A PARALLEL APPROACH TO DICCCOL

by
Michael Rob Lavoie

(Under the Direction of Tianming Liu)

Abstract

DICCCOL is a process that identifies common conmiggtin the brain. It was
developed to show that the cortex has a commontateithereby identifying functional
correspondence. The tool compares the conneciivaysubject brain against a reference library
of structural correspondence. A set of bundlgsasessed for comparison against this library.
The result is a subject’s fiber bundle that mossely matches the libraries reference bundle.
The data set is relatively small but the processrextensive. A single thread approach to the
process is very time consuming. This task is bsetiged for a parallel processing approach. |
show how the work can be accomplished more effilyiemth GPU hardware and CUDA'’s

parallel programming, resulting in a speedup faofdsetter than 6.

INDEX WORDS: DICCCOL, CUDA, GPGPU, eigenvector, @nyalue, medical imaging

A PARALLEL APPROACH TO DICCCOL
by

Michael Rob Lavoie

A Thesis Submitted to the Graduate Faculty of Thesérsity of Georgia in Partial Fulfillment of

the Requirements for the Degree

MASTERS OF SCIENCE

ATHENS, GA

2014

© 2014
Michael Rob Lavoie

All Right Reserved

A PARALLEL APPROACH TO DICCCOL

by

Michael Rob Lavoie

Major Professor: Tianming Liu
Committee: Thiab Taha
Anthony Dickherber

Electronic Version Approved:

Julie Coffield
Interim Dean of Graduate School
The University of Georgia

August, 2014

ACKNOWLEDGEMENTS
I'd like to thank Professor Tianming Liu for his assistance with completing this work. I'd like to
thank Dr. Kaiming Li for his assistance with, and his knowledge of the DICCCOL code base.

I'd like to thank Jiang Xi for his assistance with the DTI data sets.

TABLE OF CONTENTS

ACKNOW LE D GEMEN TS ..o e e e e e e e v
L. INTRODUCT ION. ettt e ettt ettt ettt et e e e e e e e et eaeaneaaeeneeneeaeenas 1
2. RECENT AND RELATED GPGPU AND IMAGING WORK i 7
3. MRI BACKGROUND INFORMATION ..ouiiiii et ettt ettt e e ene e e e eneen 10
3.1 NUCLEAR MAGNETIC RESONANCE(NMR).....cciiiiiiiiiiiiiiiiiie e ean e e e e e e e e 10
3.2 MAGNETIC RESONANCEIMAGING (MRI) .ciiiiiiiiiiiiiiiiie et 17
3.3 DIFFUSIONWEIGHTED IMAGE (DWI) ...ttt 20
3.4 DIFFUSIONTENSORIMAGING (DTI) .eutttiiiiiiiieeie ettt s s e e e e e e e e e eeeaeenannes 25
3.5 LIMITATIONS OF THE PROCESS. ... tuttttutettattte et e atatesa e sesmaansesn et sesnsearnseaanreaenranens 30
4, THE CUDA PR O CESS ... oottt ettt ettt ettt r e e e e e e renns 32
4.1 BASIC CPU-GPUARCHITECTURE ...tuttttte ettt e e e et e e e teaee e e e eaaee e eaaeeaenaennees 32
4.2 GPUMEMORY ARCHITECTURE ..eututittte et teaeee et eeae e et s e et s emesme s ten et s e s e s e s e ren e e e e rens 33
4.3 GPUPROGRAMMING MODELtuttutenttttee ettt s e eseee s et e eme s e s st ren e e st ren e e e e re e renrens 37
5. CUDADOTRACEMAP PROCESS ... et 44
5.1 BUNDLE TO COVARIANCE . ..uttte ettt et et e e et e e e e eaeema e e e an e e e s e aneeenseanseenseaeneenn 54
5.2 CoVARIANCE MATRIX TO PRINCIPAL DIRECTIONVECTOR.....cuiie et eeeeeaanaens 47
5.3 PRINCIPAL DIRECTIONVECTORTO FEATURE SCOREeieieieieee e e eee e e eieeannnas 50
5.4 BUNDLE CONCURRENC Y. 1.ttt et ettt teteasaa e teseasa e ae e seasasen e sn e snte e e e re e seaearnaenreaens 54
5.5 REFERENCEFEATURE DATA CORRECTION . ..t tutttttttetentestensensensensessensensesesnesen e senrens 55
5.6 POLAR POINT GENERATION .. ettt et tettts et tesaessensesaessensestesssaasesessessen e res sttt renrenres 56
LT I S I PR 58
0.1 EIGENPROBLEMCOMPARISONutttteststtutessas st estes e esesteaases e et rtaaeaesaeaaeraeraeaenaees 58
6.2 SERIAL VS PARALLEL QUANTITATIVE COMPARISONuuiiiiinieiitieeretieeessnneeeesneesennnneens 58
5.3 SINGLE ROIVISUAL COMPARISON. .. cu ettt teee e eeaea et e et eeeeaanseaasasasnse e et re e reaereaenees 60
6.4 MULTIPLE ROIVISUAL COMPARISON. ... euiuieee ettt ee et e e eaae e eee st raarmaenseenseenreaaneeaenrens 60
5.5 RUNTIME COMPARISON . . e ututeiutetee e eeeeaeeseee e ta e tetemaareea e ta e ta e e en et reaenrenenrans (510]
QA =1 O 1 1 T 62
7.1 EIGEN CALCULATION ACCURACY .rreuininten ettt ettt sensensensensenesensen et renrenrens 62
7.2 CPUVS GPUBUNDLE RESULT S . tuiuttttt ettt ettt ettt ettt et ee e s e e e e e e e e e e reeeeaeeeens 62

7.3 CPUVS GPUFIBER RESULTS ..cciiiiitiiiiiiiiiiiiii e e et essssss s s s e s s e s neenannnns 64

7.4 FIBER SEGMENT COUNT RESULTS .cctuuiiiitiieteiie ettt e e eets e e eets e s eesme s s e eetneeeaanneaeann e eesnn s 65

7.5 CPUVS GPUROI-0VISUAL COMPARISONRESULTS. . iuitiitii ittt eneeeaeenns 66
7.6 CPUVS GPUSINGLE SUBJECTVISUAL COMPARISONRESULTS .. cvtitirienienieneeneensensenseneenes 73
.7 PROCE ST RUNTIME RESULT a.tititititiiieee ettt ettt ettt e s e s rm e e e et a e e s e s e e e e e e en e e reenens 76
7.8 PREDICTROIZ RUNTIME RESULT S . uieinieiiie ettt et e ettt ae e e e e e e e e e e e e e e e eeeneens 77
8. OB S E RV AT ION S ..o ettt e et e e e e e r e e e e e e e e anaenans 78
S OO\ (01 I U] (6] N R 81
1O, FUTURE WORK ..ottt et ettt et e et et et et e et e e e e e e en e e eaaenaenees 83
11. MACHINE/SY STEM DET AILS .. oo 87
ABBREVIATION GLO S S A RY ottt e ettt e e eereeeeneenrenes 88

REFERENCES 89

Equation 1:
Equation 2:
Equation 3:
Equation 4:
Equation 5:
Equation 6:
Equation 7:
Equation 8:
Equation 9:

LIST OF EQUATIONS

Apparent Diffusion Coefficient Tensor 8D Spacecccoovvvvevivviviinnncmmeane. 26
Covariance calculation I,J=dimenddnn=segment length.............ccccouvuunees 46
Eigenvector CalCUIAtioN ... 49
Feature Density CalCUIAtION ... oo 52
Feature Density Normalization calcol@ti....................ouvveiiiiiiiini s 52
Polar Feature Count calCulationooooiiiiiiiiiiiii e 53
Feature Score CalCUlation ... i 54
Reference Library, feature correctialt@ation.................cvvvviiiiiiiiviccceeenen. 55

Feature Density Normalization calCol@ti...............cccooovviiiiiiiiiiiis i, 85

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:

LIST OF FIGURES

Brodmann MAD ...ttt ee ettt 2
Cerebrum CrosS-SECIN.ivieceee ettt e, 3
Water MOIECUIBYottt 11
Random Spinning Hydrogen ProtBaS..............c.ooceioiee e 11
Proton Alignment in a Magnetic Field: Hignd Low Energy Stat&§..................... 12
Protons Precessing in @ Magnetic FIRIG...........oooveeeeeeeeeeeeeeeeeeeeeeee e 12
Net Longitudinal SignBP! (immeasurable)............cccoovooeeeeeeeeeeeeeeeeeeeeereeeeees 13
Net Zero Magnetic MOMETIc.oceieeeeeeeeeeee et eeeeeee e ees e ee e, 13
Net Transverse Signal: Phase Synchromzedessioli” (measurable).................... 14
Long Chain Fatty ACKE!o ettt 15
Pulse Sequence for a T2 Weighted ImMage...........cccevveiiiieeiiiiiiiiieeeeiiieeeeeeeeeiiees 16
Pulse Sequence for a T1 Weighted ImMage...........ccceeeeiiiiieeiiiiiiiiieeeieieeeeeeeeiiiees 16
T1 Weighted Image AcQUISHIBMoooeeeeeeee e, 17
The red coils produce the Z-Axis Magn@radient: Slice Selectiéfi................ 18
The red coils produce the Y-Axis Magn&radient: Phase Encodifi............... 19
The red coils produce the X-Axis Magn&radient: Frequency Encodifig....... 20
Random walk of a Single MOIECUIE ..ccceeeveeeiiiiii e 21
Pulse Sequence for a Diffusion Weightealge®..............coooovvvieieeeeeeeee, 23
Diffusion Weighting Proce’8d, B is the magnetic field strength 24
Converting signal intensity t0 Aocooioiiieeeeeeeeee e 25
Apparent Diffusion Coefficient Tensorao¥/oxel8.............c.covoeeeeeeeeeeeee. 62
Converting signal intensity to eigen@e@Xes®............coooeeeeeeeeeeeeeeeeeen, 28
Isotropic Tensor (right]’ Anisotropic Tensor (Ief§cooeeeceeeeeeeee, 29
Chaining ellipsoids to build fiber traCL..........ccoeiiiiiiiie e e 30
Diffusion Tensor IMaGB) ..o 31
Single CPU processor and the many GRIDCE@SSOISueiiiiiieeieeiiieeeeees 33
Global memory COalESCING o 35
Striped Distribution of Shared MemOLY...........ccoiiiiiiiiiii 36
Grid is a group of blocks Block isragp of threads..........cccccoeeeviiiiiiiiiieeeennnnn, 37
Block to Streaming MultiproCesSSOor ASHIEML............uuuuiiieeeeeeeeeeeereeeeeess e 38
Bundle to Covariance Grid BreakdOoWNuuvuiiiiiiiiiiiiiiiieee e 45
Fiber SEgMEeNtationi oo 47
Covariance to Principal Direction GriceBKAOWNccceiiiiiiiieieeeiiiiesceeeee 48
Major eigenvector CalCUIAtION ... 49
FRALUIE SCOME .o et e e e e e e e 51
Principal Direction to Feature Scored@reakdownccoeeeviiiiiiiiiiiiceneenns 52

Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:

Feature score comparison of each POlar...........ccccoovviiiiiiiiiiiiiiieeeeeeeee 54
Polar Locations CalCUlationccccuuiiiiiiiiiiiiiiiieeeeeee e 57
SUDJECT 1, ROT O ittt e e e e e e e e e e e e 66
SUDJECE 12, ROI 0 ..t ee e e et 73
62 Unique RINGEd POIArS ... 84
62 Unique Equidistant POIars ...t 85

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
Table 6:
Table 7:
Table 8:

LIST OF TABLES

Processing breakdown of the subject 8I@...........ccooeeriiiiieiieee e 6
Average Runtime Calculation example, 8CHE............ccccoveeierienieeereeere e 61
Absolute error with the CULA generatesifEs...........cccevvveeiereseeeeceseeeese e 62
Comparing the CPU vs GPU bundle reSUMS.........ccooeieiirieeeeeees e 63
Subject 9 fiber bundle COMPATISAN.......c.cciveeiiiiceeeeee e 64
Segment Count of Fibers in Bundle 57QI & Subject Q.........ccccvvivievineiieeeeeee, 65
DICCCOL Process RUNtiME COMPANISOML......ccuevririnirierieieieiesesresseesesiessesseseesee e snees 76

DICCCOL RUNEIME COMPAIISQN.....cccviitieieriiitieresieseeiesteeeeaestessessessesreessessesseessessesssessesses 77

LIST OF CODE BLOCKS

Code block 1: Pseudo code for the prediCtROI2EBOC............cevvvvvveriiiiiiieeee e eeeeeeeeeeeiinanns 5
Code block 2: CPU code for adding 3000 NUMDEE caaee..ccceiiiieieeeeiiiiieeee e eeeeeee e e e 39
Code block 3: CPU & GPU code for adding 3000 NUIBINE............cuvveniiiiiieiieeeeeeeeeeeveeeenns 42
Code block 4: Pseudo code of main CUDA PrOCESS. ..c...uuuurruuiiiaieeeeeeeeeeeeeeeeeiesrennnneeneeees 44
Code block 5: Pseudo code of the GpuBundleTOCaRa& ProCessS..........ooeeeeeeveeeeeeeeernnnnns 46
Code block 6: Pseudo code of the Gpu3CovarianceT@palDir ProCesscccovveeeeeeeenn 48,
Code block 7: Pseudo code of the GpuPrincipalCH&ladureSCore proCess.........ccceeeeeensn.. 50...
Code block 8: Pseudo code of the summation regtudsichnique ..., 56
Code block 9: Comparing Segment COUNLS ... iiiiiiiiieeeeeeiir e e e e e e e e e e e e 60
Code block 10: DICCCOL Command Pipeline (with tiB)e.............ccoevvvviiveeriiiiiiiii e 61

Code block 11: Sample CPU Run of DICCCOL, SUbBeCt..........ccovvvveririiiriiiiiiiie e e e 61

1. Introduction
DicccoLY: Dense Individualized and Common Connectivity-bia€ertical Landmarks

One of the challenges in the field of neuroscideadentifying the specific functional regions of
the brain. The Brodmann map (Brodmann 1909, sger&il) is a collection of 52 areas of the
human cortex gives a general structure and orgémieaf the cerebral cortex. The cerebral
cortex, more commonly referred to as gray mattee (3gure 2), is the surface or outermost (2-4
mm thickf*® layer of the brain. It contains the neurons fhavide processing and cognition.
The Brodmann map, serves as a general organiza#tibie anatomy. Due to the variability of
the human cortex, the field is still struggling vthe ability to precisely identify corresponding
locations in different subjects. An example wolédto precisely locate the region that controls
the eye lids amongst different subjects. Whateisded is the ability to identify a group-wise
common cortical structure. With this informatioe would be able to predict, with some
precision, the common structure amongst other st&hj€erhis is the purpose of the DICCCOL
tool. The tool predicts the cortical corresponadebetween a subject brain and a reference

library of common cortical structure points. Thars are called DICCCOLSs.

[29]

Figure 1: Brodmann Map

Diffusion tensor imaging (DTI) is an MRI method tlelows us to see thevo fibrous structure
of the cerebral cortex. It shows the axial fibenmectivity of the brain cortex, more commonly
called white matter. This white matter is respblesfor distributing and modulating the signals
from the gray matté?? The white matter (see Figure 2), contains neihers, or long axons,

that interconnect different gray matter areas efdérebrum.

Figure 2: Cerebrum Cross-sectioff*! (A) White matter (B) Gray matter

By comparing a subject’s connectivity against aocd&®ICCCOLs, we are able to locate and
identify the corresponding landmarks between the thICCCOLSs are a set of points that have
shown dense correspondence amongst a variety jefcsstl The DICCCOL tool identifies this
structural correspondence in the subject’s ceratmnaéx. With a subject’s DTI scan, (the
related fiber connectivity data), we can identifyresponding regions of common structural
connectivity. The common connectivity is predictgdcomparing the subject’s brain
connectivity against DICCCOL’s reference librafihe DICCCOL process can be characterized
by three steps: Registration, Prediction, and tlesveér. The first step is the Registration. Here
the FSL FLIRT* tool is used to register the subjects DTI scarratighe library model. The
registration results are used to adjust the subjedtite-matter and fiber images to the shape of
the library model. The predictROI2 tool then udesregistered images to locate a
corresponding fiber bundle for the DICCCOLs in libeary. Currently there are 358 landmarks
in the DICCCOL library. The Viewer is the laststeHere the resulting subject bundle images

and the reference library images are collectedlisplay by the generateProfile4Viewerl1 tool.

This interactive tool allows the user to rotate aimv images of the subject cortex and fiber

results, and the reference library.

By far, the most time consuming step of the futiqass is predictROI2. (See Code block 1, and
Table 7) This is where | will focus my effortsreducing the overall runtime of the DICCCOL
tool. The process starts with a known DICCCOL faadk from the library. A similar landmark
region is selected in the subject’s brain. A ddib@r bundles in this region is selected for
processing. Each of these different bundles ityaed to identify the bundle with similar
connectivity to that of the reference library laratita Each fiber in the bundle is broken into
overlapping segments. The Principal Directionadftesegment is calculated then sorted
according to direction. Once all the fibers in thendle have been processed, the direction
distribution percentages are compared againsatianark from the reference library. The
process is repeated for all subject bundles imgg@n around the subject’s landmark. The
result yields the single bundle that best matcheséference landmark. This process is repeated

for each DICCCOL in the reference library.

The DTI data set of fibers is relatively small dhd process is very repetitive. It looks at the
fixed set of DICCCOL landmarks. The neighborhooalad each DICCCOL will generate a
variable number of bundles. Each of these bundikgontain a variable number of fibers.

Each fiber is divided into a variable number offixlength segments. The number of segments
is dependent on the fiber length. These segmeatsoated according to their spatial direction.
The distribution of these directions is then comeplaagainst the reference DICCCOL to identify

the bundle with the closest match.

predictROI2() {
for(indxROI=0; idxROI < 358; idxROI++) {

Get neighborhood of points around ROI

for(idxNeighborhood=0; idxNeighborhood<lastNeighttmod; idxNeighborhood++) {
Get fiber bundle for this neighborhood-point
CudaDoTraceMap();
Compare and save best-match-bundle result

}
}

}
Code block 1: Pseudo code for the predictROI2 prass

There is no dependency between one fiber bundlehendext prospective bundle. Any single
fiber may be part of more than one bundle. Tha dat for all bundles is known. The process
essentially performs the same operation on masycdetata. This task is a prime candidate for
parallel processing. Other than the single thteaid of the Central Processing Unit (CPU),
there is no reason the bundles can’t processedrall@l fashion. Rather than processing a
single segment, a single fiber at a time, | shanddble to process many segments from many
fibers, all at the same time. A Graphics Procesis (GPU) provides a SIMD approach,
simultaneously executing many threads in pardligsed an Nvidia GPU and CUDA
programming to accomplish this parallel processaslt. The CUDA code provides the
common instructions that grids of parallel threatlsexecute. Rather than the original serial,
single thread CPU approach, | will send the dathéoGPU for parallel multithread processing.
Once completed, the best-match result is sent teattle CPU and the process continues with the

next DICCCOL.

Table 1 shows an example of the processing breakadwa typical single subject. A single ROI
would typically contain 20Mbytes of fiber data. éltypical bundle size has 250Kbytes of data.
The amount of repetitive processing of this datguise extensive. The table is shown in a
hierarchical format. The 358 DICCCOLs encompasg&Bfiber bundles that need to be

processed. These bundles contain 2million fib@ilsese fibers collectively contain 184million

fiber points. The majority of which are processstte, resulting in 21million principal

direction vectors.

Table 1: Processing breakdown of the subject 9 exwle

Number of DICCCOLSs to process 358
Number of fiber bundles to process 38,787
Number of fibers to process 2,096,906
Number of fiber points to process 184,417,976
Number of trace points to process 20,955,341
RunTime of the serial (CPU) approach 11 minutes

RunTime of the parallel (GPU) approach | 1.7 minutes

In this work | refer to the “GPU” as a heterogere@PU/GPU system, where the CPU is the

host and the GPU is a coprocessor. The “CPU” sdfea CPU-only system.

To be consistent, the Subject9 data set is referdtmough most of this document. This subject

was chosen at random from the available data sets.

2. Recent and related GPGPU and Imaging Work
Before the medical imaging and research field coudtke use of the GPU, they needed better

hardware and software tools. The early GPU’s asghphics pipeline and fixed point
number¥’ rather than the double-precision floating pointers and parallel thread approach
used today. The early (2004-2007) programming BoobK®®"*? ysed the graphics
Application Programming Interface (API) (OpenGLy&itX) to perform the General Purpose
GPU (GPGPU) operations. The Nvidia hardware igpstted by Compute Unified Device
Architecture (CUDA). This is a proprietary C/C+anuage (released 208%) that supports a
Single Instruction Multiple Data (SIMD) programmingpdel. It interfaces with many other
software packages. (Fortran, Ruby, Java, PerhdiytMATLAB, Mathmatica, OpenCL,
DirectComputdf® AMD’s hardware is supported by the Close To MEBIM) proprietary
programming interface. Their next generation (30O®mpute Abstract Layer (CAL), is
supported by the Brool?! extension, through the exposed Instruction Sehifecture (ISA).
Intel doesn’t offer a GPGPU solution. Their apmiogs to use their Many Integrated Core
(MIC) technology to provide a High Performance Caomipg (HPC) solution. (Reference their
Knights Corner and Knights Landing chip)) The most popular GPGPU offering comes from
Nvidia.*® They have double-precision and Error Correctinge€(ECC) HW, and offer
extensive software support. The lack of L2 caanéhe early NVIDIA GPGPU'’s caused poor
performancé” The Fermi and newer Kepler hardware offer botichéhe and double precision

capability!*®!

The amount of speedup a process might achieve dementhe application. This involves
guestion such as: How large is the dataset? Whatat of the dataset is reused? How

extensive is the processing task?

A few CUDA reference works are as follows: An ed2901) example of GPGPU can be found
in [7], where a matrix multiplication is demonsedt An overview of CUDA and a few design
considerations can be found in [12], [14] and [1B]ork load distribution in a heterogeneous
GPU system is discussed in [15]. The Gk providing the necessary computing power that
is showing speedlf' in many basic computing taske . quicksort, K-means, partial

differential equations, linear algebra, sequenigmalent).

In the medical imaging field, the computationalfpenance of parallel processers is advancing
development with visualization, segmentation, stecepic, and image analysis taS#s.Shane
Ryod*® et al, shows a CPU/GPU performance comparison of an iktBtje reconstruction
algorithm that shows significant speedup. Castafe'” et al, evaluated many common
image processing algorithms (spatial transformatiogal-space and Fourier operations, pattern
recognition procedures, reconstruction algoritholesssification procedures). Their porting of
the C code to CUDA saw a typical speedup of 10->P@e very large dataset generated by an
fMRI modality requires a high degree of computagiopower. By applying the GPU to the
fMRI process we can expect higher quality visudiorg higher temporal & spatial resolution,
and advanced real-time analysis. To wit, the CerabiCorrection Analysis (CCA) and General
Linear Model (GLM) statistical approaches have biegriemented with MATLAB on a

GPUM® The work showed a speedup of >10 over other MABLidplementations. The work
was also implemented in C, OpenMP, and CUDA, rexylh a speedup of >170 (GLM) and
>800 (CCA) for a 1000 random permutation t€$tA high quality white-matter fiber bundle
visualization technique is demonstrated by Ogtal.on a GPU using OpenGt® Huanget al.
offers a GPU replacement for Statistical Paramétiapping (SPM) of the MRI automatic

registration process. Their approach shows a seefdl4 for single-modality intrasubject data

sets?? Brain perfusion quantification shows the cerebtabd flow (CBF), cerebral blood
volume (CBV), and mean transit time (MTT) which dsmused in the diagnosis of acute stroke.
Quick diagnosis,ife. reduced analysis time) is essential for redudiregdamage caused by a
stroke. Zhwet al. offers a GPU approach that achieves a speedugug/éne CPU approach) of
>5 for CT and >3 for MRI data sété. (OpenMP and MPI routines are also tested.) A GPU
approach has been used to dramatically improvepedance in the Markov Chain Monte Carlo
(MCMC) algorithm in the Bayesian Estimation of Di$ion Parameters Obtained using
Sampling Techniques (BEDPOSTX) toolbox of FMRIB Software Library (FSL3¥ The
toolbox uses a diffusion-weighted magnetic resoaamaging (DW-MRI) data set to map the
white matter connectivity of the brain. As imagmigneural tracts (tractography) algorithms
evolve, they deliver finer details about the netitadr pathways. The associated increase in
complexity comes with increased computational cd$te CUDA approach developed by
Hernandezt al. produced a speedup of >100 on a single GPU systersus a single CPU), and
>120 for a multi-GPU system (versus multi-CPU sy§té® Leeet al.also offers a multi-GPU
CUDA approach to the probabilistic BEDPOSTX aldumit They develop and compare for two
diffusion tensor based tractography algorithmseifBEDPOSTX version shows a speedup
factor of >60. The other, a deterministic Bayedibar tracking algorithm, shows a speedup
factor of >100%®! Wanget al. developed a hybrid multi-CPU-GPU system to acegtethe

graph theoretical algorithms that are used in lmégwolution functional brain network analysis
(voxel based connectom@) A task that is highly computationally demandingrsus the more
common (down-sampled fMRI data) low-resolution braetwork approach. The largest

speedup factor (>200) came from the All Pairs SsbrPath algorithm.

3. MRI Background Information
What follows is a general overview of the princgpbehind the science of MRI. There are many

subtleties and approximations that are not mendidrege. A more in-depth discussion can be
found in [33] and [34]. The words that follow attpt to define and describe the physics behind
the NMR process, but words do not portray a levelnalerstanding necessary to fully grasp the
concepts presented here. The subject require®matid animations to better grasp what is

being explained. For an animated explanation offR\Mincipals see [35].

3.1 Nuclear Magnetic Resonance (NMR)
Nuclear Magnetic Resonance (NMR) combines physicgipals of magnetism and Radio

Frequency (RF) energy as they affect atomic nucléie origins of NMR date back to the

1930’s and 1940’s. RF energy refers to the 30K3DGHz frequency range of the
electromagnetic spectrum. (Just above sound atd@low infrared.) This frequency range
includes: cell phones, wireless services, AM/FMoadlHF/VHF TV, etc. An RF signal can be
described by many properties. We are interesteldregquency, Amplitude, and phase shift of an
RF signal. Frequency is measured in cycles pemskor Hertz (Hz). The amplitude of an RF
signal describes the strength of a signal; it jsciglly described in terms of Voltage (v). Phase
shift describes a time shift between two signalss, typically described in terms of angular
degrees. For example, the typical home is powertdtwo electrical signals. Each signal has
110v of amplitude, running at 60Hz. The differebedween the two signals is an 1@base

shift.

Magnetism is measured in units of Tesla (T), naafezt Nikola Tesla, a pioneer in the field
electromagnetics. A 1T magnetic field is generafipsidered a strong magnetic field. The
earth’s magnetic field is measured in micro Tepl)(A typical MRI machine generates a 3T

magnetic field.

10

For this discussion, the chemical compound of egeis HO, the common water molecule, with
a radius ofc10pmeters. (See Figure 3) By weight, the
typical human is 60% water. The element we amrasted
in is the hydrogen (H) atom. Hydrogen is the legtand

simplest of elements. Its atomic weight is 1.0Q¥ 9=

Figure 3: Water Molecule

it is so light, it has only one electron
(0.000910x10*’kgram), one proton . ‘ ‘
(1.672621x10’kgram), and no

Figure 4: Random Spinning Hydrogen Proton$™®

unified atomic mass unit=

1.660538x10 ’kgram}*! The reason

<
'Y

neutrons (1.674927xI8kgram). (If
the atom had a neutron, the mass of the nucleutdwdouble, making NMR much less likely.)
We are interested in how the protons of a wateemdé respond to a strong magnetic field and

a burst/pulse of RF energy.

As the negatively charged electron orbits the nugld the atom, the positively charged proton
spins inside the nucleus. This subatomic spin igees a small magnetic field. Using the right
hand, if we orient the fingers in the directiorrofation, the thumb will point in the direction of
the magnetic field (or magnetic moment), generatethe spinning proton. In its natural state

the protons randomly spin along no particular axidirection, the net magnetic moment is zero.

In its natural state the human body has no magnetiment, (it does not generate any significant

net magnetic field). (See Figure 4)

11

When a strong enough magnetic field is appliedhéoltody, it causes these random magnetic

o
0

moments to lineup in the direction of

the applied magnetic field. (See

. Figure 5) Most of the magnetic
’ moments line up with the applied

magnetic field, but some of the higher-

YR
¢ o

Figure 5: Proton Allgnment in a Magnetic Field: High and Low Energy States

energy protons, line up opposite

[35]

to the applied magnetic field.
These opposing-moment protons are said to be ighadnergy state, while the remaining

protons are in a low-energy state.

While the applied magnetic field aligns the magnaetoments of the protons, it doesn’t stop the

protons from spinning. They continue

® %o
® oo

to spin along the axis of the applied

magnetic field. This spin action causes

the protons to wobble in place, or

precess. (See Figure 6)

The rate of precession is related to the

Figure 6: Protons Precessing in a Magnetic Field (351

strength of the magnetic fieldf = B,
where f =Larmor precession (resonant) frequengy gyromagnetic ratio (a constant), and
B, =strength of the applied magnetic field. In a 3Tgmetic field, the Larmor frequency of a

hydrogen proton is 127.74MHz.

We use this Larmor frequency to alter the enetgiesf the precessing protons. When a
homogeneous magnetic field is applied to tissuestrabthe hydrogen protons precess in the
direction of the applied magnetic field. Thesedemergy state protons outnumber the high-
energy state protons resulting in a net magnetizati the same direction as the applied
magnetic field. Because this longitudinal magregton runs in the same direction, it can’t be

separated from the applied field, and thus cantnleasured. (See Figure 7)

Figure 7: Net Longitudinal Signal 3] (immeasurable)

A significant burst of RF energy at the Larmor fueqcy will alter the energy state and phase of

the precessing protons. This RF signal is apglexgendicular to the applied homogeneous

magnetic field. The strength of this signal caus®se of the low-energy state protons to flip to
the high-energy state. When enough protons hgygefll, the longitudinal magnetism is reduced

to zero. (See Figure 8)

Now, half of the protons are now in a high-ener@gyjes while the other 50% are in a low-energy
state. The RF energy also causes the protonshble/on phase. This phase synchronized

precession produces a transverse magnetic sigatatdh be measured. (See Figure 9)

Figure 9: Net Transverse Signal: Phase Synchronized Precession B3] (measurable)

This transverse signal continues as long as theriRFgy is applied. When it is removed, the
phase alignment is lost due to the repellent fofcal the positively charged protons. This
process is called “T2 relaxation”. This causestthesverse signal to reduce to zero. (See
Figure 8) The protons that flipped energy stage give up their absorbed energy in the form of
heat, and return to the low-energy state, thusegitrg the net longitudinal magnetism. (See

Figure 7) This process is referred to as “T1 ratax”.

14

In this discussion, we are primarily interestedhi@ hydrogen atoms of the water molecule.
There is nothing that prevents other hydrogen atartise tissue from responding to the applied
magnetism and RF energy. In fact their responteeisame, although time shifted. Water is a
free roaming molecule when
compared to a fixed-position fat

protein. The density of hydrogen

e atoms in a fat molecule is much

Figure 10: Long Chain Fatty Aci

higher than that of the water molecule. (See [Edu) The response of both of these molecules
is the same when the magnetic field and RF puls@pplied. The difference is how quickly

they respond when the RF pulse is removed. Tlagagbn occurs much faster in the hydrogen-
dense fat molecule than the low-density water miéecThat is, the water molecule holds onto
its high-energy state longer than the fat molecUlee difference is significant enough that it
allows us to isolate the two different signals. Mantioned earlier, the NMR process only
allows us to measure or observe the transverseetiagtion signal. This signal is strongest just
prior to the T2 relaxation, after which it degradezero, and then the immeasurable
longitudinal signal is recreated. The transvergea from the water molecules is readable
because of their slow relaxation time and fat's mguaicker relaxation time. While the water is
beginning its relaxation process, the fat hasli@dsits relaxation process. As a result, the water

is generating a strong transverse signal, whildahes generating little to no signal.

Because it is a matter of timing, we can craft B@gequence that allows us to capture the water
signal while ignoring the effects of the fat sign&Ve use the molecules difference in relaxation
time, to capture the T1 and T2 water signals. Segere 11) Where Tp=time between RF

pulses, Tc=time after the last pulse to start itpeas capture process. The pulse sequence for a

15

T2 Weighted Image (T2WI) uses a large time betwméses (Tp), and waits long time (Tc)
before signal capture starts. As before, the R&eporings all the protons into phase. The signal
capture process doesn'’t start until after the fatgns have fully relaxed, at which time the water

protons have started their relaxation and arestitlucing a strong signal.

Ik I 3 Time
Next RF
RF pulse i IJ:] e
applied "¢ otone seanenee

Figure 11: Pulse Sequence for a T2 Weighted Image

The pulse sequence for a T1 Weighted Image (T184¥ @& short time between pulses (Tp), and
waits a short time (Tc) before beginning the sigragdture. This T1WI pulse sequence uses two

magnetic pulses to complete the signal captureessc(See Figure 12)

R
I = Time

Next RF
pulse

sequence

Fll st RF I w Idl ;
pulse applied

Figure 12: Pulse Sequence for a T1 Weighted Image

The T1WI process starts just like the T2WI pulsgusmce. The first pulse brings all the protons
into phase. The second pulse occurs after therd&dns have relaxed, while the water protons
have only begun their relaxation, (the point wheefE2WI would have begun the signal capture
process). This causes the fat protons to retutinet@pinning-in-phase condition. But because

the water protons are still close to their spinAimghase condition, the second pulse causes

16

more of the low-energy protons to flip into thelrignergy state. Soon after the second pulse is
applied, the signal capture begins. (See FiguyeB&h the fat and water protons have returned
to their spinning-in-phase condition. The numbienigh and low energy protons in the fat
molecules is balanced and in phase, thus prodacstgpng transverse signal. Because there are
now more high-energy versus low-energy protonsi@water molecules (the water protons are
saturated with energy), they generate a low trasssignal as well as a small opposing
longitudinal magnetic field. The tissue with atfeedaxation time (fat) produces a large signal,

while the tissue with the slow relaxation time (@rfproduces a small signal.

Figure 13: T1 Weighted Image Acquisition Bs

3.2 Magnetic Resonance Imaging (MRI)
A magnetic resonant image is a picture of an NM&hscA computer monitor displays images

using a 2D array of picture elements, or pixelstypgical computer screen size could be:
1024x768 pixels. A volume element, or voxel, BCaversion of a 2D pixel. A typical MRI
generates 512x512 voxels per slice. Each voxeésepts a small volume of body tissue
containing a small set of water molecules. The MRthine uses NMR to generate a series of

2D voxel images. Each scanned image represeimgla slice of body tissue. When these

17

consecutive slices are reassembled, we have a 8& rgpresentation of the scanned body
tissue. The water molecules in each voxel corgainmber of hydrogen atoms. The MRI
machine will read the scan signal from each voxXaydrogen protons and assemble a gray scale
image of the tissue. By convention, high sign&nsity is displayed as white and low or no

signal intensity is displayed as black.

The individual voxel signal levels are isolated &tehtified by creating both a phase and
frequency shift of their MR signals. This is ddmecreating magnetic gradients. A magnetic
gradient is produce along the length (head todd&)e subject. (See Figure 14) Rather than
using a fixed magnetic intensity along the Z-athig, magnetic intensity value has a fixed sloped

along the main magnetic axis. Recall that the laarirequency is directly related to the

magnetic field strength:: =)B,. As a result of the sloping intensity, everyaslaf tissue along

the gradient (main magnetic axis) has a differemrtior frequency associated with it. By

selecting the appropriate resonant frequency, wasmdate a specific slice of tissue.

Figure 14: The red coils produce the Z-Axis Magneti Gradient: Slice Selectior®

18

By applying magnetic gradients along the other &xs of the slice, we alter the phase and
frequency without altering the strength of the mtgnals. This labeling scheme allows us to
encode the individual voxel signals produced bydliee of tissue. Applying a short-duration
magnetic gradient along the Y axis produces the@leacoding. (See Figure 15) The spin of
the magnetic moments (green arrows) in the weateglignt region (bottom of Figure 15) slow
down. While the moments in the stronger magnetygon (top of Figure 15) speed up. When
the gradient is removed, the spins return to theginal resonant frequency, but now they are

phase shifted along the Y direction. This com@lét® phase encoding the Y axis.

Figure 15: The red coils produce the Y-Axis Magneti Gradient: Phase Encoding®™

A similar operation is performed along the X ax{See Figure 16) A magnetic gradient is
applied along the X-axis (for the duration of tignsl acquisition), causing the spin or signal
frequency in the weaker magnetic region to slowmowhe spins in the stronger magnetic
region speed up, resulting in higher signal fregqyenrAt this point in the signal capture process,

every voxel location in the slice has a unique phasl frequency associated with it. This

19

process has essentially assigned coordinates tg eoeel in the slice. By tuning the signal
receiver to the appropriate phase and frequencgntehine is able to scan through the entire 2D
slice of tissue. The captured signal is measunelddcanverted to a gray-scale index value. The
gray scale index covers the range of white thrdalghk. The white side of the index represents
a strong signal, while the black side signifieseatvsignal. By stepping through this process
one slice at a time, the machine is able to buddraplete 3D image that shows vivid details of

the tissue.

Figure 16: The red coils produce the X-Axis Magneti Gradient: Frequency Encoding®®

3.3 Diffusion Weighted Image (DWI)
NMR allows us to view diffusion of watém vivotissue. A Diffusion Weighted Image is an

NMR process that reveals the anatomic structuthesubject tissue. The image is constructed

in a similar process as the above described T1 &dighted images. The NMR physics are the

20

same: A magnetic field and RF burst are used tapntate the magnetic poles of the hydrogen

protons.

R U
»!

Figure 17: Random walk of a single molecule (left)Random distribution of set of
molecules (right)*!

Though it can’t be seen with the naked eye, moéscinl a drop of liquid water are always in
constant motion. This seemingly random motioraissed by its thermal kinetic energy. This
energy enables diffusion where particles tend tearfoom areas of high concentrations to areas
of low concentration. Random refers to theipkes direction of motion. (See Figure 17)
Which direction the molecules move in depends eir turroundings. As a molecule performs
its random walk, it interacts with other randomlgving water molecules as well as any
physical restrictions. In tissue these restrictioray be a membrane, a fat molecule, or a fibrous
axon. The speed of the thermal agitation is végi (~1000meters/sét} due to the interaction
with the surroundings, but the displacement is gengll £20 pm in .1se&®. Because the
direction of the displacement is random, it is nue@d in terms of mean squared displacement,
<r?>. This “square” prevents negative displacememts fcanceling positive displacements.
Einstein’s equation for diffusion displacement tanexpressed asr>>=6D ., ¥ whereD, is

the free diffusion coefficient of the material, arid the time of diffusion.D, of water at 37C

(in vivo body temperature) is .003rtsect**! The random diffusion of water molecules in tissue
is non-free diffusion, which is to say it is nodipic (.e. equal in all directions). Water

diffusionin vivois a complicated phenomenon that is affected bggure gradients, membrane

21

permeability, active fluid transports.g.blood flow), and anatomical hindranae(fibers, cell
restrictions, macromoleculestc). These many issues prevent the direct measuteshan
single diffusion coefficient. Instead the term Appnt Diffusion Coefficient (ADC) is used to
describe the observed diffusionvivo. Any restrictions to the water molecules movenveiit
cause the diffusion to be anisotropicg.(diffusion varies by direction). The diffusion
coefficient of a volume of tissue.g.a voxel), will be different depending on the dtrea from
which it is observed. The average ADC for bragstie is .0007mffsec®” The diffusion
weighted process will measure the AD@.(mean displacement of water molecules) for every

voxel, along many directions.

The diffusion weighted signal can be approximatedshl S, exp(— bADQ)[34], whereS is
signal intensity for a voxel in a directionS, is the signal intensity without the magnetic
diffusion gradient (basically a T2WIh (commonly referred to as: b-value) is the diffusion
sensitivity factor, andADGC is the apparent diffusion coefficient in directionTheb s a
function of the magnetic gradient amplitu@e, magnetic gradient durati@gn and time between
opposing magnetic gradienfs. For short gradient times3(), b = y?0°G*AB¥ (=
gyromagnetic ratio, a constant) (See Figure 1&yelmsing theb increases the signal loss due to

water diffusion, which increases the contrast betwigssues of higher versus lower ADC values.

This higher contrast comes at the cost of a lovggrad to noise ratio (poor signal quality).

22

graolient

Gf—— A
90°

A,/\J\ time
RF Pulse 6

Negative
Magnetic

Gradient

o

Figure 18: Pulse Sequence for a Diffusion Weightedage®®
The Diffusion Weighted pulse sequence begins witRE& pulse, just like the TIWI and T2WI

pulse sequences. The RF energy will cause thaiggiprotons to phase synchronize,
producing a magnetic moment, which is the sourdbetransverse signal. This magnetic
moment is represented by the red arrows in Fig@reThe positive magnetic gradient phase (as
shown in Figure 19) shifts the magnetic momentagtbe gradient axis. The time between
gradients), is the diffusion time. The longer the diffusibme, the farther the molecules will
diffuse. The negative magnetic gradient reversegphase shift caused by the previous positive
gradient, essentially rephasing the spins alongthdient axis. For those protons that have not
moved during the diffusion time, the net phasetshitero and there is no signal change

(S LS). Forthose protons that have diffused, only paréphasing occurs. The resulting net
magnetic moment produces &nsignal that is different from the initial no-gradigb =0)
signal, S. The larger the change in signal intensity, tleeemdiffusion has occurred. This

change in signal intensity is the Apparent Diffus@oefficient that we are looking for.

23

After RF pulse Positive Gradient Between Gradients Negative Gradient

T GOG 06 GGG GOG

etely rephased

diffusion

= 000 000 0@ © ©
3 e

Figure 19: Diffusion Weighting Proces$®, B is the magnetic field strength

Solving for the directionaADC in the diffusion signal equation gives us:

ADG =-1In(S/S,)/b. We are now able to convert the measured sighehsity to an

Apparent Diffusion Coefficient value. By runninggetsignal measurement and calculation on
every voxel in the slice, we can assemble the tieguDW!I for that magnetic gradient’s

direction. Each DWI shows the ADC in a single diren.

24

= S() e-bl) e-'l'liu" ;

[f‘ $ha

/:“Z.)

e SR\

3 ,". x -]

r 1 Py v

¢ 3 : ‘
e

o

Initial “b zero” image Diffusionweighted Apparent diffusion
b=1000 s/mm’image coefficient map (ADC)

Figure 20: Converting signal intensity to ADC3*

3.4 Diffusion Tensor Imaging (DTI)
DTI allows us to see and observe the white matéets in the cerebrum. By combining and

analyzing many non-collinear DWI scans, we are &blauild a diffusion tensor image that
shows the routing of neuronal fibers, ultimatelg\pding information about the connectivity of

the subject’s cerebrum.

Unrestricted or free diffusion of water would shawomnidirectional diffusion coefficient. The
diffusion in tissue is directionally dependent aiach have many restrictions. More restrictions
results in less diffusion. These heterogeneouscatsns cause the ADC to be different when
observed from different directions. It is commorekpress quantities that change according to

their spatial orientation as a tensor. A tensonéasurable and mathematically convenient. It

25

allows us to describe the ADC from all direction&is tensor is a 3x3 matrix that represents the

ADC in 3D space.

D, D

XX Xy Xz

D

yXx yy DyZ

D, D

zx zy 2z

o
1
O O O

Equation 1: Apparent Diffusion Coefficient Tensor or 3D space

D, X +D,Y +D,Z
DX +D,Y+D,Z
D, X +D,Y +D,Z

Vi
vV,
Vs

Figure 21: Apparent Diffusion Coefficient Tensor ofa Voxel'*®!

The main diagonal elemeridg,, D, , and D,, represent the apparent diffusivity coefficients
along the axes of the Cartesian coordinate systeis the ADC along the X axes when a field
is applied along the X axeD, is the ADC along the Y axes when a field is appa&shg the Y
axes. D,, is the ADC along the Z axes when a field is agbé®ng the Z axes. The remaining
elements represent the diffusion along orthogooatdinate pairs.D, is the ADC along the Y
axes when a field is applied along the X ax&s,is the ADC along the Z axes when a field is
applied along the X axesD,, is the ADC along the Z axes when a field is appéifhg the Y

axes. Mean squared displacement distance is eieesily number<r?>=6D,t. D, along the

+X axis is the same value along the —X axis dicgctiThis means the diffusivity in the X

26

direction from an incident Y axis field is the saagethe diffusivity in the Y direction from an

incident X axes field. As a result, the ADC tensosymmetrical. D, =D, D,=D,,

D,,=D,, This reduces the ADC tensor to six unknowns. sé€hgx values come from seven

NMR measurements,@nd (a minimum of) six directional measuremer8sis the base
measurement, the one without a magnetic gradiehe. Sx, Sy, Sz Sy, Sz, Sz values are the
signal intensity measurements along their respecton-collinear magnetic gradient directions.
The S« value is the measured X direction signal whemtlagnetic gradient is applied in the X.

S« is the measured Z direction signal when the mageadient is applied in the X direction.

Convert the signal measurements to directional A@es, (ADC =-In(S/S,)/b) and fill in

the resulting ADC tensor value.

Water will diffuse more in the direction of leasstriction. The restriction parallel to the
direction of the fiber structure is generally snvettlile it is generally much larger perpendicular
to it. i.e. In general, the direction of diffusion is the dtien of the fiber structure. The ADC
tensor describes the diffusion in terms of therezfee (Cartesian) coordinate system. The
objective is to identify the underlying fiber stture of the tissue, which generally does not align
itself with the reference coordinate system. Theqgpal direction of the tensor is the major
direction of ADC, and thus the direction of thedfitstructure. To find this direction, we solve
the eigenvalues of the tensor. Translate theeater coordinate system to the tensor’s
coordinate system. It is assumed that the eigearvetthe largest eigenvalue, is the principal

direction of the tensbf! and the direction of maximum diffusion. In thege equation:

Ai=N, A isthe square symmetrical ADC tensorare the eigenvectord, are the

eigenvalues. Figure 22 demonstrates the signaltscaigenvector conversion.

27

Diffusing water
molecule

2 2, %0
o %

1]

LSY b 0 _

Scanneraxes X, y, Z »
B R W N, 0 0
- < | Diagonalize
D, D Dy « BT/ 0 X, O |
D, D,, D, 0 0 Ay

»

Eigenvector axes e, e, ,e; with principal
direction of diffusion e,

Figure 22: Converting signal intensity to eigenvear axes>"

In unrestricted (free) diffusion the tensor is spta: A, =A, = A,. (See Figure 23-left) The

eigenvalues of this tensor are all approximatelyaégnd produces no net direction. This tensor
results in isotropic diffusion. In restricted difion the tensor is an ellipsoid. Ellipsoid tessor
represent anisotropic diffusion. The longest digiem, of the ellipsoid is the presumed fiber

direction. The case of a Y-axis-aligned diffustensor:A, >> A, > 4,, is shown in Figure

23(right).

28

(39]

(40]

Figure 23: Isotropic Tensor (right) Anisotropic Tensor (left)

Cerebral Spinal Fluid (CSF) and gray matter ofliteen exhibit isotropic behavior for water
diffusion ®*¥" Water molecules freely diffuse in this fluid atissue. The fibrous white matter
of the cerebrum behaves in an anisotropic nattlf&! The exact structure causing this behavior
has yet to be determined. The myelin sheath wapjgbar to be the obvious cause, but axonal

cell membranes appear to be a major cause of thee vestrictior>*!

The orientation of the ellipsoid described by thesor gives us the direction of the structure, or
fibers in the white matter in that voxel. Wateffubes along the length of the fibers, and is
restricted perpendicular to them. Tractographg/tschnique where neighboring ellipsoids are
chained together revealing the fiber pathways éncérebrum. (See Figure 24) This image is an
idealized example of building fibers with tractoging. Linking neighboring tensors is more
difficult in the cases of crossing or kissing fibeas it is difficult to accurately determine thérs
run adjacent or cross one another. (Diffusiondendon’t form crosses, only spheres or
ellipses.) Real DTI data tends not to be as ctedras the example provided. A more thorough

discussion on the topic can be found in [33].

29

fan
Ny

O © 00 000 00 o0
@ © 0|0 000 00L

a@u\&& -ooo()/o

O

O O @< x__x__)c)/“ o O
O 00 0O/0O 00 0 00 O

Figure 24: Chaining ellipsoids to build fiber tracts

3.5 Limitations of the process
The above description gives a theoretical overnwétine principals behind building the DTI

data, but there are plenty of obstacles and limoitatthat have not been mentioned.

« The NMR image will contain artifacts and errorsttiil affect the DTI datd>”

« Diffusion is not the only source of water displaesi®¥

« A Gaussian distribution of water molecule diffusisrassumeéf?!

* NMR machines are not able to produce the narrowneigggradients described in the
DWI pulse sequencé’

« There is a tradeoff between the b-value and theatsgsignal-to-noise-ratio (SNEKY!

» The tensor approach to fiber tracking does not week for the case of crossing,
branching, or kissing fibet&3"

» The field of tractography has not been able tordates the anatomical correctness of the
tracing algorithm&*”!

The resulting DTI is not perfect, but a decent espntation of the tissues anatomical structure.

There are many assumptions and approximations takbrihe process that generates the final
DTl data. In many cases, there are more sophistiGgpproaches to the processes described
here, that yield better results. Further discussiod details can be found in [34], [37], [33], and

[45].

30

Figure 25: Diffusion Tensor Image** Cerebrum, Cerebellum, Medulla oblongata (Brain
and Brainstem)

31

4. The CUDA Process
Compute Unified Device Architecture (CUDA) is a &tension language from Nvidia that

performs parallel programming on their GPU devickkny programmers are familiar with the
x86 architecture where one CPU core executes oaadhat a time. The single core will
leverage the chips resources to quickly executsitigge thread’s task. If there is a list of 3000
numbers that needed to be added to another 182@) numbers, the CPU cache would load-up
the data and the core would read the data, addatae and write the results, one number/item at
a time. This approach is referred to Single Irttom Single Data (SISD). The GPU uses a
scalable Single Instruction Multiple Data appro&8tMD). To perform the same 3000 number
add routine, the data is loaded to the GPU, frontkvthe numbers are read, added, and results
written one batch at a time. Where the CPU wid #te numbers one at a time, the GPU will
add the numbers one batch at a time. In the titades the CPU to serially add 2 numbers, the
GPU is adding 64 numbers in a parallel approadte difference in performance can be
dramatic. Efficiency improvements are expressdenms of speedup factors. A speedup factor
of 2 means the task’s runtime has been cut in hafthat took 10 minutes, now only takes
S5minutes. Itis not uncommon to see speedup factioiO or more. It depends on the task and

what resources are available to perform it.

4.1 Basic CPU-GPU architecture
The CPU, being the main processor, can support ré&hys, the coprocessors. (See Figure 26)

The CPU (called the host), assigns tasks (calledeks), to the GPUs (called devices). Once
received, the GPU will execute the task autononyowkile the CPU can either wait for a GPU

response or continue its serial execution.

32

I Global
BCle Memory
| | I

Figure 26: Single CPU processor and the many GPU poocessors

Nvidia’s basic work unit is the Streaming Multipessor (SM), the equivalent to a CPU core.
The SM is capable of supporting the execution otifands of co-resident threads. It has shared
memory, a set of registers, and a set of procesgosingle clock cycle of the SM will cause the
execution of a same-instruction on a batch of coweot threads, referred to as a warp. Outside
of the SMs is a heap of device memory called Gldbainory (GM). (See Figure 26) This

memory is accessible by the CPU by means of the B@$ and the array of SMs.

4.2 GPU memory architecture
The GPU uses many memory formats. They are dig&ibthroughout the device to reduce the

execution time. From slowest to fastest accessstiimey are: global, constant, shared, and

register.
» Global memory is the pathway for getting data id ant of the GPU. It is separate from
system (host) memory space, and is not directipieidy the host. It is located outside

the GPU processor which is why it is the sloweghefGPU memories. It is accessible
by the whole GPU device.

33

» Constant memory, as its name implies is fast redg+smemory. It is located outside the
GPU processor. ltis cached and visible by angatlyin any SM.

* Shared memory is on-chip and is located near the. SNhis memory is accessible by
any thread in the SM. It is local to that SM amd visible by any other SM. This
memory is a means of getting the data close tptbeessor that will use it. It is called
shared memory because it is shared with any threthcht SM. Using shared memory is
an easy way of passing results between threadie iSM.

* Registers are the fastest memory storage formiagy @&re on-chip and are accessible by
a single thread. They are only valid for the iifet of that thread.

4.2.1 Coalescing global memory
Global memory access can be faster or slower, digpgion how it is accessed. The read cycle

for global memory has been optimized to feed a detapvarp. If, for example, the GPU

routine needs to read some data in from memorywbuld be the same as saying each thread in
the SMis calling for a 4 byte word from global mamn To satisfy a full warp of 32 threads, the
device needs to read 4*32=128 bytes of global mgmdhe optimized hardware is capable of
reading all 128 bytes in a single read cycle. (Hgare 27) If the data has been stored properly,
the data request could be satisfied with one rgaldc This is referred to as data coalescing. If
the data in global memory has been stored verylpiog. non-coalesced), it may require 32

read cycles to get enough data to satisfy theafatp. This will have a big impact on the

kernel’s runtime. An efficient program would opt fa single read, rather than the many read
cycles. How the data is stored in memory and hasvaccessed is governed by the software

author.

34

One 4-byte word

(a) Good data coalescing

word 0 word 1 word 2 word 29 word 30 word 31
----------- I T e

word 31

L - I

Figure 27: Global memory coalescing a) Single chg access b) Many cycle access

4.2.2 Shared memory bank conflicts
In a similar fashion, shared memory can be faststawer depending on how it is accessed.

Shared memory is arranged as banks of striped meniSee Figure 28) This storage format
allows parallel access to the data. The memoryabaws each thread in the warp to have
access to any bank. If the parallel code requedtta word, and each requested data word is in
its own bank, a single read cycle will satisfy ttada request for the whole warp. If the data is
not equally distributed to the banks, a bank cohfiesults and more than one data fetch cycle
will be needed to satisfy the request. For examplEigure 28, ithreadOis requestingvordQ,

(the first word ofbank(, andthreadlis requestingvord32 (the second word of the same

bankQ, the memory bus fdsankOcan only accommodate one word at a time. A banilict
exists and the code will need to issue two reatesyto satisfy the data request. The code will
still execute properly, but it will take longertion. The kernel would be more efficient if the

data words were better distributed. Bank conflicts caused or resolved by the software author.

35

Global Memory

word 0 word 1 word 2 word 32 word 33 word 34
........... Sgggace

word 32

word 33

: word 31 word 63

Figure 28: Striped Distribution of Shared Memory

The shared memory bus also supports a broadcagidnmwhere one word from one bank can

be broadcasted to all threads in the warp, in glsiread cycle.

4.2.3 Race conditions
With many processors having access to the same rgethere is plenty of opportunity for data

hazards. The most obvious would be many threadsto the same memory location. This is
a rather common issue. A memory location can bolg one value at a time. If each thread
writes a different value, how can we determinidlyceontrol which value gets written? This can
accomplished with the Atomic functions. These tiors only allow one thread to access the
memory location at a time. This comes at the ob§pausing” all other threads that may be
trying to access the memory location. Use of Atfanctions can severely affect the efficiency
of the kernel. It is generally better to take ffedent design approach and avoid the use of

Atomic functions.

Data hazards occur when data is modified at diffieseages of execution. For example, a Write
After Read (WAR) data hazard occurs when a valuead before it has been written by a prior

modifying stage. A dependency exists between tlite wtage and the read stage. For example,

36

if thread22reads a value in memory, but that value must iestvritten bythread52of the same
kernel, a WAR data hazard may exist. A tool thaipnts data hazards inside a kernel is
__syncthreads() This statement prevents further execution efi#rnel until all active threads
have reached this command and all reads or wotekdred or global memory have been
completed. As the name implies, it is a threadtByonization point in the code. Execution will

be stalled at the sync-point until all active tliean the kernel have reached this common point.

4.3 GPU programming model
The basic hardware (HW) work unit in the GPU isshreaming multiprocessor. This SM has a

batch of logic-units, each of which concurrentlyentes the same kernel code. Each logic-unit
in the batch will perform the same operation inghene machine cycle, as all other parallel
logic-units. Expressed another way, all the lagiits execute exactly the same kernel code, at
exactly the same time. The number of paralleldagiits in the SM is fixed. If the size of the
task is larger than the number of logic-units (wsige) in the SM, the task is split into smaller
pieces, where each piece of the task will get niaton the logic-units. Essentially the scalable

task is being run, one warp of threads at a time.

Grid Built-in variables: gridDim, blockldx Built-in variables:
Threads blockDim, threadldx
Block 0 Block 1 Block 2 Block 3 Hasn b o
Block 4 Block 5 Block 6 Blockm

Figure 29: Grid is a group of blocks Block is a gup of threads

37

The scalable software model works with grids, bsoakd threads. (See Figure 29) A grid
contains a number of blocks, and a block contaimgraber of threads. A thread represents a
single instance of the task. From the earlier etapa task that adds two sets of 3000 numbers,
we could breakdown the task into 3000 threads.hBa®ad would read a number from each
data-set, add them, and save the result. If thd ®® are using has maximum block size of
1024 threads, we would need at lezst(3000/1024)= 3 blocks to perform the task. Ondaou
scale the task to 1 grid of 3 blocks, each withQl®Beads. Three grids of 1 block, each with
1000 threads would also work. One grid of 6 blo&ech with 500 threads would also work.
Scalability allows us to breakdown the task intavaver size the problem requires. How the

task is breakdown depends on what resources atlal@deaand how quickly we want the task to

run.
Grid | ECEE :e“
para]lelﬁdd(] F‘ blockldx: 0 _.’.:"e.=.:.. 1
blockDim: 3 SM1 I -
blockldx: 0 Tl
;':.:'ea:.'. blockldx: 2 Thread 1
blockld=: 1 —
blockid=x: 2 blockld=: 1
Global
Memory

Figure 30: Block to Streaming Multiprocessor Assigment

The blocks in a grid are assigned to an SM for rmutmous execution. (See Figure 30) The
threads in the block are executed in batches gb wHrthe warp size is 32, the SM will be

executing 32 threads concurrently. Each blocke&ceakon runs independent of other blocks.

38

The execution and shared memory in one block ardirectly available to other blocks. Blocks
asynchronously execute kernel code in the sub-emwvient of the SM. Passing data (sharing
results) between blocks is done through global mgmAsynchronously refers to the order of
execution. There is no guaranteed order of exacwi the blocks or the threads. Any block in
the grid may be the first block to execute, as\aagp in the block may be the first warp to
execute. The hardware supports very fast conteixtlsing. If the code hits a sync point, the
current warp will stall and another warp will loadd begin execution. While the warp is
executing, every thread in that warp is executirgexact same code. Note that warp execution

is concurrent, and expect block execution to becapsecutive.

The examples in Code block 2 and Code block 3 partbe same operation of adding two sets
of 3000 numbers. Code block 2 uses only the CHRiilewCode block 3 uses both the CPU and
the GPU. There is nothing particular interestibgu the CPU-only approach in Code block 2.

It is a single loop that adds two numbers and sthesesult.

/I Compile w/: nvcc

#define numCount 3000 I size of data se

int main(void) {
int dataSetA[numCount], dataSetB[numCount]; thé& numbers
to add
int dataResultifnumCount]; // the add result
for (int index=0; index < numCount; index++)

dataResult[index]= dataSetA[index] + dataSetB[ifjdex

return O;

}
Code block 2: CPU code for adding 3000 number

As with the CPU approach, the GPU routine (see ®balek 3) starts with the datasets in system
memory. The SM’s in the GPU can not access CPt¢symemory. The datasets must be
copied from CPU system memory to the GPU global orgmTo do this, we first create a few

host pointers that will hold the device addresddb@datasets in global memory. Next we

39

reserve the necessary chunks of global memory etrties pointers accordingly, using
cudaMalloc()calls. cudaMalloc()reserves device global memory in the same fasisahe
familiar malloc() does for reserving CPU system memocydaMemcpy(Will copy the datasets
from CPU system memory to the GPU global memaydaMemcpy(performs the same
operation as the familiamemcpy(function with an additional parameter which spesithe
direction of the copy operationcudaMemcpyHostToDeviceudaMemcpyDeviceToHQst

cudaMemcpyDeviceToDevjce

Now that the data is in the GPU, we can launchptrallelAdd()kernel. The format of the
launch command ikernelName<<<resources>>>(parameters)Aside from the
<<<resources>>> portion of the call it works the same as a functtall for the CPU system.
<<<resources>>> tells the GPU scheduler what GPU resources theekeeeds for execution.
The format isc<<nBlocks, nThreads, nSharedMem, streamld>>%¥he first two items are a
description of the gridnBlocksis the number of blocks in the grid assignedridDim (a built-

in CUDA variable). nThreadss the number of threads in each block assignétbtkDim(a
built-in CUDA variable). nSharedMenms the amount of shared memory, in bytes, eactkblo
will use. streamldis the identifier of the stream in which the kdmwél run in. Thestreamidis

a method for running many synchronous processgschsonously. The identifier is supplied
by the GPU scheduler and is used to ensure thdagymaus execution of many parallel running
processes. These processes can be similar or emtypdifferent from each other. In this case,
the identifier is 0, signifying the default strea®@nly thestreamOprocess runs synchronously
with the CPU. This means CPU execution will pams&l the GPU process completes. This
keeps the CPU and GPU execution synchronized. &€ution still runs asynchronously with

other streams inside the GPU, but the CPU execdbb@s not continue until tretream0GPU

40

process completes. All other nonzetreamids cause those processes to run asynchronously
with the CPU. The CPU launces GPU kernel(s) aed firoceeds with further system

execution, not waiting on the GPU.

When CPU execution resumes, the parallelAdd() kdrae finished. The results are copied
from the GPU memory-space to the CPU system mersyuage, (wittcudaMemcpy{) The add
operation is now complete. All that remains isdturn the reserved global memory back to the

GPU heap, (witltcudaFree().

The parallelAdd() kernel in Code block 3 is straifgrward. (The grayed lines are optional
debug code.) Each thread will read two numbens fgtobal memory, add them together, and
write the result back to global memory. Each tbreeeds to know which dataset elements it
will operate on. This index is calculated using Huilt-in CUDA variables. Each thread and
each block has a unique identifidrreadldxandblockldxrespectively. The number of blocks in
the grid can be read with tigeidDim variable. The number of threads in any block lbamead

with theblockDimvariable.

The work done by the kernel is basically a single bf code that undergoes parallel execution.
ThelF statement protects the kernel from execution aachany overrun. Instead of 3000
numbers, maybe the dataset basnt=2999 numbers. If we ran this kernel without tReest,

the GPU would launcgridDim* blockDim=3*1000=3000 threads. The last thread would be
unnecessary to complete the work, but it will mgdjfobal memory. Memory that may be
outside the kernels reserved memory space, pdtgrdaanaging the data from some other
kernel. These types of bugs can be very diffitulrack down. Though it isn’t necessary for

this example, it's good programing practice to tée approach.

41

/l Compile w/: nvcc -arch=sm_20
#define numCount 3000 /I size of data se

I/l The GPU is the Device, the coprocessor
__global__ voidoarallelAdd (int count, int* dataA, int*dataB, int* sumRsilt) {

}

// print only once

int dataldx= blockldx.x*blockDim.x + threadldx.x; // date element to work on
Il every

thread will print this

if(dataldx < count)
sumRslt[dataldx]= dataA[dataldx] + dataB[dataldx]// all the work done here

/l The CPU is the Host, the main or lead processor
__host___inmain(void) {

}

int dataSetA[numCount], dataSetB[numCount]; hé humbers to add

int dataResultfnumCount]; Il the results
int* numA= NULL, /[CPU memory that
int* numB= NULL, // holds a pointer to

int* numRslt= NULL; // GPU global memory

cudaMalloc(&numaA, sizeof(int)*numCount); falb some device global memory
cudaMalloc(&numB, sizeof(int)*numCount);
cudaMalloc(&numRsilt, sizeof(int)*numCount);

/I copy the data from CPU system memory to the @@bal memory
cudaMemcpy(numA, dataSetA, sizeof(int)*numCountjademcpyHostToDevice);
cudaMemcpy(numB, dataSetB, sizeof(int)*numCountladdemcpyHostToDevice);
parallelAdd <<<3,1000,0,0>>>(numCount, numA, numB, numRslt)/ launch the kernel
cudaMemcpy(dataResult, numRslt, sizeof(int)*numGpandaMemcpyDeviceToHost); //
get results
cudaFree(numRslt); // give back the global mgmo
cudaFree(numB);
cudaFree(numA);
return O;

Code block 3: CPU & GPU code for adding 3000 numlvg

The___host_and__global__terms are compiler qualifiers. Thehost__qualifier is optional

as any function without a qualifier defaults toasthfunction. As the name implies, these

functions are compiled for execution by the holte global __qualifier signifies a kernel

function. This code is compiled for device exeonti Kernel functions have no return value.

42

They must return goid. Another qualifier not used in this example iglevice_, which also
designates code for device execution. Thesdevice functions are subroutine code that can
only be called from kernels. A function can haverenthan one qualifier. A function with
__global__and__host__qualifiers would tell the compilers this code vl executed on both

the host and device. A host version as well asvicd version of the code will be built.

Error handling is done though status words. AlIDXUAPIs (host code) return a status word,
such agudaSuccesslt is good practice to check all returned statosds. This number can be
converted to an ASCII string with a callcadaGetErrorString() Kernel calls have no return
values. Their status can be checked by retrietfindast recorded erracudaGetLastError()

As with the API status, a status word/number igrretd. As the function call implies, only the
last detected runtime error of the same host thieesturned. The returned status word may be

an error from the last or an earlier runtime c8lfrors are noted, successes are not.

The GPU version has many more lines of code thai€f®U version. One might think the CPU
version would run faster, and it would if the datas only a few thousand elements. The cache
capabilities of the CPU and the small datasetyaitee CPU-only approach to outperform the
CPU-GPU pair. If instead the dataset had 30K ditiaments, the parallel execution of the CPU-
GPU pair would outperform the CPU-only executidks the dataset gets larger the performance
difference between the CPU-only and the CPU-GPUgss larger. A CPU is a one-size-fits-
all approach to problem solving. The strengthhefGPU is its ability to quickly perform the

same operation on many pieces of data.

43

5. CudaDoTraceMap Process
The most time consuming routine in the DICCCOL psxis the predictROI2 routine. The

predictROI2 process (see Code block 1) finds tis tmatch for each of the 358 cortical
landmarks. A set of subject bundles is selectétarregion of interest (ROI) surrounding each
landmark. Each of these bundles will be procebsetie CudaDoTraceMap process. This
process will examine all the fibers in the bundid aompare the fiber orientation against the
preprocessed reference library results. Each fib#re bundle consists of a series of fiber
points. These fiber points are broken down inggnsents. These segments are converted to
trace (orientation) points. These trace pointdla@a converted to a feature count. This feature
count is then compared against the feature cosnttseof the reference library. At the end of
the process a match score is returned. The buvithéhe closest match to the reference library

is chosen as the best match of the ROI.

The parallel processing approach is performed byQhdaDoTraceMap process. (See Code
block 4) It comprises three processes. Theseepsas are where predictROI2 spends most of

its time. Any small reductions in these processsslts in large runtime savings.

CudaDoTraceMap() {
for(fiberldx=0; fiberldx<nFibers;
fiberldx++) {
GpuBundleToCovariance);
Gpu3CovarianceToPrincipalDir();
GpuPrincipalDirToFeatureScore();
}
}

Code block 4: Pseudo code of main CUDA process

44

5.1 Bundle To Covariance
This process will reduce the input bundle of fibkera set of 3 dimensional covariance matrices.

Each matrix represents a single segment of fiBesegment contains 16 fiber-points of data.
Successive segments of fiber overlap each othbalbly (See Figure 32) Each of the 16 fiber-
points in the segment contains the 3 dimensiobal{point data that will generate the 3x3
covariance matrix for that segment, which is tst fitep in the Principal Component Anal{fis

(PCA) of the segment.

Grid n: Bundle n

Threads

Block 0 Block 1 Block 2 Block 3

(Fiber 0) | | (Fiber1) | | (Fiber2) | | (Fiber 3) el

Seg k (X data) Segk (Y data)

Next WARP

Block 4 Block 5 Block 6 Blockm

(Fiber 4) | | (Fiber 5) | | (Fiber 6) | | (Fiberm) =k

Figure 31: Bundle to Covariance Grid Breakdown (®@ange) used threads (Pink) unused
threads

A single GPU grid will process a single bundleibkefs. (See Figure 31) Each bundle contains
a variable number of fibers, but is known to be migss than the GPU’s maximum grid
dimension. Each block in the grid will processragke fiber. Each fiber contains a variable
number of segments. The number of segments isknowe much less than the GPU'’s
maximum block dimension. Each thread in the blaacesses a single (XYZ) coordinate of the
segments. Each thread represents an X, Y, or&Zmtant. Each pass of this process converts a

single segment of fiber data to a single 3x3 carare matrix.

Il the kernel call (from the CPU)
GpuBundleToCovariance<<<numFibersinBundle, 3*segmentSize,..>>> ();

45

/I one bundle per grid, one fiber per block, edwkdd works on a single

segmentPt

GpuBundleToCovariance) {

for(segmentldx=0; segmentldx<segmentsinFiber;meggldx++) {

Calculate dimension average: (x,y,z)
Calculate dimension difference: segmentPt - dintenaverage_(x,y,2)
Calculate dimension variance: (XX, YY, ZZ)
Calculate covariance: (XY, XZ, YZ)
Calculate segment general direction: (last segnterit3t segmentPt)

}
}

Code block 5: Pseudo code of the GpuBundleToCovarice process

The thread-block processes the fiber one segmentiaie. (See Code block 5) The 16 point
segment size allows the covariance calculatioretodmpleted by two warps. (WarpSize= 32
threads) Though it would have been a more dirgotcgeh to use 3 warps, | found it was faster
to split the coordinates among half-warps. Thisinsethe covariance calculation (Equation 2)
occurs in sizes of half-warp. Each half-warp usesduction technique to calculate the X,Y,Z
coordinate of the variance (XX, YY, ZZ) values. €ltovariance values (XY, YX, YZ, ZY, XZ,
ZX) are then calculated and saved for the nextgesiag step. The covariance values are
symmetrical: XY=YX, YZ=2ZY, XZ=ZX

DI IR)

cov,, =
n

Equation 2: Covariance calculation 1,J=dimensioriD, n=segment length

A single bundle of 95 fibers with 11,104 fiber-ptinvill be converted to 1,293 single precision

covariance matrices in approximately 175uSec.

46

Figure 32: Fiber Segmentation (a) Bundle of fibex (b) Single fiber (c) Fiber
Segmentation (d) Single Segment Fiber Points

5.2 Covariance Matrix To Principal Direction Vectar
This process will convert the covariance data Ryiacipal Direction vector, the major PCA

vector. This is done by solving the major eigeteeof the covariance matrix. Most eigen
solvers are designed for hundreds of dimensionshagidaccuracy. None of which are required
here. The 3D matrix is symmetrical about the ntg&gonal (variance values: XX, YY, Z2).
The final stage of the TraceMap process only reguar single digit of precision, and only single
precision numbers are needed. These issues aaatades and help us quickly solve this eigen

problem.

Il the kernel call (from the CPU)
Gpu3CovarianceToPrincipalDir <<<1, sizeOfCovarMatrix,..>>> ();

/I one bundle per grid, one block, each thread worka single matrix
element
Gpu3CovarianceToPrincipalDir() {

for(segmentldx=0; segmentldx<segmentsinBundlgmsantidx+=3)

{

Calculate principal direction value for 3 segments
Calculate principal direction vector for 3 segments

47

}
}

Code block 6: Pseudo code of the Gpu3CovarianceToRcipalDir process

Grid 0
Threads

First WARP

Block 0

Covar n Covar n+1 Covar n+2

Figure 33: Covariance to Principal Direction Grid Breakdown

A single-block grid will calculate every Princip@irection vector in the bundle. (See Code
block 6, Figure 33, and Figure 35a) Each threatierblock represents a single value of the
covariance matrix. Each pass of this process lzdk&sithe Principal Direction vector for three

covariance matrices.

The principal-direction-vector is the major eigeciee of the covariance matrix. To find the
eigenvectory) we first need to find the major eigenval@g ¢f the covariance matriA). A X

v=2LV (See Figure 34)

Step 1. Calculate the deviatoric matrik:=A — 1/31 A
Now A’ x v=1V, whereni=% — 1/3 tA. trA’=0,1°-jo1 - js =0

Step 2: Solve the coefficientsgnd p: jo= YLtr(A’A’), js= ded’

48

T,=Major Eigenvalue

3

I1

Figure 34: Major eigenvector calculation

Step 3: Calculate angta: cos(3a)=js/2 ((3/j,)¥?) Due to the nature of the data, (noncircular
series of connected points), the majawill occur in the first quadranto’ <= a; <= 1v6.

Step 4: Solve the majorvalue: ni= 2 sqrt(j,/3) cos(a,)
Step 5: Calculate the eigenvalug:= n+ 1/3 trA

Now that we have the major eigenvalue, we can tatlethe eigenvector (Equation 3) through
simple substitutionA v =X v, A= 3x3 covariance matrixh =known scalar value, solve for the
3x1 eigenvectoy

Covxx Cvay COVXZ Vl a:Ll a12 a13 Vl Vl
AvV=LvV =|cCOvV, COV, COV,|[V,|=|8y &, |V, |=4V,

Cov. COV,, COV,, || V; Ay Qg Ay || Vs V;

N
x

Equation 3: Eigenvector calculation A=covariancenatrix, v=eigenvector, [|=eigenvalue

Step 1: A vi= a1 V1 + a2 Vo + a3 Vs, solve for v, vi=f(y,z)
Step 2: A Vo= &1 V1 + &2 Vo + &3 V3, Substitute thevof stepl, y=f(z)

Step 3: Sety#1, solve for y in step2.

49

Step 4: Solve foryin stepl.
Step 5: A va= a1 V1 + &2 V2 + &3 V3, SOlve for y. This extra step reduces the round-off errors.

We are solving for the Principal Direction of thieer segment which is the normalized (unit
magnitude) version of the eigenvector. The norredliPrincipal Direction vector is saved for

the next processing step.

A single bundle of 1293 covariance matrices willcbaverted to Principal Direction vectors in

approximately 3.1mSec. The equivalent serial apgrdakes 265mSec.

5.3 Principal Direction Vector To Feature Score
This final process reduces the bundle of datasiogle number. This number is used to

compare the bundle against the reference libraihe result is a score of how well the subject

bundle matches the reference bundle.

GpuPrincipalDirToFeatureScore <<<1,
3*numPolarsRoundedUpToWarpsize,..>>> ();

// one bundle per grid, one block, each thread worka polar coordinate (X, y, z)
GpuPrincipalDirToFeatureScore() {
for(segmentldx=0; segmentldx<segmentsinBundlgmsmtidx++) {
Check principal direction = general direction o¢ segment
Calculate difference: abs(principal direction gvg
if (magnitude(difference) < polarRegionRadius)
polars feature count+=1,
}
Convert feature count table to feature densityetabl
Normalize the feature density table
Calculate library difference: abs(library featuneormalized feature)
Calculate feature score: sum library differenceeieery polar
if (feature score < current minimum score)
Current minimum score = feature score;

}

Code block 7: Pseudo code of the GpuPrincipalDirTieeatureScore process

50

This process (Code block 7) converts the unit-weletoncipal Direction (tracePoint) data to a set
of feature or polar location counts. This couritis¢hen compared against the reference

bundle’s count-set. The difference between thed®is is the feature score.

14
¥
/

|.13|.08|.10|.DZ|.DE|.CM|.DC+02|.01|.01|.01|.03| ‘j g |.M|.09|.01|.01|.01|.DD|.DD|

C

@
=2

Figure 35: Feature Score (a) Segment of fiber patis reduced to the Principal Direction,
trace point (b) Single fiber of trace points (£Bundle of trace points with a ring (only one
shown) of Polar regions, and the resulting feature@unt table

A sphere is divided into 62 polar regions. Eaclaprepresents a location on the unit-sphere.
The set of Principal Direction vectors (tracePgiate compared against the Polars. If the unit-
vector is inside the Polars polar-region, the fessttount for that polar increases. The feature-
count is the number of Principal Direction vecttirat point in this common direction. It is very
much like a histogram for common directions. AgsentracePoint may exist in more than one

polar region. There are a fixed number of Polains, a variable number of tracePoints.

Each pass through this process compares a siagieRoint against all 62 polar regions. The
resulting feature count set is converted to a Pao# density set (Equation 4). The density set is

then normalized to give a percentage distributetnBquation 5). The resulting table shows

51

how many fiber segments in the bundle are oriem@ohe direction versus any other direction.

Bundles with similar fiber paths will have simif@ature sets.

q = featureCnt
nTracePt

Equation 4: Feature Density calculation
f. = dj

J ZnPolars d
i=1 i

Equation 5: Feature Density Normalization calculaton

Threads
Grid 0

nPolars (X data)
Block 0

nPolars (Y data)

nPolars (Z data)

Figure 36: Principal Direction to Feature Score Gid Breakdown (Orange= valid data,
Pink= unused threads)

This process uses a single block grid. (See Figaye(The Principal Direction data is in a
single data-set.) Each thread in the block repitese single (XYZ) coordinate for each polar
point on the unit-sphere. Each pass through tbegsis compares a single Principal Direction
unit-vector against every polar point. At the efdhe process the number of active threads is

reduced to the number of Polars to process tharkeabunt data.

52

The first part of this process uses 3 threads {oneach coordinate) to verify the Principal
Direction is in the same general direction as therf If needed, the Principal Direction vector
will be rotated 180’. This is done by applyinga@t-groduct multiplication on the Principal
Direction vector and the fibers general directiector (calculated earlier). If they are out of

phase, the Principal Direction vector is rotated.

The single Principal Direction vector is then comgabagainst all polar regions (Equation 6). If

the vector falls within the polar region, that R@deature count is increased. The polar regions
are circular regions centered on the polar locadtiothe unit sphere. (See Figure 35¢) Because
these polar regions overlap one another, a simgheipal Direction vector may add to more than

one feature count.

featureCnt += (absfrincipalDir — polarLoc) < polarRegionRadius) ? 1 : 0

Equation 6: Polar Feature Count calculation

The resulting feature table is then convertedfeature density table. (Reference Equation 4)
The number of active threads is reduced to the mumbPolars. Each feature count is divided
by the number of Principal Direction vectors in fiieer bundle. The density table is then
normalized to produce a percentage polar distobutable. (Reference Equation 5) This
distribution table is compared against the ROla&diee table. The difference between the table

entries is summed for the final featureScore (Equat).

53

0.2

0.15 M Subject's normalized feature data

M ROl reference feature data

0.1

0.05

1 3 5 7 9 1113151719 2123 2527 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Figure 37: Feature score comparison of each Polar
featureScre = zi"j"arsabs(feature,,,, — feature,)
Equation 7: Feature Score calculation
A single bundle of 1293 Principal Direction vect@ompared against 62 Polars, then scored
against the preprocessed ROI’s feature-score,proapnately 2.6mSec. A 214KByte bundle

of fiber data is reduced to one single-precisiomber in approximately 5.9mSec.

5.4 Bundle Concurrency
CudaDoTraceMap processes a single bundle of fibEng. internal processes

(GpuBundleToCovariance, etc.) operate consecutivellye CudaDoTraceMap process. A
single bundle is processed with each pass of tltmBoTraceMap loop. Each bundle is
processed in a separate stream, allowing eachdtm@rocess asynchronously to the others.
To reduce the launch time, the bundle processdauanehed from a queue of statically allocated
resources. Each stream uses its own GPU resaamdesxecutes independently of each other.
The number of streams (GPU resources) used hasabig@esied to allow all bundles in the ROI
to run concurrently. This keeps the CPU and GPbuay as possible. (Between different

ROI’s, the CPU spin-waits.)

54

5.5 Reference Feature Data Correction
DICCCOL works by comparing a subject’s data agaanstference library. The feature results

of the reference library are preprocessed andnaperited for comparison at the end of
CudaDoTraceMap for calculation of the match scdreis comparison works as long as the

fiber data is processed in the exact same appstie preprocessed reference library.

The approach | used is slightly different from trgyinal code which uses 144 Polars. Many of
these Polars are duplicates. My approach elinmsnéie duplicates and uses only the 62 unique
Polars. To correct for the difference in Polartipthe preprocessed feature data is
renormalized. Because of this difference in apghothe numerical results of the comparison

stage are different between the two approaches.

ref;

oo = |

corr; nPolars f
Zi=0 ref;

Equation 8: Reference Library, feature correction @lculation

Initially, all ROI feature results are loaded te tGPU at the start of the predictROI2 process.
The data is then renormalized by a single gridefezice Equation 8). Only these unique
preprocessed feature results are saved for theréeadbunt comparison. This kernel has not
been optimized for speed, as it is a setup rowaneit runs asynchronously to the CPU, during
the setup stage. The execution time is typicakglthan the remaining CPU setup time.
(Typically completes before the CPU has issuedets GPU task.) Every block in the grid
works on a single ROI data set. Each block usdbr@ads (warpSize). The heart of the
renormalization is simple summation reduction opena(reference Code block 8).
sumReductionTechnique(X

if(threadldx < warpSize) {
for(idx=threadldx+warpSize; idx<lastData; idx+=p&ize)

55

warpSum+= sharedMemory[idx];
sharedMemory[threadldx]= warpSum,;

}

__syncthreads(); // wait for single warp redoctio complete
for(idx=warpSize>>1; idx>0; idx>>=1) {
if(threadldx<idx)
sharedMemory[threadldx]+= sharedMemory[threadldx¥i
__syncthreads(); // wait for sharedMemory tasfinwrite cycle

}
If(threadldx == 0)

totalSum= sharedMemory|[0];

}

Code block 8: Pseudo code of the summation redueti technique

The CPU->GPU transfer of the complete feature set§100KByte) takes approximately

24uSec. The complete data set is renormalize8us8&c.

At the beginning of every ROI loop, that ROI's faga results are moved from global memory to
constant memory for faster access. This GPU iat&288Byte move takes a negligible amount

of time.

5.6 Polar Point Generation
The last phase of the CudaDoTraceMap process cotlet’'number of Principal Direction

vectors that fall within predefined polar regionia.order for the comparison to be valid, the
Polars must be located in the exact positions ader@s the preprocessed feature results used.

These matching Polars are generated by the GPUstaretl in constant memory for fast access.

This kernel runs asynchronously and has not beemized for speed. This task occurs once
during the predictROI2 setup stage. The Polargenerated by a single block grid. Each

thread in this block generates a single polar.e ("Hgure 38)

Generating the 62 unique polar locations take apprately 2.5mSec.

56

, X=cos® * cos ®@
O 0> Y=cos ® * sin®

-y - — _:3' -

- Z= s1in @

D=0—271

Figure 38: Polar Locations calculation

57

6. Testing
The eigenvalue and eigenvector calculations westedefor accuracy and precision. A side-by-

side visual comparison of each subjects ROI O tesuds performed. The list of resulting best-
match bundle ID’s was compared between the sardparallel approaches. A comparison of
the best-match bundles was performed to identdéntidal fiber content. The number of
generated segments from the CPU process was courpaitee GPU process. A visual
comparison between the two approaches was perfoomedsubset of ROIs for a single subject.
A serial versus parallel run-time comparison wasgomed to determine the resulting speedup.

The machine details can be found in section 11cHife/System Details.

6.1 Eigenproblem Comparison
The calculation of the eigenvalue and eigenvestarmew approach. Under certain

condition$’, the eigenvalue precision breaks down. Due tmétere of the predictROI2 task,
these conditions don’t occur here. To prove the@gch and verify the precision, the results of
my calculations were compared against the CUAbrary (a parallel version of the Linear
Algebra Package library) results. The sparse syincreigenproblem solver,

culaDeviceSsyev(), was used to generate the eiggggs/and eigenvectors from the covariance
matrix of subject 9. These single-precision reswre compared against my calculated results.
The single Principal Direction vector results wsobtracted from the corresponding CULA
results (reference Table 3). The test shows thaeus to be identical to 4 digits of precision.

DICCCOL only needs a single digit of precision.

6.2 Serial vs Parallel Quantitative Comparison
The serial versus parallel DICCCOL results were garad by examining the bundle ID’s of the

individual ROI's. | compared the GPU bundle IDuks against the CPU bundle ID results.

58

The number of ROIs that yield the same bundle tesuvell as different bundle result is

counted. Table 4 shows the comparison of the imasth bundle for the two approaches.

| compared the bundle contents for a subset of ROdabject 9. The subject was chosen at
random. The comparison was limited to a subs#t@ROIs because it is a time intensive
process. Table 5 shows the number of fibers irCiRE results that are also in the GPU results.
The differences come from how the fibers wereriite The original serial approach ignored
fibers that were less than a half-segment in lenmihonly fibers that were at least a one
segment in length, 16 fiber-points, would actuginerate any data. My parallel approach
ignores fibers that are less than two segmentEb2dépoints, in length. (See discussion in

section 9. Conclusion)

| compared the segment counts from the fiberssiigle bundle. Table 6 shows the fiber count
comparison for bundle 574 in ROI 0 of subject %e Bubject, ROI, and bundle selection were
chosen at random. The fiber count discrepancesaused by the differences in the

segmentation process. The original serial approgisked a segment in some of the fibers.

Table 6 shows the segment count of the individib&ir§ in the first bundle of ROI 0. It
demonstrates one of the process differences bettieddPU approach and the GPU approach.
When there is a difference, the GPU process est@w more segment than the CPU process.
See Code block 9 for a comparison between the égment generation approaches. The
original approach uses “<” for the loop comparisdnch drops the last segment when the fiber
size divides evenly by the segment size. Thisigsected when “<="is used as the loop

comparator.

59

SEG | NTERVAL = 8
SEG Sl ZE= SEG I NTERVAL << 1

New approach: (CTraceMap::CudaDoTraceMap())
seaCnt = ((nFi berPts<<1l) - SEG SIZE) / SEG Sl ZE
Original ApproaCh: (CTraceMap::TracingSingleFiber())

int currentFiberSize= currentFiber.size()
for(int seaStart=0. seaEnd=SEG S| ZE:
seaEnd<current Fi ber Si ze:
seaSt art +=SEG | NTERVAL. seaEnd+=SEG | NTERVAL)

New Approach Original Approach
nFiberPts segCnt currentFiberSize seg
31 2 31 2
32 3 32 2
33 3 33 3

Code block 9: Comparing Segment Counts

6.3 Single ROI Visual Comparison
A side-by-side visual comparison of the CPU vs GR 0 results was performed. The images

with obvious differences were noted. ROI 0 was&eld at random for this comparison. (See

Figure 40)

6.4 Multiple ROI Visual Comparison
Figure 41 compares a subset of 48 ROI’s from deaisgbject. The CPU generated images were

compared against the GPU generated images forciulje The ROIs with major differences

were noted. The subject 12 was chosen at randothifocomparison.

6.5 Runtime Comparison
Timing results are provided by a CPU timestamp canigpn. A timestamp is taken at the

beginning and end of the predictROI2 routine. (Sede block 10) The difference, in seconds,
is reported as the execution time. (See Code HagkA minimum of 3 runs were performed on
both the CPU & GPU code. The average of thesemest(see Table 2) is used for the

calculated Speedup factor. See Table 8 for thegjmesults.

60

predict.pipeline (script file)

echo "** cleanup last **"
cleanup (last run) task runs here

echo "** reistration **"

before= "$(date +%s)"

registration step runs here
regTime="$(expr $(date +%s) - $before)"

predict.pipeline (script file)

echo "** prediction **"

before= "$(date +%s)"

predictROI2 argl,arg2,arg3,..
predTime="$(expr $(date +%s) - $before)"

echo "** prepare for viewer **"

before= "$(date +%s)"

viewer step runs here
viewTime="$(expr $(date +%s) - $before)"

echo

echo "registration time: $regTime sec"
echo "prediction time: $predTime sec"
echo "viewer time: $viewTime sec"

Code block 10: DICCCOL Command Pipeline (with times)

Sample run: (cpu, subject 9)
predict.pipeline
argl,arg2,arg3,...

** cleanup last **

** registration **

** prediction **

** prepare for viewer **

registration time: 17 sec
prediction time: 656 sec
viewer time: 0 sec

Code block 11: Sample CPU Run of DICCCOL, Subjec®

Table 2: Average Runtime Calculation example, Sulect 9

Average | Std
Run 1 2 3 4 5 6 7 8 9 10| (seconds) Dev | Speedu
CPU | 652 652 656 662 667 653 648 648 672 660 657.0| 7.67 6.42
GPU| 102 103 102 102.3 0.47 '

61

7. Results

7.1 Eigen Calculation Accuracy
The single precision calculation of eigenvectorsvah4 digits of precision. A single precision

number is limited to 7 decimal digits. Table 3wisdhe absolute error for the eigenvector and
eigenvalue numbers when compared to the CULA g&ttraumbers. nSegments is the number

of fiber segments that were processed. The eiglenlation is performed once per segment.

Table 3: Absolute error with the CULA generated results and the number of eigen
calculations performed

Subject 9 6
eVector X | 0.0000162" | 0.0000761
eVector Y | 0.0000087. | 0.0000103
eVector Z | 0.000000%” | 0.0000004
eValue 0.0000190C: | 0.0000208
nSegments 20,955,341 13,836,770

7.2 CPU vs GPU Bundle Results
Table 4 compares the serial vs parallel ROI resultse CPU bundle ID for each ROl is

compared against the GPU process results. Foe&ulyjof the 358 ROI's there were 104
identical results and 254 different results. Wttenbundle ID changes this doesn’t mean the

resulting image drastically changes. See FigurlmdBomparisons.

62

Table 4: Comparing the CPU vs GPU bundle results

ROI Bundle Results: CPU vs GPU

Change
Same | Different in
Bundle | Bundle | Bundle
ID ID ID
Subject| (count) | (count) results
1 117 241 67.3%
6 115 243| 67.9%
9 104 254 70.9%
10 109 249| 69.6%
12 108 250 69.8%
14 85 273| 76.3%
16 85 273 76.3%
20 100 258 | 72.1%

63

7.3 CPU vs GPU Fiber Results
While the bundle ID’s may be different for the CR&JGPU results, the bundles may contain

common fibers. Table 5 demonstrates this. It cmepthe CPU fiber results against the GPU
fiber results. It shows how many of the fiberarirthe CPU bundle results are also in the GPU
results. (The percent of CPU fibers that are comtmdoth CPU and GPU result bundles.) A
100% result may mean the CPU and GPU bundle IDtemar that all the fibers in the CPU
result are also in the GPU result. It does notesklfibers in the GPU result that are not in the

CPU result. Figure 39 shows a result where thex@a (0%) CPU fibers in the GPU result.

Table 5: Subject 9 fiber bundle comparison (firstt00 ROI's): ROI # vs % of CPU fibers
that are also in the GPU result bundle

ROI # 0 1 2 3 4 5 6 7 8 9 100 11 12 13 14 15 16 17 18 19
% match| 26.3100.0 33.3 100.0 100.0 26.9 87.2 100.0 60.2 100.0 62.5 100.0 88.4 100.0 100.0 100.0 55.0 76.0 0.0 25.4
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3 36 37 38 39
95.7 31.0 4.9100.0 32.7 77.5100.0 8.3 100.0 100.0 100.0 100.0 100.0 34.0 94.1 46.2 100.0 61.5 100.0 76.9
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
100.0 100.0 73.1 80.9 62.5 98.2 80.6 38.8 100.0 51.0 0.0 100.0 100.0 100.0 100.0 63.6 100.0 34.8 100.0 100.0
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 7T6 77 78 79

0.0 100.0 100.0 47.1 47.8 100.0 100.0 100.0 0.0 1.3 0.0 13.9 100.0 100.0 100.0 100.0 100.0 0.0 100.0 100.0;
80 8 8 8 84 8 8 8 8 8 90 91 92 93 94 95 9% 97 98 99
100.0 46.3 53.8 93.8 53.7 74.5 34.8 75.6 82.6 30.0 71.4100.0 95.0 48.2 66.7 100.0 100.0 93.5 8.5 100.0

Histogram

of ROI's
O N b OO

0O 10 20 30 40 50 60 70 80 90
% CPU match data

64

Figure 39: Subject 9, ROI 60: Completely differehresults
(CPU: bundle 9391, GPU: bundle 11938)

7.4 Fiber Segment Count Results
Table 6 shows the segment count of the individiba&r$ in the first bundle of ROI 0. Of the 95

fibers in this bundle, 13 generated a different benof segments.

Table 6: Segment Count of Fibers in Bundle 574, ® 0, Subject 9

Fiber
Index| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cpU|14 13 12 13 12 12 8 11 11 11 20 13 8 12 8 9 9
GPU (14 13 12 13 12 12 9 12 11 11 20 13 8 12 8 9 10
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
9 10 11 11 8 7 12 12 8 9 11 12 4 3 11 12 3
9 11 11 11 8 8 12 12 8 9 11 12 4 3 11 12 4
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
9 3 13 10 8 10 10 19 11 9 9 11 2 11 12 17 14
9 3 13 10 8 10 11 19 11 9 10 11 2 11 12 17 14
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
18 19 3 10 20 18 4 9 23 18 12 12 10 19 19 19 18
18 19 3 10 20 18 4 9 23 19 12 12 10 19 19 19 18
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
18 21 16 18 20 19 18 17 19 17 19 18 18 18 19 19 19
18 21 16 18 20 20 19 17 19 17 19 18 18 18 19 20 19

85 8 87 88 89 90 91 92 93 94
17 17 18 18 17 17 23 24 17 21
17 17 18 18 18 17 23 24 17 21

7.5 CPU vs GPU ROI-0 Visual Comparison Results
Of the 13 subjects used for testing, 7 of the C&4ults visually matched the GPU results. Th

remaining 6 comparisons showed very similar results

Figure 40-1: Subject 1, ROI 0: Results diffdr (CPU: bundle 491, GPU: bundle 149)

66

Figure 40-2: Subject 6, ROI 0: Results match (QPB: bundle 75, GPU: bundle 75)

»

-

W

:
-t
" ¥

A\

d).

'
N
o

Figure 40-3: Subject 9, ROI 0: Results differ (@U: bundle 574, GPU: bundle 304)

67

Figure 40-4: Subject 10, ROI 0: Results match (BU: bundle 871, GPU: bundle 871)

Figure 40-5: Subject 12, ROI 0: Results differ PU: bundle 232, GPU: bundle 106)

68

Figure 40-6: Subject 14, ROI 0: Results match (BU: bundle 891, GPU: bundle 891)

Figure 40-7: Subject 16, ROI 0: Results differ PU: bundle 77, GPU: bundle 5)

69

Figure 40-8: Subject 19, ROI 0: Results differ PU: bundle 318, GPU: bundle 326)

Figure 40-9: Subject 20, ROI 0: Results match (RU: bundle 62, GPU: bundle 62)

70

Figure 40-11: Subject 22, ROI 0: Results matchCPU: bundle 191, GPU: bundle 191)

71

Figure 40-12: Subject 23, ROI 0: Results diffefCPU: bundle 404, GPU: bundle 654)

Figure 40-13: Subject 24, ROI 0: Results matchCPU: bundle 132, GPU: bundle 132)

72

7.6 CPU vs GPU Single Subject Visual Comparison Relts
The CPU generated images are displayed with awdilmme (upper), and the corresponding

GPU images have a blue frame (lower). It is suggk® use the zoom function in the electronic
version of this document for better viewing. Th@IR are displayed in sequence with ROI 0 at
the top left and ROI 48 at the bottom right. Mothe ROI comparison’s show no or small

differences. The ROI's that show the most drandifferences are: 3, 14, 39, 41. Less dramatic

differences can be found with ROI: 2, 18, 24, 47.

Figure 41: Subject 12, ROI O(left) — 6(right): CRJ Results(yellow, upper) GPU
Results(blue, lower)

73

Figure 41: Subject 12, ROI 7(left) — 13(right): CPU Results(yellow, upper) GPU
Results(blue, lower)

Figure 41: Subject 12, ROI 14(left) — 20(right): CPU Results(yellow, upper) GPU
Results(blue, lower)

Figure 41: Subject 12, ROI 21(left) — 27(right): CPU Results(yellow, upper) GPU
Results(blue, lower)

74

Figure 41: Subject 12, ROI 28(left) — 34(right): CPU Results(yellow, upper) GPU
Results(blue, lower)

Figure 41: Subject 12, ROI 35(left) — 41(right): CPU Results(yellow, upper) GPU
Results(blue, lower)

75

Figure 41: Subject 12, ROI 42(left) — 48(right): CPU Results(yellow, upper) GPU
Results(blue, lower)

7.7 Process Runtime Result
Table 7 compares the serial vs parallel runtimgnefthree major DICCCOL processes. The

Registration column is the FSL, FLIRT process. Phediction column is the predictROI2
process. The Viewer column is the data collectimtess for the generateProfile4Viewerll

tool. (See Code block 10 and Code block 11)

Table 7: DICCCOL Process Runtime Comparison

Single Runtime (seconds)

Subject| Registration| Prediction| Viewer

CPL 1 21 1664 0
GPU 20 250 0
CPU 6 22 437 0
GPU 22 72 0
CPU 9 17 655 0
GPU 17 103 0
CPU 10 14 1324 1
GPU 14 204 0
CPU 12 17 1564 0
GPU 18 241 0
CPU 14 17 1316 0
GPU 17 203 0
CPU 16 18 1977 0

76

GPU 18 303 0
CPU 19 15 1615 0
GPU 16 250 0
CPU 20 16 1411 0
GPU 17 218 0
CPU 21 17 1859 0
GPU 17 288 0
CPU 29 17 1579 0
GPU 17 245 0
CPU 23 18 1445 0
GPU 17 228 0
CPU o4 15 1813 0
GPU 16 282 0

7.8 PredictROI2 Runtime Results
Table 4 compares the serial vs parallel runtimiefPredictROI2 process. A minimum of three

tests were run on each subject to provide the geetantime results.

Table 8: DICCCOL Runtime Comparison

Average Runtime (Sec)
CPU GPU Speedup

Std Std
Subject| Dev Dev | factor
1| 7.12| 1687.6] 254.0| 0.00 6.6
6| 2.43 439.3 72.0| 0.00 6.1
9| 7.67 657.0/ 102.3] 0.47 6.4
10| 4.99| 1332.7| 204.3] 0.47 6.5
12| 4.78| 1553.7| 241.7| 0.47 6.4
14| 0.47| 1300.7| 203.0| 0.00 6.4
16| 9.68| 1948.8/ 302.0| 0.00 6.5
19| 4.12| 1616.2| 251.0] 0.71 6.4
20| 2.16| 1408.0, 219.0f 0.00 6.4
21|11.58| 1879.0 288.3| 0.43 6.5
22110.52| 1595.8) 245.8| 0.43 6.5
23| 15.66| 1476.2] 228.3| 0.43 6.5
24118.74| 1841.3] 282.3| 0.43 6.5

77

8. Observations
Much of the number processing for the predictR@I2Zine involves generating average values.

Calculating an average involves a summation angidivprocess. The summation process is
serial in nature and the division process is parall nature. Because of this, neither the CPU

nor the GPU processor is a great platform for pariiog the task of averaging. The averaging
operation can be performed by either processoméitther processor is capable of ideally
performing both the serial and parallel aspecthefaveraging operation. As long as the data set
is many times larger than warpSize of the maclime GPU can perform the operation faster
than the CPU can. A warpSize reduction techniguesed in many places of this GPU
predictROI2 code. The data set is reduced toglesimarp, and then a repetitive half-warp

routine reduces it to a single value. This protede a very useful tool for the summation
process, but care must be taken to address theemthaata hazards of the code. Properly

addressing the data hazards corrected the numezsidts and further reduced the runtime.

The CPU is not slowing down the process. A faStet will not make this process run
significantly faster. The CPU spins idle while tBRU processes the bundles in bursts of work.
As a result, the GPU is not being fully utilizedlhe GPU does a good job at swapping threads
efficiently, but the predictROI2 processes is ragimple. | found that a single-warp (warpSize)
process ran faster than a block that uses multgilesarpSize. When the code was changed to
allow for multiple warps, the execution time incsed. With proper data-coalescing this simple

task ran faster on a single warp, than it did &itinultiple warp execution.

CULAP! is a parallel coded version of the popular Lingmebra Library, LAPACK. CULA
solves high-dimension eigenproblems rather quicKllge CULA Library is not considered a

viable solution for my speedup goal. The use efttdol breaks the concurrency approach used

78

here. Without a different process approach, th&Abpproach doubles the execution time. It
ran slower than the CPU approach. The CULA Librarg useful tool when solving hundreds of
eigenproblems with 100’s of dimensions. The 3-disien Principal Direction task used here is
much too simple for this tool to be useful for niptime goals. | would need more than a
million Principal Direction problems in a singleralle before | could expect to see a speed

improvement with this tool.

The eigenproblem calculation was the most time wamsg operation in the original
predictROI2 process. It used double precision remykand calculated all 3 eigenvalues and
eigenvectors. The problem doesn’t require higltipren or a solution of every eigenvector.
The covariance matrix is a small (3 dimension), syatrical matrix. Only a single precision
result is needed. The problem requires the saiufnly the Principal Direction (major)
vector. My solution takes advantage of all thesgkfication and provides a vector that offers

6 digits of precision.

The final stage of the predictROI2 process comparesessed Subject bundles against
preprocessed library results. This essentialeyaemparison of direction-sorted results. This
comparison is only valid if the library data aneé sBubject data are processed in identical
fashion. This doesn’t happen, for two reasonsasBe 1: In my approach, the Subject data has
been optimized for minimal processing time. Thigdudes ignoring fibers that are too short.
Fibers that are less than 2 segments in lengttrapped. | suggest a single segment fiber isn’t
long enough to generate useful information. Re&sdn examination of the CPU approach
shows that it misses certain fiber segments. [a&dée 6) A single bundle comparison of
Subject9, shows a difference of 13 tracePoints|CR80, GPU: 1293). The data is different

going into the feature count process. This suggéstresults will be different

79

In the sort routine, the library data uses 144 Bolaf which only 62 are unique polar locations.
My approach only uses the unique locations forsthre. An adjustment is made to the library
data for the final comparison. It would be bette¢his adjustment wasn’t necessary. Adjusting
for this difference in Polars doesn’t adverselgefftthe runtime of the process, but it does add a

fair amount of code overhead. (This will be a nemance issue moving forward.)

The CPU vs GPU results comparison (Table 4) shbeslifferences in bundle selection. The
difference in bundle selection is expected to beomas the visual results indicate. Identical

results, though not expected, are possible.

80

9. Conclusion
In this paper | show how the DICCCOL task couldoeeformed more efficiently by taking a

parallel programming approach. My resulting alton reduces the average runtime by a factor
of >6 for all test subjects. | am unaware of anfjative test approach that will verify my results
against the serial DICCCOL approach. My paralllEOCOL results don’t visually match those

of the serial approach. The differences are theltref corrections to what | perceived as

oversights in the serial approach.

My parallel approach extracts more data points fteenprovided DTI data than the serial
approach does. Because of this added data | @msiglresults to be more accurate than that of
the serial approach. The second difference of amgllel implementation involves the selection
of the minimum fiber length. The minimum fiber gh for the serial approach is one segment.
The minimum fiber length for my approach is tworsegts. | suggest a single segment fiber is

a malformed fiber in the subjects DTI data set #adefor it should be removed.

DICCCOL library is about correspondence betweenestibrains. DICCCOLs are landmarks
with high correspondence across many subjectss ddrrespondence is identified by the
connectivity of these landmarks. Connectivityiede landmarks don’t appear to be local, but to
other distant regions of the brain. Thus very shonnections in white matter don’t exist and

are errors in the DTI data. This is related toah#ity of the tractography field to quantify thei

results.

This is not a study of the serial DICCCOL resukglhve parallel DICCCOL results. | am not
able to prove my parallel approach is any more @&teuhan the original serial approach only

that it executes much faster. | have shown thalsessults can be similar but different from

81

those of the parallel results. The differenceessuits needs to be reviewed by others in the

neurophysiology field.

If this approach is adopted the considerable tiawings allows DICCCOL to be a more
practical research tool for the field of neuropbi®yy. Other areas for improvement of the tool

can be found in section 10. Future Work.

82

10. Future Work
Using the preprocessed library data is cumbersohhe. subject and library data needs to be

processed in identical fashion or the comparisdikédy invalid. The library data

(mdls.features) needs to be cleaned of the duplalar information. 62 Polars is a rather small
number of buckets for this direction-sort approad¥hat the sort is effectively doing, is

counting the number of fiber segments that poira particular direction. Increasing the number
of Polars increases the resolution of the bundheparison. The existing code can accommodate
up to 96 Polars with very little change and hawei@or impact to the execution time. | had an
early version of the 62 direction-sort process thatin ~10mSec. When the number of
directions was increased to 80,000, the execuitoa only doubled. When using more Polars
the efficiency scales up dramatically, but the regasn’t true. Using fewer Polars doesn’t
dramatically reduce the execution time. Adding enoolar locations only helps if they are
unique. The polar rings and the polar radius Umeed have varying degrees of overlap (aside
from the duplication issue). There are also em@gyons where tracePoints go uncounted. At

the minimum, 7% of the total area is not covered Ipplar region.

83

Figure 42: 62 Unique Ringed Polars Blue: Uncouet region Gray: Overlap (double
count) region

This results in expensive segment data that iSgnsired. There is no way of knowing if a
significant cluster is located in this uncovereéaar A better approach than this “ring of Polars”,
would be the use of equidist&hpolar locations. With this approach the amourgaifir region
overlap is consistent and there is no overlookdd.dahe full data set is used in the final
comparison. |tested this approach, but coulds&t iti because the preprocessed library requires

the use of the “ringed polar” approach.

84

Figure 43: 62 Unique Equidistant Polars

The final comparison process performs a featursitdeoalculation. Is the feature density
calculation necessary? The next process normalieesolar region feature distribution. The
result is a polar-region percentage distributidiiga For example, 5% of the fiber segments are
oriented in the direction of polar J, while 42%igdhe direction of the polar K. | suggest the
density calculation can be removed as it only addsnstant multiplier to the Feature Density

Normalization equation.

_d;nTracePts
j nPolars
Y., featureCnt

Equation 9: Feature Density Normalization calculaton

The work done here addresses the low level operafithe predictROI2 task. The processing
work is done in bursts of ROI subject bundles. fdrther reduce execution time, the separate

ROI tasks should be issued concurrently. Thisireguewriting the predictROI2, main2.cpp

85

file to allow concurrent ROI processing. Effectiehis would be a grid-computing approach

on a single GPU.

To shorten the execution time of the existing caae, could employ a bigger GPU. The very
small data set used by DICCCOL is transferred ¢0GFU very quickly. Data bus bandwidth is
not slowing the process down. The GPU HW | usesdh&treaming Multiprocessors (SM)
(CoreConfig: 192:32:16). There are other more bEPAGPU’s that supports up to 14 SM's
(CoreConfig: 2688:224:48). More SM’s means the BWapable of doing more concurrent

work.

This code was developed on Nvidia’'s Fermi HW. Thext generation HW, Kepler, allows
kernels to launch other kernels. This adds andéwvet of flexibility for newer programming

approaches.

The changes addressed by this paper can be applied serial process to significant improve
the efficiency of DICCCOL. Correcting the logic thie fiber segmentation is noted in Code
block 9. Additional code changes will be neededupport the extra segments. The three
dimension eigen calculation can implemented witteleffort. This change is expected to drop

the execution time by at least half.

86

11. Machine/System Details
Lenovo ThinkPad
W520
CPU: Inteli7 (Sandy Bridge)
2.4GHz CIk, 64bit, L3 6MB, 4 core, 8 threads
GPU: Nvidia Quadro 2000M (Fermi)
4 SM's, 1.1GHz Clk, warpSize 32, compute bdppa 2.1
1 mem engine, gMem 2GB, cMem 64KB, 27.5GB/sec

RAM: 4GB
DDR3

SSD: 256GB Vertex4 OCZ
OS: Ubuntu 12.04 (Linux-x86, 64bit)
Nvidia driver: 304.43
CUDA toolkit: 55
GNU GCC: 4.6.3
FSL: 4.1.8
QT4: 4.8.1
VTK: 5.8.0
GSL: 1.9
ITK: 3.20.1
CULA: Ver R14

DICCCOL code base: 1/30/2012

87

Abbreviation Glossary

API Application Programming Interface
CPU Central Processing Unit

CUDA Compute Unified Device Architecture
CULA CUDA Linear Algebra

DICCCOL Dense Individualized and Common Connegtipidsed Cortical Landmarks
DTI Diffusion Tensor Image

FSL FMRIB Software Library

GPU Graphics Process Unit

GPGPU General Purpose GPU

HW Hardware

LAPACK Linear Algebra Package

MRI Magnetic Resonant Image

NMR Nuclear Magnetic Resonance

PCA Principal Component Analysis

PCle PCI Express (Peripheral Component Intercdribgaress)

88

References

[1] Zhu D, Li K, Guo L, Jiang X, Zhang T, Zhang D, CheénDeng F, Faraco C, Jin C, Wee C,
YuanY, Lv P, Yin Y, Hu X, Duan L, Hu X, Han J, Wah, Shen D, Miller LS, Li L, Liu
T. DICCCOL: Dense Individualized and Common Conivéigtbased Cortical Landmarks.
Cerebral Cortex. 23(4):786-800, 2013.

[2] Lindsay Smith. A tutorial on Principal Componentsatysis, 2002

[3] CUDA Linear Algebra Libraryhttp://www.culatools.coniRelease 16a, 2013

[4] Dohrmann. Eigenvalues and eigenvectors of 3 x 3ioeat 2006

[5] http://stackoverflow.com/questions/9600801/evenstributing-n-points-on-a-spher@
Matt S., 2013

[6] https://en.wikipedia.org/wiki/Comparison_of Nvid@gaphics processing_uni2013

[7] Larsen E, McAllister D. Fast Matrix Multiplies ugjrGraphics Hardware. SC2001
November, 2001

[8] Flucka O, Vetter C, Weina W, Kamena A, Preimb B st@emannc R. A survey of medical
image registration on graphics hardware. computthads and programs in biomedicine
104 (2011) e45—e57

[9] https://en.wikipedia.org/wiki/BrookGP2013

[10] https://en.wikipedia.org/wiki/CUDA2013

[11] Moulika S, Boonna W. The Role of GPU Computing iedital Image Analysis and
Visualization. Proc. of SPIE Vol. 7967, 79670L, 201

[12] Che S, Boyer M, Meng J, Tarjan D, Jeremy, Shedff&kadron K. A performance study of
general-purpose applications on graphics processing CUDA. J. Parallel Distrib.
Comput. 68 (2008) 1370-1380

[13] Guillaume Colin de Verdiére. Introduction to GPGRUhardware and software
background. C. R. Mecanique 339 (2011) 78—-89

[14] Sanders J, Kandrot E, CUDA by example—An introdaucto general-purpose GPU
programming. Addison Wesley, 2010.

[15] Garba M, Gonzalez-Velez H. Asymptotic Peak Uttimain Heterogeneous Parallel
CPU/GPU Pipelines: A Decentralised Queue Monitoftigitegy. Parallel Processing
Letters Vol. 22, No. 2 (2012) 1240008

[16] Ryoo S, Rodrigues C, Baghsorkhi S, Stone S, Kirkiu W. Optimization Principles and
Application Performance Evaluation of a MultithreddsPU Using CUDA. PPoPP '08,
February 20-23, 2008

[17] Castafio-Diez D, Moser D, Schoenegger A, Pruggn@ll&rangakis A. Performance
evaluation of image processing algorithms on th& GFeurnal of Structural Biology 164
(2008) 153-160

[18] Eklund A, Andersson M, Knutssona H. fMRI analysistbe GPU—Possibilities and
challenges. computer methods and programs in bimmedL05 (2012) 145-161

[19] Otten R, Vilanova A, van de Wetering H. lllustra&iWhite Matter Fiber Bundles.
Eurographics/ IEEE-VGTC Symposium on Visualizatgfii0. Volume 29 (2010), Number

89

[20] MRI registration: Accelerating image registratidnMR| by GPU-based parallel
computation

[21] fMRI permutations: Fast Random Permutation TesablEnObjective Evaluation of
Methods for Single-Subject fMRI Analysis

[22] Zhu F, Gonzalez D, Carpenter T, Atkinsona M, Wandlid. Parallel perfusion imaging
processing using GPGPU. computer methods and pnegrabiomedicine 108 (2012)
1012-1021

[23] Hernandez M, Guerrero G, Cecilia J, Garcia J, InAgdbabdi S, Behrens T, Sotiropoulos
S. Accelerating Fibre Orientation Estimation fronffilsion Weighted Magnetic
Resonance Imaging Using GPUs. PLoS ONE 8(4): e61892
doi:10.1371/journal.pone.0061892 (2013)

[24] http://fsl.fmrib.ox.ac.uk/fsl/fsiwiki/FSL

[25] http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/fdt/fdt_bedposhtml

[26] Lee J, Kim D. Divide et Impera: Acceleration of Dlliactography Using Multi-GPU
Parallel Processing. Imaging Syst Technol, 23, 268-2013

[27] Wang Y, Du H, Xia M, Ren L, Xu M, Xie T, Gong G, XN, Yang H, He Y. A Hybrid
CPU-GPU Accelerated Framework for Fast Mapping igh-Resolution Human Brain
Connectome. PLoS ONE 8(5): €62789. doi:10.137 Ij@iypone.0062789 (2013)

[28] class tictoc{} in tictoc.hpp from Ofir Pele (2010)

[29] https://en.wikipedia.org/wiki/Brodmann_argz013)

[30] https://en.wikipedia.org/wiki/Cerebral _cortéx013)

[31] https://en.wikipedia.org/wiki/File:Human_brain_rigklissected_lateral_view_description.J
PG (2013)

[32] https://en.wikipedia.org/wiki/White matt€2013)

[33] Stieltjes B, Brunner R, Fritzsche K, Laun F. Diffus Tensor Imaging Introduction and
Atlas. Springer-Verlag Berlin Heidelberg

[34] Faro S, Mohamed F, Law M, Ulmer J. Functional Neatlmlogy Principles and Clinical
Applications. Springer Science+Business Media, 2001

[35] https://www.youtube.com/watch?v=djAxjtN_ 7R ov 2013)

[36] Beaulieu C. The basis of anisotropic water diffasiothe nervous system — a technical
review. NMR Biomed. 2002;15(7-8):435-55.

[37] Coenen V, Schlaepfer T, Allert N, Madler B. Diffasi Tensor Imaging and
Neuromodulation: DTI as Key Technology for DeepiBr@timulation. International
Review of Neurobiology, Volume 107: 207-234 (2012)

[38] https://en.wikipedia.org/wiki/Tensor

[39] https://en.wikipedia.org/wiki/Sphere

[40] https://en.wikipedia.org/wiki/Ellipsoid

[41] https://en.wikipedia.org/wiki/File:DTI-sagittal-fdrs.jpg

[42] http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/flirt/overvieviatml

[43] https://en.wikipedia.org/wiki/Intel MIC

90

[44] https://en.wikipedia.org/wiki/Unified_atomic_massitu

[45] Hanbo Chen, Yu Zhao, Tuo Zhang, Hongmiao Zhang,Kdaing, Meng Li, Joe Z. Tsien,
Tianming Liu, Construct and Assess Multimodal MoBsain Connectomes via Joint
Modeling of Multi-scale DTI and Neuron Tracer Dagacepted, MICCAI 2014.

' Color information was missing from the originatalaet. RGB color information was added.
The fiber shape and pathways remain unaltered.

91

