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Abstract 

DICCCOL is a process that identifies common connectivity in the brain.  It was 

developed to show that the cortex has a common structure thereby identifying functional 

correspondence.  The tool compares the connectivity in a subject brain against a reference library 

of structural correspondence.  A set of bundles is processed for comparison against this library.  

The result is a subject’s fiber bundle that most closely matches the libraries reference bundle.  

The data set is relatively small but the processing is extensive.  A single thread approach to the 

process is very time consuming.  This task is better suited for a parallel processing approach.  I 

show how the work can be accomplished more efficiently with GPU hardware and CUDA’s 

parallel programming, resulting in a speedup factor of better than 6. 
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1.  Introduction 
DICCCOL[1]: Dense Individualized and Common Connectivity-based Cortical Landmarks 

One of the challenges in the field of neuroscience is identifying the specific functional regions of 

the brain.  The Brodmann map (Brodmann 1909, see Figure 1) is a collection of 52 areas of the 

human cortex gives a general structure and organization of the cerebral cortex.  The cerebral 

cortex, more commonly referred to as gray matter (see Figure 2), is the surface or outermost (2-4 

mm thick)[30] layer of the brain.  It contains the neurons that provide processing and cognition.  

The Brodmann map, serves as a general organization of the anatomy.  Due to the variability of 

the human cortex, the field is still struggling with the ability to precisely identify corresponding 

locations in different subjects.  An example would be to precisely locate the region that controls 

the eye lids amongst different subjects.  What is needed is the ability to identify a group-wise 

common cortical structure.  With this information we would be able to predict, with some 

precision, the common structure amongst other subjects.  This is the purpose of the DICCCOL 

tool.  The tool predicts the cortical correspondence between a subject brain and a reference 

library of common cortical structure points.  The points are called DICCCOLs.   
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Figure 1: Brodmann Map[29] 

Diffusion tensor imaging (DTI) is an MRI method that allows us to see the vivo fibrous structure 

of the cerebral cortex.  It shows the axial fiber connectivity of the brain cortex, more commonly 

called white matter.  This white matter is responsible for distributing and modulating the signals 

from the gray matter.[32]  The white matter (see Figure 2), contains nerve fibers, or long axons, 

that interconnect different gray matter areas of the cerebrum.   
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Figure 2: Cerebrum Cross-section[31]   (A) White matter   (B) Gray matter 

By comparing a subject’s connectivity against a set of DICCCOLs, we are able to locate and 

identify the corresponding landmarks between the two.  DICCCOLs are a set of points that have 

shown dense correspondence amongst a variety of subjects.[1]  The DICCCOL tool identifies this 

structural correspondence in the subject’s cerebral cortex.  With a subject’s DTI scan, (the 

related fiber connectivity data), we can identify corresponding regions of common structural 

connectivity.  The common connectivity is predicted by comparing the subject’s brain 

connectivity against DICCCOL’s reference library.  The DICCCOL process can be characterized 

by three steps: Registration, Prediction, and the Viewer.  The first step is the Registration.  Here 

the FSL FLIRT[42] tool is used to register the subjects DTI scan against the library model.  The 

registration results are used to adjust the subject’s white-matter and fiber images to the shape of 

the library model.  The predictROI2 tool then uses the registered images to locate a 

corresponding fiber bundle for the DICCCOLs in the library.  Currently there are 358 landmarks 

in the DICCCOL library.  The Viewer is the last step.  Here the resulting subject bundle images 

and the reference library images are collected for display by the generateProfile4Viewer11 tool.  
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This interactive tool allows the user to rotate and view images of the subject cortex and fiber 

results, and the reference library.   

By far, the most time consuming step of the full process is predictROI2.  (See Code block 1, and 

Table 7)  This is where I will focus my efforts to reducing the overall runtime of the DICCCOL 

tool.  The process starts with a known DICCCOL landmark from the library.  A similar landmark 

region is selected in the subject’s brain.  A set of fiber bundles in this region is selected for 

processing.  Each of these different bundles is analyzed to identify the bundle with similar 

connectivity to that of the reference library landmark.  Each fiber in the bundle is broken into 

overlapping segments.  The Principal Direction of each segment is calculated then sorted 

according to direction.  Once all the fibers in the bundle have been processed, the direction 

distribution percentages are compared against the landmark from the reference library.  The 

process is repeated for all subject bundles in the region around the subject’s landmark.  The 

result yields the single bundle that best matches the reference landmark. This process is repeated 

for each DICCCOL in the reference library.    

The DTI data set of fibers is relatively small and the process is very repetitive.  It looks at the 

fixed set of DICCCOL landmarks.  The neighborhood around each DICCCOL will generate a 

variable number of bundles.  Each of these bundles will contain a variable number of fibers.  

Each fiber is divided into a variable number of fixed-length segments.  The number of segments 

is dependent on the fiber length.  These segments are sorted according to their spatial direction.  

The distribution of these directions is then compared against the reference DICCCOL to identify 

the bundle with the closest match.   

predictROI2()  { 
for(indxROI=0;  idxROI < 358;  idxROI++) { 
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Get neighborhood of points around ROI 
for(idxNeighborhood=0;  idxNeighborhood<lastNeighborhood;  idxNeighborhood++) { 

Get fiber bundle for this neighborhood-point 
CudaDoTraceMap(); 
Compare and save best-match-bundle result 

}  
}  

}  
Code block 1:  Pseudo code for the predictROI2 process 

There is no dependency between one fiber bundle and the next prospective bundle.  Any single 

fiber may be part of more than one bundle.  The data set for all bundles is known.  The process 

essentially performs the same operation on many sets of data.  This task is a prime candidate for 

parallel processing.  Other than the single thread limit of the Central Processing Unit (CPU), 

there is no reason the bundles can’t processed in parallel fashion.  Rather than processing a 

single segment, a single fiber at a time, I should be able to process many segments from many 

fibers, all at the same time.  A Graphics Process Unit (GPU) provides a SIMD approach, 

simultaneously executing many threads in parallel. I used an Nvidia GPU and CUDA 

programming to accomplish this parallel processing task.  The CUDA code provides the 

common instructions that grids of parallel threads will execute.  Rather than the original serial, 

single thread CPU approach, I will send the data to the GPU for parallel multithread processing.  

Once completed, the best-match result is sent back to the CPU and the process continues with the 

next DICCCOL. 

Table 1 shows an example of the processing breakdown of a typical single subject.  A single ROI 

would typically contain 20Mbytes of fiber data.  The typical bundle size has 250Kbytes of data.  

The amount of repetitive processing of this data is quite extensive.  The table is shown in a 

hierarchical format.  The 358 DICCCOLs encompass 38,787 fiber bundles that need to be 

processed.  These bundles contain 2million fibers.  These fibers collectively contain 184million 
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fiber points.  The majority of which are processed twice, resulting in 21million principal 

direction vectors. 

Table 1:  Processing breakdown of the subject 9 example 

Number of DICCCOLs to process 358 
Number of fiber bundles to process 38,787 
Number of fibers to process 2,096,906 
Number of fiber points to process 184,417,976 
Number of trace points to process 20,955,341 
RunTime of the serial (CPU) approach 11 minutes 
RunTime of the parallel (GPU) approach 1.7 minutes 

 

In this work I refer to the “GPU” as a heterogeneous CPU/GPU system, where the CPU is the 

host and the GPU is a coprocessor.  The “CPU” refers to a CPU-only system. 

To be consistent, the Subject9 data set is reference through most of this document.  This subject 

was chosen at random from the available data sets.   
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2. Recent and related GPGPU and Imaging Work 
Before the medical imaging and research field could make use of the GPU, they needed better 

hardware and software tools.  The early GPU’s used a graphics pipeline and fixed point 

numbers[7] rather than the double-precision floating point numbers and parallel thread approach 

used today.  The early (2004-2007) programming tool Brook[8],[9],[12] used the graphics 

Application Programming Interface (API) (OpenGL, DirectX) to perform the General Purpose 

GPU (GPGPU) operations.  The Nvidia hardware is supported by Compute Unified Device 

Architecture (CUDA).  This is a proprietary C/C++ language (released 2007)[16], that supports a 

Single Instruction Multiple Data (SIMD) programming model.  It interfaces with many other 

software packages.  (Fortran, Ruby, Java, Perl, Python, MATLAB, Mathmatica, OpenCL, 

DirectCompute)[10]  AMD’s hardware is supported by the Close To Metal (CTM) proprietary 

programming interface.  Their next generation (2010) Compute Abstract Layer (CAL), is 

supported by the Brook+[8],[12] extension, through the exposed Instruction Set Architecture (ISA).  

Intel doesn’t offer a GPGPU solution.  Their approach is to use their Many Integrated Core 

(MIC) technology to provide a High Performance Computing (HPC) solution.  (Reference their 

Knights Corner and Knights Landing chips.)[43]  The most popular GPGPU offering comes from 

Nvidia.[13]  They have double-precision and Error Correcting Code (ECC) HW, and offer 

extensive software support.  The lack of L2 cache on the early NVIDIA GPGPU’s caused poor 

performance.[7]  The Fermi and newer Kepler hardware offer both L2 cache and double precision 

capability.[13]  

The amount of speedup a process might achieve depends on the application.  This involves 

question such as: How large is the dataset?  What amount of the dataset is reused?  How 

extensive is the processing task? 
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A few CUDA reference works are as follows: An early (2001) example of GPGPU can be found 

in [7], where a matrix multiplication is demonstrated. An overview of CUDA and a few design 

considerations can be found in [12], [14] and [16].  Work load distribution in a heterogeneous 

GPU system is discussed in [15].  The GPU[11] is providing the necessary computing power that 

is showing speedup[12] in many basic computing tasks (e.g. quicksort, K-means, partial 

differential equations, linear algebra, sequence alignment).   

In the medical imaging field, the computational performance of parallel processers is advancing 

development with visualization, segmentation, stereoscopic, and image analysis tasks.[11]  Shane 

Ryoo[16] et al., shows a CPU/GPU performance comparison of an MRI image reconstruction 

algorithm that shows significant speedup.  Castaño-Díez[17] et al., evaluated many common 

image processing algorithms (spatial transformations, real-space and Fourier operations, pattern 

recognition procedures, reconstruction algorithms, classification procedures).  Their porting of 

the C code to CUDA saw a typical speedup of 10->20.  The very large dataset generated by an 

fMRI modality requires a high degree of computational power.  By applying the GPU to the 

fMRI process we can expect higher quality visualization, higher temporal & spatial resolution, 

and advanced real-time analysis.  To wit, the Canonical Correction Analysis (CCA) and General 

Linear Model (GLM) statistical approaches have been implemented with MATLAB on a 

GPU.[18]  The work showed a speedup of >10 over other MATLAB implementations.  The work 

was also implemented in C, OpenMP, and CUDA, resulting in a speedup of >170 (GLM) and 

>800 (CCA) for a 1000 random permutation test.[21]  A high quality white-matter fiber bundle 

visualization technique is demonstrated by Ottan et al. on a GPU using OpenGL.[19]  Huang et al. 

offers a GPU replacement for Statistical Parametric Mapping (SPM) of the MRI automatic 

registration process.  Their approach shows a speedup of 14 for single-modality intrasubject data 
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sets.[20]  Brain perfusion quantification shows the cerebral blood flow (CBF), cerebral blood 

volume (CBV), and mean transit time (MTT) which can be used in the diagnosis of acute stroke.  

Quick diagnosis, (i.e. reduced analysis time) is essential for reducing the damage caused by a 

stroke.  Zhu et al. offers a GPU approach that achieves a speedup (versus the CPU approach) of 

>5 for CT and >3 for MRI data sets.[22]  (OpenMP and MPI routines are also tested.)  A GPU 

approach has been used to dramatically improve performance in the Markov Chain Monte Carlo 

(MCMC) algorithm in the Bayesian Estimation of Diffusion Parameters Obtained using 

Sampling Techniques (BEDPOSTX)[25] toolbox of FMRIB Software Library (FSL).[24]  The 

toolbox uses a diffusion-weighted magnetic resonance imaging (DW-MRI) data set to map the 

white matter connectivity of the brain.  As imaging of neural tracts (tractography) algorithms 

evolve, they deliver finer details about the neural fiber pathways.  The associated increase in 

complexity comes with increased computational cost.  The CUDA approach developed by 

Hernández et al. produced a speedup of >100 on a single GPU system (versus a single CPU), and 

>120 for a multi-GPU system (versus multi-CPU system).[23]  Lee et al. also offers a multi-GPU 

CUDA approach to the probabilistic BEDPOSTX algorithm.  They develop and compare for two 

diffusion tensor based tractography algorithms.  Their BEDPOSTX version shows a speedup 

factor of >60.  The other, a deterministic Bayesian fiber tracking algorithm, shows a speedup 

factor of >100.[26]  Wang et al. developed a hybrid multi-CPU-GPU system to accelerate the 

graph theoretical algorithms that are used in high-resolution functional brain network analysis 

(voxel based connectome).[27]  A task that is highly computationally demanding, versus the more 

common (down-sampled fMRI data) low-resolution brain network approach.  The largest 

speedup factor (>200) came from the All Pairs Shortest Path algorithm. 
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3. MRI Background Information 
What follows is a general overview of the principals behind the science of MRI.  There are many 

subtleties and approximations that are not mentioned here.  A more in-depth discussion can be 

found in [33] and [34].  The words that follow attempt to define and describe the physics behind 

the NMR process, but words do not portray a level of understanding necessary to fully grasp the 

concepts presented here.  The subject requires motion and animations to better grasp what is 

being explained.  For an animated explanation of NMR principals see [35]. 

3.1  Nuclear Magnetic Resonance (NMR) 
Nuclear Magnetic Resonance (NMR) combines physics principals of magnetism and Radio 

Frequency (RF) energy as they affect atomic nuclei.  The origins of NMR date back to the 

1930’s and 1940’s.  RF energy refers to the 30KHz -300GHz frequency range of the 

electromagnetic spectrum.  (Just above sound and just below infrared.)  This frequency range 

includes: cell phones, wireless services, AM/FM radio, UHF/VHF TV, etc.  An RF signal can be 

described by many properties.  We are interested in: Frequency, Amplitude, and phase shift of an 

RF signal.  Frequency is measured in cycles per second, or Hertz (Hz).  The amplitude of an RF 

signal describes the strength of a signal; it is typically described in terms of Voltage (v).  Phase 

shift describes a time shift between two signals; it is typically described in terms of angular 

degrees.  For example, the typical home is powered with two electrical signals.  Each signal has 

110v of amplitude, running at 60Hz.  The difference between the two signals is an 180o phase 

shift.   

Magnetism is measured in units of Tesla (T), named after Nikola Tesla, a pioneer in the field 

electromagnetics.  A 1T magnetic field is generally considered a strong magnetic field.  The 

earth’s magnetic field is measured in micro Tesla (µT).  A typical MRI machine generates a 3T 

magnetic field.   
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  Figure 4: Random Spinning Hydrogen Protons [35] 

For this discussion, the chemical compound of interest is H2O, the common water molecule, with 

a radius of ≈10µmeters[33].  (See Figure 3)  By weight, the 

typical human is 60% water.  The element we are interested 

in is the hydrogen (H) atom.  Hydrogen is the lightest and 

simplest of elements.  Its atomic weight is 1.00794u.  (u= 

unified atomic mass unit= 

1.660538×10−27kgram)[44]  The reason 

it is so light, it has only one electron 

(0.000910×10−27kgram), one proton 

(1.672621×10−27kgram), and no 

neutrons (1.674927×10−27kgram).  (If 

the atom had a neutron, the mass of the nucleus would double, making NMR much less likely.)  

We are interested in how the protons of a water molecule respond to a strong magnetic field and 

a burst/pulse of RF energy.   

As the negatively charged electron orbits the nucleus of the atom, the positively charged proton 

spins inside the nucleus.  This subatomic spin generates a small magnetic field.  Using the right 

hand, if we orient the fingers in the direction of rotation, the thumb will point in the direction of 

the magnetic field (or magnetic moment), generated by the spinning proton.  In its natural state 

the protons randomly spin along no particular axis or direction, the net magnetic moment is zero.   

In its natural state the human body has no magnetic moment, (it does not generate any significant 

net magnetic field).  (See   Figure 4)  

Figure 3: Water Molecule
 [35]
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When a strong enough magnetic field is applied to the body, it causes these random magnetic 

moments to lineup in the direction of 

the applied magnetic field.  (See          

Figure 5)  Most of the magnetic 

moments line up with the applied 

magnetic field, but some of the higher-

energy protons, line up opposite 

to the applied magnetic field.  

These opposing-moment protons are said to be in a high-energy state, while the remaining 

protons are in a low-energy state.   

While the applied magnetic field aligns the magnetic moments of the protons, it doesn’t stop the 

protons from spinning.  They continue 

to spin along the axis of the applied 

magnetic field.  This spin action causes 

the protons to wobble in place, or 

precess.  (See Figure 6)   

The rate of precession is related to the 

strength of the magnetic field.  0Bf γ= , 

where =f Larmor precession (resonant) frequency, =γ gyromagnetic ratio (a constant), and 

=0B strength of the applied magnetic field.  In a 3T magnetic field, the Larmor frequency of a 

hydrogen proton is 127.74MHz.   

         Figure 5: Proton Alignment in a Magnetic Field: High and Low Energy States
 [35]

 

Figure 6: Protons Precessing in a Magnetic Field
 [35]
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 We use this Larmor frequency to alter the energy state of the precessing protons.  When a 

homogeneous magnetic field is applied to tissue, most of the hydrogen protons precess in the 

direction of the applied magnetic field.  These low-energy state protons outnumber the high-

energy state protons resulting in a net magnetization in the same direction as the applied 

magnetic field.   Because this longitudinal magnetization runs in the same direction, it can’t be 

separated from the applied field, and thus can’t be measured.  (See Figure 7) 

 

A significant burst of RF energy at the Larmor frequency will alter the energy state and phase of 

the precessing protons.  This RF signal is applied perpendicular to the applied homogeneous 

Figure 7: Net Longitudinal Signal
 [35]  

 (immeasurable) 

Figure 8: Net Zero Magnetic Moment
 [35]
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magnetic field.  The strength of this signal causes some of the low-energy state protons to flip to 

the high-energy state.  When enough protons have flipped, the longitudinal magnetism is reduced 

to zero.  (See Figure 8) 

 

Now, half of the protons are now in a high-energy state, while the other 50% are in a low-energy 

state.  The RF energy also causes the protons to wobble in phase.  This phase synchronized 

precession produces a transverse magnetic signal that can be measured.  (See Figure 9) 

This transverse signal continues as long as the RF energy is applied.  When it is removed, the 

phase alignment is lost due to the repellent force of all the positively charged protons.  This 

process is called “T2 relaxation”.  This causes the transverse signal to reduce to zero.  (See 

Figure 8)  The protons that flipped energy state also give up their absorbed energy in the form of 

heat, and return to the low-energy state, thus recreating the net longitudinal magnetism.  (See 

Figure 7)  This process is referred to as “T1 relaxation”. 

Figure 9: Net Transverse Signal: Phase Synchronized Precession
 [35]

 (measurable) 
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In this discussion, we are primarily interested in the hydrogen atoms of the water molecule.  

There is nothing that prevents other hydrogen atoms in the tissue from responding to the applied 

magnetism and RF energy.  In fact their response is the same, although time shifted.  Water is a 

free roaming molecule when 

compared to a fixed-position fat 

protein.  The density of hydrogen 

atoms in a fat molecule is much 

higher than that of the water molecule.  (See Figure 10)  The response of both of these molecules 

is the same when the magnetic field and RF pulse are applied.  The difference is how quickly 

they respond when the RF pulse is removed.  The relaxation occurs much faster in the hydrogen-

dense fat molecule than the low-density water molecule.  That is, the water molecule holds onto 

its high-energy state longer than the fat molecule.  The difference is significant enough that it 

allows us to isolate the two different signals.  As mentioned earlier, the NMR process only 

allows us to measure or observe the transverse magnetization signal.  This signal is strongest just 

prior to the T2 relaxation, after which it degrades to zero, and then the immeasurable 

longitudinal signal is recreated.  The transverse signal from the water molecules is readable 

because of their slow relaxation time and fat’s much quicker relaxation time.  While the water is 

beginning its relaxation process, the fat has finished its relaxation process.  As a result, the water 

is generating a strong transverse signal, while the fat is generating little to no signal.   

Because it is a matter of timing, we can craft a pulse sequence that allows us to capture the water 

signal while ignoring the effects of the fat signal.  We use the molecules difference in relaxation 

time, to capture the T1 and T2 water signals.  (See Figure 11)  Where Tp=time between RF 

pulses, Tc=time after the last pulse to start the signal capture process.  The pulse sequence for a 

Figure 10: Long Chain Fatty Acid
 [35]

 



 

16 

 

T2 Weighted Image (T2WI) uses a large time between pulses (Tp), and waits long time (Tc) 

before signal capture starts.  As before, the RF pulse brings all the protons into phase.  The signal 

capture process doesn’t start until after the fat protons have fully relaxed, at which time the water 

protons have started their relaxation and are still producing a strong signal. 

 

Figure 11: Pulse Sequence for a T2 Weighted Image 

The pulse sequence for a T1 Weighted Image (T1WI) uses a short time between pulses (Tp), and 

waits a short time (Tc) before beginning the signal capture.  This T1WI pulse sequence uses two 

magnetic pulses to complete the signal capture process.  (See Figure 12)   

 

Figure 12: Pulse Sequence for a T1 Weighted Image 

The T1WI process starts just like the T2WI pulse sequence.  The first pulse brings all the protons 

into phase.  The second pulse occurs after the fat protons have relaxed, while the water protons 

have only begun their relaxation, (the point where a T2WI would have begun the signal capture 

process).  This causes the fat protons to return to the spinning-in-phase condition.  But because 

the water protons are still close to their spinning-in-phase condition, the second pulse causes 
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more of the low-energy protons to flip into the high-energy state.  Soon after the second pulse is 

applied, the signal capture begins.  (See Figure 13)  Both the fat and water protons have returned 

to their spinning-in-phase condition.  The number of high and low energy protons in the fat 

molecules is balanced and in phase, thus producing a strong transverse signal.  Because there are 

now more high-energy versus low-energy protons in the water molecules (the water protons are 

saturated with energy), they generate a low transvers signal as well as a small opposing 

longitudinal magnetic field.  The tissue with a fast relaxation time (fat) produces a large signal, 

while the tissue with the slow relaxation time (water) produces a small signal.   

 

 

3.2  Magnetic Resonance Imaging (MRI) 
A magnetic resonant image is a picture of an NMR scan.  A computer monitor displays images 

using a 2D array of picture elements, or pixels.  A typical computer screen size could be: 

1024x768 pixels.  A volume element, or voxel, is a 3D version of a 2D pixel.  A typical MRI 

generates 512x512 voxels per slice.  Each voxel represents a small volume of body tissue 

containing a small set of water molecules.  The MRI machine uses NMR to generate a series of 

2D voxel images.  Each scanned image represents a single slice of body tissue.  When these 

Figure 13: T1 Weighted Image Acquisition
 [35]
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consecutive slices are reassembled, we have a 3D voxel representation of the scanned body 

tissue.  The water molecules in each voxel contain a number of hydrogen atoms.  The MRI 

machine will read the scan signal from each voxel’s hydrogen protons and assemble a gray scale 

image of the tissue.  By convention, high signal intensity is displayed as white and low or no 

signal intensity is displayed as black.   

The individual voxel signal levels are isolated and identified by creating both a phase and 

frequency shift of their MR signals.  This is done by creating magnetic gradients.  A magnetic 

gradient is produce along the length (head to toe) of the subject.  (See Figure 14)  Rather than 

using a fixed magnetic intensity along the Z-axis, the magnetic intensity value has a fixed sloped 

along the main magnetic axis.  Recall that the Larmor frequency is directly related to the 

magnetic field strength: 0Bf γ= .  As a result of the sloping intensity, every slice of tissue along 

the gradient (main magnetic axis) has a different Larmor frequency associated with it.  By 

selecting the appropriate resonant frequency, we can isolate a specific slice of tissue.  

 

Figure 14: The red coils produce the Z-Axis Magnetic Gradient:  Slice Selection [35] 
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By applying magnetic gradients along the other two axis of the slice, we alter the phase and 

frequency without altering the strength of the voxel signals.  This labeling scheme allows us to 

encode the individual voxel signals produced by the slice of tissue.  Applying a short-duration 

magnetic gradient along the Y axis produces the phase encoding.  (See Figure 15)  The spin of 

the magnetic moments (green arrows) in the weaker gradient region (bottom of Figure 15) slow 

down.  While the moments in the stronger magnetic region (top of Figure 15) speed up.  When 

the gradient is removed, the spins return to their original resonant frequency, but now they are 

phase shifted along the Y direction.  This completes the phase encoding the Y axis. 

 

Figure 15: The red coils produce the Y-Axis Magnetic Gradient:  Phase Encoding [35] 

A similar operation is performed along the X axis.  (See Figure 16)  A magnetic gradient is 

applied along the X-axis (for the duration of the signal acquisition), causing the spin or signal 

frequency in the weaker magnetic region to slow down.  The spins in the stronger magnetic 

region speed up, resulting in higher signal frequency.  At this point in the signal capture process, 

every voxel location in the slice has a unique phase and frequency associated with it.  This 
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process has essentially assigned coordinates to every voxel in the slice.  By tuning the signal 

receiver to the appropriate phase and frequency the machine is able to scan through the entire 2D 

slice of tissue.  The captured signal is measured and converted to a gray-scale index value.  The 

gray scale index covers the range of white through black.  The white side of the index represents 

a strong signal, while the black side signifies a weak signal.  By stepping through this process 

one slice at a time, the machine is able to build a complete 3D image that shows vivid details of 

the tissue. 

 

Figure 16: The red coils produce the X-Axis Magnetic Gradient:  Frequency Encoding [35] 

3.3  Diffusion Weighted Image (DWI) 
NMR allows us to view diffusion of water in vivo tissue.  A Diffusion Weighted Image is an 

NMR process that reveals the anatomic structure of the subject tissue.  The image is constructed 

in a similar process as the above described T1 & T2 weighted images.  The NMR physics are the 
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same: A magnetic field and RF burst are used to manipulate the magnetic poles of the hydrogen 

protons.   

                  

Figure 17: Random walk of a single molecule (left).  Random distribution of set of 
molecules (right) [33] 

Though it can’t be seen with the naked eye, molecules in a drop of liquid water are always in 

constant motion.  This seemingly random motion is caused by its thermal kinetic energy.  This 

energy enables diffusion where particles tend to move from areas of high concentrations to areas 

of low concentration.     Random refers to the particles direction of motion.  (See Figure 17)  

Which direction the molecules move in depends on their surroundings.  As a molecule performs 

its random walk, it interacts with other randomly moving water molecules as well as any 

physical restrictions.  In tissue these restrictions may be a membrane, a fat molecule, or a fibrous 

axon.  The speed of the thermal agitation is very high (~1000meters/sec)[33] due to the interaction 

with the surroundings, but the displacement is very small (≈20 µm in .1sec)[33].  Because the 

direction of the displacement is random, it is measured in terms of mean squared displacement, 

<r 2> .  This “square” prevents negative displacements from canceling positive displacements. 

Einstein’s equation for diffusion displacement can be expressed as: <r 2>=6D ot,
 [34] where Do is 

the free diffusion coefficient of the material, and t is the time of diffusion.  Do of water at 37oC 

(in vivo body temperature) is .003mm2/sec.[34]  The random diffusion of water molecules in tissue 

is non-free diffusion, which is to say it is not isotropic (i.e. equal in all directions).    Water 

diffusion in vivo is a complicated phenomenon that is affected by pressure gradients, membrane 
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permeability, active fluid transports (e.g. blood flow), and anatomical hindrance (i.e. fibers, cell 

restrictions, macromolecules, etc.).  These many issues prevent the direct measurement of a 

single diffusion coefficient.  Instead the term Apparent Diffusion Coefficient (ADC) is used to 

describe the observed diffusion in vivo.  Any restrictions to the water molecules movement will 

cause the diffusion to be anisotropic, (i.e. diffusion varies by direction).  The diffusion 

coefficient of a volume of tissue (e.g. a voxel), will be different depending on the direction from 

which it is observed.  The average ADC for brain tissue is .0007mm2/sec.[34]  The diffusion 

weighted process will measure the ADC (i.e. mean displacement of water molecules) for every 

voxel, along many directions. 

The diffusion weighted signal can be approximated by ( )ii bADCSS −≅ exp0
[34], where iS  is 

signal intensity for a voxel in a direction i, oS  is the signal intensity without the magnetic 

diffusion gradient (basically a T2WI), b (commonly referred to as: b-value) is the diffusion 

sensitivity factor, and iADC  is the apparent diffusion coefficient in direction i.  The b is a 

function of the magnetic gradient amplitude G , magnetic gradient durationδ , and time between 

opposing magnetic gradients ∆ .  For short gradient times (δ ), ∆= 222 Gb δγ [33]  (γ = 

gyromagnetic ratio, a constant) (See Figure 18)  Increasing the b increases the signal loss due to 

water diffusion, which increases the contrast between tissues of higher versus lower ADC values.  

This higher contrast comes at the cost of a lower signal to noise ratio (poor signal quality). 
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Figure 18: Pulse Sequence for a Diffusion Weighted Image [33] 

The Diffusion Weighted pulse sequence begins with an RF pulse, just like the T1WI and T2WI 

pulse sequences.  The RF energy will cause the spinning protons to phase synchronize, 

producing a magnetic moment, which is the source of the transverse signal.  This magnetic 

moment is represented by the red arrows in Figure 19.  The positive magnetic gradient phase (as 

shown in Figure 19) shifts the magnetic moments along the gradient axis.  The time between 

gradients (∆ ), is the diffusion time.  The longer the diffusion time, the farther the molecules will 

diffuse.  The negative magnetic gradient reverses the phase shift caused by the previous positive 

gradient, essentially rephasing the spins along the gradient axis.  For those protons that have not 

moved during the diffusion time, the net phase shift is zero and there is no signal change

)( 0SSi ≅ .  For those protons that have diffused, only partial rephasing occurs.  The resulting net 

magnetic moment produces an iS signal that is different from the initial no-gradient (b =0) 

signal, oS .  The larger the change in signal intensity, the more diffusion has occurred.  This 

change in signal intensity is the Apparent Diffusion Coefficient that we are looking for. 
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Figure 19: Diffusion Weighting Process [33],  B is the magnetic field strength 

Solving for the directional iADC  in the diffusion signal equation gives us:

( ) bSSADC oii /ln−= .  We are now able to convert the measured signal intensity to an 

Apparent Diffusion Coefficient value.  By running the signal measurement and calculation on 

every voxel in the slice, we can assemble the resulting DWI for that magnetic gradient’s 

direction.  Each DWI shows the ADC in a single direction. 
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Figure 20: Converting signal intensity to ADC [34] 

 

3.4  Diffusion Tensor Imaging (DTI) 
DTI allows us to see and observe the white matter tracts in the cerebrum.  By combining and 

analyzing many non-collinear DWI scans, we are able to build a diffusion tensor image that 

shows the routing of neuronal fibers, ultimately providing information about the connectivity of 

the subject’s cerebrum. 

Unrestricted or free diffusion of water would show an omnidirectional diffusion coefficient.  The 

diffusion in tissue is directionally dependent and can have many restrictions.  More restrictions 

results in less diffusion.  These heterogeneous restrictions cause the ADC to be different when 

observed from different directions.  It is common to express quantities that change according to 

their spatial orientation as a tensor.  A tensor is measurable and mathematically convenient.  It 
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allows us to describe the ADC from all directions.  This tensor is a 3x3 matrix that represents the 

ADC in 3D space.   
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Figure 21: Apparent Diffusion Coefficient Tensor of a Voxel [38] 

The main diagonal elementsxxD , yyD , and zzD  represent the apparent diffusivity coefficients 

along the axes of the Cartesian coordinate system.  xxD is the ADC along the X axes when a field 

is applied along the X axes.  yyD is the ADC along the Y axes when a field is applied along the Y 

axes.  zzD  is the ADC along the Z axes when a field is applied along the Z axes.  The remaining 

elements represent the diffusion along orthogonal coordinate pairs.  xyD is the ADC along the Y 

axes when a field is applied along the X axes.  xzD is the ADC along the Z axes when a field is 

applied along the X axes.  yzD is the ADC along the Z axes when a field is applied along the Y 

axes.  Mean squared displacement distance is a positive-only number: <r 2>=6D ot.  Do along the 

+X axis is the same value along the –X axis direction.  This means the diffusivity in the X 
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direction from an incident Y axis field is the same as the diffusivity in the Y direction from an 

incident X axes field.  As a result, the ADC tensor is symmetrical.  yxxy DD =    zyyz DD =    

zxxz DD =   This reduces the ADC tensor to six unknowns.  These six values come from seven 

NMR measurements: So and (a minimum of) six directional measurements.  So is the base 

measurement, the one without a magnetic gradient.  The Sxx, Sxy, Sxz, Syy, Syz, Szz values are the 

signal intensity measurements along their respective non-collinear magnetic gradient directions.  

The Sxx value is the measured X direction signal when the magnetic gradient is applied in the X.  

Sxz is the measured Z direction signal when the magnetic gradient is applied in the X direction.  

Convert the signal measurements to directional ADC values, ( ( ) bSSADC oii /ln−= ) and fill in 

the resulting ADC tensor value.   

Water will diffuse more in the direction of least restriction.  The restriction parallel to the 

direction of the fiber structure is generally small while it is generally much larger perpendicular 

to it.  i.e. In general, the direction of diffusion is the direction of the fiber structure.  The ADC 

tensor describes the diffusion in terms of the reference (Cartesian) coordinate system.  The 

objective is to identify the underlying fiber structure of the tissue, which generally does not align 

itself with the reference coordinate system.  The principal direction of the tensor is the major 

direction of ADC, and thus the direction of the fiber structure.  To find this direction, we solve 

the eigenvalues of the tensor.  Translate the reference coordinate system to the tensor’s 

coordinate system.  It is assumed that the eigenvector of the largest eigenvalue, is the principal 

direction of the tensor[37] and the direction of maximum diffusion.  In the eigen equation: 

vvA
rrr λ= ,   A

r
 is the square symmetrical ADC tensor, v

r
 are the eigenvectors, λ  are the 

eigenvalues.  Figure 22 demonstrates the signal scan to eigenvector conversion. 
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Figure 22: Converting signal intensity to eigenvector axes [34] 

In unrestricted (free) diffusion the tensor is spherical: zyx λλλ == .  (See Figure 23-left)  The 

eigenvalues of this tensor are all approximately equal and produces no net direction.  This tensor 

results in isotropic diffusion.  In restricted diffusion the tensor is an ellipsoid.  Ellipsoid tensors 

represent anisotropic diffusion.  The longest dimension, of the ellipsoid is the presumed fiber 

direction.  The case of a Y-axis-aligned diffusion tensor: zxy λλλ >>> ,  is shown in Figure 

23(right).   
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Figure 23: Isotropic Tensor (right) [39]     Anisotropic Tensor (left) [40] 

Cerebral Spinal Fluid (CSF) and gray matter of the brain exhibit isotropic behavior for water 

diffusion.[34][37]  Water molecules freely diffuse in this fluid and tissue.  The fibrous white matter 

of the cerebrum behaves in an anisotropic nature.[34][37]  The exact structure causing this behavior 

has yet to be determined.  The myelin sheath would appear to be the obvious cause, but axonal 

cell membranes appear to be a major cause of the water restriction.[34]   

The orientation of the ellipsoid described by the tensor gives us the direction of the structure, or 

fibers in the white matter in that voxel.  Water diffuses along the length of the fibers, and is 

restricted perpendicular to them.  Tractography is a technique where neighboring ellipsoids are 

chained together revealing the fiber pathways in the cerebrum.  (See Figure 24)  This image is an 

idealized example of building fibers with tractography.  Linking neighboring tensors is more 

difficult in the cases of crossing or kissing fibers, as it is difficult to accurately determine if fibers 

run adjacent or cross one another.  (Diffusion tensors don’t form crosses, only spheres or 

ellipses.)  Real DTI data tends not to be as clean-cut as the example provided.  A more thorough 

discussion on the topic can be found in [33]. 
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Figure 24: Chaining ellipsoids to build fiber tracts 

3.5  Limitations of the process 
The above description gives a theoretical overview of the principals behind building the DTI 

data, but there are plenty of obstacles and limitations that have not been mentioned.   

• The NMR image will contain artifacts and errors that will affect the DTI data.[34]   
• Diffusion is not the only source of water displacement.[34]   

• A Gaussian distribution of water molecule diffusion is assumed.[34]   
• NMR machines are not able to produce the narrow magnetic gradients described in the 

DWI pulse sequence.[33]    
• There is a tradeoff between the b-value and the signals signal-to-noise-ratio (SNR).[33]   
• The tensor approach to fiber tracking does not work well for the case of crossing, 

branching, or kissing fibers.[33][37]   
• The field of tractography has not been able to determine the anatomical correctness of the 

tracing algorithms.[37]   

The resulting DTI is not perfect, but a decent representation of the tissues anatomical structure. 

There are many assumptions and approximations taken with the process that generates the final 

DTI data.  In many cases, there are more sophisticated approaches to the processes described 

here, that yield better results.  Further discussion and details can be found in [34], [37], [33], and 

[45]. 
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Figure 25: Diffusion Tensor Image [41]   Cerebrum, Cerebellum, Medulla oblongata   (Brain 
and Brainstem) 
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4.  The CUDA Process 
Compute Unified Device Architecture (CUDA) is a C extension language from Nvidia that 

performs parallel programming on their GPU devices.  Many programmers are familiar with the 

x86 architecture where one CPU core executes one thread at a time.  The single core will 

leverage the chips resources to quickly execute the single thread’s task.  If there is a list of 3000 

numbers that needed to be added to another list of 3000 numbers, the CPU cache would load-up 

the data and the core would read the data, add the data, and write the results, one number/item at 

a time.  This approach is referred to Single Instruction Single Data (SISD).  The GPU uses a 

scalable Single Instruction Multiple Data approach (SIMD).  To perform the same 3000 number 

add routine, the data is loaded to the GPU, from which the numbers are read, added, and results 

written one batch at a time.  Where the CPU will add the numbers one at a time, the GPU will 

add the numbers one batch at a time.  In the time it takes the CPU to serially add 2 numbers, the 

GPU is adding 64 numbers in a parallel approach.  The difference in performance can be 

dramatic.  Efficiency improvements are expressed in terms of speedup factors.  A speedup factor 

of 2 means the task’s runtime has been cut in half.  What took 10 minutes, now only takes 

5minutes.  It is not uncommon to see speedup factors of 10 or more.  It depends on the task and 

what resources are available to perform it. 

4.1  Basic CPU-GPU architecture 
The CPU, being the main processor, can support many GPUs, the coprocessors.  (See Figure 26)  

The CPU (called the host), assigns tasks (called kernels), to the GPUs (called devices).  Once 

received, the GPU will execute the task autonomously while the CPU can either wait for a GPU 

response or continue its serial execution. 



 

33 

 

 

Figure 26: Single CPU processor and the many GPU coprocessors 

Nvidia’s basic work unit is the Streaming Multiprocessor (SM), the equivalent to a CPU core.  

The SM is capable of supporting the execution of thousands of co-resident threads.  It has shared 

memory, a set of registers, and a set of processors.  A single clock cycle of the SM will cause the 

execution of a same-instruction on a batch of concurrent threads, referred to as a warp.  Outside 

of the SMs is a heap of device memory called Global Memory (GM).  (See Figure 26)  This 

memory is accessible by the CPU by means of the PCIe bus and the array of SMs.      

4.2  GPU memory architecture 
The GPU uses many memory formats.  They are distributed throughout the device to reduce the 

execution time. From slowest to fastest access times they are: global, constant, shared, and 

register.   

• Global memory is the pathway for getting data in and out of the GPU.  It is separate from 
system (host) memory space, and is not directly visible by the host.  It is located outside 
the GPU processor which is why it is the slowest of the GPU memories.  It is accessible 
by the whole GPU device.   
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• Constant memory, as its name implies is fast read-only memory.  It is located outside the 
GPU processor.  It is cached and visible by any thread, in any SM.   

• Shared memory is on-chip and is located near the SMs.  This memory is accessible by 
any thread in the SM.  It is local to that SM and not visible by any other SM.  This 
memory is a means of getting the data close to the processor that will use it.  It is called 
shared memory because it is shared with any thread in that SM.  Using shared memory is 
an easy way of passing results between threads in the SM.   

• Registers are the fastest memory storage format.  They are on-chip and are accessible by 
a single thread.  They are only valid for the lifetime of that thread. 

4.2.1  Coalescing global memory 
Global memory access can be faster or slower, depending on how it is accessed.  The read cycle 

for global memory has been optimized to feed a complete warp.  If, for example, the GPU 

routine needs to read some data in from memory, this would be the same as saying each thread in 

the SM is calling for a 4 byte word from global memory.  To satisfy a full warp of 32 threads, the 

device needs to read 4*32=128 bytes of global memory.  The optimized hardware is capable of 

reading all 128 bytes in a single read cycle.  (See Figure 27)  If the data has been stored properly, 

the data request could be satisfied with one read cycle.  This is referred to as data coalescing.  If 

the data in global memory has been stored very poorly (i.e. non-coalesced), it may require 32 

read cycles to get enough data to satisfy the full warp.  This will have a big impact on the 

kernel’s runtime.  An efficient program would opt for a single read, rather than the many read 

cycles.  How the data is stored in memory and how it is accessed is governed by the software 

author. 
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Figure 27: Global memory coalescing    a) Single cycle access    b) Many cycle access 

4.2.2  Shared memory bank conflicts 
In a similar fashion, shared memory can be faster or slower depending on how it is accessed.  

Shared memory is arranged as banks of striped memory.  (See Figure 28)  This storage format 

allows parallel access to the data.  The memory bus allows each thread in the warp to have 

access to any bank.  If the parallel code requests a data word, and each requested data word is in 

its own bank, a single read cycle will satisfy the data request for the whole warp.  If the data is 

not equally distributed to the banks, a bank conflict results and more than one data fetch cycle 

will be needed to satisfy the request.  For example, in Figure 28, if thread0 is requesting word0, 

(the first word of bank0), and thread1 is requesting word32, (the second word of the same 

bank0), the memory bus for bank0 can only accommodate one word at a time.  A bank conflict 

exists and the code will need to issue two read cycles to satisfy the data request.  The code will 

still execute properly, but it will take longer to run.  The kernel would be more efficient if the 

data words were better distributed.  Bank conflicts are caused or resolved by the software author. 



 

36 

 

 

Figure 28: Striped Distribution of Shared Memory 

The shared memory bus also supports a broadcast function where one word from one bank can 

be broadcasted to all threads in the warp, in a single read cycle. 

4.2.3  Race conditions 
With many processors having access to the same memory, there is plenty of opportunity for data 

hazards.  The most obvious would be many threads writing to the same memory location.  This is 

a rather common issue.  A memory location can only hold one value at a time.  If each thread 

writes a different value, how can we deterministically control which value gets written?  This can 

accomplished with the Atomic functions.  These functions only allow one thread to access the 

memory location at a time.  This comes at the cost of “pausing” all other threads that may be 

trying to access the memory location.  Use of Atomic functions can severely affect the efficiency 

of the kernel.  It is generally better to take a different design approach and avoid the use of 

Atomic functions.   

Data hazards occur when data is modified at different stages of execution.  For example, a Write 

After Read (WAR) data hazard occurs when a value is read before it has been written by a prior 

modifying stage.  A dependency exists between the write stage and the read stage.  For example, 
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if thread22 reads a value in memory, but that value must first be written by thread52 of the same 

kernel, a WAR data hazard may exist.  A tool that prevents data hazards inside a kernel is 

__syncthreads().   This statement prevents further execution of the kernel until all active threads 

have reached this command and all reads or writes to shared or global memory have been 

completed.  As the name implies, it is a thread synchronization point in the code.  Execution will 

be stalled at the sync-point until all active threads in the kernel have reached this common point.    

4.3  GPU programming model 
The basic hardware (HW) work unit in the GPU is the streaming multiprocessor.  This SM has a 

batch of logic-units, each of which concurrently executes the same kernel code.  Each logic-unit 

in the batch will perform the same operation in the same machine cycle, as all other parallel 

logic-units.  Expressed another way, all the logic-units execute exactly the same kernel code, at 

exactly the same time.  The number of parallel logic-units in the SM is fixed.  If the size of the 

task is larger than the number of logic-units (warp size) in the SM, the task is split into smaller 

pieces, where each piece of the task will get runtime on the logic-units.  Essentially the scalable 

task is being run, one warp of threads at a time. 

 

Figure 29: Grid is a group of blocks   Block is a group of threads 
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The scalable software model works with grids, blocks and threads.  (See Figure 29)  A grid 

contains a number of blocks, and a block contains a number of threads.  A thread represents a 

single instance of the task.  From the earlier example, a task that adds two sets of 3000 numbers, 

we could breakdown the task into 3000 threads.  Each thread would read a number from each 

data-set, add them, and save the result.  If the GPU we are using has maximum block size of 

1024 threads, we would need at least ceil(3000/1024)= 3 blocks to perform the task.  One could 

scale the task to 1 grid of 3 blocks, each with 1000 threads.  Three grids of 1 block, each with 

1000 threads would also work.  One grid of 6 blocks, each with 500 threads would also work.  

Scalability allows us to breakdown the task into whatever size the problem requires.  How the 

task is breakdown depends on what resources are available, and how quickly we want the task to 

run. 

 

Figure 30: Block to Streaming Multiprocessor Assignment 

The blocks in a grid are assigned to an SM for autonomous execution.  (See Figure 30)  The 

threads in the block are executed in batches of warp.  If the warp size is 32, the SM will be 

executing 32 threads concurrently.  Each block’s execution runs independent of other blocks.  
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The execution and shared memory in one block are not directly available to other blocks.  Blocks 

asynchronously execute kernel code in the sub-environment of the SM.  Passing data (sharing 

results) between blocks is done through global memory.  Asynchronously refers to the order of 

execution.  There is no guaranteed order of execution of the blocks or the threads.  Any block in 

the grid may be the first block to execute, as any warp in the block may be the first warp to 

execute.  The hardware supports very fast context switching.  If the code hits a sync point, the 

current warp will stall and another warp will load and begin execution.  While the warp is 

executing, every thread in that warp is executing the exact same code.  Note that warp execution 

is concurrent, and expect block execution to be nonconsecutive. 

The examples in Code block 2 and Code block 3 perform the same operation of adding two sets 

of 3000 numbers.  Code block 2 uses only the CPU, while Code block 3 uses both the CPU and 

the GPU.  There is nothing particular interesting about the CPU-only approach in Code block 2.  

It is a single loop that adds two numbers and saves the result. 

// Compile w/: nvcc 
#define numCount  3000           // size of data set 
int main(void) { 

int dataSetA[numCount], dataSetB[numCount];     // the numbers 
to add 
int dataResult[numCount];     // the add result 
for (int index=0;  index < numCount; index++) 

dataResult[index]= dataSetA[index] + dataSetB[index]; 
return 0; 

}     
Code block 2:  CPU code for adding 3000 number 

As with the CPU approach, the GPU routine (see Code block 3) starts with the datasets in system 

memory.  The SM’s in the GPU can not access CPU system memory.  The datasets must be 

copied from CPU system memory to the GPU global memory.  To do this, we first create a few 

host pointers that will hold the device addresses of the datasets in global memory.  Next we 
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reserve the necessary chunks of global memory and set the pointers accordingly, using 

cudaMalloc() calls.  cudaMalloc() reserves device global memory in the same fashion as the 

familiar malloc() does for reserving CPU system memory.  cudaMemcpy() will copy the datasets 

from CPU system memory to the GPU global memory.  cudaMemcpy() performs the same 

operation as the familiar memcpy() function with an additional parameter which specifies the 

direction of the copy operation.  (cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, 

cudaMemcpyDeviceToDevice) 

Now that the data is in the GPU, we can launch the parallelAdd() kernel.  The format of the 

launch command is: kernelName<<<resources>>>(parameters).  Aside from the 

<<<resources>>> portion of the call it works the same as a function call for the CPU system.  

<<<resources>>> tells the GPU scheduler what GPU resources the kernel needs for execution.  

The format is <<<nBlocks, nThreads, nSharedMem, streamId>>>.  The first two items are a 

description of the grid.  nBlocks is the number of blocks in the grid assigned to gridDim (a built-

in CUDA variable).  nThreads is the number of threads in each block assigned to blockDim (a 

built-in CUDA variable).  nSharedMem is the amount of shared memory, in bytes, each block 

will use.  streamId is the identifier of the stream in which the kernel will run in.  The streamId is 

a method for running many synchronous processes, asynchronously.  The identifier is supplied 

by the GPU scheduler and is used to ensure the synchronous execution of many parallel running 

processes.  These processes can be similar or completely different from each other.  In this case, 

the identifier is 0, signifying the default stream.  Only the stream0 process runs synchronously 

with the CPU.  This means CPU execution will pause until the GPU process completes.  This 

keeps the CPU and GPU execution synchronized.  GPU execution still runs asynchronously with 

other streams inside the GPU, but the CPU execution does not continue until the stream0 GPU 
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process completes.  All other nonzero streamId’s cause those processes to run asynchronously 

with the CPU.  The CPU launces GPU kernel(s) and then proceeds with further system 

execution, not waiting on the GPU. 

When CPU execution resumes, the parallelAdd() kernel has finished.  The results are copied 

from the GPU memory-space to the CPU system memory-space, (with cudaMemcpy()).  The add 

operation is now complete.  All that remains is to return the reserved global memory back to the 

GPU heap, (with cudaFree()). 

The parallelAdd() kernel in Code block 3 is straight forward.  (The grayed lines are optional 

debug code.)  Each thread will read two numbers from global memory, add them together, and 

write the result back to global memory.  Each thread needs to know which dataset elements it 

will operate on.  This index is calculated using the built-in CUDA variables.  Each thread and 

each block has a unique identifier, threadIdx and blockIdx respectively.  The number of blocks in 

the grid can be read with the gridDim variable.  The number of threads in any block can be read 

with the blockDim variable.   

The work done by the kernel is basically a single line of code that undergoes parallel execution.  

The IF statement protects the kernel from execution and memory overrun.  Instead of 3000 

numbers, maybe the dataset has count=2999 numbers.  If we ran this kernel without the IF test, 

the GPU would launch gridDim*blockDim=3*1000=3000 threads.  The last thread would be 

unnecessary to complete the work, but it will modify global memory.  Memory that may be 

outside the kernels reserved memory space, potentially damaging the data from some other 

kernel.  These types of bugs can be very difficult to track down.  Though it isn’t necessary for 

this example, it’s good programing practice to use this approach. 
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// Compile w/: nvcc -arch=sm_20 
#define numCount  3000           // size of data set 

// The GPU is the Device, the coprocessor 
__global__ void parallelAdd (int count, int* dataA, int*dataB, int* sumRslt) { 

if( (threadIdx.x == 0) && (blockIdx.x ==0) )  // print only once 
printf("Running parallelAdd() using %d blocks, %d threads\n", gridDim.x, blockDim.x); 

int dataIdx= blockIdx.x*blockDim.x + threadIdx.x;      // date element to work on 
printf("Hello from device: block %d, thread %d\n", blockIdx.x, threadIdx.x);   // every 
thread will print this 
if(dataIdx < count) 

sumRslt[dataIdx]= dataA[dataIdx] + dataB[dataIdx];     // all the work done here 
}  

// The CPU is the Host, the main or lead processor 
__host__ int main(void) { 

int dataSetA[numCount], dataSetB[numCount];    // the numbers to add 
int dataResult[numCount];                                         // the results 
int* numA= NULL;          // CPU memory that 
int* numB= NULL;          // holds a pointer to 
int* numRslt= NULL;      // GPU global memory 
printf("Hello from the CPU\n"); 
cudaMalloc(&numA, sizeof(int)*numCount);       // grab some device global memory 
cudaMalloc(&numB, sizeof(int)*numCount); 
cudaMalloc(&numRslt, sizeof(int)*numCount); 

// copy the data from CPU system memory to the GPU global memory 
cudaMemcpy(numA, dataSetA, sizeof(int)*numCount, cudaMemcpyHostToDevice);   
cudaMemcpy(numB, dataSetB, sizeof(int)*numCount, cudaMemcpyHostToDevice); 
parallelAdd<<<3,1000,0,0>>>(numCount, numA, numB, numRslt);     // launch the kernel 
cudaMemcpy(dataResult, numRslt, sizeof(int)*numCount, cudaMemcpyDeviceToHost);  // 
get results 
cudaFree(numRslt);     // give back the global memory 
cudaFree(numB); 
cudaFree(numA); 
return 0; 

}  
Code block 3:  CPU & GPU code for adding 3000 numbers 

The __host__ and __global__ terms are compiler qualifiers.  The __host__ qualifier is optional 

as any function without a qualifier defaults to a host function.  As the name implies, these 

functions are compiled for execution by the host.  The __global__ qualifier signifies a kernel 

function.  This code is compiled for device execution.  Kernel functions have no return value.  
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They must return a void.  Another qualifier not used in this example is __device__, which also 

designates code for device execution.  These  __device__ functions are subroutine code that can 

only be called from kernels.  A function can have more than one qualifier.  A function with 

__global__ and __host__ qualifiers would tell the compilers this code will be executed on both 

the host and device.  A host version as well as a device version of the code will be built. 

Error handling is done though status words.  All CUDA APIs (host code) return a status word, 

such as cudaSuccess.  It is good practice to check all returned status words.  This number can be 

converted to an ASCII string with a call to cudaGetErrorString().  Kernel calls have no return 

values.  Their status can be checked by retrieving the last recorded error, cudaGetLastError().  

As with the API status, a status word/number is returned.  As the function call implies, only the 

last detected runtime error of the same host thread is returned.  The returned status word may be 

an error from the last or an earlier runtime call.  Errors are noted, successes are not.  

The GPU version has many more lines of code than the CPU version.  One might think the CPU 

version would run faster, and it would if the dataset is only a few thousand elements.  The cache 

capabilities of the CPU and the small dataset, allow the CPU-only approach to outperform the 

CPU-GPU pair.   If instead the dataset had 30K data elements, the parallel execution of the CPU-

GPU pair would outperform the CPU-only execution.  As the dataset gets larger the performance 

difference between the CPU-only and the CPU-GPU pair gets larger.  A CPU is a one-size-fits-

all approach to problem solving.  The strength of the GPU is its ability to quickly perform the 

same operation on many pieces of data. 
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5.  CudaDoTraceMap Process 
The most time consuming routine in the DICCCOL process is the predictROI2 routine.  The 

predictROI2 process (see Code block 1) finds the best match for each of the 358 cortical 

landmarks.  A set of subject bundles is selected in the region of interest (ROI) surrounding each 

landmark.  Each of these bundles will be processed by the CudaDoTraceMap process.  This 

process will examine all the fibers in the bundle and compare the fiber orientation against the 

preprocessed reference library results.  Each fiber in the bundle consists of a series of fiber 

points.  These fiber points are broken down into segments.  These segments are converted to 

trace (orientation) points.  These trace points are then converted to a feature count.  This feature 

count is then compared against the feature count results of the reference library.  At the end of 

the process a match score is returned.  The bundle with the closest match to the reference library 

is chosen as the best match of the ROI. 

The parallel processing approach is performed by the CudaDoTraceMap process.  (See Code 

block 4)  It comprises three processes.  These processes are where predictROI2 spends most of 

its time.  Any small reductions in these processes results in large runtime savings. 

 

CudaDoTraceMap() { 
for(fiberIdx=0;  fiberIdx<nFibers;  
fiberIdx++) { 

GpuBundleToCovariance(); 
Gpu3CovarianceToPrincipalDir(); 
GpuPrincipalDirToFeatureScore(); 

}  
}  

Code block 4:  Pseudo code of main CUDA process 
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5.1  Bundle To Covariance 
This process will reduce the input bundle of fibers to a set of 3 dimensional covariance matrices.  

Each matrix represents a single segment of fiber.  A segment contains 16 fiber-points of data.  

Successive segments of fiber overlap each other by half.  (See Figure 32)  Each of the 16 fiber-

points in the segment contains the 3 dimensional fiber-point data that will generate the 3x3 

covariance matrix for that segment, which is the first step in the Principal Component Analysis[2] 

(PCA) of the segment. 

 

Figure 31: Bundle to Covariance Grid Breakdown   (Orange) used threads   (Pink) unused 
threads 

A single GPU grid will process a single bundle of fibers.  (See Figure 31)  Each bundle contains 

a variable number of fibers, but is known to be much less than the GPU’s maximum grid 

dimension.  Each block in the grid will process a single fiber.  Each fiber contains a variable 

number of segments.  The number of segments is known to be much less than the GPU’s 

maximum block dimension.  Each thread in the block processes a single (XYZ) coordinate of the 

segments.  Each thread represents an X, Y, or Z data point.  Each pass of this process converts a 

single segment of fiber data to a single 3x3 covariance matrix.   

// the kernel call (from the CPU) 
 GpuBundleToCovariance <<<numFibersInBundle, 3*segmentSize,..>>> (); 
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// one bundle per grid, one fiber per block, each thread works on a single 
segmentPt 
GpuBundleToCovariance() { 

for(segmentIdx=0;  segmentIdx<segmentsInFiber;  segmentIdx++) { 
Calculate dimension average: (x,y,z) 
Calculate dimension difference: segmentPt - dimension average (x,y,z) 
Calculate dimension variance: (XX, YY, ZZ) 
Calculate covariance: (XY, XZ, YZ) 
Calculate segment general direction: (last segmentPt - first segmentPt) 

}  
}  

Code block 5:  Pseudo code of the GpuBundleToCovariance process 

The thread-block processes the fiber one segment at a time.  (See Code block 5)  The 16 point 

segment size allows the covariance calculation to be completed by two warps.  (WarpSize= 32 

threads) Though it would have been a more direct approach to use 3 warps, I found it was faster 

to split the coordinates among half-warps.  This means the covariance calculation (Equation 2) 

occurs in sizes of half-warp.  Each half-warp uses a reduction technique to calculate the X,Y,Z 

coordinate of the variance (XX, YY, ZZ) values.  The covariance values (XY, YX, YZ, ZY, XZ, 

ZX) are then calculated and saved for the next processing step.  The covariance values are 

symmetrical: XY=YX, YZ=ZY, XZ=ZX 

( )( )
n

JJII
n

i ii

JI

∑ =
−−

= 1cov  

Equation 2: Covariance calculation   I,J=dimension ID, n=segment length 

A single bundle of 95 fibers with 11,104 fiber-points will be converted to 1,293 single precision 

covariance matrices in approximately 175uSec. 
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Figure 32: Fiber Segmentation   (a) Bundle of fibers   (b) Single fiber   (c) Fiber 
Segmentation   (d) Single Segment Fiber Points 

5.2  Covariance Matrix To Principal Direction Vector  
This process will convert the covariance data to a Principal Direction vector, the major PCA 

vector.  This is done by solving the major eigenvector of the covariance matrix.  Most eigen 

solvers are designed for hundreds of dimensions and high accuracy.  None of which are required 

here.  The 3D matrix is symmetrical about the main diagonal (variance values: XX, YY, ZZ).  

The final stage of the TraceMap process only requires a single digit of precision, and only single 

precision numbers are needed.  These issues are advantages and help us quickly solve this eigen 

problem.   

// the kernel call (from the CPU) 
Gpu3CovarianceToPrincipalDir <<<1, sizeOfCovarMatrix,..>>> (); 

// one bundle per grid, one block, each thread works on a single matrix 
element 
Gpu3CovarianceToPrincipalDir() { 

for(segmentIdx=0;  segmentIdx<segmentsInBundle;  segmentIdx+=3) 
{ 

Calculate principal direction value for 3 segments 
Calculate principal direction vector for 3 segments 
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}  
}  

Code block 6:  Pseudo code of the Gpu3CovarianceToPrincipalDir process 

 

Figure 33: Covariance to Principal Direction Grid Breakdown 

A single-block grid will calculate every Principal Direction vector in the bundle.  (See Code 

block 6, Figure 33, and Figure 35a)  Each thread in the block represents a single value of the 

covariance matrix.  Each pass of this process calculates the Principal Direction vector for three 

covariance matrices. 

The principal-direction-vector is the major eigenvector of the covariance matrix.  To find the 

eigenvector (v) we first need to find the major eigenvalue (λ) of the covariance matrix (A).   A x 

v= λ v  (See Figure 34)   

Step 1:  Calculate the deviatoric matrix:  A’ = A – 1/3 I  A    

Now A’  x v= η v, where ηi= λi  – 1/3 trA.  trA’ =0, η3 - j2 η - j3 =0    

Step 2:  Solve the coefficients j2 and j3:  j2= ½tr(A’A’ ),   j3= detA’   
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Figure 34: Major eigenvector calculation 

Step 3: Calculate angle α1:  cos(3α)= j3/2 ((3/j2)
3/2

)    Due to the nature of the data, (noncircular 
series of connected points), the major η will occur in the first quadrant.  0’ <= α1 <= π/6.   

Step 4: Solve the major η value:  η1= 2 sqrt(j2/3) cos(α1) 

Step 5: Calculate the eigenvalue:  λ1 = η1+ 1/3 trA 

Now that we have the major eigenvalue, we can calculate the eigenvector (Equation 3) through 
simple substitution: A v = λ v,  A= 3x3 covariance matrix,  λ =known scalar value,  solve for the 
3x1 eigenvector v 

A v = λ v 
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Equation 3: Eigenvector calculation    A=covariance matrix,  v=eigenvector,  �=eigenvalue 

 

Step 1:   λ v1= a11 v1 + a12 v2 + a13 v3, solve for v1,  v1=f(y,z)   

Step 2:   λ v2= a21 v1 + a22 v2 + a23 v3, substitute the v1 of step1,  v2=f(z) 

Step 3:   Set v3=1, solve for v2 in step2. 
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Step 4:   Solve for v1 in step1. 

Step 5:   λ v3= a31 v1 + a32 v2 + a33 v3, solve for v3.   This extra step reduces the round-off errors. 

We are solving for the Principal Direction of the fiber segment which is the normalized (unit 

magnitude) version of the eigenvector.  The normalized Principal Direction vector is saved for 

the next processing step. 

A single bundle of 1293 covariance matrices will be converted to Principal Direction vectors in 

approximately 3.1mSec.  The equivalent serial approach takes 265mSec. 

5.3  Principal Direction Vector To Feature Score 
This final process reduces the bundle of data to a single number.  This number is used to 

compare the bundle against the reference library.  The result is a score of how well the subject 

bundle matches the reference bundle. 

GpuPrincipalDirToFeatureScore <<<1, 
3*numPolarsRoundedUpToWarpsize,..>>> (); 

// one bundle per grid, one block, each thread works on a polar coordinate (x, y, z) 
GpuPrincipalDirToFeatureScore() { 

for(segmentIdx=0;  segmentIdx<segmentsInBundle;  segmentIdx++) { 
Check principal direction = general direction of the segment 
Calculate difference: abs( principal direction - polar ) 
if (magnitude(difference) < polarRegionRadius) 
    polars feature count+=1; 

}  
Convert feature count table to feature density table 
Normalize the feature density table 
Calculate library difference: abs(library feature - normalized feature) 
Calculate feature score: sum library difference for every polar 
if (feature score < current minimum score) 
    Current minimum score = feature score; 

}  
Code block 7:  Pseudo code of the GpuPrincipalDirToFeatureScore process 
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This process (Code block 7) converts the unit-vector Principal Direction (tracePoint) data to a set 

of feature or polar location counts.  This count-set is then compared against the reference 

bundle’s count-set.  The difference between the two sets is the feature score.  

 

Figure 35: Feature Score   (a) Segment of fiber points reduced to the Principal Direction, 
trace point   (b) Single fiber of trace points   (c) Bundle of trace points with a ring (only one 
shown) of Polar regions, and the resulting featureCount table 

A sphere is divided into 62 polar regions.  Each polar represents a location on the unit-sphere.  

The set of Principal Direction vectors (tracePoints) are compared against the Polars.  If the unit-

vector is inside the Polars polar-region, the feature-count for that polar increases.  The feature-

count is the number of Principal Direction vectors that point in this common direction.  It is very 

much like a histogram for common directions.  A single tracePoint may exist in more than one 

polar region.  There are a fixed number of Polars, and a variable number of tracePoints.  

Each pass through this process compares a single tracePoint against all 62 polar regions.  The 

resulting feature count set is converted to a tracePoint density set (Equation 4).  The density set is 

then normalized to give a percentage distribution set (Equation 5).  The resulting table shows 
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how many fiber segments in the bundle are oriented in one direction versus any other direction.  

Bundles with similar fiber paths will have similar feature sets. 

nTracePts

featureCnt
d i

i =  

Equation 4: Feature Density calculation 
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Equation 5: Feature Density Normalization calculation 

                                                   

 

Figure 36:  Principal Direction to Feature Score Grid Breakdown    (Orange= valid data,  
Pink= unused threads) 

This process uses a single block grid.  (See Figure 36)  (The Principal Direction data is in a 

single data-set.)  Each thread in the block represents a single (XYZ) coordinate for each polar 

point on the unit-sphere.  Each pass through the process compares a single Principal Direction 

unit-vector against every polar point.  At the end of the process the number of active threads is 

reduced to the number of Polars to process the feature count data. 
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The first part of this process uses 3 threads (one for each coordinate) to verify the Principal 

Direction is in the same general direction as the fiber.  If needed, the Principal Direction vector 

will be rotated 180’.  This is done by applying a dot-product multiplication on the Principal 

Direction vector and the fibers general direction vector (calculated earlier).  If they are out of 

phase, the Principal Direction vector is rotated. 

The single Principal Direction vector is then compared against all polar regions (Equation 6).  If 

the vector falls within the polar region, that Polar’s feature count is increased.  The polar regions 

are circular regions centered on the polar location on the unit sphere.  (See Figure 35c)  Because 

these polar regions overlap one another, a single Principal Direction vector may add to more than 

one feature count. 

featureCnt += (abs( irprincipalD – polarLoc) < polarRegionRadius) ? 1 : 0 

Equation 6: Polar Feature Count calculation 

The resulting feature table is then converted to a feature density table.  (Reference Equation 4)  

The number of active threads is reduced to the number of Polars.  Each feature count is divided 

by the number of Principal Direction vectors in the fiber bundle.  The density table is then 

normalized to produce a percentage polar distribution table.  (Reference Equation 5)  This 

distribution table is compared against the ROI’s feature table.  The difference between the table 

entries is summed for the final featureScore (Equation 7).   



 

54 

 

 

Figure 37: Feature score comparison of each Polar 
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Equation 7: Feature Score calculation 

A single bundle of 1293 Principal Direction vectors is compared against 62 Polars, then scored 

against the preprocessed ROI’s feature-score, in approximately 2.6mSec.   A 214KByte bundle 

of fiber data is reduced to one single-precision number in approximately 5.9mSec.   

5.4  Bundle Concurrency 
CudaDoTraceMap processes a single bundle of fibers.  The internal processes 

(GpuBundleToCovariance, etc.) operate consecutively in the CudaDoTraceMap process.  A 

single bundle is processed with each pass of the CudaDoTraceMap loop.  Each bundle is 

processed in a separate stream, allowing each bundle to process asynchronously to the others.  

To reduce the launch time, the bundle processes are launched from a queue of statically allocated 

resources.  Each stream uses its own GPU resources and executes independently of each other.  

The number of streams (GPU resources) used has been adjusted to allow all bundles in the ROI 

to run concurrently.  This keeps the CPU and GPU as busy as possible.  (Between different 

ROI’s, the CPU spin-waits.)   
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5.5  Reference Feature Data Correction 
DICCCOL works by comparing a subject’s data against a reference library.  The feature results 

of the reference library are preprocessed and are imported for comparison at the end of 

CudaDoTraceMap for calculation of the match score.  This comparison works as long as the 

fiber data is processed in the exact same approach as the preprocessed reference library.   

The approach I used is slightly different from the original code which uses 144 Polars.  Many of 

these Polars are duplicates.  My approach eliminates the duplicates and uses only the 62 unique 

Polars.  To correct for the difference in Polar-count, the preprocessed feature data is 

renormalized.  Because of this difference in approach, the numerical results of the comparison 

stage are different between the two approaches. 
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Equation 8: Reference Library, feature correction calculation 

Initially, all ROI feature results are loaded to the GPU at the start of the predictROI2 process.  

The data is then renormalized by a single grid (reference Equation 8).  Only these unique 

preprocessed feature results are saved for the feature-count comparison.  This kernel has not 

been optimized for speed, as it is a setup routine and it runs asynchronously to the CPU, during 

the setup stage.  The execution time is typically less than the remaining CPU setup time.  

(Typically completes before the CPU has issued its next GPU task.)  Every block in the grid 

works on a single ROI data set.  Each block uses 32 threads (warpSize).  The heart of the 

renormalization is simple summation reduction operation (reference Code block 8). 

sumReductionTechnique() { 
if(threadIdx < warpSize) { 

for(idx=threadIdx+warpSize;  idx<lastData;  idx+=warpSize) 
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warpSum+= sharedMemory[idx]; 
sharedMemory[threadIdx]= warpSum; 

}  
__syncthreads();    // wait for single warp reduction to complete 
for( idx=warpSize>>1;  idx>0;  idx>>=1) { 

if(threadIdx<idx) 
sharedMemory[threadIdx]+=  sharedMemory[threadIdx+idx]; 

__syncthreads();    // wait for sharedMemory to finish write cycle 
}  
If(threadIdx == 0) 
     totalSum= sharedMemory[0]; 

}  
Code block 8:  Pseudo code of the summation reduction technique 

The CPU->GPU transfer of the complete feature data set (100KByte) takes approximately 

24uSec.  The complete data set is renormalized in 85uSec.  

At the beginning of every ROI loop, that ROI’s feature results are moved from global memory to 

constant memory for faster access.  This GPU internal 288Byte move takes a negligible amount 

of time.  

5.6  Polar Point Generation 
The last phase of the CudaDoTraceMap process count’s the number of Principal Direction 

vectors that fall within predefined polar regions.  In order for the comparison to be valid, the 

Polars must be located in the exact positions and order as the preprocessed feature results used.  

These matching Polars are generated by the GPU, and stored in constant memory for fast access.   

This kernel runs asynchronously and has not been optimized for speed.  This task occurs once 

during the predictROI2 setup stage.  The Polars are generated by a single block grid.  Each 

thread in this block generates a single polar.  (See Figure 38) 

Generating the 62 unique polar locations take approximately 2.5mSec. 
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Figure 38:  Polar Locations calculation 
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6.  Testing 
The eigenvalue and eigenvector calculations were tested for accuracy and precision.  A side-by-

side visual comparison of each subjects ROI 0 results was performed.  The list of resulting best-

match bundle ID’s was compared between the serial and parallel approaches.  A comparison of 

the best-match bundles was performed to identify identical fiber content.  The number of 

generated segments from the CPU process was compared to the GPU process.  A visual 

comparison between the two approaches was performed on a subset of ROIs for a single subject.  

A serial versus parallel run-time comparison was performed to determine the resulting speedup.  

The machine details can be found in section 11.  Machine/System Details.     

6.1  Eigenproblem Comparison 
The calculation of the eigenvalue and eigenvector is a new approach.  Under certain 

conditions[4], the eigenvalue precision breaks down.  Due to the nature of the predictROI2 task, 

these conditions don’t occur here.  To prove the approach and verify the precision, the results of 

my calculations were compared against the CULA[3] Library (a parallel version of the Linear 

Algebra Package library) results.  The sparse symmetric eigenproblem solver, 

culaDeviceSsyev(), was used to generate the eigenvalues and eigenvectors from the covariance 

matrix of subject 9.  These single-precision results were compared against my calculated results.  

The single Principal Direction vector results were subtracted from the corresponding CULA 

results (reference Table 3).  The test shows the numbers to be identical to 4 digits of precision.  

DICCCOL only needs a single digit of precision.   

6.2  Serial vs Parallel Quantitative Comparison 
The serial versus parallel DICCCOL results were compared by examining the bundle ID’s of the 

individual ROI’s.  I compared the GPU bundle ID results against the CPU bundle ID results.  
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The number of ROIs that yield the same bundle result as well as different bundle result is 

counted.  Table 4 shows the comparison of the best-match bundle for the two approaches.   

I compared the bundle contents for a subset of ROIs in subject 9.  The subject was chosen at 

random.  The comparison was limited to a subset of the ROIs because it is a time intensive 

process.  Table 5 shows the number of fibers in the CPU results that are also in the GPU results.  

The differences come from how the fibers were filtered.  The original serial approach ignored 

fibers that were less than a half-segment in length, but only fibers that were at least a one 

segment in length, 16 fiber-points, would actually generate any data.  My parallel approach 

ignores fibers that are less than two segments, 24 fiber-points, in length.  (See discussion in 

section 9.  Conclusion) 

I compared the segment counts from the fibers of a single bundle.  Table 6 shows the fiber count 

comparison for bundle 574 in ROI 0 of subject 9.  The subject, ROI, and bundle selection were 

chosen at random.  The fiber count discrepancies are caused by the differences in the 

segmentation process.  The original serial approach missed a segment in some of the fibers. 

Table 6 shows the segment count of the individual fibers in the first bundle of ROI 0.  It 

demonstrates one of the process differences between the CPU approach and the GPU approach.  

When there is a difference, the GPU process extracts one more segment than the CPU process.  

See Code block 9 for a comparison between the two segment generation approaches.  The 

original approach uses “<” for the loop comparison which drops the last segment when the fiber 

size divides evenly by the segment size.  This is corrected when “<=” is used as the loop 

comparator.   
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SEG_INTERVAL = 8 

    
 

SEG_SIZE= SEG_INTERVAL << 1 

  
       New approach:      

 
(CTraceMap::CudaDoTraceMap()) 

   
 

segCnt= ((nFiberPts<<1) - SEG_SIZE) / SEG_SIZE 

       Original Approach: 

 

(CTraceMap::TracingSingleFiber()) 

   
 

int currentFiberSize= currentFiber.size() 

 
 

for(int segStart=0, segEnd=SEG_SIZE;  

 
 

 segEnd<currentFiberSize; 

  
 

 segStart+=SEG_INTERVAL, segEnd+=SEG_INTERVAL) 

       New Approach Original Approach 

  nFiberPts segCnt currentFiberSize seg 

  31 2 31 2 

  32 3 32 2 

  33 3 33 3 

  Code block 9:  Comparing Segment Counts 

 

 

6.3  Single ROI Visual Comparison 
A side-by-side visual comparison of the CPU vs GPU ROI 0 results was performed.  The images 

with obvious differences were noted.  ROI 0 was selected at random for this comparison.  (See 

Figure 40)   

6.4  Multiple ROI Visual Comparison 
Figure 41 compares a subset of 48 ROI’s from a single subject.  The CPU generated images were 

compared against the GPU generated images for subject 12.  The ROIs with major differences 

were noted.  The subject 12 was chosen at random for this comparison.   

6.5  Runtime Comparison 
Timing results are provided by a CPU timestamp comparison.  A timestamp is taken at the 

beginning and end of the predictROI2 routine.  (See Code block 10)  The difference, in seconds, 

is reported as the execution time.  (See Code block 11)  A minimum of 3 runs were performed on 

both the CPU & GPU code.  The average of these runtimes (see Table 2) is used for the 

calculated Speedup factor.  See Table 8 for the timing results.  
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predict.pipeline  (script file) 

echo "** cleanup last **" 
# cleanup (last run) task runs here 

echo "** reistration **" 
before= "$(date +%s)" 
# registration step runs here 
regTime="$(expr $(date +%s) - $before)" 

predict.pipeline  (script file) 
echo "** prediction **" 
before= "$(date +%s)" 
predictROI2 arg1,arg2,arg3,.. 
predTime="$(expr $(date +%s) - $before)" 

echo "** prepare for viewer **" 
before= "$(date +%s)" 
# viewer step runs here 
viewTime="$(expr $(date +%s) - $before)" 

echo 
echo "registration time:  $regTime sec" 
echo "prediction time:  $predTime sec" 
echo "viewer time:  $viewTime sec" 

Code block 10:  DICCCOL Command Pipeline (with timers) 

Sample run:   (cpu, subject 9) 
predict.pipeline 
arg1,arg2,arg3,… 
** cleanup last ** 
** registration ** 
** prediction ** 
** prepare for viewer ** 

registration time: 17 sec 
prediction time:  656 sec 
viewer time:        0 sec 

Code block 11:  Sample CPU Run of DICCCOL, Subject 9 

 

Table 2:  Average Runtime Calculation example, Subject 9 

Run 1 2 3 4 5 6 7 8 9 10 
Average 
(seconds) 

Std 
Dev Speedup 

CPU 652 652 656 662 667 653 648 648 672 660 657.0 7.67 
6.42 

GPU 102 103 102               102.3 0.47 
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7.  Results 

7.1  Eigen Calculation Accuracy 
The single precision calculation of eigenvectors shows 4 digits of precision.  A single precision 

number is limited to 7 decimal digits.  Table 3 shows the absolute error for the eigenvector and 

eigenvalue numbers when compared to the CULA generated numbers.  nSegments is the number 

of fiber segments that were processed.  The eigen calculation is performed once per segment. 

Table 3:  Absolute error with the CULA generated results and the number of eigen 
calculations performed 

Subject 9 6 
eVector X 0.000016034 0.000076115 
eVector Y 0.000008741 0.000010395 
eVector Z 0.000000632 0.000000477 
eValue 0.000019073 0.000020981 
nSegments 20,955,341 13,836,770 

 

7.2  CPU vs GPU Bundle Results 
Table 4 compares the serial vs parallel ROI results.  The CPU bundle ID for each ROI is 

compared against the GPU process results.  For Subject 9: of the 358 ROI’s there were 104 

identical results and 254 different results.  When the bundle ID changes this doesn’t mean the 

resulting image drastically changes.  See Figure 40 for comparisons.   

  



 

63 

 

Table 4:  Comparing the CPU vs GPU bundle results 

ROI Bundle Results:  CPU vs GPU 

Subject 

Same 
Bundle 

ID 
(count) 

Different 
Bundle 

ID 
(count) 

Change 
in 

Bundle 
ID 

results 
1 117 241 67.3% 
6 115 243 67.9% 
9 104 254 70.9% 

10 109 249 69.6% 
12 108 250 69.8% 
14 85 273 76.3% 
16 85 273 76.3% 
20 100 258 72.1% 
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7.3  CPU vs GPU Fiber Results 
While the bundle ID’s may be different for the CPU vs GPU results, the bundles may contain 

common fibers.  Table 5 demonstrates this.  It compares the CPU fiber results against the GPU 

fiber results.  It shows how many of the fibers from the CPU bundle results are also in the GPU 

results.  (The percent of CPU fibers that are common to both CPU and GPU result bundles.)  A 

100% result may mean the CPU and GPU bundle ID’s match, or that all the fibers in the CPU 

result are also in the GPU result.  It does not address fibers in the GPU result that are not in the 

CPU result.  Figure 39 shows a result where there are no (0%) CPU fibers in the GPU result. 

Table 5:  Subject 9 fiber bundle comparison (first 100 ROI’s):  ROI #  vs  % of CPU fibers 
that are also in the GPU result bundle 

 

 

ROI # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

% match 26.3 100.0 33.3 100.0 100.0 26.9 87.2 100.0 60.2 100.0 62.5 100.0 88.4 100.0 100.0 100.0 55.0 76.0 0.0 25.4

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

95.7 31.0 4.9 100.0 32.7 77.5 100.0 8.3 100.0 100.0 100.0 100.0 100.0 34.0 94.1 46.2 100.0 61.5 100.0 76.9

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

100.0 100.0 73.1 80.9 62.5 98.2 80.6 38.8 100.0 51.0 0.0 100.0 100.0 100.0 100.0 63.6 100.0 34.8 100.0 100.0

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

0.0 100.0 100.0 47.1 47.8 100.0 100.0 100.0 0.0 1.3 0.0 13.9 100.0 100.0 100.0 100.0 100.0 0.0 100.0 100.0

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

100.0 46.3 53.8 93.8 53.7 74.5 34.8 75.6 82.6 30.0 71.4 100.0 95.0 48.2 66.7 100.0 100.0 93.5 8.5 100.0

0
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Figure 39:  Subject 9, ROI 60:  Completely different results   
(CPU: bundle 9391, GPU: bundle 11938) 

7.4  Fiber Segment Count Results  
Table 6 shows the segment count of the individual fibers in the first bundle of ROI 0.  Of the 95 

fibers in this bundle, 13 generated a different number of segments.   

Table 6:  Segment Count of Fibers in Bundle 574,  ROI 0,  Subject 9 

Fiber 

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

CPU 14 13 12 13 12 12 8 11 11 11 20 13 8 12 8 9 9 

GPU 14 13 12 13 12 12 9 12 11 11 20 13 8 12 8 9 10 

 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

 

9 10 11 11 8 7 12 12 8 9 11 12 4 3 11 12 3 

 

9 11 11 11 8 8 12 12 8 9 11 12 4 3 11 12 4 

 

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

 

9 3 13 10 8 10 10 19 11 9 9 11 2 11 12 17 14 

 

9 3 13 10 8 10 11 19 11 9 10 11 2 11 12 17 14 

 

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 

 

18 19 3 10 20 18 4 9 23 18 12 12 10 19 19 19 18 

 

18 19 3 10 20 18 4 9 23 19 12 12 10 19 19 19 18 

 

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 

 

18 21 16 18 20 19 18 17 19 17 19 18 18 18 19 19 19 

 

18 21 16 18 20 20 19 17 19 17 19 18 18 18 19 20 19 
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85 86 87 88 89 90 91 92 93 94 

       

 

17 17 18 18 17 17 23 24 17 21 

       

 

17 17 18 18 18 17 23 24 17 21 

        

7.5  CPU vs GPU ROI-0 Visual Comparison Results 
Of the 13 subjects used for testing, 7 of the CPU results visually matched the GPU results.  The 

remaining 6 comparisons showed very similar results.   

  

Figure 40-1:  Subject 1, ROI 0:  Results differi  (CPU: bundle 491, GPU: bundle 149) 
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Figure 40-2:  Subject 6, ROI 0:  Results match  (CPU: bundle 75, GPU: bundle 75) 

  

Figure 40-3:  Subject 9, ROI 0:  Results differ  (CPU: bundle 574, GPU: bundle 304) 
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Figure 40-4:  Subject 10, ROI 0:  Results match  (CPU: bundle 871, GPU: bundle 871) 

  

Figure 40-5:  Subject 12, ROI 0:  Results differ  (CPU: bundle 232, GPU: bundle 106) 



 

69 

 

  

Figure 40-6:  Subject 14, ROI 0:  Results match  (CPU: bundle 891, GPU: bundle 891) 

  

Figure 40-7:  Subject 16, ROI 0:  Results differ  (CPU: bundle 77, GPU: bundle 5) 
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Figure 40-8:  Subject 19, ROI 0:  Results differ  (CPU: bundle 318, GPU: bundle 326) 

  

Figure 40-9:  Subject 20, ROI 0:  Results match  (CPU: bundle 62, GPU: bundle 62) 
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Figure 40-10:  Subject 21, ROI 0:  Results match  (CPU: bundle 674, GPU: bundle 674) 

 

Figure 40-11:  Subject 22, ROI 0:  Results match  (CPU: bundle 191, GPU: bundle 191) 
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Figure 40-12:  Subject 23, ROI 0:  Results differ  (CPU: bundle 404, GPU: bundle 654) 

 

Figure 40-13:  Subject 24, ROI 0:  Results match  (CPU: bundle 132, GPU: bundle 132) 
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7.6  CPU vs GPU Single Subject Visual Comparison Results 
The CPU generated images are displayed with a yellow frame (upper), and the corresponding 

GPU images have a blue frame (lower).  It is suggested to use the zoom function in the electronic 

version of this document for better viewing.  The ROI’s are displayed in sequence with ROI 0 at 

the top left and ROI 48 at the bottom right.  Most of the ROI comparison’s show no or small 

differences.  The ROI’s that show the most dramatic differences are: 3, 14, 39, 41.  Less dramatic 

differences can be found with ROI: 2, 18, 24, 47. 

 

Figure 41: Subject 12, ROI 0(left) – 6(right):   CPU Results(yellow, upper)   GPU 
Results(blue, lower) 
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Figure 41:  Subject 12, ROI 7(left) – 13(right):   CPU Results(yellow, upper)   GPU 
Results(blue, lower) 
 

 

Figure 41:  Subject 12, ROI 14(left) – 20(right):   CPU Results(yellow, upper)   GPU 
Results(blue, lower) 

 

 

Figure 41:  Subject 12, ROI 21(left) – 27(right):   CPU Results(yellow, upper)   GPU 
Results(blue, lower) 
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Figure 41:  Subject 12, ROI 28(left) – 34(right):   CPU Results(yellow, upper)   GPU 
Results(blue, lower) 
 

 

Figure 41:  Subject 12, ROI 35(left) – 41(right):   CPU Results(yellow, upper)   GPU 
Results(blue, lower) 
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Figure 41:  Subject 12, ROI 42(left) – 48(right):   CPU Results(yellow, upper)   GPU 
Results(blue, lower) 
 

 

7.7  Process Runtime Result 
Table 7 compares the serial vs parallel runtime of the three major DICCCOL processes.  The 

Registration column is the FSL, FLIRT process.  The Prediction column is the predictROI2 

process.  The Viewer column is the data collection process for the generateProfile4Viewer11 

tool.  (See Code block 10 and Code block 11)   

Table 7:  DICCCOL Process Runtime Comparison 

Single Runtime  (seconds) 
Subject Registration Prediction Viewer 

CPU 
1 

21 1664 0 
GPU 20 250 0 

CPU 
6 

22 437 0 
GPU 22 72 0 

CPU 
9 

17 655 0 
GPU 17 103 0 

CPU 
10 

14 1324 1 
GPU 14 204 0 

CPU 
12 

17 1564 0 
GPU 18 241 0 

CPU 
14 

17 1316 0 
GPU 17 203 0 

CPU 16 18 1977 0 
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GPU 18 303 0 
CPU 

19 
15 1615 0 

GPU 16 250 0 
CPU 

20 
16 1411 0 

GPU 17 218 0 
CPU 

21 
17 1859 0 

GPU 17 288 0 
CPU 

22 
17 1579 0 

GPU 17 245 0 
CPU 

23 
18 1445 0 

GPU 17 228 0 
CPU 

24 
15 1813 0 

GPU 16 282 0 
 

7.8  PredictROI2 Runtime Results 
Table 4 compares the serial vs parallel runtime of the PredictROI2 process.  A minimum of three 

tests were run on each subject to provide the average runtime results. 

Table 8:  DICCCOL Runtime Comparison 

  Average Runtime (Sec) 

Subject 

CPU GPU Speedup 
Std 
Dev     

Std 
Dev factor 

1 7.12 1687.6 254.0 0.00 6.6 
6 2.43 439.3 72.0 0.00 6.1 
9 7.67 657.0 102.3 0.47 6.4 

10 4.99 1332.7 204.3 0.47 6.5 
12 4.78 1553.7 241.7 0.47 6.4 
14 0.47 1300.7 203.0 0.00 6.4 
16 9.68 1948.8 302.0 0.00 6.5 
19 4.12 1616.2 251.0 0.71 6.4 
20 2.16 1408.0 219.0 0.00 6.4 
21 11.58 1879.0 288.3 0.43 6.5 
22 10.52 1595.8 245.8 0.43 6.5 
23 15.66 1476.2 228.3 0.43 6.5 
24 18.74 1841.3 282.3 0.43 6.5 
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8.  Observations 
Much of the number processing for the predictROI2 routine involves generating average values.  

Calculating an average involves a summation and division process.  The summation process is 

serial in nature and the division process is parallel in nature.  Because of this, neither the CPU 

nor the GPU processor is a great platform for performing the task of averaging.  The averaging 

operation can be performed by either processor, but neither processor is capable of ideally 

performing both the serial and parallel aspects of the averaging operation.  As long as the data set 

is many times larger than warpSize of the machine, the GPU can perform the operation faster 

than the CPU can.  A warpSize reduction technique is used in many places of this GPU 

predictROI2 code.  The data set is reduced to a single warp, and then a repetitive half-warp 

routine reduces it to a single value.  This proved to be a very useful tool for the summation 

process, but care must be taken to address the inherent data hazards of the code.  Properly 

addressing the data hazards corrected the numerical results and further reduced the runtime.   

The CPU is not slowing down the process.  A faster CPU will not make this process run 

significantly faster.  The CPU spins idle while the GPU processes the bundles in bursts of work.  

As a result, the GPU is not being fully utilized.  The GPU does a good job at swapping threads 

efficiently, but the predictROI2 processes is rather simple.  I found that a single-warp (warpSize) 

process ran faster than a block that uses multiples of warpSize.  When the code was changed to 

allow for multiple warps, the execution time increased.  With proper data-coalescing this simple 

task ran faster on a single warp, than it did with a multiple warp execution. 

CULA[3] is a parallel coded version of the popular Linear Algebra Library, LAPACK.  CULA 

solves high-dimension eigenproblems rather quickly.  The CULA Library is not considered a 

viable solution for my speedup goal.  The use of the tool breaks the concurrency approach used 



 

79 

 

here.  Without a different process approach, the CULA approach doubles the execution time.  It 

ran slower than the CPU approach.  The CULA Library is a useful tool when solving hundreds of 

eigenproblems with 100’s of dimensions.  The 3-dimension Principal Direction task used here is 

much too simple for this tool to be useful for my runtime goals.  I would need more than a 

million Principal Direction problems in a single bundle before I could expect to see a speed 

improvement with this tool. 

The eigenproblem calculation was the most time consuming operation in the original 

predictROI2 process.  It used double precision numbers, and calculated all 3 eigenvalues and 

eigenvectors.  The problem doesn’t require high precision or a solution of every eigenvector.  

The covariance matrix is a small (3 dimension), symmetrical matrix.  Only a single precision 

result is needed.  The problem requires the solution of only the Principal Direction (major) 

vector.  My solution takes advantage of all these simplification and provides a vector that offers 

6 digits of precision.   

The final stage of the predictROI2 process compares processed Subject bundles against 

preprocessed library results.  This essentially is a comparison of direction-sorted results.  This 

comparison is only valid if the library data and the subject data are processed in identical 

fashion.  This doesn’t happen, for two reasons.  Reason 1: In my approach, the Subject data has 

been optimized for minimal processing time.  This includes ignoring fibers that are too short.  

Fibers that are less than 2 segments in length are dropped.  I suggest a single segment fiber isn’t 

long enough to generate useful information.  Reason 2: An examination of the CPU approach 

shows that it misses certain fiber segments.  (See Table 6)  A single bundle comparison of 

Subject9, shows a difference of 13 tracePoints, (CPU: 1280, GPU: 1293).  The data is different 

going into the feature count process.  This suggests the results will be different 
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In the sort routine, the library data uses 144 Polars, of which only 62 are unique polar locations.  

My approach only uses the unique locations for the sort.  An adjustment is made to the library 

data for the final comparison.  It would be better if this adjustment wasn’t necessary.  Adjusting 

for this difference in Polars doesn’t adversely affect the runtime of the process, but it does add a 

fair amount of code overhead.  (This will be a maintenance issue moving forward.) 

The CPU vs GPU results comparison (Table 4) shows the differences in bundle selection.  The 

difference in bundle selection is expected to be minor as the visual results indicate.  Identical 

results, though not expected, are possible. 
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9.  Conclusion 
In this paper I show how the DICCCOL task could be performed more efficiently by taking a 

parallel programming approach.  My resulting algorithm reduces the average runtime by a factor 

of >6 for all test subjects.  I am unaware of a quantitative test approach that will verify my results 

against the serial DICCCOL approach.  My parallel DICCCOL results don’t visually match those 

of the serial approach.  The differences are the result of corrections to what I perceived as 

oversights in the serial approach.   

My parallel approach extracts more data points from the provided DTI data than the serial 

approach does.  Because of this added data I consider my results to be more accurate than that of 

the serial approach.  The second difference of my parallel implementation involves the selection 

of the minimum fiber length.  The minimum fiber length for the serial approach is one segment.  

The minimum fiber length for my approach is two segments.  I suggest a single segment fiber is 

a malformed fiber in the subjects DTI data set and therefor it should be removed. 

DICCCOL library is about correspondence between subject brains.  DICCCOLs are landmarks 

with high correspondence across many subjects.  This correspondence is identified by the 

connectivity of these landmarks.  Connectivity to these landmarks don’t appear to be local, but to 

other distant regions of the brain.  Thus very short connections in white matter don’t exist and 

are errors in the DTI data.  This is related to the ability of the tractography field to quantify their 

results.   

This is not a study of the serial DICCCOL results vs the parallel DICCCOL results.  I am not 

able to prove my parallel approach is any more accurate than the original serial approach only 

that it executes much faster.  I have shown the serial results can be similar but different from 
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those of the parallel results.  The difference in results needs to be reviewed by others in the 

neurophysiology field. 

If this approach is adopted the considerable time savings allows DICCCOL to be a more 

practical research tool for the field of neurophysiology.  Other areas for improvement of the tool 

can be found in section 10.  Future Work. 
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10.  Future Work 
Using the preprocessed library data is cumbersome.  The subject and library data needs to be 

processed in identical fashion or the comparison is likely invalid.  The library data 

(mdls.features) needs to be cleaned of the duplicate polar information.  62 Polars is a rather small 

number of buckets for this direction-sort approach.  What the sort is effectively doing, is 

counting the number of fiber segments that point in a particular direction.  Increasing the number 

of Polars increases the resolution of the bundle comparison.  The existing code can accommodate 

up to 96 Polars with very little change and have a minor impact to the execution time.  I had an 

early version of the 62 direction-sort process that ran in ~10mSec.  When the number of 

directions was increased to 80,000, the execution time only doubled.  When using more Polars 

the efficiency scales up dramatically, but the reverse isn’t true.  Using fewer Polars doesn’t 

dramatically reduce the execution time.  Adding more polar locations only helps if they are 

unique.  The polar rings and the polar radius used here have varying degrees of overlap (aside 

from the duplication issue).  There are also empty regions where tracePoints go uncounted.  At 

the minimum, 7% of the total area is not covered by a polar region.   



 

84 

 

 

Figure 42: 62 Unique Ringed Polars    Blue: Uncounted region    Gray: Overlap (double 
count) region 

This results in expensive segment data that is just ignored.  There is no way of knowing if a 

significant cluster is located in this uncovered area.  A better approach than this “ring of Polars”, 

would be the use of equidistant[5] polar locations.  With this approach the amount of polar region 

overlap is consistent and there is no overlooked data.  The full data set is used in the final 

comparison.  I tested this approach, but couldn’t use it because the preprocessed library requires 

the use of the “ringed polar” approach. 
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Figure 43:  62 Unique Equidistant Polars 

The final comparison process performs a feature density calculation.  Is the feature density 

calculation necessary?  The next process normalizes the polar region feature distribution.  The 

result is a polar-region percentage distribution table.  For example, 5% of the fiber segments are 

oriented in the direction of polar J, while 42% go in the direction of the polar K.  I suggest the 

density calculation can be removed as it only adds a constant multiplier to the Feature Density 

Normalization equation. 

∑ =

= nPolars

i i

j
j

featureCnt

d
f

0

nTracePts
 

Equation 9: Feature Density Normalization calculation 

The work done here addresses the low level operation of the predictROI2 task.  The processing 

work is done in bursts of ROI subject bundles.  To further reduce execution time, the separate 

ROI tasks should be issued concurrently.  This requires rewriting the predictROI2, main2.cpp 
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file to allow concurrent ROI processing.  Effectively, this would be a grid-computing approach 

on a single GPU. 

To shorten the execution time of the existing code, one could employ a bigger GPU.  The very 

small data set used by DICCCOL is transferred to the GPU very quickly.  Data bus bandwidth is 

not slowing the process down.  The GPU HW I used has 4 Streaming Multiprocessors (SM) 

(CoreConfig: 192:32:16).  There are other more capable[6] GPU’s that supports up to 14 SM’s 

(CoreConfig: 2688:224:48).  More SM’s means the HW is capable of doing more concurrent 

work. 

This code was developed on Nvidia’s Fermi HW.  Their next generation HW, Kepler, allows 

kernels to launch other kernels.  This adds another level of flexibility for newer programming 

approaches. 

The changes addressed by this paper can be applied to the serial process to significant improve 

the efficiency of DICCCOL.  Correcting the logic of the fiber segmentation is noted in Code 

block 9.  Additional code changes will be needed to support the extra segments.  The three 

dimension eigen calculation can implemented with little effort.  This change is expected to drop 

the execution time by at least half.   
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11.  Machine/System Details 
Lenovo ThinkPad 
W520 

 

 CPU:  Intel i7  (Sandy Bridge) 
       2.4GHz Clk, 64bit, L3 6MB, 4 core, 8 threads 
 GPU:  Nvidia Quadro 2000M   (Fermi) 
       4 SM's, 1.1GHz Clk, warpSize 32, compute capability 2.1 
       1 mem engine, gMem 2GB, cMem 64KB, 27.5GB/sec 
 RAM:  4GB 

DDR3 
 

 SSD:  256GB Vertex4 OCZ 
OS:   Ubuntu 12.04 (Linux-x86, 64bit) 
Nvidia driver:  304.43 
CUDA toolkit: 5.5 
GNU GCC:  4.6.3 
FSL:  4.1.8 
QT4:   4.8.1 
VTK:   5.8.0 
GSL:  1.9 
ITK:   3.20.1 
CULA:   Ver R14 
DICCCOL code base: 1/30/2012 
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Abbreviation Glossary 
API  Application Programming Interface 
CPU  Central Processing Unit 
CUDA  Compute Unified Device Architecture 
CULA  CUDA Linear Algebra 
DICCCOL Dense Individualized and Common Connectivity-based Cortical Landmarks 
DTI  Diffusion Tensor Image 
FSL  FMRIB Software Library 
GPU  Graphics Process Unit 
GPGPU General Purpose GPU 
HW   Hardware 
LAPACK Linear Algebra Package 
MRI  Magnetic Resonant Image 
NMR  Nuclear Magnetic Resonance 
PCA  Principal Component Analysis 
PCIe  PCI Express (Peripheral Component Interconnect Express) 
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i Color information was missing from the original data set.  RGB color information was added.  
The fiber shape and pathways remain unaltered. 


