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ABSTRACT 

 LiDAR data are used to detect hemlock (Tsuga canadensis) defoliation due to hemlock 

woolly adelgid (Adelges tsugae) (HWA) in the Chattahoochee National Forest (CNF) located in 

Georgia. LiDAR data are used to quantify leaf area index (LAI) and fractional cover (fCover). 

Traditional field methods are used to validate LiDAR results with hemispherical photography of 

stands in varying stages of decline. Single linear regression results suggest that LAI (R
2
 = 

0.4355) and fCover (R
2 

= 0.4597) are not well predicted from LiDAR. Multivariate principal 

component analysis using LiDAR variables and multivariate stepwise regression with ground 

data improve results for LAI (R
2
 = 0.7307) and fCover (R

2 
= 0.4666). Multivariate cluster 

analysis finds a significant relationship between ground and LiDAR derived clusters of high, 

medium, and low defoliation with 75% cluster agreement in classification of defoliation. This 

suggests that 3 health status ranks can be created from remote data. 
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CHAPTER 1 

INTRODUCTION 

Airborne discrete return LiDAR (Light Detection and Ranging) is quickly becoming a 

new standard remote sensing technique used in visualizing and analyzing forest structure. 

Remote measurement and characterization of forest canopy and structure in moderate to high 

biomass forest, such as the coniferous eastern hemlock (Tsuga canadensis) and Carolina 

hemlock (Tsuga caroliniana), have proven difficult (Lefsky et al. 1999, Watson 1947). Field 

methods for collecting data are often impractical to cover broad spatial scales, while traditional 

optical remote sensing techniques can cover larger areas, but may lack the detail needed for fine 

scale analysis and often cannot see beneath forest canopies (Chen and Cihlar 1996). LiDAR is a 

remote sensing technology that uses laser pulses to determine the range of a target from the 

sensors. The ability of LiDAR to have multiple returns from a single laser pulse provides a way 

to look at not only the top of forest canopies, as with traditional photogrammetric techniques, but 

also to see through to subcanopy and forest floor. This additional dimension, a vertical 

distribution of data in conjunction with the traditional horizontal distribution, allows researchers 

to view and understand forest structure in 3D (Lim et al. 2003). LiDAR has been applied in a 

number of previous studies to estimate forest metrics (Brandtberg et al. 2003, Lefsky et al. 1999, 

Means et al. 1999, Lefsky et al. 2002, Kane et al. 2010). The most common LiDAR used for 

forest studies has been large footprint full waveform LiDAR, first and last discrete return 

LiDAR, and more recently, high density multiple return (up to 5 returns per pulse) discrete 

LiDAR. 
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Hemlock woolly adelgid (Adelges tsugae) (HWA), a small exotic and invasive insect 

thought to have been introduced from Asia via infested lumber, has been the cause of hemlock 

decline along the east coast of the United States for over five decades (Orwig, Foster and Mausel 

2002). HWA targets all species of hemlock, but eastern and Carolina hemlock have no 

environmental or genetic defenses again the insect. HWA feeds at the base of needles on the tree, 

and overwhelms the tree’s natural systems by interrupting resource flow to and from needles and 

through infestation of hundreds of thousands of insects on each tree. The infestation causes 

severe needle loss, and if left untreated, can lead to tree mortality within ten to fifteen years. 

Eastern hemlock creates a cool, moist forest ecosystem with its dense needle and limb structure 

that extends from the top of the canopy to the ground (Brisbin 1970). It is only found along the 

eastern coast of North America, from Canada to northern Georgia. This species typically grows 

in shaded valleys in riparian zones, and contributes to the high biodiversity found in the 

southeast of the United States. It is essential to understand changes in the canopy structure of 

these trees related to foliage density and solar radiation penetration to understand how the 

species responds to disturbances such as HWA at multiple scales—from the individual hemlock 

tree to the ecosystem level (Coops et al. 2007). Comparing LiDAR data among stands of varying 

health may provide information to quantify the ecological effects of HWA and the efficacy of 

HWA control measures and treatments, provide a temporal comparison in future studies, and 

broaden understanding of forest ecosystem responses to exotic pest infestations. 

Leaf Area Index (LAI) is an integral variable in ecosystem modeling that estimates the 

area of foliage cover over an area of ground. LAI is generally measured from 0 – 6, with 0 being 

representing bare ground and 6 a dense forest (Jonckheere et al. 2004). LAI is sensitive to the 

response of, and provides an index with which to compare, forest stands change due to 
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disturbance. Destructive measures of LAI require either the collection of leaves from an area 

with collection nets or destructive removal of foliage from trees, and scanning all leaves to 

calculate the total leaf area. Indirect measurements can be employed with similar accuracy in 

order obtain effective LAI measurements (Riaño et al. 2004). There are a number of different 

ways to estimate LAI from the ground, including specialized LAI instruments (e.g., LICOR 

LAI2000) which measures available light under canopy, or hemispherical photography which 

optically assesses canopy cover relative to open sky. The latter method requires only a high 

quality camera equipped with a fish-eye lens, and software able to analyze vegetation and sky 

areas of images. 

Fractional Cover (fCover) is a variable that quantifies the amount of ground covered by 

vegetation in a given area. It represents the open canopy percentage and exposed ground as a 

means of quantifying the amount of total vegetative cover, or lack thereof, in forest canopies. 

From the ground, fCover is expressed as a percentage of canopy covering an area, or the 

openness of the canopy (Hopkinson and Chasmer 2009). From LiDAR, it can be expressed as a 

fraction of canopy laser returns to ground laser returns (Morsdorf et al. 2004). 

While field based methods for measurement of LAI and fCover are effective, they are 

only effective at local scales due to the high cost of manual labor and the need for suitable 

ground conditions and access. LiDAR LAI and fCover measurement, in comparison, allows for 

analysis on broad landscape and regional scales (Lefsky et al. 2002). Correlation between field-

based and LiDAR-based measurements may therefore provide an effective model which can 

accurately assess these metrics over multiple scales, while helping to identify varying degrees of 

infestation in hemlock forest stands.  
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Objectives 

In this study, the results of regression analysis between ground based and LiDAR based 

forest stand characteristics offer further understanding about the changes in forest canopy due to 

the invasion of hemlock woolly adelgid. These analysis is performed from a sample of hemlock 

tree stands within the biologically diverse Chattahoochee National Forest, Georgia, United 

States. The primary objective of this research is to identify relationships between ground and 

LiDAR based metrics for characterizing the structure of hemlock stands affected by HWA 

infestation, and to use those relationships to distinguish between stands of varying intensity of 

defoliation due to infestation. Results produced here focus on establishing statistical relationships 

between laser derived data and ground based measurements, and add to a growing list of research 

on the topic of LiDAR study of forest canopy (Lim et al. 2003). In building this statistical 

relationship, attempts are made to determine distinct groups, or clusters, of LiDAR values 

representing the intensity of HWA infestation in a given stand—values that represent healthy and 

unhealthy stands of trees. The methods from this study can be applied to determine the efficacy 

of treatment, for comparison of temporal changes over time, and broaden the scope of study from 

a local scale to a regional scale. 

The specific objectives of the research are: 

1. To analyze LiDAR data of HWA-infested stands in the Chattahoochee National Forest 

of north Georgia. Approximately 30 sites with damage that range from little noticeable 

defoliation, to stands that have severe damage and defoliation and high mortality are 

assessed. LiDAR based metrics derived are LAI, fCover, mean canopy height, height 

percentiles, average slope, average elevation, in canopy vegetation fraction (ICVF), and 

descriptive LiDAR point return statistics. 
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2. To collect field based data on selected study sites which coincide with LiDAR data that 

are representative of hemlock stands along a spectrum of infestation stages. Sites are 

assigned a health status ranking (HSr) from 1 (healthy) to 3 (very unhealthy). LAI, 

fCover, average stem density per site, species inventory, and presence of HWA are 

collected for each site. 

3. To use the collected data to create empirically based single linear regression models 

which explain ground measurements of LAI and fCover using LiDAR derived 

measurements, and to use principal components analysis and stepwise regression to 

perform multivariable regression and test if the inclusion of additional LiDAR variables 

improves the results of regression. 

4. To calculate HSr rankings through Kmeans cluster analysis of LiDAR and ground data, 

and test if there are statistically significant relationships between those clusters and the 

HSr assigned from field work. 

Study Area 

The study area for this research is in the Chattahoochee National Forest (CNF) of north 

Georgia within the southern end of the Appalachian Mountains. Elevations generally range from 

250 to over 1200 m and the forest includes the state’s highest peak, Brasstown Bald, at 1458 m. 

The CNF covers approximately 3200 square kilometers and eighteen counties and is comprised 

of a variety of forest age classes (Figure 1) (CNF 2011). 

Named after the Chattahoochee River, a major river whose headwaters originate in the 

Georgia Mountains, the CNF began as a purchase of approximately 12 square kilometers in 1911 

by the USFS. Prior to this land purchase, the area underwent heavy logging, often consisting of 
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clear cutting large tracts of land, which is primarily responsible for the relatively young ages of 

trees found there today. 

Figure 1: Age distribution of forests in Chattahoochee National Forest (CNF 2011). 

 

After 1911, additional land purchases were negotiated and the trees on national forest 

land were allowed to regrow. Logging continued in the forest, but under much tighter restrictions 

towards stewardship of the land (Davis 2000). In 1959, the CNF was merged with a central 

Georgia land purchase, the Oconee National Forest, and the two became collectively known as 

the Chattahoochee-Oconee National Forest. However, hemlocks only grow on the CNF portion 

of the National Forest. Today, the CNF encompasses ten wilderness areas as well as a Wild and 

Scenic River, The Chattooga River. The forest is split into four ranger’s districts: Blue Ridge, 

Chattooga River, Conasauga, and Oconee Ranger Districts with forest headquarters in 

Gainesville, Georgia. 
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In response to the growing need for research on the effects of HWA, as well as the need 

to treat HWA effectively, the USFS has designated certain areas of hemlock forest within the 

CNF as Hemlock Conservation Areas (HCA). These areas have been deemed either biologically 

or recreationally important, and often are sites for both entomological and silvicultural research. 

In many cases, the areas are sites of collaborative efforts from many different universities and 

research institutions to test both chemical and biological treatment of HWA, and maintain certain 

areas as controls. 

With assistance from University of Georgia researchers, four HCAs were selected for 

study: HCA #72 Slaughter Creek; HCA #71 Dick’s Creek; HCA #145 Soque River; and HCA 

#29 Panther Creek (Figure 4). Each area was visited and assessed for appropriateness of study 

and availability of LiDAR data. Each site was assigned a unique identifier as it was surveyed 

(HCA-ID), a value that corresponds to the HCA it is in and the order it was surveyed (e.g., HCA 

ID 29-01 is HCA #29 site 01). These sites represent a total area approximately 50 km wide east 

to west and 10 km north to south. Study sites generally follow rivers and streams in the HCA. In 

many cases, sites were located in flat floodplains and on slopes bordering the streams. Sites were 

hemlock dominated stands with mixed pine and a limited number of mixed deciduous trees and 

were generally devoid of understory or low lying vegetation. Study areas were located away 

from urban development or other human influences, and consist of generally dense forest canopy 

(Figure 4). The forest cover, however, is not homogeneous, and often changes composition 

quickly as one departs upslope from water. Hemlock habitat in Georgia is limited to low lying, 

shady areas, mainly along bodies of water – as exemplified in the selected study sites.  
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Figure 2: The Chattahoochee National Forest is located on the southern end of the Appalachian 

Mountains. The red rectangle shows the extent of the study sites used in the study (Figure 3). 

 

The north Georgia Mountains present an appropriate location for this study for a number 

of reasons. North Georgia represents the southern extent of eastern hemlocks’ natural range, as 

well as the range of Carolina hemlock. These sites lay along the southern end of the known 

HWA infestation in Georgia (Figure 2). In 2002, Rabun County, Georgia’s northeastern most 

county, became the first in Georgia to report HWA infestation. The earliest report of HWA from 

a county within the range of the study areas is 2005, with one county reporting as late as 2007. 

Since then, the infestation has spread south and west, with a total of 11 counties reporting HWA 

as of 2009 (USFS 2011). While the counties that comprise the CNF all report infestation at this 

time, due to the sporadic nature of HWA spread, there is a mix of both healthy and unhealthy 

hemlock stands found in the CNF. In contrast, resource managers at the Great Smoky Mountains 

National Park (GRSM) observe that almost 100% of their hemlock stands are severely infected, 

and are experiencing high mortality rates (Tom Remaley, GRSM Ecologist, personal 

correspondence). The selected study area of north Georgia, therefore, is better suited for the field 

component of this study, and provides a range of trees in various stages of decline. In addition, 
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due to lower elevations, southern latitudes, and a milder climate, hemlock habitat in north 

Georgia is generally accessible year round. 

Figure 3: Four Hemlock Conservation Areas were selected for this study: (a) Slaughter Creek, 

HCA # 72, (b) Dick’s Creek, HCA # 71, (c) Soque River, HCA # 145, and (d) Panther Creek, 

HCA # 29. Each area can be seen in detail in Figure 4.  

0 2010 Kilometers

a.

b.

c.

d.
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Figure 4: All sites are shown superimposed over U.S. Department of Agriculture National 

Agricultural Imagery Program (NAIP) 2010 imagery. Each circular polygon represents a 20-m 

diameter study site. There are 10 sites for HCA # 71, 6 sites for HCA # 72, 8 sites for HCA # 

145, and 12 sites for HCA # 29 as indicated by the points in each photo. 

b. d. HCA # 29: Panther Creek

c. HCA #  145: Soque River

0 250125 Meters

0 250125 Meters 0 500250 Meters

HCA # 72: Dicks Creek

a.

0 250125 Meters

HCA # 71: Slaughter Creek
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Geospatial Data 

 The available LiDAR data were flown by the vendor Photo Science, Incorporated (PSI), 

based in Lexington, Kentucky. The data were collected using a Leica Geosystems ALS50 

airborne laser scanner (ALS) and an Optec ALTM Gemini airborne laser scanner in leaf-off 

conditions in spring 2010. This Leica system has a 150 kHz maximum pulse rate and a four 

return range detection system, with a laser frequency of 1064 nm in the near-infrared spectral 

region. The Optec system has a 167 kHz maximum pulse rate and a four return range detection 

system, also with a laser frequency of 1064 nm. Collected as part of a U.S. Geological Survey 

(USGS) grant for Gainesville State College, the data meets the USGS V12 LiDAR 

specifications. The nominal pulse spacing is 1 m, though this varies in the along-track and 

across-track directions (with a wider spacing between sets of scan lines). Data were collected in 

snow free conditions with water bodies at or below their normal levels. Vertical accuracy is ± 15 

cm and horizontal accuracy is less than 1 m. The data were delivered in classified raw .LAS files 

tiles measuring 1.5-km by 1.5-km with four vendor provided classes: 1 – Unclassified, 2 – Bare 

Earth, 7 – Noise, 9 – Water, and 12 – Overlap. The raw .LAS tiles contained an average of over 

6 million points per tile. These tiles were provided for this study by Gainesville State College in 

conjunction with PSI and the USGS. A total of 7 tiles were received and processed according to 

the methods described below using QCoherent LP360 software. 

 Four band ortho imagery also were collected in tandem with the LiDAR data as part of 

the USGS grant. The imagery was collect at approximately 15-cm ground pixel resolution and 

the four bands were red, green, blue, and near infrared. These images can be viewed in false 

color infrared for clearer distinction between evergreen and deciduous vegetation. 
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 The U.S. Department of Agriculture (USGS) National Agricultural Imaging Program 

(NAIP) 2010 imagery for the state of Georgia was collected in leaf-on conditions in the summer 

of 2010. These data provided 3-band true color imagery with a ground pixel resolution of 

approximately 1 m. This ortho rectified dataset is used as a base layer and for comparisons 

between the four band leaf-off imagery. 

 

Table 1: A list of geospatial data and sources used in this study. 

 

Several GIS databases of both vegetation cover classification and land cover 

classification were provided by USFS CNF Headquarters, Gainesville, Georgia. This database 

contained over 70 land cover classes, approximately 100 forest type codes, as well as over- and 

understory species codes. These layers contain both estimated stand ages as well as detailed 

primary/secondary/tertiary dominant vegetation classification. For this study, forest type classes 

of 5 – Hemlock, 8 – Hemlock-Hardwood and 41 – Cove Hardwood-White Pine-Hemlock or two 

species codes TSCA and TSCA2 (eastern hemlock and Carolina hemlock, respectively) were 

Data Resource, Agency: 

 LiDAR .LAS tiles (7 Tiles) Photo Science, Inc., Gainesville State College, 

USGS 

Imagery:  

 4 band ortho image tiles Photo Science, Inc., Gainesville State College, 

USGS 

 NAIP 2010 USDA FSA APFO ESRI ArcServer Database 

Land Cover:  

 Land cover and forest type 

 classification 

Brian Jackson, USFS CNF Headquarters 

 HCA database Brian Jackson, USFS CNF Headquarters 

Site Level Information:  

 HCA treatment database and maps, 

 treatment and control sites 

Angela Mech, University of Georgia Warnell 

School of Forestry and Natural Resources 

 Field work database Personally collected data 
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considered to be valid potential study site land cover and forest type classes. CNF Headquarters 

also provided the latest GIS polygon layers of all HCAs within the national forest boundary. 

Where applicable, this layer contained information on types of treatment (chemical, biological, 

or both) being used in a given HCA. 

Angela Mech, a University of Georgia Warnell School of Forestry and Natural Resources 

graduate student involved in HWA research and biological control, provided four maps 

containing treatment and control points for the HCAs used in this study. These maps were 

imported into ESRI ArcMap and georectified. Points were extracted from these maps for use as 

guides in the field when identifying appropriate study sites. 

 Field data were collected in this study and compiled into a research database. This 

database consisted of a written site assessment, a count of all main canopy stems within a 10-m 

radius of the center of a study site, hemlock species (only) stem count within 10-m, and all 

relevant GPS information needed to reference the site. Each site was qualitatively assessed to 

determine a hemlock health status ranking (HSr). This assessment was based on the presence of 

HWA at a site, the amount of defoliation, and the height above ground defoliation. 

Scientific Significance 

This study contributes to the growing need for information on the spread of HWA throughout the 

eastern coast of the United States. While optical remote sensing techniques have been widely 

used to assess damage and identify areas of infestation, this is one of the first studies to 

incorporate the application of LiDAR to examine the difference in metrics between stands of 

varying stages of infestation. Understanding canopy changes, and being able to visualize them 

vertically, can provide a better understanding of the progression of the disturbance, and a way to 

view loss of habitat in the canopy. This study also demonstrates the vertical distributions, and 
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differences therein, of canopy and shows how that distribution changes as infestation progresses. 

While LiDAR alone may not be able to predict areas of infestation with certainty due to the high 

variance of canopy form between individual trees and variable microhabitats of specific 

locations, it may be used to aid in the identification and visualization of hemlock sites 

undergoing defoliation. Finally, while other studies add to the growing body of research in the 

applications of LiDAR for forest metrics by looking at differences in sites due to age or species 

type, this study is unique in that it looks at differences in stands due to a disturbance, and 

compares sites based on the progression of that disturbance. 
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CHAPTER 2 

LITERATURE REVIEW 

Eastern Hemlock 

The eastern hemlock (Tsuga canadensis), a member of the pine family, is one of four known 

hemlock species that grows in North America. In total, there are only ten hemlock species known 

in the world (Brisbin 1970). Two species of hemlock, the western hemlock (Tsuga heterophylla) 

and mountain hemlock (Tsuga mertensiana), grow in the western and north-western areas of the 

United States and Canada, while the Carolina hemlock (Tsuga caroliniana) is found exclusively 

in the southeastern part of the United States. The eastern hemlock naturally ranges from Nova 

Scotia, Canada in the north, southward along the coast and Appalachian Mountains to Georgia 

and Alabama, U.S. to the south. It is also found in the Lake States as far west as Michigan and 

Wisconsin (Figure 5) (Burns and Honkala 1990, Brisbin 1970). Though there exists a mix of 

eastern hemlock and Carolina hemlock in the study area, the follow discussion is about eastern 

hemlock only, since it is believed that it constitutes the majority of hemlock in Georgia. 

Eastern hemlocks are unique in that they are one of the most shade tolerant tree species 

known, with seedlings being able to survive with less than 5 percent of full sunlight (Carey 

1993). Typically, this species grows slowly throughout sapling and pole stages, and is able to 

withstand frequent suppression and release cycles during growth. Generally, hemlock 

germination rarely occurs without heavy overstory, due to moisture stress caused by germination 

in the open (Burns and Honkala 1990). It is not uncommon to find individual trees over 100 

years old with a diameter at breast height (DBH) less than 5 cm. Mature eastern hemlock DBH 
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and height varies spatially, but generally diameters range between 89 and 102 cm and heights are 

greater than 30 m. Typically, DBH and height is slightly greater in the Southern Appalachians 

than in New England or the Lake States (Burns and Honkala 1990). While in sapling and pole 

stages, hemlocks tend to have a dense conic or pyramidal crown with the lower branches very 

close to the ground; while in mature stages they tend to have ragged crowns (Brisbin 1970). 

Figure 5: Native range of eastern hemlock (Brisbin 1970). 
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Eastern hemlocks (hereafter “hemlock”) are noted for their small needles as well as 

having the smallest cones in the pine family. Needles are typically 0.5-cm wide and .85 to 1.85-

cm long, and are flat and narrow. Cones are only 1.25 to 2-cm long (Brisbin 1970). Needles and 

cones normally grow in very dense clusters. Understory in a dense stand of hemlock is less likely 

to develop due to the lack of penetrating solar radiation through the canopy, however, low lying 

shrubs, herbs, and mosses are able to grow (Burns and Honkala 1990). 

The hemlock root system is typically defined by site conditions. When high soil horizons 

are moist, the root system is shallow, but deep root systems have also been observed. Most 

typically, hemlocks are found in lower lying, shaded areas, where root systems are shallow, 

making the trees susceptible to windfall and damage from fire (Burns and Honkala 1990, Carey 

1993). There is no one soil type requirement for this species, but soils are generally well drained 

and moist to very moist (Yamasaki 2000). Hemlocks grow in cool humid climates with winter 

temperatures averaging below freezing (-12º C) and summer temperatures moderate (16º C) in 

northern states, while in the southern extent, temperatures are generally much warmer (winter 

averages of 6º C) (Burns and Honkala 1990, Carey 1993). Precipitation is highly spatially 

variable within the hemlock’s range. Values range from 75 cm in the New England States to 150 

cm in Southern Appalachia and 1000 + cm for Lake States (Yamasaki 2000, Burns and Honkala 

1990). 

Although it has been long understood that hemlock provides a vital habitat for white-tail 

deer, especially as a source of food in the winter, many other species of birds and mammals also 

rely on hemlock for food, shelter, and breeding (Anderson and Loucks 1979, Yamasaki 2000). 

Eastern hemlock habitat can be characterized by a number of unique factors preferred by certain 

types of birds and mammals such as a generally cooler micro-climate, thermal coverage in winter 
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months, dense overstory and canopy that reduces forest floor light penetration, increased woody 

debris thickness and coverage on the forest floor, and cavities in trees that provide roosting, 

denning, and breeding opportunities for birds and mammals. It is estimated that 96 species of 

bird and 47 species of small and carnivorous mammals are associated with hemlock habitat, 

while 8 bird species and 10 mammal species are strongly associated, relying significantly on 

hemlocks for food, shelter, and reproduction (Yamasaki 2000).  

 

Figure 6: Eastern hemlock branch with young green cones. Source: J.S. Peterson @ USDA-

NRCS PLANTS Database (USDA 2011). 
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Hemlock Woolly Adelgid 

The hemlock woolly adelgid (Adelges tsugae) (HWA) is a small aphid-like insect that is native 

to Japan. The HWA has a polymorphic life-cycle in which it undergoes six different 

developmental phases; egg, four nymphal instars, and adult, which can include both winged and 

wingless forms (McClure 1987, McClure 1989). The HWA undergoes most of its developmental 

phases between June and October, and undergoes two annual generations (Orwig and Foster 

1998). 

The HWA is believed to have been introduced to the western coast of the United States as 

early as 1922, but western species of hemlock have natural defenses that allowed them to remain 

unaffected by the pest (McClure 1987). The first report of HWA on the east coast, where 

hemlock species are susceptible to the invasive pest, was in the 1950s in the Mid-Atlantic States. 

The HWA spread north and south quickly since that time (Stadler et al. 2005, Orwig and Foster 

1998, McClure 1990). As of 2009, it is estimated that HWA has spread as far south as Georgia, 

as far north as Maine, and as far west as Tennessee and Kentucky, affecting as much as 50% of 

all eastern hemlock (Figure 7) (USFS 2011). 

 Immature nymph and adult adelgids feed on the fluid from the base of hemlock needles, 

where the needle attaches to branches. A female HWA may lay up to 300 eggs in one generation, 

and multiple generations may overlap. Through sheer number, the HWA is able to overfeed on 

hemlocks causing loss of vigor, early drop of needles, and lack of regenerative growth (McClure 

1987). The adelgid gets its name from the white fluffy sacs that look like wool that form on 

nymph crawlers, and remain on the insect’s body its entire life (Figure 8) (USFS 2011). 
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Figure 7: Counties with established and new adelgid populations in 2010 (USFS 2011). 

 

HWA is spread by a number of different processes including wind, birds, and human 

activity (McClure 1990). McClure (1990) found an even vertical dispersion of the woolly adelgid 

throughout the canopy, indicating that an infested tree is likely to be covered from base to top. It 

is predicted that most trees die within 5 – 15 years of infestation, with slightly faster rates found 

in the south (Stadler et al. 2005, McClure 1990). Research is ongoing as to new forms of 

treatment, including insecticides, biological controls (natural predators), and hybridization of 

species (USFS 2011, Orwig and Foster 1998, Orwig et al. 2002). 
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Figure 8: Woolly sacs found on a hemlock branch (USFS 2011).  

Effects of Hemlock Decline 

  Unlike other infestations, diseases, or blights seen previously, HWA has the ability to 

wipe out entire stands of hemlock within a few years, regardless of age (Orwig and Foster 1998). 

As hemlocks continue to die along the east coast, a number of environmental changes occur. 

Hemlocks exert a strong control over their stand characteristics, including microclimate, soil 

characteristics, and habitat (Orwig and Foster 1998, Yamasaki 2000). As hemlocks die, animal 

species that once relied on hemlocks for food and shelter will have to adapt to new tree species, 

emigrate, or decline in population. A reduction in the diversity and change in spatial pattern of 

many plant and animal species is expected as hemlock habitat declines (Yamasaki 2000). 

Hemlocks create shade with relatively low and dense bottom branches that maintain a cool and 

moist microclimate. Hemlock seeds are very sensitive to changes in temperature and moisture, 
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and with increased light penetration to the forest floor due to HWA damage, the moisture of soils 

and air decreases and temperature increases. Increased solar radiation causes the number of new 

hemlock saplings and rate of germination to decline (Burns and Honkala 1990, Stadler et al. 

2005, Orwig and Foster 1998). Rain through fall also increases in areas of HWA damage, 

resulting in erosion, especially along banks of creeks and rivers on which hemlocks grow. 

Changes in stream temperature, pH, discharge, and available photosynthetic light have 

significant ecological effects on riparian ecosystems (Roberts, Tankersley Jr and Orvis 2009). 

Species succession occurs rapidly both for new dominant canopy species and understory 

vegetation. Forest characteristics also change in favor of species that prefer more sun exposure 

and are more tolerate to warmer and drier conditions (Stadler et al. 2005, Orwig et al. 2002).  

Ground Measurements of Leaf Area Index 

Leaf Area Index (LAI) is the ratio of upper leaf surface of vegetation divided by the 

surface area of the ground from which the vegetation grow (Watson 1947). LAI is a 

dimensionless value that ranges from 0 (no vegetation cover) to 6 (dense vegetation cover). Field 

data collection methods of LAI can be divided into two categories: direct and indirect methods. 

Direct methods involve either the collection of all fallen leaf litter over a given time period, or 

the physical removal of all vegetation from a given area. With both methods, the actual upper 

surface area of leaves is measured, and an LAI value is directly derived. Indirect methods, such 

as those employed in this study, include categories of measuring leaf area without the collection 

or removal of leaves from a site. These methods can include contact, such as the use of plum 

lines and point quadrants, and non-contact methods such as hemispherical photography 

(Jonckheere et al. 2004). 
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 Hemispherical photography as a ground measure of LAI has both advantages and 

disadvantages. The capture of photographs in the field is quicker and simpler than other methods, 

and provides permanent visual reference to the light conditions, species composition, canopy 

density, age and variation, and distribution of canopy gaps for a given site (Jonckheere et al. 

2004). Analysis of photographs, however, is often time consuming, and myriad methods and 

equations with which to process photographs often leads to disparate and unrepeatable results. 

One of the first steps to begin analysis of hemispherical photographs is the thresholding of 

images: deciding what constitutes vegetation and sky in the image based on grey values in black 

and white or red, green, and blue values in a color image. Image thresholding alone constitutes 

its own area of research – with one study citing over 40 different methods of thresholding images 

(Jonckheere et al. 2005).  

 Calculation of LAI from optical methods is an inexact method due to the inclusion of 

woody debris, stems, and other plant parts in the calculation of a photograph. Previous studies 

have labeled LAI from non-destructive methods as LAIeffective or Plant Area Index, since it is not 

possible to truly know the measured LAI. It would also be incorrect to mask or remove woody 

debris from an image during processing, since no assumptions can be made about the presence of 

leaves behind woody debris in an image (Weiss 2010). Due to this, LAI from hemispherical 

photographs has been found to generally underestimate the true values of LAI, when destructive 

and non-destructive methods are tested side-by-side (Chen 1996). Therefore, in this study, values 

of LAI presented are calculated as effective measures of LAI. 

  In some instances, a clumping factor can be calculated and applied as a conversion factor 

to more closely calculate true LAI, but the derivation of clumping factors is especially difficult in 

needle-leaf forests (Chen 1996, Riaño et al. 2004, Weiss et al. 2004). Both the clumping of leaf 
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elements and the distribution of branches in a site can lead to miscalculations of LAI (Chen and 

Black 1991). Two equations used in this study have a clumping factor applied to estimate true 

LAI values. 

LiDAR 

New remote sensing techniques augment and expand our ability to study the world around us. 

Light Detection and Ranging (LiDAR), for example, is a relatively new and unique form of 

remote sensing that provides data that were not previously available with traditional 

photographic techniques (Wehr and Lohr 1999). 

 LiDAR emits a laser light pulse from a transmitting sensor, and receives return pulses 

that are reflected off a target back to the receiving sensor. LiDAR sensors can be terrestrial 

(ground based), aircraft based (fixed or rotor wing), or satellite based. All airborne laser scanning 

(ALS) systems have three main components: the laser ranging unit, the opto-mechanical scanner, 

and the control and processing unit (Wehr and Lohr 1999). Based on the known travelling time 

of a light pulse, the LiDAR processing unit is able to calculate the total distance from the sensor 

to the object, equaling 1/2 the total time from transmission to receiving (Wehr and Lohr 1999, 

Lim et al. 2003). The laser ranging unit emits a continuous wave or a laser pulse, which is 

directed through a scanning mechanism towards the target. The result of the scanner and the 

forward motion of the aircraft results in near parallel zigzag scanning lines; however, the 

resulting scan lines are dependent on the type of scanning mechanism and the speed of the 

aircraft (Figure 9). After the laser pulse is reflected off an object, the reflected laser is received 

by a separate sensor and processed. A position and orientation system (POS), which is composed 

of an inertial measurement unit (IMU) and a differential GPS (DGPS), correctly orients the 

returning laser pulses in space. The IMU records the roll, pitch and yaw of the aircraft while the 
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DGPS unit records the exact location of the LiDAR system. This information, combined with the 

ranges and scan angles, sensor calibration and mounting parameters, enables accurate positioning 

of each laser pulse in space. 

 One of the advantages of LiDAR is the ability to achieve high horizontal and vertical 

accuracies. Generally, current vertical accuracies range from approximately 0.1 to 0.3 m, while 

horizontal accuracies can be sub-meter to 3 m, depending on the sensor. Advances in LiDAR 

acquisition and post-processing have begun to increase accuracies, with some new scanners and 

techniques providing sub-centimeter accuracy (Ananda Fowler, Riegl USA, personal 

correspondence). 

There are two main types of ALS systems used in forest applications (Lim et al. 2003). 

The first type of laser is called continuous wave (CW) laser or full waveform lasers. Examples of 

this type of system are SLICER (Scanning LiDAR Imager of Canopies by Echo Recovery) and 

VCL (Vegetation Canopy LiDAR Mission) (Wehr and Lohr 1999, Dubayah 2000, Lefsky et al. 

1999). This type of ALS emits a continuous laser wave that records the intensity of returns 

(Figure 10). The return intensity is recorded continuously, so that the intensity is near zero when 

travelling through space, but high when reflecting off a solid object. 

The second type of system is a discrete return system, where individual laser pulses are 

emitted (currently up to 150,000 per second). Early versions of these systems operated at 

approximately 400 pulses per second and only were able to record one or two returns per laser 

pulse (i.e.,, first and/or last returns), however, most modern systems are able to record up to five 

returns for each laser pulse. Currently, this is the most common commercial LiDAR system. The 

comparisons between full waveform and discrete return LiDAR systems can be seen in Figure 

10. 
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Figure 9: An ALS system with laser scanner, Differential Global Position System, and Inertial 

Measurement Unit (Lim et al. 2003). 

Figure 10: The difference between full waveform and discrete return LiDAR. The cone in the 

middle represents a single LiDAR pulse. The numbers on the right indicate the discrete return 

number. Modified (Lim et al. 2003). 
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A number of factors, including flying height, the field of view (FOV), and instantaneous 

field of view (IFOV) (i.e.,, the laser footprint on the ground) determine the density of sampling 

of LiDAR points, as well as the total area to be covered in a single flight line (Dubayah 2000, 

Wehr and Lohr 1999). Generally, LiDAR systems are divided into two different classes: small 

footprint (5 – 30 cm) and large footprint (up to 25 m). For an in-depth discussion of the 

advantages and disadvantages of large and small footprint LiDAR systems, see Dubayah (2000). 

Small footprint LiDAR is better adapted for finer scale analysis, as in this study. Large footprint 

systems cannot always capture the same high resolution detail needed to analyze 20-m diameter 

or smaller area sites. 

LiDAR Applications in Forest Studies 

LiDAR systems are well suited to ecological applications including assessment of forest 

structure (Lim et al. 2003, Dubayah 2000, Lefsky et al. 2002, Nelson, Krabill and Maclean 

1984). LiDAR can directly measure and estimate forest characteristics such as canopy height, 

canopy density, subcanopy topography, ground elevation, and vertical distribution of objects 

between canopy and ground (Dubayah 2000). LiDAR measurement are also correlated with 

other forest characteristics such as crown shape, roughness, tree density/spacing, basal area, 

biomass, and LAI (Coops et al. 2007, Nelson et al. 1984, Nelson, Krabill and Tonelli 1988, 

Popescu, Wynne and Nelson 2003, Lefsky et al. 1999, Kane et al. 2010, Means et al. 1999). 

 Some of the earliest uses for ALS systems were coastal topographic and bathymetric 

applications, but in the early 1980s, those scanners were adapted for ecological uses, especially 

for characterization of forests. Nelson (1984), for example, used a full waveform bathymetric 

laser system in profiling mode to acquire tree heights and canopy density, and compare those 

values to photogrammetric methods. The laser data were collected over a flight line 14-km long, 
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but only 0.75-m wide (the IFOV of the scanner) at 400 points/sec (approximately 0.25-m post 

spacing). Only 2 returns per pulse were collected. They found laser height measurements could 

estimate tree heights within approximately 1.0 m of traditional photogrammetric methods, and 

they were able to sample heights at a greater rate. They observed healthy canopy was more likely 

to return values approximating the top of the canopy, while defoliated canopy (in their case, due 

to gypsy moth infestation) returns were more likely to have been hits from below the canopy 

surface. He also found they could approximate canopy density better than traditional 

photogrammetric methods with greater certainty. His study is one that laid the groundwork for 

all future work in ALS for forest characteristics by postulating that LiDAR data could accurately 

be correlated with other forest metrics, including biomass and timber volume (Nelson et al. 

1988). 

 Prior to the mid-1990s, most ALS studies were accomplished in profiling mode (Næsset 

1997). This greatly limited the capacity of researchers to assess large areas of forest without the 

need for extensive field or photogrammetric based work, which was expensive and time 

consuming. These early studies also suffered from a lack of high accuracy location information. 

However, as DGPS, IMU and laser scanner technology advanced, researchers had greater access 

to commercially available scanning systems that covered larger areas with fewer flight lines. The 

advancement of computing technologies, especially post-processing software for laser data, 

aided in the wider use of LiDAR data (Næsset 1997, Wehr and Lohr 1999). Increased data 

storage capabilities also allowed researchers in the late 1990s to begin collecting and processing 

multiple return data for both full waveform and discrete return data. 

 In spite of initial success in applications of LiDAR in forest studies, LiDAR derived 

mean tree height generally underestimated true mean heights (Magnussen and Boudewyn 1998, 
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Næsset 1997). This problem has been approached in a number of different ways with varying 

degrees of success. The basic assertion is that it is unlikely for a laser pulse to: a) hit the highest 

parts of the canopy, such as tree crown tops; and b) regardless of where laser pulses hit, they 

penetrate canopy by up to a few meters before being returned. Næsset (1997) found that laser 

data generally underestimated ground truth heights by 4.1 – 5.5-m. However, by using a grid 

sampling method of the highest points per cell, and by increasing or decreasing the cell size, they 

were able to reduce the bias to -0.4 – 1.9 m. Other, more mathematically complex methods have 

also been proposed with varying degrees of successful application (Magnussen and Boudewyn 

1998). 

In addition to forest height, LAI is another important metric that LiDAR can measure 

with increasing levels of accuracy. As observed in previous work, one limitation of 

photogrammetric methods for estimation of LAI is saturation at high values, and noise caused by 

variability in reflectance values (Chen and Cihlar 1996, Riaño et al. 2004). Using high sampling 

(9.3 points/m
2
), small footprint (0.45-m diameter) discrete return data, Riaño et al. (2004) 

showed they could achieve very high coefficients of determination by varying the size of the 

sampled LiDAR data for a given hemispherical measure of LAI in two contrasting forests, 

achieving R
2
 values of about 0.9 and 0.5 for oak and pine, respectively. Other studies have also 

found that it is possible to explain LAI accurately through the use of LiDAR datasets, including 

Lefsky et al.’s (1999) use of SLICER full waveform laser to estimate LAI and explain 75% of 

the LAI variability in a Douglas-fir Western hemlock forest using a three-dimensional canopy 

volume method (CVM). 

Being able to recognize subtle differences in canopy structure between forest stands is an 

essential part in describing the effects of a fine scale and spatially heterogeneous disturbance on 
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a given area. Canopy structure changes dramatically during and after stand disturbances, and 

being able to quantify those changes depends on the ability to show a measurable difference in 

stand structure (Lefsky et al. 1999). Solberg et al. (2004) tracked the progress of a severe pine 

sawfly attack on scots pine forests using LiDAR derived LAI measurements and found that 

correlation coefficients were strong: 0.94 with LAI-2000 and 0.87 with hemispherical 

photography. The use LiDAR before and after a disturbance has not been widely studies since 

multi-temporal LiDAR is relatively unavailable. Until the costs of LiDAR acquisition is low 

enough for monitoring on a regular basis, alternative methods for detecting disturbance and 

defoliation in canopy is required. This study attempts to explain effects of invasive insect 

defoliation on hemlock forest structure using methods described in Chapter 3 of this thesis. 
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CHAPTER 3 

METHODOLOGY 

 The methodology for this study can be divided into four different categories: field data 

collection methods, field data processing, LiDAR data processing, and field and LiDAR data 

analysis. Each methodology required its own preparation and execution, and in some instances, 

previously proposed methods were not appropriate and new methods were adapted to achieve 

results. 

Field Data Collection 

 Field data were collected at 36 sites during the months of April and May, 2011. Before 

field data collection was carried out, selection of appropriate field sites to meet the proposed 

objective criteria for field sites was necessary. This proved to be difficult and posed a large 

obstacle to the collection of field data. The first attempt at identifying field sites included the use 

of a GIS to overlay both USFS Hemlock Conservations Areas (HCAs) and “pure” hemlock 

vegetation cover classification data on both USDA NAIP 2010 imagery and custom acquired 

high resolution orthoimage tiles collected in tandem with the LiDAR data as part of a USGS-

funded grant for researches at Gainesville State College (Sharma and Panda, personal 

communication). Due to the spectral similarities between species of pine and hemlock in the true 

color NAIP images, image interpretation provided limited utility in identifying hemlock stands. 

Three separate trips were made to HCAs throughout the central and northeastern part of CNF to 

ground truth possible study sites. In all cases, stands were typically pine dominated overstory 

with mixed hemlock as a subdominant species. 



 

32 

Field Site Selection 

With assistance from University of Georgia Warnell School of Forestry and Natural 

Resources researchers involved in insect release and biological control of HWA throughout 

CNF, five maps were acquired with treatment sites. In each area, previous research sites 

involving HWA treatment were only considered as guides from which to begin a search to find 

other appropriate sites. In some cases, but not all, sites for this study coincided with sites selected 

for HWA control. Actual field site selection was based on a number of factors. Each site 

represented at least 50 percent hemlock coverage in the main canopy. This was assessed visually 

from the ground for each site and based on percentage of main canopy species stem count. In 

order to focus on HWA disturbance to canopy trees, understory was considered to be 

undesirable, and in the majority of sites, there was little to no presence of an understory or low 

lying vegetation. Proximity to interfering features, such as power lines, houses, cliffs, and rivers 

was considered undesirable in site selection; however, as discussed in the literature review of 

eastern hemlock, these trees show a preference for steep, rocky slopes near water. The majority 

of chosen sites were flat, but in some instances, sloped sites were selected due to the preference 

for high hemlock canopy percentage. In all cases where sites were selected near water or roads, 

care was taken to be outside of a buffer from roads or water of approximately an additional 5 m 

to ensure that both LiDAR and georeferenced ground data would not overlap with water or road 

features. Due to the limited distribution of known hemlock habitat in the CNF, sites were not 

selected in a systematic or grid pattern. Alternatively, sites were selected where criteria were met 

and spatial autocorrelation between sites was not considered. Of these five research areas, four 

were chosen for field survey in this study. The geographic coordinates for these areas were 

loaded onto a Garmin Vista HCx handheld GPS unit with Wide Area Augmentation System 
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(WAAS) correction to approximately ± 3 m. This unit was then used as a reference guide when 

looking for sites. 

Once a site was selected, a research protocol was followed for the collection of all data at 

each site to ensure consistency. While details are provided below, this included first collecting a 

high accuracy GPS point location, then collecting a spherical site survey image, and finally 

collecting the hemispherical canopy image. A field survey, which included a total count of all 

main canopy tree stems within 10 m of the survey point, was also collected. 

Collection of GPS Location 

GPS points for each site were collected for each site using a Trimble Pathfinder ProHX 

GNSS receiver (Trimble 2011b) and a Trimble Nomad handheld field computer ((Trimble 

2011a). GPS points were collected using real-time WAAS corrections. The averages of the 

reported accuracies were ± 1.5-m Horizontal Positional Error (HPE) and ± 2.4-m Vertical 

Positional Error (VPE) with an average Position Dilution of Precision (PDOP) of approximately 

5 (Table 2). The locations were not post-processed from the Trimble unit since the real-time 

accuracy meets or exceeds that of many other LiDAR canopy studies. 

The GNSS receiver and field computer were mounted on a 2-m tall survey pole and 

connected via Bluetooth. Each point was averaged 30 times per site before recording a location 

with a target maximum PDOP of 6 and a maximum allowable PDOP of 7. Locations data was 

recorded both from Trimble GPS Controller and ArcPad 7.0 software on the handheld field 

computer. 
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Table 2: HPE, VPE, and PDOP for all study sites (units in ± meters).  

Collection of Field Imagery 

A Nikon CoolPix 8700 camera body was used to collect all spherical and hemispherical 

photography. The system, assembled by IPIX (IPIX 2011) is designed to acquire two images that 

are later knitted together to create 360° immersive photography – imaging the entire sphere of 

area around the camera. The CoolPix 8700 has 8.0 million effective pixels. All images were 

collected as JPEG files on the fine quality setting with an image resolution of 3264 x 2488 pixels 

(highest available). The camera body lens was set at 35mm. All other settings were pre-

programmed from IPIX; therefore, shutter speed, ISO, and aperture settings were set to 

automatic, and flash was turned off. A Nikon FC-E9 0.2x fisheye lens convertor was mounted to 

the camera body with a UR-E12 lens adaptor. This fisheye lens provides approximately 183° to 

HCA ID HPE VPE PDOP HCA ID HPE VPE PDOP 

145-01 0.78 2.5 4.94 29-11 2.6 3.1 4.8 

145-02 1.1 2.5 5.34 29-12 3 3.2 5.8 

145-03 1.2 2.1 3.51 71-01 2.1 3.2 6.5 

145-04 1.5 2.6 5.71 71-02 3 3.5 5.81 

145-05 1.9 2.7 6.8 71-03 1.3 3.1 4.66 

145-06 1.8 3.7 6.88 71-04 1.8 2.4 5.69 

145-07 0.8 1.4 3.07 71-05 0.76 1.2 2.98 

145-08 2 3.1 6.12 71-06 0.76 1.8 3.79 

29-01 0.96 1.9 4.1 71-07 0.91 2.2 3.77 

29-02 2.1 2 5.5 71-08 0.69 1.5 4.89 

29-03 1.9 2.4 5.88 71-09 1.5 3.6 7.2 

29-04 1.1 2.3 4.8 71-10 0.63 0.99 2.26 

29-05 1.7 1.9 4.77 72-01 1.6 2.2 5.8 

29-06 0.89 2 2.88 72-02 1.7 2.4 3.69 

29-07 1.2 1.9 4.28 72-03 1 2.9 5.87 

29-08 1.9 2.3 5.6 72-04 0.94 3.2 6.5 

29-09 2 2.3 5.6 72-05 2.2 2.7 6.58 

29-10 1.2 1.5 4.6 72-06 0.87 1.1 5.47 
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190° view angle for similar camera models, though the exact view angle is not specified for the 

CoolPix 8700. The fisheye lens reduces the focal length of the camera’s lens to x0.2. 

For all study sites, a pair of horizontal images, level with the ground, were taken that 

were later knitted together to create the spherical immersive image. This process uses a special 

tripod and camera mount that allows the camera and lens to rotate. The mount has notches at 0° 

and 180°. Two images were taken facing exactly opposite of each other. Photo-documenting 

each site using immersive photography allows for future study of changing conditions of 

hemlock canopy and the surround forest, as the forest floor is visible in all spherical images. This 

mosaic also allows a second look at certain site conditions that may not have been originally 

documented while in the field. Two sets of IPIX immersive spherical images were collected at 

each site for site documentation. 

After the spherical photography was collected, the camera was remounted vertically to a 

tripod that allowed the camera to face directly up at the canopy for collection of hemispherical 

canopy images which were used to calculate forest metrics. The fisheye camera system was first 

oriented so that the top of the camera faced north and then leveled using a torpedo bubble level. 

Three images were collected per site. All photographs were taken in clear, blue sky conditions. 

Blue sky conditions are preferred for this study over other conditions (such as overcast) because 

vegetation to sky contrast is higher during clear, well lit conditions, than in cloudy or poorly lit 

conditions. However, clear sky conditions introduce the sun as an obscuring factor when 

thresholding and interpreting images. Caution was used when collecting these images to ensure 

that exposed sun did not interfere with image collection, but not all images were free from sun. 

This can both introduce highly overexposed areas of the image creating a halo effect, as well as 
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overexposed vegetation and tree trunks. This issue is partially handled by capturing three images 

per site, and partially handled during image processing, which will be explained later. 

Site Description and Other Variables 

A basic site description was recorded that included the perceived HWA site status from 

the ground, as well as a main canopy stem count and hemlock stem count. The Health Status 

Ranking (HSr) was a subjective value assigned to a site that defined whether it was: (1) healthy; 

(2) moderately healthy; or (3) unhealthy. 

An assessment was made for each site about the damage to the surrounding hemlock trees 

due to HWA. A site with limited visible damage was given a HSr of 1, while a site with 

extensive damage, dead branches, and damage that extended upward on the tree trunk was given 

a HSr 3. A stem count was conducted within a 10-m radius from the center of the site. This 

included counting all stems that were determined to be main canopy, generally taller than 4 – 5 

m without weight given to diameter at breast height. Hemlocks only were then counted, and a 

percentage was calculated of hemlock to total stems to give a rough estimate of the percentage of 

hemlocks in the main canopy for a given site. The values collected during the field site can be 

seen in Table 3. 
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Table 3: Health Status Rank (HSr), Stem Count, Hemlock Stem Count, and Hemlock Percentage 

based on stem count for all study sites. 

 

Field Data Processing 

 Once all images were collected in the field, they had to be corrected for lens distortion 

and undergo threshold processing. Calculations could then be made to determine measures of 

forest structure. The Can-Eye V6.1 (INRA 2011) free software package was used to process all 

hemispherical field images. This software was developed by the French National Institute of 

Agronomical Research and designed to calculate the fraction of soil covered by vegetation, 

fCover, Leaf Area Index (LAI), (both effective and true), Average Leaf Inclination, and a host of 

other canopy metrics. 

HCA 

ID HSr 

Stem 

Count 

Hemlock 

Count 

Hemlock 

Percent 

HCA 

ID HSr 

Stem 

Count 

Hemlock 

Count 

Hemlock 

Percent 

145-01 2 59 30 51 29-11 1 72 56 78 

145-02 3 46 25 54 29-12 1 28 18 64 

145-03 2 37 30 81 71-01 2 68 52 76 

145-04 3 43 24 56 71-02 3 60 43 72 

145-05 2 50 35 70 71-03 1 45 27 60 

145-06 2 43 31 72 71-04 3 24 12 50 

145-07 1 61 42 69 71-05 2 59 35 59 

145-08 1 40 21 53 71-06 3 52 34 65 

29-01 2 50 31 62 71-07 1 38 21 55 

29-02 2 30 20 67 71-08 2 41 25 61 

29-03 2 39 28 72 71-09 2 37 22 60 

29-04 1 61 51 84 71-10 3 33 17 52 

29-05 2 100 86 86 72-01 1 48 42 88 

29-06 3 45 38 84 72-02 1 53 48 91 

29-07 3 34 27 79 72-03 3 58 44 76 

29-08 2 50 35 70 72-04 3 48 24 50 

29-09 2 49 36 74 72-05 3 80 60 75 

29-10 3 41 26 63 72-06 1 37 24 65 
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Lens Correction and Parameter Selection 

Prior to any image analysis, a lens correction procedure was applied to ensure correct calculation 

of all metrics from the hemispherical photography. The procedure required two separate steps to 

calculate a third order polynomial lens correction equation for the CoolPix + fisheye lens system. 

The first step was the calculation of the optical center of the camera sensor. In a perfect system, 

the optical center of an image is exactly ½ the vertical pixels and ½ the horizontal pixels, but due 

to flaws in the camera sensor and lens, the optical center is not typically the center X and Y 

pixels of a digital image. To determine the optical center of the picture, three holes were put into 

the lens cap. A series of 17 images were taken with the lens cap on, and the lens cap was rotated 

counter clockwise between each image. The X and Y values for each lens hole in each image 

were input to an Excel spreadsheet provided with the Can-Eye software. 

The second step in lens correction was the characterization of the projection function. 

This was to determine the radial distortion of the lens as one approaches the edge of the image 

from the optical center. To complete this process, three 1-m sticks were used and attached 

together in an open sided rectangle measuring 50-cm on the parallel sides and 30-cm on the open 

side (Figure 11). 
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Figure 11: Camera calibration was an important step to fixing lens distortion. Two images were 

taken at distances H and H
1
 from the meter sticks (the open ended rectangle) and X and Y pixel 

values of centimeter readings on the meter sticks were extracted with imaging software and input 

to a spreadsheet. 

 

Two images were taken at distances of H and H
1
 from just inside the rectangle towards 

the 30-cm open side so that the centimeter readings of the meter sticks were visible in the 

images. The images were loaded into ERDAS Imagine, and the X and Y image pixel values of 

centimeter readings from the meter sticks in the images were recorded in the provided Can-Eye 

spreadsheet (Figure 12). Can-Eye uses the X Y image coordinates of the visible centimeter 

readings from meter sticks to calculate the distortion in the lens. The optical center and the 

projection photos are required to calculate a third order polynomial correction which was applied 

to all photos prior to data extraction. 
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Figure 12: The left image is the lens correction photograph at distance H and the right image 

shows the X Y pixel value extraction from the centimeter readings on the right meter stick. 

 

All hemispherical images were processed using the same parameter functions. These 

parameters were saved in a master file that was applied to each photo prior to processing (Table 

4). The zenith and azimuth angular resolution defines the resolution at which LAI is modeled. 

The Circle of Interest angle defines the area of the image that is used in calculating all variables. 

This value could range as high as 90°, but in order to ensure that areas of the ground in sloped 

study sites were not included in the images, 60° was chosen as a value that included only 

vegetation and sky.  
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Table 4: Can-Eye Parameter settings were saved in a master file and used to calibrate each 

hemispherical canopy image prior to calculating LAI or fCover. 

 

The Circle of Interest angle is measured from nadir, or directly upward from the lens. 

Imagine a cone extending from the lens of the camera upward towards the canopy. Now imagine 

a cylinder that intersects the outer edge of that cone at the top of the canopy and extends back 

towards the ground. The area of the circle where the cylinder intersects with the ground is the 

ground footprint area. A larger Circle of Interest angle would create a larger cone, sample more 

canopy, and produced a larger ground footprint. Therefore, a 90° angle would be horizontal to 

the ground and may actually include ground in the image. 60° was selected as being large 

enough to ensure coverage of the 20-m site as defined by the ground footprint, and small enough 

to include only those areas of detail desired. 

Hemispherical Image Processing 

Three hemispherical photographs were used to derive all results for each site. While Can-Eye 

recommends using up to eight images, three were chosen in favor of field and processing time. 

Can-Eye provides a pre-classification gamma stretch and image masking which aids in both the 

automatic and manual classification of images. Masking allowed the removal areas of the 

photograph that were not appropriate for classification or calculation (i.e., an obstruction in the 

image such as a person). No photographs in this study required masking. Can-Eye used a 

Parameter Value Setting 

Zenith Angular Resolution 2.5° 

Circle of Interest 60° 

Integration Domain for fCover 0 - 10° 

Azimuth Angular Resolution 2.5° 

Subsampling Factor 1 
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modified supervised classification process to threshold vegetation and sky classes for each 

image. After applying a gamma stretch to the images, there were three options for automatic 

classification: Greenness Index, Brownness Index, and Brightness Index. These values could be 

adjusted between 0 and 1 to threshold images. Once appropriate values were selected, Can-Eye 

provided manual tools for image classification: a pixel based supervised reclassification, and a 

manual polygon delineation tool for reclassifying areas that would not properly classify using 

supervised methods. This pixel based classification tool was useful to select values that were 

mixed pixels, where a prior knowledge helped to correctly classify the pixel values (i.e., dark 

“blue” that was vegetation, but classified as sky). The polygon tool was used in areas where 

overexposure due to sunlight caused vegetation to not be classified as such, and could be used on 

a case-by-case basis. In all cases, polygon delineation and supervised pixel reclassification 

resulted in satisfactory results where sun exposure correction was needed. Each set of images for 

each site underwent the same process in Can-Eye prior to variable calculation. An example of the 

final result of a Can-Eye classification can be seen in Figure 13.  

Figure 13: Can-Eye classified each image into two classes: vegetation and sky. In this image, 

green represents the vegetation class and blue represents sky. Average vegetation coverage of all 

three images was used to calculate fCover and LAI. HCA ID 29-10. 
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LAI and fCover Calculation from Hemispherical Photography 

 The Can-Eye software package calculates 7 different LAI estimations. It uses its own 

calculation, Can-Eye LAI effective, a traditional Miller LAI effective, as well as estimations of 

the LICOR LAI2000 instrumentation values at three, four and five rings. Beyond calculating 

effective measures of LAI, as described in Chapter 2, it also calculates two estimations of true 

LAI: Can-Eye LAI true and Miller LAI true, where a clumping factor is applied in an attempt to 

correct for underestimation from effective measures. Can-Eye must model the gap fraction 

derived as an average of all three images used per site. The following equations expand on those 

outlined in the LAI section of the literature review.  

For this study, only the Can-Eye V6.1 equations were used, since the authors of the 

software believe the V6.1 equations better calculate LAI than the V5.1 equations used in 

previous versions of the software (Weiss 2010). The Can-Eye LAI value is based on a Poisson 

model (P0) which estimates LAI from gap fraction instead of contact frequency. Therefore, Can-

Eye Effective LAI can be expressed in the following equations (Weiss 2010): 
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Equation 1: Can-Eye V6.1 LAI effective calculation. 

 

 This estimation is performed by model inversion because it can take into account a wider 

range of zenith angles as compared to the alternative Miller formula, which is an advantage when 

the chance of mixed pixels is higher at larger zenith angles. This formula computes a random 
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combination of LAI (between 0 and 10 in steps of 0.1) and Average Leaf Angle (ALA) (between 

10° and 80° in steps of 2°) values to build a database of Look-Up-Table (LUT) values which 

correspond to gap fraction values. The process then consists of selecting the LUT element value 

that is closest to the measured P0. The first term is a weighted RMSE between the measured gap 

fraction and the LUT value from the database. The weight wi accounts for the inclusion of mixed 

pixels in some zenith angles and therefore would not be representative of the image.  

The Miller formula derives LAI from the gap fraction measured in all directions by 

determining a contact frequency function (Miller 1967). This formula was presented as an 

alternative to the point quadrat method, where problems may arise in the interpretation of the 

data obtained. The formula estimates an average foliage density of a plant in terms of the 

calculated contact frequency.  

The LAI2000 LAI calculations are designed to correlate well with LAI readings from the 

specialized LICOR LAI2000 instrument, which uses the average angular response as provided 

by the instrument maker and adapts the Miller formula to match the expected readings of 3, 4, 

and 5 ring readings from the LAI2000 (Weiss 2010). 

“True LAI” is related to Effective LAI as expressed by:  

LAI
eff

 = Ĉo LAI 

Where Ĉo is an aggregation or dispersion parameter or clumping index derived from a 

clumping factor algorithm (Weiss 2010, Lang and Yueqin 1986, Chen and Black 1992): 
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fCover is defined as the fraction of soil covered by vegetation viewed in the nadir 

direction, and averaged over all three photos: 

)0(1 oPfCover   
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The fCover is integrated over a range of zenith values ( oP ) because it is not possible to 

get a value in the exact nadir direction using hemispherical canopy images (Weiss 2010, Weiss et 

al. 2004). As discussed previously, the parameter range for fCover integration was set to 0 - 10° 

(Jonckheere et al. 2004, Weiss et al. 2004). 

LiDAR Data Processing 

For this study, methods were adapted that only took into account first, last, and single 

returns from the LiDAR point cloud. While the sensor recorded intermediate returns, these 

values were filtered from the point cloud prior to variable calculation. This has been common 

practice in forest LiDAR literature, and the methods and calculations used in this study adapt 

themselves well to using only first, last, and single returns (Riaño et al. 2004, Morsdorf et al. 

2004, Coops et al. 2007, Kane et al. 2010). Intermediate terms present a problem when 

calculating fCover. When fCover is calculated from LiDAR as the fraction of canopy returns to 

ground returns, the introduction of hundreds of canopy returns in the form of intermediate values 

highly overestimates the fCover. LAI calculations typically involve transformation of point 

return numbers over a given area simply as a percentage. In this study, a calculation that 

estimates LAI using the interrelationship of first, last, and single canopy returns is used – making 

the need to calculate LAI with intermediate returns unnecessary. This measure of LAI more 

closely resembled non-destructive measures of field survey where plum lines were dropped from 

above the canopy to calculate a contact frequency. In this case, lasers are substituted for plum 

lines. 

Classification, filter, and cropping of the data prior to analysis were essential. Data were 

received in the LAS V1.2 file format in 1.5km x 1.5 km tiles of raw point data. These data 

included four original classes: Unclassified (1), Ground (2), Noise (7), and Overlap (12). For 
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calculation of LAI and fCover, all vendor classes were removed. Using the QCoherent LP360 

software suite for ArcGIS (QCoherent 2011), a height classifier was used to classify all points 

higher than 2 m as vegetation and below 2 m as ground returns. 

                             

   RVegetation and RTotal denote all vegetation laser returns and total laser returns, respectively. 

In all cases, the Noise class was excluded from analysis. Two output datasets were created: one 

which included overlap, and one that did not. This inclusion is based on the vendor classification 

of points. Essentially, this inclusion or exclusion is intended to simulate the sampling frequency 

of LiDAR. In almost all sites for this study, inclusion of overlap doubled the total LiDAR points 

per site. Two meters was selected as the height above ground level considered above the height 

of the camera lens for collection of hemispherical canopy photography, and this level provided 

confidence that ground returns could not be misclassified as vegetation or vice versa. From the 

original study site point locations, three buffers were created: 10 m, 7.5 m, and 5 m (equating to 

20, 15, and 10-m diameter circular polygons) in ArcGIS. These are known as “data traps”, or 

areas within which raw laser data are collected and calculated (Figure 14). These polygons were 

used to crop each study site. Using LP360’s Point Cloud Statistics Extractor Tool, classified 

point counts were exported for each study site at each buffer size with and without overlap. 
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Figure 14: Two 20-m data trap point clouds (29-03 and 29-04) superimposed on a QT Modeler 

digital elevation model surface. 

fCover and LAI Calculation from LiDAR 

  Both fCover and LAI variables were calculated from first, last, and single return data at 

all buffer levels. fCover values are derived by: 

          
∑           
∑      

 

 Airborne Laser Scanner (ALS) derived fCover, denoted as fCoverALS, can also be 

calculated so that Rvegetation and RTotal include only the use of first, last or single returns. These are 

denoted as fCoverALS-FR, fCoverALS-LR, and fCoverALS-SR, respectively. It has been previously 

found that the best estimate fCoverALS value can be expressed as (Lovell et al. 2003, Morsdorf et 

al. 2004): 

                                     

While LAI cannot be directly calculated from laser derived data, there are proxy variables 

that can be calculated that have shown strong correlation with hemispherical LAI (Morsdorf et 
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al. 2004, Riaño et al. 2004). For this study, a LAI proxy value is calculated from a modified 

version of that found in Morsdorf (2004): 

        (
∑   

∑     ∑   
)    

In the above equation, all returns are for vegetation only, that is, laser returns greater than 

2 m above ground level. LAIALS denotes laser derived LAI. 

Both fCoverALS and LAIALS were calculated at 20-m, 15-m, and 10-m study site 

diameters to assess the significance of various correlations with ground based fCover and LAI 

due to the collection size of LiDAR. 

Above Ground Level Height Estimates 

Using the QT Modeler LiDAR software (Applied-Imagery 2011), Above Ground Level 

(AGL) values were calculated for all first, last and single return 20-m study site data traps, 

including and excluding overlap. A 3-m Digital Elevation Model (DEM) was first calculated in 

the .QTT proprietary file format using only vendor classified ground points for all LiDAR tiles. 

The import parameters used were QT Modeler recommended settings: Adaptive Triangular with 

Mean Z Averaging. Hole filling and spike removal algorithms were used to smooth the DEM in 

QT Modeler. Each 20-m data trap with raw data points was imported to QT Modeler and the 

height above the DEM surface was calculated in meters for each point. These height values were 

exported to a .XYZ file with the associated X, Y, Z, and AGL values. All study site ground 

points were exported to a reference file and used as an error estimator for the AGL calculations 

(Table 5). 

The highest calculated RMSE for a DEM surface was approximately ± .22 m, with a Z 

Bias of less than ± .02 m, giving the calculated AGL values for all raw LiDAR points a high 
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confidence level. Z Bias is a value that expresses if the DEM surface over or underestimates the 

raw LiDAR points, and by how much. For example, for HCA 145, QT Modeler overestimates 

the DEM surface from raw ground point by approximately .02 m. This table indicates that all 

ground AGL values were within a very tight confidence interval when compared to the ground 

surface from which all AGL values were calculated. 

 

Table 5: RMSE and Z Bias for AGL Ground calculations for all study sites over their respective 

tiles. 

 

A group of variables called In Canopy Vegetation Fractions (ICVF) were calculated 

using the AGL values. These values were Low Vegetation, Medium Vegetation, and High 

Vegetation. A range was calculated for each site from the 2 m AGL level to the mean canopy 

height (the canopy height estimation). This height was divided into 3 bins, so that each bin 

represented 1/3 the total height of vegetation points. The points from that bin were extracted and 

divided by the total vegetation points to derive ICVF. These variables indicate the total fraction 

of returns seen from the bottom, middle and top 1/3 of the canopy.  

Canopy Height Estimation  

To calculate canopy height, the raw LiDAR point cloud was again imported into QT 

Modeler. This time, the recommended surface settings were used to create a Canopy Surface 

Model (CSM): Adaptive Triangulation with Z Maximum, 1.0 surface bin smoothing with a 3-m 

HCA (All Study Sites) Tiles RMSE (m) Z Bias (m) 

145 1257, 1258 0.15 0.02 

29 1479, 1522, 1573, 1574 0.22 0.02 

71 1234 0.12 0.00 
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kernel, and only first returns classified as vegetation were used to create the surface. Hole filling 

and spike removal algorithms were used, this time more aggressively due to the highly variable 

nature of surface models over forest canopies. Due to the high sampling rate, a 1-m DEM was 

created. Both the DEM and CSM were exported into an ESRI ASCII file format. These files 

were imported and processed through a custom ESRI Model Builder script tool which subtracted 

the height of the DEM from the CSM and output a Zonal Statistics raster with the average mean 

canopy height of each study site as a raster cell value, as well as a Zonal Statistics table. A 

similar methodology was employed on only the DEM surface to calculate the average slope in 

percent rise for each study site with an output Zonal Statistics raster and table. 

Statistical Analysis Methods 

A total of 7 LAIGROUND, 1 fCoverGROUND, 6 LAIALS, and 6 fCoverALS variables were 

calculated for statistical analysis. Seventeen other statistics were also derived from ALS data 

(Table 6).  

There were 3 data traps: 10, 15, and 20-m, each calculated with (WOL) and without 

(NOOL) overlap for each dependent variable: LAI and fCover. Therefore, a 15-m LAI WOL 

variable is a 15-m data trap LAI variable calculated with overlap. All other ALS variables 

(percentiles and ranges, descriptive, ICVF, and environmental) were calculated using a 20-m 

data trap with overlap. Once all the variables from ground and ALS data were created, values 

were compiled and input into Stata 10 Statistical Modeling software. Stata 10 was used for all 

data modeling and statistical processing for this study. Five major statistical functions and tests 

were used in this study: single linear regression, principal component analysis (PCA), 

multivariate stepwise regression, Kmeans clustering analysis, and Pearson’s Chi
2
.  
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Table 6: All ground and ALS derived variables used in this study. 

 

Regression was run with both LAIGROUND and fCoverGROUND as dependent variables 

separately with LAIALS, and fCoverALS values as independent variables. PCA was used to reduce 

ALS variables for input into stepwise regression to identify the most significant variables for 

LAI and fCover. The outcomes of the single and multivariate regression models were a function 

used to explain ground derived variables using ALS variables. Kmeans cluster analysis was used 

to identify 3 clusters of health status rank (HSr) from ground and LiDAR data, and was tested for 

agreement between themselves and with field survey estimated HSr values. 

Study Variables 

Ground 

LAI Can-Eye effective Miller true 

  Can-Eye true LAI2000(3) 

  Miller effective LAI2000(4) 

    LAI2000(5) 

fCover Ground   

Airborne Laser Scanner (ALS) 

LAI 10 m NOOL 10 m WOL 

  15 m NOOL 15 m WOL 

  20 m NOOL 20 m WOL 

fCover 10 m NOOL 10 m WOL 

  15 m NOOL 15 m WOL 

  20 m NOOL 20 m WOL 

Height Percentiles (m) 

  

  

5 50 

25 75 

  95 

Percentile Ranges (m) Interquartile 5 - 95 Range 

Descriptive (m) Mean Skewness 

  Standard Deviation Kurtosis 

In Canopy Vegetation Fraction 

(ICVF) 

Low Vegetation Medium Vegetation 

  High Vegetation 

Environmental (m) Average Elevation Average Slope 

(slope in percent rise) Mean Canopy Height 
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Single linear regression was performed twice, once with LAI and once with fCover. Prior 

to regression, a correlation matrix with two-tailed significance values was used to identify the 

most significant relationship between the ground LAI or fCover variable and the LAIALS or 

fCoverALS variable. This process identified what data trap size performed best, and if overlap, or 

sampling rate, was significant in estimating LAI and fCover from the air. Regression analysis 

was performed, and the initial results used to identify if any outliers exists. A combination of 

visual analysis of the scatter plot, Studentized Residuals, and Cook’s Distances were used as a 

means of identifying and explaining outliers. If they exist, outliers were removed, and a second 

regression was run. 

Prior to principal component analysis, a correlation matrix with two-tailed significance 

values was created to identify independent variables that were highly correlated, or had similar 

correlation relationship with other variables, meaning that they shared common strong 

correlations. This matrix was used to remove redundant variables prior to PCA (Wold, Esbensen 

and Geladi 1987). 

PCA is a statistical method used to extract the dominant patterns from a group of 

variables and detect the structure of the input variables. PCA has relatively few assumptions: (1) 

data have linearity in its relationships; (2) large variances have important structure; and (3) 

principal components are orthogonal, that they have no correlation between them. This method is 

used as a data reduction or exploration technique, taking a multitude of variables and reducing 

them into a small number of principal components (PCs). PCs are calculated to linearly capture 

the maximum variance of the original variables, while having no correlation between them. 

These PCs are ranked in order of the eigenvalue, or the amount of variability a single PC 

captures, and the sum of the eigenvalues is equal to the m number of variables used in PCA. 
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Each PC is also ranked on the proportion of total variation it captures, the eigenvalue divided by 

m, from 0.0 to 1.0. PCA will produce PCs until a user preset cut-off value, or until no trace of 

variability is left unexplained. Typically, however, only the top three to five eigenvalues are 

retained (Jolliffe 2005). While there are many methods for deciding how many PCs to keep, 

there are two easy to implement and standard methods: the Kaiser Criterion and the Scree Test 

(Zwick and Velicer 1986). The Kaiser Criterion states that PCs with eigenvalues greater than 1 

should be kept. The assumption is that each original variable would have an eigenvalue equal to 

1, so that any new component should have a value greater than 1 if it is to provide added benefit 

to analysis. The Scree Test looks at a plot of eigenvalue on the Y axis and PCs on the X axis. 

One should select the PCs where slope is the steepest; until the values level off on to create a 

graph that looks like a scree slope – a geologic term for the rocky debris that settles at the bottom 

of a steep slope. In most cases, these methods produce similar results. For this study, the Kaiser 

Criterion was used to determine the retained PCs. 

While eigenvalues show how much variance a PC explains among all variables, a factor 

loading matrix shows how much of the PC variance is explained by the original input variables. 

Each component explains variance of some input variables, and the factor loading matrix 

displays which original input variables are most significant in explaining the variation in PCs. 

Through factor loading matrix analysis, one is able to draw conclusions about the relative 

significance of input variables in PCA. 

The retained PCs from PCA are used as independent variables in a stepwise regression 

with ground LAI and fCover. Stepwise regression is a technique used to identify the most 

significant independent variables in a multivariate regression model. Stepwise regression can be 

forward or backward. Forward stepwise regression starts with an empty model with no 
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independent variables and adds independent variables one at a time. If the variable does not meet 

a user specified significance level when it is added to the regression, that variable is not retained. 

In backward stepwise regression, the analysis starts with a full model, or one with all the 

independent variables loaded. Each variable is then removed and its significance is tested. If it is 

determined that the removal of a variable is not significant, it is not retained. The result of both 

directions of stepwise analysis is a regression model that contains only significant independent 

variables. Ultimately, stepwise regression was used in this study to determine if a greater number 

of ALS derived statistics can better explain ground fCover and LAI better than single fCoverALS 

and LAIALS variables. In this study, a threshold significance level of (p ≤ 0.20) was used in 

stepwise regression. This value allows for the inclusion of independent variables without being 

overly restrictive, especially with a small sample size. 

The retained PCs from PCA were also used as input variables for Kmeans clustering 

analysis. This analysis was used to identify clusters in the ALS components data and the ground 

derived data. In total, 3 HSr clusters were created: those originally estimated in the field, those 

created from multivariable clustering analysis using ground data and those created from ALS 

principal component data. Using Pearson’s Chi
2
 Test, correlations were identified and tested to 

determine if significant clustering relationships existed between the ALS and ground derived 

clusters. In essence, this method was used to determine if it was possible to segment tree stands 

into rankings from ALS data, and tested if those rankings correlate significantly with ground 

rankings. Four tests were used to determine if the relationship between rankings were significant: 

Pearson’s Chi
2
 test, likelihood ratio Chi

2
 test, Kendall’s Tau-B test, and Fisher’s exact test. By 

examining the values of these test, and the associated P values, a determination is made about 

whether it is possible to predict cluster ground health status from LiDAR data, and if those 
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clusters match what is predict from ground data. Though Pearson’s Chi
2
 is not as trusted when 

expected cell values are less than 10, it is included and compared to the results of likelihood-ratio 

Chi
2
 for a better picture of significance between rankings. 
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CHAPTER 4 

RESULTS 

 Results of this study include the single linear regression of ground and LiDAR derived 

measurement for LAI and fCover, Principal Components Analysis (PCA) of multiple LiDAR 

measurements, multivariate stepwise regression of ground data and LiDAR data for LAI and 

fCover, and Kmeans multivariate cluster analysis and comparison of those clustering results 

between ground and LiDAR data. Six sites originally surveyed and described in the study area, 

HCA # 71 – Dick’s Creek, are not included in the results due to the lack of LiDAR coverage. 

Linear Regression Results 

Single linear regression analysis was performed to determine how well airborne laser 

scanning (ALS) LIA and fCover proxy values could estimate those values derived from ground 

data. Correlations and two-tailed significance values were calculated for all combinations of 

variables, and the best performing pair was selected for examination of outliers and full 

regression analysis. 

LAI Regression Analysis 

 Prior to calculation of coefficients of determinations, extreme and unrealistic values were 

removed from the dataset (where LAIALS > 15), as well as those that could not be calculated due 

to division by zero. These cases occurred where no single or last returns were present in the 

vegetation class points, or where there were very few single and last returns above the 2-m cutoff 

that defined vegetation of interest. Accordinly, HCA-IDs 71-01, 71-02, and 71-04 were removed 

for 10 and 15-m traps, and 71-01 and 71-04 were removed for 20-m traps. In Table 7 and Figure 
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15, R
2 

coefficient of determination values for all ground LAI calculations and LAIALS values are 

shown. 

 

Table 7: R
2
 coefficient of determination values for all combinations of ground and LAIALS 

values, with averages. Grey box values indicate significance at the 95% level. (*) Denotes the 

highest R
2
.  

 

On average, all LAIALS proxy values estimated true ground LAI values (those calculated 

with an estimated clumping factor) better than effective values (those not calculated with an 

estimated clumping factor). Can-Eye true and Miller true LAI values had the strongest average 

coefficient values of all LAIALS, with 0.3669 and 0.3240, respectively. LAI2000 values averaged 

the worst overall with LAIALS proxy values. In almost all instances, larger data traps performed 

better than smaller data traps in estimating ground LAI. LAIALS proxy values calculated with 

overlap points estimated ground LAI values better than those sites that did not include overlap. 

Overall, larger data traps that include all available points generally provided the best coefficients 

 ALS Can-Eye Miller LAI2000  

Traps effective true effective true (3) Ring (4) Ring (5) Ring Avg. 

No Overlap (NOOL) 

10m 0.1643 0.2487 0.2512 0.2466 0.0116 0.1245 0.1011 0.1640 

15m 0.1962 0.2863 0.2753 0.2189 0.0144 0.1269 0.1217 0.1771 

20m 0.2704 0.3775 0.3076 0.3198 0.0978 0.2572 0.2693 0.2714 

Avg. 0.2103 0.3042 0.2780 0.2618 0.0413 0.1695 0.1640 0.2042 

Overlap (WOL) 

10m 0.2795 0.3891 0.3545 0.4151 0.1030 0.2488 0.2150 0.2864 

15m 0.3479 0.4430 0.3586 0.3691 0.1025 0.2716 0.2595 0.3074 

20m 0.3404 0.4565* 0.3452 0.3747 0.1735 0.3435 0.3607 0.3420 

Avg. 0.3226 0.4295 0.3527 0.3863 0.1263 0.2880 0.2784 0.3120 

Avg. 0.2664 0.3669 0.3154 0.3240 0.0838 0.2288 0.2212 0.2581 
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with true ground LAI measurements. The most significant correlation is between the 20-m data 

trap which included overlap to the Can-Eye true LAI with an R
2
 of 0.4564. 

 

Figure 15: R
2
 values graphed for each LAIALS proxy matched with ground LAI values. Cases 

with LiDAR data overlap and no overlap are denoted as WOL and NOOL, respectively. 

 

A full regression analysis was performed with the best performing ground and ALS 

coefficient, Can-Eye true LAI and 20-m Overlap LAI(Table 8). The regression produced an R
2
 

of 0.4565, an Adjusted R
2

 of 0.4355, and an RMSE of 0.8123. To determine if any values 

represented outlier or anomalies in the data, the scatter plot, studentized residuals, and Cook’s 

Distances were calculated and analyzed. In the LAI dataset it was determined that no significant 

outliers existed. The regression coefficient is 0.3456 with a standard error of 0.0740 and the 

constant coefficient is 3.0375 with a standard error of 0.2681. Both of these coefficients are 
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significant at the 95% level in the regression equation. Overall, 20-m LAIALS with overlap can 

explain approximately 44% of the variation in Can-Eye true LAI. 

 

Table 8: Regression analysis of Can-Eye True ground LAI and 20-m LAIALS WOL. The analysis 

resulted with R
2
 = 0.4565, adjusted R

2
 = 0.4355, and RMSE = 0.8123. 

Figure 16: Regression of ALS derived LAI with the respective Can-Eye true value computer 

from hemispherical photography. 

Source SS df MS   Number of Obs 28 

Model 14.4074 1 14.4074 

 
F(1, 28) 21.83 

Residual 17.1563 26 0.6599 

 
Prop > f 0.0001 

Total 31.5637 27 1.1690 

 
R-squared 0.4565 

  

    
Adj R-squared 0.4355 

  

    
RMSE 0.8123 

Can-Eye true Coef. Std. Err. t P>|t| [95% Conf. Interval] 

20m LAIALS 0.3456 0.0740 4.67 0.000 0.1936 0.4977 

Constant 3.0375 0.2681 11.33 0.000 2.4863 3.5886 
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fCover Regression Analysis 

 The same methodology was used to determine the goodness of fit between ground 

calculated fCover and ALS derived fCover. Again, all 6 data trap sizes WOL and NOOL were 

compared prior to selecting the size that performed the best. There is only a single fCover 

variable calculated from the Can-Eye software with which to compare the 6 ALS values. 

The size of the data trap has the opposite result for fCover as it does with LAI. The 20-m 

traps, with and without overlap, perform the worst at calculating fCoverALS, while the 15-m and 

10-m traps do significantly better. With no overlap, the 10-m data trap performed best, and the 

20-m data trap performed the worst. With overlap, the 15-m data trap performed best and the 20-

m data trap performed the worst. However, the effect of overlap is still seen; all calculations 

using LiDAR data with overlap perform better than their no overlap counterparts of the same 

data trap size. Ground fCover was not initially as well predicted by fCoverALS when compared to 

the results of LAI measurements. In the no overlap and overlap averages, as well as the overall 

averages, fCover coefficients were less than LAI coefficients. The best performing fCoverALS 

estimator overall was the 15-m overlap, which was used for further regression analysis (Table 9 

and Figure 17). 
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Table 9: R
2
 coefficients of determination values for all combinations ALS and ground fCover 

values, with averages. Grey box values indicate significance at the 95% confidence level. (*) 

Denotes the highest R
2
. 

Figure 17: Graph of R
2
 values from all ALS data trap sizes compared to the single ground 

measured fCover.  

 

ALS  

Traps 

Ground 

fCover 

No Overlap (NOOL) 

10m 0.1954 

15m 0.1563 

20m 0.0788 

Avg. 0.1435 

Overlap (WOL) 

10m 0.2240 

15m 0.2290* 

20m 0.0918 

Avg. 0.1816 

overall Avg. 0.1625 
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 Outlier analysis, using visual analysis of the scatter plot, studentized residual values and 

Cook’s Distances, was performed to determine if site values should be removed from the final 

regression analysis (Table 10). Based on this analysis, three sites were suspected of being 

outliers: 71-01, 71-04, and 29-06. In general, studentized residuals approaching |3| are suspect. In 

this analysis, both 71-01 and 29-06 have studentized residuals approaching |3|, and each value is 

within the top 3 values of Cook’s Distance. A third site, 71-04, with the fourth highest Cook’s D 

and third highest absolute studentized residual, is also suspect based on these values and the fact 

that it shares the same scatter plot space as 71-01. 

 

Table 10: Cook's Distance and Studentized Residuals for the highest and lowest five values of 

each, respectively. Grey box values indicate suspected outliers or anomalies. 

 

Data from the 3 outlier sites were removed from the final regression analysis because, on 

further inspection of site properties, and the vertical distribution of vegetation LiDAR returns, it 

is believed that canopy geometry and structure play a significant role in how these values are 

measured, and may explain why these values differ between the ground and LiDAR data. Both 

71-01 and 71-04 have extremely high percentages of High Vegetation returns (greater than 50% 

Rank 

Cook's 

Distance HCA-ID Rank 

Studentized 

Residual HCA-ID 

30 3.93E-06 145-05 30 -2.992 29-06 

29 0.0000179 29-09 29 -1.442 29-10 

28 0.000099 29-05 28 -1.431 145-02 

27 0.0001092 71-06 27 -1.327 29-01 

26 0.0007823 145-04 26 -1.197 29-07 

5 0.1053609 29-01 5 0.829 29-04 

4 0.1575625 71-04 4 1.255 145-08 

3 0.2242397 29-06 3 1.287 71-03 

2 0.2248267 29-07 2 1.663 71-04 

1 0.5875022 71-01 1 2.749 71-01 
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of all returns from the top 1/3 of the canopy) and very low percentages in the Middle and Low 

Vegetation returns (middle and lower 1/3 of canopy, respectively). Site 29-06 has a high 

percentage of Low Vegetation returns and very low percentages of Medium and High Vegetation 

returns and is the only site that has greater than 50% of all vegetation returns in the bottom 1/3 of 

its canopy. Sites 71-01 and 71-04 also were not included in LAI regression because they had 

very few single and last canopy returns yielding LAI values of greater than 100 – further 

confirming the decision that these sites may represent anomalies in the dataset. The final 

regression analysis, with 3 outlier sites removed, can be seen in Table 11 and Figure 18. 

The goodness of fit was greatly improved over the original results, with an R
2
 of .4805, 

adjusted R
2
 of .4597, and an RMSE of .1581. The coefficient of determination was almost 

doubled with the removal of three sites. RMSE was slightly improved, with only a difference of 

0.0613 between the original analysis and the final one with outliers removed. The variable 

coefficient is 1.2105, and was found significant in the analysis; however the constant coefficient 

was -0.1986 and found to be not significantly different from zero. The 95% confidence also was 

slightly improved and narrowed from the original regression analysis. Overall, fCoverALS alone 

can explain approximately 46% of the variation found in ground fCover. 
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Table 11: Regression analysis of ground fCover and 15m fCoverALS.WOL. The analysis resulted 

with R
2
 = 0.4805, adjusted R

2
 = 0.4597, and RMSE = 0.4597. 

 

Figure 18: Regression of ALS derived fCover with the respective value computer from 

hemispherical photography. 

 

Err. Source SS df MS   Number of Obs 27 

Model 0.5781 1 0.5781 

 
F(1, 28) 23.13 

Residual 0.6250 25 0.0250 

 
Prop > f 0.0001 

Total 1.2031 26 0.0463 

 
R-squared 0.4805 

  

    
Adj R-squared 0.4597 

  

    
RMSE 0.1581 

ground fCover Coef. Std. Err. t P>|t| [95% Conf. Interval] 

15m fCoverALS 1.2105 0.2517 4.81 0.000 0.6921 1.7290 

Constant -0.1986 0.1878 -1.06 0.300 -0.5853 0.1881 
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PCA and Stepwise Multivariate Regression Results 

Prior to performing PCA, all variables underwent correlation analysis, and redundant 

variables were removed. In total, 5 variables were removed: 5 percentile height, 95 percentile 

height, 5 – 95 percentile height range, and mean height. Elevation also was excluded because it 

did not provided additional prediction power in PCA. Each site had exclusive elevation ranges, 

and because of this, elevation caused artificial clustering of values. It was determined that 

elevation should be excluded because ultimately said more about spatial location than it did 

about how HWA affects hemlock defoliation. The remaining 12 variables, plus the best 

performing LAIALS and fCoverALS metrics determined from single linear regression were used as 

original input variables, for a total of 14 ALS derived variables used in PCA. Sites 71-01 and 71-

04 were excluded from PCA because they lacked LAIALS, and are suspect for being anomalies in 

the dataset. The number of principal components was not capped for PCA, and the reported 

values were not rotated (Table 12). 
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Table 12: Results from principal component analysis shows a total of 14 components produced. 

Following the Kaiser Criterion, only those components with eigenvalues great than 1 are 

retained, shown in grey boxes. These 5 components explain approximately 91% of all variance 

from the original input variables. 

 

The eigenvalue, or total variance accounted for by each component, is listed from highest 

to lowest. The individual and cumulative proportions also are listed along with the differences 

between each eigenvalue. All of these values describe how well a single component captures the 

variability of the input data. Following the Kaiser Criterion, only those components with an 

eigenvalue of greater than 1 are retained – for a total of 5 PCs. Together, these 5 PCs explain 

approximately 91% of the total variance from all the original ALS input variables. Notice that 

while 14 components were produced, the eigenvalue and proportion of variance explained drops 

off significantly towards the bottom, and component 14 reports only a trace of explained 

variance (though the eigenvalue is 0.000, a trace amount is still present). 

 

Component Eigenvalue Difference Proportion Cumulative 

Comp1 6.0689 3.4444 0.4335 0.4335 

Comp2 2.6246 0.6521 0.1875 0.6210 

Comp3 1.9724 0.8638 0.1409 0.7618 

Comp4 1.1086 0.1009 0.0792 0.8410 

Comp5 1.0077 0.4578 0.0720 0.9130 

Comp6 0.5499 0.2102 0.0393 0.9523 

Comp7 0.3396 0.1634 0.0243 0.9765 

Comp8 0.1763 0.1042 0.0126 0.9891 

Comp9 0.0721 0.0177 0.0052 0.9943 

Comp10 0.0544 0.0375 0.0039 0.9982 

Comp11 0.0169 0.0085 0.0012 0.9994 

Comp12 0.0084 0.0081 0.0006 1.0000 

Comp13 0.0003 0.0003 0.0000 1.0000 

Comp14 0.0000  0.0000 0.0000 1.0000 
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Table 13: Factor Loading Matrix from principal component analysis. Grey box values represent 

loadings greater than ±0.3000. 

 

Factor analysis from factor loading matrices can be used to interpret the influence of each 

independent variable on the creation of PCs. Since only 5 PCs were retained after the initial 

analysis, only those are shown in the factor loading matrices (Table 13). The factor loading 

matrix shows that the Mean Canopy Height, 25, 50 and 75 percentile, skewness, and the Low 

and High canopy fractions all load approximately equally in the first component (PC1). No one 

variable shows significant loading over the others. This suggests that these variables share 

similar variance space. The second PC (PC2) has stronger factor loadings than the first one, with 

IQ Range, Standard Deviation of Height AGL, and Low Vegetation fraction greater than 0.3 

loading. In PC 3 and 4, our most significant LAIALS and fCoverALS variables from single linear 

regression both load strongly.  

Variable Comp1 Comp2 Comp3 Comp4 Comp5 

20m Ave Slope 0.0931 0.2766 0.3918 0.1407 -0.3016 

Mean Can H 0.3866 0.0963 0.1169 0.0819 0.0238 

15 m FC WOL 0.0835 0.1444 0.4823 -0.4652 0.2064 

20 m LAI WOL 0.1156 -0.2263 -0.3925 0.3640 -0.3961 

25 percentile 0.3454 -0.1991 0.2150 0.2096 0.0355 

50 percentile 0.3901 0.0167 0.0551 0.0963 0.0136 

75 percentile 0.3826 0.1413 0.0323 0.1618 0.0056 

IQ Range 0.1927 0.4925 -0.2236 -0.0003 -0.0365 

Std. Dev. 0.1734 0.5329 -0.0965 0.1725 0.0035 

Skewness -0.3142 0.2004 0.1128 0.3242 0.0821 

Kurtosis -0.0865 -0.1522 0.2652 0.6034 0.5567 

Low Veg -0.3008 0.3567 -0.1704 0.0809 0.1687 

Med Veg -0.1551 -0.0767 0.4526 0.1321 -0.5628 

High Veg 0.3401 -0.2434 -0.1399 -0.1495 0.2105 
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LAI Regression Analysis 

All 5 retained PCs were used as independent variables in stepwise regression, with Can-

Eye true LAI as the dependent variable. Significance level was set at (p ≤ 0.20) for both forward 

and backward regression Both regression analyses results were in agreement with the significant 

PCs of the regression, so only one regression result representing both directions is shown (Table 

14). 

 

Table 14: Forward and backward stepwise regression results were identical in results for 

multivariate LAI. The regression produced an R
2
 = 0.7703, and Adj. R

2
 = 0.7303, and an RMSE 

= 0.5615. 

 

 This regression retained four of the five original PCs, and reports an R
2
 = 0.7703, an 

Adjusted R
2
 = 0.7303, and an RMSE = 0.5615. The multivariate solution, therefore, shows a 

great improvement in estimating ground LAI over single linear regression (Adj. R
2
 = 0.4355) and 

explains approximately 73% of the variability found in ground LAI measurement. The results 

show that although a relatively high significance level for elimination was given, all variables are 

Source SS df MS   Number of Obs 28 

Model 24.3132 4 6.0783  F(1, 28) 19.28 

Residual 7.2505 23 0.3152  Prop > f 0.0000 

Total 31.5637 27 1.1690  R-squared 0.7703 

      Adj R-squared 0.7303 

      RMSE 0.5615 

Can-Eye true Coef. Std. Err. t P>|t|   Beta 

PC1 0.2572 0.0439 5.86 0.000  -0.5908 

PC2 -0.3943 0.0667 -5.91 0.000  0.5859 

PC3 -0.1640 0.0769 -2.13 0.044  -0.2130 

PC5 -0.1944 0.1076 -1.81 0.084  -0.1805 

Constant 4.0646 0.1061 38.31 0.000     
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significant at the (p ≤ 0.10) level, with two at the (p ≤ 0.05) level. In multivariate regression, a 

standardized coefficient, or Beta, can be calculated to determine the level of effect an 

independent variable has on the dependent variable. In this result, we see that PC1 has the most 

effect on the regression result with a Beta of -0.5908, followed closely by PC2. This model kept 

PC3 and PC5, two PCs where the original LAIALS variable loaded highly, but did not keep PC4, 

which also had a high loading factor from LAIALS. 

 fCover Regression Analysis 

The same methodology was used for multivariate stepwise regression for fCover. Again, 

all 5 retained PCs were used as independent variables and ground derived fCover was the 

dependent variables. Both forward and backward stepwise regressions were in agreement about 

the most significant variables and the results were identical (Table 15). 

 

Table 15: Forward and backward stepwise regression results were identical in fCover Results. 

The regression produced an R
2
 = 0.5456, an Adj. R

2
 = 0.4666, and an RMSE = 0.1801. 

 

Source SS df MS   Number of Obs 28 

Model 0.8956 4 0.2239  F(1, 28) 6.90 

Residual 0.7460 23 0.0324  Prop > f 0.0008 

Total 1.6416 27 0.0608  R-squared 0.5456 

      Adj R-squared 0.4666 

      RMSE 0.1801 

Ground fCover Coef. Std. Err. t P>|t|   Beta 

pc4 -0.1128 0.0329 -3.43 0.002  -0.4818 

pc3 0.0811 0.0247 3.29 0.003  0.4619 

pc1 0.0253 0.0141 1.80 0.085  0.2527 

pc2 -0.0290 0.0214 -1.35 0.189  -0.1902 

Constant 0.6683 0.0340 19.63 0.000     
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Multivariate stepwise regression analysis using principal components showed little 

improvement over the single linear regression results (Adj. R
2
 = 0.4597). The PCA R

2
 = 0.5456 

is improved, but when adjusted for the population in Adjusted R
2
, the model shows minimal 

improvement. As with single linear regression, fCover is not as well predicted as LAI. In this 

model, four PCs were found significant at the (p ≤ 0.20) level, and two of those PCs were 

significant at the (p ≤ 0.05) level. These highly significant PCs showed strong influence on the 

dependent variables with Betas of greater than |0.45|. The stepwise selection kept PC3 and PC4 

as the two most significant variables in the regression, and the fCoverALS variable had high 

loadings in both components. 

Multivariate Health Status Clustering Results 

 The final analysis, using Kmeans clustering, is designed to derive clusters from ALS PCs 

and from ground LAI and fCover, and to test to see if those clusters are significantly related to 

each other—these results aim to show that it is possible to assign Health Status ranking (HSr) to 

a field site with reasonable confidence from ALS data which agrees with the HSr that would be 

derived from ground LAI and fCover data. These two sets of clusters also were compared to 

those HSr assigned during field survey. 

 For ALS cluster analysis, all 5 retained PCs with eigenvalues greater than 1 were used as 

variables to derive the clusters, labeled “ALS PC HSr”. For ground cluster analysis, fCover and 

Can-Eye true LAI area used, labeled “GS HSr”. A cluster value of k = 3 was used for each 

cluster analysis to align with the 3 value rank used in field survey, labeled “Field HSr”. Each 

table is listed with the related significance tests (Table 16, Table 17, and Table 18). Each cell 

contains three values: the actual frequency, the expected cell frequency, and the Chi
2
 

contribution value, used in the calculation of Pearson’s Chi
2
. 
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 Neither the ALS PC HSr nor GS HSr was found to be significantly related to Field HSr 

by any of the four tests used to determine relationship and significance (Table 16). The 

comparison of Field HSr and GS HSr resulted in a Pearson’s Chi
2
 = 2.5769 and a Pr = 0.631, 

likelihood-ratio Chi
2
 = 3.4818 and a Pr = 0.481, Kendall’s Tau-B = 0.0455, and a Fisher’s exact 

value = .719. By no means or tests are the rankings of these two variables significantly related to 

field-based measurements. 

 

Table 16: Comparison of rankings between Field HSr and GS HSr. This relationship is not 

significant by any test: Fisher’s exact, likelihood-ratio Chi
2
, or Pearson Chi

2
. 

 

 

 
Field HSr   

GS  

HSr 1 2 3 Total 

1 3 7 3 13 Freq. 

  3.3 6.5 3.3 13 Exp. Freq. 

  0.0 0.0 0.0 0.1 Chi2 Cont. 

2 4 4 3 11 

  2.8 5.5 2.8 11 

  0.6 0.4 0.0 1 

3 0 3 1 4 

  1.0 2.0 1.0 4 

  1.0 0.5 0.0 1.5 

Total 7 14 7 28 

  7.0 14.0 7.0 28 

  1.6 0.9 0.0 2.6 

Pearson chi2(4) =  2.5769 Pr = 0.631 

likelihood-ratio chi2(4) = 3.4818 Pr = 0.481 

Kendall's tau-b = 0.0455 ASE = 0.150 

Fisher's exact = 0.719     
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The results with Field HSr and ALS PC HSr are similar (Table 17). This comparison 

resulted in a Pearson’s Chi
2
 = 2.4381and a Pr = 0.656, likelihood-ratio Chi

2
 = 2.4193 and a Pr = 

0.659, Kendall’s Tau-B = -0.0664, and a Fisher’s exact value = .706. By no means or tests are 

the rankings of these two variables significant. In both comparisons, although the Pearson’s Chi
2
 

is not expected to perform as well with cell counts below 10, the values are nearly identical to 

the likelihood-ratio Chi
2
 values. 

In both contingency tables, there does not appear to be a systematic difference in the 

variables estimated with ALS PC HSr and GS HSr when compared to Field HSr. In many cases, 

however, the difference was a matter of a single rank, either between 1 and 2, or 2 and 3. In a 

much smaller percentage of cases values were off by 2 ranks, indicating a large discrepancy 

between what was marked in the field and what was calculated by Kmeans clustering. Between 

Field HSr and GS HSr, only 3 sites were off by more than 1 ranking, and in Field HSr and ALS 

PC HSr, only 4 sites were off by more than 1 ranking. 
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Table 17: Comparison of rankings between Field HSr and ALS PC HSr. This relationship is not 

significant by any test: Fisher’s exact, likelihood-ratio Chi
2
, or Pearson Chi

2
. 

 

When comparing the ALS PC HSr and the GS HSr, a significant distribution between the 

two ranking variables is apparent (Table 18). Both the Pearson’s Chi
2
 Pr and likelihood-ratio 

Chi
2
 Pr= 0.000, and Fisher’s exact value = 0.000. Kendall’s Tau-B, which measures both the 

strength and direction of the relationship between the two rankings have a value of 0.4664, 

indicating a strong relationship that is moderately position in nature. Of the total 28 observations, 

the ALS PC HSr clusters and GS HSr clusters agree on 21 of those, or 75%. 

 

 

 
Field HSr 

ALS PC 

HSr 1 2 3 Total 

1 2 2 3 7 Freq. 

  1.8 3.5 1.8 7 Exp. Freq. 

  0.0 0.6 0.9 1.6 Chi2 Cont. 

2 4 8 3 15 

  3.8 7.5 3.8 15 

  0.0 0.0 0.1 0.2 

3 1 4 1 6 

  1.5 3.0 1.5 6 

  0.2 0.3 0.2 0.7 

Total 7 14 7 28 

  7.0 14.0 7.0 28 

  0.2 1.0 1.2 2.4 

Pearson chi2(4) = 2.4381 Pr = 0.656 

likelihood-ratio chi2(4) = 2.4193 Pr = 0.659 

Kendall's tau-b = -0.0664 ASE = 0.179 

Fisher's exact = 0.706     
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Table 18: Comparison of rankings between GS HSr and ALS PC HSr. By all measures, this 

relationship is significant. 

 

There were two noticeable disagreements in the contingency table where GS HSr rank 

was 1 and ALS PC HSr was ranked as 2 or 3. GS HSr ranked 13 sites as HSr 1, while ALS PC 

HSr only ranked 7 sites as HSr 1. The additional 6 sites were split evenly between HSr 2 and 3 

from ALS PC HSr. Of the 7 sites that were not in agreement, 4 of those are off by a single rank 

and 3 are off by 2 ranks. This may indicate that instead of a single threshold value that 

determines the differences between ranks, there is a buffer or grey area that exists. Since all these 

variables are continuous, it seems logical that at least some site rankings will fall in between 

“true” discrete rankings of 1, 2, and 3. However, with an agreement of 75% of the total sites, and 

 
GS HSr   

ALS PC 

HSr 1 2 3 Total 

1 7 0 0 7 Freq. 

  3.3 2.8 1.0 7 Exp. Freq. 

  4.3 2.8 1.0 8.1 Chi2 Cont. 

2 3 11 1 15 

  7.0 5.9 2.1 15 

  2.3 4.4 0.6 7.3 

3 3 0 3 6 

  2.8 2.4 0.9 6 

  0.0 2.4 5.4 7.7 

Total 13 11 4 28 

  13.0 11.0 4.0 28 

  6.6 9.5 7.0 23.1 

Pearson chi2(4) = 23.1000 Pr = 0.000 

likelihood-ratio chi2(4) = 25.8568 Pr = 0.000 

Kendall's tau-b =  0.4664 ASE = 0.186 

Fisher's exact = 0.000     
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significance indicated by all measures, this test shows that it is possible to estimate tree stand 

health status in a 3 class ranking from ALS data. 

To gain better insight into why 7 sites did not agree between Ground clustering and ALS 

clustering, the sites were inspected for any additional factor that may lead to misclassification of 

health status by Ground or ALS clustering. No pattern was detected in the data that would 

indicate that these 7 sites have something in common that leads to the discrepancy in rank. For 

comparison purposes, Table 19 lists the sites and their associated ALS and GS HSr values. 

 

Table 19: HCA IDs and their associated rankings from Ground and ALS clustering. Sites 71-01 

and 71-04 were excluded from clustering analysis because they lacked LAI values. Grey box 

values indicate disagreement between GS and ALS PC HSr. 

 

 

HCA ID 

ALS PC 

HSr GS HSr HCA ID 

ALS PC 

HSr GS HSr 

145-01 2 1 29-08 2 1 

145-02 3 3 29-09 2 1 

145-03 2 3 29-10 1 1 

145-04 2 2 29-11 1 1 

145-05 3 3 29-12 3 1 

145-06 3 3 71-01 --- --- 

145-07 2 2 71-02 2 2 

145-08 2 2 71-03 2 2 

29-01 3 1 71-04 --- --- 

29-02 3 1 71-05 2 2 

29-03 1 1 71-06 2 2 

29-04 1 1 71-07 2 2 

29-05 1 1 71-08 2 2 

29-06 1 1 71-09 2 2 

29-07 1 1 71-10 2 2 
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CHAPTER 5 

DISCUSSION 

Environmental Considerations 

Although this study aims to determine the effectiveness of ranking the health status of 

hemlock tree stands in north Georgia, not a wide range of infestation was found in the field. 

Within the hemlock stands surveyed, there is a fairly homogeneous spread of HWA infestation. 

Although differences exist in the duration of infestation, on a gradient from east to west and with 

east representing longer infestation times, no significant directional bias was found. HWA was 

present in all areas and sites surveyed. That is to say, no one area appears to be more infested, or 

in more dire health than another. However, specific sites do show minor health variation. 

Because the range of health was narrow, the tolerances of field-determined health clusters 

became more arbitrary. Health, as measured in this study, is a continuous entity based on LAI 

and fCover. Many sites did not fall exactly into a single health ranking, but rather straddled the 

edge between two. However, as the GS and ALS HSr clustering results show, clusters can be 

identified both from the ground and LiDAR data, and those clusters generally agree. One major 

environmental variable that showed significant influence on cluster values was elevation. This 

value was removed from the clustering analysis because it hid the variation of other variables. 

Since each HCA surveyed had a unique elevation range, and elevation ranges did not overlap 

between areas, including elevation as a variable tended to artificial cluster sites not based on the 

health of the trees found there but the spatial location and elevation from which it was surveyed. 

However, LAI and fCover values from the ground did not indicate spatial significance or 
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elevation significance; therefore, it was determined to not explain how HWA affects tree 

defoliation.  

Each site was required to have at least fifty percent minimum hemlock species. In 

general, these sites contained greater percentages of hemlock and were mixed with other needle-

leaf species. However, lack of “pure” hemlock stands made it difficult to specifically say what 

the underlying cause of differences were in values seen in this study: specific environmental 

factors, or the influence of HWA. However, a strong attempt was made to keep environmental 

characteristics between all sites the same and the results from this study still show significant 

differences in values and clusters from both ground and ALS data. 

Some error will result from the differences in collection of LiDAR data and field data 

because almost one year passed between the collections of these data. USFS monitoring of HWA 

spread in Georgia has showed slow progress of the infestation throughout the state, indicating 

that the results from this study can still be considered valid despite the temporal difference. Some 

error between ground and ALS data exists due to the collection date, but it should not be 

considered a significant factor. Lastly, some error will come from the collection and processing 

of both the LiDAR and ground data, both due to operator and random error. This is to be 

expected. However, despite these contributions of error and uncertainty in the data, the results 

still show that a relationship exists, and that HWA influence can be measured remotely. 

Data Equation Considerations 

The equation used for LAIALS may not be the most appropriate because it tends to 

encounter division by zero errors or extremely overestimate values (LAI>100) where there is a 

deficit of last and single returns from the canopy. This is because it is calculated as a fraction of 

first returns to last and single returns. A better equation or derived LAI proxy less sensitive to the 
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relationship between first, last, and single returns may have provided better results. The inclusion 

of intermediate returns in an equation derivation may provide better results and take advantage of 

the multiple return sensors types almost exclusively used now for LiDAR collection. In other 

studies, a simple transformation of canopy to ground return percentages has been used to 

approximate LAI, but this type of equation can be sensitive to the type of sensor used and the 

canopy geometry. 

In previous studies, LiDAR LAI generally best estimated effective ground LAI values; 

however, in this study it was found that these values best correlated with true estimations of LAI, 

where a clumping factor was applied. In general, it is likely that LAIALS will underestimate the 

true LAI as measured from the ground, which is why it correlated so well with effective 

measures. A proposed hypothesis is that the LAIALS calculation used in in this study 

systematically over estimates effective LAI when compared to previous equations used. This 

may be of added benefit to those interested in calculating LAI from ALS, because in general, 

true LAI is the desired measure for most forest studies. 

The calculation of fCover in this study is a widely used and accepted equation, although 

it too has pitfalls. Though fCover from the ground is calculated as the percent vegetation 

covering ground for a given area, with ALS there is generally no way to know what percentage 

of the pulse footprint is constituted by vegetation and ground from a multiple return sensor. 

When intermediate returns are filtered from the data prior to calculation, it adds an additional 

uncertainty in truly understanding what percentage of the ground was exposed during LiDAR 

collection. For example, a pulse travels towards a canopy and returns four times – three of those 

times are vegetation returns. What percentage of the laser footprint was actually exposed ground 

in the pulse footprint? Using discrete return data, there is no true way to know, and therefore, 
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fCoverALS is a best estimation. The inclusion of an actual percentage of pulse returned by ground 

or vegetation may give more insight to a better fCover calculation. 

Canopy Geometry in ALS Measurements 

fCover and LAI measurements derived from ALS data are very sensitive to canopy 

geometry. As seen with sites 71-01, 71-04, and 29-06, variable canopy structure, especially 

canopies with highly uneven canopy point return distributions, or high values in either the low or 

high canopy, are not measured as well. fCover and LAI from the ground are measured in 2D 

space, capturing only a flat image of the canopy cover from below and calculating values from 

that space. From ALS data, these variables are measured in 3D space, considering the vertical 

distribution of all canopy elements. Therefore, when a high percentage of points are returned 

from only a single level in the canopy, LiDAR will tend to miscalculate these variables when 

compared to hemispherical ground measurement. When dealing with only first, last, and single 

return data, a negatively skewed distribution with a slightly positive kurtosis is expected, because 

the majority of first and single returns will come from towards the top of the canopy. On 

average, skewness for all sites was -0.2033 and kurtosis was 2.6095. However, when this 

distribution is altered, either to be extremely negatively skewed as with 71-01 and 71-04, or 

positively skewed, as is the case with 29-06, fCover and LAI tend to be poorly predicted. In fact, 

71-01 has the most negative skewness of all study sites (-1.07), while 29-06 has the most positive 

skewness of all sites (1.22). In addition, 29-06 and 71-01 rank first and fourth in kurtosis. 

Data Trap Size and Sampling Rate 

The ALS derived values of fCover and LAI are sensitive to both the data trap size used to 

select the LiDAR points and the sampling rate, or total pulses per site, to calculate variables. The 

results of this study suggest that different data trap sizes should be considered for calculation of 
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LAI and fCover, and that the optimal data trap size for LAI may not be the optimal size for 

fCover calculation. From the ground using hemispherical photography, LAI and fCover values 

are calculated from different angles. In this study, a 60° Circle of Interest was used to calculate 

LAI while fCover was calculated from the integration of angles 0 - 10°. In this study, 20-m data 

traps performed best with LAI, with 15-m data traps performing second best on average. The 15-

m data traps performed best with fCover, although 10-m data traps were a close second and even 

outperformed the 15-m trap without overlap. As might be expected, smaller data traps tended to 

do better with fCover, while larger data traps tended to do better with LAI. Previous studies have 

tested the significance of data trap sizes on coefficients of determination with hemispherical 

photography, but these studies generally settle on a single data trap size for calculating both 

values. This study suggests that different optimal sizes should be considered for all metrics, and 

that it cannot be assumed that a single data trap size is optimal for all ALS derived forest metrics. 

The inclusion or exclusion of overlap points in calculating forest metrics from ALS data 

served as a proxy to determine if LiDAR sampling rate played a role in how well metrics could 

be estimated from the air. In this study, higher LiDAR sampling rates of canopy led to better 

estimations of forest metrics, as shown in the improved performance of sites calculated with 

overlap versus those calculated without overlap. In all cases in this study for LAI and fCover, 

data traps with overlap outperformed data traps of the same size without overlap, all other things 

being equal. The overlap versus no overlap comparisons show that a higher sampling rate, or 

higher post spacing in the collection of LiDAR, may lead to better calculations of LAI and 

fCover. Although the statistical significance of this improvement was not considered, it still 

shows promise in more accurately calculating forest metrics. Increasing LiDAR sampling can be 

achieved either through collection methods (e.g.,, flying lower and slower), higher sensor 
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collection frequencies, or making multiple flying passes over a single area – as was simulated in 

this study. 

Prediction Power of Additional ALS Variables 

 Mixed results were achieved when additional ALS derived variables were used in an 

attempt to more accurately predict ground variables. LAI results saw significant improvements in 

prediction ability with the inclusion of additional variables through principal component analysis 

(PCA). Height Percentiles and Ranges, Mean Canopy Height and Low and High Vegetation 

Fractions loaded highly in the first two retained principal components, which explained 

approximately 62% of the variability (PCs), while the original ALS derived fCover and LAI 

variables, as well as skewness, kurtosis, Medium Vegetation Fraction and slope loaded highly in 

the last three retained PCs, for a total explained variability of approximately 91%. In general, in 

an independent-dependent variable correlation matrix, many variables tended to correlate well 

with LAI prior to PCA, especially In Canopy Vegetation Fractions. In fact, some of these 

additional variables correlated better than the LAIALS proxy value used in single linear 

regression. Low Vegetation Canopy Fraction and High Vegetation Canopy Fraction were 

strongly correlated with Can-Eye true LAI (R
2
 = 0.5847 and R

2 
= 0.4991, respectively, in single 

linear regression). It makes sense that PCA would produce ALS PCs that better predict ground 

LAI than the LAIALS proxy alone when combined with other correlated values such as Height 

Percentiles. 

With fCover, however, PCA did not provide much added prediction power. In an 

independent-dependent variable correlation matrix, only the original fCoverALS, skewness, and 

Low Vegetation Fraction were correlated with ground fCover, and no correlations were stronger 

than the original single linear regression with only fCover variables. Therefore, in this study, 



 

82 

fCover was poorly predicted overall, even with the addition of other LiDAR variables. No 

patterns in the data suggest why fCover is so poorly correlated with additional LiDAR metrics. 

Agreement among ALS, Ground and Field HSr 

Field health rankings (HSr) were not found to be significantly related to either ground or 

LiDAR based health rankings. Field rankings are subject to the interpretation of the surveyor, the 

current site conditions, and a host of other factors. Field survey also may not be able to 

distinguish as well between sites of similar conditions as quantitative mathematical 

measurements. Although this study shows a weak agreement between qualitative field 

assessment and quantitative ground and ALS measurement, this does not suggest that one is 

more correct. It does indicate that considering both qualitative and quantitative methods when 

determining the health status of forest stands may lead to better indications of tree health. 

Kmeans clustering analysis in this study demonstrated that three significantly different 

clusters could be extracted from both ALS and ground data and those clusters generally agreed. 

This is perhaps the most significant result from the entire study. The results show that it is 

possible to partition values, and that with 75% agreement, ranking of forest health from ALS 

data matches that of ground data. In its current state, the process of clustering is a complex 

multistep statistical process which requires the computation of many LiDAR variables. However, 

using this process, the results of the study suggest that it is possible to estimate a tree stand 

health ranking using only LiDAR data that would agree with ground data assessment 

approximately 75% of the time. 
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CHAPTER 6 

CONCLUSION 

Overall, the objectives of this study were met. However, each objective of this study was 

accomplished with varying degrees of success. Correlation analysis was used to determine the 

LiDAR derived LAI and fCover value which best matched ground measures of LAI fCover. 

These values were used in single linear regression to determine the goodness of fit, which 

resulted in moderately good correspondence between air and ground data, with Adj. R
2
 =0.4355 

and 0.4597 for LAI and fCover, respectively. Single linear regression showed sensitivity to 

canopy geometry, and indicated better equations for LAI and fCover from LiDAR data may be 

needed to achieve more reliable results. In most cases, LAI values were in greater agreement 

than fCover values, though no strong hypothesis exists for why this is so. Additional variables 

were added and processed using principal component analysis and stepwise regression to 

determine if the addition of other LiDAR variables improved in the estimation of ground LAI 

and fCover. This analysis had mixed results, with LAI being significantly improved with the 

additional variables, and fCover showing little to no improvement, with Adj R
2
 = 0.7307 and 

0.4666 for LAI and fCover, respectively. Lastly, Kmeans cluster analysis was used to derive 3 

clusters of sites from ground and LiDAR principal components data. Clustering analysis proved 

to be the most meaningful and interesting result from this study. Approximately 75% of LiDAR 

and ground derived clusters were in agreement after analysis, and this correlation was found 

significant by all measures. This result shows the health of a hemlock tree stand can be ranked 

from LiDAR data with a fairly high level of certainty, and those rank clusters have a high level 
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agreement with ground health ranking. This result, above all else, shows the objectives of this 

study were met, i.e.,, clustering of tree stand health is possible. 

Additionally, this study finds sampling rate and data trap size play an important role in 

how well LiDAR measurers predict ground measures. The goodness of fit varied by data trap 

size for LAI and fCover, and the best performing sizes were not the same for each variable. 

Larger data trap sizes were found to better predict LAI (20 m), while small sizes better predicted 

fCover (10 or 15 m). In almost all cases, increasing the sampling rate improved the goodness of 

fit for all LiDAR variables. For LAI measures, the equation used in this study better predicted 

true measures of LAI better than effective measures. 

One of the greatest challenges of this study was locating appropriate field sites for study 

with available LiDAR data. Being on the southern end of hemlocks’ natural range, and heavily 

mixed with pine, it was difficult to locate appropriate stands. Often, hemlocks in Georgia are 

limited to cool, steep slopes near rivers and streams. Where they exist outside of these habitats, 

they are generally a secondary species. Although remote sensing techniques for finding HWA 

infested hemlock stands exist, ultimately field site selection in this study was achieved the old-

fashioned way–by following hunches and exploring in the woods. 

In future studies, more attention should be given to the role vertical canopy structure 

plays in the calculations of LAI and fCover from LiDAR data. One of the most interesting and 

unexpected results from this study is the high correlation seen between ground LAI and In 

Canopy High and Low Vegetation Fraction. These correlations suggest more significance can be 

found when the canopy is segmented by height. While this study used a fairly coarse 3 bin range, 

changing the number of bins or the calculation used to derive these in canopy values may 

provide greater insight to LiDAR measurement of forest structure. Three sites in this study 
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exemplified the type of issues that may arise when vertical canopy structure deviates from the 

normal vertical distribution of points that is expected from LiDAR data. When canopy point 

distributions are extremely skewed or have high kurtosis when compared to the expected 

distribution of LiDAR points, the derived LiDAR values will not correctly estimate values 

derived from the ground, e.g.,, a high peak in high vegetation with a lack of middle and lower 

vegetation, or a high peak in lower vegetation with a lack of middle and high vegetation. Future 

studies should also consider the inclusion of intermediate returns as a factor in calculating forest 

metrics. These often overlooked returns may provide greater insight into vertical canopy 

structure, as well as improve the current measures of LAI and fCover. Lastly, easier, simpler 

techniques should be developed that allow for quick estimation of tree health with better fit to 

ground data. Single measures of LAI and fCover from LiDAR did not have great correspondence 

with ground data, while multivariate measures had varying degrees of success. A simpler 

technique that is easier to operationalize and implement over a large area is needed. As it stands, 

the techniques employed in this study can be applied to broader scales, but they are 

computationally intensive and time consuming. 

This study contributes to the growing need for information on the spread of HWA 

throughout the eastern coast of the United States and helps to characterize the current state of 

hemlock decline at the southern extent of both the natural range of hemlock and HWA 

distribution in Georgia. LiDAR and statistical techniques employed here provide a novel way of 

quantifying the relationship between airborne and ground data, effectively measuring the impact 

of HWA on hemlock stands. The techniques can be applied on a broad scale to remotely estimate 

the health of hemlock tree stands. Most importantly, this study provides tools to those involved 

in research to stop the spread of HWA. Until recently, remote estimation of tree health was 
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completed using optical methods, but when defoliation of hemlocks starts below the top of the 

canopy, there is no way to tell from overhead imagery if a stand has been infested. This study 

demonstrates although the prediction of exact LAI of fCover cannot be achieved with great 

certainty, when placed into clusters using multivariate analysis, it is possible use LiDAR data to 

predict up to three health rankings of infestation for tree stands. This analysis may provide a new 

way to measure infestation, and ultimately gain a perspective on HWA spread and hemlock 

damage in the eastern United States. 
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