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ABSTRACT 

Concerns with global and localized environmental change have increased interest in the 

course and outcomes of evolution as populations adapt to changing resource availability. Interest 

in populations often focuses on competitive outcomes under forcing or subsequent changes of 

resource availability. Changes of resource availability may be the supply of one resource in 

contrast to another—implicitly a change of supply ratio—or explicitly a change in the supply 

ratio of a pair of resources. Existing models of populations’ contention for resources generally 

focus on development and competition over time assuming constant population characteristics, 

known initial states, and predictable future environmental states. We describe a simpler model to 

analyze evolution of populations’ resource response characteristics under specific constraints and 

to predict expected competitive outcomes under a wide range of potential subsequent resource 

supplies. 

We have developed, tested and applied a model of expected competitive outcomes in 

contention for multiple resources. We have analyzed changes of populations’ requirements 

niches resulting from evolution in resource-limited ecological regimes. We have shown that 

evolution in one ecological regime not only shifts a population’s requirements niche toward 



greater fitness in that regime but can also shift the niche toward unexpected greater or lesser 

fitness in other regimes. 

A population is formulated by its intrinsic growth response as a function of population-

common and per-resource organismal growth response traits. The trait parameters are determined 

by curve fitting from demographic observations by a new Characterization Protocol. Competition 

is modeled in a Hutchinsonian space of resource supplies. Expected competitive outcomes are 

reported as per- and inter-population intrinsic growth rates throughout resource supply space. 

Results are displayed in qualitative and quantitative graphic forms and tabulated quantitative 

values of populations’ response parameters. 

We have applied our model to populations descended from a common ancestor in 

regimes of complementary restriction of two essential resources. Our model detects expected, 

unexpected and cryptic response trait changes and predicts intuitive and non-intuitive 

competitive relationships that can result from those changes in the event that any combination of 

ancestor, descendantsor any other characterized population should come into competition 

anywhere in the resource supply space. 
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Chapter 1, Background and Review 

The principal hypothesis of this present work is: 

A population’s ecological niche is reshaped by evolution in response to changes in its 

ecological environment but trait changes which are adaptive under immediate selection may be 

accompanied by others which can be either adaptive or maladaptive in other environments. 

The Hutchinsonian, ecological, requirements niche of a population is a complex of many 

individual response traits which can be synergistically or antagonistically coupled by underlying 

genetic covariance. When a change in one trait is selected in response to a change in the 

ecological environment, genetic covariance, which may be very difficult to detect in an 

ecological context, may result in other trait changes which are not under immediate selection. 

These cryptic trait changes may be significantly adaptive or maladaptive in other environments. 

If these cryptic changes are to be detected as actual events in a controlled, experimental approach 

or as typical events in a simulation approach there is need for a modeling approach which meets 

five objectives not presently well addressed in any one system: 

• formulation for prediction of populations’ response relationships and likely competitive 

outcomes across an entire n-dimensional Hutchinsonian space of resource availability or 

other effects—as in the post-Hutchinson concept of the requirements niche; 

• absence of formulation for development over time, to obviate speculation and reduce the 

complexity of the model; 
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• formulation of populations’ response functions in terms of inherent, organismal traits, 

rather than in terms of only observed, demographic variables; 

• formulation of individual populations’ responses from which competitive relationships 

may be determined by comparison, rather than inferred from observed, demographic 

relationships between populations; and 

• formulation in terms of traits sufficient to include the effects of underlying subtle, cryptic 

and non-intuitive genetic covariance. 

The concept of a population’s or species’ niche in the study of ecology can be traced 

from Grinnell (1917) ≈“necessary conditions for a species’ existence”, through Elton (1927) ≈“a 

species’ functional role within the food cycle”, and Gause (1936) ≈”competitive exclusion” to 

the definition of ecological niche by Hutchinson (1957) as ≈”the locus of a population within an 

n-dimensional hypervolume”. Pulliam (2000) proposed an insightful assessment of the transition 

of the niche concept from Grinnell and Elton to Hutchinson—from “…a place or 'recess' in the 

environment that has the potential to support a species.” to “the environmental requirements of a 

species”—which he summarized as “According to Hutchinson, species, not environments, have 

niches.” (Pulliam 2000, p. 351). See also the discussion of Elton versus Grinnell versus 

Hutchinson in Leibold (1995). 

Following these foundational steps are MacArthur (1958, 1972), Hutchinson (1959, 

1978), Williams (1964) and Levin (1970), all of which are operationally comparable to the 

Hutchinsonian requirements niche. More recent work by Tilman (1982, 1988), Chesson (1991, 

2000a, b), Leibold (1995), Weiher and Keddy (1999) is, when reduced, operationally centered on 

the requirements niche. 
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Tilman’s (1980) Graphical-Mechanistic Approach dynamic (i.e., time-development) 

model is, at its core, formulated on resource requirements and responses although it includes the 

complications of “consumption” and “supply” vectors etc.. It is the parent of other models which 

often apply certain simplifying assumptions or variations in terminology (e.g., “impact vectors”) 

cf. Chase and Leibold (2003). Pulliam’s (2000) NICHE spatial model and synthesis of “…niche 

width, habitat availability and dispersal … interspecific competition per se.” into the niche 

concept includes species resource requirements and responses to resource availabilities as 

essential elements. According to Pulliam’s own explanation, the NICHE model will usually work 

with some utility if only resource requirements and responses are in the formulation but will 

usually not work if resource requirements and responses are excluded no matter what else is 

included. These two models intersect in formulation and operation in spite of their apparent 

dichotomy of space (Pulliam) versus time (Tilman). Pulliam’s model cannot avoid some time-

dependent elements in its formulation even if they are not expressly acknowledged in a particular 

application and Tilman’s model has direct implications (if not express functions) for resource 

supply gradients and resulting population response distributions across space. 

We must also note that there has been disagreement about the relevance of the niche 

concept to community assembly and maintenance, favoring absence of response-per-supply 

mechanisms, neutral processes, as asserted by Hubbell (2001) and reviewed by Bell (2001). 

Hubbell’s “Unified Neutral Theory…” was challenged, or at least asserted to be overkill, almost 

as soon as it was published, as by Condit…and Hubbell (Condit et al. 2002) or by Chisholm and 

Burgman (2004) with a reply by Hubbell and Borda-de-Agua (2004) and has continued to be 

challenged as by Wiegand et al. (2007) and Chase (2007). If the Unified Neutral Theory is 

literally correct then our work and all the others cited, attempting one or anther form of 



 

 4 

mechanistic modeling, are moot but we do not believe this is the case. Clark (2010), working in a 

forest environment comparable to the one in which Hubbell realized the core of his neutral 

theory seems to have put the debate over neutral versus differential mechanisms to an end with 

direct confirmation of competitive mechanisms operating at a finer grain than Hubbell 

considered. 

We hold that neutral theory is a valuable checkpoint or counter-reference model for more 

complex theories of or incorporating the ecological niche concept. In his famous Concluding 

Remarks, Hutchinson (1957) said: 

“It is not necessary in any empirical science to keep an elaborate 
logicomathematical system always apparent, any more than it is necessary to keep 
a vacuum cleaner conspicuously in the middle of a room at all times. When a lot 
of irrelevant litter has accumulated the machine must be brought out, used, and 
then put away.” 

Hubbell’s Unified Neutral Theory can be viewed as an example of Hutchinson’s vacuum 

cleaner to be applied to the residue frequently left by mechanistic theories—residue not due to 

any failure of the theories themselves but accumulated from our over-simplified or over-

complicated applications of them. We would say further that our present formulation-hypothesis-

model-theory is another example of Hutchinsonian cleaning-up. Our model, with our five 

objectives given above, is intended to avoid the residue generated when spatial models such as 

Pulliam’s or time-development models such as Tilman’s are applied to questions of competitive 

relative response-capability-expectation, in instant conditions of resource supplies, with instant 

characteristics of response per resource, in light of evolutionary (or even variation-selective) 

changes in response characteristics, across a Hutchinsonian space. Our approach and model, in 

addition to direct application, may be taken as a way to improve the determination of population 

characteristics to be used in more complex models such as Pulliam’s or Tilman’s or in 

investigation of inter- versus intra-species effects as in Clark et al. (2007, 2010). 
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Our definition of the ecological requirements niche owes much to the definition of 

ecological niche by Holt et al. (2005) as “…that suite of environmental conditions within which 

populations of that species are expected to persist deterministically…”. Beyond this we 

emphasize what Chase and Leibold (2003) called the requirements niche, especially in the 

context of populations competing for shared limiting resources. We focus on competitive 

relationships and their expected outcomes of displacement, coexistence etc. at any point in 

resource supply space, at any time, without modeling development over time as with Tilman’s 

supply and consumption vectors (1980 et al.), cf. Chase and Leibold’s impact factors (as in, for 

example 2003) and without expressly modeling across geographic space cf. Pulliam (2000). 

Figure 1-1 through Figure 1-5 may help to explain what we are attempting to do here. 

There are four essential points in all of these figures: 

• Resource space is not physical space; it is mathematical. Location in resource space 

represents present conditions and movement in resource space represents changing 

conditions of a population which need not be moving in physical space. 

• Response to resource supply may be intrinsic or demographic growth rate, or standing 

population census, or standing population biomass, or some other measure which varies 

with the supplies of the resources concerned. 

• Resource supply may be concentration in a stationary medium like nitrogen in soil, or 

concentration in flowing medium as in our chemostats, or mass supply by time as in 

anthropogenic contribution, or some other measure which we wish to deal with. 

• This representation of resource space and populations may be measured and formulated 

in whatever units and by whatever mathematical function constitute a consistent set for 

the ecological function and purpose at hand. 
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Figure 1-1 shows our concept of a population in a Hutchinsonian resource space. Figure 

1-2 shows how we locate a population and its growth response in resource space. Figure 1-3 

illustrates “lines” in the resource space relevant to a single population’s response. Figure 1-4 

shows our concept of what happens when populations evolve under resource supply constraints. 

And Figure 1-5 shows two populations coming into competition in resource space. 

Supply vectors and their development over time are speculative at best. Consumption 

vectors are dependent on relative population size and combined population size as they develop 

over time. Modeling with these vectors, the requisite speculation and the requisite complex 

parameters, is still a fruitful endeavor for certain purposes but not for ours (cf. complexity 

problems in Miller et al. 2005),. This distinction between modeling competitive relationship, 

relative growth response in any regime across a resource space, on one hand, and modeling 

competitive development over time, relative growth outcome in a specified-predicted resource 

regime, on the other hand, should lead to two distinct classes of models for which there is clear 

distinction between the different objectives—with our model being an instance of the former 

case. Another distinction we make is between models which operate essentially on formulation 

from demographic, observed phenomena such as per-resource supply and realized growth, on 

one hand (cf. parameter problems in Miller et al. 2005), and formulation from inherent, 

organismal-population traits such as self-limited intrinsic growth capability and per-resource 

intrinsic growth response on the other hand—with our model being an instance of the latter case. 

The former case models may be “ecologically easier” but are difficult, if possible at all, to 

formulate realistically over a broad range of ecological regimes—an essential objective of our 

work. 
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There are, in the literature, virtually no distinctive models, strongly similar to ours, which 

comprehensively address the objective of predicting populations’ relative growth response 

throughout an arbitrary Hutchinsonian space. There have been several models, however, which 

address the objective of predicting relative growth outcome over time in specific resource or 

resource-and-predation regimes, virtually all of which are replicas or derivatives of Tilman’s 

Graphical-Mechanistic Approach (1980). This approach and many of its successors are reviewed 

by Miller, et al. (2005) and it is used by Chase and Leibold (2003) in the requirements niche 

context. Tilman’s approach was not entirely new, as he readily acknowledged, but was based 

primarily on the consumer-resource models of MacArthur (1972). MacArthur, in his turn, 

acknowledged work going back to Lotka and Volterra (ca. 1920s). Other models replicating or 

extending Tilman’s can be found in (Tilman 1982, Holt et al. 1994, Leibold 1995, 1996, Grover 

1997, Leibold 1998). We believe, however, that Tilman’s is a useful reference point for across-

resource-space model as others find it for time-extended models. 

The apparent unpopularity, in ecological research, of modeling populations’ responses 

across an entire Hutchinsonian space seems to be because these models are not continuous in 

time and prediction of outcomes through time seems to be an unspoken objective in spite of the 

shortcomings of time-development models. One frequent problem of time-development models, 

the essence of most of the problems noted in Miller, et al. (2005), is that they require a large 

number of parameters (i.e., per population, per resource response, per predation effect, per 

resource supply) all predicted-projected over time—and these multiple a priori predictions-

projections, “external to” a model, render its veracity, its statistical strength, and its ecological 

significance, highly suspect. 



 

 8 

A second frequent problem of present ecological models is that they seldom, if ever, 

formulate populations’ responses to influences in terms of inherent organismal traits but rely on 

responses as a function of demographic phenomena without regard to unintuitive, cryptic, 

complex intra-population processes—which means that results (predictions) are not reliably 

functions of what is actually occurring at any time. See Chase and Leibold (2003) for a non-

exclusive example of phenomenological response formulations as commonly used. In addition to 

these problems, it is operationally, algorithmically, difficult to apply a single core formulation to 

both across-space and along-time modeling—in spite of the apparent similarity of the two 

applications in superficial reading of Tilman (as in 1980, 1982) or even Grover (as in 1997). 

The idea of modeling populations’ responses and expected relationships across a 

Hutchinsonian space without regard to time can be justified by the simple observation that 

ecological regimes of resource availability may change in natura faster than populations’ 

relationships can stabilize, for example to exclusion or coexistence. Examples of this can be 

seen, implicitly at least, in (MacArthur 1972, Velicer and Lenski 1999, Ciros-Perez et al. 2001, 

Holt et al. 2005, Hall and Colegrave 2007). The ability of a resource space model to predict 

relative growth response in whatever the environmental regime may be, and as the regime may 

change, can offer more insight (one of the two purposes of modeling) than a time-development 

model can offer in either prediction (the other purpose of modeling) or insight because of the 

latter’s dependence on an assumed specific future ecological regime. 

Most models of population responses in either an “ecological”, “evolutionary” or 

“genetic” context (Elton 1927, Tilman 1982, Paquin and Adams 1983b, Adams et al. 1985, 

Berendse 1994, Leibold 1996, Grover 1997, Velicer 1999, Chase and Leibold 2003, etc.) are 

formulated in terms of observed, demographic phenomena, resource supplies or other effects, 
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driving directly to population growth or size, and resulting growth or size relationships, without 

expressly considering organismal-population inherent response traits which generally have a 

complex, usually nonlinear, often self-limited effect on population growth (Hsu et al. 1977, 

Tilman 1981, Grover 1997). Even a function as supposedly simple as one population’s growth 

response to a sole limiting resource is better described by the Monod formulation (1949), a 

hyperbolic-asymptotic function of two trait parameters on the resource supply concentration, 

than any linear or simpler nonlinear function. A model which is to somehow realistically-

mechanistically represent multiple populations’ responses to multiple resources, or even a single 

population’s realistic response, must formulate populations in terms of organismal traits such as 

Monod’s maximum capable growth response and per-resource half-saturation constant. This 

means that the complete model system must include a means, a well-defined but simple 

Characterization Protocol, for determining the per-population trait parameters from observed, 

demographic resource supply values, or other quantifiable influences, and population intrinsic 

responses. One of the earlier works emphasizing distinction between ecological phenomena and 

organismal traits was by Hsu et al. (1981), directly presaging our work here, which in twenty-

nine years has been cited forty-seven times in “mathematical” or “modeling” publications but 

only nine times in “ecological” publications. 

Beyond representation of obvious ecological-phenomenological processes a model of 

populations’ responses to resources or other effects must allow for the influence on trait 

parameters, must permit characterized trait parameters to reflect, underlying genetic covariance 

of the kind implied but not quantified in work such as Adams and Paquin (Paquin and Adams 

1983b, Adams 2004), Goddard and Bradford (2003a), Lenski et al. (Lenski 1989, Cooper et al. 

2003, Elena and Lenski 2003) or Rutgers et al. (1990). This can only be achieved by a 
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formulation, such as Monod’s, which includes sufficient trait parameters and formulation 

behavior, i.e., the asymptotic form, to permit these effects to materialize—and with a 

Characterization Protocol which accurately quantifies trait parameters. 

Finally, a model system for predicting the desired influence-response characteristics of 

individual populations and relative responses between populations must include a display, or 

plotting, component which represents the responses in readily interpreted qualitative (for insight) 

and quantitative (for prediction) form. It should present something on the order of a Hutchinson-

like two-dimensional Cartesian resource supply space with a third response dimension, as if a 

three-dimensional extension of Tilman’s Graphical-Mechanistic Approach (1980). 
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Chapter 2, Modeling the Ecological Niche and Population Competition with Two Essential 

Resources 

Summary 

We have developed a model of competitive population growth on two contended, 

limiting resources in terms of requirements niche in a Hutchinsonian n-dimensional space. Each 

population is characterized in the form of Monod’s growth response model by its organismal 

traits of per-resource growth response, the half-saturation constants, and its maximum capable 

growth response trait. Realized growth response of each population and relative growth response 

of the two populations is modeled across a two-dimensional, Cartesian space of two resource 

supply concentrations as ecological-environmental phenomena and is displayed, qualitatively 

and quantitatively, as a phenomenological third dimension. 

Introduction 

Prior and recent models of population competition for one or two (dual-limiting) 

resources commonly suffer from one or both of two assumptions which severely limit their 

utility for prediction, or even insight, to a narrow range of cases. Most of these models are based 

on or de facto comparable to Tilman’s Graphical-Mechanistic Approach (1980). Without 

denigrating the value of Tilman’s work as a reference model for the general case or as a specific 

model for particular cases the problems of resource-response modeling are well described in the 

review by Miller et al. (2005). 
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The first problematic assumption, usually not even acknowledged, is that a population’s 

growth response to a resource is simply linear—that there is no variation of growth response as 

resource availability varies and that there is no inherent limitation of growth rate at high resource 

availability. We believe that this is largely the result of too-simple application of Tilman’s 

Graphical-Mechanistic Approach (1980) and its descendants even though Tilman himself 

warned of the need to use non-linear growth functions at least as early as (1981). Even very 

recent theoretical work (not alone, Chase and Leibold 2003) asserts that assumption of linear 

response is sufficient for competitive analysis. This problem is exacerbated when measurements 

of resource availability and growth rate are not taken at enough points or not measured with 

sufficient precision (esp. the growth rate) to fit or approximate anything other than a linear 

response. While the measure of resource availability may be very precise the measure of 

phenomenological growth response is frequently very imprecise. These measures, used directly, 

ignore that there may be a non-phenomenological, inherent growth-response trait parameter that 

needs to be determined to correctly relate resource availability to growth response and a non-

phenomenological growth-limit trait parameter that imposes non-linearity at all but the lowest 

resource availabilities. The first-resulting flat surfaces (mathematically present whether plotted 

or not) of growth response across resource space and the second-resulting linear isoclines 

(intersections of flat surfaces) make any except the very simplest predictions of competitive 

outcome on a single resource untenable. When two limiting resources are involved the tradeoffs 

(sensu Chase and Leibold 2003, pg. 41) between two populations can be much more complex 

than linear-response assumptions can represent at any resource availability. 

The second common problem is that when evolutionary processes (in isogenic or weakly 

polygenic populations) or even proportionate-selective effects (in durably polygenic populations) 
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are considered in simple succession (ancestor Y versus descendant of Y), substitution succession 

(ancestor Y versus descendant of Z), or parallel succession (descendant of Y versus descendant 

of Z), underlying genetic covariance, generally not observed in “ecological” or 

“phenomenological” research, can fatally complicate growth responses measured and modeled 

solely in terms of phenomena of resource availability and population growth. Genetic covariance 

may manifest change of maximum capable response trait or response trait to one resource, not 

under selection pressure at the same time in the same population as change of response trait to 

the resource that is under manipulated or observed selection pressure. This covariance may 

appear, on closer analysis and borrowing properly genetic terms, to be “linkage-like”, “linkage 

disequilibrium-like” or “pleiotropy-like”—we would refer to both as simply “phenomenological 

pleiotropy”. The result of this underlying covariance is that a change of realized growth response 

may not be, at all, a one-for-one result of selection on stress of a single resource. 

While examples of the problems with linearity assumptions, inter alia, are easy to find 

and well enumerated in Miller et al. (2005), examples of the problematic genetic covariance are 

more difficult to find in the literature and a very few senior authors dominate the field, most 

notably J. Adams with Saccharomyces cerevisiae and R. E. Lenski with Escherichia coli. An 

interesting aggregate discussion of phenomena of simple succession from a predominately 

ecological-phenomenological perspective can be found in the work of Paquin and Adams 

(Paquin and Adams 1983a, Paquin and Adams 1983b, Adams et al. 1985, Adams 2004). Velicer 

and Lenski (1999)provide another perspective with implications for ecological effects in parallel 

succession. Gerrish and Lenski (1998) examine the genetics and implicit ecological effects of 

descendants of a single ancestor evolved under superficially the same resource supply selection 

pressure. Remold and Lenski (2001) examine the genetics and implicit ecological effects of 
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descendants of a single ancestor evolved under different resource supply selection pressures. 

Travisano et al. (1995) and Vasi and Lenski (1999) report on true genetic pleiotropy in varying 

directions in populations under the same resource supply pressure. 

Here, we present a mathematical model of potential competitive outcomes (i.e., 

coexistence or exclusion) as relative growth rate between two populations growing on two dual-

limiting essential resources, for example A and B. We use the Monod function (1949, pg. 343, 

eqn. 2), discussed in detail below, to generate the realized intrinsic growth rate (Monod’s R) for 

each population per availability of resources A and B. We show that combining the Monod 

functions for population growth on these resources yields a two-dimensional space of niche 

requirements (sensu Hutchinson 1957). This niche space can be plotted to a surface in three 

dimensions where R constitutes the third axis. Essentially this generates a graphical 

representation of a response surface in niche space following the Hutchinsonian definition of 

niche (cf. Chase and Leibold 2003) across availabilities of resources A and B. We then 

demonstrate that niche spaces (and surfaces) of two populations can be overlaid to identify niche 

space where populations could either exclude or coexist with one another. Our graphical 

presentation owes much to the form in Tilman’s Graphical-Mechanistic Approach (1980)—

extended to show realized growth, R, as a third dimension. Our modeling approach is 

deliberately simple, requiring estimation of only three characteristics per population – Monod’s 

RK (maximum capable growth rate) and the responses (Monod’s half-saturation constants C1 A,B) 

to resources A and B. Using this model we can explore the predicted outcomes of competition 

across resource requirements space between two populations under multiple scenarios such as: 

(1) only maximum capable growth rate, RK, differs; (2) only the half-saturation constant(s), C1 

A,B, differ; (3) the half-saturation constants exhibit complementary, linkage-like or pleiotropy-
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like change as a result of selection to one limiting resource—where any of these scenarios may 

exhibit a complex shift of tradeoff between the populations (sensu Chase and Leibold 2003, pg. 

41). Our model builds on the classical, graphical models of competition on essential resources 

e.g. (Tilman 1980, Chase and Leibold 2003, others) by providing a graphically- and numerically-

solvable method to predict competitive outcomes based solely on population characteristics that 

follow Hutchinson’s (1957) notion of niche as species requirements. 

Methods 

The best-known graphical models of resource competition focus on essential resources 

(but contrast Chase and Leibold 2003, pg. 26). In addition to using the Monod function, a 

fundamental departure our model makes from this prior work is that ZNGIs (Zero Net Growth 

Isoclines, the resource level at which births equal deaths including environmental effects such as 

predation) need not be estimated to predict competitive outcomes (see Chase and Leibold 2003) 

although one of our several plot forms does display isoclines of population realized intrinsic 

growth or differential realized growth between two populations. Following from this, our model 

does not necessitate estimation of a species impact on the environment, i.e., there is no 

requirement to estimate the amount to which a species can deplete a resource, its R* (sensu 

Tilman 1982). Instead, our approach permits prediction of competitive outcomes based on 

differences in realized (i.e., Monod’s) R of two populations for any point in the niche space 

created by requirements for two essential resources, where the requirements in our model are 

resource supply rates. Our model then relies solely on Hutchinson’s (1957) conception of the 

niche as species requirements. We do not include Tilman’s (1980) consumption vectors because 

our intent is not to trace populations’ loci in resource supply space over time—see Miller et al. 

(2005) for how often this effort is unsuccessful—but to show how populations will grow, 
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individually or differentially, at any point in supply space at any time particular resource supply 

rates, effectively equivalent to Tilman’s (ibid) supply vectors, occur. When and as resource 

supply rates are stable, or nearly so, the population which grows faster will invariably come to 

displace the other. When and as supply rates vary rapidly and settle to a new regime the 

population which grows faster in the new regime, regardless of relative population size at the 

time of the regime change, will come to displace the other. In any case, unless population sizes 

are initially well known and can be reliably tracked over time—and unless one or both resource 

supplies are so low as to allow one to be drawn down to where R* applies—we find for our 

concerns that consumption vectors, sensu Tilman, are more often a complication than a 

contribution. 

We do not intend criticism of more recent definitions of the ecological niche that 

integrate Elton’s (1927) definition of species’ impacts with Hutchinson’s definition of 

requirements (cf Chase and Leibold 2003). Similarly, nor do we intend criticism of the 

contemporary graphical approach that relies on R* (for example Tilman 1982, Milbrink et al. 

2003). There are too many different concerns in the application of resource competition 

modeling to imply that any one approach should be universally applauded or denigrated. Instead, 

we present our model as an alternative formulation where competitive outcomes or tendencies 

toward outcomes might be predicted solely from species requirements. Our model can be taken 

as another answer to the problems of applying or extending Tilman’s Graphical-Mechanistic 

Approach model, not problems with the reference model itself, as discussed by Miller et al. 

(2005). 

Given that realized intrinsic growth, R, commonly increases following a saturating 

function as resources increase (cf Grover 1997), we use exclusively the Monod function (1949, 
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pg. 343, eqn. 2) to represent this relationship (Figure 2-1). The function was originally developed 

for bacterial population growth and the realized intrinsic growth rate (R) is formulated as: 

ܴ ൌ ௗே ௗ௧⁄ே ൌ ܴ భାେ (). 

Here N is the population size by mass (Monod’s density), t is time, RK is the population 

characteristic maximum intrinsic growth rate, C1 is the resource supply concentration required to 

achieve one-half RK, also known as the half-saturation constant and C is the instantaneous 

resource supply concentration. This growth rate applies to a population for any one resource 

when all other resources are “in excess” which is the same as saying that the one resource is 

solely growth-limiting. 

It has been shown, discussed and recommended, e.g. (Hsu et al. 1977, Tilman 1981, 

Grover 1997) that population growth response modeling across any “wide” range of a resource 

supply requires a non-linear, asymptotic formulation. Linear increase of the supply of a limiting 

resource gives an asymptotic (i.e. “saturating” to a limit) increase in intrinsic growth rate, which 

is necessarily nonlinear, and not an indefinite (i.e. without limit) increase, the unavoidable 

behavior of a linear formulation. 

Linear approximations have been useful in “near zero supply” simulations as in the basic 

form of Tilman’s Graphical-Mechanistic Approach (1980) or in the simplified examples of 

Chase and Leibold (2003) but simply do not work well elsewhere. 

Our justification for choosing Monod’s (asymptotic, nonlinear) function as the 

mathematical core of our model is, first, the fact that it is widely recognized as a reference 

model, e.g. (Ferenci 1999, Levert and Xia 2001, Lokshina et al. 2001, Higuera-Guisset et al. 

2005, Tang et al. 2007, Cerucci et al. 2010) for work similar to ours—affording a basis for 

comparability—and, second, the fact that it is easy to comprehend, parameterize and apply—
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helping to achieve our objective of a simple model with no more parameters than necessary. See 

Appendix A for a longer discussion of our choice. 

The canonical form of the Monod equation is the simple hyperbola: 

ݕ ൌ ߙ ݔ ሺߚ  ⁄ሻݔ  (). 

Here, considering only Cartesian first quadrant (i.e. x>0, y>0), y is the “response”, x is 

the “supply”, y=α (Greek alpha) is the “asymptotic limit” parameter and x=β (Greek beta) is the 

“characteristic” parameter. There are two other simple asymptotic expressions which could be 

used in place of the simple hyperbola but neither one offers the prospect of more precise curve-

fitting to a population’s observed growth response and neither is easier to comprehend and apply. 

See Appendix A for a longer discussion of the alternative forms. 

It is also important to note that Monod’s formulation for realized growth rate, R, is net of 

life-cycle mortality but prior to environmental mortality which would involve Tilman’s ZNGI 

(Zero Net Growth Isocline) or R*. 

When a population is dual-limited by two essential resources (i.e., neither can substitute 

for the other), all other resources being in excess supply, it’s growth can be regarded as 

following von Liebig’s law of the minimum (as in Tilman 1980, p. 367, eqn. 2): 

ௗேே	ௗ௧ ൌ minୀଵ, 	ሾ	fሺ ܴሻ	ሿ	 () 

where min is the mathematical operator minimum of, f(R) is a resource response 

function and there are k resources. 

I.e., the realized growth rate of the population is the minimum of the per-resource growth 

rates. Using Monod’s notation and the case of two resources, A and B, we have: 

ܴ, ൌ min 	ሾ	ܴ ಲభಲାಲ , ܴ ಳభಳାಳ	ሿ	 (). 

But since RK is common to the organism-population and RKA = RKB we reduce to: 
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ܴ ൌ ܴ min 	ሾ	 ಲభಲାಲ , ಳభಳାಳ	ሿ	 (). 

This is our complete formulation for the growth response of a single population on two 

essential resources. We can plot R by CA and CB as the population’s growth-response niche 

surface across a resource space. 

When we replicate this equation for two populations, Y and Z, in a common resource 

space we have: 

ܴ ൌ ܴ min 	ሾ	 ಲభఽౕାಲ , ಳభాౕାಳ	ሿ	 () ܴ ൌ ܴ min 	ሾ	 ಲభఽౖାಲ , ಳଵାಳ	ሿ	 (). 

We can plot the two surfaces (with two colors or shades) across the common resource 

space as a first step to estimating competitive outcome. 

Finally, we can formulate RR (subscript R for relative) the simple difference of the two 

populations’ growth rates as: 

ܴோ ൌ ܴ min ቂ ಲభఽౕାಲ , ಳభాౕାಳቃ െ ܴ min 	ሾ	 ಲభఽౖାಲ , ಳభಳೋାಳ	ሿ	 (). 

We plot this formulation across the common resource space as a three-dimensional 

surface (preferably with color- or shade-by-value), as a flat shaded-difference map or as a flat 

shaded-contour map. The third of these options appears much like the plot of Tilman’s 

Graphical-Mechanistic Approach (1980) but with relative-growth isoclines and optional ZNGIs 

correctly tracking nonlinear growth responses. The second option (with the advantage of 

continuous variation of color or shade) can identify areas of non-obvious tradeoff (sensu Chase 

and Leibold 2003), and the first option is entirely new to our application area. 

Tilman describes the OPL (Optimum Proportion Line (1980. p. 367, para. 3 et seq.) for 

dual-limiting essential resources equivalent to the dual-limitation ratio (cf Zinn et al. 2004 and 
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others). The significance of the OPL is that on this line and only on this line an increase in the 

availability of either of the two essential resources will cause no change in realized intrinsic 

growth rate, R, but a reduction of either resource will cause a reduction of R. The slope of the 

OPL is the ratio of the half-saturation constants, C1A/C1B, also known as the dual-limitation ratio. 

Comparing the OPLs of two competing populations can often (but not always, considering non-

linearity and/or underlying genetic covariance) delineate areas throughout which one population 

consistently grows faster than the other. 

Results and Discussion 

In our example plots we began with growth response parameters for Population X based 

on one of our experimental populations of Saccharomyces cerevisiae, MRG-2. The trait 

parameters for each example population are shown in Table 2-1 with differences greatly 

exaggerated for the sake of producing clear examples. The software tool we use for all of the 

present work is Mathematica®, version 7 (Wolfram Research 2008). See Appendix A, 

Mathematics, for details including Mathematica® code. 

Figure 2-1 shows the basic Monod response curve in Panel (a) with growth response, R, 

approaching the asymptotic limit, maximum capable growth rate parameter, RK, as resource 

supply, C, increases from 0 toward infinity. The half-saturation constant, C1, is the value of C 

where R=RK/2 and can be thought of as a “shape” or “characteristic” parameter. Panel (b) shows 

the effect of reducing RK (the asymptotic limit moves to lower R) and/or of increasing C1 (the 

curve shifts to require greater C to achieve the same R.) Panel (c) shows the effect of reducing 

RK and/or reducing C1 (the curve shifts to require less C to achieve the same R.) If both of these 

parameters should be reduced in the course of a population’s evolution we would see the effect 

shown in the left-hand third of Panel (c), expanded in Panel (d). Here there is a “tradeoff” of the 
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single population’s response for a single resource. In the sense of the population “competing 

with itself or its ancestor”, in an ecological regime of shifting or cyclic supply of the limiting 

resource, an increased growth response apparently evolved on “one side of” the shift would 

become a reduced growth response on “the other side”. 

Figure 2-2 shows the surface of realized growth response R when von Liebig’s Law of 

the Minimum is applied to a population’s responses to two resources, C and N. We have come to 

refer to this shape as a “dome tent” with Tilman’s OPL (Optimum Proportion Line) forming the 

“ridge”. A cross-section of the surface, parallel to either resource axis, would show the Monod 

response curve for that resource up to the ridge where the other resource becomes limiting. 

Figure 2-3 shows the dome tents of a pair of constructed “sibling” populations which 

differ only in their OPLs. Panel (a) shows the two surfaces plotted on common axes with their 

respective ridge OPLs and a “valley” between the ridges. Panel (b) shows the difference of the 

two response surfaces, “positive” where one population dominates and “negative” where the 

other dominates. The valley between the ridges now becomes a “wall” between the two 

dominance regions and the entire surface flattens, the difference of growth rates decreases, as 

both resource supplies increase along the OPLs. Panel (c) is a “vertical” view of the difference 

surface, as if looking from infinite R. The color shading and the two OPLs are intentionally 

similar to the Tilman’s basic plot (1980) and correspond directly to his regions of dominance and 

(potential) coexistence. Panel (d) replaces the continuous shading of Panel (c) with contour lines 

and stepped shading offering two advantages at the expense of continuous gradation: ΔR, the 

difference in growth rates, can be read quantitatively from the contour lines and, as in the valley 

area, it can be seen that constant-difference isoclines are not linear—as may become significant 

in comparison of real populations. 
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Figure 2-4 shows what happens when one of the siblings decreases (or increases) its 

maximum capable growth rate, RK, while the OPLs do not change. Panel (a) shows that one of 

the domes partially “submerges into” (or “erupts through”) the other. Panel (b) shows from the 

difference surface that the population with the now lower RK loses its area of dominance to a 

condition where coexistence (allowing stochastic effects if not resource-per-resource tradeoff) 

may be possible. The wall between the two original dominance areas is still apparent. Panels (c) 

and (d) show the shaded and contoured plots with a notably different set of constant difference 

isoclines in the latter. 

Figure 2-5 shows the result of further reducing or increasing the maximum capable 

response, RK, from Figure 2-4. As can be inferred from Panel (a) it can require a very large 

change to cause one tent to completely submerge in or overwhelm the other. Panel (b), the 

shaded contour plot, shows that the population with greater RK will now out-compete the other 

under virtually all conditions of resource supply. 

Figure 2-6 shows what happens when one population decreases its RK (to lower 

maximum capable growth) and increases one of its half-saturation constants (to lower response 

on that resource). All four panels show effects similar to Figure 2-4 or Figure 2-5, showing that 

certain response trait changes—the half-saturation constant in this case—can be obscured by 

others—RK in this case. Although this obscuration may not be of great significance in this 

example it can lead to competitive outcomes that are not intuitively obvious from simpler 

models. 

Figure 2-7 shows what happens when on of the sibling populations increases the half-

saturation constant, C1x, for both resources leading to a “flatter” overall growth response. The 

changes in the response difference surface here are subtler than in the prior figures but, 
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especially as shown in Panel (d), there is a significant change in the areas of dominance and 

coexistence even though the apparently significant maximum growth response, RK, has not 

changed. 

Finally, Figure 2-8 shows what happens when the sibling which became “flatter” in 

Figure 2-7 now becomes “steeper (reduced half-saturation constants, C1x). The results are 

generally complementary to those in Figure 2-7 but show subtle differences in the size of the 

dominant areas and the steepness of slope from one (original) area of dominance to the other. 

Figures Figure 2-9 (Leibold 1995) and Figure 2-10 (Leibold 1996) illustrate the best 

analysis and prediction that can be achieved with present modeling approaches. Figure 2-9 

former requires response parameters per population, comsumption parameters per population, 

supply vector parameters per resource, initial population sizes and environmental mortality 

parameters. It is a dynamic, over-time formulation, based only on demographic values and does 

not address competitive relationships from resource supplies at an arbitrary, instant point in the 

supply space. 

Figure 2-10 is much simpler than the preceding, requiring fewer and simpler parameters. 

It is still essentially a dynamic formulation requiring population size estimates and, as such, does 

not meet our concerns of prediction at arbitrary point in an n-dimensional Hutchinsonian space. 

Neither these figures nor their author are taken as a bad example. They simply represent 

shortcomings of current best practice that our model is intended to overcome for our particular 

purposes. 

We have a model that distinguishes in its formulation between “internal” organismal-

population growth response trait parameters and “external” ecological-phenomenological 

resource supply values and realized growth response. It can predict and display inter-population, 
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competitive relationships as in Tilman’s basic approach and it successors. It can also predict and 

display details of competitive relationships particularly resulting from nonlinearity of per-

resource response traits and the limiting effect of maximum capable growth response traits that 

are undetectable or indistinguishable in linear-response formulations as assumed in most Tilman-

like models, even as urged by some authors. And it can predict and display complex responses 

and relationships that can result from subtle, underlying genetic-to-phenotypic expressions. 

We believe our model may be well applicable to accurate representation of invasive-

competitive, displacement-competitive and evolutionary-competitive cases in vitro, such as with 

microbes or plankton. We also believe it can be applied in simulation of larger scale cases, as if 

in natura, by selected or modified populations in vitro and actually in natura by parameters 

abstracted from demographics observation. 

Our next step (Chapter 3) in the present work will be to apply our model to competition 

between live populations in vitro to show that it works, at least, in well-controlled and 

quantitatively testable cases with unpredictable inter-population variation of response. The final 

step (Chapter 4) will be to apply the model to populations evolved under controlled “stress” of 

shifted resource supply ratios to assess its ability to predict, at least in a self-consistent manner, 

competitive outcomes between ancestor and descendant or descendant and descendant. 
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Tables 

Table 2-1. Example Populations’ Growth Response Parameters. 
Population: population name; RK: maximum capable intrinsic growth rate; C1C: carbon half-
saturation constant; C1N: nitrogen half-saturation constant; C1C:C1N: ratio of half-saturation 
constants, alias dual-limiting ratio, slope of Tilman’s OPL (Optimum Proportion Line). 

Population RK C1C C1N C1C:C1N 
     
X 0.834 0.210 0.0130 16.2 
     

Y 0.834 
0.263 
X / 0.8 

0.0104 
X × 0.8 

25.3 
X / 0.82 

Z 0.834 
0.168 
X × 0.8

0.0163 
X / 0.8 

10.3 
X × 0.82 

     

W 
0.751 
Y × 0.9 

0.263 0.0104 25.3 

Z 0.834 0.168 0.0163 10.3 
     

V 
0.667  
Y × 0.92 0.263 0.0104 25.3 

Z 0.834 0.168 0.0163 10.3 
     

U 
0.751  
Y × 0.9 

0.328 
Y / 0.8 

0.0104 
31.5 
> Y 

Z 0.834 0.168 0.0163 10.3 
     

T 0.834 
0.328 
Y / 0.8 

0.0130 
Y / 0.8 

25.3 
= Y 

Z 0.834 0.168 0.0163 10.3 
     

S 0.834 
0.210 
Y × 0.8

0.00832
Y × 0.8 
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Chapter 3, Experimentally Characterizing the Ecological Niche and Validating a Model of 

Population Competition 

Summary 

We applied and tested our model, developed as in Chapter 2, to live competing 

populations. We also employed a new Characterization Protocol to determine organismal-

population growth response traits required by the model. We took two wild-type strains of 

Saccharomyces cerevisiae and modified each of them to resist an antibiotic so that the original 

and modified strains could be distinguished after competition in common culture. We found that 

our model correctly and robustly predicted areas of both clear dominance and uncertain 

dominance, the latter being subject to stochastic determination of dominance or, possibly, 

amenable to coexistence. 

Introduction 

Virtually all current and recent attempts to model population competition for resources 

follow Tilman’s Graphical-Mechanistic Approach (1980) as typified by Chase and Leibold’s 

discussion (2003) of the requirements niche (sensu Hutchinson 1957) and others. In spite of 

problems with implementation and interpretation (as in Miller et al. 2005) and Tilman’s own 

cautionary comments (as in 1980, 1982) this approach remains a well-accepted reference model. 

Our implementation models the requirements niche in a two-dimensional space of dual-limiting 

resources (again sensu Hutchinson 1957). We use, beyond most other models, non-linear per-

resource responses and organismal maximum capable growth response as in Monod’s 
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formulation (1949), extended to two resources as in von Liebig’s Law of the Minimum (ca. 

1840s). We formulate our model in terms of organismal response traits, rather than the more 

frequently used phenomenological realized rates (as in Goldberg 1996). 

In dealing with two populations competing by growth on two essential resources there are 

issues of properly characterizing dual-limited growth-response traits for the resources in question 

(as in Price and Morel 1991, Mankad and Nauman 1992, Duboc and von Stockar 1998, Clark 

2001) (see esp. Rutgers et al. 1990, Zinn et al. 2004) and underlying basic issues of ecological 

stoichiometry (as in Sterner and Elser 2002 and others). We believe our implementation of 

curve-fitting phenomenological observation of a population on controlled supplies of two 

resources to a set of two response trait parameters and a common maximum response trait 

parameter is unique, never before achieved. 

The objective of this study was to test experimentally a mathematical model (see Chapter 

2) we developed of the requirements niches of two populations across a Hutchinsonian space of 

two essential resources, and to predict the outcome of inter-population competition across 

variation in the supply of these essential resources. To achieve this objective we propagated 

natural isolates of Saccharomyces cerevisiae under controlled experimental conditions, 

permitting us to characterize their realized intrinsic growth rates (Monod’s R) under different 

supply rates of two essential resources (i.e., carbon and nitrogen). Using the mathematical model 

we parameterized their growth response, niche requirements across variation in the supply rates 

of carbon and nitrogen; such that for any point in Cartesian space across the two resource axes 

we could derive a population’s realized intrinsic growth rate, R, on a third axis. Based on 

difference in R across this resource space we predicted at what resource supply rates one 

population might outcompete another. To test these predictions we then experimentally 
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competed different populations at different resource supply rates. We demonstrate that a 

population’s growth response or niche requirements can be mapped across variation in the 

supply rates of two essential resources, and that differences in R between two populations within 

the resource space can be used to accurately predict competitive outcomes. 

Methods 

Study organisms 

Our experimental populations were isogenic strains of wild-type Saccharomyces 

cerevisiae, a unicellular yeast found widely in the natural and domesticated environment. The 

strains were isolated from a “no captive cultures” winery (Kumeu River, Auckland, New 

Zealand) (Appendix B, Yeast Strains). Use of wild-type versus domesticated strains was 

intended to ensure the ecological relevance of the findings; specifically the responses of 

domesticated strains which have been perpetually propagated under artificial conditions might 

differ to their natural counterparts. Our isolates were <50 generations removed from the wild. In 

addition, use of isogenic strains removes within-population variation associated with the 

presence of different genotypes (polygenic populations). For the purposes of our work, we 

considered an isogenic strain a population and although an oversimplification it enabled 

unambiguous identification of niche requirements, competitive outcomes and evolutionary 

responses (see Chapter 4). 

Our choice of S. cerevisiae as our experimental organism was based on the general 

extensive knowledge of the species in experimental environments (for example Replansky et al. 

2008), our own familiarity and prior work with the species (Goddard and Bradford 2003b, 

Goddard 2008) and the ready availability of suitable isogenic strains (see Appendix B, Yeast 

Strains). Our choice of continuous culture, specifically in fully controlled chemostats, follows 
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the principles and logic in Hoskisson and Hobbes (2005) and is particularly driven by the need to 

maintain a constant (nutrient) resource environment for both Characterization and evolution 

(Adams et al. 1985, Goddard and Bradford 2003b, Adams 2004). 

For the work presented here we used two of our wild-type, diploid isolates with differing 

genotypes based on micro-satellite typing of five loci (see Appendix B, Yeast Strains). These 

isolates are referred to as MRG-2 and MRG-8 following the original identification by Goddard. 

They were stored at −80 °C with 1.7 mL of dense culture and 0.3 mL glycerol (15% v/v) in 2 mL 

Eppendorf tubes; this is standard practice for storage of S. cerevisiae cultures. 

Propagation of isolates 

Isolates were sub-sampled from cryo-storage into standard media for culturing S. 

cerevisiae. Specifically, they were inoculated into YPD Broth (Y1375, Sigma-Aldrich, St. Louis, 

MO, USA), which at 50 g L-1 comprises 20 g L-1 bacteriological grade peptone, 10 g L-1 yeast 

extract, and 20 g L-1 glucose. They were then grown at 30 °C for 48 h in batch culture prior to 

inoculation into the chemostats where they could be grown continuously in log phase under 

tightly-controlled resource supply rates.  

Our chemostats (Figure 3-1) comprise “Multitron II” incubators (Infors HT, Bottmingen, 

CH) with DasGIP glassware (DasGIP AG, Jülich, DE) and “200 Series” pumps (Watson-

Marlow, Wilmington, MA, USA). Each of the two chemostats maintained 16, 250 mL culture 

flasks concurrently at 30 °C, with gyratory agitation at 105 rpm and 25 mm throw, 10.7 mL h-1 

feed rate, 50±2 mL working culture volumes, and 4.69 h (0.213 h-1) culture turnover times. Each 

flask had separate nutrient medium supply, waste removal, and air supply. Waste removal was 

siphoned at 3 times the rate of media supply, ensuring that culture volumes were maintained at 

50 mL and that there was no back-flow of waste. Air supply was regulated to 0.5 L min-1 and 
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dried, de-oiled by expansion and carbon block adsorption, and filtered to 0.2 µm. The outlet filter 

on each flask maintained a positive pressure within each flask, further preventing microbial 

contamination of the cultures. 

Chemostat culture flasks were inoculated from the starter cultures and S. cerevisiae 

populations were grown overnight in batch culture conditions, with non-limiting nutrients. The 

medium (CYN5501 YNB w/o AA, w/o Ammonium phosphate, w/o Potassium Dihydrogen 

Phosphate and w/o Inositol; ForMedium Ltd, Norwich, UK) for these overnight cultures included 

10 g L-1 D-glucose monohydrate (49159; Sigma-Aldrich, St. Louis, MO, USA), 5 g L-1 

anhydrous (NH4)2SO4 (A4418; Sigma-Aldrich, St. Louis, MO, USA), and 1 g L-1 anhydrous 

KH2PO4 (P9791; Sigma-Aldrich, St. Louis, MO, USA). This gave concentrations for C, N and P 

of 4.00 g L-1 C, 1.06 g L-1 N, 0.228 g L-1 P and media was adjusted to pH 6.0±0.1 using NaOH. 

We established in preliminary experiments and development of our Characterization Protocol 

that culture densities in the chemostat with this media were equivalent at the stated and double 

concentrations of C, N and P, confirming the formulation was not growth-limiting. To invoke 

resource limitation we then fed the chemostat cultures with the same base medium but with 

reduced concentrations of C and N. 

Characterizing niche requirements – step 1: empirical measures 

Characterizing niche requirements (i.e., R values ≥0, so that populations can persist 

deterministically without immigration) across availabilities of C and N, as representative 

essential, limiting resources, was a two-step process. The first step involved growing each of our 

two isolates at different C and N supply rates and then quantifying population biomass. We 

quantified biomass, instead of abundance, following MacArthur’s (1972) and Monod’s (1949) 

original conventions of population performance across availabilities of limiting resources 
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because one does not then have to make the assumption that all individuals are of equal mass (or 

resource content). Initial tests with different incubation times suggested that populations had 

stable biomass values after ≥25 generations and 25 generations was adopted as standard for 

mapping a population’s niche requirements. This number of generations also limited the 

possibility that a beneficial mutation might sweep through any one population, thereby falsifying 

our assumption of isogeny across replicate populations. In addition, initial tests with different C 

and N supply rates suggested that concentrations of C ranging from 0.750 to 0.047 g C L-1 gave 

~10-fold differences in population biomass when N was not limiting (0.064 g N L-1), and that 

concentrations of N ranging from 0.032 to 0.002 g N L-1 gave ~12-fold differences in population 

biomass when C was not limiting (1.5 g C L-1). 

With respect to the number of generations required for a mutation to sweep our 

experimental populations we refer to Zeyl et al. (Zeyl and DeVisser 2001, Zeyl 2005) and others 

who estimate an adaptive (surviving) mutation rate on the order of 1/1011 cell divisions in S. 

cerevisiae. Our Characterization cultures had a typical standing density of 0.214 mg mL-1 × 78.5 

106 cell mg-1 × 50 mL × 25 h / 4.69 h ≈ 4.48 109 divisions per run, approximately 1/22 the 

expected number of divisions to find one adaptive mutation. 

Based on our initial tests, for each isogenic isolate we grew cultures at fixed, non-limiting 

C, with varying N supply and at fixed, non-limiting N, with varying C supply as in Table 3-1. 

Each supply rate was replicated 4 times. The design gave us eight points in the niche space 

delineated by the axes of C and N availabilities, from which we could estimate R knowing the 

population turnover and biomass. The latter was determined by ceasing the chemostat agitation 

and allowing the cultures to stand for 5 min to permit the characteristic ‘cerevisiae residue’ to 

settle to the base of the flasks and then ~45 mL of culture was removed. The sample’s exact 
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volume was determined before it was centrifuged at 4 °C to collect the biomass ‘pellet’. The 

supernatant was then removed and the pellet re-suspended by vortex agitation in 1 mL DI water, 

transferred to a 2 mL microcentrifuge tube and the process of centrifugation and re-suspending 

repeated twice more to wash the biomass clean of media. The cleaned pellet was dried at 65 °C 

to stable mass (~24 h), and then weighed. From the mass and volume of culture sampled we 

estimated the population mass density to be used in the second step of the Characterization 

Protocol (Table 3-2). 

Characterizing niche requirements – step 2: curve fitting 

The second step used a curve-fitting process to estimate the population’s niche 

requirements (represented as values of R≥0) across availabilities of C and N. It used the 

mathematical model described in Chapter 2. The process of curve fitting relies on the assumption 

that C and N affect population biomass additively; i.e., there is dual-limitation (an assumption 

that held; see Results). We used Monod’s (1949, pg 343, eqn 2) growth equation for a population 

on a single limiting resource is: 

ܴ ൌ ௗே ௗ௧ൗே ൌ ܴ ∙ భା (). 

Where R is the realized intrinsic growth rate, N is the population size by mass, t is time, 

RK is the maximum capable intrinsic growth rate, C is the instantaneous resource supply 

concentration, and C1 is the resource supply concentration at which R is half its maximum value 

(RK). It then follows that where we have two, dual-limiting resources (designated A and B), we 

require two growth equations: 

ܴ ൌ ܴ ∙ ಲభಲାಲ () ܴ ൌ ܴ ∙ ಳభಳାಳ (). 
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Since the population’s growth rate must obey von Liebig’s Law of the Minimum, we must 

combine the two growth equations to: 

ܴ ൌ min ቂܴ ∙ ಲభಲାಲ , ܴ ∙ ಳభಳାಳቃ () 

where min is the mathematical operator minimum of the given terms. 

And since RK is an organismal trait common to all per-resource growth responses we 

have a single value of RK = RKA = RKB. which gives us (with collection of terms): 

ܴ ൌ ܴ ∙ min ቂ ಲభಲାಲ , ಳభಳାಳቃ (). 

We then need to find the three parameters RK, C1A and C1B by fitting the equation to 

experimental observations. To do this we used our empirically-generated estimates of R for the 

four points in niche space where carbon was limiting, as CA→CC, (with nitrogen in excess), and 

the four points where nitrogen was limiting, as CB→CN, (with carbon in excess; see above 

Methods). Knowing these values from the chemostat runs, we can fit numerically for RK, 

C1A→C1C and C1B→C1N using a curve-fitting algorithm implemented in Mathematica® 

(Wolfram Research 2008) (see Appendix A, Mathematics). 

This curve-fitting provides the necessary trait parameters for computing R≥0 across 

supply rates of each resource that can be plotted to delineate the niche requirements of the target 

population (in this instance an isogenic isolate) across the two resources investigated (carbon and 

nitrogen). We do this for our two wild type populations and then overlay these population-

specific niche requirements to identify areas in niche space where one isolate might outcompete 

another. 
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Characterizing niche requirements – statistics analysis 

An overarching problem with statistical analysis of our results is that we are not dealing 

with conventional hypothesis testing (except, perhaps, in our direct competitions) or 

conventional statistical inference. We have no single parameters which are independently 

derived from our Characterization Protocol and the multiple data values per test point (R, CC, 

CN). The multiple parameters we need (RK, C1C, C1N) for maximum capable growth response and 

per-resource growth response can only be determined by simultaneous curve-fitting to a single 

equation. 

If we were to attempt to fit each per-resource response, C1C and C1N, from our data sets or 

any other measurement scheme, individually (i.e. without simultaneous RK) we would be left 

with a linear relationship as our only alternative and we know from numerous sources previously 

cited e.g. (Ferenci 1999, Levert and Xia 2001, Lokshina et al. 2001, Higuera-Guisset et al. 2005, 

Tang et al. 2007, Cerucci et al. 2010) that that is not a viable option. 

If we were to attempt to fit each per-resource response, C1C or C1N, with RK independent 

of the other per-resource response, we would be virtually certain to arrive at two values for RK, 

as if RKC and RKN, which we know from several of the immediate prior citations as well as from 

Grover (1997) is not realistically applicable. Simply put, if we provide a single population with 

sufficient supply of all resources that no further increase of any resource provides any greater 

growth response, then we have reached a population limit to growth rate. This can be verified by 

decreasing each resource, one at a time, to establish a limiting growth value for each (non-

substitutable) resource and these limits will be found to be all at the same maximum growth 

response. So we must, in the end, fit all three of our parameters for each population, RK, C1C, 

C1N, simultaneously to the single Monod-and-von Leibig formulation. 
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We are in the situation of having no “independent variables” or “additive variables” 

statistical analysis available. We rely, instead, on confidence interval comparison for whatever 

meaning there may be to “significant difference” between competing populations’ values of each 

of our three parameters. Our curve-fitting program and its core Mathematica® function, 

NonlinearModelFit[], provide an ANOVA table for the objective variable x, our realized-

observed R, but have no equivalent of independent or additive behavior to determine customary, 

per-variable error, residual statistics. The program does provide Standard Error, Confidence 

Interval (95%), t-Statistic and P-value per fitted parameter but while these are comparable to the 

usual statistics they are not the same and are not related by any simple function. 

We show one example of manually-assembled graphical fit and residuals plot of C1C and 

C1N, Figure 3-2 for yeast strainMRG-8, as if these parameters had been individually determined. 

The fit and residuals for C1C look good but those for C1N do not. If we had recognized this 

syndrome early in our sequence of experiments we might have extended our range of CN, 

nitrogen supply concentration, to higher values to obtain a better-appearing fit but we chose to 

stay with a consistent set of test points. It is not clear, however, that the C1N fit would have 

“looked” any better by curve or by residuals as the entire fit can only deal with all three 

parameters. 

The OPL slopes for the several populations show significant difference between all but 

one of the competing pairs, which runs counter to customary suspicion of “statistics of statistics”, 

i.e. because the OPL slope is a ratio of two fitted parameters which, themselves, do not appear to 

be significantly different. We analyzed the OPL slopes by a Monte Carlo process of dithering 

each of the OPL components, C1C and C1N, 1,000 times by its Standard Error on a Normal 
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Distribution, taking the ratio of each pair of dithered values, and performing a simple analysis of 

Mean, Variance and Confidence Interval (95%) of the 1,000 ratios. 

Characterizing niche requirements – statistics summary 

Table 3-3 summarizes the growth response parameters for the original and modified 

strains while Table 3-4 compares the statistical confidence intervals for each competing pair. 

Table 3-5 through Table 3-8 show the full statistical reports from the curve-fitting program. For 

all four competing pairs the trait parameters, RK, C1C, C1N, appear to be statistically not 

significantly different per pair while the derived optimum C:N ratio, computed from the 

parameters, shows statistically significant difference for three of the pairs (the CIs do not 

overlap) and weak difference for the fourth pair, MRG-8 versus MRG-8N, where the CIs overlap 

each other but not the means. It is instructive to compare the “no significant difference” 

inference, except for C:N ratio, to the actual outcomes of competition shown in Table 3-9 and 

Table 3-10 in the Results presented below. What we infer here is validation of a point long 

argued, in ecology classrooms of our experience and in the literature (Graham and Edwards 

2001, Di Stefano 2004, Martinez-Abrain 2007, Nakagawa and Cuthill 2007, Stephens et al. 

2007, Martinez-Abrain 2008), that “Statistical significance does not show ecological 

significance—and vice-versa.” 

Competition assays 

By overlaying niche requirements for our two isolates we can determine regions of 

resource space where we might expect one isolate to always outcompete the other (specifically 

regions where R differed by ≥0.02) and areas where the outcome of competition is uncertain—

where coexistence may be possible. Specifically, we used the following equation to calculate 
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differential growth (Rrel) at any one point in resource supply space between two populations, Y 

and Z: 

ܴ ൌ ܴ െ ܴ or () ܴ ൌ ܴ ∙ min ቂ ಲభಲೊାಲ , ಳభಳೊାಳቃ െ ܴ ∙ min ቂ ಲభಲೋାಲ , ಳభಳೋାಳቃ (). 

To test the model predictions concerning competitive outcomes, we performed 

experimental competitions using our chemostat system. Specifically, we selected regions where 

difference in R was greater than 0.02 (so the outcome of competition should always be 

dominance by the isolate with the greater R at that point in space) and less than 0.02 (making 

outcomes uncertain, so we’d expect variation across replicate competitions as to the winner). As 

we had no simple way to differentiate one isolate from the other, we used a standard approach in 

S. cerevisiae evolution studies and marked each isolate with antibiotic resistance, permitting us 

to differentiate one isolate from the other by differential growth in media with and without the 

antibiotic. 

Antibiotic-resistant populations were developed using plasmid pYL16 which inserts a 

gene for resistance to clonNAT brand nourseothricin (kit WERNER BioAgents 2009). The 

resistant isolates were grown in the standard YPD medium (described above) to ~107 cells mL-1. 

Aliquots were stored at -80 °C as described earlier and checked for viability by initiating starter 

cultures and growth on agar test plates. ‘Standard’ plates were composed of the standard YPD 

medium with 20 g L-1 bacteriological agar (A5306; Sigma-Aldrich, St. Louis, MO, USA), and 

the selection plates used same recipe plus 100 µg L-1 nourseothricin antibiotic. We confirmed 

that the antibiotic-resistant isolates showed robust colony growth on both plate types, and that 

our antibiotic-naïve isolates only grew on the standard plates. This demonstrated that the two 

types of plate clearly distinguished between the naïve and resistant yeast strains. The naïve 
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strains retained the designations MRG-2 and MRG-8, and the resistant strains were named 

MRG-2N and MRG-8N, where N stands for nourseothricin-resistant. 

The usual assumption in using antibiotic-resistant strains in competition (or fitness) 

assays is that the inserted resistance gene has no effect on fitness when the resistant isolate is 

grown without the antibiotic. We tested this assumption by characterizing the niche requirements 

of the resistant isolates as described above for the naïve isolates. We did find slight in RK and C1 

for each resource, and for each isolate, following resistance gene incorporation (see Results). 

Given these shifts we tested predicted competitive outcomes using the modeled niche 

requirements of the resistant versus naïve isolates for each distinguishable pair, giving us four 

possible competitions (MRG-2 versus MRG-2N, MRG-2 versus MRG-8N, MRG-8 versus 

MRG-2N, MRG-8 versus MRG-8N). 

To perform a competition two selected strains were grown separately in standard YPD 

medium (described above) to between 107 and 5×107 cells mL-1. Each culture was adjusted 

(diluted) with standard YPD medium to 5×106 cells mL-1 and 100 mL aliquots of the adjusted 

cultures were mixed. The resulting mixed culture was used to inoculate the chemostat flasks for 

the competition run: 10 mL of combined culture was added to each chemostat flask containing 

50 mL of competition medium. This gave starting densities of ~4.2×106 cells mL-1 of each strain. 

The competition medium was the chemostat base medium (described above) with concentrations 

of C and N defined by the resource supply point being investigated. 

Using the chemostat settings described for the Characterization runs (see above), each 

competition was run for 25 generations. Model predictions and initial tests suggested 25 

generations was sufficient for populations with markedly different fitness values (i.e., Rrel values 

>0.02) to differ substantially in number. For example, the poorer competitor could decline to 
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virtually zero abundance (N/225 = 2.98×10-8 N), and the superior competitor could increase to 

dominance (N×225 = 3.36×107 N—subject to the asymptotic limit) from the initial 1:1 population 

ratio. 

After 25 generations media flow and agitation were stopped and the chemostat flasks 

were allowed to stand for 5 min to permit the ‘cerevisiae residue’ to settle. Next ~35 mL of 

culture was removed and population density measured using a T100 Turbidity Meter (Oakton 

Instruments, Vernon Hills, IL, USA). Then each mixed culture was diluted to ~2×104 cells mL-1 

and 10 µl (~200 cells) of this dilution was inoculated onto four, 10 cm dia. agar gel plates and 

distributed evenly by rolling with three, 5 mm dia. glass balls. Two plates were composed of the 

standard YPD medium (permitting growth of all colonies), and two were impregnated with 

nourseothricin at 100 μg L-1, permitting only resistant isolates to grow. Plates were incubated for 

24 h at 30 °C and examined for colony growth. If there were fewer than 50 colonies per plate 

then the set of four for that population pairing was incubated for an additional 24 h. For colony 

counts, each plate was covered with a randomly oriented counting mask—a 10 cm-dia. opaque 

disk with seven randomly located windows, each 0.5 mm square. The ‘windows’ showing most 

and fewest yeast colonies were not counted, and total colony forming units (CFUs) were 

enumerated for the remaining five windows. The first round of competitions competed each of 

the four pairs of populations at four different resource points, using two replicate competitions 

per population and resource supply rate. Outcomes were scored qualitatively (winner, loser, 

uncertain outcome). To quantify competitive outcomes more rigorously, a second round of 

competitions was replicated eight times for each pair of populations. For two pairings we 

selected resource supply points where we expected clear winners, and for the other two pairings 

resource supply points where competitive outcomes were uncertain. Where we expected clear 
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winners, we reasoned that the ratio of naïve and resistant competitors should differ significantly 

to one, so the 95% confidence intervals of the ratio of the abundance of these two competitors 

should not cross 1. For uncertain outcomes we reasoned the 95% confidence intervals should 

cross 1. 

Results and Discussion 

Niche requirements 

The niche requirements of each our four competition strains were characterized first 

through the empirical measures of population mass density at eight different supply rates (cf. 

Table 3-1). Next we used these measures (Table 3-2) in our mathematical model to curve-fit the 

population growth parameters (Table 3-3) and niche requirements. There were clear differences 

in growth parameters between the two wild-type strains. For example, MRG-2 has an ~7% lower 

RK than MRG-8, and also a higher affinity for C and N uptake (represented by the lower C1 

values for both C and N). These differences translated to a broader, optimum C:N ratio for 

MRG-2 than MRG-8 (Table 3-3), which causes the OPL of MRG-2 to fall below that for MRG-8 

Figure 3-3 (a). These differences then translate to different niche requirements of the two strains 

Figure 3-3 (b) and (c), so that except at low resource supply rates MRG-8 would be expected to 

outcompete MRG-2 Figure 3-3 (d). Given that we couldn’t ascertain competitive outcomes 

directly between MRG-2 and MRG-8, and that antibiotic resistance may carry a fitness cost, we 

also characterized the growth parameters for the two resistant strains (MRG-2N and MRG-8N). 

These values are shown in Table 3-3, where it can be seen that induced resistance did shift the 

growth parameters. For example, MRG-8N had a higher RK and C1 for carbon than MRG-8, but 

a lower C1 for nitrogen. 
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Competitive outcomes 

Based on differences in R across the resource space, such as shown in Figure 3-3 for 

MRG-2 versus MRG-8, we selected different resource supply points at which to compete the 

naïve and resistant strains. In the first round of competitions CFU counts on YPD plates with and 

without the antibiotic were scored qualitatively. Out of 16 competitive pairings our prediction 

was Confirmed 10 times, Weakly Confirmed 3 times and Contradicted 3 times. (Table 3-9). 

Based on this initial round of competitions, we decided we needed higher replication (n=8 

instead of 2) for robust, quantitative assessment of whether observed outcomes matched those 

predicted. In these competitions MRG-8N outcompeted MRG-2 in six of the eight replicates, 

with the remaining two replicates having approximately equal representation of each strain. 

Nevertheless, overall MRG-8N emerged as the distinct winner (i.e., 95% CI did not cross 1; 

Table 3-10), as predicted. For MRG-8 versus MRG-2N the prediction was even more robustly 

met (Table 3-10), and MRG-8 dominated in seven of eight replicates, with one replicate 

competition having equal abundances of both isolates. When the naïve and resistant isolates of 

the same strain were competed at resource supply rates where the outcomes were uncertain, the 

95% CIs strongly overlapped one (Table 3-10), with MRG-2 winning in five competitions and 

losing in three, and MRG-8 (versus MRG-8N) winning in three competitions, losing in three and 

having two occasions were the ratio was ~1. Overall then, the outcomes in the second round of 

competitions consistently met the predictions from our model (Table 3-10) that estimated R 

following the assumption that dual-limitation on two essential resources suitably estimated niche 

requirements and competitive outcomes of natural isolates of S. cerevisiae. 

Our primary purpose in this work was to develop a model of populations in competition 

for shared resources by which we could repeatably predict likely outcomes across a 
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Hutchinsonian resource space and not just at or close to a few demographically observed points. 

This required extension of Tilman’s Graphical-Mechanistic Approach to use : 1) organismal 

growth-response traits rather than simple (generally linear) phenomenological relationships; and 

2) an accepted non-linear, saturating model of growth responses such as the Monod function. It 

also required that we develop a protocol for determining the required trait parameters of 

populations including: 1) a simple observation-measurement process easily applied empirically, 

in the laboratory, and possible to be applied demographically, in the field; and 2) a means of 

curve-fitting the Characterization measurements to the paired Monod functions (with per-

resource responses and common organismal maximum growth limit) for a population’s response 

to two resources. We have shown that we can characterize multiple populations and arrive at 

distinctive sets of response trait parameters. We have then shown that we can apply these 

parameters to our predictive formulation to give clear delineation of relative growth response, 

between two populations, across a broad Hutchinsonian resource space. And we have applied the 

Characterization and the prediction to successfully predict the outcomes, and areas of uncertain 

outcome, in common-media competitions of two populations. 

Advantages of our approach—for which we can find no strong equivalent in the 

literature—include that it addresses and appears to solve several shortcomings of previous 

implementations of Tilman’s approach including warnings dating back to his original work but 

never resolved for the general case—our model appears to be both simpler to use and more 

mechanistically realistic in our use of characterized non-linear responses, per population and per 

resource, rather than assumed linear responses. We also believe that we have obviated some of 

the complex efforts, and associated difficulties, to apply the R* concept and its derivatives 

because it relies on assumptions of resource supply stability and constant inter-population effects 
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(such as predation or herbivory) that most often do not prevail in natura while our approach can 

deal with competition across the Hutchinsonian n-dimensional space as both resource supplies 

and competitive effects may vary. We would especially emphasize the ability of our model to 

deal with: 1) non-linear isoclines (ZNGIs or others), 2) inter-penetrating growth response 

surfaces which are completely outside the concepts of the simple Tilman approach, and 3) 

quantitative differential growth response which permits the distinction among “rapid 

dominance”, “slow dominance”, “periodic or transitory dominance” and “stochastic uncertainty” 

to be detected at any desired level. 

The ability to plot the response-surface “tents” of Figure 3-3 individually, in “two-up” 

dual presentation, and in any of our three differential presentation (see Chapter 2) give multiple 

ways to achieve either insight or prediction, whichever one may consider to be the primary 

purpose of ecological models in general. We used our differential plots—difference-surface, 

shaded-difference and shaded-contour, alike—to select the two-resource points for our 

competition experiments—choosing both points where we expected clear dominance and points 

where we expected stochastic uncertainty. Aside from making successful predictions of 

competitive outcomes when displacement was clearly predicted the ability to quantify areas of 

uncertainty and related zones of transition from certainty to uncertainty to certainty—as cases 

may be—on any desired value of what growth difference is sensitive to stochastic effects is a 

unique characteristic of our model. We also believe it is significant that when response trait 

parameters cannot be well determined for a problem under consideration our model is capable of 

“fallback” to essentially the original-linear-flat Tilman presentation as a guide, perhaps, to 

fruitful further investigation of the case. 
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We focus on measurements of biomass rather than count of cells or other demographic 

units following the lead established by MacArthur, Monod and Tilman and their assertion, 

explicit or implicit, that it is really biomass, regardless of population size distribution and 

number of individuals, that resource mass is converted into. Our assessment of competitive 

outcome relied on yeast colony count because we were not looking, in the present case, for fine 

distinction of relative dominance but, rather, were looking for either essentially complete 

displacement or failure of displacement to occur. There is nothing to preclude, in other cases, 

testing for partial dominance or quantified coexistence by some means like differential counting 

of cells (with the aid of GFP, perhaps, instead of an antibiotic) or otherwise-distinguishable 

individuals whether by flow cytometry in microbes and plankton or by counting meso-arthropods 

in a soil sample. 

Our model and protocols are, at present, strictly laboratory-experimental and we regard 

them primarily as a simulation system. As such, it can be used to investigate hypotheses of 

resource-dependent displacement cases, perhaps including predator-prey interactions dependent 

on underlying resource supplies, or evolutionary effects in isogenic or narrowly polygenic 

populations, or complex selection effects in broadly polygenic populations. As a basic simulation 

system our model opens the opportunity to extend some of the investigations initiated by Paquin 

and Adams (Paquin and Adams 1983a, Paquin and Adams 1983b, Adams et al. 1985, Adams 

2004), Lenski et al. (Lenski 1989, Cooper et al. 2003, Elena and Lenski 2003), Rutgers et al. 

(1990) etc. As a system potentially capable of detecting cryptic genetic covariance and/or 

incorporating them at the trait parameter level (referring ahead to Chapter 4) our model may be 

able to offer worthwhile tests of otherwise difficult phenotypic effects. 
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If we may propose an extended case for application of our model we would refer to the 

interaction of inter- versus intra-population competition (as in Clark 2010), in a theoretical 

framework or even in vitro with polygenic populations and quantitative-differential genetic 

analysis of the survivors. 
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Tables 

Table 3-1. Yeast Characterization Nutrient Resource Supplies. 

Mode C, g L-1 N, g L-1

Carbon Step 

0.75 

0.064 
0.375 
0.1875 
0.09375

   

Nitrogen Step 1.5 

0.032 
0.016 
0.008 
0.004 
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Table 3-2. Typical Yeast Strain Characterization Data. 
Vial #: for record; Flask vol.: measured volume of culture from chemostat, mL to 0.5; C: carbon 
resource concentration, g L-1; N: nitrogen resource concentration, g L-1; Vial Net: culture 
biomass, mg to 0.005; mg/ml: culture density, mg mL-1; mean: mean of culture densities; σ2: 
standard deviation of culture densities; Outlier: culture density excluded by Dean-Dixon outlier 
test (as in Lohninger 2009), n=4, α=0.05. 

Vial # Flask vol. C N Vial Net mg/ml mean σ2 Outlier
601 42.0 1.5 0.032 21.670 0.5160    
602 45.0 1.5 0.032 12.905    0.2868 
603 41.5 1.5 0.032 21.845 0.5264    
604 42.5 1.5 0.032 17.785 0.4185 0.4869 0.0486  
605 36.0 1.5 0.016 6.020 0.1672    
606 39.0 1.5 0.016 7.365 0.1888    
607 43.0 1.5 0.016 9.070 0.2109    
608 44.5 1.5 0.016 8.085 0.1817 0.1872 0.0158  
609 40.0 1.5 0.008 4.215 0.1054    
610 43.0 1.5 0.008 2.755 0.0641    
611 41.0 1.5 0.008 1.460 0.0356    
612 44.5 1.5 0.008 3.280 0.0737 0.0697 0.0249  
613 38.5 1.5 0.004 1.915 0.0497    
614 41.5 1.5 0.004 1.325 0.0319    
615 41.0 1.5 0.004 2.565 0.0626    
616 42.5 1.5 0.004 0.970 0.0228 0.0418 0.0154  
617 41.5 0.75 0.064 20.385 0.4912    
618 36.0 0.75 0.064 15.620 0.4339    
619 33.0 0.75 0.064 13.340 0.4042    
620 43.0 0.75 0.064 16.760 0.3898 0.4298 0.0389  
621 39.5 0.375 0.064 13.580    0.3438 
622 45.0 0.375 0.064 13.505 0.3001    
623 39.0 0.375 0.064 11.665 0.2991    
624 42.0 0.375 0.064 12.520 0.2981 0.2991 0.0008  
625 47.0 0.1875 0.064 8.555 0.1820    
626 41.5 0.1875 0.064 7.575 0.1825    
627 46.0 0.1875 0.064 8.145 0.1771    
628 41.5 0.1875 0.064 6.905 0.1664 0.1770 0.0065  
629 45.0 0.09375 0.064 4.955 0.1101    
630 38.0 0.09375 0.064 0.955 0.0251    
631 43.5 0.09375 0.064 4.380 0.1007    
632 43.0 0.09375 0.064 2.070 0.0481 0.0710 0.0355  
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Table 3-3. Yeast Strains Growth Response Parameters Summary. 
Population: population/ strain/ isolate name; RK: maximum capable intrinsic growth rate; C1C: 
carbon half-saturation constant; C1N: nitrogen half-saturation constant; C:N: ratio of half-
saturation constants, alias dual-limiting ratio, slope of Tilman’s OPL (Optimum Proportion 
Line); !R2: Adjusted R2 (correlation) of RK, C1C and C1N; SE XX: standard error of RK, C1C or 
C1N; Msd C:N: Monte Carlo standard deviation of C:N. 

Population RK SE RK C1C SE C1C C1N SE C1N !R2 C:N Msd C:N
MRG-2 0.834 0.0544 0.210 0.0379 0.0130 0.00214 0.946 16.15 4.27 
MRG-2N 0.845 0.0430 0.223 0.0310 0.0154 0.00185 0.971 14.48 2.72 
MRG-8 0.860 0.0358 0.216 0.0234 0.0142 0.00135 0.982 15.21 2.36 
MRG-8N 0.929 0.0461 0.232 0.0303 0.0150 0.00173 0.974 15.47 2.67 
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Table 3-4. Yeast Strains Growth Response Parameters Comparison. 
Population: population/ strain/ isolate name; RK: maximum capable intrinsic growth rate; C1C: carbon half-saturation constant; C1N: 
nitrogen half-saturation constant; C:N: ratio of half-saturation constants, alias dual-limiting ratio, slope of Tilman’s OPL (Optimum 
Proportion Line); Lo XX & Hi XX: high and low values of RK, C1C and C1N 95% confidence interval; MLo C:N & MLo C:N: high 
and low values of C:N Monte Carlo 95% confidence interval. The table is arranged to place the tested pairs in adjacent rows. The 
shaded cells call out comparisons which are significantly different by 95% confidence intervals. Note that three of the C:N ratio pairs 
show significant difference although none of the response parameter pairs do so. 

Population RK Lo RK Hi RK C1C Lo C1C Hi C1C C1N Lo C1N Hi C1N C:N 
MLo 
C:N 

MHi 
C:N 

MRG-2 0.834 0.722 0.945 0.210 0.133 0.288 0.0130 0.00865 0.0174 16.15 15.89 16.42 
MRG-2N 0.845 0.757 0.934 0.223 0.159 0.286 0.0154 0.0116 0.0192 14.48 14.31 14.65 
             
MRG-2 0.834 0.722 0.945 0.210 0.133 0.288 0.0130 0.00865 0.0174 16.15 15.89 16.42 
MRG-8N 0.929 0.834 1.023 0.232 0.170 0.294 0.0150 0.0115 0.0186 15.47 15.30 15.63 
             
MRG-8 0.860 0.822 0.9695 0.216 0.169 0.264 0.0142 0.0114 0.0169 15.21 15.07 15.35 
MRG-2N 0.845 0.757 0.934 0.223 0.159 0.286 0.0154 0.0116 0.0192 14.48 14.31 14.65 
             
MRG-8 0.860 0.822 0.9695 0.216 0.169 0.264 0.0142 0.0114 0.0169 15.21 15.07 15.35 
MRG-8N 0.929 0.834 1.023 0.232 0.170 0.294 0.0150 0.0115 0.0186 15.47 15.30 15.63 
             
MRG-2 0.834 0.722 0.945 0.210 0.133 0.288 0.0130 0.00865 0.0174 16.15 15.89 16.42 
MRG-8 0.860 0.822 0.9695 0.216 0.169 0.264 0.0142 0.0114 0.0169 15.21 15.07 15.35 
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Table 3-5. Yeast Strain MRG-2 Complete Response Parameters Data. 
AdjustedRSquared 

0.946367 

ANOVATable 

 DF SS MS 
Model 3 2.03212 0.677373 
Error 28 0.103453 0.00369475
Uncorrected Total 31 2.13557  
Corrected Total 30 0.751379  
 

ParameterConfidenceIntervalTable, α=0.05 

 Estimate Standard Error Confidence Interval  
RK 0.833635 0.0544411 0.722117 0.945152 
C1C 0.210322 0.0379248 0.132637 0.288008 
C1N 0.0130414 0.00214042 0.00865691 0.0174258
 

ParameterTable 

 Estimate Standard Error t Statistic P-Value 
RK 0.833635 0.0544411 15.3126 3.89246×10-15
C1C 0.210322 0.0379248 5.54577 6.25477×10-6 
C1N 0.0130414 0.00214042 6.0929 1.42587×10-6 
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Table 3-6. Yeast Strain MRG-2N Complete Response Parameters Data. 
AdjustedRSquared 

0.971143 

ANOVATable 

 DF SS MS 
Model 3 1.99109 0.663697 
Error 28 0.0532858 0.00190306
Uncorrected Total 31 2.04438  
Corrected Total 30 0.734808  
 

ParameterConfidenceIntervalTable, α=0.05 

 Estimate Standard 
Error 

Confidence 
Interval 

 

RK 0.84548 0.0430188 0.75736 0.933601 
C1C 0.222601 0.0309664 0.159169 0.286033 
C1N 0.0153732 0.00184946 0.0115848 0.0191617 
 

ParameterTable 

 Estimate Standard Error t Statistic P-Value 
RK 0.84548 0.0430188 19.6537 6.41057×10-18
C1C 0.222601 0.0309664 7.18846 7.99383×10-8 
C1N 0.0153732 0.00184946 8.31228 4.81046×10-9 
 



 

 67 

Table 3-7. Yeast Strain MRG-8 Complete Response Parameters Data. 
AdjustedRSquared 

0.982131 

ANOVATable 

 DF SS MS 
Model 3 2.39956 0.799853 
Error 28 0.039363 0.00140582
Uncorrected Total 31 2.43892  
Corrected Total 30 0.80565  
 

ParameterConfidenceIntervalTable, α=0.05 

 Estimate Standard Error Confidence Interval  
RK 0.895798 0.0358265 0.82241 0.969185 
C1C 0.216459 0.0233999 0.168526 0.264391 
C1N 0.0141549 0.00134917 0.0113912 0.0169185
 

ParameterTable 

 Estimate Standard Error t Statistic P-Value 
RK 0.895798 0.0358265 25.0038 1.07902×10-20
C1C 0.216459 0.0233999 9.25043 5.22192×10-10
C1N 0.0141549 0.00134917 10.4915 3.30222×10-11
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Table 3-8. Yeast Strain MRG-8N Complete Response Parameters Data. 
AdjustedRSquared 

0.974457 

ANOVATable 

 DF SS MS 
Model 3 2.48598 0.828659 
Error 28 0.0587085 0.00209673
Uncorrected Total 31 2.54469  
Corrected Total 30 0.853847  
 

ParameterConfidenceIntervalTable, α=0.05 

 Estimate Standard Error Confidence Interval  
RK 0.928554 0.0461443 0.834031 1.02308 
C1C 0.232111 0.0302732 0.170099 0.294122 
C1N 0.0150399 0.00173464 0.0114866 0.0185931
 

ParameterTable 

 Estimate Standard Error t Statistic P-Value 
RK 0.928554 0.0461443 20.1228 3.45471×10-18
C1C 0.232111 0.0302732 7.66721 2.36768×10-8 
C1N 0.0150399 0.00173464 8.67033 2.03323×10-9 
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Table 3-9. Results of Competitive Qualitative Outcomes. 
Two Replicates at Four Resource Competition Points for each of Four Strain Pairings 
[C]: carbon resource concentration, g L-1; [N]: nitrogen resource concentration, g L-1; Str Y: competing strain Y; Rrel Y: predicted 
realized growth rate of Y, Str Z: competing strain Z; Rrel Z: predicted realized growth rate of Z; ΔR: difference of predicted realized 
growth rates, RrelY-RrelZ; ?Y: visual assessment of growth on YPD plate; ?YN: visual assessment of growth on YPD+nourseothricin 
plate; 1 Win: winning strain per pair; C Win: consensus winning strain; Pred: predicted winning strain by ΔR; Conf: Confirmation 
“Y”, Weak Confirmation “W” or Contradiction “N” of Pred. Out of 16 competitive pairs our prediction was Confirmed 10 times, 
Weakly Confirmed 3 times and Contradicted 3 times. 

[C] [N] Str Y Rrel Y Str Z Rrel Z ΔR ?Y ?YN 1 Win C Win Pred Conf
0.2 0.01 2 0.363 2N 0.333 0.0299 ++ <++ 2 2 2 Y 
0.2 0.01 2 0.363 2N 0.333 0.0299 ++ <++ ?2    
1.2 0.01 2 0.363 2N 0.333 0.0299 + <+ 2 2 2 Y 
1.2 0.01 2 0.363 2N 0.333 0.0299 + <+ ?2    
0.2 0.1 2 0.407 2N 0.400 0.0073 ++ ++ 2N ? ?2 W 
0.2 0.1 2 0.407 2N 0.400 0.0073 ++ <++ ?2    
1.2 0.1 2 0.710 2N 0.713 -0.0028 ++ <++ ? ? ? Y 
1.2 0.1 2 0.710 2N 0.713 -0.0028 ++ <++ ?    
0.3 0.025 2 0.491 8N 0.524 -0.0333 ++? +? ?8N 8N 8N Y 
0.3 0.025 2 0.491 8N 0.524 -0.0333 ++ ++ 8N    
1.2 0.025 2 0.549 8N 0.581 -0.0319 ++ nil 2 ? 8N N 
1.2 0.025 2 0.549 8N 0.581 -0.0319 + <+ ?8N    
0.3 0.1 2 0.491 8N 0.524 -0.0333 ++ + ?8N 8N 8N Y 
0.3 0.1 2 0.491 8N 0.524 -0.0333 ++ + ?8N    
1.2 0.1 2 0.710 8N 0.778 -0.0687 ++ + ?8N 8N 8N Y 
1.2 0.1 2 0.710 8N 0.778 -0.0687 ++ + ?8N    
0.3 0.025 8 0.521 2N 0.485 0.0362 <++ <+ ?8 8 8 Y 
0.3 0.025 8 0.521 2N 0.485 0.0362 ++ + ?8    
1.2 0.025 8 0.571 2N 0.523 0.0485 + <+ ?8 8 8 Y 
1.2 0.025 8 0.571 2N 0.523 0.0485 ++ + ?8    
0.3 0.1 8 0.521 2N 0.485 0.0362 ++ + ?8 8 8 Y 
0.3 0.1 8 0.521 2N 0.485 0.0362 + <+ ?8    
1.2 0.1 8 0.759 2N 0.713 0.0467 ++ <+ ?8 8 8 Y 
1.2  8 0.000 2N 0.000 0.0000 ++ <+ ?8    
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[C] [N] Str Y Rrel Y Str Z Rrel Z ΔR ?Y ?YN 1 Win C Win Pred Conf
0.2 0.01 8 0.370 8N 0.372 -0.0014 + triv 8 8 ? N 
0.2 0.01 8 0.370 8N 0.372 -0.0014 ++ triv 8    
1.2 0.01 8 0.370 8N 0.372 -0.0014 ++ + ? ?8 ? W 
1.2 0.01 8 0.370 8N 0.372 -0.0014 ++ <+ 8    
0.2 0.1 8 0.431 8N 0.430 0.0007 ++ triv 8 8 ? N 
0.2 0.1 8 0.431 8N 0.430 0.0007 ++ triv 8    
1.2 0.1 8 0.759 8N 0.778 -0.0192 ++ <++ 8N 8N ?8N W 
1.2 0.1 8 0.759 8N 0.778 -0.0192 ++ <++ 8N    
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Table 3-10. Results of Competitive Quantitative Outcomes. 
[C]: carbon resource concentration, g L-1; [N]: nitrogen resource concentration, g L-1; Str Y: competing strain Y; Rrel Y: predicted 
realized growth rate of Y; Str Z: competing strain Z; Rrel Z: predicted realized growth rate of Z; Pred: predicted winning strain by 
ΔR; Win by Count: winner by consensus of 8 pair-wise colony counts; Diff: mean pair-wise difference of 8 colony counts; σ2 Diff: 
standard deviation of difference; CI 0.95: P=0.95 confidence interval of Diff; Diff + CI: mean difference plus CI; Diff - CI: mean 
difference minus CI; Win by CI: winner or none by CI crossing 1. All four trials of eight replicates made correct predictions of 
dominance or not by both consensus of colony counts and computed confidence intervals. 

[C] [N] 
Str 
Y 

Rrel 
Y 

Str 
Z 

Rrel 
Z 

ΔR Pred 
Win by 
Count 

Diff 
σ2 
Diff 

CI 
0.95 

Diff 
+ CI 

Diff - 
CI 

Win by CI 

1.2 0.08 2 0.710 8N 0.778 -0.0687 8N 8N 2.04 1.37 0.949 2.99 1.09 no cross, 8N 
1.2 0.08 8 0.759 2N 0.709 0.0507 8 8 0.693 0.190 0.132 0.825 0.561 no cross, 8 
0.7 0.08 2 0.642 2N 0.641 0.000693 ? ? 0.845 0.483 0.334 1.18 0.511 cross, no win 
0.2 0.01 8 0.370 8N 0.372 -0.00135 ? ? 1.21 0.942 0.653 1.86 0.558 cross, no win 
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Chapter 4, Experimental Evidence that Microevolution Reshapes the Ecological Niche 

Summary 

We applied our model, previously developed in Chapter 2 and tested in Chapter 3, to 

populations of Saccharomyces cerevisiae evolved from a single, isogenic, wild-type ancestor 

under complementary regimes of high and low carbon:nitrogen supply ratio. The evolving 

populations were grown under the complementary stress regimes for approx. 400 generations 

and then subjected to our Characterization Protocol, as used in Chapter 3. We found clear shifts 

as expected in descendants’ growth response trait parameters for the low-supply resource in each 

regime and not-intuitively-expected shifts in other trait parameters including one counter-

intuitive shift (compare to Adams et al. 1985, Zeyl 2005). We applied our predictive model to 

descendant versus ancestor and descendant versus descendant cases and found areas of predicted 

displacement, or not, robustly corresponding to what we expected from the shifted response trait 

parameters. 

Introduction 

We have previously demonstrated in Chapter 2 that our predictive formulation of 

population growth response, across a Cartesian space of two resource supplies in the sense of a 

Hutchinsonian n-dimensional volume niche (1957) or a resource niche (Chase and Leibold 

2003), is a valid three-dimensional extension from Tilman’s Graphical-Mechanistic Approach 

(Tilman 1980). It successfully predicts growth responses of hypothetical populations (as an 

ecological phenomenon) from resource supply concentrations (as ecological environmental 
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phenomena) by organismal traits of per-resource growth response and maximum capable growth 

response. It is uniquely capable of detecting and quantifying intra-resource trade-offs of growth 

response within a single population or between competing populations and inter-resource 

tradeoffs between competing populations. 

We further demonstrated in Chapter 3 that our formulation can successfully predict the 

expected outcome or uncertainty of competition between live populations in a shared 

environment of varying resource supplies. 

The purpose of the present work, this chapter, is to predict the outcome of competition 

and investigate other effects between populations which have evolved, from a common ancestor, 

to adapt to complementarily severely restricted supplies (alias shifted resource ratios) of two 

essential resources. To achieve this objective we first seeded aliquots of an isogenic population 

of Saccharomyces cerevisiae to multiple parallel replicates of “low-carbon” and “low-nitrogen” 

nutrient resource supplies and grew them in constant-flow, chemostat mode to a point where they 

were expected to show distinct evolutionary adaptation to the two environments—while all 

resources except the “low” resource were in excess supply. We then applied our Characterization 

Protocol to determine the organismal traits of per-resource (C and N) growth response and the 

population-common organismal trait of maximum capable growth response for each population. 

We had no method to directly test the evolved strains against each other—they were 

indistinguishable by methods available to us—and the degree of change in trait parameters, 

particularly maximum capable growth response, precluded competition against either of our 

distinguishable, antibiotic-resistant isolates 

Methods 

See also Appendix A, Mathematics 
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Our experimental ancestral population for this chapter was an isogenic strain of wild-type 

Saccharomyces cerevisiae, a unicellular yeast found widely in the natural and domesticated 

environment—drawn from the same source populations as in Chapter 3, see also Appendix B. 

For the purposes of our work, we considered an isogenic strain a population and although an 

oversimplification in some respects it enabled unambiguous identification of niche requirements, 

competitive outcomes and adaptive responses in the evolved populations. 

For the work presented here we selected one of our wild-type, diploid isolates, referred to 

as MRG-2, (see Appendix B, Yeast Strains) as our ancestral population. Isolates master cultures 

were stored at −80 °C with 1.7 mL of dense culture and 0.3 mL glycerol (15% v/v) in 2 mL 

Eppendorf tubes; as is standard practice for S. cerevisiae. 

Propagation of ancestral strain 

The MRG-2 isolate was sub-sampled from cryo-storage into standard media for culturing 

S. cerevisiae. Specifically, they were inoculated into YPD Broth (Y1375, Sigma-Aldrich, St. 

Louis, MO, USA), which at 50 g L-1 comprises 20 g L-1 bacteriological grade peptone, 10 g L-1 

yeast extract, and 20 g L-1 glucose. They were then grown at 30 °C for 48 h in batch culture, 

prior to inoculation into the chemostats, where they could be grown continuously in log-phase 

under tightly-controlled resource supply rates. 

Our chemostats (Figure 3-1, page 72) comprise “Multitron II” incubators (Infors HT, 

Bottmingen, CH) with DasGIP glassware (DasGIP AG, Jülich, DE) and “200 Series” pumps 

(Watson-Marlow, Wilmington, MA, USA). Each of the two chemostats maintained 16, 250 mL 

culture flasks concurrently at 30 °C, with gyratory agitation at 105 rpm and 25 mm throw, 10.7 

mL h-1 feed rate, 50±2 mL working culture volumes, and 4.69 h (0.213 h-1) culture turnover 

times. Each flask had separate nutrient medium supply, waste removal, and air supply. Waste 
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removal was siphoned at 3 times the rate of media supply, ensuring that culture volumes were 

maintained at 50 mL and that there was no back-flow of waste. Air supply was regulated to 0.5 L 

min-1 and dried, de-oiled by expansion and carbon block adsorption, and filtered to 0.2 µm. The 

outlet filter on each flask maintained a positive pressure (≈0.1 ATM) within each flask, further 

preventing microbial contamination of the cultures. 

Chemostat culture flasks were inoculated from the starter cultures and S. cerevisiae 

populations were grown overnight in batch culture conditions, with non-limiting nutrients. The 

medium (CYN5501 YNB w/o AA, w/o Ammonium phosphate, w/o Potassium Dihydrogen 

Phosphate and w/o Inositol; ForMedium Ltd, Norwich, UK) for these overnight cultures included 

10 g L-1 D-glucose monohydrate C6H12O6•H2O (49159; Sigma-Aldrich, St. Louis, MO, USA), 5 

g L-1 anhydrous (NH4)2SO4 (A4418; Sigma-Aldrich, St. Louis, MO, USA), and 1 g L-1 

anhydrous KH2PO4 (P9791; Sigma-Aldrich, St. Louis, MO, USA). This gave concentrations for 

C, N and P of 4.00 g L-1 C, 1.06 g L-1 N, 0.228 g L-1 P and media was adjusted to pH 6.0±0.1 

using NaOH. We established in preliminary experiments and development of our 

Characterization Protocol that culture densities in the chemostat with this media were equivalent 

at the stated and double concentrations of C, N and P, confirming the formulation was not 

growth-limiting. To invoke resource limitation we then fed the chemostat cultures with the same 

base medium and phosphorus but with reduced concentration of C or N. 

Evolution environment 

The reference, “rich” formulation of our experimental culture medium provided 3.20 g L-

1 carbon, 1.00 g L-1 nitrogen, 0.200 g L-1 phosphorus and the manufacturer’s recommended 

concentration of “YNB” base. The phosphorus and base concentrations were held at these levels 

for the entire evolution process. These “rich” levels of carbon and nitrogen supply were shown 
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by earlier testing to be non-interfering with differential limitation of our experimental isolates. 

The carbon supply concentration of 3.20 g L-1 was also low enough that it would not drive the 

experimental populations into fermentative, anaerobic respiration which is generally considered 

to occur spontaneously at carbon concentrations in excess of 8 g L-1. 

The “low C” evolution medium provided 0.0550 g L-1 C and 0.0470 g L-1 N, a C:N ratio 

of 1.17. The “low N” medium provided 1.80 g L-1 C and 0.00290 g L-1 N, a C:N ratio of 621. 

The dual-limiting or “optimum” C:N ratio for the MRG-2 isolate, as determined in the work for 

Chapter 3, was 16.1. The C:N ratio in the “low N” environment was thus 38.5 times optimum 

and in the “low C” environment it was 0.076 or 1/13.8 times optimum. The ratio of the C:N 

ratios was 530 or 1/0.00189. 

The carbon supply, 1.80 g L-1, to the “Low N” environment would have been limiting 

with unlimited nitrogen and the nitrogen supply, 0.0470 g L-1, to the “Low C” environment 

would have been limiting with unlimited carbon. 

We ran sixteen chemostat cultures, eight “low N” or “high C:N” and eight “low C” or 

“low C:N” for 79 days, 404 generations at 4.69 h (0.213 h-1) turnover. Culture samples were 

aseptically extracted at several checkpoints and held in our standard cryo-storage regime. When 

we encountered culture contamination problems at three points in the 79 day process we were 

able to replace-restart the contaminated cultures with saved cryo-samples. Because of culture 

time lost in these restarts, not all sixteen cultures ran the full 79 days. We had final evolved 

cultures ranging in age from 48 to 79 days, 246 to 404 generations. 

While time did not permit testing every checkpoint culture for contamination as it was 

saved, the cultures used for restart and all of the terminal cultures were tested. We used a simple 

controlled process of plating our cultures of interest and four obviously, and apparently 
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differently, contaminated cultures saved for the purpose. Each culture was plated on standard 

YPD Broth (Y1375, Sigma-Aldrich, St. Louis, MO, USA) in agar medium and on a 50-50 mix of 

the same YPD and Mueller Hinton Broth (70192, Sigma-Aldrich, St. Louis, MO, USA) in agar 

medium, the latter being both known and observed to provide sensitive detection of “non-

fastidious” yeasts and bacteria. Cultures whose plates of both media showed cerevisiae-typical 

growth, and nothing else, after 48 h incubation at 30 °C were considered to be uncontaminated 

and usable. 

At the end of the evolution runs, we had eight “low N” cultures, of 56 and 67 days, 287 

and 343 generations. We had eight “low C” cultures, of 48 and 79 days, 246 and 404 

generations. We checked the density of each terminal culture and selected the two that showed 

the highest density in its evolutionary stress medium for Characterization and comparison with 

our growth response model. These were Desc-01 “low N” and Desc-13 “low C”. 

We subjected each of the selected terminal cultures, Desc-01 and Desc-13, to our 

Characterization Protocol as we had previously done with the ancestor MRG-2. (See Chapter 3.) 

We then applied our growth response differential analysis to the three characterized 

cultures, MRG-2 “Ancestor”, Desc-01 “Low N, High C:N Descendant” and Desc-13 “Low C, 

Low C:N Descendant”, looking for any evidence of nutrient response “tradeoff” or other change 

of organismal response traits. 

Results 

Trait Parameters Comparison 

Growth response parameters for the ancestor and descendants are shown in Table 4-1 and 

the OPLs (Optimum Proportion Lines) of the three populations are plotted in Figure 4-1. 
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At this point, even before we look a the competition-prediction plots, there are several 

interesting changes to notice comparing each evolved population to the common ancestor: 

• Both evolved populations increased their maximum capable growth response trait 

parameter, RK, in addition to changing their per-resource responses. 

• The Low-C evolved population improved (reduced) its half-saturation carbon response 

trait parameter, C1C, and degraded (increased) its half-saturation nitrogen response trait 

parameter, C1N. These two shifts combined to give a reduced optimum C:N ratio. 

Together, the “opposite” changes of C1C and C1N may be superficially intuitive as a 

“resource response trade-off” for “adaptation to low carbon”. 

• The Low-N evolved population improved (reduced) its half-saturation nitrogen response 

trait parameter, C1N, and also improved (reduced) its half-saturation carbon response trait 

parameter, C1C. These two shifts combined to give a reduced optimum C:N ratio. The 

improved nitrogen response is superficially intuitive for “adaptation to low nitrogen” but 

the improved carbon response and the reduced optimum C:N ratio are definitely not. 

The occurrence of increased RK in both of our evolved strains raises the possibility that it 

is a “domestication” effect related to the experimental environment. In the evolutionary 

environments, low C and low N, with all other resources in excess supply it is difficult to 

propose that this change is a response to anything other than the temperature (30 °C), the 

continuously aerobic environment (forced air flow) or possibly pH (held at 6.0 ±0.1). Certainly, 

something like a transposition or epigenomic change that had been held at bay in the wild 

environment may have occurred in our environment. This situation could be investigated by 

putting all sixteen of our evolved strains through the Characterization Protocol to look for an 

equivalent increase of RK in some or all of them. It could also be tested by growing a number of 



 

 82 

replicates of the ancestral, MRG-2, strain in our environment and rich base medium, without the 

C and N limitations, for several hundred generations to determine whether it appears separate 

from the low C- and low N-related mutations. 

Further, comparing the evolved descendants to each other, we also find: 

• The Low-N descendant improved (reduced) its half-saturation carbon response trait 

parameter slightly more than did the Low-C descendant, a definitely non-intuitive result. 

• The Low-N descendant does have a higher optimum C:N ratio than the low-C 

descendant, as intuitively expected, but being lower than the ancestor’s optimum C:N 

ratio it is intuitively inexplicable. 

Table 4-2 shows all of the trait parameters, RK, C1C, C1N, that we measured and the 

optimum C:N ratio computed from the parameters, for Ancestor and Descendants with 95% 

confidence intervals. Full statistics from the curve-fitting program are shown in Table 4-3 

through Table 4-5. It is interesting to compare the “no significant difference” inference, except 

for C:N ratio, to the expected results of competition shown in Figure 4-1 through Figure 4-4 and 

the Results section of Chapter 3. What we infer here (as discussed in Chapter 3, Results) is 

validation of a point long argued that “Statistical significance does not show ecological 

significance—and vice-versa.” 

As a specific model for microbial evolution in vitro, these changes are strong indication 

that something non-intuitive, even counter-intuitive, is occurring genetically to set the new 

response trait parameters. These results are comparable to those in Zeyl (2004) or Adams et al. 

(1985) although that work did not follow through to an equivalent of our complete 

Characterization Protocol. 
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As a simulation model for general “polygenic species” evolution or selection in natura, 

these changes indicate that unexpected trait parameter changes, and underlying genetic effects, 

can be expected in genetically “narrow” populations (e.g. Barrett and Bell 2006) and that 

unexpected sub-population selection can be expected in genetically “broad” populations (see 

especially Clark et al. 2007, Clark 2010)—such as the population that would be formed simply 

by mixing several of the Goddard laboratory strains (see Appendix B, Yeast Strains) from which 

we selected our experimental populations. 

Because our evolution runs were “sex free” (i.e., the populations were kept, so far as we 

can tell, out of sexual-reproduction mode) we cannot say with certainty what would have 

happened if genetic recombination had occurred along with our measured response trait changes. 

It is accepted as safe to say that “the outcome might have been different” but any specific 

assertion is only speculative. What would be informative, procedurally straightforward, but very 

time-consuming would be to take each of our terminal populations, mix them with each other or 

the ancestor, drive them through a sexual-reproduction cycle to permit back-cross and 

recombination, then separate and characterize the resulting genetically recombined populations 

(compare to Paquin and Adams 1983a, Travisano et al. 1995, Gerrish and Lenski 1998). The 

result of this Characterization, comparison and prediction would be particularly interesting in 

comparison to Zeyl (2005) who back-crossed S. cerevisiae examining mutation number and size 

but not particularly looking at competitive ability of the crosses and definitely not looking at 

resource-response traits in our sense. 

Results of the Characterization runs, curve-fitted growth-response parameters, for our 

three comparable strains are shown in Table 4-1. 
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Based on the curve-fitted growth-response parameters, Figure 4-2 through Figure 4-4 

show selected plots of the modeled relative growth response of Ancestor versus High C:N 

Descendant; Ancestor versus Low C:N Descendant; and High versus Low C:N Descendants. 

Response Plot Comparisons 

Following Characterization of the Desc-01 (Low N) and Desc-13 (Low C) evolved 

strains, and using the Characterization of the MRG-2 (ancestor) from Chapter 3, we ran our 

relative-growth plot Mathematica® (Wolfram Research 2008) program to compare predicted 

growth responses strain pairings across a Hutchinsonian-requirements resource space. We used 

all three possible pairings of the strains (MRG-2 versus Desc-01, MRG-2 versus Desc-13, and 

Desc-01 versus Desc-13). We do not show all possible plot forms from our program for each 

pairing but only those which we believe provide the most interesting or obvious indications. 

Figure 4-2 and Figure 4-3 compare MRG-2 to the two evolved populations, Desc-01 and 

Desc-13 respectively. In both comparisons the increase in the maximum capable growth 

response trait RK generally overrides the changes in the per-resource response trait parameters 

C1C and C1N. The Low-C descendant, D-13, does show, however, a broader area of potential 

coexistence, subject to stochastic effects, at low nitrogen concentrations. The maximum growth 

response advantage shown is 0.0516 for Desc-01 and 0.0500 for Desc-13, throughout the plotted 

niche range of 0 to 3.0 G L-1 carbon and 0 to 0.2 g L-1 nitrogen. 

Figure 4-4 compares the two descendant populations, Desc-01 Low-N to Desc-13 Low-

C. The dual surface plot shows the generally lower dome tent of Desc-13 penetrating (and 

dominating) Desc-01 in a patch “left of” the OPL ridge as the plot is viewed. Note, however that 

the maximum difference in realized growth response, R, is only 0.0113 throughout the plotted 

range—highly subject to stochastic effects in any shared environment. 
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Phenomenological Pleiotropy 

The term pleiotropy, properly used, applies to the field of genetics and simply means that 

one gene (or locus) affects more than one phenotypic trait. Most often the base term is used to 

mean antagonistic pleiotropy, where one trait is “improved” while another is “degraded”. The 

complement of antagonistic pleiotropy then is synergistic pleiotropy, where two traits are 

“improved”. There is a problem, however, with the idea of “improved” or “degraded” because 

both refer to selection in a particular environment, usually the “present” or “principal 

experimental” environment—ignoring that a change in the current or experimental environment 

can completely reverse selection for “improved” versus “degraded”. We will use the term 

pleiotropy in the simple sense of two trait changes from apparently one genetic event. 

Since our work here did not attempt to look at specific genetic effects by genes or even 

by recognized loci, we prefer to use the term phenomenological pleiotropy for two (or more) 

identifiable, quantifiable trait changes which appear to have occurred at the same time. We do 

not attempt to distinguish among genes, loci and epigenetic phenomena nor among such things 

as dual effects from a single source, concurrent effects by linkage etc. 

The Desc-13, low-C evolved, population showed (see Table 4-1 and Table 4-2) an 

increase in its nitrogen half-saturation response trait parameter, C1N. Since an increase in either 

C1 response trait would decrease the realized growth rate, R, it would not pass competitive 

selection. It appears, therefor, that the increase, “degradation”, in C1N must have been in the 

same evolutionary step as “improvement” in at least one other trait parameter—which satisfies a 

phenomenological definition of pleiotropy, cf. (MacLean et al. 2004, Dudley et al. 2005, Cooper 

et al. 2007), Table 4-6 shows the several possible sequences of trait parameters evolutionary 
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change which could have coupled the increase in C1N with an offsetting change in one of the 

other trait parameters. We make the usual parsimony assumption of minimum required steps. 

Discussion 

Our primary purpose in this work was to apply our model—for which we can find no 

strong equivalent in the literature—of population competition on two resources to new 

populations evolved under complementary elevated and depressed C:N resource ratios to 

determine the outcome of two proposed ecological scenarios: 1) the evolved population occupies 

less than the range of the ancestor and, through some ecological or geophysical mechanism 

comes into competition with the ancestor in an arbitrary resource supply regime—not necessarily 

either the “original” or “forcing” regime; or 2) two evolved sub-populations come into 

competition with each other in an arbitrary resource supply regime. 

We saw in our work for Chapter 3 that supposedly minor interventions of a genome can 

produce phenotypic changes that are competitively significant and involve multiple growth-

response traits—in terms of expected displacement or coexistence a change in realized growth 

rate of as little as ± 0.02, operating over generations, can change the ecological outcome. The 

particular changes we saw in this work were more complex than what we saw before, typical of 

Zeyl (2005) contrasting Zeyl (2004) for our wild type strains. We would suspect, without having 

opportunity to characterize their step-wise cultures, that the serial-evolution experiments of 

Adams et al. (1985) showed apparent “reduced fitness” of successors because of genetic 

covariance operating on response to other than the one resource that was in deliberate low supply 

(see also Travisano et al. 1995, Cooper et al. 2003). 

As a case of a trait change being intuitively unexpected and ecologically potentially 

catastrophic for an evolved population we need only note the cryptic, antagonistic 
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phenomenological pleiotropy that occurred in Descendant 13 when an increase in its half-

saturation nitrogen response trait parameter, a decrease in its realized growth response to 

nitrogen, “hitch-hiked” on either an increase in its maximum capable growth response trait or a 

decrease in its half-saturation carbon response trait. This nitrogen response trait change was not 

under selection in the low-carbon evolutionary environment but could have severe and entirely 

unexpected counter-selective impact in another resource supply regime. 

In a sexually reproducing population with recombination etc. the adaptive and 

maladaptive elements of our pleiotropic covariance might have been either linked or 

independent. If the two elements were linked then the net advantage of the pair might have 

carried the maladaptive element through succeeding generations. If the two elements were not 

linked then the maladaptive element would be expected to fail selection and disappear from the 

population. The general case of linkage includes at least three possible syndromes: close 

positioning of independent genes between high-probability chromosomal crossover points; 

positioning of independent genes within a single transposable element; and the possibility that it 

was just one gene that engendered the two measurable effects. 

Our model, either the graphical-predictive component taken alone as for simulation of 

hypothetical evolutionary changes or the graphical-predictive and Characterization Protocol 

components taken together in an empirical environment, in vitro or in natura, is a new, unique 

extension of the family of Tilman-like approaches. We have a simplified formulation of the 

graphical-predictive core which fully incorporates asymptotic, saturating, non-linear growth 

response trait parameters. We have a graphical technique which applies the trait parameters and 

resource supply range to robustly predict growth response relationships across an entire 

Hutchinsonian n-dimensional space (1957) of resource supply, for a population’s requirements 
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niche as Chase and Leibold (2003) would call it. And we have a Characterization Protocol which 

can readily obtain response parameter traits from observed phenomena of resource supply and 

realized growth. 

Our model could readily be extended to deal with response to substitutable resources, 

with differing responses to the same elemental resource from different source substances. 

Our model could also be extended to deal with three resources such as the “big three” 

C:N:P. The Characterization Protocol which determines response trait parameters for one 

resource at a time could easily applied in this case and Our Mathematica® curve-fitting program 

could be extended to three resources. The predictive-graphical, plot-display component would 

need to be modified to deal with the three pair-wise resource interactions or could be made to 

generate shaded-filled three-dimensional displays similar to our shaded-plane displays. 

Other future work might be to sample an evolutionary sequence at finer intervals than we 

used for backstop purposes and determine more precisely when, in what sequence, the various 

selectively favorable mutations occurred and when, in what pairings, the phenomenological 

pleiotropic changes occurred. And a finer-grained genetic analysis of evolved populations with 

particular trait changes, by expression analysis or gene-reading, might shed good light on more 

or less commonly involved loci and modes of change. 

As in the Discussion of Chapter 3, we would again propose an extended case for 

application of our model in investigating the interaction of inter- versus intra-population 

competition (as in Clark 2010), in a theoretical framework or even in vitro with polygenic 

populations and quantitative-differential genetic analysis of the survivors. 
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Tables 

Table 4-1. Yeast Strains Growth Response Parameters Summary. 
Population: population/ strain/ isolate name; RK: maximum capable intrinsic growth rate; C1C: 
carbon half-saturation constant; C1N: nitrogen half- saturation constant; C:N: ratio of half-
saturation constants, alias dual-limiting ratio, slope of Tilman’s OPL (Optimum Proportion 
Line); !R2: Adjusted R2 (correlation) of RK, C1C and C1N; SE XX: standard error of RK, C1C or 
C1N; Msd C:N: Monte Carlo standard deviation of C:N. 

Population RK SE C1C SE C1N SE C:N stdev !R2 
MRG-2 0.834 0.0544 0.210 0.0379 0.0130 0.00214 16.15 4.27 0.946
Desc-01 0.868 0.0399 0.181 0.0238 0.0125 0.00146 14.48 2.65 0.976
Desc-13 0.871 0.0428 0.184 0.0262 0.0133 0.00168 13.83 2.76 0.971
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Table 4-2. Yeast Strains Growth Response Parameters Comparison. 
Population: population/ strain/ isolate name; RK: maximum capable intrinsic growth rate; C1C: carbon half-saturation constant; C1N: 
nitrogen half-saturation constant; C:N: ratio of half-saturation constants, alias dual-limiting ratio, slope of Tilman’s OPL (Optimum 
Proportion Line); Lo XX & Hi XX: high and low values of RK, C1C and C1N 95% confidence interval; MLo C:N & MLo C:N: high 
and low values of C:N Monte Carlo 95% confidence interval. The table is arranged to place the tested pairs in adjacent rows. The 
shaded cells call out comparisons which are significantly different by 95% confidence intervals. Note that all three of the C:N ratio 
pairs show significant difference although none of the response parameter pairs do so. 

Population RK Lo RK Hi RK C1C Lo C1C Hi C1C C1N Lo C1N Hi C1N C:N 
MLo 
C:N 

MHi 
C:N 

MRG-2 0.834 0.722 0.945 0.210 0.133 0.288 0.0130 0.00865 0.0174 16.15 15.89 16.42 
Desc-01 0.868 0.787 0.950 0.181 0.132 0.230 0.0125 0.00951 0.0155 14.48 14.31 14.65 
             
MRG-2 0.834 0.722 0.945 0.210 0.133 0.288 0.0130 0.00865 0.0174 16.15 15.89 16.42 
Desc-13 0.871 0.784 0.959 0.184 0.131 0.238 0.0133 0.00981 0.0167 13.83 13.66 14.01 
             
Desc-01 0.868 0.787 0.950 0.181 0.132 0.230 0.0125 0.00951 0.0155 14.48 14.31 14.65 
Desc-13 0.871 0.784 0.959 0.184 0.131 0.238 0.0133 0.00981 0.0167 13.83 13.66 14.01 
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Table 4-3. Yeast Strain MRG-2 (Ancestor) Complete Response Parameters Data. 
AdjustedRSquared 

0.946367 

ANOVATable 

 DF SS MS 
Model 3 2.03212 0.677373 
Error 28 0.103453 0.00369475
Uncorrected Total 31 2.13557  
Corrected Total 30 0.751379  
 

ParameterConfidenceIntervalTable, α=0.05 

 Estimate Standard Error Confidence Interval  
RK 0.833635 0.0544411 0.722117 0.945152 
C1C 0.210322 0.0379248 0.132637 0.288008 
C1N 0.0130414 0.00214042 0.00865691 0.0174258
 

ParameterTable 

 Estimate Standard Error t Statistic P-Value 
RK 0.833635 0.0544411 15.3126 3.89246×10-15
C1C 0.210322 0.0379248 5.54577 6.25477×10-6 
C1N 0.0130414 0.00214042 6.0929 1.42587×10-6 
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Table 4-4. Yeast Strain Descendant-01 Complete Response Parameters Data. 
AdjustedRSquared 

0.976033 

ANOVATable 

 DF SS MS 
Model 3 2.65693 0.885643 
Error 29 0.0589894 0.00203412
Uncorrected Total 32 2.71592  
Corrected Total 31 0.762527  
 

ParameterConfidenceIntervalTable, α=0.05 

 Estimate Standard Error Confidence Interval  
RK 0.86837 0.0398899 0.786786 0.949954 
C1C 0.181011 0.0237608 0.132415 0.229607 
C1N 0.0125035 0.00146227 0.0095128 0.0154942
 

ParameterTable 

 Estimate Standard Error t Statistic P-Value 
RK 0.86837 0.0398899 21.7692 1.63065×10-19
C1C 0.181011 0.0237608 7.61805 2.12556×10-8 
C1N 0.0125035 0.00146227 8.55073 2.02821×10-9 
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Table 4-5. Yeast Strain Descendant-13 Complete Response Parameters Data. 
AdjustedRSquared 

0.971345 

ANOVATable 

 DF SS MS 
Model 3 2.65681 0.885602 
Error 28 0.0705916 0.00252113
Uncorrected Total 31 2.7274  
Corrected Total 30 0.735571  
 

ParameterConfidenceIntervalTable, α=0.05 

 Estimate Standard Error Confidence Interval  
RK 0.871355 0.0427877 0.783708 0.959001 
C1C 0.184406 0.0262283 0.13068 0.238133 
C1N 0.0132597 0.00168252 0.00981317 0.0167061
 

ParameterTable 

 Estimate Standard Error t Statistic P-Value 
RK 0.871355 0.0427877 20.3646 2.52428×10-18
C1C 0.184406 0.0262283 7.03081 1.20052×10-7 
C1N 0.0132597 0.00168252 7.88083 1.38847×10-8 
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Table 4-6. Phenomenological Pleiotropy for Descendant-13. 
Possible Sequences Involving Cryptic Antagonistic Pleiotropy 
RK, C1C, C1N and R are the usual Monod symbols. Shaded cells indicate possible pairings of C1N 
with another parameter in a possible (cryptic antagonistic) pleiotropic step. Evolutionary 
selection is based on R (computed as in the low-C evolution medium where the strain evolved) 
which must always increase. A step with no increase in R would not pass selection. A step where 
C1N alone increased would cause a decrease in R and so would not pass selection. C1N must have 
increased at the same time some other trait parameter(s) changed to provide, together, an 
increase in R. Our parsimony assumption is that the number of steps is the minimum required for 
the total observed change.  

RK C1C C1N R 
0.834 0.210 0.0130 0.173
0.871 0.210 0.0130 0.181
0.871 0.184 0.0133 0.200
    
0.834 0.210 0.0130 0.173
0.871 0.210 0.0133 0.181
0.871 0.184 0.0133 0.200
    
0.834 0.210 0.0130 0.173
0.834 0.184 0.0130 0.192
0.871 0.184 0.0133 0.200
    
0.834 0.210 0.0130 0.173
0.834 0.184 0.0133 0.192
0.871 0.184 0.0133 0.200
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at -0.02<R<0.02 to bound the stochastically sensitive range) from which quantitative values of 
ΔR can be read. 
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Chapter 5, Conclusions 

Our conclusions from this work fall into three contexts: validity of the model itself as an 

experimental or investigative tool; implications of our model system for further in vitro research 

in ecological genetics; and implications of what we have found, or what we might find in further 

work, for ecological concerns in natura of continuing and expected environmental change. 

Validity 

We believe we have robustly tested and clearly supported the principal hypothesis of the 

present work: 

A population’s ecological niche is reshaped by evolution in response to changes in its 

ecological environment but trait changes which are adaptive under immediate selection may be 

accompanied by others which can be either adaptive or maladaptive in other environments. 

We have shown that the Hutchinsonian, ecological, requirements niches (Chase and 

Leibold 2003, Holt et al. 2005) of our evolved populations exhibited adaptive changes in 

obviously related single traits when subjected to environments of significantly non-optimum 

resource supply ratios. We have shown that, at the same time, traits not obviously related to the 

applied stress also changed in an adaptive direction (Travisano 1997). And we have further 

shown that, again at the same time, traits intuitively counter-related to the applied stress changed 

in a direction which would be maladaptive (Travisano et al. 1995, Vasi and Lenski 1999) in 

either the ancestral, normative environment or in credibly likely subsequent changed 

environments. 
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We detected these obvious, non-obvious and cryptic changes and were able to predict 

their likely effect on population competition by our new modeling approach which exhibits five 

particular attributes: 

• it is formulated to predict populations’ response relationships and likely competitive 

outcomes across an entire n-dimensional Hutchinsonian space of resource availability or 

other effects—as in the post-Hutchinson concept of the requirements niche; 

• it is formulated without regard to development over time and thus reduces the number of 

parameters required “external” or “internal” to the model; 

• it formulates populations’ response functions in terms of inherent, organismal traits, 

rather than in terms of only observed, demographic variables; 

• it is formulated in terms of individual populations’ responses from which competitive 

relationships may be determined, rather than in terms of demographic relationships 

between populations; and 

• it is formulated in a way which can detect the effects of underlying subtle, cryptic and 

non-intuitive genetic covariance. 

Our model system also includes a Characterization Protocol for determining experimental 

populations’ response traits, both the common inherent growth response limit and per-resource 

growth responses for use in our formulation. 

Finally, our model system includes a display, plotting, component which represents 

populations’ responses in readily interpreted qualitative (for insight) and quantitative (for 

prediction) form. It represents a Hutchinson-like two-dimensional (cf. n-dimensional 

(Hutchinson 1957)) Cartesian resource supply space with a third dimension of populations’ 

individual or relative responses. While our formulation can be mathematically extended to 
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concurrently deal with more than two resources, the difficulties of simultaneously displaying or 

perceiving more than three graphic dimensions would require recasting our plot forms to some 

dimensionally merged or selected-projected form. 

The details we observed in our evolved populations, trait changes from their common 

ancestor, covered the range of possibilities addressed in our principal hypothesis. Both the 

quantitative and qualitative results of our model showed that it can be applied to experimental 

populations in vitro for both prediction and insight in investigation of population-organismal 

response trait parameters and trait changes in evolution or selection scenarios. The qualitative 

results of our model show that it can be applied to hypothesized scenarios in natura as well as in 

vitro. 

Research 

In the context of further in vitro research in ecological genetics (or genetic ecology), we 

see lines of research where our model may be applied like that reported with E. coli (Travisano et 

al. 1995, Xu et al. 1996, Travisano 1997, Papadopoulos et al. 1999, Cooper et al. 2003, Remold 

and Lenski 2004, Perfeito et al. 2007), with S. cerevisiae (Adams et al. 1985, Chesson 2000b, 

Szafraniec et al. 2001, Boer et al. 2003, Andalis et al. 2004, Wu et al. 2004, Zeyl 2005, 

Zhenqlong et al. 2005, Cooper et al. 2007, Louis 2009, Hall and Joseph 2010) and with rotifers 

(Ciros-Perez et al. 2001, Fussmann et al. 2005). All of this work deals with finding correlation 

between a population’s gene pool (often isogenic at the beginning) and population competitive 

performance or metabolic response, usually after evolution or genetic manipulation. 

While there are, now, fast techniques such as micro-arrays, rapid sequencing or rapid 

sub-sequence identification for distinguishing genomic changes in experimental populations 

there has been no fast, reliable method employed to date for fast characterization of a population 
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on multiple resource response traits or for determination of competitive outcomes, especially 

across resource space. 

We believe that our Characterization Protocol, model and graphical presentation offer (as 

a suite) an effective and efficient way to obtain more thorough and more meaningful comparison 

of populations’ growth or metabolic traits for correlation-comparison-contrast with genetic 

processes. This advantage should apply in either of the two common viewpoints of these 

research tracks: discovery of genetic events underlying “forced” or selected ecological changes; 

and evaluation of ecological effects resulting from experimental genetic manipulations. 

We also believe that there is ecological research where genetic analysis is not a major 

concern, such as in the general study of biodiversity (Buckling et al. 2003, Brown et al. 2004, 

Holt et al. 2005, Clark et al. 2007, Shou et al. 2007, Martinez-Abrain 2008, Shoresh et al. 2008, 

Fraser et al. 2009, Clark 2010) where our model’s ability to map inter-species relationships 

across resource space as a simulation system may offer worthwhile insight. 

Environmental Change 

The most important thing our work has shown in the context of environmental change is 

that both not-obviously directed adaptive changes and cryptic maladaptive changes must be 

expected from evolution under selection by changes of resource availability. The possible 

responses of a species or population to large-area change, whether in climate or resource supplies 

or any other factor are often described as “change, move or die”. When the response which 

emerges is “change”, the first change may be by variation from available genetic traits but when 

available recombinant alternatives are exhausted, drawn to their limits of availability, then the 

“change” response must become “evolve”. If a population is large enough (and the reproduction 

rate is high enough) the likelihood of adaptive genetic change, generating a more capable 
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phenotype, becomes high enough that adaptive evolution can be expected (Elena and Lenski 

2003, De Visser and Rozen 2005, Hermisson and Pennings 2005). 

A common fallacy of expectation of “directed evolution”, however, is to overlook the 

possibility of changes that are not “under pressure” in the strict sense of the “adverse” aspect of 

the present environmental change (Bloom and Arnold 2009). We have shown that even in simple 

cases, such as our S. cerevisiae under stress from only a shift in the ratio of two resources, both 

non-obvious adaptive and cryptic maladaptive effects must be expected. These effects may lead 

to entirely unexpected competitive relationships—with populations which evolved (or not) under 

other changed ecological regimes, when the forcing change is rolled back (or long cyclical), 

when the subject or another population chooses the “move” response to the change… 

When and as original, evolving or evolved populations, or proxies, are available and 

accessible to be characterized our system can be directly applied but otherwise it can be used in 

simulation of change scenarios to the extent they can be reliably predicted. 

In all, our new model appears to have affirmed our principal hypothesis, to offer answers 

not previously available in ecological research into population competition, and to provide 

linkage to genetics research in stress-survival, resistance and competition. 
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Appendix A, Mathematics 

Introduction 

We designed our model to permit prediction of individual and relative growth responses 

of two competing populations across a range of Hutchinsonian requirements niches, a Cartesian 

space of environmental supply, of two co-limiting, essential resources. When the relative growth 

responses of the populations are combined with expected environmental supply of the resources 

it is possible to predict the outcome of competition between the populations: stable equilibrium 

(i.e., coexistence), dynamic equilibrium (i.e., cyclic coexistence) or non-equilibrium (i.e., 

displacement). 

The general form of our model is based on Tilman’s Graphical-Mechanistic Approach 

(1980) which was based inter alia on niche theory of MacArthur (1972) and Maguire (1973), 

both of which acknowledged Lotka and Volterra (ca. 1920s). We needed to correct deficiencies 

in Tilman’s original model as he suggested (1981, 1982) and as noted, more in application than 

in fundamentals, by Miller et al. (2005). We adopted Monod’s model (1949), sometimes called 

the Michaelis-Menten model, of population growth response on a single limiting resource, 

extended with von Liebig’s Law of the Minimum (ca. 1840s) (as in Tilman 1980, p. 367, eqn. 2). 

We also took guidance from others such as Sterner and Elser (2002) and Chase and Leibold 

(2003). 
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We wanted to make the model as mechanistic-realistic as possible without making it 

unreasonably complex for implementation in the laboratory or the field and, finally, we wanted 

to take advantage of mathematical software not available thirty or even ten years ago. 

We adopted Mathematica®, version 7 (Wolfram Research 2008) as our software system. 

We discuss our model here in four aspects: Formulation Selection, Response Prediction, 

Population Response Measurement, and Response Traits Curve Fitting. 

Formulation Selection 

It has been shown, discussed and recommended, e.g. (Hsu et al. 1977, Tilman 1981, 

Grover 1997) that population growth response modeling across any “wide” range of a resource 

supply requires a non-linear, asymptotic formulation. Linear increase of the supply of a limiting 

resource gives an asymptotic (i.e. “saturating” to a limit) increase in intrinsic growth rate, which 

is necessarily nonlinear, and not an indefinite (i.e. without limit) increase, the unavoidable 

behavior of a linear formulation. 

Linear approximations have been useful in “near zero supply” simulations as in the basic 

form of Tilman’s Graphical-Mechanistic Approach (1980) or in the simplified examples of 

Chase and Leibold (2003) but simply do not work well elsewhere. 

Our justification for choosing Monod’s (1949) (asymptotic, nonlinear) function as the 

mathematical core of our model is, first, the fact that it is widely recognized as a reference 

model, e.g. (Ferenci 1999, Levert and Xia 2001, Lokshina et al. 2001, Higuera-Guisset et al. 

2005, Tang et al. 2007, Cerucci et al. 2010) for work similar to ours—affording a basis for 

comparability—and, second, the fact that it is easy to comprehend, parameterize and apply—

helping to achieve our objective of a simple model with no more parameters than necessary 
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The canonical form of the Monod equation is the simple hyperbola: 

ݕ ൌ ߙ ݔ ሺߚ  ⁄ሻݔ  (). 

Here, considering only Cartesian first quadrant (i.e. x>0, y>0), y is the “response”, x is 

the “supply”, y=α (Greek alpha) is the “asymptotic limit” parameter and x=β (Greek beta) is the 

“characteristic” parameter. There are other asymptotic expressions, such as the simple 

exponential or hyperbolic sigmoid which could be used in place of the simple hyperbola but 

none offers the prospect of more precise curve-fitting to a population’s observed growth 

response or easier tcomprehension and application. 

Response Prediction 

The Monod equation specifies a population’s realized intrinsic growth response 

phenomenon, R, on a resource as: 

ܴ ൌ ௗே ௗ௧⁄ே ൌ ܴ భାେ (). 

This is Monod’s equation 2 (1949 pg 343) where N is the population size by mass 

(Monod’s density), t is time, RK is the population maximum intrinsic growth response, C1 is the 

resource supply concentration required to achieve one-half RK, (which we call the half-saturation 

constant) and C is the instant resource supply concentration. This formulation applies to a 

population for any one resource when all other resources are “in large excess” (ibid., p. 379) 

which is the same as saying that the one resource is solely growth-limiting. We note that C and R 

are ecological phenomena, empirically or demographically observable, while C1 and RK are 

organismal traits, inherent to the population. 

When a population is limited by multiple essential resources (i.e., neither can substitute 

for the other), all other resources being in excess supply, its growth response obeys von Liebig’s 



 

 115 

Law of the Minimum (compare to Tilman 1980, p. 367, eqn. 2) and the realized growth response 

of the population is the minimum of the per-resource growth responses. Using Monod’s notation 

and two resources, A and B, we have: 

ܴ, ൌ min		ሾ	ܴ ಲభಲାಲ , ܴ ಳభಳାಳ	ሿ	 () 

where min is the arithmetic minimum of operator. 

But since RK is a trait common to the organism-population, RKA = RKB and we can reduce 

to: 

ܴ ൌ ܴmin		ሾ	 ಲభಲାಲ , ಳభಳାಳ	ሿ	 () 

For two populations, Y and Z, in a common environment we can formulate the per-

population growth responses as: 

ܴ ൌ ܴmin		ሾ	 ಲభಲೊାಲ , ಳభಳೊାಳ	ሿ	 () ܴ ൌ ܴmin		ሾ	 ಲభಲೋାಲ , ಳభಳೋାಳ	ሿ	 (). 

So the relative (i.e., differential) growth response, Rrel, is: 

ܴ ൌ ܴmin		ሾ	 ಲభಲೊାಲ , ಳభಳೊାಳ	ሿ 	െ ܴmin		ሾ	 ಲభಲೋାಲ , ಳభಳೋାಳ	ሿ	 (). 

This is the essential formulation used in our plotting code. It is also possible and more or 

less straightforward to formulate and plot relative Darwinian fitness or other expressions from 

the two growth responses. 

Plotting Code and Examples 

The following figures illustrate our growth response computation and plotting scheme, 

using trait parameters of selected experimental populations in a carbon- and nitrogen-limiting-

resource space: 
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Figure A-0-1 is the entire Mathematica® code for generating all four of our plot forms 

for a pair of populations. Figure A-0-2 isolates the essential functions and math for the 

“Differential Surface” plot form. 

Figure A-0-3 (a) shows a single population’s dome tent shape of the realized growth 

response phenomenon, R, generated from the non-linear per-resource response traits, C1C and 

C1N, (giving the curved sides) and the asymptotic approach to the maximum capable growth 

response trait, RK. Figure A-0-3 (b) shows the intersecting, inter-penetrating dome tents of two 

populations. 

Figure A-0-3 (c) shows the relative growth response of two populations as a three-

dimensional projected surface. 

Figure A-0-4 (a) shows the growth response of a single population as a stepped-shaded, 

contour-line plot. Figure A-0-4 (b) shows the relative growth response of a pair of populations in 

the same form, similar to a simple Tilman-like plot with constant-difference isoclines. Figure 

A-0-4 (c) shows the relative growth response of two populations as a shaded surface. 

Population Response Measurement 

Predicting populations’ growth responses, graphically or in any other way, requires that 

we obtain values of the response trait parameters RK, C1A and C1B for each population. In our 

present experimental regime dealing with carbon- and nitrogen-limited growth responses the A 

and B subscripts become C and N. 

We subject each population to be “characterized”, as we call the process, to resource-

limited growth under conditions of “high N, stepped C” and “high C, stepped N” with the base 

medium and other nutrient resources, including P, in excess supply. Each of the two limited-
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growth conditions includes four different, know limiting concentrations of the “stepped” nutrient 

resource while the “high” resource is provided at a known non-interfering concentration. 

This process gives us eight data points for which we run four replicates each. Four of the 

data points are (R, CChigh, CNstep) and four are (R, CCstep, CNhigh). We use these eight data points, 

replicated four times for thirty-two triples, as input to our curve-fitting algorithm. 

Response Statistics 

Recapping our discussion Chapter 3… 

An overarching problem with statistical analysis of our results is that we are not dealing 

with conventional hypothesis testing (except, perhaps, in our direct competitions) or 

conventional statistical inference. We have no single parameters which are independently 

derived from our Characterization Protocol and the multiple data values per test point (R, CC, 

CN). The multiple parameters we need (RK, C1C, C1N) for maximum capable growth response and 

per-resource growth response can only be determined by simultaneous curve-fitting to a single 

equation. 

If we were to attempt to fit each per-resource response, C1C and C1N, from our data sets or 

any other measurement scheme, individually (i.e. without simultaneous RK) we would be left 

with a linear relationship as our only alternative and we know from numerous sources previously 

cited e.g. (Ferenci 1999, Levert and Xia 2001, Lokshina et al. 2001, Higuera-Guisset et al. 2005, 

Tang et al. 2007, Cerucci et al. 2010) that that is not a viable option. 

If we were to attempt to fit each per-resource response, C1C or C1N, with RK independent 

of the other per-resource response, we would be virtually certain to arrive at two values for RK, 

as if RKC and RKN, which we know from several of the immediate prior citations as well as from 

Grover (1997) is not realistically applicable. Simply put, if we provide a single population with 
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sufficient supply of all resources that no further increase of any resource provides any greater 

growth response, then we have reached a population limit to growth rate. This can be verified by 

decreasing each resource, one at a time, to establish a limiting growth value for each (non-

substitutable) resource and these limits will be found to be all at the same maximum growth 

response. So we must, in the end, fit all three of our parameters for each population, RK, C1C, 

C1N, simultaneously to the single Monod-and-von Leibig formulation. 

We are in the situation of having no “independent variables” or “additive variables” 

statistical analysis available. We rely, instead, on confidence interval comparison for whatever 

meaning there may be to “significant difference” between competing populations’ values of each 

of our three parameters. Our curve-fitting program and its core Mathematica® function, 

NonlinearModelFit[], provide an ANOVA table for the objective variable x, our realized-

observed R, but have no equivalent of independent or additive behavior to determine customary, 

per-variable error, residual statistics. The program does provide Standard Error, Confidence 

Interval (95%), t-Statistic and P-value per fitted parameter but while these are comparable to the 

usual statistics they are not the same and are not related by any simple function. 

In Chapter 3 we discuss one example of graphical fit and residuals plot of C1C and C1N, 

for one of our populations, as if these parameters had been individually determined. The fit and 

residuals for C1C look good but those for C1N do not. If we had recognized this syndrome early in 

our sequence of experiments we might have extended our range of CN, nitrogen supply 

concentration, to higher values to obtain a better-appearing fit but we chose to stay with a 

consistent set of test points. It is not clear, however, that the C1N fit would have “looked” any 

better by curve or by residuals as the entire fit can only deal with all three parameters. 
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The OPL slopes for the several populations show significant difference between all but 

one of the competing pairs, which runs counter to customary suspicion of “statistics of statistics”, 

i.e. because the OPL slope is a ratio of two fitted parameters which, themselves, do not appear to 

be significantly different. We analyzed the OPL slopes by a Monte Carlo process of dithering 

each of the OPL components, C1C and C1N, 1,000 times by its Standard Error on a Normal 

Distribution, taking the ratio of each pair of dithered values, and performing a simple analysis of 

Mean, Variance and Confidence Interval (95%) of the 1,000 ratios. 

Response Traits Curve Fitting 

The general objective of curve-fitting an array of data points, (R,C), to a function ܴ ൌ ݂ሺܥ, ሺܴ, ܴ ,ଵሻሻ such as Monod’sܥ ൌ ܴ ܥ ሺܥଵ  ⁄ሻܥ , is conceptually and practically 

simple so long as there is a continuous derivative, f′, and can be accomplished with a number of 

readily available software tools. Our function to be fitted, however, is a discontinuous 

combination of Monod and von Leibig, ܴ ൌ ܴ min ሾ	ܥ ሺܥଵ  ⁄ሻܥ , ܥ ሺܥଵ  ⁄ሻܥ 	ሿ െFlow	, and is itself discontinuous so it has no continuous derivative. The addition of the Flow 

term in curve-fitting places the Monod growth-response function into the context of the 

continuous-flow, chemostat culture mode where Flow is the proportional rate of flow-through 

per time, also known as dilution rate, which is equivalent to an intrinsic mortality rate which 

operates against the intrinsic growth rate, RK, to give the realized growth rate and thus the 

standing biomass of the culture. 

While our adopted software tool, Mathematica®, has several ways to do curve-fitting, 

even its most-capable, self-adapting curve-fitting function, NonlinearModelFit[], cannot deal 

with functions which lack a continuous derivative. It was necessary to re-cast our discontinuous 

function: 
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ܴ, ൌ ܴ min ቂ	 ಲభಲାಲ , ಳభಳାಳ	ቃ െ Flow	 () 

to a continuous and continuous-derivative function, let’s call it G: ܴ, ൌ ܴ G ቂ	 ಲభಲାಲ , ಳభಳାಳ	ቃ െ Flow	 () 

which would behave as the min operator of a sum of continuous etc. functions, GL 

and GR where R and L indicate “left” and “right” (see next): ܴ, ൌ ܴ	ሾ	ܩሺ ಲభಲାಲ െ ሻݓ݈ܨ  ோሺܩ ಳభಳାಳ െ  () 	ሿ	ሻݓ݈ܨ

which would behave as if it were doubly continuous. 

The basic Monod function on a single supply variable is shown in Figure 2-1 (page 31). 

The Monod-form functions on CA and CB are twice-continuous so the key, then, was to 

find GL, GR as twice-continuous functions which would multiply the function on CA by 1 where 

we want its values to apply, by 0 elsewhere, and would complementarily multiply the function 

on CB by 1 and 0. Figure A-0-5 shows what we would like to accomplish for Monod-equation 

curve-fitting. 

We settled on the simple hyperbolic sigmoid function and its complement as our GL, GR 

pair: 

ܩ ൌ ଵଵାೣ () ܩோ ൌ 1 െ ଵଵାೣ (). 

Obviously, the sum of these two equations is unity, as required. The “crossover” from 0 

to 1 and 1 to 0 can be made “steeper” by adding a “steepness factor”, S: 

ܩ ൌ ଵଵାೄೣ () ܩோ ൌ 1 െ ଵଵାೄೣ (). 

And the crossover x value can be offset from zero by adding an “offset” term, O: 
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ܩ ൌ ଵଵାೄሺೣషೀሻ () ܩோ ൌ 1 െ ଵଵାೄሺೣషೀሻ (). 

Figure A-0-6 shows application of this “sigmoid switch” to intersecting, complementary 

linear functions. 

Our complete curve-fit target function with adaptive computation of O as OA and OB , 

corresponding to GL and GR in equation (), looks like this: 

ܴ, ൌ ܴ	ሾ	 ଵଵାೄ൫ೣషೀಲ൯ ಲభಲାಲ  ሺ1 െ ଵଵାೄሺೣషೀಳሻሻ ಳభಳାಳ	ሿ	 (). 

There is, as is common in curve-fitting to complicated functions, a key “trick” to be 

applied, ensuring in our situation that the crossover point of the two Monod functions—the offset 

value, O, in equation ()—remains “between” the highest values of C1A and C1B. This is 

particularly complicated in our code by the fact that we are not really working on a common 

abscissa, i.e., because we are actually working with two axes, CA and CB. Our self-adaptive 

computation of, effectively, OA and OB is shown in the Mathematica® code. Our entire approach 

works because the NonlinearModelFit[] function iterates-approximates the entire argument 

function and not just some abstracted-extracted “core” as some curve-fitting functions do. 

Figure A-0-7 is the entire Mathematica® code of our curve-fitting program. The input 

file is a “.csv” (comma-separated values) form of (CA,CB,R) triplets from the Characterization 

Protocol (chemostat) run and the output is fitted trait parameters RK, C1A and C1B. Note that 

although our terminology in this paper has been normalized to match Monod’s, much of our 

Mathematica® code, as here, still employs an earlier terminology—which should, nevertheless, 

be comprehensible in reference to the Monod terminology. 

Figure A-0-8 is the complete output, including diagnostics and redundancies for 

programmer-operator’s review, of a Characterization run of one of our experimental populations. 
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Figure A-0-9 is the essential, core setup of the NonlinearModelFit[] function in our 

Mathematica® code, annotated to explain at least some of what is happening. It includes the 

adaptive-offset computation, OA and OB in equation () above, for the two ecological variables, 

CA and CB. 

Goodness of fit 

Our curve-fitting code provides estimated goodness-of-fit values along with the fitted 

parameters. The report, including the fitted parameters, is shown in Figure A-0-8 with a full set 

of curve-fitting output. 
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Figures 

Begin Figure A-1. 

(* Alternative Population Parameters Set 1 *) 
PopName1 = "MRG-2" ; 
RK1 = 0.833635 ; 
C1C1 = 0.210322 ; 
C1N1 = 0.0130414 ; 
 
(* Alternative Population Parameters Set 3 *) 
PopName3 = "MRG-2N" ; 
RK3 = 0.845480 ; 
C1C3 = 0.222601 ; 
C1N3 = 0.0153732 ; 
 
(* Alternative Population Parameters Set 2 *) 
PopName2 = "MRG-8" ; 
RK2 = 0.859798 ; 
C1C2 = 0.216459 ; 
C1N2 = 0.0141549 ; 
 
(* Alternative Population Parameters Set 5 *) 
PopName5 = "Descendant 01" ; 
RK5 = 0.868370 ; 
C1C5 = 0.181011 ; 
C1N5 = 0.0125035 ; 
 
(* Alternative Population Parameters Set 6 *) 
PopName6 = "Descendant 13" ; 
RK6 = 0.871355 ; 
C1C6 = 0.184406 ; 
C1N6 = 0.0132597 ; 
 
(* Alternative Population Parameters Set 4 *) 
PopName4 = "MRG-8N" ; 
RK4 = 0.928554 ; 
C1C4 = 0.232111 ; 
C1N4 = 0.0150399 ; 
 
(* "Null" Population Parameters Set *) 
PopNameNN = "Null" ; 
RKNN = 0.0000001 ; 
C1CNN = 0.0000001 ; 
C1NNN = 0.0000001 ; 
 
(* supply concentration ranges from zero *) 
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CChi=4.0 ; 
CNhi=4.0/15.0 ; 
 
(* Plot Control and Display Values *) 
Clear [ Ppoints , Pwidth ] ; 
 
(* evaluate/plot initial _ points per axis *) 
Ppoints = 100 ; 
 
(* plot _ inches wide at _ dpi *) 
Pwidth = 3 * 300 ; 
 
(* 
... Select a Pair to Plot ... 
#1 MRG-2  RK1=0.833635  C1C1=0.210322  C1N1=0.0130414  C:N=16.13 
#2 MRG-2N  RK3=0.845480  C1C3=0.222601  C1N3=0.0153732  
C:N=14.48 
#3 MRG-8  RK2=0.859798  C1C2=0.216459  C1N2=0.0141549  C:N=15.29 
#4 Desc-01 RK5=0.868370  C1C5=0.181011  C1N5=0.0125035  
C:N=14.48 
#5 Desc-13 RK6=0.871355  C1C6=0.184406  C1N6=0.0132597  
C:N=13.91 
#6 MRG-8N  RK4=0.928554  C1C4=0.232111  C1N4=0.0150399  
C:N=15.43 
*) 
 
Clear [ RKY , C1CY , C1NY , RKZ , C1CZ ,C1NZ ] ; 
 
PopNameY = PopName4 ; 
RKY = RK4 ; 
C1CY = C1C4 ; 
C1NY = C1N4 ; 
 
PopNameZ = PopName6 ; RKZ = RK6 ; 
C1CZ = C1C6 ; 
C1NZ = C1N6 ; 
Plots 
 
(* Dual Surface Plot *) 
Show [  
 
Plot3D [  
 [[ RKY Min [ C1C/(C1C+C1CY) , C1N/(C1N+C1NY) ] , 
RKZ Min [ C1C/(C1C+C1CZ) , C1N/(C1N+C1NZ) ] ]] , 
 [[ C1C , 0 , CChi ]] , [[ C1N , 0 , CNhi ]] , 
Exclusions -> None , 
LabelStyle -> [[ 25 , FontFamily -> "Helvetica" ]] ,PlotLabel -> 
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Style [ "Comparative Growth Response\nBlue-Y: "<> PopNameY <> 
"\nRed-Z: " <> PopNameZ , 25 , FontFamily -> "Helvetica" ] , 
AxesLabel -> [[ " [ A ] " , " [ B ] " , "R" ]] , 
AxesEdge -> [[ [[ -1 , -1 ]] , [[ -1 , -1 ]] , [[ -1 , 1 ]] ]] , 
PlotPoints -> Ppoints , 
ImageSize -> [[ Pwidth , Pwidth ]] , 
ViewPoint -> [[ -1.0` , -0.5 , 0.5` ]] , 
PlotStyle -> [[ RGBColor [ 0 , 0.25 , 1 ] , RGBColor [ 1 , 0.25 
, 0 ] ]] ] , 
 
ParametricPlot3D [  
 [[ C1C , C1NY / C1CY C1C , RKY C1C/(C1C+C1CY) ]] , 
 [[ C1C , 0 , CChi ]] , 
Exclusions -> None , 
PlotPoints -> Ppoints , 
ImageSize -> [[ Pwidth , Pwidth ]] , 
PlotStyle -> [[ Black , Thick ]] ] , 
 
ParametricPlot3D [  
 [[ C1C , C1NZ / C1CZ C1C , RKZ C1C/(C1C+C1CZ) ]] , 
 [[ C1C , 0 , CChi ]] , 
Exclusions -> None , 
PlotPoints -> Ppoints , 
ImageSize -> [[ Pwidth , Pwidth ]] , 
PlotStyle -> [[ Black , Thick ]] ] ]  
 
(* Differential Surface *) 
Clear [ ColorScale ] ; 
ColorScale = Max [ Abs [ MaxValue [ [[ RKY Min [ C1C/(C1C 
+C1CY),C1N/(C1N+C1NY) ] - RKZ Min [ 
C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] , 0 <= C1C <= CChi , 0 <= C1N <= 
CNhi  
 ]] , [[ C1C , C1N ]] ] ] , Abs [ MinValue [ [[ RKY Min [ 
C1C/(C1C+C1CY),C1N/(C1N+C1NY) ] - RKZ Min [ 
C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] , 0 <= C1C <= CChi , 0 <= C1N <= 
CNhi ]] , [[ C1C , C1N ]] ] ] ] ; 
 
Plot3D [  
 [[ RKY Min [ C1C/(C1C+C1CY),C1N/(C1N+C1NY) ] - 
 RKZ Min [ C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] ]] , 
 [[ C1C,0,CChi ]] , [[ C1N,0,CNhi ]] , 
Exclusions -> None , 
LabelStyle -> [[ 25 , FontFamily -> "Helvetica" ]] ,PlotLabel -> 
Style [ "Differential Growth Response\nBlue-Y: "<> PopNameY <> 
"\nRed-Z: " <> PopNameZ <> "\nColor Max at ΔR = " <> ToString [ 
NumberForm [ ColorScale , 3 ] ] , 25 , FontFamily -> "Helvetica" 
] , 
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AxesLabel-> [[ " [ A ] "," [ B ] ","Δ R" ]] , 
AxesEdge-> [[ [[ -1,-1 ]] , [[ -1,-1 ]] , [[ -1,1 ]] ]] , 
PlotPoints->Ppoints, 
ImageSize-> [[ Pwidth,Pwidth ]] , 
ViewPoint-> [[ -1.0`,-1.0,0.5` ]] , 
ColorFunction-> Function [ [[ x, y, z ]] ,  
 RGBColor [ Max [ 0, -(z/ColorScale) ] , 1 - Abs [ z/ColorScale 
] ,  
 Max [ 0, z/ColorScale ] ] ] , 
ColorFunctionScaling->False ]  
 
(* Differential Density *) 
Clear [ ColorScale ] ; 
ColorScale = Max [ Abs [ MaxValue [ [[ RKY Min [ 
C1C/(C1C+C1CY),C1N/(C1N+C1NY) ] - RKZ Min [ 
C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] , 0 ≤ C1C ≤ CChi , 0 ≤ C1N ≤ 
CNhi  
 ]] , [[ C1C , C1N ]] ] ] , Abs [ MinValue [ [[ RKY Min [ 
C1C/(C1C+C1CY),C1N/(C1N+C1NY) ] - RKZ Min [ 
C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] , 0 ≤ C1C ≤ CChi , 0 ≤ C1N ≤ 
CNhi ]] , [[ C1C , C1N ]] ] ] ] ; 
 
Show [  
 
 DensityPlot [  
 RKY Min [ C1C/(C1C+C1CY),C1N/(C1N+C1NY) ] - 
 RKZ Min [ C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] , 
 [[ C1C,0,CChi ]] , [[ C1N,0,CNhi ]] , 
Exclusions -> None , 
LabelStyle -> [[ 25 , FontFamily -> "Helvetica" ]] ,PlotLabel -> 
Style [ "Differential Growth Response\nBlue-Y: "<> PopNameY <> 
"\nRed-Z: " <> PopNameZ <> "\nColor Max at ΔR = " <> ToString [ 
NumberForm [ ColorScale , 3 ] ] , 25 , FontFamily -> "Helvetica" 
] , 
AxesLabel-> [[ " [ A ] "," [ B ] " ]] , 
PlotPoints->Ppoints, 
ImageSize-> [[ Pwidth,Pwidth ]] , 
ColorFunction-> Function [ [[ z ]] ,  
 RGBColor [ Max [ 0, -(z/ColorScale) ] , 1 - Abs [ z/ColorScale 
] ,  
 Max [ 0, z/ColorScale ] ] ] , 
ColorFunctionScaling->False ] , 
 
Plot [  
 [[ C1NY / C1CY C1C ]] , 
 [[ C1C , 0 , CChi ]] , 
Exclusions -> None , 
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PlotPoints -> Ppoints , 
ImageSize -> [[ Pwidth , Pwidth ]] , 
PlotStyle -> [[ Black , Thick ]] ] , 
 
Plot [  
 [[ C1NZ / C1CZ C1C ]] , 
 [[ C1C , 0 , CChi ]] , 
Exclusions -> None , 
PlotPoints -> Ppoints , 
ImageSize -> [[ Pwidth , Pwidth ]] , 
PlotStyle -> [[ Black , Thick ]] ] ]  
 
(* Differential Contour *) 
Clear [ ColorScale ] ; 
ColorScale = Max [ Abs [ MaxValue [ [[ RKY Min [ 
C1C/(C1C+C1CY),C1N/(C1N+C1NY) ] - RKZ Min [ 
C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] , 0 ≤ C1C ≤ CChi , 0 ≤ C1N ≤ 
CNhi  
 ]] , [[ C1C , C1N ]] ] ] , Abs [ MinValue [ [[ RKY Min [ 
C1C/(C1C+C1CY),C1N/(C1N+C1NY) ] - RKZ Min [ 
C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] , 0 ≤ C1C ≤ CChi , 0 ≤ C1N ≤ 
CNhi ]] , [[ C1C , C1N ]] ] ] ] ; 
 
Show [  
 
 ContourPlot [  
 RKY Min [ C1C/(C1C+C1CY),C1N/(C1N+C1NY) ] - 
 RKZ Min [ C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] , 
 [[ C1C,0,CChi ]] , [[ C1N,0,CNhi ]] , 
Exclusions -> None , 
Contours -> [[ -0.1 , -0.05 , -0.04 ,-0.03 , -0.02 , -0.01 , 0 , 
0.01 , 0.02 , 0.03 , 0.04 , 0.05 , 0.1 ]] , 
ContourLabels -> All , 
LabelStyle -> [[ 25 , FontFamily -> "Helvetica" ]] , 
PlotLabel -> Style [ "Differential Growth Response\nBlue-Y: "<> 
PopNameY <> "\nRed-Z: " <> PopNameZ <> "\nColor Max at ΔR = " <> 
ToString [ NumberForm [ ColorScale , 3 ] ] , 25 , FontFamily -> 
"Helvetica" ] , 
Frame -> False , 
Axes -> True , 
AxesLabel-> [[ " [ A ] "," [ B ] " ]] , 
PlotPoints->Ppoints, 
ImageSize-> [[ Pwidth,Pwidth ]] , 
Contours-> 16 , 
ContourLabels -> False , 
ColorFunction-> Function [ [[ z ]] ,  
 RGBColor [ Max [ 0, -(z/ColorScale) ] , 1 - Abs [ z/ColorScale 
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] ,  
 Max [ 0, z/ColorScale ] ] ] , 
ColorFunctionScaling->False ] , 
 
Plot [  
 [[ C1NY / C1CY C1C ]] , 
 [[ C1C , 0 , CChi ]] , 
Exclusions -> None , 
PlotPoints -> Ppoints , 
ImageSize -> [[ Pwidth , Pwidth ]] , 
PlotStyle -> [[ Black , Thick ]] ] , 
 
Plot [  
 [[ C1NZ / C1CZ C1C ]] , 
 [[ C1C , 0 , CChi ]] , 
Exclusions -> None , 
PlotPoints -> Ppoints , 
ImageSize -> [[ Pwidth , Pwidth ]] , 
PlotStyle -> [[ Black , Thick ]] ] ]  

Figure A-1. Growth Response Plot Code, Mathematica® 
Begins on page 123. 
This is the entire Mathematica® code of our growth response plotting program. It is “front-
loaded” with the parameters of our six experimental populations used in this work, which may be 
setup for any desired demonstration combination. Note: The Mathematica® code characters “left 
curly bracket” and “right curly bracket have been replaced by double characters [[ and ]], 
respectively, to eliminate interference with our word processor and bibliography manager 
programs. 
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“ColorScale” variable captures the maximum absolute difference to be plotted. 

ColorScale = 
Max [  
  Abs [  
   MaxValue [  
 ]] RKY Min [ C1C/(C1C +C1CY),C1N/(C1N+C1NY) ] – 
      RKZ Min [ C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] , 
      0 <= C1C <= CChi , 0 <= C1N <= CNhi ]] , 
 ]] C1C , C1N ]]  
 ]  
 ] , 
  Abs [  
   MinValue [  
 ]] RKY Min [ C1C/(C1C+C1CY),C1N/(C1N+C1NY) ] – 
      RKZ Min [ C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] , 
      0 <= C1C <= CChi , 0 <= C1N <= CNhi ]] , 
 ]] C1C , C1N ]]  
 ]  
 ]  
 ] ; 

“Plot3D” function generates the plot. 

Plot3D [  
 ]] RKY Min [ C1C/(C1C+C1CY),C1N/(C1N+C1NY) ] –  
 RKZ Min [ C1C/(C1C+C1CZ),C1N/(C1N+C1NZ) ] ]] ,  
 ]] C1C,0,CChi ]] , ]] C1N,0,CNhi ]] , 

“ColorFunction” colors the surface from red through green to blue as the response 
difference value ]] , , z ]] runs from “minus ColorScale” through zero to “plus ColorScale” 

ColorFunction-> Function [ ]] x, y, z ]] ,  
RGBColor [ Max [ 0, -(z/ColorScale) ] , 
     1 - Abs [ z/ColorScale ] , 
      Max [ 0, z/ColorScale ] ] ] , 

Figure A-2. Growth Response Plot Code, Annotated Section 
This is the section of our Mathematica® growth response plotting program which generates the 
differential surface plot. Key computations are noted. Note: The Mathematica® code characters 
“left curly bracket” and “right curly bracket have been replaced by double characters [[ and ]], 
respectively, to eliminate interference with our word processor and bibliography manager 
programs. 
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large steepness parameter, S, to make the “crossover valley” become “narrower”. The crossover 
point remains at x=0. The sum of the two curves remains, of course equal to 1. Panel (c) shows a 
pair of simple, “counter-sloping” functions to which we wish to apply the arithmetic min, 
“minimum of”, operator intending a result which looks like (e). Panel (d) shows the individual 
products of multiplying the “ascending” line of (c) by the “left” sigmoid of (b) and the 
“descending” line of (c) by the “right” sigmoid of (b). The “high” side of each line has been 
suppressed by the complementary sigmoids as the “crossover” point, now O=0, is the same for 
the lines and the sigmoids. Panel (e) shows the sum of the products from (d). The “peak” of the 
sum is, visibly, slightly “rounded” but can be made as “sharp” as desired by an appropriate value 
of S, the steepness parameter. It is trivial here to shift the crossover of the sigmoids to match the 
crossover of the source functions by solving for the intersection value, x, of the source functions 
and setting the sigmoids’ O parameter to that value. 
Figure A-0-7 presents the complete Mathematica® code and Figure A-0-9 presents the core 
Mathematica® code, annotated, in which we use this Sigmoid Switch to achieve the curve-fitting 
shown in Figure A-0-5. 
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Begin Figure A-7. 

CLEAR [ InFileName ] ; 
Print [ 
"============================================================" ] 
; 
Print [ "Use this button to select the file for the Population." 
]  
InFileName = "*.csv"; 
FileNameSetter [ Dynamic [ InFileName ] ]  
Print [ 
"============================================================" ] 
; 
============================================================ 
Use this button to select the file for the Population. 
Browse… 
============================================================ 
Print [ 
"============================================================" ] 
; 
Print [ "----- Population data file ",InFileName ] ; 
Clear [ DataMatrix ] ; 
DataMatrix = Import [ InFileName ,"Data" ] ; 
Print [ "----- Population data " ] ; 
DataMatrix 
Print [ 
"============================================================" ] 
; 
 
 Flow=1/4.69; 
 SS = 1000 ; 
Clear [ RK,C1C,C1N,CC,CN ] ; 
 
FitOutput =  
NonlinearModelFit [  
DataMatrix, 
 [[  
((1-1/(1+E^(SS (C1C/C1N-CC/CN )/(C1C/C1N)))) 
* 
(( RK CC)/(CC+C1C )-Flow) 
+ 
(1-1/( 1+ E^( SS (C1N/C1C-CN/CC)/(C1N/C1C)))) 
* 
(( RK CN)/(CN+C1N)-Flow)), 
RK>0, C1C >0, C1N>0 
 ]] , 
 [[ RK, C1C , C1N ]] , 
 [[ CC , CN ]]  
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 ]  
 
Print [ "----- BestFitParameters" ] ; 
sRK = RK /. FitOutput [ "BestFitParameters" ] [ [ 1 ] ] ; 
sC1C = C1C /. FitOutput [ "BestFitParameters" ] [ [ 2 ] ] ; 
sC1N = C1N /. FitOutput [ "BestFitParameters" ] [ [ 3 ] ] ; 
CNRatio = sC1C / sC1N ; 
 
Print [ "---------- Maximum Capable Intrinsic Growth Rate" ]  
 sRK 
 
Print [ "---------- Carbon Half-Max Concentration" ]  
sC1C 
 
Print [ "---------- Nitrogen Half-Max Concentration" ]  
sC1N  
 
Print [ "---------- Dual-Limiting C:N Ratio" ]  
CNRatio 
 
Print [ "----- RSquared" ] ; FitOutput [ "RSquared" ]  
 
Print [ "----- AdjustedRSquared" ] ; FitOutput [ 
"AdjustedRSquared" ]  
 
Print [ "----- AIC" ] ; FitOutput [ "AIC" ]  
 
Print [ "----- ANOVATable" ] ; FitOutput [ "ANOVATable" ]  
 
Print [ "----- ParameterConfidenceIntervalTable" ] ; FitOutput [ 
"ParameterConfidenceIntervalTable" ]  
 
Print [ "----- ParameterTable" ] ; FitOutput [ "ParameterTable" 
]  
 
Print [ 
"============================================================" ] 
; 

Figure A-7. Curve-Fitting Code 
Begins on page 135. 
This is the entire Mathematica® code of our growth response curve-fitting program. The 
essential core of this code is presented with annotation in Figure A-0-9. 
Note: The Mathematica® code characters “left curly bracket” and “right curly bracket have been 
replaced by double characters [[ and ]], respectively, to eliminate interference with our word 
processor and bibliography manager programs. 
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Begin Figure A-8. 

============================================================ 
 ----- Population data file G:\- Research\Characterization\101-
102 MRG 2.csv 
 ----- Population data  
 [[ [[ 1.5,0.032,0.515952 ]] , [[ 1.5,0.032,0.286778 ]] , [[ 
1.5,0.032,0.526386 ]] , [[ 1.5,0.032,0.418471 ]] , [[ 
1.5,0.016,0.167222 ]] , [[ 1.5,0.016,0.188846 ]] , [[ 
1.5,0.016,0.21093 ]] , [[ 1.5,0.016,0.181685 ]] , [[ 
1.5,0.008,0.105375 ]] , [[ 1.5,0.008,0.0640698 ]] , [[ 
1.5,0.008,0.0356098 ]] , [[ 1.5,0.008,0.0737079 ]] , [[ 
1.5,0.004,0.0497403 ]] , [[ 1.5,0.004,0.0319277 ]] , [[ 
1.5,0.004,0.062561 ]] , [[ 1.5,0.004,0.0228235 ]] , [[ 
0.75,0.064,0.491205 ]] , [[ 0.75,0.064,0.433889 ]] , [[ 
0.75,0.064,0.404242 ]] , [[ 0.75,0.064,0.389767 ]] , [[ 
0.375,0.064,0.300111 ]] , [[ 0.375,0.064,0.299103 ]] , [[ 
0.375,0.064,0.298095 ]] , [[ 0.1875,0.064,0.182021 ]] , [[ 
0.1875,0.064,0.18253 ]] , [[ 0.1875,0.064,0.177065 ]] , [[ 
0.1875,0.064,0.166386 ]] , [[ 0.09375,0.064,0.110111 ]] , [[ 
0.09375,0.064,0.0251316 ]] , [[ 0.09375,0.064,0.10069 ]] , [[ 
0.09375,0.064,0.0481395 ]] ]]  
 
 ============================================================ 
 FittedModel [ 

 
]  
 ----- BestFitParameters 
 ---------- Maximum Capable Intrinsic Growth Rate 
 0.833635 
 ---------- Carbon Half-Max Concentration 
 0.210322 
 ---------- Nitrogen Half-Max Concentration 
 0.0130414 
 ---------- Dual-Limiting C:N Ratio 
 16.1273 
 
 ----- RSquared 
 0.951557 
 
 ----- AdjustedRSquared 
 0.946367 
 
 ----- AIC 
 FittedModel::constr: The property values (Raich et al.) assume 

1-
1

1+‰62.0065 á19à-á1à -0.21322+
0.833635 kSupC

0.210322+kSupC
+ 1-

1

1+‰á1à
-0.21322+á1à



 

 138 

an unconstrained model. The results for these properties may not 
be valid, particularly if the fitted parameters are near a 
constraint boundary.  
 -80.8072 
 
 ----- ANOVATable 
 FittedModel::constr: The property values [[ ANOVATable ]] 
assume an unconstrained model. The results for these properties 
may not be valid, particularly if the fitted parameters are near 
a constraint boundary.  
 [[  
 [[ , DF, SS, MS ]] , 
 [[ Model, 3, 2.03212, 0.677373 ]] , 
 [[ Error, 28, 0.103453, 0.00369475 ]] , 
 [[ Uncorrected Total, 31, 2.13557, ]] , 
 [[ Corrected Total, 30, 0.751379, ]]  
 ]]  
 
 ----- ParameterConfidenceIntervalTable 
 FittedModel::constr: The property values [[ 
ParameterConfidenceIntervalTable ]] assume an unconstrained 
model. The results for these properties may not be valid, 
particularly if the fitted parameters are near a constraint 
boundary.  
 [[  
 [[ , Estimate, Standard Error, Confidence Interval ]] , 
 [[ RK, 0.833635, 0.0544411, [[ 0.722117,0.945152 ]] ]] , 
 [[ C1C, 0.210322, 0.0379248, [[ 0.132637,0.288008 ]] ]] , 
 [[ C1N, 0.0130414, 0.00214042, [[ 0.00865691,0.0174258 ]] ]]  
 ]]  
 
 ----- ParameterTable 
 FittedModel::constr: The property values [[ ParameterTable ]] 
assume an unconstrained model. The results for these properties 
may not be valid, particularly if the fitted parameters are near 
a constraint boundary.  
 [[  
 [[ , Estimate, Standard Error, t Statistic, P-Value ]] , 
 [[ RK, 0.833635, 0.0544411, 15.3126, 3.89246×10-15 ]] , 
 [[ C1C, 0.210322, 0.0379248, 5.54577, 6.25477×10-6 ]] , 
 [[ C1N, 0.0130414, 0.00214042, 6.0929, 1.42587×10-6 ]]  
 ]]  
 ============================================================ 

Figure A-8. Curve-Fitting Output 
Begins on page 137. 
This is the complete output, including the experimental data matrix, individually computed 
values and generated output from the NonlinearModelFit[] function for curve-fitting for a 
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typical yeast strain. This output includes warning diagnostics from Mathematica® which we 
always check for applicability to each run. We did find that the first Characterization Protocol 
(chemostat) run of our evolved descendant strain Desc-01 (see Chapter 4) had a fatal interference 
with the initial value of one resource at one test point so we repeated the run for that strain with a 
different set of test points. 
 Note: The Mathematica® code characters “left curly bracket” and “right curly bracket have 
been replaced by double characters [[ and ]], respectively, to eliminate interference with our 
word processor and bibliography manager programs. 
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Begin Figure A-9. 

FitOutput =  
 NonlinearModelFit [  

DataMatrix is loaded earlier in the program with the ([C],[N],R) triplets from the 
Characterization Protocol chemostat run. Variables SS and Flow are set earlier. 

 DataMatrix, 
 [[  

The function to be fitted… 

  ((1-1/(1+E^(SS(C1C/C1N-CC/CN)/(C1C/C1N)))) 
   * 
   ((RK CC)/(CC+C1C)-Flow) 
   + 
   (1-1/(1+E^(SS(C1N/C1C-CN/CC)/(C1N/C1C)))) 
   * 
   ((RK CN)/(CN+C1N)-Flow)), 

The function (in Monod’s formulation) to which we would like to fit the data points is: ܴ ൌ ܴ min ቂ ಲభಲାಲ , ಳభಳାಳቃ െ  .() ݓ݈ܨ

The min (minimum of) operator, however, is incompatible with the curve-fitting function 
which is intended to be used with doubly continuous functions ( f and f’ both continuous) but, in 
reality, requires only that the objective function behave as if it were doubly continuous. So we fit 
to the following function which behaves as if it were doubly continuous for benefit of the 
underlying successive-approximation algorithm of the NonlilnearModelFit[] function: ܴ ൌ ܴ	ܥ݃݅ܵ	 భା 		ܵ݅݃ܰ	ܴ ಿభಿାಿ െ  .() ݓ݈ܨ

SigC and SigN are complementary (“high left” and “high right”) computations of the 
hyperbolic sigmoid such that the “limiting, less than crossover” C (carbon) or N (nitrogen) term 
is multiplied by 1 and the “non-limiting, greater than crossover” term is multiplied by zero. I.e., 
this formula “end-runs” the curve-fitting algorithm by simulating the min operator with a doubly 
continuous complete function. 

The elementary form of the sigmoid function is ݕ ൌ ଵଵାೣ or ݕ ൌ ଵଵାభሺೣషబሻ which we say 

has its “crossover” point at x=0 and “steepness” factor of 1. This can be expanded to ݕ ൌଵଵାೄሺೣషೀሻ with a crossover point at x=O and steepness S. We set the variable SS to our desired 

steepness factor at the front of our program. The crossover point is re-computed with every 
iteration (for each data point) of the solution (on the “carbon side” shown here) as ܱ ൌሺܥଵ ⁄ଵேܥ െ ܥ ⁄ேܥ ሻ ሺܥଵ ⁄ଵேܥ ሻ⁄  which compares the estimated C:N response ratio to the instant 
C:N supply ratio. The result of complementary (and asymptotic) multiplier terms is that only 
per-resource-limiting data points affect the per-resource response calculation. 

These constraints are functionally unnecessary, making no difference whatsoever in the 
output, but appear to reduce the number of iterations required for solution. 

  RK>0, C1C >0, C1N>0 
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 ]] , 

The solution variables, to be solved for, are RK, C1C and C1N. 
 [[ RK, C1C , C1N ]] , 

Variable values to be taken from DataMatrix are CC and CN. The objective variable ( R in 
our case) is always the last column of the matrix. 

 [[ CC , CN ]]  

We have found that the solution frequently does not find stable convergence but “dithers” 
about the final solution, apparently due to our asymptotic crossover function. Repeated testing 
with manual intervention to the program has shown that closest-to-convergence is usually 
achieved in about 100 iterations and never in more than 250 iterations. Several examinations, by 
manual intervention to the program, have found no more that 1 part per million dither of the 
solution value in any of the three fitted parameters after 250 iterations. For simplicity we have 
chosen to set a limit to the number of iterations and for safety margin we have set the limit at 
1000 iterations. 

( * , MaxIterations  1000, 

We will show this ouput from NonlinearModelFit[] along with the other data specified 
in Figure A-0-7. 

RegressionReport  [[ SummaryReport , FitOutput , 
ParameterConfidenceRegion , FitResiduals ]] *) 
 ] 

Figure A-9. Curve-Fitting Code, Annotated Core 
Begins on page 140. 
This code is the core of our curve-fitting algorithm, including our use of the hyperbolic-
asymptote “switch function”. 
Figure A-0-5 shows the problem of intersecting response curves and Figure A-0-6 shows the idea 
of how we apply the sigmoid switch to solve the problem. 
Note: The Mathematica® code characters “left curly bracket” and “right curly bracket have been 
replaced by double characters [[ and ]], respectively, to eliminate interference with our word 
processor and bibliography manager programs. 
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Appendix B, Yeast Strains 

Our “MRG” original yeast cultures were received 13 Feb 2006 from Prof. Matthew 

Goddard, University of Auckland, NZ, (Goddard 2006). 

Quoting Prof. Goddard’s letter of transmittal: 

“Each of the strains was isolated from a barrel ferment of Chardonnay juice from Kumeu 

River in Auckland. These are all from natural ferments, i.e., no commercial microbes have been 

added to the juice. 

“The Internal Transcribed Spacer One, 5.8S ribosomal gene and Internal Transcribed 

Spacer Two regions of each of these strains have been amplified by PCR. The PCR amplicon 

was then cut with specific restriction endonucleases and all gave the pattern distinctive for 

[Saccharomyces] cerevisiae. One of the members of this distinctive pattern group was two-way 

sequenced and has a DNA sequence identical to that of S. cerevisiae. 

“These strains were then micro-satellite typed at six loci and the result of this is [Table 

B-1]. …you can see that each strain has one for each of the a and alpha alleles which is strongly 

suggesting that these are all diploids. Each of the eight is unique with respect to the remaining 

five loci - this indicates that each has a different genotype. I've tried to pick a range - for example 

you have some that appear completely homozygous (type 7) and some that are heterozygous at 

the five non-MAT loci (type 9) and others that are in between.” 

From other communication with Prof. Goddard we have that these cultures are fewer than 

fifty generations removed from the barrel ferment and have never been subjected to growth-

limiting media. 
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Tables 

Table B-1. Yeast Strains Characteristics. 
Genotyped Characteristics of Our Yeast Strains as Reported by Goddard 
Type is Goddard’s identifying number; 091-Ned, 035-Fam, 276-Hex, 009-Fam and 160-Hex 
are typed microsatellite loci; alpha-Fam and a-Hex are the mating type locus; “Type 2” and 
“Type 8” are the isolates we selected to use as experimental strains MRG-2 and MRG-8, 
respectively. 

Type  091-Ned  035-Fam  276-Hex 009-Fam 160-Hex alpha-Fam  a-Hex 

1  249  337.5  395  
434 
454.5  

466  468.5  492  

2  249  358.5  427  
422.5 
451.5  

446.5 
451.5  

468.5  492  

3  249  358.5  427  
422.5 
452  

451.5  468.5  492  

6  296  337.5  395  
434.5 
454.5  

466  468.5  492  

7  318  358.5  447  451.5  475  468.5  492  

8  
248.5 
296.5  

337.5  395  
434 
454  

466  468.5  492  

9  
249 
263  

336 
358.5  

430 
437  

419.5 
451.5  

447 
451.5  

468.5  492  

23  318 339.5  
336 
358.5  

427  
449 
451.5  

469  468.5  492  
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Appendix C, Biomass and Other Measurements Calibrations 

Throughout our work we follow the lead of Monod (1949), MacArthur (1972) and others 

(Adams et al. 1985, Poilpre et al. 2002, Zinn et al. 2004) in using biomass, reported in mg mL-1, 

as our measure of population size, Monod’s density, N. We also used, however, measurements of 

cell count, measured as cells mL-1, or optical density, measured as Nephelometric Turbidity 

Units, NTU—both of which we convert to our standard reporting unit of mg mL-1.  

This table gives coefficients for quick conversion among observed and reported 

measures. Multiply the unit in the top row by the coefficient at the intersection to get the unit in 

the left column: 

 mg mL-1 (106 cells) mL-1 NTU 
mg mL-1  0.0127 0.000892 
(106 cells) mL-1 78.5  0.0717 
NTU 1120. 13.9  

 

We determined biomass density by separating and drying the mass from a known culture 

volume as described in Chapter 3. We determined cell count from a sample of a culture by a 

standard hemocytometer under 400 diameters magnification. We determined optical density by a 

T100 Turbidity Meter (Oakton Instruments, Vernon Hills, IL, USA). Our most common method 

of population determination in the work reported here was direct measurement of biomass—as 

for our Characterization Protocol. Our second method was conversion of optical density to 

biomass—as for equalizing inoculation of two strains into competition medium. 

T Table C-1 through Table C-3 show our calibration formulae, linear fit parameters and 

data from early culture runs for the three conversions among measurement and reporting units. 
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Tables 

Table C-1. Calibration: NTU Density versus Mass Density. ሾ݉݃	݉ିܮଵሿ ൌ 0.00892	ሾ	ܷܰܶ	ሿ	  ሾܷܰܶሿ ൌ 1120	ሾ	݉݃	݉ିܮଵ	ሿ	  

Linear estimate of y = m • x + 0 : ( mg mL-1 ) = m ( NTU ). se, standard error of m; r2, 
correlation coefficient; F, F statistic; ss.reg, regression sum of squares; se.y, standard error of y 
estimate; df, degrees of freedom; ss.resid, residual sum of squares. 

m 0.000892381   
se 2.50901E-05   
r2 0.971582594 0.066641828 se.y 
F 1265.018891 37 df 
ss.reg 5.618117509 0.164321932 ss.resid

 

Vol.: culture sample volume, mL; Vial Net: culture sample dry mass, mg; Mass: culture sample 
density, mg mL-1; NTU: turbidity. 

Vol. Vial Net Mass NTU 
39.0 6.0 0.154 44.9 
36.0 5.8 0.161 58.3 
39.0 6.9 0.177 79.2 
36.0 6.4 0.178 65.4 
38.0 27.5 0.724 721 
37.0 27.9 0.754 860 
36.0 28.3 0.786 792 
40.0 34.5 0.862 901 
35.0 2.9 0.083 42.90 
36.5 3.2 0.088 41.00 
36.5 3.6 0.099 59.50 
34.0 4.4 0.129 30.00 
41.5 6.9 0.166 149.00
40.0 6.8 0.170 118.00
37.0 7.0 0.189 171.00
39.5 8.1 0.205 143.00
38.0 12.2 0.321 260.00
39.5 13.0 0.329 288.00
35.0 12.2 0.349 299.00
37.5 13.4 0.357 295.00
32.5 14.0 0.431 483.00
40.0 17.4 0.435 497.00
35.0 15.4 0.440 500.00
40.0 2.9 0.073 66.80 
41.5 3.5 0.084 80.40 
35.0 3.8 0.109 88.10 

Vol. Vial Net Mass NTU 
37.5 4.1 0.109 88.30 
38.0 6.0 0.158 167.00
36.0 6.6 0.183 210.00
36.0 6.6 0.183 213.00
35.0 6.5 0.186 212.00
39.0 13.1 0.336 419.00
36.0 12.9 0.358 432.00
36.5 14.9 0.408 510.00
35.0 18.2 0.520 658.00
38.0 21.9 0.576 774.00
37.0 23.6 0.638 793.00
37.0 24.3 0.657 847.00
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Table C-2. Calibration: Mass Density versus Count. ሾ݈݈ܿ݁	݉ିܮଵሿ ൌ 78.5	10	ሾ	݉݃	݉ିܮଵ	ሿ	  ሾ݉݃	݉ିܮଵሿ ൌ 0.0127 ∙ 10ି	ሾ	݈݈ܿ݁	݉ିܮଵ	ሿ	  

Linear estimate of y = m • x + 0 : ( ( 106 cell ) mL-1 ) = m ( mg mL-1 ). See Table C-1 for labels. 

m 78.4733398   
se 2.46398347   
r2 0.891066131 13.28761107 se.y 
F 1014.305296 124 df 
ss.reg 179086.3597 21893.5154 ss.resid

 

Vol.: culture sample volume, mL; Vial Net: culture sample dry mass, mg; Mass: culture sample 
density, mg mL-1; Cell Count: cell density (106 cells) mL-1; 

Vol. Vial Net Mass Cell Count
48.5 9.3 0.192 1.86 
50.0 10.0 0.200 2.07 
48.0 10.3 0.215 2.93 
40.5 5.3 0.131 3.14 
42.0 7.7 0.183 3.14 
41.0 9.6 0.234 3.21 
42.0 9.2 0.219 3.57 
43.0 10.4 0.242 3.71 
47.5 8.0 0.168 3.79 
46.0 7.1 0.154 4.00 
40.0 3.3 0.082 4.07 
34.0 4.4 0.129 4.10 
48.0 9.6 0.200 4.14 
42.0 10.9 0.260 4.29 
46.0 9.0 0.196 4.36 
42.0 6.0 0.143 4.69 
43.0 9.6 0.223 4.86 
39.0 7.6 0.195 5.07 
45.0 13.2 0.293 5.21 
48.0 10.3 0.215 5.71 
47.0 12.1 0.257 5.79 
44.0 15.1 0.343 6.14 
35.0 2.9 0.083 6.25 
36.5 3.2 0.088 6.30 
45.0 9.8 0.218 6.45 
36.0 4.5 0.125 6.63 
41.5 10.5 0.253 6.64 
39.0 6.0 0.154 6.75 
36.5 3.6 0.099 7.00 
40.5 4.7 0.116 7.00 

Vol. Vial Net Mass Cell Count
23.0 3.0 0.130 7.07 
41.5 7.9 0.190 7.64 
51.0 17.6 0.345 7.71 
22.0 3.0 0.136 7.96 
36.0 5.8 0.161 8.3 
40.0 9.6 0.240 8.43 
49.0 14.5 0.296 9.07 
37.0 13.1 0.354 9.27 
49.0 14.8 0.302 9.43 
44.5 7.7 0.173 9.55 
36.0 6.4 0.178 9.65 
39.0 6.9 0.177 9.85 
46.0 11.9 0.259 10.14 
43.0 7.9 0.184 10.30 
48.0 13.9 0.290 10.33 
22.0 3.0 0.136 10.83 
37.0 13.5 0.365 10.84 
42.0 11.3 0.269 10.86 
22.0 1.8 0.082 11.62 
50.0 17.1 0.342 11.71 
48.0 13.4 0.279 12.21 
40.5 25.8 0.637 12.7 
44.0 9.6 0.218 12.75 
46.5 6.7 0.144 13.05 
40.0 6.8 0.170 13.20 
49.0 13.5 0.276 13.21 
41.5 6.9 0.166 13.35 
48.0 14.3 0.298 13.79 
39.5 8.1 0.205 14.00 
48.0 11.9 0.248 14.36 
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Vol. Vial Net Mass Cell Count
46.0 7.9 0.172 14.45 
37.0 7.0 0.189 14.90 
39.5 7.1 0.180 15.68 
39.0 5.5 0.141 15.71 
47.0 11.5 0.245 16.14 
45.0 13.6 0.302 16.79 
44.5 13.9 0.312 17.14 
49.0 14.0 0.286 17.40 
36.5 24.0 0.658 17.6 
43.0 10.1 0.235 17.90 
42.0 9.5 0.226 19.00 
51.0 17.4 0.341 19.00 
43.0 9.7 0.226 19.10 
37.5 13.4 0.357 19.25 
43.0 9.8 0.228 20.00 
21.0 7.5 0.357 20.01 
43.0 11.9 0.277 20.33 
44.0 15.7 0.357 21.00 
35.0 12.2 0.349 21.05 
45.0 14.8 0.329 21.73 
38.0 12.2 0.321 22.30 
39.5 13.0 0.329 23.05 
22.0 6.6 0.300 23.45 
41.5 18.6 0.448 24.17 
46.0 14.5 0.315 24.25 
20.0 8.2 0.410 25.08 
44.5 16.0 0.360 25.35 
43.0 18.7 0.435 26.65 
37.0 12.5 0.338 26.88 
41.5 15.5 0.373 27.40 
40.0 17.4 0.435 28.00 
42.5 13.4 0.315 29.10 
22.0 7.5 0.341 29.28 
47.0 16.6 0.353 29.30 
43.0 17.7 0.412 29.40 
46.0 18.9 0.411 29.95 
44.5 19.9 0.447 30.45 
43.0 15.9 0.370 31.15 
49.5 16.9 0.341 31.80 
44.0 20.3 0.461 32.05 
46.0 23.0 0.500 32.45 
35.0 15.4 0.440 32.75 
43.0 18.0 0.419 32.95 
42.0 31.5 0.750 33.25 
44.5 17.5 0.393 33.80 

Vol. Vial Net Mass Cell Count
46.0 21.4 0.465 36.06 
21.0 14.0 0.667 37.35 
32.5 14.0 0.431 40.75 
44.0 24.7 0.561 45.30 
48.0 30.2 0.629 46.25 
22.0 13.8 0.627 47.84 
21.0 18.7 0.890 49.29 
29.0 19.4 0.669 56.24 
27.5 18.7 0.680 56.64 
20.0 9.9 0.495 71.54 
37.0 23.7 0.641 87.22 
36.5 21.7 0.595 97.27 
49.0 43.4 1.550 101.37 
20.0 24.2 1.210 109.42 
49.0 38.2 1.317 110.52 
48.0 37.4 1.438 118.08 
34.0 47.5 1.397 127.80 
40.0 53.6 1.340 139.68 
29.5 38.9 1.319 146.68 
36.0 49.7 1.381 146.99 
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Table C-3. Calibration: NTU Density versus Count. ሾ݈݈ܿ݁	݉ିܮଵሿ ൌ 0.0717 ∙ 10	ሾ	ܷܰܶ	ሿ	  ሾܷܰܶሿ ൌ 13.9 ∙ 10ି	ሾ	݈݈ܿ݁	݉ିܮଵ	ሿ	  

Linear estimate of y = m • x + 0 : ( ( 106 cell ) mL-1 ) = m • ( NTU ). See Table C-1 for labels. 

m 0.071708435   
se 0.003307867   
r2 0.961140601 3.964434385 se.y 
F 469.9422046 19 df 
ss.reg 7385.95944 298.6180598 ss.resid

 

NTU: turbidity; Cell Count: (106 cells) mL-1; 

NTU Cell Count
30.00 4.10 
41.00 6.30 
42.90 6.25 
44.9 6.75 
58.3 8.3 
59.50 7.00 
65.4 9.65 
79.2 9.85 
118.00 13.20 
143.00 14.00 
149.00 13.35 
171.00 14.90 
260.00 22.30 
288.00 23.05 
295.00 19.25 
299.00 21.05 
483.00 40.75 
497.00 28.00 
500.00 32.75 
519 33.25 

 


