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Abstract

The purpose of this research is to provide insight into student understand-

ing about graphs of quantitative, univariate data. Specifically, students’ un-

derstanding of the variability of data displayed graphically is investigated.

This research also utilizes an ensemble of machine learning algorithms to fur-

ther investigate this knowledge and expedite the investigation process for large

data sets.

A total of nine constructed-response items are disseminated to students

through an online homework platform. The responses to these questions are

examined to determine the prevalence of particular misconceptions about vari-

ability in graphs and to investigate the relationships between these misconcep-

tions. In addition to the nine online homework items, this research includes

face-to-face, task-based interviews with 19 students from the same introduc-

tory statistics course at the University of Georgia. Students are asked a series

of questions that are isomorphic to their online counterparts. The differences

in completeness and correctness are analyzed between responses given online

and those given during face-to-face interviews.



A rubric is constructed for each of the nine constructed-response items

and used to categorize student responses. Each rubric has multiple bins, and

student responses may be assigned to one or more of the rubric bins. Multiple

statistics PhD students read a small subset of student responses for each item

and categorize these responses into the appropriate bin. Next, a series of eight

machine learning algorithms is constructed using the previously categorized

responses as training data. These algorithms are then tuned to make accurate

predictions about the uncategorized responses.

Finally, an ensemble of the eight machine learning algorithms is con-

structed to combine the votes of each of the algorithms. The results of these

ensemble categorizations show that students struggle to compare the variabil-

ity between two graphs, even when students have a correct understanding of

the statistical definition of variability. Students often assess the variability in

a graph by the variation in the heights of the bars or dots. This research pro-

vides valuable information about the different ways students view variability

in graphs and demonstrates a method in which constructed responses can be

categorized in an automated fashion.

INDEX WORDS: Statistics education, Machine learning, Constructed-

response items, Question development
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1 Introduction

In the world today, data are ubiquitous— it is nearly impossible to read an article,

make a purchase, watch a show, or do almost anything without confronting some

sort of graphical display of data. Because of this, there is an increasing need for basic

understanding of graphical displays amongst all undergraduate students. One of the

consistently more difficult tasks for students in introductory statistics courses of any

level is interpreting the variability displayed in univariate graphs such as histograms

and stem-and-leaf plots (Cooper and Shore, 2008). For non-statistics majors, these

interpretations are useful for comparing the variability across different graphs, such

as the distributions of ratings for two different products. For statistics majors,

understanding univariate displays of data is necessary for understanding sampling

distributions and discrete distributions like the Binomial or Poisson. Franklin et

al. (2007) claims that understanding the omnipresence of variability in data is

vital for anyone approaching or solving a statistical problem. In either case, it is

desirable that undergraduate students in an introductory statistics course develop a

solid understanding of the statistical definition of variability and its applications to

real-world graphs.

For both statistics and non-statistics majors, it is important to track stu-

dent progress through the development of their knowledge about graph, and im-

mediately identify any related systematic misconceptions or deficiencies. Cooper

and Shore (2008) suggest that instructors should consistently provide examples of

different types of graphs with varying types of data to help students get a better

understanding about how variability is represented in graphs. Most introductory
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statistics courses, however, have hundreds (and sometimes thousands) of students

(Blair et al., 2013). Thus, identifying the misconceptions held by these students is

a daunting task. This dissertation proposes a construction of an ensemble of eight

different machine learning algorithms to automate the categorization of student re-

sponses to open-ended questions about statistics. The models are initially trained

by hand-scoring a subset of student responses to questions about graphical displays

of quantitative, univariate data. These responses are then used to train the models

in the ensemble to make predictions about future responses. The benefit of this

approach is that the instructors of large-format, introductory statistics courses can

give open-ended questions to their students and receive immediate feedback about

what their students do or do not know about a multitude of topics. Tracking the

quality of these responses over the course of the semester can demonstrate students’

growth of knowledge. These models may then be employed on responses to questions

administered to students in an introductory statistics course. The effectiveness of

these models is both assessed at categorizing student responses and at providing

useful feedback about what students do (or do not) understand about certain ideas

related to variability as displayed in graphs.

This research aims both to create ensemble models and to use them to

learn more about students’ ideas about variability when reading graphs of univariate,

quantitative data. This research takes a mixed-methods approach in an attempt to

answer the following research questions:

1) Dot Plot vs. Histogram: Do students interpret graphs differently, including

the graph’s variability, when data are shown as a histogram versus a dot plot?

2) Medium: Does the proportion or prevalence of various misconceptions re-

lated to variability and graphs of univariate data change based on the medium
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through which students communicate, including interviews and online assess-

ments?

3) Misconception: What types of misconceptions do students have about vari-

ability in univariate data when the data are presented in graphs?

4) Ensemble: Can an ensemble of several machine learning algorithms accu-

rately mimic hand scoring of student responses to questions about variability?

The quantitative analysis involves analyzing student responses to a variety

of multiple choice and free response questions. The free response portions are ana-

lyzed using numerous machine learning algorithms together in an ensemble to make

categorizations about student responses. The qualitative analysis is based on a series

of task-based interviews with undergraduate students in an introductory statistics

course at the University of Georgia. These interviews are used to gain deeper in-

sight into student thinking about graphs of univariate data and to supplement the

findings of the quantitative analysis.

1.1 Misconceptions about Variability in Histograms

This section contains a description of what the current literature says about how stu-

dents read and interpret various graphical displays, including histograms, case-value

bar charts, frequency bar charts, and dot plots. Some of the major misconceptions

students hold with regards to these graphs are described in this section. Addition-

ally, some of the correct and incorrect responses students give to questions about

variability in graphs are identified. In the context of this study, the presence of a

misconception is henceforth defined to be a response that gives an incorrect inter-

pretation of data displayed in a graph of any form.
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Elementary statistics, first encountered by most students in high school

(although increasingly more so in middle school), may be taught by an enthusias-

tic mathematics teacher with no formal statistical training (Garfield and Ben-Zvi,

2004). It is often taught, however, by a less-than-enthusiastic general math teacher

begrudgingly completing a short statistics unit situated toward the end of the course

(Garfield and Ben-Zvi, 2004). In both circumstances, statistics as a discipline may

be portrayed in a narrow, limited fashion in which seemingly every statistical phe-

nomenon can be depicted through a bar chart (Ben-Zvi and Amir, 2005). This

depiction may stem from the minimal statistical knowledge of the teachers and the

limited curriculum used for instruction (Bright and Friel, 1998). One of the draw-

backs of this curriculum is that most charts, such as bar charts, histograms, and

ribbon plots, are referred to by instructors as bar charts (Konold and Higgins, 2002).

Cooper and Shore (2010) found that 64% of K-12 teachers identified a histogram

as a bar chart. For students in courses taught by such instructors, this approach to

teaching statistics could systematically reinforce a set of incorrect notions about the

presentation of univariate data in any two-dimensional form, leading to a number of

common misconceptions about the variability in such data.

The first of these misconceptions, the Bar Chart Misconception, is that

the depiction of any two-dimensional graphical display of univariate data containing

bars must be a case-value bar chart (or case-value plot) and thus its bars must

be displaying individual, non-aggregated data (Konold and Higgins, 2002). This

implies that students often only see bars as a representation of an individual data

point and not as an aggregation of a number of data points (delMas et al., 2005).

When data are displayed in a histogram, this fundamental error in reasoning might

inhibit the student from correctly ascertaining many important characteristics of

the distribution as visualized in the graph, especially its variability. This error in
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reasoning may occur because students, thinking that a histogram is equivalent to

a bar chart, interpret the heights of each bar as individual data values and not a

frequency of many data values (delMas et al., 2005). In this manner, many students

would identify the frequency value of a particular bar and believe that it represents

a value of the quantitative variable of interest from a single person. This inability

to separate depictions of individual data points (bar chart) and aggregated data

(histogram) has been shown to be reversible through deliberate instruction (Ben-

Zvi and Arcavi, 2001).

A second common misconception held by elementary statistics students,

the Bar Height Misconception, is that the variability in a given histogram is

depicted through the variation (or lack thereof) in the heights of its bars (Cooper

and Shore, 2010; Chance et al., 1999). This misconception typically, though not

necessarily, follows from Bar Chart Misconception. That is, students who think

that the heights of the bars represent individual data values will in turn assess the

variability of the data in the graph by looking at the variability of the heights of the

bars (Garfield and delMas, 1990). A student without Bar Chart Misconception,

however, may still possess this second misconception; even students with a correct

understanding of the difference between the axes in a bar chart and a histogram

will more often than not choose a bumpier histogram as being more variable than a

flatter one (Meletiou-Mavrotheris and Lee, 2010).

A third misconception that students often have regarding the identifica-

tion of variability in histograms, the Axis Order Misconception, is the idea that

the ordering of the x-axis is arbitrary (delMas et al., 2005). Since bar charts depict

categorical variables, the bars and associated categories do not have an order, in

contrast to histograms, which depict a quantitative variable. The presence of this

misconception may lead to erroneous interpretations of the overall characteristics of
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the histogram, including its variability. Much like with Bar Height Misconcep-

tion, believing that the x-axis is arbitrarily ordered leads to an inability to correctly

identify the approximate location of the mean, therefore making it difficult to assess

the level of variability in the data presented in the histogram.

A fourth and final misconception regarding the assessment of variability in

histograms, the Range Misconception, is that students treat the range of the data

set as the only determining factor when deciding which of two data sets are more

variable. This misconception implies that a data set containing a larger range must

necessarily be more variable than one with a smaller range (Meletiou-Mavrotheris

and Lee, 2010). Though this misconception is not unreasonable, it may directly

interfere when defining variability as a measure of deviation of a value from some

measure of center. Specifically, assume one histogram contains data that have almost

no variability but a few outliers that cause the range of the data to be relatively large.

Assume a second histogram depicts data that are relatively uniformly distributed

over a reasonable range and thus highly variable. Students with this misconception

often claim that the first graph displays data that are more variable than the second

solely because the range is larger, despite clear clustering of data in the first graph.

This misconception is typically only manifested if students do not have any of the

first three misconceptions, as it requires a correct understanding of the purpose of

the x- and y-axes of a histogram (Garfield, delMas, and Chance, 1999).

One potential solution to correct these misconceptions is through carefully

designed instruction in the first instance in which bar charts and histograms are en-

countered, as it has been shown to increase student understanding with regard to

interpreting variability in a histogram (Meletiou-Mavrotheris and Lee, 2010). While

it may be impossible to fully correct these misconceptions without such instruction

(or even with it), presenting identical data in slightly different fashion (say, a dot
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plot), may decrease the propensity to commit many of the aforementioned errors by

fundamentally changing the manner in which students approach a two-dimensional

display of univariate data. Bakker (2004) demonstrates that the type of graph used

to display data (e.g., dot plot, case-value plot, bar chart) is related to a student’s

ability to correctly perceive the shape of the distribution. Bakker (2004) also finds

that dot plots seem to be the best starting point for students when trying to learn

about the shape of a distribution. These same influences may hold true for a stu-

dent’s ability to correctly perceive variability.

1.2 Histograms vs. Dot Plots

There are some advantages of displaying univariate data in a dot plot versus a

histogram. First, it highlights individual data values stacked on top of each other

as part of a whole, instead of one solid bar like in a histogram. Segmenting bars (or

separating the bar into individual boxes like dots in a dot plot) has been shown to

increase student understanding of how far individual values are away from the mean

(delMas and Liu, 2003). This segmentation is instrumental in understanding the

amount of variability present in the data, as having lots of individual data values

far away from the mean implies a much larger variability. An example of such a

segmentation can be seen in Figure 1.1 (from delMas and Liu, 2003). With the

segmentation, students are able to visualize the individual data points that make up

each bar in the histogram (equivalent to the representation of a dot plot) and the

corresponding deviation from the mean contributed by each individual data point.

When students compared the variability present in subfigure 1.1(a) with subfigure

1.1(b) after segmenting and labelling the histogram (now essentially a dot plot)

in this manner, they were able to determine almost unanimously that the data in

subfigure 1.1(b) contained more variability than those displayed in subfigure 1.1(a).

7



Figure 1.1: Interview Tasks from (delMas and Liu, 2003)

(a) A demonstration of segmented bars,
nearly isomorphic to a dot plot.

(b) A second graph with segmented bars
displaying data with more variability.

This same depiction paired with the one in Figure 1.2 helped students

correct the fourth misconception, that the range of the data is not equivalent to its

variability. When given the segmented data and labeling, the deviation in the same

way, students were able to visualize why Figure 1.2 displays more variable data than

either plot in Figure 1.1.

Figure 1.2: A third graph with segmented bars displaying data with more variability
than the previous two.

While it is unclear how much of this newfound understanding was a prod-

uct of the segmentation of the bars or the labeling of the deviation, it was clear
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that both had some impact on improving understanding of variability in the data

(delMas and Liu, 2003). Additionally, it has been shown that asking students to

write data values on sticky notes in order to create a line plot leads to a greater

understanding of the purpose of the x-axis (Axis Order Misconception) and a

better idea of the aggregated data (Bar Chart Misconception) (Bright and Friel,

1996). This representation, isomorphic to a dot plot, helped students understand

both the numerical ordering of the x-axis, but also the meaning of the frequency in

the y-axis.

There does, however, exist some precedent that dot plots may not be a

perfect substitution for histograms in all cases. In a Fright and Briel (1995) study,

middle school students who did not display appropriate aptitude for understanding

of the x- and y-axes for bar charts also misinterpreted the meaning of the dots in a

dot plot with only one axis (meaning no y-axis for frequencies).

1.3 Interplay between Shape, Center, and Variability

Many research studies have explored the connection between a student’s understand-

ing of the shape, center, and variability of a distribution displayed graphically. Cobb

(1999) finds that students need to understand shape before being able to learn about

the variability in a graph. Following the Bar Height Misconception, students

sometimes equate certain shapes of graphs with certain amounts of variability (Ka-

plan et al., 2014). For example, students may look at the probability distribution

function of a uniformly distributed variable and claim that it has significantly more

variability than a bell-shaped distribution of variable simply because it is flatter

(Kaplan et al., 2014).
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Because the fundamental normative description for variability, a numerical

summary of the magnitude of the distance of points from the center of a distribution,

is so inherently connected with center, it is difficult for students to assess the mag-

nitude of the variability in a given graph without understanding how to determine

the center of the graph (delMas and Liu, 2005; Cobb et al., 2003). Students tend to

develop understandings about the center of distributions displayed graphically at a

very young age (Ben-Zvi and Amir, 2005). Students, however, may hyper-focus on

the central values while ignoring many other important features of graphs such as

their variability or shape (Kaplan et al., 2014). Because of this, it is important to

highlight the natural connection between the center of a graph and the variability

in its data.

There are studies (delMas and Liu, 2003; Bakker 2004) that demonstrate

that horizontal segmenting in frequency graphs helps students identify which of two

graphs contain data that are more variable. In both of these studies, students were

given specific instruction about variability and graphs prior to being asked ques-

tions. In the delMas and Liu (2003) study, students used computer software to play

a game that taught them how to identify graphs with larger standard deviations. In

the Bakker (2004) study, students were also given several lessons about how to iden-

tify variability in different graphs. Although it is clear that the segmented graphs

led to understanding of variability when data are presented graphically, it is unclear

whether this was a result of the direct instruction or because of the segmentation

itself. This research is conducted with students who have received no additional

instruction about variability and graphs outside of the standard introductory statis-

tics curriculum. While there is some literature about student misconceptions about

histograms (Kaplan et al., 2014), there is sparse literature discussing the misconcep-

tions associated with other univariate displays of data, such as dot plots.
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The work presented here explores the connections between dot plots, his-

tograms, and abilities of students to correctly compare measures of variability across

data sets depicted graphically. Student responses are collected from large numbers

of students in an introductory statistics course at the University of Georgia. These

responses are analyzed using an ensemble of machine learning algorithms designed

to categorize student responses into a number of bins. Chapter 2 and Chapter 3

present the statistical theory behind the ensemble model used in this study and

provides details of the mixed methodology employed to answer the four research

questions posed by this work. Chapter 4 contains the results of the mixed methods

study, and Chapter 5 provides a discussion of the results. In addition, limitations

and potential for future directions are discussed.
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2 Ensemble and Machine Learning Literature Re-

view

To investigate the Ensemble research question, a series of machine learning al-

gorithms are constructed in tandem to make classifications about uncategorized

student responses to statistics content questions, specifically about variability. A

machine learning algorithm is a class of statistical algorithms that can learn from

and make predictions about data (Kohavi, 1998). These classifications are used to

identify possible misconceptions held by students (Misconception research ques-

tion) as well as the differences in responses to questions about dot plots versus

histograms (Dot Plot vs. Histogram research question). In essence, a series of

proven classification techniques are used to make accurate, overarching classifica-

tions about new data. To achieve this, a technique known as ensemble learning is

used to combine the classification abilities of multiple machine learning algorithms.

Although machine learning algorithms can be used for regression, here they are

used solely for classification. As such, the terms algorithm and classifier are used

interchangeably throughout this dissertation.

2.1 Ensemble Modeling

Ensemble learning is a technique that employs multiple machine learning algorithms,

because the combined knowledge of multiple algorithms often produce more accurate

results than any one algorithm alone (Dzeroski and Zenko, 2004). This ensemble of

algorithms is more accurate when the number of algorithms in the ensemble is very
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large (Hansen and Salamon, 1990). In this context, each algorithm in the ensem-

ble makes a single classification prediction for any given observation (i.e. student

response). Under uniform vote weighting, the vote of each algorithm is counted,

and the classification that receives the majority vote is the classification selected by

the ensemble. There are, however, many ways to weight the votes of each of the

classifiers in the ensemble. Regardless of vote weighting, it has been shown that

ensemble methods often produce a lower classification error rate than the error rate

of any of the individual classifiers in the ensemble, including the best one (Dzeroski

and Zenko, 2004).

Ensemble methods for classification can only be more accurate than any

of their individual classifiers if the individual classifiers in the ensemble are both

‘diverse’ and ‘accurate’ (Hansen and Salamon, 1990). There is, however, no formally

accepted definition for ensemble diversity (Kuncheva and Whitaker, 2003). Thus,

measuring diversity is not straightforward. Some define diversity as having each

of the errors in classification made by individual machine learning algorithms in

a given ensemble be uncorrelated with one another (Hansen and Salamon, 1990).

Others define diversity using a single metric, like Yule’s Q statistic, a special case of

Kruskal’s gamma (Kuncheva and Whitaker, 2003).

This research utilizes Cohen’s Kappa (Cohen, 1960) and Fleiss’ Kappa

(Fleiss, 1971), a generalization of Cohen’s Kappa, to ensure diversity by determin-

ing if the errors made by each of the classifiers in the ensemble are uncorrelated.

Cohen’s Kappa is used for analytic rubrics (defined in Section 7.3) and for quanti-

fying the coding agreement between two independent raters. Cohen’s Kappa values

larger than .8 are said to demonstrate strong agreement (Cohen, 1960), and this

threshold is used as a baseline for determining if raters are agreeing sufficiently of-

ten. Fleiss’ Kappa is used for holistic rubrics and any instances where there are
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multiple raters. For this purpose, multiple raters could either be three or more ex-

perts coding a particular response, or three or more machine learning algorithms

coding a particular response.

To demonstrate the calculation of Fleiss’ Kappa, assume the following.

Let N be the total number of documents in the document-term matrix (see Section

7.3 for a definition of a document and document-term matrix). Let n represent the

number of individual classifying algorithms in the ensemble. Let K represent the

number of mutually exclusive rubric bins, or alternatively the number of potential

categorizations for the given problem. Documents are indexed i = 1, ...N , categories

are indexed j = 1, ..., K, and nij represents the number of algorithms that classified

the i-th document into the j-th category. First, calculate:

P = 1
N

∑N
i=1 Pi

P = 1
N ·n(n−1)

(∑N
i=1

∑K
j=1 n

2
ij − n

)
(1)

Where Pi represents the proportion of pairs of algorithms that agreed on a

classification for document i. That is, Pi = 1 if each of the algorithms agreed on the

same classification (regardless of its correctness) and Pi = 0 if each of the algorithms

chose a different classification than the rest. Thus, P calculates the average of all of

these agreements. Next, calculate:

P e =
K∑
j=1

p2
j (2)

14



Where pj represents the proportion of all classifications made by the al-

gorithms belonging to classification j. Thus P e represents the sum of the square of

the proportions of classifications made for each category. That is, if all documents

were classified as category 1, then p1 = 1 and p2 = p3 = ... = pK = 0. If half of the

documents were classified as category 1 and half as category 2, then p1 = p2 = 0.5

and p3 = p4 = ... = pK = 0, etc.

Finally, the formula for Fleiss’ Kappa is:

κ =
P − P e

1− P e

Where 1−P e represents the degree of agreement that is attainable beyond

random chance, and P − P e represents the degree of agreement that is actually

achieved by the ensemble beyond random chance. Equation 1 and Equation 2 are

used to calculate P and P e, respectively.

Diversity, specifically when measured as a function of the correlation of

the errors each classifier makes, is important in an ensemble. Diverse classifiers

are important so that mistakes in a certain direction made by one classifier (say

the propensity of a certain classifier to over-classify responses into bin 1) are not

made in the same direction by all classifiers in the ensemble (as they would if the

classifiers were not diverse). In other words, it desirable to not have all of the

classifiers consistently make errors in the same direction, or more ideally to make

errors randomly in any direction instead of systematically in one direction (Banfield

et al., 2005). To demonstrate the importance of diversity, consider the extreme case

where every classifier in the model is identical. That is, say there are k identical

classifiers in an ensemble, each with correct classification probability equal to 0.8.

15



Because the classification of classifiers 1, 2, ..., n is all exactly the same, the true

probability that the ensemble makes the correct decision is not depicted by Figure

2.1, but is instead equal to 0.8. This is because the errors that the classifiers make are

correlated (in this extreme example, they are perfectly positively correlated). Thus,

it is necessary to have uncorrelated (or at least minimally correlated) classifiers to

avoid this issue.

Hansen and Salamon (1990) state that an ensemble is ‘accurate’ if the

probability that each individual classifier correctly categorizes any given item must

be greater than 50% in the long run. Take as an example the case in which a

researcher wishes to categorize responses into one of two bins, 1 and 2. Suppose

the probability that any given response belongs to one of these bins is equal (thus,

p(Bin1) = p(Bin2) = .5). A classification algorithm that employed purely random

guessing would correctly categorize any given response with probability 0.5. If the

correct classification rate for each classifier in the ensemble is exactly 50% (equal

to random guessing), then regardless of the number of classifiers in the ensemble,

the overall probability that the majority vote in the ensemble is in favor of the

correct classification is exactly 50%. This is true because each of the algorithms has

only a 50% chance of correctly classifying a given response. Thus, any arbitrary

combination of these algorithms would also produce only a 50% chance of correctly

classifying the response, regardless of how each algorithm’s vote is weighted. To

construct an ensemble to successfully categorize items into one of these two bins,

the accuracy of each individual algorithm must therefore be better than 50%.

Assuming each algorithm in the ensemble is equally accurate and its classi-

fications are independent, the probability that a given ensemble correctly categorizes

a particular item is equal to:
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P (Correct Classification) =
n∑

k=dn
2

+.5e

(
n

k

)
pk(1− p)n−k

where n represents the total number of algorithms in the ensemble, and p represents

the probability that any one algorithm correctly classifies a given response (i.e. its

accuracy). Thus, the probability that the ensemble makes a correct classification is

the probability that the majority of the algorithms in the ensemble (at least dn
2

+0.5e

of them) makes the correct classification.

Take for example the following 4 separate instances. In each of these

instances, the probabilities of making a correct classification for each of the classifiers

in the ensemble are fixed to be 0.5, 0.55, 0.6, and 0.8 respectively. The y-axis

represents the expected probability that the majority vote of the ensemble is correct.

Note that ensembles with 95% long-run accuracy whose individual algorithms have

55%, 60%, and 80% accuracy require approximately 200, 100, and 5 total algorithms.

Thus, increasing the accuracy of individual algorithms greatly reduces the number

of algorithms required in an ensemble to achieve high overall accuracy.
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Figure 2.1: The expected probability of a correct ensemble decision for various
classifiers with fixed probabilities of correct classification.

If there are n number of bins into which items can be classified, then

each individual classifier must still be able to correctly classify any given item with

probability greater than 0.5. Unlike in the aforementioned example where n = 2,

this is not equivalent to saying that each classifier must decide, with probability

greater than 0.5, that a given item belongs in the correct classification bin. For

example, suppose there are n = 4 bins. Classifier A might calculate the following

probabilities that Item Z belongs in each of the 4 bins:

P (Item Z belongs in Bin 1) = 0.4

P (Item Z belongs in Bin 2) = 0.3

18



P (Item Z belongs in Bin 3) = 0.2

P (Item Z belongs in Bin 4) = 0.1

Suppose that Item Z belongs in Bin 1. Even though Classifier A only

assigned a 40% probability that Item Z belongs to Bin 1, Classifier A would place

Item Z in Bin 1 because it had the largest probability of all available bins. For a

classifier to be ‘accurate’ enough to be placed into an ensemble, it must correctly

categorize, on average, at least half of the responses in any given training set of data.

This is true regardless of the individual probabilities that any item belongs to any

of the n bins.

Both the conditions of perfect accuracy (an algorithm that predicts the

correct categorization with probability 1) and perfect diversity (an ensemble of com-

pletely uncorrelated algorithms) are rarely met in practical cases. For example,

sometimes one or two classifiers individually perform poorly or are highly correlated

with each other. Typically, steps are taken in each ensemble technique to ensure that

they are met with as high a probability as possible (Banfield et al., 2005). Some

classification methods, such as Bagging and Boosting help reduce classifier corre-

lation through bootstrap sampling. Random Forests is a technique that employs

random feature bagging to reduce classifier correlation. Therefore, except under ex-

treme circumstances that guarantee individual poor performing or highly correlated

classifiers, for example extremely small sample sizes, it is always advantageous to

use ensemble modeling instead of an individual classifier (Banfield et al., 2005).

The aforementioned calculations assume that each vote in the ensemble

is weighted equally. There are, however, many different ways in which the votes

of each algorithm in an ensemble can be weighted. A voting scheme in which each

algorithm’s vote receives equal weight in the classification chosen by the ensemble is
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often simple and effective (Dietterich, 2000). This is known as uniform weighting.

There are many other weighting schemes that calculate the weight of an algorithm’s

vote based on various criteria (Muhlbaier et al., 2009). Fung et al. (2006) proposes

a method of calculating the weight of an algorithms vote based upon the location of

the response in n-space. That is, algorithms that predict particularly well for certain

areas are given higher weight than those that do not predict as well in the same area.

Other, cross-validation-based vote weighting schemes prove effective when particular

algorithms have a high rate of false positives or false negatives (Dietterich, 2000). A

variety of ensemble vote weighting functions are utilized in this research.

2.2 Ensemble Weighting Functions

Each algorithm in an ensemble votes on the classification of a particular response.

There are numerous different vote-weighting schemes that can be used to dictate

how votes from each algorithm are counted in the ensemble. The general form of an

ensemble vote-weighting function is:

ỹ(x;α) =

p∑
j=1

αjyj(x)

where ỹ(x;α) represents the ensemble classification for response x using vote-weighting

function α, p represents the number of unique classification algorithms in the ensem-

ble, yj(x) represents the predicted classification of response x by algorithm j (where

j = 1, ..., p), and αj represents the weight applied to algorithm j’s classification. Al-

though there are no restrictions about the values of αj, typically 0 < αj < 1 for all

j. That is, suppose the vote from algorithm 1 (with weight α1) is valued three times
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more than the vote from algorithm 2 (with weight α2). Any scalar value for α1 could

be valid so long as α1

α2
= 3. Thus, it is acceptable that α1 = 3 and α2 = 1. These

weights, αj, are typically (though not necessarily) standardized such that their sum

is equal to 1. In the previous example, a standardization in weights would yield

α1 = 3
4

and α2 = 1
4

so that α1

α2
= 3 and

∑2
j=1 αj = 1.

Uniform vote weighting, also known as a majority voting rule, states that

the vote of each algorithm is weighted equally. Thus, under uniform vote weighting,

αj = 1 for all j and the classification receiving the most votes (regardless of which

algorithms produced the votes) is the classification chosen by the ensemble.

Each algorithm reports a measure of certainty that the algorithm has made

a correct prediction. This measure of certainty is known as the predicted probabil-

ity that is has made a correct prediction. Probability-based voting weights the vote

of each algorithm by this measure of certainty. Thus, the weights in predicted-

probability based voting are αj = Pj, where Pj represents this measure of certainty

(Muhlbaier et al., 2009). The calculation involved in the predicted probability of

a correct classification is different for each of the eight algorithms. For example, a

classification tree calculates this predicted probability of success by identifying the

proportion of responses at a particular terminal leaf with the given classification.

That is, if X out of the N total training data responses belonging to a terminal leaf

are coded as category A, then the classification tree algorithm outputs a classification

of category A with predicted probability of success to be Pj = X
N

. Although other

algorithms calculate this measure of certainty in a slightly different manner, most

algorithms assess their predicted-probabilities of success as a measure of the propor-

tion of responses with the target classification in the given subspace (Muhlbaier et

al., 2009).
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A dynamic ensemble weighting function weights the votes of the algorithms

depending on the location of the response in n-space. There are an infinite number of

dynamic vote-weighting functions, but the one used in this research is called Dynamic

Classifiers Weighting and was developed by Fung et al. (2006). In two dimensions

(i.e. if there were only two features in the feature space), a particular algorithm may

more correctly categorize responses located in the first quadrant than in the second

quadrant. The corresponding αj value would be higher (i.e. the algorithm’s vote’s

weight would be higher) when making predictions about responses located in the

first quadrant than responses located in the second quadrant. Significant amounts

of training data are used to determine the efficacy of the algorithms in different

regions, and this is often computationally expensive (Fung et al., 2006).

Cross-validation-based (or CV-based) vote weighting schemes weight the

votes of the algorithms in an ensemble by various performance metrics calculated

during the cross-validation step of the model-training process. Although there are

an infinite number of CV-based vote weighting schemes, the one chosen in this study

weights the vote of each algorithm based on its propensity of false-positives (if the

predicted categorization is positive) or false-negatives (if the predicted categoriza-

tion is negative). For this implementation, αj = 1−FPP or αj = 1−FNP , where

FPP represents the probability, based on cross-validation testing, that the algo-

rithm make a false positive prediction and FNP represents the probability, based

on cross-validation testing, that the algorithm will make a false negative prediction.

The former equation is only used when the algorithm makes a positive categorization,

and the latter equation is only used when the algorithm makes a negative catego-

rization. In the instances where there are greater than two categories, each category

is collapsed into a binary form (i.e. is the response in the particular category or not)

for the purposes of these calculations.
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2.3 Machine Learning Algorithms in the Ensemble

Machine learning algorithms involve inferring a classification function from a set of

labeled training data. The general form of machine learning for classification involves

training the classifiers on a set of training data, and then testing their accuracy on

a separate set of testing data (Adeli and Hung, 1994). Both sets of data must

already contain labels for machine learning to occur. Subsequent sections discuss

each individual machine learning algorithm to be used in the classification ensemble.

2.3.1 Classification Trees

Classification Trees, also known as Decision Trees or Survival Trees, are a machine

learning technique that creates a binary decision making structure to classify new

data into one of potentially many mutually exclusive categories. The basic structure

of a classification tree begins with a central node (known as a leaf) with at least two

attached branches (Rokach and Maimon, 2008). For the purposes of this research in

classifying student responses to questions about statistics, the central leaf might say,

Did the student use the phrase ’Central Limit Theorem?’ This leaf would then have

two branches- one labeled yes and one labeled no. Each of those branches would

lead to another leaf that might ask a similar question such as, Did the student use

the word ’Expectation?’ This leaf would have two more branches, and the process

would repeat until a set of specific stopping criteria were achieved.

There are many different ways to construct classification trees. One of

the more common ways is through maximizing the homogeneity of classifications

at any given leaf. Homogeneity is a measure of the proportion of responses at a

given leaf that have the same categorization. If all of the responses at a particular

leaf have the same categorization, then this leaf is said to be perfectly homogenous.
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The classification tree constructed in this manner is derived by first constructing

attribute-value pairs for each of the text responses in the data set (Gelfand et al.,

1989). An attribute is defined as any of the words appearing in the training data set,

and its corresponding value is either a 1 or 0 if the word were used or not used in the

selected text response, respectively. The attribute-value pairing that separates the

training data into homogenous categories is chosen to be the central leaf (Srivastava

et al., 1999). If the presence or absence of a certain attribute always identifies each

response in the training data as belonging to one category or the other, then this

attribute is selected to be the central leaf. This rarely occurs for all but the smallest

data sets (Gelfand et al., 1989).

Assuming there does not exist an attribute that splits the training data

into homogenously categorized groups, the classification tree algorithm cycles through

all remaining attributes until it identifies one that promotes the highest degree of

homogeneity possible. This is known as maximizing homogeneity. For example, as-

sume there are 100 observations with two classifications, correct and incorrect, and

two remaining attributes A and B. Next assume that the use of attribute A would

split the remaining sample into two groups, a yes group and a no group, where the

yes group and no group each have 25 correct classifications and 25 incorrect clas-

sifications. Now assume that the use of attribute B would also split the remaining

sample into a yes group and a no group, but there would be 45 incorrect classi-

fications and 5 correct classifications in the yes group, and conversely 5 incorrect

classifications and 45 correct classifications in the no group. In this example, at-

tribute B would be chosen as the next leaf because it maximizes the homogeneity

within the groups. Table 1 and Table 2 give a summary of Attributes A and B.

Once the attribute for the central leaf is identified in this manner, it now

has two branches extending from it: one indicating the presence of the attribute in
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a given text response and one indicating its absence. A new leaf is formed at each of

these branches, and the process of selecting the leaf that maximizes the homogeneity

repeats in an identical manner to the selection of the first leaf. (Quinlan, 1986).

This process continues until a set of stopping criteria are reached. In general, the

stopping criteria include a hard stopping criteria, if a node splits the data into

perfectly homogeneous categorizations, and soft stopping criteria, if there are too

many branches in the tree (Quinlan, 1986). The specifics of the stopping criteria

used here can be found in Section 3.7.1.

Table 1: Attribute A summary

Classification
Correct Incorrect

Branch
Yes 25 25
No 25 25

Table 2: Attribute B summary

Classification
Correct Incorrect

Branch
Yes 5 45
No 45 5

Once a classification tree is formed in this manner, it can be used to classify

new, uncategorized responses. To categorize new responses, the algorithm begins at

the central leaf and determines if the response contains the given attribute. Then,

it follows the branch corresponding to whether or not the given attribute is present

or absent in the response. It then arrives at a new leaf containing an attribute.

The algorithm continues this process until the bottom of the tree is reached. If the

bottom-most leaf contains homogenously categorized responses in the training data,

then the new response receives this same categorization. If the training data were
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not homogenously split at this final leaf, then the split of larger size is chosen to be

the categorization of the new response (Magerman, 1995).

2.3.2 Bagging Classification Trees

Bagging is an ensemble learning technique which utilizes multiple resamplings of

training data to construct several different classification algorithms. Bagging hy-

pothesizes that a series of votes from these separate classifiers derived from the sets

of re-sampled data makes more accurate classifications than any one classifier, in-

cluding one derived from the original data (Dzerosky and Zenko, 2004). In other

words, in an attempt to reduce both the overall variability of classifications and

classification error rate, Bagging partitions the N data points into a training and

a test set, say Ttrain and Ttest respectively. Then the Ntrain data points in Ttrain

are each given equal probability of being selected (p(n) = 1
Ntrain

) and a sample of

size Ntrain is drawn with replacement and a classifier is created. This process is

repeated a desired number of times (say 100) and each of the classifiers is used in

an ensemble to vote on the classification. The classification that received a majority

vote is selected to be the most likely classification (Breiman, 1996).

One way to develop a classifier is to bag classification trees. In this manner,

a set number (typically 100) of bootstrapped samples are drawn from the population

and a classification tree is constructed for each of them. The classification trees

are created in such a way as to maximize efficiency, so that numerous trees can

be constructed in a reasonable amount of computing time (Dzerosky and Zenko,

2004). This increase in efficiency may lead to small decreases in individual classifier

accuracy, especially when classifying outlier points. Bagging seeks to overcome this

by having each classification algorithm vote in an ensemble (Breiman, 1996). It is

expected that with 100 bagged trees to use in an ensemble to make a classification,

26



the number of trees that were created ‘too quickly’ and missed constructing specific

leaves necessary for intricate classifications are only a fraction of the overall number

of trees in the ensemble. Each of the trees in the bagging ensemble gets one vote,

and that bagging ensemble’s vote is worth one vote in the overall ensemble.

2.3.3 Boosting Decision Stumps

Boosting is a machine learning algorithm that turns weak learning algorithms that

perform slightly better than random guessing into a single ensemble of algorithms

with arbitrarily high accuracy (Freund and Schapire, 1995). Weak learning algo-

rithms are those that are quick to construct, but are often not as accurate as algo-

rithms whose run-times are significantly longer (Freund and Schapire, 1999). Boost-

ing, much like bagging, utilizes the re-sampling of data to generate new classifiers.

While Boosting and Bagging both work to combine many classifiers into a single,

improved classifier, Boosting modifies the re-sampling probability distribution using

a set function (Freund and Schapire, 1996). There are many functions that can be

used to re-weight the training data using to train the individual classifiers. Some of

these re-weighting functions include: AdaBoost (Freund and Schapire, 1999), LP-

Boost (Demiriz et al., 2002), and LogitBoost (Friedman et al., 2000). Each of these

algorithms performs well under certain circumstances (Friedman et al., 2001). The

AdaBoost re-weighting function tends to perform better than other known schemas

when decisions stumps, a one-leaf decision tree with two branches, are used as the

weak learners in an ensemble (Friedman et al., 2000).

Bagging is essentially a variance-reduction technique and is useful for

highly variable structures like decision trees (Breiman 1998). Decision stumps, how-

ever, have very little variance and often high bias. Thus, bagging performs poorly

with decision stumps, whereas re-weighting algorithms such as AdaBoost perform
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very well by minimizing both the inherent bias in the creation of each stump (Fried-

man et al., 2000).

The essence of Boosting involves varying the probabilities of being se-

lected for the bootstrapped sample for each of the responses in the training set of

data (Breiman 1998). Unlike bagging, in which each response has an equal proba-

bility of being selected at each iteration of training, in boosting successive iterations

increase the probability of the selection of misclassified responses for the new train-

ing set by some function (Freund and Schapire, 1999). In its simplest form, this

increase in probability involves multiplying the probability of being selected for each

of the misclassified points, then re-normalizing these probabilities to sum to 1 .

The advantage of this re-weighting of probabilities is that in most cases it leads to

significantly reduced prediction error when compared to Bagging, because it system-

atically lowers the probability of many easy-to-classify cases being selected in the

re-sampled data sets, as these cases ultimately do not help improve the accuracy of

each classifier (Breiman 1998). The disadvantage of this method is, for some outlier

cases, the classifiers often continuously misclassify the outlier cases, causing them

to appear in every re-sampled data set (since they have such a high probability of

being sampled in each successive bootstrapped sample since it keeps getting misclas-

sified) (Freund, 1999). This leads to an overall decrease in final Boosting ensemble

prediction accuracy (Breiman 1998).

The most prominent utilization of the boosting of decision stumps uses the

AdaBoost re-weighting algorithm (Freund and Schapire, 1999). This re-weighting

algorithm constructs hundreds of decision stumps based on the boosted data set.

Unlike in the boosting described by Breiman (1998), AdaBoost applies a more com-

plex function to the reweighting scheme. Given a finite number of classifications,

AdaBoost first constructs an error function E(f(x), y, i) = e−(yif(xi)) where xi rep-
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resents the ith resampling of the data, f(xi) represents the classifications by the

decision stump created by the ith resampling, and yi represents the vector of correct

classifications for sample i (Freund and Schapire, 1999). The problem then becomes

a minimization problem where ones tries to find the decision stump (essentially the

best single attribute) that minimizes the error function as a function of the weight

applied to each data point. Thus, ones tries to find the decision stump h(x) that

minimizes
∑n

i=1wiE(h(x), y, i) where wi is the vector of weights assigned to each of

the i data points. One then minimizes this function at each of the boosting iter-

ations until one has reached a designated level of convergence or stopping criteria

(Freund and Schapire, 1999). The weights of individual data points themselves are

determined by the function wi,t+1 = wi,te
−yiαiht(xi), where wi,t represents the vector

of weights of sample i at iteration t, and α is a function of the error of the previous

set of decision stumps (Freund and Schapire, 1999).

An effective visualization explaining the process and utility of boosting

comes from Meir and Ratsch (2003), and is pictured on the following page. The

color of the observations indicates their correct classification, and the diameter of

the point indicates that observation’s proportional weight in the sample. The dashed

lines represent the boundaries formed by individual classifiers, and the solid green

line represents the decision boundary formed by the combined classifier. Figure 2.2

shows that a strong learner (first iteration) splits the data reasonably well. In the

second, third, and fifth iterations, the individual classifiers (pink dashed lines) do not

perform particularly well. Specifically, the classifier with a circular-shaped boundary

splits the data extreme poorly. The figure also shows the results after a hundred

iterations of constructing several weak learners about data that are hard to classify.

In this case, ‘hard to classify’ is synonymous with being close to the boundary. The

overall boosted ensemble of weak learners classifies much better than the original
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strong learner due to the sections of easy to classify points, (in this example in the

top right and bottom left of the data), being removed from the training data as they

give no real predictive power after the first iteration. The difficult to classify points,

however, remain in the data set and often appear multiple times. This allows for a

more refined classification line to be drawn.

Figure 2.2: This figure details the boosting process. All data points have an equal
chance of being selected in the first iteration of the resampling of the training data.
Hard-to-classify data points (i.e. those near the boundary) are given more weight
and appear more often in future resamplings.

2.3.4 Random Forests

Random forests describe the general ensemble modeling technique of constructing

many classification trees (as described in Section 2.3.1) and outputting the majority

classification of the forest of classification trees (Liaw and Weiner, 20012). Each

individual classification tree is a classifier in the ensemble, and the overall ensemble

is known as the random forest. This method utilizes the idea of bagging (as de-

scribed in Section 2.3.2), but instead of bagging the individual classification trees,
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random forests utilize the bagging of features. It is difficult to select useful at-

tributes when the number of attributes is significantly larger than the number of

responses (Ho, 1998).

The random selection of features to be used is calculated via the random

subspace method. Let g = 1, ..., F be the total number of features and ntree be

the total number of decision trees constructed by the random forest ensemble. This

method selects a subsample of the F features, tg, to be used for each of the ntree

classification trees. Each of the non-selected F − tg features are essentially set to 0

as all of the samples are projected onto the subspace containing only the tg selected

features. In order to classify any new subject, the subject is projected onto the same

subspace as its corresponding decision tree and a classified accordingly. Unlike in

typical decision tree construction, each of the ntree decision trees constructed in each

of the subspaces in this manner is fully-split. This means that they are split until

each final leaf is completely homogeneous. Thus, each decision tree predicts with

perfect accuracy on training data, since it is split until all leaves contain no mixtures

of classifications.

One of the main advantages of this method is that each of the decision trees

in the random forest is constructed independently. Unlike boosting, for which the

weights of the data in each subsequent sample depends on the weights and classifica-

tion error of the previous sample, the random forest algorithm can be implemented

in a parallel environment for faster computing. Also unlike many typical decision

tree construction methods, there is no danger of being trapped in local optima since

there is no ’hill-climbing’ (Ho, 1998). This means that the resulting forest is less

likely to over-fit the training data and thus perform poorly on new testing data.

Finally, the main criticism of boosting decision trees is that the individual trees in

subsequent samples become highly correlated with each other, since many of the
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same data points get used over and over. With random forest construction, none of

the individual classifiers are highly correlated since features to be used in each tree

are selected in a random fashion. This lack of correlation is important because clas-

sifiers in an ensemble must remain relatively uncorrelated, especially when making

errors, for the entire ensemble classification error to asymptotically approach zero

(Hansen and Salamon, 1990).

2.3.5 Elastic-Net Regularized Generalized Linear Models

A generalized linear model (GLM) is a generalization of linear regression that pre-

dicts a particular response variable (e.g., the categorization of a student response)

as a function of numerous predictor variables. Through the use of a link function,

the errors of the response variable for a GLM need not be normally distributed as is

the case in simple linear regression (McCullagh and Nelder, 1989). In this instance,

the logit link function is used. The elastic-net is an approach to model selection via

penalized maximum likelihood and it is especially effective for sparse input matrices

(Tibshirani et al., 2012). The goal of the elastic-net implementation used in this

research is to solve Equation 3 over a large number of values λ, where l(y, n) is the

negative log-likelihood for observation i. (Friedman et al., 2012).

min
β0,β

1

N

N∑
i=1

wil(yi, β0 + βTxi) + λ
[(1− α)||β||22

2
+ α||β||1

]
(3)

If α = 0, then the elastic-net implementation in Equation 3 is equivalent

to ridge regression and reduces to Equation 4. The second term in Equation 4

represents the L2 norm (i.e. euclidian distance) of the coefficient vector that is used
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for penalization. The euclidian distance is calculated by
√∑n

i=1(pi − qi)2, where p

and q are euclidian vectors.

min
β0,β

1

N

N∑
i=1

wil(yi, β0 + βTxi) + λ
[ ||β||22

2

]
(4)

If α = 1, then the elastic-net implementation in Equation 3 is equivalent

to lasso regression and reduces to Equation 5. The second term in Equation 5

represents the L1 norm (i.e. manhattan distance) of the coefficient vector that is

used for penalization. The manhattan distance is calculated by
∑n

i=1 |pi− qi|, where

p and q are vectors in the plane.

min
β0,β

1

N

N∑
i=1

wil(yi, β0 + βTxi) + λ
[
||β||1

]
(5)

The advantage of the elastic net is that a variety of values of α are tested

to determine which best improves model prediction (Zou and Hastie, 2005). Hastie

and Qian (2014) note that the ridge penalty tends to shrink coefficients of correlated

predictors toward each other, while lasso tends to overvalue a single predictor. A

mixture of these approaches often leads to the benefits of both with neither of the

drawbacks (Hastie and Qian, 2014). The variable selection for the implementation

used here (from the glment package in R) itself functions similarly to lasso regression

in that it selects important covariates for the regression model first through a for-

ward variable selection algorithm by finding the covariate most correlated with the

response variable of interest. Instead of simply adding that variable to the model and

moving to the next-highly correlated variable as in forward selection, the technique
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increases the coefficient of the corresponding initially chosen covariate continuously

in the direction of the sign of its correlation with the response variable of interest

until another variable becomes more correlated with the response than the initial

covariate. This process is then repeated until all covariates are in the model (Tib-

shirani et al., 2012). Once the model is created in this fashion, it is used to predict

the bin to which each item belongs to.

2.3.6 Maximum Entropy Modeling

Maximum entropy modeling utilizes a multinomial logistic regression model to make

classifications about unknown responses (Jurka and Tsuruoka, 2015). Maximum

entropy models function similarly to the Naive Bayes classifier. Unlike the Naive

Bayes classifier, however, maximum entropy modeling does not assume that each of

the features are independent of one another (Berger, 1996). Whereas multinomial

logistic regression models attempt to classify data (i.e. responses) into one of many

mutually exclusive categories, the maximum entropy model takes a unique approach

to optimizing the variable selection process for the logistic model. First, a maximum

entropy model implemented via the maxent package in R begins (as described by

Vryniotis, 2013) by calculating the empirical probability distribution of the feature-

classification pairings in the data:

p̃(x, j) =
1

Ntrain

· I(x, j)

Where Ntrain is the size of the training set, x is a particular feature (typi-

cally an n-gram), and j is a particular classification. I(x,j ) represents the number of

times that a document with feature x is classified as classification j. Now, define:
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fi(x, j) =


1, if document i is classified as j and containsfeaturex

0 otherwise

Thus, fi(x, j) is an indicator function which indicates if a particular docu-

ment i contains feature x and was classified as j. As per Vryniotis (2013), one then

calculates the expected value of any given feature function fi by:

p̃(fj) =
∑
x,j

p̃(x, j)fi(x, j)

Based on the principle of maximum entropy, one should select the logistic

model p∗ that is as close as possible to a uniform distribution of classifications. That

is, without external knowledge about how certain features may or may not indicate

the probability of a particular classification, one should prefer distributions (in this

instance, specifically the conditional distribution of the classification variable given a

particular document (McCallum et al., 1999))that are as close to uniform as possible.

Thus, one must calculate the logistic model p∗ which maximizes:

p∗ = arg max
pεC

(
−
∑
x,j

p̃(x)p(x|j)log(p(j|x))

)

This model intended to be used when there are numerous predictor vari-

ables, sometimes hundreds of thousands (Jurka and Tsuruoka, 2015). For the case

of natural language processing, it is often important to identify which words (either

their presence or absence) are significantly correlated with a particular classifica-

tion. It is equally important to identify potential interactions between words (i.e.
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the presence of two words individually is uncorrelated with a particular categoriza-

tion, but their presence in a response together is highly correlated with a certain

categorization). The following example shows why assessing the potential statistical

significance of interaction terms in a logistic regression model is a key step in the

variable selection process.

Assume a professor poses the following question:

What is another common name for the Gaussian distribution?

The correct answer to this question is ‘normal distribution.’ A student us-

ing both the words normal and distribution would likely, but not necessarily, indicate

the student has achieved the correct answer. Consider the following hypothetical

responses:

1) This is definitely not a normal question to ask. I have never heard of the word

Gaussian.

2) Another common name is the Poisson distribution.

3) Another name for this is the normal distribution.

In response 1, the student used the term normal but answered the question

incorrectly. In response 2, the student used the term distribution but answered the

question incorrectly. In response 3, the student used the 2-gram normal distribution

and answered the question correctly. This is an example where the 1-grams normal

and distribution may be moderately positively correlated with the correct answer,

but the interaction term between normal and distribution will be highly significant
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and have a positive coefficient. This implies that the 2-gram of normal distribution

may be a better indicator of a correct response.

With few predictors variables, investigating all possible predictor variable

combinations and their interactions is computationally trivial for most data sets

(Malouf, 2002). Investigating these combinations for data sets with many predictor

variables exponentially increases the run-time required (Zou and Hastie, 2005). In

order to identify important predictor variables and potential corresponding interac-

tions in a reasonable amount of computational time, maximum entropy modeling

uses an iterative reweighting procedure, in this case maximum a posteriori (MAP)

estimation. This is essentially equivalent to using MLE using regularization of the

weights. The solution to this MAP estimation, in this case, is found through the

iteratively reweighted least squares (IRLS) algorithm found in (Bishop, 2006).

2.3.7 Scaled Linear Discriminant Analysis

Linear Discriminant Analysis is a dimension reduction technique often used in nat-

ural language processing and other scenarios where the number of predictors is sig-

nificantly larger than the number of data points, p >> n (Raschka, 2014). Scaled

Linear Discriminant Analysis (SLDA) is a generalization of Fisher’s linear discrim-

inant, which attempt to utilize a linear combination of features to separate classes.

SLDA is most similar to principal component analysis (PCA), except that SLDA

attempts to model the distinct differences between each of the different classifica-

tions of data. When the number of data points (i.e. responses) per classification bin

is relatively large, SLDA tends to outperform PCA significantly (Martinez et al.,

2001). The basic structure of SLDA is as follows, as described by (Raschka, 2014).
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First, compute the mean vectors for each of the bins in the data set. Each

of these vectors should be of dimension F , where F is the number of features of

interest in the data. Second, calculate the associated variance-covariace matrices,

known as scatter matrices. Third, computer the eigenvalues and eigenvectors for the

scatter matrices. Fourth, construct a matrix of a fixed number of the eigenvectors

with the largest eigenvalues. Finally, use this matrix to project the samples onto

this new subspace.

The Figure 2.3b from (Raschka, 2014) demonstrates the difference between

traditional PCA versus LDA. Figure 2.3a shows the PCA process of locating the

two component axes which maximize the variance that is accounted for. Figure 2.3b

demonstrates the LDA process of locating the axes on which to project for maximal

class separation (i.e. the black dotted line).

(a) This figure shows the PCA process of lo-
cating the axes which account for the most
variation in the data.

(b) This figure shows the LDA process of locating the
axes of maximal class separation.

Figure 2.3: This figure details the difference between PCA (left) and LDA (right).
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2.3.8 Support Vector Machines

Support Vector Machines (SVM) are a classification technique that construct a di-

vision between classes with a margin as large in magnitude as possible (Joachims

1998; Hearst et al., 1998). In two dimensions and if the classes are linearly separa-

ble, then this division is a vector. To find this maximally separating vector, SVM

constructs two parallel lines—one containing two data points from one class, and the

other containing two data points from the other class. SVM continues to construct

all possible parallel lines in this manner, and then selects the pair of parallel lines

with the largest distance between them (Sebastiani, 2002). These maximally distant,

class separating parallel lines are known as support vectors, and the midparallel line

formed perfectly in the middle of these lines is the class separating vector.

In F dimensions with separable classes, a series of (F − 1)-hyperplanes

are constructed until a separating hyperplane is found that separates the training

data as maximally distant as possible. Support hyperplanes are formed instead of

vectors (Hearst et al., 1998). A visualization of this technique in two dimensions

can be seen in Figure 2.4. If the data are perfectly separable in n-space, then the

hyperplane that separates the data and categorizes new data is called the maximum

margin hyperplane.
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Figure 2.4: The image above shows 3 lines that each separate the black dots from
the white dots. While both lines function perfectly as separators for these data, the
line in the middle, or the line which maximizes the distance from each point to the
line, is the maximizing linear classifier chosen by SVM.

If the data are not perfectly linearly separable, then the (n−1)-hyperplane

is drawn in a similar fashion by maximizing the distance from the points to the plane

(Yang and Liu, 1999). In general, the higher the dimension of the data and the more

potential categorizations one has, the more difficult the task of creating a separating

hyperplane may become. It has been shown that with thousands of samples, SVM

still performs reasonably well even with tens of thousands of dimensions (Jin and

Wang, 2012).

Joachims (1998) argues that many, if not most text categorization prob-

lems are linearly separable. With sparse document-term matrices and linearly sep-

arable classes, SVM should perform very well for text categorization, especially in

high dimensional feature spaces. One of the more appealing aspects of SVM is its

inherent lack of tuning parameters. This makes it easy to use and allows multiple in-
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stances of SVM to be run consecutively without adjusting various tuning parameters

(Joachims, 1998).

Additionally, SVM avoids feature selection completely; it inherently takes

into account all features of the data. Many other machine learning algorithms at-

tempt to select only the important features to use for classification, while in many

text analysis circumstances there are few (if any) irrelevant features (Joachims,

1998). A classifier using only the ‘worst’ features outperforms a classifier that clas-

sifies at random, and thus feature selection (any reduction in the number of features

of the data) results in data loss.
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3 Methods

Overall, this research took a mixed-methods approach to answer the four proposed

research questions. The general structure of this mixed-methods design is described

in this section. The subsequent subsections describe all aspects of this method-

ology. This includes the development of constructed-response instruments, their

integration into online student homework assignments, the creation of a rubric of

categorizations for each question, the process of hand-coding training responses for

these questions, and the development of an ensemble of machine learning algorithms

to make categorizations for new responses based upon hand-coded training data.

This research followed an explanatory sequential design, described in Creswell

(2015) as a design whose intent is first to use quantitative methods and then use

qualitative methods to help explain in more depth the results found through the

quantitative methods. The general manner in which this design was implemented is

as follows.

From a quantitative perspective, a series of 9 online free-response instru-

ments were constructed (as described in Section 3.3) to help answer the four proposed

research questions. Through the process of hand-coding these responses, insight was

gained to answer the Misconception and Dot Plot vs. Histogram research

questions. Then, an ensemble of machine learning algorithms was constructed to

categorize the online student responses into categories of interest. The efficacy of

these models was then evaluated using data hand-coded by experts, ultimately deter-

mining if an ensemble of machine learning algorithms could be trained to accurately

42



categorize student responses to a variety of question archetypes to answer the En-

semble research question.

A series of 13 interview tasks were constructed for the qualitative portion

of this study. These task-based interviews were used to investigate the Misconcep-

tion research question involving student misconceptions about variability in graphs.

In addition, the responses to these tasks were compared to the responses from their

isomorphic online counterparts. This comparison helped answer the Medium re-

search question. To better answer the Medium research question, each of the

interviews were transcribed and analyzed, and close attention was paid to the com-

pleteness and correctness of responses to each of the tasks performed by the partic-

ipants. A positivistic approach to these interviews was taken. That is, this research

took a scientific approach to find the true prevalence of many previously described

misconceptions about variability in graphs. This involved categorizing whether or

not students appear to have any of the misconceptions detailed in Section 1.

Finally, the results of the interviews were combined with the quantitative

data to make conclusions about students misconceptions about variability in graphs.

This combination culminated in answering the Medium and Misconception re-

search questions.

3.1 Quantitative Research Setting and Participants

All of the data in this study came from students in an undergraduate introductory

statistics course at a large research institution in the Southeastern United States.

In this course, students met for three hours a week in lecture with an additional

hour-long session in a computer lab. This course served both statistics major and

non-majors, and it included most of the standard topics taught in an introductory
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statistics course including Chi-square tests and linear regression, but not ANOVA.

The course textbook was Statistics: The Art and Science of Learning from Data 3rd

Edition by Agresti and Franklin (Agresti and Franklin, 2013). There were approxi-

mately 1200 students enrolled in any given spring or fall semester, and typically fewer

than 5% of the students enrolled were statistics majors. There were approximately

200 students enrolled in this course during any given summer semester.

Students in this course used WebAssign (www.webassign.net) for all lab,

homework, and test submissions. WebAssign is an online instructional platform

through which students can submit typed responses to instructor-created questions.

Questions could take the form of multiple choice or free response. Students were

given homework credit for their responses to each question used in this research

project regardless of the correctness of their responses.

The data for each of the 9 free-response items were collected from students

taking the introductory statistics course across five semesters from 2014 to 2015.

These data consisted of over 25,000 total responses to free-response items. Some

items also had an additional multiple-choice selection related to the constructed-

response prompt. The textual responses to the 9 free-response questions are referred

to as ‘the data’ for the remainder of this study. The data for each student were

downloaded from WebAssign, and then immediately de-identified using a one-way

encryption macro in Excel. This macro converted a student’s name to a 40 character

alphanumeric string. While the string could not be traced back to any individual

student, a student’s name always yielded the same 40 character string. This allowed

for responses to be linked to the same student across multiple items.
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3.2 Qualitative Research Setting and Participants

This section describes the qualitative methods, which consist of 19 one-on-one, task-

based interviews with introductory statistics students from a large research insti-

tution in the Southeastern United States. These interviews were conducted over a

period of three weeks in spring 2016. The 19 interviews were used to answer the

Misconception, Dot Plot vs. Histogram, and Medium research questions.

In February of 2016, approval was given to conduct a series of interviews

from consenting participants. A recruitment script was posted on eLC, an online

learning and class management system, in order to recruit 20 participants. This

script can be seen in Figure 7.26 in the Appendix. There was an initial surge of

responses, so after a few hours, 20 respondents were randomly selected for partic-

ipation. Each selected student received an email with further details about the

interview study, and a time was set up to meet individually with each of the 20

students. Before conducting each interview, students were provided with a consent

form, seen in Figure 7.26 in the Appendix. The consent form required that each par-

ticipant be a at least 18 years of age and a currently-enrolled introductory statistics

student. After accepting the interview invitation, one participant revealed herself to

be under the age of 18 and thus was excluded from the study. This ultimately left

19 interviews ranging from twenty minutes to an hour in length.

Each of the 13 interview tasks was printed on separate sheets of paper.

Beginning after the third interview, students were read the prompt aloud prior to

being handed the sheet of paper with the corresponding task. This was done in

response to the first two interviews, in which students would often begin by looking

at the graph in the task instead of paying attention to the written prompt. This

change appeared to alleviate this issue. Each of the 19 interviews was recorded
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using S Voice, an Android application that records sound through a cell phone.

This application was chosen due to its free nature and because it recorded sounds

at a reasonably high quality, making for a simple transcription process. Each of the

19 interviews were then transcribed and relevant portions were coded for later use.

3.3 Item Construction

There were 22 free-response items constructed to answer the four proposed research

questions. A total of 9 of these items were given to students in an online format over

five semesters, and 13 of these items were given to students in face-to-face interviews.

Online and interview items are categorized as either Describe or Compare items.

Describe items ask students to describe the distribution shown in a given graph

(histogram or dot plot) and potentially ask students to answer a question about

their description of the graph in context. Compare items ask students to compare

the variability of the data displayed in two side-by-side graphs. Both rubrics are

found in Section 3.4.

In each of the items used in this research, students were asked questions

about variability in data. When students were asked to describe the variability in a

set of data or to compare the variability in two sets of data, they were instructed to

consider standard deviation as the measure under consideration.

3.3.1 Describe Items

Describe items asked students to describe the distribution shown in a given graph.

This section lists each of the Describe items and gives a brief description of their

construction and purpose. Item 1 (Figure 3.1) provides an example of a typical De-

scribe question.
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Prompt- The histogram below shows the distribution of yearly income

in dollars for a random sample of 356 adults living in Atlanta, GA. Describe as

completely as possible the distribution shown in the histogram, being sure to explain

what the graph tells you about yearly income for adults in Atlanta.

Figure 3.1: Item 1- Atlanta Income

The Describe rubric can be seen in Table 3. The Describe rubric was an

analytic rubric that categorized responses as discussing the shape, center, variability,

and/or context of the given graph. This rubric was created mainly to answer the

Dot Plot vs. Histogram and Medium research questions by determining if

students described histograms and dot plots in the same manner and by determining

if students described graphs in a similar manner across different mediums. Each of

the responses was categorized as including or not including a discussion of shape,

center, variability, and context. The decision for each of these categorizations was

made independently. Thus, a student’s categorization for one particular category had

no effect on the likelihood of the same student’s categorization in another category.
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Therefore, students could be categorized into any number of the four bins. This

rubric was used for items asking students to describe a given graph, specifically in

Item 1, Item 3, Item 5, Item 8, and Item 9. The rubric for Item 9 did not contain a

context category due to the nature of the question prompt.

Table 3: This table shows the condensed Describe rubric for a general question.

Category Requirements

Shape
Students must correctly discuss the shape of the graph
by using appropriate terminology (e.g., asymmetric,
unimodal, skewed).

Center
Students must give a valid measure of center (e.g.
mean, median, mode, average) and correctly state its
location.

Variability

Students must discuss either the range of the data,
highlight potential outliers, locate the maximum and
minimum values, or give an approximation of the
standard deviation directly.

Context

Students must answer the question within the context
of the problem by using appropriate units with their
answer (e.g., 10,000 dollars) and identifying the subject
of each unit (e.g., Atlanta adults).

Item 1- Atlanta Income

Item 1- Atlanta Income (Figure 7.1) was given to 1155 students in Spring

2014. It was developed at the onset of the research in this dissertation in order

to determine what students would say when asked to describe a histogram. It was

ultimately the catalyst for the remainder of the items described in this dissertation.

All responses to this item were categorized using the Describe rubric.

Item 3- Student Sleep V1

Item 3- Student Sleep V1 (Figure 7.3) was given to 1188 students in Fall

2014. The histogram in this item was symmetric and unimodal. It was developed
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both to determine if students possessed the Bar Chart Misconception and to help

answer the Medium research question, and it functioned in an equivalent manner to

that of Item 1. All responses to this item were categorized using the Describe rubric.

Item 5- Student Sleep V2

Item 5- Student Sleep V2 (Figure 7.5) was given to 1188 students in Fall

2014. The histogram in this item is identical to the graph in Item 3— symmetric

and unimodal. The prompt is essentially identical to the prompt used in Item 3.

This item was created to answer the Dot Plot vs. Histogram research question

through its comparison with its isomorphic dot plot counterparts. It was also used

to answer the Medium research question in its comparison with its interview task

counterpart. Finally, this item was used to determine if student responses to identical

items varied significantly in completeness and correctness over different semesters.

All responses to this prompt were categorized using the Describe rubric.

Item 8- Coffee Consumption

Item 8- Coffee Consumption (Figure 7.8) was given to 1176 students in

Fall 2015. This bimodal histogram was created for three reasons. First, it was

created to determine how students would describe a bimodal distribution (namely,

a distribution students had not been directly exposed to in class such as a uniform,

skewed, or bell-shaped distribution). Second, it was created to test the Medium

research question and is identical to Task 5, its interview task counterpart. Finally,

it was created to test the Dot Plot vs. Histogram research question, and its

isomorphic dot plot is given in Task 7 (using hours of TV watched instead of ounces

of coffee consumed). All of the responses to Item 8 were categorized using the

Describe rubric.
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3.3.2 Compare Items

Compare items asked students to compare the variability of data shown in two

side-by-side graphs. This section lists each of the Compare items and gives a brief

description of their construction and purpose. Task 8 (Figure 3.2) exemplifies a

typical Compare question.

Prompt: The two histograms below show test scores of two different

classes on the same test. Which of the two classes had test scores that were more

variable (i.e., have the higher standard deviation)?

Figure 3.2: Item 9- Test Scores for Large-Test Histogram

The Compare rubric can be seen in Table 4. The Compare rubric was a

holistic rubric used for items that asked students to compare the variability between

two graphs. This rubric was used to categorize the manner in which a student jus-

tified their answer. This rubric contained five categories for student justifications:

Height, Normal, Spread, Correct, and Other. The Height category was created in

an attempt to capture students with the Bar Height Misconception. The Spread
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category was created in an attempt to capture students with the Range Miscon-

ception. The other categories were created based upon the types of justifications

given by students and were used to address the Misconception research question

as a whole.

Unlike the Describe rubric, the bins presented here were mutually exclusive—

students could only be placed into one of these bins. The reasons for utilizing a

holistic rubric over an analytic rubric were twofold. First, students had to give some

justification for their answer. Thus, students necessarily belonged to one of the

five bins. Second, utilizing a holistic rubric scheme improved ensemble accuracy by

necessitating the categorization of each response into only one bin. That is, some

categories (e.g., Height) proved particularly challenging to categorize when treated

as a binary category (i.e., a student either used the height justification or they did

not), but when the ensemble was forced to place each response into one of the five

categories, responses belonging to these difficult categories were more likely to be

categorized correctly.

Each Compare question utilized a two-part question stem in which stu-

dents were asked to determine which of two graphs had more variability (multiple

choice) and then asked to explain their answer (free-response). Initially, the Compare

rubric was used to categorize both responses from students who made the correct

multiple choice selection and responses from students who made the incorrect mul-

tiple choice selection. During the process of hand-coding, it became apparent that

students selecting the correct answer either gave a completely correct justification

(coded as ‘Correct’) or in rare cases a nonsensical justification (coded as ‘Other,’ e.g.,

”I chose this answer because I knew it was right”). While these correct responses

were still classified according to the Compare rubric, only responses from students

making an incorrect multiple choice selection are analyzed in Chapter 4. Students
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making the incorrect multiple choice selection sometimes included a correct justifi-

cation to their incorrect multiple choice answer, and thus the ‘Correct’ category is

maintained in the rubric. The items that used this rubric were: Item 2, Item 4, Item

6, Item 7, and Item 9.

Table 4: This table shows the condensed Compare rubric for a general question.

Category Requirements

Height

Students specifically refer to the variation in the
heights of the bars or dots. These students often give a
correct definition of variability, but read the histogram
or dot plot as if it were a case-value bar chart.

Normal
Students claimed they selected the histogram or dot
plot because it was approximately normally
distributed.

Spread

Students refer to their selection as having data that are
more spread out or having a larger range. In some
cases this statement may be true, however in no cases
did a larger range imply more variability.

Correct
Students give a correct interpretation of the histogram
or dot plot, but then select the incorrect answer.

Other
Students either give no justification for their answer, or
give a nonsensical justification.

Figure 3.3 gives an example of five student responses that were categorized

into each of the five categories in the Compare rubric.

Height: The frequencies are not very consistent as seen in Graph B. In Graph
A there a lot of peaks and valleys in the graph. The frequency numbers in
Graph A are further spread out and varied.
Normal: I know it is more variable because it has a normal distribution curve.
Spread: Class A are more variable because the graph is spread further out.
Correct: Class B has lots of dots everywhere, but class A has most of the
scores in the middle.
Other: The dispersion of the scores was a dead give away. There was a clear
difference in which question the students did better on.

Figure 3.3: Sample student responses for a Compare question.

52



Item 2- Test Score Variability Histogram V1

Item 2- Test Score Variability Histogram V1 (Figure 7.2) was given to

1155 students in Spring 2014. Students were shown two histograms, each depicting

the distribution of test scores on a 10 question test for two different classes and asked

to determine which of the two graphs showed data that were more variable. This

item was constructed specifically to address the Dot Plot vs. Histogram research

question. Each of the graphs in this item are histograms, and the graphs in Item 4

are isomorphic dot plots. Each student randomly received one of these six pairings

seen in Figure 7.2 in the Appendix.

Item 4- Test Score Variability Dot Plot V1

Item 4- Test Score Variability Dot Plot V1 (Figure 7.4) was given to

1188 students in Fall 2014. Students were shown two dot plots, each depicting the

distribution of test scores on a 10 question test for two different classes, and asked

to determine which of the two graphs showed data that were more variable. This

item was constructed specifically to address the Dot Plot vs. Histogram research

question. Each of the graphs in this item are dot plots, and the graphs in Item 2 are

isomorphic histograms. Each student randomly received one of these six pairings

seen in Figure 7.4 in the Appendix.

The purpose of this item was twofold— are students able to compare the

variability of data displayed in two side-by-side dot plots, and is there a difference

in the proportion of students who can accurately compare the variability when the

two displayed graphs are histograms versus when they are dot plots (Histogram

vs. Dot Plot research question)? There were two parts to this question. The first

part was multiple choice with two possible selections and asked students which of
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the two histograms had more variable test scores. The second part asked students

to explain how they knew that their selection had more variable scores. Responses

to the second part of this item were coded using the Compare rubric.

Item 6- Test Score Variability Combination

Item 6- Test Score Variability Combination (Figure 7.6) was given to 1073

students in Spring 2015, 1176 students in Fall 2015, and 1086 students in Spring 2016

for a total of 3335 students. Responses in this item were categorized according to

the Compare rubric. This item was created after reviewing the responses to Item 2

and Item 4. There were three specific misconceptions that appeared in the responses

to these items. An isomorphic histogram and dot plot were created to investigate

each of these three misconceptions for a total of 6 pairings. The first of these

misconceptions was related to the Bar Height Misconception and is discussed in

further detail in Chapter 4. The first pairing in this item was created to address this.

The second misconception involved students’ struggles with interpreting a histogram

with an inverted shape. To determine if these struggles were due to the shape of the

graph or the fact that it was originally paired with a uniform graph, this inverted

shape was then paired with the Bumpy graph. Finally, the last pairing was designed

to investigate the Range Misconception— that a data set with a larger range

necessarily has data that are more variable. The full prompt is identical to that of

Item 2 and Item 4 and can be seen in Figure 7.6 in the Appendix. All responses

were categorized using the Compare rubric. Each student randomly received one of

these six pairings seen in Figure 7.6 in the Appendix.
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Item 7- Colored Test Score Variability Combination

Item 7- Colored Test Score Variability Combination (Figure 7.7) was given

to 1176 students in Fall 2015 and 990 students in Spring 2016. Responses to this

item were categorized according to the Compare rubric. This item is isomorphic to

Item 6, and was created to determine if adding a coloring scheme and categorizing

test scores as poor (0-3), good (4-7), or excellent (8-10) had any effect on students’

interpretations of the graphs. A legend is provided to students containing this in-

formation. This was initially done in an attempt to improve readability and target

students with the Bar Chart Misconception in hopes that the coloring and cat-

egorization scheme would help students understand that the bars/dots in the given

graphs were aggregated data and not a single data value. The results of this coloring

and categorization are found in Chapter 4. Each student randomly received one of

these six pairings seen in Figure 7.7 in the Appendix.

Item 9- Test Scores for Large-Test Histogram

Item 9- Test Scores for Large-Test Histogram (Figure 7.9) was given to

1176 students in Fall 2015. Students randomly received one of three prompts asking

each student to describe either the differences in center, in shape, or in variability

between the two histograms. It was designed to evaluate the difference in the descrip-

tions of shape, center, and variability in student responses when asked to generally

compare two histograms (e.g., Item 2) versus being specifically asked to compare

either the shape, center, or variability of two histograms. It was also constructed to

answer the Medium research question and is identical to Task 9. Responses to this

item were coded using the modified Compare rubric. This rubric did not contain a

context category, as none of the prompts specifically asked students to discuss the

context of the histograms.
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3.3.3 General Quantitative Item Construction

A summary of each of the 9 constructed-response items is seen in Table 5. Each item

was constructed to assess whether students had at least one of the four misconcep-

tions about graphs: the Bar Height Misconception, the Bar Chart Miscon-

ception, the Range Misconception, and the Axis Order Misconception. The

graphs used in each item were either dot plots, histograms, or both. In items where

both graph types were used, students only viewed either a set of histograms or a set

of dot plots. That is, any given student only compared the variability between two

histograms or two dot plots, never between a histogram and a dot plot.

Table 5: A summary of each of the nine quantitative items used in this study.

Item Name Type Graph Versions N
Item 1 Atlanta Income Describe Histogram 1 1155
Item 2 Test Score Histogram V1 Compare Histogram 1 1155
Item 3 Student Sleep V1 Describe Histogram 1 1188
Item 4 Test Score Dot Plot V1 Compare Dot Plot 6 1188
Item 5 Student Sleep V2 Describe Histogram 1 1188
Item 6 Test Score Combo Compare Both 6 1073
Item 7 Colored Test Score Combo Compare Both 6 1176
Item 8 Coffee Consumption Describe Histogram 1 1157
Item 9 Large-Test Histogram Compare Histogram 1 1087

There was only one version of graphs for Item 1, Item 2, Item 3, Item 5,

Item 8, and Item 9. There were six versions of graphs for Item 4, Item 6, and Item

7. Students responding to these items were randomly given one of the six possible

versions for each item. Each of the specific versions can be seen in Figure 7.10 and

Figure 7.11. There were eight total graph types used across each of these versions.

These eight graph types can be seen in Figure 3.4. They are henceforth named Tall

Center, Inverted, Bumpy, Bell-Shaped, Uniform, Very Peaked, Spaced Uniform, and

Short Uniform. Each of the pairings in Item 4, Item 6, and Item 7 consisted of some
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isomorphic pairing of exactly two of these graphs. Some graphs were given as dot

plots and others as histograms, as indicated in Table 5.

Figure 3.4: This figure shows the 8 graphs for the different pairings in Item 4, Item
6, and Item 7.

Pairings of graphs shown in Figure 3.4 were used to assess particular stu-

dent misconceptions about graphs. While some pairings target specific misconcep-

tions, others are used more generally to answer the Medium Misconception and

Bar Chart Misconception. For example, the Bumpy and Uniform graphs are

paired together to determine if students have the Bar Height Misconception—

the heights of bars vary in the Bumpy graph but not the Uniform graph, however,

the variability in the data is larger in the Uniform graph. The Very Peaked and
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Short Uniform graphs were paired together to determine if students held the Range

Misconception— the range in the Very Peaked graph is larger than that of the

Short Uniform graph, however, the variability in the data is larger in the Short

Uniform graph.

3.3.4 General Qualitative Task Construction

There were ultimately 13 interview tasks used in this study, although the process of

developing the tasks for the interviewees to complete was iterative in nature. Two

tasks were removed between the second and third interviews after it became clear

that they were not functioning as had been intended. Conversely, task prompts were

refined in order to better instruct students to answer as completely as possible.

Table 6 gives a summary of these 13 interview tasks. A more detailed

description of each of the tasks can be seen in Section 7.2.

Table 6: A summary of each of the thirteen interview tasks used in this study.

Task Name Type Graph N
Task 1 Raw Data V1 Compare Raw 19
Task 2 Raw Data V2 Compare Raw 19
Task 3 Raw Data V3 Compare Raw 19
Task 4 Water Histogram Describe Histogram 19
Task 5 Coffee Histogram Describe Histogram 19
Task 6 Exam Dot Plot Compare Dot Plot 19
Task 7 TV Dot Plot Describe Dot Plot 19
Task 8 Colored Two Test Compare Histogram 19
Task 9 Blue Two Test Compare Histogram 19
Task 10 Olympics Compare Histogram 18
Task 11 Advertising Histograms Compare Histogram 17
Task 12 Colored Two Test V2 Compare Dot Plot 19
Task 13 City/Country Route Compare Histogram 18
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3.3.5 Isomorphic Items

Fourteen of the twenty-two constructed items and tasks were isomorphic so that re-

sponses about variability in graphs could be compared across different graph types

and mediums to answer the Dot Plot vs. Histogram and Medium research

questions, respectively. Items that were isomorphic across mediums can be used to

determine if student responses are of equal completeness and correctness in both

online and face-to-face mediums. Items that were given as isomorphic dot plots

and histograms can be used to determine if there are differences in the proportion-

ality of certain misconceptions between dot plots and histograms. Table 7 shows

the isomorphic groups, where items in a given column are each isomorphisms of

one another.

Table 7: This table shows the groupings of online items and interview tasks by their
isomorphisms. Items and tasks in the same column are isomorphic to one another.

Description
Compare

Variability
V1

Symmetric
and

Unimodal

Compare
Variability

V2
Bimodal

Unimodal
vs.

Skewed
Type Compare Describe Compare Describe Compare

Isomorphisms

Item 2 Item 3 Item 6 Item 8 Item 9
Item 4 Item 5 Item 7 Task 5 Task 9

Task 6 Task 8 Task 7
Task 12

3.4 Coding Process

In this research, ensembles of machine learning algorithms were constructed to an-

alyze the responses to the online items and to investigate the prevalence of the

misconceptions listed in Section 1, as well as discover potentially new misconcep-

tions that students have about variability. To accomplish this, a subset of student

responses to the 9 online items were hand-coded by utilizing either the Describe
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rubric or the Compare rubric. These hand-coded responses were used as training

data for each of the machine learning algorithms in the ensemble. The following

outline details the step-by-step process of hand coding responses for a given item.

Step 1: Briefly read over a subset of the student responses to ensure the item

of interest was interpreted by students in the intended manner.

Step 2: Determine possible alterations to the Describe or Compare rubric,

described below, for any given item.

Step 3: Two experts, typically two statistics Ph.D. students, hand code the

first 100 responses according to the rubric.

Step 4: The two experts then convene and discuss disagreements in first 100

responses. This includes potential refinement of the rubric for clarity or the

presence of new, important categories.

Step 5: Both experts hand-code the next 500 responses.

Step 6: The experts convene and discuss disagreements, ultimately agreeing

upon a final training set for the ensemble.

Step 7: If there are categories of interest with few responses in the first 600

responses (or if the raters feel that more responses are needed to get a full

sense of the data), the remaining responses are categorized.

Table 8 shows the inter-rater reliability results for items utilizing the De-

scribe rubric archetype, where κ represents the value of Cohen’s Kappa and A repre-

sents the proportion of responses that were independently, identically categorized by

the raters. Across all items, there was strong inter-rater reliability for responses in

the shape, center, and context categories. There was acceptable agreement between

raters for the variability category.
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Table 8: This table shows the inter-rater reliability statistics for each of the analytic
categories in the Describe rubric archetype.

Item 1 Item 3 Item 5 Item 8 Item 9
Date

Created
Spring
2014

Fall
2014

Fall
2014

Fall
2015

Fall
2015

Number
Hand-Coded

1155 1188 1188 600 600

κ A κ A κ A κ A κ A
Shape .941 .977 .960 .985 .952 .979 .917 .929 .931 .917
Center .907 .938 .946 .976 .954 .978 .934 .951 .906 .924

Variability .803 .925 .811 .922 .901 .935 .863 .908 .817 .898
Context .969 .980 .934 .972 .927 .965 .959 .980 - -

Table 9 shows the inter-rater reliability results for items utilizing the Com-

pare rubric archetype, where κ represents the value of Cohen’s Kappa and A rep-

resents the proportion of responses that independently, identically categorized by

the raters. Across all items, there was strong inter-rater reliability for responses in

the height, normal, and spread categories. There was acceptable agreement between

raters for the correct category. The results for the ‘other’ category were passable,

and the raters sometimes struggled to agree about which responses belonged in this

category— it was often difficult to determine if a student were discussing the heights

of bars/dots in the incorrect justifications if the word ‘height’ or other synonym was

not used. After convening and discussing disagreements for the other category for

Item 2 and Item 4, slight rubric refinements and extra practice allowed for better

rater agreement and higher kappa values for this category in Item 6 and Item 7.
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Table 9: This table shows the inter-rater reliability statistics for each of the holistic
categories in the second rubric archetype.

Item 2 Item 4 Item 6 Item 7
Date

Created
Spring
2014

Fall
2014

Fall
2015

Fall
2015

Number
Hand-Coded

1155 600 600 600

κ A κ A κ A κ A
Height .927 .953 .885 .932 .911 .925 .898 .947
Normal .981 .990 .971 .986 .963 .985 .936 .958
Spread .872 .905 .802 .891 .890 .910 .879 .901
Correct .835 .892 .794 .856 .875 .899 .813 .899
Other .746 .812 .717 .813 .774 .871 .805 .876

3.5 Data Cleaning

The first step in the ensemble categorization process for a given item is to clean

the data set of student text responses. The following are brief descriptions of each

of the cleaning measures used in this dissertation and the common circumstances

under which they are employed. The default setting used in this work are given in

bold. The extent to which any of the following techniques are used, however, varies

from item to item. The specific data cleaning settings for each particular item are

displayed in Section 4.6.

1) Set minimum word length: Words below a designated length are removed

from the data set. If the difference between a correct answer and an incorrect

answer is ‘on the sphere’ versus ‘in the sphere,’ then setting a minimum word

length too high (i.e. above 2) will significantly decrease the overall ensemble

accuracy, since identifying the use of ‘in’ versus ‘on’ is critical to a correct

categorization. Conversely, setting a minimum word length too low allows

words like ‘a,’ ‘an,’ ‘it,’ and others to flood the machine learning algorithms
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with words not useful for making categorizations. In many instances, setting a

minimum word length of 3 is a good balance between these two. The default

setting for data cleaning in this dissertation is to set the minimum

word length at 3.

2) Set n-gram length: An n-gram is the number of consecutive words that

are taken together as a single entity when used for algorithm construction

and evaluation. Converting n-grams into a numerical quantity representing

the number of times an n-gram was used in a given response is known as

feature extraction. A 1-gram means that each word is used by itself to make

categorizations. A 2-gram implies that every two adjacent words are used

for prediction. For example, in the sentence ‘The normal distribution is bell-

shaped,’ there are four 2-grams: The normal, normal distribution, distribution

is, and is bell-shaped. The use of 2-grams (or n-grams where n > 2) is critical

in situations where the words ‘normal’ and ‘distribution’ may not indicate a

correct answer, but where ‘normal distribution’ together as a 2-gram might

indicate a correct answer. The default setting for data cleaning in this

dissertation is to set the n-gram length at 1.

3) Remove numbers: This removes all stand-alone numbers from the data set.

Removing numbers from a data set may be useful if students can provide a

variety of correct answers using a different sets of numbers. For example, if

students choose to describe the modal clump of a unimodal, symmetric his-

togram, they may arbitrarily decide where the modal clump begins and ends.

Conversely, removing numbers from responses in which the categorization is

based upon a correct, finite set of numerical values will decrease categorization

accuracy. The default setting for data cleaning in this dissertation is

to remove numbers.
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4) Remove punctuation: This removes all symbols and punctuation from the

data set, including but not limited to (- . ? ! ; : < > =). This removal,

however, collapses responses such as ‘7-9 hours’ into ‘79 hours.’ This may

have a negative effect on model accuracy. The default setting for data

cleaning in this dissertation is to remove punctuation.

5) Remove stopwords: Stopwords are commonly used English words that tend

to provide no contextual meaning in a particular sentence. Some examples of

common stopwords are: and, the, in, on, of, a, and to. The removal of these

words generally has a positive effect on algorithm accuracy, as these stopwords

tend to appear in all possible categorizations of a response, often leading to

confusions about categorizations in the algorithms. In cases where one or more

of these stopwords are critical to a specific categorization, (e.g., the ‘sphere’

example in item 1) of this list), the removal of stopwords will have a negative

effect on algorithm accuracy. The default setting for data cleaning in

this dissertation is to remove stopwords.

6) Stem words: Stemming words is the process of removing prefixes and suf-

fixes from words in an attempt to group words of similar semantics, despite

these words having different prefixes and suffixes (known as stems). For exam-

ple, the stemming process would make the 2-grams ‘normal distribution’ and

‘normally distributed’ into the same 2-gram ‘normal distribute.’ In this exam-

ple, distribut-ion becomes distribute, and normal-ly becomes normal. Thus,

both become ‘normal distribute.’ There are many cases where both ‘normal

distribution’ and ‘normally distributed’ have the same semantics, and thus

treating them as identical 2-grams will lead to significantly increased model

accuracy. Conversely, there are situations where these individual 2-grams have

significantly different meanings, where the prior refers to a specific continuous
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distribution and the latter refers to the distribution of a random variable. The

default setting for data cleaning in this dissertation is to stem words.

Once the data are cleaned as described above, the responses are ready to

be used in the ensemble classification process. Let M be an N xM matrix, where

N represents the number of student responses (also known as documents), and M

represents the total number of unique n-grams (also known as terms) used in any of

the responses. This matrix M, henceforth referred to as the document-term matrix,

serves as the input training matrix for each of the eight machine learning algorithms.

The final step in the data cleaning process is to adjust the sparsity of M.

7) Adjust matrix sparsity: The document-term matrix M is often extremely

sparse. In most cases, fewer than 0.1% of the n ·m cells are nonzero. Thus,

to improve model accuracy and decrease runtime, it is often advantageous to

reduce this sparse matrix into one that is more densely populated. The simplest

manner in which to reduce the sparsity of M is by setting a minimum number

of word uses for inclusion into the column space of M. For example, one might

say that a word must be used in at least 5 separate documents in order to

warrant its own column in M. This can significantly reduce the dimensionality

of M by removing words that were only used in a few responses and likely do

not have a significant influence in predicting the categorization of a particular

response. The default setting for data cleaning in this dissertation is

to set the matrix sparsity threshold to be 0.99, such that the bottom

99% of words (when ordered by number of occurrences) are removed

from M.
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3.6 Algorithm Evaluation

The goal for each of the items described in Section 3.3.1 was to develop an ensemble

of machine learning algorithms that most accurately predicts the correct categoriza-

tion of new, uncoded responses to the same question. The measures of accuracy

used in this study are precision and recall. In the general case, both measures are

treated equally.

The precision of an algorithm for a specific category j is the proportion of

student responses that the algorithm placed into category j that actually belong to

category j.

Precision =
True Positives

True Positives + False Positives

Thus, an algorithm’s precision for a specific category decreases as it erro-

neously adds responses that do not truly belong to the selected category. In essence,

low precision can be analogous to a high rate of false positives. Its calculation

purpose is to identify an algorithm’s propensity to correctly identify responses that

belong to a given category.

An algorithm’s recall for a specific category j is defined as the proportion

of student responses that truly belong to category j that are correctly classified as

category j.

Recall =
True Positives

True Positives + False Negatives
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Thus, in the trivial case, an algorithm that assigns all responses to category

j has perfect recall for category j (since all responses from category j are necessarily

assigned to category j). This algorithm, however, will have very low precision. These

two measures together help identify struggling algorithms and address their possible

inclusion or exclusion from the ensemble for a given item.

For each of the items used in this dissertation, at least two raters coded

student responses according to the corresponding coding rubric. In order to test the

categorization efficacy of each algorithm, leave-one-out cross-validation was utilized.

Once a prediction was made for each of the responses by each of the eight algorithms,

the accuracy of each algorithm at categorizing responses into each of the potential

rubric categories was analyzed for a given item. For each rubric category, this

involved examining the precision and recall of each algorithm. This process was

repeated for variations in the tuning parameters and for different ensemble weighting

functions. Ultimately, the combination of tuning parameters and machine learning

algorithms that led to the highest precision and recall for the coded data was selected.

That is, the combination that led to the highest average of the values recall and

precision was considered the best combination and was used for classification.

3.7 Algorithm Tuning

At most eight different machine learning algorithms were used to make categoriza-

tions for each of the 9 items listed in Section 3.3.1. While the individual tuning

parameters for each of the eight algorithms change from item to item, the following

subsections describe the default tuning parameters used in this dissertation for each

of the eight algorithms. Some algorithms have many tuning parameters, including
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specific construction algorithms— others have relatively few. The specific compu-

tation for each of the 8 algorithms in this research can be found in the following

R packages in parenthesis: support vector machines (e1071 ), elastic-net regular-

ized generalized linear models (glmnet), maximum entropy (maxent), scaled linear

discriminant analysis (lda), bagging classification trees (ipred), boosting decision

stumps (caTools), random forests (randomForest), and classification trees (tree).

This section describes default tuning parameters used in this dissertation to clas-

sify responses. The default values used here differ slightly from the default tuning

parameters in each algorithm’s corresponding R package.

3.7.1 Classification Trees

The default search algorithm used for the construction of classification trees is the

Iterative Dichotomiser (ID3) Information Gain algorithm (Quinlan, J. R. 1986).

The ID3 algorithm is considered a greedy algorithm, and constructs new leaves in a

classification tree iteratively as follows:

1) Determine if the presence or absence of any word guarantees a specific classi-

fication in the training data.

1a) If this occurs, this word becomes the new node.

2) Determine which word partitions the data in a manner that minimizes entropy

and thereby maximizes information gain.

2a) The word which partitions the training data in this manner becomes the new

node.

3) Repeat recursively until stopping criteria are achieved.

68



Let Ent represent the entropy of a collection of responses S with K po-

tential classifications (e.g., correct or incorrect). Then:

Ent(S) = −
K∑
i=1

PS(i) · log2PS(i) (6)

where PS(i) represents the proportion of responses in S belonging to classification i.

This equation, therefore, is minimized when all members of a collection S have the

same categorization, and it is maximized when there are equal numbers of members

from all K classifications in S. The entropy of a feature, in this case an n-gram, is

a measure of how well the presence or absence of a particular n-gram separates the

responses into distinct categorizations.

The information gain for classification i a collection of responses S is

defined by:

Gain(S, j) = Ent(S)−
K∑
j=1

PS(j)Ent(Sj) (7)

where PS(j) represents the proportion of responses in S belonging to clas-

sification j. Thus the information gain is calculated for each of the K potential

classifications, and measures how well a given n-gram separates the training data

into one of many distinct classifications.

The ID3 algorithm attempts to maximize the information gain at the cre-

ation of each leaf until one of three specific stopping criteria are achieved. The
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stopping criteria used here to determine when new leaves should cease forming

are threefold:

� Stop forming branches when every response at a node falls into the

same branch. As the tree progresses, if a certain decision at a leaf causes

all responses to either belong to the yes branch or the no branch, then stop

generating new branches at that leaf.

� Stop forming branches when the addition of any new branch adds

approximately zero value to the overall classification tree. This most

often occurs when a tree becomes many leaves deep in a certain area. Because

each leaf contains at least two branches, every time a leaf is traversed the data is

necessarily split into smaller subsets. Every branch represents a characteristic

that each subset of data does or does not contain. Therefore, after traversing

several branches, the remaining responses in this subset of data become very

specific and often very few in number. This threshold value is set to be 5,

meaning that a minimum number of 5 observations are needed for a new leaf

to be constructed.

� Stop forming branches if the tree becomes more than 32 leaves deep

in any path. While this is a fairly rare occurrence, occasionally many subse-

quent leaves will generate branches that only eliminate one or two responses.

For example, if the item prompt were, ‘Describe the Central Limit Theorem’,

a leaf that asked, ‘Did the student say the word Central ’ followed by a leaf

that asked, ‘Did the student say the word Limit ’, etc. would lead to a very

elongated tree that offers almost no real classification value.

Once constructed, new responses follow the series of decisions at each leaf

as given by the classification tree. Once a terminal leaf is reached, the new response is
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given a categorization equal to the most frequent categorization of training responses

at that same terminal leaf.

3.7.2 Bagging Classification Trees

Bagging is a technique that uses bootstrapping of data to produce more diverse

trees and reduce the likelihood of over-fitting the training data set. For the bagging

of classification trees used in the ensemble, the classification trees are also formed

using the ID3 algorithm. These trees are computed, however, without soft stopping

criteria. Thus, the only stopping criteria for a classification tree constructed in this

section is that new branches cease forming after the tree becomes more than 32 leaves

deep in any path. While the removal of this soft stopping criteria would likely lead to

severe over-fitting of the tree to the training data, the bagging process of constructing

several trees works to alleviate this issue. The specific tuning parameters for the

bagging of classification trees in the ensemble are:

� The number of data points in any one bootstrapped sample of train-

ing data: This parameter is set to be equal in size to the number of data

points in the training data set. Since each resampling is done with replace-

ment, this does not imply that the same sample of data is used to construct

each tree.

� The number of classification trees to construct: This parameter is set

equal to 50. Increasing this parameter significantly increases the run-time

of the classification ensemble. Decreasing this parameter significantly impacts

the accuracy of the bagging classification tree algorithm, as the construction of

fewer trees is more likely to overfit random features of a particular resampling

of the training data set.
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3.7.3 Boosting Decision Stumps

Boosting is a technique that uses bootstrapping with a non-uniform weighting func-

tion for resampling to produce more diverse trees and reduce the likelihood of over-

fitting the training data set. A decision stump is a one-leaf classification tree. There

are three tuning parameters to be set for the construction of numerous decision

stumps through boosting:

� The number of data points in any one bootstrapped sample of train-

ing data: This parameter is set to be equal in size to the number of data

points in the training data set. Since each resampling is done with replace-

ment with varying weights for the probability that each point is chosen in the

resampled data, this does not imply that the same sample of data is used to

construct each tree.

� The number of decision stumps to construct: This parameter is set

equal to 100. Increasing this parameter significantly increases the run-time

of the classification ensemble. Decreasing this parameter significantly impacts

the accuracy of the boosting algorithm— the more stumps are constructed,

the higher probability that ‘problem’ points are identified and used to create

more robust distinctions between classifications.

� The reweighting function used for resampling training data: With

each new decision stump creation, a new bootstrapped sample is drawn from

the training data. As points are misclassified with previous decision stumps,

their corresponding probabilities for being selected in the new resampling of

data (i.e. the weight of each misclassified point) is increased. The function

that performs this is the AdaBoost reweighting algorithm.
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3.7.4 Random Forests

A random forest is a collection of several classification trees, where each tree is formed

using a different set of attributes (i.e. n-grams). There are two tuning parameters

to be set for the construction of random forests in the ensemble:

� The number of attributes (n-grams) to be used for each forest con-

struction: The default value set here is N
10

, where N represents the total

number of n-grams in the document-term matrix. Increasing this number ex-

ponentially increases the run-time of the classification ensemble. Decreasing

this number leads to reduced accuracy.

� The number of forests to construct in the ensemble: This parameter is

set equal to 50. Increasing this parameter significantly increases the run-time

of the classification ensemble. Decreasing this parameter may significantly

impact the accuracy of the random forest ensemble.

The formation of a random forest proceeds identically to that of a standard

classification tree, except that only a randomized subset of features are allowed to

be used by any one tree in the random forest. Each of the trees constructed in this

manner are used together in an ensemble to make one overall classification.

3.7.5 Elastic-Net Regularized Generalized Linear Models

There are numerous tuning parameters for the generalized linear model portion

of this algorithm. These parameters include those in standard variable selection

techniques, such as the alpha parameter by which to include variables in forward

selection. A detailed description of the defaults for these parameters can be found in

the glmnet package in R. There is only one specific parameter with which the elastic
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net penalization function uses, and it can be seen in Equation 8. Since the elastic net

functions as a hybrid of both the L1 norm penalization from lasso regression and the

L2 norm penalization from ridge regression, the elastic net penalty can weight this

hybridity with the parameter α. If α = 1, then this penalty function is equivalent

to the lasso penalty. If α = 0, then this function is equivalent to the ridge penalty:

(1− α)

2
||β||22 + α||β||1 (8)

where β represents the vector of covariate coefficients. By default, α = 0.5 is used.

Often a range of α values between 0 and 1 is investigated determine which value of

α best improves algorithm performance.

3.7.6 Maximum Entropy Modeling

Since maximum entropy modeling is being used as a tool for variable selection in

a multinomial logistic regression model that also utilizes interaction terms between

the covariates, there are no tuning parameters of interest other than those in the

standard variable selection process. The details of this variable selection can be

found in Section 2.3.6 as well as the maxent package in R.

3.7.7 Scaled Linear Discriminant Analysis

The tuning parameters for the scaled linear discriminant analysis algorithm remain

unchanged throughout the model construction process. The specific details about

the functionality of the SLDA used here can be found in the lda package in R.
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3.7.8 Support Vector Machines

The tuning parameters for the support vector machine algorithm remain unchanged

throughout the model construction process. The specific details about the function-

ality of the SVM used here can be found in the e1071 package in R.

3.8 Ensemble Construction

After the algorithms were optimally tuned for categorizing responses for a particular

rubric, they were combined into an ensemble containing all eight machine learning

algorithms. Although each individual algorithm in the ensemble produces one clas-

sification vote for each response, the manner in which these votes are combined de-

pends on the weighting function used. A detailed description of ensemble weighting

functions can be found in Section 4.4, and the specific ensemble weighting function

used for each category of each item is shown in Section 4.6.
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4 Results

The results of the research in this dissertation are presented in this section. When

relevant, results are split into quantitative and qualitative subsections. In many

cases, the results are discussed in tandem as the qualitative results provide deeper

insight into many of the quantitative analyses.

4.1 Dot Plot vs. Histogram

The Dot Plot vs. Histogram research question seeks to determine if students

interpret graphs differently, specifically in terms of the graphs’ inherent variability,

when identical data are presented in a histogram or in a dot plot. This research

question was addressed by the items in which students were asked to compare the

variability between two data sets (Compare items), where the data were given in the

form of a dot plot or a histogram, and then asked to explain their choice. This re-

search question was also addressed by items in which students were asked to describe

a given dot plot or histogram (Describe items). This section details the similarities

and differences regarding student responses to these items. Section 4.1.1 provides

results from student responses to online items, while Section 4.1.2 provides results

from student responses to interview tasks. Some items were asked exclusively in on-

line or in-person format, while others were asked in both settings. A comparison of

student responses across online and in-person mediums can be found in Section 4.2.
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4.1.1 Online Items

When answering online questions about the comparison of variability between two

graphs, students responded differently to isomorphic histograms and dot plots. Each

pairing of graphs contained a multiple choice prompt in addition to a constructed-

response prompt. This section begins by analyzing the differences in multiple choice

results (see the prompt for Figure 7.4 for an example of the prompt for each of these

pairings). The graphics for each of the following 12 pairings can be seen in Figure

7.10, Figure 7.11, and Figure 7.12.

For each pairing, a two-proportion test was performed to determine if

there were significant difference between the proportion of students giving a correct

answer for the histogram version and the proportion of students giving a correct

answer for the dot plot version. A Bonferroni correction was used to deal with the

issue of conducting twelve separate hypothesis tests (thus using α = 0.05
12

= 0.00417).

Pairings with significant differences in the proportion of correct responses after the

Bonferonni correction are marked with asterisks seen in Table 10.

Table 10: This table shows the percentage of students giving a correct answer for each
of the pairings of dot plots and histograms. Significant differences (after Bonferroni
correction) are marked with two asterisks.

Pairing Graphs
% Correct
Histogram

NHist
% Correct Dot

Plot
NDot

Chi-Square
Statistic

p-value

1 Very/Peaked Uniform 69.2 227 75.1 209 1.599 0.206
2 Bumpy/Very Peaked 65.9 229 74.9 243 4.172 0.041
3 Unif/Bumpy 69.3 212 69.5 236 0.000 1.000

4
Spaced Uniform/Very

Peaked
75.3 182 75.4 192 0.000 1.000

5
Spaced

Uniform/Bumpy
90.0** 179 69.5 167 21.515 0.000

6 Inverted/Bumpy 68.5 159 85.0** 140 10.292 0.001
7.1 Bell-Shaped/Uniform 36.9 179 47.0 215 3.676 0.055

7.2 Bell-Shaped/Uniform 31.7 224 43.5** 186 10.113 0.001

8.1 Inverted/Bumpy 81.9 215 85.6 181 0.730 0.393
8.2 Inverted/Bumpy 93.0 172 94.5 201 0.147 0.701

9.1 Very Peaked/Uniform 24.1 145 36.2** 138 7.841 0.005

9.2 Very Peaked/Uniform 39.2 148 47.9 144 1.908 0.167
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In 11 of the 12 pairings, students were more likely to correctly identify the

graph that contained more variable data when presented with a dot plot instead of

a histogram (and significantly so in 3 of these 11 cases). Although the proportion of

students making the correct selection for dot plots is higher in almost all cases than

the proportion of students making the correct selection for histograms, the relatively

small sample size leads to insufficient evidence that this difference is significant in

many cases.

In pairing 5, students were significantly more likely to answer correctly

when viewing histograms versus viewing dot plots. Although it is unclear exactly

why this difference was so pronounced, it may have been due students viewing an

in-class example similar to the graphs shown in pairing 5. In this in-class example,

students were shown a pair of histograms similar in shape to the graphs of pairing 5,

and the answer to this example was given to students a few weeks before completing

the homework assignment containing pairing 5. Since the in-class example used

histograms instead of dot plots, it is possible that students recalled this similar

in-class example and chose the correct answer for pairing 5 accordingly.

Student justifications for correct responses (i.e. the constructed-response

portions to correct multiple choice answers) were similar across all 12 pairings and

both graph types. That is, students who provided a correct multiple choice answer

for any of the 12 pairings tended to give a similar justification for the correct answer.

Students provided one of two typical justifications:

Online Response to Pairing 1: I chose [the flat graph] because the re-

sults were much more spread out than [the peaked graph], so it definitely

has more variability.

78



Online Response to Pairing 9.1: Students made scores all over the

place in [the flat graph], but most of the students made about the same

grade in [the peaked graph].

In the first archetype response, students identified the spread of the data

as the key to it having more variability. In the second archetype, students gave a

more informal justification noting that scores were ‘all over the place.’

A small proportion (< 1%) of students presumably guessed the correct

answer as their multiple choice selection was correct, however, their justifications

were nonsensical and their responses were categorized into the ‘Other’ category.

Otherwise, there were few differences in the types of correct responses for both graph

types. Table 11 shows the combined categorizations of incorrect responses for the 12

total pairings. Across all items, incorrect responses were most likely to be categorized

as ‘Height.’ That is, it was most common for students to incorrectly identify that

the variation in the heights of the bars (or stacks of dots) was the determining factor

about which graph contained more variable data. When viewing a dot plot versus a

histogram, students were more likely to provide a correct justification (the ‘Correct’

category) but make an incorrect multiple choice selection. That is, when viewing a

dot plot, many students gave a reasonable justification for why one particular graph

contained data that were more variable. These same students, however, then made

the incorrect multiple choice selection. This phenomenon did not occur as often in

responses to histograms.

Table 11: Categorization of incorrect responses to all histogram and dot plot pair-
ings. Relative proportions are indicated in parentheses.

Graph Height Normal Spread Correct Other Total
Histogram 503 (59.7%) 81 (9.6%) 149 (17.7%) 41 (4.9%) 69 (8.2%) 843 (100%)
Dot Plot 351 (48.5%) 58 (8.0%) 132 (18.3%) 102 (14.1%) 80 (11.1%) 723 (100%)
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A Chi-squared test based on the data in Table 11 showed significant ev-

idence of a difference in the distributions of categorizations of responses between

histograms and dot plots for introductory statistics students (d.f. = 4, χ2 = 49.818,

p < 0.0001). The two main contributors (in terms of their Chi-squared contribu-

tions) were the significantly smaller proportion of students in the ‘Height’ category

for dot plots and the significantly smaller proportion of students in the ‘Correct’

category for histograms.

This trend for dot plots— students less frequently giving incorrect justi-

fications referring to the heights of bars/dots and more frequently giving ‘correct’

justifications for incorrect responses— was seen throughout each of the 12 parings.

Since the response patterns were similar across all pairings, pairing 7.1 and 7.2 are

discussed in detail as examples of the patterns seen in the data. Table 12 shows

the distribution of incorrect response justifications for both graph types for pair-

ing 7.1, found in Figure 7.11. Pairing 7.1, the Bell-Shaped/Uniform pairing, was

one of the potential pairings from Online Item 6 in Figure 7.6. Each of these 227

students made the incorrect multiple choice selection, and incorrect responses were

categorized into one of the five aforementioned mutually exclusive categories. The

ensemble categorization of these responses, (whose analytics are found in Table 21),

can be seen in Table 12.

A Chi-squared test based on the data in Table 12 showed significant evi-

dence of a difference in the distributions of categorizations of responses between the

histograms and dot plot for pairing 7.1 for introductory statistics students (d.f. = 4,

χ2 = 23.244, p = 0.0001). Although the Normal, Spread, and Other categories have

nearly identical representation, there was a significantly larger proportion of students

in the ‘Correct’ category for the dot plot version than the histogram version across

both pairings. Additionally, there were significantly fewer students in the Height
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category in the dot plot version when compared to the histogram version. Most

pairings displayed a similar distribution to the one shown in Table 12— students

referenced the variability in the heights of the bars or dots more frequently when

describing the histogram versus the dot plot. Likewise, there were significantly more

students in the Correct category for dot plots than for histograms.

Table 12: Categorization of incorrect responses to pairing 7.1.

Graph Height Normal Spread Correct Other Total

Histogram 71 (62.8%) 21 (18.6%) 9 (8.0%) 0 (0%) 12 (10.6%) 113

Dot Plot 52 (45.6%) 22 (19.3%) 7 (6.1%) 20 (17.5%) 13 (11.4%) 114

Student responses to pairing 7.2 (seen in Figure 7.11, and also in its origi-

nal item in Online Item 7 in Figure 7.7), an isomorphic but colored version of pairing

7.1, were nearly identical proportionally to those of pairing 7.1. The ensemble cate-

gorization of these responses, (whose analytics are found in Table 21), can be seen

in Table 13. A similar Chi-squared test based on the data in Table 13 also showed

similar evidence of differences for the distribution of categorizations of responses to

pairing 7.2 (d.f. = 4, χ2 = 14.025, p = 0.0072). Similar to pairing 7.1, there were

more students giving correct interpretations with the dot plot version than with the

histogram version. Thus, more students correctly interpreted the dot plot but chose

the graph with less variability despite giving this correct interpretation. This only

occurred twice in the histogram version.

Table 13: Categorization of incorrect responses to pairing 7.2.

Graph Height Normal Spread Correct Other Total

Histogram 107 (70.0%) 19 (12.4%) 10 (6.5%) 2 (1.3%) 15 (9.8%) 153

Dot Plot 65 (61.9%) 9 (8.6%) 10 (9.5%) 12 (11.4%) 9 (8.6%) 105
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4.1.2 Interview Tasks

Throughout the interview process, respondents often gave differing responses to

isomorphic items depending on whether the data were presented as a histogram or a

dot plot. Table 14 shows the distribution of students’ graph selections for interview

tasks 8 and 12, which are identical to the histogram (see Figure 7.20) and dot plot

(see Figure 7.24) from pairing 7.2 in Table 10. The left-most graph was bell-shaped,

and the right-most graph was relatively flat. Students were asked which of the two

graphs contained data that were more variable, although two students elected to

respond that both graphs contained data that were equally variable. When asked to

explain, both of these students indicated that the ranges for each of the graphs were

from 0 to 10 (in both the histogram and the dot plot), and thus their variability had

to be equal. Table 14 shows that two students made the incorrect selection when

viewing the histogram, but then made the correct selection in the isomorphic dot plot

in a subsequent task. There were no students who changed from the correct answer

when viewing the histogram to the incorrect answer when viewing the dot plot.

Table 14: Detailed results for pairing 7.2 in the interview portion of this study
indicating how each student answered both the histogram and dot plot isomorphisms.

Histogram
Correct Incorrect Same Total

Dot Plot

Correct 9 2 0 11
Incorrect 0 6 0 6

Same 0 0 2 2
Total 9 8 2 19

In addition to asking each student to determine which of the two graphs

(for both the histogram and isomorphic dot plot) contained data that were more

variable, each student was also asked why he or she chose said graph. Students’

rationales differed greatly depending on the graph type. Students who determined
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that the peaked histogram contained more variable data often highlighted the vari-

ability in its frequency values or the variation in the heights of the bars. Interviewee

8 indicated this directly.

Interviewee 8: The...the frequencies of the bars looks more different.

And variability means a difference of frequency.

Interviewee 11 also noted the variability in the frequency values in A and

the lack thereof in B.

Interviewee 11: A [the left histogram] has more of a distinction in the

frequency versus class B [the right histogram] who have about the same

frequency for each type of grade.

Interviewee 12 used hand motions and a ‘low to high’ description to indi-

cate that the frequencies are changing, and thus the graph is highly variable.

Interviewee 12: There’s just more... all of these [the right histogram’s]

bars are in the same area for frequency. This one [the left histogram] is

just more variable. It starts off low, and then it goes high, and then it

goes low again.

Students who selected the incorrect choice for the dot plot version occa-

sionally mentioned the frequency in their explanations. These students, however,

tended to refer to specifics dots or individual subjects displayed in the graph. Inter-

viewee 6 pointed to outlier points specifically in his description of the dot plot.

Interviewee 6: Even though it [the left dot plot] would look like it’s

approximately normal, it seems like there’s kind of... outliers— subjects

that are not anywhere near the mean and on the ends of the normal
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curve on both sides. That’s definitely showing that it’s more spread out

overall, and so I’d say more variable.

Interviewee 18 referred to the dots directly and noted that there are dots

‘all over the place,’ implying larger variability.

Interviewee 18: There’s like an equal distribution of scores in B [the

right dot plot]. So it’s not like everyone is getting between a 5 and a 7.

The dots are evenly distributed between 0 and 10. People are making

scores all over the place.

Two students, interviewees 5 and 16, selected the left (incorrect) histogram

in Task 8 of the interviews, but also selected the right (correct) dot plot in Task 12

as containing data that were more variable. Both students used similar reasoning to

justify their incorrect decision regarding the histograms and their correct decision

regarding the dot plots. Interviewee 16 noted the even bars in the right histogram

and incorrectly assessed it as having little variability. A few minutes later, Inter-

viewee 16 gave a correct description of the dot plots including identifying that the

right dot plot had more variable data.

Interviewee 16: [Regarding the histogram pairing] I’d say class A [the

left histogram] is more variable, because class B [the right histogram] has

got about, like, the same amount of even bars, where as in class A a lot

of people did good, but fewer people did poor and excellent.

Interviewee 16: [Regarding the dot plot pairing] Class B [the right dot

plot] because each their scores are a little more evenly spread out. In

Class A [the left dot plot], the majority are doing good, and then like

very few are in excellent or poor. In B, it’s got a little more variabil-

ity...because it’s got an even frequency throughout.
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Interviewee 5 incorrectly responded to the histogram pairing by claiming

that the differing heights of bars in the left histogram implied high variability. In-

terviewee 5 then correctly answered the isomorphic dot plot pairing by identifying

that ‘the dots are everywhere’ and thus the scores were more variable.

Interviewee 5: [Regarding the histogram pairing] Class A [the left

histogram] because the bars are different heights but in B [the right

histogram] they’re all the same.

Interviewee 5: [Regarding the dot plot pairing] Class B [the right dot

plot] has more variability because the dots are everywhere and people

made lots of different scores unlike A [the left dot plot].

Interview Task 4 (Figure 7.16) asked students to describe a unimodal, sym-

metric histogram about undergraduate students’ water-drinking habits. Interview

Task 6 (Figure 7.18) asked students to describe the same unimodal and symmetric

graph, but in dot plot form instead of histogram form. The dot plot in Task 6

depicted exam scores on a 10 question exam.

Most of the students who could correctly interpret the meaning of graphs

of univariate, quantitative data described both the histogram in Task 4 and the dot

plot in Task 6 in a nearly identical fashion. When asked to describe the corresponding

histogram or dot plot, these students targeted three main areas:

� Center: Students often began by identifying the center of the distribution.

This sometimes included identifying the mode or perceived mean directly, but

other times students identified the modal clump (e.g., most of the data are

between 5 and 7).

� Variability: Many students identified the range of the data set and/or com-

mented about the data set’s overall variation (i.e. standard deviation).
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� Shape: Students often concluded by mentioning that the graph was bell-

shaped or approximately normal.

The following excerpts are three examples of interviewees’ responses to

Task 4 and Task 6. In these cases where students could correctly interpret the given

graphs, there were few differences between their descriptions of histograms and of

dot plots. Interviewees 11, 14, and 19 each identify the center of the graph, briefly

describe its shape, and finally give an rough approximation of the graph’s variability

in context.

Interviewee 11: [Regarding the histogram in Task 4] In the 58, there

were 12 students who drank 6 cups of water, and that was the highest

frequency. The most was 10 cups an the least was 0 cups of water per

day.

Interviewee 11: [Regarding the dot plot in Task 6] The average was

around 4 to 8, so, it was probably an average medium [difficulty] test.

Very few students did really well and really poorly.

Interviewee 14: [Regarding the histogram in Task 4] Most of them are

around...the mean is around 5 to 7— that’s where the biggest percentage

of the students are. It’s pretty much bell [shaped]. Other than that, it’s

got a good amount of variability with some students drinking 0 cups per

day or 10 cups per day. A normal looking graph.

Interviewee 14: [Regarding the dot plot in Task 6] The majority of

students only scored between 5 and 6, and there seems to be a great

range of students who scored a lot less and ones who did well. It seems

like it’s got that bell-shaped curve that most professors would look for.
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Interviewee 19: [Regarding the histogram in Task 4] Most of them

drank 6 [cups of water] with a frequency of 12, and then it’s a normal

distribution. There doesn’t really seem to be any outliers because both

sides are pretty even.

Interviewee 19: [Regarding the dot plot in Task 6] The test must have

been pretty difficult because the highest frequency was a 6. So, that’s

like failing. Only about 5 [students] made A’s, and someone actually

made a 0. So it seems pretty hard.

Much like in Tasks 4 and 6, students described the right-skewed histogram

in Task 5 (Figure 7.17) and the isomorphic dot plot in Task 7 (Figure 7.19) in a

similar manner. The following is an excerpt from Interviewee 6, who accurately

described the distributions in both tasks. This person, like most of the interviewees

who could correctly interpret graphs, gave a similar description of each— first by

identifying the first mode, then by identifying the second mode and the overall shape,

and finally by identifying the highly variable nature of the data.

Interviewee 6: [Regarding the histogram in Task 5] It seems that most

people who do consume coffee are drinking between 0 and 10 ounces...or

between 0 and 30 is the majority of the people, meaning that the majority

of people who consume coffee consume less. But then there are outliers

that are a little spread out, making it a little more variable, because

there are some people who drank 100 ounces per day.

Interviewee 6: [Regarding the dot plot in Task 7] So this pretty much

seems to be what people call bimodal, in the fact that there’s kind of two

main curves, there seems to be like two high points where people either

seem to watch 0 hours of TV or they watch upwards of 10— is this hours
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per day? That’s a lot of TV. They watch upwards of 7 hours of TV. So

you have this two-pronged kind of grouping where people seem to watch

a lot of TV or none at all. There’s definitely a lot of variability going on

in this data.

There were a few interviewees who struggled to correctly interpret the his-

togram. The following is an excerpt from an exchange with Interviewee 13 regarding

Task 5. This student gave a terse description of the histogram in Task 5, and an

incorrect definition of its associated variability.

Interviewer: What does this graph tell you about UGA undergrad’s

coffee drinking habits?

Interviewee 13: A lot of people drink 0 cups of coffee, and then it

varies between 0 and 100.

Interviewer: What do you mean by ‘it varies?’

Interviewee 13: Um... There is scattered data. So the bars start high

then they go low at the end, so lots of variability.

Conversely, Interviewee 13 and the interviewer had a nearly identical in-

teraction a few minutes later with the isomorphic Task 7. This student again gave

a succinct description of the given dot plot and again mentioned that ‘it varies a

lot.’ When asked to explain, this time the student correctly defined the variability

exhibited in the dot plot.

Interviewer: What does this graph tell you about UGA undergrad’s

TV watching habits?

Interviewee 13: Well it varies a lot because it goes from 0 to 10 hours

and a lot of people watch 0 and a few people watch 10.
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Interviewer: Well, so what do you mean by ‘it varies?’

Interviewee 13: Well people watch lots of different numbers of hours

of TV— they’re all over the place.

4.2 Medium

This section details the similarities and differences amongst student responses to

online items and their isomorphic face-to-face interview task counterparts. It seeks

to shed light on the Medium research question, which aims to determine if there

are significant differences in the correctness and completeness of student responses

to online items versus responses given in face-to-face interviews.

4.2.1 Correctness

This section examine the similarities and difference in the correctness of student

responses to online items and face-to-face interview tasks. It does so by examining

isomorphic questions asked in both mediums.

Table 15 shows students’ results for Pairing 7.2 (Figure 7.11). In inter-

view form, this encompassed Interview Tasks 8 (Figure 7.20) and 12 (Figure 7.24).

Students saw the pair of histograms in Task 8 and the pair of dot plots in Task 12.

In its online form, this encompassed two of the six possible pairings from Item 7

(Figure 7.7). That is, students were randomly assigned one of six pairings of data

(three histograms and three dot plots). Only students who received the histograms

and dot plots in Pairing 7.2 (n = 224 and n = 186, respectively) are included in

Table 15. In this item, students were asked which of two graphs (either a pair

of dot plots or a pair of histograms) contained data that were more variable. A
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two-sample test for equal proportions showed no evidence of a significant differ-

ence across mediums in the percentage of students correctly answering either the

histograms (χ2 ≈ 0, d.f. = 1, p ≈ 1) or the dot plots (χ2 ≈ 0, d.f. = 1, p ≈ 1).

Table 15: This table shows the overall percentage of correct responses for pairing
7.2, a subset of Online Item 7 and identical to Interview Tasks 8 and 12.

Medium % Correct Histogram % Correct Dot Plot
Online 31.7 (n = 224) 43.5 (n = 186)

Interview 31.6 (n = 19) 42.1 (n = 19)

A similar trend as the one previously shown was observed in each of the

overlapping online items and interview tasks. Table 16 shows the proportion of cor-

rect responses for the remainder of overlapping items (or subset pairings of items)

for which there existed a correct response (i.e. there does not exist a correct re-

sponse for the ‘describe the graph’ items, but there does exist a correct response

for the ‘choose the correct graph’ items). Three separate two-sample tests for equal

proportions showed no evidence of a significant difference across mediums in the

percentage of students correctly answering any of the three remaining questions

(χ2 = 0.005, d.f. = 1, p ≈ 1 for Test Score Dot V2; χ2 ≈ 0, d.f. = 1, p ≈ 1 for Test

Score Hist V3; χ2 ≈ 0, d.f. = 1, p ≈ 1 for Country/City Variability).

Table 16: A comparison of the percentage of correct responses to each of the re-
maining overlapping isomorphic online items and interview tasks.

Test Score
Dot V2

Test Score
Hist V3

Country/City
Variability

Online 59.4% (n=215) 51.2% (n=178) 42.7% (n=1175)
Interview 63.1% (n=19) 52.6% (n=19) 42.1% (n=19)
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4.2.2 Completeness

Students choosing the correct graph in both Task 8 and Task 12 gave nearly identical

responses to those from the isomorphic Item 7. That is, student responses to the

interview tasks justified their responses using nearly identical justification as those

from Item 7. The primary difference between these responses was the average word

length— student responses to online items averaged 15 (s = 9.1) words in length,

whereas student responses to interview tasks averaged 75 (s = 45.7) words in length.

In Online Item 8 (Figure 7.8) and Interview Task 5 (Figure 7.17), students

were asked to describe what the depicted histogram told them about how many

ounces of coffee undergraduate students drink per day. In order to compare the

completeness of responses to this question across mediums, the presence of the four

main characteristics of a histogram is examined— its Shape, Center, Variability,

and Context. Table 17 shows the comparison of the discussion (or lack thereof) of

these four categories in online responses versus face-to-face responses. Definitions

of a description of Shape, Center, Variability, or Context can be seen in Table 3.

Ensemble analytics for Item 8 ensemble can be seen in Table 21.

Table 17: A comparison of histogram descriptions for online versus face-to-face
responses

Question Medium % Shape % Center % Variability % Context N

Item 8 Online 71.9 27.9 15.6 44.6 1156

Task 5 Face-to-Face 73.7 26.3 15.8 68.4 19

A Chi-squared test showed no evidence of a significant difference in the

distributions of responses for students discussing each of the four elements of a his-

togram across mediums (χ2 = 1.4815, d.f. = 4, p = 0.6865). Although the percentage

of students discussing the shape, center, and variability remained nearly identical
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across mediums, there appeared to be a slight difference in the percentage of students

discussing the context of the histogram. Although this difference was not statisti-

cally significant, it is likely in part due to the average length of response across the

different mediums. Students responding to the online version of the histogram often

used few words to convey their responses.

Response to Online Item 8: Skewed right. Mean is greater than

median and range is very large.

Response to Online Item 8: Bimodal and skewed right, mean is about

40 with very large variability.

Response to Online Item 8: Skew right. They drink between 0 and

30 and range is 100.

The aforementioned responses were each coded positive for shape, center,

and variability, but were all done using fewer than 12 words. The following responses

came from the face-to-face version of the same question, and were also coded positive

for shape, center, and variability. These responses were typically much longer, but

still conveyed the same basic information about the shape, center, and variability

of the histogram. In many cases, these responses also included a discussion of the

graph’s context, or their descriptions of the shape, center, and/or variability were

given in context.

Interviewee 4: A lot of people don’t drink coffee. About half maybe?

So about half of UGA doesn’t drink coffee at all. But some people drink

a lot of coffee. Just a few though, so it has two main groups of people.

The data is pretty spread out too.

Interviewee 16: It’s not as high as I would expect honestly. This graph

looks more skewed right than I would expect. But there is a little bit of
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a second bump near the right end between 60 and 90. That’s probably

during exam week. But pretty much overall it’s skewed right, with a

mean maybe around 20 or 30. It’s hard to tell because the data is so

spread out.

Interviewee 18: Most students do not drink very much coffee. It’s

skewed right, which means that more people are drinking amounts that

are on the left side of the graph. Between 0 and 10 ounces, about 100

people said they drink that much. After that, it tapers down pretty

substantially, and as it goes down, the value get much smaller other

than the small subset of students between 60 and 90. It kind of looks

bimodal.

4.3 Misconceptions

This section utilizes both ensembles of machine learning algorithms and interview

tasks to quantify the proportions of students with each of the four established mis-

conceptions about quantitative displays of univariate data described in Section 1.1.

Table 18 quantifies the percentage of responses to several different questions that

contained a particular misconception, shown in the left-split column. In the right-

split column, the table shows the percentage of incorrect responses that contained

the misconception of interest. Ensemble analytics for each of these predictions can

be found in Table 21.
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Table 18: This table shows, for several different items and tasks, the overall pro-
portion of students exhibiting a given misconception, as well as the proportion of
incorrect answers exhibiting the same misconception.

Bar Chart
Misconception

Bar Height
Misconception

Axis Order
Misconception

Range
Misconception

Item Name
% of
Total

% of
Incorrect

% of
Total

% of
Incorrect

% of
Total

% of
Incorrect

% of
Total

% of
Incorrect

Item 6
Score

Variability
V2

32.5
(n=3335)

50.6
(n=1319)

28.1
(n=3335)

42.4
(n=1319)

0.1
(n=3335)

0.3
(n=1319)

12.3
(n=1112)

31.2
(n=440)

Item 7
Score

Variability
V3

31.8
(n=1125)

50.4
(n=709)

41.4
(n=1125)

71.6
(n=709)

0.8
(n=1125)

1.1
(n=709)

8.1
(n=185)

21.9
(n=91)

Item 8
Coffee

Histogram
7.5

(n=1327)
N/A

25.1
(n=1327)

N/A
0.6

(n=1327)
N/A N/A N/A

Task 3
Raw
Data

N/A N/A N/A N/A N/A N/A
63.2

(n=19)
92.3

(n=13)

Task 5
Coffee

Histogram
10.5

(n=19)
N/A

15.8
(n=19)

N/A
5.3

(n=19)
N/A N/A N/A

Task 8
Score

Variability
Histogram

31.6
(n=19)

83.3
(n=6)

36.8
(n=19)

71.4
(n=19)

0
(n=19)

0
(n=19)

N/A N/A

4.3.1 Bar Chart Misconception

The Bar Chart Misconception is the belief that any two-dimensional graph with

bars must be a case-value bar chart, and its bars (or stacks of dots) must there-

fore represent individual, non-aggregated data. As such, this section quantifies the

prevalence of this misconception through the examination of student responses to

Item 6 (Figure 7.6), Item 7 (Figure 7.7), Item 8 (Figure 7.8), and their corresponding

interview tasks— Task 8 (Figure 7.20) and Task 5 (Figure 7.17).

The propensity of a student to believe that, when viewing a histogram, the

student were instead viewing a case-value bar chart varied significantly across dif-

ferent items. Specifically, students were more likely to misunderstand a histogram

as a bar chart when being asked to describe the graph’s variability (or compare

the variability across multiple histograms) than when being asked general questions

about the same histogram. Table 18 shows that 32.5% and 31.8% of students exhib-

ited the bar chart misconception for Item 6 and Item 7, respectively. These items
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asked students to compare the variability between two histograms or dot plots, and

students often compared the variability as if they were viewing case-value bar charts

instead of histograms or dot plots. The sample responses exemplify students with

the bar chart misconception. These responses claim that the bars (or dots) represent

a value for a single subject rather than an aggregated value for many subjects. This

type of response comprised approximately 50% of all incorrect answers to Item 6

and Item 7.

Response to Online Item 6: Class A is more variable because out of

the 10 students in class B, most of them got the same grade but students

in A did all over the place.

Response to Online Item 6: Most students made about the same

grade in B but students made lots of different grades in A.

4.3.2 Bar Height Misconception

The Bar Height Misconception is the misconception that the variability in a

given histogram or dot plot is depicted through the variation (or lack thereof) in the

heights of its bars or dots. There was a strong propensity for students with the bar

chart misconception to also exhibit the bar height misconception. This relationship

is discussed in greater detail in Section 5.2.3. When comparing the variability in

two graphs, as per Item 6, Item 7, and Task 8, 32.5%, 31.8%, and 31.6% of students

exhibited the bar height misconception, respectively. This proportion dropped sig-

nificantly in the two questions that required students to describe a histogram, Item

8 and Task 5. Student responses to these questions exhibited the bar height mis-

conception 7.5% and 10.5% of the time.
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Students with the bar height misconception sometimes understood the

premise of variability as a function of deviation from a measure of center, but they

applied this definition in the wrong way, as per the first response below. Many

other students identified the variation in the heights of bars or dots as the source of

variability in the data, as per the second response.

Response to Online Item 7: The first one has more variability because

the bar heights are way different from the mean bar. The second one has

almost no variability because all of the bars heights are right around the

center bar.

Response to Online Item 7: The bar heights vary a lot more because

they go up and down in the first one, so the first class has more variability.

4.3.3 Axis Order Misconception

The Axis Order Misconception is the idea that the ordering of the x-axis is

arbitrary. Despite being a well-established misconception in the statistics education

literature, very few students across both mediums directly exhibited the axis order

misconception. Since each of the histograms and dot plots in the online items and

interview tasks had a well-labeled x-axis, (that is, each bin in the histogram or dot

plot was labelled directly), it was unlikely that students would believe the x-axis

to be arbitrarily ordered. Across both interview tasks, 5.3% and 0% of students

exhibited this misconception (only 1 student total). With regards to online Item 6,

Item 7, and Item 8, only 0.1%, 0.8%, and 0.6% of students directly exhibited this

misconception. The following is a sample response from Item 8 that exhibits the

axis order misconception.
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Response to Online Item 8: The first couple students drink a lot

of coffee, but then other students don’t drink as much coffee, although

there are some students at the end that drink a medium amount.

4.3.4 Range Misconception

Students with the Range Misconception believe that the range of a data set

defines its variability— thus, a data set with a larger range is necessarily more

variable than one with a smaller range. Although range is one informal measure

of variability, each of the items and tasks presented in this research asked students

to assess variability as a function of the standard deviation of the data. Students

with this misconception believe that finding the range is equivalent to finding the

variability (i.e. standard deviation).

There were several items and tasks designed to assess the prevalence of

the range misconception. Table 18 shows the proportions of students with this

misconception across Item 6, Item 7, and Task 3. Although the proportions of

students exhibiting this particular misconception varied across the three related

questions, student responses to online items and in-person tasks were similar. When

asked to define variability at the beginning of each of the face-to-face interviews,

students gave a wide range of answers. Many students, like Interviewee 6, included

range in their description of variability.

Interviewer: In your own words, give me a statistical definition for the

word ‘variability.’
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Interviewee 6: I would say it means the spread of data. How much the

data differs from a measure of center, mean, median, and how much it’s

spread out and how big of a range it has.

Interviewee 6 mentioned the range when asked to describe variability in

general. When asked to determine which of two data sets have more variability as

a function of standard deviation, she began by looking at the range but quickly

corrected herself and correctly identified the data set with larger variability. In the

aforementioned task, (Task 3, Figure 7.15), students were shown two data sets—

one with a smaller range but more variable data (list E) and one with a larger range

and less variable data (list F).

Interviewee 6: [In response to Task 3] I’m going to say list F. I can see

that list F has a larger range...wait... it just has two outliers. The data

from list E are actually more variable than F because they are farther

from the mean than [the data in list F].

Other students, however, gave similar definitions of variability which in-

cluded, either in part or in whole, a mention of range. Interviewee 5 appeared to

equate range and variability in her definition.

Interviewer: In your own words, please give a statistical definition for

the word ‘variability.’

Interviewee 4: Variability means a bigger range... so if things are really

spread out then they are really variable.

Unlike Interviewee 6, Interviewee 4 did not appear to associate range as a

measure of variability, but rather as a synonym. This is evidenced by her response

to Task 3.
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Interviewee 4: [In response to Task 3] List F has more variable data

because... 44 [the subtraction of 45 (the maximum) and 1 (the mini-

mum)] is a lot bigger than 36 [the subtraction of 41 (the maximum) and

5 (the minimum). So definitely list F because the range is a lot bigger.

Interviewee 11 seemed conflicted about which list to choose—she ulti-

mately chose the wrong one. She described not being able to remember how to

calculate variability or how to find it in a data set.

Interviewee 11: [In response to Task 3] Now I can’t remember if the

variability depends on all of them together or just the lowest and high-

est numbers... I guess it’s list F [the one with a larger range and less

variability] because it’s got more spread between the highes and lowest

number.

Many students—12 out of the 19 interviewed—gave nearly identical re-

sponses to this task. Each claimed that the list with a larger range must be more

variable. Task 3 was designed to be intentionally difficult, and the proportion of

students exhibiting the range misconception was expectedly higher than that of the

online items. Item 6 and Item 7, each questions about histogram or dot plot variabil-

ity, saw only 12.3% and 8.1% of students exhibit the range misconception compared

to the 63.2% of Task 3. The range misconception comprised 31.2% and 21.9% of in-

correct responses to Item 6 and Item 7, whereas the range misconception was seen in

92.3% of incorrect student responses in face-to-face interviews. The following three

student excerpts show three students’ justifications of their incorrect answer. Much

like the interview responses, students’ online responses exhibiting this misconception

often described the variability only in terms of the range.
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Response to Online Item 6: Class A goes from 1-10 and B is only

from 2-9, so class A is more variable.

Response to Online Item 6: The range is 9 in A so it is more variable,

since the range is only 7 in class B.

Response to Online Item 7: The range in A is slightly more than B,

so it is more variable.

4.4 Ensemble Weighting

An ensemble weighting algorithm is a function that provides weights for the votes

of each algorithm in the ensemble. For a more detailed discussion of ensemble

vote weighting, see Section 2.2. To determine which of the ensemble vote weighting

algorithms described in Section 2.2 might provide more accurate classifications, each

vote weighting scheme was tested for three selected data sets.

The three selected data sets were students’ responses to Item 1, Item

3, and Item 4. Two categories were selected from the rubrics used to categorize

responses to each of these 3 items— Shape and Variability for Item 1, Center and

Variability for Item 3, and Bar Height and Bar Chart for Item 4. For each of the

three items, the four potential vote-weighting algorithms were utilized (under the

default data cleaning scheme, described in Table 20) to categorize responses into the

two selected categories. Table 19 shows the results of the different vote-weighting

algorithms on each item and category combination. Since Item 1 and Item 3 utilized

an analytic rubric and Item 4 utilized a holistic rubric, the results in Table 19 show

Cohen’s Kappa for Item 1 and Item 3 and Fleiss’ Kappa for Item 4. The specifics

of each data set, including rubric definitions, can be seen in Section 3.4.
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Table 19: A comparison of the effects of various vote weighting techniques on Co-
hen’s Kappa.

Uniform Probability-Based Dynamic CV
Item 1- Shape 0.891 0.942 0.931 0.935

Item 1- Variability 0.867 0.908 0.918 0.915
Item 3- Center 0.911 0.975 0.973 0.970

Item 3- Variability 0.817 0.922 0.912 0.891
Item 4- Bar Height 0.719 0.884 0.904 0.947
Item 4- Bar Chart 0.784 0.916 0.883 0.901

Uniform vote weighting was inferior to the other three vote-weighting

schemes in all six test cases. There was, however, no overall most effective vote-

weighting scheme for all of the data sets. Probability-based vote weighting outper-

formed the other three techniques in four of the six test cases, and dynamic vote

weighting and cross-validation-based vote weighting each were top performers on a

particular category. Based on these results, the difference in vote-weighting tech-

nique appeared to be minimal at best. Since the efficacy of each vote-weighting

scheme appeared different for different data sets, each of the vote-weighting schemes

were tested on all categorizations.

Table 21 shows the results of the best vote-weighting scheme for each of

the 45 ensembles used in this dissertation. Of the four vote-weighting schemes,

only three were utilized in the final form of any ensembles— uniform vote weighting

was unused. In each case, at least one of probability-based, dynamic, or CV vote

weighting outperformed uniform vote weighting. Probability-based vote weighting

was used more often than dynamic or CV vote weighting. Probability-based vote

weighting tended to perform better for generic categories and when specific words

almost assuredly placed a response into the given category. For example, students in

the Context category for Item 1- Atlanta Income were almost assuredly responding

in context if their response contained the words ‘Income,’ ‘Dollars,’ or ’Atlanta
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adults.’ Although these types of categories were easier to predict than other, more

convoluted categories, the probability-based weighting function performed the best.

CV-based vote weighting tended to perform better in categories where a

small, specific subset of words was present in both correct and incorrect responses

(such as the ‘Height’ categories representing the presence of the Bar Height Miscon-

ception). For example, students in the ‘Height’ category believed that the variability

in the data is represented by the variation in bar heights. Students in this category

would likely use words like ‘bar,’ ‘height,’ or other words describing the height of

a specific bar in the graph. Students without this misconception (and thus not be-

longing to this category) would also likely use similar words to correctly describe

the graph. These students often correctly identified the center of the graph by de-

scribing the location of the mode using similar terminology as those with the bar

height misconception. CV-based vote weighting helped reduce the number of false

positive categorizations by reducing the weights of votes from algorithms prone to

false positives.

Dynamic vote weighting rarely outperformed the other algorithms, how-

ever, it consistently did so in the ‘Correct’ and ‘Axis Order’ categories. Due to

the obfuscating nature of the calculations performed by this method as described

in Fung et al. (2006), it is unclear why this vote-weighting scheme outperformed

the other three for these particular categories. The use of dynamic vote weighting

for these two categories (across all items) lead to a higher recall (i.e. missed fewer

responses that truly belonged in either the ‘Correct’ or ’Axis Order’ categories) than

the other vote-weighting schemes.
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4.5 Ensemble Training

There were five total data cleaning schemes used across all ensembles in this disser-

tation. Table 20 shows the summary characteristics of the data cleaning schemes.

Each cleaning scheme contains accompanying algorithm tuning settings if algorithm

tuning differed from the default scheme. The default data cleaning scheme is de-

scribed in Section 3.5, and the default algorithm tuning scheme is described in

Section 3.7. Each individual data cleaning scheme is described in greater detail later

in this section.

Table 20: This table gives a summary of each of the five data cleaning schemes.

Cleaning Settings/Scheme Default 2 3 4 5
Minimum word length 3 1 1 3 3

N-gram length 1 2 2 5 1
Numbers Removed Removed Removed Removed Not Removed

Punctuation Removed Removed Removed Removed Not Removed
Stopwords Removed Removed Removed Removed Not removed

Matrix sparsity 0.99 0.99 0.99 0.99 0.99

Algorithm Tuning Changes -
Tree-based

methods altered
to grow larger

Elastic-net
uses Lasso

penalization

C4.5 algorithm
used for

tree construction
-

Cleaning scheme 2 was exclusively used for algorithm predictions in the

‘Shape’ category. Many responses to items containing this category were shorter in

length than a typical response. Typical responses belonging in this category were:

‘Bell-shaped,’ ‘It looks normal,’ or ’Skewed right.’ To accommodate these atypi-

cally terse responses, the standard scheme was altered to accommodate bigrams and

words of any length. The use of bigrams and words of any length helped identify fea-

tures (such as the bigram ‘skewed right’) that were useful in differentiating between

short, incorrect responses and short, correct responses. The tree-based algorithms

in this scheme (Classification Trees, Bagging Classification Trees, Boosting Decision

Stumps, and Random Forests) were tuned to utilize the large influx of features, since

the addition of bigrams changed the number of features from tens of thousands to
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hundreds of thousands. Trees were pruned in a way that allowed them to grow very

large (i.e. removing the standard stopping criteria that ceases forming branches

after a tree becomes 32 leaves deep). The boosting of decision stumps involves the

creation of several (default 100) one-leaf trees. With only 100 stumps, it became

likely that no features indicative of the ’Shape’ category (e.g., the bigrams ’right

skew,’ ’left skew,’ or ’normal distribution’) were ever chosen to be the central leaf of

a decision stump. In scheme 2, this default was changed to 1000 to better accom-

modate the larger number of potential features to be used in the creation of new

decision stumps.

Cleaning scheme 3 was used exclusively for algorithm predictions in the

Variability category across all items. This scheme was essentially identical to scheme

2 with an additional change to the Elastic-Net regularization of the logistic model.

For the Variability category, using the L1 norm penalization function (used in lasso

regression) vastly outperformed both the L2 norm penalization (ridge regression)

and any weighted combination of these using the Elastic Net (described in Section

3.7.5). Thus α was set to 1 for the calculation of the parameter penalty. The rest

of the scheme was identical to that of scheme 2.

Cleaning scheme 4 was used sparingly. This scheme was primarily used for

the Height category, and it was used in one instance for the Correct category. This

scheme was similar to the default scheme with two exceptions. Feature extraction

was done in a unique was to avoid removing any potentially useful features. In

this manner, all n-grams up to 5-grams (i.e. 1-grams, .... , 5-grams) were considered

features. This exponentially increased the size of the document-term matrix, and so a

more efficient tree-building algorithm was required to construct trees in a reasonable

computation time. The C4.5 algorithm (Quinlan, 1993) was used in place of the

standard ID3 algorithm to construct trees more efficiently. This design allowed
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more complex sentence structures to be captured in a single feature— a necessary

step in determining which students had the bar height misconception and which

did not.

Cleaning scheme 5 was used for each of the Bar Chart categories and for

two Correct categories. This scheme specifically did not remove punctuation, num-

bers, or stopwords during the cleaning process. These features proved particularly

useful in determining which responses belonged in the Bar Chart category, as stu-

dents often referred to the heights of the bars by location on the x-axis (i.e. a number)

and by its height on the y-axis (i.e. a number). Students understanding that the

data were aggregated (i.e. not having the bar chart misconception) tended to give

responses of grouped numbers using a dash. For example, many students without

the bar chart misconception would respond ‘Most students slept 6-8 hours,’ or ‘The

mean of this graph is 6-8.’ Removing the dash or numbers from these responses

obfuscated the accurate categorization of responses into the Bar Chart category.

4.6 Ensemble Accuracy

In this section, the ensemble analytics are provided for each of the ensembles used

throughout this research to make categorizations of student responses. The training

of each ensemble involved data cleaning and algorithm tuning, and the three pri-

mary measures of ensemble efficacy used in this dissertation— recall, precision, and

Cohen’s/Fleiss’ Kappa—are shown here. Item 6, Item 7, and Item 8 use holistic

rubrics, and thus the Kappa metric used is Fleiss’ Kappa. The remaining items uti-

lized analytic rubrics, and thus Cohen’s Kappa is used. A more detailed discussion

of these metrics can be found in Section 3.6. Table 21 shows the resulting three

efficacy metrics for each ensemble used in this dissertation.
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Table 20 shows the ensemble vote-weighting function and data cleaning

schemes used to weight the votes and tune the algorithms in the corresponding

ensemble. In addition, it describes any changes made to tuning parameters in the

eight machine learning algorithms. Ensemble vote-weighting functions are described

in detail in Section 2.2

Table 21: This table shows the three ensemble efficacy metrics, the weight function,
and data cleaning scheme used for each of the categories predicted by the ensembles.

Ensemble Question Category Recall Precision Kappa Weight Function Cleaning Scheme

Item 1-
Atlanta Income

Shape 0.99 0.99 0.98 Probability 2
Center 0.86 0.96 0.83 Probability Default

Variability 0.82 0.96 0.76 Probability 3
Context 0.87 0.96 0.83 Probability Default

Item 2-
Test Score
Variability

Histogram V1

Height 0.91 0.94 0.88 CV 4
Normal 0.99 0.99 0.97 Probability Default
Spread 0.95 0.99 0.90 Probability Default
Correct 0.79 0.84 0.72 Dynamic 5

Item 3-
Student Sleep

V1

Shape 0.96 0.99 0.90 Probability 2
Center 0.86 0.92 0.86 Probability Default

Variability 0.70 0.92 0.71 Probability 3
Context 0.96 0.98 0.94 Probability Default

Item 4-
Test Score
Variability

Dot Plot V1

Height 0.89 0.94 0.88 CV 4
Normal 0.99 0.99 0.95 Probability Default
Spread 0.97 0.99 0.96 Probability Default
Correct 0.81 0.88 0.76 Dynamic 5

Item 5-
Student Sleep

V2

Shape 0.98 0.99 0.95 CV 2
Center 0.83 0.91 0.82 Probability Default

Variability 0.73 0.85 0.70 Probability 3
Context 0.97 0.99 0.96 Probability Default

Item 6-
Test Score
Variability

Combination

Height 0.91 0.94 0.87 CV 4
Normal 0.96 0.99 0.91 Probability Default
Spread 0.93 0.95 0.87 Probability Default
Correct 0.76 0.72 0.71 Dynamic 4

Bar Chart 0.80 0.83 0.75 CV 5
Axis Order 0.76 0.72 0.70 Dynamic Default

Range 0.93 0.95 0.93 Probability Default

Item 7-
Colored Test

Score Variability
Combination

Height 0.95 0.96 0.88 CV 4
Normal 0.99 0.99 0.99 Probability Default
Spread 0.94 0.96 0.87 Probability Default
Correct 0.71 0.90 0.83 Dynamic 5

Bar Chart 0.84 0.81 0.72 CV 5
Axis Order 0.78 0.79 0.70 Dynamic Default

Range 0.96 0.97 0.91 Probability Default

Item 8-
Coffee

Consumption

Shape 0.88 0.84 0.76 Probability 2
Center 0.92 0.90 0.85 Probability Default

Variability 0.74 0.81 0.76 Probability 3
Context 0.96 0.99 0.95 Probability Default

Bar Chart 0.83 0.87 0.72 CV 5
Axis Order 0.79 0.78 0.70 Dynamic Default

Range 0.92 0.98 0.96 Probability Default
Item 9-

Test Scores
for Large-Test

Shape 0.91 0.91 0.86 Probability 2
Center 0.92 0.98 0.89 Probability Default

Variability 0.80 0.83 0.72 Probability 3
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Each of the ensembles in Table 21 performed reasonably well. All Kappa

values were larger than 0.7, and the recall and precision of each of the ensembles were

typically larger than 0.85, although they were always larger than 0.7. Regardless of

item, the corresponding ensemble predicted better for certain categories when com-

pared to predictions for other categories. Across all items, the ensembles performed

particularly well when categorizing responses into the Shape or Context categories.

Predictions made about responses in the Center category predicted with high ac-

curacy, especially those in Item 8. For other items, this accuracy was acceptable

but noticeably less than that of the responses in Item 8. Responses belonging to

the Variability category were particularly difficult to categorize across all items, and

the biggest struggle was with the ensembles’ precision (i.e. its ability to correctly

identify responses with a discussion of variability) and not its ability to correctly

identify responses lacking this discussion of variability.

Many of the holistic rubrics (here for Item 6, Item 7, and Item 8) had one

or two categories that were particularly troublesome. Specifically, the Axis Order

and Correct categories were the hardest to categorize across all items. Item 6 and

Item 7 were overall particularly challenging for the ensembles to correctly classify

due to the large variation in student responses belonging to these categories relative

to those in other categories. For these items, there were six possible pairings of

graphs, and each pairing contained displays of data that were drastically different

than the other pairings. This lead to an increase in the number of different words

students could use to correctly (or incorrectly) describe each of the aspects of the

corresponding histograms or dot plots.
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5 Discussion

This section begins with a brief summary of the scope and design of this dissertation.

It then contains a discussion of the results of Section 4 and each of its corresponding

subsections. This section concludes with a discussion of the limitations of this study

and of potential future directions for research.

5.1 Study Summary

Students’ understanding of variability in data plays a key role in solving statistical

problems (Franklin et al., 2007). Cooper and Shore (2008) stated that one of the

consistently more difficult tasks for students in introductory statistics courses of any

level is interpreting the variability displayed in univariate graphs such as histograms

and dot plots. This study sought to quantify the proportion of students with miscon-

ceptions about these graphs, specifically related to the variability in the data they

display. In addition, this study sought to develop a manner in which instructors

could receive meaningful, instantaneous feedback about their students’ knowledge

through the use of an ensemble of machine learning algorithms. This dissertation

began by developing nine constructed-response questions to be given to thousands

of undergraduate students at a large research institution in the Southeastern United

States. Students’ responses were recorded and used as training and testing data for

eight machine learning algorithms. These machine algorithms were trained to cate-

gorize responses for each of the nine items. The predictions of individual algorithms

were combined into an ensemble using one of four vote-weighting functions. The
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accuracy of each ensemble was optimized by changing tuning parameters for each

algorithm and modifying the overall data cleaning process. When peak ensemble

performance was achieved, the ensemble was used to categorize student responses

into many categories of interest.

Finally, face-to-face, task-based interviews were performed with 19 under-

graduate students enrolled in the same introductory statistics course at the same

institution. These interviews were used to determine if students’ responses to on-

line homework questions were of a similar completeness and correctness as those re-

sponses given to isomorphic interview questions. From the results of these interviews,

it was ultimately concluded that students’ responses to isomorphic online questions

and in-person interview tasks were of a similar completeness and correctness. Due to

this continuity of responses, it seems reasonable to conclude that student responses

to online homework assignments were an accurate representation of the students’

knowledge about variability in graphs. Thus, an ensemble of machine learning al-

gorithms could be used to evaluate the efficacy of a particular lecture or determine

the pre-requisite knowledge (or lack thereof) of a class of undergraduate statistics

students simply by categorizing student responses to constructed-response items.

5.2 Discussion of Results

This section gives a concise summary and discussion of the results contained in this

dissertation. The answers to each of these four research questions: Dot Plot vs.

Histogram, Medium, Misconceptions, and Ensemble Accuracy are discussed

in the subsequent subsections.
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5.2.1 Dot Plot vs. Histogram

In both online items and interview tasks, students typically performed better on

questions related to variability in graphs involving dot plots than their isomorphic

histogram counterparts. Students performed better when viewing dot plots over

histograms in 11 of the 12 isomorphic Compare questions in which both dot plots

and histograms were utilized. Essentially, students more often correctly identified

which of two graphs contained more variable data when viewing a dot plot than

when viewing a histogram. One of the most common misconceptions that seemed

to inhibit students from making the correct selection in these types of items was

the Bar Height Misconception. Since this misconception was approximately

10% less prevalent in student responses to dot plots, it is plausible that relatively

more students understood that a dot plot was showing aggregated data. As further

evidence of this, the difference in the proportion of correct responses for dot plots

and histograms for each question approximately corresponded to the difference in

prevalence of the Bar Height Misconception between dot plots and histograms

(also approximately 10%).

Regardless of whether the student was viewing a pair of histograms or dot

plots, students giving a correct multiple choice answer to a Compare question used

nearly identical words in the constructed-response portion to justify their multiple

choice answers (aside from the standard differences in descriptive words between the

two graphs). That is, the only differences in word usage between correct responses

to dot plots and correct responses to histograms involved words related to dots

and bars. Students selecting the incorrect multiple choice gave a variety of incorrect

justifications in the constructed-response portion of the Compare question, and these

responses differed depending on graph type. Averaged across all items, 60% of

students giving an incorrect answer focused on the bar height when comparing the
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variability between two histograms. This percentage was only 48% for dot plots.

Unlike responses to histograms, many incorrect responses to dot plots contained

partially correct justifications (approximately 14% for dot plots compared to 5% for

histograms). For example, students often gave a correct synopsis of the dot plot

(e.g., ‘There are dots spread out everywhere’), but then chose the other graph with

less variability. It is unclear why such a large proportion of students made this

decision across each of the online items. Further research is needed to investigate

why this might have occurred, as there were relatively few responses to histograms

that contained a reasonably correct justification but an incorrect graph selection.

Since these incorrect selections occurred over many semesters across many different

questions, it is unlikely that these incorrect selections are due to students accidentally

selecting the wrong multiple choice answer.

When asked Describe questions during interviews, students were much

more likely to point at individual dots (often outlying points) and make observations

about their value or judgments about why the dots were there in the context of

the problem. There was likewise evidence of this in the online responses where

students would more often identify outlier points in the questions involving dot

plots versus those involving histograms. There was little evidence of this occurrence

in both online items and interview tasks. When discussing general features about

the distribution, there were very few differences between student responses to dot

plots and histograms. In both instances, students frequently addressed the center of

the graph and then made some mention of its overall shape. Students were slightly

more likely to discuss the variability for dot plots versus histograms. Most of the

discussion of variability involved identifying outlying points in the dot plots. The

identification of these outlier points appeared slightly more frequently in responses

describing dot plots than those describing histograms.
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It is unclear whether or not viewing a dot plot instead of a histogram has

any long-term effect on student knowledge. That is, there was significant evidence

that students more often interpret correctly the variability displayed in a dot plot

than the variability displayed in a histogram. There was no evidence, however, that

this increase in interpretability leads students to overcome the many misconceptions

present in univariate graphs. A more longitudinal research would be required to

determine if such evidence exists.

5.2.2 Medium

The primary difference between student responses to online items and their isomor-

phic interview task counterparts was the length of the response. For example, the

average response length for a response to Item 8 was 15 words (s = 7.8). For its iso-

morphic interview task counterpart, Task 5, responses averaged 58 (s = 35.3) words.

This ratio—around 1:4 in terms of word count—was consistent throughout each of

the online and in-person responses. Despite the differences in response length, stu-

dents gave nearly identically constructed responses to isomorphic questions across

both mediums. Students’ responses to both online items and interview tasks were

both the same levels of correctness and completeness. That is, the same students

who gave correct responses to the online items also gave correct responses to the

isomorphic interview tasks, and the same students who gave incorrect responses to

the online items also gave incorrect responses to the isomorphic interview tasks. Ad-

ditionally, student responses contained the same level of completeness across both

mediums. Although responses to online items typically contained fewer words than

their interview counterparts, the same justifications to both incorrect answers and

correct answers were used throughout each of the responses.
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5.2.3 Misconceptions

The prevalence of the four established misconceptions about graphs of univariate

data remained consistent across mediums. The prevalence of these misconceptions

about graphs, however, varied significantly across items. First, significantly fewer

students exhibited the Bar Chart Misconception and Bar Height Misconcep-

tion when viewing a dot plot (22% and 69%, respectively) than when viewing a

histogram (41% and 60%, respectively). This may be due to the fact that dots,

moreso than bars, help students better understand that the bars and stacks of dots

represent aggregated data and not data from a single individual. Thus, larger vari-

ations in bar heights do not necessarily equate to a large variability in the data.

There were no other significant differences in the prevalence of the four established

misconceptions in responses between isomorphic histograms and dot plots.

Some questions were significantly more likely to evoke responses that con-

tained particular misconceptions. Interview Task 3 (Figure 7.15) and Pairing 9.1/9.2

from Item 7 (Figure 7.12) were specifically designed so that the data set with the

larger range had less variability. As such, there were significantly more responses to

these questions categorized as having the Range Misconception (63% and 48%,

respectively, as compared to 8% from all other items). Results showed that Task 3

was as equally challenging as Pairing 9.1/9.2 from Item 7, however the percentage

of responses containing the Range Misconception varied significantly. Although

each question was answered correctly approximately 40% of the time, responses to

Item 7 exhibited a variety of incorrect justifications, whereas each of the incorrect

responses to Task 3 appeared to be due specifically to the Range Misconception.

The raw data form of Task 3 was only given to students in interview form. For

future research, it would be useful to give the same question as an online version so

that a larger sample of responses could be obtained.
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The Axis Order Misconception occurred rarely across all online items

and interview tasks. This misconception, written about in delMas et al. (2005),

appears near-inseparable from the Bar Chart Misconception. That is, students

who believe that histograms or dot plots are actually case-value bar charts often also

believe that the x-axis is arbitrarily ordered. Very few students (typically around 1%

per question) provided evidence in their responses that they understood that they

are viewing a histogram or dot plot and believe the x-axis to be arbitrarily ordered.

Overall, it appears that determining whether or not a particular student

has a given misconception with very high accuracy (>99%) may require more than

one item. This is due in part to the error rates of the ensembles at making predictions

about the four primary misconceptions. While the error rates for the ensembles

in this dissertation are not incredibly high (in all cases fewer than 5%), asking

several (3-5) questions about a similar topic would greatly improve the chances of

the ensembles making a correct overall prediction about whether or not the student

has a particular misconception. In addition, students that exhibited a particular

misconception on one item did not necessarily do so for another item. From this

study, it is impossible to determine whether this was due to the student developing

the particular misconception over the course of the semester, having that particular

misconception targeted by an instructor, or due to some other cause. Regardless,

there is evidence that a single question is insufficient at determining whether a

student may or may not have a particular misconception. Even at the aggregate

level, multiple questions may be required to accurately determine what proportion

of the class has a particular misconception.
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5.2.4 Ensemble Training and Accuracy

Section 4.6 detailed the efficacy of the 45 different ensemble models used in this dis-

sertation to make categorizations about student responses. Overall, the models in

this dissertation performed particularly well— 27 of the 45 models had Precision, Re-

call, and Kappa values larger than 0.8. Some of these ensembles, however, took tens

of iterations before performing at an acceptable level. Although some categories were

particularly easy for the ensemble to correctly categorize (e.g., categories about con-

text, categories about the basic shape of the graph), others proved more challenging

and required particular feature extractions to prove effective. This was particularly

the case in hard-to-classify categories such as ‘Height’ from the Compare rubric and

‘Variability’ from the Describe rubric. Aside from algorithm and ensemble tuning,

rubrics had to be revised several times to ensure that the given codes aligned with

the goals of the categorization scheme developed by statistics experts. Most of the

categories that were too difficult to accurately classify (and thus omitted from this

dissertation) were due to the relatively low prevalence of student responses belonging

to that category. In order for the algorithms to classify appropriately, results from

this dissertation showed that a minimum of approximately 10-15 responses were re-

quired in each rubric category for the training data set. In addition, one should not

underestimate the amount of time required to train an accurate ensemble for some

of these categories (typically tens of hours), and this has proved to be a potential

drawback of this technique.

Table 21 in Section 4.6 also gave a potentially misleading look into the

efficacy of ensemble models for general categorization. There were at least ten cate-

gories for the 9 items used in this dissertation that had to be removed or completely

reworked due to the inability of an ensemble of machine learning algorithms to

correctly identify responses belonging to these particular categories, even after nu-
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merous revisions. Many of these categories were removed due to the low prevalence

of responses in this category, but others were removed or altered due to an overlap

between two mutually exclusive categories (e.g., many categories like ‘Fully correct’

and ‘Partially correct’ were removed due to the difficulty of differentiating between

border cases). The prompts of some items were worded in such a way that no mean-

ingful classifications could be made by any ensemble, and these items had to be

removed from the study. In short, the particular ensembles used in this dissertation

performed well. This, however, may not be the case for ensembles making classifi-

cations about student responses for all categories. Ensembles used for classification

may require a substantial time investment in refining both the item and prompt, as

well as the rubric classification bins.

5.3 Study Limitations

Although the results in this dissertation illuminated the propensity of students to

have particular misconceptions about variability in graphs, they did so only re-

garding students at a single research institution. That is, the results in this study

are only generalizable for students at the single institution, and the percentages of

students with particular misconceptions may differ significantly across institutions.

Additionally, all supervised learning algorithms, machine learning algorithms which

utilize a training set of data and a test set for accuracy testing, assume that new,

uncategorized data behave in an identical fashion to that of the training data. Thus,

if new responses to constructed-response questions use a different vernacular or are

otherwise constructed in a substantially different manner than those responses in the

training data set, the ensembles constructed here may perform significantly worse

than what is shown in Section 4.6 (Ikonomakis et al., 2005).
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This study only utilized nine online items to make judgments about stu-

dents’ misconceptions. Additionally, misconceptions in the Compare rubric were

assumed to be mutually exclusive (that is, a student could only have one of the

given misconceptions). This was done to improve model accuracy and appeared

to be a reasonable assumption, but it is almost assuredly not the case that each

student only had at most one misconception. Ideally, a larger number of items

would be given to the same group of students. Due to limitations on the number

of questions any given student could receive, only a small subset of the nine online

questions were given to students in any one semester. Moreover, the results of this

study are contingent upon each student giving their best effort when responding to

online constructed-response questions. Although students’ responses to online items

appeared to match their responses to in-person interview tasks, this was only true

for n = 19 students. It is also possible, albeit unlikely, that students did not respond

to questions in either medium in a manner that would demonstrate each student’s

true knowledge. An interview study with more students might further illuminate

the validity of these issues.

There were several online items for which students randomly received one

of six possible pairings of either a histogram or a dot plot. Post-hoc analysis showed

significant evidence that certain pairings appeared more often for students than other

pairings. Due to the nature of the online platform used to distribute homework

questions to students, WebAssign, it was impossible to determine how or why this

may have occurred. Despite this strong evidence indicating that certain pairings were

more likely to be shown to students than others, there was no reason to believe this

ultimately had any effect on the results of the study (besides differing sample sizes).

Each pairing was given to at least 150 students in all cases, and after controlling for

other covariates, there was no evidence of a relationship between the rate at which
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students received a specific pairing and the likelihood that the given student gave a

correct response.

5.4 Future Directions

This section describes the future directions for this research. It begins with a path-

way for expanding the number of questions with a trained ensemble of machine

learning algorithms. It then discusses the further work necessary for better opti-

mization of the algorithms in order to categorize with improved efficacy.

5.4.1 Expanding the Study

This study gave a description of common misconceptions and their corresponding

prevalence held by students at a large research institution in the Southeastern United

States. In the future, it would be useful to carry out an identical study at other insti-

tutions to compare the results across multiple institutions, particularly institutions

from different geographical regions or institutions with different student demograph-

ics. A wider array of student responses would also augment the ensemble accuracy

by diversifying the training data. In particular, data from other institutions would

shed light on the generalizability of the work in this dissertation— if students from

other institutions use a similar vernacular as those at the institution used in this

study, then ensembles built from data gathered from this institution could be used

to make prediction about new responses from other institutions. This would imply

that data from a single, representative institution could be collected and used when

categorizing responses from any other institution. A quantification of any amount

of decrease in model efficacy should also be considered.
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5.4.2 Expanding the Questions

Many items in this study, both online and in-person questions, could be revised to

more clearly target and identify the presence of particular misconceptions. When

originally written, it was unclear how prevalent particular misconceptions would be

and how to best construct an item to identify if a particular student had or did not

have the target misconception. Certain questions, such as Task 5 and Item 8, were

revised multiple times after students struggled to understand what the histogram

in each question was displaying. Other questions—such as Task 3 or several of the

pairings from Item 6—proved particularly difficult for students to answer correctly.

Further investigation is required to determine exactly why these questions (among

others in this study) were significantly more difficult.

In addition to refining the current set of questions, one could expand the

scope of the items and tasks to cover a wider range of statistical topics. For example,

one could develop a series of questions about any particular statistical topic (say, the

Law of Large Numbers or the Central Limit Theorem). These questions could be

asked to students and their responses used as training data for all future responses to

this particular question. Then, instructors would have a larger database of trained

ensembles with which to categorize students’ responses across a variety of statistical

topics. This variety in question type would allow instructors to choose question

with a trained ensemble, ask the question to their students, and receive immediate

feedback about how their students are doing. In the future, it would be largely

advantageous to have a set of questions with trained ensembles for every introductory

statistics topic.
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5.4.3 Enhancing the Models

This study mainly utilized eight machine learning algorithms. There are, however,

other machine learning algorithms that could be used to make predictions in a sim-

ilar manner. At the onset of this study, Neural Networks were used to categorize

student responses. Although Neural Networks have a history of making accurate

classifications for complex data sets (Haykin, 1998), it became evident that Neu-

ral Networks required responses with more words than the observed in this study.

Responses in this study typically contained fewer words than was required for an

accurate neural network categorization. If future questions demanded responses of a

greater length (i.e., three or more sentences), machine algorithms such as neural net-

works could potentially be used to make classifications. Half of the machine learning

algorithms in this study are tree-based: Classification Trees, Bagging Classification

Tress, Boosting Decision Stumps, and Random Forests. Although the ensembles in

this study typically contained four non-tree-based algorithms, it would be advan-

tageous to try implementing a wider variety of algorithms, such as Naive Bayes or

Relevance Vector Machines, to reduce potential correlation between the models in

the ensemble.

With regard to ensemble classification accuracy, the use of a wider range

of algorithm vote-weighting mechanisms to improve accuracy could be investigated.

There was significant evidence that a simple, uniform vote-weighting scheme was

outperformed by nearly any other vote-weighting scheme. Across all items and

for all categories used in this study, at least one of the three other vote-weighting

schemes (probability-based, dynamic, and CV-based) outperformed simple uniform

vote-weighting. Each of these schemes was used on data from questions about statis-

tics. Thus, testing these vote-weighting schemes using responses to questions from

different disciplines would help strengthen this claim. In addition, alternate vote-
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weighting schemes could be tested to determine if there exist vote-weighting func-

tions that were more efficient than the ones used in this study. One such method

involves a regression-based approach. In this method, each individual algorithm is a

predictor variable in a cumulative logistic regression model that predicts the overall

classification. There also exist numerous dynamic ensemble vote-weighting functions

that were untested in this dissertation. Given the lack of an observed pattern re-

garding which combinations of vote-weighting schemes and rubric categories led to

higher model accuracy, these alternate vote-weighting schemes may ultimately yield

ensembles with higher precision and recall for certain data sets or when a particular

data cleaning scheme is used.
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7 Appendix

7.1 WebAssign Items

7.1.1 Item 1- Atlanta Income

Prompt- The histogram below shows the distribution of yearly income in dollars

for a random sample of 356 adults living in Atlanta, GA. Describe as completely

as possible the distribution shown in the histogram, being sure to explain what the

graph tells you about yearly income for adults in Atlanta.

Figure 7.1: Item 1- Atlanta Income
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7.1.2 Item 2- Test Score Variability Histogram V1

Prompt- The histograms below show the distribution of scores on a 10 item test

for two classes.

a. For which class, A or B, are the scores more variable (i.e. have the

higher standard deviation)?

A) Class A has more variable scores

B) Class B has more variable scores.

b. Explain how you know from the graphs that the scores in the class you chose are

more variable.

Figure 7.2: Item 2- Test Score Variability Histogram V1
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7.1.3 Item 3- Student Sleep V1

Prompt The histogram below shows the distribution of the number of hours a

random sample of 471 high school students in Georgia slept on the previous school

night.

Distribution Prompt- Describe as completely as possible the distribution

shown in the histogram.

Variable Prompt- Describe as completely as possible what the graph tells

you about the number of hours high school students in Georgia sleep on school

nights.

Both Prompt- Describe as completely as possible the distribution shown in

the histogram, being sure to explain what the graph tells you about the number

of hours high school students in Georgia sleep on school nights.

Figure 7.3: Item 3- Student Sleep V1
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7.1.4 Item 4-Test Score Variability Dot Plot V1

Prompt- The dot plots below show the distribution of scores on a 10 item test for

two classes.

a. For which class, A or B, are the scores more variable (i.e. have the

higher standard deviation)?

A) Class A has more variable scores

B) Class B has more variable scores.

b. Explain how you know from the graphs that the scores in the class you chose are

more variable.
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Figure 7.4: Item 4- Test Score Variability Dot Plot V1
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7.1.5 Item 5- Student Sleep V2

Prompt The histogram below shows the distribution of the number of hours a

random sample of 471 high school students in Georgia slept on the previous school

night. Describe the distribution of the number of hours high school students in

Georgia sleep, as shown in the histogram.

Figure 7.5: Item 5- Student Sleep V2
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7.1.6 Item 6- Test Score Variability Combination

Prompt- The dot plots (histograms) below show the distribution of scores on a 10

item test for two classes.

a. For which class, A or B, are the scores more variable (i.e. have the

higher standard deviation)?

A) Class A has more variable scores

B) Class B has more variable scores.

b. Explain how you know from the graphs that the scores in the class you chose are

more variable.
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Figure 7.6: Item 6- Test Score Variability Combination
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7.1.7 Item 7- Colored Test Score Variability Combination

Prompt- The dot plots (histograms) below show the distribution of scores on a

10 item test for two classes. Note that scores on each test have been classified as

Excellent, Good, or Poor.

a. For which class, A or B, are the scores more variable (i.e. have the

higher standard deviation)?

A) Class A has more variable scores

B) Class B has more variable scores.

b. Explain how you know from the graphs that the scores in the class you chose are

more variable.
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Figure 7.7: Item 7- Colored Test Score Variability Combination
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7.1.8 Item 8- Coffee Consumption

Prompt- The histogram below shows the distribution of the number of ounces of

coffee a random sample of 237 college students drank the previous day.

Describe the distribution of the number of ounces of coffee college students

drink as shown in the histogram.

Figure 7.8: Item 8- Coffee Consumption
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7.1.9 Item 9- Test Scores for Large-Test Histogram

Prompt- The histogram on the left shows the distribution of Class A’s test scores

for a mathematics test. The histogram on the right shows the distribution of Class

B’s test scores on the same test.

� Center Compare the centers of the distributions of test scores for Class A

(Left Histogram) and Class B (Right Histogram).

� Shape Compare the shapes of the distributions of test scores for Class A (Left

Histogram) and Class B (Right Histogram).

� Variability Compare the variability of the distributions of test scores for Class

A (Left Histogram) and Class B (Right Histogram).
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Figure 7.9: Item 9- Test Scores for Large-Test Histogram
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Figure 7.10: Pairings 1 through 6. Graphics are from Item 2 (histograms, left) and
Item 4 (dot plots, right).
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Figure 7.11: Pairings 7.1 through 9.1. Graphics are from Item 6.

Figure 7.12: Pairings 7.2 through 9.2. Graphics are from Item 7.
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7.2 Interview Tasks

This section details the final form of the 13 tasks that I used for the 19 interviews.

7.2.1 Task 1- Raw Data V1

Determine whether list A or list B contains data that are more variable

(i.e. have more variability), or if both lists have data that are approxi-

mately equally variable. Describe why one list is more variable than the

other or why they’re both approximately equally variable.

A) 1, 3, 5, 7, 9, 11, 13
B) 5, 6, 7, 8, 9, 10, 11

Figure 7.13: Task 1

7.2.2 Task 2- Raw Data V2

Determine whether list C or list D contains data that are more variable

(i.e. have more variability), or if both lists have data that are approxi-

mately equally variable. Describe why one list is more variable than the

other or why they’re both approximately equally variable.

C) 10, 10, 10, 20, 20, 20, 50, 50, 50
D) 16, 18, 20, 22, 24, 26, 28

Figure 7.14: Task 2
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7.2.3 Task 3- Raw Data V3

Determine whether list E or list F contains data that are more variable

(i.e. have more variability), or if both lists have data that are approxi-

mately equally variable. Describe why one list is more variable than the

other or why they’re both approximately equally variable.

E) 5, 12, 15, 21, 22, 23, 31, 36, 41
F) 1, 20, 21, 22, 23, 24, 25, 26, 45

Figure 7.15: Task 3
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7.2.4 Task 4- Water Histogram

The histogram shows the number of cups of water 100 randomly surveyed

respondents drink each day. Describe what the histogram tells you about

how much water the respondents drink per day.

Figure 7.16: Task 4
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7.2.5 Task 5- Coffee Histogram

The histogram below shows the number of ounces of coffee per day con-

sumed by a randomly selected sample of 250 UGA college students. De-

scribe what the histogram tells you about how much coffee UGA college

students drink.

Figure 7.17: Task 5
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7.2.6 Task 6- Exam Dot Plot

The dot plot below shows the exam scores for 58 students on a 10 question

test. Describe what the dot plot tells you about how well students in this

class did on the exam. (Interpret meaning of dot plot)

Figure 7.18: Task 6
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7.2.7 Task 7- TV Dot Plot

The dot plot below shows the number of hours of TV watched by a

randomly selected sample of UGA undergraduate students. Describe

what the dot plot tells you about how much TV UGA undergraduate

students watch.

Figure 7.19: Task 7
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7.2.8 Task 8- Colored Two Test Histogram

The two histograms below show test scores of two different classes on

the same test. Which of the two classes had test scores that were more

variable? How did you know they were more variable? Which class, A or

B, would you rather take a test in? (Space out questions and allow time

for full response to each)

Figure 7.20: Task 8
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7.2.9 Task 9- Blue Two Test Histogram

The two histograms below show test scores of two different classes on

the same test. Which of the two classes had test scores that were more

variable? How did you know they were more variable? Which class, A or

B, would you rather take a test in? (Space out questions and allow time

for full response to each)

Figure 7.21: Task 9
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7.2.10 Task 10- Olympics

The overlayed histograms below show Judges scores on a value event from

1960 and 2012. Describe what happened to judges scores between 1960

and 2012. (Filler question to determine how students with no exposure

to overlayed histograms might interpret its display.)

Figure 7.22: Task 10
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7.2.11 Task 11- Advertising Histograms

The two histograms show how much money advertising companies A and

B earned each of their many clients. Assuming they cost the same amount

to hire, which of these two companies would you rather hire to advertise

for your business? (Why?)

Figure 7.23: Task 11
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7.2.12 Task 12- Colored Two Test Dot Plot

The two dot plots below show test scores of two different classes on the

same test. Which of the two classes had test scores that were more

variable? How did you know they were more variable? Which class, A or

B, would you rather take a test in? (Space out questions and allow time

for full response to each)

Figure 7.24: Task 12
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7.2.13 Task 13- City/Country Route

A commuter records his travel time on two separate routes into Atlanta,

the Highway Route and the Back Road Route. The histograms show the

results of his trips. Just based on the data, which of these two routes

would you rather use to take to work? Assume you only had 25 minutes

to get to work and you could NOT be late. Which of these two routes

would you rather take?

Figure 7.25: Task 13
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Figure 7.26: Recruitment script for interviews
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Recruitment Script 

Dear STAT 2000 students: 

I am a graduate student under the direction of Dr. Jennifer J. Kaplan in the Department Statistics at The 

University of Georgia. I invite you to participate in a research study entitled “Undergraduate Student 

Understanding of Variability in Graphical Representations of Univariate Data”. The purpose of this study is to 

learn how undergraduate students answer questions about variability in various graphs such as histograms, dot 

plots, and bar charts. We obtained your contact information from your STAT 2000 course professor and/or 

computer lab teaching assistant.  

In order to be eligible for this research, you must both be: 

1) Currently enrolled in STAT 2000 at the University of Georgia and 

2) 18 years or older 

Your participation will involve being interviewed for up to 1 hour. Your involvement in the study is voluntary, 

and you may choose not to participate or to stop at any time without penalty or loss of benefits to which you are 

otherwise entitled. If you decide to withdraw from the study, the information that can be identified as yours will 

be kept as part of the study and may continue to be analyzed, unless you make a written request to remove, 

return, or destroy the information. There is no expected risk to you during this study; however your interview 

will be audio-recorded. The study may benefit you by allowing you to think more critically about the way you 

perceive variability in histograms, dot plots, and bar charts. Your participation in the study will help Statistics 

educators understand how students both correctly and incorrectly reason through statistical questions about 

variability in graphs, and which types of graphs make answering those questions easier or harder. 

You will receive an incentive of 20 dollars at the conclusion of your interview. 

If you are interested in participating in this study or have any questions about this research project, please feel 

free to call me at (678) 438-4375 or send an e-mail to ajlyford@uga.edu.   

Thank you for your consideration!   

Sincerely, 

Alex Lyford 
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Figure 7.27: Consent form for interviews

 
 
 

Page 1 of 1 
 

Consent Letter 

Dear STAT 2000 student: 

I am a graduate student in the Department of Statistics at The University of Georgia working under the direction 

of Dr. Jennifer J. Kaplan .  I invite you to participate in a research study entitled “Undergraduate Student 

Understanding of Variability in Graphical Representations of Univariate Data.”  The purpose of this study is to 

learn how undergraduate students answer questions about variability in various graphs such as histograms, dot 

plots, and bar charts. . 

We are asking you to take part in a research study for which you must be at least 18 years old to participate. If 

you are younger than 18, please let us know.  

Your participation will involve being interviewed for up to 1 hour. The interview will consist of several task-

based statistics questions. The interview will be audio-recorded and transcribed using a pseudonym. Your 

involvement throughout the study is voluntary, and you may choose not to participate or to stop at any time 

without penalty. If you decide to withdraw from the study, the information that can be identified as yours will 

be kept as part of the study and may continue to be analyzed, unless you make a written request to remove, 

return, or destroy the information. 

In order to maintain anonymity, you will be assigned a code and pseudonym. All publications about this project 

will use pseudonyms for the subjects. The assigned code will be generated from your name using a non-

reversible algorithm. All data collected from you will be stored using this code. The only person who will know 

whether you gave consent to have your data used for this project is the person to whom you are giving consent.  

There is no expected risk to you during this study, but your interview will be audio-recorded. In order to be used 

for the data analysis, the recordings will be later transcribed. I plan to keep the recordings for up to five years, 

and any written work and transcripts indefinitely. These data will be stored in a password-protected personal 

computer and on a portable hard drive.  

The study may benefit you by allowing you to think more critically about the way you perceive variability in 

histograms, dot plots, and bar charts. Your participation in the study will help Statistics educators understand 

how students both correctly and incorrectly reason through statistical questions about variability in graphs, and 

which types of graphs make answering those questions easier or harder. You will receive an incentive of 20 

dollars at the conclusion of your interview. 

If you have any questions about this research project, please feel free to call me at (678) 438-4375 or send an e-

mail to ajlyford@uga.edu. After I graduate in May 2017, please direct any questions or concerns to Dr. Jennifer 

J. Kaplan in the Department of Statistics (jkaplan@uga.edu). Questions or concerns about your rights as a 

research participant should be directed to The Chairperson, University of Georgia Institutional Review Board, 

609 Boyd GSRC, Athens, Georgia 30602; telephone (706) 542-3199; email address irb@uga.edu. 

Thank you for your consideration!  Please keep this letter for your records.   

Sincerely, 

Alex Lyford 
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7.3 Definitions

This section defines a number of natural language processing and machine learning

terms used frequently throughout this dissertation. More succinct definitions may

also be found in the instance where each term first appears in its corresponding

subsection. Some of these terms may have multiple meanings, but the definition

provided defines the interpretation to be used henceforth.

� Attribute— Any of the n-grams appearing in the document-term matrix.

Equivalent to feature.

� Classifier— A statistical algorithm which classifies an unlabeled student re-

sponse into one of potentially many mutually exclusive categories.

� Document— Any individual student response to a single item.

� Document-term matrix— An nxm matrix, M, where n represents the

number of documents, and m represents the total number of unique n-grams

used in any of the responses.

� Feature— Any of the n-grams appearing in the document-term matrix. Equiv-

alent to attribute.

� Feature Extraction— Conversion of features (n-grams) into a quantitative

measure of the number of instances of a given feature (Alpaydin, 2010).

� Machine learning algorithm— A class of statistical algorithms that can

learn from and make predictions about data.

� n-gram— A phrase of n contiguous words. These are used as predictor vari-

ables in the machine learning algorithms.
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� Precision— An algorithm evaluation metric. The proportion of documents

that a particular machine learning algorithm placed into a given category that

actually belong to that category.

� Recall— An algorithm evaluation metric. The proportion of documents that

truly belong to a given category that are correctly classified by a particular

machine learning algorithm to be in that category.

� Rubric— The document containing specific definitions and delineations for

each category. An analytic rubric contains multiple binary categories that are

not mutually exclusive (i.e. Did the student address Shape? Did the student

address Variability?). A holistic rubric contains one set of several, mutually

exclusive categories.
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