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In this thesis, I present an exposition of origami constructible objects and their

associated algebraic fields. I first review the basic definitions and theorems of field

theory that are relevant and discuss the more commonly known straightedge and

compass constructions. Next, I introduce what origami is and discuss the basic

single-fold operations of origami. Using the set of single-fold operations, I explain

what it means for an object to be origami-constructible and show how to prove or

disprove the constructibility of some origami objects. Finally, I present extensions

of origami theory in literature and pose some additional questions for future studies.
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Chapter 1

Introduction

1.1 Geometric Constructions

There are various tools, such as the straightedge and compass, one can use to con-

struct geometric objects. Each construction tool has its unique rules of operating

when making geometric constructions. To construct a geometric object means to

carry out a set of operations the tool permits that collectively produce the geometri-

cal object. Note that constructing a geometric object differs from making a freehand

illustration or drawing of the object.

Take the classical straightedge and compass as an example. In straightedge and

compass constructions, one can use either tool but not both simultaneously. The

straightedge can only be used to draw the line through two given points but cannot

be used to measure length. The compass can be used to construct a circle or arc with

a given center and point on the circle or arc. Some basic straightedge and compass

constructions will be discussed in Chapter 3 (see Figures 3.1 and3.2).
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The system of assumptions or axioms concerning the unique rules of operating for

each tool have a profound effect on what objects are constructible within a particular

framework. While the classical framework of straightedge and compass constructions

(described below) is better known, one can expand this framework by adding other

constructions (for example, see Section 3.4 on the marked ruler and verging), or

one can consider new frameworks, such as constructions by origami, which will be

explored later in detail.

The straightedge and compass, the rules of construction, and the study of con-

structible objects go back to the ancient Greeks and Egyptians. For example, con-

sider the famous Greek geometry problems:

Using only straightedge and compass,

1. (Doubling a cube) Is it possible to construct a cube whose volume is equivalent

to twice the volume of a given cube?

2. (Trisecting an angle) Is it possible to trisect any given angle of measure θ?

3. (Squaring a circle) Is it possible to construct a square whose area is equivalent to

that of a given circle?

The study of constructible objects including the famous Greek geometry problems

emerged from everyday life, such as in architecture and surveying [14]. For example,

according to Cox [4, page 266], there are two versions of the origin of doubling a cube:

King Minos and the tomb of his son; the cubical altar of Apollo in Athens. Both

involved the construction of some architectural structure. Although straightedge

and compass may have lost their place in our everyday lives, geometric constructions
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with straightedge and compass are still introduced in high school geometry providing

opportunities for students to better understand definitions and characteristics of

geometric figures.

Going back to the Greek geometry problems, the Greeks were not able to solve

the famous geometry problems at that time but the search for solutions led to other

mathematical creations (e.g., Hippocrates of Chios and the lune; Hippias of Elis

and the quadratrix, Menaechmus and parabolas, the spiral of Archimedes) [4]. In

1837 Wantzel showed that trisecting an angle and doubling a cube by straightedge

and compass were not always possible; in 1882 Lindemann showed that squaring

the circle was impossible with straightedge and compass when he showed that π is

transcendental over Q [4]. The proofs will be discussed in Chapter 3.

The development of Modern algebra and coordinate geometry played a big role in

solving these problems and studying geometric constructions with other various tools,

such as the marked ruler, divider, Origami (paperfolding), and Mira. Specifically,

the collection of lengths that various geometric tools can theoretically construct

became associated with various algebraic fields. Among the various tools of geometric

constructions, this thesis presents an exposition of origami constructible objects and

its associated algebraic field.

1.2 Origami Constructions

Origami is the Japanese art of paper folding, in which one starts with a square-

shaped sheet of paper and folds it into various three-dimensional shapes. Typically
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in origami, one starts with an unmarked square-shaped sheet of paper using only

folding (usually cutting is not allowed) with the goal of constructing reference points

that are used to define folds that produce the final object [14]. Reference points

can be points on the square-shaped papers (e.g., the four corners) but also can be

generated as intersections of lines formed by the edges of the paper or creases that

align a combination of points, edges, and creases [14].

Although origami originally started as an activity in everyday life, origami has

become a topic of research. According to Lang [14, page 42], “Starting in the 1970s,

several folders began to systematically enumerate the possible combinations of folds

to study what types of distances were constructible by combining them in various

ways”. In the 1980s, several researchers identified a fixed set of well-defined folds

one can make in origami constructions (see Figure 4.1) and formalized the modern

study of geometric constructions with origami.

In origami theory, starting with the fixed set of well-defined folds, researchers

have investigated the objects possible or impossible to construct using origami. For

example, it was shown that trisecting an angle and doubling a cube are possible

with origami constructions; however, constructing the regular 11-gon or solving the

general quintic equation was shown impossible [2].

There is an international conference, ‘The International Meeting on Origami Sci-

ence, Mathematics and Education,’ at which the origami community have gathered

since 1989 to discuss origami in science, mathematics, education, technology, and

art [18]. With the development of the computer, computational systems of origami

simulation have been developed and a more systematic study of origami has evolved.
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Origami has also been applied to other fields such as science and technology. Ac-

cording to Lucero [15], the application of origami can be found in aerospace and

automotive technology, materials science, computer science, biology, civil engineer-

ing, robotics, and acoustics. However, as folding techniques have been adapted in

industry, more rigor and formalization of origami theory has been called for. For

example, Kasem et al. [13] and Ghourabi et al. [7] called for more precise statements

of the folding operations and introduced the extension of origami constructions with

an additional tool of the compass.

1.3 Overview of Thesis Chapters

In Chapter 2, I will first review the basic definitions and theorems of field theory

that will be used in subsequent chapters. In Chapter 3, I will discuss the more com-

monly known straightedge and compass constructions as a lead into the discussion

on origami constructions. In Chapter 4, I will introduce the basic single-fold opera-

tions of origami and discuss what it means for an object to be origami-constructible.

Through algebraizing geometric constructions with origami, I will show how to prove

or disprove the constructibility of some objects. In Chapter 5, I end this thesis with

closing remarks and some additional thoughts for future studies.
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Chapter 2

Preliminaries in Field Theory

In this Chapter 2, I will review the basic definitions and theorems of field theory

that will be used in subsequent chapters.

2.1 Basic Definitions

Definition 2.1.1 (Group). A group G is a set together with a binary operation

(usually denoted by · and called the group operation) that satisfy the following:

(i) (a · b) · c = a · (b · c), for all a, b, c ∈ G. (Associativity)

(ii) There exists an element e ∈ G (called the identity of G) such that a·e = e·a = a

for all a ∈ G. (Identity)

(iii) For each a ∈ G, there exists an element a−1 ∈ G (called the inverse of a) such

that a · a−1 = a−1 · a = e. (Inverse)

The group G is called abelian if a · b = b · a for all a, b ∈ G.
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Definition 2.1.2 (Subgroup). Given a group G, a subset H of G is a subgroup of

G (denoted H ≤ G) if H is nonempty and closed under multiplication and inverse,

i.e., a, b ∈ H ⇒ ab ∈ H and a−1 ∈ H.

Whereas the theory of groups involves general properties of objects having an

algebraic structure defined by a single binary operation, the theory of rings involves

objects having an algebraic structure defined by two binary operations related by

the distributive laws [5, p.222].

Definition 2.1.3 (Ring). A ring R is a set together with two operations, +,×

(addition and multiplication) that satisfy the following:

(i) R is an abelian group under addition (denote the additive identity 0 and additive

inverse of element a as −a).

(ii) (a× b)× c = a× (b× c), for all a, b, c ∈ R. (Multiplicative associativity)

(iii) (a + b) × c = (a × c) + (b × c) and a × (b + c) = (a × b) + (a × c) , for all

a, b, c ∈ R. (Left and right distributivity)

(iv) There exists an element 1 ∈ R (called the multiplicative identity) such that

1× a = a× 1 = a for all a ∈ R (multiplicative unit).

Rings may also satisfy optional conditions such as:

(v) a× b = b× a for all a, b ∈ R.

In this case the ring R is called commutative.
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(vi) For every a ∈ R \ {0}, there exists an element a−1 ∈ R such that a × a−1 =

1 = a−1 × a.

In this case the ring R is called a division ring.

Definition 2.1.4 (Subring). Given a ring R, a subset S of R is a subring of R if

S is a subgroup of R closed under multiplication, and if 1 ∈ S. In other words, S is

a subring of R if the operations of addition and multiplication in R restricted to S

give S the structure of a ring.

A commutative division ring (a ring that satisfies all conditions (i) through (vi)

in Definition 2.1.3) is called a field. More concisely:

Definition 2.1.5 (Field). A field is a set F together with two binary operations +

and · that satisfy the following:

(i) F is an abelian group under + (with identity 0)

(ii) F× = F − {0} is an abelian group under · (with identity 1)

(iii) a · (b+ c) = (a · b) + (a · c), for all a, b, c ∈ F . (Distributivity)

For example, any set closed under all the arithmetic operations +,−,×,÷ (divi-

sion by nonzero elements) is a field.

2.2 Field Theory

Of particular interest in this thesis is the idea of extending a given field into a

(minimally) larger field so that the new field contains specific elements in addition

to all the elements of the given field. We first define a field extension.
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Definition 2.2.1. If K is a field with subfield F, then K is an extension field of

F, denoted K/F (read “K over F ”). If K/F is a field extension, then K is a vector

space over F with degree dimFK, denoted [K : F ]. The extension is finite if [K : F ]

is finite and infinite otherwise.

Definition 2.2.2. If K is an extension of field F and if α, β, · · · ∈ K, then the

smallest subfield of K containing F and α, β, · · · ∈ K is called the field generated

by α, β, · · · over F, denoted F (α, β, · · · ). An extension K/F is finitely generated

if there are finitely many elements α1, . . . , αk ∈ K such that K = F (α1, . . . , αk). If

the field is generated by a single element α over F, then K is a simple extension

of F with α a primitive element for the extension K = F (α).

We are specifically interested in field extensions that contain roots of specific

polynomials over a given field, with the new field extending the field. The following

propositions of such field extensions are taken as given without proof1.

Proposition 2.2.3. Given any field F and irreducible polynomial p(x) ∈ F [x], there

exists an extension of F in which p(x) has a root. Namely, the field K = F [x]/(p(x))

in which F [x]/(p(x)) is the quotient of the ring F [x] by the maximal ideal (p(x)).

Further, if deg(p(x)) = n and α ∈ K denotes the class of x modulo p(x), then

{1, α, α2, . . . , αn−1} is a basis for K as a vector space over F, with [K : F ] = n, so

K = {a0 + a1α + · · ·+ an−1α
n−1|a0, . . . , an−1 ∈ F}.

1For a detailed proof of these statements, see Dummit & Foote [5, pp. 512-514].
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While Proposition 2.2.3 states the existence of an extension field K of F that

contains a solution to a specific equation, the next proposition indicates that any

extension of F that contains a solution to that equation has a subfield isomorphic to

K and that K is the smallest extension of F (up to isomorphism) that contains such

a solution.

Proposition 2.2.4. Given any field F and irreducible polynomial p(x) ∈ F [x], sup-

pose L is an extension field of F containing a root α of p(x) and let F (α) denote the

subfield of L generated over F by α. Then F (α) ∼= F [x]/(p(x)). If deg(p(x)) = n,

then F (α) = {a0 + a1α + a2α
2 + · · ·+ an−1α

n−1|a0, a1, . . . , an−1 ∈ F} ⊆ L.

Example 2.2.5. Consider F = R and p(x) = x2 + 1, an irreducible polynomial over

R. Then we obtain the field K = R/(x2 +1) ∼= R(i) ∼= R(−i), an extension of R that

contains the solution of x2 + 1 = 0. [K : F ] = 2 with K = {a+ bi|a, b ∈ R} = C.

The elements of a field extension K of F need not always be a root of a polynomial

over F.

Definition 2.2.6. Let K be an extension of a field F. The element α ∈ K is alge-

braic over F if α is a root of some nonzero polynomial f(x) ∈ F [x]. If α ∈ K is

not the root of any nonzero polynomial over F, then α is transcendental over F.

The extension K/F is algebraic if every element of K is algebraic over F.

Proposition 2.2.7. Let K be an extension of a field F and α algebraic over F. Then

there is a unique monic irreducible polynomial mα(x) ∈ F [x] with α as a root. This

polynomial mα(x) is called the minimal polynomial for α over F and deg(mα) is

the degree of α. So F (α) ∼= F [x]/(mα(x)) with [F (α) : F ] = deg(mα(x)) = degα.
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Proposition 2.2.8. If α is algebraic over F, i.e., if α is a root to some polynomial

of degree n over F, then [F (α) : F ] ≤ n. On the other hand, if [F (α) : F ] = n,

then α is a root of a polynomial of degree at most n over F. It follows that any finite

extension K/F is algebraic.

Example 2.2.9 (Quadratic Extensions over F with char(F ) 6= 2). Let K an ex-

tension of a field F with the char(F ) 6= 22 and [K : F ] = 2. Let α ∈ K but

α /∈ F . Then α must be algebraic, i.e., a root of a nonzero polynomial over F of

degree at most 2, by Proposition 2.2.8. Since α /∈ F , this polynomial cannot be

of degree 1. Hence, by Proposition 2.2.7, the minimal polynomial of α is a monic

quadratic mα(x) = x2 + bx + c with b, c ∈ Q. F ⊂ F (α) ⊆ K and [K : F ] = 2, so

K = F (α) (see Proposition 2.2.7 and 2.2.8). From the quadratic formula (possible

since char(F ) 6= 2), the elements

−b±
√
b2 − 4c

2
∈ F (

√
d)

are roots of mα(x) with d = b2 − 4c. We can, by Proposition 2.2.7, identify F (α)

with a subfield of F (
√
d) by identifying α with 1

2
(−b±

√
d) (either sign choice works).

We know that d is not a square in F , since α /∈ F . By construction F (α) ⊂ F (
√
d).

On the other hand,
√
d = ∓(b + 2α) ∈ F (α), so F (

√
d) ⊆ F (α). Therefore, F (α) =

F (
√
d). As such, any extension K of F of degree 2 is of the form F (

√
d), where

d ∈ F is not a square in F . Conversely, any extension of the form F (
√
d), where

2The characteristic of a field F is the smallest integer n such that n · 1F = 0. If such n does not
exist, then the characteristic is defined to be 0.
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d ∈ F is not a square in F , is an extension of degree 2 over F . Such an extension is

called a quadratic extension over F .

Particularly, when F = Q, any extension K of Q of degree 2 is of the form Q(
√
d),

where 0 < d ∈ Q is not a square in Q. Conversely, any extension of the form Q(
√
d),

where 0 < d ∈ Q is not a square in Q, is an extension of degree 2 over Q. Such an

extension is called a quadratic extension over Q.

Theorem 2.2.10 (Tower Rule). Let F a field extension of E and K a field extension

of F. Then K is a field extension of E of degree [K : E] = [K : F ][F : E].

Proof. Suppose [F : E] = m and [K : F ] = n are finite. Let α1, . . . , αm a basis for F

over E and β1, . . . , βn a basis for K over F. Let β any element of K. Since β1, . . . , βn

are a basis for K over F, there are elements b1, . . . , bn ∈ F such that

β = b1β1 + b2β2 + · · ·+ bnβn (2.1)

Since α1, . . . , αm are a basis for F over E, there are elements ai1, . . . , ain ∈ E, i =

1, 2, . . . ,m such that each

bi = ai1α1 + ai2α2 + · · ·+ ainαn. (2.2)

Substituting (2.2) into (2.2), we obtain

β =
n∑
j=1

m∑
i=1

aij(αiβj), aij ∈ F (2.3)
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In other words, any element of K can be written as a linear combination of the nm

elements αiβj with coefficients in F. Hence, the vectors αiβj span K as a vector space

over E.

Suppose β = 0 in (2.3).

β =
n∑
j=1

m∑
i=1

aij(αiβj) =
n∑
j=1

(
m∑
i=1

aijαi

)
βj.

Since β1, . . . , βn are linearly independent,
∑m

i=1 aijαi = 0 for all j = 1, . . . , n. Since

α1, . . . , αm are linearly independent, aij = 0 for all i = 1, 2, . . . ,m and j = 1, . . . , n.

Therefore, the nm elements αiβj are linearly independent over E, and form a basis

for K over E. Therefore, [K : E] = nm = [K : F ][F : E]. If either [K : F ] or [F : E]

is infinite, then there are infinitely many elements of K or F, respectively, so [K : E]

is also infinite. On the other hand, if [K : E] is infinite, then at least one of [K : F ]

and [F : E] has to be infinite since if they are both finite, the above proof shows that

[K : E] is finite.
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Chapter 3

Straightedge and Compass

Constructions

To investigate the constructability of geometric objects using straightedge and com-

pass, such as the problems posed by the Greeks, we translate geometric construc-

tions into algebraic terms. In this chapter we explore geometric constructions with

straightedge and compass and constructible numbers.

3.1 Initial Givens, Operations, and Basic Construc-

tions

In straightedge and compass constructions, two points, say O and P , are initially

given. Starting with these given points, we can carry out the following operations

with straightedge and compass, which produce lines and circles.

Operations of straightedge and compass constructions

Given two constructed points, we can

14



C1. construct the line connecting the two points, or

C2. construct a circle centered at one point and passing through the other point.

We can also construct the intersection of constructed lines or circles which gives new

points:

P1. We can construct the point of intersection of two distinct lines.

P2. We can construct points of intersection of a line and a circle.

P3. We can construct points of intersection of two distinct circles.

Repeating C1, C2 with P1, P2, P3 on {O,P} produces more constructible points.

A constructible point is any point one can construct in a finite number of steps of

combinations of C1, C2, P1, P2, or P3.

Examples of basic straightedge and compass constructions

Recall the following basic constructions in Figure 3.1 from high school geometry.

For example, to construct the perpendicular line through point P (see E1 in Fig-

ure 3.1), construct a circle of some radius centered at point P and let Q1 and Q2

be the two intersection points of the circle with `. Next, construct circles centered

at Q1 and Q2 respectively, whose radius is the distance between Q1 and Q2
1. These

two circles will intersect in two new points R1 and R2. The line through R1 and R2

passes through P and is perpendicular to `.

Given points P,Q and line `, with P /∈ ` and Q ∈ l, to construct a line parallel

to ` through P (see E2 in Figure 3.1), construct a circle of some radius centered at

1The radius can be any length greater than half the distance between Q1 and Q2 to allow the
two circles to intersect.
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Figure 3.1: Three basic straightedge and compass constructions.

Q on ` and construct a circle centered at point P with same radius. Construct line

m through P and Q and let the intersection of the circle centered at Q with m S

and the intersection of the circle centered at P with m U . Let the intersection of the

circle centered at Q with ` R and construct a circle centered at S through R. Then

construct another circle with same radius centered at U . Let the intersection of the

circle centered at P and the circle centered at U T . The line through P and T is

parallel to ` through P .

To construct the angle bisector (see E3 in Figure 3.1), construct a circle of some

radius centered at the point O of intersection of the two lines. Let S1 and S2 be the

two intersection points of the circle with the two sides ` and m, respectively. Next,

construct two congruent circles of some radius centered at S1 and S2 respectively.

16



Let point T one of the two intersections of the two circles. The line through O and

T bisects the angle between lines ` and m. These examples will be useful later.

3.2 Constructible Numbers

Now we translate geometric distances obtained through constructions into algebraic

terms by associating lengths with elements of the real numbers. Given a fixed unit

distance 1, we determine any distance by its length 1r = r1 ∈ R.

Definition 3.2.1. A real number r is constructible if one can construct in a

finite number of steps two points which are a distance of |r| apart.

The set of real numbers that are associated with lengths in R obtained by straight-

edge and compass constructions together with their negatives are constructible el-

ements of R. Henceforth, we do not distinguish between constructible lengths and

constructible real numbers.

Given a constructible number r, we can construct various objects using straight-

edge and compass. Figure 3.2 shows two examples. For example, given a con-

structible number r, we can construct an equilateral triangle with side length r as

follows. First, let A and B two points a distance of r apart. Next, construct circle

c1 centered at A with radius r and circle c2 centered at B with radius r. Let C the

intersection of circles c1, c2. Then, 4ABC is an equilateral triangle.

Given the plane in which straightedge and compass constructions are made, we

establish a coordinate system by taking point O as the origin and the distance be-

tween O and P as the unit length 1. Applying C1 to O and P , we can construct the

17



Figure 3.2: Two straightedge and compass constructions starting with given length
r.

x-axis. Applying E1 to the x-axis and point O, we can construct the y-axis. Then

the coordinates of the two given points O and P are (0, 0) and (1, 0), respectively,

on the Cartesian plane. As such, using our points O and P , we can construct a

coordinate system in the plane and use this to represent our points as ordered pairs,

i.e., elements of R22. We then have:

Lemma 3.2.2. A point (a, b) ∈ R2 is constructible if and only if its coordinates

a and b are constructible elements of R.

Proof. We can construct distances along lines (see E4 in Figure 3.2) that are perpen-

dicular, and we can make perpendicular projections to lines (apply E1). Then, the

point (a, b) can be constructed as the intersection of such perpendicular lines. On

2The plane can be taken as the field of complex numbers C, with the x-axis representing the
real numbers and the y-axis representing the imaginary numbers.
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the other hand, if (a, b) is constructible, then we can project the constructed point to

the x-axis and y-axis (apply E1) and thus the coordinates a and b are constructible

as the intersection of two constructible lines.

Lemma 3.2.3. Every n ∈ Z is constructible.

Proof. Construct the unit circle centered at P . Then by P2, the intersection of

that unit circle and the x-axis, 2, is constructible. Next, construct the unit circle

centered at 2. Then by P2, the intersection of that unit circle and the x-axis, 3, is

constructible. Iterating this process of constructing the intersection of the unit circle

and the x-axis (see Figure 3.3) shows that every n ∈ Z is constructible.

Figure 3.3: The construction of n ∈ Z.

Lemma 3.2.4. If two lengths a and b are given, one can construct the lengths a± b,

ab,a
b
, and

√
a.

Proof. Use E4 in Figure 3.2 to construct a± b.
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Given lengths a and b, construct parallel lines (use E2 in Figure 3.1) as shown

in Figure 3.4 (a) and (b) to construct lengths ab and a
b
, respectively, using similar

triangles.

Figure 3.4: Constructing lengths ab, a
b
, and

√
a.

Construct a semicircle with diameter of length a + 1 and construct the perpen-

dicular segment to the diameter (use E1 in Figure 3.1) as shown in Figure 3.4 (c).

Then, from similar triangles, the length of the perpendicular segment is
√
a.
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Lemma 3.4 implies that straightedge and compass constructions are closed un-

der addition, subtraction, multiplication, division, and taking square roots. The

following two corollaries are immediate results.

Corollary 3.2.5. The set of constructible numbers is a a subfield of R.

Proof. From Lemma 3.2.4, straightedge and compass constructions are closed under

addition, subtraction, multiplication and division (by nonzero elements) in R, so the

set of constructible numbers is a subfield of R.

Corollary 3.2.6. Every rational number is constructible.

Proof. From Lemma 3.2.3 every integer is constructible. From Lemma 3.2.4 every

quotient of a pair of integers is constructible. So, all rationals are constructible.

From Corollary 3.2.6, we can construct all points (a, b) ∈ R2 whose coordinates

are rational. We can also construct additional real numbers by taking square roots

(from Lemma 3.2.4), so the the set of constructible numbers form a field strictly

larger than Q. Let C denote the set of constructible numbers with straightedge and

compass. So far, we proved Q ⊂ C ⊆ R. In order to determine precisely what C

consists of, we create algebraic equations for points, lines, and circles.

First, we examine the equations of constructible lines and circles.

Lemma 3.2.7. Let F be an arbitrary subfield of R.

(1) A line that contains two points whose coordinates are in F has an equation of

the form ax+ by + c = 0, where a, b, c ∈ F .
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(2) A circle with center whose coordinates are in F and radius whose square is in F

has an equation of the form x2 + y2 + rx+ sy + t = 0, where r, s, t ∈ F .

Proof. (1) Suppose (x1, y1), (x2, y2) are two points on the line such that x1, x2, y1, y2 ∈

F . If x1 = x2 then the equation of the line is x − x1 = 0. If x1 6= x2, then the

equation of the line is

y − y1 =
y1 − y2
x1 − x2

(x− x1).

Rearranging both sides, we obtain

(
y1 − y2
x1 − x2

)x− y − (
y1 − y2
x1 − x2

)x1 + y1 = 0.

Since F is a field and x1, x2, y1, y2 ∈ F , each coefficient is an element of F.

(2) Suppose (x1, y1) is the center and k the radius such that x1, x2, k ∈ F . Then the

equation of the circle is

(x− x1)2 + (y − y1)2 = k2.

Rearranging the equation, we obtain

x2 + y2 − 2x1x− 2y1y + x1
2 + y1

2 + k2 = 0.

Since F is a field and x1, x2, k ∈ F , each coefficient is an element of F.

22



Recall that from P1, P2, P3, we can determine constructible points as intersec-

tions of two lines, a line and a circle, or of two circles.

Lemma 3.2.8. Let F be an arbitrary subfield of R. Let l1, l2 two constructible lines

and c1, c2 two constructible circles. Then,

(1) if l1, l2 intersect, the coordinates of the point of intersection are elements of F;

(2) if l1, c1 intersect, the coordinates of the points of intersection are elements of F

or some quadratic extension field F (
√
d);

(3) and if c1, c2 intersect, the coordinates of the points of intersection are elements

of F or some quadratic extension field F (
√
d).

Proof. (1) Let l1, l2 each have equations

l1 : a1x+ b1y + c1 = 0

l2 : a2x+ b2y + c2 = 0

where ai, bi, ci ∈ F . Solving these linear equations simultaneously gives solutions

also in F. Therefore, the coordinates of the point of intersection of l1, l2 are

elements of F.

(2) Let l1, c1 each have equations

l1 : a1x+ b1y + c1 = 0

c1 : x2 + y2 + r1x+ s1y + t1 = 0
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where a1, b1, c1, r1, s1, t1 ∈ F . Solving these equations simultaneously gives a

quadratic equation with coefficients all in F . Hence the solutions will lie in

a field of the form F (
√
d), where d ∈ F (see Example 2.2.9). Therefore, the

coordinates of the points of intersection of l1, c1 are elements of F (
√
d).

(3) Let c1, c2 each have equations

c1 : x2 + y2 + r1x+ s1y + t1 = 0

c2 : x2 + y2 + r2x+ s2y + t2 = 0

where ri, si, ti ∈ F . Subtracting the equation of c2 from c1 gives us a linear

equation

(r1 − r2)x+ (s1 − s2)y + (t1 − t2) = 0

Solving this linear equation simultaneously with the equation of c1 gives a quadratic

equation with coefficients all in F . Hence the solutions will lie in a field of the

form F (
√
d), where d ∈ F . Therefore, the coordinates of the points of intersection

of c1, c2 are elements of F (
√
d).

Theorem 3.2.9. Let r ∈ R. Then r ∈ C if and only if there is a finite sequence

of fields Q = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ R such that r ∈ Fn and for each

i = 0, 1, . . . , n, [Fi : Fi−1] = 2.

Proof. (⇒): Suppose r ∈ C . As discussed in section 3.1, r ∈ C only when it could

be constructed through operations C1, C2, C3 with straightedge and compass and
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their intersections P1, P2, P3. From Lemma 3.2.8, such straightedge and compass

constructions in F involve a field extension of degree one or two. From induction on

the number of constructions required to construct r, there must be a finite sequence

of fields Q = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ R such that r ∈ Fn with [Fi : Fi−1] = 2.

(⇐): Suppose Q = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ R such that [Fi : Fi−1] = 2.

Then Fi = Fi−1[
√
di] for some di ∈ Fi (see Example 2.2.9). If n = 0, then r ∈ F0 = Q

and Q ⊂ C , from Corollary 3.2.6. Suppose any element of Fn is constructible for

when n = k− 1. Then any dk ∈ Fk−1 is constructible, which implies that
√
dk is also

constructible, from Lemma 3.2.4. Therefore, any element of Fk = Fk−1[
√
dk] is also

constructible. From mathematical induction, any r ∈ Fn is constructible.

Since straightedge and compass constructions involve a field extension of Q with

degree at most 2, the operations can produce elements of at most a quadratic ex-

tension of Q. So, C is the smallest field extension of Q that is closed under taking

square roots.

Corollary 3.2.10. If r ∈ C then [Q(r) : Q] = 2k for some integer k ≥ 0.

Proof. From Theorem 3.2.9, if r ∈ C , there is a finite sequence of fields Q = F0 ⊂

· · · ⊂ Fn ⊂ R such that r ∈ Fn and for each i = 0, 1, . . . , n, [Fi : Fi−1] = 2 . So, by

the Tower Rule (Theorem 2.2.10),

[Fn : Q] = [Fn : Fn−1] · · · [F1 : F0] = 2n.

Since Q ⊂ Q(r) ⊂ Fn, again by the Tower Rule, [Q(r) : Q]|[Fn : Q] = 2n, so if r ∈ C

then [Q(r) : Q] = 2k for some integer k ≥ 0.
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It follows that every constructible number is algebraic over Q and the degree of

its minimal polynomial over Q is a power of 2.

3.3 Impossibilities

Now we can revisit the three classic Greek geometry problems.

Theorem 3.3.1. [Doubling the cube] It is impossible to construct an edge of a cube

with volume 2, using straightedge and compass.

Proof. An edge of such a cube would have length 3
√

2, a root of p(x) = x3 − 2. By

the rational root test, p(x) is irreducible, so it is the minimal polynomial for 3
√

2 over

Q. From Proposition 2.2.7, [Q( 3
√

2) : Q] = 3, which is not a power of 2. So, by

Corollary 3.2.10, 3
√

2 is not constructible.

Before we prove the impossibility of trisecting an angle, we first define a con-

structible angle and prove the following Lemma.

Definition 3.3.2. An angle θ is constructible if one can construct two lines ` and

m with angle θ between them.

Lemma 3.3.3. An angle θ is constructible if and only if cos θ and sin θ are both

constructible numbers.

Proof. (⇒): Using E1, we can construct a line ` perpendicular to the x-axis through

point P on angle θ at distance 1 from the origin. Hence, the intersection of ` and

the x-axis, cos θ is constructible. Similarly, using E1, we can construct sin θ.
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(⇐): From Definition 3.2.1, since cos θ and sin θ are both constructible, the point

(cos θ, sin θ) is constructible. Hence, angle θ is constructible.

Theorem 3.3.4. [Trisecting an angle] Not all angles can be trisected using only

straightedge and compass.

Proof. We show that it is impossible to trisect a 60◦ angle. Note that 60◦ is con-

structible as the angle between two sides of an equilateral triangle (see construction

E5 in Figure 3.2). From Lemma 3.3.3, it suffices to show that cos 20◦ is not con-

structible.

From the triple angle formulas of trigonometry, we know:

cos 3α = cos3 α− 3 cosα sin2 α = 4 cos3 α− 3 cosα.

Substituting α = 20◦, 1
2

= 4 cos3 20◦ − 3 cos 20◦. Thus, cos 20◦ is a root of the

polynomial p(x) = 8x3 − 6x − 1. But p(x) is irreducible in Q, by the rational root

test. So by Proposition 2.2.7, [Q(cos 20◦) : Q] = 3, which is not a power of 2.

Therefore, cos 20◦ is not constructible, by Corollary 3.2.10.

Proposition 3.3.5. [Squaring the circle] It is impossible to construct an edge of a

square with same area as the unit circle, using straightedge and compass.

Because the proof is beyond the scope of this thesis, the last Greek problem is

presented as a proposition. Proposition 3.3.5 is based on the fact that [Q(π) : Q] is

not finite and hence π is not constructible, shown by Lindemann in 1882 [4].
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3.4 Marked Rulers and Verging

One can add to the straightedge and compass axioms by allowing a new operation

involving a straightedge marked with a distance, i.e., a marked ruler. A marked

ruler is a straightedge with two marks on its edge that can be used to mark off unit

distances along a line. The new operation is called verging [16] and with it one can

make geometric constructions that were not possible with the standard straightedge

and compass as previously described. Below we explore the verging operation and

one example of a marked ruler and compass construction which was not possible

with the standard straightedge and compass.

Given point P and two lines ` and m, by verging through P with respect to `

and m, we can construct a line through P and two points Q and R that are one unit

apart with Q ∈ ` and R ∈ m (Figure 3.5).

Figure 3.5: Verging through P with respect to ` and m.

Using this verging characteristic of the marked ruler, we can trisect a given angle

θ as shown in Figure 3.6 and known as Archimedes’ construction [5]. To elaborate,
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start with a circle of radius 1 with central angle θ and line ` through the center of

the circle. Then, use verging of the marked ruler to construct a line m through Q,

the intersection of the terminal ray of the angle and the circle, so that the distance

between A, the intersection of ` and m, and B, the intersection of m and circle O,

is a unit distance apart. In the following we prove that the angle α = 1
3
θ.

Figure 3.6: Trisecting an angle with marked ruler and compass.

Claim. α = 1
3
θ in Figure 3.6.

Proof. Let ∠OBQ = β. See Figure 3.7.

Since OB = OQ, 4OBQ is an isosceles triangle and thus ∠OBQ = ∠OQB =

β. Similarly, since BA = BO, 4BAO is an isosceles triangle and thus ∠BAO =

∠BOA = α. Since ∠QBO is the exterior angle of 4BAO, β = 2α. Similarly,

since ∠QOP is the exterior angle of 4AOQ, θ = α + β. Therefore, θ = 3α, i.e.,

α = 1
3
θ.
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Figure 3.7: Proving angle trisection with marked ruler and compass.
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Chapter 4

Origami Constructions

In this chapter we investigate the constructibility of geometric objects using origami.

Similar to the discussion in Chapter 3, we translate geometric constructions into al-

gebraic terms and explore origami constructions and origami-constructible numbers.

4.1 Initial Givens and Single-fold Operations

In origami constructions, we consider the plane on which origami occurs as a sheet of

paper infinitely large, on which two points, say O and P , are initially given. Origami

constructions consist of a sequence of single-fold operations that align combinations

of points and lines in the plane. A single-fold refers to folding the paper once; a new

fold can only be made after the paper is unfolded. Each single-fold leaves a crease

which acts as a origami-constructed line. Intersections among origami-constructed

lines define origami-constructed points.

31



The basic single-fold operations of origami are as demonstrated in Figure 4.11.

Carrying out O1-O4 and O7 is straightforward. O5 and O6 can be carried out using

a similar process of verging, as described in section 3.4. To elaborate, one can carry

out O5 by folding P1 onto P ′1 on ` and then sliding P ′1 along ` until the fold line

passes through P2. Similarly, one can carry out O6 by folding P1 onto P ′1 on `1 and

then sliding P2 until it lies on `2 [1].

Starting with O and P and using operations O1-O7, we can create new lines,

and the intersections of the old and new lines produce additional points. Repeating

operations O1-O7 on the expanded set of points and lines produces more points

and lines. Not all points on an origami-constructed line are necessarily origami-

constructible points [1]. An origami-constructible point is any point we can construct

as an intersection of two origami-constructible lines constructed in a finite number

of steps of O1-O7.

The seven single-fold operations are often referred to as the “Axioms of origami”

and were formulated in the late 1980s. According to Lang [14], Humiaki Huzita

[10,11] identified six basic types of single-fold operations of origami (O1-O6) in 1989

and Hatori [8] identified a seventh operation (O7) in 2003. However, it was later

discovered that Jacques Justin [12] (in 1986 according to Lucero [15]; and in 1989

according to Lang [14]) has already identified all 7 axioms and that the axioms were

later rediscovered by Huzita or Hatori. The seventh operation did not expand the

set of origami constructible objects; however, it was not equivalent to any of the

existing six operations [2]. Commonly, the 7 axioms are referred to as the Huzita-

1It is worth noting that not all operations involve folds that are always possible. The operations
are limited to when such folds exist.
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Figure 4.1: Single-fold operations of origami.
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Hatori Axioms or the Huzita-Justin Axioms. These axioms are not independent: it

has been shown that O1-O5 can be done using only O6 ( [2], [7]).

Using exhaustive enumeration on all possible alignments of lines and points,

Alperin and Lang [2] have shown that the 7 axioms are complete, meaning that

the 7 operations include all possible combinations of alignments of lines and points

in Origami. In other words, there are no other single-fold axioms other than the

seven. However, Alperin and Lang [2] restricted the cases to those with a finite

number of solutions in a finite-sized paper to exclude alignments that require infinite

paper to verify. They also excluded redundant alignments that do not produce new

lines or points.

More recently, there have been critiques of these axioms. For example, Kasem

et al. [13] showed the impossibility of some folds, discussed the cases where in-

finitely many fold lines occur, and pointed out superfluous conditions in the axioms.

Ghourabi et al. [7, page 146] conducted a systematic algebraic analysis of the 7 ax-

ioms and claimed, “[w]hile these statements [the 7 axioms] are suitable for practicing

origami by hand, a machine needs stricter guidance. An algorithmic approach to

folding requires formal definition of fold operations.”

In this thesis, I assume the traditional set of 7 single-fold operations as listed

in Figure 4.1 and explore the origami constructions and origami numbers derived

from them. In the next chapter, I will discuss some of the more recent studies and

extensions of the origami axioms.
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4.2 Origami Constructions

4.2.1 Origami constructions in relation to straightedge and

compass constructions

In their 1995 paper, Auckly and Cleveland [3] showed that the set of origami construc-

tions using only operations O1-O4 is less powerful than constructions with straight-

edge and compass. In his 1998 book on geometric constructions, Martin [16] showed

that a paper folding operation, which he termed the “fundamental folding opera-

tion,” accounts for all possible cases of incidences between two given distinct points

and two given lines. This fundamental folding operation is equivalent to O6 (re-

stricted to p1 6= p2) [2]. Further, Martin proved that this operation is sufficient for

the construction of all objects constructible by O1-O6 altogether including straight-

edge and compass constructions. In his publication in 2000, Alperin [1] showed that

operations O2, O3, and O5 together are equivalent to axioms O1-O5 and that the

set of constructible numbers obtained by these sets of operations is exactly the set

of constructible numbers obtained by straightedge and compass.

4.2.2 Some examples of basic origami constructions

Recall the Examples of Basic Constructions (3.1) with straightedge and compass in

Chapter 3. These constructions can be made with origami as well. For example, E1

and E3 are equivalent to O4 and O3, respectively. E2 (constructing a line parallel to

a given line ` through point P ) can be done through origami as the following. Apply

O4 to construct a line f1 perpendicular to ` through P . Then apply O4 again to
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construct a line f2 perpendicular to f1 through P . Then f2 is parallel to ` through

P (see Figure 4.2). We will refer to this construction as E2′.

Figure 4.2: E2′: Constructing a line parallel to ` through P with origami.

There are constructions possible with origami but not possible with straightedge

and compass, such as doubling the cube or trisecting an angle. We will explore these

constructions in section 4.4.

4.3 Origami-constructible Numbers

To discuss origami-constructible numbers, we use a similar translation of geometric

constructions into algebraic terms as we did in Chapter 3. That is, given a fixed unit

distance 1, we determine any distance by its length 1r = r1 ∈ R. Using this, we can

translate geometric distances into elements of the real numbers r ∈ R.

Definition 4.3.1. A real number r is origami-constructible if one can con-

struct in a finite number of steps two points which are a distance of |r| apart.

The set of real numbers associated with lengths in R obtained by origami con-

structions together with their negatives are origami-constructible elements of R.
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Henceforth, we do not distinguish between origami-constructible lengths and origami-

constructible real numbers.

Given the plane in which origami constructions are made, we establish a coor-

dinate system by taking point O as the origin and the distance between O and P

as the unit length 1. Then applying O1 to O and P , we can construct the x-axis.

Applying O4 to the x-axis and point O, we can construct the y-axis and carry over

the unit length 1 to the y-axis as demonstrated in Figure 4.3.

Figure 4.3: Constructing the axes and point (0, 1).

To elaborate, apply O4 to P and the x-axis to obtain l1, parallel to the y-axis.

Then apply O5 to two points O,P and line l1 to obtain l2, which intersects the y-axis

at at a distance 1 from point O. Then the coordinates of the two given points O

and P and the unit on the y-axis are (0, 0),(1, 0), (0, 1), respectively. As such, using

our points O and P , we can construct a coordinate system in the plane and use it to

represent our points as ordered pairs, i.e., elements of R22. We then have:

2The plane can be taken as the field of complex numbers C, with the x-axis representing the
real numbers and the y-axis representing the imaginary numbers.
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Lemma 4.3.2. A point (a, b) ∈ R2 is origami-constructible if and only if its

coordinates a and b are origami-constructible elements of R.

Proof. We can origami-construct distances along perpendicular lines (apply E2’ in

Figure 4.2), and we can make perpendicular projections to lines (apply O4). Then,

the point (a, b) can be origami-constructed as the intersection of such perpendicular

lines. On the other hand, if (a, b) is origami-constructible, then we can project the

constructed point to the x-axis and y-axis (apply O4) and thus the coordinates a and

b are origami-constructible as the intersection of two origami-constructed lines.

Since it has been shown that all straightedge and compass constructions can be

made with origami, it follows that Lemmas 3.2.3, 3.2.4, and Corollaries 3.2.5, 3.2.6

hold in origami as well. In the following Lemma, we prove the closure of origami

numbers under addition, subtraction, multiplication, division, and taking square

roots by showing how to construct such lengths with origami.

Lemma 4.3.3. If two lengths a and b are given, one can construct the lengths a± b,

ab,a
b
, and

√
a in origami.

Proof. For a±b, it suffices to show a+b. Given two lengths a, b, use E2′ (Figure 4.2)

to construct lines `,m parallel to
←→
OP,
←→
OQ, through points Q and P , respectively and

name the intersection of `,m point R (Figure 4.4).

Since �OPQR is a parallelogram, we know QR = a and RP = b. Applying

O3, we can construct line n which folds line m onto
←→
OP . Let S the intersection of

` and n. Since n bisects the angle between m and
←→
OP , and since ` is parallel to
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Figure 4.4: Constructing length a+ b using origami.

←→
OP , we know that 4RPS is an isosceles triangle and thus PQ = b. Hence, we have

constructed a line segment QS with length a+ b.

Given lengths a and b, construct parallel lines (E2′) as shown in Figure 3.4 (a)

and (b) to construct lengths ab and a
b
, respectively, using similar triangles.

Given two lengths 1, a, construct OQ with length 1 + a, so OP = 1 and PQ = a

(Figure 4.5). Use O2 to construct the perpendicular bisector ` of
←→
OQ, to construct

the midpoint R of O and Q. Then OR = 1+a
2

. Next, apply O5 to construct line n

that folds point O onto line m through point R. Finally, apply O4 to construct line t

perpendicular to line n through point O. Let the intersection of lines m, t S. Then,

by construction, OR = SR = 1+a
2

. This leads to the same construction as we made

earlier in Figure 3.4(c). It follows that SP =
√
a.

39



Figure 4.5: Constructing length
√
a using origami.

From Lemma 4.3.3, if follows3 that every rational number is origami-constructible

and that the set of origami-constructible numbers is a subfield of R.

Let O denote the set of origami-constructible numbers. So far, we have Q ⊂ O ⊆

R. For a more precise account for origami-constructible numbers, we examine O5

and O6 algebraically (see section 4.2 for why we only examine O5 and O6).

Note that in the proof of Lemma 4.3.3, O5 was used to construct the square root

of a given length. Let’s examine operation O5 algebraically. Recall O5: ‘Given two

points P1 and P2 and line `, we can fold P1 onto ` so that the crease line passes

through P2.’ Imagine we carry out O5 with a given fixed point P1 and a given fixed

3See the proof of Lemma 3.2.3, and Corollaries 3.2.5, 3.2.6
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line ` through some auxiliary point P2. There are infinitely many points P ′1 where

P1 can fold onto `, as shown in Figure 4.6.

Figure 4.6: Lines folding point P onto line `.

Theorem 4.3.4. The lines that fold a given point P to a given line ` are tangent to

the parabola with focus P and directrix `.

Proof. First, without loss of generality, we situate the point P and line ` in the

Cartesian plane by letting P = (0, 1) and ` the line y = −1 (see Figure 4.7). Then,

P ′, the point that P folds onto line ` will have coordinates (t,−1) for some t ∈ R.

Recall from O2 that a line that folds a point P onto another point P ′ forms the

perpendicular bisector of PP ′. The slope and midpoint between P and P ′ are −2
t

and ( t
2
, 0), respectively. So, the equation of the crease line f is

f : y =
t

2
(x− t

2
) (4.1)
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Figure 4.7: Folding point P onto a line `.

Let Q the intersection of f and the line perpendicular to ` through P ′. Since Q is

a point on the crease line, we know QP = QP ′. Note that QP ′ is the distance from

the crease line f to line `, so Q is equidistant from the given point P and given line

`. Therefore, the collection of points Q forms a parabola with focus P and directrix

` and the crease lines are tangent to the parabola. Note that evaluating x = t in

equation (4.1), the coordinates of Q = (t, t
2

4
). Hence the curve that consists of all

Q’s has the quadratic equation y = x2

4
, an equation of a parabola.
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Rearranging equation (4.1) and solving for t, we have

t2

4
− t

2
x+ y = 0⇒ t =

x
2
±
√

(x
2
)2 − y

1
2

(4.2)

t has real values only when (x
2
)2 − y ≥ 0, i.e., when y ≤ x2

4
. Specifically, the points

on the parabola satisfy y = x2

4
and all points P2 in the plane that can be hit by a

crease line must be y ≤ x2

4
. So, O5 cannot happen when P2 is in the inside of the

parabola.

Now we can use a parabola to construct square roots with origami.

Corollary 4.3.5. The set of origami constructible numbers O is closed under taking

square roots4.

Proof. Given length r, we will show that
√
r is origami-constructible. Let P1 = (0, 1)

and ` : y = −1. Let P2 = (0,− r
4
). Then, using O5, fold P1 onto ` through P2.

We know that the equation of our crease line is y = t
2
x − t2

4
, from equation (4.1)

from the proof of Theorem 4.3.4. Since this line has to pass p2, − r
4

= − t2

4
, so

t =
√
r. Therefore, the point where p1 lands on ` will give us a coordinate of desired

length.

Corollary 4.3.5 implies that C ⊆ O. In fact, O is strictly larger than C , from

O6. Recall O6: ‘Given two points p1 and p2 and two lines `1 and `2, we can fold a

line that places p1 onto `1 and p2 onto `2.’

4A geometric proof was made previously in Lemma 4.3.3
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Theorem 4.3.6. Given two points P1 and P2 and two lines `1 and `2, the line,

when exists, that places P1 onto `1 and P2 onto `2 is the simultaneous tangent to two

parabolas. Moreover, operation O6 is equivalent to solving a cubic equation.

Proof. Fix P1, P2 and `1 by letting P1 = (0, 1), P2 = (a, b) and `1 : y = −1 (see

Figure 4.8). We will see where P2 folds onto when we fold P1 onto `1 over and over

again. In other words, we want to find the point P ′2 = (x, y) under each folding.

Figure 4.8: Applying O6 to P1 = (0, 1), P2 = (a, b) and `1 : y = −1

From Theorem 4.3.4, the crease line f folding P1 onto `1 is tangent to the parabola

with focus P1 and directrix `1. Similarly, f is tangent to the parabola with focus P2

and directrix `2. Therefore, f is a common tangent line to two distinct parabolas.
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Recall the equation of f is y = t
2
x− t2

4
. Since this line also folds P2 onto P ′2, it is

the perpendicular bisector of P2P ′2. The slope and midpoint between P2 onto P ′2 are

y−b
x−a and (a+x

2
, b+y

2
), respectively. Since P2P ′2 is perpendicular to f , y−b

x−a = −2
t
, so

t

2
= −(

x− a
y − b

) (4.3)

Also, since f passes the midpoint of P2P ′2,

y + b

2
=
t

2
(
a+ x

2
)− t2

4
(4.4)

Substituting equation (4.3) into equation (4.4) we obtain

y + b

2
= −(

x− a
y − b

)(
a+ x

2
)− (

x− a
y − b

)2

⇒ (y + b)(y − b)2 = −(x2 − a2)(y − b)− 2(x− a)2

a cubic equation. So, the possible points P ′2 are points on a cubic curve. Figure 4.9

shows the curve derived from tracing point P ′2 as point P ′1 moves along line `1 in

Figure 4.8.

If we fold P2 onto `2, then the fold is determined by folding P2 to where `2

intersects the cubic curve. Locating such a point is equivalent to solving the cubic

equation at a specific point [9].

According to Lang [14], this cubic curve (see Figure 4.10 for another example)

has several notable features, derived from the equation. First, it usually contains
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Figure 4.9: An example of a cubic curve.

a loop with the crossing of the loop at point P2. Second, any line `2 intersects the

curve at most three spots, so there are at most three possible alignments of P2 onto

`2. Note that O6 is not possible when `1 and `2 are parallel with P1, P2 in between

the two lines.

Corollary 4.3.7. The origami operations O1-O6 enable us to construct a real solu-

tion to any cubic equation with coefficients in O.

Proof. Without loss of generality, any cubic equation can be written in the form

x3 + ax2 + bx+ c = 0 with a, b, c ∈ O. Substituting X = x− a
3
, we obtain

X3 +
3b− a2

3
X − 9ab− 27c− 2a3

27
= 0

Since a, b, c ∈ O, the coefficients of this equation are also origami-constructible, by

Lemma 4.3.3. So, we can assume the general cubic equation of the form x3+px+q = 0
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Figure 4.10: An example of a cubic curve.

where p, q ∈ O. Following Alperin’s [1] approach, consider two parabolas

(y − 1

2
p)2 = 2qx (4.5)

and

y =
1

2
x2 (4.6)

Parabola (4.5) has focus ( q
2
, p
2
) and directrix x = − q

2
; and parabola (4.6) has focus

(0, 1
2
) and directrix y = −1

2
. Since p, q ∈ O, the coefficients of these equations are

origami-constructible by Lemma 4.3.3, and so are the foci and directrixes.

Folding ( q
2
, p
2
) onto x = − q

2
and (0, 1

2
) onto y = −1

2
produces a fold line f tangent

to both of these parabolas. Let m be the slope of f . We claim that m is a root of

x3 + px+ q = 0.
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Let (x1, y1), (x2, y2) the points of tangency of f with parabolas (4.5) and (4.6),

respectively. Then from the equations of each parabola,

(y1 −
1

2
p)2 = 2qx1 (4.7)

and

y2 =
1

2
x21 (4.8)

Taking the derivative of parabola (4.5) and evaluating it at the tangent point yields

2(y − 1

2
p)
dy

dx
= 2q ⇒ dy

dx
=

q

y − 1
2
p

So,

m =
q

y1 − 1
2
p
⇒ y1 =

1

2
p+

q

m

Substituting this into equation (4.7), x1 = q
2m2 .

Similarly, taking the derivative of parabola (4.5) and evaluating it at the tangent

point yields

dy

dx
= x

So,

m = x2

Substituting this into equation (4.8), y2 = 1
2
m2.

m =
y2 − y1
x2 − x1

=
1
2
m2 − (p

2
+ q

m
)

m− q
2m2
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Simplifying, we have

m3 + pm+ q = 0 (4.9)

So m satisfies a cubic equation with real coefficients in O. Since the slope of f is the

real root of the cubic equation, we can origami-construct a distance of m by erecting

a perpendicular line at a point a unit distance from another point on the line f .

Then the vertical distance between the intersection of the perpendicular line with

line f is equal to m, as illustrated in Figure 4.11.

Figure 4.11: Line f with slope m.

Corollary 4.3.8. The set of origami constructible numbers O is closed under taking

cube roots.

Proof. Given length r, we will show that 3
√
r is origami-constructible. From Theo-

rem 4.3.6, we can apply O6 to construct a simultaneous tangent line f to the two

parabolas y2 = −2rx, y = 1
2
x2. Note that these two parabolas are obtained by
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setting p = 0, q = −r for the two parabolas (4.5) and (4.6) in the proof of Corol-

lary 4.3.8. From equation 4.9, f has slope m = 3
√
r, so m = 3

√
r ∈ O.

Theorem 4.3.9. Let r ∈ R. Then r ∈ O if and only if there is a finite sequence of

fields Q = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ R such that r ∈ Fn and [Fi : Fi−1] = 2 or 3

for each 1 ≤ i ≤ n.

Proof. (⇒): Suppose r ∈ O. As discussed in section 4.1, r ∈ O only when it

could be constructed through operations O1-O7. So far, we have shown that origami

constructions in F involve a field extension of degree 1, 2, or 3. From induction on

the number of constructions required to construct r, there must be a finite sequence

of fields Q = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ R such that r ∈ Fn with [Fi : Fi−1] = 2 or 3.

(⇐): Suppose Q = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ R such that [Fi : Fi−1] = 2 or 3.

Then Fi = Fi−1[
√
di] or Fi = Fi−1[

3
√
di] for some di ∈ Fi. If n = 0, then r ∈ F0 = Q

and Q ⊂ C , from Lemma 4.3.3. Suppose any element of Fn is origami-constructible

for when n = k − 1. Then any dk ∈ Fk−1 is origami-constructible, which implies

that
√
dk and 3

√
dk is also constructible, from Corollary 4.3.5 and Corollary 4.3.8.

Therefore, any element of Fk = Fk−1[
√
dk] and Fk = Fk−1[

3
√
dk] is also origami-

constructible. From mathematical induction, any r ∈ Fn is origami-constructible.

Corollary 4.3.10. If r ∈ O then [Q(r) : Q] = 2a3b for some integers a, b ≥ 0.

Proof. From Theorem 4.3.9, if r ∈ O, there is a finite sequence of fields Q = F0 ⊂

· · · ⊂ Fn ⊂ R such that r ∈ Fn and for each i = 0, 1, . . . , n, [Fi : Fi−1] = 2 or 3. So,
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by the Tower Rule (Theorem 2.2.10),

[Fn : Q] = [Fn : Fn−1] · · · [F1 : F0] = 2k3l

with k + l = n. Since Q ⊂ Q(r) ⊂ Fn, again by the Tower Rule, [Q(r) : Q]|[Fn :

Q] = 2k3l, so if r ∈ O then [Q(r) : Q] = 2a3b for some integers a, b ≥ 0.

4.4 Some Origami-constructible Objects

In Chapter 3, we have seen that straightedge and compass constructions can only

produce numbers that are solutions to equations with degree no greater than 2. In

other words, quadratic equations are the highest order of equations straightedge and

compass can solve. As a result, trisecting an angle or doubling a cube was proved

impossible with straightedge and compass since they require producing lengths that

are solutions to cubic equations. As shown above (Section 4.3), in addition to con-

structing what straightedge and compass can do, origami can also construct points

that are solutions to cubic equations (from O6). Therefore, doubling a cube and tri-

secting an angle is possible with origami. Although we know that these constructions

could be done theoretically, in the following, I elaborate on the origami operations

through which one can double a cube or trisect any given angle.

Theorem 4.4.1 (Doubling the cube). It is possible to construct an edge of a cube

double the volume of a given cube, using origami.
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Proof. It suffices to show that 3
√

2 is origami-constructible. According to Lang [14]

and Hull [9], Peter Messer [17] developed the method of constructing 3
√

2 in 1986,

which is regenerated step-by-step in Figure 4.12.

First, fold the square sheet of paper into thirds5, as shown in Figure 4.12(a). Let

the left edge of the paper `1, the top one-third crease line `2, the bottom right corner

of the paper P1 and the intersection of the right edge of the paper with the bottom

one-third crease line P2.

Apply O6 to points P1, P2 and lines `1, `2 to make a fold line m that places P1

onto `1 and P2 onto `2 (Figure 4.12(b)). The point P ′1 where P1 hits the edge of the

paper divides the edge by 3
√

2 to 1.

To show this, consider Figure 4.12(c). Let P1B = x, P1A = 1, AD = y. Then

AB = x+ 1, P1D = x+ 1− y, P1P2 = x+1
3
, CP1 = x− x+1

3
= 2x−1

3
.

From the Pythagorean Theorem on 4P1AD,

(x+ 1− y)2 = 12 + y2

⇒ y =
x2 + 2x

2x+ 2
(*)

Meanwhile, m∠P1CP2 = m∠DAP1 = 90◦ and

m∠CP1P2 +m∠CP2P1 = 90◦,

m∠ADP1 +m∠AP1D = 90◦,

5For a detailed account on constructing nth folds, see Lang [14].
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m∠CP1P2 +m∠AP1D = 90◦.

So, m∠CP1P2 = m∠ADP1 and m∠CP2P1 = m∠AP1D. Therefore, 4P1CP2 ∼

4DAP1 and thus

DA

DP1

=
P1C

P1P2

⇒ y

x+ 1− y
=

2x−1
3

x+1
3

=
2x− 1

x+ 1

⇒ x2 + 2x

x2 + 2x+ 2
=

2x− 1

x+ 1
, from(∗)

⇒ x3 + 3x2 + 2x = 2x3 + 3x2 + 2x− 2

⇒ x3 = 2

So, x = 3
√

2.

Theorem 4.4.2. [Trisecting an angle] It is possible to trisect any given angle θ,

using origami.

Proof. According to Hull [9] and Alperin & Lang [2], Hisashi Abe developed the fol-

lowing method of angle trisection published in 1980 ( [6]). This method is regenerated

step-by-step in Figure 4.13.

First, place an arbitrary angle of measure θ at the bottom left corner P of a square

sheet of paper formed by the bottom edge of the paper and line `1 (Figure 4.13(a)).

Next, for any constructible point Q on the left edge of the paper, apply O4 to

fold a line perpendicular to the left edge of the paper through point Q. Then use O2

to fold P onto Q to produce line `2 equidistant to the parallel lines through P and

Q (Figure 4.13(b)).
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Finally, apply O6 to points P,Q and lines `1, `2 to make a fold line m that places

P onto `2 and Q onto `1 (Figure 4.13(c)). The reflection of point P about line m, say

P ′, can be constructed as the intersection of the line perpendicular to m through P

and the line `2 (we can construct the reflection of point Q in a similar manner). The

angle formed by the bottom edge of the paper and segment PP ′ has the measure of

θ
3
.

To prove that the angle formed by the bottom edge of the paper and segment

PP ′ indeed has the measure of θ
3
, consider Figure 4.13(d). Let R the intersection

of segments PQ′ and P ′Q; S the intersection of the left edge of the paper and line

`2; and T the intersection of segment PP ′ and line m. Also, let m∠RPP ′ = α,

m∠PP ′S = β, m∠RP ′S = γ. Since P ′ and Q′ are reflections of P and Q about line

m, R lies on line m. Since PS = QS and ∠P ′SQ ⊥ ∠P ′SP , 4P ′QP is an isosceles

triangle. Therefore,

β = γ (*)

Similarly, since P ′ is a reflection of P about m, PT = P ′T and ∠RTP ⊥ ∠RTP ′,

4RPP ′ is an isosceles triangle. Therefore,

α = β + γ (**)

Since `2 and the bottom edge of the paper are parallel, the angle formed by

segment PP ′ and the bottom edge of the paper has measure β. So,
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θ = α + β

= (β + γ) + β, from (∗∗)

= 3β, from (∗)

Note that the angle in Figure 4.13 has measures between 0 and π
2
. When the

angle has measure θ = π
2
, Q = Q′ and thus line m folds point P onto `2 through

point Q. Since 4QPP ′ is an equilateral triangle, in this case, segment PP ′ trisects

θ. When the angle is obtuse, the angle can be divided into an acute angle α and

a right angle β so θ = α + β. This can be done by using O4 to construct a line `

perpendicular to one side of the angle through its center O (see Figure 4.14).

α

3
+
β

3
=
α + β

3
=
θ

3
.

So, the angle between m (the trisection line of the acute angle) and n (the trisection

line of the right angle) give us the trisection of the obtuse angle. Therefore, the

above method of angle trisection can be applied to any arbitrary angle.

4.5 Origami-constructible Regular Polygons

In this section, we examine the regular n-gons that are origami-constructible. For

the purpose of our discussion, we expand the set R2 in which origami constructions

are made to C = {a+ bi|a, b ∈ R}.

We first define what an origami-constructible polygon is:
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Definition 4.5.1. An origami-constructible polygon is a closed, connected plane

shape formed by a finite number of origami-constructible lines. An origami-constructible

regular polygon is an origami-constructible polygon in which segments of the lines

form sides of equal length and angles of equal size.

The vertices and interior angles of an origami-constructible polygon, as inter-

sections of origami-constructible lines are also origami-constructible and the central

angle θ = 2π
n

is constructible as the intersection of the bisector (apply O3) of two

consecutive interior angles (see Figure 4.15).

Before we determine which regular polygons are origami-constructible, we define

splitting fields and cyclotomic extensions:

Definition 4.5.2. Let F a field and f(x) ∈ F [x]. Then, the extension K of F

is called a splitting field for f(x) if f(x) factors completely into linear factors in

K[x] but does not factor completely into linear factors over any proper subfield of K

containing F .

Proposition 4.5.3. For any field F , if f(x) ∈ F [x], then there exists a splitting

field K for f(x) [5, p.536].

Consider the polynomial xn − 1 and its splitting field over Q. Over C, the poly-

nomial xn−1 has n distinct solutions, namely the nth roots of unity. These solutions

can be interpreted geometrically as n equally spaced points along the unit circle

in the complex plane. The nth roots of unity form a cyclic group generated by a

primitive nth root of unity, typically denoted ζn.
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Definition 4.5.4. The splitting field of xn − 1 over Q is the field Q(ζn) and it is

called the cyclotomic field of nth roots of unity.

Proposition 4.5.5. The cyclotomic extension Q(ζn)/Q is generated by the nth roots

of unity over Q with [Q(ζn) : Q] = φ(n), where φ denotes Euler’s φ-function6.

Euler’s φ-function in Proposition 4.5.3 is defined as the number of integers a

(1 ≤ a < n) that are relatively prime to n, which is equivalent to the order of the

group (Z/nZ)×. According to Cox [4, p.270], Euler’s φ-function could be evaluated

with the formula

φ(n) = n
∏
p|n

(1− 1

p
) (4.10)

Definition 4.5.6. An isomorphism of a field K to itself is called an automorphism

of K. Aut(K) denotes the collection of automorphisms of K. If K/F is an extension

field, then define Aut(K/F ) as the collection of automorphisms of K which fixes all

the elements of F .

Definition 4.5.7. Let K/F a finite extension. If |Aut(K/F )| = [K : F ], then K is

Galois over F and K/F is a Galois extension. If K/F is Galois Aut(K/F ) is called

the Galois group of K/F , denoted Gal(K/F ).

Proposition 4.5.8. If K is the splitting field over F of a separable polynomial f(x),

then K/F is Galois [5, p. 562].

Therefore, the cyclotomic field Q(ζn) of nth roots of unity is a Galois extension

of Q of degree φ(n). In fact,

6For a detailed proof of Proposition 4.5.3, see [5, p. 555]
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Proposition 4.5.9. The Galois group Gal(Q(ζn)/Q) ∼= (Z/nZ)× (see [5, p. 596]).

Theorem 4.5.10 (Regular n-gon). A regular n-gon is origami-constructible if and

only if n = 2a3bp1 · · · pr for some r ∈ N, where each distinct pi is of the form

pi = 2c3d + 1 for some a, b, c, d ≥ 0.

Proof. Suppose a regular n-gon is origami-constructible. We can position it in our

Cartesian plane such that it is centered at 0 with a vertex at 1. Then, the vertices of

the n-gon are the nth roots of unity, which are origami-constructible. On the other

hand, if we can origami-construct the primitive nth root of unity, ζn = e
2πi
n , we can

origami-construct all nth roots of unity as repeated reflection by applying O4 and

the addition of lengths (Figure 4.4). Then, we can construct the regular n-gon by

folding lines through consecutive nth roots of unities. Simply put, a regular n-gon

is origami-constructible if and only if the primitive nth root of unity ζn is origami-

constructible. Therefore, it suffices to show that ζn is origami-constructible if and

only if n = 2a3bp1 · · · pr where each pi are distinct Fermat primes for some r ∈ N.

(⇒): Suppose ζn is origami-constructible. From Corollary 4.3.10, [Q(ζn) : Q]

is a power of 2 or 3 and from Proposition 4.5.3, [Q(ζn) : Q] = φ(n). Therefore,

φ(n) = 2`3m for some `,m ≥ 0. Let the prime factorization of n = qa11 · · · qs1s , where

qa11 , · · · , qs1s are distinct primes and a1, · · · as ≥ 1. Then from equation (4.10),

φ(n) = qa1−11 (q1 − 1) · · · qas−1s (qs − 1)

and φ(n) = 2`3m only when each qi is either 2 or 3 or qi− 1 = 2c3d for some c, d ≥ 0.
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(⇐): Suppose n = 2a3bp1 · · · pr for some r ∈ N, where each distinct pi is of the

form pi = 2c3d + 1 for some a, b, c, d ≥ 0. Then from equation (4.10),

φ(n) = 2a3bp1 · · · pr(1−
1

2
)(1− 1

3
)(1− 1

p1
) · · · (1− 1

pr
)

= 2a3b−1(p1 − 1) · · · (pr − 1) = 2`3m

for some `,m ≥ 0.

If φ(n) = 2`3m, then G = Gal(Q(ζn)/Q) is an abelian group (from Proposi-

tion 4.5.9) whose order is a power of 2 or 3. Then we have a sequence of subgroups

1 = G0 < G1 < G2 < · · · < Gn = G with each Gi/Gi−1 a Galois extension which is

cyclic of order 2 or 37. Hence, from Theorem 4.3.9, ζn is origami-constructible.

7From the Fundamental Theorem of Abelian Groups and the Fundamental Theorem of Galois
Theory [5, p.158;p.574]
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Figure 4.12: Constructing length 3
√

2 using origami.
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Figure 4.13: Trisecting an angle θ using origami.

61



Figure 4.14: Trisecting an obtuse angle using origami.

Figure 4.15: A regular polygon and its central angle.
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Chapter 5

Extensions of origami theory and

closing remarks

5.1 Extensions of origami theory

5.1.1 Additional tools

Several origami theorists have extended the traditional axiom set of single-fold op-

erations by allowing additional geometrical tools for construction.

For example, in [13], Kasem et al. (2011) studied possible extensions of origami

using the compass. Here, the compass allows one to construct circles centered at

an origami point with radius a distance between two origami points. Kasem et al.

presented three new operations, which they termed ”Origami-and-Compass Axioms”

(p. 1109) and showed that the expanded set of axioms allows one to construct

common tangent lines to ellipses or hyperbolas. In addition, they demonstrated a

new method for trisecting a given angle and explained that they provide an interesting

way of solving equations of degree 4. However, according to Kasem et al., combining
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the use of the compass with origami does not increase the construction power of

origami beyond what is constructible by the traditional axiom set.

In [7] Ghourabi et al. (2013) took a similar approach by introducing fold opera-

tions that produce conic sections into origami. Specifically, Ghourabi et al. presented

one additional fold operation which superimposes one point onto a line and another

point onto a conic section. Ghourabi et al. proved that the new extended set of

fold operations generate polynomials of degree up to six. They left the question

of whether these fold operations solve all 5th and 6th degree equations for future

research.

5.1.2 An eighth axiom

In his paper [15], Lucero revisited the single-fold operations by viewing folding as

the geometry of reflections. After enumerating all possible incidences between con-

structible points and lines on a plane induced by a reflection, Lucero derived 8

possible fold operations that satisfy all combinations of incidences. The eight ax-

ioms included seven of the traditional axioms and one new operation, which is to

fold a constructible line such that it folds onto itself. As a practical solution to allow

one to fold one layer along a line marked on the other layer, Lucero introduced the

additional single-fold operation as needed for the completeness of the axioms and

application in practical origami.
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5.1.3 Beyond the single fold

In [2], Alperin and Lang (2009) extended the traditional axiom set of single-fold op-

erations by allowing alignments of points and lines along multiple folds. For example,

a two-fold alignment is an alignment of points or lines with two simultaneous fold

creases. As an example of a two-fold alignment, Alperin and Lang refer to Abe’s so-

lution (in 4.4.2) as a two-fold alignment combining O2 and O6. Since this alignment

can be partitioned into two sets each of which is a single-fold, this two-fold align-

ment is called separable. Enumerating on non-separable alignments, Alperin and

Lang identified a unique set of 17 two-fold alignments, which produce 489 distinct

two-fold operations. Here, Alperin and Lang restricted to two-fold axioms to those

that are non-separable and consist of fold lines“on a finite region of the Euclidean

plane with a finite number of solutions” (p. 9). With the extended set of axioms,

Alperin and Lang explained, “Each two-fold alignment yields a system of four equa-

tions in four variables with each equation of degree at most 4” (p. 14) but that not

all degree 4 polynomials can be produced. Similarly, Alperin and Lang explained

that some quintic polynomials can be solved by two-fold axioms but not in general.

Alperin and Lang acknowledged the limitation in physically carrying out the two-

fold operations. For one to create a two-fold alignment requires smooth variation of

the position of both folds until all alignments are satisfied, which could be prac-

tically difficult. Putting such limitations aside, Alperin and Lang investigated the

construction power of origami when multi-fold operations are allowed. For example,

they showed that a 3-fold alignment of 3 simultaneous folds allows solving the general
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quintic equation and more generally, the general nth degree equation can be solved

with n-2 simultaneous folds.

As such, there are many extensions that have been studied. Propose some addi-

tional extensions to think about here and think about the implications.

5.2 Future research questions

In this section, I pose questions about other possible extensions of origami theory

for future research.

5.2.1 Allowing tracing

In [15], Lucero (2017) claimed, “In origami mathematics, it is assumed that all lines

and points marked on one layer are also defined on the layers above and below, as if

the paper were ‘transparent’” (p.12). However, such claim does not seem compatible

with the definition of a single-fold (A single-fold refers to folding the paper once;

a new fold can only be made after the paper is unfolded) nor does it seem feasible

when considering actual paper folding of non-transparent paper. Related to such

extension, one question I pose is: What implications can tracing have on origami

constructions. In other words, if one is allowed to construct a line or point by

tracing another line or point onto the paper when the paper is folded, would that

change the set of origami-constructible numbers?

66



5.2.2 Allowing cutting

Typically in origami, cutting is not allowed. As another possible extension of origami

theory, I pose the question of what happens if cutting is allowed. In order to explore

this idea, there will need to be some specification of what cutting refers to and what

type of folds are allowed after the paper is cut. For example, we can consider a

case when one is allowed to cut the paper along lines or line segments connecting

two origami-constructible points. In the case the paper is cut along a line into two

separable parts, we can think of placing one part on top of the other and superimpos-

ing constructible points and lines from one layer onto the other (similar to tracing).

In the case the paper is cut along a line segment but not fully separated into two

parts, then we can think of various ways one can fold the paper about the cut. For

instance, what can we do if the paper is cut along one of its edges? What can we do

if there is a slit inside of the sheet of paper? In such cases, what would the set of

origami-constructible numbers look like?

5.2.3 Starting with additional givens other than the unit

distance

Finally, future research can investigate different types of field extensions derived

from origami constructions with different initial givens. For example, in origami

constructions, we start with two points and a unit distance as initials. What if we

start with three points instead of two, with the collection of distances and/or angles

given by these points not obtainable by only two points some unit distance apart?
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5.3 Closing remarks

In this thesis, I presented an exposition of origami constructible objects and its

associated algebraic field. I introduced what origami is; reviewed the basic def-

initions and theorems of field theory that were used in the thesis; discussed the

more commonly known straightedge and compass constructions; introduced the ba-

sic single-fold operations of origami and discussed what it means for an object to be

origami-constructible; showed how to prove or disprove the constructibility of some

origami objects; and finally, presented some additional thoughts for future studies.

68



Bibliography

[1] Roger C Alperin. A mathematical theory of origami constructions and numbers.

New York J. Math, 6(119):133, 2000.

[2] Roger C. Alperin and Robert J. Lang. One-, two-, and multi-fold origami axioms.

In Origami4, pages 371–393. A K Peters, Natick, MA, 2009.

[3] David Auckly and John Cleveland. Totally real origami and impossible paper

folding. Amer. Math. Monthly, 102(3):215–226, 1995.

[4] David A. Cox. Galois theory. Pure and Applied Mathematics (Hoboken). John

Wiley & Sons, Inc., Hoboken, NJ, second edition, 2012.

[5] David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley & Sons,

Inc., Hoboken, NJ, third edition, 2004.

[6] Koji Fusimi. Trisection of angle by abe. Saiensu supplement, 8, 1980.

[7] Fadoua Ghourabi, Asem Kasem, and Cezary Kaliszyk. Algebraic analysis of

huzita’s origami operations and their extensions. Automated Deduction in Ge-

ometry (9783642406713), page 143, 2013.

[8] Koshiro Hatori. K’s origami: Origami construction. http:\www.jade.dti.ne.

jp/~hatori/library/conste.html,2003. Accessed: 2017-07-08.

69

http:\www.jade.dti.ne.jp/~hatori/library/conste.html, 2003
http:\www.jade.dti.ne.jp/~hatori/library/conste.html, 2003


[9] Thomas Hull. Project origami. A K Peters, Ltd., Wellesley, MA, first edition,

2006. Activities for exploring mathematics.

[10] Humiaki Huzita. Axiomatic development of origami geometry. In Proceedings of

the First International Meeting of Origami Science and Technology, 1989, pages

143–158, 1989.

[11] Humiaki Huzita. Understanding geometry through origami axioms. In Proceed-

ings of the First International Conference on Origami in Education and Therapy

(COET91), pages 37–70. British Origami Society, 1992.

[12] Jacques Justin. Résolution par le pliage de l’équation du troisieme degré et
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Appendix: List of Geometric

Symbols

←→
AB : line through two points A and B

−→
AB : ray with endpoint A that passes through B.

AB : segment connecting two points A and B.

AB : distance between A and B

∠ABC : angle with vertex B with rays
−→
BA and

−−→
BC

m∠ABC : measure of ∠ABC

4ABC : triangle with vertices A, B, C

ABC : area of 4ABC

�ABCD : quadrilateral with edges AB, BC, CD, DA

p ∼= q : p congruent to q

p ∼ q : p similar to q
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