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ABSTRACT 

 Complex systems appear across numerous disciplines, and analyzing them can be 

difficult.  Standard analysis techniques fail to capture concepts such as emergent behavior, self-

organization, or the entanglement among related components within a system.  A better 

knowledge of complex systems could help avoid financial system collapse, predict terrorist 

network actions, and fight disease.   

One way to understand a complex system better is to leverage the information 

encapsulated within the higher order relationships of the system.  A complex system is a set of 

interconnected compartments, and it is these connections that give rise to the characteristics and 

complexity of the system.  These relationships define the structure of a network and the flow 

across them defines the function.  The structure and function of a system encodes valuable 

information about the system, information that can be hard to find due to the massive amount of 

information contained within a complex system.  In order to isolate important information, data 

analysis techniques must be implemented.  The field of data mining is perfectly suited for this 

task.  Data mining is a term used to describe a compilation of techniques including statistics, 

artificial intelligence, computational intelligence and database management used to discover and 

extract information in an automated fashion from large data sets.  Though not universal, many 



 

forms of data mining are restricted to numerical input.  This can be problematic when analyzing 

a system modeled as a graph, which is of a symbolic nature.  Another problem with complex 

system analysis is a disconnect between higher level system function and lower level 

compositional elements within the system.  The work herein proposes a methodology to solve 

these problems by presenting an encoding framework to map a complex system of connected 

symbols into a meaningful numeric feature space.  This methodology will allow numerous 

techniques from the field of data mining to be applied in transformative ways, creating new 

possibilities in the field of systems research. 
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CHAPTER 1 

INTRODUCTION 

 Complex systems appear across numerous disciplines, and analyzing such systems can be 

difficult.  Standard analysis techniques fail to capture or understand the intricacies of concepts 

such as emergent behavior, self-organization, or the entanglement among related components 

within a system.  Complex systems are used by numerous disciplines to model processes in the 

natural world, and a better knowledge of complex systems could help avoid financial system 

collapse, predict terrorist network actions, and fight disease.   

One way to understand a complex system better is to leverage the information 

encapsulated within the relationships of the system.  A complex system by definition is a set of 

interconnected compartments, and these connections give rise to the characteristics and 

complexity of the system.  These relationships define the structure of a network, and the flow 

across them defines the function.  The structure and function of a system holds valuable 

information about the system, encoded information that can be hard to obtain due to the massive 

amount of information contained within a complex system.  In order to isolate important 

information, research must implement a variety of data analysis.  The field of data mining seems 

perfectly suited for this task.   

Data mining is a term used to describe a compilation of techniques including statistics, 

artificial intelligence, computational intelligence and database management used for discovering 

and extracting information in an automated fashion from large data sets.  Many, though not all, 

forms of data mining are restricted to numerical input, and when analyzing graphs, which are 
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symbolic in nature, it can be difficult to use numeric analysis methods.  The work herein 

proposes a methodology to solve this problem, allowing numerous techniques from the field of 

data mining to be applied in transformative ways.  These transformations will present new 

possibilities in the field of systems research. 

This dissertation is intended to address complex systems analysis through contextual 

investigation of calculated nodal groupings within a system.  It is the idea herein that 

relationships uniquely define a system, and through these relationships a better understanding of 

complex systems can be attained.  To date, most research into complex systems deals with 

analysis of individual node, ignoring the contextual information about each node’s role in the 

system.  The extent of effect a particular node can have on a system is potentially far reaching.  

To completely define relationships for a node in a graph, one must look past direct connections 

through single edges, to the set of relational groupings that define a node’s indirect effects on the 

system.  It is through these indirect relational connections that distant nodes within a graph can 

have far-reaching effects on their relational counterparts.  This paradigm captures the entirety of 

the nodal context.   

Defining nodal context in this way poses a problem to systems analysis, as there is 

exponential growth in the number of total nodal groupings within a system.  Using techniques 

outlined herein this problem can be overcome to provide powerful analytic capabilities.  With 

increased contextual nuance, a more complete picture of the system can be established for 

analysis; however, the complexity involved in these systems presents massive amounts of data to 

analyze.  The current work uses a computational methodology to map a system into a numerical 

feature space so other machine learning and data mining techniques can be employed to perform 

analysis.  The fields of machine learning and computational intelligence have garnered much 
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attention recently due to their effectiveness in allowing a computer to learn concepts defined by 

data distributions.  Many techniques in these fields (i.e. Neural Networks, Self-Organizing 

Feature Maps, Fuzzy Logic and Support Vector Machines) rely on an algorithm’s ability to 

divide a numeric feature space into sections that define a certain concepts about a data 

distribution.  The numeric feature space computed by the methodology herein allows machine 

learning and computational intelligence to be used on systems analysis in ways not previously 

possible. 

Due to the fact that complex systems appear in numerous disciplines, the effect of this 

methodology is potentially far reaching.  If gains can be made in complex systems research, then 

any field where complex systems are present will benefit.  The field of social theory suggests an 

example:  Graphs of social interaction in this field represent complex systems, and better 

analysis techniques could yield increases in the ability to disrupt a network’s ability to transmit 

information, provide better event detection based on system behavior and allow for an increased 

ability to detect hierarchal rankings of importance within a system.  Another example can be 

taken from the field of bioinformatics:  With better systems analysis techniques it could be 

possible to better isolate non coding RNA regions within chromosomes, better understand 

genetic causes of diseases and heighten the ability to distinguish different types of protein 

folding structures from DNA sequences.  As a final example, the field of economics could 

greatly benefit from an increased understanding of complex systems, thus yielding better 

financial system vulnerability assessment, higher accuracy market predictions and more in depth 

market impact studies.   

When complex systems present themselves in any field, it is common for researchers in 

that area to model the system.  The proposed methodology performs computational techniques 
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on data simulated over models to present important information not attainable otherwise.  The 

ubiquity of complex systems combined with generalized analysis techniques poses novel, high 

impact results.  

The specific objectives of the current work will be to author computational tools to 

perform the following tasks: 

 

1. Isolate relational groupings within a system (i.e. structurally decompose a 

complex system into a set of fundamental relationships) 

2. Analyze functional activity of relational groupings within a system using 

quantifiable, numeric metrics 

3. Leverage information contained in functional analysis towards data mining and 

knowledge extraction 

 

Accomplishing these objectives will require a broad tool set from computational and 

mathematical fields.  As this work suggests a new approach to complex systems analysis, formal 

definitions of new concepts will need to be ascertained en route to achieving the proposed 

objectives.  In addition to addressing these objectives, this work will delve into application of the 

resulting methodologies in order to demonstrate their effectiveness. 

Overview 

There is currently a disconnect in the field of systems analysis between high order system 

behavior/traits and the lower level compositional elements of the system.  It is known that 

systems exude behaviors and traits.  It is also known that systems are comprised of smaller 

compositional elements.  The massive amount of information in complex systems makes it 

difficult to analyze how compositional elements drive or encode these higher level functions  
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Figure 1: This figure shows basic compositional units of a system contributing to higher 

level system behavior/traits. 

 

 

(Figure 1).  This work seeks to bridge this gap by providing a means of quantifying how each of 

these compositional elements within a system contributes towards higher order function.   

The first objective of this work, as stated earlier, is to isolate fundamental structural units 

within a graph.  These structural units are the compositional elements contributing to higher level 

system function.  Figure 2 shows a simple example network that will be used to illustrate the 

process of structural decomposition. 

This simple network of three nodes will be used as an example network to illustrate the 

structural and functional decomposition objectives of this work.  Structural decomposition is 

performed first and is the process of finding all the basic compositional elements in the system.  

This will be explained in detail later, but the general concept is to find all the simple cycles in the  
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Figure 2: Example system. 

 

graph.  This work introduces a new domain-generic term for these simple cycle/compositional 

elements.  They are referred to herein as fluxes.  This example graph has inputs and outputs that 

are grouped together as going to and coming from an “environment” (a separate node/system).  

For the purposes of decomposition the environment is just another compartment in the adjacency 

matrix.  It will be noted later that from a domain standpoint the environment can take on special 

meaning during the analysis of the coefficient vector produced by this methodology.  A 

structural decomposition of the example network is shown in Figure 3. 

The structural fluxes present a group of compositional elements whose activity can be 

analyzed in relation to high level system traits.  The activity analyzed is how much flow from the 

system can be attributed solely to each compositional element.  This is referred to herein as 

functional decomposition.  A current method for accomplishing this functional decomposition is 

to repeatedly find an edge in the system with the least flow in the graph and remove a cycle 

containing that edge.  That methodology works for this simple example and produces the 
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Flux 1 Flux 2 Flux 3 

 

  
 

Figure 3: All fluxes in the example system from Figure 2. 

 

functional decomposition shown in Figure 4 and Figure 5.  The functional decomposition here 

would find the edge with the least flow A  C (1.2) and remove the cycle it belongs to, Flux 1.  

The smallest edge left after that would be B  Environment (1.3); it belongs to Flux 2.  Finally, 

the only flux left in the system is Flux 3.  Every time a minimum edge is found in this example 

the coefficient assigned to the removed flux containing that edge is the total flow for that edge. 

 

Flux 1 Flux 2 Flux 3 

1.2 1.3 2 
 

Figure 4: This figure illustrates a functional decomposition in vector format.  The vector 

contains an index for each of the structural fluxes in the system.  The value at each of the 

indexes represents the amount of system flow belonging solely to each of the fluxes. 
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Figure 5: This figure illustrates a functional decomposition pictorially using fluxes.  The 

flux coefficients can be distributed over the edges in their respective flux and then summed 

to recompose the original network. 

 

As systems grow more complex, problems with this methodology arise.  The 

methodology can still produce a valid functional decomposition, but the coefficient values for 

each of the fluxes become arbitrary.  To illustrate this problem a new, slightly more complex 

system is introduced.  This system is illustrated in Figure 6. 

 

 

Figure 6: Second example system. 
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In this more complex example the edge with the least amount of flow is the edge between 

compartments A and C.  This edge can be removed, but since it is included in two different 

cycles, a choice must be made about which cycle to remove first, as well as how much of that 

edge to remove with the cycle.  Figure 7 shows that when removing the first cycle (the choice is 

arbitrary) any amount of flow greater than or equal to 0 and less than or equal to 2.5 can be 

removed with it.  The second cycle would get a coefficient equal to the remaining flow left on 

that edge.  The arbitrary nature of this process makes the coefficient vector produced less 

meaningful and undesirable for use in machine learning or data mining computation because no 

justification can be given to the order of cycle extraction or the amount of flow extracted.   

 

 

 

Figure 7: In the currently available methodology either of these two fluxes can be the first 

flux removed for functionally decomposing a system.  The first flux removed would have a 

coefficient greater than or equal to 0 and less than or equal to 2.5. 

 

 

The new methodology proposed by this work seeks to solve the arbitrary nature of the 

results produced by the process outlined above.  The methodology proposed herein will simulate 

pathway data through a system and analyze that data to see how often fluxes are occurring in the 

simulated data.  A pathway through a system is constructed by a certain combination of fluxes, 

and any pathway through the system can be parsed to reveal the fluxes which comprise it.  There 
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is a probability for each flux to occur based on the inherent flow values in the system; for 

instance, if some agent is traversing a pathway through the system presented in Figure 5 and is at 

compartment B, it has a %53 chance of going to the environment (thus exiting the system, as the 

environment is a starting and terminal compartment for pathways) and a %47 chance of 

continuing on to compartment C.  The choice at that step in the pathway determines which 

combinations of fluxes can be used to parse the pathway.  The methodology proposed in this 

work analyzes large amounts of simulated pathways to leverage this probability throughout the 

system when calculating the coefficients produced in the functional decomposition.  This 

strategy overcomes the arbitrary nature of calculating these coefficients and gives the functional 

decomposition meaning defined by the pathway traversal probability embedded within the nodes 

of the system.  This probability mesh gives determines the values for the resulting functional 

decomposition vector, allowing it to be used for powerful data mining and knowledge extraction.  

The coefficient vector produced herein is a special point in the solution space of coefficient 

vectors and is not defined by the order of cycles removed or the quantity of flow arbitrarily 

chosen at a certain step.  The methodology presented in this work lays out an algorithm that can 

compute this same meaningful point each time the algorithm is applied.  Since the point has 

intrinsic meaning, it can be used powerfully in comparative analytics.   

The ability to find the meaningful point outlined above, as opposed to an arbitrary point, 

is at the core of the originality in the work herein.  With this newly created methodology, 

powerful machine learning can be accomplished for data mining and knowledge extraction 

towards complex systems. 
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Figure 8: A high level diagram of how a system can be broken into compositional elements; 

subsets of those elements can then express certain property values at higher level system 

traits. 
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System DNA 

The novelty of this work can be seen in the following analysis of the methodologies 

formulated herein.  These methodologies present a framework that can be used to understand 

which low level compositional elements within a system encode information relating to higher 

level system traits.  This kind of encoding framework is reminiscent of what genetics does for 

biological systems.  In biological systems, nucleotides are basic components that get grouped 

together into codons, and these codons then appear together in groups to form genes.  The values 

within these genes encode higher level traits like height, eye color, health conditions, etc.  The 

analysis framework presented here also includes three levels of hierarchical groupings for 

compositional elements within complex systems.  The base layer presented is compartments, 

similar to nucleotides from genetics.  The secondary layer, similar to codons, consists of 

groupings of compartments called fluxes (simple cycles within a system graph).  Finally, flux 

groupings within a system encode information relating to system traits like seasonality (fall, 

winter, spring and summer).  These grouping of fluxes will be used as features in a machine 

learning methodology to see which groupings optimally classify system trait values for presented 

data sets.  When seen in this light, groupings of fluxes become comparable to genes in biological 

systems.  The ability to trace high level system traits back through these compositional layers to 

the building blocks of the system is powerful and only possible to date using the methodologies 

described herein. 
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CHAPTER 2 

LITERATURE REVIEW 

Due to the inherent nature of graphs to model problems, graph theory is a well-

established field that spans many disciplines.  Examples of the wide variety of problems 

incorporating graphs include facial recognition [5], Boolean function manipulation [4] and time 

series analysis [6].  Data mining is a younger field that has recently evolved into a well-

established discipline [7, 8, 9, 10].  Together, these fields comprise a framework that can be used 

to model and analyze complex systems.   

    A system is a network of fully connected, interrelated components in which each 

component is related to every other component, either directly or indirectly [14].  In a complex 

system a network of components interacts nonlinearly, giving rise to emergent behavior [3].  

Complex systems are effectively modeled as graphs.  The analysis of complex systems can take 

on many forms finding a basis in fields such as fuzzy logic, graph theory, mathematics, nonlinear 

dynamics, etc. [1, 2].  Complex systems prove quite challenging to understand.  Certain complex 

systems, e.g. food webs or power grids, are simply beyond current mathematical analysis, and to 

make progress with these systems one must suppress certain system properties in order to study 

other properties [2].  Machine learning, computational intelligence, genetic algorithms, etc. all 

present ways of dealing with complex, nonlinear problems having high dimensional feature 

spaces that lie outside the realm of computable mathematics [11, 12].  All these techniques are 

included within the more general field of data mining, a field that seems optimally poised to 

perform analytics on complex systems.   
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    This section provides general insight into the current state of complex systems and data 

mining, then illustrates how complex system analytics can benefit from data mining.  The section 

will be structured into two major parts relating to the aforementioned purposes. 

An Overview of Complex Systems 

The concept of systems has a rich history.  The systems concept can be traced back at 

least to the 18th century [15], but sometime in the last century this concept became clearer and a 

generalized field of study emerged.  Another author’s paraphrased description [15] of the path by 

which the field came to be is that it was a clumsy, stumbling process that eventually came to 

fruition and now permeates the very nature of generalized science.   

When discussing systems one encounters a multitude of other scientific disciplines such 

as physics, sociology, chemistry, biology, computer science, etc.  This saturation across 

specialized disciplines is due to the power of systems theory to provide scientific interpretation 

and theory where none previously existed and with great generality [15].  This increased 

generality (higher level of abstraction) from specialized sciences defines the interdisciplinary 

nature of systems theory.  Bertalanffy, in his General Systems Theory [15], proposed this 

statement as to the purpose of systems theory: 

“Science has tried to explain observable phenomena by reducing them to an interplay of 

elementary units investigable independently of each other, conceptions appear in contemporary 

science that are concerned with what is somewhat vaguely termed wholeness, i.e. problems of 

organization, phenomena not resolvable into local events, dynamic interaction manifest in the 

difference of behavior of parts when isolated or in a higher configuration, etc.; in short systems 

of their respective parts in isolation.” 
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In science, it is thus natural to isolate variables as far as possible, perform measurement 

and then interpret results.  This process misses out on general properties of those variables that 

emerge only when all variables are studied as a whole, interconnected system.  In order to fulfill 

its goals, systems  research borrows from many different disciplines such as classical 

mathematics, computerization and simulation, compartment theory, set theory, graph theory, net 

theory, cybernetics, information theory, game theory, decision theory, and queuing theory [15, 

16, 17]. 

The term “system” can take on different meaning, depending on the field of study under 

discussion.  In linear systems theory, a system is something that takes input and produces outputs 

[18].  In biology a system is a group of components concerned with the same function (i.e. 

nervous system, digestive system) [19].  In ecology a system is a grouping of physical and 

biological components of an environment [34].  An overall description of a system is a grouping 

of interdependent, interconnected elements [19].   

Bertalanffy [15] described two distinct types of systems, open systems and closed 

systems.  Closed systems are isolated from their environment.  Theoretically, they are allowed no 

interaction with their environment, but in actuality there are no completely closed systems, only 

ones that have varying degrees of interaction with their environment.  Open systems, by contrast, 

interact freely with their environment.  Bertalanffy [15] stated that certain systems by their very 

definition are open systems, for example living organisms.  In order to survive, a living organism 

must interact with its environment for a number of reasons, one of which is to intake food.  In 

closed systems physical chemistry can quantify reaction rates, dispersion, and the 

thermodynamic equilibrium eventually reached; in contrast, open, living systems never maintain 

equilibrium.  Bertalanffy suggested these systems do reach a steady state, but this differs from 
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equilibrium.  The term equilibrium is used in different fields, in statistical mechanics [20] an 

equilibrium state is defined as an average over all states in phase space consistent with the laws 

of conservation.  Generally equilibrium defines a point at which competing influences have 

reached a balance point; as an example, if hot and cold water are mixed together in a glass, 

thermal equilibrium would be reached when all water in the glass reaches the same temperature 

(i.e. the hot and cold water no longer influence each other and reach the same temperature).   

Entropy is a concept closely associated with equilibrium.  Entropy is defined in statistical 

mechanics [20] as the gravitation of a distribution of atoms and molecules toward their most 

probable state.  Entropy is sometimes viewed as a measure of disorder [17].  The result of 

entropy acting on a glass of water containing a divider keeping water dyed yellow on the right 

and water died blue on the left can be seen when the divider is removed.  Once the divider is 

removed, there is no longer a barrier counteracting the external forces of energy acting on the 

glass, i.e. the earth's rotation, vibration, etc.  Without this barrier the water molecules arrange 

themselves in the most probable configuration given the external forces acting on them, which is 

not to keep yellow on the right and blue left.  The most probable configuration would be for the 

molecules to arrange themselves into a mixture of blue and yellow molecules that would 

optically represent a more greenish tone.  This example illustrates a group of molecules 

containing more order (separated by color) but in an extremely improbable state arranging 

themselves with less order into a state of higher probability (an even distribution of yellow and 

blue molecules throughout the glass).  The initial state of the molecules in this example displays 

less entropy and more order, and the equilibrium state displays more entropy and less order.  

This pull of entropy toward equilibrium gives entropy the label "the arrow of time".   
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Any system can be defined in terms of state variables, i.e. a set of quantifiable properties.  

Each different combination of state variables defines a system state.  In a system at steady state 

these state variables can remain both outside of equilibrium and constant, despite the pull of 

entropy.  For steady state to be maintained there must be some flow through a system.  

Bertalanffy [15] suggested the explanation for this apparent violation of entropy is the expanded 

entropy function of Prigogine.  Bertalanffy stated that in a closed system entropy must increase 

according to the Clausius equation: 

 

 

Formula 1 

 

 

He stated that in an open system entropy can be offset by input into the system, and thus 

the formula for entropy in an open system is Prigogine's [21]:   

 

 

Formula 2 
 

 

Formula 2 describes the entropy of an open system as the sum of both imported entropy 

( ) and the production of entropy due to internal work by the system ( ).  According to the 

second law of thermodynamics  must be positive.  Open systems maintain their ability to 

resist equilibrium due to , which can be viewed as entropy transport.  The term  can be 

positive or negative by importing matter with free energy (i.e. negative entropy). 
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If an open system reaches steady state it is independent of the initial state of the system or 

any perturbations along the path to steady state.  In open systems steady state is reached and 

defined by the parameters of the system (i.e. rate of reaction and transport) [15].  This 

convergence principle is called equifinality.  This differs greatly from convergence in a closed 

system where a final state and system inputs are concretely associated with one another. 

Complexity within Systems 

Because there is no agreed upon theory of complexity, distinguishing a system as 

complex is based more on intuition than definable characteristics [17].  In the absence of a 

generalized theory, one can only describe properties and traits that are generally present when a 

system is complex.  A complex system is typically comprised of building blocks (i.e. atoms, 

molecules, cells, or agents), which can be complex systems themselves, giving rise to 

hierarchical levels of interaction.  These complex systems interact with each other to exude 

actions, traits, behaviors, and organization not observable from studying the building blocks in 

isolation [19]. Complex systems generally contain many agents, and there are usually simple 

rules governing interaction amongst the agents.  Typically, there is iteration over these rules 

leading to the distinguishable observations at a macroscopic level [17]. Complex systems behave 

non-linearly, and discovering the rules of interaction within any given system is difficult.  An 

example of the complexity that can be derived from a simple set of governing rules can be easily 

seen in graphics produced from L-systems.  An L-system is a type of formal grammar in the 

Chomsky hierarchy.  Formal grammars are used to describe formal languages (sets of literal 

tokens and production rules governing their transformations).  The literal tokens are agents in the 

system following interaction rules defined by the grammar, and in a graphic produced by an L-
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system the grammar structure determines the composition of the image.  An example of a simple 

grammar used to describe a language can be seen in Figure 9. 

In Figure 9 a formal language is described that can generate the string 000#111.  The 

capital letters A and B are variables in the grammar that can be replaced by elements on the right 

side of their respective production rules (i.e., A can be replaced with 0A1 or with B, and B can  

 

 
 

 
 

Figure 9: Example courtesy of Sipser [24]. 

 

 

be replaced with #).  Figure 9 shows the derivation of the string 000#111 given the starting 

symbol of A.  An L-system is formally described [23] as an ordered triplet G = <V, x, P> where  

V is the alphabet of the system (containing variables and constants), x is the starting symbol and 

P is the set of production rules governing transition in the system.  L-systems were applied to 

picture generation in 1984 when Aono and Kunii [25], and Smith [26] used them to create 

realistic pictures of plants.  Pictures are created with L-system using turtle graphics.  In turtle 

graphics the turtle is an agent on a plane that has a location and orientation.  The turtle can be 

moved an indeterminate number of spaces along its orientation, and it can draw a line between 

its current location and the location it is moving towards (the turtle can also be moved without 

drawing a line).  Given a specified starting state, an L-system can be used to encode a series of 

actions that can be iteratively applied to a two dimensional plane to produce an image.  The 

system starts at some initial seed state and is iteratively expanded via the production rules from 
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the grammar a certain number of times.  This final string is then used to command the turtle.  An 

example of a basic implementation of L-systems graphics can be seen in Figure 10. 

 

 

Alphabet  

F   Move forward by X amount    

+  Turn left by turning angle  

-  Turn right by turning angle   

[  Save state to stack   

]  Pop state from the stack  

|  Move forward by step amount  

angle  8  

X   100  

step   0.5  

Grammar  
F -> |[5+F][7-F]-|[4+F][6-F]-|[3+F][5-F]-|F   

* numbers in front of + and - signs indicate the number of times the sign is repeated 

 

Start State  
F   

Figure 10: This illustration of a fern leaf can be made with an L-system using the 

parameters defined in the example. Image and example courtesy of James 

Mathews' software, L-Systems Explorer http://www.generation5.org/content/2002/lse.asp.  

http://www.generation5.org/content/2002/lse.asp
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In Figure 10 one production rule and an alphabet of only six literals produce an image 

that is close enough to its real world counterpart to be recognizable.  L-system based picture 

generation becomes even better at reconstructing real world objects as rendering techniques get 

more advanced.  Figure 11 and Figure 12 are examples of L-system approaches that use more 

sophisticated rendering systems.   

 

 

Figure 11: Image produced using an L-system based approach by Anastacio et al. [27]. 

 

 
 

Figure 12: Image produced using L-system techniques by McCormack [28]. 
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These illustrations poignantly convey two important aspects of complex systems:  

 

1.  Complexity can be obtained through relatively simple rules of interaction 

governing a network of individual agents (grammar tokens in this case).    

2.  When studying a system at its most primitive level (in this case an 

alphabet, grammar and start state) it is difficult to see the system's general 

purpose.   

 

Self-organization is a term central to the study of complex systems, and can be roughly 

(though not exhaustively) subdivided into four overlapping topics [17]: 

 

• inherent computation  

• non-linear and non-equilibrium processes  

• emergence  

• evolution 

 

Inherent computation is the idea that interaction systems are governed by a finite set of 

rules, as seen previously in the L-system examples.  Embedded in this concept is the notion that 

complex and ordered global patterns can develop as the result of local adherence to these fixed 

rules of interaction.  This notion of interaction within a system is notable because it does away 

with a central processing unit.  Instead of one entity being responsible for controlling the 

development and behavior of a system, every agent is responsible.  Each agent locally obeys a 

finite rule set, thus creating mass parallelism in the computational work done in the system.   
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Non-linear and non-equilibrium processes are the general non-linear behaviors of a 

complex system which give rise to conditions within the system that reinforce irregularities into 

large scale patterns promoting decreases in entropy [17].  This topic is outlined by Ilya Prigogine 

[21, 29, 30], and deals with a system’s ability to sustain non-equilibrium states (i.e. decreasing 

entropy) which put the system into unstable states where uniformity is dampened and new order 

is created. 

Emergence is the idea that patterns (order) can develop within systems.  Boolean 

networks are a good illustration of emergent behavior.  A Boolean network is a group of 

interconnected Boolean variables, each of whose state is determined by function mapping from 

other variables in the network.  The initial values for each of the nodes in the network can be 

randomly assigned, and then the iterations over the network are performed such that for each 

Boolean node x in the network there is a fixed set of nodes  whose 

combined state is mapped through a function F(V) to determine the value of x at time interval t + 

1.  The value at the current time interval is used for each node in the network, xt, to determine the 

values for the next interval such that xt+1 = F(Vt).  Bossomaier [17] explained that, since there 

are a finite number of possible states, any Boolean network must fall into a fixed cycle of states 

called a limit cycle.  Since the network is deterministic, this limit cycle will always be reached, 

and it will repeat itself.  This pattern of network states is an example of emergent order from a 

system.  

Evolution within complex systems is the idea that systems can change over time to adapt 

to environmental influences.  In biology this term is used to account for the development of 

varying species, but that usage is only one instance of the more general concept that systems can 

change.  Connectivity illustrated in a directed graph is a representation of interaction between 
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elements within a system and illustrates the concept of evolution within systems.  Bossomaier 

[17] explained two key concepts in this regard:  First, he posited a theorem that matrix models 

(i.e. linear systems and Markov processes), dynamical systems (i.e. differential equations), 

cellular automata, semi groups, and ordered sets are all isomorphic to directed graphs.  Second, 

he stated another theorem that in an array of automata, the state space forms a directed graph.  

According to Bossomaier these two theorems show that the properties of directed graphs are 

inherent in both the structure and behavior of all complex systems.   

If directed graphs are inherently at the heart of complex systems certain properties of 

directed graphs become intriguing, one of which is the changes in connectivity of randomly 

created directed graphs.  Green and Bossomaier [17, 31, 32] mentioned that when directed 

graphs are randomly generated there comes a point at which adding more edges drastically 

increases the connectivity within the graph.  This point is sometimes called the double jump 

point.  Such phase change is sometimes called the edge of chaos, as systems near this point 

exhibit increasing signs of chaotic behavior.  It is thought that from an evolutionary perspective 

this increase in the chaotic nature of a system strengthens the system’s ability to adapt, thus 

giving it a selective advantage [17]. 

An Overview of Data Mining 

Humans have analyzed data for a long time.  Bayes' theorem traces back to the 1700s, 

and is currently a fundamental concept behind certain forms of data mining [38, 39, 40].  With 

the advent of digital computers, the amount data, and speed with which it can be analyzed, 

drastically increased.  This created a need for new forms of data mining.  Data mining, defined 

herein as generally as possible, is nontrivial extraction of implicit, previously unknown and 

potentially useful information from data [35, 41, 42].  The work herein concerns knowledge 
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discovery for propagation of useful information to form a more complete understanding about 

the behavior of an entity.  

Given the large amount of digital data present in the world today, data mining can 

produce a flood of information with varying degrees of usefulness.  Knowledge discovery is 

concerned with finding interesting, useful patterns in data [7, 35] and making them 

understandable to humans.  Mitra [41] stated that knowledge discovery is the process of turning 

low-level data into high-level knowledge.  He stated that data are a set of facts F, and a pattern is 

an expression E in a language L describing the facts in a subset FE of F.  He called E a pattern if 

it is simpler than the enumeration of all facts in FE.  He stated that pattern validity is measured 

by a function C mapping expressions from L into a partially ordered measure space MC.  He also 

introduced functions for mapping the usefulness (U), novelty (N), and understandability (S) of an 

expression into numeric feature spaces.  He then introduced one more measure called 

Interestingness, I = (E, F, C, N, U, S).  I is subject to some user defined threshold to proliferate 

only interesting patterns to the user.  From here Mitra made the intriguing point that a measure of 

interestingness can be designed using two different approaches, objective and subjective.  The 

objective approach has the benefit of generality and applicability across any pattern in any 

knowledge discovery process, but this approach may fail to capture certain patterns that can only 

be found using contextual clues from the particular domain being explored.  Subjective 

approaches employ user-defined context to find patterns that objective criteria may miss.   

Behavior mining is a new concept introduced by Chen [36].  Chen posited the idea that 

data is a simplified way of abstracting the behavior of some entity, and that data sets don't simply 

contain numbers and tokens, but an underlying behavior.  Data stored in relationally formatted 

tables can help in understanding the underlying behavior of an entity, but this simplistic form of 
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data can be limited.  As an example take a data record consisting of the metadata from a file on a 

computer.  Data such as the author, file size, data modified, or title, ignores the meaning 

embedded in the actual text of the file.  The text of the file contains more knowledge and is 

richer in information; however it is also more complex and thus harder to mine with 

computational methodologies.  Much progress has been made towards the processing of complex 

data forms such as sounds files, images, and text [43, 44, 45] which allows data mining to 

explore rich fields of information, paying closer attention to the semantics buried within these 

complex data forms. Without respecting the semantics of the information being processed, the 

scope of information that can be mined becomes limited.  It is in the semantics of these complex 

data forms that the true behavior of the underlying entity is described [36].  

The discovery of knowledge alluding to the underlying behavior represented by data is a 

goal that machine learning, evolutionary computation, and computational intelligence have 

progressed to fulfill.  While not exhaustive the following sections will cover some of the existing 

algorithms in these fields.  There is overlap between these fields so algorithms that could be 

placed in multiple fields will be placed in the field with which they most correspond. 

Machine Learning 

According to Mitchell [11] machine learning is a broad field in computer science that 

attempts to create algorithms that learn by experience.  Inductive learning does not fit into some 

people’s definition of acceptable computer science, but its effectiveness at solving a wide variety 

of problems that standard numerical procedures cannot solve is indisputable.  Machine learning 

algorithms attempt to learn a concept from a distribution of training data.  There are two general 

types of machine learning, supervised and unsupervised.  In supervised learning the learner is 

given examples and told what class of data the example represents. In unsupervised learning the 
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data instances are presented to the learner without this classification knowledge.  Machine 

learning techniques are applied to data mining in a variety of ways, including automated 

classification systems, pattern recognition, and rule discovery. 

Support Vector Machines (SVM) are a type of supervised learner, and they have recently 

garnered much attention in the machine learning community for their ability to work with high 

dimensional, nonlinear data.  The strength of the SVM’s is in their ability to divide a feature 

space into classification regions using a maximum marginal hyperplane (MMHP).  A MMHP is 

a plane that divides a feature space so that the plane is equally distant from both classification 

boundaries.  Such a division gives the hyperplane the maximum distance from both classification 

instances, thus allowing the SVM to generalize optimally given the supplied training data 

distribution.  Research done by Muller et al. [46] applied SVM’s to forecasting time series data, 

and the SVM’s outperformed existing methods significantly (in some instances improving on the 

best known methods by a measure of 29%).  Research by Burges [47] applied SVM’s to 

generalized pattern recognition.  The SVM learners are useful because their classification and 

function approximation capabilities make them versatile.  Additionally, they have been known to 

outperform other learners on a variety of problems due to their superior ability to generalize and 

deal with higher dimensionality [51, 52, 53].     

Neural networks are a type of machine learning algorithm inspired in part by the neuronal 

network of the brain.  They are adept at learning real valued, discrete valued and vector valued 

functions from examples [11].  These networks usually contain a grouping of interconnected 

nodes that take one or more inputs, aggregate the input values and then pass an output response 

to another node in the network.  They are trained as supervised learners using some kind of 

training algorithm, e.g., back propagation using gradient descent, to fit a distribution of training 
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data.  The architecture in a neural network is dependent on both the semantics and classification 

of the problem it is being applied to; for example, recurrent neural networks are commonly used 

in time series learning architectures.  These types of networks are typically back propagation 

networks that use additional first layer input nodes in their architecture.  These additional inputs 

are values that have been saved from the previous run of the network and act as context for the 

current set of values.  Typically, the values from the hidden nodes or the output nodes in a 

network are the values that are saved and sent through these additional input nodes.   

Typical recurrent network structures are the Jordan and Elman architectures.  In the 

Elman architecture the values from the last iteration of the hidden nodes are sent through the 

network as inputs.  Research by Cai et al. [50] used Elman networks for time series prediction, 

and the researchers obtained a high degree of accuracy.  In a Jordan network, the values from the 

output layer are fed as inputs into the network.  Jordan and Elman networks work well for 

forecasting time series data because they exploit the inherent relationship between sequential 

time series data instances in order to provide a context to the activity of the time series.  This 

context gives extra insight, thus enabling a more accurate forecast.  

Self-Organizing Maps (SOM) are a type of neural network that perform unsupervised 

clustering of data distributions [48].  Tak-chung Fu et al. [49] used the SOM architecture to find 

recurring patterns within stock market time series data.  The typical network architecture for an 

SOM is either a one or two dimensional array of output nodes which are used as centroids for 

clustering.  Training an SOM involves initializing each of the nodes in the output node structure 

with random weights.  These nodes, which could more accurately be described as centroids, are 

thus placed randomly throughout the feature space.  As input vectors are sent into the SOM for 

training, the vector belongs to the centroid closest to the vector.  This centroid is relocated 
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slightly closer to the vector in the feature space using a learning parameter (alpha).  In addition to 

the winning centroid, a neighborhood of centroids around the winning centroid in the two-

dimensional output node structure are relocated, to a lesser degree, towards the training instance 

vector.  Multiple incrementations of this process are run until a stopping criterion is met.   

A useful feature of SOM’s is that they are able to reduce the dimensionality of 

classification problems while maintaining the topological structure of the feature space.  A 

typical example used to describe the topological preservation tendencies of an SOM is to apply it 

to the relatively easy problem of classifying colors in an RGB color space.  The feature space for 

this problem has three dimensions, but a typical SOM for this problem would have a two 

dimensional output node structure.  After training the SOM, the centroids in the output array 

would assume color values that are similar to their neighbors (i.e. shades of red would be located 

near each other and they would also be located near shades of orange).   

SOM’s are useful in data mining because they allow users to explore and analyze data 

when specific classifications and structure are not known.  Research mentioned above, by Tak-

chung Fu et al. [49], applied SOM’s to time series analysis by using them to search for recurring 

patterns in time series without prior knowledge of the pattern being sought. 

Evolutionary Computation 

According to Eberhart and Shi [12] the two main areas of application for evolutionary 

computation are optimization and classification.  These strategies are highly effective for solving 

combinatorial optimization problems.  Typically they involve a population of individuals that are 

moved throughout a search space in a random but controlled manner.  The population of 

individuals represents potential answers to a problem, and they are assessed some fitness value 

that corresponds to the strength of their solution.  The schemes for moving populations around 
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the search space vary, and this gives each strategy certain strengths and weaknesses for solving 

different problems.  There is not one best evolutionary algorithm which is used for all problems 

because the search spaces for individual problems can present qualities that are better suited for 

certain strategies.  Interestingly, this family of algorithms is heavily inspired by nature, and 

evolution and swarm intelligence provide two examples.  A survey paper compiled by Freitas 

[54] outlined how this family of algorithms is commonly used in data mining for problems such 

as classification, feature selection, feature generation, and clustering. 

The ability to evolve is a biological tool that promotes survival and ways for organisms to 

adapt to an ever-changing environment.  Holland [55] described evolution as a powerful problem 

solving mechanism that should be harnessed for use rather than just envied.  The Genetic 

Algorithm (GA) is modeled after this evolutionary process, encompassing survival of the fittest 

and natural selection through the use of selection, crossover, and mutation operators.  Holland 

[55] presented an explanation of how the GA samples a search space, building schemas 

(combinations of alleles) that increasingly get closer to the global maximum as iterations of the 

search process are run through the schema theorem.  He mentioned in this theorem that schemas 

with bad fitness should decrease but schemas with good fitness should increase exponentially.  

The Schema Theorem is formally defined as follows: 

 

 

Formula 3: Schema Theorem 
 

GA’s can be used for data mining in different ways.  One area in which they are used 

substantially is classification.  Classifier systems evolve sets of rules that classify data instances.  
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The ultimate goal of these systems is to discover the best set of rules to classify data.  GA’s are 

also frequently used for feature selection which can be an important part of the data mining 

process.  Typically, data mining algorithms compute features from data that allow the algorithms 

to make inferences about data instances.  The common problem with this methodology is 

knowing which combination of features best represents the ultimate purpose of the algorithm.  

Due to their ability to search for globally optimal solutions, GA’s present an effective way to 

optimize the set of features used in the data mining process.  Finally, an interesting use of GA’s 

for data mining on time series data is presented in research by Povinelli [56].  In his work he 

represented a feature space as an augmented phase space and then used a GA to optimally cluster 

the set of time series points in the augmented phase space.  This algorithm clustered the time 

series points into groups that represented general events in the time series data. 

Genetic Programming (GP) is an interesting technique that resembles GA’s, but the 

individuals being evolved to optimize a problem are not answers.  In GP the individuals are 

algorithms represented as parse trees.  Eads et al. [57] used GP to classify lightning in the 

atmosphere into different categories.  The researchers used GP to generate features on the time 

series data collected from weather satellites.  The GP algorithm had specific operations that it 

could combine into algorithms that computed features on the data.  Once the feature generation 

algorithms were created, they were used in combination with SVM’s to classify the data input. 

Particle Swarm Optimization (PSO) was initially presented by Eberhart and Kennedy in 

1995 [58].  It is a global optimization strategy inspired by the social aspects of bird flocking and 

fish schooling.  In PSO a population of individuals is moved through a search space using inertia 

and velocity.  An individual has a bias to gravitate towards its best position in the search space as 

well as the position of the best solution found by any individual in the swarm (the global best 
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solution).  These bias factors are controlled by local and global constants c1 and c2.  The 

population is moved through the search space using iterations of the algorithm until the 

population converges on a best solution.  PSO algorithms have been effectively applied to 

clustering data in research by DW van der Merwe et al. [59].  The researchers used PSO 

clustering techniques on six different data sets, and the PSO showed better results than standard 

K Means clustering in this research.  PSO is a recent trend that shows promising results for 

certain optimization problems.  It can effectively be used to enhance data mining in combination 

with more standard machine learning approaches.  An example of this enhancement is a trend to 

optimize the weight variables in a neural network using PSO algorithms. 

Ant colony optimization is a population-based search strategy that models the ability of 

an ant colony to find the shortest path to food sources from their nest.  The ants drop pheromones 

as they walk, and as more ants follow a path, an increasing amount of pheromones attracts more 

ants.  Initially, if an ant comes to an obstacle it will have a 50-50 probability of choosing either 

way around it; obviously, the shortest way around the obstacle will provide a faster way for ants 

to reach the end goal.  In a given time window more ants will be able to travel the shortest path, 

which will ultimately build stronger pheromone levels depicting the optimal way to the food 

source.  Research by Parpinelli [60] showed the usefulness of ant colony optimization towards 

the data mining goal of classification. 

Computational Intelligence 

Computation Intelligence is a sub-field of artificial intelligence.  It combines 

methodologies such as Fuzzy Systems, Neural Networks, Swarm Intelligence, and Evolutionary 

Computation.  Computational intelligence typically uses hybrid approaches to solving complex 

problems and combines these different methodologies into one system.  
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Affinity propagation is a clustering technique recently proposed by Frey et al. [61].  The 

idea behind this algorithm is that data points are placed into a search space and messages are 

passed iteratively back and forth among them with the ultimate goal of finding optimal 

exemplars (representative points for a group of points) and points belonging to those exemplars.  

Messages come in two different forms.  The first type of message is passed from a data point i to 

an exemplar candidate k and represents how well suited k is to serving as the exemplar for i.  The 

second type of message is sent from exemplar k to data point i and indicates how appropriate it 

would be for i to choose k as its exemplar.  This algorithm iteratively passes messages back and 

forth between data points and eventually well-defined exemplars are produced that represent 

other data points.  Although this algorithm is relatively new, it has been applied to a variety of 

problems such as clustering face images, detecting gene expressions, identifying key sentences 

between drafts of literary work, air travel routing, etc.  The speed with which the algorithm 

works makes it intriguing and the results produced are on par or better than competing methods 

in the experiments provided by Frey et al. [61].  A major benefit of this algorithm is that the 

number of exemplars (clusters) does not need to be known beforehand; the algorithm can figure 

out through message passing how many exemplars are needed and how to partition the data 

instances. 

Artificial Immune Systems (AIS) were developed through research by Packard and 

Perelson [135] in 1986.  Different representations of AIS’s exist, and they all attempt to model 

the biological immune system.  Examples of AIS systems applied to pattern recognition can be 

seen in research by Wilson et al. [62] and Hunt et al. [63].  Wilson et al. [62] presented a 

particularly eloquent methodology in which no prior knowledge of the pattern being sought 

needs to be known.  The general flow of an AIS is to maintain a population of B cell objects 
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responsible for recognizing certain antigens.  Certain B cells respond to particular antigens, and 

the strength of the association between the B cell and the antigens determines the level of 

stimulation the B cell receives.  The more stimulation the B cell receives the more likely it is to 

proliferate itself in the population of B cells.   

The general flow of the algorithm as applied in research by Hunt et al. [63] is as follows: 

 

 

Randomly initialize B cell population  

Load antigen population  

Until termination condition is met do 

Randomly select an antigen from the antigen population  

Randomly select a point in the B cell network to insert the antigen  

Select a percentage of the B cells local to the insertion point  

For each B cell selected  

present the antigen to each B cell and request immune response  

Order these B cells by stimulation level  

Remove worst 5% of the B cell population  

Generate n new B cells (n equals approximately 25% of the population)  

Select m B cells to join the immune network (m is approximately 5% of population)  

 

 

 

 

Fuzzy C Means Clustering is a hybrid clustering strategy that incorporates fuzzy logic 

into standard clustering methodology.  In Fuzzy C Means Clustering, data instances have a 

degree of membership to their corresponding clusters and they can belong to multiple clusters.  

The summarized steps for the Fuzzy C Means Clustering algorithm as outlined by Bezdek et al. 

[64] are: 
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Choose initial parameters and initialize membership matrix 

LOOP  

Compute means (cluster centers)  

Update membership matrix for each data instance  

Check stopping criteria 

 

Conceptually, this procedure fuzzifies the K Means algorithm so that a more complete 

understanding can be built from complex multivariate data sets.  Fuzzy C Means Clustering can 

be a powerful data mining tool because it allows for a fuzzy understanding of data.   

A common trend in computational intelligence is to use a global optimization strategy to 

train neural networks.  One way to train standard multi-layer perceptron networks is to use back 

propagation, a gradient-descent strategy that can easily get stuck in local optima.  Global 

optimization strategies can be applied to the training process to reduce the likelihood of 

becoming trapped in local optima.  Research done by Cai et al. [65] used a hybrid 

PSO/Evolutionary Algorithm to optimize the weight parameters in Recurrent Neural Networks.  

The neural networks trained with the PSO/EA optimizer perform well.   

Another example of this strategy is in research done by Rivas et al. [66].  The researchers 

trained RBF networks using a method resembling a GA.  One reason this optimization strategy 

for training neural networks is beneficial is that creating a neural network and training it 

combines art and science.  When building a neural network, parameters must be chosen without 

scientific justification for the selection.  These parameters include the number of hidden nodes, 

number of input node (in some cases), activation functions (there can be valid scientific reason 

for specific activation functions, but not always), and network topology.  Since the vast number 

of combinations for these parameters cannot all be evaluated, the optimizer offers help.  As 
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mentioned earlier, optimization algorithms are beneficial also because training neural networks 

with methods like gradient descent can lead to a local optima rather than a more global one. 

Applications in Data Mining 

As data mining develops, researchers are using it to mine more complex data for more 

complex knowledge.  This section will review some of the more recent progress in data mining 

as well as some less recent developments.  

Tak-chung Fu et al. [49] used Self Organizing Feature Maps to discover patterns in stock 

exchange data.  Because of the unsupervised nature of their learning style, SOM’s can be used 

effectively for pattern discovery, since the learner has the flexibility of not knowing the 

classifications for the training data the SOM needs to learn.  Additionally, the exact number of 

clustering centroids needed for classification does not have to be known a priori.  Not having to 

know the number of different patterns being sought increases flexibility in the discovery process.  

The approach taken by Tak-chung Fu et al. [49] featured a two-dimensional output layer to 

classify instances of data.  To obtain instances for classification, a sliding window of length w 

was used to break the stock exchange data into overlapping segments such that W(s) = { si = 

(si,….,si + w - 1) | i = 1, ….. n – w + 1 }.  These instances were fed into the SOM and grouped to 

centroids which represented similar patterns of data.  To make the SOM more effective, a post-

processing methodology was used which filters unused output nodes and groups output nodes 

within a certain distance together in order to reduce redundancy.  The ultimate result of training 

the SOM was that output nodes represented a group of similar input patterns; together, they 

represented a recurring pattern.  Tak-chung Fu et al. [49] went on to introduce a new pattern-

matching scheme to enhance the clustering procedure.  The general idea of the algorithm, 

referred to as PIP in the paper, was to describe the segments of data by important points that 
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reflected the general tendencies of the data.  The proposed algorithm initialized the set of 

important points to the first and last points in the data segment, then incrementally added the 

next point that was the farthest distance away from the connecting line between any two 

important points.  This process was run until the desired number of important points was located.  

This process generalized the data, effectively re-sampling it at highly descriptive points; the 

more points used, the higher was the resolution of the re-sampled data.  Once the important 

points were captured, a similarity measure of direct point-to-point comparison was used to 

measure the distance between the data.  The formula used to compute similarity was as follows: 

 

Dist(I, SOI) = 1/n 

Formula 4: Similarity computation formula.  I is an instance set of important points and 

SOI is the group of important point sets.  
 

 

 

Extensions of this formula can be implemented to take scale (time dimension) into 

account, and this extension was outlined in the work presented by Tak-chung Fu et al. [49].  The 

proposed algorithm has some interesting benefits that were mentioned in the paper.  The re-

sampling performed to find important points can substantially reduce the amount of time needed 

to train the SOM, if the SOM is trained on the sampled version of the times series rather than the 

raw data.  Another benefit of re-sampling is that it provides an easy means of performing multi-

resolution comparison of data segments.  Different lengths of raw data segments can be sampled 

down to the same resolution and compared.   

Povineilli et al. [56] presented a generalized methodology for detecting events.  An event 

in time series data is application specific, but an example would be an earthquake in time series 

data of seismic activity.  To detect events, the framework presented first called for the definition 
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of a phase space for the problem.  Phase space, dating back to work by Willard Gibbs in 1901, is 

a way to represent a problem so that any degree of freedom or variable in a problem is seen as a 

dimension in a feature space.  The feature space winds up being n-dimensional and is referred to 

as a phase space.  For time series event detection, Povinelli [56] suggested what he referred to as 

an augmented phase space model.  Any phase space can be made into an augmented phase space 

by simply adding another dimension to the phase space, representing what the Povinelli referred 

to as the degree of “eventness”.  Eventness was described as how indicative a time series 

segment is of an event happening and is represented by a function g(t).  Temporal pattern 

clusters were made within the phase space (not the augmented phase space) in which each cluster 

was a hypersphere centered on a given temporal pattern.  The dimensions were equal to the 

phase space, and the radius of the hypersphere was an arbitrary parameter representing distance 

in the real metric space of the hypersphere.  Each temporal cluster had an average g(t) value and 

the complement of every temporal cluster (every pattern not in the cluster) had an average g(t) 

value.  The optimization performed by the GA was to find the optimal temporal clustering to 

predict events.  The fitness function used was provided in Formula 5. 

The GA maximized the value of Formula 5 to find the optimal temporal clustering for 

determining events in the time series data.  As the average value of the set M grew and the  

 

 

 

Formula 5: Fitness function for algorithm presented by Povineilli et al. [56].  M is the set of 

time series segments in the temporal cluster, c(M) is the cardinality of M, µ is the average 

g(t) value and σ is the variance of M from µ. 
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average value of its complement shrunk, the top of the fraction grew larger.  The bottom of the 

fraction shrunk when the variance of the set M and its complement was lower and the cardinality 

was higher.  The desired effect was to make the top of the fraction grow and the bottom shrink 

resulting in the maximum value for the function being optimized.  This effect was achieved when 

the average g(t) value of M was at its highest, the average g(t) value of everything not in M was 

at its lowest, the variance of both M and its complement were at their lowest, and the cardinality 

(number of elements in the set) of M was large.  The resulting temporal clusters were determined 

to be events, and the GA searched for them.  The chromosome representation for each individual 

in the GA was a standard bit string representation where groupings of bits represented possible 

values for each dimension in the phase space. 

Wavelet Theory is an emerging methodology in data analysis.  Wavelet Theory utilizes 

small wavelets to describe a larger function.  Wavelets themselves are functions that have a zero 

mean and are localized in both time and frequency [6].  The Wavelet Transformation can be 

compared to Fourier Transformation; however, there are some distinct differences.  One 

difference between the two is that the Fourier Transform treats a signal as a composition of sine 

and cosine waves, but the Wavelet Transform treats a signal as a composition of a more general 

classification of functions called wavelets.  Another difference between the two is the resulting 

data produced from their respective transformations: The Wavelet Transformation contains a 

localized sense of time which can be of great use in data mining.  Research presented by A. 

Grinsted et al. [67] used a Continuous Wavelet Transform representation of geophysical time 

series data, in combination with Cross Wavelet and Wavelet Coherence operators, to find 

correlation between different but related time series.  The idea was to examine potentially linked 

time series data to infer causality between the two series.  The data used in the experiments was 
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geophysical data; specifically, the data was the Arctic Oscillation measurement (AO) and the 

Baltic Sea ice extent (BMI).  The AO represented the mean winter condition in the arctic 

atmosphere and the BMI represented winter severity represented by ice conditions [67].  The 

researchers used a Cross Wavelet operator in the hopes of discovering correlated phase lags due 

to causality between the two time series in the experiments.  The Wavelet Coherence was then 

performed and the statistical significance of the coherence was estimated using Monte Carlo 

methods. 

Feature selection can be a difficult task in data mining.  Eads et al. [4] proposed a method 

of intelligent feature generation using Genetic Programming (GP).  GP is an evolutionary 

computational method.  It is related in form to the GA, but the individuals in the population 

being evolved are not possible answers to a problem; they are algorithms themselves.  The 

individual in a GP is a representation of a parse tree for a computer algorithm.  The population of 

individuals gets evolved until the best parse tree can be found.  The data presented to the learner 

by Eads et al. [4] were spectrograms created from the Fourier Transform on radio waves 

traversing the ionosphere.  When lightning in the ionosphere occurs the sensor equipment on a 

weather satellite sends the radio wave data to ground stations for recording.  These transmissions 

were transformed using the Fourier Transform into spectrograms which were further processed 

into a power density series.  There were 3181 samples in each power density series.  The job of 

the learner was to categorize the spectrograms as one of seven types of lightning.  There were 

two approaches to this in the paper.  One approach was simply to throw the raw data into an 

SVM for classification, and the other approach presented was to use GP to evolve intelligent 

features from training data and then send those features into an SVM for classification.  The GP 

approach used an internal SVM in the fitness function, and the fitness score for each individual 
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was computed by sending every spectrogram in the training data through the parse tree of an 

individual to produce a feature vector of n elements.  The feature vectors were then sent through 

the SVM, and the fitness of an individual corresponded to the performance of the SVM on the 

training data using the supplied feature vectors.  The first model for this operation used one SVM 

for the fitness calculation and was susceptible to over-fitting.  The other model used a cross fold 

validation scheme that was more robust, but also took substantially more time to run.  Once the 

GP evolved the feature-calculating algorithm, another SVM was used to evaluate the 

effectiveness of the model.  During this test tenfold cross-validation was used to train the SVM.  

Once the SVM was trained, ten percent of the data that was withheld was used to evaluate the 

overall effectiveness of the model.  The results showed that the intelligent feature creation 

scheme using GP did not perform as well as the raw data into the SVM.  The percentage of data 

classified correctly with the intelligent features was 61.54 % while the raw data was able to 

achieve 70.38 %.  While the results were slightly less using intelligent feature generation, the 

methodology presented was still novel and worth further evaluation. 

Artificial Immune Systems (AIS) were developed through research by Packard and 

Perelson [135] in 1986.  Different representations of AIS’s exist all attempting to model 

biological immune systems, typically by modeling the memory scheme immune systems use to 

recognize pathogens.   

An understanding of AIS applied to pattern detection can best be ascertained through 

work proposed by Wilson et al. [69].  These researchers utilized an AIS system to find motifs 

(patterns) in time series data.  This methodology was unique in its ability to have no prior 

knowledge, either of patterns being sought or of their lengths.  The implementation made use of 

what were deemed trackers, which contained a variable length of symbols used to represent a 
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dimensionally reduced equivalent representation of a time series subsequence [69].  The trackers 

were ultimately used to find string representations of recurring motifs in a series.  The basic idea 

behind this algorithm was the transformation of a time series into a symbolic representation 

using Piecewise Aggregate Approximation.  Once the series has been transformed, the 

subsequences were stored in a matrix; the AIS methodology then mined this symbolic 

representation for time series motifs.  The trackers were initialized and matched to this symbolic 

matrix of time series data.  Initially, the trackers were one symbol in length, but throughout the 

iterations of the algorithm, if a tracker matched some series in the matrix of series, it was given 

the potential to grow.  This process gave the AIS the ability to find unknown patterns of variable 

lengths.  A match was determined between a tracker and the time series symbol matrix using 

string operators in combination with a matching distance threshold.  Every match a tracker made 

to the symbol matrix increased its count for the specific iteration of the algorithm by one.  

Trackers with a count greater than one were considered reoccurring matches.   

A final note about the implementation of this algorithm is that trackers were grown and 

mutated in a controlled fashion after each iteration of the algorithm.  This process allowed the 

algorithm to explore more of the problem’s search space and ultimately find more complex 

patterns than it would have been able to if mutation and growth were not performed.   

The AIS algorithm presented by Wilson et al. [69] was tested on two different data sets.  

The first data set was a benchmark data set dealing with steam generation.  This data set has been 

used in other experiments by Keogh et al. [70], who used a probabilistic algorithm approach to 

pattern discovery.  The results from the AIS algorithm were compared to the other published 

results.  The two methods find the same motifs in the data; however, Keogh et al.’s method 

returns a slightly longer version of the dominant pattern.  Wilson et al.’s method can be 
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considered to outperform Keogh et al.’s method since the former found this pattern without prior 

knowledge of the length.  Keogh’s probabilistic method requires the length of the pattern being 

sought which is not always known.  The AIS algorithm used by Wilson et al. also generalizes 

much better to motifs of different length than does Keogh’s method.  The other data set used in 

the experiments by Wilson et al. was a power consumption data set.  The AIS system produced 

significant results on this data set; proving itself sensitive enough to distinguish patterns of 

power consumption on a bank holiday weekend from the rest of the weekends in the data. 
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CHAPTER 3 

METHODOLOGY 

This research uses computational algorithms to decompose a network into smaller sub-

networks, and then it computes a fraction of overall network flow that can be attributed to those 

sub-networks.  This decomposition yields a more meaningful level of abstraction in network 

analysis than a simplistic focus on individual nodes and flows by providing contextual 

information about the importance of nodes in functionally relevant sub-networks.  Using graph 

theory descriptors and constructs such as adjacency matrices, simple paths, and cycles, this 

research treats any network as a generalized, directed, weighted graph.  Once a network is 

decomposed and all sub-networks enumerated, the second part of this analysis computes the 

fractions of total flow to attribute to each sub-network.  These flow coefficients are grouped into 

a coefficient vector.  While the set of sub-networks for a decomposed network is unique, the 

coefficient vector detailing their flow contribution within the total system is not.  An averaging 

technique for dealing with this non-uniqueness will be introduced in order to compute a 

meaningful point in the output vector’s solutions space.   

Ultimately, this research transforms an adjacency matrix representation of a network and 

a corresponding distribution of flow data over that network into a set of sub-networks and a 

coefficient vector.  This allows for novel data mining and optimization in the field of network 

analysis and has potential to be a unifying solution to a large problem set. 
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Computational Analysis of Network Subunits 

When analyzing a network for regions of importance, metrics such as connectedness and 

throughflow are typically used.  These measurements, while providing useful information, do not 

provide a high level summary of the general workings of a network.  They comprise a low level 

depiction of the network that can lack contextual meaning and tend to be confusing when applied 

to the network as a whole.  In this research a computational methodology is presented that allows 

a higher level understanding towards the workings of a network.  It provides a general summary 

of activity over well-defined neighborhoods (referred to as sub-networks) within a network.  

First, a network is decomposed into the smallest possible sub-networks, and then coefficients are 

found that attribute certain portions of throughflow in the network to individual sub-networks.  

The coefficients for each sub-network represent the amount of flow over the entire network that 

each sub-network is responsible for.  Given this higher level view it becomes possible to analyze 

nodes and regions in a network with more contextual information.  This method provides useful 

information that enables powerful data mining on a wide range of symbolic data. 

Introduction 

A network is a set of interconnected compartments with directed edges (currency flows, 

e.g., mass, energy, dollars, information).  This type of network construct appears across a wide 

variety scientific disciplines [73, 76, 77, 78, 79] including economics, computer science, 

ecology, biology, and sociology.  Network analysis historically involves the evaluation of 

network structure and function through the calculation of such metrics as nodal connectedness or 

compartment and total system throughflows.  This approach can be helpful, but it lacks the 

ability to analyze groupings of connected nodes interacting with each other.  Perhaps a more 

complete method for analyzing a network includes accounting for a node’s sphere of influence 
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within well-defined sub-networks.  This approach can serve to contextualize the behavior of a 

specific node and provide a more complete understanding of its role to the network as a whole.  

The goal of this research is to quantify a measure of flow (signifying importance) over groupings 
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Figure 13: An example of an ecological network created to model an oyster reef habitat.  

Inputs and outputs to the network are supplied at the bottom left, and the edge weights for 

each compartment in the network are supplied at the bottom right. Image provided by 

EcoNet. 
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of interrelated nodes in a network.  The two main obstacles to this include isolating subsets of 

nodes within a network and calculating the amount of flow that passes through those derived 

subsets.   

 

Graph Theory Constructs and Methodology 

Graph Theory is a well-established field in mathematics and computer science.  

Describing a network as a graph allows expansion from a rich set of established constructs and 

methodologies.  The following definitions are taken from Corman et al. [71].  A directed graph 

G is a pair (V, E) where V is a set of nodes or vertices and E is a set of binary relations on V 

called edges.  A graph is connected if there exists a path from every node to every other node, 

and a directed graph is said to be weakly connected if replacing directed edges with undirected 

edges yields a connected graph.  There are different ways of representing graphs, and this 

research uses the adjacency matrix construct.  An adjacency matrix representation of graph 

G(V,E) is a |V| x |V| matrix A = (aij) such that aij = 1 if (i, j) is an edge in G and aij = 0 

otherwise.  A path is a sequence of vertices or nodes of length k  < v0, v1 , … ,vk >  originating at 

u and ending at u’ such that u = v0 and u’ = vk and (vi-1, vi) ∈ E for i = 1, 2, 3, . . ., k.  A simple 

path is a path where each vertex is unique.  A cycle is a path where v0 = vk. 

Network Decomposition 

This research will pursue a computational algorithm to determine the partial throughflow 

for meaningful sub-networks in a network.  First, flow vectors, sub-network vectors, and the sub-

network matrix must be introduced.  A flow vector can be constructed from a network if every 

edge in the network is labeled with a sequential integer and an edge’s magnitude of flow is 

stored at the respective index (Figure 14).  A sub-network vector (Figure 15) is a binary vector 
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with a size equal to the flow vector, where for any edge used in the sub-network there is a 1 at 

the corresponding vector index and all other elements are zero.  A sub-network matrix (Figure 

16) is a matrix of n rows and m columns where n equals the number of edges in the network and 

m equals the number of decomposed sub-networks.  Each column of the sub-network matrix is a 

sub-network vector.   

 

 

 

Figure 14: The flow vector.  Contributions for this image were made by Caner Kazanci and 

Rebecca Gaff. 

 

 

Figure 15: The sub-network vector.  Contributions for this image were made by Caner 

Kazanci and Rebecca Gaff. 
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Figure 16: Example Decomposition.  Contributions for this image were given by Caner 

Kazanci and Rebecca Gaff. 

 

 

The definition of a relevant sub-network relies on understanding key concepts of 

decomposition and throughflow in a network.   

 

 The network, and each sub-network, are assumed to be at steady state (input in equals 

input out; compartment storage is ignored).   

 Edges in a structural decomposition are unweighted.  The sub-network matrix is the 

output from a structural decomposition and flows across the edges are abstracted into 

coefficient terms pursued later.   
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 For a sub-network to be dissected from the rest of the network it must be self-

sustaining, ensuring that any agent traversing a sub-network will remain in that sub-

network without getting lost to some other sub-network.  This effectively binds an 

agent solely to a particular sub-network.   

 A constraint is placed on the decomposition of a network, that once decomposed the 

network (including flows) must be able to be recomposed.  This constraint can be met 

by applying the derived coefficients (discussed later) to their respective columns in 

the sub-network matrix, and then summing the rows of the sub-network matrix.  This 

produces the original network flow vector (Figure 16).   

 Because a sub-network is unweighted and at steady state, each node in a sub-network 

must have only one input and one output.  If nodes in a sub-network had multiple 

inputs or multiple outputs, an agent traversing the sub-network would have to choose 

which path to take and the sub-network could not remain unweighted.   

 A sub-network in this methodology should be as small as possible ensuring flow 

coefficients computed later for each sub-network apply as specifically as possible. 

 

Accounting for these concepts leaves a clear definition of a sub-network as any path 

through the network that starts where it ends, has no duplicate nodes, and where each node in the 

path has exactly one input and one output.  This is the definition of a simple cycle.   

It is acceptable in certain disciplines for a network to have inputs and outputs from an 

entity referred to generally as the “environment” (an entity outside of the graph that the graph 

can receive input from and send output to).  In this paper the environment is considered to be 

another compartment in a self-contained network with no inputs or outputs. 
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A structural decomposition algorithm will now be outlined.  Let M be an adjacency 

matrix for a network.  If there are inputs to or outputs from the network, an environment 

compartment must be added to the network, and its edges must be listed in M.  The 

decomposition algorithm takes M as input and places every compartment into a path of length 1.  

All the paths are placed into a queue.  Until the queue is empty, path p is removed from the 

queue and subsequently inspected to see if it is a simple cycle of length greater than one.  If the p 

meets this criterion, it is output as a sub-network.  After inspection, paths of length len(p) + 1 are 

constructed using every edge stored in M for the last node in p.  Any new simple path (one that 

has not been created prior to this) is placed on the end of the queue and the loop continues.   

 

 

Decomposition(AdjacencyMatrix M) 

foreach node in graph 

 path.add(compartment) 

 queue.enqueue(path) 

while (queue is not empty) 

 path = queue.dequeue 

 if (path is simple cycle)  

  output simple cycle 

 foreach edge in M  

   for last node in path 

   queue.enqueue(path + new edge) 

Figure 17: Decomposition pseudo code. 

 

 

Uniqueness for Coefficient Vectors 

Even in simple real world networks there is usually not a unique solution for computing 

the coefficients for each sub-network of a decomposed network.  This is because different 

pathways through a network can be interpreted using different sets of sub-networks.  Interpreting 

a pathway is building a parse tree of cycles used to comprise it (viewing it as a combination of 
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sub-networks rather than as a combination of individual nodes).  An example of a path with 

multiple interpretations is seen in Figure 18.  An interpretation of a pathway can be represented 

in two ways, first in a time series where a sub-network’s location in the construct determines 

when it occurred, and second in an interpretation vector.  An interpretation vector is a vector 

where each index represents a particular sub-network and a value in the vector represents the 

number of times the sub-network was used in the interpretation.  Since the coefficients being 

sought are a representation of how much flow can be attributed to a particular sub-network, 

multiple interpretations pose a uniqueness problem.  If a pathway can be interpreted using 

different sub-networks then sub-networks can be viewed as responsible for more or less flow 

depending on the interpretation assigned.  This means multiple correct coefficient vectors exist, 

and they constitute a solution space of possible coefficient vectors. 

This research presents a computational framework that analyzes simulated data presented 

from a network model and computes a coefficient vector for the specified network using a 

technique called functional decomposition.  It requires as input a distribution of pathway data 

and an adjacency matrix for a network.  The output is a coefficient vector.  After a network is 

structurally decomposed, simulated data from the network can be analyzed to build an 

interpretation vector for each of the data instances in the distribution.  Each pathway is 

interpreted as a combination of certain cycles from the structural decomposition and a frequency 

vector is used to keep track of how many times each sub-network is used throughout the entire 

distribution of data.  To deal with the ambiguity that occurs when a single pathway can be 

generated by more than one combination of cycles, an averaging technique is introduced.  This 

technique sums every occurrence of a cycle in all of the interpretations for a pathway and then 

adds a value to the frequency vector for that cycle equal to the sum of occurrences in all 
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Figure 18: An ecological model of the oyster reef network is used to illustrate a path 

through a network that can be interpreted multiple ways (Interpretation 1 - cycle 1 [1 2 3 

4] : cycle 2 [4 5 2] : cycle 3 [4 3 2]) (Interpretation 2 - cycle 1 [1 2 3 4] : cycle 4 [2 3 4 5] : 

cycle 5 [2 4]). 

 

 

interpretations divided by the total number of interpretations.  This technique aggregates multiple 

interpretations for a single pathway and averages their values giving equal weight to each of 

them. 

The interpretation method currently used to parse a network pathway is an exhaustive 

search throughout all the possible combinations of cycles presented in the sub-network matrix.  It 

is thought that this can be enhanced in two ways.  One way to improve the efficiency of this 

process is to view interpreting a pathway through the network as parsing a string from a context-

free language.  The exhaustive set of simple cycles in the network can be used to build a context-

free grammar covering all the possible pathways generated from a network.  Once a grammar is 
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built the Cocke-Younger-Kasami (CYK) algorithm [74] (a dynamic programming algorithm) can 

interpret the string with a runtime of O(n3) where n is the length of the string being parsed.  A 

second way of enhancing the efficiency of the proposed methodology would be interpreting data 

instances from a distribution in parallel.  This could yield a substantial performance increase as 

the interpretation of each data instance is independent of any other data in the distribution, and 

could thus be interpreted disjointly.  These enhancement suggestions are covered in the 

proceeding sections. 

 

 

 

Figure 19: An overview of how the coefficient vector is found. 
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Data Mining with the Proposed Methodology 

Decomposing a network and computing coefficients is a novel way to analyze networks, 

but much work is needed to determine useful ways of applying this methodology.  Using the 

ascertained information for data mining holds potential to be transformative and is an interesting 

way of allowing machines to understand networks at a higher level of abstraction.  One 

interesting data mining application could be to obtain a coefficient vector, zero out one or more 

of the coefficients, and then reverse the computational process to obtain a modified flow vector.  

The destructive effects of removing a particular group of sub-networks could thus be analyzed 

(i.e. how different is this modified flow vector if a particular group of sub-networks get removed 

along with all the flow attributed to those sub-networks).  Other uses for this research cover a 

multitude of disciplines such as bioinformatics where network analysis is being used by Jiang et 

al. [72] for motif detection, network security where Ammann et al. [73] used network analysis to 

study network vulnerability, social network analysis where Carley et al. [74] used network 

analysis to study dynamic social networks (i.e. terrorist networks), and so many more fields 

where graph models can be built to study complex systems.  The elegance of this methodology 

comes to life as the generality of it is discussed.  This method can be applied to any problem that 

can be transformed into a directed weighted graph.  A particularly interesting use for this 

approach would be symbolic time series analysis.  Symbolic time series can be represented as a 

graph where an edge exists between two symbols if they appear next to each other in a time 

series instance.  The weight for each edge is the number of times that particular edge occurs.  If 

formulated this way a distribution of symbolic time series data could be analyzed using the 

proposed methodology and mined for valuable information.  Symbolic time series can be used to 

represent a wide range of problem spaces, including those covered by numeric time series 
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analysis via some kind of symbolic transformation [75].  This technique could be viewed as a 

sort of unifying solution to a diverse problem set, and could be readily applied to a wide range of 

problems including music recommendation, economic network analysis, or social network 

monitoring. 

Conclusion 

This work has shown a methodology for decomposing a network into unique sub-

networks and computing a coefficient vector detailing the fraction of total system throughflow 

for which each sub-network is responsible.  An averaging technique was introduced to 

accommodate the ambiguity inherent in interpreting pathways through a network.  Data mining 

opportunities for this methodology were postulated, but further research needs to be invested into 

exploiting the information present in the coefficient vector.  The diverse range of problems to 

which this methodology could be applied was also discussed and is considered a major strength 

of the work. 

Flow Decomposition in Complex Systems 

Complex systems can be represented as weighted digraphs.  Simple cycles play an 

important role in complex systems because they define the smallest unique groupings of nodes in 

the system.  A grouping of connected nodes contains rich contextual meaning because of the 

relationships defined by its connecting edges.  The work herein outlines a computational 

methodology to decompose the total throughflow of a complex system into a set of coefficients 

over its exhaustive set of simple cycles.  A coefficient is computed for each simple cycle 

representing the amount of total system through flow the cycle is responsible for.  This vector of 

coefficients provides information that can be used in data mining and information clustering 

applications to analyze the system.  The proposed methodology provides a powerful framework 
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for analyzing symbolic data by assigning magnitude values to the contextual meaning within 

groupings of symbols. 

Introduction 

Systems analysis historically involves the evaluation of graph structure and function 

through the calculation of such metrics as nodal connectedness or compartment and through 

flows.  This approach can be helpful, but lacks the ability to analyze interaction between 

groupings of connected nodes.  Perhaps a more complete method of analysis includes a node’s 

sphere of influence within well-defined node groupings (cycles).  This approach can serve to 

contextualize the behavior of a node and provides a more complete understanding of its role to 

the graph.   

The goal of this research is to quantify a measure of flow over groupings of interrelated 

nodes in a graph.  It will be assumed that the set of simple cycles in the graph has already been 

found.  For information on structurally decomposing a system refer to the previous section of this 

chapter.  The work herein shows how a distribution of pathways through a graph can be 

interpreted using a context-free grammar derived from the exhaustive set of simple cycles in the 

graph.  Interpreting a graph pathway in this manner allows each time step t in a pathway to be 

labeled as part of a particular cycle, and a vector can be built to represent the number of times 

each cycle has appeared in a distribution of pathways.  This vector can be used to determine the 

flow magnitude for each cycle. 

The structure of this paper is as follows. First, some basic concepts in formal languages 

will be reviewed.  Then data mining on complex system will be discussed in conjunction with 

the computational techniques employed in computing the flow magnitude values.  Finally, the 
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limitations of this methodology and some preliminary results will be presented together with 

discussion. 

Context-Free Grammars 

Sipser [24] describes a context-free grammar as a collection of substitution rules 

governing the definition of a regular language.  These substitution rules allow grammatical units 

(groupings of literals) to be nested arbitrarily deep but not to overlap.  Formally defined, a 

context-free grammar is a 4 tuple G = (V, ∑, R, S) where V is a finite set of variables, ∑ is a 

finite set of terminal symbols, R is a list of substitution rules, and S is a start symbol.  Starting 

from S, substitution rules can be applied to produce a parse tree where the leaves of the tree are 

terminal symbols and the internal nodes of the tree are variables.  A parse tree holds the 

information on which grammatical units comprise a particular string.  There can be multiple 

parse trees for a given string due to ambiguity in a grammar.  In certain grammars it is not 

possible to eliminate ambiguity, and these grammars are called inherently ambiguous.  When 

arranging a context-free grammar it can be necessary to formulate substitution rules in a 

simplified way called Chomsky Normal Form (CNF).  A grammar is said to be in CNF if every 

substitution rule is either of the form A  BC or A  a, where A, B, and C are any variables, 

except B and C are not the start state, and a is any terminal. 

Data Mining on Complex Systems 

A system is a grouping of interconnected components that form a whole entity.  Figure 20 

depicts an example of an ecological system created to model an oyster reef habitat.  A complex 

system is more a notion of intuition than definable characteristics due to the fact that there is no 

agreed upon definition of system complexity.  In the absence of an agreed upon general theory, 

one is left describing traits that are present when a system is thought to be complex.  A complex 
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system is typically comprised of building blocks (i.e. atoms, molecules, cells, etc.; more 

generally agents), which can be complex systems themselves (giving rise to hierarchical levels of 

interaction).  These building blocks interact with each other to exude actions, traits, behaviors, 

and organization that are not observable from studying the building blocks in isolation [19].  

Interaction between compartments is typically illustrated through edges in a weighted directed 

graph.  Extending these relationships beyond a single edge defines relationships with greater 

contextual meaning.  The set of all simple cycles in the system defines an exhaustive set of 

unique, self-sustaining relationships over that system.  These relationships can support 

themselves, existing in isolation.  As a unit of flow moves through the system, any pathway it 

takes can be described as some combination of these defined relationships.  This is a valuable 

source of information about the system because the frequency of occurrence for these unique 

relationships within the system can be tracked. 

 

 

Figure 20: A model of an oyster reef ecosystem. 
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To calculate magnitude values (frequency of occurrence) for each simple cycle in a 

graph, a data simulation technique called Network Particle Tracking is used to simulate network 

activity over a specified range of time in the networks life.  The data Network Particle Tracking 

creates is a list of pathways that particles traversed through a system.  Each of these pathways 

will be treated as a string generated from a context-free grammar defined by the set of cycles 

within the system.  In this grammar each unique cycle within the system is a grammatical unit 

within the context-free language of the decomposed graph.  Each pathway in the data distribution 

is parsed to find the grammatical units comprising it, and a vector is kept representing each time 

the different cycles have been used.  This vector contains the magnitude values. 

Constructing a context-free grammar from the set of cycles in a graph is central to the 

proposed methodology.  A context-free grammar is a 4 tuple, as defined earlier, G = (V, ∑, R, S).  

The variables (V) for a grammar in the proposed methodology are all compartments in the graph.  

It is important to note that in systems research there is an idea of an environment that inputs into 

the system and receives output from the system.  The environment can be added to the adjacency 

matrix as a compartment and is treated as a special node in the graph where pathways must start 

and end.  The terminal symbols in the grammar (∑) are also all compartments in the graph.  The 

substitution rules for a grammar (R) are obtained from the cycles in a graph.  Any variable in the 

grammar can be replaced by any grammatical unit where that variable is the first element in the 

unit, or by its corresponding literal. 

Two distinct classes of cycles exist in a grammar, those that contain the environment and 

those that do not.  Any pathway through the system can be interpreted using exactly one cycle 

containing the environment (as paths must start and stop in this node) and zero or more cycles  
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Variable: X 

Grammatical Unit: X Y Z 

Substitution Rule: X  X Y Z X 

  

Figure 21: Example of a substitution in a context-free grammar. 

 

 

that do not contain the environment (internal cycling loops).  Each cycle not containing the 

environment represents multiple grammatical units because there are multiple orders in which 

the compartments of the cycle can appear.  An internal cycle represents a number of grammatical 

units equal to the length of the cycle.  These different grammatical units are made by assigning a 

new index to a node in the cycle equal to its current index plus one mod then length of the cycle.  

This is process applied to find every possible ordering of cycle compartments for every internal 

cycle.  The pseudo code for this can be seen in Figure 22.  Each cycle containing the 

environment represents a single grammatical unit because the environment is the starting and 

stopping point for each pathway, thus determining the order the nodes for these cycles must  

 

 

foreach internal cycle:  
   for i in range(len(cycle)): 
      new cycle[len(cycle)]; 
      for j in range(1,len(cycle)+1): 
         x = j%len(cycle); 
         new cycle[x] = cycle[j–1]; 
      cycle = new cycle;  

Figure 22: Pseudo code for finding all grammar units within a cycle. 
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appear in when being used to construct a pathway.  Finally, the environment is designated as the 

start symbol (S). 

Once the grammar is built it is possible to parse a pathway through a graph to calculate 

the grammatical units (cycles) the pathway traversed.  To compute a parse tree the CYK 

algorithm is used.  The CYK algorithm is a dynamic programming algorithm that considers 

every possible subsequence of the sequence of words presented in a string, and compares these 

subsequences against the grammar to see if they are interpretable.  The results are stored in a 

table that can be traced back through to construct all parse trees associated with the input string.  

The runtime for this algorithm is O(n3 * |G|) where n is the length of the input string and |G| is 

the size of the grammar.  Grammars presented to this algorithm need to be structured in a 

simplified way called Chomsky Normal Form (CNF).  As mentioned earlier, a grammar is said 

to be in CNF if every substitution rule is either of the form A  BC or A  a, where A, B, and C 

are any variables, except B and C are not the start state, and a is any terminal.  Any context-free 

grammar can be transformed into a CNF grammar expressing the same language [24].  This 

transformation can lead to considerable bloat in the size of the grammar.  In the worst case this 

can increase grammar size from g
2
 to 2

2g
.  For implementation of the proposed methodology, 

each rule in the original grammar requires a number of rules in the CNF grammar equal to one 

minus the length of the right hand side of the rule.  The transformation is achieved by 

introducing new symbols into the grammar.  A rule in the original context-free grammar 

representing a cycle ABC would appear as follows A  ABCA.  This rule is transformed into 

three rules A  AX, X  BY, Y CA representing the same cycle where X and Y are symbols 

not previously in the grammar. The number of rules to be expected would be equivalent to 

 where n is the number of cycles in the set of cycles over the graph.  Once  
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Pathway through system illustrated in 

Figure 20 
 

E  1  2  3  4  5  2  4  2  3  4  E 

Parse generated for this pathway 
 E 1 2 3 4 5 2 4 2 3 4 E 

 A A A A B B B C C C A A 

 

             

Cycle A : E  1  2  3  4  E 

 
 

 

Cycle B : 4  5  2 

 
 

 
 

Cycle C : 4  2  3 

 
 

 

Figure 23: A parse of an example of a pathway through the system in Figure 20. 
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the grammar is transformed the CYK algorithm is used to analyze a distribution of pathways 

simulated over the complex system by Network Particle Tracking.  The distribution of pathways 

can be of arbitrary size, but the accuracy of the magnitude values increases as the number of 

analyzed pathways increases.  To calculate the magnitude values a vector is kept over the entire 

distribution of data, tracking the occurrences of each cycle. 

Discussion 

The vector calculated by the proposed methodology represents the occurrence frequency 

of each cycle in the exhaustive set of simple cycles.  The occurrence frequency is the number of 

times a unit of flow passed completely through a cycle grouping.  This methodology takes 

symbolic sequences of data produced from a model and computes numeric magnitude 

coefficients reflecting some position within an n dimensional feature space.  This can be seen as 

a symbolic transformation routine that would provide valuable results for machine learning and 

computational intelligence methodologies.  The frequency vector allows insight into the position 

of a model within a feature space, thus offering information pertaining to what state a model was 

in when the data being analyzed was produced.  These coefficients could also be used as a 

distance metric to calculate the difference between two distributions of data from the same 

model.  Furthermore, it would be possible to compare specific coefficients, or groupings of 

coefficients, between two models, allowing one to search for relationships that most differentiate 

the two data distributions. 

The ambiguity within the grammars produced by this methodology has not been 

discussed until now.  Ambiguity in a grammar means that a particular input string can be legally 

generated by multiple parse trees.  As it pertains to this work, it is possible to interpret some 

pathways through graphs using different sets of cycles.  The implications of this ambiguity must 
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not be ignored if a correct vector of magnitude values is to be calculated.  There are two different 

ways to deal with these multiple interpretations when they arise.  The first way is to find all 

interpretations of a pathway, and then for each cycle add to the frequency vector a value equal to 

the total number of occurrences of that cycle, in all interpretations, divided by the total number 

of interpretations.  This method uses each of the interpretations and assigns a weighting 

parameter to them.  The resulting vector from this method is interesting because when multiple 

interpretations happen they are all utilized, and their combined occurrence if reflected.  This 

results in a vector of averaged values as they occurred in simulation.  This method also reflects 

the probability of ambiguous cycle combinations occurring in the same pathway, which is 

defined by the systems flow parameters.  The second method of dealing with ambiguity is to find 

all interpretations of a pathway and maintain another computationally derived entity called a 

Difference Vector Matrix (DVM).  Every interpretation of a pathway is a vector where each 

index in the vector represents a cycle, and the value at the index represents the number of times 

the cycle was used in the interpretation of the pathway.  When multiple interpretations happen, 

these localized interpretation vectors can be subtracted from each other to produce a Difference 

Vector that encodes the ambiguity.  These Difference Vectors define equality constraints 

between groupings of vectors.  In this method only one interpretation is added to the frequency 

vector but these Difference Vectors are tracked and maintained in the DVM.  A Difference 

Vector is added to the DVM if it increases the rank of the DVM.  This additional matrix retains 

the information needed to bound the solution space of possible frequency vectors calculated by 

this methodology.  This is a novel way to isolate ambiguities in context-free grammars. 

The proposed methodology has runtime constraints that must be addressed.  The runtime 

is bounded by the runtime of the CYK algorithm used for interpreting the cycles appearing in a 
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given pathway.  The runtime of the CYK algorithm is O(n3 * |G|) where n is the length of the 

input string and |G| is the size of the grammar.  The most significant factor in this runtime is the 

length of the input string.  This means that graphs producing shorter pathways from input to 

output require less computation.  As the internal cycling within a graph increases the runtime 

increases exponentially.  The size of the grammar also factors into the runtime to a lesser degree.  

The size of the grammar depends both on the size and connectedness of the graph.  Methods of 

dealing with the runtime constraints are currently being researched. It is thought that through 

strategic graph contraction and distributed computing this methodology can overcome these 

constraints to prove useful even for large, heavily connected graphs with large amounts of 

internal cycling. 

For testing purposes this methodology was run on three ecological models of varying size 

and complexity.  The models were the oyster reef model, the Georgia salt marsh model, and the 

Neuse river basin model.  The oyster reef and the Georgia salt marsh models were able to be run 

fully and the magnitude coefficients for each of the cycles in the graphs were computed.  The 

Neuse river model posed a greater challenge do to the size and connectedness of the model, in 

combination with its heavy proclivity for internal cycling.  Pathways for this model routinely had 

lengths of greater than 40 nodes with the occasional pathway reaching lengths of 100 to 200 

nodes.  Memory issues were the main problem with this model as the current implementation of 

this methodology uses RAM memory and not disk memory while computing the CYK algorithm.  

If disk memory were to be used the memory constraint could be overcome, but this would still 

leave a substantial runtime to deal with.  As aforementioned, research is being directed into 

dealing with these problems. 
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Conclusion 

The research herein has shown that a weighted directed graph can be decomposed both in 

structure and function to produce a vector of magnitude values for each of the unique 

relationships within the graph.  The importance of these magnitude values has been discussed 

along with the current limitations of this methodology. 
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CHAPTER 4 

APPLICATION 

Network Flux Analysis in the Neuse River Estuary 

Complex systems can be represented as weighted directional graphs.  Fluxes (sequences 

of directed arcs) play an important role in digraphs because they define relationships consisting 

of unique groupings of compartments.  A grouping of connected compartments contains rich 

contextual meaning because of the relationships defined by its connecting arcs.  The flow 

activity over these contextually rich compartmental groupings, called fluxes, holds valuable 

information about the state of a model.  Functional decomposition of system throughflow 

transforms a system model into a vector within a numeric feature space well suited for system 

state classification and data mining.  In this paper an ecological model with four years of 

seasonal data is analyzed.  First, coefficients are calculated over the cycles within the system, 

and then data mining using feature selection is performed on the coefficient vectors to isolate 

coefficients that optimally differentiate seasonal variance.  A Support Vector Machine (SVM) 

will then be used to show the validity of the isolated features for classifying the seasonal models 

as belonging to a particular season.  Finally, how the methodology might be used to expose 

hidden relationships in complex system networks is discussed. 

Introduction 

Complex systems can be modeled as a network of interconnected compartments with 

directed, weighted arcs (currency flows; e.g., mass or energy).  This type of directed graph 

(digraph) construct appears across a wide variety of scientific disciplines [73, 76, 77, 78, 79, 89] 
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including economics, computer science, ecology, biology and sociology.  The models can be 

structurally and functionally decomposed to produce a set of fundamental relationships (fluxes) 

within the system and coefficient values representative of the total system throughflow 

accounted for by each of the relationships [87].  Coefficient values for each flux represent the 

units of currency passing through the graph segment in simulated or real-world data.  System 

traits can be encoded in the system using sets of fluxes, and the expression traits is encoded by 

the coefficient values over the fluxes in the set.   

In this paper Network Flux Analysis (NFA) is used to analyze the system trait of 

seasonality.  NFA provides the framework for analyzing the building blocks of complex systems 

as they relate to higher level system function.  It allows systems to be studied through hierarchal 

layers of fundamental compositional units.   

The most basic unit of a system is a compartment.  Compartments are unique agents 

within a system where network flow resides and is potentially exchanged with other 

compartments.  A compartment affects other compartments in a graph either directly or 

indirectly.  Compartments can be grouped into self-sustaining, fundamental sub-networks within 

the system called fluxes.  A flux is defined as a directed grouping of compartments from a 

system meeting the following constraints: 

 

• Compartments n and n + 1 in the flux share a directed edge in the system from n 

to n + 1. 

• A flux must end where it begins; the first compartment must also be the last 

compartment. 
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• A compartment can appear at most one time in a flux, except for the first 

compartment which must appear exactly twice; the second occurrence being the 

last compartment in the flux. 

• The environment is considered a compartment and can appear in a flux only as the 

first and last compartment. 

 

Fluxes are the smallest steady-state groupings of unique compartments in the system, and 

are important compositional elements of a system.  Fluxes can be grouped together into 

diagnostic sets whose flow activities encode system traits at particular values (e.g. the system 

trait season has four values: spring, summer, fall and winter).  NFA, as seen through this 

perspective, presents a construct for complex systems analysis reminiscent of how genetics helps 

understand biological organisms.  In this analogy compartments become the nucleotides of 

complex systems, fluxes are codons, groupings of fluxes can be seen as genes, and the 

coefficient values over a grouping of fluxes can be seen as gene expression (the particular value 

of a system property encoded in the flux set). 

NFA uses the coefficient values for fluxes as numeric inputs into a machine learning 

algorithm. This allows for data mining on systems to isolate a minimal set of fluxes responsible 

for encoding system traits.  In this paper the flux set being sought is one whose values 

predictably fluctuate between seasons.  In NFA, each flux’s value represents a variable (degree 

of freedom) in a numeric space and machine learning algorithms can analyze this numeric space 

to extract information.  The values of the flows will change seasonally, and quantification of this 

imparts a particular seasonal signature to the system.  A subset of fluxes that encode a trait is 
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valuable information giving domain analysis the ability to infer system status and isolate flux 

indicators based on prior data.   

The structure of this paper is as follows.  First, functional decomposition and machine 

learning (specifically feature selection and Support Vector Machines) will be reviewed.  Then, 

the specific machine learning algorithm of this paper will be described and illustrated by an 

example ecological model from the Neuse River estuary, North Carolina [101, 102, 103].  

Finally, the results will be interpreted and strengths and limitations of the methodology will be 

discussed. 

 

 

Figure 24: EcoNet model of the Neuse River estuary. 
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Machine Learning 

Supervised machine learning algorithms can be used to approximate linear and non-linear 

functions for data classification.  These algorithms build learning models from training data, and 

they use these models to classify new data where the class is not known.  The training data 

contains rows data of data with n columns (features) from an n dimensional numeric space S, and 

a label telling the algorithm which class the data row belongs to.  The training data describes 

locations in the numeric space for each class of data, and they are treated as a representation of a 

non-linear function f(i), where i is a row in the training data.  Once the training data are defined, 

a model is constructed to fit it.   

While constructing the model a portion of the training data is placed into another 

grouping of data called the validation data.  The validation data are withheld from the learner 

while training it, and used as a final test to evaluate how effective the model generalizes beyond 

the training data.  There are different schemes for defining the validation data.  This research 

uses a method called n fold cross validation.  In this technique the training data are divided into n 

data groups and n learning models are built such that each of the data groups is used as validation 

data for one of the models.  The n models are then combined to produce a single model that is 

used for classification.  This technique helps the model generalize better when the amount of 

training data is small. 

Feature Selection 

In machine learning a feature is variable input into a learning algorithm.  If data are put 

into rows, features are the columns that intersect each row.  Feature selection is the process of 

isolating a subset of important features that perform optimally when used in learning algorithms.  

When data are sent through a learning methodology like a Support Vector Machine, only 
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selected features are used for data classification.  In machine learning the dimensionality of the 

numeric feature space is defined by the number of features (columns) from the data supplied to 

the learner.  As this feature space grows in dimensionality, it has been shown [98] that 

algorithms have a tendency to over fit to the data they are being trained on, resulting in poor 

generalization to unknown data.  Another problem with large feature spaces is that as the number 

of features grows, learning results can degrade because of the likelihood that features irrelevant 

to the concept being learned (i.e. seasonal classification) are included for evaluation by the 

algorithm.  These irrelevant features act as noise that confuses the algorithm and degrades 

results. 

Two distinct types of feature selection methodologies are subset selection and variable 

ranking.  In variable ranking some metric is posed against all features and a score is produced.  

The score of each of the features is indicative of its performance for the input being evaluated.  

In subset selection, groupings of features are evaluated to see how they perform together at the 

desired learning task.  A feature subset α (of variable size) is chosen, and the training data are 

sent through a learning algorithm (i.e. a Support Vector Machine) for classification using only 

the features in α.  The classification results are used to grade how well α can classify the data.  

Since exhaustively searching all combinations of features is impractical except for small sets of 

features, heuristic search strategies are used to explore combinations of features in a calculated 

manner. 

Support Vector Machines 

Support Vector Machines (SVM) learn concepts by separating data into two classes and 

treating them as two generalized sets of vectors in a numeric space.  The SVM finds a separating 

hyperplane between the two classes of points in the numeric space which is the maximum 
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distance from either of the two (Figure 25).  SVM’s have been shown to outperform other 

supervised machine learning algorithms over a wide variety of problems.  This is because they 

generalize better, due to the nature of how they learn.  Other machine learning algorithms can 

find hyperplanes that separate data sets, but the SVM finds the hyperplane with the greatest 

distance between either of the two classes.  The SVM finds support vectors, which are data 

instances from either class that are the closest to the opposite class in the numeric space being 

analyzed.  Once these support vectors are found, geometric operations are applied to find the 

hyperplane that is maximally distant from both sets of support vectors.  Finding support vectors  

 

 

Figure 25: Illustration of what a maximum marginal hyperplane looks like between two 

sets of data instances in a feature space (image taken from Christopher J.C. Burges [47]).  

The black and white dots represent different classes of data located numerically in this two-

dimensional feature space.  The circled dots are support vectors because they are the dots 

closest to the opposite class of data.  To generalize optimally the SVM will find a 

hyperplane that separates these support vectors by class and is maximally distant from 

both classes.  The solid line in the middle of the two dashed lines is the hyperplane in this 

example.  When given new “unknown” data the SVM would classify anything on the white 

dot side of the solid line as a white dot and anything on the black dot side of that line as a 

black dot. 
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and computing the maximum marginal hyperplane is a standard quadratic programming problem 

[47].  This explanation assumes a linearly separable feature space because it is the easiest way to 

explain the concept.  SVM’s can be generalized to support nonlinear features spaces as well as 

problems with more than two classes of data. 

Flow Decomposition within Systems 

Decomposing throughflow in a complex system allows for rich data analysis due to the 

fact that coefficient values for fluxes form a numeric feature space which can be leverage in 

many different kinds of machine learning and data mining methodologies.  Luper et al. [87] 

outlined a computational methodology for functionally decomposing system throughflow, in a 

similar way to earlier work by Ulanowicz [104] in which he identified both acyclic and cycle 

paths within a system and listed their arc weights.  The present methodology transforms a 

structurally-decomposed system into a context-free grammar and uses the Cocke-Younger-

Kasami (CYK) [90, 91, 92] algorithm to calculate the flux coefficients derived from an 

individual-based simulation of the system.  The CYK algorithm parses each individual path to 

label each step of the path as belonging to a specific flux.  The frequency of occurrence for each 

flux is tracked throughout the data and stored in a vector.  This vector is the basis for the 

coefficient values sought in the functional decomposition.  The details of the methodology are 

outlined in the first author’s previous work [87, 105].   

Classification of the Neuse River Ecological Data 

The Neuse River ecological model is a seven-compartment model that represents 

nitrogen flow in the Neuse River estuary in North Carolina.  This is a heavily connected model 

with a high cycling index (0.89), meaning most of the nitrogen in the system cycles extensively 

between compartments during the time between entry and exit.  The models analyzed in this 
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paper were created from seasonal nitrogen data obtained over a period of four years [101, 102, 

103].  The seasonal data were derived from samples systematically collected in the field.   

The methodology proposed by this analysis will seek to analyze functional 

decompositions of the Neuse River estuary to isolate fluxes important to seasonal variability.  In 

order to create the data necessary for flow decomposition, a simulation technique called Network 

Particle Tracking (NPT) [99] is used.  NPT is an individual-based simulation method, where 

discrete quanta (particles) of material or energy are labeled and tracked in time as they flow 

through the model compartments. NPT starts with breaking input flows into discrete packets 

which are called particles. For the present analysis a particle represents a nitrogen atom. Based 

on flow rates, NPT determines which flow is likely to occur and when. A particle is chosen 

randomly from a donor compartment and introduced to a recipient compartment. Ecosystem 

models are open systems and therefore new particles enter the system continuously. At steady 

state, when one of the particles enters a compartment or the system, another must leave.  So if 

the chosen flow is an environment input, a new particle is labeled and introduced to the recipient 

compartment. NPT keeps the record of path history of all particles, including when and where 

each particle movement occurs. These data are dumped into a text file after the simulation ends.  

NPT is particularly useful because, unlike similar individual based algorithms, it deduces all the 

rules on individual particle movement from the flow, input and output rate coefficients of the 

model. Therefore no additional information is needed to run an NPT simulation. NPT is a 

stochastic method that is compatible with the differential equation representation. In other words, 

for the same model, the average of many NPT simulations agrees with the differential equation 

solution. 
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Figure 26: Storage values for each compartment in the Neuse River estuary in North 

Carolina plotted over time.  Data on this graph were logarithmically scaled and derived 

from data collected in the field representing 16 discrete time periods (four per year) from 

1985 through 1989. 

 

 

For this analysis NPT was set to simulate around 10,000 paths per model (16 models).  

The accuracy of a functional decomposition increases as the number of analyzed paths increases; 

it would therefore be optimal to interpret all simulated paths for each seasonal data set, however 

the computational resources available for this work did not permit that.  This analysis used 

different size constraints for the number of paths given to the functional decomposition routine 

allowing for the comparison of the results over varying degrees of functional decomposition 

accuracy.  Six functional decompositions were performed on each of the 16 models with the 

number of paths analyzed set to 25, 50, 75, 125, 250 and 500.  This process produced six sets of 

16 functional decompositions where the functional decompositions in each set were derived from 
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a different number of randomly sampled paths from the 10,000 available paths for each model. 

Analysis was then performed on each of these six data sets as well as a seventh where the 

decompositions from the groups of sampling sizes 250 and 500 were lumped into a single dataset 

consisting of 32 functional decompositions.  This process of composing six sets of functional 

decompositions was necessary because of limited computational resources.  In a scenario with 

less computational constraints, all available paths could be included for each model, and only 

one set of 16 functional decompositions could be produced.  Analyzing the data in this way has 

the benefit of allowing comparative analysis towards sampling sizes used in functional 

decomposition. 

Once data sets are functionally decomposed into weighted simple cycles and chains we 

call fluxes (e. g., the Transformed Data column of Figure 27), feature selection is used to isolate 

subsets of these fluxes best suited to identify a specifiable system trait.  In this case, to illustrate 

the methodology, the trait selected was seasonality.  The problem then becomes this:  What is the 

minimal flux set needed to specify the season from which the data instances in question are 

derived with maximal accuracy?  Figure 28 shows a simulated depiction of how supervised 

machine learning classifies flux data as belonging to seasonal labels.   

There are 640 unique fluxes in the Neuse River estuary model and the coefficient for 

each one is a feature (methodology input variable).  The numbers of features (flux coefficients) 

in this model makes an exhaustive search over all combinations impossible; therefore this 

analysis uses standard heuristic approaches to search for good combinations of features.  This 

analysis utilizes different search strategies working in a combined effort to extract optimal 

subsets of features (fluxes) from the large search space of possible combinations.  The 

methodologies used were a combination of genetic algorithm [94], greedy stepwise search,  
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Figure 27: This figure illustrates two instances of a single structural model having different 

flow weights.  Two different flow-weighted instances of the model are shown in the Model 

Data column.  The Transformed Data column depicts the fluxes and their coefficient values 

after functional decomposition.  The graph on the right illustrates the second column of 

coefficients in the Transformed Data column plotted over time where the vertical axis 

represent the coefficient value (the graph assumes there are 10 more flow weight model 

instances that are not graphically depicted in the figure). 

 

 

forward selection [95], rank search [96] and scatter search [97].  Since an exhaustive search over 

all feature combinations is not possible any results from this methodology are not unique or 

guaranteed to be optimal.   

The feature selection process was run numerous times producing different feature 

combinations that were then given a final evaluation.  The final evaluation was a blind 

classification of the functional decompositions in an SVM using only the isolated features.  The 

final understanding of how well a feature set describes seasonal variation is derived from the 

accuracy with which an SVM can blindly classify the 16 functional decompositions using only 

the feature set (fluxes) being evaluated.  The groupings of fluxes encoding seasonal variation 
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Figure 28: Given the above data distribution a two-dimensional plot (two-dimensional 

feature space) shows how the feature space comes to be understood by a learning 

algorithm.  The lines in the two-dimensional plot separating the classes of data become 

conceptual boundary lines for the learning algorithm to understand the classification of the 

data instances.  The data table presented here is data the algorithm will train on; the 

classes for the instances in the table are known apriori and given to the learning algorithm.  

The question now becomes the following:  Given a new data instance whose classification is 

not known, what region of this two dimensional plot does the instance fall into?  As far as 

the learning algorithm is concerned the region this data falls into is the classification it is 

statistically most likely to be.  This is a simple problem in two dimensions with clear 

boundary lines.  In a real world problem placing data instances into feature spaces can be a 

complex process.  The data instances for hard problems are typically not linearly 

separable. 
 

gives ecologists new information about the ecosystem that is important.  A grouping of fluxes 

produced by this methodology represents a small diagnostic unit within the system that fluctuates 

in a predictable manner with respect to seasonal variability.  
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Results 

Running the aforementioned methodology on the Neuse River estuary models isolated a 

set of eight fluxes (of the 640 total) that collectively allow an SVM to classify each of the 16 

models seasonally with 100% accuracy.  Another way to understand this is that accuracy of the 

classification results is greatest when only these eight fluxes are used and no others.  It should be 

noted that this set performed significantly better than any other set found during this analysis, but 

is not guaranteed to be a unique or optimum solution.  Other sets of fluxes could exist that vary 

seasonally in a predictable manner, producing similar results to the set of eight reported herein.  

The paths corresponding to the eight fluxes found by this analysis, as well as the composition of 

all eight into one sub-network are shown in the figures on the following pages. 

 

 

Figure 29: Graph of the Neuse River ecosystem model.  All edges used in the eight fluxes 

found during feature selection are in bold. 
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Figure 30: One of the eight fluxes found during feature selection.  The line graph shows the 

flux activation values as they progress chronologically over the time period covered in the 

data. 
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Figure 31: One of the eight fluxes found during feature selection.  The line graph shows the 

flux activation values as they progress chronologically over the time period covered in the 

data. 
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Figure 32: One of the eight fluxes found during feature selection.  The line graph shows the 

flux activation values as they progress chronologically over the time period covered in the 

data. 
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Figure 33: One of the eight fluxes found during feature selection.  The line graph shows the 

flux activation values as they progress chronologically over the time period covered in the 

data. 
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Figure 34: One of the eight fluxes found during feature selection.  The line graph shows the 

flux activation values as they progress chronologically over the time period covered in the 

data. 
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Figure 35: One of the eight fluxes found during feature selection.  The line graph shows the 

flux activation values as they progress chronologically over the time period covered in the 

data. 
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Figure 36: One of the eight fluxes found during feature selection.  The line graph shows the 

flux activation values as they progress chronologically over the time period covered in the 

data. 
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Figure 37: One of the eight fluxes found during feature selection.  The line graph shows the 

flux activation values as they progress chronologically over the time period covered in the 

data. 
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In machine learning there are parameters and methodology choices that are inherent to 

the process of learning from training data.  With SVM’s these choices include things such as 

normalization verses standardization of the input data, which type of kernel computation to use, 

kernel specific parameters (exponent for polynomial kernels and gamma for RBF kernels), and 

an SVM specific parameter called the complexity parameter.  A brief explanation of these 

follows: 

 

• Normalization of Data 

Applying a Gaussian function to each feature column in the data, mapping that 

column of data into the range -1 to 1. 

• Standardization of Data 

Mapping feature columns into the range 0 to 1 by the following formula:  

x' = x – colmin / colmax - x 

• Kernel Selection  

It is frequently the case when analyzing feature vectors for classification they will 

not be linearly separable.  The SVM algorithm can map these feature vectors into 

a feature space of higher dimensionality to analyze for separability in that feature 

space.  This is a common practice in machine learning and is done through the use 

of a kernel.  Kernels can be of different types.  For this analysis two kernels were 

evaluated, the polynomial kernel and the RBF kernel. 

  Polynomial Kernel :   K(x, y) = <x, y>
p
 

RBF Kernel :    K(x, y) = e
-(gamma * x) 

  where x = <x-y, x-y>
2 
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• Complexity Parameter in SVM algorithms 

The complexity parameter relates to the flexibility given to the SVM to choose 

hyperplanes.  As the complexity parameter increases, the SVM is given greater 

flexibility to choose marginal hyperplanes that are less maximal in order to 

minimize training error. 

 

The SVM used to classify the flux vectors for this analysis used a polynomial kernel with 

an exponent of 1.0, a complexity parameter of 10.0, and normalization was performed on the 

input vectors.  Different parameters were explored such as RBF kernels and polynomial kernels 

with different exponents, but the parameters chosen performed best for the feature space defined 

by this analysis.   

The results show the proposed methodology can be used for knowledge extraction 

towards seasonal variation in complex systems.  The set of eight fluxes shown above represent a 

sub-network within the system that can classify which season a model is in with 100% accuracy 

over the available data. 

Table 1 illustrates the accuracy and capabilities of the methodology.  In achieving 

classification results of 100% accuracy, it can be said that the eight fluxes used vary predictably 

from season to season.  These eight features accurately divide the numeric space pertaining to 

seasonal variation in this model.  This information can provide valuable domain-specific 

information to ecologists for further analysis.  To date, the current methodology is the only way 

to attain this information. 
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Table 1: Legend below. 

 

# of Instances: the number of NTP paths randomly sampled to build the features used in 

this particular SVM classification run. 

Percent Correct: the number of feature vectors classified correctly as belonging to a 

particular season. 

Recall: proportion of examples which were classified as class A, among all examples which 

truly have class A, i.e. how much of the class was captured. 

Precision: proportion of the examples which truly have class A among all those which were 

classified as class A. 

FP: Proportion of examples which were classified as class A, but belong to a different class. 

 

# of Instances in 

Functional 

Decomposition 

Percent 

Correct Recall Precision FP 

25 62.5 0.625 0.713 0.125 

50 68.75 0.688 0.583 0.104 

75 68.75 0.688 0.729 0.104 

125 75 0.75 0.817 0.083 

250 87.5 0.875 0.888 0.042 

500 87.5 0.875 0.888 0.042 

250+500 100 1.0 1.0 0.0 

 

 

 

An important point shown by Table 1 is that classification results for the decompositions 

of differing sampling sizes increase in accuracy as the sampling sizes increase.  This was 

expected as the functional decomposition is an approximation of the actual system activity based 

on the sampling size used.  Increasing the sample size elevates the accuracy of the functional 

decomposition.  A more accurate decomposition should yield better classification results as the 

models are more accurately depicted. 
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Further Analysis of Results 

After the feature selection and subsequent classification of the data, the final eight fluxes 

were subjected to manual testing to see if they could be further reduced to a smaller set that 

classified the data correctly.  The manual testing involved leaving one of the fluxes out of the 

feature input data to the SVM, for the purpose of evaluating the degradation in classification 

accuracy resulting from leaving that particular flux out, see Figure 38.   

 

 

 

Figure 38: Eight new data sets of seven fluxes are made by removing one of the eight fluxes 

found during feature selection.  These new data sets of seven fluxes will be classified to see 

how important each of the eight fluxes is towards the classification of seasonality. 
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There were eight fluxes so eight new distributions of data were created where each of the 

eight fluxes was removed to form a new distribution.  The results of the classifications on the 

new data sets are below. 

 

Table 2: This table shows the percentage of instances correctly classified when each of the 

eight fluxes is left out and only the remaining seven are used to classify seasonality for the 

data set.   

 

Flux being left out 
Percentage correctly 

classified 

E > NH4 > N_sed > E 96.88% 

E > DON > PN_hetero > PN_abiotic > E  100.00% 

N_sed > NOx > N_sed 100.00% 

E > PN_phyto > PN_hetero > NH4 > NOx > N_sed > E 100.00% 

PN_hetero > PN_abiotic > N_sed > NH4 > PN_hetero 100.00% 

PN_phyto > N_sed > NH4 > PN_phyto 96.9% 

PN_hetero > NH4 > NOx > PN_hetero 84.38% 

PN_phyto > N_sed > PN_hetero > NH4 > PN_phyto 87.50% 
 

 

 

The results from manually testing the removal of the individual fluxes in the set of eight 

shows that it is possible to further reduce to the number of fluxes necessary to retain 100% 

accuracy in the seasonality classification.  There were four fluxes that when left out did not 

reduce the accuracy of the classification, and upon further investigation three of those four were 

able to be left out in combination to produce a set of five remaining fluxes that retained the 

ability to classify the seasonality of the data with 100% accuracy.  The five fluxes are listed 

below. 

 

• E > NH4 > N_sed > E 

• N_sed > NOx > N_sed 
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• PN_phyto > N_sed > NH4 > PN_phyto 

• PN_hetero > NH4 > NOx > PN_hetero 

• PN_phyto > N_sed > PN_hetero > NH4 > PN_phyto 

 

This set of five fluxes was subjected to another round of manual testing due to the fact 

that removing features in this manner alters the feature space for the SVM.  Further testing was 

needed to see if these five could be reduced even farther.  Manual test was performed again, this 

time creating five data sets where one of the fluxes was removed from the set of five to create a 

new distribution with only four fluxes.  The results of the manual testing are shown below. 

 

Table 3: This table shows the percentage of instances correctly classified when each of the 

five fluxes is left out and only the remaining four are used to classify seasonality for the 

data set.   

 

Flux left being left out 

Percentage correctly 

classified 

E > NH4 > N_sed > E 100.00% 

N_sed > NOx > N_sed 87.50% 

PN_phyto > N_sed > NH4 > PN_phyto 90.60% 

PN_hetero > NH4 > NOx > PN_hetero 100.00% 

PN_phyto > N_sed > PN_hetero > NH4 > PN_phyto 93.75% 

 

 

The results from this round of removal testing show the potential to further reduce the 

number of fluxes needed in seasonality classification.  There were two fluxes that when left out 

did not reduce the percentage correctly classified.  Tests were run to see if those fluxes could be 

left out in combination while still retaining 100% accuracy in classification.  The results of the 
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test showed that both of those fluxes could be left out while still retaining 100% classification on 

the seasonality of the data sets.  The three fluxes are listed below. 

 

• N_sed > NOx > N_sed 

• PN_phyto > N_sed > NH4 > PN_phyto 

• PN_phyto > N_sed > PN_hetero > NH4 > PN_phyto 

 

The resulting three fluxes were run through another test to see if they could be further 

reduced, but those tests concluded any further reduction in the number of fluxes broke the ability 

to retain 100% classification of the data instances.  The results of this round of testing are listed 

below. 

 

Table 4: This table shows the percentage of instances correctly classified when each of the 

three fluxes is left out and only the remaining two are used to classify seasonality for the 

data set.   

 

Flux left being left out 

Percentage correctly 

classified 

N_sed > NOx > N_sed 81.75% 

PN_phyto > N_sed > NH4 > PN_phyto 50.00% 

PN_phyto > N_sed > PN_hetero > NH4 > PN_phyto 68.75% 

 

 

The results of testing the reduction of the set of eight fluxes found from feature selection 

show that only three fluxes are needed to determine the seasonality of the data instances.  These 

three fluxes can be seen as fluxes involved in encoding the system information regarding 

seasonality.   
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There are three sets of fluxes depicted in the reduction testing, sets of eight, five, and 

three.  While the set of three is the smallest set, the average percentage correct when one of the 

three is left out is by far the smallest.  The average percent correct for the reduction tests show a 

tolerance level in the event that one of the fluxes has an abnormal value, or is missing.  The 

average percent correct for each of the reduction tests is listed in Table 5. 

 

Table 5: This table shows the average percentage correctly classified for the three rounds 

of reduction testing.  The round testing the set of three fluxes has a significantly lower 

average when one of fluxes from the set is removed from classification. 

 

Number of fluxes in reduction test 
Average percentage correctly classified 

when one flux is left out 

8 95.70% 

5 94.37% 

3 66.83% 

 

 

A final analysis of the fluxes that are responsible for encoding the system trait of 

seasonality would rank the set of three fluxes that retain the ability to classify seasonality with 

100% accuracy as the best solution found.  However, to some extent the set of five and eight 

need to be included as secondary sets that show an increased tolerance for dealing with 

potentially abnormal system activity.  Figure 39 shows three-dimensional scatter plots of the 

feature space created by the set of three fluxes that retain the 100% classification accuracy. 
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Figure 39: The three figures presented show three-dimensional scatter plots of the feature 

space created by the set of three fluxes that retain the 100% classification accuracy, black = 

summer, orange = fall, green = spring and blue = winter.  The images show different 

perspectives of that feature space to illustrate it optimally. 

 

 

Pattern Discovery in Results 

The results from running the functional decomposition methodology on the 16 

chronological data sets present a time series for each flux in the system.  This allows the activity 

for each flux to be viewed as a signal that has 16 sampling points, see Table 6 and Figure 40. 

The eight fluxes found in the results from running the feature selection methodology for 

the Neuse River estuary all have a periodic shape when plotted on a line graph as in Figure 40.  

Intuitively this is reasonable since the data is chronological and the seasons repeat themselves at 

a concrete interval, but an analysis of fluxes outside the eight found through feature selection 
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show less conformity to a periodic shape.  Figures 41, 42 and 43 show the comparison between 

the eight fluxes found and eight fluxes randomly chosen from the rest of the decomposition 

values. 

 

Table 6: This table shows the decomposition values for the flux  E > NH4 > N_sed > E  over 

the chronological seasons in the available data. 

 

Season/Year E > NH4 > N_sed > E 

Spring 85 0.000093 

Summer 85 0.001092 

Fall 85 0.000345 

Winter 86 0.000215 

Spring 86 0.000356 

Summer 86 0.000863 

Fall 86 0.000198 

Winter 87 0.000001 

Spring 87 0.000249 

Summer 87 0.001253 

Fall 87 0.000001 

Winter 88 0.00006 

Spring 88 0.000707 

Summer 88 0.001057 

Fall 88 0.000001 

Winter 89 0.000001 

 

 

 

Figure 40: This figure shows the decomposition values for the flux  E > NH4 > N_sed > E  

plotted as a time series on a line graph. 
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Figure 41: This figure shows the first four out of the eight fluxes found during the feature 

selection methodology on the Neuse River estuary in North Carolina.  Each of the fluxes is 

graphed on a radar plot where each section represents a specific year and season.  Since 

there are four years of data and four seasons in each year the radar plot is optimally suited 

to graph this particular data set.  The preiodic nature of the flux values are easily noticable 

in this graphing format.  The oscilation of the lines in these graphs seems to flucuate 

seasonally, peeking at similar seasons each year which could help the SVM distinguish 

seasonality with greater accuracy. 
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Figure 42: This figure shows the second four out of the eight fluxes found during the 

feature selection methodology on the Neuse River estuary in North Carolina.  Each of the 

fluxes is graphed on a radar plot where each section represents a specific year and season.  

Since there are four years of data and four seasons in each year the radar plot is optimally 

suited to graph this particular data set.  The preiodic nature of the flux values are easily 

noticable in this graphing format.  The oscilation of the lines in these graphs seems to 

flucuate seasonally, peeking at similar seasons each year which could help the SVM 

distinguish seasonality with greater accuracy. 
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Figure 43: This figure shows randomly selected fluxes from the data distribution outside of 

the eight found during feature selection.  The patterns presented by these fluxes are much 

less periodic in nature.  There is no clear cut pattern that emerges from these radar plots as 

opposed to the periodic pattern that emerges from the eight fluxes found during feature 

selection. 
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A visual comparison between the eight fluxes found during feature selection and the 

other eight fluxes in the figures above clearly shows a more periodic nature in the signals from 

the eight fluxes isolated in feature selection.  This was not expected apriori, but it is reasonable 

that feature selection would isolate signals presenting a more clearly defined pattern expressing 

itself with the same frequency as the concept being learned.  Treating the flux time series as 

signals opens a new venue for data mining on a wide variety of tasks.  Signal processing is a 

well-defined field with robust methodologies suited for a multitude of different data mining 

tasks.  The decomposition routine outlined herein, applied over chronological data sets, 

transforms the adjacency matrices encoding the models being analyzed into signals expressing 

various activations and frequencies.  These signals serve well for knowledge extraction and data 

mining as exemplified herein towards seasonality classification. 

Ecological Analysis 

The results produced by the proposed methodology allow ecological analysis not 

previously possible.  One point that is particularly interesting is that all of the diagnostic fluxes 

of the Neuse River Estuary (NRE) models contain the N-Sediment compartment.  Both Network 

Environ Analysis - Storage (NEA-S) and empirical studies provide evidence that N-Sediment is 

the key "capacitor" (storage and release site) for nitrogen in this system. 

The x3-Sed compartment behaves like a harmonic oscillator in sequestering nitrogen 

during winters and, capacitor-like, releasing it to biogeochemical processes during summers 

[116].   
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Three observations made from the three-dimensional plot (Figure 44):  

 

1. The seasonal partitioning is clear.   

2. The sequester-release capacitance is evident in the winter > spring versus summer 

> fall data points (high values on the N-sed > NOx> N-Sed flux axis for winter > 

spring versus low values for summer > fall). 

3. The seasonal sequence (spring > summer > fall > winter) can be visually traced in 

the space, and summer appears to be the most distinctive.   

 

The summer peaks in scores from the flux analysis, particularly for the two fluxes 

containing N-Phyto, are consistent with this interpretation of the seasonal mechanisms of 

summer nitrogen uptake and winter nitrogen sequestration in the NRE.  The peaks for the N-sed 

> NOx > N-Sed flux are primarily in winter and spring.   

 

Figure 44: This figure shows a three-dimensional scatter plot of the feature space created 

by the set of three fluxes that retain the 100% classification accuracy as presented in the 

results, black = summer, orange = fall, green = spring and blue = winter. 
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Figure 45: This figure shows two fluxes graphed on a radar plot where each section 

represents a specific year and season.  Since there are four years of data and four seasons 

respectively in each year, the radar plot is optimally suited to graph this particular data 

set.  The periodic nature of the flux values are shown optimally with this graph style.  The 

oscillation of the lines in these graphs seems to fluctuate seasonally, peaking at similar 

seasons each year which could help the SVM distinguish seasons with greater accuracy. 

 

 

 

 

Figure 46: This figure shows two fluxes graphed on a line plot chronologically over a four 

year period. 

 

 



 

 

107 

 

In winter throughflows are low, signifying small nitrogen exchange with other 

compartments; in summer throughflows are high, indicating active interchange between 

sediment and the other compartments.  Note that unit-input driven sediment environs reflect this 

pattern, storing nitrogen during winter and releasing it to active biogenic processes during 

summer.  However, measured inputs change this picture in absolute environs, to one dominated 

by the dissolved nutrient compartments, x5-NOx, x4-DON, and x6-NH4.  The three diagnostic 

fluxes found for the NRE models contain three of the four dominant storage compartments from 

the NEA-S results, N-Sed, NOx, and NH4. 

Network analysis by Christian and Thomas [116, 117] showed that, on average, half the 

nitrogen needs of phytoplankton are met by nitrogen that once resided in sediments.  

Phytoplankton dependence on sediment nitrogen varied seasonally, ranging from 5–32% in 

winter to 71–85% in summer [117].  This reflects regeneration and mass transport mechanisms 

that transform nitrogen and move it from the sediment pool of winter up into the water column 

where it becomes seasonally available to support phytoplankton growth.  Empirical evidence 

showed that nitrogen from sediments is released during the summer months as ammonium and 

taken up by phytoplankton [120, 121].  This corresponds with the information presented in 

Figure 45 and Figure 46. 

Corbett [118] empirically demonstrated the key role of sediment in the nitrogen dynamics 

by demonstrating the diffusive and advective (resuspension) of nitrogen from sediments 

producing an internal loading to the NRE as great, if not greater, than the external watershed 

loading.  Corbett [118] reported that even though watershed nitrogen loading of the NRE had 

been reduced by 30%, total nitrogen in the NRE remained the same.  The internal nutrient 

loading from sediment was proposed as the major reason for total nitrogen showing no reduction 
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during nutrient loading reduction.  The presence of the N-Sed compartment in all of the 

diagnostic fluxes of the NRE models indicates its key role in the N-dynamics that these models 

represent.  All the diagnostic fluxes of the Neuse models presented in the results contain the N-

Sed compartment.  Both storage NEA and empirical studies provide evidence that N-Sed is the 

key capacitor (storage and release site) for nitrogen in this system. 

Shape and variability of the N-Sed > NOX > N-Sed line graph (lower and less distinctive 

peaks, less variability) is much different from the shape and variability of the two N-Phyto line 

graphs (higher and more distinctive peaks, more variability). 

 

 

 

Figure 47: This figure shows three fluxes graphed on a line plot chronologically over a four 

year period. 

 

 

This dichotomy is represented in the NEA results for the NRE in the graphs of seasonal 

total environ throughflow (TET), total system throughflow (TST), total environ storage (TES) 

and total system storage (TSS) sequences over the 16 season time series.  One clear difference in 
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the throughflow vs. storage data is that there is a great deal more variability in the TET and TST 

sequences than the TES and TSS sequences demonstrated by the much higher coefficient of 

variation values for TET and TST sequences; this reflects inertial damping associated with 

accumulated stocks [116]. Also, in Figure 46, the two fluxes starting with N-phyto are biotic (N-

phyto sequences), and the flux starting with N-Sed is abiotic. 

Another point that can be drawn from ecological analysis is the presence of NH4 and the 

absence of NOx in two of the N-Phyto cyclic fluxes. Corbett [118] presented arguments for why 

NH4 had shown an increase in concentration during the period of N-loading reduction to the 

NRE.  In estuaries such as the NRE, which are organic-rich, eutrophic, and show episodes of 

anoxia, NH4 is recycled directly back to the water column from the sediments with the 

occurrence of denitrification [118, 119].  The increase in recycling of NH4 may also be related to 

greater mineralization of organic matter [118].  Both of these pieces of evidence are congruent 

with the compartment make-up of two of the N-Phyto fluxes found for the NRE nitrogen models. 

In addition to the points mentioned above, the methodology and presented results brings 

up interesting points.  A few of these are listed below. 

  

1. The three diagnostic fluxes isolated in the results to classify seasonality of a 

system with 100% accuracy have five of the seven compartments.  Why are N-

Det (particulate organic nitrogen) and DON (dissolved organic nitrogen) missing?   

2. In the diagnostic fluxes, it's not the compartments, per se; it's their sequences that 

appear to have the diagnostic power.  All of the 640 fluxes are made up of the 

same compartments, but have different sequences.  This connects strongly to the 
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idea from environs that sequence is the essential diagnostic feature of network 

function. 

3. It is our current understanding that systems have many traits.  In this case season 

was an example trait.  Each trait will be diagnosed by a distinctive flux set.  

Running the presented methodology over different traits should present 

opportunities for meaningful data analysis based on which traits are selected.  In 

order to run the proposed methodology on a different trait, example models 

reflecting the possible values of the trait need to be provided.  The methodology’s 

ability to extract diagnostic fluxes comes from its ability to compare the same 

structural model with different flow values representing potential trait values.  In 

the Neuse River Estuary the models given to the methodology were representative 

of the four different seasonal states for the system (there were four models each 

for winter, summer, fall and spring, totaling 16 models).  This means diagnostic 

fluxes can be discovered for a trait as long as the differing flow values for the 

models can be ascertained. 

 

The methodology and results presented in this work pose a new approach to system 

analysis that has revealed exciting ecological perspective.  The ability to construct an encoding 

framework for complex systems similar to what genetics does for biological systems 

transformative possibilities for computational analysis.  This ability to see how individual steady 

state components of a system are involved in encoding and responding to higher level system 

traits bridges a gap between system complexity and system structure in ways not previously 

possible. 



 

 

111 

 

Classification Using the Adjacency Matrix 

As an alternative to using the functional decompositions as feature vectors into the SVM, 

the weighted adjacency matrix representation of the system can also be used.  In this approach 

each arc in the flow-weighted adjacency matrix is used as a feature presented to the SVM.  The 

weighted adjacency matrices for this approach were built from the 250 and 500 sampling size 

distributions of data simulated from NPT.  Each time an arc appeared in a path, it was logged in 

the adjacency matrix.  The classification results for this process are shown in Table 7.  Feature  

 

Table 7: Legend below. 

 

# of Instances: the number of NTP paths randomly sampled to build the features used in 

this particular SVM classification run 

Percent Correct: the number of feature vectors classified correctly as belonging to a 

particular season 

Recall: proportion of examples which were classified as class A, among all examples which 

truly have class A, i.e. how much of the class was captured. 

Precision: proportion of the examples which truly have class A among all those which were 

classified as class A. 

FP: Proportion of examples which were classified as class A, but belong to a different class. 

 

# of Instances for 

Weighted Adjacency 

Matrix 

Percent 

Correct Recall Precision FP 

250 93.75 0.938 0.95 0.021 

500 100 1.0 1.0 0.0 

 

 

selection was attempted on these data sets, and the best subset from the 64 possible features from 

the eight by eight adjacency matrices were the 36 non-zero arcs in the matrices.  Some arcs have 

a low probability of occurrence and did not occur in the sampled pathways; these arcs were not 

in the 36 selected features.  Any further reduction in features beyond these 36 degraded the 
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results.  Multiple SVM settings were applied and the best settings found were a polynomial 

kernel with an exponent of 1.0, a complexity parameter of 10.0, and normalization of the input 

vectors.  These settings were the same settings used for classifying the flux coefficients 

presenting good opportunity for comparative analysis. 

The results for this approach achieved 100% accuracy.  This is the same percentage as the 

approach using the functional decomposition vectors, however this approach performed better on 

the corresponding sampling sizes in comparison with the other approach.  The other approach 

needed to combine the 250 and 500 sampling size data sets in order to achieve 100% accuracy.  

The fact that this approach attains 100% accuracy with the 500 sampling size data set and the 

functional approach only attains 87% accuracy has potential to be misleading.  The fact that 

100% classification results can be attained at all means this is a relatively easy concept to 

classify.  The features pertaining to the respective seasons fluctuate in such a way that the SVM 

has an easy time classifying data instances correctly.  This approach outperforming functional 

decomposition on an easy problem does not mean it will outperform functional decomposition 

on a harder problem.  An example of a harder problem could be trying to classify the year of a 

data instance rather than the season.  Ecologically, this classification problem might be 

irrelevant, however it could serve to illustrate the methodologies potential towards being applied 

to challenging problems.  The algorithmic runtime for this approach is linear in number of edges 

appearing in the simulated data, and thus scales much better than functional decomposition.  

Another difference between the two approaches was the number of features needed.  The 

functional decomposition was able to use feature selection to perform classification based on a 

smaller set of features, isolating more important features and suppressing ones considered noise.  
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With the adjacency matrix approach all the non-zero arcs from matrix needed to be used, any 

reduction of this feature set degraded the accuracy of the classification results. 

Reversing the Transformation 

Feature selection on the coefficient vectors from the functional decomposition isolates 

the information in the domain of the functional decomposition that is necessary for optimal 

classification of the data sets in the distribution.  The eight features isolated using feature 

selection in the present analysis can be used in a reverse transform to map only these coefficients 

back to the primary domain of the flow-weighted adjacency matrix.  The resultant adjacency 

matrix contains only the portions of flow for an arc embedded in the diagnostic fluxes 

determined to predictably fluctuate from season to season.  The matrix produced by the reverse 

transform is a legitimate system that is synthetically produced.  For an additional comparison 

between the adjacency matrix domain and the domain of the functional decomposition, the 

250+500 data set that achieved 100% classification accuracy had this reverse transform applied 

to obtain modified adjacency matrices for each of the 32 data sets (four years with eight seasons 

each) using only the eight coefficients found through feature selection.  The resultant adjacency 

matrices were grouped into a distribution of flow vectors that were classified seasonally using 

the same methodology as the original adjacency matrices (36 features sent through an SVM).  

The classification accuracy on these modified adjacency matrices decreased substantially.  The 

results are shown in Table 8.  Feature selection was performed on these 32 input vectors to see 

 

 

Table 8: Legend, see Table 7. 

 

 

# of Instances for Weighted 

Adjacency Matrix 

Percent 

Correct Recall Precision FP 

250+500 68.75 0.688 0.696 0.104 



 

 

114 

 

if the classification results could be improved but 68.75% accuracy was the highest that could be 

achieved. 

The degradation in accuracy on the adjacency matrices after the reverse transform was 

applied implies a difference between the ways information is presented between the two 

domains.  The only information needed in the domain of the functional decomposition is the 

eight fluxes found through feature extraction, when this isolated information is mapped back into 

the original domain (adjacency matrix domain) the presentation of the information is such that a 

machine learning algorithm cannot mathematically reproduce the results from the domain of 

functional decomposition.  The adjacency matrices produced by this reverse transform are 

reasonable steady state systems that contain only the portions of network flows isolated 

computationally as varying predictably between the different seasons (in much the same way a 

band pass filter works on an audio signal).  Further research needs to be done, but there is a 

distinct difference shown here in the way the two domains present information.   

Application Towards Classification of Data Sets by Year 

Seasons present a substantial and predicable change to an ecosystem.  Due to seasonal 

fluctuation there are different affecters presented to the ecosystem such as temperature 

differences, length of daylight, and plant growth.  The data given to the knowledge extraction 

methodology presented herein has affectively been able to extract information for and classify 

data according to season.  Since the ecosystem has predictable and pronounced changes brought 

on by season, this process of seasonal information extraction is capable of performing with 100% 

percent accuracy.  To see how the methodology performs for classification towards a harder 

problem, the same data sets were used towards classifying which year a data instance belonged 
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to.  The years consisted of four seasons and started with spring.  The years and corresponding 

seasons are presented in the Table 9. 

 

Table 9: This table shows how the different season/year data instances were grouped into 

year classifications. 

 

Year One Spring 85, Summer 85, Fall 85, Winter 86 

Year Two Spring 86, Summer 86, Fall 86, Winter 87 

Year Three Spring 87, Summer 87, Fall 87, Winter 88 

Year Four Spring 88, Summer 88, Fall 88, Winter 89 

 

 

Classifying which year an instance belonged to turned out to be a harder problem than 

seasonal classification.  Where the seasons present clear classifications regions with drastically 

different system activities, yearly separation of data instances does not have the same stark 

differences to aid the SVM in classification.  The tests run to judge the yearly classification 

problem took the same steps used towards the seasonal methodology presented in this work.  

Feature selection was performed to isolate an optimal set of features to use in the classification 

problem, and then leave one out cross fold validation was performed to verify the percent of 

instances correctly classified.  The tests were run using the 500 instance sampling size data sets 

for both the adjacency matrix and functional decomposition data.  Using the adjacency matrix 

the highest percentage correctly classified was 25%.  In comparison, the functional 

decomposition methodology was able to achieve 62.5% accuracy in classification.  The results 

are presented in Table 10. 

The results of running this test show that for certain problems, it is possible for NFA to 

significantly outperform using the adjacency matrix as feature input in machine learning. 
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Table 10: This table lists the results of the two classification tests.  The data set of instances 

built from the functional decomposition data performed with higher accuracy. 

 

Method Percent 

Correct 

Recall Precision FP 

Weighted Adjacency  25.00% 0.25 0.244 0.25 

Functional 

Decomposition 

62.50% 0.625 0.692 0.125 

 

 

Conclusion 

This work has shown how functional decomposition of complex systems can be used for 

data mining and machine learning.  In the analysis carried out on the 16 seasonal data sets from 

the Neuse River ecosystem, the domain of functional decomposition was used to isolate three 

fluxes from the ecosystem that can be used to mathematically infer what season the ecosystem’s 

data were drawn from.  Using the domain of functional decomposition and these three fluxes, a 

Support Vector Machine was used to classify the data sets as belonging to a particular season.  

This technique was compared with another method where the arcs flows in the adjacency 

matrices of these systems were used as features given to a Support Vector Machine.  In both 

these methods 100% accuracy of classification was achieved. 

The ability to achieve 100% accuracy with only three fluxes from the Neuse River 

estuary system illustrates how basic relationships within a complex system can encode high level 

system traits.  A disconnect is typically present between compositional elements of a system and 

the organized behaviors and activities those compositional units engage in during interaction 

with each other.  The methodology outlined herein presents fluxes as a missing layer of 

compositional organization within complex systems that provides the ability to bridge this 

disconnect.  Using fluxes together with machine learning and data mining, a methodology called 
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Network Flux Analysis (NFA) was constructed.  The key steps in NFA are defining a high a 

level system trait or function (i.e. seasonality), constructing data sets illustrating the system at the 

various state values expressed by this trait, and using feature selection and machine learning to 

extract which compositional units within the system are encoding the trait values.  This 

framework of information encoding is reminiscent of how genetics works to assess encoding 

within biological systems.  In biological system there are base compositional units called 

nucleotides that group together into secondary compositional units called codons and these 

codons group together into a third compositional unit called genes that encode high level 

biological traits and functionality such as eye or hair color.  In similar fashion to this, the NFA 

has three levels of compositional units within a complex system of which compartments are the 

lowest level.  Compartments can be seen as that allegorical nucleotide in a complex system, and 

they can be grouped together into a secondary layer of compositional elements called fluxes.  

Fluxes fill the role of codons in complex systems, and they can be grouped together to form 

gene-like regions within the complex system responsible for encoding specific traits. 

In addition to the above, this work explored a reverse transformation on the functional 

decompositions using only the coefficients belonging to the eight fluxes isolated in feature 

selection.  This reverse transformation produced a data set of adjacency matrices that could only 

achieve 68% accuracy in classification.  This highlights a difference between the two domains 

that needs to be further researched.   

The three fluxes isolated by the proposed methodology dimensionally reduce the feature 

space presented to the SVM while maintaining 100% accuracy.  The classification results are 

used as a metric for feature validation, allowing data mining routines to search for subsets of 

fluxes within a system whose activity in the domain of functional decomposition optimally 
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differentiates system trait values.  Ultimately, this methodology isolates flux groupings from a 

system acting as descriptors, which serve to maximally separate classes of adjacency matrices 

representing different states of that system. 

 

Figure 48: Flow chart of the NFA process from beginning to end. 
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Temporal Concept Analysis Using NFA 

Temporal concept analysis is an extension of formal concept analysis (FCA) that 

introduces a time component to concept lattices allowing concepts to evolve.  This time 

component establishes temporal orderings between concepts represented by directional edges 

connecting nodes within a temporal lattice.  This type of relationship enforces a temporal link 

between concepts containing certain attributes.  The evolution of concepts can provide insight 

into the underlying complex system causing change, and the concepts evolving can be seen as 

data emission from that complex system.  This research utilizes models of complex systems to 

provide frequency vectors of activity in well-defined sub-networks within a system.  Using NFA 

to analyze systems in this way can provide higher levels of contextual meaning than traditional 

system analysis calculations such as nodal connectedness and throughflow, thus providing 

unique insight into concept evolution within systems. 

Introduction 

FCA is a principled way of deriving ontological structures from a set of data containing 

objects and attributes [106].  It establishes concepts from collections of objects exhibiting a 

certain group of attributes.  In a database void of time, these concepts appear without change, 

however, in temporal concept analysis [107, 108, 109] time is taken into account and concepts 

can evolve to take on different meaning.  As an example take a database where people are 

objects possessing the attributes of either young or old.  If time steps are present in this database 

a person p could have entries at different time steps, t1 and t2, where p t1 is labeled young and p 

t2 is labeled old.  This would highlight that people objects can morph from young to old over 

sequential time steps.  This serves to establish a temporal link from time step t to t + 1 between 

the attributes young and old.  This is a simple example where a one way transition from young to 
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old occurs, but temporal relationships between attributes can be far more complex involving a 

sophisticated network of transitions and complex systems of interaction.  The underlying system 

causing system evolution can be modeled in an adjacency matrix of transition probabilities from 

one attribute to another.  This adjacency matrix can be seen as a kind of Markov model outlining 

the attribute transition probabilities for objects in a concept lattice.  A temporal concept attribute 

model (TCAM) is a modeling of a complex system where nodes in the system are attributes and 

flows in the system are probabilities that objects possessing an attribute at time t will possess 

another attribute at time t + 1.   

Temporal Concept Attribute Models (TCAM) 

An attribute transition model can be constructed from a time stamped database by 

isolating all instances of object transition from one attribute to another over a given window of 

time in the database.  Strategies for constructing this model include, but are not limited to, the 

following method:  First a group of attributes A must be defined where A contains all the 

attributes being modeled in the TCAM over a defined time window T.  For completeness A may 

need a null attribute value representing an object having an attribute in the model at time step t 

and then having no attribute from the model at time step t + 1.  Once A and T are defined a set of 

objects O must be assembled that will be used to build the TCAM.  O can be any logical 

grouping of objects.  With A, T and O defined all entries it the database for each object in O over 

the time window T must be enumerated in time step order.  For any object being labeled with 

attribute a1 at time step t and a2 at time step t + 1 a frequency of occurrence value for the edge 

between a1 and a2 in the TCAM is incremented by one.  In this example we are seeking only 

transitions and constrain the methodology by saying an attribute is not permitted to have an edge 

looping back to itself.  If an object stays in possession of a particular attribute for multiple time 
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steps nothing is modified in the transition matrix.  Once every time step in T for every object in 

O is enumerated the transition matrix can be normalized to reflect the probability of transition 

between attributes.  As an important note the set of attributes in A must never appear in any 

combination at the same time step for a single object.  If attributes a1 and a2 both appear at time 

step t for object o a new element must be added to A called a’.  This new element represents the 

occurrence of both attributes at the same time step.  This maintains consistency in A such that 

elements of A are attribute state groupings that objects transition in an out of. 

Discussion 

Decomposing a TCAM and computing coefficients for its sub-networks (NFA) is a novel 

way to analyze complex systems behind concept evolution.  However, work is needed to 

determine useful ways of applying this methodology.  Using the information for data mining 

holds potential to be transformative and is an interesting way of allowing machines to understand 

concept evolution.  One interesting usage of this methodology would be to compare different 

windows of time within a time step database using the computed vector in a distance metric.  

Complex systems in different states (i.e. they are modeled with different transition probability 

matrices) would have different coefficients, and the Euclidean distance between those 

coefficients in a particular feature space could be an invaluable source of information for data 

mining and knowledge extraction.   

The coefficients computed by this methodology hold more information than the transition 

probabilities alone because they apply to higher order relationships in the system rather than 

simple binary relationships.  Research needs to be devoted to finding ways to exploit the 

additional information embedded in this representation of system activity. 
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Conclusion 

A TCAM is transition probability matrix that models attribute transition within temporal 

concept analysis.  This work has shown how to construct a TCAM from a time stamp database.  

A TCAM models a complex system driving concept evolution within temporal concept analysis.  

NFA can be used to compute magnitude coefficient values detailing the frequency of occurrence 

for each sub-network in simulated data from the TCAM.  Analyzing system activity with NFA 

allows new information about the system to be ascertained specifically related to its decomposed 

set of sub-networks. 

This methodology has great potential, and the diverse range of problems to which it can 

be applied is a major strength of the work.  It can be transformative for systems analysis because 

it provides a new domain in which system activity can be viewed. 

Flux Shift Analysis of Lake Turkana 

When functionally decomposing a complex system, ambiguities in the system make the 

solution space of the resulting coefficient vector larger than a singular point.  An averaging 

method combining every interpretation for a pathway can be used to provide a single point of 

interest within this solution space, but the Difference Vector Matrix (DVM) can provide an exact 

bound on the hyperplane of solutions for a given vector.   

Functional decompositions of structurally similar systems will yield either the same 

hyperplane or a disjoint one within the same feature space.  Flux Shift Analysis (FSA) measures 

the unique orthogonal distance between the calculated hyperplanes, which is a constant distance 

between the functionally different systems based on cycle activity.  FSA can be used for system 

comparison and impact analysis to understand which relationships in an ecosystem are 

contributing maximally to the system changing. 
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Introduction 

Functionally decomposing a complex system involves analyzing a distribution of network 

pathways to interpret them as a combination of cycles rather than a sequence of nodes.  As a 

result of inherent ambiguities, some pathways can be interpreted as multiple combinations of 

cycles.  This makes the vector calculated by functional decomposition part of a solution space of 

valid vectors.  The ambiguities in the system that cause this solution space can be isolated to 

bound it.  The ambiguities are equality constraints over the coefficient vector that when 

combined with the inequality constraint that every coefficient value must be greater than or equal 

to zero (cycles cannot have negative flows) defines a hyperplane in an n dimensional feature 

space where n is the length of the functionally decomposed coefficient vector.  This bounding set 

of equalities and inequalities is defined by the structure of a system, and two structurally 

equivalent systems will have either disjoint or equivalent hyperplanes within the same feature 

space.  The distance between these hyperplanes can be used to analyze system change over 

specific cycles within the systems.  Cycles are thought to hold important roles within a system 

[122], and this methodology calculates a unique and constant distance between cycles of 

structurally equivalent systems having different flow parameters.  The difference in flow 

parameters is seen as the result of some impact or perturbation to the system and this 

methodology allows for the analysis of the difference throughout the exhaustive set of simple 

cycles in the system. 

This paper will analyze a paper from Kolding [123] comparing structurally equivalent 

models of an ecosystem that have different flow values, apply this methodology, and compare 

the results in that paper with the results found herein.  First, a review of flow decomposition and 

the DVM will be outlined.  Next the Lake Turkana ecosystem will be briefly introduced and the 
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results of running the methodology will be shown.  Finally, comparative analysis between the 

two snapshots of the ecosystem will be presented. 

Flow Decomposition 

Flow decomposition on complex systems is the process of calculating a magnitude 

coefficient for every simple cycle in a system, representing the amount of total system flow for 

which each of the cycles is responsible.  These magnitude values for cycles place the system in a 

numeric feature space, allowing rich analysis of system activity.  Luper et al. [87] outlined a 

methodology for functionally decomposing system throughflow.  This methodology transformed 

a structurally decomposed system into a context-free grammar and used the Cocke Younger 

Kasami (CYK) [90, 91, 92] algorithm to calculate magnitude coefficients by parsing individual 

pathways from a data distribution.  The CYK algorithm parsed each pathway from a system’s 

data distribution to label each step of the pathway as belonging to a specific cycle (grammar 

unit).  The frequency of occurrence for each cycle was tracked throughout a data distribution and 

stored in a vector.  This vector was the basis for the magnitude values sought in the functional 

decomposition.  Luper et al. [87] used an averaging technique to deal with ambiguities in 

pathways where every possible interpretation for a pathway was found and then weighted to 

provide a single localized interpretation vector used for maintaining a vector of coefficient 

values over the entire data distribution of pathways.  This methodology provided a singular point 

of interest within the hyperplane of the functional decomposition, but the work herein will not 

use this averaging technique.   

In this work only one interpretation for each pathway is needed for inclusion in the 

vector.  The goal of this work is to find a bounding hyperplane for the functional decomposition.  

System ambiguities are isolated and formed into equality constraints which can be used to 
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transform a single interpretation into all other valid interpretations.  The detected ambiguities, in 

conjunction with a single interpretation for each pathway in the system’s data distribution, ensure 

there is no information loss when applying this methodology. 

Difference Vector Matrix 

While structurally unique decompositions exist for networks, functional decomposition is not 

guaranteed to be unique.  Ambiguities occur when interpreting pathways in a system when 

different sets of cycles use the same edges the same number of times, as illustrated in the Figure 

49.  If a single path through a network can have multiple interpretations, the vector calculated 

from those interpretations will not define a single point within an n dimensional feature space.   

This ambiguity means the calculated vector defines a bounded hyperplane within the n 

dimensional feature space of the vector.  The bounds of this hyperplane can be calculated by 

isolating each ambiguity within the system.  These ambiguities define equality constraints where 

a particular grouping of coefficients from the vector subtracted from a related grouping of 

coefficients must equal zero.  Logically the ambiguities depict scenarios where, given a certain 

path through a network, one grouping of cycles is attributed the interpretation which takes away 

value from a different grouping of coefficients that could also be used to interpret the pathway.  

The equality rules defined by the ambiguities are not the only source of information used to 

bound the hyperplane determining the valid solution space of the vector.  Inequality rules can be 

defined to limit the vector values for each decomposed cycle in the system.  The first set of 

inequalities governing the frequency vector is that every cycle must have a frequency count 

greater than or equal to 0.  It is not possible for a cycle to have a negative flow value for the 

purposes of this methodology as this would indicate reverse flow against a defined edge within 

the system.  The second set of inequalities stipulates that each value in the vector has to be less  
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Figure 49: This figure uses a synthetic three compartment model to illustrate ambiguity 

that results in a Difference Vector.  The system has five fluxes A, B, C, D and E.  Fluxes D + 

A produce the complete system as does E + B + C, thus D + A = E + B + C and that 

equation constitutes a Difference Vector. 
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than or equal to the summation of all values in the vector.  This set of inequalities is valid 

because there is a limited amount of throughflow in the system, and the vector values must 

reflect this conserved flow amount.  The equalities and inequalities together define a hyperplane 

the vector must stay within. 

Each pathway from the network that is parsed to calculate the frequency vector can be 

transformed into an interpretation vector.  An interpretation vector is a local vector built from a 

single interpreted pathway.  Each index in the interpretation vector corresponds to a cycle, and 

the value at each index is the number of times that cycle was used in the interpretation.  An 

ambiguity in the system introduces the potential for certain pathways to have multiple 

interpretation vectors.   

A Difference Vector is the result of subtracting interpretation vectors parsed from the 

same pathway.  The Difference Vectors for a system are stored in a matrix called the Difference 

Vector Matrix (DVM).  This matrix is the set of all linearly independent Difference Vectors in 

the system.  The DVM can be found by performing an exhaustive combinatorial search on a 

structurally decomposed network.  In order to find every Difference Vector, the search needs to 

generate two sets of combinations of cycles from the decomposed network and see if their 

respective multisets of edges are equivalent.  If a group of cycles can be merged to form the 

same multiset of edges as another group of cycles, then the two groups represent an ambiguity in 

the network.   

The structure of the search algorithm is as follows.  First a network must be structurally 

decomposed into a set of all unique simple cycles.  Let M equal the number of cycles in the 

decomposed network.  Any ambiguity takes the following form; a grouping of at least two cycles 

forms an equivalent multiset of edges as a different grouping of at least two cycles.  Therefore 
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any ambiguity requires at least four cycles.  Where m is the size of M and n is greater than or 

equal to four and less than or equal to m, a search must be run of all possible combinations of m 

choose n cycles.  Every generated combination of cycles is then divided into every combination 

of two groupings.  The multisets of edges from the two groupings are compared, and if they are 

the same then a Difference Vector has been found.  Any Difference Vector is added to the DVM 

if it increases the rank of the DVM.  Difference Vectors that do not increase the rank of the 

DVM are different representations of a Difference Vector that has already been found.  This 

search strategy finds the most concise representation of any Difference Vector because it moves 

through the search space starting with the shortest possible combination of cycles outward 

toward the longer possibilities.  The runtime for this algorithm can be seen in Formula 6.   

 

 

Formula 6: The runtime for the exhaustive search to find all Difference Vectors. 

 

 

More research is needed to see if this runtime can be reduced.  One way to reduce the 

runtime could be to establish an upper bound on the maximum length of a combination of cycles 

it takes to represent every Difference Vector in a search space.  Another option for speeding up 

the search would be to compute the problem within a distributed computing framework.  The 

search space could be partitioned and computed in parallel.  Any Difference Vector that is found 

could be reported back to a process that manages the linearly independent matrix of Difference 
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Vectors.  This problem can equate to the problem of finding ambiguities in a context-free 

grammar. 

The DVM is found computationally, but it has a mathematical counterpart.  If a network 

is decomposed and all cycles are found, a flow matrix can be made.  This flow matrix has n 

columns and m rows, where n is the number of decomposed cycles m is the number of edges in 

the network.  Each column of the flow matrix has a one in any row corresponding to an edge in 

the respective cycle and zeroes at rows corresponding to edges not used in the cycle.  The null 

space of this matrix is related to the DVM.  The DVM is a subset of the null space.  Any 

Difference Vector in the DVM will be in the null space in some representation.   

The null space can be calculated much faster than the search algorithm can 

computationally derive the DVM, but this null space has two problems.  First the null space 

contains more elements than the DVM.  The reason for this is there are theoretical Difference 

Vectors that cannot exist legally within a real system.  These theoretical Difference Vectors 

violate a rule pertaining to the system input and output node referred to as the environment.  The 

environment is a starting and stopping node for every pathway through the system, thus any 

pathway can only ever use one cycle containing this environment node.  These illegal Difference 

Vectors use two cycles that contain the environment on at least one side of the equality 

constraint.  The computational methodology can ignore these theoretical impossibilities, but 

there is no way for the null space calculation to isolate these particular Difference Vectors.  If not 

for the second problem the first problem would be solvable.  The second problem is that while 

the null space contains every Difference Vector, the representation of the Difference Vectors in 

the null space makes it impossible to tell which combination of cycles a particular equality 

constraint represents.  The null space contains theoretical Difference Vectors (including 
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Difference Vectors comprised of edges with negative flow) which have multiple environmental 

cycles as well as representations of Difference Vectors that are not in the most concise form (i.e. 

a Difference Vector representation in the null space can have more cycles than are needed to 

define a particular rule).  While it is theoretically possible to manipulate the null space to an 

equivalent format as the DVM, the methodology for this is not known.  

Once a DVM is calculated it can be used to bound the hyperplane of valid frequency 

vector representations.  The DVM is defined entirely by the structure of the graph, and thus it 

follows that structurally equivalent graphs have the same DVM.  This property can be exploited 

to produce a distance value between vectors resulting from structurally similar graphs with 

different flow values.   

For any deconstructed network, the set of equality constraints represented in the DVM 

combined with the inequality constraints will define a hyperplane that is disjoint from any other 

structurally equivalent network with different flow values.  Any point on one of these 

hyperplanes would have a corresponding point of minimum distance on the other hyperplane.  

These hyperplanes are parallel so the minimum distance would be the same for any point on the 

hyperplane.  This distance value can be used as a basis for any number of machine learning and 

computational intelligence methodologies to compare networks in Euclidean space.  Equally as 

import as a single distance value, is a vector comprised of the absolute value of p2 – `p1, where 

p2 is a point on one hyperplane and `p1 is the corresponding point of minimum distance on the 

other hyperplane.  This vector is called the Constant Distance Vector (CDV) and contains 

constant differences between the two systems for each individual cycle. 
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Figure 50: This figure represents a numeric feature space defined by a theoretical system 

with only three fluxes.  A functional decomposition of a system with this structure would 

define a point in this feature space where the coefficient at flux 2 would be the x axis value, 

the coefficient at flux 3 would be the y axis value and the coefficient at flux 1 would be the z 

axis value. 

 

 

 

Figure 51: This figure shows the points for two functional decompositions in the feature 

space created from the theoretical system with three fluxes.  The functional decomposition 

of system 1 is plotted as p1 and the functional decomposition of system 2 is plotted at p2. 
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Figure 52: This figure depicts what happens when fluxes are involved in Difference 

Vectors.  Difference Vectors define planes on which the point of a functional decomposition 

can be moved.  The axis defined by flux 1 and the axis defined by flux 3 are degrees of 

freedom for the point. 

 

 

Figure 53: This figure illustrates finding the point of minimum distance for p2.  This 

distance is the distance between the hyperplanes defined by the functional decompositions 

for systems 1 and 2 and by the DVM.  It is a constant distance indeterminate of which p2 or 

p1 is chosen, and it is a unique, resolute value. 
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Figure 54: This figure illustrates how to obtain the Constant Distance Vector (CDV) using 

p2 and `p1.  The CDV contains constant differences between the two systems for each 

individual flux. 

 

Lake Turkana 

Lake Turkana is a large body of water that sits in the North West region of Kenya in the 

Rift Valley.  Kolding [123] analyzed two different time periods for this lake fourteen years apart 

using a systems analysis tool called ECOPATH II.  In his paper he outlined two different steady 

state models for the ecosystem in the years 1973 and 1987.  These models consisted of eight 

compartments and the environment that exchanged biomass.  He used the system models to 

analyze the two different time periods in the ecosystem.  Kolding chose these two time periods 

because they were the only two periods for which the data to support the models existed.  The 

models included only important open water fish species, and some with similar biology were 

grouped together.  These models assumed that biomass was constant, thus total production of all 

compartments was equal to losses.  The data for the 1973 model came from Bayley [124] and 

Hopson [125], and all data for the 1987 model came from Kallqvist et al. [126] and Kolding 

[127].   
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Figure 55: This figure shows the structure of the Lake Turkana ecosystem as a directed 

graph. 
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In this work Flux Shift Analysis is used to analyze change in the Lake Turkana 

ecosystem between the two models of Lake Turkana and to scrutinize the results mentioned by 

Kolding [123].  The results of running the methodology can be seen in Figure 57 and Table 11. 

The FSA results are both ecologically compelling and revealing.  Reference Table 11, 

which depicts the 5 sequences (4 chains and 1 cycle) that uniquely remain the 5 largest fractions 

of TST (fluxes) for both years despite the significant changes to Lake Turkana’s trophic level 

control.  First, in both the 1973 and the 1987 models, the most important cycle or chain is the 

zooplankton-detritus cycle representing 38.6% and 36.8% of the total system throughflow, 

respectively.  Although control completely shifted bottom-up to top-down, given the probability 

of a potential 125 cycles and chains, this single cycle decisively remained the most important.  

Detritus and zooplankton clearly play a significant role despite drastic changes to the trophic 

structure of the lake ecosystem.  In particular, the understanding of the importance of detritus in 

ecological modeling has been growing [130, 133, 134] with these results providing empirical 

evidence of this necessity.  Clearly, detritus is important to ecological modeling strategy and 

perhaps zooplankton is more important than has been previously revealed.   

Second, the largest flux change, representing 34.1% of the total change of TST between 

1973 and 1987, occurs with the flows along the chain from env-phyto-det-env.  With bottom-up 

control, fractions of TST along the top four most active chains were env-phyto-det-env (10.6%), 

env-phyto-zoo-env (17.0%), env-phyto-det-zoo-env (23.2%), and env-phyto-det-zoo-small-pel-

env (2.9%).  However, with top-down control, the last three of these fluxes decreased 

(17.0→10.5%, 23.2→19.2%, and 2.9→1.1%) in relatively significant magnitudes representing a 

repression of flow from lower trophic levels in from the environment through phytoplankton 

ultimately feeding higher trophic levels in zooplankton and beyond.  Coupled with these 
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73 Model 

* -> Lates_spp               c=1.4 

* -> Phyto                   c=7938.8 

Tiger_Fish -> *              c=4.1 

Tiger_Fish -> Lates_spp      c=0.4 

Tiger_Fish -> Detritus       c=2.3 

Lates_spp -> *               c=4.3 

Lates_spp -> Detritus        c=2.5 

Small_Pel -> *               c=672.7 

Small_Pel -> Tiger_Fish      c=6.6 

Small_Pel -> Lates_spp       c=4.3 

Small_Pel -> Synod           c=6.1 

Small_Pel -> Detritus        c=334.8 

Synod -> *                   c=19.7 

Synod -> Lates_spp           c=0.1 

Synod -> Detritus            c=10.5 

Zoo -> *                     c=5400 

Zoo -> Tiger_Fish            c=0.1 

Zoo -> Lates_spp             c=0.6 

Zoo -> Small_Pel             c=1024.5 

Zoo -> Synod                 c=21.2 

Zoo -> Benthic_Fish          c=0.8 

Zoo -> Detritus              c=5552.9 

Phyto -> Zoo                 c=3000.1 

Phyto -> Detritus            c=4938.7 

Benthic_Fish -> *            c=2.9 

Benthic_Fish -> Tiger_Fish   c=0.1 

Benthic_Fish -> Detritus     c=1.1 

Detritus -> *                c=1836.5 

Detritus -> Synod            c=3 

Detritus -> Zoo              c=9000 

Detritus -> Benthic_Fish     c=3.3 

83 Model 

* -> Lates_spp              c=2.1 

* -> Phyto                   c=5566.3 

Tiger_Fish -> *              c=0.2 

Tiger_Fish -> Lates_spp      c=0.2 

Tiger_Fish -> Detritus       c=0.1 

Lates_spp -> *               c=6.5 

Lates_spp -> Detritus        c=3.1 

Small_Pel -> *               c=135.8 

Small_Pel -> Tiger_Fish      c=0.4 

Small_Pel -> Lates_spp       c=6.3 

Small_Pel -> Synod           c=5.6 

Small_Pel -> Detritus        c=58.8 

Synod -> *                   c=18.2 

Synod -> Lates_spp           c=0.1 

Synod -> Detritus            c=9.7 

Zoo -> *                     c=2340 

Zoo -> Tiger_Fish            c=0.0 

Zoo -> Lates_spp             c=0.9 

Zoo -> Small_Pel             c=206.9 

Zoo -> Synod                 c=19.6 

Zoo -> Benthic_Fish          c=0.6 

Zoo -> Detritus              c=2632 

Phyto -> Zoo                 c=1300 

Phyto -> Detritus            c=4266.3 

Benthic_Fish -> *            c=2.1 

Benthic_Fish -> Tiger_Fish   c=0.1 

Benthic_Fish -> Detritus     c=0.9 

Detritus -> *                c=3065.6 

Detritus -> Synod            c=2.8 

Detritus -> Zoo              c=3900 

Detritus -> Benthic_Fish     c=2.5 

 

Figure 56: This figure shows the flow values used in for the Lake Turkana model for the 

1973 and the 1987 models respectively. 

 

decreases, the percentage of TST along the chain env-phyto-detritus-env increased dramatically 

(10.6→33.7%).  That is, flow from the environment into phytoplankton, rather than moving up 

to higher trophic levels, simply moves into detritus and then exits the system back to the 

environment.  Considering the hierarchal level of importance granted these four flows (of the 

total 125 cycles and chains), this appears to be an important addition of empirical evidence 

confirming Kolding’s assertion that control shifted from bottom-up to top-down between the 

years 1973 and 1987.   
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Figure 57: This graph shows the distance values for the fluxes in the Lake Turkana 

ecosystem plotted on a line graph sorted in descending order.  The top 6 fluxes on this 

graph (top 5% of the fluxes) account for 57% of the distance between the two models. 

 

 

 

Table 11: Five largest flux sequences from 125 total as generated from a Network Flux 

Decomposition of Lake Turkana (Kolding [123]). 

 
Table 11, Five largest flux sequences from 125 total as generated from a Network Flux 

Decomposition of Lake Turkana (Kolding [123])  

Chain or Cycle yr & control 
% of 

TST 

% contribution of 

total change 

between years  

Env→Phyto→Detritus→Env 
(chain) 

1973 bottom-up 10.6% 
34.1% 

1987 top-down 33.7% 

 

Env→Phyto→Zoo→Env 

(chain) 

1973 bottom-up 17.0% 
9.6% 

1987 top-down 10.5% 

 

Env→Phyto→Detritus→Zoo→Env 

(chain) 

1973 bottom-up 23.2% 
5.9% 

1987 top-down 19.2% 

 

Env→Phyto→Detritus→Zoo→Small→Pel→Env 
(chain)   

1973 bottom-up 2.9% 

2.5% 

1987 top-down 1.1% 

 

Zoo↔Detritus 

(cycle) 

1973 bottom-up 38.6% 
2.5% 

1987 top-down 36.8%  
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Conclusion 

This work has presented a new methodology that can be used to compare snapshots of an 

ecosystem, where the snapshots have differing flow values.  This methodology also provides a 

way to ascertain which cycles are most responsible for the differing states between the two 

versions of the models.  The Lake Turkana ecosystem in Kenya, Africa was analyzed, 

specifically comparing results obtained from this methodology to those obtained by Kolding 

[123].  Significant ecological inference was made; illustrating this methodology allows powerful 

analysis of ecosystems in ways not currently available through other methodologies.  This paper 

also outlines the computational procedures of the methodology and discusses limitations and 

further research that could be directed at improving the scalability of the methodology. 
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CHAPTER 5 

SUMMARY AND CONCLUSION 

Complex systems are everywhere.  As humans we model what we do not understand into 

constructs that allow us to gain traction towards their comprehension.  This tendency is seen 

throughout scientific disciplines yet the totality of our understanding about the construct we 

choose is limited.  Complex systems exude characteristics seen in higher life forms such as self-

organization, emergent behaviors, and evolution; however little is known about what drives these 

characteristics.  Currently, there is no agreed-upon method for tracing a high-level abstraction 

such as a system trait or behavior to the compositional elements in a system responsible for 

encoding the information.  Without the ability to dissect a system in this way, progress towards 

truly understanding complexity within systems is difficult.  In the absence of this kind of 

methodology there is simply too much to compute, and observational analysis gets lost in an 

endless sea of information.   

The methodology formulated in this paper has created an encoding framework for system 

activity that can be used in certain situations to increase the accuracy of machine learning 

algorithms and to extract encoding regions within complex systems responsible for emergent 

behaviors, self-organization and system traits.  At the core of this framework two main concepts 

were introduced in the methodology section of this work.   

 

• Structural decomposition of a complex system into compositional units called 

fluxes.  These fluxes compose an exhaustive set of fundamental relationships in 
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the system, and the activation values of these relationships encode information 

about the system.   

• Functional decomposition of a structurally decomposed system to calculate the 

activation for each flux in the system. 

 

The research described here utilizes a computational methodology to search an adjacency 

matrix representation of a complex system in order to find every simple cycle in the system.  

These cycles are referred to as fluxes, and activation values are computed for these fluxes using a 

computational methodology called functional decomposition.  Functional decomposition 

analyzes a distribution of pathways taken through the system by simulated particles and parses 

these pathways using the exhaustive set of fluxes as a context-free grammar able to interpret any 

pathway through the system.  The activation values for each flux are calculated by interpreting 

this simulated distribution and tallying the frequency with which a flux appears in the parse trees 

of the pathways therein. 

In the application chapter the concepts above are used in various ways.  First, they are 

used to create a new analytic methodology called Network Flux Analysis (NFA).  NFA uses flux 

activation values as input to machine learning and feature selection algorithms.  NFA isolates 

flux sets within a complex system that encode system traits such as seasonality (i.e. fall, winter, 

spring, summer).  These flux sets are encoding regions that can be used to reliably infer the value 

of the system trait being sought.  In addition to knowledge extraction NFA has been shown to 

increase classification accuracy in certain situations.  An application of NFA was used to boost 

the ability to classify which year a data distribution came from in the Neuse River estuary.  NFA 
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boosted the performance for this classification 37.5% in comparison to using the edges in the 

adjacency matrix as feature input.   

Another way structural and functional decomposition have been used is to perform an 

impact analysis study on the Lake Turkana ecosystem in the Kenyan Rift Valley.  In this 

application a construct called the Difference Vector Matrix (DVM) is used to compute a resolute, 

constant distance for each flux in the ecosystem between models that are fourteen years apart.  

The distance a flux has moved in the fourteen-year period between the two models is used to 

analyze change in the ecosystem over that fourteen year period. 

It is the position of this work that data instances, in any form, are sampling points or 

emissions from an underlying complex system.  Understanding the behaviors, structure and traits 

of this underlying system gives a computational edge towards data analysis.  Nowhere is this 

edge more important that in today’s world of Big Data, where incredibly large, heterogeneous 

data streams are constantly being mined for information.  The methodology proposed in this 

paper presents a framework through which the system beneath the data can be understood with 

clarity.   

This methodology has implications for data mining, knowledge extraction, Big Data, 

computational intelligence, artificial intelligence, and many more areas from other disciplines.  

The general applicability of this methodology towards numerous disciplines and problems stems 

from the weighted adjacency matrix construct at the core of the methodology, which takes 

weighted adjacency matrices and transforms them into a vector in a new domain of functional 

decomposition.  Weighted adjacency matrices appear across numerous disciplines and are 

commonly used to represent weighted directed graphs.  Graphs are a common way to illustrate 

complex systems and thus saturate academia throughout numerous scientific disciplines.  Any 
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data set that can be described using a graph can be analyzed with the methodology proposed 

herein.   

One example of a possible application of the methodology is Markov models, which are 

used throughout numerous disciplines to describe phenomena (Ashbrook and Starner [115] used 

Markov models to predict user locations from logged GPS data).  Markov models are easily 

representable as weighted adjacency matrices, and applying the methodology outlined herein 

could help boost the accuracy of location predictions.  If the data were modeled according to day 

of the week, fluxes from the proposed methodology would represent location sequence cycles 

and the activations at the fluxes would represent probability of occurrence.  These fluxes could 

help understand which patterns of movement are differentiating days of the week, providing 

insight into the underlying complex system driving movement in certain patterns. 

Currently, activity within complex systems is studied through metrics such as edge and 

node analysis.  Understanding system activity through edges is not ideal because edges are 

binary relationships in systems with higher order relationships.  Flow moving across an edge can 

be coming and going to many different nodes within a graph, and a binary relationship does not 

account for this dispersion.  The concept of fluxes introduced by NFA defines these higher order 

relationships and is able to utilize them for a new level of systems analysis more powerful than 

analysis of simple binary relationships.   

One reason fluxes have so much potential for data analysis is that the activation values at 

fluxes are a result of probability distributions throughout the entire system.  While a unit of flow 

traverses a flux it has a probability of exiting the flux at each new node it traverses.  This 

probability is defined by the connecting edge flows for that node.  If an edge is changed it can 

change the activation of numerous fluxes in the system, even fluxes that don’t contain the edge, 
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due to the shift in the probability that particles in the system will traverse the edge.   It is this 

sensitivity that gives power to the analysis of fluxes.  Analyzing these higher order relationships 

gives greater resolution to the study of complex systems than merely viewing them through 

analysis of binary relationships. 

Dealing with heterogeneous data is currently an active topic of research and necessary for 

knowledge extraction and Big Data analysis.  A major benefit of analyzing complex system 

through the use of fluxes is that fluxes are independent, fully contained sub-systems within the 

overall system.  Fluxes can be studied independently from the system presenting the ability to 

compare different complex systems that have similar relationships.  This provides the ability for 

comparative analysis and knowledge extraction to graphs whose overall structure is not the same 

but have certain overlapping substructure.  An example of this application would be the analysis 

of two different ecosystems in a manner similar to the Neuse River estuary analysis in the 

application section of this work.  Such an analysis would be possible if the ecosystems shared 

common compartments and relationships.  For instance, if another ecosystem had the following 

compartments present in the Neuse River estuary model PN_hetero, NH4, NOx, and N_sed, it 

would be possible to provide comparative analysis of any flux that appeared in both systems, 

even though the systems would be considered heterogeneous data instances.  Possibilities for 

analysis of relationships across structurally different complex systems and the ability to perform 

knowledge extraction in heterogeneous environments are attractive benefits of the proposed 

methodology. 

Current Limitations and Further Research 

The methodology presented holds many avenues for further research as well as 

limitations that need to be addressed.  The following addresses both topics. 



 

 

144 

 

Limitations 

One of the main limitations of the work presented herein is scalability.  Functional 

decomposition relies on the CYK algorithm and as such has a runtime of O(n
3
); however, the 

biggest consideration towards runtime is the size of the adjacency matrices being functionally 

decomposed.  The search method involved in computing the structural decomposition of a 

system must find every simple cycle in the adjacency matrix.  The runtime for this search is O(|V| 

+ |E|), growing in proportion to both the number of vertices and the number of edges in the 

adjacency matrix.  This work has shown applications of the proposed methodology on real world 

data so the runtime limitations mentioned are not crippling; however care must be taken when 

building adjacency matrices for use in this methodology that those matrices not become 

incomputable for a structural decomposition.  

Another limitation currently present in the proposed methodology is finding all of the 

Difference Vectors in an adjacency matrix.  For the analysis presented on the Lake Turkana 

ecosystem, the Difference Vectors were found using an exhaustive search strategy that tried all 

possible combinations of cycles over the entire adjacency matrix.  The runtime for this search 

strategy is factorial.  This problem of finding Difference Vector is the same problem as finding 

ambiguity with context-free grammars.  Finding ambiguities in a context-free grammar is an 

undecidable problem in the general case; however, finding ambiguities within NFA is a special 

case for that problem because the ambiguities being sought are in a reduced form where a cycle 

can appear only one time within an ambiguity (i.e. Difference Vector).  This constraint makes the 

search space finite and computable, however large it may be. 
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One more limitation in the proposed methodology is that when extracting fluxes encoding 

a particular system trait there is no guarantee the best solution is going to be found.  This 

common in machine learning, but should always be mentioned. 

Further Research 

One of the particularly exciting aspects of the work herein is the numerous paths it 

creates for further research.  This works presents an entirely new framework with which to 

analyze complex system activity that has potential for far reaching impact throughout numerous 

disciplines.   

Scalability 

 Scalability is one area where further research is needed.  One idea for dealing with the 

limitations posed scalability in this methodology is to contract larger models in to smaller ones.  

Edge contraction removes edges from a graph and merges the vertices on either end of the edge.  

This process may not be ideal from a modeling standpoint but it is likely Network Flux Analysis 

(NFA) on contracted models would produce beneficial results; in effect, a contracted model 

would present a lower resolution view of system activity to NFA.  Graph contraction could be 

done by domain experts in a strategized manner; however, it is also plausible that a search 

strategy such a genetic algorithm or particle swarm optimization could randomly search for 

optimal way to contract a graph for a specific problem.   

When contracting an edge fluxes containing that edge ultimately wind up being merged 

as well.  Strategic contraction of the model could leave crucial fluxes intact while merging non-

crucial fluxes.  In the example presented involving analysis of the Neuse River estuary, 

knowledge pertaining to seasonality is extracted.  There are certain fluxes in this model that are 

more important than other to understanding seasonality, and a search strategy such as a genetic 
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algorithm or particle swarm optimization could find optimal ways of contracting models that 

leave important fluxes intact.   

Another potential venue for further research towards scalability is to look into the effects 

of cutting systems into smaller sub-systems and applying NFA collectively to those smaller 

systems rather than to the entire system as a whole.  It is likely that applying NFA to smaller sub-

systems would yield actionable information about the activity of the entire system as a whole. 

Further research needs to be invested into finding a more efficient way to isolate 

Difference Vectors within a system.  One possible approach is finding Difference Vectors as 

they occur when parsing pathways.  Difference Vectors are ambiguities in the context-free 

grammar being used to parse pathways; and as such, when multiple parse trees are generated 

there is an ambiguity present in the pathway being analyzed.  This ambiguity is easy to find by 

the following methodology.   

 

• Using two parse trees for a particular pathway, create interpretation vectors for 

each of them where an interpretation vector is a vector whose indexes relate to 

grammar elements used to parse the pathway.   

• Each grammar element has an index in the interpretation vector and the value at 

each index indicates the number of times the grammar element was used in the 

interpretation. 

• Subtract these two interpretation vectors and the result is a Difference Vector. 

 

This methodology can find all Difference Vectors that occur in the distribution of 

pathways being analyzed, but if an instance of a Difference Vector is not present in the 
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distribution, then it will not be found.  This means that finding all Difference Vectors is not 

guaranteed using this methodology; however, fluxes have a probability of occurring in 

combination within a data instance, which means Difference Vectors also have a probability of 

occurring.  If enough pathways are parsed, statistically probable Difference Vectors will be 

found.  Research should be undertaken to explore whether finding statistically probable 

Difference Vectors is good enough, as opposed to a methodology that is guaranteed to find all 

Difference Vectors (even ones with a low probability of occurrence).  In any event, the 

methodology used for finding Difference Vectors in this work was an exhaustive, unintelligent 

search which should leave room for easy enhancement in the event enhancement is possible. 

New Data Sets 

An obvious area for further research is to find new and exciting ways to apply the 

methodology presented.  In this work, the Neuse River estuary was analyzed and knowledge 

extraction was performed on seasonality traits within the system.  The methodology was also 

applied to the Lake Turkana ecosystem for the purposes of impact analysis.  The generic nature 

of this methodology’s application toward adjacency matrices holds promise for its applicability 

in many other scientific areas such as economics, biological systems modeling, and social 

network mining. 

Parallelization 

As computers grow in power, more processors are becoming available, allowing 

problems to be computed by massively parallel systems.  The methodology presented in this 

work could greatly benefit from parallel computation.  At the core of the problem is building 

parse trees for simulated pathways through a system.  In order to functionally decompose a 

system, the presented methodology builds parse trees and tracks grammar elements within the 
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parse trees for large distributions of pathways.  Each of the pathways (which can number in the 

hundreds, thousands, or even greater) must be parsed in order to keep a summed tally of the 

frequency for grammar elements used in the pathway.  This process can be done disjointly for 

each pathway being parsed without the need for any inter-process communication other than to 

provide a final report of the frequency results for each of the grammar units.  The ability to parse 

each pathway disjointly and sum the results means a machine with 100 processors (who all have 

their own RAM) could functionally decompose a system 100 times faster than a machine with 1 

processor, minus minimal transportation time.  This performance boost would help deal with 

scalability constraints, as the runtime to functionally decompose a model could become more 

efficient by orders of magnitude. 

Unordered Fluxes 

The methodology in this work computes activation values for ordered sets of vertices 

within systems.  A strategy for reducing the runtime and increasing the overall efficiency of the 

methodology would be to explore whether activations for unordered sets of vertices could be 

computed more quickly, and whether those activation values would provide comparable results 

to the ones presented herein.  Having already computed the activation values for the ordered sets 

of vertices, a researcher could easily combine fluxes that, when viewed as unordered sets, are 

equivalent and could sum their activation values.  This approach would reduce the functional 

decompositions presented from ordered functional decompositions to unordered functional 

decompositions.  These unordered functional decompositions could be analyzed using similar 

techniques as the ones presented by this work to compare their usefulness for systems analysis. 
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Flux Signals in Chronological Data 

The application of Network Flux Analysis towards the Neuse River estuary in North 

Carolina produced sixteen chronological functional decompositions.  This means that each flux 

has a numeric time series of sixteen values.  The feature selection routines performed on the 640 

fluxes in the functional decomposition selected fluxes whose time series presented a more 

periodic function shape.  Further research should be given to applying signal processing routines 

to the fluxes as part of the overall knowledge extraction process.  The flux time series presented 

by the chronological functional decompositions are signals being produced by the fluxes.  This 

concept could be helpful as signal processing is a well-established discipline with a robust set of 

methodologies that could easily be applied to the flux signals.  It may be the case that certain 

signal patterns at different combinations of fluxes holds crucial system information to aide in the 

knowledge extraction process.  In the case of extracting knowledge from the Neuse River estuary 

data set, the results may be enhanced be giving preference during feature selection to fluxes 

whose signal is more periodic in shape.  The current methodology presented in this work did not 

give this preference, as no signal processing was performed to evaluate the extent to which a 

flux’s signal was periodic. 

Reverse Transformation 

This work illustrated that a reverse functional decomposition can transform a functional 

decomposition vector back into an adjacency matrix.  Further research needs to be devoted to 

investigating use cases for this procedure.  This reverse transformation can act as band pass filter 

for flux activity.  An example of this would be to apply the reverse transformation on a 

functional decomposition of the Neuse River estuary, but zeroing out all the coefficients except 

the three that were isolated during feature selection.  These three coefficients can determine 
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seasonality over the data sets provided for the Neuse River estuary.  If all the other coefficients 

are zeroed out and the reverse transformation is applied, the resultant adjacency matrix would 

only include the flow information for those three isolated fluxes.  This process would provide a 

new adjacency matrix in which the flow values across the edges would be different than in the 

original adjacency matrix.  The adjacency matrix produced by this reverse transform would 

allow real valued portions of edges to be removed.  Analyzing how much flow for a particular 

edge in the original adjacency matrix was retained in the matrix produced by the reverse 

transform would enable one to compute the percentage of the flow across that edge which was 

used towards seasonal classification in the model.  This could be computed for all edges giving a 

valuable piece of information to domain experts.  This is one example of applying the reverse 

transform.  It is likely more applications would easily come to light if further research is given to 

the reverse transform of a functional decomposition. 

Applying NFA Toward a Metric for System Health 

The health of a complex system is a nebulous concept.  Without a clear definition there 

can be no rigid, empirically-based metric to rank system health.  Network Flux Analysis holds 

potential for extracting health descriptors from a complex system to aid domain experts in 

empirically evaluating system health.   

If a model of a system is observed by a domain expert it is usually the case a clear cut 

binary quantification of system health as healthy or unhealthy cannot be ascertained except in 

situations where the system may be in extreme duress; however, a domain expert could score 

system health on a scale from 1 to 10 based on whatever criteria they desire.  If multiple 

instances of a single structural model (i.e. one model different flow values) are presented to 

multiple domain experts and those experts are to score system health in this way, Network Flux 
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Analysis could be applied in such a way as to extract fluxes from the system whose activation 

values are useful towards regressing to the score values presented by the domain experts.  NFA 

used in this way could extract descriptors for overall system health, thus holding exciting 

ramifications for transformative knowledge extraction.  Application of NFA in this way can 

work to quantify and empirically ground analysis of system concepts that lack rigid definitions.   
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APPENDIX 

 The appendix will serve to provide tutorials on how to use the code developed for the 

methodologies proposed in this work.  The code is executed from a terminal prompt and depends 

on command flags being passed into the program.  The command line flags will not work if any 

directories used by the program (run time, output, etc.) have spaces in them; so don’t use spaces 

in any directory structures used by this program. 

A: Functional Decomposition Tutorial 

 This section is a tutorial for using the code developed to perform the structural and 

functional decompositions outlined in this work.  The decompositions are the first steps in the 

Network Flux Analysis methodology outlined in the application chapter.  After reading this 

tutorial, a user should be able to download the code and calculate a functional decomposition 

vector from a distribution of symbolic network pathways (a distribution of symbolic time series 

data can also be used).   

 To use the code go to the following URL and download the project: 

https://github.com/davidluper/system-decomposition-python (the code is hosted as a repository 

on github).  The code is written in Python (v. 26) so this will need to be installed on the system 

being used to run the code.  Additionally, this code uses the NumPy scientific computing 

package which also needs to be installed on the system being used. 

 Once the project is downloaded and the Python environment is set up on the machine, it 

is possible to use the code to functionally decompose a system.  To run the code, open a terminal 

window on the system and navigate to a directory where a Python script can be executed.  If the 

environment variables are configured on the system, then it may be possible to run Python scripts 

https://github.com/davidluper/system-decomposition-python
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from any directory.  If the environment variables are not configured, then the user may need to 

be in the Python directory in order to execute a Python script. 

 After verifying the ability to run a Python script, the user can invoke the functional 

decomposition routines using the following command line: 

 python [path to decomp script]\system_decomp.py -decompavg -dir [directory to use 

for the decomp] -paths [name of file containing the pathway data] -map [comma 

separated symbol ordering string] 

 Example of this command 

o C:\Python26>python k:\decomp_release\system_decomp.py  

-decompavg  

-dir k:\decomp_release\out\  

-paths oyster-reef_completed_paths.dat  

-map 0,1,2,3,4,5 

 

 The command line above will execute a functional decomposition using the averaging 

technique outlined in this work to deal with any grammar ambiguities that arise.  In the github 

repository, there are example pathway data files that can be used for tutorial purposes.  The -dir 

command flag specifies a directory that will house the pathway data file and any output 

generated by the functional decomposition code.  The -paths command flag specifies the name of 

the file housing the pathway data (in the case of this example it is a pathway file output from an 

ecological system simulated with Network Particle Tracking).  This file needs to be formatted 

such that each pathway is terminated with a carriage return/new line and the symbols in the 

pathway are delimited with a space.  To make the output more readable to humans, the -map 

command flag specifies a logical ordering of symbols to use in the methodology.  For the 
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example oyster-reef pathway file, the symbols are numbers from 0 to 5.  These have an obvious 

numeric ordering that can be specified to the decomposition routines.  The format for this flag is 

to list the symbols from left to right in their desired order delimiting them with a comma.  An 

example of this for the oyster-reef sample data would be -map 0,1,2,3,4,5. 

 Once executed, the decomposition will read and parse all pathways in the distribution 

contained in the pathway data file specified.  This can be quite lengthy depending on the 

complexity of the system being decomposed.  Output to the screen will indicate the number of 

pathways parsed as well as a time stamp.  This output will occur on an interval of 100 pathway 

parses.  The calculated coefficients vector will be output in CSV format in a file called out.csv.  

The header line in this file will indicate the actual fluxes to which the coefficients apply. 

 Once coefficients are computed they can be used for data mining and knowledge 

extraction.  The NFA methodology proposed in this work utilized WEKA for supervised learning 

over a collection of coefficient vectors.  The coefficient vectors were labeled seasonally and 

feature extraction was performed.  The features selected to optimally classify the vectors are seen 

as encoding the values (summer, spring, fall, winter) of that high level system trait (seasonality).  

A Support Vector Machine was used both in feature selection and to produce the final 

classification result verifying how accurately a subset of features performed at classifying the 

data. 

 A side note that needs to be mentioned is that the pathway data should not have the 

environment listed in the pathways.  This was due to a convention adopted from Network 

Particle Tracking.  A path through the system such as Environment > 0 > 2 > 1 > Environment 

should be listed in the pathway file in the following manner: 

 0 2 1 
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B: Flux Shift Analysis Tutorial 

 Flux Shift Analysis (FSA) was presented in this work as a methodology to compare 

snapshots of a system to see, on a flux by flux basis, how system activity has moved.  This 

tutorial is meant to communicate how to use the code developed for FSA.  After reading this 

tutorial, the user should be able to compute a Constant Distance Vector (CDV) for a system that 

has had two functional decompositions performed on it. 

 To use the code go to the following URL and download the project: 

https://github.com/davidluper/system-decomposition-python (the code is hosted as a repository 

on github).  The code is written in Python (v. 26) so this will need to be installed on the system 

being used to run the code.  Additionally, this code uses the NumPy scientific computing 

package which also needs to be installed on the system being used. 

Computing the Difference Vector Matrix 

 The ability to compute a CDV relies on a construct called the Difference Vector Matrix 

(DVM).  The DVM can be calculated by the code in two different ways.  The first way is to run 

an exhaustive search.  The runtime for an exhaustive search is factorial on the number of internal 

cycles that exist within the system (internal cycles are cycles not containing the environment).  

The application chapter of this work applied an exhaustive search to the Lake Turkana 

ecosystem, and that system push the bounds of computability for the exhaustive search.  That 

system had 125 total fluxes and 19 of them were internal cycles.  The methodology took around 

24 hours to compute the DVM using this approach.  To compute the DVM with an exhaustive 

search use the following command line: 

https://github.com/davidluper/system-decomposition-python
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 python [path to decomp script]\system_decomp.py -dvm -dir [directory to use for the 

decomp] -paths [name of file containing the pathway data] -map [comma separated 

symbol ordering string] 

 Example of this command 

o C:\Python26>python k:\decomp_release\system_decomp.py -dvm  

-dir k:\decomp_release\dvm\  

-paths oyster-reef_completed_paths.dat  

-map 0,1,2,3,4,5 

 

For clarification on the -dir, -paths, and -map command line flags, see the functional 

decomposition tutorial.  Running this command will create a file in the output directory called 

dv-log.txt that contains the exhaustively computed DVM. 

 The second approach to computing the DVM relies on a standard decomposition as 

outlined in the functional decomposition tutorial.  This approach computes the DVM inline as it 

is parsing pathways from the distribution supplied to the decomposition routine.  This approach 

has the same runtime as the functional decomposition, which is far better than an exhaustive 

search; however, the disadvantage to computing the DVM in this manner is that there is no 

guarantee all the Difference Vectors will be found.  This approach will only find Difference 

Vectors that occur in the pathway distribution presented to the functional decomposition routine.  

Difference Vectors happen when a certain combination of fluxes appears within a pathway.  

Fluxes have a probability of occurring based on the flow weights present in a system’s flow 

vector.  It then follows that Difference Vectors also have a probability of occurring.  This means 

that if enough pathways are interpreted, statistically probable Difference Vectors will be found.  

It is an open research problem as to whether finding statistically probable Difference Vectors is 
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good enough, or if an exhaustive search is required.  To compute the DVM using an inline 

approach, execute the following command at the command line: 

 python [path to decomp script]\system_decomp.py -decompinlinedvm -dir [directory 

to use for the decomp] -paths [name of file containing the pathway data] -map 

[comma separated symbol ordering string] 

 Example of this command 

o C:\Python26>python k:\decomp_release\system_decomp.py  

-decompinlinedvm  

-dir k:\decomp_release\out\  

-paths oyster-reef_completed_paths.dat  

-map 0,1,2,3,4,5 

 

For clarification on the -dir, -paths, and -map command line flags, see the functional 

decomposition tutorial.  Running this command will create a file in the output directory called 

dvm-inlinesearch.txt that contains the DVM, which was computed inline during the functional 

decomposition. 

Once the DVM is calculated, the CDV can be computed the following command line: 

 python [path to decomp script]\fsa.py [directory for the first decomposition of the 

system] [directory for the second decomposition of the system]  

 An example of this command as applied to a DVM computed with an exhaustive 

search 

o C:\Python26>python k:\decomp_release\fsa.py 

k:\decomp_release\fsa1 k:\decomp_release\fsa2  

 An example of this command as applied to a DVM computed inline with a functional 

decomposition (notice the -inline flag) 
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o C:\Python26>python k:\decomp_release\fsa.py 

k:\decomp_release\fsa1 k:\decomp_release\fsa2  

-inline 

 

If the DVM being used was computed inline, then -inline should be appended to the 

above command line as an additional flag (as seen in the second example command).  Also, the 

DVM file (dv-log.txt or dvm-inlinesearch.txt) should be in the first directory specified or it will 

not be found.  The output for this command will produce two files, distances_absolute.csv and 

distances_relative.csv.  The absolute distances file uses the raw frequency count at each flux to 

compute the CDV.  The relative distances file uses normalized frequency counts to compute the 

CDV where a coefficient is equal to itself divided by the sum of all the coefficients in the vector 

to which it belongs. 

C: Reverse Transform Tutorial 

 Reversing a functional decomposition is mentioned in the application and conclusion 

sections of this work.  This tutorial is meant to inform a user as to how to obtain a modified 

adjacency matrix built from the reverse transform of a functional decomposition.   

To use the code go to the following URL and download the project: 

https://github.com/davidluper/system-decomposition-python (the code is hosted as a repository 

on github).  The code is written in Python (v. 26) so this will need to be installed on the system 

being used to run the code.  Additionally, this code uses the NumPy scientific computing 

package which also needs to be installed on the system being used. 

 In order to perform a reverse transform of a functional decomposition, a user must first 

perform a functional decomposition.  For information on how to accomplish this, see the 

functional decomposition tutorial.  Once a functional decomposition has been performed, it is 

https://github.com/davidluper/system-decomposition-python
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possible to reverse the functional decomposition by mapping selected coefficients back into an 

adjacency matrix, while leaving unselected coefficients out.  Which coefficients are mapped 

back into the modified adjacency matrix are specified by the user through a command flag.  To 

compute a reverse transform use the following command: 

 python [path to decomp script]\system_decomp.py -revtran [directory housing the 

functional decomposition output] [comma separated list of coefficient indexes to map 

back into the modified adjacency matrix] 

 Example of this command 

o C:\Python26>python k:\decomp_release\system_decomp.py  

-revtran k:\decomp_release\revtran\ 0,2 

Running this command will produce an output file called rev_matrix.txt that houses the 

modified adjacency matrix.  Uses for the modified adjacency matrix need to be researched, but 

one use, in relation to NFA, is to analyze the percentage of flow kept along particular edges after 

mapping back isolated coefficients encoding high level system traits.  Isolating fluxes and 

reversing the transform in this way could help understand, for each edge in a system, the 

percentage of flow being used at that edge towards understanding a high level system trait.  


