first element so that we get 

𝑥𝑖 = 〈𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝〉 → 〈1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝〉                     (3) 

after including the intercept term. 

Then we can rewrite the above quantity in vector form as follows 

𝑅𝑆𝑆(𝛽) = ∑(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2

𝑁

𝑖=1

.                                                          (4) 

To get the above quantity in matrix form, we will introduce the design matrix 𝐗 ∈ 𝑅𝑁×(𝑝+1) that 

contains the training input vectors 𝑥𝑖 along the rows: 

𝐗 =

[
 
 
 
− 𝑥1

𝑇 −

− 𝑥2
𝑇 −

⋮
− 𝑥𝑛

𝑇 −]
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and define the vector 𝑦 ∈ 𝑅𝑁 to be the vector with the training labels: 

𝑦 = [

𝑦1

𝑦2

⋮
𝑦𝑛

].                                                                                      

Then we can easily show that  

𝑦 − 𝐗𝛽 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] −

[
 
 
 
    𝑥1

𝑇𝛽    

𝑥2
𝑇𝛽
⋮

𝑥𝑛
𝑇𝛽 ]

 
 
 
                                                                   

=

[
 
 
 
    𝑦1 − 𝑥1

𝑇𝛽    

𝑦2 − 𝑥2
𝑇𝛽

⋮
𝑦𝑛 − 𝑥𝑛

𝑇𝛽 ]
 
 
 
                                                                      

so that we can rewrite the residual-sum-of-squared errors in matrix form as  

𝑅𝑆𝑆(𝛽) = (𝑦 − 𝐗𝛽)𝑇(𝑦 − 𝐗𝛽)                                                            (5) 

= 𝑦𝑇𝑦 − 2𝛽𝑇𝐗𝑇𝑦 + 𝛽𝑇𝐗𝑇𝐗𝛽                                               (6) 

Now, to minimize the function, set the derivative to zero  

𝜕𝑅𝑆𝑆(𝛽)

𝜕𝛽
= −2𝐗𝑇𝑦 + 2𝐗𝑇𝐗𝛽 = 0                                                        (7) 

 ⇒        𝐗𝑇𝐗𝛽 = 𝐗𝑇𝑦                                                                 (8) 

⇒     �̂� = (𝐗T𝐗)−1𝐗𝑇𝑦                                                           (9) 

and if 𝐗 is full rank, we get the unique solution in 𝛽 shown in (1).   
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 It is important to point out that for linear regression, our model here is 𝑓(𝑥𝑖) = 𝑥𝑖
𝑇𝛽 so 

that the prediction at an arbitrary point 𝑥0 is �̂�0 = 𝑥0
𝑇𝛽.   

On page 14, Equation (2.8) states that the k-nearest neighbors model has the form  

�̂�(𝑥) =
1

𝑘
∑ 𝑦𝑖 .

𝑥𝑖∈𝑁𝑘(𝑥)

                                                           (10) 

Where 𝑁𝑘(𝑥) is the neighborhood of x defined by the k closest points 𝑥𝑖 in the training sample.   

The word closest implies a metric and here it is the Euclidean distance.  More formally, define 

the 𝐷 = {𝑑(𝑥𝑖 , 𝑥): 𝑥𝑖 ∈ 𝑇} where 𝑑(𝑥𝑖, 𝑥) is any metric where for Euclidean distance it is 

𝑑(𝑥𝑖, 𝑥) = ||𝑥𝑖 − 𝑥||2.  Then the neighborhood is 

𝑁𝑘(𝑥) = {𝑥𝑖: 𝑑(𝑥𝑖 , 𝑥) ≤ 𝑑𝑘 where dkis the 𝑘th smallest element of 𝐷, 𝑥𝑖 ∈ 𝑇}. 

2.4 Statistical Decision Theory 

On page 18, Equation (2.9) of the book defines the squared error loss function as  

𝐿(𝑌, 𝑓(𝑋)) = (𝑌 − 𝑓(𝑋))
2
                                                                (11) 

which gives us the following expected prediction error 

𝐸𝑃𝐸(𝑓) = 𝐸 [(𝑌 − 𝑓(𝑋))
2
]                                                         (12) 

= ∫ ∫ [𝑦 − 𝑓(𝑥)]2Pr (𝑦, 𝑥)𝑑𝑦𝑑𝑥                                 (13) 

Now, we will fill in the steps that are skipped in the book.  Recall that we can factor the joint 

density as Pr(𝑋, 𝑌) = Pr(𝑌|𝑋)Pr(𝑋).   
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Then 

                                              = ∫ ∫[𝑦 − 𝑓(𝑥)]2 Pr(𝑦|𝑥) Pr(𝑥) 𝑑𝑦𝑑𝑥
𝑦𝑥

 

𝐸𝑃𝐸(𝑓) = 𝐸𝑋𝐸𝑌|𝑋([𝑌 − 𝑓(𝑋)]2|𝑋).                                           (14) 

Notice that by conditioning on 𝑋, we have freed the dependency of the function 𝑓 on 𝑋 and since 

the quantity [𝑌 − 𝑓]2 is convex, there is a unique solution.  We can now minimize to solve for 𝑓 

𝑓(𝑥) = argmin
𝑓

𝐸𝑌|𝑋([𝑌 − 𝑓]2|𝑋 = 𝑥)                                          (15) 

⇒
𝜕

𝜕𝑓
∫ [𝑌 − 𝑓]2 Pr(𝑦|𝑥) 𝑑𝑦 = 0                                             (16) 

= ∫
𝜕

𝜕𝑓
[𝑦 − 𝑓]2 Pr(𝑦|𝑋) 𝑑𝑦 = 0                                           (17) 

= 2∫ 𝑦𝑃𝑟(𝑦|𝑥)𝑑𝑦 = 2𝑓 ∫ 𝑃𝑟(𝑦|𝑥) 𝑑𝑦 = 0                  (18) 

⇒ 2𝐸[𝑌|𝑋] = 2𝑓                                                                       (19) 

⇒ 𝑓 = 𝐸[𝑌|𝑋 = 𝑥].                                                                  (20) 

Thus we get the Equation (2.13) from the book. 

Lets continue down this path and work out the problem from page 20, Equation (2.18) the 

author replaces the squared loss function with the absolute loss function: 𝐸[|𝑌 − 𝑓(𝑋)|].  The 

equation from the book is as follows 

𝑓(𝑥) = median(𝑌|𝑋 = 𝑥)                                                      (21) 
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then the expected prediction error for absolute loss is almost identical to that of squared loss.  If 

you become confused with this example, refer back to the squared loss derivation for the first 

few steps.  We can write the expected prediction error for absolute loss as follows 

𝐸𝑃𝐸(𝑓) = 𝐸[|𝑌 − 𝑓(𝑋)|]                                                            (22) 

= ∫ ∫ |𝑦 − 𝑓(𝑥)|Pr (𝑦, 𝑥)𝑑𝑦𝑑𝑥                                  (23) 

then recall that by factoring joint density, we can rewrite the above quantity as  

𝐸𝑃𝐸(𝑓) = 𝐸𝑋𝐸𝑌|𝑋(|𝑌 − 𝑓(𝑋)||𝑋).                                           (24) 

and we free the dependency of f on x again so that it suffices to minimize the conditional density 

of y 

𝑓(𝑥) = argmin
𝑓

𝐸𝑌|𝑋(|𝑌 − 𝑓||𝑋 = 𝑥)                                  (25) 

=
𝜕

𝜕𝑓
∫ |𝑌 − 𝑓|Pr(𝑦|𝑋)𝑑𝑦 = 0                                  (26) 

From here, the integration is a little sophisticated and requires a branch of analysis known as 

measure theory.  For this reason, we will provide an approximation that does not address the 

smaller details.  By using the law of large numbers, we get the following 

∫ |𝑌 − 𝑓| Pr(𝑦|𝑋)𝑑𝑦 = 𝐿𝑖𝑚𝑛→∞

1

𝑛
∑|𝑌𝑖 − 𝑓|

𝑛

𝑖=1

≈
1

𝑛
∑|𝑌𝑖 − 𝑓|

𝑛

𝑖=1

                   (27) 

and so that we can get an approximation that converges when n is large.  For this example, we 

will use the approximation, the last term in the above equation.  Notice here that the absolute 

function is piecewise  



10 
 

|𝑌𝑖 − 𝑓| = {

𝑌𝑖 − 𝑓,        𝑌𝑖 − 𝑓 > 0
𝑓 − 𝑌𝑖, 𝑌𝑖 − 𝑓 < 0

0,          𝑌𝑖 = 𝑓
                                          (28) 

so that taking the derivative is not continuous at zero 

𝜕

𝜕𝑓
|𝑌𝑖 − 𝑓| = {

−1,        𝑌𝑖 − 𝑓 > 0
1, 𝑌𝑖 − 𝑓 < 0
0,                 𝑌𝑖 = 𝑓

.                                              (29) 

Now, we can introduce a new function, the sign function to make the definition clearer 

𝑠𝑖𝑔𝑛(𝑥) = {
1,           𝑥 > 0
−1, 𝑥 < 0
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                     (30) 

so that substituting it back in we get 

≈
𝜕

𝜕𝑓

1

𝑛
∑|𝑌𝑖 − 𝑓|

𝑛

𝑖=1

= 0                                                   (31) 

=
1

𝑛
∑−𝑠𝑖𝑔𝑛(𝑌𝑖 − 𝑓)

𝑛

𝑖=1

= 0                                            (32) 

= ∑𝑠𝑖𝑔𝑛(𝑌𝑖 − 𝑓)

𝑛

𝑖=1

= 0.                                                  (33) 

At what value of f does the above quantity hold?  It holds when there is an equal number of 

positive and negative values; that is, where  

𝑐𝑎𝑟𝑑(𝑌𝑖 − 𝑓 > 0) = 𝑐𝑎𝑟𝑑(𝑌𝑖 − 𝑓 < 0).                                                (34) 
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 The value of f where that is true is the median.  Recall that the median can be found by sorting a 

finite list of numbers from lowest value to highest value and picking the middle one.  When there 

is an odd number of observations, there is a single number that divides the set (e.g. the median of 

{2,3,4,5,6} is 4).  When there is an even number, there is a range of values that can divide the set 

(e.g. the median of {2,4,6,8} is the any value in 𝑓 ∈ (4,6)).  In conclusion, we have shown that 

𝑓(𝑥) = median(𝑌|𝑋 = 𝑥). 

On page 24, Equation (2.25) is nested in Equation (2.27) so we will derive Equation 

(2.27). The derivation is a little tedious and algebraic but it is an important one.  The expected 

(squared) prediction error at an arbitrary point 𝑥0 is 

 𝐸𝑃𝐸(𝑥0) = 𝐸𝑦0|𝑥0
𝐸𝑇(𝑦0 − �̂�0)

2.                                           (35) 

The T here is the training set that we defined earlier, 𝑦0|𝑥0 and 𝑦0 are identical quantities that 

represent a random variable conditioned on 𝑥0.  Additionally, �̂�0 is our prediction at 𝑥0, that is 

�̂�0 = 𝑓(𝑥0) where 𝑓 is our model estimate of the true model 𝑓 fitted on the training data.  We 

assume the model 

𝑌 = 𝑓(𝑋) + 𝜖                                                                 (36) 

where 𝜖 ~ 𝑁(0, 𝜎2) and independently distributed.  To start the proof, we use a little trick by 

inserting the true function 𝑓(𝑥0) as follows 

𝐸𝑃𝐸(𝑥0) = 𝐸𝑦0|𝑥0
𝐸𝑇(𝑦0 − �̂�0)

2                                                            

= 𝐸𝑦0|𝑥0
𝐸𝑇((𝑦0 − 𝑓(𝑥0)) + (𝑓(𝑥0) − �̂�0))

2.         (37) 



12 
 

Notice that by subtracting and adding 𝑓(𝑥0), the value of the function does not change.  It is also 

important to point out here that the model 𝑓(𝑥0) = �̂�0 is fitted on the training set by our 

definition in the introduction.  Thus, the only term in the above function that depends on T is �̂�0.  

We then continue with the problem and factor out the squared term as 

= 𝐸𝑦0|𝑥0
𝐸𝑇 [(𝑦0 − 𝑓(𝑥0))

2
] + 2𝐸𝑦0|𝑥0

𝐸𝑇[(𝑦 − 𝑓(𝑥0)) ⋅ (𝑓(𝑥0) − �̂�0)] 

+𝐸𝑦0|𝑥0
𝐸𝑇[(𝑓(𝑥0) − �̂�0)

2].                                       (38) 

The first quantity 𝐸𝑦0|𝑥0
𝐸𝑇 [(𝑦0 − 𝑓(𝑥0))

2
] is independent of the training set so we can 

reduce it to  

𝐸𝑦0|𝑥0
[(𝑦0 − 𝑓(𝑥0))

2
] = ∫(𝑦0 − 𝑓(𝑥0))

2
Pr(𝑦0|𝑥0) 𝑑𝑦                   (39) 

where 𝐸[𝑦0] = 𝑓(𝑥0), the true mean.  Then notice that this is just the function for the conditional 

variance that we specified as 𝜎2. 

 For the second quantity, we can factor out the middle term: 

𝐸𝑦0|𝑥0
𝐸𝑇[(𝑦0 − 𝑓(𝑥0)) ⋅ (𝑓(𝑥0) − �̂�0)] = 𝐸𝑦0|𝑥0

𝐸𝑇[𝑦0𝑓(𝑥0) − 𝑦0�̂�0 − 𝑓(𝑥0)
2 + 𝑓(𝑥0)�̂�0]  (40) 

and by linearity of expectation,  

= 𝐸𝑦0|𝑥0
𝐸𝑇[𝑦0𝑓(𝑥0)] − 𝐸𝑦0|𝑥0

𝐸𝑇[𝑦0�̂�0] − 𝐸𝑦0|𝑥0
𝐸𝑇[𝑓(𝑥0)

2] + 𝐸𝑦0|𝑥0
𝐸𝑇[𝑓(𝑥0)�̂�0].   (41) 

We stated that only �̂�0 is dependent on T.  Additionally, notice that 𝑓(𝑥0) = 𝐸[𝑦0] so it is a 

constant term so that we can reduce the above quantity to 

= 𝑓(𝑥0)𝐸𝑦0|𝑥0
[𝑦0] − 𝐸𝑦0|𝑥0

[𝑦0𝐸𝑇[�̂�0]] − 𝑓(𝑥0)
2 + 𝑓(𝑥0)𝐸𝑦0|𝑥0

𝐸𝑇[�̂�0].      (42) 
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Notice that for the first term, the relationship  

𝐸𝑦0|𝑥0
[𝑦0] = ∫ 𝑦0 Pr(y0|𝑥0) 𝑑𝑦 = 𝑓(𝑥0).                                  (43) 

For the second term, the relationship is 

𝐸𝑦0|𝑥0
[𝑦0𝐸𝑇[�̂�0]] = 𝐸𝑇[�̂�0]𝐸𝑦0|𝑥0

[𝑦0] = 𝐸𝑇[�̂�0]𝑓(𝑥0)                       (44) 

and the last term, we get  

𝑓(𝑥0)𝐸𝑦0|𝑥0
𝐸𝑇[�̂�0] = 𝑓(𝑥0)𝐸𝑇[�̂�0]                                                    (45) 

and thus adding all of these terms together, the first and third quantities cancel, the second and 

last quantities cancel so that the entire middle term equals 0. 

 Now, we are left with the last term 𝐸𝑦0|𝑥0
𝐸𝑇[(𝑓(𝑥0) − �̂�0)

2] which we can factor out as 

follows 

= 𝐸𝑦0|𝑥0
𝐸𝑇[𝑓(𝑥0)

2] − 2𝐸𝑦0|𝑥0
𝐸𝑇[𝑓(𝑥0)�̂�0] + 𝐸𝑦0|𝑥0

𝐸𝑇[�̂�0
2].                     (46) 

We are going to use another property here, which is that  

𝐸𝑦0|𝑥0
𝐸𝑇[(𝑓(𝑥0) − 𝐸𝑇[�̂�0])

2] = 𝐸𝑦0|𝑥0
𝐸𝑇[𝑓(𝑥0)

2] − 2𝐸𝑦0|𝑥0
𝐸𝑇[𝑓(𝑥0)�̂�0] + 𝐸𝑦0|𝑥0

𝐸𝑇[�̂�0]
2  (47) 

and then substitute it back into the original equation to get  

= 𝐸𝑦0|𝑥0
𝐸𝑇[(𝑓(𝑥0) − 𝐸𝑇[�̂�0])

2] − 𝐸𝑦0|𝑥0
𝐸𝑇[�̂�0

2] + 𝐸𝑦0|𝑥0
𝐸𝑇[�̂�0

2]             (48) 

and we can reduce it as we did in the previous quantities as  
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= [(𝑓(𝑥0) − 𝐸𝑇[�̂�0])
2] + 𝐸𝑇[�̂�0

2] − 𝐸𝑇[�̂�0
2]                                          (49) 

= 𝐵𝑖𝑎𝑠(𝑓)
2
+ 𝑉𝑎𝑟(𝑓).                                                                              (50) 

Recall that �̂�0 = 𝑓(𝑥0) and so we use them interchangeably.  The first quantity is called 

the squared bias of an estimator (not to be confused with the vernacular bias meaning being 

partial to something).  Our estimator here is our approximating function 𝑓 and the bias is the 

difference between the expected value of our estimator and the true function.  Often times, it is 

desirable to have an unbiased estimator but, as we will soon see, this is not always the case.  The 

variance arises from our basic probability class 𝑉𝑎𝑟(�̂�0) = 𝐸[�̂�0
2] − 𝐸[�̂�0]

2 and tells us how 

much our function varies across different training sets.  Notice also that the third quantity above 

is also the same one in Equation (2.5) so that we have solved for the 𝑀𝑆𝐸(𝑓) here.   

So recapping the expected squared prediction error at 𝑥0 equals 

𝐸𝑃𝐸(𝑥0) = 𝜎2 + 𝐵𝑖𝑎𝑠(𝑓)
2
+ 𝑉𝑎𝑟(𝑓)                                          (51) 

where 𝜎2 is the irreducible error.  This is a famous result in statistics and is also known as the 

bias-variance decomposition.  This completes Equations (2.25) and (2.27). 

On page 31, Equation (2.35) gives us the equation for the likelihood of the data under the 

least squares model as 

𝐿(𝜃) = −
𝑛

2
log(2𝜋) − 𝑛 log 𝜎 −

1

2𝜎2
∑(𝑦𝑖 − 𝑓𝜃(𝑥𝑖))

2
.

𝑛

𝑖=1

               (52) 

We will derive that here.  Recall that for least squares, we assume the model  

𝑌 = 𝑋𝑇𝛽 + 𝜖                           
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where 𝜖 ~ 𝑁(0, 𝜎2).  Notice that the density of 𝜖𝑖 is  

Pr(𝜖𝑖) =
1

𝜎√2𝜋
exp (−

𝜖𝑖
2

2𝜎2
)                                                  (53) 

then 𝜖𝑖 = 𝑦𝑖 − 𝑥𝑖
𝑇𝛽 so that we get the density  

Pr(𝑦𝑖|𝑥𝑖, 𝛽) =
1

𝜎√2𝜋
exp(−

(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2

2𝜎2
)                                  (54) 

where here we assume that 𝑥𝑖 and 𝛽 are fixed and 𝑦𝑖 is random.  We can also write the 

distribution of 𝑦𝑖|𝑥𝑖 ~ 𝑁(𝑥𝑖
𝑇𝛽, 𝜎2).  Now suppose we have our training data, T, and we want to 

estimate the parameters.  As stated in the text, we would like to find the value of 𝛽 that 

maximizes the probability of the data.  When we write the quantity as Pr (𝑦|𝐗, 𝛽), this assumes 

that 𝛽 is fixed.  Instead, we will call this the likelihood and rewrite it  

 𝐿(𝜃) = 𝑃(𝑦|𝐗, 𝛽)                                                                  (55) 

so that now 𝛽 is a function of the likelihood.  Since we assume that our training examples our 

drawn independently, we can write the likelihood of the data as  

𝐿(𝛽) = ∏𝑝(𝑦𝑖|𝑥𝑖, 𝛽)

𝑛

𝑖=1

                                                               (56) 

= ∏
1

𝜎√2𝜋
exp(−

(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2

2𝜎2
)

𝑛

𝑖=1

                               (57) 

Maximizing any monotonic transformation of the likelihood function is also the maximum.  That 

is, given a monotonic function 𝑔(𝑥), we have that for the likelihood 𝐿(𝑥1) > 𝐿(𝑥2) for any 

𝑥1, 𝑥2 in the domain of 𝐿 implies that 𝑔(𝑥1) > 𝑔(𝑥2).  A common transformation used in 
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statistics is the log transformation since it turns the products of the likelihood into sums for the 

log likelihood.  By applying the log transformation, we get  

log(𝐿(𝛽)) = ℓ(𝛽) = ∑log(
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2

2𝜎2
))

𝑛

𝑖=1

                         (58) 

= 𝑛 log
1

√2𝜋𝜎
−

1

2𝜎2
∑(𝑦𝑖 − 𝑥𝑖

𝑇𝛽)2

𝑛

𝑖=1

                                (59) 

= −
𝑛

2
log 2𝜋 − 𝑛 log 𝜎 −

1

2𝜎2
∑(𝑦𝑖 − 𝑥𝑖

𝑇𝛽)2

𝑛

𝑖=1

               (60) 

which gives us Equation (2.35) from the book and maximizing the above quantity is the same as 

minimizing the quantity ∑ (𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2𝑛

𝑖=1 since it is again a monotonic transformation and 

multiplying by (-1) turns a maximization problem into a minimization.  Notice the surprising fact 

here; we get the least squares loss function from linear regression from maximum likelihood 

estimation. 

To conclude this section, we illustrate the bias-variance tradeoff by reproducing Figure 

2.11 from the book using nearest neighbors. 
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Figure 2.1 Bias-Variance Tradeoff. 

The left side of Figure 2.1 represents a large value of 𝑘 using nearest neighbors which has 

low variance in the test set but a high bias.  The right side shows that as 𝑘 → 1, the prediction 

error on the training set falls to zero but that the error on the testing set is high and thus the 

model fails to generalize well.  

Table 2.1. R Code for Figure 2.1. 

library(FNN) # For nearest neighbor 

library(lattice) 

library(latticeExtra) 

library(gridExtra) 

 

# Color palette # http://www.cookbook-r.com/Graphs/Colors_%28ggplot2%29/ 

cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", 

"#0072B2", "#D55E00", "#CC79A7") 

 

# Define mean squared error 

mse=function(x,y){return(mean((y-x)^2))} 

 

# Generate random data 

x1=rnorm(1000) 

x2=x1+rnorm(1000) 

x3=rnorm(1000) 
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y=x1+rnorm(1000) 

data=data.frame(x1,x2,x3,y) 

 

# Train/test (50/50) split 

train=data[1:500,] 

test=data[500:1000,] 

 

# Instantiate error vectors 

train_err=NULL 

test_err=NULL 

 

# Find train/test error for varying values of k 

for(i in 15:1) 

{ 

    # Nearest Neighbor model 

    nearest_train <- knn.reg(train=train, test=train, y=y, k = i) 

    nearest_test <- knn.reg(train=train, test=test, y=y, k = i) 

     

    # MSE 

    train_err=append(train_err,mse(nearest_train$pred,train$y)) 

    test_err=append(test_err,mse(nearest_test$pred,test$y)) 

} 

 

 

# Plot 

a1=xyplot(train_err~1:15, 

    xlab=list(label='Model Complexity',cex=0.7),  

    ylab=list(label='Prediction Error',cex=0.7), 

    main=list(label='Training and Test Error',cex=0.75), 

    scales = list(x = list(draw = FALSE),y=list(draw=FALSE)), 

    panel=function(...){ 

        panel.lines(train_err,col=cbPalette[6]) 

}) 

 

 

a2=xyplot(test_err~1:15, 

    panel=function(...){ 

        panel.lines(test_err,col=cbPalette[7]) 

}) 

 

 

grid.arrange(a1+a2,ncol=1) 

 

2.5 Problems and Solutions 

Exercise 2.1. Suppose each of K-classes has an associated target 𝑡𝑘, which is a vector of 

all zeros, except a one in the kth position. Show that classifying to the largest element of �̂� 

amounts to choosing the closest target,𝑚𝑖𝑛𝑘 ||𝑡𝑘 − �̂�||, if the elements of �̂� sum to one. 
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Proof: This is a classification problem defined in the book.  Suppose we have a set 𝑇 with 

K-elements (or classes) that hold the standard basis in 𝑅𝐾.  That 

is, 𝑇 = {(1,0,… ,0)𝑇 , (0,1, … ,0)𝑇 … , (0,0, … ,1)𝑇} and 𝑡𝑘 ∈ 𝑇.  In this problem, �̂� is a 𝐾-

dimensional vector with the element �̂�𝑖 being the probability that Pr (𝑦𝑖 = 𝑡𝑘).  It is not clear 

what model �̂� is generated from but presumably it is regression since �̂� is continuous.  We will 

not place any assumptions on the model.   

To solve the equation, we can write it as  

min
𝑘

||𝑡𝑘 − �̂�|| = min
𝑘

∑(𝑡𝑘,𝑖 − 𝑦𝑖 )
2

𝐾

𝑖=1

 

 = min
𝑘

∑𝑡𝑘,𝑖
2 − 2𝑡𝑘,𝑖𝑦𝑖 +  𝑦𝑖

2

𝐾

𝑖=1

                                          

Then notice here that for the first term, when  𝑘 = 𝑖, the quantity equals 1 else it is 0.  Thus, 

∑ 𝑡𝑘,𝑖
2

𝑖 = 1 for all values of 𝑘.  Likewise, the last term ∑ 𝑦𝑖
2

𝑖  is independent of 𝑘 so that it is 

constant with respect to 𝑘.  Finally, the middle term ∑ −2𝑡𝑘,𝑖𝑦𝑖𝑖 = −2𝑦𝑖 when 𝑘 = 𝑖 and is 0 

otherwise.  Note that is also varies across different values of 𝑘 so that it is a function of 𝑘.    

Then, we can rewrite the above function as a function of only the middle term as follows  

 = min
𝑘

∑−2𝑡𝑘,𝑖𝑦𝑖

𝐾

𝑖=1

.                                                            

And as we stated above, this is only non-zero at  

= min
𝑘

−2𝑡𝑘𝑦𝑘                                                                     
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⇔ min
𝑘

−𝑦𝑘                                                                           

and multiplying the above quantity by (−1), we can change the min to a max problem as follows 

= max
𝑘

𝑦𝑘                                                                             

and so we have shown that classifying the largest element �̂� amounts to choosing the closest 

target. 

Exercise 2.2. Show how to compute the Bayes decision boundary for the simulation 

example in Figure 2.5. 

Proof: For this example, the data has two classes and each was generated by a separate 

mixture of Gaussians.  That is, our generating density is 𝑁(𝑚𝑘,
𝐼

5
) is a weighted sum of 10 

Gaussians generated from 𝑁((0,1)𝑇, 𝐼).  

The generation process is described in the table below.  They are identical except for the 

first step. 

Class 1 Class 2 

1. 10 means generated from a 

bivariate Gaussian 𝑁((0,1)𝑇, 𝐼). 

2. 100 Samples selected as follows 

a. For each observation, 𝑚𝑘 

was selected with probability 
1

10
. 

b. Then a sample was 

generated from the bivariate 

Gaussian 𝑁(𝑚𝑘,
𝐼

5
). 

 

1. 10 means generated from a 

bivariate Gaussian 𝑁((1,0)𝑇, 𝐼). 

2. 100 Samples selected as follows 

a. For each observation, 𝑛𝑖 

was selected with probability 
1

10
. 

b. Then a sample was 

generated from the bivariate 

Gaussian 𝑁(𝑛𝑖 ,
𝐼

5
). 
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Recall that the Bayes classifier says that we classify to the most probable class using the 

conditional distribution Pr (𝐺|𝑋).  Hence, the decision boundary is the set of points that 

partitions the vector space into two sets; one for each class.  On the decision boundary itself, the 

output label is ambiguous.  Thus, the optimal Bayes decision boundary is defined as  

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = {𝑥:max
𝑔∈𝐺

Pr(𝑔|𝑋 = 𝑥) = max
𝑘∈𝐺

Pr(𝑘|𝑋 = 𝑥)}. 

That is, it is the set of points where the most probable class is tied between two or more 

classes.  In our example, there are only two classes so that 𝑐𝑎𝑟𝑑(𝐺) = 2.   

Hence, we can rewrite the above quantity as  

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = {𝑥: Pr (𝑔|𝑋 = 𝑥) = Pr (𝑘|𝑋 = 𝑥)} 

 = {𝑥:
Pr(𝑔|𝑋 = 𝑥)

Pr(𝑘|𝑋 = 𝑥)
= 1}. 

We can then rewrite the above quantity by using Bayes rule as follows 

Pr(𝑔|𝑋 = 𝑥)

Pr(𝑘|𝑋 = 𝑥)
=

Pr(𝑋 = 𝑥|𝑔)Pr (𝑔) /Pr (𝑋 = 𝑥)

Pr(𝑋 = 𝑥|𝑘) Pr(𝑘) /Pr (𝑋 = 𝑥)
=

Pr(𝑋 = 𝑥|𝑔) Pr (𝑔)

Pr(𝑋 = 𝑥|𝑘) Pr (𝑘)
= 1 

because we have 100 points in each class, Pr(𝑔) = Pr(𝑘) so we can remove those from the 

above equation.  Then the boundary is {𝑥: Pr(𝑋 = 𝑥|𝑔) = Pr(𝑋 = 𝑥|𝑘)} which in this example, 

since we know the generating density to be Gaussian, we can rewrite  

Pr(𝑋 = 𝑥|𝑔) = ∏
1

5√2𝜋
exp(−

(𝑥 − 𝑚𝑘)
2

2 ⋅ 25
)

10

𝑘=1
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and since we know the log transformation is monotonic and preserves the ordering, we can log it 

and write it as  

log(Pr(𝑋 = 𝑥|𝑔)) = ∑ log (
1

5√2𝜋
)

10

𝑘=1

−
(𝑥 − 𝑚𝑘)

2

2 ⋅ 25
. 

Now, equating class 𝑔 and 𝑘 to get the decision boundary, we get the following 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = {𝑥: ∑ log (
1

5√2𝜋
)

10

𝑘=1

−
(𝑥 − 𝑚𝑘)

2

2 ⋅ 25
= ∑log (

1

5√2𝜋
)

10

𝑖=1

−
(𝑥 − 𝑛𝑖)

2

2 ⋅ 25
} 

= {𝑥: ∑(𝑥 − 𝑚𝑘)
2

10

𝑘=1

= ∑(𝑥 − 𝑛𝑖)
2

10

𝑖=1

} 

The exact boundary for figure 2.5 would depend on our generated means.  

Exercise 2.4.  The edge effect problem discussed on page 23 is not peculiar to uniform 

sampling from bounded domains. Consider inputs drawn from a spherical multinormal 

distribution 𝑋 ~ 𝑁(0, 𝐼𝑝). The squared distance from any sample point to the origin has a 𝜒𝑝
2 

distribution with mean 𝑝. Consider a prediction point 𝑥0 drawn from this distribution, and let 

𝑎 = 𝑥0/||𝑥0||  be an associated unit vector. Let 𝑧𝑖 = 𝑎𝑇𝑥𝑖 be the projection of each of the 

training points on this direction.  

1.  Show that the 𝑧𝑖 are distributed 𝑁(0,1). 

2.  Show that the target point has expected squared distance 𝑝 from the origin.  

Hence for 𝑝 =10, a randomly drawn test point is about 3.1 standard deviations from the 

origin, while all the training points are on average one standard deviation along direction 𝑎. So 

most prediction points see themselves as lying on the edge of the training set. 
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Proof: There is a well-known property that states that a linear combination of mutually 

independent normal random variables is itself normal.  We will not derive that proof but it can be 

easily found on the internet or in a probability textbook.  That is, if 

 𝑧 = ∑𝑎𝑖𝑥𝑖

𝑝

𝑖=1

  

where each 𝑥𝑖  ~ 𝑁(0,1) then the mean is  

𝐸[𝑧] = ∑𝑎𝑖𝑥𝑖   

𝑝

𝑖=1

 

and the variance is  

𝑉𝑎𝑟(𝑧) = ∑𝑎𝑖
2𝑉𝑎𝑟(𝑥𝑖)

𝑝

𝑖=1

 

and 𝑧𝑖  ~ 𝑁(𝐸[𝑧], 𝑉𝑎𝑟(𝑧)). 

For (1), 𝑧𝑖 = 𝑎𝑇𝑥𝑖 so that the expectation is 

 𝐸[𝑧𝑖] = 𝐸[𝑎𝑇𝑥𝑖] = 𝑎𝑇𝐸[𝑥𝑖] = 𝑎𝑇0 

by linearity since 𝑎 is constant and 0 is the 𝑝 × 1-dimensional vector of zeros.  Notice here that 𝑎 

is constant although it is randomly drawn since once we draw it, we are using the same value and 

hence it is no longer random. 

For the variance, 

𝑉𝑎𝑟(𝑎𝑇𝑥𝑖) = 𝑎𝑇𝑉𝑎𝑟(𝑥𝑖)𝑎 = 𝑎𝑇𝐼𝑝𝑎 = ||𝑎||2
2 =

𝑥0
𝑇𝑥0

||𝑥0||2
2 =

||𝑥0||2
2

||𝑥0||2
2 = 1 

 by the property of variance where constant terms are squared.  This leaves that the resulting 

distribution 𝑧𝑖 to have mean 0 and variance 1.   
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Using that property, 𝑧𝑖 = 𝑎𝑇𝑥 states that 𝑧𝑖 is a linear combination of normal 

distributions implies that 𝑧𝑖 is itself normally distributed.  We have shown that 𝑧𝑖 ~ 𝑁(0,1) and 

so that this completes the problem.  

For (2), it is not clear from the problem what the “target” point is, but presumably it is 𝑋 

since it can be shown 𝑋 has a squared expected distance 𝑝.  Since 𝑋 is a 𝑝 × 1-dimensional 

random vector generated from 𝑁(0, 𝐈𝑝), then the squared distance of 𝑋 can be written 

conveniently in vector form as 𝑋𝑇𝑋 = ∑ 𝑥𝑖
2𝑝

𝑖=1 .  Notice that the covariance between 𝑥𝑖 and 𝑥𝑗 is 

0 for all 𝑖, 𝑗 but this is not imply the independence required by the chi-squared distribution.  

However, since the multivariate distribution is spherical, we will assume that the author implies 

that they are independently drawn.  Then assuming independence, each 𝑥𝑖 has mean 0 and 

variance of 1 and 

 𝑥𝑖
𝑇𝑥𝑖 = ∑𝑥𝑖

2

𝑝

𝑖=1

 ~ 𝜒𝑝
2 

and so is distributed 𝜒𝑝
2 with mean 𝑝. 

Exercise 2.5. Derive Equation (2.27) where the expected prediction error at a point 𝑥0 is 

as follows 

𝐸𝑃𝐸(𝑥0) = 𝐸𝑦0|𝑥0
𝐸𝑇(𝑦0 − �̂�0)

2          

= 𝑉𝑎𝑟(𝑦0|𝑥0) + 𝐸𝑇[�̂�0 − 𝐸𝑇�̂�0]
2 + [𝐸𝑇�̂�0 − 𝑥0

𝑇𝛽]2           

= 𝑉𝑎𝑟(𝑦0|𝑥0) + 𝑉𝑎𝑟𝑇(�̂�0) + 𝐵𝑖𝑎𝑠2(�̂�0)                               

= 𝜎2 + 𝐸𝑇𝑥0
𝑇(𝐗T𝐗)−1𝑥0𝜎

2 + 02                                (2.27) 
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Proof :  On page 11 of this guide, we showed the derivation of lines 1-3.  For the last line 

4, we assume that the relationship between 𝑌 and 𝑋 is linear, 

𝑌 = 𝑋𝑇𝛽 + 𝜖 

where 𝜖 ~ 𝑁(0, 𝜎2) and the model is fit by least squares.  Then the first term 𝑉𝑎𝑟(𝑦0|𝑥0) is the 

conditional variance and since is distributed  𝑁(0, 𝜎2) , it equals 𝜎2.  The least squares is 

unbiased under for the linear assumption so the last term is 0.   

This leaves us with the second term which we can write as follows  

𝑉𝑎𝑟𝑇(�̂�0) = 𝑉𝑎𝑟𝑇(𝑥0
𝑇�̂�) = 𝑥0

𝑇𝑉𝑎𝑟𝑇(�̂�)𝑥0. 

The multivariate covariance is a generalization of the scalar case for squaring constant terms 

under variance properties.  That is, we used the property of covariance which is 𝐶𝑜𝑣(𝐀𝑥 + 𝑎) =

𝐀𝐶𝑜𝑣(𝑥)𝐀𝑇 for 𝑥 ∈ 𝑅𝑝.  Keep in mind that we are assuming the 𝑥𝑖’s are held fixed and 𝑦 is 

random.  Now, we only need to find the 𝑉𝑎𝑟𝑇(�̂�).  Recall that  

�̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝑦 

 and  

𝑌 = 𝑋𝛽 + 𝜖 

then this implies that   

�̂� = (𝐗𝑇𝐗)−1𝐗𝑇(𝐗𝛽 + 𝜖)              

⇒ �̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝐗𝛽 + (𝐗𝑇𝐗)−1𝑋𝑇𝜖 



26 
 

by doing some matrix operations.  Notice that the left term (𝐗𝑇𝐗)−1𝐗𝑇𝐗𝛽 is non-random and so 

this leaves that the variance is 

𝑉𝑎𝑟𝑇(�̂�) = 𝑉𝑎𝑟((𝐗𝑇𝐗)−1𝐗𝑇𝜖)                                       

= (𝐗𝑇𝐗)−1𝐗𝑇𝑉𝑎𝑟𝑇(𝜖)𝑋(𝐗𝑇𝐗)−1 

Since 𝑉𝑎𝑟𝑇(𝜖) = 𝜎2 

= (𝐗𝑇𝐗)−1𝐗𝑇𝐗(𝐗𝑇𝐗)−1𝜎2     

= (𝐗𝑇𝐗)−1𝜎2                            

then this implies that  

𝑉𝑎𝑟𝑇(�̂�0) = 𝑥0
𝑇(𝐗𝑇𝐗)−1𝑥0

𝑇𝜎2       

and since none of the remaining variables are random with respect to the training data, this is 

equivalent to  

= 𝐸𝑇𝑥0
𝑇(𝐗𝑇𝐗)−1𝑥0

𝑇𝜎2 

which concludes the problem. 

2. Derive equation (2.28), making use of the cyclic property of the trace operator 

[𝑡𝑟𝑎𝑐𝑒(𝐴𝐵) = 𝑡𝑟𝑎𝑐𝑒(𝐵𝐴)], and its linearity (which allows us to interchange the order of trace 

and expectation). 

𝐸𝑥0
𝐸𝑃𝐸(𝑥0) ~ 𝐸𝑥0

𝑥0
𝑇𝐶𝑜𝑣(𝑋)−1𝑥0𝜎

2/𝑁 + 𝜎2                                      

= trace[𝐶𝑜𝑣(𝑋)−1𝐶𝑜𝑣(𝑥0)]𝜎
2/𝑁 + 𝜎2                         
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= 𝜎2 (
𝑝

𝑁
) + 𝜎2                                                         (2.28) 

which is the formula for expected prediction error. 

Our assumption here is that the matrix 𝑋 has mean 0 along the columns.  Then, by the 

definition of covariance matrices, the covariance of a random vector 𝑋 is  

𝐶𝑜𝑣(𝑋) = 𝐸[(𝑋 − 𝜇)(𝑋 − 𝜇)𝑇] = 𝐸[𝑋𝑋𝑇] − 𝜇𝜇𝑇 

where 𝜇 = 0 here since our matrix is centered.  Then we get our sample covariance matrix to be   

𝐶𝑜�̂�(𝑋) =
𝐗𝑇𝐗

𝑁
. 

To see this, recall that one way to view matrix products is 

𝐗𝑇𝐗

N
=

[
 
 
 
− 𝐱1

𝑇 −

− 𝐱2
𝑇 −

⋮
− 𝐱𝑛

𝑇 −]
 
 
 

[

| | |
𝐱1 𝐱2 ⋯ 𝐱𝑝

| | |

] /𝑁 

=

[
 
 
 
 
 
 
 
𝐱1

𝑇𝐱1

𝑁

𝐱1
𝑇𝐱2

𝑁
⋯

𝐱1
𝑇𝐱𝑝

𝑁
𝐱2

𝑇𝐱1

𝑁

𝐱2
𝑇𝐱2

𝑁
⋯

𝐱2
𝑇𝐱𝑝

𝑁
⋮ ⋮ ⋱ ⋮

𝐱𝑝
𝑇𝐱1

𝑁

𝐱𝑝
𝑇𝐱1

𝑁
⋯

𝐱𝑝
𝑇𝐱𝑝

𝑁 ]
 
 
 
 
 
 
 

 

=

[
 
 
 
 
𝐶𝑜�̂�(𝑋1, 𝑋1) 𝐶𝑜�̂�(𝑋1, 𝑋2) ⋯ 𝐶𝑜�̂�(𝑋1, 𝑋𝑝)

𝐶𝑜�̂�(𝑋2, 𝑋1) 𝐶𝑜�̂�(𝑋2, 𝑋2) ⋯ 𝐶𝑜�̂�(𝑋2, 𝑋𝑝)

⋮ ⋮ ⋱ ⋮
𝐶𝑜�̂�(𝑋𝑝, 𝑋1) 𝐶𝑜�̂�(𝑋𝑝, 𝑋2) ⋯ 𝐶𝑜�̂�(𝑋𝑝, 𝑋𝑝)]

 
 
 
 

 

So that in the first line, if 𝑁 is large and assuming 𝐸(𝑋) = 0, then 𝐗𝑇𝐗 → 𝑁𝐶𝑜𝑣(𝑋).  



28 
 

For the second line, 𝐸𝑥0
𝑥0

𝑇𝐶𝑜𝑣(𝑋)−1𝑥0 is scalar, thus we can use the linearity property 

where the expectation distributes over the trace sum as follows 

𝐸𝑥0
trace[𝑥0

𝑇𝐶𝑜𝑣(𝑋)−1𝑥0] = trace[𝐸𝑥0
𝑥0

𝑇𝐶𝑜𝑣(𝑋)−1𝑥0] 

and then use the cyclical property of the trace operator to rearrange terms to get  

= trace[𝐸𝑥0
𝑥0𝑥0

𝑇𝐶𝑜𝑣(𝑋)−1] 

and thus 

trace[𝐸𝑥0
[𝑥0𝑥0

𝑇]𝐶𝑜𝑣(𝑋)−1] = trace[𝐶𝑜𝑣(𝑋) ⋅ 𝐶𝑜𝑣(𝑋)−1]                    

= trace[𝐈𝑝] 

= 𝑝              

which gives us that trace[𝐶𝑜𝑣(𝑋)−1𝐶𝑜𝑣(𝑥0)]𝜎
2/𝑁 = 𝜎2 (

𝑝

𝑁
) and thus we have finished the 

problem.  It is important to understand the motivation behind the problem – that is, for linear 

regression models, the expected squared prediction error grows by a factor of 𝑝 so that it is 

relatively small when 𝑁 is large.   

Exercise 2.7.  Suppose we have a sample of N pairs  𝑥𝑖, 𝑦𝑖 drawn i.i.d. from the 

distribution characterized as follows: 

  𝑥𝑖 ~ ℎ(𝑥), 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

  𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖, 𝑓 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛                                 

  𝜖𝑖 ~ (0, 𝜎2), (𝑚𝑒𝑎𝑛 𝑧𝑒𝑟𝑜, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎2)                                            
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We construct an estimator for f  linear in the 𝑦𝑖, 

  𝑓(𝑥0) = ∑𝑙𝑖(𝑥0; 𝑋)𝑦𝑖,

𝑁

𝑖=1

 

where the weights  𝑙𝑖(𝑥0; 𝑋) do not depend on the  𝑦𝑖 but do depend on the entire training 

sequence of 𝑥𝑖 denoted here by X. 

(a). Show that linear regression and k-nearest-neighbor regression are members of this 

class of estimators.  Describe explicitly the weights 𝑙𝑖(𝑥0; 𝑋) in each of these cases. 

For linear regression, the coefficient vector �̂� = 〈�̂�0, … , �̂�𝑝〉 depends on the entire 

training set 𝐗 through its derivation 

�̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝑦 

since each training example is a row in the design matrix 

𝐗 =

[
 
 
 
− 𝐱1

𝑇 −

− 𝐱2
𝑇 −

⋮
− 𝐱𝑛

𝑇 −]
 
 
 

. 

Then, to make a prediction at a point 𝑥0, we would need to solve the following 

𝑓(𝑥0) = 𝑥0
𝑇�̂� = 𝑥0

𝑇(𝐗𝑇𝐗)−1𝐗𝑇𝑦. 

 Define [(𝐗𝑇𝐗)−1𝐗𝑇]𝑗
𝑇 to be the jth row of (𝐗𝑇𝐗)−1𝐗𝑇 .  Then the weight vector is  

 𝑙𝑖(𝑥0; 𝑋) = 𝑥01[(𝐗
𝑇𝐗)−1𝐗𝑇]1

𝑇 + 𝑥02[(𝐗
𝑇𝐗)−1𝐗𝑇]2

𝑇 + ⋯+ 𝑥0𝑝[(𝐗𝑇𝐗)−1𝐗𝑇]𝑝
𝑇 
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= ∑(𝑥0
𝑇(𝐗𝑇𝐗)−1𝐗𝑇)𝑗

𝑝

𝑗=1

 

so that we have shown that the weight vector depends on the entire training set but not on 𝑦𝑖. 

For k-nearest-neighbor, the function is as follows 

𝑓(𝑥) =
1

𝑘
∑ 𝑦𝑖

𝑥𝑖∈𝑁𝑘(𝑥)

. 

Then the weight is an indicator function 𝑙𝑖(𝑥0; 𝑋) = 1[𝑥𝑖 ∈ 𝑁𝑘(𝑥)] where recall we defined a set 

𝐷 = {𝑑(𝑥𝑖, 𝑥0): 𝑥𝑖 ∈ 𝑇} where 𝑑(𝑥0, 𝑥𝑖) is any metric.  We also defined  

𝑁𝑘(𝑥0) = {𝑥𝑖: 𝑑(𝑥𝑖 , 𝑥0) ≤ 𝑑𝑘 where dkis the 𝑘th smallest element of 𝐷, 𝑥𝑖 ∈ 𝑇}. 

Notice here that to construct the set 𝐷 for any new point 𝑥0, we have to search through the entire 

training set and thus the weight depends on the entire set X. 

(b). Decompose the conditional mean-squared error  

𝐸𝑦|𝑥 (𝑓(𝑥0) − 𝑓(𝑥0))
2

 

into a conditional squared bias and a conditional variance component.  Let 𝑋, 𝑌 represent the 

entire training sequence of 𝑦𝑖. 

Proof:  For readability, assume the following: 𝑓 = 𝑓(𝑥0) and 𝑓(𝑥0) = 𝑓, and recall that 

only 𝑓 depends on the training set.  Also, refer back to page 11 of the thesis for clarity, since we 

solved the same problem there.  Then 

 𝐸𝑦|𝑥(𝑓 − 𝑓)
2

= 𝑓2 − 2𝑓𝐸𝑦|𝑥(𝑓) + 𝐸𝑦|𝑥(𝑓
2) 
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= 𝐸𝑦|𝑥 (𝑓 − 𝐸𝑦|𝑥(𝑓))
2

+ 𝐸𝑦|𝑥(𝑓
2) − 𝐸𝑦|𝑥(𝑓)

2
                  

= 𝐵𝑖𝑎𝑠𝑦|𝑥
2 (𝑓) + 𝑉𝑎𝑟𝑦|𝑥(𝑓)                                                      

(c). Decompose the unconditional mean-squared error.   

Proof:  Using the same notation above where 𝑓 = 𝑓(𝑥0) and 𝑓(𝑥0) = 𝑓, then again, only 

𝑓 depends on the training data and we get   

 𝐸𝑦,𝑥(𝑓 − 𝑓)
2

= 𝑓2 − 2𝑓𝐸𝑦,𝑥(𝑓) + 𝐸𝑦,𝑥(𝑓
2) 

= 𝐸𝑦,𝑥 (𝑓 − 𝐸𝑦,𝑥(𝑓))
2

+ 𝐸𝑦,𝑥(𝑓
2) − 𝐸𝑦,𝑥(𝑓)

2
                  

= 𝐵𝑖𝑎𝑠𝑦,𝑥
2 (𝑓) + 𝑉𝑎𝑟𝑦,𝑥(𝑓)                                                      
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CHAPTER 3 

LINEAR METHODS FOR REGRESSION 

3.1 Introduction 

This section goes over linear regression models, subset selection, shrinkage methods, and 

methods using derived input directions.   

3.2 Linear Regression Models and Least Squares 

On page 47, Equation (3.11) states that linear regression model  

𝑌 = 𝑋𝛽 + 𝜖                                                                           

where the error 𝜖 ~ 𝑁(0, 𝜎2) implies that �̂� ~ 𝑁(𝛽, (𝐗𝑇𝐗)−1𝜎2).  We will show that this 

statement holds.  Consider the following estimate of �̂� 

�̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝑦                                                                (61) 

where 𝑦 is defined above, then this implies that  

�̂� = (𝐗𝑇𝐗)−1𝐗𝑇(𝑋𝛽 + 𝜖)                                                  (62) 

= (𝐗𝑇𝐗)−1𝐗𝑇𝐗𝛽 + (𝐗𝑇𝐗)−1𝐗𝑇𝜖                                (63) 

= 𝛽 + (𝐗𝑇𝐗)−1𝐗𝑇𝜖                                                        (64) 
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Then we can use the property that a linear transformation of a multivariate normal random vector 

also has a multivariate normal distribution.  We won’t prove this fact here but it states that given 

𝑋~𝑁(𝜇, 𝑉) and suppose we have a linear transformation of 𝑋 

𝑦 = 𝐴 + 𝐁𝑋 

then 𝑌 also has a multivariate normal distribution with mean  

𝐸[𝑦] = 𝐴 + 𝐁𝜇 

and covariance matrix  

𝑉𝑎𝑟[𝑦] = 𝐁𝐕𝐁𝑇 . 

Substituting this above, this implies that �̂� ~ 𝑁(𝛽, (𝐗𝑇𝐗)−1𝐗𝑇𝜎2) 

𝐸[�̂�] = 𝛽 + (𝐗𝑇𝐗)−1𝐗𝑇0                                                         

= 𝛽                                                                            (65) 

𝑉𝑎𝑟(�̂�) = (𝐗𝑇𝐗)−1𝐗𝑇𝐗(𝐗𝑇𝐗)−1𝜎2                                           

= (𝐗𝑇𝐗)−1𝜎2                                                         (66) 

⇒ �̂� ~ 𝑁(𝛽, (𝐗𝑇𝐗)−1𝜎2)                                             (67) 

and so we have shown Equation 3.10. 

3.3 Shrinkage Methods 

On page 54, Algorithm 3.1 has the Gram-Schmidt procedure for multiple regression.  We 

will use the Gram-Schmidt procedure to show how this leads to the QR decomposition Equation 
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(3.31).  Then we will perform the QR decomposition on a small 3 × 3 matrix in R and show how 

it is beneficial in describing least squares.   

The QR decomposition is 

 𝐗 = 𝐐𝐑.                                                                         (68) 

If 𝐗 ∈ 𝑅𝑛×𝑝+1 then 𝐐 ∈ 𝑅𝑛×𝑝+1 and is an orthogonal matrix (i.e.𝐐𝑇𝐐 = 𝐼) and 𝐑 ∈ 𝑅𝑝×𝑝 where 

𝐑 is an upper triangular matrix.  It is important to remember that an orthogonal matrix is a matrix 

with orthogonal unit column vectors rather than just orthogonal columns as the name suggests.  

Often times orthogonal matrices are assumed to be square, however, it is not the case in the 

book. 

 Recall the algorithm is as follows: 

Table 3.1. Algorithm for Gram-Schmidt Orthogonalization. 

1. We initialize 𝑧0 = 𝑥0 = 1, 𝑒0 =
𝑧0

||𝑧0||
   

2. For  𝑗 = 1,2, … , 𝑝 

a. Dot product 𝑥𝑗 and 𝑒0, 𝑒1, … , 𝑒𝑗−1 to produce coefficients 𝛾𝑙𝑗 = 𝑒𝑙𝑥𝑗 ,ℓ = 0,… , 𝑗 −

1 and residual vector 𝑧𝑗 = 𝑥𝑗 − ∑ 𝛾𝑘𝑗𝑒𝑘
𝑗−1
𝑘=1  

3. Regress 𝑦 on the residual 𝑧𝑝 to give the estimate for �̂�𝑝. 

 

Suppose we have 𝐗 ∈ 𝑅𝑛×𝑝+1 as follows 

𝐗 = [

| | … |
𝑥0 𝑥1 … 𝑥𝑝

| | … |
] 
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then  

𝑧0 = 𝑥0 = 1        𝑒0 =
𝑧0

||𝑧0||2
 

𝑧1 = 𝑥1 − (𝑥1 ⋅ 𝑒0)𝑒0       𝑒1 =
𝑧1

||𝑧1||2
 

𝑧2 = 𝑥2 − (𝑥2 ⋅ 𝑒0)𝑒0 − (𝑥2 ⋅ 𝑒1)𝑒1     𝑒2 =
𝑧2

||𝑧2||2
 

𝑧𝑝 = 𝑥𝑝 − (𝑥𝑝 ⋅ 𝑒0)𝑒0 − (𝑥𝑝 ⋅ 𝑒1)𝑒1 − ⋯− (𝑥𝑝 ⋅ 𝑒𝑝−1)𝑒𝑝−1 𝑒𝑝 =
𝑧𝑝

||𝑧𝑝||2
 

and so that the resulting matrix is 

𝐗 = [

| | … |
𝑥0 𝑥1 … 𝑥𝑝

| | … |
] = [

| | … |
𝑒0 𝑒1 … 𝑒𝑝

| | … |
] [

𝑥0 ⋅ 𝑒0 𝑥1 ⋅ 𝑒0 … 𝑥𝑝 ⋅ 𝑒0

0 𝑥1 ⋅ 𝑒1 … 𝑥𝑝 ⋅ 𝑒1

⋮ ⋮ ⋱ ⋮
0 0 … 𝑥𝑝 ⋅ 𝑒𝑝

] = 𝐐𝐑 

For example, consider the matrix 

𝑋 = [
1 1 0
1 1 1
1 0 1

] , 𝑦 = [
1
2
3
] 

We will use this matrix to show that solving least squares by the QR decomposition is equal to 

the normal equation.  

Table 3.2. R Code for Gram-Schmidt Orthogonalization. 

# Create Matrix 

x0=c(1,1,1) 

x1=c(1,1,0) 

x2=c(0,1,1) 

y=c(1,2,3) 

 

X=data.frame(x0,x1,x2,y) 
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# Create empty matrices Q and R 

Q=R=matrix(0,nrow=3,ncol=3) 

 

 

# Perform Operations 

# First iteration 

z0=x0 

e0=z0/(sqrt(z0%*%z0)) 

Q[,1]=e0 

 

# Second iteration 

z1=x1-x1%*%e0*e0 

e1=z1/(sqrt(z1%*%z1)) 

Q[,2]=e1 

 

# Third iteration 

z2=x2-x2%*%e0*e0-x2%*%e1*e1 

e2=z2/(sqrt(z2%*%z2)) 

Q[,3]=e2 

 

# Fill in R matrix 

R[1,1]=x0%*%e0 

R[1,2]=x1%*%e0 

R[1,3]=x2%*%e0 

R[2,2]=x1%*%e1 

R[2,3]=x2%*%e1 

R[3,3]=x2%*%e2 

 

# Check the matrix 

Q%*%R 

 

# Beta Hat 

solve(R)%*%t(Q)%*%y 

 

# Check using linear regression 

lm(y~x0+x1+x2-1,data=X) 

 

Where the solution for �̂� under the QR Decomposition is 

�̂� = 𝐑−1𝐐𝑇𝑦                                                               (69) 

and gives the coefficient vector identical to the one fit by the R function lm() 

�̂� = [
2

−1
−1

].                                                                   (70) 

In order to solve from Equation (3.31) given as  
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𝐗 = 𝐐𝐑                                                                        (71) 

to equation (3.32) 

�̂� = 𝐑−1𝐐𝑇𝑦                                                               (72) 

we can just use basic matrix operations.  That is 𝐗 = 𝐐𝐑, and �̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝑦 

then,  

�̂� = (𝐑𝑇𝐐𝑇𝐐𝐑)−1𝐑𝑇𝐐𝑇𝑦                                                   

= (𝐑𝑇𝐑)−1𝐑𝑇𝐐𝑇𝑦                                                           

= 𝐑−1𝐑𝑇−1
𝐑𝑇𝐐𝑇𝑦                                                          

= 𝐑−1𝐐𝑇𝑦                                                               (73) 

and so we get Equation (3.32).   

By decomposing 𝐗 this way, we can save a lot on computation.  Recall that the column 

space of the matrix 𝐗 is the set of all possible linear combinations of its column vectors.  More 

formally, suppose 𝐗 ∈ 𝑅𝑛×𝑝, then the column space of 𝐗 is 𝐶(𝐗) = {𝑣: 𝐗𝑎 = 𝑣, ∀𝑎 ∈ 𝑅𝑝}.  Q is 

in the column space of 𝐗, as seen by 𝐗 = 𝐐𝐑 ⇒ 𝐗𝐑−1 = 𝐐, and it provides an orthonormal basis 

in the column space of 𝐗.  Recall that the geometric interpretation of least squares fitted vector 

was to orthogonally project 𝑦 into the column space of 𝐗 by using the projection matrix of 𝐗 

(also known as hat matrix).  Now with the QR decomposition, we can just project 𝑦 onto 𝐐 to get 

the fitted vector �̂� which turns out to be  

𝐐(𝐐𝑇𝐐)−1𝐐𝑇𝑦 = 𝐐𝐐𝑇𝑦                                                      (74) 
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and so we can save considerably on computation by not inverting the matrix (𝐗𝑇𝐗)−1.   We can 

check this is true by using Equation (3.32) 

�̂� = 𝐑𝑇𝐐𝑇𝑦                                                               (75) 

⇒ 𝑋�̂� = 𝐐𝐑𝐑𝑇𝐐𝑇𝑦                                                         (76) 

= 𝐐𝐐𝑇𝑦                                                                 (77) 

which is the same as the projection.  We will also show in Exercise 3.9 that we can use the QR 

decomposition to implement the forward selection algorithm efficiently. 

 On page 64, Equation (3.44) gives the solution to the ridge regression coefficient as  

�̂�𝑟𝑖𝑑𝑔𝑒 = (𝐗𝑇𝐗 + 𝜆𝐼)−1𝐗𝑇𝑦.                                              (78) 

We will derive this here so that we can show other properties of ridge regression.  Equation 

(3.43) shows that the loss function for ridge regression is as follows 

𝑅𝑆𝑆(𝜆) = (𝑦 − 𝐗𝛽)𝑇(𝑦 − 𝐗𝛽) + 𝜆𝛽𝑇𝛽                                      (79) 

= 𝑦𝑇𝑦 − 2𝛽𝑇𝐗𝑇𝑦 + 𝛽𝑇𝐗𝑇𝐗𝛽 + 𝜆𝛽𝑇𝛽                         (80) 

and then set the gradient to 0 and solve 

∇𝛽𝑅𝑆𝑆(𝜆) = −2𝐗𝑇𝑦 + 2𝐗𝑇𝐗𝛽 + 2𝜆𝛽 = 0                                    (81) 

⇒ (𝐗𝑇𝐗 + 𝜆𝐼)𝛽 = 𝐗𝑇𝑦                                                                        (82) 

⇒ �̂�𝑟𝑖𝑑𝑔𝑒 = (𝐗𝑇𝐗 + 𝜆𝐼)−1𝐗𝑇𝑦                                                          (83) 

and so we have shown Equation (3.44).   
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Now, we will introduce the singular value decomposition of the centered matrix 𝐗.  The 

author does not define centered so we will make explicit here what he means.  Centering a matrix 

means that we normalize the columns to have mean 0 and variance 1.  That is we use the 

following algorithm, 

Table 3.2. Algorithm for Centering. 

1. Let 𝜇𝑗 =
1

𝑛
∑ 𝑥𝑖𝑗

𝑛
𝑖=1  

2. Replace each 𝑥𝑗 ∈ 𝐗 with 𝑥𝑗 − 𝜇𝑗 

3. Let 𝜎𝑗
2 =

1

𝑛−1
∑ (𝑥𝑖𝑗)

2𝑛
𝑖=1  

4. Replace each 𝑥𝑗 with 𝑥𝑗/𝜎𝑗 . 

Once we do that, we can decompose matrix 𝐗 to its singular value decomposition 

𝐗 = 𝐔𝐃𝐕𝐓.                                                                            (84) 

The actual decomposition is quite complicated so we will not go over derive it here.  Here,  𝐔 

and 𝐕 are 𝑛 × 𝑝 and 𝑝 × 𝑝 orthogonal matrices with the columns of 𝐔 spanning the column 

space of 𝐗 and the columns of 𝐕 spanning the row space.  𝐃 is a 𝑝 × 𝑝 diagonal matrix, with 

diagonal entries 𝑑1 ≥ 𝑑2 ≥ ⋯ ≥ 𝑑𝑝 ≥ 0 and if one or more 𝑑𝑗 = 0, then 𝐗 is singular.   

We can use the singular value decomposition to represent the matrix 𝐗𝑇𝐗. 

𝐗𝐓𝐗 = (𝐔𝐃𝐕𝐓)𝐓𝐔𝐃𝐕                                                          

= 𝐕𝐃𝐔𝐓𝐔𝐃𝐕𝐓                                                             

= 𝐕𝐃𝟐𝐕𝐓                                                             (85) 
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and use this as in page 66, Equation (3.48) which states that the eigen decomposition of 𝐗𝑇𝐗 is 

𝐗𝑇𝐗 = 𝐕𝐃2𝐕𝑇 .                                                                (86) 

To show that this is the eigen decomposition, recall that the sample covariance matrix 𝐶𝑜�̂�(𝑋) =

𝐗𝑇𝐗

𝑁
 since the matrix has been pre-centered.  Then by the definition of covariance matrices, 

𝐗𝑇𝐗

𝑁
 is 

symmetric which implies that 𝐗𝑇𝐗 is symmetric.  One property of symmetric matrices we will 

use is that the eigen vectors of symmetric matrices are orthonormal.  We will not go over the 

proof but it can be found in a linear algebra textbook.  Since the inverse of an orthogonal matrix 

is its transpose (for an orthogonal matrix 𝐀,  by definition 𝐀𝑇𝐀 = 𝐈 then taking the inverse, 

𝐀𝑇𝐀𝐀−1 = 𝐀−1 implies that 𝐀𝑇 = 𝐀−1), we can write it in eigen form as 

𝐗𝑇𝐗𝐕 = 𝐕𝐃2                                                                    (87) 

⇒ 𝐗𝑇𝐗𝐕𝐕−1 = 𝐕𝐃2𝐕−1                                                             (88) 

= 𝐗𝑇𝐗 = 𝐕𝐃2𝐕𝑇                                                               (89) 

so we get Equation 3.48.  Here, the matrix 𝐕 holds the eigenvectors of 𝐗𝑇𝐗 and the matrix 𝐃2 

are the eigenvalues. 

What happens if we multiply 𝐗 and 𝐕?  Recall that the 𝑑𝑖’s in 𝐃 are ordered 𝑑1 ≥ 𝑑2 ≥

⋯ ≥ 𝑑𝑝 ≥ 0 and we multiply 𝐗𝑣𝑖 as in Equation (3.49).  Then we can look at its variance as 

follows 

𝑉𝑎𝑟(𝐗𝑣𝑖) = 𝑣𝑖
𝑇𝑉𝑎𝑟(𝐗)𝑣𝑖                                                              (90) 

= 𝑣𝑖
𝑇 (

𝐗𝑇𝐗

𝑁
)𝑣𝑖                                                               (91) 
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= 𝑣𝑖
𝑇𝐕𝐃2𝐕𝑇𝑣𝑖/𝑁                                                               (92) 

recall that 𝐕 is an orthogonal matrix which implies that (𝑣𝑖 ⋅ 𝑣𝑗) = 0, ∀𝑖 ≠ 𝑗, we get  

= 𝑣𝑖
𝑇𝑣𝑖𝑑𝑖

2𝑣𝑖
𝑡𝑣𝑖/𝑁                                                               (93) 

and since 𝑉 has orthonormal columns, 𝑣𝑖
𝑇𝑣𝑖 = 1 and the above implies  

𝑉𝑎𝑟(𝐗𝑣𝑖) =
𝑑𝑖

2

𝑁
                                                                               (94) 

which completes Equation (3.49).  This equation is stating that by taking the eigenvectors of 

matrix 𝐕 and multiplying it by the design matrix 𝐗, the variance is proportional to the 

eigenvalues.  This variance is sorted since the 𝑑𝑖’s of 𝐃 are sorted.  In fact, let 𝑧𝑖 = 𝐗𝑣𝑖 , then 𝑧𝑖 

has the 𝑖th largest variance among all normalized linear combinations of the columns of 𝐗 

subject to being orthogonal to the earlier ones.  We will prove this in the next section.  Since we 

have this nice property, the matrix 𝐕 gets a special name and is called the principal components 

of the variables in 𝐗. 

To tie this together, we will derive Equation (3.47) of ridge regression using the singular 

value decomposition.  Showing this requires a lot of matrix operations and can be seen as 

follows  

𝐗�̂�𝑟𝑖𝑑𝑔𝑒 = 𝐗(𝐗𝑇𝐗 + 𝜆𝐈)−1𝐗𝑇𝑦                                                                    (95) 

= 𝐔𝐃𝐕𝑇((𝐔𝐃𝐕𝑇)−1𝐔𝐃𝐕𝑇 + 𝜆𝐈)−1(𝐔𝐃𝐕𝑇)𝑇𝑦                                 

= 𝐔𝐃𝐕𝑇(𝐕𝐃2𝐕𝑇 + 𝜆𝐈)−1𝐕𝐃𝐔𝑇𝑦                                                         

= 𝐔𝐃𝐕𝑇𝑉𝑇−1
(𝐃−2)𝐕−1𝐕𝐃𝐔𝑇𝑦 + 𝐔𝐃𝐕𝑇(𝜆−1𝐼)𝐕𝐃𝐔𝑇𝑦                
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= 𝐔𝐃(𝐃−2)𝐃𝐔𝑇𝑦 + 𝐔𝐃(𝜆−1𝐈)𝐃𝐔𝑇𝑦                                           

= 𝐔𝐃(𝐃2 + 𝜆𝐈)−1𝐃𝐔𝑇𝑦                                                                

= ∑𝑢𝑗

𝑑𝑗
2

𝑑𝑗
2 + 𝜆

𝑝

𝑗=1

𝑢𝑗
𝑇𝑦                                                               (96) 

so that we have shown equation (3.47).  By looking at the middle term 
𝑑𝑗

2

𝑑𝑗
2+𝜆

 we can see what 

ridge regression does.  When 𝜆 = 0, we get the least squares estimates 
𝑑𝑗

2

𝑑𝑗
2 = 1.  Ridge regression 

gives a value 
𝑑𝑗

2

𝑑𝑗
2+𝜆

< 1.  Recall what the 𝑑𝑗’s mean here; they are the eigenvalues of  𝐗𝑇𝐗 and we 

they are the variance of 𝐗 in the direction of its principal components 𝑧𝑖 = 𝐗𝑣𝑖.  Thus for ridge 

regression, smaller values of 𝑑𝑗 and thus the smaller variances in the direction of its principal 

components are shrunken most.  To prove this, we have the original equation 

𝑑𝑗
2

𝑑𝑗
2 + 𝜆

.                                                                            (97) 

Since 𝑑1 > 𝑑2 implies that 𝑑1
2 > 𝑑2

2 since the square function is monotonic for non-negative 

values, then we need to show that 

𝑑2
2

𝑑2
2 + 𝜆

=
𝑑1

2 − 𝑐

𝑑1
2 − 𝑐 + 𝜆

<
𝑑1

2

𝑑1
2 + 𝜆

.                                                (98) 

Where 𝑐 is some small constant 0 < 𝑐 ≤ 𝑑1
2 and 𝜆 is the parameter in ridge regression 𝜆 > 0.  

By cross multiplying the function above, we get the following 

(𝑑1
2 − 𝑐)(𝑑1

2 + 𝜆) < 𝑑1
2(𝑑1

2 − 𝑐 + 𝜆)                                                       
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𝑑1
4 + 𝜆𝑑1

2 − 𝑐𝑑1
2 − 𝑐𝜆 < 𝑑1

4 − 𝑐𝑑1
2 + 𝜆𝑑1

2                                                    

⇒ −𝑐𝜆 < 0                                                                            (99) 

and since 𝜆, 𝑐 > 0 this is last inequality is true and so the statement that smaller directions of the 

principal components are shrunken the most holds.   

3.4 Methods Using Derived Input Directions 

On page 81, Equation (3.63)  we see that the mth principal component direction 𝑣𝑚 

solves 

 max
𝛼

𝑉𝑎𝑟(𝐗𝛼)                                                                                                        

subject to ||𝛼|| = 1, 𝛼𝑇𝐒𝑣ℓ = 0, ℓ = 1,… ,𝑚 − 1.                          (100) 

We will show that 𝛼 here are the eigenvalues; that is, we will show 𝑎 = 𝑣𝑚.  Recall from the text 

that our design matrix 𝐗 is standardized so that that we can rewrite the function 𝑉𝑎𝑟(𝐗𝛼𝑇) =

𝑎𝑇𝑉𝑎𝑟(𝐗)𝑎 = 𝑎𝑇𝐗𝑇𝐗𝑎.  A standard way of solving optimization problems with equality 

constraints is by including the constraints in the objective function;  this is known as the 

Lagrangian and it can often be found in a calculus book.  So rewriting the above quantity in 

Lagrangian form, we get the following 

𝐿(𝑋, 𝜆) = 𝑎𝑇𝐗𝑇𝐗𝑎 − 𝜆𝑎𝑇𝑎                                                         (101) 

where 𝜆 is called the Lagrange multiplier.  Then, to find the optimal point, we have to set the 

gradient of the Lagrangian to zero and solve for 𝑥. 

∇𝑎𝐿(𝑋, 𝜆) = 2𝐗𝑇𝐗𝑎 − 2𝜆𝑎 = 0.                                                         (102) 
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Notice here that we get the standard eigen form 𝐗𝑇𝐗𝑎 = 𝜆𝑎.  This shows that the only points 

which can maximize the functions are the eigenvectors of 𝐗𝑇𝐗 and we showed in the previous 

section that this is the matrix 𝐕 under the 𝑆𝑉𝐷 decomposition.  Since 𝐕 is an orthogonal matrix, 

we know that the second constraint (𝛼𝑇𝐒𝑣ℓ = 0) holds so we have solved Equation (3.63). 

3.5 Problems and Solutions 

Exercise 3.2.  Given data on two variables 𝑋 and 𝑌, consider fitting a cubic polynomial 

regression model 𝑓(𝑋) = ∑ 𝛽𝑗𝑋
𝑗3

𝑗=0 . In addition to plotting the fitted curve, you would like a 

95% confidence band about the curve. Consider the following two approaches: 

(1). At each point 𝑥0, form a 95% confidence interval for the linear function at 𝑎𝑇𝛽 =

∑ 𝛽𝑗𝑥0
𝑗3

𝑗=0 . 

Proof:  For this problem, the data matrix is 𝑛 × 4 matrix as follows 

 𝐗 = [
1 𝑥𝑖1 𝑥𝑖1

2 𝑥𝑖1
3

⋮ ⋮ ⋮ ⋮
1 𝑥𝑛1 𝑥𝑛1

2 𝑥𝑛1
3

] 

and �̂� is estimated in the usual least-squares way by setting up the normal equations.  Then, to 

generate confidence intervals around an estimated mean 𝑓(𝑥0) = 𝐸[𝑦0|𝑥0]̂ , use the Wald 

confidence interval as follows  

95% Confidence Interval(𝑥0) = 𝑥0
𝑇�̂� ± 1.96 ⋅ √𝑉𝑎𝑟(𝑥0

𝑇�̂�)                                       

where the variance from Exercise 2.5 is as follows 

𝑉𝑎𝑟(𝑥0
𝑇�̂�) = 𝑥0

𝑇𝑉𝑎𝑟(�̂�)𝑥0 = 𝜎2𝑥0
𝑇(𝐗𝑇𝐗)−1𝑥0                                  
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then the interval is  

95% Confidence Interval(𝑥0) = 𝑥0
𝑇�̂� ± 1.96 ⋅ 𝜎√𝑥0

𝑇(𝐗𝑇𝐗)−1𝑥0∎                          

(2). Form a 95% confidence set for 𝛽 as in (3.15), which in turn generates confidence 

intervals for 𝑓(𝑥0). 

Proof:  Equation (3.15) is as follows 

                         Cβ = {𝛽|(�̂� − 𝛽)
𝑇
𝐗𝑇𝐗(�̂� − 𝛽) ≤ �̂�2𝜒𝑝+1

2 (1−𝑎)
}    

where C𝛽 is the confidence set and 𝜒𝑝+1
2 (1−𝑎)

 is the (1 − 𝑎)-percentile of the chi-squared  

distribution on (p + 1)-degrees of freedom.  Then, at 𝛼 = 0.05, χ2 = 3.84 so that the interval for 

this particular set 𝛽 is 

Cβ = {𝛽|(�̂�𝑇 − 𝛽)(𝐗𝑇𝐗)(�̂� − 𝛽) ≤ �̂�2 ⋅ 3.84 } 

which implies that the interval for the conditional mean is 

⇒ 𝐶𝑥0
𝑇�̂� = {𝑥0

𝑇�̂�|𝛽 ∈ Cβ}.                                

Exercise 3.3.  (1). Prove the Gauss–Markov theorem: the least squares estimate of a 

parameter 𝑎𝑇𝛽 has variance no bigger than that of any other linear unbiased estimate of 𝑎𝑇𝛽 

(Section 3.2.2). 

Proof: Recall that the least squares estimator for �̂� is  

�̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝑦. 

Suppose we have another unbiased linear estimator 𝛽 so that 𝛽 = 𝐀𝑦 and let 𝐀 =

(𝐗𝑇𝐗)−1𝐗𝑇 + 𝐂.  Then we get the following 
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𝛽 = ((𝐗𝑇𝐗)−1𝐗𝑇 + 𝐂)𝑦 

 = (𝐗𝑇𝐗)−1𝐗𝑇𝑦 + 𝐂𝑦. 

Since least squares is unbiased and we assume the model 𝑌 = 𝑋𝑇𝛽, the following holds 𝐸[𝑦] =

𝑋𝑇𝛽.  Then, use this below to find the expectation on 𝛽 so that 

      𝐸[𝛽] = 𝐸[(𝐗𝑇𝐗)−1𝐗𝑇𝑦] + 𝐸[𝐂𝑦] 

= (𝐗𝑇𝐗)−1𝐗𝑇𝐗𝛽 + 𝐂𝐗𝛽                                                             

= (𝐈𝑝 + 𝐂𝐗)𝛽                                                                                

then 𝛽 is unbiased if and only if 𝐂𝐗 = 0.   

Then the variance of 𝛽 is as follows  

𝑉𝑎𝑟(𝛽) = 𝑉𝑎𝑟(((𝐗𝑇𝐗)−1𝐗𝑇 + 𝐂)𝑦) 

Let 𝐃 = ((𝐗𝑇𝐗)−1𝐗𝑇 + 𝐂), then the above is equal to 

= 𝐃𝑉𝑎𝑟(𝑦)𝐃𝑇                                                            

= 𝜎2 ⋅ 𝐃𝐃𝑇                                                                 

= 𝜎2 ⋅ ((𝐗𝑇𝐗)−1𝐗𝑇 + 𝐂)(𝐗(𝐗𝑇𝐗)−1 + 𝐂𝑇)      

= 𝜎2 ⋅ [(𝐗𝑇𝐗)−1𝐗𝑇𝐗(𝐗𝑇𝐗)−1 + (𝐗𝑇𝐗)−1𝐗𝑇𝐂𝑇 + 𝐂𝐗(𝐗𝑇𝐗)−1 + 𝐂𝐂𝑇]   

And above we stated that 𝐂𝐗 = 0 so we remove the 2
nd

 and 3
rd

 terms to reduce it to the following 

= 𝜎2 ⋅ [(𝐗𝑇𝐗)−1𝐗𝑇𝐗(𝐗𝑇𝐗)−1 + 𝐂𝐂𝑇]                
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= 𝑉𝑎𝑟(�̂�) + 𝜎2[𝐂𝐂𝑇]                                             

and 𝐂𝐂𝑇 is a positive semidefinite matrix since 𝑎𝑇𝐶𝐶𝑇𝑎 = (𝑎𝑇𝐶 ⋅ 𝐶𝑇𝑎) ≥ 0, so that  

𝑉𝑎𝑟(𝛽) > 𝑉𝑎𝑟(𝛽) holds and we complete the proof. 

Exercise 3.4.  (1). Show how the vector of least squares coefficients can be obtained from 

a single pass of the Gram–Schmidt procedure (Algorithm 3.1). Represent your solution in terms 

of the QR decomposition of X. 

Proof:  After a single pass of the Gram-Schmidt process, we get the following 

decomposition 

𝐗 = 𝐐𝐑 

where Q is an 𝑁 × (𝑝 + 1) orthogonal matrix and 𝑅 is an (𝑝 + 1) × (𝑝 + 1) upper triangular 

matrix equal.  Then by least squares, we get the following equation  

𝐗𝑇𝐗𝛽 = 𝐗𝑇𝑦 

           ⇒ (𝐐𝐑)𝑇𝐐𝐑𝛽 = (𝐐𝐑)𝑇𝑦                    

    ⇒           𝐑𝑇𝐑𝛽 = 𝐑𝑇𝐐𝑇𝑦              

⇒                 𝐑𝛽 = 𝐐𝑇𝑦              

and we can solve the last equation by back-substitution since R is an upper-triangular matrix.   
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For example,  

[

𝑟00 𝑟01 ⋯ 𝑟0𝑝

0 𝑟11 ⋯ 𝑟1𝑝

⋮ ⋱ ⋱ ⋮
0 0 ⋯ 𝑟𝑝𝑝

] [

𝛽0

𝛽1

⋮
𝛽𝑝

] =

[
 
 
 
𝑞0

𝑇𝑦

𝑞1
𝑇𝑦
⋮

𝑞𝑝
𝑇𝑦]

 
 
 

 

the last element is �̂�𝑝 =
𝑞𝑝

𝑇𝑦

𝑟𝑝𝑝
, and solving the next elements in order by back-substitution 

�̂�𝑝, �̂�𝑝−1, … �̂�0.  

Exercise 3.5.  (1). Consider the ridge regression problem (3.41). Show that this problem 

is equivalent to the problem 

  �̂�𝑐 = argmin
𝛽𝑐

{∑[𝑦𝑖 − 𝛽0
𝑐 − ∑(𝑥𝑖𝑗 − �̅�𝑗)𝛽𝑗

𝑐

𝑝

𝑗=1

]2 + 𝜆 ∑𝛽𝑗
𝑐2

𝑝

𝑗=1

𝑁

𝑖=1

} 

Give the correspondence between 𝛽𝑐 and the original 𝛽 in (3.41).  

�̂�𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛽

{∑[𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

]2 + 𝜆 ∑𝛽𝑗
2

𝑝

𝑗=1

𝑁

𝑖=1

}                             (3.41) 

Proof:  For the first equation above, we can expand out the middle summation so that we 

get the following 

∑(𝑥𝑖𝑗 − �̅�𝑗)𝛽𝑗
𝑐

𝑝

𝑗=1

= ∑𝑥𝑖𝑗𝛽𝑗
𝑐

𝑝

𝑗=1

− ∑�̅�𝑗𝛽𝑗
𝑐

𝑝

𝑗=1

            

and we get the correspondence between 𝛽0
𝑐 and 𝛽0 

𝛽0 = 𝛽0
𝑐 + ∑�̅�𝑗𝛽𝑗

𝑐

𝑝

𝑗=1

. 
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That is, 𝛽0 is equivalent to 𝛽0
𝑐 except it is shifted.  At this point, the two functions are equal and 

thus all other coefficients will stay the same  

𝛽1
𝑐 = 𝛽1, 𝛽2

𝑐 = 𝛽2 … , 𝛽𝑝
𝑐 = 𝛽𝑝 

so that 𝛽𝑐 has the same slopes as the 𝛽’s so we have shown the correspondence. 

Exercise 3.6.  Show that the ridge regression estimate is the mean (and mode) of the 

posterior distribution, under a Gaussian prior 𝛽 ~ 𝑁(0, 𝜏𝑰), and Gaussian sampling 

model 𝑦 ~ 𝑁(𝑿𝛽, 𝜎2𝑰). Find the relationship between the regularization parameter 𝜆 in the 

ridge formula, and the variances 𝜏 and 𝜎2. 

Proof:  From Bayes rule, we can write the posterior distribution of 𝛽 as follows 

Pr(𝛽|𝐷) =
Pr(𝐷|𝛽) ⋅ Pr(𝛽)

Pr(𝐷)
∝ Pr(𝐷|𝛽) ⋅ Pr (𝛽) 

where 𝑃(𝐷|𝛽) is the likelihood; that is, the probability of the data given 𝛽.  The last term states 

that the posterior distribution is proportional to Pr(𝐷|𝛽) ⋅ Pr(𝛽).  Since the denominator is the 

marginal density of 𝐷, this will be constant for all 𝛽, we can leave it out when solving for 𝛽.  

Next, notice that each density of the last two terms are  

Pr(𝐷|𝛽)~ 𝑁(𝑋𝑇𝛽, 𝜎2𝐼) 

Pr(𝛽) ~ 𝑁(0, 𝜏𝐈)   

The first comes from the likelihood of the data under regression assumptions and the second is 

stated in the problem.  The maximum likelihood with respect to 𝛽 under the log transformation, 

we get the following 

log(𝑃𝑟(𝐷|𝛽) ⋅ 𝑃𝑟(𝛽)) = −
(𝑦 − 𝐗𝛽)𝑇(𝑦 − 𝐗𝛽)

2𝜎2
−

𝛽𝑇𝛽    

2𝜏
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=
1

2𝜎2
∑[𝑦𝑖 − 𝛽0 − ∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

]2 +
1

2𝜏
∑𝛽𝑗

2

𝑝

𝑗=1

𝑁

𝑖=1

                           

and if we multiply the equation by 2𝜎2, then we get the ridge equation (3.41) with 𝜆 =
𝜎2

𝜏
 thus 

we have showed the relationships between 𝜆 and the two variance terms.  Finally, by plugging 

𝜆 into the above equation, we get the following, 

                                                       �̂�𝑟𝑖𝑑𝑔𝑒 = argmax
𝛽

∑[𝑦𝑖 − 𝛽0 − ∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

]2 + 𝜆 ∑𝛽𝑗
2

𝑝

𝑗=1

𝑁

𝑖=1

.               

which is the ridge regression form.  Since we assumed our data were generated from a normal 

distribution and we used a normal prior (conjugate prior), from statistics, we know that the 

posterior will be normal.  This implies that the maximum 𝛽 under the posterior distribution gives 

the mean.  Since the mean and mode are equal for normal distributions (due to symmetry) we 

have shown the relationship between them and answered the problem. 

Exercise 3.9.  Forward stepwise regression. Suppose we have the QR decomposition for 

the 𝑁 × 𝑞 matrix 𝑿1 in a multiple regression problem with response 𝑦, and we have an 

additional 𝑝 − 𝑞 predictors in the matrix 𝑿2. Denote the current residual by 𝒓. We wish to 

establish which one of these additional variables will reduce the residual-sum-of squares the 

most when included with those in 𝑿1. Describe an efficient procedure for doing this. 

Proof:  Recall from linear algebra that the nullspace is 𝑁(𝑋) = {𝑣: 𝑋𝑣 = 0}.  This 

implies that the residual vector r lives in the nullspace of 𝐗𝑇 since  

𝐗𝑇𝑟 = 𝐗𝑇(𝑦 − �̂�) 
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= 𝐗𝑇(𝑦 − 𝐗(𝐗𝑇𝐗)−1𝐗𝑇𝑦) 

= 𝐗𝑇𝑦 − 𝐗𝑇𝐗(𝐗𝑇𝐗)−1𝐗𝑇𝑦 

= 𝐗𝑇𝑦 − 𝐗𝑇𝑦 = 0.               

Since the QR decomposition uses the Gram-Schmidt procedure, we have seen that this 

means that this forms an orthonormal basis for 𝐗.  This implies that the current fitted values have 

been projected onto the subspace spanned by 𝐗1 and so that the remaining 𝑝 − 𝑞 variables in 𝐗2 

(assuming linear independence) live in the nullspace of 𝐗1.  Since the residual sum-of-squares is 

defined as ||𝑦 − �̂�||2
2 which is the squared distance between 𝑦 and its projected vector, we would 

like to find the vector 𝑣 ∈ 𝑅𝑝−𝑞 where such that we decrease the length of the residual vector.  

This means that reducing the residual sum-of-square error the most amounts to finding the 

largest projection of r onto the nullspace.  That is, we need to find the following 

𝑋𝑗 = arg max
𝑋𝑗∈𝐗2

〈𝑋𝑗, 𝑟〉

〈𝑋𝑗, 𝑋𝑗〉
 

So that completes the first part of the problem.   

For the second part, define a new matrix 𝐗∗ that is 𝐗1 with an appended vector 𝑋𝑗 as 

follows 

𝐗∗ = [

|

𝐗1 𝑋𝑗

|

] 

we can use the QR decomposition for a more efficient fit.  Recall that the QR decomposition fits 

each row iteratively and from page 35 of this thesis, we have the last row  
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𝑧𝑗 = 𝑥𝑗 − (𝑥𝑗 ⋅ 𝑒0)𝑒0 − (𝑥𝑗 ⋅ 𝑒1)𝑒1 − ⋯− (𝑥𝑗 ⋅ 𝑒𝑝)𝑒𝑝  𝑒𝑗 =
𝑧𝑗

||𝑧𝑗||2
 

and then we get the QR matrix by  

𝐗 = [

| | … |
𝑥0 𝑥1 … 𝑥𝑝

| | … |
] = [

| | … |
𝑒0 𝑒1 … 𝑒𝑗
| | … |

] [

𝑥0 ⋅ 𝑒0 𝑥1 ⋅ 𝑒0 … 𝑥𝑗 ⋅ 𝑒0

0 𝑥1 ⋅ 𝑒1 … 𝑥𝑗 ⋅ 𝑒1

⋮ ⋮ ⋱ ⋮
0 0 … 𝑥𝑗 ⋅ 𝑒𝑗

] 

And then we can solve for the coefficients as in Exercise 3.4 by back substitution 

                𝐑𝛽 = 𝐐𝑇𝑦                   

so that we have completed the problem.  Solving this problem using the QR decomposition is 

much faster solving for �̂� using the normal equations and 𝑋∗. 

Exercise 3.10.  Backward stepwise regression. Suppose we have the multiple regression 

fit of y on 𝑿, along with the standard errors and Z-scores as in Table 3.2. We wish to establish 

which variable, when dropped, will increase the residual sum-of-squares the least. How would 

you do this? 

Exercise 3.1 established that the 𝐹 statistic for dropping a single coefficient is equal to 

the square of the corresponding  𝑧-score so that we get the following relationship 

𝐹 =
𝑅𝑆𝑆0 − 𝑅𝑆𝑆1

𝑅𝑆𝑆1

𝑁 − 𝑝 − 1

=
𝑅𝑆𝑆0 − 𝑅𝑆𝑆1

�̂�2
= 𝑧𝑗

2  

and then shuffling terms around, we get  

⇒ 𝑅𝑆𝑆0 − 𝑅𝑆𝑆1 = �̂�2𝑧𝑗
2 
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⇒ 𝑅𝑆𝑆0 = �̂�2𝑧𝑗
2 + 𝑅𝑆𝑆1 

which states that the smallest increase in the residual sum-of-squares corresponds to dropping the 

smallest 𝑧-score (i.e. smallest 𝑧𝑗
2 value) and we have concluded the problem. 

Exercise 3.13.  Derive the expression (3.62), and show that �̂�𝑝𝑐𝑟(𝑝) = �̂�𝑙𝑠. 

Proof:  Using the singular value decomposition of 𝐗 = 𝐔𝐃𝐕𝑇 we can represent �̂�𝑙𝑠 as 

follows 

𝐗𝑇𝐗𝛽 = 𝐗𝑇𝑦 

𝐕𝐃𝑇𝐔𝑇𝐔𝐃𝐕𝑇𝛽 = 𝐕𝐃𝑇𝐔𝑇𝑦          

    𝐕𝐃2𝐕𝑇𝛽 = 𝐕𝐃𝐔𝑇𝑦    

where 𝐔𝑇𝐔 = 𝐈  since 𝐔 is an orthogonal matrix and 𝐃𝑇 = 𝐃 because it is a diagonal matrix.  

Then we can solve for �̂� and get the following result 

�̂�𝑙𝑠 = 𝐕𝐃−1𝐔𝑇𝑦 

Equation (3.62) on principal component regression has the form  

�̂�𝑝𝑐𝑟(𝑀) = ∑ 𝜃𝑚𝑣𝑚

𝑀

𝑚=1

 

where 𝜃𝑚 = 〈𝑧𝑚, 𝑦〉/〈𝑧𝑚, 𝑧𝑚〉 and where 𝑧𝑚 are the principal components and is the 𝑚th column 

in the matrix 𝐙 = 𝐗𝐕 = 𝐔𝐃.  𝑣𝑚 is the column in the singular value decomposition matrix 𝐕.   

When 𝑀 = 𝑝, the vector 𝜃 is the coefficient vector when regressing 𝑦 onto the principal 

components and is solved as follows  
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𝜃 = (𝐙𝑇𝐙)−1𝐙𝑇𝑦 = (𝐃𝑇𝐔𝑇𝐔𝐃)−1𝐃𝑇𝐔𝑇𝑦 = 𝐃−1𝐔𝑇𝑦 

and to get the vector �̂�𝑝𝑐𝑟 we do the following 

�̂�𝑝𝑐𝑟 = 𝐕𝜃 = 𝐕𝐃−1𝐔𝑇𝑦 

which is equivalent to that of least squares when 𝑀 = 𝑝∎ 

Exercise 3.16.  Derive the entries in Table 3.4, the explicit forms for estimators in the 

orthogonal case. 

Estimator Formula 

Best subset (size M) �̂�𝑗 ⋅ 𝐼(|�̂�𝑗| ≥ |�̂�𝑀|) 

Ridge  �̂�𝑗/(1 + 𝜆) 

Lasso sign(�̂�𝑗)(|�̂�𝑗| − 𝜆)
+

 

 

Proof:  Table 3.4 Estimators of 𝛽𝑗 in the case of orthonormal columns of 𝐗.  𝑀 and 𝜆 are 

constants chosen by the corresponding techniques; sign denotes the sign of its argument (±1). 

For least-squares 

�̂�𝑙𝑠 = (𝐗𝑇𝐗)−1𝐗𝑇𝑦 = 𝐗𝑇𝑦 

For best-subset selection we get the following 

�̂�𝑙𝑠 = �̂�𝑏𝑠(𝑀 = 𝑝) = 𝐗𝑇𝑦 

where the coefficients are identical even if we take 𝑀 ≤ 𝑝 since the design matrix is orthogonal.   

For ridge regression we get the following estimates 

�̂�𝑟𝑖𝑑𝑔𝑒 = (𝐗𝑇𝐗 + 𝜆𝐈)−1𝐗𝑇𝑦 = (𝐈 + 𝜆𝐈)−1𝐗𝑇𝑦 = �̂�𝑙𝑠/(1 + 𝜆)  

For lasso regression, we get the following  
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𝐿(𝛽) = (𝑦 − 𝐗𝛽)𝑇(𝑦 − 𝐗𝛽) + 𝜆|𝛽| 

⇒
𝜕𝐿(𝛽)

𝜕𝛽
= −𝐗𝑇𝑦 + 𝐗𝑇𝐗𝛽 + 𝜆 ⋅ sign(𝛽)       

and by setting the gradient to zero and solving with respect to 𝛽 we get 

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝐈(𝐗𝑇𝑦 − 𝜆 ⋅ sign(𝛽)) 

             = sign(𝛽)(|𝐗𝑇𝑦| − 𝜆)∎ 

Exercise 3.17.  Repeat the analysis of Table 3.3 on the spam data discussed in Chapter 1 

where Table 3.3 compares the coefficient estimates of least-squares, best subset, ridge, lasso, 

principal component regression, and partial least-squares. 

This dataset has 57 variables with a binary response indicating spam or not spam. Fitting 

each model and using cross validation to generate the mean squared errors, we get the following 

table 

 LS Best Subset Ridge Lasso PCR PLS 

Parameters   𝜆 = .08 𝜆 = 0.0017 ncomp
= 56 

ncomp
= 12 

Test Error 0.334  0.334 0.334 0.335 0.333 

Std Error 0.0169  0.0115 0.0182 0.0177 0.0158 

 

Best subset regression did not complete as it took too long.  The author mentions that it 

can work when the number of variables 𝑝 up to 30 or 40 but is not feasible since it is an 

exponential time search time. 

Exercise 3.19.  Show that ||�̂�𝑟𝑖𝑑𝑔𝑒|| increases as its tuning parameter 𝜆 → 0. Does the 

same property hold for the lasso and partial least squares estimates? For the latter, consider the 

“tuning parameter” to be the successive steps in the algorithm. 

Proof:  The solution to �̂�𝑟𝑖𝑑𝑔𝑒 can be found using equation (3.47) 
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�̂�𝑟𝑖𝑑𝑔𝑒 = (𝐗𝑇𝐗 + 𝜆𝐈)−1𝐗𝑇𝑦                                                                      

and using the singular value decomposition on the centered matrix 𝐗  

= (𝐃2 + 𝜆𝐈)−1𝐕𝐃𝐔𝑇𝑦                                                     (3.47) 

so that  

||�̂�𝑟𝑖𝑑𝑔𝑒||2 = 𝑦𝑇𝐔𝐃𝐕𝑇(𝐃2 + 𝜆𝐈)−2𝐕𝐃𝐔𝑇𝑦                                                      

= 𝑦𝑇𝐔𝐃(𝐃2 + 𝜆𝐈)−2𝐃𝐔𝑇𝑦                                                              

= ∑𝑦𝑢𝑗

 𝑑𝑗
2

(𝑑𝑗
2 + 𝜆)

2 𝑢𝑗
𝑇𝑦 

𝑝

𝑗=1

                                                                       

and as 𝜆 → 0, the quantity 
 𝑑𝑗

2

(𝑑𝑗
2+𝜆)

2 is increasing and thus the vector ||�̂�𝑟𝑖𝑑𝑔𝑒||2 increases and so 

we have concluded the exercise. 
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CHAPTER 4 

LINEAR METHODS FOR CLASSIFICATION 

4.1 Introduction 

This section goes over topics including the classification task and linear discriminant 

analysis.   

4.2 Linear Discriminant Analysis 

This chapter is an extension of Chapter 3 from a regression point a view to a 

classification one.  On page 113, we will derive the equations listed in the center of the page.  

Notice that the second equation is  

log |𝐶𝑜�̂�𝑘| = ∑log𝑑𝑘𝑙

𝐾

𝑙=1

.                                                (103) 

This is the determinant of the covariance matrix and uses the property of determinants where 

det(𝐶𝑜�̂�𝑘) = ∏ 𝑑𝑘𝑙
𝐾
𝑙=1 .  That is, the determinant is equal to the product of the eigenvalues which 

can be obtained from matrix 𝐃 of the eigen decomposition of the covariance matrix.   

 The next bullet point on the same page states that we can sphere the data with respect to 

the common covariance matrix by applying  

𝑋∗ ← 𝐃−
1
2𝐔𝑇𝑋.                                                       (104) 
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This occurs by first decomposing the covariance of 𝑋 by its eigen decomposition; that 

is, 𝐶𝑜𝑣(𝑋) = 𝐔𝐃𝐔𝑇.  We can take the negative square root of a matrix by performing each 

operation 1-by-1.  That is, we take the square root and then invert it as follows  

(𝐔𝐃𝐔𝑇)−
1
2 = (𝐔𝐃

1
2𝐃

1
2𝐔𝑇)

−
1
2
                                                                 

= (𝐔𝐃(𝐔𝐃)𝑇)−
1
2                                                                  

= (𝐔𝐃)−1                                                                              

= 𝐃−
1
2𝐔−1 = 𝐃−

1
2𝐔𝑇                                              (105) 

and then by sphering the data, we change the covariance of 𝑋∗ to be the identity matrix.  This can 

be shown as follows 

𝐶𝑜𝑣(𝑋∗) = 𝐶𝑜𝑣 (𝐃−
1
2𝐔𝑇𝐗)                                                         (106) 

= 𝐃−
1
2𝐔𝑇𝐶𝑜𝑣(𝑋)𝐔𝐃−

1
2                                                             

= 𝐃−
1
2𝐔𝑇𝐔𝐃𝐔𝑇𝐔𝐃−

1
2                                                                

= 𝐈                                                                                      (107) 

so that we get the identity matrix as the covariance of 𝑋∗ and complete the proof. 
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4.3 Problems and Solutions 

Exercise 4.1.  Show how to solve the generalized eigenvalue problem 𝑚𝑎𝑥 𝛼𝑇𝑩𝛼 subject 

to 𝛼𝑇𝑾𝛼 = 1 by transforming to a standard eigenvalue problem where 𝑩 is the between-class 

covariance matrix and 𝑾 is the within-class covariance matrix. 

Proof:  Since this is an equality constraint, we can set it up in Lagrangian form and solve 

using lagrangian multipliers. The problem is of the form  

 max
𝛼

𝛼𝑇𝐁𝛼                      

subject to 𝛼𝑇𝐖𝛼 = 1 

Then, in Lagrangian form, this is  

                     L(𝑎, 𝜆) =  𝑎𝑇𝐁𝑎 + 𝜆(𝑎𝑇𝐖𝑎 − 1) 

We can take partials with respect to 𝑎 and 𝜆 so that  

𝜕L(𝑎, 𝜆)

𝜕𝑎
= 2𝐁𝑎 + 2𝜆𝐖𝑎 = 0                                                   (1) 

 
𝜕L(𝑎, 𝜆)

𝜕𝜆
= 𝑎𝑇𝐖𝑎 − 1 = 0                                                        (2) 

And so for the first equation,  

⇒ −𝐁𝑎 = 𝜆𝐖𝑎     

⇒ −𝐖−1𝐁𝑎 = 𝜆𝑎 
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Notice that this is in eigen decomposition form and since we want to maximize the 

original quantity, we know that 𝑎 must be the first eigenvector and 𝜆 the corresponding 

eigenvalue to the matrix −𝐖−1𝐁. 
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