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Abstract

This dissertation presents a modified higher-order DINA model for separating the source

of construct-relevant (i.e., benign) differential item functioning (DIF) from construct irrele-

vant (i.e., adverse) DIF. The model-based method provides a natural framework for detecting

both differential attribute functioning (DAF) and DIF in a cognitive diagnostic modeling

framework: DIF detection ensures test fairness and improves test validity in terms of group

difference in item performance after conditioning on attribute mastery profiles, whereas DAF

detection provides a good understanding of group strength and weakness in terms of a set

of cognitive attributes after conditioning on general ability. An MCMC algorithm employing

Gibbs sampling was used to estimate the new model, and a simulation study was done to

examine model recovery, Type I error rates, and power under different testing conditions. For

DIF detection, the model-based method was also compared with the MH method using two

types of matching criteria, a total score as the matching criterion and an attribute profile

as the matching criterion. Finally, a statewide mathematics test was used to illustrate the

implementation and possible limitations of the new method.
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Chapter 1

The Statement of Problem

In the past decade, a number of cognitive diagnostic models (CDMs) have been devel-

oped to evaluate examinees’ status relative to mastery or non-mastery of a set of cognitive

attributes, knowledge or skills (Dibello et al., 1995; Junker & Sijtsma, 2001; Hartz, 2002;

de la Torre & Douglas, 2004; Templin, 2004; Henson et al., 2007). These models differ from

item response theory (IRT) models, which linearly or partially order examinees in a low-

dimensional latent space. Rather, CDMs provide more fine-grained information regarding

individual or population-level learning weaknesses and strengths than is available in the

standard unidimensional IRT models. As a result of this increase in information, the devel-

opment of CDMs has provided a new perspective for study of some common problems in

educational measurement. In this dissertation, we examine one of those problems, detection

of differential item functioning (DIF).

Definition of DIF. DIF is defined as a difference in the probability of a correct response

in one group compared to another group for examinees of the same ability (e.g., Pine, 1977).

More generally, DIF is said to occur when the probability of a particular response is higher

for one group relative to another group or groups, conditioned on ability (Chang, Roussos, &

Mazzeo, 1996; Cohen, Kim, & Baker, 1993). Defined in this way, DIF is of interest because

it is directly related to test fairness and validity.

Currently, there exist a number of non-parametric and parametric DIF detection proce-

dures. The Mantel-Haenszel (MH), as modified by Holland and Thayer (1988), and SIBTEST

(Shealy & Stout, 1993) are both appropriate non-parametric DIF detection procedures, for

example, for use with tests that are based on classical test theory scoring models. Several

1
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IRT-based procedures are available as well, including Lord’s chi-square method (Lord, 1980),

Raju’s (Raju, 1988, 1990) area measures, and the likelihood ratio test (Thissen, Steinberg, &

Wainer, 1988). Even though these methods have been found to be very useful for detection

of DIF, little progress has been made in understanding the causes of DIF (Roussos & Stout,

1996). One objective in this dissertation is to determine whether CDMs may be useful in

helping to understand the causes of DIF and what may be learned about DIF by their use.

Multidimensional Framework for DIF. Shealy and Stout (1993) provide a multi-

dimensional framework in which DIF is said to occur mainly because the item measures

dimensions that are secondary to a primary or target ability. This set of secondary dimen-

sions has further been categorized into auxiliary and nuisance dimensions (Roussos & Stout,

1996; Douglas, Roussos, & Stout, 1996). The term auxiliary dimensions refers to dimen-

sion(s) that the test was intended to measure. The term nuisance dimensionality is used to

refer to dimensions that the test was not intended to measure. These dimensions are not

normally included in the test specifications or the measurement model and, as a result, are

considered to be construct-irrelevant.

Shealy and Stout (1993) provide a mathematical definition of DIF as being present if

both of the following two conditions are satisfied :

• The item is sensitive not only to the primary construct θ, but also to some secondary

construct η, and

• A difference exists between groups of interest in their conditional distribution on η

given a fixed value of θ (i.e., η|θ).

According to this definition, θ is measured by the primary dimension, and DIF is caused by

the η dimensions. In order to be the cause(s) of benign DIF, η would need to be auxiliary

rather than nuisance dimensions.

Shealy and Stout (1993) referred to DIF that is caused by auxiliary dimensions as benign

DIF, and to DIF that is caused by nuisance dimensions as adverse DIF. That is, benign



3

DIF serves to differentiate groups based on their difference on construct-related dimensions

conditional on ability. Adverse DIF serves to differentiate groups based on differences on

construct-irrelevant dimensions. In this way, adverse DIF contributes to lowering construct

validity because irrelevant constructs are measured by the item. Benign DIF is viewed as

enhancing construct validity of the test, only if the dimensionality that caused the benign

DIF is modelled by the statistical model used to scale the test or reported as test perfor-

mance (Walker & Beretvas, 2001). Benign DIF can be eliminated by conducting an addi-

tional DIF analysis in which all construct-relevant (i.e., auxiliary) dimensions including the

primary dimension are modeled and included in the conditioning variable. In addition, con-

struct validity can be enhanced by including these auxiliary dimensions in the reported

scores. Adverse DIF, however, can be eliminated only by deleting the item or by revising

it sufficiently to remove the unwanted dimensionality from being measured. It is important,

furthermore, that the adverse DIF item not be included in the conditioning variable used for

DIF analysis.

Motivation for this Study. This study has the following motivation: (1) Little research

has focused on investigating the composition of factors of benign DIF. This is potentially

an important area of study and could conceivable lead to methods for improving construct

validity (Walker & Beretvas, 2001). For example, if two groups with known differences on

some construct-relevant dimensions do show DIF on the items measuring those dimensions,

it suggests that the items are capable of differentiating between these two groups on those

dimensions. What would be useful, would be finding a way to isolate those factors which are

the possible causes of benign DIF so that these factors might be included in the measurement

model. In this way, test validity potentially could be improved. The detection of benign DIF

also helps us understand the cause(s) of group differences in item performance in addition

to that due to differences in the primary ability. Gierl et al. (2003), for example, applied a

DIF analysis framework to identify gender differences in cognitive skills measured on a test

of mathematics.
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(2) Benign DIF is usually confounded with adverse DIF and, as a result, more items

are detected as functioning differentially and removed or revised than might be necessary.

Following the logic of Shealy and Stout (1993), only adverse DIF is harmful, and only adverse

DIF items need to be removed from the test. Douglas et al. (1996) identified two requirements

for determining if a DIF item has adverse DIF:

• The matching criterion does not result in a construct-valid matching of examinees on

the construct intended to be measured by the test.

• The secondary dimension of the DIF item is a true nuisance dimension.

Most current DIF procedures consider only a unidimensional conditioning variable for com-

paring item performance among different groups. That is, either the observed total score or

the latent ability on which item performance is conditioned are treated with a unidimensional

measurement model, although many cognitive tests are to some extent multidimensional. In

addition, previous research on DIF has indicated that a primary source of DIF is that due to

the failure of the matching criterion to account for the complete latent ability space (Ack-

erman, 1992; Ackerman & Evans, 1994). When the matching variables don’t represent the

complete latent construct the test is intended to measure, and groups differ on the secondary

dimensions conditional on the primary dimension, items that measure the auxiliary dimen-

sion(s), that is, items that are not measuring nuisance dimensions, will be flagged as DIF

items. As a result, unnecessary cost may be incurred for re-editing or replacing those items.

3) Only two DIF detection studies have been reported using a cognitive diagnostic

modeling framework. These results (discussed below) suggest important advantages from

using this framework. Milewski and Baron (2002) investigated DIF from a CDM frame-

work, extending DIF detection for detection of differential skill functioning (DSF). DSF was

designed to examine group differences in skill mastery performance conditioned on overall

ability rather than examining group differences in item response performance conditioned on

overall ability. In the Milewski and Baron study, skill mastery profiles were estimated using a



5

CDM, and then DIF detection was done based on comparison on each skill between different

manifest groups (e.g., schools, states) and the total population. In this way, the focal group

was composed of an aggregated group of interest, such as students in the same school, and the

reference group was composed of a random sample of the population. Though the term dif-

ferential skill functioning was used to refer to cognitive skills, the intent of the Milewski and

Baron study was not to explore whether a skill was biased, but rather to investigate strengths

and weaknesses of different manifest groups. From this perspective, DSF was conceived of

as a cause of benign DIF. Zhang (2007) extended this approach by employing attribute pro-

files estimated from a DINA model (Macready & Dayton, 1977; Haertel, 1989; Junker &

Sijtsma, 2001) as matching variables for both the MH and SIBTEST procedures. By using

the attribute profiles instead of a unidimensional ability as matching criteria, Zhang (2007)

established a complete construct-valid latent space to detect only adverse DIF. Zhang’s

method showed reduced Type I error rates compared to error rates realized using total raw

score as the matching criteria.

Simultaneous Detection of Adverse and Benign DIF. The utility of the CDM

framework as a means of parsing the construct relevant and construct irrelevant variance

measured by individual test items would appear to be potentially useful. The focus of this

study, therefore, was to develop a method to simultaneously detect both DSF, the cause

of benign DIF, and adverse DIF, in the context of a CDM. To do this, a higher-order

Deterministic Inputs, Noisy And Gate (DINA) model (de la Torre & Douglas, 2004) was

employed. de la Torre and Douglas (2004) extended the DINA model to include an IRT

model as the higher-order model (i.e., a model inserted above the DINA model). This model

has two levels in other words: The lower level model is a DINA model and the higher level

model is a two-parameter logistic (2PL) IRT model. The DINA model is used to relate item

responses to an attribute mastery profile. The 2PL is used to relate mastery status for each

attribute to one or more general ability(-ies). An important assumption in this model is that
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item responses are independent, conditioned on the attribute mastery profile. Mastery of

attributes, however, is assumed to be independent conditional on the general abilities.

This hierarchical relationship among items, attributes, and general ability provides a

natural framework within which to detect both DIF and differential attribute functioning

(DAF). The term DAF is used in this paper rather than DSF, replacing skill with the term

attribute. This is because attribute is a more generic term for psychological construct, and

refers to tasks, subtasks, skills or cognitive processes required by the test (Tatsuoka, 1995).

DAF is defined as the differential probability of mastery of an attribute among groups of

interest matched on general ability(-ies).

As noted above DIF has been defined as the probability of a correct response between

two groups conditional on ability (e.g., Pine, 1977). In this study, we modify this definition

to include the profile of cognitive attributes as the conditioning variables. It is assumed that

the specification of attributes required for the test is correct, so that the profile of cognitive

attributes can be regarded as a complete latent ability space. In this way, the use of this

profile as conditioning variables excludes benign DIF and detects only adverse DIF. In the

following, DIF, as studied by the new method developed in this study, consistently refers to

the adverse DIF. A revised definition of DIF, therefore, is given by the following:

• DIF is defined as a differential probability for a particular response endorsed by one

group compared to that endorsed by another group (or other groups) conditioned on

the mastery status (or attribute) profile.

This definition does not confine DIF to occur only between two groups or for responses to

be scored as correct or incorrect, and the responses can be being dichotomous, polytomous

or even continuous.

DAF is defined as a differential propensity of one group to have a greater probability of

mastery on an attribute compared to another group, conditioned on general ability. From this

perspective, DIF is viewed as adverse DIF, since the group is conditioned on a measure of the

complete construct-related dimensions (as reflected in the attribute mastery profiles). DAF is
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considered as the cause of benign DIF, since it is the difference in cognitive attributes condi-

tional on the primary ability, and these cognitive attributes are construct-related dimensions

intended to be measured by the test.

The higher-order DINA model operates in such a way that the item response function

at the lower level is determined by the item parameters and the attribute mastery status at

the higher level is determined by the attribute parameters. The techniques used to detect

DIF and DAF in this study follow the spirit of item parameter equality comparisons used in

Lord’s Chi-square method (Lord, 1980). DIF and DAF were directly modeled by adjusting

the higher-order DINA model rather than by calibrating the model separately for each group

and then calculating differences.

Estimation of the Model. A Markov chain Monte Carlo (MCMC) algorithm employing

Gibbs sampling was implemented to estimate all parameters in the model. One advantage

of this method for this study is that empirical posterior distributions for all parameters,

including estimates of DAF and DIF, were obtained from the post burn-in iterations. This

differs from Lord’s chi-square in that estimates of DIF are obtained based on statistics

from an asymptotic chi-square distribution. The empirical posterior distributions for the

parameters accounting for the differences can be directly used to test the significance of the

DIF and the DAF.

Summary. In this research, (1) a new method was developed to separate the sources of

benign DIF and adverse DIF, enabling simultaneous detection of DIF and DAF, (2) Type

I error and power analyses were presented for the new method across conditions commonly

found in typical testing situations, and (3) a real-data example was presented and interpreted

in light of the simulation study and model assumptions.

The modified higher-order DINA model used in this study provides a natural frame-

work within which to simultaneously separate the source of construct-relevant (i.e., benign)

DIF from construct-irrelevant (i.e., adverse) DIF. DIF detection helps ensure test fairness

and helps improve test validity, whereas DAF detection provides a better understanding of
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differential knowledge structures across groups. More specifically, this new method can be

used to define group strengths and weaknesses in terms of a set of cognitive attributes after

conditioning on general ability.



Chapter 2

Literature Review

2.1 Cognitive Diagnostic Models

Several cognitive diagnostic models (CDMs) have been developed to evaluate examinees’

status relative to mastery or non-mastery on each of a set of attributes (Haertel, 1989;

DiBello et al., 1995; de la Torre & Douglas, 2004; Hartz, 2002; Henson et al., 2007; Junker &

Sijtsma, 2001; Templin, 2004). CDMs differ from IRT in that IRT models linearly or partially

order examinees in a low-dimension latent space. CDMs, on the other hand, try to estimate

a set of cognitive attributes which each examinee has mastered or not mastered based on

the examinee’s responses to the test items.

Some Terminology. Prior to introducing the cognitive diagnostic models, some key

notation and terminology need to be clarified. An important characteristic of CDMs is their

capability for providing a profile of cognitive attributes an examinee has mastered or not

mastered. As noted in Chapter 1, the term attribute is used generically to refer tasks, sub-

tasks, cognitive processes, or skills that are intended to be measured (Tatsuoka, 1995). The

relationship between items and attributes is specified in the Q-matrix, first introduced by

Tatsuoka (1990). The Q-matrix is a format for specifying the underlying cognitive attributes

measured by the test items. If we have i = 1, . . . , I items and k = 1, . . . , K attributes, the

Q-matrix is specified by an I ×K matrix with qik as elements: qik = 1, when attribute k is

required to respond correctly to item i and qik = 0 otherwise. Before a CDM is fit to test

data, the Q-matrix must be determined. Typically, this is done by analysis of the attributes

required for each item, based on the expert judgments, such as from content specialists.

9
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In the literature review presented in this section, the DINA and the higher-order DINA

models are described. As specified here, these models are only intended to be used for dichoto-

mous item response data.

2.1.1 DINA Model

Junker and Sijtsma (2001) introduced the name DINA for a CDM that can be used to

describe the probability of a correct response as a function of an examinees’ attribute pro-

files and the item parameters. (See also Macready and Dayton (1977), Haertel (1989), and

Doignon and Falmagne (1999) for earlier discussions of this model.) Applications of the

DINA model along with MCMC algorithms for estimation of model parameters are given in

Junker and Sijtsma (2001).

The inputs to the DINA model in the set of latent responses, ξij’s, are each determined

by 1) the elements of the Q-matrix, qik, which take values of 1 or 0, indicating whether

attribute k is required or not required, respectively, and 2) a mastery or non-mastery status,

αjk = 1 or 0, indicating whether or not examinee j has mastered attribute k. This model

can be expressed as

ξij =
K∏

k=1

αqik
jk , (2.1)

where the deterministic latent response ξij denotes whether examinee j has mastered all

required attributes for item j. Thus, each item divides the population into two classes, those

who master all required attributes for that item, indicated by ξij = 1, and those who miss

at least one required attribute for that item, indicated by ξij = 0. The model is considered

as stochastic, since the observed response Yij is not completely consistent with the latent

response ξij. The probabilistic relation is governed by two “Noisy” parameters unique to

each item, si, a slip parameter, and gi, a guessing parameter. As described for the signal

detection model (Green & Swets, 1966), the ξij are estimated from noisy observations, the

Yij, by two error probabilities, a “slipping” parameter, si, indicating the probability of a

false negative for item i, and a “guessing” parameter, gi, indicating the false positive rate
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for item i. That is, si is the probability of missing item i for someone who is classified as

mastering all required attributes (i.e., ξij = 1):

si = P (Yij = 0|ξij = 1) , (2.2)

and gi is the probability of a correct response for someone classified as lacking at least one

required attribute (i.e., ξij = 0):

gi = P (Yij = 1|ξij = 0) . (2.3)

Given examinee parameter ξij and item parameters si and gi, the probability of a correct

response to item i can be written as

P (Yij = 1|ξij) = (1− si)
ξijg

(1−ξij)
i (2.4)

That is, the probability of a correct response to item i can only be divided into two categories:

gi for any examinee j who misses one or more attributes required by item i (i.e., ξij = 0),

and 1 − si for any examinee j who masters all attributes required for item i (i.e., ξij = 1).

The model is conjunctive since the probability of a correct response is the same whether one

or more than one of the required attributes is missed. In addition, mastering more attributes

than required for correctly answering item i doesn’t make the correct response probability

higher either, so the model is noncompensatory.

2.1.2 Higher-Order DINA Model

de le Torre and Douglas (2004) extended the DINA model to include an IRT model for the

joint distribution of the attributes. The result is a higher-order DINA model that assumes

the several cognitive attributes are dependent on one or at most a small number of general

abilities. The lower-order part of the model is the same as the DINA model, and the higher-

order part is the same as the 2PL model given as

Logit[P (αjk|θj)] = akθj − βk , (2.5)
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where αjk is the indicator of mastery status for examinee j on attribute k, θj is the ability

parameter for examinee j, and ak and βk are the discrimination and difficulty parameters,

respectively, of attribute k. The higher-order DINA model is used to classify examinees on

specific attributes and simultaneously provide estimates of general ability(-ies). In the orig-

inal description by de la Torre and Douglas, the broadly-defined latent traits were assumed

to consist of a small number of dimensions. Here we assume a unidimensional ability, θ, and

attributes, α, to be independent conditional on θ.

2.2 Differential Item Functioning

Differential item functioning (DIF) has received considerable attention in the psychometric

literature in large part because it is directly related to test fairness and validity. An item

shows DIF if individuals from the reference and focal group have different probabilities of

getting it correct conditioned on ability (Pine, 1977). The usual DIF analysis is designed to

compare two groups, the focal group and the reference group. The focal group is generally the

group that is the focus of concern, and the reference group serves as the group against which

the focal group is compared. Methods for detecting DIF include non-parametric methods,

such as the Mantel-Haenszel procedure (MH: Holland & Thayer, 1988) and the simultaneous

item bias test (SIBTEST) procedure (Shealy & Stout, 1993), parametric non-IRT methods,

including logistic regression (Swaminathan & Rogers, 1990) and parametric methods in the

context of IRT such as the area measures by Raju (1988, 1990), and comparison of item

parameters (Lord, 1980; Thissen, Steinberg, & Wainer, 1988). In this dissertation, only the

MH method was used in conjunction with the new method based on the higher-order DINA

model. In part, this is because different tests of DIF tend to differ slightly, even in the context

of simulation studies, making it difficult to determine which solution is more accurate. In

addition, the MH is often selected, in part, because it is easy to use and also because it has

been found to work even in relatively small samples.
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2.2.1 Mantel-Haenszel Method

The Mantel-Haenszel (MH) procedure was originally introduced by Mantel and Haenszel

(1959) for the study of matched groups in the context of clinical cancer trials. Holland

(1985) and Holland and Thayer (1988) adapted this procedure for assessing differential item

functioning on tests. In the MH procedure, two contrasting examinee groups are identified,

the reference group, r, and the focal group, f . The two groups are matched on some criterion

that is assumed to accurately represent the construct of interest. In the usual application

of the MH, the matching variable is the raw score (i.e., the total score) on the test and

includes the studied item. The matching variable is used to divide the range of scores into

K score groups for use in comparing the correct versus incorrect performance of the r and f

groups. To do this, K 2× 2 contingency tables are constructed. The MH chi-square is then

computed as a single degree of freedom chi-square over the K 2 × 2 contingency tables. A

2 × 2 contingency table for score group k (k = 1, . . . , K) for the studied item is shown in

Table 2.1.

Table 2.1: Contingency Table For Mantel-Haenszel DIF Statistic

Group Right Wrong Total
Reference Group Rrk Wrk Nrk

Focal Group Rfk Wfk Nfk

Total Group Rtk Wtk Ntk

In Table 2.1, Rrk and Wrk are counts of right and wrong responses, respectively, in the

reference group at score level k, Rfk and Wfk are counts of right and wrong responses,

respectively, in the focal group at score level k, Rtk and Wtk are the count of right and wrong

responses in the total group at score level k. In addition, Nrk, Nfk, and Ntk are the number

of examinees in the reference group, the focal group and the total group, respectively. The
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null hypothesis of the MH method for DIF analysis can be expressed as

H0 :
Rrk

Wrk

=
Rfk

Wfk

. (2.6)

That is, the odds of getting the item correct in the focal group is the same as that in the

reference group at a given level of the matching variable. The MH method provides both a

test of statistical significance and an estimate of effect size for DIF. For the test statistic,

the MH method computes a chi-square statistic which is given by

MHχ2 =
[|∑K

k=1(Rrk − E(Rrk))| − .5]2
∑K

k=1 V ar(Rrk)
, (2.7)

where

E(Rrk) = NrkRrk/Ntk, V ar(Rrk) =
NrkNfkRtkWtk

N2
tk(Ntk − 1)

. (2.8)

Under the null hypothesis of no DIF, the statistic MHχ2 has approximately a chi-square

distribution with one degree of freedom. A significant MHχ2 indicates uniform DIF, that

is a difference in the probability of a correct answer to an item between two groups that is

constant across all ability levels. A measure of effect size is also provided for the MH method

in which the common odds ratio αMH is calculated, representing the ratio of the odds that

a member of the reference group will answer the studied item correctly to the odds that a

matched member of the focal group will do the same. If αMH = 1, then there is no difference

in the performance of the two groups on the item at the kth score level. This value is easily

combined across all score levels to obtain a measure of the DIF effect size, αMH . The form

of this effect size is given by the following formula:

αMH =

∑K
k=1 RrkWfk/Ntk∑K
k=1 WrkRfk/Ntk

. (2.9)

Holland and Thayer (1988) also proposed the following natural logarithmic transformation

of the odds ratio αMH to make the effect size scale symmetric:

∆αMH = −2.35 ln(αMH) . (2.10)
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A value of zero indicates no DIF, a positive value indicates that the item favors the focal

group, and a negative value indicates the item favors the reference group. Educational Testing

Service (ETS) classifies DIF based on the ∆αMH into 3 levels (Dorans & Holland, 1993):

A. Negligible DIF, when chi square is not significant and | ∆αMH |< 1.

B. Intermediate DIF, when chi-square is significant and 1 <| ∆αMH |< 1.5.

C. Large DIF, when chi-square is significant and | ∆αMH |≥ 1.5.

The ETS standards were used in the real data example presented in this study to assist in

interpretation of the flagged DIF items.

There is some disagreement about the effectiveness of the MH method. Meredith and

Millsap (1992) found the MH to be inaccurate in detecting DIF, when the item responses

were generated by complex IRT models, e.g., by a three-parameter logistic (3PL) model.

On the other hand, Donoghue, Holland, and Thayer (1993) showed the MH method to have

good Type-I error control and good power, even when the data were generated by complex

IRT models.

Simultaneous Item Bias Test (SIBTEST). Another non-parametric test that has

been developed for DIF detection is the SIBTEST (Shealy & Stout, 1993). Like the MH

method, SIBTEST also provides a DIF statistic for detecting DIF as well as an estimate

of the effect size of DIF. Originally, SIBTEST was only capable of detecting uniform DIF.

Different from the MH method, however, is that SIBTEST can be used to detect whether DIF

is present in one or more items simultaneously. To do this, two subtests need to be formed,

one is the “suspect” subtest containing the item(s) suspected of functioning differentially

and, therefore, to be tested for DIF, and the other is assumed to be the DIF-free subtest,

containing items which are not suspected to function differentially. The score on the DIF-free

subtest serves as the matching variable. A weighted mean difference in subtest performance

between the focal group and the reference group, βUNI , is computed as

β̂UNI =
K∑

k=0

pk(Ȳrk − Ȳfk) , (2.11)
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where Ȳrk and Ȳfk are the mean scores on the suspect subtest for the reference group and

the focal group, respectively, for a score k, k = 0, . . . , K, on the DIF-free subtest. pk is the

proportion of examinees in the focal group with score k on the DIF-free subtest. The statistic

for βUNI is given by

BUNI =
β̂UNI

σ̂(β̂UNI)
, (2.12)

where σ̂(β̂UNI) is the estimated standard error of β̂UNI . Shealy and Stout (1993) demon-

strated the statistic BUNI is approximately distributed as a standard normal (i.e., N(0, 1))

under the null hypothesis, which is

H0 : βUNI = 0 . (2.13)

Roussos and Stout (1996) provide standards for classifying DIF detected by SIBTEST based

on the estimate of effect size β̂:

A. Negligible DIF, where absolute value of β̂ < .059 and the hypothesis test is rejected.

B. Moderate DIF, where absolute value of .059 ≤ β̂ < .088 and the hypothesis test is

rejected.

C. Large DIF, absolute value of β̂ ≥ .088 and the hypothesis test is rejected.

Although SIBTEST was initially described for detection of uniform DIF, it can also be used

for detecting nonuniform DIF as well (Li & Stout, 1996).

2.2.2 Parametric DIF Methods

IRT is a family of statistical models relating the probability of a response on a test item

to the latent ability measured by the test. The item characteristic curve (ICC) incorporates

this information in the curve defined for a particular IRT model. IRT provides a natural

framework within which to study DIF. In the IRT framework, DIF can be characterized as

occurring when the ICC differs for the reference and focal groups. One approach to DIF

detection can been seen as a task of comparing ICC’s from the reference and focal groups.
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Lord’s Chi-Square. Since the ICC is completely determined by the item parameters,

comparing ICC is same as comparing the item parameters from different groups. Lord (1980)

developed a chi-square statistic for testing the equality of item parameters between the

reference and focal groups. Lord’s chi-square requires that the parameters of the IRT model

be estimated separately for the reference and focal group. Next, the item parameters need

to be placed on the same metric by means of some linking procedure. The null hypothesis

for Lord’s chi-square is

H0 :





bf = br

af = ar

cf = cr

(2.14)

To test this null hypothesis, Lord’s chi-square is calculated by

χ2 = (adiffbdiffcdiff )
′Σ−1(adiffbdiffcdiff ), (2.15)

where adiff = af − ar, bdiff = bf − br, and cdiff = cf − cr, and Σ is the variance-covariance

matrix of the differences between the parameter estimates. The statistic χ2 is asymptotically

distributed as a chi-square with p degrees of freedom, where p is the number of parameters

being compared. Usually the guessing parameter c is not included for comparing since the

standard error of c is typically large and will cause the test to be conservative.

Raju’s Area Measures. An alternative way to compare ICCs is to calculate the area

between the ICCs estimated in the reference and the focal group. In this method, the item

parameters should be calibrated separately for the two groups and then a linking procedure

should be used to placing the item parameters on a common scale. When that has been

done, then the area between ICCs is calculated. An exact expression for computing the area

between the ICCs for the common dichotomous IRT models was derived by Raju (1988).

The expression under the 3PL model is

Area = (1− c)|2(af − ar)

Dafar

ln[1 + e
Daf ar(bf−br)

(af−ar) ]− (bf − br)| . (2.16)
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For a two-parameter logistic (2PL) model, the term involving c disappears. For a one-

parameter logistic (1PL) model, the expression reduces to the difference between the b values

estimated from the two groups. Prior to Raju (1990), the disadvantage of this approach was

that extra work needed to be done to establish an empirical cut-off value with which the area

statistic could be compared to decide whether DIF was present. In this regard, Rogers and

Hambleton (1989) suggested an approach using simulated data to establish a cut-off value.

Raju (1990) provided a distribution for the signed and unsigned area measures, making it

possible to do a statistical test for the significance of the group difference.

Likelihood Ratio Test for DIF. Another IRT-based method for DIF detection is the

likelihood ratio test (Thissen, Steinberg, & Wainer, 1993). In this test, the likelihoods for two

nested models are compared, a compact model and an augmented model. In the compact

model, the item parameters for all items are assumed to be the same for both the reference

and focal groups. In the augmented model, item parameters for all items except the studied

item(s) are constrained to be equal in both the reference and focal groups. The likelihood

ratio is calculated by

G2 = −2log
(

LC

LA

)
, (2.17)

where LC and LA are the likelihoods of the compact model and the augmented model,

respectively. The statistic G2 is distributed as a χ2 under the null hypothesis with degrees of

freedom p, where p is the difference in the number of parameters estimated in the compact

and augmented models. The remaining items in the augmented model are constrained to have

the same parameters for both the reference and focal groups. In addition, the remaining items

serve as an anchor set to link the metrics of the focal and reference groups. Then DIF will

be checked item by item.

2.2.3 Multidimensional DIF Detection

Most DIF detection procedures, whether parametric or non-parametric, are based on an

assumption that the data are unidimensional. As a result, the matching variable conditions
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on a unidimensional raw score or latent ability score. Many cognitive ability tests are multi-

dimensional to some extent, however, which requires a model that accounts for composites

of several abilities (Ackerman, 1992). Ackerman (1992) and Ackerman and Evans (1994)

suggested that a primary source of DIF is that due to the failure of the matching criterion

to account for the complete latent ability space. In this regard, Walker and Beretvas (2001)

examined DIF in a mathematics test from a multidimensional perspective. Results indicated

some open-ended items measured mathematics ability as well as written mathematical com-

munication, even though only a single score composed of multiple choice and open-ended

items was used as the matching variable. Walker and Beretvas suggested that mathematic

communication ability should be modeled in addition to mathematics ability.

If a test is essentially multidimensional, as Ackerman (1992) suggests, then matching

groups according to a unidimensional criterion will result in more items flagged as DIF items,

even though they may actually be measuring relevant aspects of the latent variable space.

A more accurate measure of the latent ability might be helpful as the matching variable, in

that it could help to reduce inflated estimates of DIF. In this regard, Ackerman and Evans

(1993) demonstrated how DIF can be eliminated when two latent abilities were used in the

matching variable.

Mazor, Hambleton, and Clauser (1998) compared results from MH and logistic regression

methods for DIF detection using three different matching variables, total test score, relevant

subtest score (i.e., the score from the subtest to which the studied item belongs), and all

subtest scores. The matching criterion formed of all subtest scores was a multivariate com-

posite of scores from all the subtests. A simulation study indicated that the multivariate

subtest scores performed best in terms of reducing Type I errors. The relevant subtest score

performed next best, followed by the total test score.

Zhang (2007) investigated DIF for CDMs. Since CDMs estimate mastery or non-mastery

status for several attributes instead of for a single ability, Zhang used attribute mastery

profiles estimated using the DINA model as the matching variables for both the MH and
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SIBTEST methods. Use of attribute profiles instead of a single unidimensional score as the

matching variable enabled Zhang to establish a measure of the ability space that had greater

construct validity. Zhang’s results indicated a reduced Type I error rate, compared with the

use of a unidimensional score as the matching variable.

Clearly, the choice of an appropriate matching variable can improve the detection of

DIF. One problem with the approach taken by Zhang (2007), however, is that the attribute

mastery profiles for the reference and focal groups were estimated by the same DINA model.

That is, the same item parameters were assumed for the reference and focal group. Once it

is determined that DIF exists in some of the items on the test, the assumption is no longer

tenable that the two groups share the same item parameters. The result of the violation

of this assumption is that the estimates of attribute mastery profiles are biased, and the

matching variable is contaminated. In addition, the MH and SIBTEST methods used by

Zhang (2007) were only capable of detecting uniform DIF. Thus the power of DIF detection

was low for items that were generated to have nonuniform DIF. In the present study, the

model was calibrated with different sets of item parameters for the reference and focal groups.

Next, group differences in both the guessing parameter and slip parameters were examined

separately for each item to determine if DIF exists. In this way, it was possible to determine

whether uniform or nonuniform DIF was present.

2.3 A Modified Higher-Order DINA Model for both DAF and DIF Analysis

In this study, a model-based method was developed for simultaneous detection of DAF and

DIF simultaneously. We begin by making some adjustments to the higher-order DINA model:

• Templin (2004) proposed a generalized linear mixed proficiency space model (GLMPSM)

that includes examinee covariates in the estimation of the proficiency space. In this

study, we employ the GLMPSM, using a group indicator as an examinee covariate

in the upper level of the higher-order DINA model. In the context of DIF detection,

this group indicator was used as an index of either manifest group membership (e.g.,
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ethnicity or gender) or cognitive differences (e.g., latent groups that differ with respect

to use of cognitive strategies). A significance test of the coefficient estimated for the

group indicator is described for detection of DAF.

• The number of attributes included on a test is usually small (e.g. 5). As a result,

convergence and precision of attribute discrimination parameters may be problematic.

As an example, Li et al. (2007) have shown that, when the number of items is small

(e.g., 6), a mixture Rasch model (Rost, 1990) may converge, but more complex models

such as the mixture 2PL and mixture 3PL may not. In the present study, therefore, the

adjusted higher-order DINA model was estimated with the discrimination parameters

fixed to be equal over all attributes and across groups. As a result, only uniform DAF

was examined in this study.

• Item parameters, g and s, are located in the lower level of the higher-order DINA

model. Values for these parameters were set to permit different values for different

groups.

2.3.1 Attribute-Level Model Specification

Given the modifications noted above, the attribute level specification of the higher-order

DINA model can be re-written as

Logit[P (αk|θj)] = a(θj + ∆tIj)− (βk + γkIj), (2.18)

where

• Ij is a group indicator, that takes a value of 0, if examinee j belongs to the reference

group, and 1, if examinee j belongs to the focal group;

• a is a uniform discrimination parameter, that is, it is fixed to be the same across

attributes and groups;

• βk is the difficulty parameter of attribute k for the reference group;
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• γk is the difference in difficulty for attribute k between the reference and focal groups,

and represents the amount of uniform DIF for attribute k. A positive sign for γ indicates

the attribute favors the reference group, a negative sign indicates the attribute favors

the focal group.

• θj is the general ability for member j of the reference group, and

• ∆t is the mean difference in ability between the reference and focal group.

As noted above, in this model a is a common discrimination parameter for all attributes in

both reference group and focal group. In addition, βk is the attribute difficulty parameter

for the reference group, βk + γk is the attribute difficulty parameter for the focal group, θj

is the ability of examinee j, who belongs to reference group, and θj + ∆t is the ability of

examinee j, who belongs to focal group.

This model is a special case of a Rasch model with covariates, albeit with a discrimination

parameter that does not necessarily equal 1. The model is not yet identified, however, since

a constant (say, c) can be added to any βk and the constant c/a can be added to any θj

so that the odds ratio won’t be changed. The same thing happens to γk and ∆t. In order

to solve the non-identifiability problem, the parameters in this study were adjusted using

Chaimongkol’s (2005) method for multilevel logistic regression models:

βadj
k = βk − β (2.19)

γadj
k = γk − γ (2.20)

θadj
j = θj − β/a (2.21)

∆tadj = ∆t− γ/a (2.22)

After the adjustment, DAF can be detected by examining if γadj
k = 0.
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2.3.2 Item-Level Model Specification

And at the lower-level of the higher-order DINA model, the DINA model can be rewritten

as

P (Yij = 1|ξij) = (1− smi)
ξijg

(1−ξij)
mi , (2.23)

where smi is the slip parameter for item i in group m, and gmi is the guessing parameter

for item i in group m. Here m is r when examinee j belongs to the reference group, and f

when examinee j belongs to focal group. Thus, the slip and guess parameters for item i in

the reference group and the focal group are denoted as gri, sri and gfi, sfi, respectively.

As noted above, an item is said to be functioning differentially, when the probability of

success on the item is higher for one group than for the other, even though examinees in

both groups are matched on ability. In the DINA model framework, ξij can be regarded as

the ability variable with two levels: 1 indicates examinee j mastered all attributes required

by item i, and 0 indicates examinee j missed at least one attribute required by item i.

By definition, in the DINA model, the conditional probability of a correct response to

item i is 1 − si, when ξ = 1, and gi, when ξ = 0. Two straightforward ways to obtain an

estimate of DIF are (1) to compare 1− si and gi for item i between the reference and focal

groups, and (2) to marginalize the differences in the probability of success for item i across

all levels of ability. The first way can be presented as

∆si = (1− sfi)− (1− sri) = sri − sfi (2.24)

and

∆gi = gfi − gri , (2.25)

where positive values of ∆si indicate the item favors the reference group for examinees

mastering all attributes required by item i, and positive values of ∆gi indicate the item

favors the focal group for examinees who have not mastered at least one of the attributes

required by item i. Thus, there are four combinations of ∆si and ∆gi:
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1. Both ∆si and ∆gi are positive, that is, item favors the reference group for the masters

but favors the focal group for the non-masters.

2. Both ∆si and ∆gi are negative, that is, item favors the focal group for the masters but

favors the reference group for the non-masters.

3. ∆si is positive and ∆gi is negative, that is, item favors the reference group for both

masters and non-masters.

4. ∆si is negative and ∆gi is positive, that is, item favors the focal group for both masters

and non-masters.

Combination 3 and 4 indicate uniform DIF, and combination 1 and 2 indicate non-uniform

DIF.

The second way can be presented as

Di = [(1− sfi)− (1− sri)]× P (ξi = 1) + (gfi − gri)× P (ξi = 0) . (2.26)

An important problem with this second approach, however, is that cancellation of the DIF

effect could occur, when the group with the higher 1− si has a lower gi, or when the group

with a lower 1 − si has a higher gi. DIF cancellation is an undesirable outcome as it can

potentially mask adverse DIF. As a result, we obtained a DIF index using the first approach.

That is, DIF was detected in this study by testing whether ∆gi = 0 or ∆si = 0.



Chapter 3

Research Designs and Methods

3.1 A Markov chain Monte Carlo Algorithm for Model Estimation

A Markov chain Monte Carlo (MCMC) algorithm employing Gibbs sampling was used to

estimate the model parameters in this study. This algorithm is implemented in the WinBUGS

software (Spigelhalter, Thomas, & Best, 2003) and was used to simulate a Markov chain in

which values representing parameters of the model are repeatedly sampled from their full

conditional posterior distributions over a large number of iterations. In this way, the MCMC

algorithm can be used to sample values in each iteration for each of the parameters in the

model conditional on those parameters already estimated up to that point in the iteration.

With respect to the higher-order DINA model, model parameters were sampled from their full

posterior distributions conditional upon the already sampled ability and examinee attribute

mastery parameters.

To derive the posterior distributions for each parameter, it is first necessary to specify

their prior distributions. The following priors were used to estimate the parameters of the

modified higher-order DINA model in this study: αjk | θj ∼ Bernoulli(a(θj + ∆tIj) − (βk +

γkIj)), θj ∼ N(0, 1), a ∼ N(0, 1) a > 0, βk ∼ N(0, 100), γk ∼ N(0, 100), ∆t ∼ N(0, 1),

gmi ∼ Beta(Ug, Sg), smi ∼ Beta(Us, Ss), Ug ∼ Uniform(.1, .9), Sg ∼ Uniform(.5, 10), Us ∼
Uniform(.1, .9), Ss ∼ Uniform(.5, 10).

The beta distribution used as a prior for the gmi and smi parameters was intended to

ensure that the ranges of gmi and smi were between 0 and 1, respectively. When the value

of Ug (or Us) was larger than the value of Sg (or Ss), the priors for g and s were more likely

to be drawn from the range of .5 to 1, otherwise, the priors for gmi and smi would be more

25
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likely to be drawn from the range of 0 to .5. The uniform distribution (.1, .9) for Ug (or Us)

and uniform distribution (.5, 10) for Sg (or Ss) as the hyperprior distribution helped ensure

that Sg (or Ss) was more likely to be larger than Ug (or Us) with the result that gmi and smi

were more likely to be drawn from between 0 and .5. In this way, the beta distribution is a

more informative and realistic prior distribution than a uniform distribution (0, 1).

Some traps occurred in running the MCMC algorithms after applying the above priors.

Step-by-step checking found these traps could be stopped by reducing the variances on the

priors for β and γ from 100 to 1. The resulting N(0, 1) priors were finally used for estimating

β and γ.

One benefit of the MCMC algorithm implemented in this model-based DIF analysis is

that the MCMC algorithm estimates a posterior distribution for all sampled parameters,

including the DAF and DIF indices. Further, the posterior distribution for the parameter

provides a 100(1 − α)% credibility interval that can be used to examine if the magnitude

of DIF equals 0 (Samuelsen, 2005). In this test, DIF is present, if the interval does not

contain 0. Thus, we can judge whether DAF exists for attribute k by testing, if the 100(1−
α)% credibility interval on γadj

k contains 0. Similarly, whether DIF exists for item i can be

determined by testing if the 100(1− α)% credibility intervals on ∆gi or ∆si contain 0.

3.2 A Simulation Study

This simulation study has two purposes. First, it is designed to determine whether the new

model-based method can be used to detect both DAF and DIF simultaneously. Second,

it is designed to compare the Type I error control and power of this approach to the usual

methods for DIF detection or to the non-model based methods for DIF detection in cognitive

diagnostic assessment.

We begin by first constructing conditions. For this purpose, the first task of this simulation

study is to build DAF and DIF conditions for the higher-order DINA model. We do this by

manipulating several factors and use these to generate the response data for the models.
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3.2.1 Data Simulation Design

Factors Potentially Affecting Detection of DIF and DAF. The performance of tradi-

tional DIF detection methods has been shown to be affected by factors such as sample size,

test length, proportion of items on the test containing DIF, the amount of DIF, ability dis-

tribution difference between the reference and focal group (Mazor, Clauser, & Hambleton,

1992; Rogers & Swaminathan, 1993; Swaminathan & Rogers, 1990). In addition to these

factors, other factors also may be appropriate to consider when the context is one which

considers both DIF and DAF detection. These additional factors could include the number

of attributes included in the model for a fixed test length, the completeness and correctness

of the Q-matrix specification, the complexity of Q-matrix, the correlations among attributes,

and the values for the slip and guessing parameters. The completeness of a Q-matrix refers

to whether or not all attributes required to answer the items correctly are specified. Com-

pleteness also requires that each attribute is measured by at least one item. The correctness

of a Q-matrix means that the specification of the elements of the matrix correctly indicate

which attributes are required for correctly answering each item. Finally, the complexity of

a Q-matrix refers to the ratio of the number of items to the number of attributes. In this

study, we manipulated the complexity of a Q-matrix.

It is not feasible to examine the impact of all the factors noted above in this first study

of this new model. In this study, therefore, only a portion of the factors was manipulated

and the remaining ones fixed.

A single, 25-item test with five attributes was simulated. In addition, a 1PL IRT model

was used as the IRT model in the higher-order DINA model to estimate how general ability

and attribute difficulties predict mastery status of attributes. This is analogous to examining

how ability and item difficulty predict the correct response to an item in the usual IRT

framework. It is well-known that the precision of ability estimates increases with an increase

in number of items. Similarly, more attributes should lead to improvement of the precision of

model attribute parameters. However, in practice, the number of attributes to be measured
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in a test is typically small. In this study, therefore, five attributes were simulated for the 25

items.

Previous research has suggested the percentage of DIF items has an impact on DIF

detection. Too many DIF items can contaminate the conditioning variables (Gierl, Gotz-

mann, & Boughton, 2004; Narayanon & Swaminathan, 1996). Narayanon and Swaminathan

(1996) simulated data with DIF in up to 20% of the items. Likewise, Zhang (2007) simulated

five DIF items on a 25-item test. The percentages of differentially functioning items and

attributes to be studied is determined based on rates that might occur in actual testing pro-

grams. One problem with this approach is that most well-developed tests have been carefully

constructed so that most DIF has been removed from the test. Even so, Mazor, Kanjee, and

Clauser (1995) found approximately 20% items of the items functioned differentially on an

operational test. With respect to attribute functioning, no research has yet been reported

about the prevalence of DAF. Consequently, in this study we selected five of the 25 items

(i.e., 20%) as the single DIF condition. Further, two of the five attributes were manipulated

to provide DAF conditions so that it was possible to simulate one attribute discriminating

the focal group and another one favoring the focal group.

In the simulation study and the real data example presented in de la Torre and Douglas

(2004), the range of attribute difficulty was from -1.5 to .5, and the range of most slip and

guessing parameters was from .1 to .3. These ranges were incorporated in this study such

that five attribute difficulty parameters for the reference group were fixed at (0, 0, 0, 0, 0).

Slip and guessing parameters for the 25 items were generated from a uniform distribution

between .1 and .3. This meant that a master had a probability of from .1 to .3 of responding

incorrectly to the item, whereas a non-master had a probability of from .1 to .3 of responding

correctly. These values of guessing and slip parameters are reasonable for a test with good

diagnostic quality. Since slip and guessing parameters are both indicators of noisiness in the

data, smaller values for these parameters would indicate that the model is likely to be more

diagnostically useful for distinguishing masters and non-masters (Templin & Henson, 2006).
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For the two differentially functioning attributes and the five differentially functioning

items simulated in this study, the amount of DIF and DAF was also fixed. Zhang (2007) set

two levels of DIF for item slip and guessing parameters: .075 and .15. A DIF of .075 was

not sufficiently large enough to be detected, although a DIF of .15 yielded a power of 1.0 for

some conditions in Zhang’s study (2007). The amount of DIF, however, was not the focus

of this study. Consequently, the level of DIF selected for this study was .1, a value between

.075 and .15. That is, the slip and guessing parameters in the focal group were formed by

adding or subtracting .1 from the values for the reference group.

No research has yet been reported describing the amount of DAF that is reasonable to

expect in a practical testing situation. In part, this is because CDMs are only a relatively

recent addition to the psychometric literature, and DAF has yet to be studied in this context.

In this study, therefore, DAF was simulated as 1.0 between attributes. This is a relatively

large difference. The attribute difficulty in the focal group, in other words, was simulated as

(1,−1, 0, 0, 0). This pattern simulates the first attribute as harder and the second attribute

as easier than the same two attributes in the reference group. The remaining three of the

five attributes were equally difficult for members of the reference and focal groups.

Factors to be Manipulated. The factors described above were fixed in this study.

The following five factors were manipulated: 2 sample sizes, 2 ability distributions, 2 Q-

matrices with different levels of complexity, 3 different patterns of attribute discrimination

parameters, and 6 scenarios with different combinations of DIF and DAF.

Sample size is consistently shown to be an important factor in DIF detection studies.

Previous research has shown that DIF detection using the MH and the LR statistics improve

as sample size increased (Mazor, Clauser, & Hambleton, 1992; Narayanon & Swaminathan,

1996; Swaminathan & Rogers, 1990). Since a model-based method is proposed in this study,

sample size is likely to be important. de la Torre and Douglas (2004) report good recovery

for the one-group higher-order DINA model with a sample size of 1,000. In this study,

therefore, 1,000 examinees for the reference group and 1,000 examinees for the focal group
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were simulated as one sample size condition. A second sample size of 500 examinees per

group was simulated as a small sample condition.

Group differences in ability have been shown to affect DIF detection (Mazor, Clauser,

& Hambleton, 1992; Shealy & Stout, 1993; Narayanon & Swaminathan, 1996). Unmatched

ability distributions make DIF detection more difficult than matched ability distributions.

For this reason, two ability distributions were simulated in this study: A matched ability

distribution situation was simulated in which both the reference and focal group had the

same ability distribution of N(0, 1), and an unmatched ability condition was simulated, in

which the reference group ability distribution was simulated as N(0, 1), and the focal group

was simulated as N(−1, 1).

In CDMs such as the higher-order DINA model, the Q-matrix is used to link items and

attributes. Because of its centrality in the model, a misspecified Q-matrix can result in poor

estimation of model parameters. One problem with the specification of the Q-matrix is that

as yet, no research has been reported in which the Q-matrix has been used to guide item

and test development. As a result, psychometric research with CDMs has relied on content

expert judgments to determine the attributes measured by existing items on existing tests

that were developed using other methods. Consequently, it is likely that the Q-matrices

thus specified are not as effective as they might be were the items and tests developed to

specifically measure these attributes.

Further, a trade-off has been shown to exist between the complexity of the Q-matrix

and parameter estimation accuracy for a fixed test length (Hartz, 2002; Zhang, 2007). When

the items measure too few attributes, the information to estimate the model parameters

is not sufficient and estimation suffers. In contrast, when each item measures too many

attributes, the capability to distinguish between attributes by the model is questionable. In

this study, a single 25× 5 Q-matrix was constructed that was balanced between complexity

and effectiveness. For first five items, each item was simulated as estimating a single attribute;

for Item 6 to 15, each item was simulated as estimating two attributes; for Item 16 to 25,
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Table 3.1: Q-Matrix with Complex Structure
Attributes Attributes Attributes

Items 1 2 3 4 5 Items 1 2 3 4 5
1 1 0 0 0 0 10 0 1 1 0 0 18 1 1 0 0 1
2 0 1 0 0 0 11 0 1 0 1 0 19 1 0 1 1 0
3 0 0 1 0 0 12 0 1 0 0 1 20 1 0 0 1 1
4 0 0 0 1 0 13 0 0 1 1 0 21 1 0 1 0 1
5 0 0 0 0 1 14 0 0 1 0 1 22 0 1 1 1 0
6 1 1 0 0 0 15 0 0 0 1 1 23 0 1 1 0 1
7 1 0 1 0 0 16 1 1 1 0 0 24 0 1 0 1 1
8 1 0 0 1 0 17 1 1 0 1 0 25 0 0 1 1 1
9 1 0 0 0 1

each item was simulated as estimating three attributes. This Q-matrix design is shown in

Table 3.1. As can be seen in Table 3.2, each attribute is measured by 11 items. This design is

similar to that of de la Torre and Douglas (2004) for a 30-item test. The Q-matrix specified

by de la Torre and Douglas, however, repeated the one-attribute-by-one-item pattern for 5

items twice.

In addition, a second Q-matrix was specified for this simulation study (see Table 3.2). In

this Q-matrix, a 25× 5 Q-matrix was specified that has what is known as simple structure.

In a simple structure Q-matrix, each item is modelled as measuring only a single attribute.

The Q-matrix in Table 3.1 shows that each attribute was measured by five items. This is

not necessarily the most desirable form of Q-matrix, but it is common in existing tests. As

an example, most statewide tests only measure a single content strand per item. This is

essentially the same as measuring a single attribute per item. The purpose of using two Q-

matrices with different complexity was to compare whether the number of items per attribute

had a differential impact on parameter estimation and, further, whether the accuracy of DIF

or DAF were affected.
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Table 3.2: Q-Matrix with Simple Structure
Attributes Attributes Attributes

Items 1 2 3 4 5 Items 1 2 3 4 5 Items 1 2 3 4 5
1 1 0 0 0 0 10 0 1 0 0 0 18 0 0 0 1 0
2 1 0 0 0 0 11 0 0 1 0 0 19 0 0 0 1 0
3 1 0 0 0 0 12 0 0 1 0 0 20 0 0 0 1 0
4 1 0 0 0 0 13 0 0 1 0 0 21 0 0 0 0 1
5 1 0 0 0 0 14 0 0 1 0 0 22 0 0 0 0 1
6 0 1 0 0 0 15 0 0 1 0 0 23 0 0 0 0 1
7 0 1 0 0 0 16 0 0 0 1 0 24 0 0 0 0 1
8 0 1 0 0 0 17 0 0 0 1 0 25 0 0 0 0 1
9 0 1 0 0 0

Shealy and Stout (1993) and Roussos and Stout (1996) have noted that the primary cause

of DIF is due to unmodelled multidimensionality, specifically to that dimensionality which

is not relevant to the construct being measured. In this study, we distinguished between

construct-relevant multidimensionality and construct-irrelevant multidimensionality. DIF

was simulated as construct-irrelevant multidimensionality. Items with construct-relevant

multidimensionality were not considered as DIF items. Unfortunately, the standard DIF

analysis approaches in which conditioning is done based on a unidimensional model of ability

can not be used for detection of this type of DIF.

In the context of cognitive diagnostic models, however, this is not a problem. When

attributes are highly correlated, the test is still unidimensional and items will not be detected

as DIF using standard methods. Whereas, when correlations among attributes are low, the

test is no longer unidimensional and items will be detected as DIF by standard methods.

In order to compare the standard DIF analyses and the method proposed in this paper

under the different levels of attribute correlation, the attributes were generated with three
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correlation levels. These levels were .2, .4, and .8, and were considered to be low, moderate,

and high levels of correlation.

In the higher-order DINA model, the attributes are estimated by the IRT portion of

the model. The correlations among attributes can be manipulated by the discrimination

parameters in the model. As mentioned previously, non-uniform DAF was not simulated in

this study. In terms of the simulation conditions, this means that the attribute discrimination

parameters was constrained to be equal over all attributes across groups, so only a single

value was assigned to generate discrimination parameters. Results from a small simulation

study indicated that, when the discrimination parameter equaled 1, 2, or 6, the 1PL higher

level portion of the model could accurately estimate attributes, when correlations were .2, .4

and .8 respectively. Discrimination parameters as high as 6 do not seem practical for most

items. However, attributes in an operational test are sometimes highly correlated. That is,

the person mastering one attribute is more likely to master other attributes. For example,

the correlation among the content strands was around .7 in the Florida Comprehensive

Achievement Test (FDOE, 2003) statewide mathematics test.

In summary, the following conditions were considered with respect to combinations of

DAF and DIF.

1. No DAF and DIF. In this condition, the attribute parameters, the item slip and

guessing parameters were the same for the focal group and for the reference group.

2. DAF only. Attribute difficulty parameters for the focal group were set as (−1, 1, 0, 0, 0).

This means that the first attribute was easier for the focal group, and the second

attribute was harder for the focal group. The three remaining attributes were simulated

to be equally difficult for both the reference and focal groups.

3. Uniform DIF only. The five DIF items were generated by increasing the guessing param-

eters by .1 and decreasing the slip parameters by .1 for the five DIF items for the focal

group relative to the reference group. The non-DIF items were simulated with the same
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item parameters as the reference group. For the slip and guessing parameters, the prob-

ability of an item for a master equals the guessing parameter gi and the probability of

success on an item for a non-master equals 1− si. Under this condition, both masters

and non-masters in the focal group were simulated to have probabilities of .1 higher

than those in the reference group.

4. Non-uniform DIF only. The slip and guessing parameters were simulated in the five DIF

items by increasing these parameters by .1 in the focal group. That means masters in

the focal group were simulated as having lower probabilities for answering the questions

correctly than those in the reference group, whereas non-masters in the focal group were

simulated as having higher probabilities of getting the same item correct than those in

the reference group. In this study, Non-uniform DIF is similar to DIF in IRT in which

item characteristic curves for the reference and focal groups crossed. It was not similar,

however, to the situation in which DIF occurs only due to different item discriminations

but the item characteristic curves do not actually cross.

5. DAF and uniform DIF. Attribute difficulty parameters for the focal group were set as

(−1, 1, 0, 0, 0) so that the focal group had a positive DAF for first attribute and a nega-

tive DAF for second attribute. Simultaneously, at the lower level, the slip and guessing

parameters of the five DIF items were simulated by decreasing the slip parameter by

.1 and increasing the guessing parameter by .1 for the focal group.

6. DAF and non-uniform DIF. Attribute difficulty parameters for the focal group were

also set as (−1, 1, 0, 0, 0). Both the slip and guessing parameters of the five DIF items

were simulated by increasing by .1 for the focal group.

In all, five factors were manipulated in this simulation study: 2 levels of sample size, 2

levels of ability distribution difference, 2 kinds of Q-matrix with different complexity, 3 levels

of attribute discrimination parameters (i.e., by the three levels of attribute correlations), and
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6 scenarios of DIF and DAF (shown above). Therefore, 2 × 2 × 2 × 3 × 5 = 120 conditions

were simulated, and 25 replications were done for each simulated condition.

3.2.2 Data Simulation Procedures

The following general data simulation procedures were used:

1. Construct two sets of attribute difficulty parameters, (0, 0, 0, 0, 0) for the reference

group and (0, 0, 0, 0, 0) for the focal group in No DAF scenarios, and (−1, 1, 0, 0, 0) for

the focal group in the scenarios with DAF (See Table 3.3). Fix the same discrimination

parameter (1, 2 or 6) for all attributes in both groups.

2. Randomly generate ability parameters for each replication as N(0, 1) for the reference

group and N(−1, 1) for the focal group.

3. Simulate the mastery profiles for all examinees in both groups based on the 1PL model,

using examinee abilities as generated from 2 (above) and different sets of attribute

parameters from 1 (above).

4. Randomly generate the slip and guessing parameters for the reference group from

uniform (.1, .3) only once. Keep guessing and slip parameters for the reference group

the same across different scenarios, and manipulate them for the focal group based on

different scenarios according to the description of the six combinations of DAF and

DIF given above (see Table 3.4). Keep all slip and guessing parameters for the two

groups the same across the replications in the same condition.

5. Generate examinee responses based on the DINA model, by using examinee mastery

profiles as in 3 (above) and using the two sets of slip and guessing parameters shown

in 4 (above).
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Table 3.3: Generating Attribute Parameters in Different Scenarios
β’s γ’s

No DAF (0,0,0,0,0) (0,0,0,0,0)
With DAF (0,0,0,0,0) (-1,1,0,0,0)

Table 3.4: Generating Item Parameters in Different Scenarios
Reference Group Focal Group

No DIF Uniform DIF Non-uniform DIF
Item g s g s g s g s
1 .15 .26 .15 .26 .25 .16 .25 .36
2 .25 .16 .25 .16 .25 .16 .25 .16
3 .29 .16 .29 .16 .29 .16 .29 .16
4 .19 .21 .19 .21 .19 .21 .19 .21
5 .16 .23 .16 .23 .16 .23 .16 .23
6 .24 .15 .24 .15 .34 .15 .34 .25
7 .26 .23 .26 .23 .26 .23 .26 .23
8 .26 .29 .26 .29 .26 .29 .26 .29
9 .28 .18 .28 .18 .28 .18 .28 .18
10 .26 .23 .26 .23 .26 .23 .26 .23
11 .28 .24 .28 .24 .38 .14 .38 .34
12 .18 .21 .18 .21 .18 .21 .18 .21
13 .25 .24 .25 .24 .25 .24 .25 .24
14 .11 .23 .11 .23 .11 .23 .11 .23
15 .19 .29 .19 .29 .19 .29 .19 .29
16 .14 .15 .14 .15 .24 .15 .24 .25
17 .23 .25 .23 .25 .23 .25 .23 .25
18 .21 .21 .21 .21 .21 .21 .21 .21
19 .23 .21 .23 .21 .23 .21 .23 .21
20 .28 .23 .28 .23 .28 .23 .28 .23
21 .22 .24 .22 .24 .32 .14 .32 .34
22 .24 .27 .24 .27 .24 .27 .24 .27
23 .24 .12 .24 .12 .24 .12 .24 .12
24 .29 .18 .29 .18 .29 .18 .29 .18
25 .28 .29 .28 .29 .28 .29 .28 .29

The five DIF items are bolded
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3.2.3 Convergence

Convergence diagnostics are used to help determine the number of iterations that should be

used for burn-in and the number of post-burn-in iterations that should be used to estimate

the posterior distribution. The Gelman and Rubin (1992) convergence diagnostic was used

as implemented in the software BOA (Smith, 2005). The index of this diagnostic, R̂, is

estimated based on a comparison of the within and between chain variance for each variable.

If R̂ is approximately equal to 1 (or, as a rule of thumb, the 0.975 quantile is less than

1.2), the sample is considered to have reached a stationary distribution. Each condition in

the simulation study was run with three parallel chains with over-dispersed initial values.

Results indicated convergence was obtained after 1,000 iterations (i.e., the criterion R̂ < 1.2

was satisfied after 1000 iterations) for all structure parameters. Thus, a conservative burn-

in of 4,000 iterations and 10,000 post burn-in iterations were used in all conditions. The

examples of trace plots as well as the plots for the Gelman and Rubin statistics are given in

Appendix B for two selected conditions: (1) Complex structure, 500 examinees per group,

a = 6, unmatched ability distribution, both DAF and non-uniform DIF, and (2) Simple

structure, 1000 examinees per group, a = 1, matched ability distribution, both DAF and

uniform DIF.

The MCMC chain for each replication, in other words, was run for a total of 14,000

iterations. The amount of time required for each MCMC chain to run to completion differed

depending on the data being analyzed. The MCMC run for a data set with 500 examinees per

group required about 10 hours for completion on an HP BL460c 2.00 GHz server blade with

a Quad-Core Intel Xeon processor and 5GB RAM running a Windows 2003 server operating

system. The time required for running 14,000 MCMC iterations for a data set with 1,000

examinees per group on this same computer system was about 19 hours.
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3.2.4 Recovery Analysis for the Modified Higher-order DINA Model

Before proceeding with the DIF and DAF detection portion of the simulation study, a

recovery analysis was conducted to determine the extent to which the generating param-

eters could be recovered from the simulated data sets by the modified higher-order DINA

model. The recovery analysis considered three issues, recovery of the simulated item param-

eters (i.e., the slip and guessing parameters), recovery of the simulated attribute diffi-

culty parameters, and recovery of the attribute mastery classifications. Recovery of item

parameters or attributes difficulty parameters was assessed using root mean squared errors

(RMSEs) between the generating parameters and the parameter estimates. The RMSEs can

be expressed as:

RMSE =

√√√√ 1

n

n∑

i=1

(b̂i − bi)2 , (3.1)

where bi is the generating parameter for either an item or an attribute parameters, b̂i is

the parameter estimate, and n is the number of items or attributes. Recovery of attribute

mastery classification was done by simply calculating the proportion of examinees who are

correctly classified as masters or non-masters on each attribute.

Since the item parameters (i.e., the slip and guessing parameters) are both on the prob-

ability scale, which is invariant, no extra work needs to be done to transform the estimated

parameter to the same scale with the generating parameters. The estimates for attribute

difficulty parameters were first transformed to a common metric using the mean and sigma

method (Loyd & Hoover, 1980) before RMSEs were calculated. Because attribute difficulty

was adjusted to have a mean of zero for model identification, and the mean of generated

attribute difficulty also equaled zero in the simulation design, these parameters were on the

same metric and did not need transformation.

3.2.5 DAF and DIF Analysis Procedures

After the data were simulated, the following analyses were done to detect both DAF and

DIF using the model-based method proposed in this dissertation. At the same time, the DIF
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analysis of the model based method was compared with the MH method with total scores as

a matching criterion and with the MH method with attribute mastery profiles as a matching

criterion as developed by Zhang (2007).

1. Run the modified higher-order DINA model for simulated response data in WinBUGS

to obtain adjusted γ, ∆g, ∆s and their corresponding 100(1−α)% CI, simultaneously

save the attribute mastery profiles for all examinees.

2. Detect DAF by checking against the 100(1− α)% credibility interval (CI) to see if the

interval on γ contains 0.

3. Detect DIF by

• checking if the 100(1− α)% CI for either ∆g or ∆s contains 0,

• computing MH statistics using the total score as the matching criterion.

• computing MH using attribute mastery profile as matching criterion,

4. Calculate the Type I error and power for all above DAF and DIF analysis procedures

over all replications under each condition.

Since power is only assessed when the Type I error is controlled, Type 1 error control

needs to be evaluated first. Type I error control was examined at the α = .05 level. Bradley’s

(1978) liberal criterion of a range from .025 to .075 for Type I error rate for a nominal

rate of .05 was used as the criterion in this study. To assess empirical Type I error control

for DAF, the three non-DAF attributes in the scenarios with DAF and all five attributes

in the scenarios without DAF were investigated by examining the percentage of these non-

DAF attributes mistakenly detected as DAF. In the same way, to assess the empirical Type

I error control for DIF, 20 non-DIF items in the scenarios with DIF and all 25 items in

the scenarios without DIF were investigated by examining the percentage of these non-DIF

items mistakenly detected as DIF. Only the Type I error rate for DAF was assessed for the

new method developed in this study, although the Type I error rate for DIF was assessed
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and compared for both the new method and the MH methods based on the two different

matching criteria. Power was assessed for those conditions in which the Type I error rate was

controlled at the nominal level of significance. To assess the empirical power for DAF, the two

DAF attributes in the scenarios with DAF were investigated by examining the percentages of

these DAF attributes correctly detected as DAF. To assess the empirical power for the DIF,

the five DIF items in the scenarios with DIF were investigated by examining the percentage

of these items correctly detected as DIF. Similarly, only the power for DAF was assessed for

the new method.

All Type I error and power analyses were calculated for each replication, then averaged

over all replications under each condition. After these results were obtained, both Type I error

rates and power were compared among conditions and among the DIF methods. Therefore,

the following questions were addressed based on the results:

1. If the model-based method maintains Type I error control, what is its power for simul-

taneous detection of both DAF and DIF? How do sample size, ability distribution dif-

ferences, Q-matrix specification, and attribute discrimination affect the performance

of DAF and DIF detection? Is DIF detection for the data with non-uniform DIF as

powerful as that for the data with uniform DIF?

2. Does MH based on total score maintain Type I error control? Is this control a function

of the attribute discrimination parameter and weather DAF is present? If errors occur,

do they occur only for those items measuring the DAF attributes?

3. How is the performance of DIF analysis by the model based method different from the

MH using attribute profiles as the matching criterion?

4. For non-uniform DIF scenarios, does the new method perform better than both MH-

methods?
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Results

The results of this study are presented in three parts: In the first two parts, results for the

simulation study are presented; in the third part, a real data application is discussed. The

simulation study includes the results for differential attribute functioning (DAF) detection

and the results for differential item functioning (DIF) detection. Since DAF and DIF detec-

tion in this study are both model-based, the performance of DAF and DIF detection largely

relies on how well the relevant parameters are recovered. Therefore, in the following discus-

sion, the recovery of DAF relevant parameters or DIF relevant parameters is presented first.

Then the Type I error and power of DAF are reported in the DAF part, and Type I error

and power of DIF, for both DIF-g and DIF-s, are reported in the DIF part. Since the Mantel-

Haenszel (MH) method is only designed to detect DIF, the comparison between the method

presented in this study and the MH methods based on total scores and on attribute profiles

is limited to the discussion of DIF. That is, Type I error control and power of DIF were

compared between the model-based method presented in this study and the MH method

using the two different matching criteria. As described in Chapter 3, recovery, Type I error

control and power were evaluated under varied testing conditions with the combination of

the following factors: Q-matrix structure, attribute discrimination parameters, sample size,

ability distribution difference, scenarios of DIF and DAF combination.

41
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4.1 DAF Detection

4.1.1 The Recovery of Higher-Level Parameters

Higher-level parameters mainly include attribute discrimination, a, attribute difficulty of the

reference group, β, and group difference in attribute difficulty, γ. The recovery of the these

three parameters was evaluated by RMSE. The recovery results for these three parameters

under all testing conditions is presented in Tables 4.1 to 4.3. Table 4.4 summarizes the

recovery information in Tables 4.1 to 4.3 for each parameter under each level of the five

simulated factors.

In Table 4.1, it can be seen that recovery was generally good for the discrimination

parameter, when a = 1, and almost as good when a = 2, under most conditions for either

simple or complex structure Q-matrices. Recovery was less accurate, however, when a = 6

for both simple and complex structure. This latter result appeared to be more pronounced

for the unmatched ability condition with the small sample size (i.e., N = 500 examinees

per group) under both simple and complex structure. This can be seen in the relatively

high RMSEs for a parameter, which are 1 or above. (The original estimates of a, prior to

estimating RMSEs, revealed shrinkage to 5 or lower when the generating value was 6.) This

is consistent with the result of the simulation study in de la Torre and Douglas (2004), in

which the higher level with 8 attributes and one discrimination parameter shrank to around

4 from the generating value of 4.97. The small number of attributes in the present study

could be one reason for the somewhat larger bias in the a parameter. In this regard, as in

IRT models, the recovery of attribute discrimination may also be less accurate with only five

attributes.

In Table 4.2, the RMSEs for attribute difficulty ranged from .07 to .20. This indicates

generally good recovery. Recovery of β did not appear to be affected much by any of the

different scenarios (i.e., combinations of the conditions in the simulation design) or whether

the ability distributions were matched or not matched between the reference and focal groups.
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This may have occurred because the attribute difficulty parameters for the reference group

were all generated as 0 for all simulation conditions. Only the attribute difficulty, item

guessing and slip parameters for the focal group were simulated to be different. Moreover,

for both matched and unmatched ability distributions, that for the reference group was

always generated as N(0, 1).

Results in Table 4.3 indicated that the RMSEs of γ (i.e., the DAF parameter which

indicated the group difference in attribute difficulty) were clearly higher than those for β.

This was consistent with results from Chaimongkol (2005) in which a two-level DIF detection

model was compared with the higher level DAF detection model of this study. In that

study, the difference was that discrimination was constrained to be 1 in model estimation.

In addition, RMSEs for recovery of β were around .10, and RMSEs for γ around .17, for

a = 1, a sample size of 1,000 and matched ability distributions. This was comparable with

the results in Tables 4.2 and 4.3 for the conditions a = 1, sample size = 500 examinee per

group, matched ability distribution under simple structure.

As can be seen in Table 4.4, a similar pattern was found in the recovery of each of the

three attribute parameters: The conditions with simple structure Q-matrix, lower attribute

discrimination, and larger sample size produced smaller RMSEs for a, β, and γ. Results for

different DAF and DIF combinations, however, did not show clear differences in RMSEs

for a, β, and γ. The only difference was that recovery of a and γ appeared to be better in

the matched ability condition, but not for the recovery of β. (See explanation in the above

paragraph for the description about Table 4.2.) Of all three parameters, the recovery of

γ, the group difference in attribute difficulty, is most relevant to the performance of DAF.

Recall that DAF was determined by checking against the 100(1- α)% credibility interval to

see whether the interval of γ contained 0 (here α refers to the significance level).
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Table 4.1: RMSE of Attribute Discrimination a over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .08 .11 .64 .05 .23 .81
DAF only .10 .17 .62 .06 .11 .86
Uniform DIF only .10 .15 .64 .06 .12 .77
Non-uniform DIF only .13 .16 .67 .06 .11 .84
DAF and uniform DIF .08 .09 .70 .06 .12 .85
DAF and non-uniform DIF .11 .11 .66 .06 .12 .89

unmatched No DIF and DAF .10 .16 1.19 .08 .24 1.20
DAF only .13 .16 1.10 .09 .11 1.24
Uniform DIF only .08 .17 1.08 .09 .13 1.29
Non-uniform DIF only .09 .17 1.08 .08 .11 1.32
DAF and uniform DIF .09 .17 1.10 .09 .12 1.22
DAF and non-uniform DIF .10 .17 1.11 .09 .12 1.26

1000/g matched No DIF and DAF .09 .05 .65 .09 .14 1.08
DAF only .08 .09 .57 .06 .07 1.06
Uniform DIF only .10 .04 .66 .09 .14 1.08
Non-uniform DIF only .10 .05 .67 .05 .13 1.11
DAF and uniform DIF .07 .05 .59 .06 .13 1.01
DAF and non-uniform DIF .04 .05 .60 .06 .13 1.05

unmatched No DIF and DAF .04 .08 .67 .05 .06 1.00
DAF only .09 .08 .72 .08 .09 1.04
Uniform DIF only .10 .08 .67 .05 .07 1.00
Non-uniform DIF only .10 .08 .66 .08 .07 1.02
DAF and uniform DIF .04 .08 .72 .07 .10 1.04
DAF and non-uniform DIF .04 .08 .75 .08 .10 1.04
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Table 4.2: RMSE of Attribute Difficulty β over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .12 .13 .20 .16 .14 .18
DAF only .12 .13 .20 .16 .15 .18
Uniform DIF only .12 .16 .20 .16 .14 .18
Non-uniform DIF only .12 .16 .20 .16 .14 .18
DAF and uniform DIF .12 .13 .19 .16 .15 .12
DAF and non-uniform DIF .12 .13 .19 .16 .15 .17

unmatched No DIF and DAF .12 .12 .19 .17 .14 .17
DAF only .12 .12 .19 .16 .15 .18
Uniform DIF only .12 .12 .19 .17 .15 .17
Non-uniform DIF only .12 .12 .19 .17 .15 .17
DAF and uniform DIF .12 .12 .19 .16 .15 .17
DAF and non-uniform DIF .12 .12 .19 .16 .16 .17

1000/g matched No DIF and DAF .08 .09 .14 .10 .12 .18
DAF only .07 .09 .14 .13 .13 .14
Uniform DIF only .07 .09 .14 .10 .13 .18
Non-uniform DIF only .07 .09 .14 .10 .13 .18
DAF and uniform DIF .07 .09 .14 .13 .14 .19
DAF and non-uniform DIF .08 .09 .14 .10 .14 .19

unmatched No DIF and DAF .08 .09 .14 .10 .12 .19
DAF only .08 .09 .13 .13 .14 .14
Uniform DIF only .07 .09 .14 .10 .13 .19
Non-uniform DIF only .07 .09 .14 .10 .13 .18
DAF and uniform DIF .08 .09 .13 .10 .13 .14
DAF and non-uniform DIF .08 .09 .13 .10 .13 .14
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Table 4.3: RMSE of DAF Parameter γ over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .15 .24 .25 .24 .29 .28
DAF only .17 .20 .30 .25 .28 .31
Uniform DIF only .12 .22 .26 .21 .27 .29
Non-uniform DIF only .17 .22 .25 .24 .26 .31
DAF and uniform DIF .14 .19 .32 .23 .22 .32
DAF and non-uniform DIF .15 .20 .31 .25 .24 .34

unmatched No DIF and DAF .21 .19 .30 .22 .25 .37
DAF only .33 .33 .23 .37 .28 .37
Uniform DIF only .16 .19 .22 .24 .24 .39
Non-uniform DIF only .17 .21 .26 .22 .29 .37
DAF and uniform DIF .23 .22 .21 .35 .29 .35
DAF and non-uniform DIF .24 .24 .25 .37 .31 .37

1000/g matched No DIF and DAF .18 .19 .21 .19 .15 .26
DAF only .14 .16 .29 .18 .19 .30
Uniform DIF only .13 .19 .21 .18 .15 .24
Non-uniform DIF only .14 .20 .22 .23 .15 .24
DAF and uniform DIF .13 .31 .28 .16 .21 .25
DAF and non-uniform DIF .22 .32 .31 .20 .20 .27

unmatched No DIF and DAF .18 .15 .22 .24 .21 .26
DAF only .22 .19 .22 .17 .22 .36
Uniform DIF only .13 .17 .21 .25 .19 .25
Non-uniform DIF only .17 .17 .22 .19 .23 .26
DAF and uniform DIF .24 .21 .26 .28 .27 .36
DAF and non-uniform DIF .23 .22 .28 .32 .22 .30
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Table 4.4: Summary of Means and Ranges of RMSEs of Attribute Level Parameters
α β γ

Structure simple Mean .32 .12 .22
Range (.04 -1.19) (.07 -.20) (.12 -.33)

complex Mean .41 .15 .26
Range (.05 -1.32) (.10 -.19) (.15 -.39)

Attribute a=1 Mean .08 .12 .21
Discrimination Range (.04 -.13) (.07 -.17) (.12 -.37)

a=2 Mean .11 .13 .22
Range (.04 -.24) (.09 -.16) (.15 -.33)

a=6 Mean .91 .17 .28
Range (.57 -1.32) (.12 -.20) (.21 -.39)

Sample Size 500/g Mean .40 .15 .26
Range (.05 -1.32) (.12 -.20) (.12 -.39)

1000/g Mean .34 .12 .22
Range (.04 -1.11) (.07 -.19) (.13 -.36)

Ability matched Mean .33 .14 .22
Distribution Range (.04 -1.11) (.07 -.20) (.12 -.34)

unmatched Mean .41 .14 .25
Range (.04 -1.32) (.07 -.19) (.13 -.39)

Scenarios No DIF/DAF Mean .37 .14 .23
Range (.04 -1.20) (.07 -.20) (.15 -.37)

DAF only Mean .37 .13 .25
Range (.06 -1.24) (.07 -.20) (.14 -.37)

Uniform DIF only Mean .37 .14 .21
Range (.04 -1.29) (.07 -.20) (.12 -.39)

Non-uniform DIF only Mean .37 .14 .22
Range (.05 -1.32) (.07 -.20) (.14 -.37)

DAF and uniform DIF Mean .36 .13 .25
Range (.04 -1.22) (.07 -.19) (.13 -.36)

DAF and non-uniform Mean .37 .14 .27
DIF Range (.04 -1.26) (.08 -.19) (.15 -.37)

Overall Mean .37 .14 .24
Range (.04 -1.32) (.07-.20) (.12 -.39)
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4.1.2 The Type I Error Control of DAF

The Type I errors for DAF occur when an attribute is identified having DAF but DAF

wasn’t simulated for that attribute. In this study, each condition had 25 replications and each

replication simulated 5 attributes. Under the conditions “No DAF and No DIF”, “uniform

DIF only” and “non-uniform DIF only” all five attributes were simulated as having no DAF.

So the empirical Type I error rate was calculated as the percent of DAF detected out of

125 (= 25 replications × 5 attributes) no-DAF counts. Under the conditions of “DAF only”,

“Both DAF and uniform DIF” and “Both DAF and non-uniform DIF”, 3 of 5 attributes were

simulated to have no DAF. The empirical Type I error for these conditions was calculated

as the percent of DAF detected out of 75 (= 25 replications × 3 attributes) no-DAF counts.

Table 4.5 presents the empirical Type I error rates over all conditions.

To make meaningful power comparisons among conditions, Type I error should be con-

trolled in each condition being compared. This is because lack of Type I error control is an

indication that the model being simulated was not realized in the simulations. One result

of this is that inflated Type I error rates result in overestimated power. Similarly, deflated

Type I error rates result in underestimated power. The significance level was set as α = .05

in this study. Thus, the empirical Type I error rate should be close to .05 in order to be

considered as controlled. As a criterion for judging whether Type I error was controlled,

Bradley’s (1978) criterion was used. For a nominal level of .05, the Bradley criterion sug-

gests a range of 025 to .075. Based on this criterion, 6 conditions yielded inflated Type I error

rates and 56 conditions yielded deflated Type I error rates. According to table 4.5 there was

no clear pattern about how the Type I error control of DAF increased or decreased across

the conditions or which level of factors was more likely to yield inflated or deflated Type I

error rates of DAF.

Presented in Table 4.6 are the marginal averages as well as the ranges of Type I errors

under each level of each factor. It can be seen that the marginal Type I errors were all very

close to .05 and varied less across different levels of each factor. Only two factors seemed to
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have some effect: The conditions with complex structure showed higher Type I error rates

for DAF than those with simple structure; and Type I error rates for DAF tended be smaller

as attribute discrimination increased. All other factors showed little difference among levels.

Table 4.5: Type I Error Rates for DAF over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .024- .012- .040 .048 .072 .024-
DAF only .013- .053 .053 .067 .000- .013-
Uniform DIF only .016- .032 .032 .064 .080+ .024-
Non-uniform DIF only .024- .032 .048 .048 .072 .032
DAF and uniform DIF .014- .040 .040 .040 .000- .014-
DAF and non-uniform DIF .027 .029 .050 .067 .000- .013-

unmatched No DIF and DAF .040 .040 .048 .000- .016- .024-
DAF only .047 .013- .013 .080 .000- .027
Uniform DIF only .018- .032 .045 .038 .040 .024-
Non-uniform DIF only .024- .040 .016- .040 .044 .024-
DAF and uniform DIF .013- .013- .044 .040 .032 .042
DAF and non-uniform DIF .013 .043 .013- .017- .043 .040

1000/g matched No DIF and DAF .048 .000- .032 .056 .016- .032
DAF only .027 .027 .040 .027 .042 .013-
Uniform DIF only .016- .104+ .032 .048 .016- .032
Non-uniform DIF only .024- .088+ .032 .048 .008- .024-
DAF and uniform DIF .013- .073 .027 .040 .053 .013-
DAF and non-uniform DIF .067 .147+ .067 .013- .027 .000-

unmatched No DIF and DAF .032 .000- .016- .040 .024- .048
DAF only .027 .013- .053 .056 .013- .053
Uniform DIF only .078+ .046 .024- .056 .024- .048
Non-uniform DIF only .046 .050 .024- .072 .016- .046
DAF and uniform DIF .034 .013- .013- .013- .013- .053
DAF and non-uniform DIF .043 .000- .026 .013- .040 .080+

+ inflated Type I error; - deflated Type I error.

The number of conditions with uncontrolled Type I error rates for DAF was large, espe-

cially for the deflated cases. One possibility is that this occurred because only 25 replica-

tions were done for each condition and only 5 attributes were simulated in each replication.

Regarding the number of no-DAF attributes (25 × 5 = 125 for No-DAF scenarios and 25

× 3 = 75 for DAF scenarios, small numbers of events (i.e., no-DAF attributes) will often
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Table 4.6: Marginal Means and Ranges of Type I Error Rates for DAF
Mean Range

Structure simple .041 (.000-.147)
complex .046 (.000-.080)

Attribute a=1 .046 (.000-.080)
Discrimination a=2 .044 (.000-.147)

a=6 .041 (.000-.080)
Sample Size 500/g .043 (.000-.080)

1000/g .044 (.000-.147)
Ability matched .045 (.000-.147)
Distribution unmatched .044 (.000-.080)
Scenarios No DIF/DAF .045 (.000-.072)

DAF only .045 (.000-.080)
Uniform DIF only .044 (.000-.104)
Non-uniform DIF only .045 (.000-.088)
DAF and uniform DIF .043 (.000-.053)
DAF and non-uniform DIF .042 (.000-.147)

Overall .044 (.000-.147)

result in a larger standard errors, accordingly the empirical Type I error will range more

widely than conditions with larger numbers of replications. In addition, Type I errors for

DIF-g and DIF-s reported in section 4.2.2 showed very good control. For both of these, there

were more actual events included even though the number of replications was still 25. This

is because each replication generated 25 items rather than 5 (i.e., the number of attributes).

Second, the marginal means of Type I error rates in Table 4.6 were all very close to .05, since

the number of trials dramatically increased when conditions were combined together. All of

this suggests that the method in this study appeared to have reasonable control of Type I

errors for DAF. Better control might be demonstrated if more replications were added in the

future. (Given the complex model estimated using the current MCMC algorithm, however,

estimation of another 25 replications for each condition is estimated to take an additional

six to eight months.)
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4.1.3 The Power of DAF

The percentage of times DAF was identified, when DAF was simulated, was calculated as

the estimate of the empirical power. In this study, the conditions “DAF only”, “Both DAF

and uniform DIF”, and “Both DAF and non-uniform DIF” included simulations of DAF

in 2 of the 5 attributes in each replication. Table 4.7 only provided the empirical power,

therefore, for these three scenarios. Recall, the Type I errors of DAF under many conditions

in section 4.1.2 were either inflated or deflated, and it’s not clear whether they were truly

out of control or appeared so due to limited numbers of replications.

As can be seen in Table 4.7, it appeared that those conditions with larger sample size,

simple structure, lower attribute discrimination (i.e., a = 1 or a = 2), and matched general

ability distribution had higher power than the conditions with smaller sample size, com-

plex structure, higher attribute discrimination (i.e., a = 6), and unmatched general ability

distribution.

Table 4.8 provides a somewhat clearer picture about the effect of each factor on the power

of DAF by showing the marginal means of power percentages: Complex structure had 17%

lower power rates of detecting DAF than simple structure; the power was almost the same

when attribute discrimination equaled 1 or 2 (ranging from .95 to .96), but dropped to .76

when attribute discrimination was 6; the average power rate increased .08 from sample size

500/group to 1000/group, decreased .10 from matched ability distribution to unmatched

ability distribution, and had no obvious change among three of the condition scenarios.



52

Table 4.7: Power of DAF over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched DAF only .98 1.00 .98 .98 1.00 .66
DAF and uniform DIF 1.00 1.00 .98 1.00 .98 .60
DAF and non-uniform DIF 1.00 1.00 .94 1.00 .96 .60

unmatched DAF only .98 1.00 .82 .88 .72 .36
DAF and uniform DIF .96 1.00 .72 .86 .66 .47
DAF and non-uniform DIF 1.00 1.00 .74 .68 .68 .34

1000/g matched DAF only 1.00 1.00 1.00 1.00 1.00 .74
DAF and uniform DIF 1.00 1.00 1.00 1.00 1.00 .78
DAF and non-uniform DIF 1.00 1.00 1.00 1.00 1.00 .72

unmatched DAF only 1.00 1.00 .98 .92 .94 .66
DAF and uniform DIF 1.00 1.00 .98 .94 .94 .62
DAF and non-uniform DIF 1.00 1.00 .94 .82 .84 .62

Table 4.8: Marginal Means and Ranges of Empirical Power of DAF
Mean Range

Structure simple .97 (.72-1.00)
complex .80 (.34-1.00)

Attribute a=1 .96 (.68-1.00)
Discrimination a=2 .95 (.66-1.00)

a=6 .76 (.34-1.00)
Sample Size 500/g .85 (.34-1.00)

1000/g .93 (.62-1.00)
Ability matched .94 (.60-1.00)
Distribution unmatched .84 (.34-1.00)
Scenarios DAF only .90 (.36-1.00)

DAF and uniform DIF .90 (.47-1.00)
DAF and non-uniform DIF .87 (.34-1.00)

Overall .89 (.34-1.00)
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In Table 4.7, for simple structure, all conditions except the conditions with unmatched

ability distribution and attribute discrimination a = 6 had power close to 1. Under complex

structure, in general, the power was much lower, but some conditions with matched ability

distribution and attribute discrimination a = 1 or a = 2 still yielded power as high as 1. This

suggested one or more ”good situations” could compensate certain ”bad situations.” Figures

4.1 to 4.3 indicated that simple structure generally had higher power than complex structure.

In addition, power for simple structure didn’t decline as much as that for complex structure

when attribute discrimination was 6, sample size was 500/group, or ability distribution was

unmatched. Similarly, Figures 4.1.3.4 to 4.1.3.5 demonstrated that larger sample size was

more powerful than small sample size. Moreover, the power rates for large sample size don’t

show a decline like those under small sample size, when attribute discrimination was 6 or

ability distribution was unmatched.

Figure 4.1: The Interaction between Q-matrix Structure and Attribute Discrimination
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Figure 4.2: The Interaction between Q-matrix Structure and Sample Size
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Figure 4.3: The Interaction between Q-matrix Structure and Ability Distribution
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Figure 4.4: The Interaction between Sample Size and Attribute Discrimination
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Figure 4.5: The Interaction between Sample Size and Ability Distribution
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4.2 DIF Detection

4.2.1 Recovery of Lower-Level Parameters

Lower-level item parameters in the modified higher-order DINA include the “guessing”

parameter, g, “slipping” parameter, s, and examinee attribute mastery parameter, α. Table

4.9 provide the correct classification rates for α. Tables 4.10 and 4.11 provided RMSEs for g

and s under each simulated condition, since DIF-g and DIF-s essentially reflect group differ-

ences in parameter g and s. Table 4.12 presents the mean and range of RMSEs of g, s and

correct classification rates of α under each level of manipulated factors.

In Table 4.9, it can be seen that the correct classification rates of attribute mastery were

relatively high for simple structure conditions, ranging from .91 to .97. They decreased for the

complex structure conditions except for those conditions for which a = 6. The main effects

of the Q-matrix structure and attribute discrimination are also evident in Table 4.12. For

the DINA model, the probability of a correct response to item i equals gi whether examinees

miss one or more attributes required by item i. Under simple structure, when an examinee

misses the item not due to slipping, it means that the single attribute required by that item

is not mastered. With complex structure, however, it can be difficult to distinguish which

particular attribute(s) an examinee has not mastered, if the item is missed due to other than

slipping. For this reason, a test constructed with simple structure will tend to classify exam-

inees more correctly, if the number of items measuring each attribute is large enough. The

relationship between correct classification and attribute discrimination is straightforward:

The attribute mastery probability will be more sensitive to the general ability level, when

it has higher discrimination. In such a case, small differences in general ability can result in

large differences in attribute mastery. Therefore, the attribute with higher discrimination is

more informative and more able to distinguish between masters and non-masters. The larger

sample size did not improve estimation of α. This is similar to results from IRT in which
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the number of examinees tends to improve estimation of item parameters but not examinee

parameters.

Tables 4.10 and 4.11 provide the RMSEs for g and s under each simulated condition.

Both parameters were recovered well. The RMSEs of g ranged from .02 to .05 (.02 for most

of conditions), and for s they ranged from .02 to .06. The recovery of g was slightly better

than the recovery of s.

The combination of simple structure, a = 1, 500/group, and matched ability in Table

4.10 had the highest RMSE for g. The combination of complex structure, a = 1, 500/group,

and unmatched ability in Table 4.11 had the highest RMSE for s. This was consistent with

the recovery results for g and s with respect to sample size and attribute discrimination.

It is clear that recovery in the smaller sample size was less accurate. It is interesting to

note that recovery was poorer for lower attribute discrimination than for higher attribute

discrimination conditions. One possible explanation is that classification may be less accurate

when attribute discrimination is lower, thereby resulting in less accurate recovery in g and

s.

Higher RMSEs for g were observed for both the simple structure and matched ability

conditions. This was contrary to the pattern observed for RMSEs of s, but is consistent

with the definitions of g and s. Recall that “g is the probability of a correct response for

someone classified as lacking at least one required attribute” (p. 11) and “s is the probability

of missing the item for someone who is classified as mastering all required attributes” (p. 10).

Estimation of g is conditioned on the status of non-masters, and estimation of s is conditioned

on the status of masters. What this means is that the estimation of g actually relies on the

sample size of non-masters, and the estimation of s relies on the sample size of masters. If the

total sample size is not large enough (e.g., 500/group), more masters in the sample means

there will be too few non-masters and, conversely, more non-masters in the sample means

too few masters. In the simple structure conditions, each question only required a single

attribute, so more examinees in the sample were masters of that item than for the same
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sample size in the complex structure condition. This situation advantaged estimation of the

slipping parameter, s, but actually disadvantaged estimation of the guessing parameter, g.

This may explain why g had higher RMSEs than s in the simple structure conditions, but s

had higher RMSEs than g in the complex structure conditions.

One possible explanation for the poorer recovery results for g in the matched ability

distribution might be due to the design of the simulation study. In the matched ability

condition abilities were generated using N(0, 1) for both reference group and focal group,

whereas in the unmatched ability distribution condition, abilities were generated based on

N(0, 1) for the reference group and N(−1, 1) for the focal group. This resulted in more high

ability examinees in the matched ability distribution condition, and therefore, more masters,

since the mastery status of each attribute was dependent on general ability (see equation

2.5 in Chapter 2). For the same reason, the more masters there were, the fewer non-masters

there were in the sample. This situation improved estimation of the slipping parameter but

not the guessing parameter. Consequently, in the matched ability condition, recovery was

poorer for g but better for s.

In Table 4.12, the pattern of recovery was similar to that shown in Tables 4.10 and 4.11.

These scenarios appear to have had no impact on estimation of either g or s; the effect of

attribute discrimination and sample size had the same pattern of recovery on g and s; the

effect of Q-matrix structure and ability distribution was reversed on g and s.
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Table 4.9: Mean Proportions of Correct Classification Rates, α, over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .92 .93 .96 .83 .86 .94
DAF only .92 .93 .96 .82 .86 .93
Uniform DIF only .92 .93 .96 .83 .87 .94
Non-uniform DIF only .91 .92 .96 .82 .86 .94
DAF and uniform DIF .92 .93 .94 .83 .86 .93
DAF and non-uniform DIF .91 .93 .96 .82 .85 .93

unmatched No DIF and DAF .92 .94 .96 .82 .87 .94
DAF only .92 .94 .97 .81 .86 .94
Uniform DIF only .92 .94 .97 .82 .87 .95
Non-uniform DIF only .92 .93 .96 .82 .87 .94
DAF and uniform DIF .93 .94 .97 .82 .86 .94
DAF and non-uniform DIF .92 .93 .96 .81 .86 .94

1000/g matched No DIF and DAF .92 .93 .96 .83 .87 .94
DAF only .92 .93 .96 .83 .86 .93
Uniform DIF only .92 .93 .96 .83 .87 .94
Non-uniform DIF only .92 .92 .96 .83 .87 .93
DAF and uniform DIF .92 .93 .96 .83 .87 .93
DAF and non-uniform DIF .92 .93 .96 .82 .86 .93

unmatched No DIF and DAF .93 .94 .97 .83 .87 .95
DAF only .92 .94 .97 .82 .87 .94
Uniform DIF only .92 .94 .97 .82 .87 .95
Non-uniform DIF only .92 .93 .96 .82 .87 .94
DAF and uniform DIF .93 .94 .97 .82 .87 .94
DAF and non-uniform DIF .92 .93 .96 .81 .87 .94
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Table 4.10: RMSEs of Guessing Parameter, g, over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .03 .03 .03 .02 .03 .03
DAF only .04 .04 .03 .02 .02 .03
Uniform DIF only .04 .03 .03 .03 .03 .03
Non-uniform DIF only .04 .03 .03 .03 .03 .03
DAF and uniform DIF .03 .03 .04 .02 .03 .03
DAF and non-uniform DIF .04 .03 .03 .02 .03 .03

unmatched No DIF and DAF .04 .03 .03 .02 .02 .02
DAF only .05 .03 .03 .02 .02 .02
Uniform DIF only .03 .03 .03 .02 .02 .02
Non-uniform DIF only .03 .03 .03 .02 .02 .02
DAF and uniform DIF .03 .03 .03 .02 .02 .02
DAF and non-uniform DIF .03 .03 .03 .02 .02 .02

1000/g matched No DIF and DAF .02 .02 .02 .02 .02 .02
DAF only .02 .02 .02 .02 .02 .02
Uniform DIF only .02 .02 .02 .02 .02 .02
Non-uniform DIF only .02 .02 .02 .02 .02 .02
DAF and uniform DIF .02 .02 .02 .02 .02 .02
DAF and non-uniform DIF .02 .02 .02 .02 .02 .02

unmatched No DIF and DAF .02 .02 .02 .02 .02 .02
DAF only .03 .02 .02 .02 .02 .02
Uniform DIF only .02 .02 .02 .02 .02 .02
Non-uniform DIF only .02 .02 .02 .02 .02 .02
DAF and uniform DIF .02 .02 .02 .02 .02 .02
DAF and non-uniform DIF .02 .02 .02 .02 .02 .02
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Table 4.11: RMSEs of Slipping Parameter, s, over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .03 .03 .03 .04 .03 .03
DAF only .04 .04 .03 .04 .03 .03
Uniform DIF only .04 .03 .03 .04 .03 .03
Non-uniform DIF only .04 .03 .03 .04 .03 .03
DAF and uniform DIF .03 .03 .03 .04 .03 .03
DAF and non-uniform DIF .04 .03 .03 .04 .03 .03

unmatched No DIF and DAF .04 .04 .04 .06 .05 .04
DAF only .05 .04 .04 .06 .05 .04
Uniform DIF only .04 .04 .04 .05 .05 .04
Non-uniform DIF only .04 .04 .04 .06 .05 .04
DAF and uniform DIF .03 .04 .04 .06 .05 .04
DAF and non-uniform DIF .04 .04 .04 .06 .05 .04

1000/g matched No DIF and DAF .02 .02 .02 .03 .03 .02
DAF only .02 .02 .02 .03 .02 .02
Uniform DIF only .02 .02 .02 .03 .03 .03
Non-uniform DIF only .02 .02 .02 .04 .03 .02
DAF and uniform DIF .02 .02 .02 .03 .03 .02
DAF and non-uniform DIF .02 .02 .02 .03 .03 .02

unmatched No DIF and DAF .03 .03 .03 .04 .04 .03
DAF only .04 .03 .03 .04 .04 .03
Uniform DIF only .03 .03 .05 .05 .04 .03
Non-uniform DIF only .03 .03 .03 .03 .04 .03
DAF and uniform DIF .03 .03 .03 .04 .04 .03
DAF and non-uniform DIF .03 .03 .03 .05 .04 .03
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Table 4.12: The Marginal Means and Ranges of RMSEs for Item Level Parameters
g s α

Structure simple Mean .026 .030 .94
Range (.02 -.05) (.02 - .05) (.91 -.97)

complex Mean .020 .037 .88
Range (.02 -.03) (.02 - .06) (.81 -.95)

Attribute a=1 Mean .025 .03 .87
Discrimination Range (.02 -.05) (.02 - .06) (.81 -.93)

a=2 Mean .023 .033 .90
Range (.02 -.04) (.02 - .05) (.85 -.94)

a=6 Mean .022 .030 .95
Range (.02 -.04) (.02 - .04) (.93 -.97)

Sample Size 500/g Mean .028 .038 .91
Range (.02 -.05) (.03 - .06) (.81 -.97)

1000/g Mean .019 .028 .91
Range (.02 -.03) (.02 - .04) (.81 -.97)

Ability matched Mean .024 .028 .91
Distribution Range (.02 -.04) (.02 - .04) (.82 -.96)

unmatched Mean .022 .039 .91
Range (.02 -.05) (.02 - .06) (.81 -.97)

Scenarios No DIF/DAF Mean .023 .033 .91
Range (.02 -.04) (.02 - .06) (.82 -.97)

DAF only Mean .024 .034 .91
Range (.02 -.05) (.02 - .06) (.81 -.97)

Uniform DIF only Mean .023 .032 .91
Range (.02 -.04) (.02 - .06) (.82 -.97)

Non-uniform DIF only Mean .023 .034 .91
Range (.02 -.04) (.02 - .06) (.81 -.96)

DAF and uniform DIF Mean .023 .032 .91
Range (.02 -.04) (.02 - .06) (.82 -.97)

DAF and non-uniform Mean .023 .034 .90
DIF Range (.02 -.04) (.02 - .06) (.81 -.96)

Overall Mean .023 .033 .91
Range (.02 -.05) (.02 - .06) (.81-.97)
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4.2.2 The Type I error of DIF-g and DIF-s

The Type I errors for DIF-g and DIF-s occur when an item is identified having DIF-g or DIF-

s, but either DIF-g or DIF-s were not simulated, respectively. In this study, each condition

had 25 replications with 25 items for each replication. Under the conditions of “No DAF and

DIF” and “DAF only,” all 25 items were simulated with either no DIF-g or no DIF-s. The

empirical Type I error rate for DIF-g was calculated as the percent of DIF-g detected out

of 625 (= 25 replications × 25 items) no-DIF counts. The same was done for the empirical

Type I error of DIF-s. Under the conditions of “uniform DIF only”, “non-uniform DIF only”,

“Both DAF and uniform DIF” and “Both DAF and non-uniform DIF”, 20 of 25 items were

simulated with either no DIF-g or no DIF-s. Therefore, the empirical Type I error rate for

DIF-g was calculated as the percent of DIF-g detected out of 500 (= 25 replications × 20

items) no-DIF counts. The same was done for DIF-s. Table 4.13 and Table 4.14 presented

the empirical Type I error rates of DIF-g and DIF-s over all conditions, respectively.

As was noted for Type I error for DAF, the Type I error for DIF-g or for DIF-s must

be controlled in order to estimate the power of DIF-g or DIF-s. The nominal level for these

Type I error rates was set at α = .05. As was the case for DAF, the range of accepted Type

I error rate followed Bradley’s (1978) criterion of .025 to .075. Results in Tables 4.13 and

4.14 indicated that the empirical Type I error rate was controlled in all conditions: Type I

error rate for DIF-g ranged from .028 to .062 and for DIF-s from .026 to .68. Consistent with

the Type I error results for DAF, Type I error rates for DIF-g and DIF-s did not show a

clear pattern regarding which conditions had lower or higher rates of Type I errors. Marginal

means and ranges of Type I error rates for DIF-g and DIF-s were reported at each level of

five factors in Table 4.15. Type I errors for DIF-g was consistent among different levels of

all five factors. Type I errors of DIF-s appeared to be sensitive to sample size and attribute

discrimination. The Type I errors for DIF-s increased to .053 from .041 when the sample size

increased to 1000 examinees per group from 500 examinees per group. In addition, higher
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attribute discrimination (i.e., a = 2 or a = 6) yielded relatively higher Type I error for DIF-s

than lower attribute discrimination (i.e., a = 1).

Table 4.13: Type I Error of DIF-g over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .046 .040 .046 .045 .043 .056
DAF only .046 .056 .045 .043 .043 .051
Uniform DIF only .052 .034 .044 .046 .038 .045
Non-uniform DIF only .050 .062 .042 .044 .040 .050
DAF and uniform DIF .042 .048 .038 .044 .038 .045
DAF and non-uniform DIF .044 .039 .044 .034 .042 .046

unmatched No DIF and DAF .048 .038 .051 .042 .032 .043
DAF only .054 .045 .045 .046 .040 .042
Uniform DIF only .039 .038 .044 .034 .034 .044
Non-uniform DIF only .044 .032 .042 .034 .034 .044
DAF and uniform DIF .045 .040 .047 .046 .038 .047
DAF and non-uniform DIF .044 .038 .050 .042 .044 .044

1000/g matched No DIF and DAF .035 .040 .034 .046 .042 .045
DAF only .045 .045 .038 .034 .033 .040
Uniform DIF only .048 .038 .040 .048 .050 .042
Non-uniform DIF only .040 .032 .038 .042 .048 .044
DAF and uniform DIF .042 .028 .042 .040 .044 .048
DAF and non-uniform DIF .042 .030 .038 .050 .038 .052

unmatched No DIF and DAF .037 .043 .037 .040 .048 .037
DAF only .048 .043 .034 .042 .043 .043
Uniform DIF only .046 .046 .030 .044 .040 .036
Non-uniform DIF only .042 .048 .036 .050 .034 .036
DAF and uniform DIF .054 .046 .028 .034 .046 .042
DAF and non-uniform DIF .032 .044 .030 .040 .048 .044
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Table 4.14: Type I Error of DIF-s over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .035 .042 .053 .035 .037 .035
DAF only .038 .050 .045 .045 .043 .038
Uniform DIF only .034 .046 .042 .034 .042 .036
Non-uniform DIF only .040 .050 .048 .026 .048 .040
DAF and uniform DIF .028 .050 .038 .034 .046 .038
DAF and non-uniform DIF .034 .039 .046 .030 .048 .042

unmatched No DIF and DAF .042 .038 .062 .045 .048 .045
DAF only .061 .034 .051 .027 .042 .035
Uniform DIF only .026 .048 .060 .038 .046 .046
Non-uniform DIF only .036 .040 .062 .038 .048 .046
DAF and uniform DIF .027 .040 .052 .026 .062 .038
DAF and non-uniform DIF .026 .028 .060 .026 .026 .034

1000/g matched No DIF and DAF .045 .046 .043 .054 .062 .043
DAF only .050 .048 .040 .042 .038 .050
Uniform DIF only .048 .060 .054 .068 .066 .046
Non-uniform DIF only .046 .068 .048 .058 .062 .050
DAF and uniform DIF .048 .054 .050 .050 .068 .054
DAF and non-uniform DIF .058 .066 .050 .046 .066 .052

unmatched No DIF and DAF .046 .051 .056 .054 .062 .058
DAF only .040 .053 .058 .067 .061 .045
Uniform DIF only .048 .056 .066 .062 .056 .044
Non-uniform DIF only .052 .048 .064 .062 .054 .064
DAF and uniform DIF .038 .050 .056 .052 .060 .032
DAF and non-uniform DIF .052 .048 .060 .058 .056 .042
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Table 4.15: Marginal Means and Ranges of Type I Errors of DIF-g and DIF-s
DIF-g DIF-s

Mean Range Mean Range
Structure simple .042 (.028-.062) .047 (.026-.068)

complex .042 (.032-.056) .047 (.026-.068)
Attribute a=1 .043 (.034-.054) .043 (.026-.068)
Discrimination a=2 .041 (.028-.062) .050 (.026-.068)

a=6 .042 (.028-.056) .048 (.026-.064)
Sample Size 500/g .043 (.032-.062) .041 (.026-.062)

1000/g .041 (.028-.052) .053 (.032-.068)
Ability matched .043 (.028-.062) .047 (.026-.068)
Distribution unmatched .041 (.028-.054) .048 (.026-.067)
Scenarios No DIF/DAF .042 (.032-.056) .047 (.035-.062)

DAF only .044 (.033-.056) .046 (.028-.067)
Uniform DIF only .042 (.030-.052) .049 (.026-.066)
Non-uniform DIF only .042 (.032-.062) .050 (.026-.068)
DAF and uniform DIF .042 (.028-.054) .045 (.027-.066)
DAF and non-uniform DIF .042 (.030-.052) .046 (.035-.062)

Overall .042 (.028-.062) .047 (.026-.068)
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4.2.3 The Power of DIF-g and DIF-s

The percentage of identified DIF-g or DIF-s, when DIF-g or DIF-s, respectively, was simu-

lated was calculated as the estimate of the percent of correct detections for DIF-g or DIF-s.

Four scenarios were examined: “uniform DIF only”, “non-uniform DIF only”, “Both DAF

and uniform DIF” and “Both DAF and non-uniform DIF”. For each of these conditions, five

of 25 items were simulated with both DIF-g and DIF-s in the same direction or different

direction for each replication.

Table 4.16 and Table 4.17 provided estimates of empirical power of these four conditions

for DIF-g and DIF-s, respectively. The power of DIF-g and DIF-s varied across the simulation

conditions: The power of DIF-g ranged from .55 to 1.00 and the power of DIF-s ranged from

.09 to 1.00. Consistent with the pattern of the recovery of g and s discussed in the Section

4.2.1, the block with simple structure, a = 1, 500 examinees per group, and matched ability

(see Table 4.16) had the lowest power of DIF-g. This same block had the highest RMSEs

for g (see Table 4.10). The block with complex structure, a = 1, 500 examinees per group,

and unmatched ability (see Table 4.17) had the lowest power of DIF-s. This was the same

block that had the highest RMSEs for s (see Table 4.11). That is, the block with highest

RMSEs for g and s had the lowest power for DIF-g and DIF-s. To understand this result,

it is important to recall that both DIF-g or DIF-s were detected based on the amounts of

group difference in the g parameters or the s parameters, respectively.

As can be seen in Tables 4.16 and 4.17, the conditions with the larger sample size and

higher attribute discrimination had higher power than the conditions with the smaller sample

size and lower attribute discrimination. Table 4.18 presents marginal means and ranges of

power for both DIF-g and DIF-s. The effect of the Q-matrix structure and matched vs

unmatched ability distributions was reversed for DIF-g and DIF-s: Complex structure and

unmatched ability produced higher power for DIF-g; simple structure and matched ability

produced higher power for DIF-s. These power patterns were similar to the patterns of

RMSEs for DIF-g and DIF-s, respectively.
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The power rates of DIF-g and DIF-s appeared to essentially be related to the sample size

of non-masters and masters. The conditions with the large sample size, complex structure

and unmatched ability distribution produced more non-masters, and the conditions with the

large sample size, simple structure and matched ability distribution produced more masters

(as explained in Section 4.2.1). The effect of having more non-masters is that DIF-g is

estimated more precisely. This, in turn, results in higher power of DIF-g. Likewise, more

masters results in more precise estimation of DIF-s, thereby resulting in higher power of

DIF-s.

As can be seen in Table 4.18, the power of DIF-g did not vary greatly across scenarios,

although the power of DIF-s did. That is, the scenarios with non-uniform DIF (i.e., “non-

uniform DIF only” and “DAF and non-uniform DIF”) clearly had lower power of DIF-s than

the scenarios with uniform DIF (i.e., “uniform DIF only” and “DAF and uniform DIF”),

even though RMSEs of DIF-s showed very small differences across these scenarios (see Table

4.12). This result may possibly be related to the design of the uniform and non-uniform DIF

conditions in the simulation study. In the simulation study, “five items were generated by

increasing guessing parameters by .1 and decreasing the slip parameters by .1 for the focal

group relative to the reference group” for uniform DIF (p. 33) and “the slip and guessing

parameters were simulated in the five DIF items by increasing these parameters by .1 in

the focal group” for non-uniform DIF (p. 34). For both uniform DIF and non-uniform DIF,

the guessing g parameter was simulated to increase by .1 in the focal group. That is, the

change for g was the same for different DIF scenarios. However, the slipping parameter, s,

was decreased by .1 for uniform DIF and increased by .1 for non-uniform DIF in the focal

group. Thus, uniform DIF scenarios had lower slipping parameters and non-uniform DIF

scenarios had higher slipping parameters in the focal group. The slipping parameter is a

kind of error parameter for detecting masters. As expected, lower slipping parameters in the

uniform DIF scenarios resulted in more correct classifications of masters and higher slipping

parameters in non-uniform DIF scenarios resulted in fewer correct classifications for masters.
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Consequently, the power of DIF-s for uniform DIF scenarios was higher than the power of

DIF-s for non-uniform DIF scenarios.

Table 4.16: Power of DIF-g over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched Uniform DIF only .55 .58 .71 .74 .74 .74
Non-uniform DIF only .58 .58 .72 .78 .77 .75
DAF and uniform DIF .56 .61 .64 .80 .78 .78
DAF and non-uniform DIF .60 .63 .70 .82 .79 .78

unmatched Uniform DIF only .65 .72 .82 .82 .89 .86
Non-uniform DIF only .69 .71 .81 .84 .88 .89
DAF and uniform DIF .65 .70 .82 .83 .80 .88
DAF and non-uniform DIF .66 .73 .80 .82 .83 .90

1000/g matched Uniform DIF only .78 .90 .91 .99 .99 .92
Non-uniform DIF only .79 .90 .94 1.00 .99 .96
DAF and uniform DIF .72 .86 .91 .96 .99 .96
DAF and non-uniform DIF .86 .87 .94 .97 .98 .98

unmatched Uniform DIF only .88 .98 .98 1.00 1.00 1.00
Non-uniform DIF only .89 .98 .99 .98 1.00 1.00
DAF and uniform DIF .91 .98 .99 .98 .98 .94
DAF and non-uniform DIF .90 .97 .99 .98 .98 .99
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Table 4.17: Power of DIF-s over 25 Replications

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched Uniform DIF only .74 .79 .86 .50 .72 .86
Non-uniform DIF only .55 .54 .66 .34 .60 .65
DAF and uniform DIF .70 .75 .80 .43 .70 .83
DAF and non-uniform DIF .49 .59 .67 .31 .50 .62

unmatched Uniform DIF only .64 .58 .51 .27 .30 .43
Non-uniform DIF only .37 .30 .30 .14 .17 .33
DAF and uniform DIF .63 .55 .51 .15 .23 .43
DAF and non-uniform DIF .35 .32 .30 .09 .15 .31

1000/g matched Uniform DIF only .94 .95 .98 .70 .90 .93
Non-uniform DIF only .85 .89 .94 .43 .83 .94
DAF and uniform DIF .91 .94 .98 .72 .88 .95
DAF and non-uniform DIF .90 .89 .91 .65 .79 .92

unmatched Uniform DIF only .83 .78 .81 .38 .54 .72
Non-uniform DIF only .66 .67 .66 .64 .40 .56
DAF and uniform DIF .86 .76 .83 .40 .47 .70
DAF and non-uniform DIF .66 .66 .66 .27 .37 .62

Table 4.18: Marginal Means and Ranges of Power Rates of DIF-g and DIF-s
DIF-g DIF-s

Mean Range Mean Range
Structure simple .79 (.55-.99) .70 (.49-.98)

complex .90 (.74-1.00) .54 (.09-.90)
Attribute a=1 .81 (.55-1.00) .55 (.09-.94)
Discrimination a=2 .85 (.58-1.00) .62 (.15-.95)

a=6 .88 (.64-1.00) .69 (.30-.98)
Sample Size 500/g .74 (.55-.90) .49 (.09-.86)

1000/g .94 (.72-1.00) .74 (.27-.98)
Ability matched .81 (.55-1.00) .75 (.31-.98)
Distribution unmatched .88 (.65-1.00) .48 (.09-.86)
Scenarios Uniform DIF only .84 (.55-1.00) .69 (.27-.98)

Non-uniform DIF only .85 (.58-1.00) .56 (.14-.94)
DAF and uniform DIF .83 (.56-.99) .67 (.43-.98)
DAF and non-uniform DIF .85 (.60-.99) .54 (.09-.92)

Overall .84 (.55-1.00) .62 (.09-.98)
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In Tables 4.16 and 4.17, the block with the lowest power for DIF-g or DIF-s was shown in

bold, but there were several blocks in tables indicating the same high level of power (ranging

from .90 to 1.00). That means the higher power was reached not just by the combination

of all good situations, but also by the combination of some good situations with some bad

situations. For example, when the conditions meet 1000 examinees per group and complex

structure, the power rates for DIF-g were all close to 1 even for a = 1 or for matched ability

distribution. This would be a bad situation, in other words, for the power of DIF-g. This

finding was similar to that for the power of DAF. That is, combinations including some bad

situations (i.e., situations in which power of DAF was poor) can be compensated by good

situations (i.e., ones which favor DAF detection). This suggested that some interactions

existed between the factors manipulated in this study. The presence of these interactions, in

fact, can be seen in Figures 4.6 to 4.8.

Figures 4.6 to 4.8 show the differences in power of DIF-g between simple structure and

complex structure were reduced when attribute discrimination increased to 6, when sample

size increased to 1000 examinees per group, or when ability distribution was unmatched,

respectively. Figure 4.9 indicates the difference in the power of DIF-g between small sample

size and large sample size was the same when attribute discrimination a = 1 and a = 2,

but decreased when a = 6. In conditions of attribute discrimination a = 6, large sample

size and unmatched ability distribution, or complex structure, power was greater than in the

opposite condition for DIF-g. As an example, even though the power of DIF-g was higher for

complex structure than for simple structure, the difference was smaller when this condition

was combined with one of the other conditions for which power was also good (e.g., with

high attribute discrimination, larger sample size, or unmatched distribution).
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Figure 4.6: The Interaction between Attribute Discrimination and Q-matrix Structure on
the Power of DIF-g
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Figure 4.7: The Interaction between Sample Size and Q-matrix Structure on the Power of
DIF-g

0

0.2

0.4

0.6

0.8

1

1.2

500/group 1000/group

Sample Size

P
o

w
e
r 

o
f 

D
IF

-g

Simple Structure

Complex Structure

 



73

Figure 4.8: The Interaction between Ability Distribution and Q-matrix Structure on the
Power of DIF-g
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Figure 4.9: The Interaction between Attribute Discrimination and Sample Size on the Power
of DIF-g
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In Figure 4.10 and Figure 4.11, it can be seen that the difference in the power of DIF-s

was smaller between simple structure and complex structure, when attribute discrimination

increased to 6 or when ability distribution was matched. Figure 4.12 shows that the difference

between uniform DIF and non-uniform DIF under large sample size was not as great as that

under small sample size. Recall that DIF-s had higher power, with attribute discrimination

a = 6, large sample size, matched ability distribution, or simple structure plus uniform DIF.

These three figures showed that conditions under which power is good can reduce the impact

of conditions under which power is poor.

Figure 4.10: The Interaction between Attribute Discrimination and Q-matrix Structure on
the Power of DIF-s.
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Figure 4.11: The Interaction between Ability Distribution and Q-matrix Structure on the
Power of DIF-s
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Figure 4.12: The Interaction between Scenarios and Sample Size on the Power of DIF-s
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In contrast, Figure 4.13 and Figure 4.14 reflect a different pattern; that is, a condition

under which power was good served to improve the power of a second condition under which

power was also good. In Figure 4.13, for example, the power of DIF-s increased when simple

structure was combined with uniform DIF over non-uniform DIF. Also, in Figure 4.14, the

difference in power of DIF-s increased between matched and unmatched ability when higher

attribute discrimination, i.e., either a = 2 or a = 6, was added.

Figure 4.13: The Interaction between Scenarios and Q-matrix Structure on the Power of
DIF-s
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Figure 4.14: The Interaction between Attribute Discrimination and Ability Distribution on
the Power of DIF-s
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4.2.4 Comparison of DIF-g and DIF-s with MH DIF Detection

In this section, we compare detection of DIF with MH methods based on total scores and

attribute mastery profiles as matching criteria. The MH method with total score as the

matching criterion was done using the total raw score that included the studied item. These

comparisons were done on the same simulated data and the Type I error and power were

calculated under the same conditions as for the DIF-g and DIF-s results presented above.

Since the MH method was not designed to detect DAF, these comparisons were only done for

DIF detection. Tables 4.19 and 4.20 provided Type I error and power results for MH using

the total score as the matching criteria. Table 4.21 and Table 4.22 provide Type I error and

power for MH using the attribute mastery profiles as the matching criteria.

MH method with Totals Scores as a Matching Criterion. In Table 4.19, it can

be seen that the Type I error rates were very large in those scenarios for which DAF was

simulated. (These values are bolded in the table.) These error rates decreased, however, with

the increase in attribute discrimination. This was consistent with expectation. Recall that

two conditions need to be satisfied for DIF to be present: First, the item needs to be sensitive

not only to the primary construct, but also to some secondary construct; second, a difference

in the conditional distributions on the secondary construct needs to exist between groups

of interest given a fixed value of primary construct (p. 2). When attribute discrimination

was 1 or 2, the simulated data contained more multidimensionality, since lower attribute

discrimination is equivalent to a lower correlation among attributes. As mentioned earlier in

the description of the simulation study design, a = 1 or a = 2 made the data satisfy the first

condition. In addition, DAF was defined as “a differential propensity of one group to have

a greater probability of mastery on an attribute compared to another group, conditioned

on general ability (p. 6).” Therefore, when DAF was generated in the data, the second

condition was satisfied. Thus, those combinations of attribute discrimination of 1 or 2 and

the conditions with DAF fully satisfied both conditions, and tended to produce DIF. This DIF

was benign DIF since the secondary dimensions (i.e., those on which each of the attributes
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loaded) were auxiliary not nuisance dimensions. For this reason, the MH method with total

scores as the matching criterion is likely to detect as DIF those items with benign DIF.

As a result, the Type I error rates for these conditions are likely to be inflated. It can

also be noticed that the bolded Type I error rates in Table 4.19 for complex structure are

smaller than those for simple structure. This is because the response to one item could be

determined by more than one attribute, the effect of one attribute with DAF on the studied

item is smaller than that under simple structure where the response to one item is only

determined by one attribute.

Since the Type I errors under the scenarios with DAF were large, we focus only on

the power of MH for DIF detection in those scenarios without DAF. These are “Uniform

DIF only” and “non-uniform DIF only” (see the bolded values in Table 4.20). The power

for “uniform DIF only” were higher than for “non-uniform DIF only”. The uniform DIF

scenarios appear to have changed the probability of correct response in the same direction

for all examinees in the focal group whereas the non-uniform DIF scenarios changed the

probability of correct response in one direction for masters and the other direction for non-

masters in the focal group. One possibility is that the DIF effect could have been cancelled

under the non-uniform scenario, since the MH method is not able to detect non-uniform

DIF. Although the power rates for the non-uniform scenario with complex structure, 1000

examinee per group, and unmatched ability distribution were around .7, this rate actually

may be overestimated due to the inflated Type I error rate (see cells for corresponding

conditions in Table 4.19). Likewise, one should use care in interpreting the relatively high

power of MH for uniform DIF only, because the Type I errors of all conditions for uniform

DIF were not controlled even based on Bradley’s (1978) liberal criterion. As can been seen

in Table 4.19, the Type I error rates for “Uniform DIF only” ranged from .080 to .232. These

were not as high as for the scenarios with DAF, however. As a result, the power of uniform

DIF might be somewhat overestimated. In general, though, one can probably conclude that

the MH method with total score as the matching criterion had acceptable power for detecting
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uniform DIF, especially for the large sample size. Further, and as expected, the MH method

failed to detect non-uniform DIF.

The model-based method developed in this study appeared to have reasonably good

control of Type I errors for both DIF-g and DIF-s whether or not the scenarios simulated

DAF. Moreover, the model-based method appeared to be able to detect non-uniform DIF by

separating DIF into DIF-g for non-masters and DIF-s for masters. The power of DIF-g (see

Table 4.16 and DIF-s (see Table 4.17) appears to be higher than the power of DIF (see Table

4.20 for the uniform DIF conditions. The Type I errors for DIF by the MH method were

generally inflated compared to those for DIF-g and DIF-s even in the uniform DIF scenarios.

In addition, when both Type I error of DIF-g and DIF-s were detected simultaneously, the

total sample size for detecting DIF was reduced to the sample size for masters (for detecting

DIF-s) and the sample size for non-masters (for detecting DIF-g). As a result, the power of

either DIF-g or DIF-s was also reduced.
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Table 4.19: Type I Error of DIF by MH Method Using Total Scores as a Matching Criterion

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .030 .054 .048 .040 .057 .044
DAF only .400 .331 .121 .371 .179 .078
Uniform DIF only .094 .104 .098 .092 .116 .088
Non-uniform DIF only .030 .050 .046 .046 .042 .050
DAF and uniform DIF .398 .348 .160 .364 .240 .134
DAF and non-uniform DIF .406 .306 .112 .374 .200 .098

unmatched No DIF and DAF .030 .035 .048 .075 .081 .049
DAF only .400 .297 .096 .222 .132 .062
Uniform DIF only .080 .104 .102 .144 .150 .126
Non-uniform DIF only .042 .056 .062 .104 .116 .090
DAF and uniform DIF .398 .322 .172 .258 .184 .138
DAF and non-uniform DIF .396 .282 .172 .254 .196 .118

1000/g matched No DIF and DAF .057 .070 .035 .054 .057 .043
DAF only .412 .414 .217 .475 .433 .137
Uniform DIF only .138 .162 .172 .194 .188 .158
Non-uniform DIF only .036 .072 .038 .078 .070 .050
DAF and uniform DIF .446 .476 .282 .460 .434 .262
DAF and non-uniform DIF .426 .444 .192 .428 .446 .180

unmatched No DIF and DAF .044 .040 .043 .089 .067 .060
DAF only .433 .411 .136 .272 .262 .131
Uniform DIF only .120 .126 .172 .220 .232 .214
Non-uniform DIF only .034 .046 .070 .150 .164 .128
DAF and uniform DIF .514 .450 .292 .294 .280 .238
DAF and non-uniform DIF .450 .400 .158 .290 .280 .192
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Table 4.20: Power of DIF by MH Method Using Total Scores as a Matching Criterion

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched Uniform DIF only .79 .84 .89 .82 .86 .86
Non-uniform DIF only .02 .04 .04 .26 .16 .06
DAF and uniform DIF .73 .65 .75 .72 .74 .84
DAF and non-uniform DIF .36 .18 .05 .51 .31 .10

unmatched Uniform DIF only .74 .73 .78 .77 .86 .80
Non-uniform DIF only .09 .18 .22 .50 .45 .36
DAF and uniform DIF .62 .57 .69 .71 .73 .74
DAF and non-uniform DIF .34 .26 .24 .66 .58 .38

1000/g matched Uniform DIF only .97 .97 .99 1.00 1.00 1.00
Non-uniform DIF only .03 .06 .02 .58 .38 .13
DAF and uniform DIF .89 .80 .89 .80 .80 .92
DAF and non-uniform DIF .40 .33 .09 .84 .67 .21

unmatched Uniform DIF only .92 1.00 1.00 .98 .98 .97
Non-uniform DIF only .11 .33 .40 .73 .74 .62
DAF and uniform DIF .81 .80 .96 .82 .83 .91
DAF and non-uniform DIF .42 .40 .44 .81 .74 .60
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MH Method with Attribute Profiles as a Matching Criterion. In Table 4.21,

results were reported for the MH method using attribute profiles as the matching criterion.

The error rates in Table 4.21 were not abnormally high for the scenarios with DAF as

was observed (above) for the MH method using total scores as the matching criterion. The

conditions with attribute discrimination a = 1 or a = 2, however, did consistently have

inflated Type I error rates than when attribute discrimination was simulated as a = 6. This

result was consistent with the results reported by Zhang (2007). Zhang found Type I error

using the MH method and attribute profiles as the matching criterion to have decreased with

an increase in the correlation among attributes. The increase in correlation among attributes

is equivalent to an increase in attribute discrimination. As the attribute profiles were used

as the matching criterion, the result was that the MH was sensitive to the correctness of

classification of mastery status. As indicated in Section 4.2.1, the correct classification rate

of attribute mastery increased with an increase in attribute discrimination. This could be

a possible reason for the reduced Type I error rates in conditions with higher attribute

discrimination.

In Table 4.22, the power was highlighted for the conditions with attribute discrimination

a = 6, since Type I error rates were relatively controlled under these same conditions. The

power showed the same pattern as the power based on MH method using total scores as

the matching criterion: the power rates were high for uniform DIF under all conditions, but

much lower for non-uniform DIF. That is, both MH methods were not capable of detecting

non-uniform DIF.

The MH method using attribute profiles as the matching criterion appeared to have

avoided the extent of loss of Type I error control that appeared in those conditions in which

DAF was simulated. Even so, the Type I error control was not as good as the model-based

method for conditions with attribute discrimination a = 1 or a = 2. The MH method

using attribute profiles as matching criterion, however, was more powerful at detecting DIF,

although detection of non-uniform DIF was not good.
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Table 4.21: Type I Error of DIF by MH Method Using Attribute Profiles as a Matching
Criterion

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched No DIF and DAF .078 .108 .083 .120 .083 .060
DAF only .128 .100 .080 .188 .115 .059
Uniform DIF only .082 .094 .080 .124 .084 .060
Non-uniform DIF only .082 .124 .086 .128 .090 .064
DAF and uniform DIF .076 .100 .080 .186 .122 .072
DAF and non-uniform DIF .088 .176 .086 .218 .112 .064

unmatched No DIF and DAF .115 .115 .075 .188 .088 .067
DAF only .128 .120 .078 .187 .104 .054
Uniform DIF only .134 .114 .078 .174 .078 .074
Non-uniform DIF only .160 .136 .086 .200 .102 .056
DAF and uniform DIF .132 .118 .080 .186 .084 .052
DAF and non-uniform DIF .150 .146 .092 .218 .094 .062

1000/g matched No DIF and DAF .094 .102 .046 .097 .107 .054
DAF only .110 .128 .048 .161 .153 .060
Uniform DIF only .086 .118 .058 .106 .102 .060
Non-uniform DIF only .102 .138 .070 .128 .114 .064
DAF and uniform DIF .114 .120 .064 .156 .142 .064
DAF and non-uniform DIF .154 .138 .064 .216 .186 .074

unmatched No DIF and DAF .126 .116 .059 .214 .105 .059
DAF only .147 .097 .054 .217 .097 .056
Uniform DIF only .128 .098 .056 .212 .108 .050
Non-uniform DIF only .168 .124 .058 .248 .110 .064
DAF and uniform DIF .164 .088 .054 .214 .108 .052
DAF and non-uniform DIF .156 .120 .054 .324 .124 .050
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Table 4.22: Power of DIF by MH method Using Attribute Profiles as a Matching Criterion

Simple Structure Complex Structure
a=1 a=2 a=6 a=1 a=2 a=6

500/g matched Uniform DIF only .96 .99 .97 .92 .96 .96
Non-uniform DIF only .12 .09 .05 .42 .22 .04
DAF and uniform DIF .97 .93 .96 .75 .89 .97
DAF and non-uniform DIF .11 .20 .04 .28 .15 .03

unmatched Uniform DIF only .92 .96 .92 .96 .80 .93
Non-uniform DIF only .21 .35 .35 .71 .61 .44
DAF and uniform DIF .89 .93 .93 .91 .90 .92
DAF and non-uniform DIF .23 .34 .36 .74 .68 .46

1000/g matched Uniform DIF only 1.00 1.00 1.00 1.00 1.00 1.00
Non-uniform DIF only .08 .15 .05 .60 .36 .12
DAF and uniform DIF .99 .99 1.00 .86 .96 1.00
DAF and non-uniform DIF .22 .22 .09 .42 .28 .11

unmatched Uniform DIF only 1.00 1.00 1.00 1.00 1.00 1.00
Non-uniform DIF only .23 .47 .62 .80 .88 .77
DAF and uniform DIF 1.00 1.00 1.00 .99 .98 .99
DAF and non-uniform DIF .42 .53 .61 .74 .80 .76
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4.3 Detection of DAF and DIF on a Statewide Mathematics Test

To illustrate the use of the model-based method for DAF and DIF detection, the modified

higher-order DINA model was applied to a gender DIF problem using data sampled from

a statewide mathematics test. Gender DAF detection focuses on identifying weakness and

strength for males and females given the same ability level, whereas gender DIF detection

seeks to identify group differences conditioning on attribute mastery. In addition, model-

based DIF detection was also compared with two MH methods, one with total scores and a

second with attribute profiles as matching criteria.

4.3.1 Data Description

A sample of 2,000 examinees (993 males and 1007 females) was randomly drawn from a total

statewide sample of 136,156 students in Grade 3 who took the 2003 Florida Comprehen-

sive Assessment Test (FCAT) Mathematics Test (Florida Department of Education, 2003).

Before drawing the sample, the examinees were excluded if they had received any accommo-

dation, had an indication of any primary exceptionality, or were identified as limited English

Proficient.

The test included 40 operational multiple-choice items, designed to measure one of the

following five content strands: Number Sense and Operation, Measurement, Geometry and

Spatial Sense, Algebraic Thinking, Data Analysis and Probability. Six non-operational item

locations were present on each of the 10 forms of the test, and were used to field test new

or revised items. Items in these locations were not analyzed in this study. In this study, the

content strands were treated as attributes. A 40 × 5 Q-matrix was created from the item

and task specification for the FCAT (see Table 4.23). The resulting Q-matrix had a simple

structure as each item was designed to measure only a single attribute.

Table 4.24 presents the descriptive statistics for the whole test and for each attribute for

females and for males. The data analyses were done using the same software as used for the

simulation study. It can be seen the mean total score for males was about 1 unit higher than
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that for females. For each attribute, the mean score on each attribute was also a little higher

for males than females. Results with an independent samples t-test, however, suggested all

differences except for Geometry were significant difference due to the large sample size of

the data (N = 2000).

Table 4.23: Q-Matrix for FCAT 2003 Grade 3 Mathematics Test
Number Sense Geometry Algebraic Data Analysis

Items & Operation Measurement & Spatial Sense Thinking &Probability
1 1 0 0 0 0
2 0 0 0 1 0
3 0 0 0 0 1
4 0 1 0 0 0
5 0 0 0 0 1
6 1 0 0 0 0
7 1 0 0 0 0
8 0 1 0 0 0
9 0 0 1 0 0
10 0 1 0 0 0
11 0 0 1 0 0
12 0 0 1 0 0
13 1 0 0 0 0
14 0 0 0 1 0
15 1 0 0 0 0
16 0 0 0 0 1
17 0 0 0 1 0
18 1 0 0 0 0
19 0 0 0 0 1
20 0 0 1 0 0
21 0 0 0 0 1
22 0 0 1 0 0
23 0 0 1 0 0
24 0 1 0 0 0
25 0 1 0 0 0
26 0 0 0 1 0
27 0 0 1 0 0
28 1 0 0 0 0
29 1 0 0 0 0
30 0 0 0 1 0
31 1 0 0 0 0
32 1 0 0 0 0
33 1 0 0 0 0
34 1 0 0 0 0
35 0 0 0 1 0
36 0 0 0 0 1
37 0 0 0 0 1
38 0 1 0 0 0
39 0 1 0 0 0
40 0 1 0 0 0
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Table 4.24: Descriptive Sample Statistics for FCAT 2003 Grade 3 Mathematics

Total Number Algebraic Data
Score Operation Measurement Geometry Thinking Analysis

Female Mean 23.41 6.62 5.35 4.21 3.18 4.05
(S.D.) (7.25) (2.77) (1.72) (1.59) (1.45) (1.67)

Male Mean 24.48 6.99 5.66 4.24 3.39 4.18
(S.D.) (7.48) (2.78) (1.71) (1.66) (1.50) (1.69)

t test t -3.25 -3.04 -4.12 -.46 -3.24 -1.72
(p-value) (.001) (.002) (.000) (.646) (.001) (.085)



89

4.3.2 Results for Real Data Example

The male group was arbitrarily chosen as the reference group. Item parameter estimates

for both female and male group are presented in Table 4.25. The slip parameters were

generally low, and some of the guessing parameters appeared high and, as a result, possibly

problematic: Specifically, 15 of 40 guessing parameters were higher than .50. Typically, high

guessing parameter estimates occur when more attributes have been specified for an item

than necessary, although for this test, only one attribute was specified for each item. Another

possible reason for the high guessing parameters estimated in the data may be that the

attributes were inaccurately specified for those items or the difficulties of those items were

much lower than the ability levels of students (i.e., were too easy). As a result, more students

were classified as masters. Since high guessing occurred in both groups, it may not affect

DAF and DIF detection so much.

Table 4.26 provides the frequencies and percentages of each attribute mastery pattern for

total group, females and males. In principle, five attributes will generate 25 = 32 attribute

mastery patterns. However, in this real data example, only 27 of these patterns occurred. Of

those patterns that were present, the patterns “00000” and “11111” accounted for almost

80% of the patterns in the total sample. The third largest pattern was “01000”, and the

percentages of other patterns were all lower than 2%. Similar distributions were found for

female and male groups. These kinds of distribution indicated the five attributes were highly

correlated. That is, if a student failed to master one attribute, the same student tended to

not master all attributes. The results also suggest that the second attribute might be the

easiest one since 6.2% of examinees mastered this one but failed all the others.
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Table 4.25: Item Parameter Estimates for both Females and Males
Items gfemale(S.E.) gmale(S.E.) sfemale(S.E.) smale(S.E.)

1 0.90(0.01) 0.86(0.01) 0.01(0.01) 0.00(0.00)
2 0.72(0.02) 0.63(0.02) 0.03(0.01) 0.04(0.01)
3 0.68(0.02) 0.69(0.02) 0.22(0.02) 0.22(0.01)
4 0.55(0.02) 0.57(0.02) 0.25(0.02) 0.30(0.01)
5 0.43(0.02) 0.38(0.02) 0.08(0.01) 0.11(0.01)
6 0.46(0.02) 0.43(0.02) 0.07(0.01) 0.11(0.01)
7 0.32(0.02) 0.32(0.02) 0.19(0.02) 0.23(0.02)
8 0.38(0.02) 0.26(0.02) 0.22(0.02) 0.31(0.02)
9 0.40(0.02) 0.40(0.02) 0.21(0.02) 0.22(0.02)
10 0.81(0.02) 0.70(0.02) 0.06(0.01) 0.08(0.01)
11 0.37(0.02) 0.34(0.02) 0.35(0.02) 0.43(0.02)
12 0.54(0.02) 0.54(0.02) 0.15(0.02) 0.14(0.01)
13 0.57(0.02) 0.54(0.02) 0.12(0.01) 0.16(0.01)
14 0.25(0.02) 0.23(0.02) 0.33(0.02) 0.36(0.02)
15 0.40(0.02) 0.35(0.02) 0.20(0.01) 0.19(0.01)
16 0.23(0.02) 0.10(0.01) 0.34(0.02) 0.52(0.02)
17 0.45(0.02) 0.52(0.02) 0.27(0.02) 0.21(0.02)
18 0.24(0.02) 0.22(0.02) 0.26(0.02) 0.34(0.02)
19 0.51(0.02) 0.44(0.02) 0.09(0.01) 0.11(0.01)
20 0.31(0.02) 0.38(0.02) 0.35(0.02) 0.37(0.02)
21 0.24(0.02) 0.25(0.02) 0.47(0.02) 0.47(0.02)
22 0.59(0.02) 0.58(0.02) 0.14(0.01) 0.14(0.01)
23 0.51(0.02) 0.57(0.02) 0.16(0.02) 0.18(0.01)
24 0.58(0.02) 0.55(0.03) 0.05(0.01) 0.05(0.00)
25 0.57(0.02) 0.57(0.02) 0.10(0.01) 0.10(0.01)
26 0.41(0.02) 0.42(0.02) 0.27(0.02) 0.24(0.02)
27 0.42(0.02) 0.40(0.02) 0.29(0.02) 0.31(0.02)
28 0.44(0.02) 0.43(0.02) 0.24(0.02) 0.28(0.02)
29 0.41(0.02) 0.36(0.02) 0.07(0.01) 0.10(0.01)
30 0.13(0.01) 0.09(0.01) 0.34(0.02) 0.52(0.02)
31 0.20(0.01) 0.17(0.01) 0.53(0.02) 0.59(0.02)
32 0.21(0.02) 0.19(0.01) 0.28(0.02) 0.29(0.02)
33 0.28(0.02) 0.22(0.01) 0.38(0.02) 0.38(0.02)
34 0.20(0.02) 0.24(0.01) 0.50(0.02) 0.44(0.02)
35 0.39(0.02) 0.36(0.02) 0.32(0.02) 0.37(0.02)
36 0.20(0.02) 0.26(0.02) 0.26(0.02) 0.23(0.02)
37 0.55(0.02) 0.59(0.02) 0.10(0.01) 0.12(0.01)
38 0.18(0.02) 0.09(0.02) 0.31(0.02) 0.43(0.02)
39 0.62(0.02) 0.49(0.02) 0.13(0.01) 0.21(0.01)
40 0.45(0.02) 0.49(0.02) 0.16(0.01) 0.20(0.01)
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Table 4.26: Frequencies and Percentages of Attribute Mastery Patterns
Total Female Male

Profiles Frequency (Percent) Frequency (Percent) Frequency (Percent)
00000 719 (36.0) 351 (34.9) 368 (37.1)
00001 8 (.4 ) 4 (.4) 4 (.4 )
00011 2 (.1 ) 0 (0.0) 2 (.2)
00100 6 (.3 ) 3 (.3) 3 (.3)
00101 1 (.0 ) 0 (0.0) 1 (.1)
01000 125 (6.2 ) 79 (7.8) 46 (4.6)
01001 33 (1.6 ) 23 (2.3) 10 (1.0)
01010 11 (.6 ) 3 (.3) 8 (.8)
01011 6 (.3 ) 3 (.3) 3 (.3)
01100 12 (.6 ) 8 (.8) 4 (.4)
01101 22 (1.1 ) 16 (1.6) 6 (.6)
01110 3 (.2 ) 0 (0.0) 3 (.3)
01111 18 (.9 ) 10 (1.0) 8 (.8)
10000 10 (.5 ) 2 (.2) 8 (.8)
10001 3 (.2 ) 1 (.1) 2 (.2)
10010 1 (.0 ) 0 (0.0) 1 (.1)
10101 2 (.1 ) 0 (0.0) 2 (.2)
10110 2 (.1 ) 0 (0.0) 2 (.2)
10111 3 (.2 ) 0 (0.0) 3 (.3)
11000 19 (1.0 ) 7 (.7) 12 (1.2)
11001 18 (.9 ) 11 (1.1) 7 (.7)
11010 12 (.6 ) 4 (.4) 8 (.8)
11011 33 (1.6 ) 11 (1.1) 22 (2.2)
11100 7 (.4 ) 5 (.5) 2 (.2)
11101 31 (1.6 ) 21 (2.1) 10 (1.0)
11110 18 (.9 ) 7 (.7) 11 (1.1)
11111 874 (43.7) 438 (43.5) 436 (43.9)
Total 2000 (100.0) 1007 (100.0) 993 (100.0)
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4.3.3 DAF Detection

Table 4.27 presented all attribute parameter estimates and their corresponding 95% credi-

bility interval for the higher level model. This included the DAF index parameters γadj. In

Table 4.27, estimates of the attribute discrimination parameter can be seen to be as high as 6.

The βadj estimates represented the attribute difficulties for the reference group. The second

attribute, Measurement, was the easiest and the third attribute, Algebraic Thinking, was

the hardest. These results explain the distribution of attribute patterns observed in Table

4.26. High attribute discrimination parameter estimates suggested each attribute was highly

correlated to general ability. As a result, the all-non-mastery pattern “00000” and the all-

mastery pattern “11111” were the dominant patterns. In addition, since the second attribute

was the easiest, the pattern “01000” had a greater probability of occurring than other pat-

terns containing the second attribute being non-mastered. The 95% credibility interval on

γadj indicated the second attribute, Measurement, favored the focal group (female group),

the fourth attribute, Algebraic Thinking, favored the reference group (male group).

Table 4.27: Attribute Parameter Estimates and 95% CIs
Parameters Means 95% CIs

a 6.80 ( 6.04, 7.54)
β1adj .03 (-0.45, 0.49)
β2adj -1.21 (-1.85, -0.59)
β3adj .66 (-0.13, 1.37)
β4adj .41 (-0.22, 1.04)
β5adj .16 (-0.35, 0.69)
γ1adj .40 (-0.27, 1.08)
γ2adj -.89 (-1.70, -0.09)
γ3adj -.14 (-1.12, 0.79)
γ4adj .86 ( 0.02, 1.77)
γ5adj -.23 (-0.92, -0.23)

In Table 4.28, the group ability means and group marginal attribute mastery proportions

are presented. It can be seen that ability was similar between gender groups as females

were lower than males by only .03. Females and males differed, however, in the mastery of
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different attributes: Females had a higher mastery proportion for Measurement and males

had a higher mastery proportion for Algebraic Thinking. Both differences were about 3.8%,

and group differences for the other attributes were small.

Table 4.28: General Ability Mean and Marginal Attribute Mastery Proportions
General Number Algebraic Data
Ability Operation Measurement Geometry Thinking Analysis

Male 0 52.97% 60.02% 49.45% 51.06% 51.96%
Female -.03 50.35% 64.15% 50.45% 47.27% 53.43%

4.3.4 DIF Detection

Results were given in Table 4.29 for the MH with total score and with attribute profile as

matching criteria. Recall that a significant χ2 for the MH method indicates uniform DIF. In

addition, estimates of ∆g and ∆s for the model-based method as well as the 95% credibility

interval for DIF-g and DIF-s detection were given in Table 4.29. If the 95% CI on ∆g and

∆s does not contain 0, this suggests a significant DIF-g or DIF-s. A difference in the signs

for DIF-g and DIF-s suggest uniform DIF. Similarly, the same sign for DIF-g and DIF-s

suggests non-uniform DIF. This is because an increase in both g and s will result in an

increase in the proportion of correct responses for non-masters, and a decrease in that for

masters, respectively. Conversely, a decrease in both g and s will result in a decrease in the

proportion of correct responses for non-masters but an increase in the proportion of masters,

respectively. Finally, an increase in g and a decrease in s or a decrease in g and an increase

in s will result in an increase or decrease in the proportion of correct responses for both

masters and non-masters, respectively.

It can be seen in the table that MH with the total score as matching criterion was able

to detect 15 uniform DIF items, and MH with the attribute profile as the matching criterion

detected 17 uniform DIF items. There were 11 items with one or both DIF-g or DIF-s

detected. All of these indicated uniform DIF as the signs on ∆g and ∆s were different.
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This result was consistent with results from the comparisons among the three methods in

the simulation study. Recall that those results indicated the model-based method was more

conservative and yielded lower Type I error rates for detection of DIF, even though eight

common items were detected as DIF items by all three methods. In this data set, however,

DIF detection results appeared to be similar among the three methods. The similarity in

results was possibly due to the high correlations among attributes. As noted earlier, Type I

errors are reduced for both the MH with attribute profile and MH with total score matching

criteria, when attributes are highly correlated. The model-based method was more powerful

than the other two MH methods, when non-uniform DIF existed, although they all performed

similarly, when the data were unidimensional and no non-uniform DIF existed. One possible

reason the MH with the attribute profile detected a relatively large number of DIF items is

that sparseness occurred in many attribute mastery patterns.

Table 4.29: DIF Detection based on the Three Methods
MH with MH with Model Based Method

Total Score Attribute Profile DIF-g DIF-s
Item Skill χ2(p value) ∆αMH χ2(p value) ∆αMH ∆g(95%CI) ∆αMH ∆s(95%CI) ∆αMH

2 4 5.52(.019) -0.74 9.10(.003) -0.93 -.09(-.15,-.02) -0.96
5 5 10.00(.002) -0.88
6 1 3.869(.049) -0.54
8 2 6.39(.011) -0.61 23.53(.000) -1.18 -.12(-.19,-.05) -1.30 .09(.03,.15) -1.09
10 2 6.04(.014) -0.81 13.80(.000) -0.32 -.11(-.17, -.04) -1.41 .08(.01,.15)
11 3 5.49(.019) -0.52 -0.81
13 1 8.77(.003) -0.76
16 5 40.24(.000) -1.58 61.49(.000) -1.95 -.13(-.18,-.08) -2.22 .18(.11,.25) -1.74
17 4 13.35(.000) 0.86 7.63(.006) 0.65 .08(.01,.14) 0.71
18 1 5.73(.017) -0.59 .08(.01,.15) -0.85
19 5 4.39(.036) -0.57 -.07(-.14,-.002) -0.69
20 3 4.37(.037) 0.48
21 5 5.17(.023) 0.54
23 3 7.90(.005) 0.69
25 2 4.06(.044) 0.58
29 1 6.09(.014) -0.7
30 4 22.91(.000) -1.58 34.23(.000) -1.54 .18(.11,.26) -1.75
31 1 4.82(.028) -0.53
34 1 11.83(.001) 0.83 4.899(.027) 0.53
36 5
37 5 5.34(.021) 0.62
38 2 8.89(.003) -0.74 41.34(.000) -1.65 -.08(-.15, -.02) -1.64 .13(.07,.19) -1.28
39 2 12.34(.000) -0.90 21.28(.000) -1.17 -.13(-.20,-.05) -1.20 .08(.03,.13) -1.31

Although a lot of items were detected as DIF items, many of them were negligible or

moderate according to the ETS standards used in this study, when |∆αMH | ≥ 1.5). Results
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for both MH methods were in agreement that only three items (Items 16, 30, and 38) had

large DIF. For DIF-g and DIF-s, no specific criterion was developed for this study, but some

calculations can be approximated to obtain a useful result for ∆αMH using equation 2.9: In

that equation, Rrk and Wrk are the counts of right and wrong responses in the reference group

at score level k, Rfk and Wfk are the counts of right and wrong responses in the focal group

at level k, and Ntk is the number of examinees in the total group at level k (k = 1, . . . , K).

In the CDM in this study, only two levels existed for each item, masters or non-masters of

that attribute. For DIF-g, since only non-masters are considered, the following is used:

αMH =
gr(1− gf )

(1− gr)gf

(4.1)

where gr, gf are the guessing parameters for the reference group and focal groups, respec-

tively. For DIF-s, since only masters are considered, the following equation is used:

αMH =
sf (1− sr)

(1− sf )sr

(4.2)

where sr and sf are the slip parameters for the reference group and focal groups, respectively.

After this transformation, the same criteria for ∆αMH could be used for DIF-g and DIF-s.

Using this approach, all three methods appeared to have detected the same three items with

large DIF. These three items measured attributes ”Data analysis”, ”Algebraic thinking” and

”Measurement” respectively. Currently, few if any tests have been written to conform to a Q-

matrix. As a result, it is possible that the Q-matrix that was developed in this example, given

the existing items, may have inadvertently resulted in more highly correlated attributes than

would might have occurred were a test to be constructed to specifically measure attributes

as in a predetermined Q-matrix. This reality was essentially a limitation when trying to

apply a DIF detection method to real data in the context of a cognitive diagnostic modeling

framework. Here both the model-based method in this study and the MH with attribute

profiles used by Zhang (2007) were developed specifically for cognitive diagnostic modeling

assessment, but both failed to show the advantage of the methods, when applied to real data

from a test constructed to other than cognitive diagnostic modeling framework specifications.



Chapter 5

Discussion

This dissertation presented a modified higher-order DINA model for separating the source

of construct-relevant (i.e. benign) DIF from construct irrelevant (i.e., adverse) DIF. This

model-based method provides a natural framework for detecting both differential attribute

functioning (DAF) and differential item functioning (DIF) in a cognitive diagnostic modeling

framework: The higher level IRT model provides an estimate of group difference in attribute

difficulty as an index of DAF and the lower level DINA model provides an estimate of

group difference in item parameters with an index of DIF incorporated into the model. DIF

detection ensures test fairness and improves test validity in terms of group difference in item

performance after conditioning attributes mastery profiles, whereas DAF detection provides

a good understanding of group strength and weakness in terms of a set of cognitive attributes

after conditioning on general ability.

An MCMC algorithm employing Gibbs sampling was used to estimate the new model, and

a simulation study was done to examine model recovery, Type I error rates, and power under

practical testing conditions. There were five factors manipulated in the simulation study:

Q-matrix structure, attribute discrimination parameters, sample size, ability distribution

difference, scenarios of DIF and DAF combination. For DIF detection, the model-based

method was also compared with the MH method using two types of matching criteria, a

total score as the matching criterion and an attribute profile as the matching criterion.

Finally, a statewide mathematics test was used to illustrate the implementation and possible

limitations of the new method.

96
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5.0.5 Summary of Simulation Study Results

The recovery of item parameters was generally better than the recovery of attribute param-

eters. One reason this occurred may be that the attribute level was not as informative as

the item level due to the limited number of attributes. Specifically, the attribute discrimi-

nation estimates were biased when the generating value was 6. One possible explanation for

the poorer recovery may be because of the way Bayesian estimation obtains the posterior

distribution. It does this by combining the prior distribution with the likelihood. When less

information is provided by the data (i.e., the likelihood), the posterior distribution weighs

more heavily in the prior. The result is that shrinkage toward the mean of the prior occurs in

the estimates of attribute discrimination. In terms of the problem in this study, more robust

estimates of general ability recovery may have resulted had more attributes been simulated

and had more items been simulated as measuring each of the attributes. However, in reality,

few tests measure more than 10 different attributes. Therefore, there is a gap between what

would be a better model from the standpoint of the model developed in this study and what

is generally available in the usual testing program that would improve the estimation of

attribute parameters and on DAF detection.

Type I error and power were calculated to assess the effects of different testing conditions

on both DAF and DIF detection by manipulating the following factors: Q-matrix structure,

attribute discrimination parameters, sample size, ability distribution difference, scenarios of

DIF and DAF combination. Type I error for DIF tests was evaluated using the liberal range

suggested by Bradley (1978). This was not the case for the DAF tests, however, as many of

the conditions yielded Type I error for DAF that were out of that range. Most of these were

deflated. The combination of small numbers of replications and small numbers of attributes

appears to be a possible reason for the relatively high degree of variability of Type I error

control for DAF. In particular, more replications would seemed to be required to obtain more

stable estimates of Type I error in DAF. In addition, Type I error of both DAF and DIF
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seemed not to be very sensitive to the five manipulated factors. Only Type I error of DIF-s

was sensitive to sample size and attribute discrimination.

Unlike Type I error, the power of both DAF and DIF (DIF-g and DIF-s) varied across

different testing conditions. The pattern of variability was consistent with the pattern of

recovery of DAF- and DIF-related parameters: The conditions with higher power for DAF

responded to the conditions with lower RMSE of γ (the DAF parameter), and the conditions

with higher power in DIF-g and DIF-s responded to the conditions with lower RMSE of g

and s.

Clearly, the power of both DAF and DIF was higher in the large sample. Even though

the power rates of DIF-g and DIF-s were more dependent on the sample size of non-masters

and masters, respectively, they likewise increased markedly. This is because the number

of masters and non-masters increased with the increase in total sample size. The four other

factors did not function consistently in terms of the power between DAF and DIF, or between

DIF-g and DIF-s.

High attribute discrimination (a = 6) resulted in more bias in the estimation of attribute

parameters. Thus, the power rate of DAF dropped, when attribute discrimination increased

to 6. The power was similar, however, when discrimination was simulated to be a = 1 and

a = 2. High attribute discrimination, however, did result in improved power of DIF-g and

DIF-s, most likely because attributes with higher discrimination can distinguish master and

non-master more easily. As a result, more examinees were correctly classified as masters or

non-masters. Further, high attribute discrimination appeared to help both the recovery of

s and g, as well as the power of DIF-g and DIF-s. To explain the effect of high attribute

discrimination, it is useful to first note that highly correlated attributes improved the correct

classification of masters and non-masters. When attributes are highly correlated, the number

of profile patterns that are present in the data tend to be reduced. In the extreme, that

is, with perfectly correlated attributes, it is possible that the number of patterns might
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actually reduce to two, all 0’s (non-masters) and all 1’s (masters). Although this might make

classification somewhat easier, the assessment would likely turn out to be less informative.

The different scenarios constructed in the simulation study were mainly formed with

different combinations of DAF, DIF-s and DIF-g. The purpose of generating these different

scenarios was to help determine under which conditions the model developed in this study

could detect DAF and DIF simultaneously. Results suggested that the performance of DAF,

DIF-g and DIF-s detection based on the model was not greatly affected by most of the

scenarios. The exception was that the power rate of DIF-s was lower for non-uniform DIF

than uniform DIF. This likely occurred because non-uniform DIF had higher slip parameters

than uniform DIF in the simulation design and higher slip results in less precise estimation

of masters.

In those conditions with simple structure and matched ability distributions between ref-

erence and focal groups, the power of DAF and DIF-s increased as expected, but the power of

DIF-g decreased. The manipulation of simple structure or complex structure, and matched

or unmatched ability distribution did appear to influence the number of masters and non-

masters given sample size. As explained in Chapter 4, the condition of simple structure

and matched ability distribution generated approximately equal numbers of masters and

non-masters, and the complex structure and unmatched ability distribution generated more

non-masters than masters. Thus, in the complex Q-Matrix structure and unmatched ability

condition, the detection of DIF-g was better.

The comparison of the model-based method developed in this dissertation with the other

two MH methods for DIF detection showed the model-based method had better Type I error

control across all conditions. In addition, the method had higher power of both DIF-g and

DIF-s for those conditions that had large enough sample sizes to generate enough numbers

of masters and non-masters. For the conditions with either larger sample size of masters or

non-masters, the power was higher for DIF-s or DIF-g, respectively. MH using total score
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as matching criterion yielded inflated Type I errors for scenarios with simulated DAF, and

both MH methods had consistently poor power in detecting non-uniform DIF.

The results of the real data example indicated the model-based method for DAF detec-

tion was capable of identifying group weakness and strength conditioning on general ability.

However, model-based DIF detection in the real data didn’t show as much difference com-

pared to the two MH methods as was found in the simulation study. This likely occurred

because the simulation study suggested the model-based method performed better than the

two MH methods only when non-uniform DIF existed or when the attribute correlations were

low. Neither of these occurred in the real data example. In addition, high guessing param-

eter estimates in the real data suggested either the Q-matrix was not completely accurate

for the FCAT test analyzed or the test itself did not conform well to the Q-matrix. This

is an unfortunate but common condition in real data when a test has not been developed

to conform to a specific Q-matrix. Although this reality currently limits the application of

cognitive diagnostic based DIF detection, we believe the method developed in this study

should become increasingly useful as cognitive diagnostic models becomes more commonly

used in test construction.

5.2 Limitations and Future Studies

First, Type I errors for DAF in some of the simulation conditions seemed to lack control.

There were no clear patterns of inflated or deflated error rates over the simulated conditions.

The relatively small numbers of replications may be one reason for the lack of Type I error

control. More replications might improve the estimation of Type I error and power of DAF.

Second, the model developed in this study tried to estimate all possible DAF and DIF

simultaneously in one step, thus it required estimating all item parameters and attribute

parameters differently across groups. In this way, more parameters were estimated than might

have been useful. The subsequent model may not have been the best fit to the data. Several

steps could be taken to reduce the model. First, several nested models could be constructed

besides the full model. As an example, one could compare a model assuming all parameters
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to be the same for both groups and a model assuming only attribute parameters varied across

groups or a model assuming only item parameters varied across groups. Bayesian model fit

criteria might then be used to select the best fitting model.

Third, this study only examined if DAF or DIF significantly differed from 0. In real data,

many of the values for these were negligible although they might have also been statistically

significant. In the future, it might be useful to have an effect size measure for DAF, DIF-

g and DIF-s that could be used jointly with a significance test. The effect size of DIF-g

and DIF-s illustrated in the real data was the same as that used as the effect size for MH

methods. The value for the effect size using this measure was then compared to the criterion

established for MH method. It might be more useful to establish an effect size measure and

criterion specific to these parameters.

Finally, even though the model based method in this study had some advantages in DIF

detection over the other two MH methods, some easy-to-use, non-model-based methods are

still worth exploring. For example, the MH methods used in the paper were all standard

MH methods, not capable of detecting non-uniform DIF. At this point, a non-uniform MH

might be tried in the same sense that the traditional uniform MH method was extended

by Mazor et al. (1994) for non-uniform DIF detection. In addition, the number of attribute

mastery patterns increase exponentially with an increase in the number of attributes, and the

numbers of examinees for some patterns could be sparse. This was the case in the real data

example. Matching on the basis of attribute mastery pattern, therefore, will be not effective

in such a case, and the Type I errors likely could be inflated. Since the Q-matrix and the

attribute mastery pattern for a given examinee jointly determine whether the examinee has

mastered all required attributes for an item, examinees can be simply classified into masters

or non-masters at the item level. Matching at the item level would be reduced to two groups

for each item, and the problem of large numbers of groups and sparseness for some patterns

could be reduced. In this way, however, the matching criterion will be less informative with

only two matching groups. The alternative is using the profile of item-required attributes as
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matching criterion, thus, the number of matching groups can also be reduced without losing

too much information.
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Appendix A

WinBUGS Code for Modified Higher-order DINA Model

# NE: the number of examinees

# NS: the number of skills

# NI: the number of items

# gmem: group membership

# a : attribute discrimination parameter

# beta: attribute difficulty parameter

# gamma: group difference in attribute difficulty

# dt: group difference in the mean of general ability

# theta: examinee’s general ability parameter

# g: guessing parameter

# s: slip parameter

# alpha: mastery status for each attribute

# q: Q-matrix entry

model

{

# Higher-level for DAF Detection

for (j in 1:NE){

for (k in 1:NS){

logit(pi[j,k])<- a* (theta[j]+dt*(gmem[j]-1))-beta[k]-gamma[k]*(gmem[j]-1)

alpha[j,k]~dbern(pi[j,k])}

theta[j]~dnorm(0,1)

a.theta1[j]<-theta[j]-mean(beta[])/a }

dt~dnorm(0,1)

a.dt<-dt-mean(gamma[])/a

a~dnorm(0,1)I(0,)

for(k in 1:NS){

beta[k]~dnorm(0,1)

a.beta[k]<-beta[k]-mean(beta[])
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gamma[k]~dnorm(0,1)

a.gamma[k]<- gamma[k]-mean(gamma[]) }

# Lower-level for DIF Detection

for (j in 1:NE) {

for ( i in 1:NI) {

for (k in 1:NS) {

x[i,j,k]<-pow(alpha[j,k],q[i,k])

}

eta[i,j]<-x[i,j,1]*x[i,j,2]*x[i,j,3]*x[i,j,4]*x[i,j,5]

p[i,j]<-pow(1-s[gmem[j],i],eta[i,j])*pow(g[gmem[j],i],1-eta[i,j])

r[j,i]~dbern(p[i,j])

} }

for(i in 1:NI){

g[1,i]~dbeta(Ug,Sg)

g[2,i]~dbeta(Ug,Sg)

s[1,i]~dbeta(Us,Ss)

s[2,i]~dbeta(Us,Ss)

difg[i]<-g[2,i]-g[1,i]

difs[i]<-s[2,i]-s[1,i] }

Ug~dunif(.1,.9)

Sg~dunif(.5,10)

Us~dunif(.1,.9)

Ss~dunif(.5,10) }

list(NE=2000, NI=40, NS=5, q=structure(.Data=c( 1,0,0,0,0,

0,0,0,1,0, ... 0,1,0,0,0, 0,1,0,0,0 ),.Dim=c(40,5)), gmem=c(

1,1,1,1,1,1,1,1,1,1, ... 2,2,2,2,2,2,2,2,2,2), r = structure(.Data

= c(

1,1,1,0,1,1,0,1,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0,1,0,1,1,1,0,1,0,1,1,1,0,0,1,0,

...

1,1,0,1,1,1,1,1,0,1,1,1,0,1,0,0,1,0,1,1,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,1

),.Dim = c(2000,40)))
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Convergence figures for two selected conditions
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Figure B.1: The trace plots for γadj for the condition with complex structure, 500 examinees
per group, a=6, unmatched ability distribution, DAF and non-uniform DIF
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Figure B.2: The plots for Gelman and Rubin Statistic for γadj for the condition with complex
structure, 500 examinees per group, a=6, unmatched ability distribution, DAF and non-
uniform DIF
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Figure B.3: The trace plots for ∆g for the condition with complex structure, 500 examinees
per group, a=6, unmatched ability distribution, DAF and non-uniform DIF
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Figure B.4: The plots for Gelman and Rubin Statistic for ∆g for the condition with complex
structure, 500 examinees per group, a=6, unmatched ability distribution, DAF and non-
uniform DIF
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Figure B.5: The trace plots for ∆s for the condition with complex structure, 500 examinees
per group, a=6, unmatched ability distribution, DAF and non-uniform DIF
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Figure B.6: The plots for Gelman and Rubin Statistic for ∆s for the condition with complex
structure, 500 examinees per group, a=6, unmatched ability distribution, DAF and non-
uniform DIF
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Figure B.7: The trace plots for γadj for the condition with simplex structure, 1000 examinees
per group, a=1, matched ability distribution, DAF and uniform DIF
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Figure B.8: The plots for Gelman and Rubin Statistic for γadj for the condition with simplex
structure, 1000 examinees per group, a=1, matched ability distribution, DAF and uniform
DIF
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Figure B.9: The trace plots for ∆g for the condition with simplex structure, 1000 examinees
per group, a=1, matched ability distribution, DAF and uniform DIF
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Figure B.10: The plots for Gelman and Rubin Statistic for ∆g for the condition with simplex
structure, 1000 examinees per group, a=1, matched ability distribution, DAF and uniform
DIF
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Figure B.11: The trace plots for ∆s for the condition with simplex structure, 1000 examinees
per group, a=1, matched ability distribution, DAF and uniform DIF
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Figure B.12: The plots for Gelman and Rubin Statistic for ∆s for the condition with simplex
structure, 1000 examinees per group, a=1, matched ability distribution, DAF and uniform
DIF

difs[1] chains 1:3

iteration

501 2500 5000 7500

    0.0

    0.5

    1.0

 
 

difs[6] chains 1:3

iteration

501 2500 5000 7500

    0.0

    0.5

    1.0

 
 

difs[11] chains 1:3

iteration

501 2500 5000 7500

    0.0

    0.5

    1.0

 
 

difs[16] chains 1:3

iteration

501 2500 5000 7500

    0.0

    0.5

    1.0

 
 

difs[21] chains 1:3

iteration

501 2500 5000 7500

    0.0

    0.5

    1.0

 


