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Abstract

Unlike a classical random variable which takes a single value, a symbolic random vari-

able takes multiple values. The values within a symbolic random variable form an internal

distribution that does not exist in a classical random variable. Statistical methodologies

developed for classical data can not be readily applied to symbolic data. Therefore, new

methodologies must be developed to take into account the internal structure of symbolic

variables. In this dissertation, we propose three methods of symbolic data analysis. The first

proposed method extends classical principal component analysis (PCA) to an analysis of

interval-valued observations, using a so-called symbolic variance-covariance structure. Using

the symbolic covariance structure ensures that the principal components explain the total

variance of interval-valued data. Furthermore, two representations of the principal compo-

nents resulting from the proposed PCA method are introduced. The first representation

shows interval-valued observations as polytopes in a principal components space. The poly-

topes constructed in this method represent the true structure of interval-valued observations



in a principal components space. The second representation gives histogram-valued prin-

cipal components constructed from a 2-dimensional projection of the polytopes resulting

from the first representation. Algorithms to construct the polytopes and to compute the

histograms representing the principal components are given in this dissertation along with

two examples to illustrate the method. The second method extends the PCA method pro-

posed for interval-valued data to a PCA method for histogram-valued data. This method

treats histogram-valued observations as a generalization of interval-valued observations. The

two representations proposed for interval-valued observations are then extended to repre-

sent histogram-valued observations. An algorithm for the extension along with an example

to illustrate this method are included. The third method proposes a construction of likeli-

hood functions for symbolic data. The proposed likelihood function is then used to derive

maximum likelihood estimators for the mean and the variance of three common types of sym-

bolic data: interval-valued data, histogram-valued data, and triangular-distribution-valued

data.
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Chapter 1

Introduction

The focus of this dissertation is to propose an approach to principal component analysis

(PCA) for symbolic data, specifically for interval-valued data and histogram-valued data

and to introduce the likelihood functions for symbolic data. Theory for principal component

analysis and the likelihood functions are well developed in the classical setting. However,

in the symbolic data setting, only a few adaptations of PCA exist in the literature for

interval-valued observations while none exists for the histogram-valued case. Furthermore,

no theoretical framework has been established for symbolic data to this point, not even the

likelihood functions which are fundamental foundation for many statistical methods. Unlike

a classical observation which takes a single value, a symbolic observation takes multiple

values. As a consequence, symbolic data have an internal structure which does not exist

in classical data. Traditional methods of analysis of classical data do not account for this

structure. Therefore, new analytical methods need to be developed to account for this special

characteristic of symbolic data.

Symbolic data was first introduced by Diday (1987). Whereas a classical variable takes

a single value, a symbolic variable may take a finite or an infinite set of values. A random

variable that takes a finite set of values is called a multi-valued variable. The values in a

finite set can be either quantitative or qualitative. Another type of symbolic variable may

take an infinite set of numerical values ranging from a low to a high value. This type of

variable is called an interval-valued variable. A more complex symbolic variable may have

weights, probabilities, or even a distribution associated with the values it takes. This class of

symbolic variable is called a modal-valued variable. An example of a modal-valued variable

1



2

is a histogram-valued variable. Classical data can be thought of as a special case of symbolic

data where the internal distribution puts the probability 1 on a single value.

Symbolic data can occur naturally or can be created by aggregating a very large dataset.

Billard and Diday (2006) gives many examples of natural and aggregated symbolic data.

Some data inherently take multiple values. Two examples of naturally occuring symbolic data

include daily temperatures measured in a city and colors of bird species. Daily temperatures

are reported at the lowest to the highest point in the day. The resulting observation is then

recorded as an interval. In the other example, some species of birds have more than one color

so the value for each observation is a finite list of colors which is a multi-valued variable.

Some data become symbolic after some processing such as data resulting from a database

query. One example of aggregated symbolic data is of claims records retained by an insurance

company. Such a dataset may contain thousands if not millions of individual observations,

i.e., claims. It is difficult to extract knowledge from a dataset this large. If the insurer’s

main interest is to understand expenses paid to the policy holders based on age and gender,

then the data can be aggregated into gender by age groups. The resulting dataset will then

contain variables with multiple values, hence, symbolic.

Symbolic data of the second type has become more common in recent years due to

advances in technology which enable storage of extremely large datasets. Larger datasets

provide more information about the subjects of interest, however they also present chal-

lenges in understanding all the information available. Performing even simple exploratory

procedures on these datasets requires a lot of computing power. As a result, much research

effort in recent years has been steered toward finding more efficient methods of analysis to

accommodate these enormous datasets. One of the methods to make an extremely large

dataset manageable is to aggregate the observations into groups of interest. Traditionally,

when data are aggregated, only a single value is used for each variable. This value is typically

the mean or the median of the group. Using one value to represent all values belonging to a

group naturally leads to some loss of information. The information lost during this process
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may produce misleading results when the aggregated dataset is analyzed. With the intro-

duction of symbolic data, much of this information is retained by including all values taken

by observations in the group.

Principal component analysis (PCA) is a popular dimension reduction method in clas-

sical data analysis. Some adaptations of PCA to interval-valued data exist in the literature.

Cazes et al. (1997) proposes two methods known as the centers and the vertices methods. The

centers method computes the principal components using the centers of the original inter-

vals. Although the order of computation using this method is low, it ignores the internal

variation within each observation. The vertices method computes the principal components

using all vertices, treating each of them as an independent observation. An advantage of the

vertices method over the centers method is its partial accounting for the internal variation

by including all vertices belonging to the observations. However, it still does not account for

the total variance of interval-valued observations. Another drawback of the vertices method

is its treating all vertices as independent observations. Lauro and Palumbo (2000) attempts

to account for the dependency among vertices of the same observation by prosposing a multi-

stage method called the symbolic object PCA (SO-PCA). This method includes two separate

procedures. The first is a modification of the vertices method and the second involves trans-

formation of the interval ranges. The SO-PCA method still does not account for the total

variation structure of interval-valued data. Palumbo and Lauro (2003) proposes yet another

method known as the midpoint-radii method and Gioia and Palumbo (2006) introduces an

inteval matrix approach. Both the midpoint-radii and the interval matrix methods are based

on interval algebra. Interval algebra only works for very narrow intervals which poses a limi-

tation to these methods. To avoid the drawbacks associated with all current methods, in the

first part of this dissertation, we propose a new PCA method for interval-valued observations

using a so-called symbolic variance-covariance structure, referred to as the symbolic covari-

ance method from hereon. Our proposed method accounts for the total covariance structure
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of interval-valued data as well as the dependency among vertices of the same observation.

This method can also be applied to data of all ranges.

Despite the existence of multiple PCA approaches to interval-valued data, none has been

proposed for histogram-valued data. In the second part of this dissertation, we propose a

method to compute the principal components for histogram-valued observations based on

the fact that a histogram is a generalization of an interval. We generalize our proposed PCA

method for interval-valued data to a PCA method for histogram-valued data. The method we

propose for histogram-valued data inherits all benefits from the symbolic covariance PCA

method for interval-valued data. The principal components computed from this method

account for the total variance of histogram-valued observations. This method can also be

applied to histograms of all sizes.

Likelihood functions play an imperative role in a statistical framework. They are tools for

solving problems from estimation to regression. Likelihood functions are well studied in the

classical environment. However, no extension to symbolic data exists at this time. Further

development of some symbolic methodologies can not proceed without these functions. As

the third and final part of this dissertation, we propose an approach to finding the likelihood

functions of symbolic data. We also derive the maximum likelihood estimators for some

common types of symbolic data based on the proposed likelihood functions in this part.

This dissertation consists of six chapters. Following the introduction, we give a review

of current literature on symbolic data, principal component analysis, and PCA methods for

interval-valued data in Chapter 2. Chapter 3 describes our proposed method for interval-

valued PCA. Besides details of the theoretical framework, Chapter 3 also includes an algo-

rithm to compute the principal components for interval-valued observations as well as appli-

cation of the symbolic covariance PCA to two real datasets. Chapter 4 describes an extension

of the symbolic covariance PCA method of Chapter 3 to histogram-valued data. Chapter 4

provides the framework for the proposed extension, an algorithm, as well as an application

of the proposed method to a histogram-valued dataset. In Chapter 5, we propose a method
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to construct the likelihood functions for symbolic data. We also derive the maximum likeli-

hood estimators for the mean and the variance of some common types of symbolic variables.

Finally, a summary of contributions to symbolic data analysis resulting from this disserta-

tion along with a brief discussion of future work stemming from this work are presented in

Chapter 6.
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Chapter 2

Literature Review

To establish a foundation for Chapters 3, 4, and 5, we give a review of current literature

on material relating to our work in this dissertation. Section 2.1 introduces notation and

some basic terms necessary to discuss symbolic data. This section also provides descriptive

statistics for three different types of symbolic data. A brief summary of principal component

analysis methodology is given in Section 2.2. Five methods of PCA have been proposed for

interval-valued data up to this point. They are summarized in Section 2.3.

2.1 Symbolic Data

Before starting the literature review, it is necessary to define common notation used in the

rest of this work. Let X = (X(1), X(2), . . . , X(p)) denote a p-variate random variable where

X(j) is the jth variable for j = 1, 2, . . . , p. Let X i denote the ith observation of a data

matrix X where i = 1, 2, . . . , n. Note the distinction between the subscripts. The subscript

enclosed in parentheses as in X(j) signifies the variable index whereas the subscript without

parentheses as in X i represents the observation index. Using this notation, a data matrix

X can be expressed as a vector of variables or a vector of observations, respectively,

X =
[
X(1)X(2) . . . X(p)

]
=



X1

X2

...

Xn


.

Additionally, the random variable Xij represents the jth variable of the ith observation and

the lower case xij is the realized value of Xij in the classical case and ξij denotes a realized

7
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value of a symbolic random variable Xij. The notation ξij is used in the symbolic case to

emphasize that ξij takes multiple values unlike the single value xij in classical data. Some

examples follow. For classical data, suppose X(1) is the birth-weight of a newborn in pounds;

then the 5th observed value may take a value x51 = 8.2 and suppose X(3) is the newborn’s

eyes color then the observed value for the same baby may be x53 = blue. For symbolic

data, suppose X(1) is the daily temperature; then the recorded temperatures for the 1st

observation may take values ξ11 = [44, 62] and suppose X(2) is the color of species of birds;

then the observed value for the 1st species may take values ξ12 = {blue, green}.

In the following subsections we give formal definitions necessary to discuss distribution

functions and descriptive statistics for symbolic data. For a comprehensive treatment of the

topic, refer to Bertrand and Goupil (2000), Bock and Diday (2000), and Billard and Diday

(2006).

Let X(j) be the domain of X(j) and X = X(1)×X(2)× . . .×X(p) = ×p
j=1X(j) be the domain

of X = (X(1), X(2), . . . , X(p)). Then,

Definition 2.1.1. Every point x = (x(1), x(2), . . . , x(p)) ∈ X is called a description vector .

Definition 2.1.2. Every D ⊆ X such that D = D(1) ×D(2) × . . .×D(p) where D(j) ⊆ X(j)

is called a description set .

When D = D(1)×D(2)×. . .×D(p) is the Cartesian product, D is called a Cartesian description

set .

When D(j) is a singleton, i.e., D(j) = {x(j)} for all j = 1, 2, . . . , p, a description vector

d = (D(1), D(2), . . . , D(p)) = ({x(1)}, {x(2)}, . . . , {x(p)}) is called an individual description

vector .

Definition 2.1.3. Let A ⊆ D and B ⊆ D be two description sets and x ∈ X . Define a

logical dependency rule v as

v : [x ∈ A] ⇒ [x ∈ B] .
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Equivalently, v is a mapping from X onto {0, 1} such that

v(x) =

 1, if x ∈ (A ∩B) or x /∈ A,

0, otherwise.

The set of all logical dependency rules v defined on X is denoted by VX .

Definition 2.1.4. The virtual description of the description vector d, vir(d), is the set of

all individual description vectors x that satisfy all the rules v in X . That is,

vir(d) = {x ∈ D|v(x) = 1,∀v ∈ VX}.

Now that some preliminary terms have been established, the observed frequencies, the

empirical distribution functions, and some descriptive statistics can be defined. In Subsec-

tion 2.1.1 we give the definitions of these statistics for multi-valued variable. For detailed

derivations and examples, refer to Bertrand and Goupil (2000) and Billard and Diday (2006).

However, for interval-valued variable more details of these statistics will be given in Sub-

section 2.1.2. In Subsection 2.1.3, we give the empirical distribution function and some

descriptive statistics for histogram-valued variabel without derivation. Derivation of the dis-

tribution function and descriptive statistics for this type of variable can be generalized from

the interval-valued case; therefore, they are not presented in this dissertation. Again, to learn

more, see Bertrand and Goupil (2000) and Billard and Diday (2006).

2.1.1 Multi-valued data

Given a random sample X i for i = 1, 2, . . . , n, let the jth variable, X(j), be a multi-valued

random variable and ξ(ij) be a realization of Xij. Let W be a value in X(j). Then, the observed

frequency of W taking value ξ ∈ ξij is given by

OW (ξ) =
n∑

i=1

|{x ∈ vir(di)|x(j) = ξ}|
|vir(di)|

where |A| is the number of elements belonging to set A. Hence, the empirical distribution

function of W is

FW (ξ) =
1

n′

∑
ξk≤ξ

OW (ξk) (2.1)
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where n′ = n − n0 and n0 is the number of i for which |vir(di)| = 0. Moreover, if W is

quantitative, the symbolic sample mean and the symbolic sample variance can be derived

using the empirical distribution function in Equation (2.1). Let W̄ and S2 be the sample

mean and the sample variance of W . Then, they are given by, respectively,

W̄ =
1

n′

∑
ξk∈X(j)

ξkOW (ξk)

and

S2 =
1

n′

∑
ξk∈X(j)

(ξk − W̄ )2OW (ξk).

2.1.2 Interval-valued data

Since Chapter 3 of this dissertation focuses on principal component analysis for interval-

valued data, more detailed information is given for the statistics of this type of variables. We

will show some derivations of the empirical distribution function, the mean, and the variance-

covariance for interval-valued variable in this subsection. Again, let X i, i = 1, . . . , n, be a

random sample. Let the jth variable, X(j), be an interval-valued variable. Then, a realization

ξij of Xij takes an interval of values [aij, bij] where aij ≤ bij. Let W be a point in X(j). Assume

W is uniformly distributed over the interval Xij = [aij, bij] for all individual description

vectors x ∈ vir(di). Then, for each ξ,

P{W ≤ ξ|x ∈ vir(di)} =


0, ξ < aij,

ξ−aij

bij−aij
, aij ≤ ξ < bij,

1, bij ≤ ξ.

Furthermore, assume each object is equally likely to be observed with probability 1/n, then

the empirical distribution function of W is,

FW (ξ) =
1

n

n∑
i=1

P{W ≤ ξ|x ∈ vir(di)}

=
1

n

∑
i:ξ∈ξij

(
ξ − aij

bij − aij

) + |(i|ξ ≥ bij)|

 .
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Differentiating FW (ξ) with respect to ξ produces the empirical density of W ,

fW (ξ) =
1

n

∑
i:ξ∈ξij

(
1

bij − aij

). (2.2)

Bertrand and Goupil (2000) further defines the symbolic sample mean and symbolic sample

variance of W as,

W̄ =
1

2n

n∑
i=1

(aij + bij) (2.3)

and

S2 =
1

3n

n∑
i=1

(a2
ij + aijbij + b2

ij)−
1

4n2

[
n∑

i=1

(aij + bij)

]2

. (2.4)

These two statistics are due to the following as shown in Bertrand and Goupil (2000) and

Billard and Diday (2006). First, the symbolic sample mean based on the empirical density

function in Equation (2.2) is,

W̄ =

∫ ∞

−∞
ξf(ξ)∂ξ

=
1

n

n∑
i=1

[
1

bij − aij

∫ ∞

−∞
ξ∂ξ

]
=

1

2n

n∑
i=1

[
(

1

bij − aij

)(ξ2|bij
aij

)

]
=

1

2n

n∑
i=1

(bij + aij).

Then, the symbolic sample variance can be written as,

S2 =

∫ ∞

−∞
(ξ − W̄ )2f(ξ)∂ξ

=

∫ ∞

−∞
ξ2f(ξ)∂ξ − W̄ 2.
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Now, ∫ ∞

−∞
ξ2f(ξ)∂ξ =

1

n

n∑
i=1

[
(

1

bij − aij

)

∫ ∞

−∞
ξ2∂ξ

]
=

1

3n

n∑
i=1

[
(

1

bij − aij

)(ξ3|bij
aij

)

]
=

1

3n

n∑
i=1

[
(

1

bij − aij

)(bij
3 − aij

3)

]
=

1

3n

n∑
i=1

(a2
ij + aijbij + b2

ij).

Therefore,

S2 =
1

3n

n∑
i=1

(a2
ij + aijbij + b2

ij)−
1

4n2

[
n∑

i=1

(aij + bij)

]2

.

Now, extend Equation (2.4) to the bivariate case. Let Sjj′ be the covariance for W(j) and

W(j′) where W(j) is a point in X(j) and W(j′) is a point in X(j′) for j, j′ = 1, 2, . . . , p. The

empirical symbolic covariance for W(j) and W(j′) analogous to S2 is given by

Sjj′ =
1

3n

n∑
i=1

GijGij′ [QijQij′ ]
1/2 (2.5)

where,

Qij = (aij − W̄(j))
2 + (aij − W̄(j))(bij − W̄(j)) + (bij − W̄(j))

2,

Gij =

 −1, W̄ij ≤ W̄(j),

1, W̄ij > W̄(j),

and W̄ij = (aij + bij)/2; see Billard (2007).

To verify that Sjj = S2 when j = j′, let us look at

Sjj =
1

3n

n∑
i=1

GijGij[QijQij]
1/2

=
1

3n

n∑
i=1

Qij

=
1

3n

n∑
i=1

[(aij − W̄(j))
2 + (aij − W̄(j))(bij − W̄(j)) + (bij − W̄(j))

2].

=
1

3n

n∑
i=1

[a2
ij + aijbij + b2

ij]− W̄ 2
(j).
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which equals the S2 in Equation (2.4).

Billard (2007) shows that the total sum of squares of interval-valued observartions X i

for i = 1, . . . , n can be decomposed into the sum of the internal variation and the external

variation called the within sum of squares and the between sum of squares, respectively.

Formally,

nS2 = SST = SSB + SSW (2.6)

where

SSB =
n∑

i=1

(W̄ij − W̄(j))
2 (2.7)

and

SSW =
1

3

n∑
i=1

[(aij − W̄ij)
2 + (aij − W̄ij)(bij − W̄ij) + (bij − W̄ij)

2]. (2.8)

Since (bij − W̄ij) = (W̄ij − aij) = 1
2
(bij − aij),

SSW =
1

3

n∑
i=1

[
(aij − W̄ij)

2 + (aij − W̄ij)(bij − W̄ij) + (bij − W̄ij)
2
]

=
1

3

n∑
i=1

[
(bij − aij)

2

]2

=
1

12

n∑
i=1

(bij − aij)
2.

This result is consistent with the assumption that for each observation X i, Wij is uniformly

distributed in the interval [aij, bij]. That is, for Wij ∼ U(aij, bij),

V ar(Wij) =
(bij − aij)

2

12
. (2.9)

With n observations X i, i = 1, . . . , n, the total variance is the sum of n variances defined in

Equation (2.9)

Analogously, when j 6= j′ the total sum of products (SPT ) is the sum of the internal and

the external sum of products, respectively (SPW ) and (SPB), is given by,

nSjj′ = SPTjj′ = SPBjj′ + SPWjj′ (2.10)
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where

SPBjj′ =
n∑

i=1

(W̄ij − W̄(j))(W̄ij′ − W̄(j′)) (2.11)

and

SPWjj′ =
1

12

n∑
i=1

(aij − bij)(aij′ − bij′). (2.12)

It is worth noting that Equations (2.6) and (2.10) can be extended to numerically modal-

valued data such as histogram-valued data or data with non-uniform internal distribution. In

these cases, the formula for the SSB and the SPB as defined in Equations (2.7) and (2.11)

remain the same. However, the SSW and SPW vary depending on the internal distribution

of the data. This presents a potential direction for future research.

2.1.3 Histogram-valued data

Let X i, i = 1, . . . , n, be a random sample. Let the jth variable, X(j), be a histogram-valued

variable. Let ξij be a realization of Xij. Then, ξij takes a histogram of values, i.e.,

ξij =
{
[a1

ij, b
1
ij), p

1
ij; [a

2
ij, b

2
ij), p

2
ij; . . . ; [a

sij

ij , b
sij

ij ], p
sij

ij

}
, (2.13)

where [al
ij, b

l
ij) is called the lth subinterval of ξij and pl

ij is the relative frequency associated

with the lth subinterval. Let sij denote the number of subintervals in histogram ξij. Then,

al
ij ≤ bl

ij for all l = 1, 2, . . . , sij and
∑sij

l=1 pl
ij = 1.

Billard and Diday (2003) extends the empirical distribution function derived by Bertrand

and Goupil (2000) for interval-valued data to a distribution function for histogram-valued

data. Based on the assumption that all values within each subinterval [al
ij, b

l
ij) are uniformly

distributed, Billard and Diday (2003) defines the distribution of a point W l within subinterval

[al
ij, b

l
ij] as,

P{W l ≤ ξ|x ∈ vir(di)} =


0, ξ < al

ij,

ξ−al
ij

bl
ij−al

ij
, al

ij ≤ ξ < bl
ij,

1, bl
ij ≤ ξ.
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Billard and Diday (2003) further proposes an empirical distribution function for a random

variable W of X(j) in a similar manner to the empirical distribution function of an interval-

valued variable as described in Subsection 2.1.2. The empirical distribution function of W is

given by

FW (ξ) =
1

n

n∑
i=1

∑
l:ξ∈ξl

ij

pl
ij(

ξ − al
ij

bl
ij − al

ij

) +
∑

l:ξ≥bl
ij

pl
ij

 (2.14)

where ξl
ij = [al

ij, b
l
ij). Taking the derivative of FW in Equation (2.14) with respect to ξ gives

the following empirical density function of W ,

fW (ξ) =
1

n

n∑
i=1

∑
l:ξ∈ξl

ij

pl
ij(

1

bl
ij − al

ij

). (2.15)

The symbolic sample mean and the symbolic sample variance derived from the density

function defined in Equation (2.15) are, respectively,

W̄ =
1

2n

n∑
i=1

sij∑
l=1

pl
ij(a

l
ij + bl

ij) (2.16)

and

S2 =
1

3n

n∑
i=1

sij∑
l=1

pl
ij[(a

l
ij)

2 + al
ijb

l
ij + (bl

ij)
2]− 1

4n2

[
n∑

i=1

sij∑
l=1

pl
ij(a

l
ij + bl

ij)

]2

. (2.17)

Billard and Diday (2006) extends the variance in Equation (2.17) to the bivariate case.

Let Sjj′ be the covariance of W(j) in X(j) and W(j′) in X(j′) where j, j′ = 1, 2, . . . , p. The

empirical symbolic covariance for W(j) and W(j′) analogous to S2 of Equation (2.17) is given

by

Sjj′ =
1

3n

n∑
i=1

GijGij′

sij∑
lj=1

sij′∑
lj′=1

p
lj
ijp

lj′

ij′ [Q
lj
ijQ

lj′

ij′ ]
1/2

 (2.18)

where

Q
lj
ij = (a

lj
ij − W̄(j))

2 + (a
lj
ij − W̄(j))(b

lj
ij − W̄(j)) + (b

lj
ij − W̄(j))

2,

Gij =

 −1, W̄ij ≤ W̄(j),

1, W̄ij > W̄(j),

and W̄ij = 1
2

∑sij

lj=1 p
lj
ij(a

lj
ij + b

lj
ij).
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2.2 Principal Component Analysis

Principal component analysis (PCA) is a popular multivariate method in classical data

analysis. A PCA computes uncorrelated linear combinations of the original variables so that

the first linear combination has the largest variance, the second linear combination has the

second largest variance, and so on. These linear combinations are called the principal com-

ponents. Situations where PCA is most applicable include problems with high dimensional

data and problems with highly correlated data. Suppose a dataset has p variables where p is

very large. Then, the principal components can be computed and the first k (< p) principal

components which contain most of the variation from the original variables are selected for

further analysis. Then, analysis can be performed on these components without much loss of

information. In this situation, PCA reduces the dimension of the data, hence reducing the

computing power required to solve the problem. In another situation where correlation exists

among the variables, PCA creates uncorrelated variables, hence eliminates the problem of

collinearity. A PCA is typically used as an exploratory tool. After the principal components

are computed, analysis and interpretation can then be performed on the principal compo-

nents instead of the original variables. Due to its wide applicability, theories of PCA are well

developed. Most textbooks in multivariate methods include a chapter on PCA, for example

Anderson (2002), Mardia et al. (1979), Johnson and Wichern (2002). Jolliffe (2004) is a full

text dedicated to principal component analysis.

Let X = (X(1), X(2), . . . , X(p)) be a p-variate random variable from a distribution with

mean µ = (µ(1), µ(2), ..., µ(p)) and variance-covariance Σ = [σjj′ ] for j, j′ = 1, 2, . . . , p. The

first principal component is the linear combination Y(1) of X such that Y(1) = α′
1X has

the largest variance under the constraint that α′
1α1 = 1. The α1 that maximizes V ar(Y(1))

under these conditions can be found using a Lagrange multiplier as follows. Since V ar(Y(1)) =
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V ar(α′
1X) = α′

1Σα1, let

φ1 = V ar(Y(1))− λ(α′
1α1 − 1)

= α′
1Σα1 − λ(α′

1α1 − 1).

Differentiate φ1 with respect to α1 and set the derivative equal to zero,

∂φ1

∂α1

= 2(Σα1 − λα1) = 0.

Hence,

(Σ− λI)α1 = 0. (2.19)

Then, take the derivative of φ1 with respect to λ and set this derivative to zero,

∂φ1

∂λ
= (α′

1α1 − 1).

This gives

α′
1α1 = 1. (2.20)

The λ and α1 that satisfy both Equations (2.19) and (2.20) are an eigenvalue-eigenvector

pair of Σ. Moreover, since

V ar(Y(1)) = α′
1Σα1 = α′

1λα1 = λα′
1α1 = λ

and Y(1) has the largest variance, then λ = λ1 where λ1 is the largest eigenvalue of Σ and

α1 the eigenvector corresponding to λ1. Therefore, the first principal component is a linear

combination of X whose coefficients are the elements of the eigenvector corresponding to

the largest eigenvalue of Σ.

The second principal component is a linear combination Y(2) = α′
2X with the constraint

α′
2α2 = 1. Moreover, Y(2) has the second largest variance and it is uncorrelated to Y(1), i.e.,

the covariance, Cov(Y(1), Y(2)) = 0. Again, a Lagrange multiplier is used to find α2. Since

V ar(Y(2)) = α′
2Σα2 and

Cov(Y(1), Y(2)) = α′
1Σα2 = α′

2Σα1 = λ1α
′
2α1 = λ1α

′
1α2 = 0, (2.21)
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φ2 = V ar(Y(2))− λ(α′
2α2 − 1)− δ(λ1α2)

′α1

= α′
2Σα2 − λ(α′

2α2 − 1)− δ(λ1α2)
′α1. (2.22)

Differentiate φ2 of Equation (2.22)with respect to α2 and set it equal to zero,

∂φ2

∂α2

= 2(Σα2 − λα2)− δλ1α1 = 0. (2.23)

Multiplying the left hand side of Equation (2.23) by α1 and then using Equation (2.21), we

obtain

2α′
1(Σα2 − λα2)− δλ1α

′
1α1 = δλ1 = 0.

Since λ1 6= 0, δ = 0. Hence, Equation (2.23) becomes

Σα2 − λα2 = 0.

Similar to the solution for the first principal component, α2 is the eigenvector corresponding

to the second largest eigenvalue, λ2. That is, the second principal component, Y(2), is a linear

combination of X whose coefficients are the elements of the eigenvector corresponding to

the second largest eigenvalue of Σ. The rest of the principal components are found the same

way. More formally, the kth principal component is the linear combination

Y(k) = α′
kX

where αk is the eigenvector corresponding to the kth eigenvalue of Σ and Cov(Y(k), Y(k′)) = 0

for k 6= k′.

Vector αk is the vector of coefficients of principal component Y(k). The magnitude of

element j of αk, denoted by αjk, indicates the significance of variable X(j) to principal

component Y(k). Coefficient αjk is also proportional to the correlation between X(j) and Y(k).

Let ρX(j),Y(k)
be the correlation between X(j) and Y(k). Then,

ρX(j),Y(k)
=

αjk

√
λk√

σjj

. (2.24)
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The correlation defined in Equation (2.24) provides another avenue to understand the con-

tribution of variable X(j) to principal component Y(k). Unlike αjk which indicates the impor-

tance of variable X(j) to principal component Y(k) when other variables are included, ρX(j),Y(k)

measures the importance of variable X(j) to principal component Y(k) individually.

In situations where it is appropriate to standardize the variance, principal components

can be found using the correlation coefficient matrix ρ = [ρjj′ ] where

ρjj′ =
σjj′

σ(j)σ(j′)

for j, j′ = 1, 2, . . . , p where σ(j) =
√

σjj. In this case, λ1 > λ2 > . . . > λp are the eigenvalues

and α1, α2, . . . ,αp are the eigenvectors of the correlation matrix ρ. The correlation measure

between X(j) and Y(k) of Equation (2.24) becomes

ρX(j),Y(k)
= αjk

√
λk (2.25)

because element ρjj of ρ is one for all j = 1, . . . , p.

When the population distribution is not known, estimates for µ and Σ are used to

compute the principal components. In the sample context, let X i = (Xi1, Xi2, . . . , Xip) be

the ith observation where i = 1, 2, . . . , n and p is the number of variables. Let S be the

sample variance-covariance matrix of

X = (X1, X2, . . . ,Xn).

Let

X∗ = (X∗
1, X

∗
2, . . . ,X

∗
n)

be the centered data matrix where

X∗
i = (Xi1 − X̄(1), Xi2 − X̄(2), . . . , Xip − X̄(p))

′

and

X̄(j) =

∑n
i=1 Xij

n
.
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Then, S can be computed easily as,

S =
(X∗)′(X∗)

n− 1
.

Let λ̂1 > λ̂2 > . . . > λ̂p be the eigenvalues of S and νk be the eigenvector corresponding

to λ̂k for k = 1, . . . , p. Then, it turns out that the coefficients vector for the kth principal

component, Y(k), based on the data matrix X is νk.

The sampling distributions of λ̂k and νk are difficult to derive. Anderson (1963) and

Girshick (1939) derive asymptotic results for the sampling distributions of λ̂k and νk under

the following assumptions: observations X i, i = 1, . . . , n, is a random sample from a normal

distribution and the eigenvalues of the population covariance matrix Σ are distinct and

positive. Johnson and Wichern (1984) gives the following summary of these results:

1. Let Λ be the diagonal matrix of eigenvalues λ1, λ2, . . . , λp of Σ; then,
√

n(λ̂ − λ) is

approximately Np(0, 2Λ2).

2. Let

A(k) = λk

p∑
j=1,j 6=k

λj

(λj − λk)2
(α(j)α

′
(j));

then,
√

n(ν(k) −α(k)) is approximately Np(0, A(k)).

3. Each λ̂k is distributed independently of the elements of the associated ν(k).

Based on these results, asymptotic estimation and inference for the eigenvalues and the

eigenvectors of Σ can be performed.

Furthermore, PCA can also be computed based on the sample correlation coefficient

vector, R, as in the population case. See, e.g., Anderson(2002), Mardia et al. (1979), Wichern

and Johnson (2002), and Joliffe (2004) for details.

2.3 Current PCA Methods for Interval-valued Data

Since principal component analysis is a popular multivariate method, naturally it is necessary

to extend PCA to application of symbolic data. Some extensions of PCA to interval-valued
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data currently found in the literature include the centers and the vertices method (Cazes et

al. (1997), Chouakria et al. (2000), and most extensively, Billard et al. (2007)); the symbolic

object approach by Lauro and Palumbo (2000), the midpoints and radii method by Palumbo

and Lauro (2003), and the interval algebra approach by Gioia and Lauro (2006).

Before presenting these methods, let us define an interval-valued data matrix. Let X be

an n× p data matrix. Then,

X =



ξ11 ξ12 . . . ξ1p

ξ21 ξ22 . . . ξ2p

...
...

...
...

ξn1 ξn2 . . . ξnp


. (2.26)

If X is an interval-valued data matrix, then X of Equation (2.26) has the following form,

X =



[a11, b11] [a12, b12] . . . [a1p, b1p]

[a21, b21] [a22, b22] . . . [a2p, b2p]

...
...

...
...

[an1, bn1] [an2, bn2] . . . [anp, bnp]


(2.27)

where aij ≤ bij for all i = 1, 2, . . . , n and j = 1, 2, . . . , p.

2.3.1 Centers method

Let the matrix of centers corresponding to the data matrix defined in Equation (2.27) be

Xc =



Xc
11 Xc

12 . . . Xc
1p

Xc
21 Xc

22 . . . Xc
2p

...
...

...
...

Xc
n1 Xc

n2 . . . Xc
np


(2.28)

where

Xc
ij =

aij + bij

2
. (2.29)

Note that for i = 1, . . . , n and for j = 1, . . . , p, Xc
ij is a single point. Therefore, the matrix

of centers in Equation (2.28) is a classical data matrix.
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In this approach, classical PCA is performed on the centers matrix Xc. The resultant

kth centers principal component is

Y c
(k) = Xcνc

k

where νc
k is the eigenvector corresponding to the kth eigenvalue of the classical sample

variance-covariance matrix of Xc of Equation (2.28). For observation i = 1, 2, . . . , n, the

kth interval-valued principal component is reconstructed as follows. Let Y c
ik = [ylo

ik, y
up
ik ] be

the interval-valued principal component. Then, its lower and upper endpoints are formed by

ylo
ik =

∑
j∈J−c

(bij − X̄(j))ν
c
kj +

∑
j∈J+

c

(aij − X̄(j))ν
c
kj

yup
ik =

∑
j∈J−c

(aij − X̄(j))ν
c
kj +

∑
j∈J+

c

(bij − X̄(j))ν
c
kj

where J−c = {j|νc
kj < 0} and J+

c = {j|νc
kj ≥ 0}.

2.3.2 Vertices method

Before principal component analysis is performed in this method, the data matrix X is

first transformed into a matrix of vertices Xv. Again, let X be the data matrix defined in

Equation (2.27). Then, for i = 1, 2, . . . , n,

X i = ([ai1, bi1], [ai2, bi2], . . . , [aip, bip]).

Define the matrix of vertices for observation i as,

Xv
i =



ai1 ai2 . . . aip

ai1 ai2 . . . bip

...
...

...
...

bi1 bi2 . . . aip

bi1 bi2 . . . bip


. (2.30)

Again, note that each element of Xv
i is a single point, i.e., Xv

i is a classical matrix. For each

p-variate observation X i, Xv
i is a (2mi × p) matrix where mi is the number of variables in
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observation i such that

aij 6= bij.

Each row of Xv
i represents the coordinate of a vertex of the hyper-rectangle formed by

observation i in a p-dimensional space. An interval [aij, bij] is said to be trivial if it reduces

to a single point aij = bij. Thus, if [aij, bij] is trivial for all j = 1, 2, . . . , p, then Xv
i =

[ai1, ai2, . . . , aip] reduces to one single point in a p-dimensional space which is a classical data

point.

The matrix of vertices for the full dataset X is

Xv =




a11 a12 . . . a1p

...
...

...
...

b11 b12 . . . b1p


a21 a22 . . . a2p

...
...

...
...

b21 b22 . . . b2p


...

an1 an2 . . . anp

...
...

...
...

bn1 bn2 . . . bnp





. (2.31)

If mi = p for all i, Xv has dimension n2p × p.

Next, classical PCA is performed on Xv of Equation (2.31). The kth principal component

of Xv is

Y v
k = Xvνv

k

where νv
k is the eigenvector corresponding to the kth eigenvalue of the sample variance-

covariance matrix of Xv. The kth interval-valued principal component for observation i

based on this method is Y v
ik = [ylo

ik, y
up
ik ] where

ylo
ik = minη∈Li

{yv
ηk} (2.32)

yup
ik = maxη∈Li

{yv
ηk} (2.33)
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where Li is the set of rows in Xv that belongs to observation i. That is, for Ni = 2mi ,

Li =

{
i−1∑
m=1

Nm + 1,
i−1∑
m=1

Nm + 2, . . . ,
i−1∑
m=1

Nm + Ni

}
. (2.34)

Equivalently, Equation (2.32) and Equation (2.33) can be computed by

ylo
ik =

∑
j∈J−v

(bij − X̄v
(j))ν

v
kj +

∑
j∈J+

v

(aij − X̄v
(j))ν

v
kj

yup
ik =

∑
j∈J−v

(aij − X̄v
(j))ν

v
kj +

∑
j∈J+

v

(bij − X̄v
(j))ν

v
kj

where X̄v
(j) is the mean of the jth column of Xv, J−v = {j|νv

kj < 0}, and J+
v = {j|νv

kj ≥ 0}.

See Billard et al. (2007) for details and examples. For each observation i = 1, 2, . . . , n, the

interval [ylo
ik, y

up
ik ] includes all possible values of X i transformed by νv

k. Moreover, for k, k′ =

1, 2, . . . , p and k 6= k′, the rectangle formed by two interval-valued principal components

[ylo
ik, y

up
ik ] and [ylo

ik′ , y
up
ik′ ] is called the maximum covering area rectangle (MCAR). This method

treats all vertices as independent observations.

2.3.3 SO-PCA: a mixed Strategy

Lauro and Palumbo (2000) proposes a multiple stage approach based on 2 separate proce-

dures, the symbolic-object PCA and the range-transformation PCA. A review of symbolic-

object and range-transformation PCA methods follows.

1. Symbolic-object PCA (SO-PCA)

The SO-PCA modifies the vertices method by introducing a boolean matrix A of

dimension n2p × n where the qth element of the column vector Ai indicates if the qth

vertex of Xv as defined in Equation (2.31) belongs to the ith observation. That is,

Aqi =

 1, q ∈ Li,

0, q /∈ Li.

Let Zv be the standardized version of Xv. In this method, the vector of coefficients

νk for the kth principal component Yk is the eigenvector corresponding to the kth
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eigenvalue of the matrix

1

N
Zv ′A(A′A)−1A′Zv.

The interval-valued principal component [yl
ik, y

u
ik] is formed in a similar manner to its

counterpart in the vertices method, i.e., Equations (2.32) and (2.33), respectively.

2. Range transformation method (RT-PCA)

The second procedure proposed by Lauro and Palumbo (2000) uses only the range of

the data intervals. This is the same as translating the observed hyper-rectangles so

that the vertices closest to the origin are aligned at the origin. This method is used

mainly to analyze the size and shape of the interval-valued observations. Let XR
i be

the p-variate vector whose elements represent the ranges of the ith observation. That

is,

XR
i = (XR

i1, X
R
i2, . . . , X

R
ip)

= ((bi1 − ai1), (bi2 − ai2), . . . , (bip − aip)). (2.35)

The range matrix of the full dataset is XR = (XR
1 , XR

2 , . . . ,XR
n )′. Classical PCA is

then performed on XR. For ease of reference later, call the kth principal component

of XR, T k. If only the size and shape of the observed data are of interest, range

transformation PCA can be used alone. Otherwise, it can be coupled with SO-PCA to

form a multi-steps process as described in Lauro and Palumbo (2000).

The mixed strategy is based on three steps:

1. Perform RT-PCA on the data matrix X to extract the principal components matrix

T ,

2. Transform Zv into Ẑ = A(A′A)−1A′Zv, and

3. Perform classical PCA on PT Ẑ where PT is a projection matrix of T .

The results of this method depend on the choice of PT . The projection PT is chosen to reflect

the importance of size and shape of the observed hyper-rectangles.
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2.3.4 Midpoints and radii method

Another extension of PCA to interval-valued data was proposed by Palumbo and Lauro

(2003) which uses the centers and radii of the observed data. The idea for this method is

based on interval algebra. A brief introduction of interval algebra follows. To learn more

about interval algebra, see Moore (1966), Alefeld and Herzberger (1983), Neumaier (1990),

and Kearfott and Kreinovich (1996). Let [a, b] be an interval of real values, i.e.,

[a, b] = {x|a ≤ x ≤ b}.

The arithmetic operations on [a, b] are defined as follows:

[a, b] + [c, d] = [a + c, b + d] ,

[a, b]− [c, d] = [a− d, b− c] ,

[a, b]× [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] ,

and finally, if c = d 6= 0 then the ratio of [a, b] and [c, d] is defined as

[a, b]÷ [c, d] = [a, b]×
[
1

c
,
1

d

]
.

Now, the mean interval X̄I
(j) of the jth variable is defined as

X̄I
(j) =

1

n

n∑
i=1

[aij, bij]

and the distance between Xij and Xi′j for i, i′ = 1, 2, . . . , n, is defined as

d(Xij, Xi′j) = |Xc
ij −Xc

i′j|+ |Xr
ij −Xr

i′j|

where the midpoint Xc
ij is as defined in Equation (2.29) and the radius Xr

ij = 1
2
(bij − aij).

Note that Xr
ij = 1

2
XR

ij where XR
ij is defined in Equation (2.35). The variance of X(j) is
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subsequently defined as

σ2
(j) =

1

n

n∑
i=1

[
d(Xij, X̄(j))

]2
=

1

n

n∑
i=1

[
(Xc

ij − X̄c
(j))

2 + 2|Xc
ij − X̄c

(j)||Xr
ij − X̄r

(j)|+ (Xr
ij − X̄r

(j))
2
]

=
1

n

n∑
i=1

(Xc
ij − X̄c

(j))
2 +

2

n

n∑
i=1

[|Xc
ij − X̄c

(j)||Xr
ij − X̄r

(j)|] +
1

n

n∑
i=1

(Xr
ij − X̄r

(j))
2

= (σc
(j))

2 + 2σcr
(j) + (σr

(j))
2 (2.36)

where (σc
(j))

2 is the sample variance of the midpoints, (σr
(j))

2 is the sample variance of the

radii, and σcr
(j) is called the inter-connection between the midpoints and radii. Compared

to the symbolic variance defined in Equation (2.4) and Equation (2.6), (σc
(j))

2 equals to

the variance between variables, SSB/n. Thus, comparing the symbolic variance S2 to σ2
(j) is

equivalent to comparing SSW/n to [(σr
(j))

2+2σcr
(j)]. The relation between these two quantities

depends on the data. The inter-connection, σcr
(j), is always positive unless Xc

(j) and Xr
(j) are

uncorrelated. In the event they are uncorrelated then, S2 ≥ σ2
(j) if the average variance

within the ranges is larger than the variation between the ranges, i.e., if the data consist of

wide intervals of approximately the same size. Otherwise, S2 ≤ σ2
(j). Generalizing Equation

(2.36) to define the variance-covariance matrix V for the interval-valued data matrix X as,

V =
1

n
(X∗c)′(X∗c) +

1

n
(X∗r)′(X∗r) +

1

n
[|(X∗c)′(X∗r)|+ |(X∗r)′(X∗c)|]

= V c + V r + 2V cr

where the element of X∗c is X∗c
ij = (Xc

ij−X̄c
(j)) and the element of X∗r is X∗r

ij = (Xr
ij−X̄r

(j)).

Hence, the correlation matrix R is

R = (Zc)′(Zc) + (Zr)′(Zr) + |(Zc)′(Zr)|+ |(Zr)′(Zc)|

= Rc + Rr + 2Rcr

where the elements of Zc and Zr are Zc
ij =

(Xc
ij−X̄c

(j)
)

σ(j)
and Zr

ij =
(Xr

ij−X̄r
(j)

)

σ(j)
, respectively.

To understand the positions or the shapes and sizes of the data independently, partial

PCA can be performed on the midpoints matrix Xc or the radii matrix Xr, respectively.



28

Let (λc
k, ν

c
k) be the kth eigenvalue-eigenvector pair of Rc and similarly (λr

k, ν
r
k) be the kth

eigenvalue-eigenvector pair of Rr. Then, the kth principal component of the ith observation

for the midpoints and the radii are, respectively,

yc
ik = Zc

iν
c
k,

yr
ik = Zr

i ν
r
k.

However, to account for all three components of the variance structure in Equation (2.36),

Palumbo and Lauro (2003) proposes constructing the interval-valued principal components

by superimposing the principal components of the radii on the principal components of

the midpoints and then rotating the radii proportionally to the inter-connection, σcr
(j). The

authors suggested Procrustes rotation (Gower (1975)) be used to maximize the connection

between the midpoints and radii. The rotation is defined by a rotation matrix A that mini-

mizes the trace,

trace ((X∗c −X∗rA)(X∗c −X∗rA)′) . (2.37)

Since Equation (2.37) equals to

tr ((X∗c)(X∗c)′) + tr ((X∗r)(X∗r)′)− 2tr ((X∗c)′X∗rA) ,

this is equivalent to finding A that maximizes

trace ((X∗c)′X∗rA) . (2.38)

Mardia et al. (1979) shows that the solution to Equation (2.38) is A = QP ′ where Q and

P are the solution to the singular value decomposition

(X∗c)′X∗r = PΛcrQ.

As a result, the rotated radii are then

ycr
ik = X∗r

i ν
r
kai
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where ai is the ith vector of A. The kth interval-valued principal component for the ith

observation obtained by this method is

[ylo
ik, y

up
ik ] = [yc

ik − ycr
ik , yc

ik + ycr
ik ].

Although this PCA approach to interval-valued data accounts for all the variability in the

data, the interval arithmetic used in this method only works for very narrow intervals. This

poses a limitation on the applicability of this method.

2.3.5 Interval-algebra method

Another approach using interval algebra was proposed by Gioia and Lauro (2006). This

method is referred to as interval principal component analysis (IPCA). Given a data matrix

X as defined in Equation (2.26), the problem of finding the principal components of X as

seen in Section 2.2 is reduced to finding the eigen system of the sample variance-covariance

matrix S. This method uses the sample interval-valued variance-covariance matrix defined

as

SI = (ZI)′(ZI) = {UW |U ∈ (ZI)′, W ∈ ZI}

where ZI is the standardized version of X. The kth interval eigenvalue and eigenvector of

SI are

λI
k = {λ|Sν = λν,∀S ∈ SI},

νI
k = {ν|Sν = λν,∀S ∈ SI}.

More explicitly, λI
k is the set of all kth eigenvalues of all matrices S ∈ SI and νI

k is the set of

all eigenvectors corresponding to λI
k. As a consequence of the interval solutions, the principal

components computed by this method are much larger than appropriate. Gioia and Lauro

(2006) also proposes a fix for this problem by including only the eigen solutions to

ΓI = {Z ′Z|Z ∈ (ZI)}
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instead of SI . Since ΓI ⊆ SI , the resulting interval-valued principal components will be

narrower. However, similar to the midpoints-radii approach, the interval solutions only work

with small intervals whose ratio between radius and coordinate of the center is approximately

2-3%. Therefore, the applicability of this method is also very limited.
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Chapter 3

Principal Component Analysis for Interval-Valued Data

Section 2.3 of Chapter 2 describes five extensions of classical principal component analysis

(PCA) to interval-valued data. However, all methods proposed up to this point have draw-

backs. The centers, the vertices, and the symbolic object methods only account for part of the

variance of interval-valued observations whereas the midpoints-radii and the interval algebra

methods only work for very narrow intervals. In this chapter, we propose a method of PCA

that takes into account the total variance of interval-valued observations, and that works for

intervals of all sizes. We also propose a method to construct interval-valued observations in

the principal components space to reflect their true internal structure.

In classical PCA, an observation remains a point in a principal components space. From

Section 2.2, the kth principal component for observation i is simply the inner product of

the vector of coefficients for the kth principal component and the data vector representing

observation i. However, a symbolic observation has an internal structure that does not exist

in classical data. The internal structure of a symbolic observation depends on its data type.

For example, a p-variate interval-valued observation is represented by a hyper-rectangle in

a p-dimensional space. The shape of a hyper-rectangle in a principal components space

may be different from its original shape in the sample space. Therefore, an interval-valued

observation must be reconstructed in a principal components space to reflect its internal

structure. Concepts of the proposed method are described in Section 3.2. A detailed algorithm

to compute the coefficients as well as the principal components is presented in Section 3.3.

Two applications using real datasets illustrate our method in Section 3.4.
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3.1 Preliminaries

Section 2.1.2 describes an interval-valued variable and gives the derivation of its mean and

its variance-covariance. Some notation and results of interval-valued variable necessary for

the development of our proposed method are restated in this section without further details.

Refer to Section 2.1.2 for more information. For an even more extensive treatment of interval-

valued data, refer to Bertrand and Goupil (2000) and Billard and Diday (2003, 2006).

An interval-valued data matrix as defined in Equation (2.27) has the following form,

X =



[a11, b11] [a12, b12] . . . [a1p, b1p]

[a21, b21] [a22, b22] . . . [a2p, b2p]

...
...

...
...

[an1, bn1] [an2, bn2] . . . [anp, bnp]


where aij ≤ bij for all i = 1, 2, . . . , n and j = 1, 2, . . . , p. The empirical density function of a

point W ∈ ξij = [aij, bij] given in Equation (2.2) is

fW (ξ) =
1

n

∑
i:ξ∈ξij

(
1

bij − aij

).

The symbolic sample mean and the symbolic sample variance of variable W as defined in

Equations (2.3) and (2.4) are, respectively,

W̄ =
1

2n

n∑
i=1

(aij + bij)

and

S2 =
1

3n

n∑
i=1

(a2
ij + aijbij + b2

ij)−
1

4n2

[
n∑

i=1

aij + bij

]2

.

By extending Equation (2.4) to the bivariate case, the empirical symbolic covariance for W(j)

in X(j) and W(j′) in X(j′) where j, j′ = 1, 2, . . . , p is given in Equation (2.5) as

Sjj′ =
1

3n

n∑
i=1

GijGij′ [QijQij′ ]
1/2
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where

Qij = (aij − W̄(j))
2 + (aij − W̄(j))(bij − W̄(j)) + (bij − W̄(j))

2,

Gij =

 −1, W̄ij ≤ W̄(j),

1, W̄ij > W̄(j),

and W̄ij = (aij + bij)/2. The sample symbolic variance-covariance resulting from S2 and Sjj′

for j, j′ = 1, 2, . . . , p as defined in Equations (2.4) and (2.5) is,

S =



S11 S12 . . . S1p

S21 S22 . . . S2p

...
...

. . .
...

Sp1 Sp2 . . . Spp


. (3.1)

Billard (2007) shows that the total sum of squares of an interval-valued data matrix X

can be decomposed into the sum of the internal variation and the external variation called

the between sum of squares in Equation (2.7) and the within sum of squares in Equation

(2.8). Formally,

nS2 = SST = SSB + SSW

When j 6= j′ the total sum of products is the sum of the internal and the external sum of

products and is given by,

nSjj′ = SPTjj′ = SPBjj′ + SPWjj′

where SPBjj′ is defined in Equation (2.11) and SPWjj′ is defined in Equation (2.12).

Moreover, given an interval-valued data matrix X of Equation (2.27), X can be expressed

in terms of its vertices as a matrix of vertices Xv defined in Equation (2.31). That is, for

i = 1, 2, . . . , n, the matrix of vertices for observation i is the (2mi×p) matrix Xv
i of Equation

(2.30) where mi is the number of variables in observation i such that aij 6= bij. Each row

of Xv
i represents the coordinate of a vertex of the hyper-rectangle formed by observation i

in the p-dimensional sample space. An interval [aij, bij] is said to be trivial if it reduces to
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a single point aij = bij. Therefore, if [aij, bij] is nontrivial for all j = 1, 2, . . . , p, then Xv
i

consists of 2p rows and it is given by,

Xv
i =



ai1 ai2 . . . aip

ai1 ai2 . . . bip

...
...

...
...

bi1 bi2 . . . aip

bi1 bi2 . . . bip


. (3.2)

If, for example, the interval [aip, bip] is trivial, then the last two lines of Xv
i in Equation (3.2)

reduce to one line only. If [aij, bij] is trivial for all j = 1, 2, . . . , p, then Xv
i = [ai1, ai2, . . . , aip]

reduces to one single point in a p-dimensional space which is a classical data point.

The matrix of vertices for the full dataset X is defined in Equation (2.31) as

Xv =




a11 a12 . . . a1p

...
...

...
...

b11 b12 . . . b1p


a21 a22 . . . a2p

...
...

...
...

b21 b22 . . . b2p


...

an1 an2 . . . anp

...
...

...
...

bn1 bn2 . . . bnp





.

3.2 Methodology

This section lays the foundation for our proposed PCA method for interval-valued obser-

vations. It explains the theoretical framework upon which our proposed method is built.

Detailed descriptions to construct the principal components based on this framework are
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given in Section 3.3 along with the algorithm. This section is divided into two subsections.

The first, Subsection 3.2.1, describes our approach to finding coefficients for the principal

components of an interval-valued dataset. The second, Subsection 3.2.2, explores the struc-

ture of interval-valued observations in a principal components space and provides the the-

oretical basis for our proposed construction of interval-valued observations in the principal

components space. In this subsection, we further propose two representations of the principal

components for this type of data.

3.2.1 Finding the coefficients

Let X represent the data matrix defined in Equation (2.27). Based on the classical PCA

methodology reviewed in Section 2.2, the coefficients of the uncorrelated linear combina-

tions of X with maximum variances are the eigenvectors of the sample symbolic variance-

covariance matrix. For an interval-valued data matrix X, the sample variance-covariance

is the matrix S of Equation (3.1). Let λ̂S
1 > λ̂S

2 > . . . > λ̂S
p be the eigenvalues of S and

νS
1 , νS

2 , . . . ,νS
p be their corresponding eigenvectors. By analogy, the vector of coefficients,

also called the loadings, for the kth principal component of X is νS
k .

Analogous to the classical PCA, the magnitude of the jth element of νS
k , denoted by νS

jk,

indicates the contribution of variable X(j) to the principal component Y(k). The measure of

correlation between an individual X(j) and Y(k) is given by

ρX(j),Y(k)
=

νS
jk

√
λ̂S

k√
Sjj

. (3.3)

Moreover, assume X i, i = 1, . . . , n, is a random sample and n is large. Let W(j) be a

point from X(j) for j = 1, 2, . . . , p. In addition, assume W = (W(1), W(2), . . . ,W(p)) is from

a normal population and the eigenvalues of the population covariance matrix Σ are distinct

and positive. Then, the asymtotic results regarding λ̂k and νk stated in Section 2.2 carry

through for λ̂S
k and νS

k for all k = 1, 2, . . . , p.
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In situations where PCA based on the sample correlation is more appropriate, coefficients

for the kth principal component of X are then the eigenvector corresponding to the kth

eigenvalue of the sample correlation matrix R. The jj′ element of R, denoted by ρjj′ , is

ρjj′ =
Sjj′√
SjjSj′j′

. (3.4)

Measures of contribution for the principal components based on the correlation matrix mirror

the results for the principal components based on the sample covariance matrix.

3.2.2 Constructing the principal components

Having determined the coefficients of the principal components, we next reconstruct the

observations in the symbolic principal components space. This section is divided into two

parts. In the first part, we discuss the structure of an interval-valued observation in a principal

components space and propose a geometric representation of the observations in this space.

This representation can be used for visualization and data exploration. Since it is not possible

at the present time to perform statistical analysis of geometric objects, we propose another

representation which gives the principal components numerical values for further analysis.

In part two, we propose a method to construct histogram-valued principal components.

Again, this section only provides the concept of our proposal. Details of the construction are

presented in Section 3.3 along with the algorithm.

In current approaches to PCA for interval-valued data, a principal component for obser-

vation i is constructed as an interval formed by the minimum and the maximum transformed

values of all vertices belonging to observation i. Interval-valued representation of the principal

components presents two drawbacks which are explained in the following paragraphs.

First, in a plot of principal component k1 versus principal component k2 (PCk1 × PCk2),

an observation is visually represented by a rectangle bounded by the lower and the upper

endpoints of PCk1 and the lower and the upper endpoints of PCk2 where the lower (upper)

endpoint is the minimum (maximum) PCk1 and PCk2, respectively, values of all vertices

belonging to that observation. This rectangle is called the maximum covering area rectangle
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(MCAR). This rectangle covers an area larger than the projection of observation i onto the

PCk1 × PCk2 plane. When all observations are included in a PCk1 × PCk2 plot, overage

from these rectangles creates unnecessary overlap among observations. As a result, it can be

difficult to visually distinguish clusters of observations.

Secondly, an assumption for interval-valued data is that all values between the interval

endpoints are uniformly distributed. However, values of the principal component for an

observation are not necessarily uniformly distributed between the minimum and maximum

transformed values. Uniformity only occurs as a special case when at least one of the principal

components is completely correlated with a variable in the dataset. A principal component

interval may not reflect the true distribution of values within the principal component.

Therefore, when interval-valued principal components are used for further analysis, use of

the lower and upper endpoints may lead to a wrong conclusion about the data.

In this section, we propose representations of principal components which are an improve-

ment over the interval-valued principal components constructed in the centers and vertices

methods proposed by Cazes et al. (1997) and Chouakria et al. (2000). First, we propose

constructing the true structure of the observations in a principal components space. The

geometric representation of the observations resulting from their true structure do not pro-

duce overlaps which do not exist in the observations. As a result, observations that belong

to different groups can be visually identified more easily. Secondly, we propose constructing

histograms as another representation of the principal components. Values within a principal

component are not necessarily uniformly distributed. Unlike an interval-valued variable, a

histogram-valued variable allows variability in the relative frequencies of values within the

histogram endpoints. Therefore, a histogram-valued principal component can be constructed

to reflect most of the internal variation of an observation in a principal components space.

Hence, results from statistical analysis using histogram-valued principal components reflect

most of the internal structure of interval-valued data. Details of the proposed methods are

given below.
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Geometric representation of interval-valued observations in a principal

components space

In the original sample space, an interval-valued observation is represented by a hyper-

rectangle which is a convex hull of its vertices. Let Hi denote the hyper-rectangle representing

observation i in the sample space. Before describing the structure of the linearly transformed

Hi in a principal components space, it is necessary to define some geometric terms which

will be used in the remainder of this section. Ziegler (1995) gives the following definitions.

Definition 3.2.1. A point set K ⊆ Rd is convex if, with any two points x, y ∈ K, it also

contains the straight line segment [x, y] = {αx + (1− α)y|0 ≤ α ≤ 1} between them.

Definition 3.2.2. For any K ⊆ Rd, the smallest convex set containing K, called the convex

hull of K, can be constructed as the intersection of all convex sets that contain K:

conv(K) :=
⋂
{K ′ ⊆ Rd|K ⊆ K ′, K ′ convex}.

Equivalently, Hi is also called a polytope in Rd. There are two mathematically equivalent

definitions of polytope and they are stated in the following.

Definition 3.2.3. A V-polytope is a convex hull of a finite set of points in some Rd.

An H-polyhedron is an intersection of finitely many closed halfspaces in some Rd. An

H-polytope is an H-polyhedron that is bounded in the sense that it does not contain a ray

{x + ty|t ≥ 0} for any y 6= 0 where a ray is a line originated at one point and extended

infinitely in one direction.

A polytope is a point set P ⊆ Rd which can be presented either as a V-polytope or as an

H-polytope.

For a proof of the equivalence between a V-polytope and a H-polytope, refer to Ziegler

(1995).

With a formal definition of a convex set, we can now state and prove the following

theorem.
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Theorem 3.2.4. A linear transformation of a convex set is convex.

Proof. Let Pd ⊆ Rd be a convex set. Let T : Rd → Re be a linear transformation. Let

Pe = T (Pd) be the image set of Pd, i.e., Pe = {β|β = T (b) ∀b ∈ Pd}. Let β1 and β2 be two

points in Pe. Then, β1 = T (b1) and β2 = T (b2) for some b1, b2 ∈ Pd, respectively. Then, for

0 ≤ α ≤ 1,

αβ1 + (1− α)β2 = αT (b1) + (1− α)T (b2)

= T (αb1 + (1− α)b2).

Since Pd is a convex set and b1, b2 ∈ Pd, then b3 = αb1+(1−α)b2 is in Pd. Hence, T (b3) ∈ Pe.

Therefore, Pe is convex.

To establish a framework for our proposed method, we need to define formally the interior

and the boundary of a convex set. Davidson and Donsig (2002) gives the following definitions.

Definition 3.2.5. The interior of a convex set K, denoted by int(K), is the largest open

set contained inside K. That is, a point a ∈ int(K) if and only if there exist an ε > 0 such

that Bε(a) ⊂ K where Bε(a) = {b||b− a| < ε}.

The boundary of K, denoted by bd(K), is defined as the set K̄ \ int(K) where K̄, the

closure of K, is the smallest closed set containing K, and where the notation A \ B is the

set of points in A not containing the points in B.

The theorem that plays the most crucial role in our proposed construction of the principal

components involves bijective linear mapping of a convex set. Davidson and Donsig (2000)

gives the following definition of a bijection.

Definition 3.2.6. A linear operator T maps a set A onto a set B or is surjective if for each

b ∈ B there is at least one a ∈ A such that T (a) = b.

A linear operator T that maps a set A to a set B is one-to-one or injective if T (a1) = T (a2)

implies that a1 = a2 for all a1, a2 ∈ A.

A linear operator T that is both one-to-one and onto is bijective.
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Next, we need the following relationship between the interior of a convex set and its linear

transformation to prove our theorem.

Theorem 3.2.7. If K is a convex set in Rd and T is a linear map from Rd to Re, then

T (int(K)) = int(T (K)).

Proof. See Davidson and Donsig (2002) for a proof of this theorem.

Using the result of Theorem 3.2.7, we can now prove the following theorem.

Theorem 3.2.8. If K is a convex set in Rd and T : Rd → Rd is a bijective linear operator,

then T (bd(K)) = bd(T (K)).

Proof. First, we will show that T (bd(K)) ⊂ bd(T (K)). Let b ∈ bd(K) and let β = T (b).

Then, β ∈ T (bd(K))). For contradiction, assume that β ∈ int(T (K)). By Theorem 3.2.7,

β ∈ T (int(K)). That is, there must exist some b1 ∈ int(K) such that β = T (b1). Since, T is

one-to-one, b1 = b but b ∈ bd(K) so b /∈ int(K). Therefore, by contradiction β ∈ bd(T (K)).

Hence,

T (bd(K)) ⊂ bd(T (K)). (3.5)

Next, we will show that bd(T (K)) ⊂ T (bd(K)). Since T is bijective, there must exist a

bijective linear operatior T−1 such that T (T−1) = T−1(T ) = I where I is the operator that

maps an element to itself. Let β ∈ bd(T (K)) and let b = T−1(β), i.e., b ∈ T−1(bd(T (K))).

Again for contradiction, assume that b ∈ int(K). Since,

int(T−1(T (K)) = T−1(int(T (K))) (by Theorem 3.2.7),

b ∈ T−1(int(T (K))). That is, there must exist some β1 ∈ int(T (K)) such that b = T−1(β1).

Since T−1 is bijective, β1 = β. However, β ∈ bd(T (K)) ⇒ β /∈ int(T (K)). Therefore, by

contradiction b ∈ bd(K). Since b = T−1(β) ⇔ β = T (b), then β ∈ T (bd(K)). Therefore,

bd(T (K)) ⊂ T (bd(K)). (3.6)
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From Equation (3.5) and Equation (3.6), we conclude that

T (bd(K)) = bd(T (K)).

Since observation i in a principal components space is a linear transformation of Hi

from the original sample space, let Pi denote the polytope representing observation i in the

principal component space. Then, Pi = T (Hi). From Theorem 3.2.8, Pi is bounded by the

transformed boundary of Hi. The boundary of Hi is formed by its vertices. Therefore, the

boundary of Pi can be reconstructed from the transformed vertices of Hi.

Therefore, let Xv
i of Equation (2.30) be the matrix of vertices of Hi and let Y v

i be the

(Ni × p) matrix of transformed vertices of observation i in the principal components space

which is the space spanned by eigenvectors ν1, ν2, . . . ,νp. Then,

Y v
i = (Xv

i )ν
S (3.7)

is the matrix of vertices of Pi where νS = [νS
1 , νS

2 , . . . ,νS
p ]. Each row of Xv

i is the coordinate

of a vertex of the hyper-rectangle Hi and each row of Y v
i is the coordinate of a vertex

of the polytope Pi. Moreover, the vertex of Pi represented by row rv in matrix Y v
i is the

transformed vertex of the vertex of Hi represented by row rv in matrix Xv
i . That is, there

exists a one-to-one correspondence between the rows of Xv
i and the rows of Y v

i . Hence, the

edges of Pi can be reconstructed by reconnecting the rows of Y v
i which were connected in

Xv
i .

Note that an edge of a d-dimensional hyper-rectangle Hi is a line connecting two vertices

whose coordinates have d − 1 identical elements. That is, let b1 = (b11, b12, . . . , b1d) and

b2 = (b21, b22, . . . , b2d) be two vertices of Hi. Then, b1 and b2 form an edge if and only if

b1k 6= b2k at exactly one k for k = 1, 2, . . . , d. As a consequence, each vertex of Hi is connected

to d other vertices.

Now we use this fact to create a matrix Ci to store indices of the vertices of hyper-

rectangle Hi that are connected. Matrix Ci will be used to connect vertices of polytope
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Pi in the algorithm of Section 3.3. Let Ci be an (Ni × (d + 1)) matrix where Ni is the

number of vertices of hyper-rectangle Hi. The first column of Ci consists of numbers 1

through Ni in ascending order. If we identify a vertex of Hi by the row number of the row

of Xv
i representing that vertex, then the first column of Ci consists of the vertex number in

ascending order. The last d columns of Ci keep indices of vertices connected to the vertices

of the first column. More specifically, row rv of the matrix Ci consists of d+1 elements. The

first element identifies the vertex number, the 2nd, 3rd, . . . , (d + 1)th elements are index of d

vertices connected to vertex rv of Hi.

In addition, note that there are many ways to construct a matrix of vertices for an obser-

vation Xi, and that Ci is dependent on the construction of X i. Without loss of generality,

assume d = p, i.e., assume Hi has full dimension p. The matrix Xv
i of Equation (2.30) is

constructed by permuting the variables in ascending order starting from variable p working

back to variable 1. Since Xv
i was constructed in the same manner for all i = 1, 2, . . . , n, Ci

are identical for all i. That is, we can write Ci = C,∀i. Examples to illustrate matrix C for

the case of p = 2 and the case of p = 3 follow.

For p = 2, let the vector of observed intervals be X i = ([ai1, bi1][ai2, bi2]). If aij < bij for

all j = 1, 2, then the rectangle Hi representing X i has four vertices. The matrix of vertices

based on Equation (2.30) is

Xv
i =



ai1 ai2

ai1 bi2

bi1 ai2

bi1 bi2


. (3.8)

Therefore, Vertex 1 has coordinate (ai1, ai2), Vertex 2 has coordinate (ai1, bi2), Vertex 3

has coordinate (bi1, ai2), and Vertex 4 has coordinate (bi1, bi2). Figure 3.1 shows the rectangle

Hi representing X i with the vertices labeled according to its row position in Xv
i of Equation

(3.8). Check that the vertices are connected as indicated in matrix C as follows,
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Figure 3.1: Connected Vertices of a Two-Dimensional Rectangle

C =



1 2 3

2 1 4

3 1 4

4 2 3


(3.9)

That is, Vertex 1 is connected to Vertex 2 and Vertex 3, Vertex 2 is connected to Vertex 1

and Vertex 4, Vertex 3 is connected to Vertex 1 and Vertex 4, and Vertex 4 is connected to

Vertex 2 and Vertex 3.

For p = 3, the vector of observed intervals is X i = ([ai1, bi1][ai2, bi2][ai3, bi3]). If aij < bij

for all j = 1, 2, 3, then the hyper-rectangle Hi representing X i has eight vertices. The matrix

of vertices based on Equation (2.30) is
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Xv
i =



ai1 ai2 ai3

ai1 ai2 bi3

ai1 bi2 ai3

ai1 bi2 bi3

bi1 ai2 ai3

bi1 ai2 bi3

bi1 bi2 ai3

bi1 bi2 bi3



. (3.10)

Figure 3.2: Connected Vertices of a Three-Dimensional Hyper-Rectangle

Therefore, Vertex 1 has coordinate (ai1, ai2, ai3), Vertex 2 has coordinate (ai1, ai2, bi3),

Vertex 3 has coordinate (ai1, bi2, ai3), Vertex 4 has coordinate (ai1, bi2, bi3), Vertex 5 has

coordinate (bi1, ai2, bi3), and so on. Figure 3.2 shows the hyper-rectangle Hi representing X i

with the vertices labeled according to its row position in Xv
i of Equation (3.10). Check that

the vertices are connected as indicated in matrix C as follows,
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C =



1 2 3 5

2 1 4 6

3 1 4 7

4 2 3 8

5 1 6 7

6 2 5 8

7 3 5 8

8 4 6 7



(3.11)

That is, Vertex 1 is connected to Vertex 2, Vertex 3, and Vertex 5; Vertex 2 is connected

to 1, 4, and 6; Vertex 3 is connected to 1, 4, and 7; Vertex 4 is connected to 2, 3, and 8, Vertex

5 is connected to 1, 6, and 7; Vertex 6 is connected to 2, 5, and 8; Vertex 7 is connected to

3, 5, and 8; and Vertex 8 is connected to 4, 6, 7.

Figure 3.3: Connected Vertices of a Transformed Rectangle

Now, by applying the information from matrix C of Equations (3.9) and (3.11) for p = 2

and p = 3, respectively, transformed vertices in Y v
i can be connected to form polytope Pi

corresponding to Hi. The polytope Pi constructed this way represents the true structure

of observation i in the principal components space. Figure 3.3 shows a polygon resulting

from connecting the transformed vertices using the matrix C of Equation (3.9). Note that
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Figure 3.4: Connected Vertices of a Transformed Three-Dimensional Hyper-Rectangle

the resulting polygon in Figure 3.3 is a linear tranformation of the rectangle in Figure 3.1.

Figure 3.4 shows a polytope resulting from connecting the transformed vertices using the

matrix C of Equation (3.11). Again, note that the resulting polytope in Figure 3.4 is a

linear tranformation of the hyper-rectangle in Figure 3.2. A detailed algorithm to construct

these polytopes is given in Section 3.3 which also includes the procedure to construct the

connected matrix C.

Furthermore, a polytope of dimension p > 3 is difficult to visualize. Our algorithm in

Section 3.3 also creates projections of the polytopes onto a two and a three dimensional

space. Because the first few principal components explain most of the variation in the data,

projection of the observations onto the first two or three principal components space can

convey significant patterns in the observed data.

One of the common graphics generated in PCA is a plot of PCk1 × PCk2 where k1 6= k2

and k1, k2 = 1, 2, . . . , p. Figure 3.5 shows two representations of the same observation on

a PC1 × PC2 plot. The observation shown in this plot come from a sample space with

dimension p = 6. The green rectangle in this plot represents the maximum covering area
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Figure 3.5: True Projection of Interval-Valued Observation versus Maximum Covering Area
Rectangle

rectangle (MCAR) for this observation resulting from the vertices and the centers methods

proposed by Cazes et al. (1997) and Chouakria et al. (2000). The red polygon represents

the true projection of the observation onto the PC1 × PC2 plane as we propose. Clearly,

the green rectangle covers an area much larger than the projection of the polytope resulting

from the linear transformation of an interval-valued observation which is shown in red.

Therefore, when n observations are shown on the same plot, the overage from MCAR may

produce unnecessary overlaps between observations when these observations may be com-

pletely detached from each other in their true form. Our proposed visualization provides a

true projection of the observed data. It does not produce the overage seen in MCAR.
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Histogram-valued principal components

In addition to its role as a data exploration tool, PCA is also used as an intermediate

step in data analysis. In classical PCA, the principal components are inputs in models as

uncorrelated variables for further analysis. To treat the principal components of interval-

valued observations as independent variables in a model, it is necessary to give numerical

values to these principal components. In this dissertation we propose a method to translate

the polytopes resulting from the linear transformation of the observed data into histograms

of values. Symbolic data analysis methods can then be applied to histogram-valued principal

components.

Since the original variables X(j), j = 1, 2, . . . , p, take intervals of values, the resulting prin-

cipal components have multiple values. Therefore, they are symbolic variables. To determine

the internal structure of each principal component, it is necessary to examine the distribution

of all values belonging to that principal component.

In the case of interval-valued observations, the kth principal component of observation i,

denoted Yik, takes values in the set Υik where

Υik = {y|y = x′νv
k, ∀x ∈ X i)}. (3.12)

The polytope Pi = T (Hi) is the convex hull of the transformed vertices of Hi as established

in Subsection 3.2.2. An equivalent expression of Υik in Equation (3.12) in terms of a point

in the linearly transformed hyper-rectangle is

Υik = {yk|y = T (x), ∀x ∈ Hi}. (3.13)

In Equation (3.13), y is a p-vector and yk is the kth element of vector y. The frequency that

yk takes value y inside Pi is proportional to the volume of the (p − 1)-dimensional cross-

section of Pi at yk = y. Let γ(y) be the volume of the (p − 1)-dimensional cross-section of

the polytope Pi at yk = y. Then, the relative frequency or the density of each value y ∈ Υik

is the ratio of γ(y) and the total volume of Pi. Let V (Pi) be the volume of the polytope Pi.
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Then,

V (Pi) =

∫ ymax

ymin

γ(y)dy

where ymin is the minimum value of the set Υik and ymax is the maximum value of Υik.

Therefore, for k = 1, 2, . . . , p, the density of the kth principal component at y has the following

form,

P (Yik = y) =

 γ(y)/V (Pi), ymin ≤ y ≤ ymax,

0, otherwise.
(3.14)

Obviously, 0 ≤ P (Yik = y) ≤ 1 and
∫∞
−∞ γ(y)/V (Pi)dy = 1. Thus, the quantity P (Yik = y) as

defined in Equation (3.14) satisfies the definition of a density function. Although the density

for all values within Υik can be conceptually defined in Equation (3.14), computing the

density γ(y) presents some challenges. Two of these challenges are discussed in the following

paragraph along with our proposed solutions.

First, it is impossible to compute volume for infinitely many cross-sections. Therefore,

instead of trying to recreate a distribution for each value within the range of the principal

component, we propose creating a histogram with subinterval endpoints coinciding with the

vertices of the polytope. That is, instead of computing the volume of infinitely many (p−1)-

dimensional polytopes, the problem is reduced to computing the volume of at most (2p − 1)

p-dimensional polytopes.

Even with only a finite number of polytopes, the second challenge persists. Finding the

volume of a polytope is a computationally complex problem as explained in the following.

Volumes of polytopes can be computed by triangulation methods, signed decomposition

methods or a mixture of both approaches. The efficiency of each approach depends on the

exact shape of the polytopes. That is, in our case, for each observation i, we need to know

the exact shape of up to 2p − 1 polytopes. This information is impractical to obtain. Even

if the exact shape of each polytope was known and the most efficient approach was applied

to the polytope, computing volume still requires a lot of memory and time when p is large.

In addition, the triangulation method is based on the V-polytope representation whereas the
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signed decomposition method uses the H-polytope representation. Since the shape of a poly-

tope determines the method of computation, it determines if the polytope must be presented

as a V-polytope or a H-polytope. Converting between the V and the H representation for a

polytope can be more intensive than volume computation itself. Based on the computational

cost involved in computing volume of a polytope, it seems counterproductive to use volume

as a measure of density. One of the main purposes of PCA is to reduce the dimensionality of

a dataset with large p to reduce computational cost associated with its analysis. Considering

the total cost of all components involved in calculating volume of 2p− 1 polytopes, spending

resources to calculate volume in these situations seems counterproductive.

In this disseration we propose an approach that is more efficient and still accounts for

the internal variability of an interval-valued observation in a principal components space.

We propose using the area of the polygon formed by projecting polytope Pi onto the PC1

× PCk plane for k = 2, . . . , p and onto the PC1 × PC2 plane for k = 1 instead of using the

volume of the polytope to calculate the relative frequency. Computing area of a polygon is

much more manageable than computing volume of a polytope. Of course, using the area of a

polygon to compute the relative frequency of values within the polytope Pi only accounts for

internal variation of the polytope in one dimension. However, the first principal component

accounts for the largest amount of variation in the data. Including PC1 in computing the

relative frequency means the relative frequency created by our proposed method reflects the

most significant source of variation of values inside polytope Pi along the PCk-axis.

Therefore, let P2i be the polygon resulting from projecting the p dimensional polytope

Pi onto the PC1 × PCk plane. The subscript 2 in P2i signifies that the polygon P2i is a

two-dimensional projection of the polytope Pi where Pi has dimension p. Let Y v
i be the

matrix of vertices of Pi. Let Y 2i be the submatrix of Y v
i consisting of the kth column and

the 1st column of Y v
i , respectively. Then the rows of matrix Y 2i represent the coordinates

of points that belong to polygon P2i.
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Let T be a linear map from Rp to R2 and that if a = (a1, a2, . . . , ak, . . . , ap) is a point in

Rp then T (a) = (ak, a1). Then, polygon P2i can be thought of as a result of applying linear

operator T to polytope Pi, i.e., P2i = T (Pi). Since T is a linear operator and Pi is a convex

hull, it follows from Theorem 3.2.4 that P2i is a convex hull. Furthermore, based on Theorem

3.2.7, all interior points of polytope Pi remain in the interior of polygon P2i. Because T is not

a bijective transformation, Theorem 3.2.8 does not apply to this transformation. Therefore,

a boundary point of polytope Pi may not necessarily remain on the boundary of the polygon

P2i, i.e., some of the vertices of Pi may become an interior point of P2i under transformation

T : Rp → R2. Therefore, P2i is a convex hull of the points represented by matrix Y 2i. If

we let V be a matrix whose rows are the coordinates of vertices of polygon P2i, then the

number of rows of matrix V is less than or equal the number of rows of matrix Y 2i, i.e.,

polygon P2i has at most the same number of vertices as polytope Pi.

Figure 3.6: Two-Dimensional Projection of a Six-Dimensional Polytope

Figure 3.6 shows a projection of a 6-dimensional polytope onto a PC1 × PCk plane.

The lines shown in green are the edges which are line segments connecting vertices of the
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Figure 3.7: Polygon Formed by Convex Hull of Transformed Vertices

polytope. Figure 3.7 shows the same projection as in Figure 3.6. The red line segments in

Figure 3.7 outline the polygon which is the convex hull of the vertices of the 6-dimensional

polytope. Some vertices of the green polytope are inside the red polygon. All vertices of

the red polygon are vertices of the green polytope. The red polygon shown in Figure 3.7

has twelve vertices while the green polytope has 64 vertices. The number of vertices for the

polygon is much smaller than those for the polytope in this example.

Let pv denote the number of vertices of P2i, i.e., pv is the number of rows of matrix V .

Elements of the first column of V are values of the vertices of polygon P2i along principal

component k and elements of the second column of V are values of the vertices of polygon

P2i along principal component 1. For the kth principal component of observation i, denoted

by Yik, we propose constructing a histogram with pv−1 subintervals. The relative frequencies

for subintervals of the histogram are computed using area of the polygon P2i. We propose
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dividing the polygon P2i into pv−1 pieces along the PCk-axis where the dividing lines coincide

with the vertices of the polygon along the PCk-axis. Figure 3.8 illustrates the division of

the polygon P2i. This figure shows the same green polytope and the red polygon of Figure

3.7. The number of vertices for the red polygon is 12, i.e., pv = 12. The blue vertical line

segments in Figure 3.8 divides the red polygon into pv − 1 = 12 − 1 = 11 pieces along the

PCk axis. The vertices of the polygon in Figure 3.8 are labeled based on the order of their

PCk values where 1 is the smallest and 11 is the largest.

Figure 3.8: Subinterval Endpoints of Principal Component Histogram

Now, the endpoints for subinterval l of the histogram representing Yik are, respectively,

the lth and the (l + 1)th lowest values of the first column of matrix V , which consists of the

PCk values of the vertices. The relative frequency of the lth subinterval of Yik is the ratio of

the area of the lth piece of polygon P2i along the PCk-axis, denoted by Pl, and the total area

of the polygon P2i. Figure 3.9 shows part of the polygon representing the first subinterval.

The part of the polygon bounded between the first and the second vertices, i.e., P1, is a

triangle outlined in red in Figure 3.9. Values of the endpoints of this subinterval are the PCk

values of the points labeled as 1 and 2, respectively, in Figure 3.9. The relative frequency of
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Figure 3.9: Part of Polygon Representing First Subinterval of Principal Component His-
togram

Figure 3.10: Parts of Polygon Representing First and Second Subintervals of Principal Com-
ponent Histogram
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Figure 3.11: Parts of Polygon Representing All Subintervals of Principal Component His-
togram

this subinterval is the ratio of the area of triangle P1 and the area of polygon P2i. In addition

to P1, Figure 3.10 shows the second piece of the polygon P2i, i.e., P2, representing the second

subinterval which is the red trapezoid outlined in red. Values of the endpoints of the second

subinterval are the PCk values of the points labeled 2 and 3, respectively, in Figure 3.10.

The relative frequency of the second subinterval is the ratio of the area of trapezoid P2 and

the area of polygon P2i. The process is continued until the vertex of polygon P2i which has

the largest PCk value has been reached as shown in Figure 3.11. We can also see from Figure

3.11 that part of the polygon bounded between subinterval endpoints is either a triangle or a

trapezoid. Computing the area of a triangle or a trapezoid is much simpler than computing

the volume of a p-dimensional polytope. Therefore, computing histogram-valued principal

components based on the area of a projection of the polytope is much more efficient than

computing them based on the volume of a p-dimensional polytope. Our proposed histogram-
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valued principal components reflect the largest source of variation in the observations by

including the first principal component in the construction of the histograms.

3.3 Algorithm

This section includes detailed descriptions of two algorithms. The first algorithm, presented in

Subsection 3.3.1, builds n polytopes representing n observations in the principal components

space. This algorithm also plots the polygons which are the 2-dimensional projections of the

observed hyper-rectangles onto a PCk1 × PCk2 plane where k1 6= k2 and k1, k2 = 1, 2, . . . , p.

The second algorithm, described in Subsection 3.3.2, constructs histogram-valued principal

components based on the polygons formed by projecting the polytopes constructed from the

algorithm of Subsection 3.3.1 onto a PC1 × PCk plane for k = 2, 3, . . . , p.

The following algorithms are based on the assumption that coefficients for the principal

components had been determined from the proposed method described in Subsection 3.2.1.

The coefficients of the principal components are νS = [νS
1 , νS

2 , . . . ,νS
p ] where νS

k , k = 1, . . . , p,

are the eigenvectors of the covariance matrix S as defined in Equation (3.1) if the PCA is

based on the covariance structure of the data, and νS
k , k = 1, . . . , p, are the eigenvectors of

the correlation matrix R whose elements are defined in Equation (3.4) if the PCA is based

on the correlation structure of the data.

Due to the large number of vectors and matrices involved in the algorithms, subscripts

are used in naming some vectors and matrices. Sometimes a computation only applies to one

element or a subset of a matrix. In these situations, we use an indexing convention similar to

the system used in the R language to specify the elements of a matrix. Indices of elements of

a subset are specified by a pair of square brackets placed next to the matrix (vector) name.

For a subset of a matrix, two numbers appear in the brackets separated by a comma. The

first number corresponds to the row number and the second to the column number. For a

subset of a vector, only one number appears in the bracket. It specifies the position of the

element in the vector. To specify a whole row of a matrix, the first number is left blank; and
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when a whole column is used, the second number is left blank. A set of consecutive numbers

in the brackets is denoted by a colon between the smallest and the largest integer. Following

are some examples to illustrate these notations. Let M be an n× p matrix. The 2nd column

of M is denoted by M [, 2]. The notation M [1 : 15, 5] denotes the vector consisting of the

first 15 elements of column five. In addition, let v be a vector of length n; then v[4] denotes

the 4th element of v.

Another note on notation, since the algorithms in this section compute principal compo-

nents of the observed data, we use a lower case letter to represent an observed data matrix

to distinguish it from a random data matrix. For example, x identifies the observed version

of the random data matrix X of Equation (2.26), xv
i represents the observed version of the

matrix of vertices Xv
i of Equation (3.2), and yv

i is the observed version of the matrix of

transformed vertices Y v
i defined in Equation (3.7).

3.3.1 Interval-valued Observations in a Principal Components Space

This subsection is divided into two parts: part one constructs the p-dimensional polytopes

representing interval-valued observations in the principal components space and part two

includes steps to make 2-dimensional and 3-dimensional projections of the polytopes created

from part one.

Constructing the polytopes

Let x represent the observed data matrix to be analyzed. Construction of the polytopes

representing the observed data involves four steps:

Step 1. First, construct the matrix of vertices xv defined in Equation (2.31) for the data

matrix x using the following steps:

1. Initialize xv by letting xv be a (n2p × p) matrix of zeros.

2. Update the elements of xv by doing the following for each observation i = 1, 2, . . . , n:
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(a) For j = 1, 2, . . . , p, do

• For j1 = 1, . . . , 2(p−j),

– set xv[(i− 1)2p + j1, j] = x[i, 2(j − 1)]

– set xv[(i− 1)2p + 2(p−j) + j1, j] = x[i, 2j].

(b) For j = 2, . . . , p, do

• For j1 = j, . . . , p, do

– For j2 = 1, . . . , 2(p+j−j1−1),

set xv[(i− 1)2p + 2(p+j−j1−1) + j2, j1] = xv[(i− 1)2p + j2, j1].

Step 2. Next, create the matrix of vertices yv for n polytopes representing the n observations,

one polytope for each observation, in the principal components space by transforming xv.

This step involves the following two cases:

Case one. If the PCA is based on the symbolic covariance matrix, then νS is the eigen

matrix of the symbolic covariance matrix S in Equation (3.1) and yv = (xv)(νS).

Case two. If the PCA is based on the symbolic correlation matrix, then νS is the eigen

matrix of the symbolic correlation matrix R whose elements are defined in Equation (3.4)

and y = (zv)(νS) where zv is the standardized matrix of vertices. That is, element mj of

zv comes from

zv[m, j] =
xv[m, j]− w̄(j)√

sjj

where w̄(j) is the mean of the jth variable defined in Equation (2.3) and sjj is the variance

of the jth variable defined in Equation (2.4).

Step 3. Then, construct the matrix of connected vertices C associated with xv as follows:

1. Initialize C by letting C be a 2p × p matrix of zeros.

2. Update C by doing the following step for j = 1, 2, . . . , p:

• For j1 = 0, 1, . . . , 2(j−1) − 1, do
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– For j2 = ((2(p−j+1))j1 + 1), . . . , ((2(p−j+1))j1 + 2(p−j)),

set C[j2, j] = j2 + 2(p−j).

– For j2 = ((2(p−j+1))j1 + 2(p−j) + 1), . . . , ((2(p−j+1))j1 + 2(p−j+1)),

set C[j2, j] = j2 − 2(p−j).

Step 4. Conceptually, a p-dimensional plot of the polytopes can be constructed in the prin-

cipal components space by the following substeps:

1. Make a scatter plot of yv.

2. Connect the vertices of each polytope by doing the following for i = 1, 2, . . . , n:

(a) Set v = 2p(i− 1)

(b) For v1 = 1, 2, . . . , 2p, do

for j1 = 2, 3, . . . , p + 1,

set v2 = C[v1, j1], and

draw a line between points yv[v + v1, ] and yv[v + v2, ].

At the end of Step 4, we obtain a plot of n polytopes representing the n observations of data

matrix x in the principal components space.

Making two and three dimensional plots

As mentioned in Subsection 3.2.2, it is difficult to visualize plots with dimension greater

than 3. Therefore, 2-dimensional plots of PCk1 × PCk2 are commonly used in PCA. Replace

Substeps 4.1 and 4.2 of the algorithm described in the first part of this subsection by the

following steps:

1. Let y2 be an n2p × 2 matrix whose first and second columns are the k1
th and k2

th

column of yv, respectively.

2. Make a scatter plot of y2.
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3. Connect corresponding points of y2 by following Substep 4.2 of the algorithm described

in the first part of this subsection with y2 in place of yv; now p = 2.

The same algorithm can be used to construct a 3-dimensional plot of PCk1 × PCk2 × PCk3

with the following modifications:

1. Let y3 be an n2p× 3 matrix whose first, second, and third columns are columns k1, k2

and k3 of yv, respectively.

2. Make a scatter plot of y3.

3. Follow Substep 4.2 of the algorithm described in the first part of this subsection with

y3 in place of yv; now p = 3.

Figure 3.6 shows an example of the projection of a 6-dimensional polytope onto a 2-

dimensional plane resulting from the algorithm described in Subsection 3.3.1.

3.3.2 Constructing histogram-valued principal components

As discussed in Subsection 3.2.2, principal components constructed as histograms reflect

the internal variation of interval-valued observations. In Subsection 3.2.2, we propose con-

structing histograms of the principal components based on area of the polygons resulting

from projecting the polytopes onto a PC1 × PCk plane. The following algorithm creates

histogram-valued principal components. For each observation i = 1, 2, . . . , n, the histogram

representing the first principal component is based on the PC1 × PC2 plot as stated in

Subsection 3.2.2 and for principal component k for k = 2, . . . , p, the histogram is based on

the PC1 × PCk plot. The following algorithm describes steps to construct histograms for

principal component k in general. Therefore, the computation is based on a polygon from the

PC1 × PCk plot. However, when computing a histogram for the first principal component,

keep in mind that the computation is based on a polygon from the PC1 × PC2 plot.

This algorithm uses the fact that the interior angle formed by two edges of a polygon

is less than 180o. Therefore, given a set of three vertices {ya1
, ya0

, ya2
} of the polygon, the
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angle inside the polygon formed by line segments ya1
ya0

and ya0
ya2

is unique where ya1
ya0

is the line segment connecting point ya1
to point ya0

. The formula used in the algorithm to

compute the angle formed by the line segments ya1
ya0

and ya0
ya2

, denoted by ∠a1a0a2 , is

∠a1a0a2 = arccosine

( 〈
(ya1

− ya0
), (ya2

− ya0
)
〉

||ya1
− ya0

|| ∗ ||ya2
− ya0

||

)
(3.15)

where 〈(a1, a2), (b1, b2)〉 = a1b1 + a2b2 and ||(a1, a2)|| =
√
〈(a1, a2), (a1, a2)〉 =

√
a2

1 + a2
2.

Figure 3.12 shows the angle ∠a1a0a2 formed by line segments ya1
ya0

and ya0
ya2

.

Figure 3.12: Angle Formed by Line ya1
ya0

and Line ya0
ya2

As explained in Subsection 3.2.2, we propose using area of the polygon P2i to compute

the relative frequency for subintervals of the principal component histograms. It is further

illustrated in Figure 3.8 that part of the polygon that belongs to subinterval l, denoted by Pl,

is either a triangle or a trapezoid. We need to compute the area of Pl. Let pl be the matrix

of vertices of Pl. Then, pl is a (4 × 2) matrix whose rows are coordinates of the vertices.

That is, when Pl is a trapezoid, then

pl =



p11 p12

p11 p22

p21 p32

p21 p42


. (3.16)
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When Pl is a triangle, p22 = p12, then

pl =



p11 p12

p11 p12

p21 p32

p21 p42


. (3.17)

Therefore, the area of Pl, denoted by ω(Pl), is simply

ω(Pl) =
1

2
(|p12 − p22|+ |p32 − p42|)(p21 − p11) (3.18)

for a trapezoid, and it is

ω(Pl) =
1

2
(|p32 − p42|)(p21 − p11) (3.19)

for a triangle.

Construction of the histogram-valued principal component k involves three steps. Details

of these steps along with illustrations are given as follows. The illustrating example shows

an interval-valued observation with p = 3. It is the same hyper-rectangle shown in Figure

3.4. The algorithm is easier to follow accompanied by an example using the hyper-rectangle

representing an observation with a low dimension.

Step 1. Let y2 be an (n2p × 2) matrix whose first and second columns are the kth and the

first column of yv, respectively.

Step 2. Let pck be an (n×(3∗2p)) matrix to hold histogram values for principal component k.

The ith row of pck contains values of the histogram representing the kth principal component

for observation i. Initialize matrix pck by letting it be a matrix of zeros.

Step 3. Step 3 includes eleven substeps. Each complete execution of Step 3 builds a histogram

representing one observation in the dataset. Therefore, Step 3 must be performed n times

for n observations. For i = 1, 2, . . . , n, do the following:

1. Set up the following matrices of zeros with specified dimension. These matrices store

information to compute the frequency of subinterval l for l = 1, 2, . . . , (pv − 1) where

(pv − 1) is the number of subintervals belonging to the histogram representing the kth
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principal component of observation i. Therefore, these matrices are updated each time

a new subinterval is computed.

(a) Matrix pl has dimension (4× 2). It consists of vertices of polygon Pl where Pl is

the part of polygon P2i belonging to subinterval l as described in Equation (3.16)

and Equation (3.17).

(b) Matrix pd has dimension (2 × 3). It holds coordinates of two connected vertices

which make a line segment that will be used in subsequent subintervals. The first

row of pd represents a point of Pl that will be used in computing frequency of

the subinterval (l + 1). The first element of the first row of pd gives the label

of this point where the last two elements give its coordinate. The second row of

matrix pd stores information for the point connected to the point represented by

the first row of pd. The point represented by the second row of pd is a vertex of

the polygon P2i. Again, the first element of the second row gives the label for this

point and the last two elements give its coordinate.

(c) Vector si has three elements. The first two elements of si hold the endpoints of

subinterval l and the last element stores the frequency of subinterval l.

Figure 3.13: Points of Transformed Vertices on Principal Component Plane
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2. Let y2i be a (2p × 2) matrix where y2i = y2[(2
p(i − 1) + 1) : (2pi), ]. That is, y2i is a

matrix of the kth and the first coordinates of all vertices belonging to observation i.

Matrix y2i is the observed version of matrix Y 2i defined in Subsection 3.2.2. Figure 3.13

shows the points represented by rows of matrix y2i plotted on the PC1 × PCk plane

with PCk along the horizontal axis. The points in Figure 3.13 are labeled according

to their row number in matrix y2i. As discussed in Subsection 3.2.2, the row numbers

of matrix y2i are identical to the elements of the first column of the connected matrix

C. The connected matrix C associated with the observation shown in Figure 3.13 is

defined in Equation (3.11).

3. Let y01 = min{y2i[, 1]}, i.e., y01 is the minimum value of the elements of the first

column of y2i. Equivalently, y01 is the minimum value along the PCk-axis of the vertices

belonging to observation i.

4. Let m be the number of rows of y2i whose first element equals y01. For the first subin-

terval, i.e., when l = 1, the lower endpoint of the subinterval is the lowest value of the

elements of the first column of y2i which is y01, and the upper endpoint of the subin-

terval is the second lowest value of the elements of the first column of y2i. Moreover,

P1 is the part of the polygon P2i bounded between these lower and upper endpoints.

Polygon P1 can take one of two possible shapes. The shape that P1 takes depends on

the number of rows of matrix y2i whose value for the first column equals y01. There

exist three possible cases as follows.

If there is only one vertex of P2i whose value along the PCk-axis equals to y01, i.e., if

m of Substep 3.4 is one, then P1 is a triangle. This constitutes Case one of the next

substep which is Substep 5. Figure 3.14 shows the points represented by matrix y2i.

In the example shown in Figure 3.14, Vertex 4 has the minimum value along the PCk-

axis. The vertical line intersecting Vertex 4 indicates the line representing the lower

endpoint of the first subinterval. Moreover, Vertex 4 is the only vertex whose PCk
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Figure 3.14: Unique Starting Point for First Subinterval

value equals to the minimum value y01. That is, m = 1, and P1 is a triangle in Figure

3.14.

If there is more than one vertex of P2i whose value along the PCk-axis equals y01, i.e.,

if m > 1, then two possible cases result from this situation. If all the vertices of P2i

whose value along the PCk-axis equals to y01 have the same value along the PC1-axis,

i.e., these vertices are identical, then P1 is still a triangle. This makes up Case two of

Substep 5. Lastly, if m > 1 and the vertices whose values along the PCk-axis equal

y01 have different values along the PC1-axis, i.e., these vertices are not all identical,

then P1 is a trapezoid. This constitutes Case three of Substep 5. Figure 3.15 shows an

example where there exist two distinct vertices of P2i whose PCk value equals y01. In

the example shown in Figure 3.15, Vertex 2 and Vertex 4 have the same value of y01

along the PCk-axis and they are not identical points. Therefore, polygon P1 in this

example is a trapezoid. The vertical line intersecting Vertex 2 and Vertex 4 indicates

the line representing the lower endpoint of the first subinterval.
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Figure 3.15: Multiple Starting Points for First Subinterval

5. The first subinterval can now be computed based on the three possible cases explained

in Substep 4. The three cases follow:

Case one. If m = 1, then:

(a) Let a0 be the row number of the vertex whose first element equals to y01. In the

example of Figure 3.14, a0 = 4 because Vertex 4 has PCk value equal to y01. The

two points connected to y2i[a0, ] that form the largest angle at y2i[a0, ] form two

edges of the triangle P1. These points are found in the steps that follow.

(b) Set cr = C[a0, ] which is the list of indices of the points connected to the point

y2i[a0, ]. In the example of Figure 3.14, cr = C[4, ] = (4, 2, 3, 8) where (4, 2, 3, 8)

is obtained from row four of the connected matrix C of Equation (3.11).

(c) Let pd[1, 1] = a0, i.e., Vertex a0 is stored as a starting point of a line segment

that will be used again in computation of the second subinterval.
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(d) Set cvert = a0 where cvert is the set of all indices of vertices which had been used

in computing the frequency of the first subinterval and should not be considered

again in subsequent subintervals.

(e) Set si[1] = y01 which is the lower endpoint of the first subinterval.

(f) Set pl[1, ] = y2i[a0, ] and pl[2, ] = y2i[a0, ]. Since the polygon bounded in the first

subinterval is a triangle in this case, coordinates for the first two rows of pl are

identical as defined in Equation (3.17).

(g) Let ang be a 3-vector of zeros. This vector stores the angle and the indices of the

set of vertices connected to Vertex a0 and they form the largest angle at Vertex

a0.

(h) Go through all possible pairs of vertices connected to y2i[a0, ] by:

For j = 2, 3, . . . , p, do

• Set a1 = cr[j].

• For k = j + 1, . . . , p + 1, do

– Let a2 = cr[k].

– Let ang = ∠a1a0a2 using the formula shown in equation Equation (3.15).

– If ang > ang[1], let ang = (ang, a1, a2).

At the end of this loop, the second and the third elements of ang are indices

of the two vertices connected to y2i[a0, ] and form the largest angle at y2i[a0, ].

Figure 3.16 shows three possible pairs of vertices connected to Vertex 4 in this

example. They are pair 2 and 3, pair 2 and 8, and pair 3 and 8. Of all the angles

formed by these pairs, the angle formed by the pair of Vertices 2 and 3 is the

largest. Thus, at the end of this step, the second and the third elements of ang

are 2 and 3, respectively. Figure 3.17 shows the angle at Vertex 4 formed by the

line segment connecting Vertex 2 to Vertex 4 and the line segment connecting

Vertex 3 to Vertex 4.
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Figure 3.16: Angles Formed by Vertices Connected to Lower Endpoint of First Subinterval

Figure 3.17: Largest Angle at Lower Endpoint of First Subinterval
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(i) Next, we find the upper endpoint of the first subinterval by finding the vertex of

polygon P2i which has the second smallest PCk value. Let y11 = y2i[ang[2], 1]

and y12 = y2i[ang[3], 1]. That is, y11 and y12 are PCk values of the two vertices of

polygon P2i that form two edges of the triangle P1. Comparing the values of y11

and y12 gives three possibilities, (a1) y11 < y12, (b1) y11 > y12, and (c1) y11 = y12.

Case (a1). If y11 < y12, then:

i. Let a3 = ang[2] and a4 = ang[3]. That is, Vertex a3 has a smaller PCk value

than Vertex a4. In the example of Figure 3.17, a3 = 2 and a4 = 3 because the

PCk value of Vertex 2 is smaller than the PCk value of Vertex 3.

ii. Set pd[2, ] = (a4, y2i[a4, ]), i.e., y2i[a4, ] is stored in the second row of matrix

pd to be used for the next subinterval. In the example of Figure 3.17, Vertex

3 is stored as the second row of matrix pd.

iii. Let pl[3, ] = (y2i[a3, ]), i.e., y2i[a3, ] is another vertex of triangle P1.

iv. Let si[2] = y2i[a3, 1], i.e., the upper endpoint for the first subinterval is the

vertex whose PCk value is the second smallest among the PCk values of all

vertices belonging to polygon P2i. The vertical line intersecting Vertex a3

forms the third edge of triangle P1. Figure 3.18 shows that the line segment

perpendicular to the PCk-axis intersecting Vertex 2 makes up the third edge

of triangle P1 and the coordinate of Vertex 2 becomes the third row of matrix

pl.

v. Next, we find the last vertex of triangle P1 by finding the point along the line

segment y2i[a0, ]y2i[a4, ] intersecting the vertical line which is the third edge

of triangle P1. That is, set pl[4, 1] = y2i[a3, 1] and

set pl[4, 2] = y2i[a0, 2] + (pd[2, 3]− y2i[a0, 2])(si[2]− si[1])/(pd[2, 2]− si[1]).

In Figure 3.18, the last vertex of the triangle is the intersection of the line

segment connecting Vertex 4 to Vertex 3 and the vertical line intersecting

Vertex 2.
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Figure 3.18: Triangle Belonging to First Subinterval of Principal Component Histogram

vi. Set pd[1, ] = (a0, pl[4, ]). Vertex a0 and the coordinate of the last vertex of

triangle P1 is stored as the first point in matrix pd to be used in the next

subinterval.

vii. Since y2i[a0, ] forms a line with y2i[a3, ] to make an angle for the next subin-

terval, set a1 = a0.

End of Case (a1).

Case (b1). If y11 > y12, then:

i. Let a3 = ang[3] and a4 = ang[2].

ii. Follow Steps ii-vii as described in Case (a1).

End of Case (b1).

Case (c1) If y11 = y12, then:

i. Set a3 = ang[2], a4 = ang[3].
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ii. Set pl[3, ] = y2i[a3, ] and pl[4, ] = y2i[a4, ]. Since both line segments

y2i[a3, ]y2i[a0, ] and y2i[a4, ]y2i[a0, ] end at y11, y2i[a3, ] and y2i[a4, ] make

up the last two vertices of triangle P1.

iii. Set si[2] = y2i[a3, 1], i.e., the first element of y2i[a3, ] becomes the upper

endpoint of the subinterval.

iv. Let pd[1, ] = (a4, y2i[a4, ]), i.e., y2i[a4, ] is used as a starting point for the next

subinterval.

v. Since y2i[a0, ] forms a line with y2i[a4, ] to make the angle for the next step,

set a1 = a0.

vi. To determine the second row of pd, find the vertex connected to y2i[a4, ] that

forms the largest angle with the line segment y2i[a4, ]y2i[a0, ] at Vertex a4.

Set cr = C[a4, ], i.e., cr contains indices of the points connected to Vertex

a4.

vii. Delete elements of cr that belong to cvert to avoid multiplicity and let nc be

the number of elements of cr.

viii. Let ag be a 2-vector of zeros.

For k = 2, . . . , nc,

set a2 = cr[k], let ang = ∠a1a4a2 , and if ang > ag[1] set ag = (ang, a2).

ix. Set pd[2, ] = (ag[2], yag[2]).

x. Set a1 = a0.

End of Case (c1).

(j) Let area = ω(P1) where P1 is the triangle whose vertices are the rows of pl.

Having found the vertices of triangle P1, apply the formula for ω(Pl) to matrix pl

as defined in Equation (3.19) to give the area of triangle P1.

(k) Set si[3] = area and hist = si. Thus, the first row of hist represents the first

subinterval endpoints and the area of triangle P1.
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End of Case one.

Case two. If m > 1 and the vertices are identical, then:

(a) Add indices of all those identical vertices to the cvert list.

(b) Let one of the vertices whose PCk value equals to y01, say the first one, be a0.

(c) Proceed with Steps (b)-(k) described in Case one.

End of Case two.

Case three. If m > 1 and these vertices have different PC1 values, then:

(a) Add indices of all vertices whose PCk value equals y01 to cvert.

(b) Let a0 be the index of the vertex among these vertices which has the smallest PC1

value, and let a1 be the one with the largest PC1 value. In the example shown

in Figure 3.15, Vertices 2 and 4 have PCk value equal to y01 and Vertex 4 has a

smaller PC1 value than Vertex 2. Therefore, a0 = 4 and a1 = 2.

(c) Set si[1] = y01, i.e., y01 is the lower endpoint of the first subinterval.

(d) Set pl[1, ] = y2i[a0, ] and pl[2, ] = y2i[a1, ], i.e., Vertex a0 is the first vertex and

Vertex a1 is the second vertex of the trapepozoid P1. In the example of Figure

3.15, Vertex 4 and Vertex 2 are, respectively, the first and the second vertices of

trapezoid P1.

(e) Set cr = C[a0, ] and exclude all vertices belonging to cvert from cr and then, let

nc be the length of cr. In the example illustrated by Figure 3.15, cr = C[4, ] =

(4, 2, 3, 8) and since Vertices 2 and 4 are in cvert by Step (a) in this case because

they have PCk value equal to y01, cr = (3, 8). Now, nc = 2 in this example.

(f) Next, find the vertex among the vertices in cr that forms the largest angle at

y2i[a0, ] with the line segment y2i[a1, ]y2i[a0, ] by setting ag to be a 2-vector of

zeros. Then:

For k = 1, 2, . . . , nc,
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let a2 = cr[k], let ang = ∠a1a0a2 , and if ang > ag[1] set ag = (ang, a2). Figure

3.19 illustrates this step. The line segment connecting Vertex 3 to Vertex 4 forms

the largest angle with the line segment connecting Vertex 2 to Vertex 4.

(g) Set a20 = ag[2]. Therefore, a20 = 3 in the example of Figure 3.19.

(h) Let y11 = y2i[a20, 1]. Value y11 is a potential upper endpoint for the first subin-

terval which will be determined in Step (m) of this case.

Figure 3.19: Largest Angle at First Vertex of Trapezoid Representing First Subinterval of
Principal Component Histogram

(i) Set cr = C[a1, ] and again exclude all vertices belonging to cvert from cr and let

nc be the length of cr. In the example illustrated by Figure 3.19, cr = C[2, ] =

(2, 1, 4, 6) and since Vertices 2 and 4 are already in cvert, cr = (1, 6). Now, nc = 2

in this example. .

(j) Find the vertex among the vertices of cr that forms the largest angle at y2i[a1, ]

with the line segment y2i[a0, ]y2i[a1, ] by setting ag to be a 2-vector of zeros.

Then:

For k = 1, 2, . . . , nc,

let a2 = cr[k], let ang = ∠a0a1a2 , and if ang > ag[1] set ag = (ang, a2). Figure
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3.20 illustrates this step. The line segment connecting Vertex 6 to Vertex 2 forms

the largest angle with the line segment connecting Vertex 4 to Vertex 2.

(k) Set a21 = ag[2]. Therefore, a21 = 6 in the example of Figure 3.20.

(l) Let y12 = y2i[a21, 1]. Value y11 is a potential upper endpoint for the first subin-

terval which will be determined in the following Step (m).

Figure 3.20: Largest Angle at Second Vertex of Trapezoid Representing First Subinterval of
Principal Component Histogram

(m) Next, compare y11 and y12 to determine the subinterval upper endpoint. There

are three possible cases, (a2) y11 < y12, (b2) y11 > y12, and (c2) y11 = y12.

Case (a2). If y11 < y12, then:

i. Let a3 = a20 and a4 = a21, i.e., Vertex a3 has a smaller PC1 value than Vertex

a4. In Figure 3.21, Vertex 3 has a smaller PC1 value than Vertex 6. Therefore,

a3 = 3 and a4 = 6.

ii. Set si[2] = y2i[a3, 1], i.e., the PCk value of Vertex a3 is the upper endpoint

of the first subinterval.

iii. Let pl[3, ] = y2i[a3, ], i.e., Vertex a3 becomes the third vertex of trapezoid Pl.

In Figure 3.21, Vertex 3 becomes the third vertex of trapezoid P1.
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Figure 3.21: Trapezoid Representing First Subinterval of Principal Component Histogram

iv. Let pd[2, ] = (a4, y2i[a4, ]), i.e., Vertex a4 is stored as the second row of matrix

pd to be used in the second subinterval. In the example of Figure 3.21, Vertex

6 is stored as the second row of matrix pd.

v. Set pl[4, 1] = y2i[a3, 1] and

set pl[4, 2] = y2i[a1, 2] + (pd[2, 3]− y2i[a1, 2])(si[2]− si[1])/(pd[2, 2]− si[1]),

i.e., the fourth vertex of trapezoid P1 is the intersection of the line segment

connecting Vertices a1 and a4 and the vertical line intersecting Vertex a3. In

Figure 3.21, the fourth vertex of trapezoid P1 is the intersection of the line

segment connecting Vertices 2 and 6 and the vertical line intersecting Vertex

3.

vi. Let pd[1, ] = (a1, pl[4, ]), i.e., the fourth vertex of trapezoid P1 is stored as

the first row of matrix pd for use in the second subinterval.

vii. In the 2nd subinterval, a0 becomes an endpoint of an angle. Therefore, in

preparation, set a1 = a0.
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End of Case (a2).

Case (b2). If y11 > y12, then:

i. Let a3 = a21 and a4 = a20.

ii. Perform Steps ii-iv described in Case (a2).

iii. Set pl[4, 2] = y2i[a0, 2] + (pd[2, 3]− y2i[a0, 2])(si[2]− si[1])/(pd[2, 2]− si[1]).

iv. Let pd[1, ] = (a0, pl[4, ]).

End of Case (b2).

Case (c2). If y11 = y12, then:

i. Set a3 = a20 and a4 = a21.

ii. Let pl[3, ] = y2i[a3, ], i.e., Vertex a3 is the third vertex of trapezoid P1.

iii. Let pl[4, ] = y2i[a4, ], i.e., Vertex a4 is the fourth vertex of trapezoid P1.

iv. Let sub[2] = y2i[a3, 1], i.e., the PCk value of Vertex a3 is the upper endpoint

of the first subinterval.

v. Let pd[1, ] = (a4, y2i[a4, ]), i.e., Vertex a4 is stored as the first row of matrix

pd to be used in the second subinterval.

vi. Next, to determine the vertex for the second row of matrix pd, set cr = C[a4],

remove all vertices belonging to cvert from cr, and let nc be the length of

cr.

vii. Find the vertex among the vertices of cr that forms the largest angle at

Vertex a4 with the line segment y2i[a1, ]y2i[a4, ] at y2i[a4, ] by letting ag be a

2-vector of zeros. Then:

For k = 1, 2, . . . , nc,

set a2 = cr[k], let ang = ∠a1a4a2 , and if ang > ag[1] set ag = (ang, a2).

viii. Set pd[2, ] = (ag[2], y2i[ag[2], ]).

End of Case (c2).
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(n) Set area = ω(P1) and let p1 be the matrix consisting of vertices of trapezoid P1.

Then, the area of trapezoid P1 can be computed by applying Equation (3.18) to

the matrix p1.

(o) Set si[3] = area.

(p) Set hist = si.

End of Substep 5. At the end of Substep 5, we obtain the endpoints and the frequency

for the first subinterval, i.e., in Substep 5, l = 1. Now, to find the endpoints and the

frequency for subsequent subintervals, proceed with Substep 6.

6. This substep computes the endpoints and the frequency for subsequent subintervals.

The first time this substep is executed, it computes the endpoints and the frequency

for the second subinterval.

(a) Let l = l + 1.

(b) Since Vertex a3 of subinterval l−1 becomes Vertex a0 of this subinterval l, set a0 =

a3. For the example in Figure 3.22, the new Vertex a0 for the second subinterval,

i.e., l = 2, is Vertex 2.

(c) Let si[1] = si[2] and move pl[3 : 4, ] to pl[1 : 2, ], i.e., the upper endpoint of

subinterval l − 1 becomes the lower endpoint of subinterval l and the last two

vertices of trapezoid Pl−1 (Pl−1 could be a triangle if l = 2 and the first subinterval

falls into Case one or two of Substep 5) become the first two vertices of trapezoid

Pl. Figure 3.22 shows an example for l = 2 where P1 is a triangle.

(d) For l1 = 1, 2, . . . , 2p, if y2i[l1, 1] = y2i[a3, 1] add l1 to cvert, i.e., add all vertices

of the polygon P2i whose PCk value equals the lower endpoint of subinterval l to

cvert because these points need not be used again for subsequent subintervals.
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Figure 3.22: Angles Formed by Vertices Connected to Lowest Vertex of Second Subinterval

(e) Set cr = C[a0, ] and exclude vertices belonging to cvert from cr and let nc be

the length of cr. In the example of Figure 3.22, cr = C[2, ] = (2, 1, 4, 6) and since

Vertex 2 and 4 have been used already, then cr = (1, 6).

(f) Find the vertex in cr that forms the largest angle with the line segment connecting

Vertices a1 and a0 at Vertex a0 by letting ag be a 2-vector of zeros. Then:

For k = 1, 2, . . . , nc,

set a2 = cr[k], let ang = ∠a1a0a2 , and if ang > ag[1] set ag = (ang, a2). In the

example shown in Figure 3.22, the vertex that forms the largest angle with the

line segment connecting Vertices 4 and 2 at Vertex 2 is Vertex 6.

(g) Update pd, pl, and si by first comparing y2i[ag[2], 1] to pd[2, 2].

Case (a3). If y2i[ag[2], 1] > pd[2, 2], then:

Figure 3.23 shows an example of Case (a3) where Vertex 3 has a smaller PCk

value than Vertex 6.

i. Set a1 = pd[1, 1] and a3 = pd[2, 1], i.e., Vertex a3 has a smaller PCk value

than Vertex a1.
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Figure 3.23: Largest Angle at Lowest Vertex of Second Subinterval

ii. Set si[2] = pd[2, 2], i.e., the PCk value of Vertex a3 is the upper endpoint of

subinterval l.

iii. Set pl[3, ] = pd[2, 2 : 3], i.e., the point represented by the second row of matrix

pd is the third vertex for trapezoid Pl.

iv. Update the second row of matrix pd by letting pd[2, ] = (ag[2], y2i[ag[2], ]).

v. Find the new coordinate of the fourth vertex of trapezoid Pl by letting

pl[4, 1] = pd[2, 2] and

pl[4, 2] = y2i[a0, 2]+(pd[2, 3]−y2i[a0, 2])(si[2]−si[1])/(pd[2, 2]−si[1]). Figure

3.24 shows the trapezoid Pl for l = 2 in our example.

vi. Update the first row of pd by setting pd[1, 1] = a0 and set pd[1, 2 : 3] = pl[4, ].

vii. Add a0 to cvert since Vertex a0 is used in this subinterval and will not be

used again in subsequent intervals.

End of Case (a3).

Case (b3). If y2i[ag[2], 1] < pd[2, 2], then:
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Figure 3.24: Trapezoid Belonging to Second Subinterval of Principal Component Histogram

i. Set a3 = ag[2].

ii. Set si[2] = y2i[a3, 1].

iii. Update the third vertex of trapezoid Pl by letting pl[3, ] = (y2i[a3, ]).

iv. Update the fourth vertex of trapezoid Pl by letting pl[4, 1] = y2i[a3, 1] and

pl[4, 2] = pd[1, 3] + (pd[2, 3]− pd[1, 3])(si[2]− si[1])/(pd[2, 2]− si[1]).

v. Set a1 = a0.

vi. Add a0 to cvert.

End of Case (b3).

Case (c3). If y2i[ag[2], 1] = pd[2, 2], then:

i. Set a3 = ag[2], a4 = pd[2, 1] and a1 = pd[1, 1].

ii. Add a4 to cvert.

iii. Set pl[3, ] = y2i[a3, ] and pl[4, ] = y2i[a4, ].

iv. Set si[2] = y2i[a3, 1].

v. Let pd[1, ] = (a4, y2i[a4, ]).
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vi. Find the vertex connected to Vertex a4 that forms the largest angle with the

line segment y2i[a1, ]y2i[a4, ] at y2i[a4, ] by setting cr = C[a4, ] and removing

all vertices of cr belonging to cvert and let nc be the length of cr.

vii. Let ag be a 2-vector of zeros.

For k = 1, 2, . . . , nc,

set a2 = cr[k], set ang = ∠a1a4a2 , and if ang > ag[1] set ag = (ang, a2).

viii. Set pd[2, ] = (ag[2], y2i[ag[2], ]).

End of Case (c3).

(h) Let area = ω(Pl) of Equation (3.18).

(i) Set si[3] = area, i.e., the area of Pl is the frequency of subinterval l.

(j) Add si as a row to the end of hist.

(k) Since polygon P2i is symmetric about its centroid, we only need to compute subin-

tervals for the first half of the polygon, subinterval frequency for the subinter-

vals belonging to the second half of the polygon can be immediately deduced

from their counterparts in the first half. Substep 7 computes subinterval end-

points and frequency using this property of polygon P2i. If si[2] < md where

md = (min{y2i[, 1]} + max{y2i[, 1]})/(2) is the average PCk value of the points

belonging to polygon P2i, then, repeat Substep 6. If xi[2] ≥ md, then go to Sub-

step 7. That is, if the upper endpoint of subinterval l is still in the first half of

polygon P2i, then compute the next subinterval using Substep 6. If the upper

endpoint of subinterval l has reached the second half of polygon P2i, then the

subinterval endpoints and frequency for subsequent subintervals can be obtained

by applying Substep 7. Figure 3.25 shows trapezoid P3 belonging to the first half

of polygon P2i of our example. Since the upper endpoint of the third subinterval

in this example is larger than the midpoint md, we can go to Substep 7.

End of Substep 6.
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Figure 3.25: Trapezoid Belonging to Third Subinterval of Principal Component Histogram

7. This substep is divided into two different cases. The first case works for polygon P2i

which has an odd number of subintervals, and the second case works for an even number

of subintervals. Let nrw be the number of rows in hist resulting from Substep 6.

Case one: If si[2] > md, then add (nrw − 1) rows of zeros to hist, i.e., if P2i has

an odd number of subintervals the midpoint md is located at the center of trapezoid

Pnrw. Therefore, we need to add (nrw − 1) more subintervals. Figure 3.26 shows an

example where the vertical line intersecting the midpoint md cuts through the center

of the trapezoid P3. Therefore, there are only (nrw − 1) subintervals remaining in the

second half of the polygon P2i.

For l = 1, 2, . . . , (nrw − 1),

set hist[nrw + l, 1 : 2] = 2 ∗md− hist[nrw − l, 2 : 1] and

set hist[nrw + l, 3] = hist[nrw − l, 3].

End of Case one.

Case two: If si[2] = md, then add nrw rows of zeros to hist, i.e., if P2i has an even

number of subintervals the midpoint md is located at the upper end of trapezoid Pnrw.
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Figure 3.26: Symmetry of Polygon Formed by Transformed Vertices

Therefore, we need to add nrw more subintervals.

For l = 1, 2, . . . , nrw,

set hist[nrw + l, 1 : 2] = 2 ∗md− hist[nrw − l + 1, 2 : 1] and

set hist[nrw + l, 3] = hist[nrw − l + 1, 3].

End of Case two.

8. Update nrw by letting nrw be the number of rows of hist.

9. The elements of hist[, 3] correspond to areas of the polygons bounded between the

subinterval endpoints. To obtained the relative frequency, do the following:

• Add a column to the end of hist.

• Let sum =
∑nrw

k=1 hist[k, 3].

• For l = 1, 2, . . . , nrw,

set hist[l, 4] = (hist[l, 3])/(sum).
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10. Finally, transfer the information from matrix hist to the row i of matrix pck which

is the matrix set up to keep the endpoints and relative frequencies for the histograms

representing principal component k for observations 1 through n.

For l = 1, 2, . . . , nrw,

set pck[i, (3s− 2)] = hist[s, 1],

set pck[i, (3s− 1)] = hist[s, 2], and

set pck[i, (3s)] = hist[s, 4].

11. At the end of Substep 10, we obtain a histogram representing principal component k

for observation i. Information for the histogram for observation i is stored in row i of

the matrix pck. If i < n, let i = i + 1 then repeat Step 3. If i = n, quit.

End of Step 3.

End of algorithm. At the end of this algorithm, we obtain matrix pck whose rows contain

histograms representing the kth principal component of n observations in the data matrix

X. This algorithm must be executed for each principal component k of interest.

3.4 Applications

In this section, we apply our proposed symbolic covariance PCA method to two datasets.

The first example includes a famous dataset known as the Fisher’s Iris data. There are two

reasons this dataset was chosen as our first example. The first reason is due to the fact that

as it is one of the most widely used examples in multivariate analysis, it gives a good frame of

reference to the effectiveness of our proposed method. Additionally, with only four variables,

it illustrates the internal structure of interval-valued observations more effectively than using

data with higher dimension. In the second example, we use a realistic application of symbolic

data analysis by using the interval-valued face measurements of a dataset collected by Leroy

et al. (1996). Each observation in this Face Recognition dataset is a compilation of sequences



87

of images. Therefore, the resulting measurements for each observation cover a range of values.

They naturally have interval values.

3.4.1 Iris example

The data

In this example we apply our proposed PCA method for interval observations to the Iris

dataset. Although the Iris data were collected by Edgar Anderson to determine geographic

variation of Iris flowers (Anderson (1935)), it is known as the Fisher’s Iris dataset due to

an article published by R.A. Fisher in 1936. In Fisher (1936), the data were used as an

application of discriminant analysis. The Iris dataset gives measurements of 50 Iris flowers

each from three species: setosa, versicolor, and virginica. The measurements for each flower

include sepal length, sepal width, petal length, and petal width.

The original dataset consists of 150 classical observations. Suppose that each set of five

consecutive flowers listed in the original dataset came from the same location. Further sup-

pose that we are interested in the characteristics of groups of flowers by location instead

of features of individual flowers. Then, each set of five classical observations can be aggre-

gated into one interval-valued observation. The resulting interval-valued dataset consists of

ten observations of the setosa species, ten of the versicolor species, and ten of the virginica

species. There are four variables in this dataset: X(1) = Sepal Length, X(2) = Sepal Width,

X(3) = Petal Length, and X(4) = Petal Width. Table 3.1 shows the interval-valued Iris data

obtained from Billard and Diday (2006).

We first computed the symbolic variance-covariance matrix as defined in Equation (3.1)

of Section 3.2.1 for the data in Table 3.1. The resulting covariance matrix is given by

S =



0.6007 −0.1275 1.2369 0.5271

0.1675 −0.4471 −0.1854

2.9937 1.2711

0.5592


. (3.20)
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Table 3.1: Interval-Valued Iris Data

i Species Sepal Length Sepal Width Petal Length Petal Width
1 S1 [4.6, 5.1] [3.0, 3.6] [1.3, 1.5] [0.2, 0.2]
2 S2 [4.4, 5.4] [2.9, 3.9] [1.4, 1.7] [0.1, 0.4]
3 S3 [4.3, 5.8] [3.0, 4.0] [1.1, 1.6] [0.1, 0.2]
4 S4 [5.1, 5.7] [3.5, 4.4] [1.3, 1.7] [0.3, 0.4]
5 S5 [4.6, 5.4] [3.3, 3.7] [1.0, 1.9] [0.2, 0.5]
6 S6 [4.7, 5.2] [3.0, 3.5] [1.4, 1.6] [0.2, 0.4]
7 S7 [4.8, 5.5] [3.1, 4.2] [1.4, 1.6] [0.1, 0.4]
8 S8 [4.4, 5.5] [3.0, 3.5] [1.2, 1.5] [0.1, 0.2]
9 S9 [4.4, 5.1] [2.3, 3.8] [1.3, 1.9] [0.2, 0.6]

10 S10 [4.6, 5.3] [3.0, 3.8] [1.4, 1.6] [0.2, 0.3]
11 Ve1 [5.5, 7.0] [2.3, 3.2] [4.0, 4.9] [1.3, 1.5]
12 Ve2 [4.9, 6.6] [2.4, 3.3] [3.3, 4.7] [1.0, 1.6]
13 Ve3 [5.0, 6.1] [2.0, 3.0] [3.5, 4.7] [1.0, 1.5]
14 Ve4 [5.6, 6.7] [2.2, 3.1] [3.9, 4.5] [1.0, 1.5]
15 Ve5 [5.9, 6.4] [2.5, 3.2] [4.0, 4.9] [1.2, 1.8]
16 Ve6 [5.7, 6.8] [2.6, 3.0] [3.5, 5.0] [1.0, 1.7]
17 Ve7 [5.4, 6.0] [2.4, 3.0] [3.7, 5.1] [1.0, 1.6]
18 Ve8 [5.5, 6.7] [2.3, 3.4] [4.0, 4.7] [1.3, 1.6]
19 Ve9 [5.0, 6.1] [2.3, 3.0] [3.3, 4.6] [1.0, 1.4]
20 Ve10 [5.1, 6.2] [2.5, 3.0] [3.0, 4.3] [1.1, 1.3]
21 Vi1 [5.8, 7.1] [2.7, 3.3] [5.1, 6.0] [1.8, 2.5]
22 Vi2 [4.9, 7.6] [2.5, 3.6] [4.5, 6.6] [1.7, 2.5]
23 Vi3 [5.7, 6.8] [2.5, 3.2] [5.0, 5.5] [1.9, 2.4]
24 Vi4 [6.0, 7.7] [2.2, 3.8] [5.0, 6.9] [1.5, 2.3]
25 Vi5 [5.6, 7.7] [2.7, 3.3] [4.9, 6.7] [1.8, 2.3]
26 Vi6 [6.1, 7.2] [2.8, 3.2] [4.8, 6.0] [1.6, 2.1]
27 Vi7 [6.1, 7.9] [2.6, 3.8] [5.1, 6.4] [1.4, 2.2]
28 Vi8 [6.0, 7.7] [3.0, 3.4] [4.8, 6.1] [1.8, 2.4]
29 Vi9 [5.8, 6.9] [2.7, 3.3] [5.1, 5.9] [1.9, 2.5]
30 Vi10 [5.0, 6.7] [2.5, 3.4] [5.0, 5.4] [1.8, 2.3]
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Matrix S of Equation (3.20) shows that Petal Length, X(3), has the largest variance (2.9937)

whereas Sepal Width, X(2), has the smallest variance (0.1675). The variance for Sepal Length,

X(1), and variance for Petal Width, X(4), are about the same. The symbolic correlation matrix

as defined in Equation (3.4) of section 3.2.1 for the Iris data is

R =



1 −0.4019 0.9224 0.9095

1 −0.6313 −0.6056

1 0.9825

1


. (3.21)

The elements of the symbolic correlation matrix of Equation (3.21) indicate a strong corre-

lation between Sepal Length, Petal Length, and Petal Width. The coefficient of correlation

between Sepal Length and Petal Length is 0.9224. The coefficient of correlation between

Sepal Length and Petal Width is 0.9095. Petal Length has an almost perfect correlation

to Petal Width with a correlation coefficient of 0.9825. The correlation matrix of Equation

(3.21) also shows some negative correlation between Sepal Width and Petal Length and

Petal Width with coefficients of −0.6313 and -0.6056, respectively. With knowledge of the

covariance structure, we can find the principal components of the data of Table 3.1. The

symbolic PCA results are presented in the following subsection.

Analysis results

For the first part of this analysis, we computed the coefficients for the principal components

of the interval-valued Iris data using the correlation structure as described in Section 3.2.1.

These coefficients are shown in Table 3.2 along with the proportion of total variance explained

by each principal component. The first principal component is mainly composed of Sepal

Length, Petal Length, and Petal Width. These three variables give approximately equal

contribution to the first principal component with coefficient of 0.5072, 0.5473, and 0.5423,

respectively. The first principal component explains 81.84% of the total variation in the data.

The second principal component is composed of mostly Sepal Width with a coefficient of
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Table 3.2: Principal Component Coefficients and Variance Proportion of Iris Data Based on
Symbolic Covariance Method

Variable PC1 PC2 PC3 PC4
Sepal Length 0.5072 0.4372 0.7231 0.1694
Sepal Width -0.3861 0.8855 -0.2460 -0.0788
Petal Length 0.5473 0.0968 -0.2573 -0.7905
Petal Width 0.5423 0.1239 -0.5919 0.5833
Proportion of Variance 0.8184 0.1620 0.0160 0.0036
Cumulative Proportion 0.8184 0.9804 0.9964 1.0000

0.885. The second principal component explains another 16.20% of the total variation in the

data. With the last two principal components explaining less than 2% of the total variation,

they can be excluded from further analysis without causing significant loss of information to

the data. Thus, the dimension of the Iris dataset can be reduced from four to two.

Next, we plot the observations onto the space spanned by the first two principal compo-

nents as described in the algorithm of Section 3.3.1. A plot of the observations along the first

and the second principal component axis is shown in Figure 3.27. In this plot, observations

are colored according to species. Black represents setosa, red versicolor, and green virginica.

Looking along the first principal component (PC1) axis, observations belonging to the

species setosa clearly stand away from the other species. They form a distinct cluster of

observations with small PC1 values. Since Sepal Length, Petal Length, and Petal Width are

the major contributors to the first principal component, all with positive coefficient, it means

iris flowers with short sepal and short and narrow petal have small PC1 values whereas flowers

with long sepal and long and wide petal have large PC1 values. That is, irises of the setosa

species generally have shorter sepal, shorter and narrower petal than irises of the versicolor

and virginica species. A closer look at the red and green polygons along the PC1-axis shows

some overlap between these two groups. However, the red polygons generally have smaller
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PC1 values than the black polygons. That means, irises of species versicolor are generally

smaller than those of virginica.

Figure 3.27: Plot of PC1 × PC2 for Iris Data Based on Symbolic Covariance Method (Color
Represents Species)

Studying the observations along the second principal component (PC2) axis shows no

distinct clusters. The irises of species setosa, represented by black polygons, cover a wide

range of PC2 values. Since PC2 is composed of mainly Sepal Width, it means sepal width

of setosa irises varies. Moreover, the red polygons generally have smaller PC2 values than

do the green polygons. Since Sepal Width contributes a positive coefficient to the second

principal component, it means irises belonging to species versicolor generally have narrower

sepal width than do those that belong to the species virginica.

The correlation between a random variable X(j) and a principal component Y(k) for j, k =

1, . . . , p, as defined in Equation (2.25) provides another way to understand the relationship

between X(j) and Y(k). Table 3.3 shows the relationship between X(j) and Y(k) in the absence

of all other variables.
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Table 3.3: Correlation between Principal Components and Random Variables of Iris Data
Based on Symbolic Covariance Method

Variable PC1 PC2 PC3 PC4
Sepal Length 0.9177 0.3519 0.1831 0.0204
Sepal Width -0.6986 0.7128 -0.0623 -0.0095
Petal Length 0.9903 0.0779 -0.0651 -0.0951
Petal Width 0.9812 0.0997 -0.1499 0.0702

Tables 3.3 indicates strong correlation between PC1 and Sepal Length, Petal Length,

and Petal Width with correlation coefficients of 0.9177, 0.9903, and 0.9812, respectively.

These correlations agree with the observations based solely on the coefficients of the principal

components shown in Table 3.2. There also exists a negative correlation between Sepal Width

and the first principal component with a coefficient of -0.6986. In addition, Sepal Width

is positively correlated with PC2 with a coefficient of 0.7128. Although the magnitude of

the coefficient of Sepal Width for the first principal component is 0.3861 compared to its

coefficient for the second principal component of 0.8855, the magnitude of the correlation

between Sepal Width and PC1 is almost equal to its correlation to PC2 when other variables

are ignored. This is due to the fact that PC1 explains almost 82% of the total variation in

the data whereas PC2 only explains 16% of the total data variation.

Now, if numerical values for the principal components are required for further analysis,

histogram-valued principal components of the Iris dataset can be computed by the algorithm

described in Section 3.3.2. Table 3.4 gives histograms for the first principal component of

the Iris data of Table 3.1. Table 3.5 gives histograms for the second principal component of

the Iris data. The relative frequencies of the histograms are computed based on area of the

polygons shown in Figure 3.27. Since the first two principal components take care of 98% of

the variation in the data, these histograms reflect almost all of the internal variation of the

observations in the principal components space.
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Table 3.4: Histogram for the First Principal Component of Iris Data Based on Symbolic

Covariance Method

i Frequency Histogram for the First Principal Component

1 {[−2.80,−2.47), 0.25; [−2.47,−2.41), 0.10; [−2.41,−2.23), 0.30; [−2.23,−2.17), 0.10;

[ −2.17,−1.84], 0.25}

2 {[−3.25,−2.60), 0.24; [−2.60,−2.38), 0.18; [−2.38,−2.31), 0.07; [−2.31,−2.28), 0.02;

[−2.28,−2.21), 0.07; [−2.21,−2.00), 0.18; [−2.00,−1.34], 0.24}

3 {[−3.51,−2.56), 0.39; [−2.56,−2.52), 0.03; [−2.52,−2.45), 0.06; [−2.45,−2.40), 0.04;

[−2.40,−2.33), 0.06; [−2.33,−2.29), 0.03; [−2.29,−1.35], 0.39}

4 {[−3.15,−2.76), 0.16; [−2.76,−2.69), 0.06; [−2.69,−2.56), 0.13; [−2.56,−2.30), 0.29;

[−2.30,−2.18), 0.13; [−2.18,−2.10), 0.06; [−2.10,−1.71], 0.16}

5 {[−2.99,−2.61), 0.18; [−2.61,−2.46), 0.14; [−2.46,−2.32), 0.14; [−2.32,−2.24), 0.08;

[−2.24,−2.11), 0.14; [−2.11,−1.96), 0.14; [−1.96,−1.58], 0.18}

6 {[−2.60,−2.28), 0.22; [−2.28,−2.13), 0.23; [−2.13,−2.13), 0.00; [−2.13,−2.07), 0.11;

[−2.07,−2.07), 0.00; [−2.07,−1.92), 0.23; [−1.92,−1.60], 0.22}

7 {[−3.27,−2.81), 0.14; [−2.81,−2.60), 0.16; [−2.60,−2.53), 0.06; [−2.53,−2.23), 0.28;

[−2.23,−2.17), 0.06; [−2.17,−1.95), 0.16; [−1.95,−1.50], 0.14}

8 {[−2.94,−2.47), 0.26; [−2.47,−2.37), 0.11; [−2.37,−2.30), 0.08; [−2.30,−2.22), 0.10;

[−2.22,−2.14), 0.08; [−2.14,−2.05), 0.11; [−2.05,−1.58], 0.26}

9 {[−3.12,−2.66), 0.09; [−2.66,−2.37), 0.14; [−2.37,−2.18), 0.12; [−2.18,−1.70), 0.32;

[−1.70,−1.51), 0.12; [−1.51,−1.22), 0.14; [−1.22,−0.76], 0.09}

10 {[−2.95,−2.50), 0.24; [−2.50,−2.42), 0.08; [−2.42,−2.36), 0.08; [−2.36,−2.20), 0.21;

[−2.20,−2.14), 0.08; [−2.14,−2.06), 0.08; [−2.06,−1.60], 0.24}

11 {[−0.18, 0.67), 0.30; [0.67, 0.80), 0.09; [0.80, 0.95), 0.11; [0.95, 0.96), 0.01;

[0.96, 1.10), 0.11; [1.10, 1.23), 0.09; [1.23, 2.08], 0.30}

Continued on next page
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Table 3.4 – continued from previous page

i Frequency Histogram for the First Principal Component

12 {[−1.10,−0.26), 0.21; [−0.26, 0.01), 0.13; [0.01, 0.19), 0.09; [0.19, 0.44), 0.13;

[0.44, 0.62), 0.09; [0.62, 0.89), 0.13; [0.89, 1.74], 0.21}

13 {[−0.69, 0.03), 0.19; [0.03, 0.25), 0.13; [0.25, 0.39), 0.09; [0.39, 0.63), 0.16;

[0.63, 0.77), 0.09; [0.77, 0.99), 0.13; [0.99, 1.71], 0.19}

14 {[−0.27, 0.45), 0.24; [0.45, 0.58), 0.09; [0.58, 0.77), 0.15; [0.77, 0.81), 0.03;

[0.81, 1.00), 0.15; [1.00, 1.13), 0.09; [1.13, 1.85], 0.24}

15 {[0.01, 0.34), 0.08; [0.34, 0.67), 0.24; [0.67, 0.77), 0.09; [0.77, 0.96), 0.17;

[0.96, 1.06), 0.09; [1.06, 1.39), 0.24; [1.39, 1.72], 0.08}

16 {[−0.23, 0.14), 0.10; [0.14, 0.49), 0.20; [0.49, 0.62), 0.08; [0.62, 0.99), 0.24;

[0.99, 1.13), 0.08; [1.13, 1.47), 0.20; [1.47, 1.85], 0.10}

17 {[−0.37, 0.03), 0.11; [0.03, 0.20), 0.12; [0.20, 0.46), 0.20; [0.46, 0.64), 0.14;

[0.64, 0.90), 0.20; [0.90, 1.08), 0.12; [1.08, 1.47], 0.11}

18 {[−0.37, 0.42), 0.25; [0.42, 0.64), 0.15; [0.64, 0.67), 0.03; [0.67, 0.86), 0.15;

[0.86, 0.89), 0.03; [0.89, 1.11), 0.15; [1.11, 1.90], 0.25}

19 {[−0.76,−0.10), 0.23; [−0.10,−0.04), 0.04; [−0.04, 0.25), 0.21; [0.25, 0.32), 0.04;

[0.32, 0.61), 0.21; [0.61, 0.67), 0.04; [0.67, 1.33], 0.23}

20 {[−0.71,−0.24), 0.18; [−0.24, 0.01), 0.20; [0.01, 0.15), 0.12; [0.15, 0.17), 0.01;

[0.17, 0.32), 0.12; [0.32, 0.56), 0.20; [0.56, 1.04], 0.18}

21 {[0.63, 1.20), 0.16; [1.20, 1.49), 0.17; [1.49, 1.49), 0.00; [1.49, 1.99), 0.33;

[1.99, 1.99), 0.00; [1.99, 2.28), 0.17; [2.28, 2.84], 0.16}

22 {[−0.50, 0.54), 0.16; [0.54, 1.20), 0.22; [1.20, 1.27), 0.02; [1.27, 1.78), 0.19;

[1.78, 1.85), 0.02; [1.85, 2.51), 0.22; [2.51, 3.55], 0.16}

23 {[0.70, 1.36), 0.26; [1.36, 1.42), 0.05; [1.42, 1.52), 0.08; [1.52, 1.79), 0.22;

[1.79, 1.89), 0.08; [1.89, 1.94), 0.05; [1.94, 2.61], 0.26}

Continued on next page
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Table 3.4 – continued from previous page

i Frequency Histogram for the First Principal Component

24 {[0.04, 1.16), 0.18; [1.16, 1.55), 0.15; [1.55, 1.74), 0.08; [1.74, 2.15), 0.18;

[2.15, 2.34), 0.08; [2.34, 2.73), 0.15; [2.73, 3.85], 0.18}

25 {[0.44, 1.01), 0.11; [1.01, 1.58), 0.24; [1.58, 1.81), 0.12; [1.81, 1.94), 0.06;

[1.94, 2.18), 0.12; [2.18, 2.75), 0.24; [2.75, 3.31], 0.11}

26 {[0.69, 1.06), 0.12; [1.06, 1.41), 0.23; [1.41, 1.44), 0.03; [1.44, 1.77), 0.24;

[1.77, 1.80), 0.03; [1.80, 2.15), 0.23; [2.15, 2.52], 0.12}

27 {[0.07, 1.20), 0.26; [1.20, 1.25), 0.02; [1.25, 1.61), 0.17; [1.61, 1.83), 0.10;

[1.83, 2.19), 0.17; [2.19, 2.24), 0.02; [2.24, 3.37], 0.26}

28 {[0.58, 0.95), 0.08; [0.95, 1.36), 0.20; [1.36, 1.69), 0.19; [1.69, 1.80), 0.07;

[1.80, 2.12), 0.19; [2.12, 2.54), 0.20; [2.54, 2.91], 0.08}

29 {[0.71, 1.27), 0.20; [1.27, 1.43), 0.11; [1.43, 1.53), 0.07; [1.53, 1.86), 0.25;

[1.86, 1.96), 0.07; [1.96, 2.12), 0.11; [2.12, 2.68], 0.20}

30 {[−0.02, 0.83), 0.26; [0.83, 0.96), 0.08; [0.96, 1.10), 0.09; [1.10, 1.32), 0.15;

[1.32, 1.46), 0.09; [1.46, 1.59), 0.08; [1.59, 2.44], 0.26}

Table 3.5: Histogram for the Second Principal Component of Iris Data Based on Symbolic

Covariance Method

i Frequency Histogram for the Second Principal Component

1 {[−1.11,−0.82), 0.12; [−0.82, 0.18), 0.76; [0.18, 0.46], 0.12}

2 {[−1.39,−0.83), 0.16; [−0.83, 0.71), 0.67; [0.71, 1.27], 0.16}

3 {[−1.27,−0.42), 0.22; [−0.42, 0.85), 0.56; [0.85, 1.70], 0.22}

4 {[0.30, 0.64), 0.11; [0.64, 2.21), 0.78; [2.21, 2.55], 0.11}

Continued on next page



96

Table 3.5 – continued from previous page

i Frequency Histogram for the First Principal Component

5 {[−0.48,−0.43), 0.01; [−0.43,−0.38), 0.02; [−0.38, 0.07), 0.32; [0.07, 0.38), 0.31;

[0.38, 0.83), 0.32; [0.83, 0.88), 0.02; [0.88, 0.93], 0.01}

6 {[−1.04,−1.01), 0.01; [−1.01,−0.73), 0.16; [−0.73, 0.03), 0.66; [0.03, 0.31), 0.16;

[0.31, 0.34], 0.01}

7 {[−0.74,−0.34), 0.11; [−0.34, 1.58), 0.78; [1.58, 1.98], 0.11}

8 {[−1.22,−0.60), 0.31; [−0.60,−0.17), 0.37; [−0.17, 0.45], 0.31}

9 {[−2.71,−2.64), 0.01; [−2.64,−2.25), 0.09; [−2.25, 0.50), 0.82; [0.50, 0.90), 0.09;

[0.90, 0.96], 0.01}

10 {[−1.08,−0.69), 0.13; [−0.69, 0.62), 0.73; [0.62, 1.01], 0.13}

11 {[−1.71,−0.86), 0.25; [−0.86, 0.16), 0.48; [0.16, 1.00], 0.25}

12 {[−1.92,−1.82), 0.01; [−1.82,−0.86), 0.30; [−0.86,−0.05), 0.37; [−0.05, 0.90), 0.30;

[0.90, 1.00], 0.01}

13 {[−2.73,−2.65), 0.01; [−2.65,−2.03), 0.19; [−2.03,−0.64), 0.59; [−0.64,−0.02), 0.19;

[−0.02, 0.07], 0.01}

14 {[−1.97,−1.89), 0.01; [−1.89,−1.27), 0.20; [−1.27,−0.06), 0.57; [−0.06, 0.56), 0.20;

[0.56, 0.64], 0.01}

15 {[−1.10,−1.00), 0.03; [−1.00,−0.72), 0.14; [−0.72, 0.37), 0.66; [0.37, 0.65), 0.14;

[0.65, 0.75], 0.03}

16 {[−1.11,−1.02), 0.01; [−1.02,−0.91), 0.04; [−0.91,−0.29), 0.43; [−0.29,−0.24), 0.04;

[−0.24, 0.38), 0.43; [0.38, 0.50), 0.04; [0.50, 0.58], 0.01}

17 {[−1.70,−1.62), 0.01; [−1.62,−1.52), 0.03; [−1.52,−1.18), 0.19; [−1.18,−0.40), 0.54;

[−0.40,−0.06), 0.19; [−0.06, 0.04), 0.03; [0.04, 0.12], 0.01}

18 {[−1.70,−1.02), 0.17; [−1.02, 0.59), 0.64; [0.59, 1.27], 0.17}

19 {[−2.16,−2.09), 0.01; [−2.09,−2.02), 0.01; [−2.02,−1.40), 0.26; [−1.40,−0.65), 0.44;

Continued on next page
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Table 3.5 – continued from previous page

i Frequency Histogram for the First Principal Component

[−0.65,−0.03), 0.26; [−0.03, 0.04), 0.01; [0.04, 0.11], 0.01}

20 {[−1.67,−1.60), 0.01; [−1.60,−1.57), 0.01; [−1.57,−0.95), 0.34; [−0.95,−0.59), 0.28;

[−0.59, 0.03), 0.34; [0.03, 0.06), 0.01; [0.06, 0.14], 0.01}

21 {[−0.56,−0.44), 0.02; [−0.44, 0.29), 0.34; [0.29, 0.69), 0.26; [0.69, 1.42), 0.34;

[1.42, 1.54], 0.02}

22 {[−1.48,−1.35), 0.01; [−1.35, 0.17), 0.37; [0.17, 0.78), 0.22; [0.78, 2.30), 0.37;

[2.30, 2.43], 0.01}

23 {[−1.06,−0.98), 0.01; [−0.98,−0.36), 0.25; [−0.36, 0.43), 0.47; [0.43, 1.05), 0.25;

[1.05, 1.13], 0.01}

24 {[−1.53,−1.40), 0.01; [−1.40,−0.44), 0.18; [−0.44, 1.83), 0.60; [1.83, 2.78), 0.18;

[2.78, 2.92], 0.01}

25 {[−0.74,−0.63), 0.01; [−0.63,−0.55), 0.01; [−0.55, 0.56), 0.46; [0.56, 0.63), 0.04;

[0.63, 1.75), 0.46; [1.75, 1.83), 0.01; [1.83, 1.93], 0.01}

26 {[−0.28,−0.21), 0.01; [−0.21,−0.13), 0.03; [−0.13, 0.49), 0.42; [0.49, 0.59), 0.09;

[0.59, 1.21), 0.42; [1.21, 1.29), 0.03; [1.29, 1.36], 0.01}

27 {[−0.65,−0.52), 0.01; [−0.52, 0.50), 0.25; [0.50, 1.87), 0.48; [1.87, 2.89), 0.25;

[2.89, 3.02], 0.01}

28 {[0.13, 0.21), 0.01; [0.21, 0.31), 0.02; [0.31, 1.00), 0.37; [1.00, 1.26), 0.20;

[1.26, 1.96), 0.37; [1.96, 2.06), 0.02; [2.06, 2.13], 0.01}

29 {[−0.55,−0.45), 0.02; [−0.45, 0.17), 0.30; [0.17, 0.70), 0.36; [0.70, 1.32), 0.30;

[1.32, 1.42], 0.02}

30 {[−1.48,−1.40), 0.01; [−1.40,−0.44), 0.28; [−0.44, 0.45), 0.42; [0.45, 1.41), 0.28;

[1.41, 1.49], 0.01}
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Comparison of symbolic covariance, vertices, and centers methods

To understand the differences between our proposed method and current PCA methods for

interval-valued observations, we apply the vertices and the centers PCA methods to the

Iris dataset of Table 3.1. Results from these methods and their performance compared to

the proposed symbolic covariance method are discussed in this subsection. We divide the

comparison into two parts. First, we will examine the differences in the coefficients of the

principal components. Then, we will study the differences between the principal components

constructed from these coefficients.

Of the current PCA methods for interval-valued observations, the vertices method is the

most comparable to our proposed method so we begin with the vertices method. First, we

compare the covariance and the correlation matrices of the data because they determine

the coefficients for the principal components. In the vertices method, the data matrix X is

transformed into a matrix of vertices Xv as defined in Equation (2.31). Then, the classical

covariance and correlation matrices of Xv are computed. The covariance matrix and the

correlation matrix of the interval-valued Iris data are given in the following,

S =



0.8763 −0.0928 1.0865 0.4526

0.2910 −0.3405 −0.1355

3.1788 1.2300

0.5983


(3.22)

R =



1 −0.1838 0.6510 0.6251

1 −0.3540 −0.3247

1 0.8919

1


. (3.23)

All diagonal elemements of Equation (3.22) have values larger than their counterpart

in Equation (3.20) as expected. This is due to the fact that the vertices method treats all

vertices of Xv as independent observations. The covariance matrix in Equation (3.22) gives
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the covariance of (2p)n = (24)30 = (16)(30) = 480 data points instead of 30 data points as

in the symbolic covariance matrix of Equation (3.20). Moreover, the variances of Equation

(3.22) are the variances of the vertices of the hyper-rectangles representing observations in

the dataset. The vertices are the most extreme points of a hyper-rectangle and variances of

the extreme points are expected to be larger than variance of all points belonging to the

hyper-rectangle.

The correlation coefficients shown in Equation (3.23) indicate less correlation between

variables based on the vertices than the correlation between variables based on the symbolic

covariance structure shown in Equation (3.21). The largest correlation occurs between ver-

tices of Petal Length and Petal Width with coefficient of 0.8919. This coefficient is much less

than the coefficient of 0.9825 in the symbolic correlation matrix of Equation (3.21). More-

over, the correlation coefficients between Sepal Length and Petal Length and Petal Width

are reduced from 0.9224 and 0.9095, respectively, in the symbolic correlation of Equation

(3.21) to 0.6510 and 0.6251, respectively, in the vertices correlation of Equation (3.23).

Coefficients of the principal components resulting from the correlation structure of the

vertices shown in Equation (3.23) are listed in Table 3.6. Elements whose values are close

to zero are left blank in Table 3.6. In the vertices method, the first principal component

explains only 65.28% of the total variation in the data compared to 81.84% in the symbolic

covariance method. With the second principal component explains an additional 21.56% and

the third principal component explains an additional 10.50% of the total variance, the first

three principal components of the vertices method explains 97% of the total variation in the

data compared to the 98% explained by the first two principal components in the symbolic

covariance method.

More specifically, in the vertices method Petal Length and Petal Width contribute a

much larger share to the first principal component than does Sepal Length with coefficients

of 0.5820 (Petal Length) and 0.5740 (Petal Width) versus 0.4920 (Sepal Length). The share

is more comparable in the symbolic covariance method with coefficients of 0.5473 (Petal
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Table 3.6: Principal Component Coefficients and Variance Proportion of Iris Data Based on
Vertices Method

Variable PC1 PC2 PC3 PC4
Sepal Length 0.4920 -0.3370 0.8010
Sepal Width -0.3000 -0.9310 -0.2060
Petal Length 0.5820 -0.3520 -0.7280
Petal Width 0.5740 -0.1100 -0.4380 0.6830
Proportion of Variance 0.6528 0.2156 0.1050 0.0267
Cumulative Variance 0.6528 0.8684 0.9733 1.0000

Table 3.7: Correlation between Principal Components and Random Variables of Iris Data
Based on Vertices Method

Variable PC1 PC2 PC3 PC4
Sepal Length 0.7951 -0.3130 0.5193
Sepal Width -0.4843 -0.8646 -0.1334
Petal Length 0.9408 -0.2280 -0.2377
Petal Width 0.9269 -0.1025 -0.2836 0.2232

Length) and 0.5423 (Petal Width) versus 0.5072 (Sepal Length). The reduction in contribu-

tion of Sepal Length to the first principal component in the vertices method is probably a

result of its reduced correlation to Petal Length and Petal Width.

In the absence of other variables, the correlation coefficient between Sepal Length and

the first principal component shown in Table 3.7 is also reduced significantly from 0.9177 in

the symbolic covariance method to 0.7951 in the vertices method. This observation agrees

with other differences based on the correlation structure and the coefficients of the principal

components discussed in the previous paragraph.

Now, we compare the covariance and the correlation structure of the centers method to

the symbolic covariance method. In the centers method, the classical covariance is computed

using the midpoints of the observations as discussed in Section 2.3.1. The diagonal elements
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of the covariance matrix of the centers in Equation (3.24) are smaller then their counterpart

in the symbolic covariance of Equation (3.20) as expected;

S =



0.4630 −0.0928 1.0865 0.4526

0.1058 −0.3405 −0.1355

2.9011 1.2300

0.5396


. (3.24)

A variance in Equation (3.24) reflects the variation between observations whereas a variance

in Equation (3.20) reflects the variation between observations and variation within observa-

tion as discussed in Section 2.1.2 of chapter two and detailed in Billard (2007).

The correlation coefficients of the centers shown in the matrix of Equation (3.25) have

values almost equivalent to their counterpart in the symbolic correlation matrix of Equation

(3.21);

R =



1 −0.4195 0.9375 0.9056

1 −0.6147 −0.5671

1 0.9830

1


. (3.25)

Therefore, the correlation structure for the centers and symbolic methods are similar in the

Iris dataset.

The coefficients of the principal components based on the centers method are shown in

Table 3.8, along with the proportion of variance and the cumulative proportion of variance

explained by the principal components. The composition of the principal components as

shown in Table 3.2 and Table 3.8 reflects the similarity in the correlation structure of the

centers and the symbolic covariance method. The first principal component in the centers

method accounts for 81.60% of the total variation compared to 81.84% in the symbolic

covariance method. In both methods, the first principal component is composed of Sepal

Length, Petal Length, and Petal Width, each with an approximately equal contribution.



102

Table 3.8: Principal Component Coefficients and Variance Proportion of Iris Data Based on
Centers Method

Variable PC1 PC2 PC3 PC4
Sepal Length 0.5130 -0.3880 0.7200 0.2600
Sepal Width -0.3790 -0.9020 -0.1780 -0.1030
Petal Length 0.5500 -0.1080 -0.1560 -0.8140
Petal Width 0.5390 -0.1560 -0.6520 0.5100
Proportion of Variance 0.8160 0.1621 0.0201 0.0018
Cumulative Variance 0.8160 0.9781 0.9982 1.0000

Table 3.9: Correlation between Principal Components and Random Variables of Iris Data
Based on Centers Method

Variable PC1 PC2 PC3 PC4
Sepal Length 0.9276 -0.3121 0.2043 0.0217
Sepal Width -0.6853 -0.7264 -0.0505 -0.0086
Petal Length 0.9929 -0.0867 -0.0444 -0.0682
Petal Width 0.9738 -0.1256 -0.1849 0.0427

The second principal components in both methods are composed of Sepal Width and explain

around 16% of the total variation.

The correlations between the random variables and the principal components for the

centers method are shown in Table 3.9. A comparison of Table 3.3 and Table 3.9 shows fur-

ther similarity in the two methods for this dataset. There exists strong correlation between

the first principal component and Sepal Length, Petal Length, and Petal Width with coef-

ficients of 0.9177, 0.9903, and 0.9812, respectively, for the symbolic covariance method and

0.9276, 0.9929, and 0.9738, respectively, for the centers method. Furthermore, the correlation

between the second principal component and Sepal Width is similar in both methods. The

correlation coefficient between PC2 and Sepal Width is 0.7128 for the symbolic covariance

method and 0.7264 for the centers method.
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Now, we are ready to compare the observations in the principal components space con-

structed from the proposed symbolic covariance method, the vertices method, and the centers

method. As stated in section 2.3.1 and 2.3.2, the principal components resulting from the

vertices and the centers methods have interval values. The lower endpoint of the interval

representing principal component k of observation i is the minimum value of the trans-

formed vertices of observation i along the kth principal component. The upper endpoint of

the interval is the maximum value of the transformed vertices along the PCk-axis. As a

result, an observation is represented by a rectangle, called MCAR, as described in Section

3.2.1, on a PCk × PCk′ plot created by the vertices and the centers method.

Figure 3.28 shows a plot of the Iris data along the first and the second principal component

based on the vertices method. Figure 3.29 shows a plot of the Iris data along the first and

the second principal component resulting from the centers method. Observations in Figures

3.28 and 3.29 are colored according to species similar to the PC1 × PC2 plot of the Iris

data resulting from the symbolic covariance method of Figure 3.27. In these plots, black

represents species setosa, red represents versicolor, and green represents virginica.

A pattern of species grouping emerges in the PC1 × PC2 plots for the vertices and

the centers methods. Similar to the pattern reveals in the symbolic covariance PC1 × PC2

plot of Figure 3.27, observations of species setosa have smaller PC1 value and form their

own cluster to the left of observations belonging to the other species. Comparison of Figure

3.28 and Figure 3.29 reveals that along the PC1 axis the cluster formed by the rectangles

representing observations of species setosa is more distinct in the vertices method than in the

centers method. There exists overlap in PC1 values between observation 9 and observations

12, 13, and 19 in Figure 3.29 of the centers method which does not exist between those

observations in the vertices method. Otherwise, the plots of Figures 3.28 and 3.29 show a

similar spread of observations along the second principal component axis.

To understand how transformation of the same observations can create overlap along

the PC1-axis in one method but not in the other, we need to look at principal component
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Figure 3.28: Plot of PC1 × PC2 for Iris Data Based on Vertices Method (Color Represents
Species)

Figure 3.29: Plot of PC1 × PC2 for Iris Data Based on Centers Method (Color Represents
Species)
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analysis geometrically. A principal components space of a dataset is a coordinate system

that maximizes the variances in the data. The principal component axes can be obtained

by rotating the axes of the original sample space in such a way that the axis along the

first principal component coincides with the direction of the largest variation in the data,

the PC2-axis is orthogonal to the PC1-axis and coincides with the direction of the second

largest variation, and so on.

The direction of rotation for each principal component axis is determined by the coeffi-

cients for that principal component. We discussed earlier in this section that the coefficients

for Sepal Length, Petal Length, and Petal Width for PC1 are approximately equal in the

centers method whereas the coefficient of Sepal Length is smaller than the coefficients of

Petal Length and Petal Width in the vertices method. Therefore, the hyper-rectangles rep-

resenting observations in the Iris dataset are rotated differently in the principal components

spaces resulting from these methods. However, a PC1 × PC2 plot of an observation based

on the vertices and the centers method only shows the MCAR enscribing all vertices of the

observation. It does not show the rotation direction of the principal component axes.

The direction of rotation affects the size and shape of the resulting MCAR as illustrated

in Figure 3.30. In Figure 3.30 the solid orange and solid green rectangles represent the same

interval-valued observation in a two-dimensional space. Two different colors for the rectangles

signify two differernt methods of PCA, the vertices and the centers methods, applied to the

same observation. The resulting principal components spaces are different for the orange

observation and the green observation. Now, if we make a PC1 × PC2 plot for each method

and put one plot on top of the other so that their PC1 and PC2 axes align we obtain the

picture in Figure 3.30. We can see that the rectangles have identical size and shape in their

respective sample space. That is, if we look at the orange rectangle in the direction of its

coordinate axes, annotated in orange and look at the green rectangle in the direction of

its coordinate axes, annoted in green; then the shape and size of these two rectangles are

the same. Figure 3.30 shows that the rotation applied to the orange rectangle gives it a
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Figure 3.30: Maximum Covering Areas from Two Different Rotations of One Rectangle (Color
Represents Original Sample Space)

wider range along the PC1 axis than the rotation applied to the green rectangle. At the

same time, the rotation applied to the green rectangle gives it a wider range of values along

the PC2 axis than the orange rectangle. The resulting MCAR for the orange rectangle on

the PC1 × PC2 plane, outlined in orange, is wider along the PC1 axis and shorter along

the PC2 axis than the MCAR for the green rectangle, outlined in green. The rectangles

representing different rotations of the same observation can be significantly different in a

principal components space. Therefore, we can see that the overlap between observations in

the centers method results from the rotation that stretched the MCAR more along the PC1

axis than the rotation in the vertices method.

The affect of rotation on the shape and the size of the rectangle representing an obser-

vation on a PCk1 × PCk2 plane can be minimized when the observation is represented by
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a polygon resulting from projecting an observation onto a PCk1 × PCk2 plane as proposed

in the symbolic covariance PCA method. In our proposed method, rotating the observations

about the origin of the PC1 × PC2 plane of Figure 3.27 does not change the shape of the

polygons. Another drawback of plotting an observation as a rectangle on a PCk1 × PCk2

plane is that, given a maximum covering area rectangle, it is impossible to discern the exact

direction of rotation and the shape of the rectangle in its original sample space. Figure 3.31

shows two rectangles that could be rotated to produce the same MCAR outlined in black.

Figure 3.31: Maximum Covering Area from Two Different Rectangles (Color Represents
Original Sample Space)

By looking at the rectangles in Figures 3.28 and 3.29, it is impossible to tell the shape

and the direction of the observations. However, the polygons constructed by our proposed

symbolic covariance method shown in Figure 3.27 give the shape of the observations as well

as the direction of rotation of the principal components space in a two-dimensional plane.

The plot of Figure 3.27 based on the symbolic covariance method shows clearer clusters of
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species and gives better representation of the observations than do the plots of Figures 3.28

and 3.29 resulting from the vertices and the centers methods.

In this subsection, we have shown that the symbolic covariance principal components

maximize the total variance of an interval-valued dataset instead of maximizing only part

of the variance as in the centers and the vertices methods. We further showed that our

proposed symbolic covariance method reconstructs the true structure of the observed data

in a principal components space. The PC1 × PC2 plot of the observations we proposed shows

the projection of the true structure of the observations. True projection of the observations

eliminates unnecessary overlap between observations caused by the maximum covering area

rectangle used in the vertices and the centers methods. Without the unnecessary overlap,

our PC1 × PC2 plot allows the data to show clusters of observations with common features

more clearly.

Comparison of symbolic covariance PCA and classical PCA

Having shown the improvements of our proposed method over current PCA methods for

interval-valued data, we now compare the symbolic covariance principal components and

classical principal components for the Iris data. Prior to the introduction of symbolic data

analysis, symbolic observations had to be reduced to a classical data point before analysis

could be performed. In the case of interval-valued variables, the midpoint is typically used to

represent an interval. Another alternative is to treat the interval endpoints as two indepen-

dent variables. In this subsection, we will show how these two alternatives do not adequately

account for the total structure of interval-valued data.

First, we apply classical PCA to the midpoints of the Iris dataset of Table 3.1. The

covariance and the correlation matrix for the midpoints are identical to those of the centers

method which are shown in Equations (3.24) and (3.25) because the centers method is based

on the covariance structure of the interval midpoints. Similar to the discussion of the centers

principal components in the previous subsection, classical principal components using the
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midpoints only maximize the variance between observations and ignore the variance within

observations.

Next, we apply classical PCA to the interval endpoints of the Iris dataset. Since the

endpoints are treated as two independent variables, the number of variables in this analysis

doubled to eight, a lower endpoint and an upper endpoint each for Sepal Length, Sepal

Width, Petal Length, and Petal Width. The covariance matrix of the endpoints is given by

R =



1 0.8174 −0.3261 −0.4107 0.8535 0.8267 0.7998 0.8121

1 −0.3932 −0.3224 0.9106 0.9342 0.8875 0.9044

1 0.6318 −0.5536 −0.5758 −0.4810 −0.5155

1 −0.5330 −0.5422 −0.5316 −0.5093

1 0.9743 0.9776 0.9815

1 0.9533 0.9762

1 0.9811

1



. (3.26)

The covariance matrix of Equation (3.26) indicates strong correlation between the lower

and upper endpoints for all variables. The correlation coefficients between the endpoints are

0.8174 for Sepal Length, 0.6318 for Sepal Width, 0.9533 for Petal Length, and 0.9811 for

Petal Width. Principal component coefficients and the proportion of variance explained are

shown in Table 3.10. As a result of the extremely high correlation between the endpoints, each

set of endpoints contribute an approximately identical ammount to the first two principal

components. That is, the coefficients for Sepal Length are 0.347 and 0.369. They are 0.399

and 0.398 for Petal Length and 0.390 and 0.394 for Petal Width. Although there are eight

variables in this analysis it takes only two principal components to explain 90.27% of the

total variation in the data.

We further observe that the composition of the first two principal components based on

the endpoints is similar to the composition based on the midpoints. Variables Sepal Length,
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Table 3.10: Principal Component Coefficients and Variance Proportion of Iris Data Based
on Classical Method Using Endpoints

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Sepal Length
0.3470 -0.2410 0.3240 0.8170 -0.1630 -0.1530
0.3690 -0.2860 -0.1860 0.7740 -0.3010 0.2240

Sepal Width
-0.2440 -0.6460 0.6350 -0.3040 0.1160
-0.2430 -0.6450 -0.6650 0.1230 -0.2480

Petal Length
0.3990 -0.2520 -0.2740 0.8310
0.3980 0.1960 0.6270 -0.6190

Petal Width
0.3900 -0.3690 -0.3570 -0.4740 -0.4820 -0.3390
0.3940 -0.2730 -0.2780 0.4560 -0.1680 0.6670

Proportion 0.7680 0.1347 0.0506 0.0289 0.0125 0.0032 0.0012 0.0010
Cumulative 0.7680 0.9027 0.9533 0.9821 0.9947 0.9978 0.9990 1.0000

Table 3.11: Correlation between Principal Components and Random Variables of Iris Data
Based on Classical Method Using Endpoints

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Sepal Length
0.8601 -0.2502 0.2061 0.3927 -0.0516 -0.0148
0.9146 -0.2969 -0.1183 0.2450 -0.0479 0.0200

Sepal Width
-0.6048 -0.6706 0.4040 -0.1461 0.0112
-0.6023 -0.6695 -0.4231 0.0591 -0.0785

Petal Length
0.9890 -0.0798 -0.0436 0.0805
0.9865 0.0621 0.0998 -0.0553

Petal Width
0.9667 -0.1774 -0.1130 -0.0754 -0.0467 -0.0303
0.9766 -0.1312 -0.0880 0.0725 -0.0163 0.0596
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Petal Length, and Petal Width contribute approximately equal amounts to the first principal

component and Sepal Width is the largest contributor to the second principal component.

The similarity between classical PCA using the endpoints and using the midpoints is

also seen in the correlation between the principal components and the random variables. In

both methods, the first principal component is highly correlated with Sepal Length, Petal

Length and Petal Width with an average correlation coefficients for the endpoints being 0.89

versus a correlation coefficient of 0.92 for the midpoints for Sepal Length, 0.99 versus 0.99

for Petal Length, and 0.97 versus 0.97 for Petal Width. The second principal component is

highly correlated with Sepal Width with an average correlation coefficients of 0.67 for the

endpoints versus 0.72 for the midpoints.

Figure 3.32: Plot of PC1 × PC2 for Iris Data Based on Classical PCA Method Using Mid-
points (Color Represents Species)

The midpoints PC1 × PC2 plot of Figure 3.32 and the endpoints PC1 × PC2 plot of

Figure 3.33 show similar patterns. Points representing setosa irises have small PC1 values and

form a distinct cluster from points representing other species. Because each observation is

represented by only one point in classical PCA, the plots of Figures 3.32 and 3.33 do not show
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Figure 3.33: Plot of PC1 × PC2 for Iris Data Based on Classical PCA Method Using End-
points (Color Represents Species)

the structure of interval-valued observations. Therefore, differences in internal variation of an

observation can not be detected in these plots. For instance, from the symbolic covariance

PC1 × PC2 plot of Figure 3.27 we can see that the size of observation 4 is only half as

wide as observation 3 and it is only half as long as observation 9; or observation 22 is much

shorter and much wider than observations 24 and 27. Moreover, without the structure of the

observation, classical PCA plots can show clusters where they do not exist. For example,

Figures 3.32 and 3.33 show no overlap between versicolor and viriginica species along the PC2

axis. However, the symbolic covariance plot of Figure 3.27 reveals that with the structure of

interval-valued observations, these two species have much overlap in PC2 values.

In this comparison, we showed that the symbolic covariance PCA method accounts for

the total variation of interval-valued observations instead of only part of the variation when



113

classical PCA is used to anlyze interval-valued data. Plots from our proposed method further

show the structure of interval-valued observations which does not exist in classical PCA.

3.4.2 Face Recognition Example

The data

Figure 3.34: Diagram of Variables for Face Recognition Data

In the second example, we apply the proposed symbolic covariance PCA method to the

Face Recognition data published by Leroy et al. (1996). This dataset came from a study

of face identification using two dimensional images. Leroy et al. (1996) identified points

characterizing a person’s face. Images of the subjects were taken and distances between these

points were measured. The six variables for the Face Recognition data are shown in Figure

3.34, namely, AD, BC, AH, DH, HE, and HG. This dataset gives face measurements of nine

subjects, each with three observations. Therefore, the dataset consists of 27 observations.

Since measurements for each observation came from a sequence of images, they have interval

values. Table 3.12 gives the complete dataset. Each observation is labeled by three letters

identifying the subject and a number between 1 and 3 distinguishing observations for the
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Table 3.12: Interval-Valued Face Recognition Data

i Label AD BC AH DH EH GH
1 FRA1 [155, 157] [58, 61] [100, 103] [105, 107] [61, 66] [64, 68]
2 FRA2 [154, 160] [57, 64] [102, 106] [104, 107] [61, 63] [63, 66]
3 FRA3 [154, 161] [57, 63] [99, 106] [101, 109] [61, 66] [60, 66]
4 HUS1 [169, 173] [59, 63] [103, 107] [122, 125] [57, 61] [60, 65]
5 HUS2 [170, 175] [60, 64] [103, 109] [120, 125] [57, 62] [60, 67]
6 HUS3 [169, 175] [61, 64] [104, 107] [121, 125] [57, 62] [58, 67]
7 INC1 [155, 160] [53, 60] [96, 98] [92, 94] [62, 66] [59, 63]
8 INC2 [156, 161] [51, 60] [96, 99] [91, 97] [55, 64] [54, 62]
9 INC3 [154, 160] [55, 59] [94, 99] [90, 96] [59, 66] [56, 66]

10 ISA1 [164, 168] [55, 60] [120, 123] [118, 121] [54, 57] [51, 53]
11 ISA2 [163, 170] [54, 59] [119, 123] [117, 120] [55, 59] [52, 55]
12 ISA3 [164, 169] [55, 59] [117, 123] [117, 122] [53, 58] [52, 55]
13 JPL1 [167, 171] [61, 65] [118, 122] [108, 111] [64, 68] [57, 61]
14 JPL2 [169, 173] [60, 65] [119, 121] [109, 113] [63, 69] [57, 62]
15 JPL3 [169, 170] [59, 65] [116, 121] [110, 112] [62, 68] [59, 63]
16 KHA1 [149, 156] [54, 59] [112, 116] [105, 111] [54, 58] [48, 51]
17 KHA2 [149, 155] [52, 58] [111, 113] [105, 111] [54, 58] [49, 53]
18 KHA3 [150, 157] [52, 60] [109, 113] [105, 111] [55, 60] [49, 53]
19 LOT1 [153, 158] [51, 56] [117, 120] [115, 117] [55, 60] [53, 57]
20 LOT2 [155, 158] [52, 56] [118, 120] [114, 117] [58, 61] [54, 58]
21 LOT3 [155, 158] [50, 55] [118, 120] [114, 117] [57, 61] [55, 58]
22 PHI1 [163, 167] [66, 68] [115, 120] [116, 121] [61, 65] [57, 60]
23 PHI2 [164, 168] [65, 68] [115, 120] [115, 121] [61, 67] [55, 62]
24 PHI3 [161, 167] [64, 69] [117, 119] [115, 119] [62, 69] [57, 60]
25 ROM1 [167, 171] [64, 68] [124, 127] [123, 126] [51, 55] [50, 54]
26 ROM2 [168, 172] [63, 68] [122, 127] [124, 127] [50, 57] [50, 57]
27 ROM3 [167, 171] [63, 68] [122, 127] [123, 128] [49, 57] [51, 60]

same subject. Further discussion of the data can be found in Leroy et al. (1996) and Billard

et al. (2007).
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We first computed the symbolic covariance matrix for the Face Recognition data of Table

3.12 based on Equation (3.1). The variance-covariance matrix is

S =



46.80 21.47 23.78 41.13 −0.10 5.47

21.01 11.09 19.67 4.71 5.98

80.67 59.28 −12.18 −27.67

88.27 −17.90 −12.87

18.00 13.72

22.87


. (3.27)

Matrix S of Equation (3.27) shows that AH and DH have the largest variance, 80.67 and

88.27, respectively. Variables BC, HE, and HG have variance of similar size, 21.01, 18.00,

and 22.87, respectively. Equation (3.28) gives the correlation matrix of the Face Recognition

dataset using the symbolic covariance matrix of Equation (3.27) as follows,

R =



1 0.6846 0.3871 0.6400 −0.0034 0.1672

1 0.2693 0.4567 0.2423 0.2729

1 0.7025 −0.3197 −0.6443

1 −0.4490 −0.2865

1 0.6762

1


. (3.28)

The correlation matrix of Equation (3.28) shows strong correlation between AD and BC with

a coefficient of 0.6846, AD and and DH with a coefficient of 0.6400. Variable AH is positively

correlated with DH with a coefficient of 0.7025 and AH is negatively correlated with HG

with a coefficient of -0.6443. In addition, HE and HG are correlated with a coefficient of

0.6762. With information about the correlation structure of the Face data, we proceed with

computing the principal components based on the symbolic correlation matrix of the Face

Recognition data.
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Table 3.13: Principal Component Coefficients and Variance Proportion of Face Recognition
Data Based on Symbolic Covariance Method

Variable PC1 PC2 PC3 PC4 PC5 PC6
AD -0.3894 0.4425 -0.2516 -0.3450 0.6801 0.0874
BC -0.2783 0.5368 0.1148 0.7844 -0.0627 -0.0435
AH -0.5177 -0.1067 0.5796 -0.2317 -0.0565 -0.5726
DH -0.5491 0.0888 -0.2282 -0.2502 -0.6366 0.4130
HE 0.3165 0.4562 0.6603 -0.2788 -0.0662 0.4166
HG 0.3181 0.5372 -0.3154 -0.2676 -0.3473 -0.5644
Proportion of Variance 0.4621 0.3442 0.0992 0.0491 0.0368 0.0087
Cumulative Proportion 0.4621 0.8063 0.9055 0.9545 0.9913 1.0000

Analysis results

Now, we apply the proposed symbolic covariance PCA method to the Face Recognition data

of Table 3.12. The coefficients and the proportion of variation explained by the principal

components are listed in Table 3.13. The first principal component explains 46.21% and the

second principal component explains another 34.42% of the overall variability in the data.

Together they account for more than 80% of the total variation in the data. The biggest

contributors to the first principal component include AH and DH with coefficients of -0.5177

and -0.5491, respectively. Variables AH and DH give measurements along the length of a

face as shown in Figure 3.34. Therefore, longer faces have smaller PC1 values. The second

principal component is composed of AD, BC, HE, and HG with coefficients of 0.4425, 0.5368,

0.4562, and 0.5372, respectively. Variables AD, BC, HE, and HG measure points spread along

the width of the face. Therefore, wider faces have larger PC2 values.

With the first two principal components explaining 80% of the total variation in the data,

a plot of observations along the PC1 and PC2 axes should reveal important features in the

data. A plot of the symbolic PC1 × PC2 for the Face Recognition data is shown in Figure

3.35. Observations are colored by person. The polygons representing the observations are
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labeled by person in the same order as they are listed in Table 3.12. That is, person one is

FRA, person two is HUS, person three is INC, and so on.

Figure 3.35: Plot of PC1 × PC2 for Face Recognition Fata Based on Symbolic Covariance
Method (Color Represents Person)

An immediate observation from Figure 3.35 is that sets of three faces belonging to the

same person group together. Faces of the nine subjects form five distint groups. Figure

3.35 indicates that HUS (person 2), JPL (person 5), and PHI (person 8) have similar facial

features. All three subjects have wide faces of medium length. Subjects KHA (6) and LOT

(7) have similar features. Their faces are narrow with medium length. The person with the

longest face seems to be ROM (9). Whereas, ISA (4) has a long and narrow face which is

distinct from all others. The last group is formed by FRA (1) and INC (3). Both of these

subjects have short faces of medium width. However, measurements of INC’s face have higher

variability than do measurements of FRA’s.

The correlations between the principal components and the random variables are shown

in Table 3.14. The correlation coefficients of -0.8620 and -0.9143 indicate a strong negative

correlation between PC1 and AH and DH. Again, AH and DH are measurements along the
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Table 3.14: Correlation Between Principal Components and Random Variables of Face Recog-
nition Data Based on Symbolic Covariance Method

Variable PC1 PC2 PC3 PC4 PC5 PC6
AD -0.6484 0.6359 -0.1941 -0.1872 0.3195 0.0200
BC -0.4634 0.7715 0.0885 0.4257 -0.0294 -0.0099
AH -0.8620 -0.1534 0.4471 -0.1257 -0.0266 -0.1307
DH -0.9143 0.1277 -0.1761 -0.1358 -0.2991 0.0943
HE 0.5270 0.6557 0.5094 -0.1513 -0.0311 0.0951
HG 0.5296 0.7720 -0.2433 -0.1452 -0.1631 -0.1289

length of the face. Therefore, PC1 is correlated to face length. Correlation coefficients of

0.6359 for AD, 0.7715 for BC, 0.6557 for HE, and 0.7720 for HG in the second principal

component column indicate strong positive correlation between PC2 and these variables

which measure the horizontal span of the face. Hence, PC2 is correlated to face width. The

conclusions about the first two principal components drawn from the correlation coefficients

of Table 3.14 agree with our conclusions from the coefficients of the principal components

shown in Table 3.13.

After exploring the coefficients and the plot of the observations on a PC1 × PC2 plane,

we computed the histogram-valued principal components based on the PC1 × PC2 plot of

the Face data. The principal components in Table 3.15 can be used as input into a model

for further analysis.

Table 3.15: Histogram for the First Principal Component of the Face Recognition Data Based

on Symbolic Covariance Method

i Frequency Histogram for the First Principal Component

1 {[1.74, 1.92), 0.06; [1.92, 1.98), 0.04; [1.98, 2.03), 0.05; [2.03, 2.17), 0.15; [2.17, 2.30), 0.17;

[2.30, 2.33), 0.04; [2.33, 2.46), 0.17; [2.46, 2.60), 0.15; [2.60, 2.66), 0.05; [2.66, 2.71), 0.04;

Continued on next page
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Table 3.15 – continued from previous page

i Frequency Histogram for the First Principal Component

[2.71, 2.89], 0.06}

2 {[1.13, 1.37), 0.06; [1.37, 1.53), 0.10; [1.53, 1.56), 0.02; [1.56, 1.73), 0.15; [1.73, 1.90), 0.16;

[1.90, 1.91), 0.01; [1.91, 2.07), 0.16; [2.07, 2.25), 0.15; [2.25, 2.28), 0.02; [2.28, 2.44), 0.10;

[2.44, 2.67], 0.06}

3 {[0.87, 1.23), 0.06; [1.23, 1.26), 0.01; [1.26, 1.61), 0.17; [1.61, 1.63), 0.01; [1.63, 1.97), 0.21;

[1.97, 2.10), 0.08; [2.10, 2.44), 0.21; [2.44, 2.46), 0.01; [2.46, 2.81), 0.17; [2.81, 2.84), 0.01;

[2.84, 3.20], 0.06}

4 {[−1.10,−0.83), 0.08; [−0.83,−0.81), 0.01; [−0.81,−0.58), 0.19; [−0.58,−0.50), 0.08;

[−0.50,−0.45), 0.05; [−0.45,−0.29), 0.18; [−0.29,−0.24), 0.05; [−0.24,−0.17), 0.08;

[−0.17, 0.06), 0.19; [0.06, 0.08), 0.01; [0.08, 0.35], 0.08}

5 {[−1.41,−1.16), 0.04; [−1.16,−0.99), 0.07; [−0.99,−0.86), 0.07; [−0.86,−0.61), 0.17;

[−0.61,−0.56), 0.04; [−0.56,−0.28), 0.22; [−0.28,−0.23), 0.04; [−0.23, 0.02), 0.17;

[0.02, 0.14), 0.07; [0.14, 0.31), 0.07; [0.31, 0.57], 0.04}

6 {[−1.45,−1.32), 0.01; [−1.32,−0.96), 0.15; [−0.96,−0.85), 0.07; [−0.85,−0.71), 0.11;

[−0.71,−0.53), 0.15; [−0.53,−0.52), 0.01; [−0.52,−0.34), 0.15; [−0.34,−0.19), 0.11;

[−0.19,−0.09), 0.07; [−0.09, 0.27), 0.15; [0.27, 0.40], 0.01}

7 {[2.35, 2.63), 0.07; [2.63, 2.78), 0.09; [2.78, 2.91), 0.11; [2.91, 3.06), 0.14; [3.06, 3.07), 0.01;

[3.07, 3.22), 0.15; [3.22, 3.23), 0.01; [3.23, 3.38), 0.14; [3.38, 3.51), 0.11; [3.51, 3.66), 0.09;

[3.66, 3.94], 0.07}

8 {[1.25, 1.73), 0.08; [1.73, 1.80), 0.03; [1.80, 2.09), 0.13; [2.09, 2.41), 0.19; [2.41, 2.62), 0.13;

[2.62, 2.96), 0.19; [2.96, 3.24), 0.13; [3.24, 3.31), 0.03; [3.31, 3.79], 0.08}

9 {[1.83, 2.07), 0.03; [2.07, 2.40), 0.11; [2.40, 2.48), 0.04; [2.48, 2.75), 0.15; [2.75, 2.99), 0.15;

[2.99, 3.07), 0.05; [3.07, 3.31), 0.15; [3.31, 3.57), 0.15; [3.57, 3.66), 0.04; [3.66, 3.99), 0.11;

[3.99, 4.23], 0.03}

Continued on next page
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Table 3.15 – continued from previous page

i Frequency Histogram for the First Principal Component

10 {[−2.18,−2.02), 0.04; [−2.02,−1.88), 0.09; [−1.88,−1.79), 0.08; [−1.79,−1.65), 0.15;

[−1.65,−1.63), 0.02; [−1.63,−1.45), 0.22; [−1.45,−1.43), 0.02; [−1.43,−1.29), 0.15;

[−1.29,−1.20), 0.08; [−1.20,−1.06), 0.09; [−1.06,−0.90], 0.04}

11 {[−2.00,−1.81), 0.03; [−1.81,−1.70), 0.06; [−1.70,−1.58), 0.08; [−1.58,−1.33), 0.21;

[−1.33,−1.30), 0.03; [−1.30,−1.12), 0.17; [−1.12,−1.09), 0.03; [−1.09,−0.85), 0.21;

[−0.85,−0.72), 0.08; [−0.72,−0.61), 0.06; [−0.61,−0.42], 0.03}

12 {[−2.29,−2.07), 0.04; [−2.07,−2.05), 0.01; [−2.05,−1.76), 0.15; [−1.76,−1.66), 0.07;

[−1.66,−1.43), 0.19; [−1.43,−1.33), 0.08; [−1.33,−1.10), 0.19; [−1.10,−1.00), 0.07;

[−1.00,−0.71), 0.15; [−0.71,−0.69), 0.01; [−0.69,−0.47], 0.04}

13 {[−0.88,−0.65), 0.07; [−0.65,−0.41), 0.19; [−0.41,−0.35), 0.06; [−0.35,−0.24), 0.12;

[−0.24,−0.14), 0.11; [−0.14,−0.03), 0.12; [−0.03, 0.03), 0.06; [0.03, 0.26), 0.19;

[0.26, 0.26), 0.00; [0.26, 0.50], 0.07}

14 {[−1.15,−0.87), 0.07; [−0.87,−0.85), 0.01; [−0.85,−0.62), 0.15; [−0.62,−0.39), 0.20;

[−0.39,−0.37), 0.02; [−0.37,−0.27), 0.10; [−0.27,−0.25), 0.02; [−0.25,−0.02), 0.20;

[−0.02, 0.21), 0.15; [0.21, 0.23), 0.01; [0.23, 0.51], 0.07}

15 {[−0.89,−0.66), 0.05; [−0.66,−0.52), 0.07; [−0.52,−0.46), 0.04; [−0.46,−0.34), 0.10;

[−0.34,−0.17), 0.15; [−0.17,−0.02), 0.15; [−0.02, 0.15), 0.15; [0.15, 0.27), 0.10;

[0.27, 0.33), 0.04; [0.33, 0.47), 0.07; [0.47, 0.70], 0.05}

16 {[−0.60,−0.45), 0.02; [−0.45,−0.30), 0.06; [−0.30,−0.15), 0.09; [−0.15, 0.05), 0.17;

[0.05, 0.07), 0.01; [0.07, 0.39), 0.28; [0.39, 0.40), 0.01; [0.40, 0.61), 0.17;

[0.61, 0.75), 0.09; [0.75, 0.90), 0.06; [0.90, 1.06], 0.02}

17 {[−0.35,−0.12), 0.04; [−0.12, 0.03), 0.07; [0.03, 0.21), 0.13; [0.21, 0.32), 0.10;

[0.32, 0.37), 0.04; [0.37, 0.66), 0.26; [0.66, 0.70), 0.04; [0.70, 0.82), 0.10;

[0.82, 1.00), 0.13; [1.00, 1.15), 0.07; [1.15, 1.37], 0.04}

Continued on next page
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Table 3.15 – continued from previous page

i Frequency Histogram for the First Principal Component

18 {[−0.43,−0.15), 0.04; [−0.15, 0.06), 0.09; [0.06, 0.19), 0.07; [0.19, 0.40), 0.14;

[0.40, 0.46), 0.04; [0.46, 0.77), 0.23; [0.77, 0.83), 0.04; [0.83, 1.04), 0.14;

[1.04, 1.16), 0.07; [1.16, 1.38), 0.09; [1.38, 1.66], 0.04}

19 {[−0.73,−0.49), 0.06; [−0.49,−0.44), 0.03; [−0.44,−0.19), 0.21; [−0.19,−0.15), 0.04;

[−0.15,−0.02), 0.15; [−0.02, 0.01), 0.03; [0.01, 0.15), 0.15; [0.15, 0.18), 0.04;

[0.18, 0.43), 0.21; [0.43, 0.49), 0.03; [0.49, 0.73], 0.06}

20 {[−0.48,−0.24), 0.09; [−0.24,−0.23), 0.01; [−0.23,−0.06), 0.17; [−0.06,−0.02), 0.05;

[−0.02, 0.10), 0.16; [0.10, 0.12), 0.02; [0.12, 0.24), 0.16; [0.24, 0.29), 0.05;

[0.29, 0.46), 0.17; [0.46, 0.47), 0.01; [0.47, 0.70], 0.09}

21 {[−0.42,−0.24), 0.04; [−0.24,−0.12), 0.08; [−0.12, 0.05), 0.17; [0.05, 0.09), 0.04;

[0.09, 0.21), 0.16; [0.21, 0.34), 0.16; [0.34, 0.37), 0.04; [0.37, 0.54), 0.17;

[0.54, 0.67), 0.08; [0.67, 0.84], 0.04}

22 {[−1.52,−1.39), 0.02; [−1.39,−1.33), 0.03; [−1.33,−1.17), 0.11; [−1.17,−1.01), 0.15;

[−1.01,−0.88), 0.13; [−0.88,−0.76), 0.13; [−0.76,−0.63), 0.13; [−0.63,−0.47), 0.15;

[−0.47,−0.30), 0.11; [−0.30,−0.24), 0.03; [−0.24,−0.12], 0.02}

23 {[−1.68,−1.50), 0.03; [−1.50,−1.27), 0.09; [−1.27,−0.93), 0.21; [−0.93,−0.80), 0.10;

[−0.80,−0.64), 0.13; [−0.64,−0.51), 0.10; [−0.51,−0.18), 0.21; [−0.18, 0.05), 0.09;

[0.05, 0.24], 0.03}

24 {[−1.38,−1.15), 0.04; [−1.15,−1.08), 0.03; [−1.08,−0.74), 0.21; [−0.74,−0.61), 0.11;

[−0.61,−0.49), 0.11; [−0.49,−0.37), 0.11; [−0.37,−0.24), 0.11; [−0.24, 0.10), 0.21;

[0.10, 0.16), 0.03; [0.16, 0.40], 0.04}

25 {[−3.69,−3.44), 0.08; [−3.44,−3.42), 0.02; [−3.42,−3.21), 0.18; [−3.21,−3.16), 0.05;

[−3.16,−3.01), 0.17; [−3.01,−3.00), 0.01; [−3.00,−2.85), 0.17; [−2.85,−2.80), 0.05;

[−2.80,−2.59), 0.18; [−2.59,−2.56), 0.02; [−2.56,−2.32], 0.08}

Continued on next page
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Table 3.15 – continued from previous page

i Frequency Histogram for the First Principal Component

26 {[−3.88,−3.58), 0.06; [−3.58,−3.41), 0.08; [−3.41,−3.35), 0.03; [−3.35,−3.17), 0.12;

[−3.17,−2.90), 0.21; [−2.90,−2.89), 0.01; [−2.89,−2.61), 0.21; [−2.61,−2.43), 0.12;

[−2.43,−2.37), 0.03; [−2.37,−2.20), 0.08; [−2.20,−1.90], 0.06}

27 {[−3.81,−3.51), 0.04; [−3.51,−3.28), 0.09; [−3.28,−3.18), 0.05; [−3.18,−2.97), 0.11;

[−2.97,−2.69), 0.18; [−2.69,−2.59), 0.07; [−2.59,−2.31), 0.18; [−2.31,−2.10), 0.11;

[−2.10,−2.00), 0.05; [−2.00,−1.77), 0.09; [−1.77,−1.47], 0.04}

Table 3.16: Histogram for the Second Principal Component of Face Recognition Data Based

on Symbolic Covariance Method

i Frequency Histogram for the Second Principal Component

1 {[0.23, 0.34), 0.05; [0.34, 0.69), 0.25; [0.69, 1.10), 0.38; [1.10, 1.45), 0.25;

[1.45, 1.57), 0.05}

2 {[−0.18, 0.05), 0.07; [0.05, 0.20), 0.07; [0.20, 0.45), 0.16; [0.45, 1.02), 0.39;

[1.02, 1.27), 0.16; [1.27, 1.41), 0.07; [1.41, 1.65), 0.07}

3 {[−0.53,−0.45), 0.01; [−0.45, 0.00), 0.14; [0.00, 0.05), 0.02; [0.05, 0.70), 0.33;

[0.70, 0.72), 0.01; [0.72, 1.38), 0.33; [1.38, 1.42), 0.02; [1.42, 1.87), 0.14;

[1.87, 1.95), 0.01}

4 {[0.40, 0.63), 0.08; [0.63, 0.87), 0.12; [0.87, 1.20), 0.24; [1.20, 1.33), 0.11;

[1.33, 1.66), 0.24; [1.66, 1.89), 0.12; [1.89, 2.13), 0.08}

5 {[0.61, 0.64), 0.01; [0.64, 0.94), 0.09; [0.94, 1.24), 0.14; [1.24, 1.43), 0.11;

[1.43, 1.96), 0.31; [1.96, 2.15), 0.11; [2.15, 2.45), 0.14; [2.45, 2.76), 0.09;

[2.76, 2.79), 0.01}

Continued on next page
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i Frequency Histogram for the Second Principal Component

6 {[0.49, 0.90), 0.13; [0.90, 0.97), 0.03; [0.97, 1.15), 0.09; [1.15, 1.98), 0.47;

[1.98, 2.16), 0.09; [2.16, 2.22), 0.03; [2.22, 2.64), 0.13}

7 {[−0.88,−0.54), 0.09; [−0.54,−0.47), 0.03; [−0.47, 0.00), 0.28; [0.00, 0.28), 0.20;

[0.28, 0.76), 0.28; [0.76, 0.83), 0.03; [0.83, 1.16), 0.09}

8 {[−2.36,−2.04), 0.05; [−2.04,−1.37), 0.19; [−1.37,−0.98), 0.16; [−0.98,−0.57), 0.19;

[−0.57,−0.18), 0.16; [−0.18, 0.48), 0.19; [0.48, 0.81), 0.05}

9 {[−1.38,−1.01), 0.09; [−1.01,−0.65), 0.13; [−0.65,−0.55), 0.04; [−0.55, 0.45), 0.45;

[0.45, 0.55), 0.04; [0.55, 0.92), 0.13; [0.92, 1.29), 0.09}

10 {[−1.92,−1.66), 0.12; [−1.66,−1.59), 0.05; [−1.59,−1.31), 0.22; [−1.31,−1.07), 0.22;

[−1.07,−0.80), 0.22; [−0.80,−0.73), 0.05; [−0.73,−0.47), 0.12}

11 {[−1.79,−1.44), 0.14; [−1.44,−1.35), 0.06; [−1.35,−1.13), 0.16; [−1.13,−0.77), 0.28;

[−0.77,−0.55), 0.16; [−0.55,−0.46), 0.06; [−0.46,−0.11), 0.14}

12 {[−1.97,−1.92), 0.01; [−1.92,−1.60), 0.12; [−1.60,−1.31), 0.17; [−1.31,−1.13), 0.13;

[−1.13,−0.95), 0.14; [−0.95,−0.76), 0.13; [−0.76,−0.48), 0.17; [−0.48,−0.17), 0.12;

[−0.15,−0.10), 0.01}

13 {[0.68, 0.92), 0.10; [0.92, 1.10), 0.11; [1.10, 1.39), 0.23; [1.39, 1.50), 0.10;

[1.50, 1.79), 0.23; [1.79, 1.97), 0.11; [1.97, 2.22), 0.10}

14 {[0.58, 0.85), 0.07; [0.85, 1.26), 0.20; [1.26, 1.43), 0.11; [1.43, 1.74), 0.22;

[1.74, 1.91), 0.11; [1.91, 2.32), 0.20; [2.32, 2.58), 0.07}

15 {[0.58, 0.62), 0.01; [0.62, 0.65), 0.01; [0.65, 1.32), 0.33; [1.32, 1.35), 0.02;

[1.35, 1.72), 0.26; [1.72, 1.74), 0.02; [1.74, 2.42), 0.33; [2.42, 2.44), 0.01;

[2.44, 2.49), 0.01}

16 {[−3.33,−3.29), 0.01; [−3.29,−2.88), 0.18; [−2.88,−2.86), 0.01; [−2.86,−2.60), 0.18;

[−2.60,−2.29), 0.24; [−2.29,−2.03), 0.18; [−2.03,−2.02), 0.01; [−2.02,−1.62), 0.18;

Continued on next page
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i Frequency Histogram for the Second Principal Component

[−1.62,−1.56), 0.01}

17 {[−3.42,−3.03), 0.13; [−3.03,−2.97), 0.03; [−2.97,−2.59), 0.23; [−2.59,−2.31), 0.20;

[−2.31,−1.93), 0.23; [−1.93,−1.87), 0.03; [−1.87,−1.48), 0.13}

18 {[−3.18,−2.73), 0.13; [−2.73,−2.70), 0.01; [−2.70,−2.23), 0.23; [−2.23,−1.78), 0.25;

[−1.78,−1.31), 0.23; [−1.31,−1.28), 0.01; [−1.28,−0.83), 0.13}

19 {[−2.70,−2.39), 0.11; [−2.39,−2.26), 0.07; [−2.26,−1.86), 0.30; [−1.86,−1.82), 0.03;

[−1.82,−1.42), 0.30; [−1.42,−1.29), 0.07; [−1.29,−0.98), 0.11}

20 {[−2.09,−1.89), 0.08; [−1.89,−1.77), 0.08; [−1.77,−1.42), 0.31; [−1.42,−1.37), 0.05;

[−1.37,−1.02), 0.31; [−1.02,−0.89), 0.08; [−0.89,−0.70), 0.08}

21 {[−2.32,−2.12), 0.07; [−2.12,−1.84), 0.17; [−1.84,−1.55), 0.25; [−1.55,−1.26), 0.25;

[−1.26,−0.98), 0.17; [−0.98,−0.79), 0.07}

22 {[0.71, 0.76), 0.01; [0.76, 1.02), 0.15; [1.02, 1.23), 0.18; [1.23, 1.26), 0.02;

[1.26, 1.55), 0.28; [1.55, 1.57), 0.02; [1.57, 1.79), 0.18; [1.79, 2.04), 0.15;

[2.04, 2.09), 0.01}

23 {[0.46, 0.51), 0.01; [0.51, 0.77), 0.09; [0.77, 1.13), 0.18; [1.13, 1.20), 0.04;

[1.20, 1.83), 0.38; [1.83, 1.89), 0.04; [1.89, 2.25), 0.18; [2.25, 2.51), 0.09;

[2.51, 2.57), 0.01}

24 {[0.40, 0.78), 0.11; [0.78, 1.15), 0.19; [1.15, 1.36), 0.14; [1.36, 1.55), 0.13;

[1.55, 1.76), 0.14; [1.76, 2.13), 0.19; [2.13, 2.51), 0.11}

25 {[−1.11,−0.85), 0.11; [−0.85,−0.75), 0.06; [−0.75,−0.38), 0.28; [−0.38,−0.29), 0.09;

[−0.29, 0.08), 0.28; [0.08, 0.18), 0.06; [0.18, 0.44), 0.11}

26 {[−1.21,−0.98), 0.05; [−0.98,−0.46), 0.21; [−0.46,−0.40), 0.03; [−0.40, 0.33), 0.39;

[0.33, 0.39), 0.03; [0.39, 0.90), 0.21; [0.90, 1.13), 0.05}

27 {[−1.25,−0.99), 0.05; [−0.99,−0.42), 0.20; [−0.42,−0.40), 0.01; [−0.40, 0.64), 0.46;

Continued on next page
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i Frequency Histogram for the Second Principal Component

[0.64, 0.66), 0.01; [0.66, 1.24), 0.20; [1.24, 1.49), 0.05}

Comparison of symbolic covariance, vertices, centers, and classical PCA

To compare the results of our proposed method to other PCA methods, we apply the vertices

method, the centers method, and the classical PCA method to the Face Recognition data of

Table 3.12. In the Iris data example, there was an extensive discussion of the differences in

the correlation structure between the symbolic covariance method, the vertices method, the

centers method, and the classical PCA using the midpoints and the endpoints. The general

differences also apply in this example so we only discus the plots resulting from the principal

components of these methods. However, the covariance and the correlation matrices along

with tables of coefficients of the principal components for the vertices, the centers, and the

classical PCA methods are included in the appendix.

Figure 3.36 shows the MCAR’s representing faces on the PC1× PC2 plane for the vertices

method and Figure 3.37 shows faces for the centers method. These plots show a similar

pattern and similar position for the observations. We can also see that sets of observations

belonging to a person are close together. However, all groups are connected to some other

group. They do not form distinct clusters as revealed in Figure 3.35. This is a result of

overlap caused by the maximum covering area rectangles in the vertices and the centers

methods. For example, observations belonging to ISA (person 4) have distinct features and

form a cluster completely separated from the others in the symbolic covariance plot of Figure

3.35. In contrast, in Figures 3.36 and 3.37, observations belonging to ISA are connected to

observations belonging to ROM (9) on their left and observations belonging to KHA (6) and

LOT (7) on their right. Moreover, a large intersection between observations of FRA (1) and
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Figure 3.36: Plot of PC1 × PC2 for Face Recognition Data Based on Vertices Method (Color
Represents Person)

Figure 3.37: Plot of PC1 × PC2 for Face Recognition Data Based on Centers Method (Color
Represents Person)
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INC (3) in Figure 3.36 and Figure 3.37 turns out to be much less significant in Figure 3.35

which shows the projection of the true observations onto the symbolic PC1 × PC2 plane.

Our proposed presentation of interval-valued observations shows more clearly the clusters of

observations.

Figure 3.38: Plot of PC1 × PC2 for Face Recognition Data Based on Classical PCA Using
Midpoints (Color Represent Person)

Figure 3.38 shows points representing observations along the PC1 and PC2 axes based

on the classical PCA method using the midpoints. Figure 3.39 shows points representing

observations along the PC1 and PC2 axes based on the classical PCA method using the

endpoints. Both plots show identical pattern of grouping of points on slightly different scales.

Figures 3.38 and 3.39 clearly show five distinct clusters as seen in Figure 3.35 of the symbolic

covariance method. However, a closer look at the group of points with the largest PC1

values indicates this cluster can be further separated into two or even three groups. Without

the whole structure of an observation, the points seem more separated. One of the points

representing INC (3) is as far away from the other points belonging to INC as points belonging

to FRA (1). However, with the shape and direction of rotation for the observations clearly
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Figure 3.39: Plot of PC1 × PC2 for Face Recognition Data Based on Classical PCA Using
Endpoints (Color Represents Person)

shown in the plot of Figure 3.35, we can see that all three observations belonging to INC

are mostly intersected while the overlap between observations belonging to FRA and INC is

very small.

Another feature that can not be discerned from the plots of classical PCA of Figures

3.38 and 3.39 is the size of the observation. For example, observations belonging to KHA

(6) and LOT (7) form a cluster in Figures 3.38 and 3.39. All points in this cluster have the

same size. However, the symbolic PC1 × PC2 plot of Figure 3.35 shows that the structure

of observations belonging to LOT (7) is much smaller than is the structure of observations

belonging to KHA (6). In fact, the size of observations belonging to LOT is half the size of

observations belonging to KHA.

Comparison of the symbolic covariance, the vertices, the centers, and the classical PCA

methods shows that the principal components constructed from the symbolic covariance
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method maximize the total variation in the data. Plots of interval-valued observations on a

principal components plane as polygons resulting from projecting the observations onto the

PC planes give clearer features of the observations. These plots also show the size, shape,

and direction of rotation for the data which can not be discerned on plots based on the

vertices, the centers, and the classical PCA methods.
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Appendix

Tables of covariance, correlation, and coefficients of the principal components resulting from

the vertices, the centers, and the classical PCA methods are included in this section.

Table 3.17: Vertices Covariance Matrix for Face Recognition Data

50.91 19.95 22.46 39.26 0.14 5.70
25.48 11.23 18.69 3.33 4.63

83.31 58.55 -13.29 -24.64
91.58 -17.39 -10.25

22.60 12.41
27.27

Table 3.18: Vertices Correlation Matrix for Face Recognition Data

1 0.5540 0.3450 0.5750 0.0041 0.1529
1 0.2438 0.3869 0.1386 0.1757

1 0.6703 -0.3063 -0.5171
1 -0.3822 -0.2051

1 0.4999
1

Table 3.19: Principal Component Coefficients and Variance Proportion of Face Recognition
Data Based on Vertices Method

Variable PC1 PC2 PC3 PC4 PC5 PC6
AD -0.403 0.439 -0.214 -0.257 0.723 0.104
BC -0.306 0.497 0.175 0.779 -0.146
AH -0.523 -0.147 0.463 -0.273 -0.248 0.595
DH -0.557 -0.206 -0.283 -0.423 -0.620
HE 0.297 0.466 0.700 -0.329 -0.311
HG 0.268 0.563 -0.421 -0.253 -0.465 0.392
Proportion 0.427 0.300 0.107 0.079 0.056 0.031
Cumulative 0.427 0.726 0.833 0.913 0.969 1.000
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Table 3.20: Correlation between Principal Components and Random Variables of Face Recog-
nition Data Based on Vertices Method

Variable PC1 PC2 PC3 PC4 PC5 PC6
AD -0.6445 0.5889 -0.1717 -0.1771 0.4183 0.0453
BC -0.4903 0.6662 0.1402 0.5375 -0.0845
AH -0.8372 -0.1968 0.3707 -0.1883 -0.1437 0.2584
DH -0.8914 -0.1648 -0.1954 -0.2447 -0.2689
HE 0.4747 0.6248 0.5608 -0.2268 -0.1351
HG 0.4284 0.7555 -0.3377 -0.1746 -0.2689 0.1700

Table 3.21: Centers Covariance Matrix for Face Recognition Data

44.75 19.95 22.46 39.26 0.14 5.70
18.78 11.23 18.69 3.33 4.63

79.35 58.55 -13.29 -24.64
86.62 -17.39 -10.25

15.70 12.41
20.67

Table 3.22: Centers Correlation Matrix for Face Recognition Data

1 0.6883 0.3770 0.6306 0.0052 0.1873
1 0.2910 0.4635 0.1937 0.2351

1 0.7062 -0.3765 -0.6086
1 -0.4716 -0.2423

1 0.6889
1

Table 3.23: Principal Component Coefficients and Variance Proportion of Face Recognition
Data Based on Centers Method

Variable PC1 PC2 PC3 PC4 PC5 PC6
AD -0.383 0.453 -0.235 -0.165 0.752
BC -0.297 0.515 0.189 0.743 -0.238
AH -0.517 -0.115 0.565 -0.331 -0.535
DH -0.545 -0.277 -0.339 -0.511 0.492
HE 0.334 0.458 0.628 -0.310 0.433
HG 0.299 0.546 -0.345 -0.316 -0.335 -0.530
Proportion 0.465 0.341 0.091 0.054 0.039 0.010
Cumulative 0.465 0.805 0.897 0.951 0.990 1.000
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Table 3.24: Correlation between Principal Components and Random Variables of Face Recog-
nition Data Based on Centers Method

Variable PC1 PC2 PC3 PC4 PC5 PC6
AD -0.640 0.648 -0.174 -0.094 0.364
BC -0.496 0.736 0.140 0.423 -0.115
AH -0.863 -0.164 0.418 -0.189 -0.134
DH -0.910 -0.205 -0.193 -0.247 0.123
HE 0.558 0.655 0.464 -0.177 0.108
HG 0.499 0.781 -0.255 -0.180 -0.162 -0.132

Table 3.25: Classical Correlation Matrix for Face Recognition Data using Endpoints

1 0.98 0.70 0.65 0.37 0.42 0.64 0.62 -0.03 0.07 0.15 0.23
1 0.69 0.66 0.33 0.37 0.62 0.62 -0.06 0.04 0.11 0.22

1 0.95 0.30 0.34 0.51 0.52 0.14 0.23 0.19 0.28
1 0.23 0.27 0.38 0.40 0.12 0.26 0.16 0.26

1 0.99 0.70 0.69 -0.35 -0.37 -0.56 -0.64
1 0.71 0.71 -0.37 -0.37 -0.55 -0.61

1 0.99 -0.43 -0.46 -0.21 -0.22
1 -0.47 -0.48 -0.27 -0.25

1 0.92 0.75 0.57
1 0.69 0.63

1 0.90
1

Table 3.26: Principal Component Coefficients and Variance Proportion of Face Recognition
Data Based on Classical Method Using Endpoints

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

AD
-0.28 -0.32 0.14 0.51
-0.28 -0.31 0.20 0.54 -0.18

BC
-0.23 -0.36 -0.11 0.39 -0.31 -0.61
-0.20 -0.36 -0.13 0.57 -0.20 -0.20 0.54

AH
-0.36 0.10 -0.43 -0.21 0.33
-0.37 -0.40 -0.18 0.40

DH
-0.39 0.18 -0.33 -0.31 -0.23 0.15
-0.39 0.19 -0.24 -0.33 -0.33 0.30 0.11

EH
0.24 -0.31 -0.45 -0.29 -0.43 -0.30 -0.26
0.22 -0.35 -0.43 0.14 -0.11 0.62 0.33

GH
0.21 -0.38 0.13 -0.40 -0.25 0.25 -0.48 0.24
0.19 -0.40 0.31 -0.12 -0.14 0.51 0.39 -0.26

Proportion 0.46 0.33 0.09 0.06 0.04 0.01 0.01 0.00
Cumulative 0.46 0.79 0.88 0.93 0.97 0.99 0.99 1.00
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Table 3.27: Correlation between Principal Components and Random Variables of Face Recog-
nition Data Based on Classical Method Using Endpoints

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

AD
-0.65 -0.64 0.15 0.35
-0.65 -0.62 0.20 0.38 -0.07

BC
-0.54 -0.72 -0.11 0.33 -0.21 -0.13
-0.47 -0.71 -0.13 0.48 -0.14 -0.06 0.11

AH
-0.84 0.20 -0.44 -0.18 0.12
-0.87 -0.41 -0.15 0.15

DH
-0.90 0.19 -0.27 -0.21 -0.08 0.03
-0.92 0.19 -0.20 -0.23 -0.12 0.09 0.02

EH
0.55 -0.61 -0.47 -0.24 -0.16 -0.09 -0.05
0.51 -0.69 -0.45 0.10 -0.04 0.18 0.07

GH
0.49 -0.75 0.14 -0.33 -0.17 0.09 -0.14 0.05
0.45 -0.79 0.32 -0.10 -0.09 0.18 0.11 -0.05



Chapter 4

Principal Component Analysis for Histogram-Valued Data

In this chapter we propose a method of principal component analysis (PCA) for histogram-

valued observations. This method is the first such methodology developed for a principal

component analysis for histogram-valued data. It is a generalization of the PCA method

for interval-valued observations proposed in Chapter 3. This chapter is divided into four

sections. Some notation and statistics for histogram-valued data are given in Section 4.1.

Section 4.2 explains the basis for generalization of interval-valued data to histogram-valued

data. Section 4.3 gives an algorithm to compute the principal components for histogram-

valued observations along with detailed descriptions of the method. An example illustrating

the proposed method is given in Section 4.4.

4.1 Preliminaries

Section 2.1.3 gives a brief introduction to histogram-valued data as well as some descriptive

statistics for this type of data. In this section, we restate some notation and results necessary

for the development of our proposed method. A more extensive treatment of histogram-valued

data can be found in Billard and Diday (2003) and Billard and Diday (2006).

Let X be an n× p symbolic data matrix

X =



ξ11 ξ12 . . . ξ1p

ξ21 ξ22 . . . ξ2p

...
...

...
...

ξn1 ξn2 . . . ξnp


. (4.1)
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The matrix X is a histogram-valued data matrix if an element ij of X is a histogram ξij

defined in Equation (2.13), where i = 1, 2, . . . , n, and j = 1, 2, . . . , p. That is,

ξij =
{
[a1

ij, b
1
ij), p

1
ij; [a

2
ij, b

2
ij), p

2
ij; . . . ; [a

sij

ij , b
sij

ij ], p
sij

ij

}
,

where [al
ij, b

l
ij) is called the lth subinterval of ξij and pl

ij is the relative frequency associated

with the lth subinterval. Let sij denote the number of subintervals in histogram ξij. Then,

al
ij ≤ bl

ij for all l = 1, 2, . . . , sij and
∑sij

l=1 pl
ij = 1.

Billard and Diday (2003) gives the following empirical density function of a point W ∈

X(j) as defined in Equation (2.15),

fW (ξ) =
1

n

n∑
i=1

∑
l:ξ∈ξl

ij

pl
ij(

1

bl
ij − al

ij

).

The symbolic sample mean and the symbolic sample variance derived from the density

function of Equation (2.15) are given in Equations (2.16) and (2.17), respectively, as follow,

W̄ =
1

2n

n∑
i=1

sij∑
l=1

pl
ij(a

l
ij + bl

ij)

and

S2 =
1

3n

n∑
i=1

sij∑
l=1

pl
ij[(a

l
ij)

2 + al
ijb

l
ij + (bl

ij)
2]− 1

4n2

[
n∑

i=1

sij∑
l=1

pl
ij(a

l
ij + bl

ij)

]2

.

Billard and Diday (2006) extends the variance in equation (2.17) to the bivariate case to

obtain the empirical symbolic covariance for W(j) in X(j) and W(j′) in X(j′) defined in Equation

(2.18) as

Sjj′ =
1

3n

n∑
i=1

(
GijGij′

sij∑
l1=1

sij′∑
l2=1

pl1
ijp

l2
ij′ [Q

l1
ijQ

l2
ij′ ]

1/2

)
where

Q
lj
ij = (a

lj
ij − W̄(j))

2 + (a
lj
ij − W̄(j))(b

lj
ij − W̄(j)) + (b

lj
ij − W̄(j))

2,

Gij =

 −1, W̄ij ≤ W̄(j),

1, W̄ij > W̄(j),

and W̄ij = 1
2

∑sij

lj=1 p
lj
ij(a

lj
ij + b

lj
ij).
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If all subintervals of a histogram have equal relative frequencies, then p1
ij = p2

ij = . . . =

p
sij

ij . Let pij = p1
ij. Then,

∑sij

l=1 pl
ij = sijpij = 1. In this case, the histogram ξij as defined in

Equation (2.13) can be rewritten as

ξij = {[a1
ij, b

1
ij), pij; . . . ; [a

sij

ij , b
sij

ij ], pij}.

Since the relative frequency is the same for all subintervals, all values within the entire

histogram are uniformly distributed. Combining the subintervals into one interval gives

ξij = {[a1
ij, b

sij

ij ], sijpij} = {[a1
ij, b

sij

ij ], 1}

or simply ξij = [aij, bij] which is an interval with lower endpoint aij = a1
ij and upper endpoint

bij = b
sij

ij . Therefore, interval-valued data can be thought of as a special case of histogram-

valued data. Based on this special relationship between a histogram and an interval, we

propose a method of principal component analysis for histogram-valued data by generalizing

our proposed PCA method for interval-valued data presented in Chapter 3. In Section 4.2

of this chapter, we present details of this generalization. Section 4.3 includes two algorithms

to compute the principal components of a histogram-valued dataset. The first algorithm

reconstructs histogram-valued observations in a principal components space and the second

algorithm computes histogram-valued principal components for those observations.

4.2 Methodology

For ease of reference, the layout of this section mirrors that of Section 3.2. This section

is divided into two subsections. The first subsection, Subsection 4.2.1, explains how the

coefficients of the principal components are obtained. The second subsection, Subsection

4.2.2, explains the basis for extending our proposed PCA method for interval-valued data

to histogram-valued data. Subsection 4.2.2 is further divided into two parts. Part one of

Subsection 4.2.2 explores the geometric structure of a histogram-valued observation and its

relation to the structure of an interval-valued observation. It also explains how the algorithm



138

of Subsection 3.3.1 can be applied to histogram-valued observations. Part two of Subsection

4.2.2 describes the process of creating histogram-valued principal components.

4.2.1 Finding the coefficients of the principal components

In our proposed method, coefficients of the principal components for histogram-valued data

matrix X are obtained in the same manner as in classical and in interval-valued PCA. The

theory for coefficients of classical and interval-valued PCA carries through for histogram-

valued data. Therefore, the approach to finding the coefficients in this subsection mirrors

that of Subsection 3.2.2 with one exception; the symbolic covariance matrix, S, used in this

subsection is the sample variance-covariance matrix of a histogram-valued data matrix X

whose elements are as defined in Equation (2.13). That is, the sample variance-covariance of

X is given by

S =



S11 S12 . . . S1p

S21 S22 . . . S2p

...
...

. . .
...

Sp1 Sp2 . . . Spp


(4.2)

where Sjj′ is defined in Equation (2.18) and Sjj′ = Sj′j for j, j′ = 1, 2, . . . , p. Let λ̂S
1 > λ̂S

2 >

. . . > λ̂S
p be the eigenvalues of S and νS

1 , νS
2 , . . . ,νS

p be their corresponding eigenvectors. By

analogy, the vector of coefficients, also called the loadings, for the kth principal component

of X is νS
k .

Analogous to classical and interval-valued PCA, the magnitude of the jth element of νS
k ,

denoted by νS
jk, indicates the contribution of the variable X(j) to the principal component

Y(k). Therefore, the measure of correlation between an individual variable X(j) and a principal

component Y(k) for histogram-valued data is the same as that defined in Equation (3.3) for

interval-valued data which is given by,

ρX(j),Y(k)
=

νjk

√
λ̂S

k√
Sjj

. (4.3)
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Again, similar to the PCA method for interval-valued observations, assume X i, i =

1, . . . , n, is a random sample and n is large. Let W(j) be a point from X(j) for j = 1, 2, . . . , p. In

addition, assume W = (W(1), W(2), . . . ,W(p)) is from a normal population and the eigenvalues

of the population covariance matrix Σ are distinct and positive. Then, the asymtotic results

regarding λ̂k and νk stated in Section 2.2 carry through for λ̂S
k and νS

k for all k = 1, 2, . . . , p.

In situations where PCA based on the sample correlation is more appropriate, coefficients

for the kth principal component of X are then the eigenvector corresponding to the kth

eigenvalue of the sample correlation matrix R. The jj′ element of R, denoted by ρjj′ , is

ρjj′ =
Sjj′√
SjjSj′j′

. (4.4)

The measures of contribution to the principal components based on the correlation matrix

mirror the results for the principal components based on the sample covariance matrix.

4.2.2 Constructing the principal components

Due to the complexity of histogram-valued data, we describe the process for constructing

observations in a principal components space by working with one observation at a time.

That is, the method proposed in this section works on observation Xi for i = 1, 2, . . . , n, and

must be applied n times.

Geometric representation of histogram-valued observations

First, let Xi = (ξi1, ξi2, . . . , ξip) be a histogram-valued observation in a p-dimensional space.

As defined in Equation (2.13), each variable j, for j = 1, 2, . . . , p, is a histogram,

ξij = {([al
ij, b

l
ij), p

l
ij)|l = 1, 2, . . . , sij},

where sij is the number of subintervals. Since all points within each subinterval [al
ij, b

l
ij) of ξij

are assumed to have uniform density, the subinterval itself can be thought of as an interval-

valued variable with the relative frequency pl
ij as its weight. Thus, each histogram ξij can

be thought of as a compilation of sij observed intervals with associated weights. Based on



140

this idea, a histogram-valued observation Xi can be divided into r weighted interval-valued

observations where

r =

p∏
j=1

sij. (4.5)

As stated in Chapter 2, an interval-valued observation is represented by a hyper-

rectangle in a p-dimensional sample space whose density is uniform. Therefore, a histogram-

valued observation can be thought of as a hyper-rectangle that is partitioned into r sub-

hyperrectangles in the sample space. Each sub-hyperrectangle has uniform density. However,

the density may differ from one sub-hyperrectangle to the next.

Figure 4.1: Histogram-Valued Observation and Interval-Valued Observation

Figure 4.1 shows a rectangle representing a histogram-valued observation (left) versus one

representing an interval-valued observation (right) in a 2-dimensional space. Each variable

in the histogram-valued observation shown in this example has two subintervals. Therefore,

the rectangle representing this observation contains r = 4 sub-rectangles. The differences in

density for these sub-rectangles are illustrated by the different colors. Whereas, the rectangle

representing the interval-valued observation in this example is made up by only one rectangle,

with the uniformity of its density illustrated by a single color.

Having established that a histogram-valued observation can be represented by a hyper-

rectangle in the sample space, an observation Xi can be expressed in terms of its vertices.

That is, Xi has an equivalent expression as a (2pr × p) matrix, say Xv2
i , where r is the
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number of sub-hyperrectangles contained in observation Xi and is as defined in Equation

(4.5). Each row of Xv2
i is the coordinate of a vertex of a sub-hyperrectangle belonging to

Xi. Let Eij be the set of subinterval endpoints for histogram ξij. Then,

Eij = {a1
ij, b

1
ij, a

2
ij, b

2
ij, . . . , a

sij

ij , b
sij

ij }. (4.6)

The rows of Xv2
i include all possible permutations of the elements of Ei1, Ei2, . . . , Eip.

Without loss of generality, assume b
(l−1)
ij = al

ij for l = 1, . . . , sij. By eliminating redun-

dant subinterval endpoints, we obtain Eij = {a1
ij, a

2
ij, . . . , a

sij

ij , b
sij

ij }. For the consistency of

notation, let a
sij+1
ij = b

sij

ij . Then,

Eij = {al
ij|l = 1, 2, . . . , sij + 1}. (4.7)

Let Xv
i be the matrix whose rows include all possible permutations of the elements of

Ei1, Ei2, . . . , Eip defined in Equation (4.7). Then, Xv
i has Ni =

∏p
j=1 (sij + 1) rows whereas

Xv2
i has 2pr = 2p(

∏p
j=1 sij). The quantity

∏p
j=1 (sij + 1) is less than or equal to 2p(

∏p
j=1 sij).

The amount of difference between these two quantities depends on the number of subintervals

for each histogram ij and the number of variables, p. When sij = 1 for all j = 1, . . . , p,∏p
j=1 (sij + 1)

2p(
∏p

j=1 sij)
=

∏p
j=1 2

2p(
∏p

j=1 1)
=

2p

2p
= 1. (4.8)

When sij is large for most ξij, ∏p
j=1 (sij + 1)

2p(
∏p

j=1 sij)
→ 1

2p
. (4.9)

For example, when p = 2, suppose observation i is the histogram-valued observation

shown in Figure 4.2. Both variables of this example take histograms of values consisting

of two subintervals. Therefore, the matrix of vertices Xv
i represents the histogram-valued



142

Figure 4.2: Vertices of Histogram-Valued Observation and Interval-Valued Observation

rectangle in Figure 4.2 has Ni =
∏2

j=1 (2 + 1) = 9 rows and

Xv
i =



a1
i1 a1

i2

a1
i1 a2

i2

a1
i1 a3

i2

a2
i1 a1

i2

a2
i1 a2

i2

a2
i1 a3

i2

a3
i1 a1

i2

a3
i1 a2

i2

a3
i1 a3

i2



. (4.10)
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Thus, when p is large, it is more efficient to use the matrix of vertices Xv
i given by

Xv
i =



a1
i1 a1

i2 . . . a1
ip

a1
i1 a1

i2 . . . a2
ip

a1
i1 a1

i2 . . . a3
ip

...
...

...
...

a1
i1 a1

i2 . . . a
sip

ip

a1
i1 a1

i2 . . . a
sip+1
ip

...
...

...
...

a1
i1 a2

i2 . . . a1
ip

a1
i1 a2

i2 . . . a2
ip

a1
i1 a2

i2 . . . a3
ip

...
...

...
...

a1
i1 a2

i2 . . . a
sip

ip

a1
i1 a2

i2 . . . a
sip+1
ip

...
...

...
...

asi1+1
i1 asi2+1

i2 . . . a1
ip

asi1+1
i1 asi2+1

i2 . . . a2
ip

asi1+1
i1 asi2+1

i2 . . . a3
ip

...
...

...
...

asi1+1
i1 asi2+1

i2 . . . a
sip

ip

asi1+1
i1 asi2+1

i2 . . . a
sip+1
ip



. (4.11)

Now, the vertices belonging to observation i in the sample space which are represented by

the matrix of vertices Xv
i can be transformed into points in a principal components space.

Let Y v
i be the matrix consisting of these transformed vertices of observation i. That is,

Y v
i = Xv

i ν
S (4.12)

where νS = [νS
1 , νS

2 , . . . ,νS
p ] is the eigen matrix of the symbolic covariance matrix S of

Equation (4.2) if the PCA is based on the covariance structure of the data and νS is the
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eigen matrix of the symbolic correlation matrix R whose elements are defined in Equation

(4.4) if the PCA is based on the correlation structure of the data.

As explained in Subsection 3.2.2, a hyper-rectangle representing an interval-valued obser-

vation when transformed into a principal components space becomes a polytope. Similarly,

each sub-hyperrectangle belonging to a histogram-valued observation i becomes a polytope

in a principal component space. The vertices of the polytope are the transformed vertices of

the sub-hyperrectangle. The algorithm described in Subsection 3.3.1 reconstructs polytopes

for a set of n interval-valued observations. To construct the polytopes for a histogram-

valued observation i based on this algorithm, we treat the r sub-hyperrectangles belonging

to histogram-valued observation i as r interval-valued observations. That is, each histogram-

valued observation i is treated as a dataset of r interval-valued observations but with weights,

i.e., with densities, say dh
i , for h = 1, 2, . . . , r.

To apply the algorithm of Subsection 3.3.1 to a histogram-valued observation i, we need

to construct a matrix of vertices for each sub-hyperrectangle h belonging to observation i.

Let Xh
i be a matrix of vertices for sub-hyperrectangle h of observation i. Then, the rows of

Xh
i come from the matrix of vertices Xv

i . Detailed construction of matrix Xv
i and matrices

Xh
i is given in Subsections 4.3.1 and 4.3.2. Using the coordinates in Xh, algorithm 3.3.1 can

now be readily applied. To illustrate the construction of matrix Xh
i , go back to the example

of Figure 4.2. Observation i in this example is composed of four sub-rectangles.

When h = 1, i.e., for the first sub-rectangle, the matrix of vertices X1
i is given by

X1
i =



a1
i1 a1

i2

a1
i1 a2

i2

a2
i1 a1

i2

a2
i1 a2

i2


(4.13)
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which is a matrix consisting of rows 1, 2, 4, and 5 of matrix Xv
i in Equation (4.10).

When h = 2, i.e., for the second sub-rectangle, the matrix of vertices X2
i is given by

X2
i =



a1
i1 a2

i2

a1
i1 a3

i2

a2
i1 a2

i2

a2
i1 a3

i2


(4.14)

which is a matrix consisting of rows 2, 3, 5, and 6 of matrix Xv
i in Equation (4.10). Matrices

of vertices for the third and fourth sub-rectangle can be constructed in the same manner.

Although densities (or weights), dh
i for h = 1, 2, . . . , r, of the sub-hyperrectangles in

observation i vary, illustrating this variability presents some challenges. The first challenge

is due to the fact that only the surface of a hyper-rectangle is visible in a plot. Interior

points of a hyper-rectangle are shielded by the boundary points. Therefore, it is impossible

to illustrate the densities of the interior sub-hyperrectangles of a hyper-rectangle. Hence,

only densities of the sub-hyperrectangles formed by the first or the last subintervals can be

visualized. The second challenge includes computational complexity. If densities are specified

by different colors, then all polytopes must be filled with the color associated with their

density. Writing a program to automate this process is a time-consuming and a challenging

project. This can be a potential future project extended from this dissertation.

With the challenges presented in the previous paragraph in mind, we propose an alternate

approach to understand the variability in densities of the sub-hyperrectangles by constructing

a matrix of densities associated with the sub-hyperrectangles. Let di be an r-vector of den-

sities. Then, the hth element of di is the density of the hth sub-hyperrectangle of observation

i. For j = 1, 2, . . . , p, and lj = 1, 2, . . . , sij
ij,

dh
i =

p∏
j=1

p
lj
ij (4.15)

where h =
∑p−1

j=1 (lj − 1)si,j+1 + lp. That is, e.g., for h = 1, the first sub-hyperrectangle of

observation i is formed by the first subinterval of histograms ξij for all j = 1, . . . , p. Then
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lj = 1 for all j. Thus,

h =

p−1∑
j=1

(lj − 1)si,j+1 + lp = 0 + 1 = 1.

Hence, the first element of di is

d1
i =

p∏
j=1

p
lj
ij =

p∏
j=1

p1
ij.

Similarly, for h = 2, the second sub-hyperrectangle of observation i is formed by the first

subinterval of histograms ξij for all j = 1, . . . , p− 1, and the second subinterval of ξip. Then

lj = 1 for j = 1, . . . , p− 1, and lp = 2. Therefore,

h =

p−1∑
j=1

(lj − 1)si,j+1 + lp = 0 + 2 = 2.

Hence, the second element of di is

d2
i =

p∏
j=1

p
lj
ij =

(
p−1∏
j=1

p1
ij

)
p2

ip.

Other elements of di can be found the same way. Now, the value of dh
i is the density of the

sub-hyperrectangle whose vertices are expressed in matrix Xh
i . In addition to their usage

in constructing the polytopes for observation i in a principal components space, matrices

Xh
i for h = 1, 2, . . . , r and vector di are used in constructing histograms for the principal

components as explained in the second part of Subsection 4.2.2 as follows.

Histogram-valued principal components for histogram-valued observations

To construct histogram-valued principal components for histogram-valued observations, we

use the same approach used in constructing the polytopes of these observations, see part one

of Subsection 4.2.2 immediately above. We propose treating each histogram-valued observa-

tion i as itself a dataset. Each sub-hyperrectangle of observation i is treated as an interval-

valued observation in this dataset. Now, for the kth principal component, the algorithm

detailed in Subsection 3.3.2 can be applied to create r histograms for r sub-hyperrectangles

of observation i where r is as defined in Equation (4.5). Since observation i is composed of
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r sub-hyperrectangles, we propose combining the r histograms, constructed from the r sub-

hyperrectangles, into one histogram representing observation i. This is done in Section 4.3

where Subsection 4.3.2 describes specific steps involved in creating a histogram of histograms.

4.3 Algorithm

This section includes descriptions of two algorithms. The first algorithm, presented in Sub-

section 4.3.1, constructs matrices of vertices for histogram-valued observations and builds

polytopes representing these observations. The second algorithm, presented in Subsection

4.3.2, constructs histograms for the principal components of histogram-valued observations.

Similar to the algorithms proposed for interval-valued observations described in Section

3.3, the following algorithms are based on the assumption that coefficients for the principal

components have been determined from the proposed method described in Subsection 4.2.1.

The coefficients of the principal components are νS = [νS
1 , νS

2 , . . . ,νS
p ] where νS

k , k = 1, . . . , p,

are the eigenvectors of the covariance matrix S as defined in Equation (4.2) if the PCA is

based on the covariance structure of the data and νS
k , k = 1, . . . , p, are the eigenvectors of

the correlation matrix R whose elements are defined in Equation (4.4) if the PCA is based

on the correlation structure of the data.

In the following algorithms, we use the same indexing system as described in the algo-

rithms of Section 3.3. The position for an element of a vector, a matrix, or an array is

specified in a pair of square brackets, [ ]. The index for an element of a vector is enclosed

in the brackets. An element of a matrix is specified by a pair of numbers separated by a

comma. The first number specifies the row and the second number specifies the column. The

position of an array is specified by three numbers separated by commas corresponding to

the row, the column, and the matrix, respectively.

For a variable j in a histogram-valued dataset, a histogram representing observation

i1 may have a different number of subintervals from observation i2 for i1 6= i2 and i1, i2 =

1, 2, . . . , n. Due to its complexity, the structure and the principal components are constructed



148

one observation at a time. Therefore, the algorithm described in this section must be exe-

cuted n times once for each of the n observations. Therefore, the data used in the following

algorithm comes from the data vector X i for i = 1, 2, . . . , n.

Moreover, since the algorithms presented in this section compute principal components

of the observed data, we use a lower case letter to represent an observed data matrix to

distinguish it from a random data matrix. For example, xv
i represents the observed version

of the matrix of vertices Xv
i of Equation (4.11) and yv

i is the observed version of the matrix

of transformed vertices Y v
i defined in Equation (4.12). In addition, the matrix of vertices of

sub-hyperrectangle h, Xh
i , constructed in the second algorithm of Subsection 4.3.1 is denoted

by xh. The lower case in xh signifies that this matrix consists of observed values. Because

the algorithm is executed separately for each i, then i is fixed inside the algorithm; we drop

the subscript i to keep the notation simple.

Before running the following algorithms, an n × 3(sn) matrix pck is created to store

histogram values for principal component k where sn is the number of subintervals desired

for principal component k.

4.3.1 Histogram-valued Observations in a Principal Components Space

This subsection is divided into two parts: the first part constructs the matrices of vertices

Xv
i for observation i = 1, 2, . . . , n, as defined in Equation (4.11) and the second part builds

the polytopes representing observation i for i = 1, 2, . . . , n, in a principal components space.

Constructing the matrix of vertices

First, assume that the observed data vector xi has been separated into a vector of subin-

terval endpoints and a vector of relative frequencies. That is, let xep be the vector of subin-

terval endpoints and let xrf be the vector of subinterval relative frequencies. Then xep has∑p
j=1 (sij + 1) elements and has the following form,

xep =
[

a1
i1 a2

i1 . . . asi1+1
i1 a1

i2 a2
i2 . . . asi2+1

i2 . . . a1
ip a2

ip . . . a
sip+1
ip

]
(4.16)
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where al
ij for l = 1, . . . , sij + 1, and j = 1, . . . , p, are elements of the set Eij as defined in

equation (4.7). The vector xrf has
∑p

j=1 sij elements and has the following form,

xrf =
[

p1
i1 p2

i1 . . . psi1
i1 p1

i2 p2
i2 . . . psi2

i2 . . . p1
ip p2

ip . . . p
sip

ip

]
(4.17)

where pl
ij is the relative frequency of the lth subinterval of the observed histogram ξij. Before

creating the matrix of vertices for observation i, a p-vector whose elements are the number

of subintervals for ξij is also needed. Let ns denote the vector consisting of the number of

subintervals of ξij. Then,

ns =
[

si1 si2 . . . sip

]
. (4.18)

With the information in xep, xrf , and ns, we can proceed with constructing the matrix of

vertices xv
i using the following five steps:

Step 1. Create a (p + 1)-vector nr whose (j + 1)th element, for j = 1, . . . , p, is the number

of times that points al
ij, for l = 1, . . . , sij + 1, must be repeated in Step 5 below. The first

element of nr is the number of rows of the matrix of observed vertices, xv
i .

1. For j = 1, 2, . . . , p,

set nr[p− j + 1] =
∏j

l=1 (sij + 1).

2. Set nr[p + 1] = 1.

Step 2. Create a (p + 1)-vector nrp whose (j + 1)th element, for j = 1, . . . , p, is the number

of sub-hyperrectangles present in observation i when all variables up to j are excluded.

1. For j = 1, 2, . . . , p,

set nrp[p− j + 1] =
∏j

l=1 sij.

2. Set nrp[p + 1] = 1.

Step 3. Create a p-vector sp whose jth element is the position of the element of xep which

is the first subinterval endpoint for variable j.
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1. Set sp[1] = 1.

2. For j = 1, 2, . . . , p− 1,

set sp[j + 1] =
∑j

l=1 (sij + j + 1).

Step 4. Initialize the matrix of observed vertices xv
i by letting xv

i be an (Ni × p) matrix of

zeros where Ni =
∏p

j=1 (sij + 1).

Step 5. Update the elements of xv
i by

1. For j = 1, 2, . . . , p, do

(a) Let nj = ns[j].

(b) Let rj = nr[j + 1].

(c) Let sj = sp[j].

(d) For ln = 0, 1, . . . , nj,

• For lr = 1, 2, . . . , rj,

set xv
i [ln(rj) + lr, j] = xep[sj + ln].

2. For j = 2, 3, . . . , p, do

(a) Let tj = nr[1]
nr[j]

− 1.

(b) Let rj = nr[j].

(c) For lt = 1, 2, . . . , tj,

• For lr = 1, 2, . . . , rj,

set xv
i [lt(rj) + lr, j] = xv

i [lr, j].

End of Step 5. At the end of Step 5, we obtain the matrix xv
i whose rows are coordinates of

the vertices of observation i.



151

Constructing the polytopes

We now present the algorithm to construct the polytopes representing the sub-hyperrectangles

of observation i in a principal component space. The following algorithm includes seven

steps:

Step 1. First, compute the matrix of transformed vertices, yv
i , for the polytope representing

observation i in a principal components space based on the two cases:

Case one. If the PCA is based on the symbolic covariance matrix, then νS is the eigen

matrix of the symbolic covariance matrix S in Equation (4.2) and yv = (xv)(νS).

Case two. If the PCA is based on the symbolic correlation matrix, then νS is the eigen

matrix of the symbolic correlation matrix R whose elements are defined in Equation (4.4)

and yv = (zv)(νS) where zv is the standardized matrix of vertices. That is, element mj of

zv comes from

zv[m, j] =
xv[m, j]− w̄(j)√

sjj

where w̄(j) is the mean of the jth variable defined in Equation (2.16) and sjj is the variance

of the jth variable defined in Equation (2.17).

Step 2. Next, create a three-dimensional array xa to hold the matrices of vertices of the sub-

hyperrectangles, xh for h = 1, 2, . . . , r. The array xa is a result of combining r =
∏p

j=1 sij

matrices xh where h = 1, 2, . . . , r where each matrix xh of dimension (2p × p) contains

coordinates of all vertices belonging to sub-hyperrectangle h.

1. Initialize array xa by letting xa be an array of zeros with dimension (2p × p× r).

2. Update the elements of xa by running the following nested loop:

(a) Set kr0 = 0 and ni0 = 0.

(b) For j = 1, . . . , p− 1,

• For lj = 0, . . . , sij,

i. Let krj = krj−1 + (nr[j + 1])lj.
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ii. Let nij = nij−1 + (nrp[j + 1])lj.

iii. For k = 1, 2, . . . ,ns[p],

A. Set kr = krp−1 + k.

B. Set ni = nip−1 + k.

C. Set xa[1, , ni] = yi[kr, ].

D. For o = 1, . . . , p, do,

For r = 1, . . . , 2(o−1),

set xa[2
(o−1) + r, , ni] = yi[kr[r] + nr[p− o + 2], ], and

set kr = (kr, kr[r] + nr[p− o + 2]).

End of Step 2.

Step 3. Next, reconstruct the polytopes corresponding to the sub-hyperrectangles of obser-

vation i by following Steps 3 and 4 of Section 3.3.1 by replacing yv by yv
i . Similarly, two and

three dimensional plots can also be created for observation i by following all steps described

in Subsection 3.3.1 with yv
i in place of yv.

At the end of Step 3 of the present subsection, polytopes representing observation i in a prin-

cipal components are plotted. To create the vector of densities for these polytopes, follow

the next 4 steps, Steps 4-7.

Step 4. Create a p-vector spp whose jth element is the position of the element of xrf which

is the first subinterval relative frequency for variable j.

1. Set spp[1] = 1.

2. For j = 1, 2, . . . , p− 1,

set spp[j + 1] =
∑j

l=1 (sij + 1).

Step 5. Let xv
p be an (r × p) matrix of subinterval relative frequencies. The row h of xv

p

contains the relative frequencies of subintervals making up sub-hyperrectangle h. Initialize

xv
p by setting all elements of xv

p to zeros.

Step 6. Update the elements of xv
p by
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1. For j = 1, 2, . . . , p, do

(a) Let nj = ns[j].

(b) Let rj = nrp[j + 1].

(c) Let sj = spp[j].

(d) For ln = 0, 1, . . . , nj − 1,

• For lr = 1, 2, . . . , rj,

set xv
p[ln(rj) + lr, j] = xrf [sj + ln].

2. For j = 2, 3, . . . , p, do

(a) Let tj = nrp[1]

nrp[j]
− 1.

(b) Let rj = nrp[j].

(c) For lt = 1, 2, . . . , tj

• For lr = 1, 2, . . . , rj,

set xv
p[lt(rj) + lr, j] = xv

p[lr, j].

Step 7. Let di be an r-vector whose elements are the densities of the sub-hyperrectangles

belonging to observation i. The density for each sub-hyperrectangle is the product of the

relative frequencies of the p subintervals making up that sub-hyperrectangle. That is, for

h = 1, . . . , r, di[h] =
∏p

j=1 xv
p[h, j].

At the end of Step 7, we obtain a vector of densities di whose hth element is the density

of sub-hyperrectangle h of observation i. It is now possible to construct the histograms

representing the principal components for histogram-valued observation i; see Section 4.3.2.

4.3.2 Construction of histogram-valued principal components

The steps described in the following algorithm construct a histogram representing the kth

principal component for observation i based on the algorithm described in Subsection 3.3.2.
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by first computing the histograms representing the principal components for each of the r

sub-hyperectangles of observation i, then combining the r histograms to form one histogram

representing principal component k for observation i. This algorithm is performed for k =

1, 2, . . . , p. This algorithm includes eight steps as follows:

Step 1. Let h be the index for the r sub-hyperrectangles of observation i, h = 1, 2, . . . , r.

Step 2. Let pcik be an (r×3(2p)) matrix of zeros. The hth row of pcik contains the endpoints

and the relative frequencies of the histogram representing the kth principal component for

sub-hyperrectangle h of observation i.

Step 3. Let pcs be an r-vector of zeros. This vector is used to store the number of subintervals

belonging to the histogram representing sub-hyperrectangle h that have relative frequency

greater than 0.

Step 4. Execute the following loop, which is Step 3 of the algorithm described in Subsection

3.3.2 with i replaced by h and other modifications, as shown in the following six substeps:

For h = 1, 2, . . . , r,

1. Set up the following matrices of zeros, ps, pd and si, as in Step 3.1 of the algorithm

in Subsection 3.3.2.

2. Let yh be an (2p × 2) matrix whose first and second columns are the kth and the

first column of the matrix of vertices for sub-hyperrectangle h, xh, where xh is the

hth matrix of array xa constructed in Step 2 of the second algorithm described in

Subsection 4.3.2. That is, yh = (xa[, k, h], xa[, 1, h]).

3. Follow Substeps 3.3 through 3.9 of the algorithm in Subsection 3.3.2 with yh in place

of y2i. At the end of this step, we obtain a matrix hist of dimension nrw × 4 where

nrw is the number of subintervals of the histogram representing sub-hyperrectangle h.

The first two columns of hist store the subinterval endpoints. The third column stores

the areas of the polygons bounded by those endpoints. Finally, the fourth column gives

the relative frequencies of the subintervals by dividing the areas in column three by



155

the total area of the polygon that resulted from projecting polytope h onto the PC1

× PCk plane.

4. Before combining all histograms belonging to the r sub-hyperrectangles to make one

histogram representing observation i, we need to account for the differences in density

among the sub-hyperrectangles by multipling the relative frequencies of the subinter-

vals by the densities of the sub-hyperrectangles. Therefore, add a fifth column to the

matrix hist and for each element s = 1, 2, . . . , nrw of this column, set hist[s, 5] =

(hist[s, 4])(d[h]).

5. Update matrix pcs which was initialized in Step 3 of this algorithm by letting pcs[h] =

nrw.

6. To combine the nrw rows of matrix hist into one row in matrix pcik, do the following

which is equivalent to Substep 3.10 of algorithm in Subsection 3.3.2:

For s = 1, 2, . . . , nrw,

set pcik[h, (3s− 2)] = hist[s, 1],

set pcik[h, (3s− 1)] = hist[s, 2], and

set pcik[h, (3s)] = hist[s, 5].

End of Step 4.

Step 5. Let cpc be the largest number of non-zero subintervals for each sub-hyperrectangle

h. That is, cpc = max(pcs).

Step 6: Delete the columns 3cpc + 1 through 3(2p) of pcik to keep the computation of the

following Step 7 more efficient.

Step 7. This step includes seven substeps. Each complete execution of Step 7 makes a his-

togram representing the kth principal component of observation i out of the r histograms in

stored in matrix pcik. The resulting histogram has subintervals with equal width.

1. Let lo and hi be the lowest and the highest endpoints of the histogram representing

observation i. Then, lo = min(yi[, k]) and hi = max(yi[, k]).
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2. Specify the number of subintervals to create for the histogram representing the kth

principal component for observation i by letting sn be the number of subintervals

desired.

3. Let sw be the width of the subintervals. Then, sw = (hi− lo)/sn.

4. Let hm be an (sn × 4) transition matrix used to combine r histograms into one

histogram for principal component k of observation i. Each row of hm stores values for

subinterval s of the histogram representing the kth principal component of observation

i. The first two columns of hm store the subinterval endpoints. The third column stores

the total relative frequencies of the r subintervals that intersect with the subinterval

formed by the endpoints specified in the first two columns of hm. Finally, the last

column of hm gives the relative frequency for each subinterval by dividing the values

of column three by the sum of the elements of column three. Initialize hm by setting

its elements to zero.

5. Update hm by doing the following:

For s = 1, . . . , ns, do

(a) Set the endpoints of subinterval s by letting hm[s, 1] = lo + (sw)(s − 1) and

hm[s, 2] = lo + (sw)s.

(b) Let fr be an r× cpc matrix whose h× q element corresponds to the proportion of

subinterval q of polytope h that falls within the interval formed by hm[s, 1] and

hm[s, 2]. Initialize fr by setting its elements to zero.

• For h = 1, . . . , r, do

For q = 1, . . . ,pcs[h], do

Case a: If (pcik[h, 3q − 2] ≥ hm[s, 1]) and (pcik[h, 3q − 1] ≤ hm[s, 2]),

set fr[h, q] = pc[h, 3q].

Case b: If (pcik[h, 3q − 2] ≥ hm[s, 1]) and (pcik[h, 3q − 2] < hm[s, 2]) and
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pcik[h, 3q − 1] > hm[s, 2],

set fr[h, q] = (pcik[h, 3q])(hm[s, 2] − pcik[h, 3q − 2])/(pcik[h, 3q − 1] −

pcik[h, 3q − 2]).

Case c: If (pcik[h, 3q − 2] < hm[s, 1]) and (pcik[h, 3q − 1] > hm[s, 1]) and

(pcik[h, 3q − 1] ≤ hm[s, 2]),

set fr[h, q] = (pcik[h, 3q])(pcik[h, 3q − 1] − hm[s, 1])/(pcik[h, 3q − 1] −

pcik[h, 3q − 2]).

Case d: If (pcik[h, 3q − 2] < hm[s, 1]) and (pcik[h, 3q − 1] > hm[s, 2]),

set fr[h, q] = (pcik[h, 3q])(hm[s, 2]−hm[s, 1])/(pcik[h, 3q−1]−pcik[h, 3q−

2]).

(c) Let hm[s, 3] =
∑r

h=1

∑pcs[h]
q=1 fr[h, q].

6. Let sh =
∑ns

s=1 hm[s, 3].

7. Let hm[s, 4] = hm[s, 3]/sh.

End of Step 7. At the end of Step 7, we have all information for the histogram representing

the kth principal component for observation i stored in matrix hm. This information can be

entered into row i of the matrix pck by performing Step 8 as follows.

Step 8. For s = 1, . . . , ns, do

set pck[i, 3s− 2] = hm[s, 1],

set pck[i, 3s− 1] = hm[s, 2], and

set pck[i, 3s] = hm[s, 4].

Step 8 concludes the construction of the histogram for the kth principal component for

observation i.

End of algorithm. At the end of this algorithm, we obtain a histogram representing principal

component k of observation i. All eight steps of the algorithm described in this subsection

must be executed n times to obtain histograms for the kth principal component of all n

observations.
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4.4 Medical Income Application

As stated in Chapter 1, symbolic data can occur naturally or they can result from aggregating

very large datasets. With large databases becoming more common in recent years, symbolic

data will become relevant for a wide range of applications in the near future. One area

that can benefit tremendously from symbolic data analysis is medicine. A more particular

example of applications in this area includes hospitals where records of patient visits are

maintained electronically. Hospital databases contain millions of records. These databases

provide an enormous amount of information on patient demographics, illnesses, treatments,

and treatment results. When the subject of interest is not on individual patients but on

groups of patients, individual records in a database may be aggregated; the resulting database

is perforce a symbolic-valued dataset. We use an example in this area to illustrate our

proposed method of principal component analysis for histogram-valued data.

4.4.1 The data

The dataset used in this section contains ten variables on 40,000 patients. The variables

included Age, Race, Diabetes, Income, Glucose, Cholesterol, Hemoglobin, Hematocrit, Red

blood, and White blood. This dataset is referred to as the Medical Income dataset. Table 4.1

lists the variables and their possible values. Each observation in the Medical Income dataset

describes one patient and each variable takes only one value. That is, this dataset consists

of 40,000 classical observations.

Suppose we want to study medical characteristics of groups of patients categorized by

their age, race, and diabetes status. Classical observations of the Medical Income dataset

can be aggregated into groups by crossing the first three variables, Age, Race, and Diabetes.

Since Age is a continuous variable, we turned it into a categorical variable consisting of seven

groups: 15-24 years, 25-34 years, 35-44 years, 45-54 years, 55-64 years, 65-74 years, and over

74 years. Crossing seven categories of age, two categories of race, and three categories of

diabetes produces 7× 2× 3 = 42 groups. Each of the 42 groups becomes an observation in
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Table 4.1: Variables for Classical Medical Income Data

Variable Possible Values
Age count in years
Race black and white
Diabetes no, mild, and yes
Income amount in dollars
Glucose concentration in miligram/deciliter
Cholesterol concentration in miligram/deciliter
Hemoglobin concentration in gram/deciliter
Hematocrit percentage of red blood cell volume in one microliter of blood
Redblood count in million cells in one microliter of blood
Whiteblood count in thousand cells in one microliter of blood

the symbolic dataset. The aggregated dataset now consists of 42 symbolic observations versus

40,000 classical observations in the original dataset. Table 4.2 gives a list of observations,

their label, and characteristics for the aggregated Medical Income dataset.

With three classical variables from the original dataset used in creating symbolic obser-

vations where each observation consists of patients belonging to an Age × Race × Diabetes

group, the aggregated dataset ended up with seven variables. These seven variables are

labeled X(j), j = 1, 2, . . . , 7 as shown in Table 4.3.

Each variable X(j) for j = 1, . . . , 7, of a symbolic observation, ξi for i = 1, 2, . . . , 42, in

the aggregated dataset contains values from all classical observations in the orginal dataset

that belong to ξi. A histogram was constructed from these values. That is, the realized values

for each variable ξi is a histogram. Tables 4.4 through 4.10 gives observed histograms for the

first five observations for each variable. The complete dataset is available upon request.

We computed the symbolic variance of Equation (2.17) and the symbolic covariance of

Equation (2.18) for the Medical Income dataset shown in Tables 4.4 through 4.10. The
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Table 4.2: Observation Labels for Symbolic Medical Income Data

i Label Age Race Diabetes
Code Years Code Race Code Diabetes

1 100 1 15-24 0 white 0 no
2 101 1 15-24 0 white 1 mild
3 102 1 15-24 0 white 2 yes
4 110 1 15-24 1 black 0 no
5 111 1 15-24 1 black 1 mild
6 112 1 15-24 1 black 2 yes
7 200 2 25-34 0 white 0 no
8 201 2 25-34 0 white 1 mild
9 202 2 25-34 0 white 2 yes

10 210 2 25-34 1 black 0 no
11 211 2 25-34 1 black 1 mild
12 212 2 25-34 1 black 2 yes
13 300 3 35-44 0 white 0 no
14 301 3 35-44 0 white 1 mild
15 302 3 35-44 0 white 2 yes
16 310 3 35-44 1 black 0 no
17 311 3 35-44 1 black 1 mild
18 312 3 35-44 1 black 2 yes
19 400 4 45-54 0 white 0 no
20 401 4 45-54 0 white 1 mild
21 402 4 45-54 0 white 2 yes
22 410 4 45-54 1 black 0 no
23 411 4 45-54 1 black 1 mild
24 412 4 45-54 1 black 2 yes
25 500 5 55-64 0 white 0 no
26 501 5 55-64 0 white 1 mild
27 502 5 55-64 0 white 2 yes
28 510 5 55-64 1 black 0 no
29 511 5 55-64 1 black 1 mild
30 512 5 55-64 1 black 2 yes
31 600 6 65-74 0 white 0 no
32 601 6 65-74 0 white 1 mild
33 602 6 65-74 0 white 2 yes
34 610 6 65-74 1 black 0 no
35 611 6 65-74 1 black 1 mild
36 612 6 65-74 1 black 2 yes
37 700 7 over 74 0 white 0 no
38 701 7 over 74 0 white 1 mild
39 702 7 over 74 0 white 2 yes
40 710 7 over 74 1 black 0 no
41 711 7 over 74 1 black 1 mild
42 712 7 over 74 1 black 2 yes
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Table 4.3: Variables for Symbolic Medical Income Data

Variable
X(1) Income
X(2) Glucose
X(3) Cholesterol
X(4) Hemoglobin
X(5) Hematocrit
X(6) Redblood
X(7) Whiteblood

Table 4.4: Histograms of Income for the First Five Observations

i Label Frequency Histogram for Income
1 100 {[6500, 10500), 0.022; [10500, 14500), 0.377; [14500, 18500), 0.412;

[18500, 22500), 0.166; [22500, 26500], 0.024}
2 101 {[6500, 10500), 0.007; [10500, 14500), 0.344; [14500, 18500), 0.437;

[18500, 22500), 0.181; [22500, 26500], 0.030}
3 102 {[6500, 10500), 0.008; [10500, 14500), 0.453; [14500, 18500), 0.331;

[18500, 22500), 0.176; [22500, 26500], 0.033}
4 110 {[2500, 6500), 0.047; [6500, 10500), 0.375; [10500, 14500), 0.428;

[14500, 18500), 0.111; [18500, 22500), 0.015; [22500, 26500), 0.012;
[26500, 30500), 0.006; [30500, 34500], 0.006}

5 111 {[2500, 6500), 0.050; [6500, 10500), 0.450; [10500, 14500), 0.300;
[14500, 18500], 0.200}

...
...

...

Table 4.5: Histograms of Glucose for the First Five Observations

i Label Frequency Histogram for Glucose
1 100 {[51, 63), 0.005; [63, 75), 0.034; [75, 87), 0.193; [87, 99), 0.403; [99, 111), 0.239;

[111, 123), 0.115; [123, 135), 0.009; [135, 147], 0.001}
2 101 {[96.25, 103.75), 0.211; [103.75, 111.25), 0.381; [111.25, 118.75), 0.304;

[118.75, 126.25), 0.096; [126.25, 133.75), 0.004; [133.75, 141.25], 0.004}
3 102 {[95, 105), 0.233; [105, 115), 0.331; [115, 125), 0.192; [125, 135), 0.192;

[135, 145], 0.053; [1, 2), 0.000}
4 110 {[63, 75), 0.041; [75, 87), 0.161; [87, 99), 0.349; [99, 111), 0.276; [111, 123), 0.170;

[123, 135], 0.003}
5 111 {[96.25, 103.75), 0.225; [103.75, 111.25), 0.300; [111.25, 118.75), 0.200;

[118.75, 126.25], 0.275; [1, 2), 0.000; [1, 2), 0.000}
...

...
...
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Table 4.6: Histograms of Cholesterol for the First Five Observations

i Label Frequency Histogram for Cholesterol
1 100 {[62.5, 87.5), 0.007; [87.5, 112.5), 0.058; [112.5, 137.5), 0.244; [137.5, 162.5), 0.362;

[162.5, 187.5), 0.252; [187.5, 212.5), 0.070; [212.5, 237.5], 0.007}
2 101 {[62.5, 87.5), 0.004; [87.5, 112.5), 0.056; [112.5, 137.5), 0.244; [137.5, 162.5), 0.422;

[162.5, 187.5), 0.204; [187.5, 212.5), 0.063; [212.5, 237.5], 0.007}
3 102 {[62.5, 87.5), 0.004; [87.5, 112.5), 0.069; [112.5, 137.5), 0.229; [137.5, 162.5), 0.367;

[162.5, 187.5), 0.253; [187.5, 212.5), 0.057; [212.5, 237.5), 0.016; [237.5, 262.5], 0.004}
4 110 {[87.5, 112.5), 0.021; [112.5, 137.5), 0.144; [137.5, 162.5), 0.370; [162.5, 187.5), 0.340;

[187.5, 212.5), 0.120; [212.5, 237.5), 0.003; [237.5, 262.5], 0.003}
5 111 {[112.5, 137.5), 0.125; [137.5, 162.5), 0.375; [162.5, 187.5), 0.400; [187.5, 212.5], 0.100}
...

...
...

Table 4.7: Histograms of Hemoglobin for the First Five Observations

i Label Frequency Histogram for Hemoglobin
1 100 {[12.25, 12.75), 0.009; [12.75, 13.25), 0.100; [13.25, 13.75), 0.357; [13.75, 14.25), 0.375;

[14.25, 14.75), 0.137473831; [14.75, 15.25], 0.022}
2 101 {[12.25, 12.75), 0.007; [12.75, 13.25), 0.093; [13.25, 13.75), 0.296; [13.75, 14.25), 0.430;

[14.25, 14.75), 0.156; [14.75, 15.25), 0.015; [15.25, 15.75], 0.004}
3 102 {[12.25, 12.75), 0.008; [12.75, 13.25), 0.090; [13.25, 13.75), 0.388; [13.75, 14.25), 0.363;

[14.25, 14.75), 0.135; [14.75, 15.25], 0.016}
4 110 {[12.25, 12.75), 0.009; [12.75, 13.25), 0.132; [13.25, 13.75), 0.346; [13.75, 14.25), 0.375;

[14.25, 14.75), 0.123; [14.75, 15.25], 0.015}
5 111 {[12.75, 13.25), 0.100; [13.25, 13.75), 0.300; [13.75, 14.25), 0.475; [14.25, 14.75), 0.100;

[14.75, 15.25], 0.025}
...

...
...

Table 4.8: Histograms of Hematocrit for the First Five Observations

i Label Frequency Histogram for Hematocrit
1 100 {[33.75, 36.25), 0.003; [36.25, 38.75), 0.099; [38.75, 41.25), 0.370; [41.25, 43.75), 0.392;

[43.75, 46.25), 0.127; [46.25, 48.75], 0.009}
2 101 {[36.25, 38.75), 0.096; [38.75, 41.25), 0.396; [41.25, 43.75), 0.385; [43.75, 46.25], 0.122}
3 102 {[36.25, 38.75), 0.127; [38.75, 41.25), 0.327; [41.25, 43.75), 0.416; [43.75, 46.25), 0.127;

[46.25, 48.75], 0.004}
4 110 {[36.25, 38.75), 0.117; [38.75, 41.25), 0.396; [41.25, 43.75), 0.372; [43.75, 46.25), 0.103;

[46.25, 48.75], 0.012}
5 111 {[36.25, 38.75), 0.050; [38.75, 41.25), 0.300; [41.25, 43.75), 0.575; [43.75, 46.25], 0.075}
...

...
...
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Table 4.9: Histograms of Red Blood for the First Five Observations

i Label Frequency Histogram for Red Blood
1 100 {[3.4, 3.8), 0.003; [3.8, 4.2), 0.080; [4.2, 4.6), 0.372; [4.6, 5), 0.409;

[5, 5.4), 0.125; [5.4, 5.8), 0.010; [5.8, 6.2], 0.001}
2 101 {[3.4, 3.8), 0.011; [3.8, 4.2), 0.093; [4.2, 4.6), 0.326; [4.6, 5), 0.400;

[5, 5.4), 0.156; [5.4, 5.8], 0.015}
3 102 {[3.4, 3.8), 0.004; [3.8, 4.2), 0.069; [4.2, 4.6), 0.347; [4.6, 5), 0.441;

[5, 5.4), 0.135; [5.4, 5.8], 0.004}
4 110 {[3.8, 4.2), 0.097; [4.2, 4.6), 0.314; [4.6, 5), 0.460; [5, 5.4), 0.120;

[5.4, 5.8], 0.009}
5 111 {[3.8, 4.2), 0.075; [4.2, 4.6), 0.375; [4.6, 5), 0.450; [5, 5.4), 0.075;

[5.4, 5.8], 0.025}
...

...
...

Table 4.10: Histograms of White Blood for the First Five Observations

i Label Frequency Histogram for White Blood
1 100 {[1.5, 3), 0.004; [3, 4.5), 0.043; [4.5, 6), 0.134; [6, 7.5), 0.290;

[7.5, 9), 0.307; [9, 10.5), 0.165; [10.5, 12), 0.049; [12, 13.5], 0.008}
2 101 {[1.5, 3), 0.007; [3, 4.5), 0.052; [4.5, 6), 0.137; [6, 7.5), 0.293;

[7.5, 9), 0.296; [9, 10.5), 0.170; [10.5, 12), 0.041; [12, 13.5], 0.004}
3 102 {[1.5, 3), 0.004; [3, 4.5), 0.053; [4.5, 6), 0.151; [6, 7.5), 0.265;

[7.5, 9), 0.269; [9, 10.5), 0.184; [10.5, 12], 0.073}
4 110 {[1.5, 3), 0.003; [3, 4.5), 0.044; [4.5, 6), 0.152; [6, 7.5), 0.261;

[7.5, 9), 0.331; [9, 10.5), 0.147; [10.5, 12), 0.053; [12, 13.5], 0.009}
5 111 {[4.5, 6), 0.075; [6, 7.5), 0.375; [7.5, 9), 0.325; [9, 10.5], 0.225}
...

...
...
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symbolic variance-covariance matrix for this dataset as defined in Equation (4.2) is given by

S =



46452198 1202 33432 −1331 −4264 −436 −3407

206.34 13.94 −0.60 −2.64 −0.17 1.59

1077.29 −9.61 −33.73 −8.85 −3.25

0.60 1.70 0.11 0.35

8.13 0.38 1.28

0.14 0.04

3.64



. (4.19)

The symbolic correlation matrix as defined in Equation (4.4) is

R =



1 0.0123 0.1495 −0.2527 −0.2194 −0.1681 −0.2618

1 0.0296 −0.0542 −0.0645 −0.0306 0.0581

1 −0.3788 −0.3603 −0.7085 −0.0519

1 0.7721 0.3707 0.2392

1 0.3516 0.2358

1 0.0511

1



. (4.20)

The symbolic correlation matrix in Equation (4.20) reveals the following observations:

the correlation coefficients between Glucose (X(2)) and other medical variables (X(3)−X(7))

are less than 0.1. That is, there is essentially no correlation between Glucose (X(2)) and the

concentration of red blood and white blood cells; White blood count (X(7)) is not correlated

with Glucose (X(2)), Cholesterol (X(3)) and Red blood count (X(6)) ; Cholesterol(X(3)) is

negatively correlated to Red blood count (X(6)) with a coefficient of -0.7085; and Hemoglobin

(X(4)) is highly correlated with Hematocrit (X(5)) with a coefficient of 0.7721. The negative

correlation between Cholesterol and Red blood count makes sense because cholesterol is a

lipid circulating in the blood stream. When there is more cholesterol in the blood, there is

less room for the red blood cells in the blood stream and vice versa. The high correlation

between Hemoglobin and Hematocrit also makes sense because they are both measurements
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Table 4.11: Coefficients and Variance Proportion of Principal Components for Medical
Income Data Using All Variables

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7
Income -0.2609 0.4074 -0.0417 0.6622 0.5693 -0.0248 0.0336
Glucose -0.0464 -0.1641 0.9151 0.3087 -0.1954 -0.0015 -0.0098
Cholesterol -0.4429 -0.4359 -0.2059 0.2007 -0.1712 -0.7083 0.0129
Hemoglobin 0.5025 -0.1560 -0.1643 0.3941 -0.1709 -0.0044 0.7153
Hematocrit 0.4920 -0.1550 -0.1884 0.4365 -0.1445 -0.0116 -0.6978
Red blood 0.4414 0.4313 0.2097 -0.2341 0.1510 -0.7054 -0.0071
White blood 0.2103 -0.6186 0.1098 -0.1592 0.7319 -0.0046 0.0050
Proportion of Variance 0.3788 0.1764 0.1451 0.1255 0.1002 0.0416 0.0324
Cumulative Proportion 0.3788 0.5553 0.7004 0.8259 0.9260 0.9676 1.0000

of concentration of red blood cells. Now that we have determined the covariance structure of

the dataset, we can proceed with the principal component analysis. The symbolic principal

component analysis results for the Medical Income dataset are presented in the following

subsection.

4.4.2 Analysis results

PCA using all variables

We first apply our proposed principal component method to all seven variables in the

histogram-valued dataset of Tables 4.4 through 4.10. Table 4.1 shows that standard mea-

surements for the variables vary widely in both scales and of measurement units. In datasets

with such high variability between the variable measurements, it is more appropriate to

perform principal component analysis based on the correlation matrix than based on the

covariance matrix. We apply the proposed principal component method to the correlation

matrix of Equation (4.20). Table 4.11 gives the coefficients and the proportion of variation

explained by the principal components of the Medical Income data when all seven variables

are included.
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We can see from Table 4.11 that the first principal component is composed of Hemoglobin

with a coefficient of 0.5025, Hematocrit with a coeficient of 0.4920, and Red blood with a

coefficient of 0.4414. Since Cholesterol is negatively correlated to Red blood counts, it makes

sense that Cholesterol contributes a negative amount to the first principal component with a

coefficient of -0.4429. Therefore, the first principal component describes the overall red blood

concentration and it accounts for 37.88% of the total variation of the data. The next three

principal components, each accounts for about 18%, 15%, and 13% of the overall variation.

The first four principal components altogether contribute almost 83% of the total variation in

the data. A closer look at the coefficients of principal components two, three, and four shows

that they are composed of mainly White blood with a coefficient of -0.6186, Glucose with

a coefficient of 0.9151, and Income with a coefficient of 0.6622, respectively. Since each of

these principal components is mainly composed of one variable and each principal component

explains an approximately equal proportion of data variation, it means the variables that

make up principal component two, three, and four are relatively uncorrelated with other

variables. That is, White blood, Glucose, and Income have very low correlation with other

variables.

To help identify observations in each plot, labels for observations are displayed in a

corner of the plot where space allows. In each plot, colors of the polygons representing the

observations are based on one of the following characteristics of the observations: age, race,

and diabetes status. These characteristics are coded in an observation’s label as shown in

Table 4.2. A specific characteristic for a plot is chosen to illustrate a significant feature of

the principal components revealed in the plot. In all plots, a label has the same color as its

corresponding observation.

Plots of the observations along the first principal component (PC1) and the second prin-

cipal component (PC2) are shown in Figure 4.3. In Figure 4.3, color represents age (the

first digit of the labels) of the observation. That is, the polygons representing groups whose

age fall in the age range of 15-24 is displayed in black, the polygons representing groups of
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patients in the age range of 25-34 is colored in red, and so on. See Figure 4.3 for details. At

first look, the PC1 × PC2 plot suggests the observations form one cluster. All observations

cover a wide range of values along the PC1-axis. A closer look shows a pattern of slight

degeneration of red blood concentration for older groups of patients. More specifically, the

black polygons representing the youngest group of patients form a cluster and this cluster

has the largest first principal component values. As age increases, the polygons associated

with these observations slightly move toward the smaller end of the PC1-axis. Examining the

observations along the PC2 axis shows the range of white blood concentration are about the

same for all groups. There exists no special feature along the second principal component.

Figure 4.3: Plot of PC1 × PC2 for Medical Income Data Using All Variables (Color Repre-
sents Age)

Figure 4.4 shows a plot of principal component one versus principal component three

(PC1 × PC3) and Figures 4.5 shows a plot of PC2 × PC3. In both of these plots, a polygon

is colored according to diabetes status (the last digit of the labels) of the group it represents.

That is, the polygons representing groups of patients who do not have diabetes are colored



168

in black, the polygons representing groups with mild diabetes are in red, and the polygons

representing groups with severe diabetes are in green. The third principal component values

for groups with no diabetes (whose labels end with zero) ranges from -8 to 6 whereas PC3

values for groups with diabetes (whose labels end with one or two) range from -3 to 7. The

black polygons covers a wide range of values for the third principal component which is

mostly composed of Glucose. That means for patients who do not have diabetes, some have

a low level of glucose and some have a high level of glucose. The red and the green polygons

stand out in a cluster with high PC3 values whose lowest value is much higher than the lowest

PC3 values of the group with no diabetes. That is, patients with diabetes consistently have

high level of glucose in their blood. The third principal component confirms the relationship

between Glucose and Diabetes.

Figure 4.4: Plot of PC1 × PC3 for Medical Income Data Using All Variables (Color Repre-
sents Diabetes)

The correlations between a variable X(j) and a principal component Y(k) for j, k =

1, 2, . . . , p, as defined in Equation (2.25) are shown in Table 4.12. The coefficients in Table
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Figure 4.5: Plot of PC2 × PC3 for Medical Income Data Using All Variables (Color Repre-
sents Diabetes)

Table 4.12: Correlation between Principal Components and Random Variables of Medical
Income Data Using All Variables

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7
Income -0.4249 0.4527 -0.0420 0.6206 0.4767 -0.0134 0.0160
Glucose -0.0755 -0.1823 0.9223 0.2893 -0.1636 -0.0008 -0.0046
Cholesterol -0.7213 -0.4845 -0.2075 0.1881 -0.1434 -0.3821 0.0061
Hemoglobin 0.8183 -0.1734 -0.1656 0.3694 -0.1431 -0.0024 0.3406
Hematocrit 0.8011 -0.1723 -0.1899 0.4091 -0.1210 -0.0063 -0.3323
Red blood 0.7188 0.4793 0.2113 -0.2194 0.1264 -0.3806 -0.0034
White blood 0.3425 -0.6875 0.1106 -0.1492 0.6128 -0.0025 0.0024
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4.12 show the correlation between variable X(j) and principal component Y(k) in the absence

of all other variables. The first principal component is highly correlated with Cholesterol,

Hemoglobin, Hematocrit, and Red blood with correlation coefficients of -0.7213, 0.8183,

0.8011, and 0.7188, respectively. The second principal component has the highest correlation

with White blood whose coefficient is -0.6875. The third principal component is highly cor-

related with Glucose with a coefficient of 0.9223. These correlation coefficients concur with

the conclusions drawn from the coefficients of the principal components as shown in Table

4.11.

After exploring the plots of Figures 4.3, 4.4, and 4.5 as well as the coefficients of Table

4.11 and Table 4.12, if further analysis of the principal components becomes necessary,

histogram-valued principal components can be computed. Table 4.13 shows histograms of

the first principal component for observations one through five. The number of subintervals

for the histograms representing the principal components can be specified in the algorithm.

In this example, the number of subinterval was set at eight; however, some of the lowest

and highest subintervals have relative frequency less than 0.001 and they are excluded from

the histograms shown in Table 4.13. Therefore, the resulting histograms have less than five

subintervals.

PCA based on Income, Glucose, Hemoglobin, and Hematocrit

Besides the analysis based on all seven variables, we also apply the proposed PCA method to

various combinations of subsets of variables from the Medical Income dataset. Plots for some

of these examples are included in the appendix at the end of this chapter. As can be seen in

the plots of Figures 4.3 through 4.5, the internal structure of a histogram-valued observation

can be complex when the number of variables, p, is high. In the following subsection, we

illustrate the proposed method using a subset of four variables from the Medical Income

dataset. The internal complexity of a histogram-valued observation is reduced significantly
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Table 4.13: Histograms for the First Principal Component of Medical Income Data Using
All Variables

i Label Frequency Histogram for the First Principal Component
1 100 {[−0.675, 0.893), 0.046; [0.893, 2.461), 0.489; [2.461, 4.029), 0.433;

[4.029, 5.598], 0.032}
2 101 {[−1.939,−0.516), 0.001; [−0.516, 0.906), 0.051; [0.906, 2.328), 0.432;

[2.328, 3.751), 0.458; [3.751, 5.173), 0.058; [5.173, 6.595), 0.001}
3 102 {[−0.792, 0.667), 0.032; [0.667, 2.126), 0.379; [2.126, 3.585), 0.511;

[3.585, 5.044), 0.077; [5.044, 6.504), 0.001}
4 110 {[−0.629, 0.817), 0.039; [0.817, 2.263), 0.417; [2.263, 3.709), 0.480;

[3.709, 5.155), 0.062; [5.155, 6.601), 0.001}
5 111 {[−0.501, 0.548), 0.008; [0.548, 1.597), 0.139; [1.597, 2.646), 0.454;

[2.646, 3.694), 0.340; [3.694, 4.743), 0.057; [4.743, 5.792), 0.002}
...

...
...

Table 4.14: Coefficients and Variance Proportion of Principal Components of Medical Income
Data Using Income, Glucose, Hemoglobin, and Hematocrit

Variable PC1 PC2 PC3 PC4
Income -0.3461 -0.1714 0.9218 -0.0335
Glucose -0.0914 0.9845 0.1491 0.0092
Hemoglobin 0.6634 0.0335 0.2295 -0.7114
Hematocrit 0.6571 0.0128 0.2746 0.7019
Proportion of Variance 0.4760 0.2488 0.2184 0.0568
Cumulative Proportion 0.4760 0.7248 0.9432 1.0000

from p = 7 to p = 4. An additional example with a simpler structure gives a clearer picture

of our methodology.

In the following example we compute the principal components using Income, Glucose,

Hemoglobin, and Hematocrit. The coefficients and the proportion of variance explained by

the principal components based on the correlation structure of these variables are shown in

Table 4.14.
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Hemoglobin and Hematocrit are the major contributors of the first principal component

with coefficients of 0.6634 and 0.6571. The size of their contribution is almost identical. The

first principal component explains almost 50% of the total variation in the data. The second

principal component is made up of mostly Glucose and it explains about 25% of the total

variation. The third principal component is composed mostly of Income and contributes

another 22% to the total variation. Together, the first three principal components explain

94% of the data variation leaving only 6% to the last principal component. The tiny per-

centage of the variance contributed by the fourth principal component indicates that one

of the variables is almost completely dependent on the other variables. That is, the space

spanned by Income, Glucose, Hemoglobin, and Hematocrit has dimension of three. Based

on the correlation matrix of Equation (4.20), we know that Hemoglobin and Hematocrit are

highly correlated.

The principal components can further be explored in Figures 4.6 through 4.8. Plots of

the observations along the first and the second principal components are shown in Figure

4.6. The polygons in this plot are colored based on age group. Visually, the first principal

component based on Income, Glucose, Hemoglobin, and Hematocrit gives a general pattern

similar to the first principal component based on all variables. We can see that the youngest

groups of patients, represented by the black polygons, have the highest values of PC1. Their

PC1 values range from about -1 to 6. This pattern also appears along the PC1-axis of Figure

4.7. Polygons representing other age groups cluster toward the smaller end of the PC1-axis.

Their values range from approxiamtely -6 to less than 4.5.

Another feature of the second principal component is clearly visible in Figure 4.8. Obser-

vations are plotted along the second and third principal components in Figure 4.8. The

polygons in this plot are colored based on diabetes status with black represents groups with

no diabetes, red for groups with mild diabetes and green for groups with severe diabetes.

Values along the PC2-axis range from -6 to 4 for the black polygons, from -2 to 4 for the red

polygons, and from -2 to 5 for the green polygons. Since Glucose is the primary contributor
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Figure 4.6: Plot of PC1 × PC2 for Medical Income Data Using Income, Glucose, Hemoglobin,
and Hematocrit (Color Represents Age)

to the second principal component, we can say that groups of patients with diabetes have

a higher level of glucose in their blood. Groups of patients with severe diabetes have espe-

cially high levels of blood glucose compared to the other groups. Again, this confirms the

correlationship between glucose and diabetes.

The general pattern for the third principal component is more subtle than for PC1 and

PC2. Close examination of Figure 4.7 along the PC3-axis shows that groups of patients

in the 45 to 64 age range have the highest PC3 values. The older groups of over 65 and

younger groups have lower PC3 values. Further inspection of the polygons within the same

age group shows what groups of black patients (whose labels have the second digit of zero)

have PC3 values lower than their white counterpart. Since the third principal component

is composed of mostly Income, we can conclude that the income is somewhat related to
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Figure 4.7: Plot of PC1 × PC3 for Medical Income Data Using Income, Glucose, Hemoglobin,
and Hematocrit (Color Represents Age)

Figure 4.8: Plot of PC2 × PC3 for Medical Income Data Using Income, Glucose, Hemoglobin,
and Hematocrit (Color Represents Diabetes)
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Table 4.15: Correlation between Principal Components and Random Variables of Medical
Income Data Using Income, Glucose, Hemoglobin, and Hematocrit

Variable PC1 PC2 PC3 PC4
Income -0.4776 -0.1710 0.8616 -0.0160
Glucose -0.1261 0.9822 0.1394 0.0044
Hemoglobin 0.9154 0.0334 0.2145 -0.3390
Hematocrit 0.9067 0.0128 0.2567 0.3345

both age and race. More specifically, groups of middle-aged white patients have the highest

income level. The correlation between a variable X(j) and a principal component Y(k) in

the absence of other variables as defined in Equation (2.25) are shown in Table 4.15. The

correlation coefficients of the first principal component show a very high correlation between

the first principal component and Hemoglobin with a coefficient of 0.9154. The first principal

component is also highly correlated to Hematocrit with a coefficient of 0.9067. Table 4.15

also indicates an almost perfect correlationship between the second principal component

and Glucose with a coefficient of 0.9822. Income is highly correlated with the third principal

component whose coefficient is 0.8616. Again, these correlations concur with the results

drawn from the coefficients of the principal components shown in Table 4.14.

If further analysis of the principal components is needed where numerical values are

necessary, histogram-valued principal components can be computed. Histograms for the first

three principal components for a subset of observations are shown in Tables 4.16, 4.17, and

4.18.

4.4.3 Comparison of symbolic PCA and classical PCA

Without a method to analyze symbolic data, a midpoint would be used to represent all

values in a symbolic variable. When only one point represents many points, information

including variability and distribution of the points is lost. Principal component analysis
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Table 4.16: Histograms for the First Principal Component of Medical Income Data Using
Income, Glucose, Hemoglobin, and Hematocrit

i Label Frequency Histogram for the First Principal Component
1 100 {[−0.662, 0.295), 0.003; [0.295, 1.252), 0.071; [1.252, 2.210), 0.354;

[2.210, 3.167), 0.429; [3.167, 4.124), 0.135; [4.124, 5.082], 0.009}
2 101 {[−0.180, 0.646), 0.013; [0.646, 1.472), 0.129; [1.472, 2.299), 0.375;

[2.299, 3.125), 0.359; [3.125, 3.952), 0.114; [3.952, 4.778], 0.009}
3 102 {[−0.182, 0.667), 0.019; [0.667, 1.515), 0.161; [1.515, 2.364), 0.393;

[2.364, 3.213), 0.332; [3.213, 4.062), 0.089; [4.062, 4.910], 0.006}
4 110 {[−0.431, 0.511), 0.004; [0.511, 1.454), 0.087; [1.454, 2.396), 0.370;

[2.396, 3.339), 0.407; [3.339, 4.281), 0.123; [4.281, 5.223], 0.009}
5 111 {[−0.076, 0.606), 0.002; [0.606, 1.288), 0.029; [1.288, 1.969), 0.155;

[1.969, 2.651), 0.357; [2.651, 3.333), 0.330; [3.333, 4.015), 0.114;
[4.015, 4.697], 0.014}

6 112 {[−0.398, 0.325), 0.001; [0.325, 1.048), 0.027; [1.048, 1.771), 0.148;
[1.771, 2.494), 0.317; [2.494, 3.217), 0.314; [3.217, 3.940), 0.158;
[3.940, 4.663), 0.033; [4.663, 5.386], 0.001}

7 200 {[−3.555,−2.419), 0.004; [−2.419,−1.282), 0.116; [−1.282,−0.145), 0.481;
[−0.145, 0.991), 0.354; [0.991, 2.128), 0.045; [2.128, 3.265], 0.001}

8 201 {[−3.631,−2.607), 0.002; [−2.607,−1.583), 0.071; [−1.583,−0.559), 0.373;
[−0.559, 0.465), 0.432; [0.465, 1.489), 0.116; [1.489, 2.513], 0.006}

9 202 {[−3.738,−2.827), 0.001; [−2.827,−1.917), 0.026; [−1.917,−1.007), 0.204;
[−1.007,−0.096), 0.429; [−0.096, 0.814), 0.281; [0.814, 1.725), 0.056;
[1.725, 2.635], 0.003}

10 210 {[−2.766,−1.600), 0.030; [−1.600,−0.433), 0.318; [−0.433, 0.733), 0.520;
[0.733, 1.899), 0.128; [1.899, 3.065], 0.003}

...
...

...
37 700 {[−3.669,−2.569), 0.001; [−2.569,−1.470), 0.063; [−1.470,−0.370), 0.396;

[−0.370, 0.730), 0.446; [0.730, 1.829), 0.092; [1.829, 2.929], 0.003}
38 701 {[−3.715,−2.679), 0.001; [−2.679,−1.643), 0.048; [−1.643,−0.607), 0.338;

[−0.607, 0.429), 0.460; [0.429, 1.465), 0.142; [1.465, 2.501], 0.011}
39 702 {[−3.818,−2.766), 0.002; [−2.766,−1.714), 0.055; [−1.714,−0.662), 0.347;

[−0.662, 0.389), 0.454; [0.389, 1.441), 0.133; [1.441, 2.493], 0.008}
40 710 {[−2.641,−1.875), 0.005; [−1.875,−1.109), 0.063; [−1.109,−0.343), 0.258;

[−0.343, 0.423), 0.394; [0.423, 1.188), 0.232; [1.188, 1.954), 0.046;
[1.954, 2.720], 0.002}

41 711 {[−2.755,−1.859), 0.011; [−1.859,−0.963), 0.119; [−0.963,−0.068), 0.355;
[−0.068, 0.828), 0.360; [0.828, 1.723), 0.136; [1.723, 2.619), 0.019;
[2.619, 3.514], 0.001}

42 712 {[−3.080,−2.219), 0.003; [−2.219,−1.358), 0.052; [−1.358,−0.497), 0.254;
[−0.497, 0.364), 0.413; [0.364, 1.224), 0.234; [1.224, 2.085), 0.042;
[2.085, 2.946], 0.002}
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Table 4.17: Histograms for the Second Principal Component of Medical Income Data Using
Income, Glucose, Hemoglobin, and Hematocrit

i Label Frequency Histogram for the Second Principal Component
1 100 {[−2.610,−1.855), 0.104; [−1.855,−1.100), 0.262; [−1.100,−0.346), 0.332;

[−0.346, 0.409), 0.198; [0.409, 1.164), 0.092; [1.164, 1.918), 0.010;
[1.918, 2.673], 0.002}

2 101 {[−1.252,−0.605), 0.071; [−0.605, 0.041), 0.354; [0.041, 0.688), 0.406;
[0.688, 1.335), 0.157; [1.335, 1.982), 0.010; [1.982, 2.629], 0.002}

3 102 {[−1.247,−0.582), 0.091; [−0.582, 0.083), 0.262; [0.083, 0.747), 0.275;
[0.747, 1.412), 0.187; [1.412, 2.077), 0.147; [2.077, 2.742], 0.038}

4 110 {[−2.785,−1.889), 0.080; [−1.889,−0.993), 0.247; [−0.993,−0.096), 0.347;
[−0.096, 0.800), 0.243; [0.800, 1.696), 0.081; [1.696, 2.592], 0.001}

5 111 {[−1.246,−0.724), 0.008; [−0.724,−0.201), 0.184; [−0.201, 0.322), 0.285;
[0.322, 0.844), 0.227; [0.844, 1.367), 0.250; [1.367, 1.889], 0.046}

6 112 {[−1.072,−0.456), 0.086; [−0.456, 0.160), 0.222; [0.160, 0.777), 0.263;
[0.777, 1.393), 0.209; [1.393, 2.009), 0.180; [2.009, 2.625], 0.041}

7 200 {[−3.144,−2.322), 0.067; [−2.322,−1.500), 0.222; [−1.500,−0.679), 0.380;
[−0.679, 0.143), 0.217; [0.143, 0.965), 0.100; [0.965, 1.787), 0.013;
[1.787, 2.609], 0.001}

8 201 {[−1.223,−0.498), 0.199; [−0.498, 0.228), 0.498; [0.228, 0.954), 0.253;
[0.954, 1.679), 0.046; [1.679, 2.405], 0.004}

9 202 {[−1.602,−0.905), 0.040; [−0.905,−0.209), 0.205; [−0.209, 0.488), 0.266;
[0.488, 1.184), 0.211; [1.184, 1.880), 0.239; [1.880, 2.577), 0.030;
[2.577, 3.273], 0.009}

10 210 {[−4.226,−3.164), 0.007; [−3.164,−2.102), 0.079; [−2.102,−1.039), 0.367;
[−1.039, 0.023), 0.367; [0.023, 1.085), 0.168; [1.085, 2.147), 0.011;
[2.147, 3.210], 0.001}

...
...

...
37 700 {[−3.685,−2.810), 0.003; [−2.810,−1.935), 0.036; [−1.935,−1.060), 0.189;

[−1.060,−0.185), 0.302; [−0.185, 0.690), 0.309; [0.690, 1.565), 0.136;
[1.565, 2.440), 0.023; [2.440, 3.315], 0.002}

38 701 {[−1.184,−0.439), 0.117; [−0.439, 0.306), 0.417; [0.306, 1.051), 0.353;
[1.051, 1.796), 0.098; [1.796, 2.541), 0.013; [2.541, 3.286], 0.002}

39 702 {[−1.916,−1.145), 0.001; [−1.145,−0.374), 0.084; [−0.374, 0.397), 0.213;
[0.397, 1.168), 0.283; [1.168, 1.939), 0.320; [1.939, 2.710), 0.088;
[2.710, 3.481], 0.012}

40 710 {[−3.712,−3.000), 0.002; [−3.000,−2.288), 0.013; [−2.288,−1.575), 0.043;
[−1.575,−0.863), 0.213; [−0.863,−0.150), 0.271; [−0.150, 0.562), 0.250;
[0.562, 1.274), 0.174; [1.274, 1.987], 0.034}

41 711 {[−1.780,−0.986), 0.001; [−0.986,−0.193), 0.169; [−0.193, 0.601), 0.455;
[0.601, 1.395), 0.319; [1.395, 2.188), 0.045; [2.188, 2.982], 0.012}

42 712 {[−1.679,−0.828), 0.006; [−0.828, 0.022), 0.103; [0.022, 0.873), 0.226;
[0.873, 1.724), 0.383; [1.724, 2.574), 0.240; [2.574, 3.425], 0.041}
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Table 4.18: Histograms for the Third Principal Component of Medical Income Data Using
Income, Glucose, Hemoglobin, and Hematocrit

i Label Frequency Histogram for the Third Principal Component
1 100 {[−1.855,−1.100), 0.004; [−1.100,−0.346), 0.132; [−0.346, 0.409), 0.455;

[0.409, 1.164), 0.334; [1.164, 1.918), 0.071; [1.918, 2.673], 0.004}
2 101 {[−1.252,−0.605), 0.014; [−0.605, 0.041), 0.203; [0.041, 0.688), 0.429;

[0.688, 1.335), 0.280; [1.335, 1.982), 0.068; [1.982, 2.629], 0.005}
3 102 {[−1.247,−0.582), 0.021; [−0.582, 0.083), 0.251; [0.083, 0.747), 0.417;

[0.747, 1.412), 0.240; [1.412, 2.077), 0.065; [2.077, 2.742], 0.005}
4 110 {[−2.785,−1.889), 0.002; [−1.889,−0.993), 0.116; [−0.993,−0.096), 0.530;

[−0.096, 0.800), 0.302; [0.800, 1.696), 0.036; [1.696, 2.592), 0.011;
[2.592, 3.489], 0.003}

5 111 {[−1.769,−1.246), 0.015; [−1.246,−0.724), 0.130; [−0.724,−0.201), 0.329;
[−0.201, 0.322), 0.298; [0.322, 0.844), 0.179; [0.844, 1.367), 0.047;
[1.367, 1.889], 0.001}

6 112 {[−2.305,−1.688), 0.002; [−1.688,−1.072), 0.038; [−1.072,−0.456), 0.216;
[−0.456, 0.160), 0.390; [0.160, 0.777), 0.259; [0.777, 1.393), 0.080;
[1.393, 2.009], 0.015}

7 200 {[−2.322,−1.500), 0.013; [−1.500,−0.679), 0.197; [−0.679, 0.143), 0.445;
[0.143, 0.965), 0.293; [0.965, 1.787), 0.051; [1.787, 2.609], 0.001}

8 201 {[−1.949,−1.223), 0.018; [−1.223,−0.498), 0.194; [−0.498, 0.228), 0.401;
[0.228, 0.954), 0.302; [0.954, 1.679), 0.080; [1.679, 2.405], 0.004}

9 202 {[−2.298,−1.602), 0.001; [−1.602,−0.905), 0.044; [−0.905,−0.209), 0.264;
[−0.209, 0.488), 0.380; [0.488, 1.184), 0.239; [1.184, 1.880), 0.067;
[1.880, 2.577], 0.005}

10 210 {[−3.164,−2.102), 0.022; [−2.102,−1.039), 0.392; [−1.039, 0.023), 0.476;
[0.023, 1.085), 0.103; [1.085, 2.147), 0.005; [2.147, 3.210], 0.001}

...
...

...
37 700 {[−2.810,−1.935), 0.001; [−1.935,−1.060), 0.073; [−1.060,−0.185), 0.444;

[−0.185, 0.690), 0.403; [0.690, 1.565), 0.076; [1.565, 2.440], 0.003}
38 701 {[−1.929,−1.184), 0.035; [−1.184,−0.439), 0.288; [−0.439, 0.306), 0.464;

[0.306, 1.051), 0.186; [1.051, 1.796), 0.025; [1.796, 2.541], 0.001}
39 702 {[−1.916,−1.145), 0.031; [−1.145,−0.374), 0.275; [−0.374, 0.397), 0.461;

[0.397, 1.168), 0.202; [1.168, 1.939), 0.030; [1.939, 2.710], 0.001}
40 710 {[−3.000,−2.288), 0.010; [−2.288,−1.575), 0.173; [−1.575,−0.863), 0.477;

[−0.863,−0.150), 0.291; [−0.150, 0.562), 0.042; [0.562, 1.274], 0.005}
41 711 {[−3.367,−2.573), 0.001; [−2.573,−1.780), 0.073; [−1.780,−0.986), 0.443;

[−0.986,−0.193), 0.381; [−0.193, 0.601), 0.079; [0.601, 1.395), 0.020;
[1.395, 2.188], 0.004}

42 712 {[−3.380,−2.529), 0.001; [−2.529,−1.679), 0.073; [−1.679,−0.828), 0.435;
[−0.828, 0.022), 0.395; [0.022, 0.873), 0.079; [0.873, 1.724), 0.014;
[1.724, 2.574], 0.003}
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using the midpoints only accounts for part of the total variation in the dataset. The variance

maximized by the principal components is the variance between observations. These principal

components were determined in the absence of the variation within observations as defined

in Equation (2.6) through Equation (2.12) of Chapter 2 and detailed in Billard (2007). The

classical variance-covariance matrix of the midpoints is given by

S =



26898268 −1790 18636 −1139 −3480 −158 −172

74.57 14.62 −0.41 −1.19 −0.21 0.11

355.99 −5.54 −16.48 −2.75 0.17

0.32 0.96 0.05 0.02

2.89 0.14 0.05

0.03 0.00

0.02



. (4.21)

All variances in Equation (4.21) are much smaller than their counterparts in Equation (4.19).

The smaller values of the variances using the midpoints reflect the omission of the internal

variation that is inherent in symbolic data.

The classical correlation matrix resulting from the covariance matrix of Equation (4.21)

for the Medical Income dataset is

R =



1 −0.0400 0.1905 −0.3891 −0.3951 −0.1834 −0.2541

1 0.0897 −0.0851 −0.0815 −0.1436 0.0953

1 −0.5202 −0.5142 −0.8770 0.0683

1 0.9986 0.5098 0.2364

1 0.5059 0.2406

1 −0.0194

1



. (4.22)

Compared to the symbolic correlation matrix of Equation (4.20), the correlation between

the midpoints are in general stronger than the correlation between the histograms. In this
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example, observations have centers that are close together and the range of values for each

observation is large. Therefore, it makes sense that the correlation between the midpoints

are stronger than the symbolic correlation because the symbolic correlation accounts for

all values belonging to the observations. These values spread out around the midpoints so

they weaken the correlation between variables. More particularly, the correlation between

the midpoints of Hemoglobin (X(4)) and Hematocrit (X(5)) is 0.9986 versus 0.7721 in the

correlation between histograms of these two variables. Similarly, the correlation between the

midpoints of Cholesterol (X(3)) and Red blood (X(6)) is -0.8770 versus the correlation of

-0.7085 between the histograms.

Having seen the differences in the correlation structure of histogram-valued Medical

Income data and classical Medical Income data using the midpoints, we next apply classical

PCA to the midpoints based on the correlation matrix of Equation (4.22). The coefficients

and the proportion of variance explained by the principal components resulting from the

classical PCA using the midpoints are shown in Table 4.19. Coefficients too close to zero are

left blank in Table 4.19. The coefficients in Table 4.19 show that the general composition of

the principal components based on the midpoints is similar to that based on the histograms,

with only slight differences in the magnitudes of the coefficients. However, the first principal

component using the midpoints accounts for 45% of the total variation compared to 38% in

the case of the histograms. The next two principal components also contribute more to the

total variation in the data than those in the histgorams results in Subsection 4.4.2. Together

the first three principal components account for a total of 79% of the data variation.

Plots of the observations along the first three principal components are shown in Figures

4.9, 4.10, and 4.11. Color schemes for these plots are the same as those for Figures 4.3, 4.4,

and 4.5. That is, observations in PC1 × PC2 plots are colored according to age group and

observations in PC1 × PC3 and PC2 × PC3 are colored according to diabetes status. The

plot of observations along the PC1 and the PC2 axes of Figure 4.9 shows three distinct

clusters of observations. One cluster consists of observations which represent the youngest
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Table 4.19: Coefficients and Variance Proportion of Principal Components for Medical
Income Data Using Midpoints of All Variables

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7
Income -0.2720 0.4090 0.8370 0.2400
Glucose -0.3400 0.9200 0.1620
Cholesterol -0.4430 -0.3730 -0.2630 0.2950 -0.7130
Hemoglobin 0.5070 -0.1610 -0.1050 0.1260 0.4350 -0.7070
Hematocrit 0.5060 -0.1680 -0.1040 0.1220 0.4350 0.7070
Red blood 0.4420 0.3680 0.1960 -0.3740 -0.6970
White blood 0.1220 -0.6230 -0.1540 0.5090 -0.5570
Proportion of Variance 0.4534 0.1995 0.1351 0.1006 0.0943 0.0170 0.0002
Cumulative Proportion 0.4534 0.6529 0.7880 0.8885 0.9828 0.9998 1.0000

age group. These observations have the highest PC1 values which cluster around 4. The

next cluster consists of observations in the second and the third youngest age group. These

observations have smaller PC1 values which range from 0 to 1. The last cluster consists of

all observations in the older groups with PC values ranging from -2 to -0.5.

The pattern of degeneration in values of the first principal component as age increases

described here coincides with the trend of the first principal component based on histogram-

valued observations discussed in Subsection 4.4.2. However, in Figure 4.9 observations form

distinct clusters along the PC1-axis. The complete separation between observations in this

plot reflects a drawback of using the midpoints to represent multiple values of a symbolic

observation. With only one point, we can not see that each observation actually covers an

area much larger than the point shown in Figure 4.9. We can not see from the plot of Figure

4.9 that along the first principal component groups of patients have more common values

than not and that the range of red blood concentration is large for all groups of patients.

Similar conclusions can be drawn from studying plots of the midpoints values along the

third principal component in Figure 4.10 and Figure 4.11. Observations in these plots indicate

that patients with no diabetes have lower values of PC3. Patients with mild diabetes have
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Figure 4.9: Plot of PC1 × PC2 for Medical Income Data Using Midpoints of All Variables

Figure 4.10: Plot of PC1 × PC3 for Medical Income Data Using Midpoints of All Variables
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Figure 4.11: Plot of PC2 × PC3 for Medical Income Data Using Midpoints of All Variables

higher level of PC3 and patients with severe diabetes have the highest values in the third

principal component. Since the third principal component is mainly composed of Glucose, we

can conclude that in general glucose is correlated with diabetes. This conclusion agrees with

the general trend of PC3 obtained in Subsection 4.2.2. However, we can not see from Figures

4.10 and 4.11 that the histograms representing groups with no diabetes have a much larger

internal variation than those of mild and severe diabetes. About half of each group of patients

with no diabetes has glucose level as high as those of diabetes groups. Therefore, using only

the midpoints does not capture the full structure of histogram-valued observations.



184

4.5 References

Bertrand, P. and Goupil, F. (2000). Descriptive Statistics for Symbolic Data. In: Analysis

of Symbolic Data: Explanatory Methods for Extracting Statistical Information from

Complex Data (eds. H.-H. Bock and E. Diday). Springer-Verlag, Berlin, 106-124.

Billard, L. (2007). Dependencies and Variation Components of Symbolic Interval-valued

Data. In: Selected Contributions in Data Analysis and Classification (eds. P. Brito, G.

Cucumel, P. Bertrand and F. de Carvalho). Springer-Verlag, Berlin, 3-12.

Billard, L. and Diday, E. (2006). Symbolic Data Analysis: Conceptual Statistics and Data

Mining . Wiley, New York.

Bock, H.-H. and Diday, E. (eds.) (2000). Analysis of Symbolic Data: Explanatory Methods

for Extracting Statistical Information from Complex Data. Springer-Verlag, Berlin.



185

Appendix

We also apply the proposed method to the Medical Income data using Glucose, Cholesterol,

Hemoglobin, Hematocrit, Red blood, and White blood. The resulting composition for the

first three principal components in this analysis is very similar to the analysis using all

variables. Two-dimensional plots of the first three principal components for this analysis

are shown in Figures 4.12, 4.13, and 4.14. Plots resulting from application of our proposed

method on the Medical Income dataset using other subsets of variables are also included in

this appendix.

Figure 4.12: Plot of PC1 × PC2 for Medical Income Data Using Glucose, Cholesterol,
Hemoglobin, Hematocrit, Red blood, and White blood (Color Represents Age)
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Figure 4.13: Plot of PC1 × PC3 for Medical Income Data Using Glucose, Cholesterol,
Hemoglobin, Hematocrit, Red blood, and White blood (Color Represents Diabetes)

Figure 4.14: Plot of PC2 × PC3 for Medical Income Data Using Glucose, Cholesterol,
Hemoglobin, Hematocrit, Red blood, and White blood (Color Represents Diabetes)
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Figure 4.15: Plot of PC1 × PC2 for Medical Income Data Using Glucose, Cholesterol,
Hemoglobin, Hematocrit, and Red blood (Color Represents Age)

Figure 4.16: Plot of PC1 × PC3 for Medical Income Data Using Glucose, Cholesterol,
Hemoglobin, Hematocrit, and Red blood (Color Represents Diabetes)
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Figure 4.17: Plot of PC2 × PC3 for Medical Income Data Using Glucose, Cholesterol,
Hemoglobin, Hematocrit, and Red blood (Color Represents Diabetes)

Figure 4.18: Plot of PC1× PC2 for Medical Income Data Using Income, Glucose, Cholesterol,
and Hemoglobin (Color Represents Diabetes)
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Figure 4.19: Plot of PC1× PC3 for Medical Income Data Using Income, Glucose, Cholesterol,
and Hemoglobin (Color Represents Age)

Figure 4.20: Plot of PC2× PC3 for Medical Income Data Using Income, Glucose, Cholesterol,
and Hemoglobin (Color Represents Age)



Chapter 5

Symbolic Likelihood Functions and Some Maximum Likelihood Estimators

for Symbolic Data

In this chapter, we introduce likelihood functions for symbolic random variables. In sym-

bolic data, each observation contains multiple values. A symbolic observation can be a list

of values, a range of values, a histogram of values or, more generally, a distribution of values.

The proposed likelihood function in Section 5.1 is based on the general case where each obser-

vation is a distribution of values. In Section 5.2, we derive maximum likelihood estimators

(MLE) for the mean and the variance of three of the most common types of symbolic vari-

ables: interval-valued variable, histogram-valued variable, and triangular-ditribution-valued

variable.

5.1 Symbolic Likelihood Functions

Let X1, X2, . . . , Xn be a symbolic random sample from a population with distribution H and

parameter vector δ. A random variable X from a distribution H with parameter δ means

HX(x; δ) = Pδ(X ≤ x). (5.1)

Let h be the density function corresponding to distribution function H of Equation (5.1).

Then,

hX(x; δ) = Pδ(X = x). (5.2)

Now let ξi denote a realization of Xi for i = 1, 2, . . . , n. Since Xi is a symbolic random

variable, ξi consists of a set of values where each value has an associated relative frequency.
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That is,

ξi = {ξi1, f(ξi1); ξi2, f(ξi2); . . . ; ξini
, f(ξini

)}

where ni is the number of values in observation ξi and f(ξil) is the relative frequency that ξil

occurs within ξi for l = 1, 2, . . . , ni. When ni is countable, ξi is itself a discrete distribution

of values and
∑ni

l=1 f(ξil) = 1. When ni is uncountable, ξi is itself a continuous distribution

of values and
∫∞
−∞ f(w)dw = 1 for all real-valued w.

In general, assume Xi consists of a distribution of values. The values within Xi come

from a parametric family of distributions with density function f and parameter vector Θi.

It is important to note that f and Θi are the density function and the parameter vector

for values within Xi. We refer to f as the internal distribution of Xi to distinguish it from

h which is the distribution of Xi, and refer to Θi as the vector of internal parameters to

distinguish it from δ which is the vector of parameters of Xi associated with the density

function h.

Since Θi is an internal parameter vector of Xi and Xi is a random variable, Θi is not a

fixed vector but a random vector. Suppose Θ1,Θ2, . . . ,Θn come from a family of distributions

with density function g and parameter matrix τ . Then,

g(θi; τ ) = Pτ (Θ = θi). (5.3)

Furthermore, given a parametric family, a distribution is uniquely determined by its

parameters. Hence, there exists a one-to-one correspondence between Xi and Θi based on

the assumption that Xi consists of a distribution of values from a parametric family. That

is, a realization ξi of Xi can be reconstructed if the realized vector θi of Θi is known and

vice versa. Therefore,

Pδ(X = ξi) = Pτ (Θ = θi)

or equivalently,

h(ξi; δ) = g(θi; τ ) (5.4)
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where h and g are as defined in Equations (5.2) and (5.3). The likelihood funtion of δ given

ξ1, ξ2, . . . , ξn is defined as,

L(δ; ξ1, ξ2, . . . , ξn) =
n∏

i=1

h(ξi; δ). (5.5)

Given Equation (5.4), the likelihood function of Equation (5.5) can be expressed in terms of

τ and θ1, . . . ,θn by replacing h(ξi; δ) with g(θi; τ ) as follows,

L(δ; ξ1, ξ2, . . . , ξn) =
n∏

i=1

h(ξi; δ) =
n∏

i=1

g(θi; τ ) = L(τ ; θ1, θ2, . . . ,θn). (5.6)

That is, the symbolic likelihood function of δ given ξ1, ξ2, . . . , ξn can be stated as a

classical likelihood function of τ given θ1, θ2, . . . ,θn. Now classical maximum likelihood

methods from estimation to regression can be applied to symbolic data via the relationship

stated in Equation (5.6). Some examples of estimating the mean and the variance of symbolic

data based on the proposed maximum likelihood functions follow.

5.2 Some Maximum Likelihood Estimators based on the Proposed Likelihood

Functions

All examples shown in this section are based on the following assumptions. Let X1, X2, . . . , Xn

be a symbolic random sample. Let Θ1,Θ2, . . . ,Θn be the corresponding vectors of internal

parameters. Assume further that Θi = (Θi1, Θi2) and Θi ∼ N2(µ,Σ). It is also reasonable to

assume that Θi1 and Θi2 are independent. If an indication of dependency exists, the following

method can be generalized to the multivariate case. In the future, we plan to extend this

method to the multivariate case. Therefore, with the assumption of independence and that

Θi1 ∼ N(µ1, σ
2
1) and Θi2 ∼ N(µ2, σ

2
2), the joint distribution of Θi becomes

g(θi; µ,Σ) = g(θi1; µ1, σ
2
1)g(θi2; µ2, σ

2
2).

The likelihood function of (µ,Σ) is then

L(µ1, µ2, σ
2
1, σ

2
2; θ1, θ2, . . . ,θn) =

n∏
i=1

[
g(θi1; µ1, σ

2
1)g(θi2; µ2, σ

2
2)
]
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=
n∏

i=1

2∏
j=1

g(θij; µj, σ
2
j )

=
n∏

i=1

2∏
j=1

1√
2πσ2

j

e−(θij−µj)
2/2σ2

j .

Now, the estimators of µ1, µ2, σ
2
1 and σ2

2 can be obtained using the classical maximum like-

lihood method. Thus we find

µ̂j =
1

n

n∑
i=1

θij

σ̂2
j =

1

n

n∑
i=1

(θij − µ̂j)
2. (5.7)

5.2.1 Interval-valued data

Let Xi be an interval-valued random variable. Then the realization of Xi is ξi = [ai, bi] and

for any W in the interval [ai, bi], W ∼ U(ai, bi), i.e.,

f(W = w|ξi) =
1

bi − ai

.

Furthermore, let Θi1 = E(W |Xi = ξi) and Θi2 = V ar(W |Xi = ξi). Then Θi1 = (ai + bi)/2

and Θi2 = (bi − ai)
2/12. Now, the overall mean of Xi for i = 1, 2, . . . , n, is

E(W ) = E(E(W |Xi = ξi)) = E(Θi1) = µ1 (5.8)

and its variance is

V ar(W ) = E(V ar(W |Xi = ξi)) + V ar(E(W |Xi = ξi))

= E(Θi2) + V ar(Θi1)

= µ2 + σ2
1. (5.9)

Note that the estimator for V ar(W ) in Equation (5.9) is the sum of two components, the

mean of the variances within each observation and the variance of the means of the obser-

vations. These two components correspond to the mean of squares within observations and

the mean of squares between observations shown by Billard (2007).
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Now, replacing µ1, µ2, σ
2
1 and σ2

2 by their MLE in (5.7) gives the following estimators for

(5.8) and (5.9), respectively,

Ê(W ) = µ̂1 =
1

n

n∑
i=1

θi1 =
1

n

n∑
i=1

ai + bi

2
(5.10)

and

̂V ar(W ) = µ̂2 + σ̂2
1

=
1

n

n∑
i=1

θi2 +
1

n

n∑
i=1

(θi1 − µ̂1)
2

=
1

n

n∑
i=1

(θi2 + θ2
i1 − 2θi1µ̂1 + µ̂2

1)

=
1

n

n∑
i=1

(θi2 + θ2
i1)− µ̂2

1

=
1

n

n∑
i=1

(
(bi − ai)

2

12
+

(ai + bi)
2

4

)
− µ̂2

1

=
1

12n

n∑
i=1

(
(ai − bi)

2 + 3(ai + bi)
2
)
− µ̂2

1

=
1

12n

n∑
i=1

(
a2

i − 2aibi + b2
i + 3a2

i + 6aibi + 3b2
i

)
− µ̂2

1

=
1

12n

n∑
i=1

4(a2
i + aibi + b2

i )− µ̂2
1

=
1

3n

n∑
i=1

(a2
i + aibi + b2

i )− µ̂2
1

=
1

3n

n∑
i=1

(a2
i + aibi + b2

i )−

(
1

n

n∑
i=1

ai + bi

2

)2

. (5.11)

The MLE’s in (5.10) and (5.11) match the empirical mean and the empirical variance for

interval-valued data as defined in equations (2.3) and (2.4) which were derived by Bertrand

and Goupil (2000) based on the empirical density for an interval-valued variable.

5.2.2 Histogram-valued data

Let Xi be a histogram-valued random variable. Then,

ξi = {[a1
i , b

1
i ), p

1
i ; [a

2
i , b

2
i ), p

2
i ; . . . ; [a

si
i , bsi

i ], psi
i }
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where si is the number of subintervals in ξi and pl
i is the relative frequency associated with

interval [al
i, b

l
i]. That is, a histogram-valued variable is a generalized version of an interval-

valued variable. Again, let Θi1 = E(W |Xi = ξi) and Θi2 = V ar(W |Xi = ξi). Then,

Θi1 =

si∑
l=1

pl
i

(al
i + bl

i)

2
(5.12)

and

Θi2 =
1

3

si∑
l=1

pl
i[(a

l
i)

2 + al
ib

l
i + (bl

i)
2]−

(
si∑

l=1

pl
i

(al
i + bl

i)

2

)2

. (5.13)

By analogy, the mean and the variance of Xi for i = 1, 2, . . . , n here are the same as those

of interval-valued data shown in Equation (5.8) and (5.9). Now, replacing µ1, µ2, σ
2
1 and σ2

2

by their MLE’s shown in (5.7) with Θi as defined in Equation (5.12) and (5.13) gives the

following estimators for E(W ) and V ar(W ), respectively,

Ê(W ) = µ̂1 =
1

n

n∑
i=1

θi1 =
1

n

n∑
i=1

si∑
l=1

pl
i

(al
i + bl

i)

2
(5.14)

and

̂V ar(W ) = µ̂2 + σ̂2
1

=
1

n

n∑
i=1

θi2 +
1

n

n∑
i=1

(θi1 − µ̂1)
2

=
1

n

n∑
i=1

θi2 +
1

n

n∑
i=1

(θ2
i1 − 2θi1µ̂1 + µ̂2

1)

=
1

n

n∑
i=1

(
1

3

si∑
l=1

pl
i[(a

l
i)

2 + al
ib

l
i + (bl

i)
2]− θ2

i1

)
+

1

n

n∑
i=1

θ2
i1 − µ̂2

1

=
1

n

n∑
i=1

(
1

3

si∑
l=1

pl
i[(a

l
i)

2 + al
ib

l
i + (bl

i)
2]− θ2

i1 + θ2
i1

)
− µ̂2

1

=
1

3n

n∑
i=1

si∑
l=1

pl
i[(a

l
i)

2 + al
ib

l
i + (bl

i)
2]− µ̂2

1

=
1

3n

n∑
i=1

si∑
l=1

pl
i[(a

l
i)

2 + al
ib

l
i + (bl

i)
2]−

(
1

2n

n∑
i=1

si∑
l=1

pl
i(a

l
i + bl

i)

)2

. (5.15)

Again, the MLE’s in (5.14) and (5.15) match the empirical mean and the empirical variance

for histogram-valued data as defined in equations (2.16) and (2.17) which were derived by

Billard and Diday (2003).
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5.2.3 Triangular-distribution-valued data

In this example, we will derive the MLE’s for the mean and the variance of another common

type of symbolic data known as the triangular-distribution-valued data (for convenience, it

will be refered to as triangular-valued data from here on). Let X1, X2, . . . , Xn be a random

sample of triangular-valued variable. Let ξi be a realization of Xi where all values of ξi fall

inside an interval [ai, bi]. Then for all W in the interval [ai, bi],

f(W = w|ξi) =


4(w−ai)
(bi−ai)2

for ai ≤ w < (ai+bi)
2

,

4(bi−w)
(bi−ai)2

for (ai+bi)
2

≤ w ≤ bi.

(5.16)

That is, the curve f(w|ξi) of Equation (5.16) forms an equilateral triangle with the w-axis

whose base is the interval [ai, bi] and peak located at (ai+bi

2
, 2

bi−ai
).

Now given Xi = ξi, the expected value of W is

E(W |Xi = ξi) =

∫ ∞

−∞
wf(w|ξi)dw

=

∫ ai+bi
2

ai

w
4(w − ai)

(bi − ai)2
dw +

∫ bi

ai+bi
2

w
4(bi − w)

(bi − ai)2
dw

=
4

(bi − ai)2

(∫ ai+bi
2

ai

w(w − ai)dw +

∫ bi

ai+bi
2

w(bi − w)dw

)

=
4

(bi − ai)2

(∫ ai+bi
2

ai

(w2 − aiw)dw +

∫ bi

ai+bi
2

(biw − w2)dw

)

=
4

(bi − ai)2

(
w3

3
− ai

w2

2
)

∣∣∣∣
ai+bi

2

ai

+ (bi
w2

2
− w3

3
)

∣∣∣∣bi

ai+bi
2


=

4

(bi − ai)2

(
(ai + bi)

3

24
− ai(ai + bi)

2

8
+

a3
i

6
+

b3
i

6
− bi

(ai + bi)
2

8
+

(ai + bi)
3

24

)
=

4

(bi − ai)2

(
(ai + bi)

3

12
− (ai + bi)

3

8
+

a3
i + b3

i

6

)
=

ai + bi

6(bi − ai)2

(
−(ai + bi)

2 + 4(a2
i − aibi + b2

i

)
=

ai + bi

6(bi − ai)2

(
−a2

i − 2aibi − b2
i + 4a2

i − 4aibi + 4b2
i

)
=

ai + bi

6(bi − ai)2

(
3a2

i − 6aibi + 3b2
i

)
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=
ai + bi

2
; (5.17)

and its variance is

V ar(W |Xi = ξi) =

∫ ∞

−∞
(w − E(W |Xi = ξi))

2f(w|ξi)dw

=

∫ ∞

−∞
(w)2f(w|ξi)dw − (E(W |Xi = ξi))

2. (5.18)

Now,∫ ∞

−∞
(w)2f(w|ξi)dw =

∫ ai+bi
2

ai

w2 4(w − ai)

(bi − ai)2
dw +

∫ bi

ai+bi
2

w2 4(bi − w)

(bi − ai)2
dw

=
4

(bi − ai)2

(∫ ai+bi
2

ai

(w3 − aiw
2)dw +

∫ bi

ai+bi
2

(biw
2 − w3)dw

)

=
4

(bi − ai)2

(
w4

4
− ai

w3

3
)

∣∣∣∣
ai+bi

2

ai

+ (bi
w3

3
− w4

4
)

∣∣∣∣bi

ai+bi
2


=

1

(bi − ai)2

(
(ai + bi)

4

16
− ai(ai + bi)

3

6
+

a4
i

3
+

b4
i

3
− bi(ai + bi)

3

6
+

(ai + bi)
4

16

)
=

1

(bi − ai)2

(
(ai + bi)

4

8
− (ai + bi)

4

6
+

a4
i + b4

i

3

)
=

1

24(bi − ai)2

(
8a4

i + 8b4
i − (ai + bi)

4
)
. (5.19)

Substituting the right handside of Equation (5.19) for
∫∞
−∞ (w)2f(w|ξi)dw in Equation (5.18)

gives

V ar(W |Xi = ξi) =
1

24(bi − ai)2

(
8a4

i + 8b4
i − (ai + bi)

4
)
− (

ai + bi

2
)2

=
1

24(bi − ai)2

(
8a4

i + 8b4
i − (ai + bi)

4 − 6(ai + bi)
2(bi − ai)

2
)

=
1

24(bi − ai)2

(
a4

i + b4
i − 4a3

i bi + 6a2
i b

2
i − 4aib

3
i

)
=

1

24(bi − ai)2
(ai − bi)

4

=
(ai − bi)

2

24
. (5.20)

Again, let Θi1 = E(W |Xi = ξi) of Equation (5.17) and Θi2 = V ar(W |Xi = ξi) of

Equation (5.20). The MLE’s for E(W ) and V ar(W ) are

Ê(W ) = µ̂1 =
1

n

n∑
i=1

θi1 =
1

2n

n∑
i=1

(ai + bi) (5.21)
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and

̂V ar(W ) = µ̂2 + σ̂2
1

=
1

n

n∑
i=1

θi2 +
1

n

n∑
i=1

(θi1 − µ̂1)
2

=
1

n

n∑
i=1

θi2 +
1

n

n∑
i=1

θ2
i1 − µ̂2

1

=
1

n

n∑
i=1

(ai − bi)
2

24
+

1

n

n∑
i=1

(
ai + bi

2

)2

− µ̂2
1

=
1

24n

n∑
i=1

(
(ai − bi)

2 + 6(ai + bi)
2
)
− µ̂2

1

=
1

24n

n∑
i=1

(a2
i − 2aibi + b2

i + 6a2
i + 12aibi + 6b2

i )− µ̂2
1

=
1

24n

n∑
i=1

(7a2
i + 10aibi + 7b2

i )− µ̂2
1

=
1

24n

n∑
i=1

(7a2
i + 10aibi + 7b2

i )−

(
1

2n

n∑
i=1

(ai + bi)

)2

. (5.22)

Let w̄ = Ê(W ) of Equation (5.21), Equation (5.22) can be rewritten as,

̂V ar(W ) =
1

24n

n∑
i=1

[
7(ai − w̄)2 + 10(ai − w̄)(bi − w̄) + 7(bi − w̄)2

]
. (5.23)

5.3 Summary

The likelihood funtions proposed in Section 5.1 provide a method to perform maximum

likelihood analysis of symbolic data such as regressions and inferences. In Section 5.2,

we derived the maximum likelihood estimators for the mean and the variance of interval-

valued, histogram-valued, and triangular-valued variables assuming their internal mean and

internal variance are independent and normally distributed. Maximum likelihood estimators

of parameters for other types of symbolic random variable can be derived using the same

approach we showed in Section 5.2. This method can be used to estimate the mean and

the variance of symbolic data with all combinations of internal and external distributions.

Furthermore, when internal parameters are not independently distributed, multivariate dis-

tribution functions are used in the likelihood funtions instead of the product of univariate
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distribution functions. One potential future project is to extend our proposed likelihood

functions to the multivariate case.
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Chapter 6

Conclusions and Future Research

In this dissertation, we made three contributions to the area of symbolic data analysis. First,

we proposed a method of principal component analysis (PCA) for interval-valued data. Next,

we extended this proposed method to a PCA method for histogram-valued data. Finally, we

introduced a method to construct the likelihood funtions for symbolic data.

Although many extensions of classical PCA had been proposed for interval-valued data,

they either account for only part of the variance structure of interval-valued observations or

only work for very narrow intervals. In Chapter 3 of this dissertation, we proposed a method

to compute the principal components using a so-called symbolic covariance structure of

interval-valued data. This symbolic covariance structure accounts for all variation inherent in

interval-valued observations. Therefore, our proposed method creates principal components

that explain the total variance of interval-valued data.

Moreover, all current methods construct the principal components as intervals. In this

work, we showed that the true structure of an interval-valued observation is a polytope in

a principal components space. We proposed a method to reconstruct these polytopes in a

principal components space. Our method can also be used to make plots of projections of

the observations onto a 2-dimensional plane or a 3-dimensional space. Applications of the

proposed method using real datasets illustrate that the plots of observations onto a PCk1

× PCk2 resulting from our proposed method reveal clusters of obervations with common

features more clearly than plots resulting from other methods. For further analysis where

numerical values of the principal components are required, we proposed creating histograms

of values to represent the principal components based on our proposed PC1 × PCk plots.

200
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Histogram-valued principal components reflect most of the internal structure of interval-

valued observations in a principal components space.

Next, using the fact that histograms are extensions of intervals, we generalized the pro-

posed PCA method for interval-valued observations to a method for histogram-valued obser-

vations. The method presented in Chapter 4 of this dissertation is the first PCA method

proposed for histogram-valued data. This method inherits all advantages of the symbolic

PCA method of Chapter 3. The principal components resulting from this approach explain

the total variance structure of histogram-valued observations. The plots resulting from this

method show the true structure of the observations and the histograms representing the

principal components also reflect most of the internal variation of histogram-valued obser-

vations.

The third part of this dissertation introduced a method to construct likelihood func-

tions for symbolic data. A symbolic random variable is itself a distribution of values. In

this method, we assume that a symbolic variable is a parametric distribution belonging to

a family of distributions. Using a one-to-one relationship between a parameter and its para-

metric distribution, we contructed the likelihood function for a symbolic random variable as

the classical likelihood function of the variable’s internal parameters in Chapter 5. We then,

used the proposed likelihood function to derive estimators for the mean and the variance of

symbolic variables that take an interval of values, a histogram of values, and a triangular

distribution of values. The likelihood function presented in Chapter 5 is the first piece of

theoretical work proposed for symbolic data. This likelihood function can serve as a frame-

work to extend classical maximum likelihood estimation or classical maximum likelihood

regression methods to symbolic data.

Having been introduced only recently, many areas of symbolic data analysis remain unex-

plored. Therefore, a wealth of research problems in theory as well as applications exists for

symbolic data. Many potential research problems arise from this dissertation alone. Some
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future research directions stemmed from the methods proposed in this work are presented

in the following paragraphs.

In the symbolic PCA method for interval-valued data, we proposed constructing his-

tograms to represent the principal components of the interval-valued observations. As

explained in Subsection 3.2.2, the true relative frequency of a subinterval of the histogram

representing a p-dimensional interval-valued observation in a principal components space is

the volume of the (p − 1)-cross-sectional polytope bounded between the subinterval end-

points. Subsection 3.2.2 further explains that the cost of computing volume for a polytope

can be prohibitive when p is large. Therefore, we proposed computing the relative frequency

based on the area of the polygon resulting from projecting an interval-valued observation

onto a PC1 × PCk plane. The PC1-axis is included in computing the relative frequency to

ensure that the largest variability in the data is accounted for. One potential extension from

this method is to compute the relative frequency of a subinterval based on the volume of a

3 (or 4) dimensional polytope resulting from projecting an obervation onto a PC1 × PC2

× PCk (× PC3) space. Volume computation for polytopes with 3 (or 4) dimensions is more

manageable than it is for polytopes with higher dimension. In situations where it takes three

(or four) principal components to explain a reasonable amount of variation in the data,

relative frequency for the histogram based on the volume of a 3 (or 4) dimensional polytope

may reflect the internal variability in the data better than does the relative frequency based

on the area of a polygon as proposed in our method.

Another potential future problem comes from the PCA method proposed for histogram-

valued data. A histogram-valued observation can be represented as a hyper-rectangle par-

titioned into sub-hyperrectangles. Each sub-hyperrectangle resulting from this partition

has uniform density. However, the density may differ from one sub-hyperrectangle to the

next. Refer to Subsection 4.2.2 for more details. To depict density differences between sub-

hyperrectangles in a plot, we propose using color to represent density. However, writing a
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program to implement this proposal requires time and extensive computing effort. It makes

for a challenging future project.

Yet, more future work can be generated from the likelihood function proposed in Chapter

5 than from the other methods proposed in this dissertation. Likelihood functions serve

as the theoretical foundation for so many statistical applications. Based on the proposed

likelihood function, we derived estimators for the mean and variance of three common types

of symbolic data. Estimators for parameters of symbolic data of all possible combinations

of internal and external distributions can be derived following the approach of Chapter

5. The likelihood function proposed in this dissertation is based on the assumption that

the internal parameters of a symbolic variable are independent. It is possible to extend

this likelihood function to include the case where the internal parameters are dependent

by applying theory of multivariate statistics. Finally, many applications such as estimation,

modelling, and regression methods based on maximum likelihood can be extended in the

future.


