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Abstract

The thesis is composed of two chapters. The first chapter examines whether commodity price

forecasting model performance can be improved by the inclusion of price forecasts for other

commodities within the model specification. Using Bayesian Model Averaging methodology,

we estimate 1330 different models to forecast the prices of hog, cattle, corn, and soybean

and find strong support for the inclusion of one or more other commodity price forecasts in

the best forecasting models.

Also, sometimes the most important forecasting component is simply whether the price

will move up or down. Such binary forecasts are commonly referred to as qualitative forecasts.

The second chapter investigates whether qualitative forecasting of commodity prices can

be improved by the inclusion within the model specification of price forecasts for other

commodities. We estimate 1330 different models to forecast the price movements of hog,

cattle, corn, and soybean and find strong support for the inclusion of one or more other

commodity price forecasts in the best forecasting models as well. The results for both

quantitative and qualitative forecasting suggest more work is called for to determine how

best to use other commodity price forecasts to improve forecasting performance.
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Chapter 1

Composite Quantitative Forecasting

of Futures Prices: Using One

Commodity to Help Forecast Another

1.1 Introduction

Commodity price forecasting has a long history in both the agricultural economics literature

and in the real-world application of farm and agribusiness management. People managing

businesses that involve agricultural commodities need price forecasts in order to optimally

plan their actions, including the use or non-use of hedging in order to manage their output

or input price risk. A selective hedging strategy incorporating information attained from

the forecasts of future price movements offers increased expected utility and diminished

risk, compared to strictly cash marketing. Thus, the ability to generate quality forecasts of

commodity prices is important.

The question this research seeks to answer is if commodity price forecasting models can

be improved by the addition of forecasts of other, related commodity prices. While structural

price forecasting models have commonly included variables that relate to other commodity
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markets (such as cattle slaughter data being included in a hog price forecasting model),

the inclusion of the price forecast itself is new and untested as far as we know. Such a

method is equivalent to a hybrid structural-reduced form model as the included commodity

price forecasts are essentially a composite of information deemed useful to forecasting that

commodity.

We test the ability of included commodity price forecasts to improve the forecasts of

other commodities using data on the four most commonly forecast commodity prices: hog,

cattle, corn, and soybean. For each of these four commodities, we forecast future prices

both with and without other price forecasts included in the model to examine the relative

forecast performance. We do all this within a Bayesian model uncertainty framework that

is well-suited to the estimation and comparison of multiple models.

This paper proceeds with a literature review section, followed by an explanation of the

methodology employed. Next we describe the data and present the results. The final section

presents some conclusions.

1.2 Background and Literature Review

Price volatility is a fundamental feature of agricultural markets and one of the main sources

of risk in commodity markets. Futures markets play a crucial role in the pricing and distri-

bution of commodities. For farmers, processors, food manufacturers, and other participants

in commodity markets to properly manage their risks and attempt to maximize profits,

commodity price forecasts are often useful. Thus, these agents are continually looking for

improved forecasts, as witnessed by the long history of research on this topic. In the 1970s,

the increased volatility of agricultural commodity prices gained attention from scholars to

create forecasting approaches in order to serve as accurate information sources to decision

makers. During the past several decades, numerous forecasting methods have been devel-

oped and evaluated for agricultural commodities, including time series models such as Au-
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toregressive Integrated Moving Average (ARIMA) models, structural econometric models,

and qualitative approaches like expert judgment.

Leuthold et al. (1970) examined the economic and mathematical characteristics of the

time series data of U.S. daily hog prices by using ARIMA and structural econometric models,

and then compared the developed models as to their forecasting ability based on the Theil

Coefficient. They found that structural econometric models did slightly better than the

ARIMA models over the evaluation period.

Additional investigation revealed that each set of forecasts contains relevant and distinct

information. One model would show an overall superiority while the combined forecasts of

these models would possibly outperform all the individual forecasts. In addition, the optimal

combined forecasts would have an error variance not greater than the smallest error variance

of the individual forecasts. Brandt and Bessler (1981) confirmed the usefulness of composite

forecasting by examining the empirical accuracy of several composite forecasting techniques

for quarterly U.S. hog prices based on the individual structural, ARIMA, and expert opinion

methods and provided empirical evidence on the usefulness of composite forecasting, using

mean squared error (MSE) as the criterion for forecasting performance. Based on their

findings, individual forecasts produce large errors and they are not likely to provide the

most accurate information for decision making; incorporating the prior performance of the

individual forecasts, either through the minimum variance or a weighting procedure, results

in lower MSE than those from simple averaging of price forecasts and it is suggested that

forecast users combine the forecasts from alternative forecasting techniques to reduce the

risk even if the users have no prior information of the forecasting models.

Brandt and Bessler (1983) later used seven methods, including exponential smoothing,

ARIMA, a structural econometric model, expert judgement, and a composite forecasting

approach, to explore forecasting performance improvement of U.S. hog prices and evaluated

their forecasting performances based on MSE and mean absolute percentage error (MAPE)

criteria. They found that combining forecasts from individual methods into a composite
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reduced the forecast error below that of any individual approach. These results are generally

consistent with previous findings from other scholars (Bates and Granger, 1969; Falconer

and Sivesind, 1977). Further, they found that the use of price forecasts in developing a

market strategy can improve the average price received for the product. In addition, Brandt

(1985) developed alternative forecasting approaches generating commodity price forecasts

and noted how decision makers could reduce price variability by combining price forecasts

with hedging, using an empirical example of the live hog market. These results suggest that

decision makers should consider composite forecasting when planning marketing strategies.

Cromarty and Myers (1975) noted that parsimony is desirable in forecasting model se-

lection, providing better forecasts and policy prescriptions, and good forecasting models

are designed to deal explicitly with decisions of major price consequences by incorporating

major policy changes, currency alignment, shifts in world demand, weather and other new

information as it becomes available. This makes the Bayesian framework ideal. Brandt and

Bessler (1983) also agreed with the idea of obtaining a parsimonious model that predicts

out-of-sample data well, arguing that profligate models perform poorly at out-of-sample

forecasting.

Dorfman (1998) later created a new Bayesian method to form composite qualitative fore-

casts and showed that forming composite forecasts from a set of forecasts in the Bayesian

framework improved performance in an application to the hog prices. Dorfman and Sanders

(2006) also introduced a systematic Bayesian approach to handle model specification uncer-

tainty in hedging models, which can be applied to data on the hedging of corn and soybeans

and on cross-hedging of corn oil using soybean oil futures.

In this paper, we are interested in investigating whether the forecasts of one commodity

can help improve the forecasts of a second commodity. Hog, cattle, corn, and soybean are

chosen in this paper because they are the four most common commodities that have been

looked at the agricultural economics literature on forecasting. Essentially, this is a new form

of composite forecasting where model specification uncertainty is taken to include the possible
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inclusion of the forecasts from models of other, related commodities. We demonstrate this

by constructing price forecasts for each commodity (hog, cattle, corn, and soybean), with a

set of models some of which include price forecasts of other commodities.

1.3 Methodology

The Basics

In this paper, we use the Bayesian approach to deal with model specification uncertainty for

each commodity price forecasting model. For each commodity price to be forecast, we start

with a set of possible forecasting models, estimate them all, and see which have the most

posterior support from the data. This is done in two parts: the estimation of each model

and the computation of each model’s support.

Given a model j, for one commodity price, assume a linear regression model:

y = Xjβj + εj, j = 1, . . . ,M, (1.1)

where y is the vector of observations on the dependent variable assumed identical in all

models, Xj is the matrix of the independent variables for the jth model considered, εj is the

vector of random errors for the jth model, and j denotes the model in the set of M models

considered. The dependent variable here is assumed to be identical in all models, and

therefore the differences between the models are restricted to the matrix X of independent

variables.

The prior distributions on the regression parameters βj can be specified as

p(βj) ∼ N(b0j, σ
2
jV0j), j = 1, . . . ,M, (1.2)

where N represents the multivariate normal distribution, b0j is the prior mean of the re-

gression parameters for the jth model, and σ2
jV0j is the prior covariance matrix. The prior
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distribution on σ2
j is specified as an inverse-gamma, which is equivalent to a gamma distri-

bution on σ−2
j ,

p(σ−2
j ) ∼ G(s−2

0j , d0j), j = 1, . . . ,M, (1.3)

where G stands for the gamma distribution, s−2
0j is the prior mean for the inverse error

variance, and d0j is the prior degrees of freedom. A higher value of d0j indicates a more

informative prior (Koop, 2003).

The likelihood function for each model can be specified as

Lj(y|βj, σ2
j , Xj) = (2πσ2

j )−n/2exp{−0.5(y −Xjβj)
′
σ−2
j (y −Xjβj)}, j = 1, . . . ,M, (1.4)

which is assumed to follow a standard form based on identically and normally distributed

random error terms εj.

Given these priors and the likelihood function above, the joint posterior distribution of

βj and σ2
j can be derived by Bayes’ Theorem that the posterior distribution is proportional

to the prior distribution times the likelihood function. The joint posterior can be written as

p(βj, σ
2
j |y,Xj) ∼ NG(bpj, Vpj, s

2
pj, dpj), j = 1, . . . ,M, (1.5)

where

Vpj = (V −1
0j +X

′

jXj)
−1, (1.6)

bpj = Vpj(V
−1
0j b0j + (X

′

jXj)β̂j), (1.7)

dpj = d0j + nj, (1.8)

and

s2pj = d−1
pj [d0js

2
0j + (nj − kj)s2j + (β̂j − b0j)

′
(V0j + (X

′

jXj)
−1)−1(β̂j − b0j)], (1.9)

where NG represents the joint normal-gamma distribution, β̂j and s2j are the standard OLS

quantities and nj and kj are the rows and columns of Xj, respectively. Equations (6) to
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(9) together define the parameters in the distribution. s2pjVpj is the posterior mean of the

variance, bpj is the posterior mean of the coefficients, which are the weighted averages of

the means of the prior distribution and the parameters that are derived from the maximum

likelihood estimator based on the data, and dpj is the posterior degrees of freedom.

Model Specification Uncertainty

Now we describe the process for handling model specification uncertainty. First, a discrete

prior weight is assigned to each model

p(Mj) = µj,
M∑
j=1

µj = 1. (1.10)

Here we choose to use uninformative priors across the model specification, so all models are

treated equally. In this case, µj = 1/M,∀j. Then, using the above results for the posterior

distributions shown in (5), we derive the marginal likelihood functions by integrating out

the parameter uncertainty to leave

p(y|Mj) = cj[|Vpj|/|V0j|]1/2(dpjs2pj)−dpj/2, (1.11)

where

cj =
Γ(dpj/2)(d0js

2
0j)

d0j/2

Γ(d0j/2)πn/2
, (1.12)

and Γ(·) is the Gamma function. The marginal likelihood tells how well the model fits on

average, where the averaging is over all possible parameter values. As shown in equation

(11), the smaller the posterior mean of the variance is, the larger the marginal likelihood

will be, indicating that the better the model fits, the larger the marginal likelihood will be.

Combining (11) and (12) by Bayes’ Theorem, the posterior probability of each model can be
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derived as follows:

p(Mj|y) ∝ µj[|Vpj|/|V0j|]1/2(dpjs2pj)−dpj/2 = µjp(y|Mj), j = 1, . . . ,M. (1.13)

Normalizing the values in (13) by dividing each value by the sum of the unnormalized poste-

rior probabilities across all M models will make sure that these posterior model probabilities

sum to unity. Denote these normalized posterior probabilities by

ωj =
µjp(y|Mj)

M∑
j=1

µjp(y|Mj)
, j = 1, . . . ,M. (1.14)

These posterior probabilities ωj are the key to evaluating both general model specification

uncertainty and the advantage of including forecasts of other commodity prices in the fore-

casting model. Models which receive higher posterior probabilities are better supported by

the data, indicating that those models are preferred choices and can be expected to yield

better forecasting performance. We further obtain the posterior support for model traits

by summing the posterior probabilities of each variable across models, thereby determining

ideal model specification. The higher the summed posterior probability of one variable, the

more support that variable has for being included in the model specification.

1.4 Data

Data on the four commodity prices are collected from the Chicago Mercantile Exchange

(CME) Group, using monthly futures prices for lean hog futures ($/lb), live cattle futures

($/lb), corn futures ($/bushel), and soybean futures ($/bushel).

Possible independent variables, including autoregressive (AR) processes and exogenous

variables, are selected based on analyses of previous studies in the literature. For the hog

price forecasting models, the AR terms to be considered range from AR(3) to AR(12) and the

exogenous variables include monthly disposable personal income (logged), monthly commer-
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cial cattle slaughter (thousand heads), monthly broiler-type poultry eggs hatched (million

eggs), monthly number of sows farrowing (thousand heads), and monthly pork cold storage

(million pounds). For the cattle price forecasting models, the independent variables consid-

ered are the same as the hog price forecasting model except pork storage is not included.

In the corn price forecasting models, the AR terms to be considered range from AR(3) to

AR(6) and the exogenous variables to be included are monthly corn export (thousand units),

monthly corn inventory (million bushels), monthly lagged acres planted to corn (thousand

acres), and monthly fuel ethanol production (million gallons). For the soybean price forecast-

ing models, the independent variables considered are the same as in the corn model except

the ethanol variable is not included. All the data of the exogenous variables for the four

commodity price forecasting models come from the National Agricultural Statistics Service

(NASS). Additionally, the monthly lagged acres planted to corn/soybean is a weighted aver-

age of lagged acres of corn/soybean based on the Palmer Drought Severity Index (PDSI) for

each state. The data on the PDSI are provided by the National Oceanic and Atmospheric

Administration (NOAA).

All data are monthly extending from January 1981 to December 2013. We use the first

twenty-six years (January 1981-December 2006) for in-sample estimation, and then evaluate

out-of-sample forecasting performance over the period from January 2010 to December 2012,

36 observations. Due to the high volatility of these four commodity prices over the period

from 2007 to 2009, the out-of-sample estimation of that period has not been considered

here. Additionally, in order to check the consistency of the forecasting performance of the

models, we further examine the forecasting performance over the period from January 2013

to December 2013, 12 observations.

Table 1.1 shows the set of variables considered in the model specification and the total

number of forecasting models estimated for each of the four commodity prices. In the hog

price forecasting model, the hog price (PH) to be forecast is the monthly lean hog futures

price ($/lb) as given by CME group. Among the exogenous variables considered for the
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hog price forecasting model, DSPI denotes the natural logarithm of monthly disposable

personal income (billion dollars); CTSL denotes the monthly commercial cattle slaughter

(thousand heads); HATCH denotes the monthly broiler-type poultry eggs hatched (million

eggs); SF denotes the monthly number of sows farrowing (thousand heads); PKST denotes

the monthly pork cold storage (million pounds). In the cattle price forecasting model, the

cattle price (PCA) to be forecast is the monthly live cattle futures price ($/lb) as given

by CME group. The independent variables considered are basically the same as in the hog

model except the PKST variable. In the corn price forecasting model, the corn price (PC) to

be forecast is the monthly corn futures price ($/bushel) as given by CME group. Among the

exogenous variables considered for the corn price forecasting model, EXPORTc denotes the

monthly corn export (thousand units); INVENTORYc denotes the monthly corn inventory

(million bushels); ACRESc denotes the monthly lagged acreages planted for corn (thousand

acres); ETHANOL denotes the monthly fuel ethanol production (million gallons). In the

soybean price forecasting model, the soybean price (PS) to be forecast is the monthly soybean

futures price ($/bushel) as given by CME group. The independent variables considered are

the same as in the corn model except the ETHANOL variable. The data of the exogenous

variables for the four commodity price forecasting models are provided by NASS. In addition,

ACRESc/ACRESs is a weighted average lagged acres of corn/soybean based on the Palmer

Drought Severity Index (PDSI) given by NOAA for each of the 48 states.

1.5 Empirical Results

Beginning with the hog price forecasting models, Table 1.2 presents the posterior probabilities

for the model specification. The probabilities shown in Table 1.2 are the probability that

each of the variables listed belongs in the true model. These probabilities show that there

is clear and overwhelming support for the inclusion of AR(3) (0.992), disposable personal

income (1.000), egg hatching (0.977), sows farrowing (1.000), and pork storage (0.999) in
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the hog price forecasting model. Also, cattle forecasts have a 0.878 posterior probability of

inclusion. Other variables have little to no posterior support for inclusion in the hog price

forecasting model.

In terms of forecasting performance, Table 1.3 presents the out-of-sample mean squared

error (MSE) over the two periods of time for hog price for the five best and five worst

performing forecasting models. Note that the five best and five worst performing forecasting

models are decided based on MSE over the 2010-2012 period. Table 1.4 displays the MSEs of

the five most probable and five least probable models; these are the models with the highest

and lowest posterior model probabilities. The five most probable models are those that one

would be most likely to choose ex ante before seeing out-of-sample forecasting performance.

As shown in Tables 1.3 and 1.4, the five most probable and five best performing models all

have disposable personal income, sows farrowing and pork storage as the exogenous variables

and include either one or more commodity forecasts. In Table 1.4, for the 2010-2012 period,

two of the five most probable models have excellent forecasting performance, as measured

by MSE, that is close to the best hog price forecasting performance models in Table 1.3, and

they all have smaller MSEs (better forecasting performance) than the mean and median level

of the total 420 hog price forecasting models; for the 2013 period, the models with the best

forecasting performance over the 2010-2012 period no longer have top performance and the

most along with fourth most probable model actually beats all of the five best performance

models on MSE. In addition, the composite forecasts computed based on the 420 hog models

over the 2010-2012 period perform better than four of the five most probable models as well

as the mean and median level, indicating that our Bayesian methodology works for the hog

price forecasting model.

Moving to the cattle price forecasting models, Table 1.5 presents the posterior probabil-

ities in favor of variable inclusion in the cattle forecasting model. These results show that

disposable personal income (0.998), cattle slaughter (0.965), sows farrowing (0.990), and hog

price forecasts (0.998) have enormous support for inclusion in the cattle price forecasting
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model. Other variables have little to no posterior support for inclusion in the cattle price

forecasting model.

Regarding forecasting performance, Tables 1.6 and 1.7 hold the MSEs of the best/worst

performing models and the most/least probable models, respectively. Table 1.7 shows that

none of the most probable cattle price forecasting models perform close to the best forecasting

performance models, based on their MSEs over the 2010-2012 period. Also, none of these

models outperform the mean and median level of the total 350 cattle price forecasting models

and even the composite forecasts. During the 2013 period, the models that have the best

forecasting performance over the 2010-2012 period are no longer the best performing models.

Beyond that, we find that the MSE of the composite forecasts computed from the 350 cattle

models, unfortunately, happens to be larger than the most probable model for both out-of

sample forecast periods (2010-2012 period: 28.455 > 27.415; 2013 period: 18.085 > 14.315),

indicating that the composite forecasts in the cattle price forecasting case actually perform

worse than the most probable model.

Next for the corn price forecasting models, Table 1.8 presents the posterior probabilities

in favor of variable inclusion in the corn price forecasting model. AR(3) has a 0.999 posterior

probability of inclusion, ethanol production has a 0.864 probability. No other variables have

posterior support that reaches 0.20, so the model specification is also quite clear.

Table 1.9 shows the MSEs of the five best and five worst performing corn price forecasting

models. Table 1.10 displays the MSEs of the five most and five least probable corn price

forecasting models. Based on the MSEs over the 2010-2012 period, though four of the five

most probable models have better forecasting performance than the mean and median level

of the total 308 corn price forecasting models, they are still noticeably worse than the best

corn price forecasting performance models in Table 1.9. As in the hog and cattle price

forecasting cases, the models with best corn price forecasting performance over the 2010-

2012 period no longer have top performance over the 2013 period while four of the worst five

performing models over the 2010-2012 period still have worst forecasting performance over
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the 2013 period. Moreover, all the five most probable models actually outperform all the

best performing models on MSE over the 2013 period. Additionally, the composite forecasts

computed based on the total 308 corn models outperform both the mean and median level

for both out-of-sample periods, and more importantly, the composite forecasts beat the

two most probable models for the 2013 out-of-sample period, indicating that our Bayesian

methodology also has promise for the corn price forecasting model.

Finally, the soybean price forecasting model specification results are in Table 1.11. The

posterior probabilities show strong support for including AR(3) (0.999) and soybean export

(0.970) in the soybean price forecasting model. Also, hog forecasts have a 0.607 posterior

probability of inclusion. Table 1.12 presents the MSEs for the five best and five worst

performing forecasting models, while Table 1.13 displays the MSEs for the five most and five

least probable models. For the 2010-2012 period, based on the MSE criterion, while two of

the five most probable soybean price forecasting models have better forecasting performance

than the mean and median level of the total 252 soybean models, none is as good as the best

performing models in Table 1.12. For the 2013 period, the models with best soybean price

forecasting performance over the 2010-2012 period no longer have top performance over the

2013 period while the fifth most probable model has the tenth best forecasting performance.

Similarly, for the 2013 out-of-sample period, the composite forecasts computed based on the

total 252 soybean models outperform both the mean and median level, and more importantly,

the composite forecasts also beat three of the most probable models including the most

probable one. This suggests that our Bayesian methodology also works for the soybean price

forecasting model.

Overall, of those twenty top probable models for the four commodities, nine have above

average forecasting performance. Also we find that within the lists of the five best forecasting

models for each of the four commodity prices, models that include commodity price forecasts

are heavily represented. Of those twenty best performing models, seventeen include one or

more commodity price forecasts. This suggests that it is worth pursuing how commodity
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price forecasts can be improved by the inclusion of other commodity price forecasts in the

forecasting models.

Furthermore, in terms of out-of-sample forecasts over the 2013 period, the best performing

models over the 2010-2012 period still perform relatively well, though falling short of the

best performing models. The worst performing models over the 2010-2012 period generally

still stay at the bottom over the 2013 period.

1.6 Conclusions

The Bayesian Model Averaging methodology applied here for model specification to the

forecasting of four important commodity prices provides clear signals for variable inclusion

in the forecasting models, although the results of the Bayesian Model Averaging are some-

what mixed with regard to signaling which models are likely to have the best out-of-sample

forecasting performance. Based on our findings, in general, the models with the highest

model probabilities based on the in-sample data deliver around average out-of-sample fore-

casting performance. For price forecasting of hog, corn, and soybean, the composite forecasts

computed under the Bayesian framework outperform the most probable model among the

entire set of models estimated but that is not the case for cattle price forecasting. Also,

the fact that seventeen of the twenty best performing forecasting model, as measured by

out-of-sample MSE, contain price forecasts for one or more different commodities suggests

that the idea of improving commodity price forecasting by including the composite forecasts

of other commodities in the model is a good one. Still, additional work is needed to evaluate

multiple models based on the out-of-sample forecasting performance so that users of such

forecasts can have some scientific basis for choosing a model specification (including possibly

using a composite forecast). We believe the results here show that we are on the right track,

but have not yet arrived at out desired destination.
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Table 1.1: Variables Used to Predict Commodity Prices
Dependent Variable Lags Exogenous Variables
PH AR(3) ∼ AR(12) DSPI; CTSL; HATCH; SF ;PKST
(cents per pound)
(420 models)
PCA AR(3) ∼ AR(12) DSPI; CTSL; HATCH; SF
(cents per pound)
(350 models)
PC AR(3) ∼ AR(6) EXPORTc; INVENTORYc; ACRESc; ETHANOL
(cents per bushel)
(308 models)
PS AR(3) ∼ AR(6) EXPORTs; INVENTORYs; ACRESs

(10 cents per bushel)
(252 models)

Table 1.2: Hog Price Forecasting Model Specification (420 Models)
Model Traits Post Probability
Include AR(3) 0.992
Include DSPI 1.000
Include CTSL 0.024
Include HATCH 0.978
Include SF 1.000
Include PKST 0.999
Include Cattle Forecasts 0.878
Include Corn Forecasts 0.070
Include Soybean Forecasts 0.054
No Forecasts <0.001
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Table 1.3: Top 5 and Bottom 5 Hog Price Forecasting Models by MSE
Top 5 Models by 2010-2012 MSE 2010-2012 2013 Post

MSE MSE Probability
1) AR(6)+DSPIt+CTSLt−1,t−2+SFt−1 39.792 25.527 <0.001
+PKSTt−1+Cattle Forecastst
+Soybean Forecastst
2) AR(6)+DSPIt+CTSLt−1,t−2+SFt−1 39.823 27.066 <0.001
+PKSTt−1+Soybean Forecastst
3) AR(4)+DSPIt+CTSLt−1,t−2+SFt−1 39.835 27.940 <0.001
+PKSTt−1+Soybean Forecastst
4) AR(4)+DSPIt+CTSLt−1,t−2+SFt−1 39.854 27.290 <0.001
+PKSTt−1+Cattle Forecastst
+Soybean Forecastst
5) AR(7)+DSPIt+CTSLt−1,t−2+SFt−1 39.876 26.744 <0.001
+PKSTt−1+Cattle Forecastst
+Soybean Forecastst
Bottom 5 Models by 2010-2012 MSE
1) AR(10)+DSPIt+HATCHt−1,t−2 62.277 45.697 <0.001
+SFt−1+PKSTt−1+Cattle Forecastst
+Corn Forecastst
2) AR(11)+DSPIt+HATCHt−1,t−2 61.902 44.800 <0.001
+SFt−1+PKSTt−1+Cattle Forecastst
+Corn Forecastst
3) AR(10)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 61.540 44.039 <0.001
+PKSTt−1+Corn Forecastst
4) AR(9)+DSPIt+HATCHt−1,t−2 61.517 46.756 <0.001
+SFt−1+PKSTt−1+Cattle Forecastst
+Corn Forecastst
5) AR(10)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 61.479 45.140 <0.001
+PKSTt−1+Corn Forecastst
+Soybean Forecastst
Mean MSE 47.277 30.099
Median MSE 44.912 28.178
Composite Forecasts MSE 44.213 25.618
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Table 1.4: Top 5 and Bottom 5 Hog Price Forecasting Models by Posterior Probability
5 Most Probable Models Post 2010-2012 2013

Probability MSE MSE
1) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1 0.856 44.217 24.814
+PKSTt−1+Cattle Forecastst
2) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1 0.060 56.500 39.099
+PKSTt−1+Corn Forecastst
3) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1 0.049 49.757 36.469
+PKSTt−1+Soybean Forecastst
4) AR(3)+DSPIt+CTSLt−1,t−2+SFt−1 0.011 46.420 24.908
+PKSTt−1+Cattle Forecastst
5) AR(3)+DSPIt+CTSLt−1,t−2+SFt−1 0.007 42.576 28.985
+PKSTt−1+Corn Forecastst
5 Least Probable Models
1) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2 <0.001 46.236 25.965
+SFt−1+PKSTt−1+Corn Forecastst
+Soybean Forecastst
2) AR(12)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 <0.001 53.112 37.736
+SFt−1+PKSTt−1+Corn Forecastst
+Soybean Forecastst
3) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2 <0.001 42.535 21.400
+SFt−1+PKSTt−1+Cattle Forecastst
+Soybean Forecastst
4) AR(11)+CTSLt−1,t−2+HATCHt−1,t−2 <0.001 46.343 28.700
+SFt−1+PKSTt−1+Corn Forecastst
+Soybean Forecastst
5) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2 <0.001 46.769 24.538
+SFt−1+PKSTt−1+Cattle Forecastst
+Corn Forecastst
Mean MSE 47.277 30.099
Median MSE 44.912 28.178
Composite Forecasts MSE 44.213 25.618
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Table 1.5: Cattle Price Forecasting Model Specification (350 Models)
Model Traits Post Probability
Include AR(3) 0.321
Include AR(6) 0.451
Include DSPI 0.998
Include CTSL 0.965
Include HATCH 0.047
Include SF 0.990
Include Hog Forecasts 0.998
Include Corn Forecasts 0.002
Include Soybean Forecasts 0.001
No Forecasts <0.001

Table 1.6: Top 5 and Bottom 5 Cattle Price Forecasting Models by MSE
Top 5 Models by 2010-2012 MSE 2010-2012 2013 Post

MSE MSE Probability
1) AR(5)+DSPIt+CTSLt−1+HATCHt−1 19.907 12.447 <0.001
+Hog Forecastst+Soybean Forecastst
2) AR(6)+DSPIt+CTSLt−1+HATCHt−1 19.962 11.385 <0.001
+Soybean Forecastst
3) AR(3)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 19.982 14.544 <0.001
+Hog Forecastst+Soybean Forecastst
4) AR(6)+DSPIt+CTSLt−1+HATCHt−1 19.983 11.415 <0.001
+Hog Forecastst+Soybean Forecastst
5) AR(5)+DSPIt+CTSLt−1+HATCHt−1 19.995 12.255 <0.001
+Soybean Forecastst
Bottom 5 Models by 2010-2012 MSE
1) AR(3)+DSPIt+HATCHt−1+SFt−1,t−2 36.488 38.724 <0.001
2) AR(3)+CTSLt−1+HATCHt−1+SFt−1,t−2 35.468 28.446 <0.001
+Hog Forecastst+Corn Forecastst
3) AR(3)+DSPIt+HATCHt−1+SFt−1,t−2 35.254 37.029 <0.001
+Hog Forecastst
4) AR(4)+DSPIt+HATCHt−1SFt−1,t−2 34.247 31.406 <0.001
+Hog Forecastst
5) AR(3)+CTSLt−1+HATCHt−1+SFt−1,t−2 33.766 23.440 <0.001
+Corn Forecastst+Soybean Forecastst
Mean 24.872 13.376
Median 24.732 11.760
Composite Forecasts 28.455 18.085
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Table 1.7: Top 5 and Bottom 5 Cattle Price Forecasting Models by Posterior Probability
5 Most Probable Models Post 2010-2012 2013

Probability MSE MSE
1) AR(6)+DSPIt+CTSLt−1+SFt−1,t−2 0.424 27.415 14.315
+Hog Forecastst
2) AR(3)+DSPIt+CTSLt−1+SFt−1,t−2 0.305 32.309 27.646
+Hog Forecastst
3) AR(5)+DSPIt+CTSLt−1+SFt−1,t−2 0.161 27.702 16.912
+Hog Forecastst
4) AR(4)+DSPIt+CTSLt−1+SFt−1,t−2 0.058 30.360 21.634
+Hog Forecastst
5) AR(6)+DSPIt+HATCHt−1+SFt−1,t−2 0.025 28.226 16.625
+Hog Forecastst
5 Least Probable Models
1) AR(12)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 21.768 9.890
+Corn Forecastst+Soybean Forecastst
2) AR(12)+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 28.815 9.057
+Corn Forecastst+Soybean Forecastst
3) AR(11)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 21.508 9.937
+Corn Forecastst+Soybean Forecastst
4) AR(12)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 21.205 11.170
+Hog Forecastst+Soybean Forecastst
5) AR(11)+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 28.465 9.385
+Corn Forecastst+Soybean Forecastst
Mean MSE 24.872 13.376
Median MSE 24.732 11.760
Composite Forecasts MSE 28.455 18.085

Table 1.8: Corn Price Forecasting Model Specification (308 Models)
Model Traits Post Probability
Include EXPORTc

t <0.001
Include INVENTORYc

t 0.125
Include ETHANOLt 0.864
Include ACRESc

t 0.011
Include AR(3) 0.999
Include Hog Forecasts 0.009
Include Cattle Forecasts 0.098
Include Soybean Forecasts <0.001
No Forecasts 0.894
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Table 1.9: Top 5 and Bottom 5 Corn Price Forecasting Models by MSE
Top 5 Models by 2010-2012 MSE 2010-2012 2013 Post

MSE MSE Probability
1) AR(3)+ETHANOLt+INVENTORYc

t 4145.528 2646.448 <0.001
+Hog Forecastst+Cattle Forecastst
2) AR(3)+ETHANOLt+INVENTORYc

t 4148.722 2646.386 <0.001
+Hog Forecastst+Soybean Forecastst
3) AR(4)+ETHANOLt+INVENTORYc

t 4148.981 2665.617 <0.001
+Hog Forecastst+Cattle Forecastst
4) AR(3)+ETHANOLt+INVENTORYc

t 4150.145 2637.776 <0.001
+Hog Forecastst
5) AR(4)+ETHANOLt+INVENTORYc

t 4151.836 2664.314 <0.001
+Hog Forecastst+Soybean Forecastst
Bottom 5 Models by 2010-2012 MSE
1) AR(5)+ACRESc

t−1+Hog Forecastst 5818.718 2827.018 <0.001
2) AR(5)+ACRESc

t+Hog Forecastst 5816.814 2823.805 <0.001
3) AR(4)+ACRESc

t−1+Hog Forecastst 5770.938 2988.628 <0.001
4) AR(4)+ACRESc

t+Hog Forecastst 5768.744 2985.898 <0.001
5) AR(3)+ACRESc

t+Hog Forecastst 5764.925 2962.363 <0.001
Mean 4864.161 2604.911
Median 4850.833 2595.945
Composite Forecasts 4623.618 2573.111
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Table 1.10: Top 5 and Bottom 5 Corn Price Forecasting Models by Posterior Probability
5 Most Probable Models Post 2010-2012 2013

Probability MSE MSE
1) AR(3)+ETHANOLt 0.396 4572.955 2596.415
2) AR(3)+ETHANOLt−1 0.373 4602.819 2583.324
3) AR(3)+INVENTORYc

t 0.089 4894.200 2461.814
4) AR(3)+ETHANOLt+Cattle Forecastst 0.044 4530.603 2619.124
5) AR(3)+ETHANOLt−1+Cattle Forecastst 0.041 4574.050 2599.164
5 Least Probable Models
1) AR(6)+ACRESc

t+INVENTORYc
t <0.001 4695.957 2440.241

+Cattle Forecastst+Soybean Forecastst
2) AR(6)+ACRESc

t+INVENTORYc
t <0.001 5167.274 2458.448

+Hog Forecastst+Soybean Forecastst
3) AR(6)+ACRESc

t+ETHANOLt <0.001 4549.190 2632.452
+Cattle Forecastst+Soybean Forecastst
4)AR(6)+ACRESc

t+INVENTORYc
t <0.001 4913.645 2425.709

+Soybean Forecastst
5) AR(6)+ACRESc

t+INVENTORYc
t <0.001 4826.405 2396.334

+Hog Forecastst+Cattle Forecastst
Mean MSE 4864.161 2604.911
Median MSE 4850.833 2595.945
Composite Forecasts MSE 4623.618 2573.111

Table 1.11: Soybean Price Forecasting Model Specification (252 Models)
Model Traits Post Probability
Include AR(3) 0.999
Include EXPORTs 0.970
Include INVENTORYs 0.028
Include ACRESs 0.002
Include Hog Forecasts 0.607
Include Cattle Forecasts 0.367
Include Corn Forecasts 0.029
No Forecasts <0.001
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Table 1.12: Top 5 and Bottom 5 Soybean Price Forecasting Models by MSE
Top 5 Models by 2010-2012 MSE 2010-2012 2013 Post

MSE MSE Probability
1) AR(5)+EXPORTs

t+INVENTORYs
t−1 116.602 71.624 <0.001

+Corn Forecastst
2) AR(6)+EXPORTs

t+INVENTORYs
t−1 117.063 74.198 <0.001

+Corn Forecastst
3) AR(5)+EXPORTs

t+ACRESs
t 117.283 73.125 <0.001

+Corn Forecastst
4) AR(5)+EXPORTs

t+ACRESs
t 117.322 72.953 <0.001

+Cattle Forecastst+Corn Forecastst
5) AR(5)+EXPORTs

t+INVENTORYs
t−1 117.338 72.512 <0.001

+Cattle Forecastst+Corn Forecastst
Bottom 5 Models by 2010-2012 MSE
1) AR(3)+ACRESs

t−1+Hog Forecastst 166.272 131.824 <0.001
2) AR(5)+ACRESs

t−1+Hog Forecastst 163.178 124.714 <0.001
3) AR(4)+ACRESs

t−1+Hog Forecastst 163.159 123.488 <0.001
4) AR(6)+ACRESs

t−1+Hog Forecastst 162.600 122.835 <0.001
5) AR(3)+ACRESs

t+Hog Forecastst 162.170 125.890 <0.001
Mean MSE 134.360 91.467
Median MSE 133.350 88.695
Composite Forecasts MSE 134.800 88.241

Table 1.13: Top 5 and Bottom 5 Soybean Price Forecasting Models by Posterior Probability
5 Most Probable Models Post 2010-2012 2013

Probability MSE MSE
1) AR(3)+EXPORTs

t+Hog Forecastst 0.295 135.410 88.698
2) AR(4)+EXPORTs

t−1+Hog Forecastst 0.292 140.137 91.897
3) AR(3)+EXPORTs

t+Cattle Forecastst 0.204 131.148 86.851
4) AR(3)+EXPORTs

t−1+Cattle Forecastst 0.149 133.718 87.734
5) AR(3)+EXPORTs

t+Corn Forecastst 0.015 119.043 70.727
5 Least Probable Models
1) AR(6)+INVENTORYs

t+ACRESs
t−1 <0.001 137.605 97.721

2) AR(6)+EXPORTs
t+ACRESs

t <0.001 125.760 86.537
3) AR(6)+INVENTORYs

t+ACRESs
t−1 <0.001 122.478 82.189

+Cattle Forecastst+Corn Forecastst
4) AR(6)+INVENTORYs

t+ACRESs
t−1 <0.001 134.750 95.451

+Hog Forecastst+Corn Forecastst
5) AR(5)+INVENTORYs

t+ACRESs
t−1 <0.001 139.836 99.767

Mean 134.360 91.467
Median 133.350 88.695
Composite Forecasts 134.800 88.241
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Chapter 2

Composite Qualitative Forecasting of

Futures Prices: Using One

Commodity to Help Forecast Another

2.1 Introduction

Commodity price forecasting has a long history in both the agricultural economics literature

and in the real-world application of farm and agribusiness management. People managing

businesses that involve agricultural commodities need price forecasts in order to optimally

plan their actions, including the use or non-use of hedging in order to manage their output

or input price risk. A selective hedging strategy incorporating information attained from

the forecasts of future price movements offers increased expected utility and diminished

risk, compared to strictly cash marketing. Thus, the ability to generate quality forecasts of

commodity prices is important.

The question this research seeks to answer is if commodity price forecasting models can

be improved by the addition of forecasts of other, related commodity prices. While structural

price forecasting models have commonly included variables that relate to other commodity
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markets (such as cattle slaughter data being included in a hog price forecasting model),

the inclusion of the price forecast itself is new and untested as far as we know. Such a

method is equivalent to a hybrid structural-reduced form model as the included commodity

price forecasts are essentially a composite of information deemed useful to forecasting that

commodity.

Because in many situations, the key part of a price forecast is whether the price will

move up or down in the future, we focus here on qualitative forecasts of the direction of price

changes. We test the ability of included commodity price forecasts to improve the qualitative

forecasts of other commodities using data on the four most commonly forecast commodity

prices: hog, cattle, corn, and soybean. For each of these four commodities, we forecast future

prices both with and without other price forecasts included in the model to examine the

relative forecast performance. We do all this within a Bayesian model uncertainty framework

that is well-suited to the estimation and comparison of multiple models.

The paper proceeds with a literature review section, followed by an explanation of the

methodology employed. Next we describe the data and present the results. The final section

presents some conclusions.

2.2 Background and Literature Review

Price volatility is a fundamental feature of agricultural markets and one of the main sources

of risk in commodity markets. Futures markets play a crucial role in the pricing and distri-

bution of commodities. For farmers, processors, food manufacturers, and other participants

in commodity markets to properly manage their risks and attempt to maximize profits,

commodity price forecasts are often useful. Thus, these agents are continually looking for

improved forecasts, as witnessed by the long history of research on this topic. In the 1970s,

the increased volatility of agricultural commodity prices focused the attention of scholars

on creating forecasting approaches in order to serve as accurate information sources for de-
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cision makers. During the past several decades, numerous forecasting methods have been

developed and evaluated for agricultural commodities, including time series models such as

Autoregressive Integrated Moving Average (ARIMA) models, structural econometric mod-

els, and qualitative approaches like expert judgment. Leuthold et al. (1970) examined the

economic and mathematical characteristics of the time series data of U.S. daily hog prices by

using ARIMA and structural econometric models, and then compared the developed models

as to their forecasting ability based on the Theil Coefficient. They found that structural

econometric models did slightly better than the ARIMA models over the evaluation period.

Additional investigation revealed that each set of forecasts contains relevant and distinct

information. One model would show an overall superiority while the combined forecasts of

these models would possibly outperform all the individual forecasts. In addition, the optimal

combined forecasts would have an error variance not greater than the smallest error variance

of the individual forecasts. Brandt and Bessler (1981) confirmed the usefulness of composite

forecasting by examining the empirical accuracy of several composite forecasting techniques

for quarterly U.S. hog prices based on the individual structural, ARIMA, and expert opinion

methods and provided empirical evidence on the usefulness of composite forecasting, using

mean squared error (MSE) as the criterion for forecasting performance. Based on their

findings, individual forecasts produce large errors and they are not likely to provide the

most accurate information for decision making; incorporating the prior performance of the

individual forecasts, either through the minimum variance or a weighting procedure, results

in lower MSE than those from simple averaging of price forecasts and it is suggested that

forecast users combine the forecasts from alternative forecasting techniques to reduce the

risk even if the users have no prior information of the forecasting models.

Brandt and Bessler (1983) later used seven methods, including exponential smoothing,

ARIMA, a structural econometric model, expert judgement, and a composite forecasting

approach, to explore forecasting performance improvement of U.S. hog prices and evaluated

their forecasting performances based on MSE and mean absolute percentage error (MAPE)
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criteria. They found that combining forecasts from individual methods into a composite

reduced the forecast error below that of any individual approach. These results are generally

consistent with previous findings from other scholars (Bates and Granger, 1969; Ealconer

and Sivesind, 1977). Further, they found that the use of price forecasts in developing a

market strategy can improve the average price received for the product. In addition, Brandt

(1985) developed alternative forecasting approaches generating commodity price forecasts

and noted how decision makers could reduce price variability by combining price forecasts

with hedging, using an empirical example of the live hog market. These results suggest

that decision makers should consider composite forecasting when planning marketing strate-

gies. Feather and Kaylen (1989) suggested a procedure for the formation of a conditional

”composite” qualitative forecast, the theoretical development of which was followed by an

empirical application using quarterly hog prices. The results showed the composite allows

the possibility of avoiding reliance on an inferior forecasting method.

Cromarty and Myers (1975) noted that parsimony is desirable in forecasting model se-

lection, providing better forecasts and policy prescriptions, and good forecasting models

are designed to deal explicitly with decisions of major price consequences by incorporating

major policy changes, currency alignment, shifts in world demand, weather and other new

information as it becomes available. This makes the Bayesian framework ideal. Brandt and

Bessler (1983) also agreed with the idea of obtaining a parsimonious model that predicts

out-of-sample data well, arguing that profligate models perform poorly at out-of-sample

forecasting.

Dorfman (1998) later created a new Bayesian method to form composite qualitative fore-

casts and showed that forming composite forecasts from a set of forecasts in the Bayesian

framework improved performance in an application to the hog prices. Dorfman and Sanders

(2006) also introduced a systematic Bayesian approach to handle model specification uncer-

tainty in hedging models, which can be applied to data on the hedging of corn and soybeans

and on cross-hedging of corn oil using soybean oil futures.
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In this paper, we are interested in investigating whether the forecasts of one commod-

ity can help improve the forecasts of a second commodity. Hog, cattle, corn, and soybean

are chosen in this paper because they are the four most common commodities that have

been looked at the agricultural economics literature on forecasting. Essentially, we propose

a new form of composite forecasting where model specification uncertainty is taken to in-

clude the possible inclusion of the forecasts from models of other, related commodities. We

demonstrate this by constructing qualitative price forecasts for each commodity (hog, cat-

tle, corn, and soybean), with a set of models some of which include price forecasts of other

commodities.

2.3 Methodology

The Basics

In this paper, we used the Bayesian approach to deal with model specification uncertainty.

To forecast hog price movements, we start with a set of possible forecasting models, estimate

them all, and see which have the most posterior support from the data. This is done in two

parts: the estimation of each model and the computation of each model’s support.

For a given model j, assume a linear regression model:

y = Xjβj + εj, j = 1, . . . ,M, (2.1)

where y is the vector of observations on hog prices assumed identical in all models, Xj is the

matrix of the independent variables for the jth model considered, εj is the vector of random

errors for the jth model, and j denotes the model in the set of M models considered. The

differences between the models are restricted here to the matrix X of independent variables.
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The prior distribution on the regression parameters βj can be specified as

p(βj) ∼ N(b0j, σ
2
jV0j), j = 1, . . . ,M, (2.2)

where N represents the multivariate normal distribution, b0j is the prior mean of the regres-

sion parameters for the jth model and σ2
jV0j is the prior covariance matrix. The prior on σ2

j

is specified as an inverse-gamma distribution, which is equivalent to a gamma distribution

on σ−2
j ,

p(σ−2
j ) ∼ G(s−2

0j , d0j), j = 1, . . . ,M, (2.3)

where G stands for the gamma distribution, s−2
0j is the prior mean for the inverse error

variance, and d0j is the prior degrees of freedom. A higher value of d0j indicates a more

informative prior (Koop, 2003).

The likelihood function for each model can be specified as

Lj(y|βj, σ2
j , Xj) = (2πσ2)−n/2exp{−0.5(y −Xjβj)

′
σ−2
j (y −Xjβj)}, j = 1, . . . ,M, (2.4)

where the εj are assumed to follow a standard form of identically and independently dis-

tributed normal random variables.

Given these priors and the above likelihood function, the joint posterior distribution of βj

and σ2
j is derived according to Bayes Theorem that the posterior distribution is proportional

to the prior distribution times the likelihood function. The joint posterior distribution is

p(βj, σ
2
j |y,Xj) ∼ NG(bpj, Vpj, s

2
pj, dpj), j = 1, . . . ,M, (2.5)

where

Vpj = (V −1
0j +X

′

jXj)
−1, (2.6)

bpj = Vpj(V
−1
0j b0j + (X

′

jXj)β̂j), (2.7)
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dpj = d0j + nj, (2.8)

and

s2pj = d−1
pj [d0js

2
0j + (nj − kj)s2j + (β̂j − b0j)

′
(V0j + (X

′

jXj)
−1)−1(β̂j − b0j)], (2.9)

where NG represents the joint normal-gamma distribution, β̂j and s2j are the standard OLS

quantities and nj and kj are the rows and columns of Xj , respectively. Equations (6) to (9)

together help define the parameters in the distribution. s2pjVpj is the posterior mean of the

variance, bpj is the posterior mean of the coefficients, which are the weighted averages of the

parameters of the prior distribution and the parameters that are derived from the maximum

likelihood estimator based on the data, and dpj is the posterior degrees of freedom.

For each model, after generating point forecasts using the posterior means of the param-

eters found above and the actual values of the independent variables, we convert the point

forecasts into directional forecasts using the simple rule:

fjt =


1 if ŷjt - yj,t−1 > 0

0 if ŷjt - yj,t−1 ≤ 0
, j = 1, . . . ,M, (2.10)

where fjt denotes a dichotomous variable denoting a price forecast of either up (1) or down

(0) and yjt denotes the commodity price at t time period for jth model, respectively. The

set of fjt are our qualitative forecasts.

Model Specification Uncertainty

Now we describe the process for handling model specification uncertainty. First, a discrete

prior weight is assigned to each model

p(Mj) = µj,
M∑
j=1

µj = 1. (2.11)
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Here we choose to use uninformative priors across the model specification, so all models are

treated equally. In this case, µj = 1/M , ∀j. Then, using the above results for the posterior

distributions shown in (5), we derive the marginal likelihood functions by integrating out

the parameter uncertainty to leave

p(y|Mj) = cj[|Vpj|/|V0j|]1/2(dpjs2pj)−dpj/2, (2.12)

where

cj =
Γ(dpj/2)(d0js

2
0j)

d0j/2

Γ(d0j/2)πn/2
, (2.13)

and Γ is the Gamma function. The marginal likelihood measures how well the model fits

on average, where the averaging is over parameter values with posterior support. As shown

in equation (12), the smaller the posterior mean of the variance is, the larger the marginal

likelihood will be, which indicates that the better the model fits, the larger the marginal

likelihood will be. Combining (11) and (12) by Bayes Theorem, the posterior probability of

each model is given by

p(Mj|y) ∝ µj[|Vpj|/|V0j|]1/2(dpjs2pj)−dpj/2 = µjp(y|Mj), j = 1, . . . ,M. (2.14)

Dividing each value in (14) by the sum of the unnormalized posterior probabilities across all

M models produces normalized posterior model probabilities that sum to one. Denote these

normalized posterior probabilities by

ωj =
µjp(y|Mj)

M∑
j=1

µjp(y|Mj)
, j = 1, . . . ,M. (2.15)

These posterior probabilities ωj are the key to evaluating both general model specification

uncertainty and the advantage of including forecasts of other commodity prices in the fore-

casting model. Models which receive higher posterior probabilities are better supported by
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the data, indicating that those models are preferred choices and can be expected to yield

better forecasting performance. We further obtain the posterior support for model traits

by summing the posterior probabilities of each variable across models, thereby determining

ideal model specification. The higher the summed posterior probability of one variable, the

more support that variable has for being included in the model specification.

We also form a composite forecast using the posterior model probabilities to construct a

weighted average of all the individual model forecasts:

f̂t =


1 if

∑
j
ωjfjt ≥ 0.5

0 otherwise

, j = 1, . . . ,M, (2.16)

where f̂t represents the composite forecast at t time period. Because this is qualitative

forecasting, if the sum of the posterior model probabilities on the set of models that predicted

1 is greater than 0.50, the composite forecast is a 1.

2.4 Data

Data on the four commodity prices are collected from the Chicago Mercantile Exchange

(CME) Group, using monthly futures prices for lean hog futures ($/lb), live cattle futures

($/lb), corn futures ($/bushel), and soybean futures ($/bushel). Possible independent vari-

ables, including autoregressive (AR) processes and exogenous variables, are selected based

on analyses of previous studies in the literature.

For the hog price forecasting models, the AR terms to be considered range from AR(3) to

AR(12) and the exogenous variables include monthly disposable personal income (logged),

monthly commercial cattle slaughter (thousand heads), monthly broiler-type poultry eggs

hatched (million eggs), monthly number of sows farrowing (thousand heads), and monthly

pork cold storage (million pounds). For the cattle price forecasting models, the independent

variables considered are the same as the hog price forecasting model except pork storage is
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not included. In the corn price forecasting models, the AR terms to be considered range

from AR(3) to AR(6) and the exogenous variables to be included are monthly corn export

(thousand units), monthly corn inventory (million bushels), monthly lagged acres planted to

corn (thousand acres), and monthly fuel ethanol production (million gallons). For the soy-

bean price forecasting models, the independent variables considered are the same as in the

corn model except the ethanol variable is not included. All the data of the exogenous vari-

ables for the four commodity price forecasting models come from the National Agricultural

Statistics Service (NASS). Additionally, the monthly lagged acres planted to corn/soybean

is a weighted average of lagged acres of corn/soybean based on the Palmer Drought Severity

Index (PDSI) for each state. The data on the PDSI are provided by the National Oceanic

and Atmospheric Administration (NOAA).

All data are monthly extending from January 1981 to December 2013. We use the first

twenty-six years (January 1981-December 2006) for in-sample estimation, and then evaluate

out-of-sample forecasting performance over the last 84 observations, which are from January

2007 to December 2013.

Table 2.1 shows the set of variables considered in the model specification and the total

number of forecasting models estimated for each of the four commodity prices. In the hog

price forecasting model, the hog price (PH) to be forecast is the monthly lean hog futures

price ($/lb) as given by CME group. Among the exogenous variables considered for the

hog price forecasting model, DSPI denotes the natural logarithm of monthly disposable

personal income (billion dollars); CTSL denotes the monthly commercial cattle slaughter

(thousand heads); HATCH denotes the monthly broiler-type poultry eggs hatched (million

eggs); SF denotes the monthly number of sows farrowing (thousand heads); PKST denotes

the monthly pork cold storage (million pounds). In the cattle price forecasting model, the

cattle price (PCA) to be forecast is the monthly live cattle futures price ($/lb) as given

by CME group. The independent variables considered are basically the same as in the hog

model except the PKST variable. In the corn price forecasting model, the corn price (PC) to
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be forecast is the monthly corn futures price ($/bushel) as given by CME group. Among the

exogenous variables considered for the corn price forecasting model, EXPORTc denotes the

monthly corn export (thousand units); INVENTORYc denotes the monthly corn inventory

(million bushels); ACRESc denotes the monthly lagged acreages planted for corn (thousand

acres); ETHANOL denotes the monthly fuel ethanol production (million gallons). In the

soybean price forecasting model, the soybean price (PS) to be forecast is the monthly soybean

futures price ($/bushel) as given by CME group. The independent variables considered are

the same as in the corn model except the ETHANOL variable. The data of the exogenous

variables for the four commodity price forecasting models are provided by NASS. In addition,

ACRESc/ACRESs is a weighted average lagged acres of corn/soybean based on the Palmer

Drought Severity Index (PDSI) given by NOAA for each of the 48 states.

2.5 Empirical Results

Beginning with the hog price forecasting models, Table 2.2 presents the posterior probabilities

for the model specification. The probabilities shown in Table 2.2 are the probability that

each of the variables listed belongs in the true model. These probabilities show that there

is clear and overwhelming support for the inclusion of AR(3) (0.992), disposable personal

income (1.000), egg hatching (0.977), sows farrowing (1.000), and pork storage (0.999) in

the hog price forecasting model. Also, cattle forecasts have a 0.878 posterior probability

of inclusion. Other variables have little to no posterior support for inclusion in the hog

price forecasting model. In terms of helping to uncover a model specification, the Bayesian

approach provides excellent guidance.

Table 2.3 presents the out-of-sample forecasting performance of the 84 qualitative forecasts

for the thirteen best and six worst forecasting models among the 420 specifications estimated.

Note that the best and worst performing forecasting models are decided based on percent of

correct predictions over the 2007-2013 period. The best performing model correctly forecast
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65 out of 84 out-of-sample price movements (77.38 percent). Interestingly, seven of thirteen

best performance models have longer autoregressive processes (with 11 or 12 lags) than the

posterior model probabilities suggested would be best. Also, note that all these best models

include cattle slaughter while the posterior probability suggests no inclusion.

Table 2.4 displays the percentage of correct out-of-sample forecasts of the five most proba-

ble and five least probable models; these are the models with the highest and lowest posterior

model probabilities. The five most probable models are those that one would be most likely

to choose ex ante before seeing out-of-sample forecasting performance. As shown in Tables

2.3 and 2.4, the five most probable and five best performing models include either one or

more commodity forecasts. Over the 2007-2013 period, the fifth most probable model has

better forecasting performance than the mean and median level of the set of all hog price

forecasting models. In terms of the composite qualitative forecasts, the weighted average of

all the 420 individual model forecasts over 2007-2013 period, correctly forecast 57 out of 84

out-of-sample price movements (67.86 percent), that is close to the mean and median level,

although not as well as the best performance.

Moving to the cattle price forecasting models, Table 2.5 presents the posterior probabil-

ities in favor of variable inclusion in the cattle forecasting model. These results show that

disposable personal income (0.998), cattle slaughter (0.965), sows farrowing (0.990), and hog

price forecasts (0.998) have enormous support for inclusion in the cattle price forecasting

model. Other variables have little to no posterior support for inclusion in the cattle price

forecasting model.

Tables 2.6 and 2.7 show the correct prediction percentage of the best/worst performing

models and the most/least probable models, respectively. It is found that the most probable

and best performing models all have disposable personal income as an exogenous variable and

favor shorter AR process. In Table 2.7, over the 2007-2013 period, the fifth most probable

models have better forecasting performance than the mean and median level of the total 350

cattle price forecasting models. We also find that the composite forecasts, computed from
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the total 350 cattle models over the 2007-2013 period, have 43 correct forecasts out of 84

out-of-sample price movements (51.19 percent); however, they perform worse than the mean

and median level as well as than the most probable model.

Next for the corn price forecasting models, Table 2.8 presents the posterior probabilities

in favor of variable inclusion in the corn price forecasting model. AR(3) has a 0.999 posterior

probability of inclusion, ethanol production has a 0.864 probability. No other variables have

posterior support that reaches 0.20, so the model specification is also quite clear.

The best performing and most probable models all include either hog or cattle price

forecasts, as shown in Tables 2.9 and 2.10. As measured by the percentage of correct forecasts

over the 2007-2013 period, the best performance models correctly forecast 60 out of 84 out-

of-sample price movements (71.43 percent). In Table 2.10, four of the five most probable

models beat the mean and median level. However, the composite forecasts computed based

on the total 308 corn models over the 2007-2013 period correctly forecast 50 out of 84 out-

of-sample price movements (59.52 percent), similar to the mean and median level but worse

than the most probable models.

Finally, the soybean price forecasting model specification results are presented in Table

2.11. The posterior probabilities show strong support for including AR(3) (0.9940) and

soybean export (0.9591) in the soybean price forecasting model.

Table 2.12 presents the correct prediction percentage for the eight best and seven worst

performing forecasting models, while Table 2.13 displays the correct prediction percentage

for the five most and five least probable models. Over the 2007-2013 period, the best

performance models has 63.10 percentage of correct predictions. Among the top five probable

models, four of them have above average forecasting performance and particularly the third

probable model has 60.71 percentage of correct predictions, fairly close to the best forecasting

performance. Although the composite forecasts computed based on the total 252 soybean

models beat the most probable model, unfortunately they perform worse than the mean

and median level. This suggests that our Bayesian Model Averaging methodology does not
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works for the soybean price qualitative forecasting model as well as other commodity price

qualitative forecasting models.

Overall, the most probable models for each commodity price display around average

forecasting performance among the entire set of models estimated. Yet, while the forecasting

performance of the most probable models is not what we might have hoped for, we find

that within the lists of the best forecasting models for each of the four commodity prices,

models that include commodity price forecasts are heavily represented. Of those thirty-two

best performing models, twenty-nine include one or more commodity price forecasts. This

suggests that it is worth pursuing how commodity price forecasts can be improved by the

inclusion of other commodity price forecasts in the forecasting models.

2.6 Conclusions

The Bayesian Model Averaging methodology applied here for model specification to the fore-

casting of four important commodity prices provides clear signals for variable inclusion in

the forecasting models, although the results of the Bayesian Model Averaging are somewhat

mixed with regard to signaling which models are likely to have the best out-of-sample fore-

casting performance. Based on our findings, in general, the models with the highest model

probabilities based on the in-sample data deliver around average out-of-sample forecasting

performance. For price forecasting of hog and soybean, the composite qualitative forecasts

computed under the Bayesian framework outperform the most probable model among the

entire set of models estimated but that is not the case for cattle and corn price forecasting.

Also, the fact that twenty-nine of the thirty-two best performing forecasting model, as mea-

sured by the percentage of correct out-of-sample forecasts, contain price forecasts for one or

more different commodities suggests that the idea of improving commodity price forecasting

by including the composite forecasts of other commodities in the model is a good one. Still,

additional work is needed to evaluate multiple models based on the out-of-sample forecast-
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ing performance so that users of such forecasts can have some scientific basis for choosing a

model specification (including possibly using a composite forecast). We believe the results

here show that we are on the right track, but have not yet arrived at our desired destination.

Table 2.1: Variables Used to Predict Commodity Prices
Dependent Variable Lags Exogenous Variables
PH AR(3) ∼ AR(12) DSPI; CTSL; HATCH; SF ;PKST
(cents per pound)
(420 models)
PCA AR(3) ∼ AR(12) DSPI; CTSL; HATCH; SF
(cents per pound)
(350 models)
PC AR(3) ∼ AR(6) EXPORTc; INVENTORYc; ACRESc; ETHANOL
(cents per bushel)
(308 models)
PS AR(3) ∼ AR(6) EXPORTs; INVENTORYs; ACRESs

(10 cents per bushel)
(252 models)

Table 2.2: Hog Price Forecasting Model Specification (420 Models)
Model Traits Post Probability
Include AR(3) 0.992
Include DSPI 1.000
Include CTSL 0.024
Include HATCH 0.978
Include SF 1.000
Include PKST 0.999
Include Cattle Forecasts 0.878
Include Corn Forecasts 0.070
Include Soybean Forecasts 0.054
No Forecasts <0.001
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Table 2.3: Top 13 and Bottom 6 Hog Price Forecasting Models by the Percentage of Correct
Out-of-Sample Forecasts
Top 13 Models % Forecasts Correct Post Probability
1) AR(3)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 0.774 <0.001
+SFt−1+Cattle Forecastst+Soybean Forecastst
2) AR(4)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 0.762 <0.001
+SFt−1+Cattle Forecastst+Soybean Forecastst
3) AR(11)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 0.750 <0.001
+PKSTt−1

3) AR(9)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 0.750 <0.001
+SFt−1+Cattle Forecastst+Soybean Forecastst
3) AR(7)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1 0.750 <0.001
+PKSTt−1+Cattle Forecastst+Soybean Forecastst
3) AR(4)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1 0.750 <0.001
+PKSTt−1+Cattle Forecastst+Soybean Forecastst
3) AR(12)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 0.750 <0.001
+SFt−1+Cattle Forecastst+Corn Forecastst
3) AR(11)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 0.750 <0.001
+SFt−1+Cattle Forecastst+Corn Forecastst
3) AR(11)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.750 <0.001
+Cattle Forecastst+Corn Forecastst
3) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1 0.750 <0.001
+PKSTt−1+Cattle Forecastst+Corn Forecastst
3) AR(9)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1 0.750 <0.001
+PKSTt−1+Soybean Forecastst
3) AR(12)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.750 <0.001
+Corn Forecastst
3) AR(11)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.750 <0.001
+Corn Forecastst
Bottom 6 Models % Forecasts Correct Post Probability
1) AR(4)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.512 <0.001
2) AR(6)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.524 <0.001
+Cattle Forecastst
3) AR(5)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.536 <0.001
3) AR(6)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.536 <0.001
3) AR(5)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.536 <0.001
+Cattle Forecastst
3) AR(7)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.536 <0.001
+Cattle Forecastst
Mean 0.683
Median 0.690
Composite Forecasts 0.679
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Table 2.4: Top 5 and Bottom 5 Hog Price Forecasting Models by Posterior Probability
5 Most Probable Models Post Probability % Forecasts Correct
1) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.856 0.679
+Cattle Forecastst
2) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.060 0.607
+Corn Forecastst
3) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.049 0.643
+Soybean Forecastst
4) AR(3)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.011 0.548
+Cattle Forecastst
5) AR(3)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.007 0.726
+Corn Forecastst
5 Least Probable Models Post Probability % Forecasts Correct
1) AR(12)+CTSLt−1+HATCHt−1,t−2+SFt−1 <0.001 0.726
+PKSTt−1+Corn Forecastst+Soybean Forecastst
2) AR(12)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 <0.001 0.690
+SFt−1+PKSTt−1+Corn Forecastst
+Soybean Forecastst
3) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1 <0.001 0.702
+PKSTt−1+Cattle Forecastst+Soybean Forecastst
4) AR(11)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1 <0.001 0.714
+PKSTt−1+Corn Forecastst+Soybean Forecastst
5) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1 <0.001 0.750
+PKSTt−1+Cattle Forecastst+Corn Forecastst
Mean 0.683
Median 0.690
Composite Forecasts 0.679

Table 2.5: Cattle Price Forecasting Model Specification (350 Models)
Model Traits Post Probability
Include AR(3) 0.321
Include AR(6) 0.451
Include DSPI 0.998
Include CTSL 0.965
Include HATCH 0.047
Include SF 0.990
Include Hog Forecasts 0.998
Include Corn Forecasts 0.002
Include Soybean Forecasts 0.001
No Forecasts <0.001
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Table 2.6: Top 7 and Bottom 3 Cattle Price Forecasting Models by the Percentage of Correct
Out-of-Sample Forecasts
Top 7 Models % Forecasts Correct Post Probability
1) AR(5)+DSPIt+CTSLt−1+HATCHt−1 0.655 <0.001
+Corn Forecastst
1) AR(5)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 0.655 <0.001
+Hog Forecastst+Soybean Forecastst
3) AR(5)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 0.643 <0.001
3) AR(4)+DSPIt+CTSLt−1+HATCHt−1 0.643 <0.001
3) AR(5)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 0.643 <0.001
+Soybean Forecastst
3) AR(5)+DSPIt+CTSLt−1+HATCHt−1 0.643 <0.001
+Hog Forecastst+Corn Forecastst
3) AR(5)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 0.643 <0.001
+Corn Forecastst+Soybean Forecastst
Bottom 3 Models % Forecasts Correct Post Probability
1) AR(4)+CTSLt−1+HATCHt−1+SFt−1,t−2 0.429 <0.001
+Hog Forecastst
2) AR(3)+CTSLt−1+HATCHt−1+SFt−1,t−2 0.440 <0.001
+Hog Forecastst+Corn Forecastst
2) AR(3)+CTSLt−1+HATCHt−1+SFt−1,t−2 0.440 <0.001
+Corn Forecastst
Mean 0.559
Median 0.560
Composite Forecasts 0.512
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Table 2.7: Top 5 and Bottom 5 Cattle Price Forecasting Models by Posterior Probability
5 Most Probable Models Post Probability % Forecasts Correct
1) AR(6)+DSPIt+CTSLt−1+SFt−1,t−2 0.424 0.536
+Hog Forecastst
2) AR(3)+DSPIt+CTSLt−1+SFt−1,t−2 0.305 0.512
+Hog Forecastst
3) AR(5)+DSPIt+CTSLt−1+SFt−1,t−2 0.161 0.524
+Hog Forecastst
4) AR(4)+DSPIt+CTSLt−1+SFt−1,t−2 0.058 0.488
+Hog Forecastst
5) AR(6)+DSPIt+HATCHt−1+SFt−1,t−2 0.025 0.595
+Hog Forecastst
5 Least Probable Models Post Probability % Forecasts Correct
1) AR(12)+DSPIt+CTSLt−1+HATCHt−1 <0.001 0.631
+SFt−1,t−2+Corn Forecastst+Soybean Forecastst
2) AR(12)+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 0.524
+Corn Forecastst+Soybean Forecastst
3) AR(11)+DSPIt+CTSLt−1+HATCHt−1 <0.001 0.631
+SFt−1,t−2+Corn Forecastst+Soybean Forecastst
4) AR(12)+DSPIt+CTSLt−1+HATCHt−1 <0.001 0.607
+SFt−1,t−2+Hog Forecastst+Soybean Forecastst
5) AR(11)+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 0.524
+Corn Forecastst+Soybean Forecastst
Mean 0.559
Median 0.560
Composite Forecasts 0.512

Table 2.8: Corn Price Forecasting Model Specification (308 Models)
Model Traits Post Probability
Include EXPORTc

t <0.001
Include INVENTORYc

t 0.125
Include ETHANOLt 0.864
Include ACRESc

t 0.011
Include AR(3) 0.999
Include Hog Forecasts 0.009
Include Cattle Forecasts 0.098
Include Soybean Forecasts <0.001
No Forecasts 0.894
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Table 2.9: Top 4 and Bottom 13 Corn Price Forecasting Models by the Percentage of Correct
Out-of-Sample Forecasts

Top 4 Models % Forecasts Correct Post Probability
1) AR(3)+INVENTORYc

t+ETHANOLt−1 0.714 <0.001
+Cattle Forecastst
1) AR(4)+INVENTORYc

t+ETHANOLt−1 0.714 <0.001
+Cattle Forecastst
1) AR(3)+INVENTORYc

t+ETHANOLt−1 0.714 <0.001
+Cattle Forecastst+Soybean Forecastst
1) AR(4)+INVENTORYc

t+ETHANOLt−1 0.714 <0.001
+Cattle Forecastst+Soybean Forecastst
Bottom 13 Models % Forecasts Correct Post Probability
1) AR(5)+ACRESc

t+Hog Forecastst 0.524 <0.001
1) AR(6)+ACRESc

t+Hog Forecastst 0.524 <0.001
1) AR(5)+ACRESc

t−1+Hog Forecastst 0.524 <0.001
1) AR(6)+ACRESc

t−1+Hog Forecastst 0.524 <0.001
1) AR(3)+EXPORTc

t+ETHANOLt−1 0.524 <0.001
+Cattle Forecastst
1) AR(3)+ACRESc

t+Hog Forecastst 0.524 <0.001
+Soybean Forecastst
1) AR(4)+ACRESc

t+Hog Forecastst 0.524 <0.001
+Soybean Forecastst
1) AR(5)+ACRESc

t+Hog Forecastst 0.524 <0.001
+Soybean Forecastst
1) AR(6)+ACRESc

t+Hog Forecastst 0.524 <0.001
+Soybean Forecastst
1) AR(3)+ACRESc

t−1+Hog Forecastst 0.524 <0.001
+Soybean Forecastst
1) AR(4)+ACRESc

t−1+Hog Forecastst 0.524 <0.001
+Soybean Forecastst
1) AR(5)+ACRESc

t−1+Hog Forecastst 0.524 <0.001
+Soybean Forecastst
1) AR(6)+ACRESc

t−1+Hog Forecastst 0.524 <0.001
+Soybean Forecastst
Mean 0.595
Median 0.595
Composite Forecasts 0.595
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Table 2.10: Top 5 and Bottom 5 Corn Price Forecasting Models by Posterior Probability
5 Most Probable Models Post Probability % Forecasts Correct
1) AR(3)+ETHANOLt 0.396 0.643
2) AR(3)+ETHANOLt−1 0.373 0.619
3) AR(3)+INVENTORYc

t 0.088 0.583
4) AR(3)+ETHANOLt+Cattle Forecastst 0.044 0.643
5) AR(3)+ETHANOLt−1+Cattle Forecastst 0.041 0.631
5 Least Probable Models Post Probability % Forecasts Correct
1) AR(6)+ACRESc

t+INVENTORYc
t <0.001 0.607

+Cattle Forecastst+Soybean Forecastst
2) AR(6)+ACRESc

t+INVENTORYc
t <0.001 0.583

+Hog Forecastst+Soybean Forecastst
3) AR(6)+ACRESc

t+ETHANOLc
t <0.001 0.619

+Cattle Forecastst+Soybean Forecastst
4) AR(6)+ACRESc

t+INVENTORYc
t <0.001 0.583

+Soybean Forecastst
5) AR(6)+ACRESc

t+INVENTORYc
t <0.001 0.595

+Hog Forecastst+Cattle Forecastst
Mean 0.595
Median 0.595
Composite Forecasts 0.595

Table 2.11: Soybean Price Forecasting Model Specification (252 Models)
Model Traits Post Probability
Include AR(3) 0.999
Include EXPORTs 0.970
Include INVENTORYs 0.028
Include ACRESs 0.002
Include Hog Forecasts 0.607
Include Cattle Forecasts 0.367
Include Corn Forecasts 0.029
No Forecasts <0.001
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Table 2.12: Top 8 and Bottom 7 Soybean Price Forecasting Models by the Percentage of
Correct Out-of-Sample Forecasts
Top 8 Models % Forecasts Correct Post Probability
1) AR(3)+EXPORTs

t+INVENTORYs
t−1 0.631 <0.001

+Corn Forecastst
1) AR(5)+EXPORTs

t+Cattle Forecastst 0.631 <0.001
+Corn Forecastst
1) AR(6)+EXPORTs

t+Cattle Forecastst 0.631 <0.001
+Corn Forecastst
1) AR(6)+EXPORTs

t−1+Cattle Forecastst 0.631 <0.001
+Corn Forecastst
1) AR(5)+EXPORTs

t+INVENTORYs
t−1 0.631 <0.001

+Cattle Forecastst+Corn Forecastst
1) AR(6)+EXPORTs

t+INVENTORYs
t−1 0.631 <0.001

+Cattle Forecastst+Corn Forecastst
1) AR(5)+EXPORTs

t+ACRESs
t+Cattle Forecastst 0.631 <0.001

+Corn Forecastst
1) AR(6)+EXPORTs

t+ACRESs
t+Cattle Forecastst 0.631 <0.001

+Corn Forecastst
Bottom 7 Models % Forecasts Correct Post Probability
1) AR(6)+ACRESs

t+Hog Forecastst 0.440 <0.001
2) AR(6)+ACRESs

t−1+Hog Forecastst 0.452 <0.001
3) AR(3)+ACRESs

t+Hog Forecastst 0.464 <0.001
3) AR(4)+ACRESs

t+Hog Forecastst 0.464 <0.001
3) AR(3)+ACRESs

t−1+Hog Forecastst 0.464 <0.001
3) AR(4)+ACRESs

t−1+Hog Forecastst 0.464 <0.001
3) AR(5)+ACRESs

t−1+Hog Forecastst 0.464 <0.001
Mean 0.552
Median 0.548
Composite Forecasts 0.536

44



Table 2.13: Top 5 and Bottom 5 Soybean Price Forecasting Models by Posterior Probability
5 Most Probable Models Post Probability % Forecasts Correct
1) AR(3)+EXPORTs

t+Hog Forecastst 0.295 0.524
2) AR(4)+EXPORTs

t−1+Hog Forecastst 0.292 0.548
3) AR(3)+EXPORTs

t+Cattle Forecastst 0.204 0.607
4) AR(3)+EXPORTs

t−1+Cattle Forecastst 0.149 0.548
5) AR(3)+EXPORTs

t+Corn Forecastst 0.015 0.571
5 Least Probable Models Post Probability % Forecasts Correct
1) AR(6)+ACRESs

t−1+INVENTORYs
t <0.001 0.524

2) AR(6)+ACRESs
t+EXPORTs

t <0.001 0.560
3) AR(6)+ACRESs

t−1+INVENTORYs
t <0.001 0.560

+Cattle Forecastst+Corn Forecastst
4) AR(6)+ACRESs

t−1+INVENTORYs
t <0.001 0.607

+Hog Forecastst+Corn Forecastst
5) AR(5)+ACRESs

t−1+INVENTORYs
t <0.001 0.536

Mean 0.552
Median 0.548
Composite Forecasts 0.536
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