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ABSTRACT 

The goal of this work is to investigate biogeochemical dynamics in porous media, 

including ways to formulate microbial metabolism and its implementation into reaction transport 

models.  

 First, elemental cycling in a contaminated groundwater setting is assessed using model 

descriptions that differ in the range of reactions taken into account and in whether microbial 

population dynamics are considered. Results from simulations using different reaction networks 

show that a relatively simple network can provide an accurate prediction of the observed 

distribution of dissolved substances in a contaminant plume. However, depending on the 

complexity of the reaction network used, distinct differences can exist in individual process rates 

affecting these pools. When dynamics of microbial functional groups are accounted for, our 

simulations show the importance of the interplay between reaction energetics and nutrient 

limitations. 

Microbial activity is also investigated in a freshwater marsh, and a set of reactions is 

developed describing the hydrolysis and fermentation of organic matter and terminal metabolic 

processes. Rates of reactions involved in organic matter breakdown were quantified with two 



 

complimentary approaches. Since the two approaches rely on different types of data, they allow 

for independent methods to determine process rates in the sediment. Results show that the 

methodologies are consistent in some predicted rates but differ significantly in others, 

highlighting the importance of the description of reaction kinetics used for organic matter 

breakdown.  

Explicit formulations of microbial metabolism and its implementation in reaction 

transport models were also investigated. A kinetic representation of Geobacter sulfurreducens 

central metabolism was developed which successfully reproduced measured growth efficiencies 

with iron as terminal electron acceptor over a wide range of extracellular acetate concentrations.  

Analysis of experimentally validated in silico cell models were also utilized to predict 

phenotypic plasticity. When environmental conditions vary, an organism adjusts its enzymatic 

machinery. Results show the potential importance of investigating multiple phenotypes for an 

organism, not only including those that are optimal under a set of environmental conditions, but 

also those that may be slightly less efficient under static settings. These can be better adapted to 

settings in which the physic-chemical environment the microbe experiences fluctuates, requiring 

adaptation of its metabolic machinery. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

The role of microbes in porous media 

Microbially meditated reactions drive all major biogeochemical cycles on Earth 

(Falkowski et al., 2008), and are key to a range of issues ranging from antibiotic resistance (Mah, 

2012) to alternative energy production (Rabaey et al., 2003), bioremediation (Wall and 

Krumholz, 2006) and global climate change (Bardgett et al., 2008). Thus, understanding their 

metabolic functioning, as well as their adaptations to physico-chemical changes in their 

surroundings and feedbacks between microbes and their environments are central research 

themes in a wide range of fields.  

 

Modeling biogeochemical dynamics 

Many studies of elemental cycling in porous media either focus directly or indirectly on 

the breakdown of organic compounds and the associated use of electron acceptors. This is based 

upon the central role that organics play as energy sources for subsurface microbial life. Organic 

matter mineralization reflects the fermentation and hydrolysis of high molecular weight 

compounds producing low molecular weight substances such as acetate and other volatile fatty 

acids as well as H2, which then gets respired through terminal metabolism, consuming electron 

acceptors such as O2, nitrate, metal oxides and sulfate (Jakobsen et al., 1998; Lovley and 

Goodwin, 1988).  
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To better understand elemental cycling and the persistence and fates of nutrients, as well 

as contaminants, in groundwater settings, knowledge of the transport processes and 

biogeochemical reactions is needed. Reactive transport models are often employed for this 

purpose. They are based on mass balance equations, and for a single fluid phase, the governing 

equation is of the form (e.g. Miller et al., 1998): 

      (1) 

where ! is fluid volume fraction, " is density, ci is mass fraction of entity i, v is the advection 

velocity vector, #R is the net impact of reactions R, and j denotes non-advective transport fluxes, 

which are typically described as a diffusive term with a diffusion tensor D so that .  

The evolution of reactive transport modeling to elucidate the dynamics of elemental 

cycling has involved an increase in the complexity of reaction descriptions and formulations. For 

example, McNab and Narasimhan (1994; 1995) developed a model to simulate the attenuation 

and breakdown of petroleum hydrocarbons in an aquifer, employing a partial equilibrium 

approach, while Jakobsen and Postma (1999) used this approach to study iron oxide reduction, 

sulfate reduction, and methanogenesis in a shallow aquifer. Mayer et al. (2001) presented a fully 

kinetic model to describe contaminant dynamics along flow lines in a contaminant plume over an 

~50 year period utilizing reactions involved in the degradation of phenol coupled to terminal 

electron accepting processes. Emphasizing the importance of a comprehensive reaction network, 

a fully kinetic model was developed by Hunter et al. (1998) that included mineral precipitation 

and a suite of secondary reactions describing the reoxidation of reduced metabolites produced in 

the breakdown of organic matter in an aquifer, similar to the work of Boudreau (1996), Soetaert 

et al. (1996), and Van Cappellen and Wang (1996) on early diagenesis in marine sediments. 

More recent studies have also taken into account thermodynamic constraints on both abiotic and 

! 

"

"t
#$ci( )= %& ' j + v#$ci( )+ R(

! 

j = "#$D%c
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microbially mediated reactions or focused on improving representations of microbial activity. 

For example, Jakobsen and Cold (2007) implemented energy constraints on reactions in a sandy 

aquifer while Jin and Bethke (2003), based on the work of Boudart (1976), developed a reaction 

rate expression which accounts for the energy available in the microbe’s environment through a 

dependency on the Gibbs free energy of reaction.  Numerous studies have quantified the effect of 

pore scale substrate heterogeneity on reaction rates in reactive flows in soil columns (e.g. 

Gramling et al., 2002; Raje and Kapoor, 2000) and at stationary reaction fronts (e.g. Meile and 

Tuncay, 2006), or on mineral dissolution under a variety of environmental conditions (e.g. Li et 

al., 2006; Li et al., 2008). Also, Jakobsen (2007) found that the co-occurance of sulfate reduction 

and methanogenesis was possible in the presence of anoxic microniches formed in the presence 

of fast organic matter decomposition, and Sochaczewski et al. (2008) describes sulfide 

production in organic matter aggregates of greater than 1 mm diameter within the oxic top cm of 

sediment. 

 

Formulating a model of microbial metabolism 

To predict the feedbacks between microbes and their environments, knowledge on how 

bacteria affect their surroundings at the cell and process level is beneficial. However, a problem 

seen in many reactive transport models is that microbes are treated in a very rudimentary fashion. 

Even though they mediate a large part of the biogeochemical processes occurring, the details of 

microbial metabolism are generally not resolved explicitly. With the recent developments in 

genetics and microbial ecology, knowledge of microbial processes have been elucidated, which 

can be used to develop cell based models. 
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To predict how bacteria regulate their activity and grow in situ, it is necessary to 

quantitatively understand the complex and dynamic interactions between the numerous 

concurrent biogeochemical processes involved, which requires the use of mathematical models. 

While subsurface reactive transport models generally contain a comparatively sound description 

of the physical transport processes (Bear, 1972; Rockhold et al., 2004), they often do not 

explicitly account for the dynamics of microbial populations that are responsible for the majority 

of biogeochemical processes (Hunter et al., 1998; Watson et al., 2003). When included, microbes 

are typically represented as functional groups, with growth dynamics depending linearly on 

substrate availability or following Monod kinetics (Mauclaire et al., 2003; Seki et al., 2004; 

Thullner et al., 2007), an approach that has been successful in describing geochemical 

contaminant plume dynamics (Brun et al., 2002). However, lacking a realistic representation of 

microbial metabolism, such models are limited in their capability of reflecting microbial 

dynamics and forecasting the response to changing environmental conditions, which restricts 

their predictive power at the macro-scale and usefulness, for example, in the assessment of 

conditions that optimize in situ bioremediation (Lovley, 2003).  

Genome sequencing has led to the characterization of cellular metabolic networks and to 

the development of mathematical models at the cell scale (Stelling, 2004), ranging from 

descriptions of network topology (Jeong et al., 2000; Tong et al., 2004) to constraint-based 

models for different organisms (Forster et al., 2003; Reed et al., 2003; Stelling et al., 2002) and 

fully kinetic approaches (e.g. Bakker et al., 1997; Navid and Ortoleva, 2004; Weitzke and 

Ortoleva, 2003). Integration of such models of environmentally important groups of bacteria in 

reaction-transport simulations would clearly benefit forecasting biogeochemical responses to 

changing macroscopic conditions.  
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Structure and purpose of dissertation 

The purpose of this study is to investigate biogeochemical dynamics in porous media, including 

ways to formulate microbial metabolism and its implementation into reaction transport models. 

One application of reaction transport models is to simulate contaminated groundwater settings, 

where microbes play a role through their application in bioremediation efforts. With ~30% of the 

global freshwater pool residing in groundwater (Gleick, 1996), its quality is of great importance. 

Therefore in Chapter 2, models that structurally differ in the way reactions and microbes are 

taken into account, which allows for a determination of the importance of accounting for 

microbial population dynamics, are investigated in a contaminated groundwater setting. In 

addition, the impact of factors that may limit the applicability of reaction-transport models in 

low-temperature subsurface environments is assessed. These include pore scale heterogeneity in 

substrate distribution and its effect on microbial processes and the impact of the scope of the 

reaction network considered on predicted metabolite distributions and process dynamics in a 

reactive transport model describing the breakdown of a phenolic plume.  

In Chapter 3, to better elucidate microbially mediated carbon cycling in anoxic 

sediments, process rates detailing organic matter breakdown are parameterized and determined. 

These microbial processes can influence global climate change, such as through the production 

of methane, which has seen its atmospheric concentration increasing (Canfield et al., 2005). 

Though present at a concentration approximately 200 times less than carbon dioxide, methane 

serves as an important greenhouse gas due to it having approximately 25 times the radiative 

forcing of CO2 (Lelieveld et al., 1998). Methane can be produced through terminal metabolic 

processes coupled to the breakdown of organic matter in anoxic sediments. Freshwater wetlands 

are therefore an important methane source, and have been estimated to account for ~20% of 
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global emissions (Aselmann and Crutzen, 1989). Due to its potentially significant impact on 

climate change, detailed information on methane cycling, including an investigation into the 

biological controls and processes affecting its production in freshwater systems is needed. 

Therefore, a model representing organic matter breakdown is formulated with data taken from a 

detailed analysis of benthic anaerobic organic carbon breakdown carried out on sediments 

collected in freshwater habitats in Georgia. The data obtained contain a wealth of information on 

the step-wise breakdown of organic matter at the process level, including a time series of pore 

water constituents in sediment slurries and radiotracer incubations using methanogenic 

precursors, used to delineate the process rates involved in anaerobic metabolism.  

To address the need for comprehensive descriptions of microbial dynamics, cell-scale 

models of Geobacter sulfurreducens, an organism potentially useful in contaminated 

groundwater settings, are developed in chapters 4 and 5. Geobacteracea, a !-proteobacteria, 

constitute an abundant and environmentally important group in both pristine and contaminated 

sediment environments (Lovley, 2003). Geobacter species are metabolically diverse and can 

grow with numerous electron donors and acceptors, including acetate or H2 and Fe(III), 

fumarate, or malate, respectively (Caccavo et al., 1994; Lovley, 1993). Geobacter shape 

biogeochemical cycling directly through their metabolic activity, e.g. such as via the effect of 

iron (hydro)oxide reduction on the motility of sorbed trace metals and on pH. They have been 

shown to be enriched when Fe(III) reduction was promoted in a petroleum-contaminated sandy 

aquifer (Snoeyenbos-West et al., 2000) and can mediate the reduction of U(VI) to U(IV) (Lovley 

et al., 1991), converting the soluble form to the insoluble form and effectively removing the 

uranium from groundwater (Wilkins et al., 2006). 
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In Chapter 4, a kinetic reaction-mechanism based model for Geobacter sulfurreducens is 

developed to elucidate the feedbacks between environmental conditions, cellular processes, and 

metabolite concentrations. Knowledge of the enzymatic reactions occurring within the cell is 

utilized to develop a kinetic based model of the organism that is applied to a simulation of a 

subsurface contaminant plume. In addition, growth efficiencies are quantified as well as the 

sensitivity of model results to the parameterization of the enzymatic reactions of the TCA cycle 

and gluconeogenesis considered. Finally, coupling between cell metabolic expressions and 

macroscopic reactive transport models is used to assess the potential and limits of models that 

parameterize microscopic intracellular processes. 

In Chapter 5, phenotypic plasticity in microbes is studied in environmental settings where 

conditions may fluctuate over time. Specifically one can investigate the importance of near 

optimal phenotypes, or those metabolic networks that do not e.g. maximize growth, but can 

become relevant in variable environmental conditions where minimization of the reorganization 

of the metabolic machinery is beneficial. To this end, elementary flux mode analysis was used to 

develop a model of Geobacter. Unlike the commonly used flux balance analysis, which 

determines one realized phenotype through optimization of a goal function, e.g., maximizing 

cellular growth or ATP production, elementary flux mode analysis returns all feasible steady 

state realizations of the intracellular reaction network. These phenotypes were investigated to 

determine metabolic networks that were most optimal for growth while minimizing the transition 

cost occurred when adjusting the metabolic machinery in response to changing environmental 

conditions. 

 Finally, in Chapter 6, a summary of the results of these chapters is provided.  
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CHAPTER 2 

MODELING BIOGEOCHEMICAL DYNAMICS IN POROUS MEDIA: PRACTICAL 

CONSIDERATIONS OF PORE SCALE VARIABILITY, REACTION NETWORKS, AND 

MICROBIAL POPULATION DYNAMICS IN A SANDY AQUIFER1 
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Abstract 

Prediction of the fate and environmental impacts of groundwater contaminants requires the 

identification of relevant biogeochemical processes and necessitates the macroscopic 

representation of microbial activity occurring at the microscale. Using a well-studied sandy 

aquifer environment, we evaluate the importance of pore distribution on organic matter 

respiration in a porous medium environment by performing spatially explicit simulations of 

microbial metabolism at the sub-millimeter scale. Model results using an idealized porous 

medium under non-biofilm forming conditions indicate that while some heterogeneity is 

observed for flow rates, distributions of microbes and dissolved organic substrates remain 

relatively homogenous at the grain scale. At the macroscale in the same environment, we assess 

the impact of a comprehensive reaction network description for a phenolic contaminant plume, 

and compare the findings to a setting describing organic matter breakdown in a coastal marine 

sediment. This comparison reveals the importance of reactions recycling reduced metabolites at 

redox interfaces, leading to a competition for oxidants. When the spatio-temporal dynamics of 

microbial groups are accounted for, our simulations show the importance of the interplay 

between reaction energetics and nutrient limitations such as microbial nitrogen demands.  

 

Introduction 

To assess the persistence and fate of nutrients, contaminants, and pathogens in aquifers, it is 

necessary to understand their biogeochemical and transport behavior. Their spatio-temporal 

distribution depends on sorption and transport characteristics and chemical transformations, 

many of which are microbially mediated. Challenged by sparse observational data in subsurface 

environments, predictions of the fate of these substances typically rely on computational 
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approaches. Models that couple transport processes with reactions result in tight interactions 

between a multitude of chemical species. They are commonly used to quantitatively assess 

biogeochemical dynamics in aquifers and have provided significant insight into contaminant 

transport and decision making support (e.g. Cygan et al. 2007). While a comprehensive treatment 

of reactive transport relies on conservation of mass, momentum, and energy (Steefel et al. 2005), 

in practice most models are based only on mass balance equations. For a single fluid phase, the 

governing equations for the various constituents are of the form (e.g. Miller et al. 1998): 

      (1) 

where ! is fluid volume fraction, " is density, ci is mass fraction of entity i, v is the advection 

velocity vector, #R is the net impact of reactions R, and j denotes non-advective transport fluxes, 

which are typically described as a diffusive term with a diffusion tensor D so that .  

Some features in such reactive transport models can pose limits to their applicability. 

First, they rely on bulk properties that are averages over a representative elementary volume 

(REV; Zhang et al. 2000). In porous media, REVs must encompass several grains, implying that 

heterogeneity below that scale can be properly parameterized or has a negligible impact on 

reaction rate estimates (e.g. Szecsody et al. 1998, Wood et al. 2007). Second, description of 

transport processes via the use of a diffusion tensor assumes that non-Fickian transport is of 

minor importance (Hassanizadeh 1995, Levy and Berkowitz 2003). Third, use of Equation 1 

implies that the reaction network can be identified and parameterized. In order to do so, a set of 

reactions needs to be selected to represent a system of tremendous natural complexity, involving 

not only transformations in solution, surface catalysis, and precipitation and dissolution of 

mineral phases, but also the activity and dynamics of microbial populations. Volumetric reaction 

rates vary with abundance, distribution, metabolic capability, and cell-specific activity of 
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microbial populations. The microbial community has the potential to both modify and adjust to 

environmental conditions through changes in community composition, alterations of activity 

levels, chemotactic movement and metabolic plasticity (e.g. Ginn et al. 2002, Pett-Ridge and 

Firestone 2005).  

Due to the central role of organics as energy sources for subsurface microbial life and the 

importance of redox conditions for the fate of contaminants, many studies of elemental cycling 

in porous media either focus directly or indirectly on the breakdown of organic compounds and 

the associated use of electron acceptors. Organic matter mineralization can be conceptualized as 

fermentation and hydrolysis of high molecular weight compounds producing low molecular 

weight substances such as acetate and other volatile fatty acids as well as H2, which then gets 

respired through terminal metabolism, consuming electron acceptors such as O2, nitrate, metal 

oxides and sulfate (Lovley and Goodwin 1988, Jakobsen et al. 1998). The evolution of reactive 

transport modeling to elucidate the dynamics of elemental cycling has involved an increase in the 

complexity of the reactions. For example, McNab and Narasimhan (1994, 1995) developed a 

model to simulate the attenuation and breakdown of petroleum hydrocarbons in an aquifer, 

employing a partial equilibrium approach where fermentation controls the rate of organic matter 

degradation with terminal electron accepting processes occurring close to equilibrium. Jakobsen 

and Postma (1999) used this approach to study iron oxide reduction, sulfate reduction, and 

methanogenesis in a shallow aquifer. Mayer et al. (2001) presented a fully kinetic model to 

describe contaminant dynamics along flow lines in a contaminant plume over an ~50 year period 

utilizing reactions involved in the degradation of phenol coupled to terminal electron accepting 

processes. Emphasizing the importance of a comprehensive reaction network, Hunter et al. 

(1998) developed a fully kinetic model that included mineral precipitation and a suite of 
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secondary reactions describing the reoxidation of reduced metabolites produced in the 

breakdown of organic matter in an aquifer, similar to the work of Boudreau (1996), Soetaert et 

al. (1996), and Van Cappellen and Wang (1996) on early diagenesis in marine sediments. Recent 

studies have also taken into account thermodynamic constraints on both abiotic and microbially 

mediated reactions or focused on improving representations of microbial activity. For example, 

Jakobsen and Cold (2007) implemented energy constraints on reactions in a sandy aquifer while 

Jin and Bethke (2003), based on the work of Boudart (1976), developed a reaction rate 

expression which accounts for the energy available in the microbe’s environment through a 

dependency on the Gibbs free energy of reaction. The effect of microniches—i.e. scales typically 

not resolved explicitly—on redox processes has been investigated (e.g., Jakobsen et al. 2007, 

Sochaczewski et al. 2008), and numerous studies have quantified the effect of pore scale 

substrate heterogeneity on reaction rates in reactive flows in soil columns (e.g., Raje and Kapoor 

2000, Gramling et al. 2002), at stationary reaction fronts (e.g., Meile and Tuncay 2006), or on 

mineral dissolution under a variety of environmental conditions (e.g., Li et al. 2006, 2008).  

In this study we assess the impact of three factors that may limit the applicability of 

reactive transport models in low-temperature subsurface environments: (i) pore scale 

heterogeneity in substrate distribution and its effect on microbial processes, (ii) impact of the 

scope of the reaction network used on predicted metabolite distributions and process dynamics, 

and (iii) role of constraints on microbial population dynamics. We address these issues using 

data taken from a sandstone aquifer (Sherwood aquifer, West Midlands, UK) with a phenolic 

contaminant plume that has been documented extensively in the literature (Thornton et al. 

2001a,b, Mayer et al. 2001, Watson et al. 2005). First, we focus on flow fields and substrate 

availability at the grain scale. Simulations of flow and reaction are performed in a two-
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dimensional representation of a porous medium taken from the Sherwood aquifer to assess if 

pore scale heterogeneity in substrate and biomass distributions is likely to occur under conditions 

that are representative for the metabolism of dissolved organic matter. Second, macroscopic 

reaction transport simulations are performed that extend the work of Watson et al. (2005), who 

modeled the contaminants originating from a coal tar distillation plant which have been 

penetrating into the aquifer since the early 1950s. The effect of the comprehensiveness of the 

reaction network is evaluated by assessing the impact of additional reoxidation reactions and 

mineral precipitation. The findings are then compared to the roles of these additional reactions in 

early diagenesis in a coastal marine sediment. Controls on microbial populations and their 

interactions with the geochemical environment are considered by integration of explicit 

descriptions of functional microbial groups into reactive transport models.  

 

2. Methods and Applications 

2.1. Pore scale model 

To investigate the interplay between transport of chemicals and microbial dynamics, simulations 

at the pore scale were performed. The flow field is required in the mass conservation equations 

for chemical and biological constituents and is solved using the incompressible Navier-Stokes 

equations: 

      (2) 

where " is fluid density (1000 kg m-3), u is the velocity vector, p is pressure, and $ is the 

dynamic viscosity (0.001 Pa!s). The domain is derived from a 2D image of a porous medium 

depicting grains and pore space (see below) and is established by flipping the image horizontally 
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and/or vertically. The resulting four components are joined together so that the pore structures 

match up at all boundaries forming a toroidal domain. Fluid flow is produced by an imposed 

horizontal macroscopic pressure gradient and no flow conditions are imposed at grain surfaces. 

Periodic boundary conditions for flow velocities are imposed between the left (inflow) and right 

(outflow) sides and the top and bottom of the domain (in Fig. 2.1).  

The biogeochemistry considered is simplified and is represented by concentrations of 

acetate (C) and biomass in solution (B) and on the grain surfaces (Bsfc, expressed per area) only. 

The governing equations take into account advection, diffusion and reaction: 

     (3) 

! 

"B
"t

=# $ (DB#B) %u $ #B + gRacB %µBB      (4) 

! 

"Bsfc

"t
= gRacBsfc #µBBsfc + Rex        (5) 

where DC  and DB are the diffusion coefficients for acetate and biomass in solution, Rprod is the 

volumetric acetate production rate through fermentation, Rac is the cell specific rate of acetate 

consumption, g is the growth efficiency, Rex is the net exchange rate due to adsorption and 

desorption of bacteria to and from grain surfaces (see Eq. 6 below), and Bµ  describes the rate of 

cell death (see next paragraph). Acetate uptake by surface attached bacteria is accounted for via a 

flux condition at the grain surface, , where n is the outward normal 

vector to the grain surface. Continuity across connected interfaces is ensured. Boundary 

conditions for biomass concentrations are established in the same fashion, except that at the grain 

surface, the flux is set equal to the net rate of attachment and detachment (Rex), i.e. 

. Two-dimensional representations of grain geometries are implemented 
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in the finite element simulation environment COMSOL. Pore space is discretized into ~135,000 

triangular finite elements. Fluid flow is computed using a direct solver (UMFPACK; Davis and 

Duff, 1999). Subsequently, steady state distributions of the remaining state variables (C, B, Bsfc) 

are solved for using constant initial conditions (1x10-4 M acetate; 0.04 grams dry weight (gdw) 

m-3 biomass) and employing UMFPACK.  

Pore scale simulations are performed for a grain arrangement from the Sherwood 

sandstone aquifer using an image from Scott and Barker (2005) of size 2.3 by 1.76 mm. Porosity 

(!) is 0.44, and the pore volume to grain surface area sVA is approximately 5.4x10-5 m. The 

macroscopic pressure gradients are chosen so that mean flow velocities computed are consistent 

with that seen in the phenol contaminant plume (Watson et al. 2005), on the order of 2x10-7 m s-

1. The diffusion coefficient for acetate, DC, is set to 10-9 m2 s-1 (Boudreau, 1996) and for biomass 

(DB) is set to 10-10 m2 s-1. Acetate production is set to Rprod = 10-8 mol m-3 s-1 to be consistent 

with phenol breakdown rates seen in Watson et al. (2005), and is distributed evenly throughout 

the domain. Acetate consumption is defined using Monod kinetics, 

! 

Rac = kac
C

Kmac + C
, with the 

half saturation constant Kmac set to 10 µM and a maximum rate kac = 20 mmol (gram dry weight, 

gdw)-1 hr-1 (Esteve-Núñez et al. 2005). The growth efficiency, g (Eq. 5), is defined as a function 

of the acetate concentration based on cell model results and reaches about 4.4 gdw molacetate
-1 

under replete substrate conditions and approaches 0 at approximately 0.5 "M acetate levels 

(King et al. 2009). Acetate concentrations below this threshold are not sufficient to sustain 

growth as cell maintenance requirements exceed ATP production (King et al. 2009), and cell 

death occurs at a rate of 1% of the maximum growth rate. Following Murphy and Ginn (2000) 

and Saiers and Hornberger et al. (1996), microbial surface attachment and detachment (Rex) are 

given by: 
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Rex = sVAkads
(!max "Bsfc )

!max
B" kdesBsfc       (6) 

where "max is the maximum surface coverage of microbes on the grains (0.04 gdw m-2) calculated 

from monolayer coverage assuming a rectangular bacterial shape of size 0.4 "m x 2.5 "m 

(Seeliger et al. 1998) and a cell dry weight of 40 fg, kads is the cell surface attachment rate of 

2.1x10-3 s-1, and kdes is the cell surface detachment rate of 1.2x10-5 s-1 (Bradford et al. 2002). This 

simplified representation limits surface attached bacteria to a monolayer with no significant 

feedback on fluid flow. Hence, it cannot represent the formation of biofilms that can lead to 

heterogeneity at the pore scale (e.g. Davison et al. 1997, Suchomel et al. 1998). Also, while there 

is no independent observation validating the flow field, by computing hydraulic conductivity 

from pore scale simulations and comparing them to experimentally determined values in larger 

scale experiments, Narsilio et al. (2009) showed the validity of Navier-Stokes pore scale 

simulations in a comparable setting. Finally, our pore scale model does not account for bimodal 

porosity distributions, which have been shown to lead to preferential flow paths that can result in 

patchy distributions of substrate and biomass at the cm scale (Copolla et al. 2009). This is 

juxtaposed by considering only two rather than the physical three spatial dimensions, which 

tends to underestimate the connectivity of the pore network and hence promote patchy 

distributions. 

 

2.2. Large scale models 

The macroscale reactive transport simulations are based on the work by Watson et al. (2005) 

who studied the fate of a contaminant plume using a 2D vertical aquifer cross section. Their 

description included phenol breakdown as a two-step process. The first step involved 

fermentative reactions producing acetate, inorganic carbon, and H2 and the second step 
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considered the subsequent breakdown of these intermediates. The reaction network also included 

sorption reactions involving iron phases and took into account the precipitation of iron sulfides. 

In our approach, we adapted the reactive transport model presented in Spiteri et al. (2007, 2008) 

to simulate the spatio-temporal evolution of this phenol plume. In brief, based on conservation of 

mass, the concentration field of a solute (Ck, in mass per pore volume) is given by 

! 

"#Ck

"t
=$ % (D*$Ck ) &$ % (#vCk ) + #Rk      (7) 

where ! is porosity, v is the flow velocity, and Rk is the net reaction rate of species k in mass per 

time and pore volume. The diffusion-dispersion tensor D* is defined as 

,      (8) 

where ! ! !! ! !! !and Dm, %ij, &L and &T are tortuosity corrected in situ molecular diffusion 

coefficient, Kronecker symbol, and longitudinal and transverse dispersivities, respectively 

(Scheidegger 1961). Solids and surface attached microorganisms are assumed to be immobile, so 

that  

        (9) 

where ck is the concentration of compound k in mass per solid volume, and rk is the net reaction 

rate of species k in mass per time and solid volume. 

 The governing equations are discretized using a Galerkin finite element formulation and 

forward Euler time stepping. Transport and reaction operators are split (Steefel and MacQuarrie 

1996) and in each timestep, the transport of the solutes is first computed using a diagonally 

preconditioned conjugate gradient solver (Reddy 1993, Meile and Tuncay 2006). Subsequently, 

the set of coupled ordinary differential equations representing the reaction network is solved at 
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each node using the VODE solver, employing backward differentiation and full Jacobian settings 

(Brown et al. 1989).  

Equilibrium reactions describing the speciation and surface adsorption of reactants are 

computed at the end of each timestep through mass-action expressions that are simplifications of 

these complex reactions. Mass action is expressed as 

! 

a j = K j ai
q ji

i

nc

" , where a denote activities, 

Kj is the equilibrium constant, qji are the stoichiometric coefficients and nc is the number of 

components. Mass conservation is ensured (to within a tolerance of 1x10-10 mol m-3) by 

matching the total imposed mass of a component i (Ti) with the summed contributions from all 

species (S) in which that element is speciated, 

! 

Ti = q ji[S j ]
j

m

" , where m is the number of species. 

Activities and concentrations are linked via activity coefficients assuming an ionic strength of 

0.1 and computed using the Davies (1962) equation. Mass action laws are linearized by a log 

transformation, and the system , where 

! 

Yi = Ti " q ji[S j ]
j

m

# , [Sj] is the concentration 

of species j in the last iteration, and J denotes the Jacobian matrix , is solved iteratively 

using a Newton-Raphson root finding procedure (Tadanier and Eick 2002). In this manner, pH is 

computed at each timestep from the local solution composition, taking into account the acid-base 

equilibrium of the dissolved inorganic carbon and sulfide species, precipitation and dissolution 

of iron sulfides, as well as fast surface exchange reactions.  

 Simulations are performed representative of a well-characterized site contaminated with 

phenolic compounds in the West Midlands, England  (e.g. Thornton et al. 2001a,b, Mayer et al. 

2001), with a uniform horizontal plume propagation speed (vi) on the order of 10 m yr-1. We 
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compare simulations for a number of reaction networks that differ in their complexity, ranging 

from a set that only includes the oxidation of high molecular weight organic matter and 

subsequent terminal metabolism to a description that encompasses chemotrophic and abiotic 

oxidation reactions that compete with the heterotrophic respiration for electron acceptors, 

precipitation reactions and microbial dynamics. The baseline reaction network for the 

contaminant plume simulations follows Watson et al. (2005), with the exception that their work 

employs different reaction rate constants (kmax values, Table 2.1) inside and outside of the plume 

while we employ one single value for each reaction. The baseline network considers the 

fermentation of phenol, and the subsequent respiration of H2, precipitation of iron sulfides, as 

well as sorption reactions involving iron phases (“baseline” network, consisting of primary (P) 

and equilibrium (E) reactions given in Table 2.1). The complexity of the “baseline” network is 

increased by including the oxidation of reduced species (secondary reactions (S) in Table 2.1) 

and further expanded by taking carbonate mineral precipitation and dissolution reactions into 

account (mineral reactions (M) in Table 2.1). Parameters for secondary reactions were taken 

from Hunter et al. (1998), except that the rate constants for iron oxidation with O2 and methane 

oxidation with sulfate were lowered by approximately 3 orders of magnitude to provide results 

that were consistent with the field data shown in Thornton et al. (2001b).  

In the above formulations, the microbial populations are not represented explicitly, even 

though they catalyze the majority of the processes considered. To take into account microbial 

dynamics, “microbial” model simulations were performed that included three key functional 

groups of microbes that promote the breakdown of phenol and consumption of H2 (phenol 

fermenting, phenol respiring, and H2 respiring organisms; Table 2.1). The microbial groups are 

described by   
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! 

"#Bi

"t
=$ % (D*$Bi ) &$ % (#vBi ) + # g'Ri &µiBi( )    (10) 

where µ# is the death rate of microbial group i (Table 2.2) and % denotes the ammonium 

availability (% = 1 if NH4
+ is present and 0 otherwise). Ammonium is subject to oxidation as well 

as biological uptake and recycling through cell death. Biological uptake of ammonium is 

dependent on cell growth by assuming a cell carbon content of 0.22 gC ml-1 (Bratbak and Dundas 

1984) and a Redfield C:N ratio. Upon death, ammonium is released from the cells in the same 

proportions as incorporated during growth. Ammonium was not accounted for in Watson et al. 

(2005) and boundary conditions are implemented based upon well data (Williams et al. 2001). 

Reaction rates are formulated as in the simulations without microbial dynamics (i.e. the kinetic 

expressions Fkin given in Table 2.1) except that they also contain a dependency on 

thermodynamic conditions (Fthd) and biomass abundance: 

! 

Ri = Fkin " Fthd " B         (11) 

where B reflects the biomass concentration of the microbial population performing the reaction. 

The thermodynamic factor Fthd accounts for the energy available in the microbe’s environment 

through a dependency on the Gibbs free energy of reaction (Boudart 1976, Jin and Bethke 2003), 

and reflects that catabolic processes will ultimately shut down under conditions that do not allow 

for ATP production. This factor is defined as , where 

! 

"Grxn  is 

the Gibbs free energy of reaction, 

! 

"GATP  is the phosphorylation potential and m and $ are 

reaction specific parameters (Jin and Bethke (2005); Table 2.2).  

 Additional simulations are performed at a coastal marine site (station S4) in the eastern 

Skagerrak between Denmark and Norway. The 1D reactive transport model STEADYSED, 

calibrated for this site (Wang and Van Cappellen 1996), was employed to analyze the effects of 
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using simplified reaction networks describing sedimentary early diagenesis. Similar to the 

contaminant plume setting, the model takes into account the decomposition of organic matter, 

which includes oxic respiration, denitrification, manganese and iron oxide reduction, sulfate 

reduction, and methanogenesis, but it does not explicitly account for the intermediates of 

terminal electron accepting processes (e.g. H2 and acetate). Reduced species are subject to 

secondary redox reactions and to mineral precipitation and adsorption, leading to a reaction 

network similar to that considered in the contaminant plume simulations, not including explicit 

microbial dynamics. The results of the simulations are compared for a reaction network that 

considers the secondary reactions versus one that ignores them (reactions I-7 to I-18 in Wang 

and Van Cappellen 1996).  

 

3. Results and Discussion 

3.1 Pore scale simulations 

Using our simple approximation to microbial respiration, simulations show the existence of 

preferential flow paths (Fig. 2.1). However, pore scale heterogeneity in biomass and substrate 

concentrations is small. Steady state distributions of acetate and biomass in solution computed 

from Eqns. (3)-(5) for the Sherwood aquifer setting show virtually no variation at the pore scale 

(Fig. 2.1; the quartile ranges of concentrations in the fluid phase, determined from simulations 

results interpolated onto 108 evenly spaced points creating a regular 0.46 "m by 0.35 "m grid, 

are 0.48-0.49 "M and 0.22 and 0.24 mgdw m-3, respectively). Homogeneity in concentrations 

stems from diffusion as a dominant process at this scale (Peclet and Damköhler numbers are less 

than 0.1 for a length scale of 100 "m). Acetate concentrations have reached the point where its 

uptake is limiting growth. Sorption/desorption occurs at a sufficient rate to cause a near-
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equilibrium distribution between mobile and immobile biomass, with the majority of the cells 

(>98%) being surface-associated. 

To elucidate the conditions under which either the flow regime or reaction dynamics vary 

significantly at the grain scale, the parameterization of the baseline simulations was altered 

systematically. A ten-fold increase in the substrate production rate Rprod from 10-8 to 10-7 mol m-3 

s-1 or a spatially uneven distribution of acetate production (e.g. production via breakdown of 

particulate organic matter, modeled as a source term associated with grain surfaces or 

constrained to a single quadrant of the domain) did not lead not lead to patchy concentration 

fields. Substantial spatial variations in substrate and biomass concentrations are seen only when 

Rprod is increased by two orders of magnitude. Under this condition, quartile ranges for the 

aquifer are 0.46 – 0.63 µM acetate and 0.023 – 0.029 gdw m-3 biomass, respectively. Similarly, 

increasing the pressure gradient by an order of magnitude in our simulations did not lead to 

spatial heterogeneity, because the advective timescale (L/average velocity) exceeds that of 

diffusion (L2/D) at the scale of the domain (L), and even more so at pore level. For heterogeneity 

in substrate and biomass concentrations to become significant in our simulations, advective or 

reactive processes must occur on a shorter timescale than diffusion as observed by Raje and 

Kapoor (2000) and Gramling et al. (2002) in soil columns at a high Péclet number. The reactive 

timescale (estimated by the ratio of the average substrate concentration to the acetate 

consumption rate) of the simulations becomes shorter than the diffusional timescale when 

substrate production rates are increased by 2 orders of magnitude. This indicates that 

heterogeneity can potentially become dominant in environmental conditions that promote fast 

reactions, albeit at rates that likely exceeds microbial respiration.   
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3.2 Macroscopic redox zonation 

All implementations of the contaminant plume reaction network are subject to the same rate laws 

characterizing the phenol breakdown and the resulting acetate and H2 production, with the 

exception of the simulations in which the microbial populations are accounted for explicitly. 

With only a fraction of the inflowing phenol being degraded, and due to the similarity in rate 

laws in all simulations, the phenol plume (Fig. 2.2A) is nearly identical in shape and magnitude 

in all simulations, matching the observations closely (see comparison of model results to the 

measured well profile in Fig. 2.2C). However, because of the dependency of aerobic phenol 

breakdown and denitrification (P1 and P2 in Table 2.1) on O2 and NO3
- concentrations, the 

competition for oxidants by introduction of secondary reactions leads to a drop in the aerobic 

respiration rate. Taking into account use of O2 in the oxidation of reduced inorganics leads to an 

~40% lower phenol breakdown over the course of the 47 years studied compared to the baseline 

network alone, and the contribution of aerobic to total phenol degradation is reduced from ~48 to 

~14% (Table 2.3).  

Rate laws of acetate and total H2 consumption via methanogenesis and the reduction of 

sulfate and iron and manganese oxides are identical for the above networks, and both acetate and 

H2 contours roughly follow the plume outline for the reaction networks analyzed (Fig. 2.2A, B). 

Following the implementation in Watson et al. (2005), H2 respiration is only modeled in suboxic 

and anoxic conditions. This is consistent with the absence of any overlap between O2 and H2 in 

field measurements (Thornton et al. 2001b), as well as in our model simulations. Therefore, in 

contrast to the impact of secondary reactions on phenol degradation, little to no effect from 

secondary reactions on H2 dynamics is observed. The impact of the further addition of carbonate 
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mineral precipitation on DIC concentrations is small, so that the DIC plume in Figure 2.2B is 

representative for all reaction networks. 

Redox sensitive products of the organic matter breakdown reactions reveal differences 

between reaction networks. Simulations only accounting for primary reactions match measured 

Mn(II) levels fairly well (Thornton et al. 2001b; not shown), but lead to dissolved iron 

concentrations exceeding those observed (Table 2.3; simulated Fe2+ levels at well BH60 after 47 

years are approximately 3 fold higher than the measured values shown in Figure 3 of Thornton et 

al. 2001b). In all reaction networks investigated, the total concentration of iron oxides was 

virtually unaffected by the different reaction networks because of the large pool size. In addition, 

the total reduced iron pool (Fe2+ + >Fe + FeS + FeCO3; where >Fe represents surface adsorbed 

iron) varies by less than a factor of 3 (Table 2.3); however, the speciation of the iron can differ 

substantially. Taking into account secondary reactions results in an increase of Fe2+ by ~10% and 

an ~75% decrease in the amount of FeS. The inclusion of mineral precipitation reactions tends to 

lower the Fe2+, >Fe, and FeS pools since the iron is precipitated as FeCO3, which constitutes the 

largest sink for reduced iron (~60%).  

As for the contaminant plume, inclusion of secondary reactions in sediment simulations 

results in the lowering of the importance of the aerobic degradation of organic matter from ~32 

to 11% (Table 2.3). The effect of network complexity on iron speciation has a greater impact in 

the marine sediment than in the contaminant plume setting. For example, iron oxide levels are 

~3.5 times more prevalent considering the full reaction network than in simulations not 

accounting for the secondary reactions. Inclusion of secondary reactions also impacts reduced 

iron pools, doubling the integrated Fe2+ concentrations while FeS decreases by ~39%. In 

comparison, addition of the secondary reactions in the contaminant plume results in a 10% 
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increase in Fe2+ levels. Overall, total reduced iron levels are increased by ~12% upon accounting 

for secondary reactions (Table 2.3).  

Aside from these highlighted differences in iron pools, our results show that changes in 

the reaction network have relatively little impact on pool sizes for most chemicals, but can affect 

reaction pathways. This is consistent with the results of Hunter et al. (1998) who assessed the 

importance of secondary reactions in simulations of a pristine aquifer contaminated by a landfill 

leachate. They found that the concentrations of organic matter were unaffected by the inclusion 

of secondary reactions, but that consistent with the effects on aerobic oxidation of phenol, the 

competition for O2 by secondary reactions altered the pathways of organic matter decomposition. 

Thullner et al. (2005) determined that manganese reduction was completely controlled by 

secondary reactions in a coastal marine setting, although it was more pronounced than the impact 

of secondary reactions on iron cycling presented here. These results highlight the fact that not 

taking into account all of the relevant reactions can lead to improper conclusions about the 

importance of biodegradation pathways. They also show that the specific environment plays a 

role in the extent of the effect of secondary reactions. Inclusion of secondary reactions has a 

greater effect in the sediment environment, where redox interfaces are more prevalent and O2 

consumption via secondary reactions plays a greater role than in the contaminant plume 

simulation.  

 

3.3 Plume scale microbial distributions 

The addition of explicit descriptions of phenol fermenting, phenol respiring, and hydrogen 

respiring microbial populations lead to little spatial variability in modeled cell densities. Phenol 

fermenters were estimated to be present predominantly within the plume at ~8x106 cells ml-1, 
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while computed phenol respiring organisms were found near the plume edge in similar 

concentrations; H2 oxidizers were similar in spatial extent to the phenol fermenters but present at 

higher concentrations of ~2x107 cells ml-1 (not shown). . Inclusion of microbial populations leads 

to geochemical distribution patterns consistent with the observations (Fig. 2.2). Our 

parameterization slightly underpredicted dissolved inorganic carbon production (Fig. 2.2D), 

concurring with a higher estimate of acetate than the non-biotic reaction networks which in part 

is also caused by a slightly higher phenol breakdown. While total iron levels are consistent with 

non-biotic simulations, there is an approximate doubling of the FeCO3 and increased 

dissimilatory iron reduction (Table 2.3). 

Our simulations show relatively little spatial variation in total bacterial numbers (not 

shown). Consistent with our findings, Thullner et al. (2005), who introduced microbial groups 

into a reactive transport model describing a marine sediment, determined that bacteria were 

distributed homogenously. Similarly, Dale et al. (2006), who accounted for bacterial groups and 

energetic limitation in coastal sediment, also found little variation in bacterial biomass 

concentrations over time. Our simulations also indicate that the regulation of biomass levels 

depends on nitrogen limitations and thermodynamic constraints (Fig. 2.3). This finding in our 

carbon rich environment contrasts starkly with dissolved organic carbon limited microbial 

populations in a groundwater setting described by Lensing et al. (1994). Simulations that did not 

take in to account nitrogen limitation demonstrated unrestrained bacterial growth due to the 

virtually unlimited availability of phenol, while simulations with no thermodynamic constraints 

resulted in lower H2 concentration throughout the domain (not shown). Nitrogen is abundant 

within approximately the first 75 m of the domain and does not inhibit microbial growth, while 

the remainder of the plume is nitrogen limited (Fig. 3B). An analysis of bacterial growth 
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dynamics within nitrogen limited regions shows a steady state existence of the bacterial groups 

with cell death and nitrogen release being balanced by subsequent growth. Abundant energy is 

available for bacteria respiring O2 and NO3
-, but for organisms fermenting high molecular weight 

organic compounds, Fthd varies from ~0.6 to 1 with the strongest thermodynamic constraints in 

areas of the plume with the highest acetate concentrations (Fig. 2.3A). The bacterial group 

respiring H2 shows an Fthd term that varies between ~0.5 and 0.7 (Fig. 2.3B), suggesting that 

energetic constraints contribute to shaping in situ microbial activity. 

 

4. Conclusions 

This study, focusing on conditions in a sandy aquifer, assesses two aspects that may pose 

limitations to reactive transport modeling: pore scale variability and the comprehensiveness of 

the (micro-)biogeochemical processes considered.  

First, simulations of flow and concentration fields subject to (idealized) biogeochemical 

dynamics suggest little spatial variability in substrate and biomass distributions at the grain scale, 

at least under conditions that do not favor the formation of biofilms. Second, results from 

simulations using different reaction networks show that a relatively simple reaction network can 

provide an accurate prediction of the observed distribution of dissolved substances in a 

contaminant plume. However, depending on the complexity of the reaction network used, 

distinct differences can exist in individual process rates affecting these pools. Simulations of the 

breakdown of organics in groundwater highlights the importance of reoxidation reactions in 

settings characterized by strong redox gradients over a large part of the model domain; a finding 

supported by the assessment of their impact on process dynamics in coastal marine surface 

sediments. This is notable, because while concentration fields only denote snapshots compared to 
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transient model simulations, they are typically used for model validation. Our results emphasize 

the need for comparison of modeled process dynamics with measured rates, which are difficult to 

obtain and hence are not readily available.  

Consistent with the results of Wang and Papenguth (2001), we found that a description of 

subsurface process may not always require an explicit representation of microbial biomass, 

particularly in settings characterized by minimal microbial activity. However, accounting for 

growth of microbes and associated reaction rates requires going beyond implementation of a 

kinetic substrate dependency of biomass alone. Notably, inclusion of nitrogen limitations 

appeared necessary in a setting fueled by carbohydrates to avoid excessive microbial growth due 

to abundant C-substrate. The need to account for a range of feedback mechanisms between 

microbial activity and environmental conditions suggests that understanding microbial 

requirements (which may extend well beyond the factors and chemical substances encompassed 

in current reactive transport models) may be central to quantify controls on bioremediation in the 

field.  
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Table 2.1: Reactions included in the model.  

Reactions Stoichiometry Rate law (Fkin)* # 
Primary Reactions (P) ** 
Aerobic Degradation C6H5OH + 7O2 + 3H2O ! 6HCO3

- + 6H+ kmaxP1 !M1,phenol !M1,O2 P1 
Denitrification C6H5OH + 5.6NO3

- + 0.2H2O ! 6HCO3
- + 0.4H+ + 2.8N2 kmaxP2 !M2,phenol !M2,NO3 !I2,O2  P2 

Fermentation C6H5OH + 5H2O ! 3CH3COOH + 2H2 kmaxP3 !M3,phenol !I3,O2 !I3,NO3 !I3,phenol P3 
Fermentation C6H5OH + 17H2O ! 6HCO3

- + 6H+ + 14H2 kmaxP4 !M4,phenol !I4,O2 !I4,NO3 !I4,phenol P4 
Manganese Reduction H2 + MnO2 + 2H+ ! 2H2O + Mn2+ kmaxP5 !M5,H2 !I5,O2 !I5,NO3 !I5,phenol P5 
Iron Reduction H2 + 2FeOOH + 4H+ ! 4H2O + 2Fe2+ kmaxP6 !M6,H2 !I6,O2 !I6,NO3 !I6,phenol P6 
Sulfate Reduction H2 + 0.25SO4

2- + 0.25H+ ! H2O + 0.25HS- kmaxP7 !M7,H2 !M7,SO4 !I7,O2 !I7,NO3 !I7,phenol P7 
Methanogenesis H2 + 0.25HCO3

- + 0.25H+ ! 0.75H2O + 0.25CH4 kmaxP8 !M8,H2 !I8,O2 !I8,NO3 !I8,phenol P8 
Secondary Reactions (S) 
Manganese Oxidation Mn2+ + 0.5O2 + H2O ! MnO2 + 2H+ kmaxS1 ![Mn2+]![O2] S1 
Iron Oxidation Fe2+ + 0.25O2 + 1.5H2O ! FeOOH + 2H+ kmaxS2 ![Fe2+]![O2] S2 
Iron Oxidation by MnO2 2Fe2+ + MnO2 + 2H2O ! 2FeOOH + Mn2+ + 2H+ kmaxS3 ![Fe2+]![MnO2] S3 
Sulfide Oxidation H2S + 2O2 ! SO4

2- + 2H+ kmaxS4 ![TS]![O2] S4 
Sulfide Oxidation by MnO2 H2S + MnO2 + 2H+ ! Mn2+ + S0 + 2H2O kmaxS5 ![TS]![MnO2] S5 
Sulfide Ox. via FeOOH H2S + 2FeOOH + 4H+ ! 2Fe2+ + S0 + 4H2O kmaxS6 ![TS]![FeOOH] S6 
FeS oxidation FeS + 2O2 ! Fe2+ + SO4

2- kmaxS7 ![FeS]![O2] S7 
Methane Oxidation CH4 + 2O2 ! CO2 + 2H2O kmaxS8 ![CH4]![O2] S8 
Methane Ox with Sulfate CH4 + SO4

2- + H+ ! H2S + HCO3
- + H2O kmaxS9 ![CH4]![SO4

2-] S9 
Nitrification NH4

+
 + 2O2 ! NO3

- + 2H+ + H2O kmaxS10 ![NH4
+]![O2] S10 

Mineral Dissolution/Precipitation Reactions (M) 
MnCO3 precip/dissolution Mn2+ + HCO3

- ! MnCO3 + H+ (!p!kp,MnCO3 + !d!kd,MnCO3![MnCO3]) ! ("MnCO3-1) M1 
FeCO3 precip/dissolution Fe2+ + HCO3

- ! FeCO3 + H+ (!p!kp,FeCO3 + !d!kd,FeCO3![FeCO3]) ! ("FeCO3-1) M2 
Equilibrium Reactions (E) 
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 >FeOH + Mn2+ =  >FeOMn+ + H+ E1 HCO3
- = H+ + CO3

2- E6 
 >FeOH + H+ =  >FeOH2 E2 H2CO3 = H+ + HCO3

- E7 
 >FeOH =  >FeO- + H+ E3 H2O = H+ + OH- E8 
 >FeOH + Fe2+ =  >FeOFe+ + H+ E4 FeS + H+ = Fe2+ +HS- E9 
 >FeOH + Fe2+ + H2O =  >FeOFeOH + 2H+ E5 H2S = HS- + H+ E10 

 

*Monod and inhibition terms are defined as Mj,C = [C]/(Km,j+[C]) and Ij,C = KI,j/(KI,j+[C]), respectively. Values for the reaction 

parameters are given in Table 2.2. For the mineral precipitation reactions/dissolution reactions, !p =1 and !d =0 if " < 1 and !p =0 and 

!d =1 if " " 1. Saturation states "XCO3 are defined as [X2+][HCO3
-]/(KXCO3 [H+]), where X=Mn or Fe.  

** In the “microbial” simulations, the kinetic expressions Fkin in P1-8 are divided by typical biomass concentrations, 

! 

Bi
0, set to 0.8 gdw 

m-3. Phenol respiring organisms are responsible for reactions P1 and P2, phenol fermenters for P3 and P4, and H2 utilizing organisms 

for P5-P8. 
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Table 2.2: Model parameters (sources provided as leading superscripts).  

Parameter Value Parameter Value 
  Rate constants 
akmaxP1 4.00x10-10 mol L-1 s-1 ckmaxS2 3.17x10-1 L mol-1 s-1 
akmaxP2 4.00x10-11 mol L-1 s-1 fkmaxS3 3.17x10-8 L mol-1 s-1 
akmaxP3 8.40x10-13 mol L-1 s-1 ckmaxS4 5.07x10-3 L mol-1 s-1 
akmaxP4 2.30x10-13 mol L-1 s-1 ckmaxS5 6.34x10-4 L mol-1 s-1 
akmaxP5 9.80x10-12 mol L-1 s-1 ckmaxS6 2.54x10-4 L mol-1 s-1 
akmaxP6 2.20x10-11 mol L-1 s-1 ckmaxS7 9.51x10-3 L mol-1 s-1 
akmaxP7 8.40x10-11 mol L-1 s-1 ckmaxS8 3.17x102 L mol-1 s-1 
akmaxP8 4.34x10-10 mol L-1 s-1 fkmaxS9 3.17x10-7 L mol-1 s-1 
ckmaxS1 3.17x10-1 L mol-1 s-1 ckmaxS10 1.59x10-1 L mol-1 s-1 
 Monod and inhibition constants  
aKm,1-4(phenol) 1.10x10-4 mol L-1 aKI,2(O2) 6.20x10-6 mol L-1 
aKm,5-6(H2) 5.00x10-7 mol L-1 aKI,3-4(O2) 3.10x10-5 mol L-1 
aKm,7(H2) 1.00x10-6 mol L-1 aKI,3-4(NO3) 1.60x10-5 mol L-1 
aKm,8(H2) 5.00x10-6 mol L-1 aKI,3-4(phenol) 6.00x10-2 mol L-1 
aKm,1(O2) 3.10x10-6 mol L-1 aKI,5-8(O2) 3.10x10-5 mol L-1 
aKm,2(NO3) 8.10x10-6 mol L-1 aKI,5-8(NO3) 1.60x10-5 mol L-1 
aKm,7(SO4) 1.60x10-3 mol L-1 aKI,5-8(phenol) 4.00x10-2 mol L-1 

Mineral reactions 
ckp,MnCO3 3.17x10-6 mol dm-3 s-1 ckp,FeCO3 1.59x10-6 mol dm-3 s-1 
ckd,MnCO3

 3.17x10-12 s-1 ckd,FeCO3
 1.59x10-12 s-1 

bKMnCO3 0.8690 bKFeCO3 0.2748 
Microbial growth and thermodynamics 

d!1 56 dm5-6 2/3 
d!2 28 dm7 1/3 
d!3-8 2 dm8 2/9 
dm1 28 d"GATP 50 kJ mol-1 
dm2 28/3 e!1 3.3x10-10

 s-1 

dm3 2/3 e!2 1.65x10-11 s-1 
dm4 1 e!3 7.01x10-11 s-1 

Transport parameters 
a!L! 1 m DmS 10-9 m2 s-1 
a!T! 4x10-4 m   
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a Watson et al. (2005) (note that in contrast to Watson et al. (2005), no spatial variation in rate 

constants is considered here). 

b Stumm and Morgan (1996). 

c Hunter et al. (1998). 

d Jin and Bethke (2005): note that the values for m and ! given there have been adjusted for the 

number of electrons transferred per reaction. 

e Death rates are calculated as 1% of their respective maximum achieved growth rates. 

f Inferred from simulations. 
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Table 2.3: Concentrations (mol m-1) and reaction rates (mol m-1 s-1) for the contaminant plume simulations under different reaction 

network formulations integrated over space. Percentages of total reduced iron (i.e. excluding iron oxyhydroxides for the contaminant 

plume) for each species are given in parentheses. For organic matter oxidation by oxygen, the percentage of total organic matter 

degradation is given in parentheses. 

 aContaminant Plume bSediment 

 P,E P,E,S cP,E,S,M P,E,S,M,B Full - S Full 

! 

FeOx
x"  3.4x106 3.4x106 3.4x106 3.4x106 2.71x101 (3.6) 9.43x101 (11.2) 

! 

Fe2+

x"  8.1x102
 (21.4) 9.0x102 (19.2) 2.2x102 (10.0) 1.8x102 (4.3) 1.0x100 (0.1) 2.4x100 (0.3) 

! 

> Fe
x"  2.8x103 (73.2) 3.7x103 (79.6) 6.2x102 (27.6) 8.3x102 (19.4) 3.68x101 (4.9) 8.44x101 (10.1) 

! 

FeCO3x"  --- --- 1.4x103 (60.0) 3.2x103 (74.9) 0 (0) 2.35x102 (28.0) 

! 

FeS
x"  2.1x102 (5.4) 5.8x101 (1.2) 5.4x101 (2.4) 6.0x101 (1.4) 6.80 x102 (90.9) 4.15 x102 (49.5) 

! 

Fetot
red

x"  3.8x103 4.7x103 2.2x103 4.3x103 7.48 x102 8.38 x102 
d

! 

Rresp O2( )
x"  1.0x10-6 (47.7) 2.0x10-7 (14.4) 2.1x10-7 (15.0) 6.8x10-7 (35.5) 5.9x10-6 (32.2) 2.1x10-6 (11.3) 

e

! 

Rresp FeOx( )
x"  9.1x10-7 9.1x10-7 9.1x10-7 2.3x10-6 5.8x10-7 3.8x10-6 

a
 “P,E” refers to the baseline simulation, “S” to inclusion of secondary reactions, “M” to mineral precipitation/dissolution reactions, 

and “B” to explicit descriptions of microbial functional groups. See Table 2.1 for the reactions part of each set. 

b “FulI” refers to the complete set of reactions in Wang and Van Cappellen (1996), “Full - S” to the removal of the secondary 

reactions. 

c Note that, following the work of Watson et al. (2005), precipitation/dissolution of FeS is in the primary reaction network “P,E” even 
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before additional precipitation/dissolution reactions are added in “P,E,S,M” 

 d Organic matter degradation coupled to oxygen.  

e Organic matter degradation coupled to iron hydroxides 
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Figure 2.1: Porous media represented as a cylinder by folding the top and bottom of the domain 

together. Modeled acetate concentration in the pore scale simulation (!M) is depicted in the 

shaded regions. Arrows represent fluid flow with arrow size proportional to the velocity in the 

pores.  
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Figure 2.2: (A) Contaminant plume after 47 years. Shaded regions in panels (A) and (B) show 

phenol and DIC in mM, respectively, while the contour lines denote acetate (mM, A) and H2 

concentrations (nM, B), respectively. The vertical bar indicates the position of a well for which 

panels (C) and (D) show a comparison of the measurements represented by filled circles (dots; 

Thornton et al. 2001b) and the model results (lines). For panels (C) and (D), open circles denote 

reaction network P,E; asterisks denote P,E,S; triangles denote P,E,S,M; and diamonds denote 

P,E,S,M,B. 
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Figure 2.3: Bacterial nitrogen and thermodynamic limitations for phenol fermenting (panel A) 

and H2 oxidizing bacteria (panel B). Filled regions indicate the value of the thermodynamic 

constraint, computed as 

! 

RiFthd ,i" Ri" , where Ri denote the relevant kinetic reaction rates, 

B*Fkin (P3 and P4 in panel A, P5, P6, P7, and P8 in panel B) and Fthd,i the corresponding 

thermodynamic factors. The contours (panel b) represent the concentration of available 

ammonium (mM), indicating that in most of the plume, NH4
+ requirements are met only via 

recycling of biomass.  
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CHAPTER 3 

METHANOGENSIS IN FRESHWATER COASTAL SEDIMENTS: APPROACHES TO 

QUANTIFY RATES OF ORGANIC MATTER BREAKDOWN3 

  

                                                
3 Eric Lee King, Katherine Segarra, Vladimir Samarkin, Samantha Joye, and Christof Meile. To 

be submitted to Biogeosciences 
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Abstract 

Methane is an important greenhouse gas that is produced through the decomposition of organic 

matter in many productive systems, including coastal freshwater sediments. To elucidate 

microbially mediated carbon cycling in anoxic sediments, process rates detailing organic matter 

breakdown were parameterized and determined. A set of reactions was developed describing the 

hydrolysis and fermentation of organic matter through terminal metabolic processes and was 

used to quantify rates of processes involved in organic matter breakdown. In particular, reaction 

rates that are not easily accessible through direct measurement were determined. Two 

complimentary approaches, parameter optimization employing differential evolution and a novel 

network analysis based on elementary flux mode analysis, were used. Since the two approaches 

rely on different available data types, this exercise permitted a comparison of independent 

methods to determine process rates in the sediment. Results show that the methodologies differ 

significantly in some of the rates predicted, highlighting the need for descriptive reaction kinetics 

when evaluating organic matter breakdown.  

 

1. Introduction 

Microorganisms obtain energy from the breakdown of organic matter, a process in which 

biopolymers are broken down into monomers by microbially catalyzed hydrolytic reactions 

(Wetzel, 1992). In anaerobic environments, fermentative reactions transform the monomers into 

low molecular weight substances such as volatile fatty acids (VFA) and amino acids, which are 

then used by microorganisms to produce carbon dioxide (Megonigal, 2004). When external 

terminal electron acceptors (TEA) are low, methane is produced, a potent greenhouse estimated 

to account for ~20% of the total greenhouse gas forcings (IPCC, 2001). 
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Freshwater wetlands are natural sources of atmospheric methane (Aselmann and Crutzen, 

1989), motivating this study of the breakdown of organic matter in anoxic freshwater marsh 

sediments. In such a setting, organic matter is broken down into carbon dioxide, H2, acetate, and 

other volatile fatty acids such as lactate, formate, and isobutyrate. Carbon dioxide can be 

incorporated into cell biomass, converted to acetate through homoacetogenesis (Drake, 1995), or 

transformed into methane through hydrogenotrophic methanogenesis. Acetate can be used to 

produce methane through acetoclastic methanogenesis (Schink, 1997). Alternatively, it can be 

oxidized to inorganic carbon, which can then be potentially utilized by hydrogenotrophic 

methanotrophs to indirectly produce methane (Zinder and Koch, 1984). Volatile fatty acids 

(VFA) can be utilized subsequently to produce inorganic carbon, acetate, or some directly into 

methane (Boone et al., 1989). Therefore, an understanding of methane production necessitates 

knowledge on a complex set of biochemical reactions. 

Building on a detailed investigation of organic matter breakdown in freshwater sediments 

on the east coast of the United States (Segarra et al., 2013), we quantify benthic carbon cycling 

by mining measured radiotracer data and the accumulation or depletion of metabolites in slurry 

experiments for a site in coastal Georgia, which has been previously shown to have significant 

methane production from organic matter degradation (Weston et al., 2006a). In contrast to most 

studies (Phelps and Zeikus, 1984) that focus on the quantification of a single process (e.g. 

methanogenesis), we simultaneously analyze sequential and parallel pathways in the benthic 

carbon cycle. Two different approaches were developed. The first utilizes the global optimization 

approach differential evolution (DE; Storn and Price, 1997) to determine a set of kinetic 

parameters while the second characterizes all feasible network realizations using elementary flux 

mode analysis (EFMA) that are consistent with the observational data. These approaches both 
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elucidate the rates for the various processes involved in the conversion of organic 

macromolecules to CO2 and CH4.  

 

2. Methods4 

2.1 Sample collection 

The study site was located at Hammersmith creek, a tidal freshwater creek, within the Georgia 

Coastal Ecosystems LTER (31°20’23.36” N, 81°29’05.00” W) domain. Sediment samples were 

collected from an unvegetated creek bank in January 2008. Forty cm long cores (7.5 cm 

diameter) were extracted, stored at in situ temperature, and processed within 36 hours. The 2-12 

cm region of the cores was sectioned for analysis in slurry and radiotracer incubations. Please see 

Segarra et al. (2013) for a more detailed description of the site and sampling methods. 

 

2.2 Slurry incubations 

Sediment from the 2-12 cm region of the core was mixed with equal parts artificial porewater 

(Weston and Joye, 2005; Weston et al., 2006b) in anaerobic chambers. Incubations were run at 

approximately in situ temperature (20° C) for ~12.6 days and subsampled at 5 times over the 

incubations. Analysis of pore water constituents over the time series included CH4, CO2, acetate, 

alternative VFAs, H2, and dissolved iron. For each subsample, the slurry bottles were shaken, 

with gas samples for H2, CO2, and CH4 measurements made on the headspace. Dissolved organic 

carbon, VFAs, and dissolved Fe2+ measurements were conducted on the aqueous phase. CH4 and 

CO2 concentrations were determined through injection of 0.5 ml of headspace into a Shimadzu 

GC-14A with a Carbosphere® column, methanizer, and flame ionation detector. H2 

                                                
4 E.L. King assisted in sample collection with lab work performed by K. Segarra and V. 
Samarkin 
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concentrations were determined using a reduction gas analyzer (Hoehler et al., 1994). An 

aqueous sample was filtered (0.2 !m filter) and Fe2+ determined. VFAs were determined through 

analysis on an HPLC by quantification of 2-nitrophenyl derivatives at three time points over the 

incubations.  

 

2.3. Radiotracer incubations 

Additional slurry incubations utilizing radiotracers were run in parallel to determine rates of 

hydrogenotrophic (H14CO3
-) and acetoclastic (14CH3COOH) methanogensis. 25 ml glass 

incubations tubes (Orcutt et al., 2005) were used to hold 10 ml of slurry at in situ temperature. 

Slurries were incubated for three days prior to addition of 5 !Ci of tracer. Triplicate samples at 

time zero were killed before tracer was added. Samples were incubated for 36 hours. Activities 

were determined through addition of NaOH to halt activity and subsequent recovery of 

radioactive product through combustion and distillation (Orcutt et al., 2005). HPLC and a 

fraction collector were used to recover 14C-acetate. Rates were determined by calculating the 

accumulation of product over time.   

 

2.4 Reaction network  

Organic matter breakdown reflects the transformation of particulate organic matter into a 

biodegradable dissolved organic matter pool (DOM, represented as C6H12O6). The network is 

visualized in Figure 3.1 and represents the following reactions: 

POM ! DOM           (1) 

DOM is then broken down into low molecular weight chemicals, including acetate (Thauer et al., 

1977) and volatile fatty acids (VFA). 
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C6H12O6 + 4 H2O ! 2 CH3COO- + 4 H2 + 2 HCO3
- + 4 H+     (2) 

VFAs measured in the slurry experiments consisted of lactate, isobutyrate, and formate, with a 

molar ratio of 1.29 : 1 : 0.73; all other VFAs were below the detection limit. A weighted average 

of the individual reactions that produce VFAs (Boone et al., 1989; Megonigal, 2004): 

C6H12O6 ! 2 CH3CHOHCOO" + 2 H+
       (3.i) 

C6H12O6 + 2 H2O ! (CH3)2CHCOO- + 2 HCO3
- + 3 H+ + 2 H2    (3.ii) 

C6H12O6 + 2 H2O ! 2 CH3COO- + 2 HCOO- + 4 H+ + 2 H2     (3.iii) 

was used to represent the VFA composition (1.29 * (3.i) + (3.ii) + 0.73*(3.iii)) / (1.29+1+0.73)): 

C6H12O6 + 1.15 H2O ! 4.37 CVFA + 0.48 CH3COO- + 1.15 H2 + 2.81 H+ + 0.66 HCO3
- (3) 

where CVFA denotes carbon atoms contained in VFA, represented as CH1.6O1.0. Methane 

production from VFAs follows Boone et al. (1989) for formate and accounts for methyl groups 

in lactate and isobutyrate:  

CH3CHOHCOO- + 1 H2O + H+ ! CH4 + 2 CO2 + 2 H2     (4.i)  

(CH3)2CHCOO-  + 2 H2O + H+ ! 2 CH4 + 2 CO2 + 2 H2
     (4.ii) 

4 HCOO- + 4 H+ ! CH4 + 3 CO2 + 2 H2O         (4.iii) 

such that (1.29 * (4.i) + (4.ii) + 0.73*(4.iii)) / (1.29+1+0.73)): 

3.57 CVFA + 0.61 H2O + 1.73 H+ ! 1.33 CH4 + 1.52 H2 + 2.24 CO2   (4) 

Acetate production from VFAs is described for lactate and isobutyrate (Kotsyurbenko et al., 

2004) only, as formate is not converted to acetate: 

(CH3)2CHCOO- + 2 H2O ! 2 CH3COO- #+ H+ #+ 2H2     (5.i) 

CH3CHOHCOO- + 2 H2O ! CH3COO- + HCO3
- + 2 H2 + H+

     (5.ii) 

Combining these reactions results in the following (1.29 * (5.i) + (5.ii) / (1.29+1)): 

2.70 CVFA + 1.52 H2O ! 1.19 CH3COO- + 1.52 H2 + 0.33 HCO3
- + 0.75 H+

  (5) 
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Hydrogenotrophic and acetoclastic methanogenesis (Megonigal, 2004) are described by: 

4 H2 + CO2 ! CH4 + 2 H2O         (6) 

CH3COO- + H+ ! CO2 + CH4        (7) 

Acetate oxidation (Nusslein et al., 2001) is represented as: 

CH3COO- + H+ + 2 H2O ! 2 CO2 + 4 H2        (8) 

DIC incorporation into biomass is given by: 

CO2 ! Biomass          (9) 

Homoacetogenesis (Megonigal, 2004) is described by:  

4 H2 + 2 CO2 ! CH3COO- + H+ + 2 H2O       (10) 

Two potential iron oxidation routes are investigated including through reduction of acetate 

(Lovley, 1991) or H2 (Watson et al., 2005): 

CH3COO– + 8 Fe(III) + 4 H2O ! 2 HCO3
– + 8 Fe(II) + 9 H+     (11) 

H2 + 2 Fe(III) + 4 H+ ! 4 H2O + 2 Fe2+       (12) 

Finally, acetate incorporation into biomass is given by: 

CH3COO- ! Biomass          (13) 

Note that the above representation of VFA consumption reactions somewhat arbitrarily assumes 

that the individual rates depend linearly on the substrate concentrations and that the rate constant 

for the consumption of the smaller formate molecule is 4 times faster than for the other VFAs. 

 

2.5 Reaction Kinetics 

The rate of change of each species is modeled as: 

           (14) 

where S is the stoichiometric matrix and  denotes the rates of reactions 2-13. In DE, the 

d
!
C
dt

= S !
!
Ri

!
Ri
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kinetic parameters within are determined, whereas in EFMA steady state reaction rates (i.e. 

fluxes) are quantified. 

 

2.6 Parameter Optimization using Differential Evolution 

Reactions were described by zero or higher order kinetics, where for zero order, the rate for 

reaction i is defined as: 

            (15) 

where vi is the reaction rate, Cj is the concentration of each substrate j involved in the reaction, 

and $ is set to a small but positive concentration, 10-12 M, to effectively shut down the process in 

the absence of substrate. Higher order kinetics is described through either a 1st or 2nd order 

kinetic description for each reaction depending on the number of substrates and is formulated by: 

 
 
             (16) 

where Cj denotes the concentration of each substrate, j,  involved in the reaction. Organic matter 

breakdown (Eqs, 2, 3) is formulated as a zero order reaction as its concentration is assumed to 

remain constant over the relatively short slurry incubation. For zero order kinetics, reactions 8 

and 10 are combined into one net reaction that can proceed in either direction. All other 

rates/parameters are constrained to be non-negative.  

 The rational basis of the null space for the stoichiometric matrix involved in zero order 

kinetics, calculated from the reduced row echelon form, was computed in MATLAB in order to 

determine if any unique process rates existed (Hazewinkel, 1997). The null space is a set of 

vectors, x, such that Sx = 0 . Each vector in x can be used to find columns in the stoichiometric 

matrix that is linearly dependent upon other columns. The null space therefore provided those 

!
Ri

Ri = vi !
Cj

"+Cj
#

Ri = vi ! Cj" .
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process rates that were linearly dependent upon other reactions, and thus a unique solution would 

not exist for that process rate. 

 Rate parameters were obtained via optimization to match the concentrations in the slurry 

time series, minimizing , where is the model calculated concentration of 

species j at time point k, is the experimentally measured concentration at time point k, and 

 is the average of the experimentally determined concentrations in the slurry over time, used 

to ensure that species occurring at different concentration levels have a similar contribution to 

the objective function (OF). Minimization of the OF was accomplished using a differential 

evolution algorithm (Storn and Price, 1997), with the number of population members set to 50, 

the step size weight 0.85, the crossover frequency 1, the algorithm strategy left to default/classic, 

and the initial range of population members constrained between 0 and 104.  

 

2.7 Elementary flux mode analysis 

EFMA utilizes the stoichiometric matrix of a reaction network, information on the reversibility 

of reactions, and an assumption that non-terminal species are at steady state to identify each 

reaction pathway within the reaction network (see e.g. Schuster et al., 1994; Schuster et al., 

2000). The program CellNetAnalyzer 2012.1 (Klamt et al., 2007) was used to determine the 

reaction pathways. Each pathway is assigned a relative weight between 0.1 and 1 (1 indicates a 

pathway is the only active pathway) in intervals of 0.1, with the constraint that the sum of the 

weights is 1. Each realization of a reaction network is represented by the combination of a 

minimum of 1 and a maximum of 10 reaction pathways, with all mathematical combinations of 

pathways analyzed.  
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 To identify the realizations that are consistent with the observational data, which indicate 

methane formation from DIC, acetate, and alternative VFAs, only those that involved methane 

production via all three pathways were used from the millions of realizations determined above. 

EFMA only provides the relative magnitudes of reaction rates. To compare model results to 

observations, the measured rates of acetoclastic, hydrogenotrophic, and net methanogenesis were 

used as follows. First, volumetric reaction rates were determined by setting the computed flux for 

acetoclastic methanogenesis (MOG), hydrogenotrophic MOG, or total methane production to the 

measured rates, and all other modeled reaction rates were scaled accordingly. Then, when 

normalizing to acetoclastic or hydrogenotrophic MOG, only those realizations that led to 

methane production through hydrogenotrophic or acetoclastic MOG, respectively, to be within a 

standard deviation of the measured rates were retained. Alternatively, the sum of acetoclastic and 

hydrogenotrophic methanogenesis and methane production through alternative VFAs was 

normalized to CH4 accumulation rates in the slurries. Those realizations that predicted both 

acetoclastic and hydrogenotrophic methanogenesis to be within one standard deviation were kept 

as networks that are consistent with the observational data. 

 Finally, to determine the impact of the change in chemical species concentrations over 

time observed in the slurries for EFMA, a separate reaction network was created which included 

additional sources and sinks for each species. The magnitude of the sources were related to the 

rate of change of each species over the time span of the slurries and reflected whether the 

concentrations increased or decreased over time.  
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3. Results/Discussion 

3.1 Kinetic based reaction rates 

For each of the transformation processes quantified in the breakdown of organic matter, two 

different rate laws were employed. For zero order kinetics, optimization of reaction parameters 

lead to an overall reasonable reproduction of the concentration time series measured in the slurry 

experiments (Fig. 3.3). Hydrogen concentrations were characterized by short residence times and 

hence are extremely sensitive to small changes in the rates, and model results reproduce the 

observed general increase over the duration of the incubations. Methane and dissolved iron 

species increased over time in the slurries whereas VFA concentration decreased. DIC 

demonstrated little change over time with only a slight decrease observed. Model results match 

these concentrations for CH4, Fe2+, VFAs, and DIC reasonably well (Fig. 3.3). However, 

discrepancies are apparent e.g. for acetate, where model results did not fit the observed decrease 

and subsequent increase in concentrations over time. This highlights one limitation of zero order 

kinetics when used to fit data that is non-linear in appearance. Another limitation is the inability 

to solve for unique process rates as a result of utilizing an underdetermined network, as seen here 

with 12 process rates to solve for and only 6 unknowns (the constant rate of change for the 

measured chemicals). Null space analysis of the stoichiometric matrix reveals that each process 

rate can be expressed as a linear combination of other rates. Therefore, an infinite set of the 

process rates resulting in the same net rates for each species observed in Fig. 3.3 exists. This 

limits the ability of this technique to elucidate the rates of the underlying processes involved in 

OM breakdown.  

Some species concentrations clearly do not exhibit a linear change in concentration over 

time (e.g. acetate, Fig. 3.3), indicating that consumption or production rates change over time. 
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This leads to the use of higher order (concentration dependent) kinetic descriptions for the 

process rates. Rate parameters were determined for each reaction and average rates along with 

their standard deviations (as a measure of rate variation over time) were calculated (Table 3.1, 

Fig. 3.1). Objective functions obtained from higher order and zero order kinetics are within 10% 

of each other, indicating that the overall fit of the model concentrations to the slurry data are 

comparable. However, concentration-dependent rate expressions lead to changes in some species 

concentrations that more nearly fit the data (Fig. 3.3). For example, estimated acetate 

concentration decreased to match the concentration observed at the 2nd time point, but unlike 

zero order kinetics, do not continue to decrease but rather level off. Net rates for methane and 

DIC are virtually indistinguishable from zero order kinetics, and dissolved iron species are 

similar with slightly more Fe2+ production predicted from higher order kinetics. H2 dynamics 

demonstrate a relatively quick initial increase in concentration compared to the linear increase 

predicted from zero order kinetics. VFA concentrations show a significant difference between 

zero and concentration dependent kinetics. While the objective function for the VFAs are within 

15% of each other, higher order kinetics predicts a quick decrease in the concentration followed 

by a leveling off compared to the constant decrease predicted from zero order kinetics. The 

description of the reaction kinetics can have a significant effect on the concentrations predicted, 

while still fitting the observational data comparably.  

 

3.2 EFMA derived rates 

EFMA analysis resulted in 31 unique pathways (modes). Each pathway can be thought of 

as a group of organisms performing a subsection of the total reaction network; e.g. one pathway 

involves organic matter degradation to acetate, which is then utilized in acetoclastic 
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methanogenesis (i.e. reactions 2, 6, and 8 in Fig. 3.2). Another pathway involves OM 

degradation to acetate, H2, and DIC, which are then used in iron reduction and DIC incorporation 

into biomass (i.e. reactions 2, 9, 11, and 12). Combinations of these pathways, considering a 

minimum contribution of at least 10% to overall metabolic rates, can then represent the totality 

of organic matter degradation and terminal metabolism occurring. This results in a determination 

of approximately 500 million network “realizations”. Only accepting those realizations where 

methane production occurs through all of the three possible pathways (i.e. from acetate, 

alternative VFAs, and H2), consistent with slurry data, removes about 35% of the realizations 

and lowers the total to 331,324,876. The fluxes from these realizations were then translated into 

rates by normalization to either hydrogenotrophic or acetoclastic MOG, or total methane 

production. Ultimately, this reduced the realizations consistent with the measurements, to 

7,394,356, 11,617,237, and 6,747,082 respectively. 

While the above procedure does not identify a unique set of process rates, the range of 

most rates is constrained to a relatively narrow range (Fig. 3.4). For example, reactions are 

consistently predicted to have an inner quartile range within a factor of 2-3 of the median. 

Notably, the rates constrained by matching any of the three methane production rates outlined 

above provided similar results (Fig. 3.4), except that normalization to hydrogenotrophic 

methanogenesis gave rates with an inner quartile range approximately 30-60% less than the other 

normalization techniques. This may occur because the standard deviation of the radiotracer 

acetoclastic MOG rate is smaller than that for hydrogenotrophic MOG. Therefore, when 

matching rates of acetoclastic MOG, a tighter selection of realizations is performed compared to 

when matching hydrogenotrophic MOG, evidenced by the approximately 4 million less 

realizations returned when normalizing to hydrogenotrophic MOG.  
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EFMA assumes steady state conditions, which contrasts with the observed concentration 

changes in the slurry experiments. Thus, the impact of the changes in pool sizes determined from 

slurry experiments was assessed. While the number of possible realizations increased, results 

showed that this uncertainty does not have a significant impact on the process rates depicted in 

Fig. 3.4 (results not shown). 

 

3.3 Comparison 

 Comparison of the EFMA derived rates to results from higher order kinetics (Figures 3.1 

and 3.2; Table 3.1) show both differences and similarities in the rates predicted. Acetoclastic and 

hydrogenotrophic MOG are about 2-2.5 times higher in EFMA. EFMA analysis uses radiotracer 

measurements of methanogenic processes to constrain the rates, while the parameter 

optimization approach only utilized concentration changes over time. It is therefore of note that 

the slurry derived rates are consistent with radiotracer measurements. Similarly, rates for VFA 

usage in methane production from EFMA and optimization approach fall within a factor of two 

of each other with larger rates predicted in higher order kinetics. Therefore, the methane 

production rates are consistent between network descriptions.  

Organic matter breakdown into VFAs is also consistent between EFMA and optimization 

approaches, falling within about a factor of 3 of each other. A difference however is seen in the 

rates predicted for organic matter breakdown into acetate, DIC, and H2. While EFMA predicts 

this rate to be less significant than VFA formation, higher order kinetics determines a rate that is 

many orders of magnitude less in importance. However, since the reaction describing alternative 

VFA formation also involves production of acetate (Eq. 3), albeit to a lesser extent, this can shift 

the overall importance of these two reactions while still producing acetate, H2, and DIC. VFA 
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production from OM and subsequent acetate formation from the VFAs through higher order 

kinetics is 3-5 times lower than predicted from EFMA. The net rate differential between 

homoacetogenesis and acetate oxidation favors acetate production in higher order kinetics, 

whereas acetate oxidation is indicated by EFMA. 

Iron reduction through acetate oxidation is predicted to be of little importance in the 

optimization approach compared to iron reduction from H2. A similar pattern is seen in the 

EFMA results, with iron reduction from acetate 5-10 times less than the rate predicted from H2. 

However, the net rates producing dissolved iron species is about 2-3 times less in the 

optimization approach versus EFMA derived rates. This is because the former match slurry Fe2+ 

concentrations over time, while the rates predicted from EFMA are not constrained by such data. 

Barring significant iron sulfide or carbonate precipitation, EFMA thus over predicts dissolved 

iron accumulation and provides an outlet for increased levels of OM breakdown. This difference 

in iron reduction rates, but similarity in methane production rates is mirrored in estimates of 

EFMA-based OM breakdown rates, which exceed those obtained by parameter optimization. 

Similarities and differences between rates obtained from the two techniques can also be 

assessed via rank correlation (Fig. 3.5). Many of the rates between the two methods are 

dissimilar (Table 3.1). The relative importance of acetoclastic methanogenesis, CO2 

incorporation into biomass, and iron reduction through H2 is similar as is organic matter 

degradation into VFAs and subsequently its utilization to produce biomass. Organic matter 

degradation to acetate and use in iron reduction also fall near the 1:1 line (Fig 3.5). 

Homoacetogenesis and hydrogenotrophic methanogenesis are ranked higher in the optimization 

approach whereas acetate incorporation into biomass and acetate oxidation is more significant in 

the EFMA results, consistent with the large differences seen in these rates.  
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Measurements in similar freshwater systems for many of the intermediate reactions 

depicted in Figs 3.1 and 3.2 are sparse. While methane production rate data are relatively 

abundant, other process rates in comparable systems are not. Rates of hydrogenotrophic 

methanogenesis obtained from higher order kinetics are generally 3-10 times lower than those 

rates measured in freshwater lakes at similar temperatures (Zeikus and Winfrey, 1976). 

However, they are consistent with the range of rates obtained in a freshwater lake by Kelly and 

Chynoweth (1981). Rates predicted from the optimization method are also consistent with the 

radiotracer rates measured in these slurries, which are used to parameterize the model subjected 

to EFMA analysis. For homoacetogenesis, rates obtained from higher order kinetics are about an 

order of magnitude lower than what is measured in anoxic, profundal, and littoral lake sediment 

(Lovley and Klug, 1983; Phelps and Zeikus, 1984).  

 

4. Conclusions 

Two complimentary, yet fundamentally different techniques were utilized to predict rates of 

organic matter breakdown in freshwater sediments. These methodologies provide alternative 

ways to determine process rates based upon the different types of data available. One technique 

utilizes species concentrations over time (DE), while the other technique requires knowledge of 

radiotracer-based rates for methanogenesis (EFMA) and to our knowledge is the first time an 

analysis based on the topology of the reaction network has been applied to quantify rates of 

biogeochemical reactions in sediments. Notably, even though they use different data, many rates, 

such as methane production rates are consistent between the methods. 

 Results from zero and higher order kinetics matched the slurry species concentrations 

over time reasonably well. However, the time course (i.e. linear vs. non-linear between zero-
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order and DE respectively) of species concentrations can differ significantly. Although EFMA 

utilizes the same reaction network description of OM breakdown, several process rates obtained 

from EFMA can differ significantly compared to higher order kinetics. These results highlight 

the critical role that the description of the reaction kinetics utilized plays when estimating the 

rates underlying organic matter breakdown.  
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Table 3.1: Model determined rates from optimization technique and median rates from EFMA. All rates and standard deviations are 

given in M day-1. Reaction labels follow the equation numbering provided in the methods and Figure 3.1. “Ac”, “Hyd”, and “Total” 

refer to those rates from EFMA that were normalized to acetoclastic MOG, hydrogenotrophic MOG, and total methane production 

rates respectively. 
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Figure 3.1. Organic matter breakdown rate estimates based on parameter optimization. Sizes of arrows represent the relative 

magnitude of the rates (Table 3.1).  Numbers indicate the reactions detailed in the methods.  
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Figure 3.2. Organic matter breakdown rate estimates based on EFMA. See caption for Figure 3.1.  
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Figure 3.3: Results from zero order (solid grey line) and concentration-dependent reaction kinetics (solid black line) with experimental 

results (diamonds) for April 2008. VFAs refer to those present other than acetate as indicated in the methods and is quantified in !M 

carbons. 
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Figure 3.4: Boxplots depicting the range of reaction rates derived from EFMA (M day-1). Realizations are normalized to measured 

acetoclastic methanogenesis (1st item in each plot), measured hydrogenotrophic methanogenesis (2nd item), and total methane 
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production in the slurries (3rd item); see methods for a detailed description. Plot numbering represents reaction numbers given in the 

methods. Rates with a single bar are imposed. On each box, the central mark is the median, the edges of the box are the 1st and 3rd 

quartiles, the whiskers extend 1.5 times the inner quartile range above and below the 1st and 3rd quartile, and outliers are given in 

black.  
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Figure 3.5: Rank correlation for each of the rates between EFMA and optimized kinetics. Labels 

indicate the reactions numbers from Fig. 3.1 and the methods. Low ranks refer to higher values 

for the rates. R2 = 0.11 corresponds to the linear fit of the ranks to a line running through the 

origin. 
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CHAPTER 4 

IN SILICO GEOBACTER SULFURREDUCENS METABOLISM AND ITS 

REPRESENTATION IN REACTIVE TRANSPORT MODELS5 

                                                
5 Eric Lee King, Kagan Tuncay, Peter Ortoleva, and Christof Meile. 2009. Applied and 

Environmental Microbiology. 75:83-92. Reprinted here with permission of the publisher. 
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Abstract 

Microbial activity governs elemental cycling and the transformation of many anthropogenic 

substances in aqueous environments. Through the development of a dynamic cell model of the 

well characterized, versatile and abundant Geobacter sulfurreducens, we showed that a kinetic 

representation of key components of cell metabolism matched microbial growth dynamics 

observed in chemostat experiments under varying environmental conditions and led to results 

similar to those from a comprehensive flux balance model. Coupling the kinetic cell model to its 

environment by expressing substrate uptake rates depending on intra- and extracellular substrate 

concentrations, 2D reactive transport simulations of an aquifer were performed. They illustrated 

that a proper representation of growth efficiency as a function of substrate availability is a 

determining factor for the spatial distribution of microbial populations in a porous medium. It 

was shown that simplified model representations of microbial dynamics in the subsurface that 

only depended on extracellular conditions could be derived by properly parameterizing emerging 

properties of the kinetic cell model.  

 

Introduction 

Microbes control the breakdown of organic matter in low temperature subsurface environments. 

Their activities affect the physico-chemical nature of the local environment, drive elemental 

cycling, and determine the fate of many contaminants (9, 49). Effects can be direct (for example 

by altering the local chemical composition through the utilization of substrates and terminal 

electron acceptors for energy production and growth or co-metabolism) or indirect (for example 

by affecting the presence and chemical nature of solid iron phases, which determines sorption 

and co-precipitation of transition metals and contaminants) (4, 6, 17, 51). In addition, 
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hydrological factors such as groundwater flow patterns and velocities can impact cell metabolism 

through nutrient delivery, with possible feedbacks through bioclogging (46). 

To predict how bacteria regulate their activity and grow in situ, it is necessary to 

quantitatively understand the complex and dynamic interactions between numerous concurrent 

biogeochemical processes involved, which requires the use of mathematical models. While 

subsurface reactive transport models generally contain a comparatively sound description of the 

physical transport processes (3, 34), they often do not explicitly account for the dynamics of 

microbial populations that mitigate the majority of biogeochemical processes (18, 48). When 

included, microbes are typically represented as functional groups, with growth dynamics 

depending linearly on substrate availability or following Monod kinetics (27, 38, 44), an 

approach that has been successful in describing geochemical contaminant plume dynamics (7). 

However, lacking a realistic representation of microbial metabolism, such models are limited in 

their capability of reflecting microbial dynamics and forecasting the response to changing 

environmental conditions, which restricts their predictive power at the macro-scale and 

usefulness, for example, in the assessment of conditions that optimize in situ bioremediation 

(22).  

With the advent of genome sequencing, over the last decade the biological revolution has 

led to the characterization of cellular metabolic networks and to the development of 

mathematical models at the cell scale (41), ranging from descriptions of network topology (20, 

45) to constraint-based models for different organisms (13, 33, 42) and fully kinetic approaches 

(e.g., (2, 30, 50)). Integration of such models of environmentally important groups of bacteria in 

reactive transport simulations would clearly benefit forecasting biogeochemical responses to 

changing macroscopic conditions. The !-proteobacteria Geobacteracea constitute such an 
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abundant and environmentally important group in both pristine and contaminated sediment 

environments (22). Geobacter species are metabolically diverse and can grow with numerous 

electron donors and acceptors, including acetate or H2, and Fe(III), fumarate, or malate, 

respectively (8, 23). They have been shown to be enriched when Fe(III) reduction was promoted 

in a petroleum contaminated sandy aquifer (39) and to mediate the reduction of U(VI) to U(IV) 

(25), converting the soluble form to the insoluble form and effectively removing the uranium 

from the groundwater (51). Geobacter shape biogeochemical cycling directly through their 

metabolic activity, as well as indirectly, such as via the effect of iron (hydro)oxide reduction on 

the motility of sorbed trace metals and on pH. 

 In this study, we present a kinetic cell model of Geobacter sulfurreducens metabolism and 

its application in the simulation of a subsurface contaminant plume with the goals (i) to assess 

the kinetic description of central cellular metabolism and the growth efficiencies emerging under 

a range of substrate conditions by a comparison to observational data, (ii) to quantify the 

sensitivity of model results to the parameterization of the enzymatic reactions of the TCA cycle 

and gluconeogenesis considered here, (iii) to compare and contrast different cell model 

approaches, (iv) to introduce a coupling approach between cell metabolic expressions and 

macroscopic reactive transport models and (v) to assess the potential and limits of macroscopic 

models that parameterize microscopic intracellular processes. Our cell model is validated against 

growth efficiencies obtained in chemostat experiments (12) and is compared to the flux balance 

(FB) model developed by Mahadevan et al. (26) who—based on an extensive genome analysis—

used a constraint-based modeling approach to estimate steady state intracellular fluxes and 

metabolite exchange with the environment. To assess the role of microbial dynamics in the 

environment, an acetate plume is studied in a heterogeneous porous medium, for which 
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simulations with a full coupling between the environment and the cell model are contrasted with 

several simplified parameterizations, including commonly used Monod approximations.  

 

Materials and Methods 

Dynamic cell model 

The dynamic cell model was implemented in the kinetic cell model simulator Karyote (31) which 

divides metabolic reactions into those that occur at equilibrium (fast reactions) or at a finite rate 

(slow reactions). For example, a single substrate isomerization reaction occurs by the fast 

formation of an enzyme-substrate complex ( ESES fQ!"#+ ) followed by a slow dissociation (

ES k,kQs! "## P +E ), where Qf is the equilibrium constant for the fast reaction and k and 

! 

kQs are 

the backward and forward rate constants for the slow reactions, respectively.  

Under typical natural subsurface conditions, the oxidation of acetate in Geobacter—

initially activated through the combined action of acetate kinase and phosphate acetyltransferase 

(10)—is coupled to the reduction of Fe(III) (24), which is believed to take place on the 

extracellular membrane (21). Thus, the kinetic cell model encompassed the uptake of acetate and 

its incorporation into biomass via gluconeogenesis or its complete oxidation in the TCA cycle 

(10, 14) (Fig. 4.1). Two compartments—one extracellular and the other intracellular—were 

considered. The extracellular compartment accounted for species concentrations that represented 

environmental conditions while the intracellular one accounted for enzymatic reactions and 

resource allocation in cellular metabolism. Transformations were formulated as elementary 

reactions using mass action kinetics  

! 

dci
dt

= " li #kl c j
" lj +Qlkl c j

#" lj

j=1

Nr

$
j=1

N p

$
% 

& 
' ' 

( 

) 
* * 

l
+ ,  (1) 



 

 

85 

where ci is the concentration of species i, Ql is the equilibrium constant and kl is the backward 

rate constant for reaction l, 

! 

" l.  denote stoichiometric coefficients, and Np,r are the number of 

products and reactants, respectively. Model parameters were derived from the literature and are 

given in Table 4.1. As the literature rarely contains enzymatic forward and reverse rate constants, 

model parameters were typically derived from enzyme turnover numbers, specific activities and 

substrate affinities. Details of the procedures and sources for model parameterization are given in 

the Appendix. 

 

Sensitivity Analysis 

The effect of the uncertainties in reaction rate parameters k and Q on the predicted growth 

efficiencies was quantified over a range of extracellular acetate concentrations by performing 

cell model simulations with perturbed parameter sets. Parameters k and Q were selected at 

random from a normal distribution centered at the literature-derived base value with a 5.7% 

standard deviation. Sensitivity coefficients sj, which constitute a measure of the response of the 

growth efficiency to a change in parameter j, were determined via a multivariate linear 

regression using  

! 

geff
i " geff

base = s j p j
i " p j

base( ) p j
base

j
#    (2) 

where geff is the growth efficiency, i indicates the ith random realization, base denotes the 

baseline simulation, and j identifies the parameter pj, set here to the backward and forward rate 

constants (k, kQ) and equilibrium constants for fast reactions (Qf; see Appendix). 

  

Cellular energy dynamics 

Cellular energy dynamics were accounted for through reactions utilizing and producing AMP, 
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ADP and ATP. In addition to the energy used in the phosphorylation of acetate and pyruvate 

(Fig. 4.1, reactions 2 and 9), ATP is also produced through the reactions of the TCA cycle and 

consumed through cell growth and reactions required for cell maintenance according to 

! 

dATP
dt

= 0.5 " RTCA " #T $ (a " Rg + Rm ) " #D ,  (3) 

where RTCA is the overall rate of the TCA cycle, in which every acetate that cycles through will 

ultimately produce 0.5 ATP molecules (26). Rg is the growth rate, and a converts the rate of 

growth into ATP usage and is set to 19 molATP molacetate
-1. It was based on ATP usage in the 

growth reaction of Mahadevan et al. (26) and modified to exclude the growth reactions explicitly 

accounted for in the reaction network (Fig. 4.1). Rm represents ATP consumption for cell 

maintenance, set to 0.45 mmolATP gdw
-1 hr-1 (26), and !" and !D reflect the presence of ATP and 

ADP, respectively (1 if present, 0 otherwise). ATP, ADP, and AMP values were further 

constrained through a fast exchange of ATP + AMP = 2ADP that mimicked the balance between 

adenosine phosphates not modeled at the process level (29). Levels of other substances involved 

in intracellular energy regulation such as NAD/NADH, NADP/NADPH, CO2 and phosphates 

(Pi, PP) were assumed to be constant (Fig. 4.1).  

 

Acetate Uptake  

Acetate uptake rates for the kinetic cell model were formulated using the four-state model for a 

facilitated diffusion carrier kinetics (2), in which the flux of acetate across the cell membrane, Jac 

(mol L-1 s-1), is described by  

 

! 

Jac =
A " h " (Cin #Cout )

V
,      (4) 

where Cin and Cout are the intracellular and extracellular concentrations (mol L-1) of acetate, 
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respectively, V is the cellular volume (L), A is the cell surface area (dm2), and h (dm s-1) 

describes the transport of acetate across the cell membrane  

 

! 

h =
(Kt )

2Y
Kt (Kt + Cin + Cout ) +"CinCout

,     (5) 

where Kt is a half saturation constant (10 !M) (12), Y is the maximum exchange of acetate (dm s-

1), and the symmetry index # is set to 0 for symmetric cross-membrane transport of acetate. Cell 

area was calculated based on G. sulfurreducens cell size (37) assuming a cylindrical shape. 

Maximum acetate exchange (Y = 1.20 x10-4 dm s-1) was set to match the results from Geobacter 

chemostat experiments (12). 

 Growth efficiency was calculated from the acetate uptake flux and the flux of acetate 

through phosphoenolpyruvate (PEP), 

! 

geff =" pep# Jac , where #pep is the molar concentration of 

PEP produced per unit time and $ describes the grams dry weight of biomass produced per mol 

of PEP created. $ was calculated from a growth efficiency of 4.4 x10-3 gdw mmolacetate
-1 at a cell-

specific growth rate µ of 0.06 hr-1 and an acetate flux to gluconeogenesis (Q) of 0.30 molacetate 

gdw
-1 hr-1 (26). Taking into account the 2/3 acetate to PEP carbon ratio, 

! 

" = 2µ 3Q = 0.3 gdw 

mmolPEP
-1. 

 

Flux Balance Model 

Cellular metabolic rates under a range of acetate uptake fluxes were calculated using the flux 

balance model of G. sulfurreducens metabolism by Mahadevan et al. (26), which estimated 

intracellular fluxes and metabolite exchange with the environment for a given acetate uptake. 

The metabolic fluxes (reaction rates f) were sought that for a network described by a 

stoichiometric matrix S,  
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! 

S " f = 0        (6) 

implying steady state. The fluxes were determined via optimizing a specific objective function, 

which is subjected to physiological constraints on the magnitude of the fluxes, lower bound ! f ! 

upper bound. Maximization of biomass production rate was used as an objective function, which 

had been shown to lead to results in agreement with experimental data (26). The flux balance 

model was implemented in MATLAB and growth efficiencies were calculated from the ratio of 

growth rate (fgrowth) and acetate uptake (fac) as 

! 

geff = fgrowth fac .  

 

Coupled Environment and Cell Model  

Representations of Geobacter metabolism were coupled to simulations of a dynamic 

environment through incorporation into a reactive transport model. The two models were 

connected such that the reactive transport model was used to evaluate transport of substrate and 

biomass while the cell model provided the cell-specific reaction rates under the environmental 

conditions at a given time and location. These cell-specific rates were then used to compute the 

reaction rates in the macroscopic reactive-transport model. For dissolved constituents, the 

governing equation is 

! 

"
#C
#t

=$ % (D*$C) &$ % ("vC) + " R' ,   (7) 

where % is porosity, t is time, C is concentration, v is pore water velocity, D* is the dispersion 

tensor implemented with dependence on v as described by Scheidegger (36), and &R is the net 

reaction rate. Flow velocities were computed from an imposed pressure gradient using a Darcy 

model (40).  

In our implementation, the cell model was driven by the availability of acetate as the 

substrate, whose spatio-temporal dynamics proceeded via  
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! 

"Cac

"t
= Tac # Rac

cellCBM + Rferm

"CBM

"t
= TBM + geff Rac

cellCBM

,     (8a, b) 

where Ti denotes the transport of acetate (Cac) and biomass (CBM) due to convection and 

dispersion, geff is the growth efficiency, Rac
cell is the rate of acetate uptake, and Rferm is a source of 

acetate from the breakdown of high molecular weight organics. The model was solved 

numerically using sequential non-iterative operator splitting. In each timestep 't, first the 

pressure and flow field were solved for, which was then used to calculate the net transport for 

each of the chemical species. Subsequently, concentration changes due to reactions were 

evaluated by solving a set of coupled ordinary differential equations at each node. Reaction 

parameters that depend on the cell model (i.e.

! 

geff ,  Rac
cell ) were computed for a given 

environmental condition and cell state, reflected by the intracellular concentrations, and were 

assumed constant over a timestep. Cell death was considered through negative growth 

efficiencies, which were obtained when the ATP produced did not account completely for cell 

maintenance demands and the existing pool of ATP was insufficient to meet the cellular energy 

requirements. In that case, use of biomass resources was considered to meet ATP demands (

! 

a " Rg ; see Eq. 3). 

 

Results and Discussion 

Model comparison and validation 

Experimentally determined growth efficiencies under acetate limiting conditions are on the order 

of 4 gdw mol-1 acetate at uptake fluxes >10 mmol acetate gdw
-1 hr-1, and decrease to 0 at 0.91 

mmol acetate gdw
-1 hr-1 (12). Under replete substrate conditions, growth efficiencies were similar 
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in the FB model and the kinetic description, yielding results consistent with data at high acetate 

uptake rates (Fig. 4.2). The fluxes are consistent with those of 13C tracer experiments observed in 

the isotopic data of Tang et al. (43), which showed that the TCA cycle encompassed ~90% of the 

acetate uptake flux with an additional ~8% of acetate flowing through the TCA cycle being used 

for amino acid and lipid production, and the remainder of the acetate uptake flux passed through 

the pentose-phosphate pathway and gluconeogenesis. Along with the FB model, the kinetic 

model predicted that for lower acetate uptake rates, acetate is preferentially channeled into the 

TCA cycle, leading to a low growth efficiency. Both the kinetic and the FB model showed a 

nearly identical response of the TCA cycle to acetate uptake, with a nearly linear increase in the 

TCA cycle with increasing acetate uptake rates (not shown). Both models reproduced the general 

trend in growth efficiencies seen in the literature as a function of the acetate uptake rate (Fig. 

4.2), reflecting that at elevated uptake rates, the portion of acetate following the growth reaction 

pathway increased relative to that for the TCA cycle.  

In contrast to the flux balance approach, which does not contain information on 

intracellular concentrations or provide an explicit connection to extracellular substrate levels, the 

kinetic model mechanistically relates intracellular process rates to extracellular concentrations of 

acetate. Its results can therefore be parameterized as a function of acetate availability and provide 

an explicit link between intracellular processes and extracellular conditions. At low extracellular 

acetate concentrations (!M levels), acetate uptake responds strongly to changes in substrate 

availability (inset Fig. 4.2). Assuming Michaelis Menten kinetics, 

! 

Rac
cell = vmax

[Cac ]
Km (acetate) + [Cac ]

, and using steady state cell model results, one obtained vmax = 

(19.54±0.0.04) mmolac gdw-1 hr-1 and Km(acetate) = (10.24±0.11) x10-6 mol L-1, consistent with 

half-saturation constants and maximum uptake rates derived from experimental data (12). 
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The kinetic model also provides estimates of intracellular metabolite concentrations, 

which can be used as diagnostics to experimentally assess its validity and limitations. Under 

steady state conditions, the cell model predicted malate concentrations in the mM range, 

consistent with predictions of high malate concentrations based on the thermodynamics of the 

malate dehydrogenase reaction (5). Several other substances, including oxaloacetate, citrate, 

isocitrate, and succinate were predicted—depending on growth conditions—to be present in the 

micro to millimolar range, and to increase by a factor of 10 to 30 between no growth and 

maximum growth conditions. Succinyl-CoA was predicted to be relatively constant, while 

significant variations under changing growth conditions were computed for pyruvate and "-

ketoglutarate, with lower concentrations at higher growth rates.  

 

Model sensitivity 

The sensitivity analysis based on " 1000 realizations for a given extracellular acetate 

concentration, which was sufficient to establish the probability distribution of the model 

response, allowed the identification of the reactions affecting growth efficiency most strongly 

(Fig. 4.3). The extent to which a parameter affected growth efficiency varies with the acetate 

uptake rate. For example, at low acetate uptake rates, growth efficiency was most sensitive 

towards parameters describing the ACT reaction. In general, however growth efficiency, over the 

range of acetate uptakes, was most sensitive to cell model parameters associated with the 

activation of acetate to acetyl-P catalyzed by AK (Fig. 4.3), a reaction essential to the use of 

acetate in biomass production as all acetate incorporated into cell biomass must go through this 

reaction (26). Increasing the forward rate constant kf—corresponding to an increase in enzyme 

concentration (ET), maximum enzyme activity (vmax), or higher substrate affinity (lower Km)—
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involved in the reaction catalyzed by CS decreased growth efficiencies as more acetyl-CoA is 

shifted to the TCA cycle. For the same reason, increasing the parameters associated with the 

reaction catalyzed by SDH resulted in a decrease of growth efficiency, and increasing parameters 

associated with PFO, a reaction involved in growth, resulted in an increase in growth efficiency. 

The variation in growth efficiency due to small—on the order of 5%—variations in forward and 

backward reaction rate constants can largely (> 95%) be explained by the linear model (Eq. 2). 

Uncertainties in ET, vmax and Km, however, tend to result in larger uncertainties in growth 

efficiencies due to error propagation, but the same reactions are found to have the most decisive 

impact (not shown).  

 

Environmental Setting 

Reactive transport models often do not—or only in a simplistic manner—reflect microbial 

population dynamics (22). To assess the importance of dynamically resolving cellular 

metabolism, where the rates depend on both extracellular and intracellular concentrations, 

reactive transport simulations with the full kinetic cell model (Model I) were contrasted with 

three parameterized versions. The first used a lookup table established from steady state runs of 

the kinetic cell model, so that cell-specific rates were expressed as a function of extracellular 

conditions, but did not take into account intracellular dynamics and assumed that intracellular 

metabolite concentrations have reached a steady state. Because computed intracellular metabolite 

concentrations (at least at the level resolved in the kinetic cell model) adjusted to changes in 

substrate availability over timescales of seconds, consistent with observed intracellular dynamics 

in bacteria (e.g. 35), the results from the steady state cell model were virtually indistinguishable 

from those of Model I and are hence not shown separately. The second implementation (Model 
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II) simplified the approach further, to a level typically used in reactive transport models, 

assuming that cell specific growth efficiency (geff, Eq. 8) is constant, and that acetate uptake (

! 

Rac
cell , Eq. 8) can be expressed by Monod kinetics, with Km(acetate) = 10.24 µM and vmax = 19.54 

mmol gdw-1 hr-1 as derived above. Finally, a third approximation employed both a constant 

growth efficiency and a constant acetate uptake rate as long as acetate was present (Model III), 

with a cell specific acetate uptake rate of 9 x10-3 molacetate gdw
-1 hr-1 and a growth efficiency of 

3.3 gdw m-3, as given in (12).  

In order to quantify the impact of microbial dynamics and substrate dependence of 

growth efficiencies under environmental conditions, simulations were performed in a domain 10 

cm long and 6 cm high. The porous medium consisted of permeable sand (k = 10-11 m2) into 

which a less permeable section was embedded (k = 10-13 m2) as depicted in Figure 4.4. No flow 

conditions were set at the upper and lower domain boundaries and a positive pressure gradient 

was imposed across the horizontal x-direction. The inflowing fluid was set to contain 0.76 µM 

acetate and 0.03 gdw m-3 biomass. After a period of constant input that allowed the establishment 

of a steady substrate and biomass distribution, the concentrations in the inflowing fluid were 

ramped up over a duration of 1 hr to an inflow concentration of 1 mM acetate and 0.3 gdw m-3 

biomass, reflecting a plume of dissolved organic carbon (16), and were held constant at high 

levels thereafter.  

Steady state biomass and acetate distributions under pristine conditions showed distinct 

differences between the various models. For all representations, relatively low, uniform biomass 

distributions were observed (Fig. 4.4B,D,F). However, the fixed uptake and growth efficiency 

formulation (Model III) predicted spatially varying acetate concentrations, with lower levels in 

the low permeability zone (Fig. 4.4E). This drawdown was caused by the slightly elevated 
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biomass concentrations in that region (Fig. 4.4F) because this approximation contains no 

feedback between substrate level and the allocation of acetate to growth versus catabolism that 

would lower uptake rates at low substrate availability. Results from Model II closely matched 

Model I (Fig. 4.4A,C; 4B,D), despite that at low acetate concentrations, the Monod 

approximation and cell model differed in their growth efficiency. This is because at low acetate 

levels, cell specific acetate uptake rates are low. In addition, the Monod model does not take into 

account cell death, which when included became important for regulating biomass levels in the 

pristine setting at cell death rates on the order of 10% the growth rate (not shown).  

Steady high substrate input stimulated microbial growth, reflected in the elevated 

biomass levels in both high and low permeability regions (Fig. 4.4H,J,L). A clear distinction was 

visible between the results obtained with the dynamic cell model and the Monod approximations 

when compared to the fixed growth efficiency description. The latter predicted biomass levels 

ranging from 0.3 to 1.2 gdw m-3 in the low permeability zone (Fig. 4.4L), while the kinetic 

models suggested a region of higher biomass in the low permeability zone adjacent to the more 

permeable one (Fig. 4.4H,J). In the models that represented the cell in more detail, the maximum 

growth efficiencies exceeded the constant average value in the “fixed” model, leading to a build 

up of biomass and depletion of acetate in the low permeability zone. The Monod parameterized 

model suggested acetate levels that are similar to those for the cell model (Fig. 4.4G,I). The cell 

model predicted the depletion of biomass in those low permeable regions that exhibited low 

acetate concentrations (Fig. 4.4H). This pattern was less pronounced in the Monod model, which 

as a result of the missing feedback of substrate availability on growth efficiencies showed 

elevated biomass levels even where acetate levels approached zero (Fig. 4.4I,J). 
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Conclusion 

The kinetic representation of Geobacter sulfurreducens central metabolism, encompassing its 

TCA cycle and the use of pyruvate in gluconeogenesis, successfully reproduces measured 

growth efficiencies with iron as electron acceptor over a wide range of extracellular acetate 

concentrations. Despite its limited scope, it predicts process rates that are in good agreement with 

results from a comprehensive flux balance model (26), as it includes feedback between 

metabolite levels and transformation rates which can accurately regulate the response over a 

range of substrate conditions.  

The two main differences between these two modeling approaches are the extent of the 

network considered and that the kinetic description provides explicit estimates of intracellular 

metabolite concentrations. The more comprehensive description inherent in flux balance 

models—possible because they do not require extensive parameterization—is an advantage as 

intrinsically, it extends the range of applicability well beyond the acetate limited environmental 

settings discussed here. However, the computation of metabolite levels in the kinetic approach 

allows for a mechanistic process description linking intracellular to environmental conditions. In 

contrast, the flux balance approach requires a priori knowledge of uptake fluxes, which may 

restrict its use to settings where they are constrained by experimental data.  

While comparison of the fully coupled reactive transport model with the Monod type 

simulations show that it is possible to approximate microbial distribution patterns without the 

explicit incorporation of cell models into reactive transport simulations, the parameterization has 

to reflect the response of intracellular processes. Process level descriptions of microbial 

metabolism give rise to emerging properties such as growth efficiencies that are critical in the 

incorporation of microbial dynamics in reactive transport models. Hence, models aiming at 
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describing in situ microbial functioning and at accounting for environmental feedbacks can 

benefit substantially from reflecting the growing knowledge on cellular metabolism, which in 

turn will bolster the predictive power necessary for their broad application.  
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Appendix 4A 

To derive estimates of rate and equilibrium constants required in the model, literature data was 

mined and converted into the format required for the cell model. Whenever available, enzyme 

turnover numbers were used as they represent a measurement of kQs (s-1). However, this 

parameter was not often available so kQs values were derived from reported Geobacter 

enzymatic specific activities. Specific activity from pure enzyme extract was converted to a 

forward rate constant, kQs (s-1) by: 

! 

kQs = SApure " MW      (A1) 

where SApure (mol s-1 genzyme
-1) is the specific activity measured from the pure enzyme extract and 

MW is the molecular weight of an enzyme subunit (g mol-1). Specific activity measured from the 

crude enzyme fraction was converted to an in situ vmax (mol L-1 s-1) as described by Albe et al. 

(1).  

! 

vmax = SAcrude " f prot "
gbm
Vcell

    (A2) 
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where SAcrude (mol s-1 gprotein
-1) is measured from the crude enzyme fraction, fprot is the fraction of 

cell biomass that is protein, determined to be 0.46 (26), gbm is the grams dry weight of biomass 

per cell, determined to be 40 fg, and Vcell is the cell volume, determined to be 4.91 x10-16 L 

calculated based on G. sulfurreducens cell size (37) assuming a cylindrical shape. This vmax value 

was converted to kQs for implementation into Karyote (31) according to: 

! 

kQs =
vmax
ET

      (A3) 

where ET is the total enzyme concentration. The parameter, kQs, was converted into k and Qs-

values for implementation of the slow reaction dynamics into the cell model. Values of Qs were 

calculated according to: 

! 

Qs =
QT

Qfi"
      (A4) 

where QT  is the equilibrium constant for the overall net reaction based on thermodynamic data, 

obtained from (15), and Qfi is the equilibrium constant for the ith fast reaction in each mechanism. 

Equilibrium constants for the fast reactions—and slow reactions when no thermodynamic data 

was available to estimate QT—were determined from: 

! 

Qi = Ck
vik

k
"       (A5) 

where Ck represents the equilibrium concentration of species k in reaction i in the enzyme 

mechanisms below, and vik is its stoichiometric coefficient (positive for products, negative for 

reactants). 

Concentrations of enzyme substrate complexes used in equation A5 are not measured directly 

and were calculated according to each enzyme’s mechanism which is separated into several fast 

and one slow component (32):  

Isomerization Reaction 

! 

E + S fast" # $ $ ES slow" # $ $ E + P  
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Bi-Bi Ordered Reaction 

! 

E + S1
fast" # $ $ ES1

ES1 + S2
fast" # $ $ ES2

slow" # $ $ E + P1 + P2
 

Ping Pong Reaction  

! 

E + S1
fast" # $ $ ES1

fast" # $ $ ES2 + P1
ES2 + S2

fast" # $ $ ES3
slow" # $ $ P2 + E

 

Tri-Ping Pong Reaction  

! 

E + S1
fast" # $ $ ES1

fast" # $ $ ES2 + P1
ES2 + S2

fast" # $ $ ES3
fast" # $ $ P2 + ES4

ES4 + S3
fast" # $ $ ES5

slow" # $ $ P3 + E

 

The enzyme substrate concentrations in the slow reactions were calculated following Purich et al. 

(32): 

isomerization reaction 

! 

ES =
ET " [S]
Km1 + [S]

,       (A6) 

ordered Bi-Bi reaction mechanism 

! 

ES2 =
ET " [S1] " [S2]

Km1 "Km2 + [S1] "Km2 + [S1] " [S2]
,  (A7) 

Ping-Pong reaction 

! 

ES3 =
ET " [S1] " [S2]

Km2 " [S1]+ [S2] "Km1 + [S1] " [S2]
,    (A8) 

Tri Ping-Pong reaction 

! 

ES5 =
ET " [S1] " [S2] " [S3]

Km1 " [S2] " [S3]+ Km2 " [S1] " [S3]+ Km3 " [S1] " [S2]+ [S1] " [S2] " [S3]
,   (A9) 

where [S1], [S2], and [S3] are the typical cell concentrations of the 1st, 2nd, and 3rd substrates to 

bind with the enzyme respectively, and Km1, Km2, and Km3 are the half saturation constants for 

substrates one, two, and three respectively. The enzyme substrate complexes involved in the fast 

reactions were then calculated according to equations A10-A16. For enzymes that employ a Bi-

Bi ordered mechanism: 

! 

[ES1] =
Km2 " [ES2]

[S2]
      (A10) 

For a Ping-Pong Mechanism: 
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! 

[ES2] =
Km2 " [ES3]

[S2]
      (A11) 

! 

[ES1] =
([ET ]" [ES2]" [ES3]) # [S1]

[S1]+ Km1
    (A12) 

For a Tri Ping-Pong Mechanism: 

! 

[ES1] =
[ES3] "Km2 " [P1]
[S2]+ Kmp1

     (A13) 

! 

[ES2] =
Km2 " [ES3]

[S2]
      (A14) 

! 

[ES3] =
[ET ]" [ES5]" [ES4 ]

1+
Km2

[S2]
+
Km2 # [P1]
[S2] #Kmp1

+
Km2 # [P1] #Km1
[S2] #Kmp1 # [S1]

  (A15) 

! 

[ES4 ] =
Km3 " [ES5]

[S3]
      (A16) 

where ES are the enzyme substrate complexes, Kmi is the half saturation constant of the ith 

substrate, Kmpi is the half saturation constant for the ith product released, Sj is the jth substrate in 

the enzymatic reaction, and Pj is the jth product released. Values used for the parameterization of 

the reaction network are found in Table 4.1.  
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Table 4.1: Values used for parameterization of the reaction network. 

Enzyme!"# 
Enzyme 

total (M) 

Enzyme 

activitya-c 
Km values (M)d,** QT 

e,** k, Qx 

ACO ! 1x10-6 (41) 240 a,(18) Kmcitrate = 1x10-2 (9) 6.80x10-2 
15f: Q=1.00e2 M-1 

6s: Q=6.80e-2 M 

k=2.20e5 M-1 s-1 

ACT $  1x10-6 (41) 900 a,(18) 
Kmsucc-coa

 = 1.5x10-4 (19) 

Kmacetate = 5x10-4 (19) 
N/A** 

21f: Q=6.67e3 M-1 

22f: Q=1.96e-3 M1 

23f: Q=2.00e3 M-1 

9s: Q=1.73e-1 M 

k=3.25e5 M-1 s-1 

AK % 2.26x10-5 (1) 22.8 a,(13) 
KmATP = 7x10-5 (17) 

KmAce = 3x10-1 (21) 8.70x10-3 

1f: Q=7.69 M-1 

1s: Q=7.92e-8 M2 

k=7.69e8 M-2 s-1 

2f: Q=1.43e4 M-1 

CS % 1.73x10-4 (7) 8.3 c,(7) 
Kmoxaloacetate

 = 4.3x10-6 (7) 

Kmacetyl-CoA = 1.41x10-5 (7) N/A** 

13f: Q=2.33e5 M-1 

14f: Q=7.09e4 M-1 

5s: Q=2.11e-4 M2 

k=3.94e6 M-2 s-1 

FUM ! 1x10-6 (41) 320.9 a,(13) Kmfumarate = 2.3x10-5 (18) 4.43 
26f: Q=4.35e4 M-1 

11s: Q=1.02e-2 M 

k=1.97e6  M-1 s-1 

IDH % 4.74x10-5 (1) 40.8 a,(13) 
Kmisocitrate = 8x10-4 (19) 

Kmnadp = 1.7x10-5 (25) 
9.3x10-1 

16f: Q=1.25e3 M-1 

17f: Q=5.88e4 M-1 

7s: Q=1.26e-6 M3 

k=4.25e7 M-3 s-1 

MDH % 1x10-6 (41) 471.5 a,(13) Kmmalate = 5x10-3 **,(7) 1.2x10-5 27f: Q=1.11e3 M-1 

28f: Q=2.00e2 M-1 
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Kmnad = 9x10-4 **,(35) 13s: Q=5.40e-9 M2 

k=5.45e12 M-2 s-1 

AKS $ 1x10-6 (41) 52.2 a,(13) 
Kmakg = 2x10-3 (19) 

KmCoA = 4x10-5 (19) N/A** 

18f: Q=5.00e2 M-1 

19f: Q=6.35e-4 M 

20f: Q=2.50e4 M-1 

8s: Q=8.78e-3 M-1 

k=3.71e5 M1 s-1 

PFO $ 1x10-6 (41) 120 a,(19) Kmacetyl-CoA = 7x10-5 (19) N/A** 

5f: Q=1.43e4 M-1 

6f: Q=5.61e-4 M 

7f: Q=8.33e2 M-1 

3s: Q=1.30e-3 M 

k=5.77e6 M-1 s-1 

PPD # 1x10-6 (41) 5900 b,(51) 

KmATP = 2x10-4 (51) 

KmAMP = 6x10-6 (51) 

KmPi = 8.3x10-4 (51) 

Kmpyruvate = 2.7x10-5 (51) 

1.45x10-3 

8f: Q=3.70e4 M-1 

12s: Q=1.43e-4 M 

k=3.78e6 M-1 s-1 

9f: Q=5.00e3 M-1 

10f: Q=6.00e-6 M 

11f: Q=1.20e3 M-1 

12f: Q=7.56e-4 M 

PTA % 1x10-6 (41) 48.0 a,(13) 
Kmacetyl-P = 3x10-4 **,(38) 

KmCoA = 9.36x10-5 **,(14) 
1.47x102 

3f: Q=3.33e3 M-1 

4f: Q=1.07e4 M-1 

4s: Q=4.13e-4 M2 

k=7.26e6 M-2 s-1 

SDH ! 8.93x10-5 (1) 10.2 a,(13) Kmsuccinate = 5x10-4 (19) N/A** 
24f: Q=2.00e3 M-1 

10s: Q=8.98e-4 M2 

k=7.94e3 M-2 s-1 
 

!"$ Enzyme mechanisms: (!) isomerization, (%) bi-bi, ($) ping-pong, (#) tri ping-pong  
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a-c (a,b) denote enzyme specific activities from crude (a) and pure (b) enzyme fraction, SA (nmol min-1 mgprotein
-1), (c) denotes enzyme 

turnover numbers, kcat (s-1). 

d akg: !-ketoglutarate; succ-coa: Succinyl-CoA. See Fig. 4.1 for EC numbers of enzymes.  

e QT denotes the equilibrium constant for the overall net reaction based on thermodynamic data, obtained from (15). N/A indicates that 

the equilibrium constant for the slow reaction is derived from typical species concentrations  

x denotes the Q and k values implemented in the kinetic model. Fast reactions are denoted by “f”, slow reaction by “s”. Numbers refer 

to the reactions labeled in Figure 4.1.  

** Estimates are based on the following typical substrate concentrations (units: M): Oxaloacetate: 1x10-7 (5); Malate: 5x10-3 (5); 

Acetyl-CoA: 3.5x10-4 (1); PEP: 9.1x10-5 (1); Fumarate 3x10-5 (1), Citrate: 1.3x10-2 (1); !-ketoglutarate: 4.76x10-4 (1); ATP: 2.64x10-3 

(1); ADP 8.23x10-4 (1); AMP: 1.51x10-4 (1); Pyruvate: 3.9x10-4 (1); CoA: 9.36x10-5 (11); Succinate: 1.67x10-3 (47); Isocitrate: 

2.9x10-5 (47); Acetyl-P: 3x10-4 (28); Succinyl-CoA: 2.59x10-5 (19); Acetate: 5x10-4 (14). These values were also used to estimate Qf 

(Eq. A5).
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Figure 4.1: Structure of the kinetic cell model and flux balance models. The kinetic model 

focuses on the fate of acetate in the metabolism of Geobacter sulfurreducens through 

incorporation into biomass from gluconeogenesis or energy production from the TCA cycle. All 

reactions are assumed to be intrinsically reversible, and the rates are computed using the 

parameter values listed (for data sources see the Appendix). The flux balance model is described 

in Mahadevan et al. (26) and encompasses some 500 reactions and species.  
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Abbreviations (Enzyme Commission numbers, EC): ACO: aconitase (4.2.1.3), ACT: acetate-

CoA transferase (2.8.3.8), AK: acetate kinase (2.7.2.1), CS: citrate synthase (2.3.3.1), FUM: 

Fumarase (4.2.1.2), IDH: isocitrate dehydrogenase (1.1.1.42), MDH: malate dehydrogenase 

(1.1.1.37), AKS: !-ketoglutarate synthase (1.2.7.3), PFO: pyruvate ferredoxin oxidoreductase 

(1.2.7.1), PPD: pyruvate phosphate dikinase (2.7.9.1), PTA: phosphate acetyl transferase 

(2.3.1.8), and SDH: succinate dehydrogenase (1.3.99.1) 
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Figure 4.2: Growth efficiency in gdw molacetate
-1 at a given acetate uptake rate (Rac

cell) for the cell 

model, flux balance model, and measured chemostat data (12). Error bars for the kinetic cell 

model represent the 25% and 75% quartile ranges as determined in the sensitivity analysis (see 

text). Inset: Acetate uptake flux at a given extracellular acetate concentration computed with the 

kinetic model along with measured data (chemostat data depicted with dashed lines indicates 

measured acetate concentrations below the detection limit of 10 !M).  
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Figure 4.3: Sensitivity, sj, of growth efficiencies to perturbations in the cell model parameters as 

a function of acetate uptake rates (Eq. 2). Bold labels along the bottom (AK, CS, ACT, SDH and 

PFO) denote the reactions promoted by the respective enzymes (see Fig. 4.1). kb, kf, and Q values 

denote the model parameters. Large absolute values of sj indicate a strong impact of a model 

parameter on resulting growth efficiencies (see text for details). 
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Figure 4.4: Results of reactive simulations utilizing different representation of bacterial growth 

and acetate uptake. Steady state acetate and biomass distributions under low (A-F; left column) 

and high (G-L; right column) input conditions, for the dynamic cell model (A,B,G,H), the 

Monod parameterization (C,D,I,J), and simulations with fixed growth efficiency and acetate 

uptake rate (E,F,K,L). The low permeability zone is indicated by the dashed boxes and the 

arrows in panel A indicate the direction and magnitude of flow. 
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CHAPTER 5 

PREDICTING MICROBIAL METABOLISM UNDER VARYING ENVIRONMENTAL 

CONDITIONS: SIGNIFICANCE OF NEAR OPTIMAL PHENOTYPES6 

  

                                                
6 Eric Lee King, Yimeng Shi, and Christof Meile. To be submitted to BMC Systems Biology 
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Abstract: 

Background: To elucidate the reactions that govern microbial activities, mathematical models are 

developed that utilize the intracellular reaction network of an organism. Commonly, as in flux 

balance analysis (FBA), predicting metabolic networks assumes an organism utilizes the most 

efficient set of reactions for e.g. growth or ATP production. Here, elementary flux mode analysis 

(EFMA) was used to determine the reactions occurring in Geobacter sulfurreducens. Unlike flux 

balance models, this technique elucidates all of the possible metabolic networks, or phenotypes, 

of an organism, allowing for an investigation of near optimal networks, which are phenotypes 

that do not have the best e.g. growth efficiencies, but can become relevant in variable 

environmental conditions. 

Results: Predicted metabolic networks from elementary flux mode analysis are compared to 

those from the more commonly used flux balance analysis. While the reactions utilized between 

EFMA and flux balance analysis are relatively similar, significant differences are seen when 

comparing reaction rates. In addition, the underlying differences between the phenotypes from 

EFMA are elucidated. Finally, phenotypes that are a combination of both most optimal for 

growth as well as minimizing changes in their metabolic machinery between variable 

environmental conditions are determined and analyzed. 

Conclusions: Results show the potential importance of investigating multiple phenotypes for an 

organism, rather than one that optimizes a goal function. In particular, sub-optimal phenotypes 

can be elucidated, which can become important in an environment where conditions can vary 

rapidly. Use of a metabolic network that minimizes the transition cost in the biochemical 

machinery needed to utilize the substrates found in the different conditions might prevail over a 



 

 

117 

network that is most optimal under just one environmental condition. Results here provide the 

means for laboratory tests to validate the potential of these sub-optimal phenotypes. 

 

Background: 

Microbially meditated reactions drive all major biogeochemical cycles on Earth [1], and are key 

to a myriad of societal issues ranging from antibiotic resistance [2] to alternative energy 

production [3] and bioremediation [4]. Thus, understanding the metabolic functioning of 

microbes, as well as their adaptations to physico-chemical changes in their surroundings is a 

central research theme in a wide range of fields. Such adaptations can lead to a shift in microbial 

populations as well as a reorganization of intracellular processes [5, 6].  

When environmental conditions vary, an organism adjusts its enzymatic machinery. If 

environmental variability is an intrinsic system characteristic, then an optimal metabolic strategy 

may account for the necessary intracellular reallocation of resources. For example, Mitchell et al. 

[7] have shown pre-induced genes in E. coli such that the cell is best adapted for variable 

conditions, rather than a constant environmental setting. In addition, Schuetz et al. [8] show E. 

coli utilizing a metabolic network that does not maximize growth alone, but also accounts for 

adjustment in their enzymatic machinery given changing environmental condition (e.g. 

alternating between glucose and acetate as carbon sources).  

Analysis of experimentally validated in silico cell models can be utilized to predict 

phenotypic plasticity. These models are generally based on the assumption that cellular 

metabolites are at a pseudo-steady state since adjustments to the enzymatic machinery occurs on 

much shorter time scales than both growth and changes in environmental conditions [9]. These 

models describe potential cellular metabolism via a stoichiometric matrix that captures the 



 

 

118 

microbial intracellular reaction network. Most commonly, one realized phenotype is determined 

through flux balance (FB) analysis [9], which optimizes a goal function that may differ under 

different environmental conditions [10]. Results from these models have been shown to be 

consistent with experimental data and have been used for predictive purposes.  

Instead of identifying a single optimal network, elementary flux mode analysis (EFMA) 

returns all feasible steady state realizations of the intracellular reaction network. It has been used 

for many applications; including determining biomass and energy production pathways in E. coli 

given oxygen limitations [11, 12] and energy flow through microbial communities in hot springs 

[13]. Adaptations related to allocation of resources under variable environmental conditions were 

investigated in Carlson [14] who utilized EFMA to look at the investment costs for producing the 

enzymes related to reaction pathways and determined that E. coli favored less efficient pathways 

during times when nutrients were scarce, but required less of an investment cost to produce. 

In this study, we investigate Geobacter sulfurreducens, a well-studied organism [e.g. 15] that 

has importance in bioremediation efforts [16] utilizing EFMA. We assess all feasible steady state 

realizations of a comprehensive Geobacter metabolic network with the following goals: (i) 

investigate the importance of near optimal reaction pathways in the context of different substrate 

and terminal electron acceptor availabilities; (ii) determine the differences in pathways utilized in 

near optimal solutions; and (iii) compare results obtained from EFMA to those from a FB model.  

 

Methodology: 

Curation of the metabolic network 

The G. sulfurreducens reaction network (Tables A.1 and A.2) was based on Mahadevan et al. 

[17], with modifications making it computationally tractable for EFMA. Completely described in 
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Table A.1, in short, the reactions removed involve heavy metal toxicity mediation and 

metabolites that were taken up and then not further utilized or subsequently exported. In 

addition, extracellular exchange of amino acids and nucleotides was modified to prevent use as 

additional carbon sources by allowing export but not import into the cell. When metabolites had 

multiple reactions that described uptake into the cell, those that were metabolically more 

expensive (e.g. utilize ATPases) were removed in favor of reactions that were less so (e.g. 

involving hydrogen symporter or passive diffusion). Since water and CO2 are allowed to freely 

enter and leave the cell through diffusion, they were considered unbalanced metabolites with 

their uptake reactions removed.  

 

Singular Value Decomposition 

To assess topological properties of the metabolic network, singular value decomposition (SVD) 

was performed on the stoichiometric matrix, S, of the curated model using MATLAB. Three 

matrices were determined ! ! !!!!; where U contains information about eigen-reactions, the 

diagonal matrix,!!, contains singular values, and the matrix VT contains information about eigen-

connectivities [18]. Each eigen-reaction traces back to specific metabolites and each eigen-

connectivity was used to investigate the most significant reactions occurring in the model. 

 

Determination of cellular fluxes 

The fluxes through the metabolic network of G. sulfurreducens were calculated through 

elementary flux mode analysis (see e.g. [19, 20]). In brief, this type of analysis utilizes the 

stoichiometric matrix of a cellular reaction network, information on the reversibility of reactions, 

and an assumption that metabolites within the cell are at steady state to determine all of the 
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possible elementary modes that exist for a reaction network (here referred to as cellular 

“phenotypes”). The program CellNetAnalyzer 2012.1 [21] was used to determine the phenotypes 

of G. sulfurreducens with the included algorithm EFMtool [22], with settings adjusted to deal 

with the large memory requirements (java heap space set to 32GB and using the adjacency and 

memory settings “rankup-nodpi-outcore” and “sort-out-core” respectively).  

Cellular metabolic rates were also calculated using FBA to estimate intracellular fluxes and 

metabolite exchange with the environment for an imposed acetate uptake rate, given lower and 

upper bounds and maximization of biomass production. 

 

Analysis of phenotypes 

To assess the efficiency of the use of terminal electron acceptors and carbon substrates, the 

amount of iron, fumarate and acetate utilized per gram dry weight (gdw) of biomass produced 

was calculated for each phenotype. Fluxes were converted to rates through knowledge that the 

growth reaction corresponds to grams of new biomass produced gdw-1 hr-1. Therefore the ratio of 

e.g. acetate uptake to growth provides the mmol of acetate gdw-1 hr-1 needed to sustain growth. 

Differences in connectivity patterns between the phenotypes derived from EFMA and the one 

phenotype from FB analysis [17] were calculated by determining the number of reactions that are 

distinct in the phenotypes being compared. This was calculated as the sum of the reactions that 

were utilized in either the FB or the EFMA phenotype but not the other. Fluxes less than 10-12 

moles gdw-1 were considered as a zero rate for that reaction to account for any mathematically 

insignificant but non-zero fluxes. Connectivity differences were also assessed through the sum of 

the differences in the reaction rates such that: 

!! ! !!! ! !!!
!!

!!! ,     (1) 
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where f is the flux through all reactions, k, where a and b refer to the phenotypes from EFMA or 

FB analysis. 

To compare the metabolites and reactions utilized between the different phenotypes, reporter 

metabolites were determined based upon Patil and Nielson [23], who analyzed the transcriptional 

response of metabolites’ neighboring enzymes under different conditions. Here, fluxes for 

reactions in the different phenotypes were used in place of changes in transcription levels. 

Reporter metabolites were therefore computed as the square of the relative change in the fluxes 

acting upon each metabolite: 

!! ! !
!!!

!!!!!!!
! ! !!!!!!!

!
!!!
!!! ,     (2) 

where k is the number of reactions connected to metabolite m, each with flux f, and a and b refer 

to the two phenotypes being compared.  

The optimality, N, of a transition between two phenotypes (or states) follow ideas presented 

in Schuetz et al. [8]. N depends on both a transition cost (i.e. a measure of the adjustments of the 

metabolic machinery needed) and how efficient the phenotypes are. The efficiency of a 

phenotype was quantified based upon the amount of iron, fumarate, and acetate needed to 

produce 1 gdw of biomass for each phenotype. To weight these multiple dimensions, acetate and 

iron consumption were normalized to those fluxes found in the FB model of Mahadevan et al. 

[17]. Since fumarate fluxes were not included in the FB model, the maximum fumarate uptake 

and corresponding growth rates, derived from chemostat experiments, were used to normalize 

the results; 11.8 gdw (molfumarate)-1 [24]. The transition cost was quantified as the sum of the 

differences in the reaction rates between two EFMA phenotypes divided by the total number of 

reactions, k. N is therefore given by: 
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! ! !
!

!!!!!!!
! ! !!!!!!!

!
! !!"#!!! ! !!"!!! ! !!"!!! ! !!"#!!! ! !!"!!! ! !!"!!!!

!!!   (3) 

where k is the number of reactions and Y is the is the amount of acetate, ac, iron, fe, and 

fumarate, fum, needed to produced 1 gdw of biomass. To find phenotypes in different clusters 

that were most optimal, N for each phenotype in one cluster was computed between every 

phenotype in another cluster.  

 

Results and Discussion: 

Network curation 

The curated reaction network of G. sulfurreducens removes or modifies 34 reactions from the 

original, full network (Table A.1) to provide a network computationally feasible for EFMA. To 

confirm that removal of these reactions had minimal effect, a flux balance model was created 

utilizing the curated network and compared to the fluxes of Mahadevan et al. [17] with 

indistinguishable results.  

 

Topological properties 

To assess the structure of the curated network, analysis of its stoichiometric matrix was 

performed using singular value decomposition (SVD), which provides information about the 

relationships of metabolites and reactions in the model [18]. The larger the singular value, the 

more important the corresponding eigen-reaction or eigen-connectivity, which corresponded to 

significant or core reactions in the stoichiometric matrix of Geobacter.  

In general, results show the importance of energy production and consumption. The first 

eigen-reaction is related with proton and proton-motive force with NADPH and NADP as key 

metabolites. The next eigen-reaction highlights energy metabolism through ATP synthesis. A 
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similar pattern is seen over the next three eigen-reactions as ATP, ADP, NADP, and NADPH 

dominate. In addition, coenzyme A, related to the TCA cycle and acetate transformations, is also 

shown to be of importance. Eigen-connectivites are dominated by reactions that involve those 

metabolites determined from the eigen-reactions. 

 

Elementary modes 

EFMA provides 4,966,879 elementary modes (“phenotypes”) determined for the curated 

network. Each phenotype utilizes iron, fumarate, or a combination of the two as terminal electron 

acceptors (Fig. 5.1). Phenotypes arrange themselves into clusters with those within a cluster (e.g. 

cluster 1) having relatively similar acetate and terminal electron acceptor (TEA) requirements for 

growth. In contrast, phenotypes between clusters (e.g. a phenotype in cluster 1 vs. cluster 2) have 

a more significant difference in carbon and TEA requirements. 

The FB phenotype derived from Mahadevan et al. [17] falls within those phenotypes from 

EFMA that utilize iron as TEA. The closer a phenotype is to the origin, the more efficient it is at 

producing biomass using acetate and iron, and it is therefore evident that the flux balance 

phenotype is not most optimal at producing biomass. This is a result of the additional constraints 

that were imposed on the acetate uptake rate for the flux balance model, which limited the uptake 

of acetate into the cell. Correspondingly, the growth efficiency for the phenotype that is most 

optimal at producing biomass (i.e. closest to the origin in cluster 1; 4.71 gdw / molacetate) using 

iron as the TEA is approximately 7% greater than what is seen for the flux balance model for G. 

sulfurreducens (4.4 gdw / molacetate). Consistent with chemostat experiments, those phenotypes 

utilizing iron as a TEA are generally less efficient at growth on acetate than phenotypes that 

utilize fumarate [24]. The most efficient phenotype for growth utilizing fumarate as a TEA has a 
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similar growth efficiency (12.5 gdw / molacetate) compared to the growth efficiencies determined 

for G. sulfurreducens at the highest growth rates investigated in chemostats (11.8 gdw / 

molacetate).  

 

Elementary mode vs. flux balance phenotype 

A comparison of the connectivity patterns between the FB and each of the EFMA phenotypes 

was determined through calculation of the number of distinct reactions occurring in the two 

phenotypes being compared. Results indicate that each EFMA phenotype differs in 0 to 51 out of 

a total of 494 reactions from the FB phenotype. While this assessment of active vs. inactive 

reactions would indicate that connectivity patterns are relatively similar between the phenotypes, 

taking into account the differences in reaction rates between the FB and EFMA phenotypes 

shows more substantial differences (inset, Fig. 5.2). With phenotypes utilizing different amounts 

of acetate and TEA to produce BM, this result suggests the need to investigate the rates and 

abundances of enzymes catalyzing a reaction, rather than just determining if a reaction is 

occurring to elucidate the differences in the metabolic machinery utilized.  

 

Comparison of the phenotypes 

EFMA phenotypes organize into 12 distinct clusters based upon the amount of acetate and iron 

needed for growth (Fig. 5.1).  For example, clusters 1 and 2 both use iron as a TEA but are 

distinct in their growth yields with the two extremes within cluster 1 differing in the amount of 

acetate needed to produce 1 gdw of biomass by approximately a factor of two. The similarity of 

the reaction networks for the different phenotypes (Fig. 5.2) was quantified by looking at the 

rates of the reactions utilized (Eq. 1). As it is computationally prohibitive to quantify the 
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differences between all phenotypes, every 100th phenotype in each cluster was compared. Similar 

to what was seen when comparing EFMA phenotypes to the FB network, the closer a phenotype 

is to each other in linear distance to phenotypes that use the same TEA, generally speaking, the 

more similar the reaction rates between them (Fig. 5.2). 

To further elucidate the differences between the phenotypes, reporter metabolites, which 

denote significant changes in flow through specific substrates, were determined for the most 

efficient phenotypes in each of the 12 clusters (66 comparisons, Table A.3). When comparing a 

phenotype that utilizes iron to one that utilizes fumarate as a TEA, succinate and/or fumarate are 

among the top five reporter metabolites (see e.g. cluster 1 vs. cluster 3 and cluster 1 vs cluster 11 

in Table A.3). Significant changes are seen in the reaction rates associated with these metabolites 

consistent with experimental observations of fumarate entering the cell through an antiporter 

with succinate [25].  

Comparing the metabolic networks of two phenotypes that both utilize the same TEA, but are 

not in the same cluster, can help elucidate differences in the reactions utilized between 

phenotypes with distinctive growth efficiencies. For example, the oxidized and reduced form of a 

ferrodoxin protein, important in electron transfer for many metabolic reactions, is the most 

significant reporter metabolite between clusters 1 and 2 followed by alpha-ketoglutarate (AKG), 

an enzyme involved in the TCA cycle and amino acid production. With more AKG utilized in 

the TCA cycle as opposed to amino acid production, more ATP is produced allowing for more 

efficient growth. These results highlight differences between reaction networks that lead to 

differences in growth efficiencies that can be investigated and experimentally validated. 
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Near-optimal modes 

Phenotypes are arranged into clusters with many nearly overlapping in growth efficiencies (Fig. 

5.1). Previous studies have shown that organisms may not maximize biomass production alone 

or one specific objective function, but exists along a pareto-optimum where multiple objective 

functions are optimized [8], such that a microbe cannot optimize one objective function without 

lowering the optimality of another. One goal function applicable to microbes takes into account 

the transition cost for changing their metabolic machinery when adapting to variable 

environmental conditions [8]. For example, an organism can simultaneously optimize biomass 

production while minimizing changes in its intracellular machinery by utilizing reactions that are 

beneficial to the organism under multiple environmental conditions. 

EFMA provides the means to analyze multiple realizations of the reaction network for an 

organism under one set of environmental conditions. For example, the most optimal phenotype 

for acetate growth on iron is located in cluster 1 while the most optimal phenotype for growth on 

fumarate is in cluster 11 (Fig. 5.1). However, an organism subjected to fluctuating conditions 

may exist in a less, but near-optimal phenotype that simultaneously minimizes the changes in its 

metabolic machinery between fumarate and iron as a TEA. Therefore, to identify phenotypes that 

may be best adapted to variable environmental conditions, one can take into account both the 

optimality and similarity of two phenotypes.  

When only one TEA is present, a microbe generally can benefit from a strategy that 

maximizes biomass production; for example, when G. sulfurreducens is found growing on iron, 

its typical TEA. When there are variations in the presence of fumarate, G. sulfurreducens will 

preferentially utilize it as TEA, requiring a change in its metabolic machinery. When growing in 

variable conditions, the microbe can optimize N, which maximizes growth efficiency while 
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minimizing the transition cost from one metabolic state to another using different TEAs. The two 

indicated phenotypes in Figure 5.1 are the most optimal in clusters 1 and 12. Both maximize 

biomass production on their respective TEA and are also most similar in their reaction networks. 

 These phenotypes are less efficient than the most optimal phenotypes in their respective 

clusters as they are not closest to the origin. Therefore, for cluster 1 reporter metabolites were 

determined for the phenotype with the highest growth efficiency (i.e. closest to the origin) and 

the phenotype in cluster 1 that optimizes N (Table 5.1). For cluster 1, the two phenotypes 

compared demonstrate differences in acetyl-phosphate usage, which affects if acetate taken up 

by the cell is used for energy metabolism through the TCA cycle or biomass production. AKG, 

another key player in the TCA cycle, was utilized differently between phenotypes, though to a 

lesser extent than when comparing clusters 1 and 2. Similarly, reporter metabolites were 

determined for the phenotype with the highest growth efficiency and the phenotype predicted to 

optimize N in cluster 12. For these phenotypes utilizing fumarate as TEA, the reactions involved 

with AKG were most significantly adjusted, followed by folate, which is involved in NADPH 

production. 

 

Conclusions 

EFMA was successfully applied to a full reaction network description of Geobacter 

sulfurreducens, as opposed to a simplified reaction network description, as is more commonly 

done. This allows for a comparison of all potential metabolic networks determined from EFMA 

and FBA. Differences in the phenotypes highlight experimentally measureable differences in the 

reactions and enzymes used, which ultimately correspond to variations in the growth efficiencies 

predicted.  
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In a dynamic environment, Geobacter may exist at less than optimal phenotypes for growth, 

but account for changes in the metabolic machinery needed to utilize different terminal electron 

acceptors. Under fluctuating availability of terminal electron acceptors, our analysis suggests a 

7% less efficient growth than the most optimal phenotype, a difference that is difficult to detect 

in laboratory experiments. However, the predicted phenotypes can be experimentally validated 

using transcriptomic data. Measurements of mRNA levels, a proxy for enzyme activity, may 

allow one to constrain the possible phenotypes determined from EFMA, increasing the predictive 

capability of these metabolic models. 
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Table 5.1: For clusters 1 and 11 (see Fig. 5.1), reporter metabolites were determined between the 

phenotype most efficient at growth in that cluster and the phenotype that optimizes N. Similarly, 

cluster 11, which use fumarate as TEA, had reporter metabolites determined between the most 

efficient phenotype and phenotype that optimizes N.  
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Figure 5.1: Visualization of the EFMA phenotypes. Each circle corresponds to one of the EFMA 

phenotypes utilizing different TEAs (light grey for iron, black for fumarate, and dark grey for 

iron and fumarate). The x-axis depicts the mmoles of acetate needed to produce 1 gdw biomass 

while the y-axis gives the mmoles for Fe3+ needed as TEA. Distinct groups of phenotypes are 

seen with many visually looking close to optimal for each cluster. The phenotypes along the x-

axis utilize fumarate as the TEA (i.e. no Fe3+). The black circle corresponds to the reaction 

network from Mahadevan et al. [17], which is indistinguishable from the flux balance model 

constructed from the curated network used in EFMA. “X”s correspond to the approximate 

position of the phenotypes that are a combination of most optimal and similar to each other (see 

text for complete description). Numbers represent cluster labeling. Note that phenotypes utilizing 

fumarate that required more than 700 mmol acetate / gdw biomass were omitted.  
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Figure 5.2: Comparison of the magnitudes of the fluxes between each EFMA phenotype. 

Numbers represent cluster labels as in Fig. 5.1. Note that only every 100th phenotype is 

compared for computational feasibility. Inset. (bottom left) Difference between the sum of the 

magnitude of the fluxes between the FB and each EFMA phenotypes. Note that clusters 5-10 

contain fewer phenotypes than other clusters.  
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CHAPTER 6 

SUMMARY 

 

The role of microbes in porous media 

Microbial metabolism in the environment is central to elemental cycling. However, due to the 

complexity of the natural environment, the microbial processes, and the vast range of scales 

connecting individual cells and macroscopic system characteristics, our ability to formulate 

meaningful models with predictive power is often limited. In an effort to address some of the 

existing challenges, this thesis focused on several aspects of biogeochemical dynamics in porous 

media, including ways to formulate microbial metabolism that integrate knowledge gained in 

Systems Biology and its implementation into reaction transport models. In addition, microbially 

mediated carbon cycling was studied in two specific environments, one representing a 

contaminated groundwater setting to investigate the impact of reaction network formulations and 

the other a freshwater marsh to investigate methane production.  

 

Modeling biogeochemical dynamics 

In Chapter 2, the complexity of reaction network formulations, including explicit representations 

of microbial dynamics, was investigated in models representative of a phenol contaminant 

plume. We evaluated the importance of pore distribution on organic matter respiration in a 

porous medium environment by performing spatially explicit simulations of microbial 

metabolism at the sub-millimeter scale. Models indicated that while some heterogeneity is 
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observed for flow rates, distributions of microbes and dissolved organic substrates remain 

relatively homogenous. We also assessed the impact of a comprehensive reaction network 

description for a phenolic contaminant plume, and compared the findings to a setting describing 

organic matter breakdown in a coastal marine sediment in the eastern Skagerrak. This 

comparison revealed the importance of reactions recycling reduced metabolites at redox 

interfaces, leading to a competition for oxidants. When the spatio-temporal dynamics of 

microbial groups were accounted for, our simulations showed the importance of the interplay 

between reaction energetics and nutrient limitations. 

We found that a description of subsurface processes may not always require an explicit 

representation of microbial biomass, particularly in settings characterized by minimal variations 

in microbial activity. The need to account for a range of feedback mechanisms between 

microbial activity and environmental conditions suggests that understanding microbial 

requirements may be central to quantify controls on bioremediation in the field.  

In Chapter 3, we used two complimentary, yet fundamentally different techniques to 

determine rates of organic matter breakdown in freshwater sediments. These methodologies 

provided alternative ways to determine process rates based upon the different types of data 

available. One technique utilized species concentrations over time, while the other technique 

required knowledge on radiotracer-based rates for methanogenesis. Results from different 

formulations of the reaction kinetics were able to match the time series concentration data. 

Although they utilize the same reaction network description of OM breakdown, several process 

rates between the techniques were significantly different, which highlights the importance of 

having a balanced data set that covers all fluxes in and out of the system of interest.  
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Formulating a model of microbial metabolism 

In Chapter 4, through the development of a dynamic cell model of Geobacter sulfurreducens, we 

showed that a kinetic representation of key components of cell metabolism matched microbial 

growth dynamics observed in chemostat experiments under varying environmental conditions 

and led to results similar to those from a comprehensive flux balance model.  

Coupling the kinetic cell model to the environment by expressing substrate uptake rates 

depending on intra- and extracellular substrate concentrations, 2D reactive transport simulations 

of an aquifer were performed. They illustrated that a proper representation of growth efficiency 

as a function of substrate availability is a determining factor for the spatial distribution of 

microbial populations in a porous medium. Also, it was shown that simplified model 

representations of microbial dynamics in the subsurface that only depended on extracellular 

conditions could be derived by properly parameterizing emerging properties of the kinetic cell 

model.  

To assess the role of microbial dynamics in the environment, an acetate plume was 

studied in a heterogeneous porous medium, for which simulations with a full coupling between 

the environment and the cell model were contrasted with several simplified parameterizations. 

They illustrated that a proper representation of growth efficiency as a function of substrate 

availability is a determining factor for the spatial distribution of microbial populations in a 

porous medium.  

In Chapter 5, elementary flux mode analysis was successfully applied to a full reaction 

network description of Geobacter sulfurreducens to predict phenotypic plasticity. All potential 

phenotypes of the organism were determined, which covered a range of growth efficiencies on 

iron and fumarate as terminal electron acceptors. In a dynamic environment, results indicated the 
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potential for Geobacter to exist at less than the most efficient phenotype for growth, but rather 

phenotypes that maximized growth while also minimization the changes in the metabolic 

machinery needed to utilize different terminal electron acceptors. These phenotypes were 

analyzed to determine the reactions prevalent in their metabolic networks, which allows for 

experimental validation of the phenotypes through e.g. linking of microbial growth dynamics to 

transcriptomic data.  
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APPENDIX A 

PARAMETERIZATION OF THE GEOBACTER SULFURREDUCENS MODEL UTILIZING 

FLUX BALANCE AND ELEMENTARY FLUX MODE ANALYSIS 

 

Introduction: 

This purpose of this appendix is to provide the parameterization necessary for the models of 

Geobacter sulfurreducens presented in Chapters 4 and 5. Included are the reactions and 

metabolites utilized as well as supplementary results from Chapter 5. 
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 Table A.1: Reaction list for the elementary flux mode and flux balance models presented in Chapters 4 and 5. Reactions are originally 

taken from Mahadevan et al. [1] with modifications described in “Note”. “Heavy metal toxicity mediation” reactions were considered 

unimportant in the environment being investigated and were therefore removed (HM). “Futile Reactions” refer to those reactions that 

were removed because a substrate is taken up and is no longer utilized or subsequently sent out of the cell. “External metabolite 

reactions” are those reactions that were removed because only external, unbalanced metabolites were considered (EM). Reactions 

labeled “Potential alternative carbon sources or electron donors” were either removed to prevent uptake of an alternative carbon 

source (RAC) or were modified to prevent uptake into the cell with export from the cell allowed (MAC). “Growth associated 

metabolites” are those reactions that involve simple diffusive uptake of a metabolite, which is only subsequently used in the biomass 

growth reaction. This reaction was removed and the metabolite was change to external (GR).”Simple uptake of metabolites” are those 

reactions where metabolites are taken up through simple diffusion. These reactions were removed with the internal metabolites made 

external. “Unmodified reactions” are those taken directly from Mahadevan et al. [1] 

Abbreviation Reaction Equation Note Lower 
Bound 

Upper 
Bound 

Heavy metal toxicity mediation 
COBALTt5 cobalt2[c] <==> cobalt2[e] HM -Infinity Infinity 
Coabc atp[c] + cobalt2[e] + h2o[c] --> adp[c] + cobalt2[c] + h[c] + pi[c] HM 0 Infinity 

Futile Reactions 
Cuabc atp[c] + cu2[e] + h2o[c] --> adp[c] + cu2[c] + h[c] + pi[c] F 0 Infinity 
ZN2abc1 atp[c] + h2o[c] + zn2[c] --> adp[c] + h[c] + pi[c] + zn2[e] F 0 Infinity 
ZN2abc2 atp[c] + h2o[c] + zn2[e] --> adp[c] + h[c] + pi[c] + zn2[c] F 0 Infinity 
CD2abc1 atp[c] + cd2[c] + h2o[c] --> adp[c] + cd2[e] + h[c] + pi[c] F 0 Infinity 
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CD2abc2 atp[c] + cd2[e] + h2o[c] --> adp[c] + cd2[c] + h[c] + pi[c] F 0 Infinity 
Clt cl[e] <==> cl[c] F -Infinity Infinity 
NIabc atp[c] + h2o[c] + ni2[e] --> adp[c] + h[c] + ni2[c] + pi[c] F 0 Infinity 
NIt5 ni2[c] <==> ni2[e] F -Infinity Infinity 
MOBDabc atp[c] + h2o[c] + mobd[e] --> adp[c] + h[c] + mobd[c] + pi[c] F 0 Infinity 
MNabc atp[c] + h2o[c] + mn2[e] --> adp[c] + h[c] + mn2[c] + pi[c] F 0 Infinity 
OXFOt4 for[c] + oxa[e] <==> for[e] + oxa[c] F -Infinity Infinity 

External metabolite reactions 
PSULF h2s[e] + s[e] <==> (2) h[e] + ss[e] EM -Infinity Infinity 
PSRED3 (2) h[e] + mql7[c] + ss[e] --> (2) h2s[e] + mqn7[c] EM 0 Infinity 

Potential alternative carbon sources or electron donors 
GLNabc atp[c] + gln-L[e] + h2o[c] --> adp[c] + gln-L[c] + h[c] + pi[c] RAC 0 Infinity 
CITt6 cit[e] + h[e] <==> cit[c] + h[c] MAC -Infinity Infinity 
GLYt6 gly[e] + h[e] <==> gly[c] + h[c] MAC -Infinity Infinity 
ILEabc atp[c] + h2o[c] + ile-L[e] --> adp[c] + h[c] + ile-L[c] + pi[c] RAC 0 Infinity 
ILEt6 h[e] + ile-L[e] <==> h[c] + ile-L[c] MAC -Infinity Infinity 
L-LACt4 h[e] + lac-L[e] --> h[c] + lac-L[c] RAC 0 Infinity 
LDH_L [c] : lac-L + nad <==> h + nadh + pyr RAC -Infinity Infinity 
LEUabc atp[c] + h2o[c] + leu-L[e] --> adp[c] + h[c] + leu-L[c] + pi[c] RAC 0 Infinity 
LEUt6 h[e] + leu-L[e] <==> h[c] + leu-L[c] MAC -Infinity Infinity 
MALt6 h[e] + mal-L[e] <==> h[c] + mal-L[c] MAC -Infinity Infinity 
PROt5 na1[e] + pro-L[e] <==> na1[c] + pro-L[c] MAC -Infinity Infinity 
URAt6 h[e] + ura[e] <==> h[c] + ura[c] MAC -Infinity Infinity 
VALabc atp[c] + h2o[c] + val-L[e] --> adp[c] + h[c] + pi[c] + val-L[c] RAC 0 Infinity 
VALt6 h[e] + val-L[e] <==> h[c] + val-L[c] MAC -Infinity Infinity 
FORt2 for[e] + h[e] <==> for[c] + h[c] MAC -Infinity Infinity 
H2td h2[c] <==> h2[e] MAC -Infinity Infinity 

Growth associated metabolites 
MGt5 mg2[c] <==> mg2[e] GR -Infinity Infinity 

Simple uptake of metabolite 
N2t n2[c] <==> n2[e] RE -Infinity Infinity 
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H2Ot5 h2o[e] <==> h2o[c] RE -Infinity Infinity 
CO2t co2[e] <==> co2[c] RE -Infinity Infinity 

Unmodified reactions 
AACPAT [c] : accoa + acp --> acacp + coa U 0 Infinity 
ACBIPGT [c] : adcobap + gtp + h --> adgcoba + ppi U 0 Infinity 
ACCOAC [c] : accoa + atp + hco3 --> adp + h + malcoa + pi U 0 Infinity 
ACGK [c] : acglu + atp --> acg5p + adp U 0 Infinity 
ACGS [c] : accoa + glu-L --> acglu + coa + h U 0 Infinity 
ACHBS [c] : 2obut + h + pyr --> 2ahbut + co2 U 0 Infinity 
ACKr [c] : ac + atp <==> actp + adp U -Infinity Infinity 
ACLS [c] : h + (2) pyr --> alac-S + co2 U 0 Infinity 
ACMAT1 [c] : acacp + h + malacp --> aaacp + acp + co2 U 0 Infinity 
ACNPLYS [c] : acmana + h2o + pep --> acnam + pi U 0 Infinity 
ACONT [c] : cit <==> icit U -Infinity Infinity 
ACOTA [c] : acorn + akg <==> acg5sa + glu-L U -Infinity Infinity 
ACt2 ac[e] + h[e] --> ac[c] + h[c] U -Infinity Infinity 
ADCL [c] : 4adcho --> 4abz + h + pyr U 0 Infinity 
ADCOBAK [c] : adcoba + atp --> adcobap + adp + h U 0 Infinity 
ADCOBAS [c] : 1ap2ol + adcobhex --> adcoba + h2o U 0 Infinity 
ADCOBHEX
S 

[c] : adcobdam + (4) atp + (4) gln-L + (4) h2o --> adcobhex + (4) adp + (4) glu-L + 
(4) h + (4) pi U 0 Infinity 

ADCS [c] : chor + gln-L --> 4adcho + glu-L U 0 Infinity 
ADK1 [c] : amp + atp <==> (2) adp U -Infinity Infinity 
ADK2 [c] : amp + pppi <==> adp + ppi U -Infinity Infinity 
ADNK1 [c] : adn + atp --> adp + amp + h U 0 Infinity 
ADOCBLS [c] : adgcoba + (0.5) h + (0.5) nad + rdmbzi --> cobamcoa + gmp + (0.5) nadh U 0 Infinity 
ADPT [c] : ade + prpp --> amp + ppi U 0 Infinity 
ADSK [c] : aps + atp --> adp + h + paps U 0 Infinity 
ADSL1 [c] : dcamp --> amp + fum U 0 Infinity 
ADSL2 [c] : 25aics --> aicar + fum U 0 Infinity 
ADSS [c] : asp-L + gtp + imp --> dcamp + gdp + (2) h + pi U 0 Infinity 
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AGPAT [c] : 12dag3p + coa --> 1ag3p + acoa U 0 Infinity 
AGPR [c] : acg5sa + nadp + pi <==> acg5p + h + nadph U -Infinity Infinity 
AHC [c] : ahcys + h2o <==> adn + hcys-L U -Infinity Infinity 
AHCYSNS [c] : ahcys + h2o --> ade + rhcys U 0 Infinity 
AHMMPS [c] : air + h2o --> 4ahmmp + gcald + (0.5) o2 + pi U 0 Infinity 
AICART [c] : 10fthf + aicar <==> fprica + thf U -Infinity Infinity 
AIRC [c] : air + co2 --> 5aizc + h U 0 Infinity 
AKGD [c] : akg + coa + nad --> co2 + nadh + succoa U 0 Infinity 
ALAALA [c] : (2) ala-D + atp <==> adp + alaala + h + pi U -Infinity Infinity 
ALAD_L [c] : ala-L + h2o + nad --> h + nadh + nh4 + pyr U 0 Infinity 
ALAR [c] : ala-L <==> ala-D U -Infinity Infinity 
ALATA_L [c] : akg + ala-L <==> glu-L + pyr U -Infinity Infinity 
ALDD2x [c] : acald + h2o + nad --> ac + (2) h + nadh U 0 Infinity 
AMAA [c] : acmama + h2o --> acmam + ala-L U 0 Infinity 
AMAOT [c] : 8aonn + amet <==> amob + dann U -Infinity Infinity 
AMMQT8_2 [c] : 2dmmq8 + amet --> ahcys + h + mqn8 U 0 Infinity 
ANPRT [c] : anth + prpp --> ppi + pran U 0 Infinity 
ANS1 [c] : chor + gln-L --> anth + glu-L + h + pyr U 0 Infinity 
AOXS [c] : ala-L + h + pmcoa <==> 8aonn + co2 + coa U -Infinity Infinity 
APAT [c] : accoa + h2o + thdp <==> acamoxm + coa U -Infinity Infinity 
APRAUR [c] : 5apru + h + nadph --> 5aprbu + nadp U 0 Infinity 
ARGDC [c] : arg-L + h --> agm + co2 U 0 Infinity 
ARGSL [c] : argsuc <==> arg-L + fum U -Infinity Infinity 
ARGSS [c] : asp-L + atp + citr-L --> amp + argsuc + h + ppi U 0 Infinity 
ASAD [c] : aspsa + nadp + pi <==> 4pasp + h + nadph U -Infinity Infinity 
ASNS1 [c] : asp-L + atp + gln-L + h2o --> amp + asn-L + glu-L + h + ppi U 0 Infinity 
ASP1DC [c] : asp-L + h --> ala-B + co2 U 0 Infinity 
ASPCT [c] : asp-L + cbp --> cbasp + h + pi U 0 Infinity 
ASPK [c] : asp-L + atp <==> 4pasp + adp U -Infinity Infinity 
ASPO1 [c] : asp-L + nad --> (2) h + iasp + nadh U 0 Infinity 
ASPT [c] : asp-L --> fum + nh4 U 0 Infinity 



 

 

144 

ASPTA1 [c] : akg + asp-L <==> glu-L + oaa U -Infinity Infinity 
ATO [c] : ac + succoa --> accoa + succ U 0 Infinity 
ATPM [c] : atp + h2o --> adp + h + pi U 0.45 0.45 
ATPPRT [c] : atp + prpp --> ppi + prbatp U 0 Infinity 
ATPS4 adp[c] + (4) h[e] + pi[c] --> atp[c] + (3) h[c] + h2o[c] U 0 Infinity 
BPNT [c] : h2o + pap --> amp + pi U 0 Infinity 
BTMAT1 [c] : 2beacp + h + nadh --> butacp + nad U 0 Infinity 
BTS [c] : dtbt + (2) s --> btn + h2s U 0 Infinity 
CA2abc atp[c] + ca2[e] + h2o[c] --> adp[c] + ca2[c] + h[c] + pi[c] U 0 Infinity 
CA2abc1 atp[c] + ca2[c] + h2o[c] --> adp[c] + ca2[e] + h[c] + pi[c] U 0 Infinity 
CBMK [c] : atp + cbm --> adp + cbp U 0 Infinity 
CBPS [c] : (2) atp + gln-L + h2o + hco3 --> (2) adp + cbp + glu-L + (2) h + pi U 0 Infinity 
CDGPT [c] : cdpdag + glyc3p --> cmp + h + pglyp U 0 Infinity 
CDPDSP [c] : cdpdag + ser-L --> cmp + h + ps U 0 Infinity 
CDPMEK [c] : 4c2me + atp --> 2p4c2me + adp + h U 0 Infinity 
CHORM [c] : chor --> pphn U 0 Infinity 
CHORS [c] : 3psme --> chor + pi U 0 Infinity 
CLPNS [c] : cdpdag + pgly --> cdlp + cmp + h U 0 Infinity 
CO1DAMAT [c] : atp + co1dam + h2o + (0.5) nadh --> adcobdam + (0.5) h + (0.5) nad + pi + ppi U 0 Infinity 
CO2DAMR [c] : (2) co2dam + nadh --> (2) co1dam + h + nad U 0 Infinity 
COBAT [c] : cobamcoa + pi + ppi <==> atp + cbl1 + h + (0.5) h2o2 U -Infinity Infinity 
CODH [c] : CO + fdxo-4:2 + h2o --> co2 + fdxr-4:2 + (2) h U 0 Infinity 
CPPPGO [c] : cpppg3 + (2) h + o2 --> (2) co2 + (2) h2o + pppg9 U 0 Infinity 
CPPPGOAN [c] : (2) amet + cpppg3 + (2) fdxo-4:2 + (2) nadph --> (2) co2 + (2) dad-5 + (2) fdxr-

4:2 + (2) h + (2) met-L + (2) nadp + pppg9 U 0 Infinity 

CRET [c] : crtn + h2o --> creat U 0 Infinity 
CS [c] : accoa + h2o + oaa --> cit + coa + h U 0 Infinity 
CTL [c] : cysth-L + h2o --> 2obut + cys-L + h + nh3 U 0 Infinity 
CTPS1 [c] : atp + nh3 + utp --> adp + ctp + h + pi U 0 Infinity 
CTPS2 [c] : atp + gln-L + h2o + utp --> adp + ctp + glu-L + (2) h + pi U 0 Infinity 
CYCPO [c] : (2) focytc + (2) h + h2o2 --> (2) ficytc + (2) h2o U 0 Infinity 
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CYOR1m (2) ficytc[c] + mql7[c] --> (2) focytc[c] + h[e] + h[c] + mqn7[c] U 0 Infinity 
CYSS [c] : acser + h2s --> ac + cys-L + h U 0 Infinity 
CYSTL [c] : cysth-L + h2o --> hcys-L + nh4 + pyr U 0 Infinity 
CYSTS [c] : hcys-L + ser-L --> cysth-L + h2o U 0 Infinity 
CYTK1 [c] : atp + cmp <==> adp + cdp U -Infinity Infinity 
CYTK2 [c] : atp + dcmp <==> adp + dcdp U -Infinity Infinity 
DADK [c] : atp + damp <==> adp + dadp U -Infinity Infinity 
DAGK [c] : 12dgr + atp --> 12dag3p + adp + h U 0 Infinity 
DAHPS [c] : e4p + h2o + pep --> 2dda7p + pi U 0 Infinity 
DAPDC [c] : 26dap-M + h --> co2 + lys-L U 0 Infinity 
DAPE [c] : 26dap-LL <==> 26dap-M U -Infinity Infinity 
DB4PS [c] : ru5p-D --> db4p + for + h U 0 Infinity 
DBTS [c] : atp + co2 + dann --> adp + dtbt + (3) h + pi U 0 Infinity 
DDMAT5 [c] : 2tddacp + h + nadh --> ddeacp + nad U 0 Infinity 
DEMAT4 [c] : 2tdeacp + h + nadh --> decacp + nad U 0 Infinity 
DGK1 [c] : atp + dgmp <==> adp + dgdp U -Infinity Infinity 
DGTPH [c] : dgtp + h2o --> dgsn + pppi U 0 Infinity 
DHAD1 [c] : 23dhmb --> 3mob + h2o U 0 Infinity 
DHAD2 [c] : 23dhmp --> 3mop + h2o U 0 Infinity 
DHDPRy [c] : 23dhdp + h + nadph --> nadp + thdp U 0 Infinity 
DHDPS [c] : aspsa + pyr --> 23dhdp + h + (2) h2o U 0 Infinity 
DHFOR2 [c] : dhf + nadp <==> fol + nadph U -Infinity Infinity 
DHFOR3 [c] : fol + h + (2) nadph <==> (2) nadp + thf U -Infinity Infinity 
DHFR [c] : dhf + h + nadph <==> nadp + thf U -Infinity Infinity 
DHFS [c] : atp + dhpt + glu-L --> adp + dhf + h + pi U 0 Infinity 
DHNAOT [c] : dhna + nad + octdp --> 2dmmq8 + co2 + nadh + ppi U 0 Infinity 
DHORD4 [c] : dhor-S + mqn7 <==> mql7 + orot U -Infinity Infinity 
DHORTS [c] : dhor-S + h2o <==> cbasp + h U -Infinity Infinity 
DHPPDA [c] : 25dhpp + h2o --> 5apru + nh3 U 0 Infinity 
DHPS1 [c] : 2ahhmp + 4abz --> dhpt + h2o U 0 Infinity 
DHQD1 [c] : 3dhq <==> 3dhsk + h2o U -Infinity Infinity 
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DHQS [c] : 2dda7p --> 3dhq + pi U 0 Infinity 
DMATT [c] : dmpp + ipdp --> grdp + ppi U 0 Infinity 
DMOCT [c] : ctp + kdo --> ckdo + ppi U 0 Infinity 
DMPPS [c] : h + h2mb4p + nadh --> dmpp + h2o + nad U 0 Infinity 
DPCOAK [c] : atp + dpcoa --> adp + coa + h U 0 Infinity 
DPR [c] : 2dhp + h + nadph --> nadp + pant-R U 0 Infinity 
DTMPK [c] : atp + dtmp <==> adp + dtdp U -Infinity Infinity 
DUTPDP [c] : dutp + h2o --> dump + h + ppi U 0 Infinity 
DXPRI [c] : dxyl5p + h + nadph <==> 2me4p + nadp U -Infinity Infinity 
DXPS [c] : g3p + h + pyr --> co2 + dxyl5p U 0 Infinity 
ENO [c] : 2pg <==> h2o + pep U -Infinity Infinity 
EPPP [c] : h2o + polypi --> (2) h + pi U 0 Infinity 
FBA [c] : fdp <==> dhap + g3p U -Infinity Infinity 
FBP [c] : fdp + h2o --> f6p + pi U 0 Infinity 
FCLT [c] : fe2 + ppp9 --> h + pheme U 0 Infinity 
FDH [c] : for + nad --> co2 + nadh U 0 Infinity 
FE2abc atp[c] + fe2[e] + h2o[c] --> adp[c] + fe2[c] + h[c] + pi[c] U 0 Infinity 
FERCYT fe3[e] + focytc[c] --> fe2[e] + ficytc[c] U 0 Infinity 
FMNAT [c] : atp + fmn + h --> fad + ppi U 0 Infinity 
FNOR [c] : fdxr-4:2 + h + nadp <==> fdxo-4:2 + nadph U 0 Infinity 
FOMETR [c] : 5fothf + h <==> h2o + methf U -Infinity Infinity 
FRD5 [c] : mqn7 + succ <==> fum + mql7 U -Infinity Infinity 
FRTT [c] : frdp + ipdp --> ggdp + ppi U 0 Infinity 
FUM [c] : fum + h2o <==> mal-L U -Infinity Infinity 
FUMt4 fum[e] + (3) h[e] --> fum[c] + (3) h[c] U 0 0 
G1Dx [c] : glc-D + nad --> g15lac + h + nadh U 0 Infinity 
G1Dy [c] : glc-D + nadp --> g15lac + h + nadph U 0 Infinity 
G1PACT [c] : accoa + gam1p --> acgam1p + coa + h U 0 Infinity 
G1PTMT [c] : dttp + g1p + h --> dtdpglc + ppi U 0 Infinity 
G1SAT [c] : glu1sa <==> 5aop U -Infinity Infinity 
G3PD1 [c] : glyc3p + nad <==> dhap + h + nadh U 0 Infinity 
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G3PD2 [c] : glyc3p + nadp <==> dhap + h + nadph U 0 Infinity 
G3PD4 [c] : glyc3p + mqn7 --> dhap + mql7 U 0 Infinity 
G5SADs [c] : glu5sa <==> 1pyr5c + h + h2o U -Infinity Infinity 
G5SD [c] : glu5p + h + nadph --> glu5sa + nadp + pi U 0 Infinity 
GALT [c] : gal1p + h + utp <==> ppi + udpgal U -Infinity Infinity 
GALU [c] : g1p + h + utp <==> ppi + udpg U -Infinity Infinity 
GAPD [c] : g3p + nad + pi <==> 13dpg + h + nadh U -Infinity Infinity 
GAPDy1 [c] : g3p + h2o + nadp --> 3pg + (2) h + nadph U 0 Infinity 
GARFT [c] : 10fthf + gar <==> fgam + h + thf U -Infinity Infinity 
GCCa [c] : gly + h + lpro --> alpro + co2 U 0 Infinity 
GCCb [c] : alpro + thf --> dhlpro + mlthf + nh4 U 0 Infinity 
GCCc [c] : dhlpro + nad --> h + lpro + nadh U 0 Infinity 
GCOP [c] : atp + glycogen + h2o --> adp + g1p + h U 0 Infinity 
GDMANE [c] : gdpddm <==> gdpofuc U -Infinity Infinity 
GDPMD [c] : gdpman --> gdpddm + h2o U 0 Infinity 
GF6PTA [c] : f6p + gln-L --> gam6p + glu-L U 0 Infinity 
GGTT [c] : ggdp + ipdp --> pendp + ppi U 0 Infinity 
GHMT [c] : ser-L + thf <==> gly + h2o + mlthf U -Infinity Infinity 
GK1 [c] : atp + gmp <==> adp + gdp U -Infinity Infinity 
GLCS1 [c] : adpglc --> adp + glycogen + h U 0 Infinity 
GLGC [c] : atp + g1p + h --> adpglc + ppi U 0 Infinity 
GLNS [c] : atp + glu-L + nh4 --> adp + gln-L + h + pi U 0 Infinity 
GLNSP3 [c] : atp + nh3 + uaagmda --> adp + pi + uaagtmda U 0 Infinity 
GLNTRS [c] : atp + gln-L + trnagln --> amp + glntrna + h + ppi U 0 Infinity 
GLU5K [c] : atp + glu-L --> adp + glu5p U 0 Infinity 
GLUDx [c] : glu-L + h2o + nad <==> akg + h + nadh + nh4 U -Infinity 0 
GLUDy [c] : glu-L + h2o + nadp <==> akg + h + nadph + nh4 U -Infinity 0 
GLUPRT [c] : gln-L + h2o + prpp --> glu-L + ppi + pram U 0 Infinity 
GLUR [c] : glu-D <==> glu-L U -Infinity Infinity 
GLUSy [c] : akg + gln-L + h + nadph --> (2) glu-L + nadp U 0 Infinity 
GLUSz [c] : akg + fdxr-4:2 + gln-L + (2) h <==> fdxo-4:2 + (2) glu-L U -Infinity Infinity 
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GLUTRR [c] : glutrna + (2) h + nadph --> glu1sa + nadp + trnaglu U 0 Infinity 
GLUTRS [c] : atp + glu-L + trnaglu --> amp + glutrna + h + ppi U 0 Infinity 
GLYD [c] : h + hpyr + nadh <==> glyc-R + nad U -Infinity Infinity 
GLYK [c] : atp + glyc --> adp + glyc3p + h U 0 Infinity 
GMPS2 [c] : atp + gln-L + h2o + xmp --> amp + glu-L + gmp + (2) h + ppi U 0 Infinity 
GOFUCR [c] : gdpofuc + h + nadph --> gdpfuc + nadp U 0 Infinity 
GRTT [c] : grdp + ipdp --> frdp + ppi U 0 Infinity 
GSADH [c] : glu5sa + h2o + nad --> glu-L + (2) h + nadh U 0 Infinity 
GSHPO [c] : (2) gthrd + h2o2 --> gthox + (2) h2o U 0 Infinity 
GTPCII [c] : gtp + (3) h2o --> 25dhpp + for + (2) h + ppi U 0 Infinity 
GTPDPK [c] : atp + gtp --> amp + gdptp + h U 0 Infinity 
GUAPRT [c] : gua + prpp --> gmp + ppi U 0 Infinity 
HBUHL1 [c] : 3hbacp --> 2beacp + h2o U 0 Infinity 
HBUR1 [c] : aaacp + h + nadph --> 3hbacp + nadp U 0 Infinity 
HBZOPT [c] : 4hbz + octdp --> 3ophb + ppi U 0 Infinity 
HCO3E [c] : co2 + h2o <==> h + hco3 U -Infinity Infinity 
HDACPHL [c] : h2o + hdeacp --> acp + h + hdca U 0 Infinity 
HDDHL5 [c] : 3hddacp --> 2tddacp + h2o U 0 Infinity 
HDDR5 [c] : 3oxddacp + h + nadph --> 3hddacp + nadp U 0 Infinity 
HDEHL4 [c] : 3hdeacp --> 2tdeacp + h2o U 0 Infinity 
HDER4 [c] : 3oxdeacp + h + nadph --> 3hdeacp + nadp U 0 Infinity 
HDH [c] : h2 + nad --> h + nadh U 0 Infinity 
HDH2 (2) h[c] + h2[c] + mqn7[c] --> (2) h[e] + mql7[c] U 0 Infinity 
HDMAT7 [c] : 2thdeacp + h + nadh --> hdeacp + nad U 0 Infinity 
HEMAT2 [c] : 2theacp + h + nadh --> hexacp + nad U 0 Infinity 
HEPTT [c] : hepdp + ipdp --> octdp + ppi U 0 Infinity 
HEX1 [c] : atp + glc-D --> adp + g6p + h U 0 Infinity 
HEXTT [c] : hexdp + ipdp --> hepdp + ppi U 0 Infinity 
HGBAMCOC [c] : atp + cobalt2 + h2o + hgbam + nadh --> adp + co2dam + h + nad + pi U 0 Infinity 
HGBAMS [c] : (2) atp + (2) gln-L + h2o + hgbyr --> (2) adp + (2) glu-L + h + hgbam + ppi U 0 Infinity 
HGR [c] : hg2 + nadph <==> h + hg0 + nadp U -Infinity Infinity 
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HHDHL7 [c] : 3hpaacp --> 2thdeacp + h2o U 0 Infinity 
HHDR7 [c] : 3oxhdacp + h + nadph --> 3hpaacp + nadp U 0 Infinity 
HHYHL2 [c] : 3hhacp --> 2theacp + h2o U 0 Infinity 
HHYR2 [c] : 3oxhacp + h + nadph --> 3hhacp + nadp U 0 Infinity 
HIBD [c] : 3hmp + nad --> 2mop + h + nadh U 0 Infinity 
HISTD [c] : h2o + histd + (2) nad --> (3) h + his-L + (2) nadh U 0 Infinity 
HISTP [c] : h2o + hisp --> histd + pi U 0 Infinity 
HMBS [c] : h2o + (4) ppbng --> hmbil + (4) nh4 U 0 Infinity 
HMPK1 [c] : 4ahmmp + atp --> 4ampm + adp + h U 0 Infinity 
HMPK2 [c] : 4ahmmp + ctp --> 4ampm + cdp + h U 0 Infinity 
HMPK3 [c] : 4ahmmp + utp --> 4ampm + h + udp U 0 Infinity 
HMPK4 [c] : 4ahmmp + gtp --> 4ampm + gdp + h U 0 Infinity 
HOCHL3 [c] : 3hocacp --> 2toceacp + h2o U 0 Infinity 
HOCR3 [c] : 3oxocacp + h + nadph --> 3hocacp + nadp U 0 Infinity 
HODHL8 [c] : 3hocdacp --> 2tocdacp + h2o U 0 Infinity 
HODR8 [c] : 3oxocdacp + h + nadph --> 3hocdacp + nadp U 0 Infinity 
HP5CD [c] : 1p3h5c + (2) h2o + nad --> 4hglu + h + nadh U 0 Infinity 
HPOD [c] : Lhpro + fad --> 1p3h5c + fadh2 + h U 0 Infinity 
HPPK [c] : 2ahhmp + atp --> 2ahhmd + amp + h U 0 Infinity 
HSAT [c] : accoa + hom-L <==> achms + coa U -Infinity Infinity 
HSDy [c] : hom-L + nadp <==> aspsa + h + nadph U -Infinity Infinity 
HSK [c] : atp + hom-L --> adp + h + phom U 0 Infinity 
HSTPT [c] : glu-L + imacp --> akg + h + hisp U 0 Infinity 
HTDHL6 [c] : 3htdacp --> 2ttdeacp + h2o U 0 Infinity 
HTDR6 [c] : 3oxtdacp + h + nadph --> 3htdacp + nadp U 0 Infinity 
HXPRT [c] : hxan + prpp --> imp + ppi U 0 Infinity 
ICDHy [c] : icit + nadp <==> akg + co2 + nadph U -Infinity Infinity 
ICHORSi [c] : chor --> ichor U 0 Infinity 
ICHORT [c] : h2o + ichor --> 23ddhb + pyr U 0 Infinity 
IG3PS [c] : gln-L + prlp --> aicar + eig3p + glu-L + (2) h U 0 Infinity 
IGPDH [c] : eig3p + h --> h2o + imacp U 0 Infinity 
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IGPS [c] : 2cpr5p + h --> 3ig3p + co2 + h2o U 0 Infinity 
ILETA [c] : akg + ile-L <==> 3mop + glu-L U -Infinity Infinity 
IMPC [c] : h2o + imp <==> fprica U -Infinity Infinity 
IMPD [c] : h2o + imp + nad --> h + nadh + xmp U 0 Infinity 
IPDPS [c] : h + h2mb4p + nadh --> h2o + ipdp + nad U 0 Infinity 
IPMD [c] : 3c2hmp + nad --> 3c4mop + h + nadh U 0 Infinity 
IPPMIa [c] : 3c2hmp <==> 2ippm + h2o U -Infinity Infinity 
IPPMIb [c] : 2ippm + h2o <==> 3c3hmp U -Infinity Infinity 
IPPS [c] : 3mob + accoa + h2o --> 3c3hmp + coa + h U 0 Infinity 
KARA1 [c] : 23dhmb + nadp <==> alac-S + h + nadph U -Infinity Infinity 
KARA2 [c] : 2ahbut + h + nadph <==> 23dhmp + nadp U -Infinity Infinity 
KAS1 [c] : (14) h + ibcoa + (5) malcoa + (10) nadph --> (5) co2 + (6) coa + fa1 + (4) h2o + 

(10) nadp U 0 Infinity 

KAS17 [c] : accoa + (22) h + (8) malcoa + (15) nadph --> (8) co2 + (9) coa + (7) h2o + (15) 
nadp + ocdcea U 0 Infinity 

KAS3 [c] : (14) h + ivcoa + (5) malcoa + (10) nadph --> (5) co2 + (6) coa + fa3 + (4) h2o + 
(10) nadp U 0 Infinity 

KAS4 [c] : 2mbcoa + (14) h + (5) malcoa + (10) nadph --> (5) co2 + (6) coa + fa4 + (4) h2o 
+ (10) nadp U 0 Infinity 

KAS7 [c] : accoa + (19) h + (7) malcoa + (13) nadph --> (7) co2 + (8) coa + (6) h2o + hdcea 
+ (13) nadp U 0 Infinity 

KAS9 [c] : (16) h + ivcoa + (6) malcoa + (11) nadph --> (6) co2 + (7) coa + fa9 + (5) h2o + 
(11) nadp U 0 Infinity 

KDOPS [c] : ara5p + h2o + pep --> kdo8p + pi U 0 Infinity 
Kt6 h[e] + k[e] <==> h[c] + k[c] U 0 Infinity 
Ktabc atp[c] + h2o[c] + k[e] --> adp[c] + h[e] + k[c] + pi[c] U 0 Infinity 
LEUD [c] : h2o + leu-D + nad --> 4mop + h + nadh + nh4 U 0 Infinity 
LEUTA [c] : akg + leu-L <==> 4mop + glu-L U -Infinity Infinity 
LGTHL [c] : gthrd + mthgxl --> lgt-S U 0 Infinity 
LPADSS [c] : lipidX + u23ga --> h + lipidAds + udp U 0 Infinity 
LYSt3 h[e] + lys-L[c] --> h[c] + lys-L[e] U 0 Infinity 
MACPMT [c] : acp + malcoa --> coa + malacp U 0 Infinity 
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MAN1PT1 [c] : gtp + h + man1p --> gdpman + ppi U 0 Infinity 
MAN6PI [c] : man6p <==> f6p U -Infinity Infinity 
MCMAT2 [c] : butacp + h + malacp --> 3oxhacp + acp + co2 U 0 Infinity 
MCMAT3 [c] : h + hexacp + malacp --> 3oxocacp + acp + co2 U 0 Infinity 
MCMAT4 [c] : h + malacp + octacp --> 3oxdeacp + acp + co2 U 0 Infinity 
MCMAT5 [c] : decacp + h + malacp --> 3oxddacp + acp + co2 U 0 Infinity 
MCMAT6 [c] : ddeacp + h + malacp --> 3oxtdacp + acp + co2 U 0 Infinity 
MCMAT7 [c] : h + malacp + tdeacp --> 3oxhdacp + acp + co2 U 0 Infinity 
MCMAT8 [c] : h + hdeacp + malacp --> 3oxocdacp + acp + co2 U 0 Infinity 
MDH [c] : mal-L + nad <==> h + nadh + oaa U -Infinity Infinity 
ME1x [c] : mal-L + nad --> co2 + nadh + pyr U 0 Infinity 
ME2 [c] : mal-L + nadp --> co2 + nadph + pyr U 0 Infinity 
MECDPDH [c] : 2mecdp + nadh --> h2mb4p + h2o + nad U 0 Infinity 
MECDPS [c] : 2p4c2me --> 2mecdp + cmp U 0 Infinity 
MEPCT [c] : 2me4p + ctp + h --> 4c2me + ppi U 0 Infinity 
METACH [c] : achms + h2s <==> ac + h + hcys-L U -Infinity Infinity 
METAT [c] : atp + h2o + met-L --> amet + pi + ppi U 0 Infinity 
METS [c] : 5mthf + hcys-L --> h + met-L + thf U 0 Infinity 
MMCD [c] : h + mmcoa-S --> co2 + ppcoa U 0 Infinity 
MMM [c] : mmcoa-R --> succoa U 0 Infinity 
MOHMT [c] : 3mob + h2o + mlthf --> 2dhp + thf U 0 Infinity 
MTAN [c] : 5mta + h2o --> 5mtr + ade U 0 Infinity 
MTAP [c] : 5mta + pi --> 5mdr1p + ade U 0 Infinity 
MTHFC [c] : h2o + methf <==> 10fthf + h U -Infinity Infinity 
MTHFD [c] : mlthf + nadp <==> methf + nadph U -Infinity Infinity 
MTHFR [c] : fadh2 + h + mlthf --> 5mthf + fad U 0 Infinity 
MTHFR1 [c] : (2) h + mlthf + nadph --> 5mthf + nadp U 0 Infinity 
NACCYT [c] : acnam + ctp --> cmpacna + ppi U 0 Infinity 
NADH5 (3) h[c] + mqn7[c] + nadh[c] --> (2) h[e] + mql7[c] + nad[c] U 0 Infinity 
NADK [c] : atp + nad --> adp + h + nadp U 0 Infinity 
NADPH5 (3) h[c] + mqn7[c] + nadph[c] --> (2) h[e] + mql7[c] + nadp[c] U 0 Infinity 
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NADS1 [c] : atp + dnad + nh4 --> amp + h + nad + ppi U 0 Infinity 
NAt7 h[e] + na1[c] <==> h[c] + na1[e] U 0 Infinity 
NDPK1 [c] : atp + gdp <==> adp + gtp U -Infinity Infinity 
NDPK2 [c] : atp + udp <==> adp + utp U -Infinity Infinity 
NDPK3 [c] : atp + cdp <==> adp + ctp U -Infinity Infinity 
NDPK4 [c] : atp + dtdp <==> adp + dttp U -Infinity Infinity 
NDPK5 [c] : atp + dgdp <==> adp + dgtp U -Infinity Infinity 
NDPK6 [c] : atp + dudp <==> adp + dutp U -Infinity Infinity 
NDPK7 [c] : atp + dcdp <==> adp + dctp U -Infinity Infinity 
NDPK8 [c] : atp + dadp <==> adp + datp U -Infinity Infinity 
NH4DIS [c] : nh4 <==> h + nh3 U -Infinity Infinity 
NH4OHD [c] : h + nh4oh <==> h2o + nh4 U -Infinity Infinity 
NH4t3 k[c] + nh4[e] --> k[e] + nh4[c] U 0 Infinity 
NIT2 [c] : (8) atp + (4) fdxr-4:2 + (2) h + (8) h2o + n2 --> (8) adp + (4) fdxo-4:2 + h2 + (2) 

nh4 + (8) pi U 0 Infinity 

NNAM [c] : h2o + ncam --> nac + nh4 U 0 Infinity 
NNAT [c] : atp + h + nicrnt --> dnad + ppi U 0 Infinity 
NNDMBRT [c] : dmbzid + nicrnt --> 5prdmbz + h + nac U 0 Infinity 
NNDMBRT2 [c] : ribflv --> dmbzid + unknown1 U 0 Infinity 
NNDPR [c] : (2) h + prpp + quln --> co2 + nicrnt + ppi U 0 Infinity 
NPHS [c] : sbzcoa --> coa + dhna U 0 Infinity 
NTRIRfc [c] : (6) focytc + (8) h + no2 --> (6) ficytc + (2) h2o + nh4 U 0 Infinity 
NTRIRy [c] : (4) h + (3) nadph + no2 --> h2o + (3) nadp + nh4oh U 0 Infinity 
OCBT [c] : cbp + orn-L <==> citr-L + h + pi U -Infinity Infinity 
OCDMAT8 [c] : 2tocdacp + h + nadh --> nad + ocdacp U 0 Infinity 
OCMAT3 [c] : 2toceacp + h + nadh --> nad + octacp U 0 Infinity 
OCTDPS [c] : frdp + (5) ipdp --> octdp + (5) ppi U 0 Infinity 
OCTT [c] : ipdp + octdp --> nondp + ppi U 0 Infinity 
ODACPHL [c] : h2o + ocdacp --> acp + h + ocdca U 0 Infinity 
OIVD1 [c] : 4mop + coa + nad <==> co2 + ivcoa + nadh U -Infinity Infinity 
OIVD2 [c] : 3mob + coa + nad --> co2 + ibcoa + nadh U 0 Infinity 
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OIVD3 [c] : 3mop + coa + nad --> 2mbcoa + co2 + nadh U 0 Infinity 
OMCDC [c] : 3c4mop + h --> 4mop + co2 U 0 Infinity 
OMPDC [c] : h + orot5p --> co2 + ump U 0 Infinity 
OOR [c] : akg + coa + fdxo-4:2 --> co2 + fdxr-4:2 + h + succoa U 0 Infinity 
OPHBDC [c] : 3ophb + h --> 2oph + co2 U 0 Infinity 
ORNTAC [c] : acorn + glu-L <==> acglu + orn-L U -Infinity Infinity 
ORPT [c] : orot5p + ppi <==> orot + prpp U -Infinity Infinity 
OXGDC2 [c] : akg + (2) h + thmpp --> co2 + ssaltpp U 0 Infinity 
P5CD [c] : 1pyr5c + (2) h2o + nad --> glu-L + h + nadh U 0 Infinity 
P5CR [c] : 1pyr5c + (2) h + nadph --> nadp + pro-L U 0 Infinity 
PANTS [c] : ala-B + atp + pant-R --> amp + h + pnto-R + ppi U 0 Infinity 
PAPPT3 [c] : udcpp + ugmda --> uagmda + ump U 0 Infinity 
PAPSR2 [c] : (2) h + pap + so3 + trdox --> paps + trdrd U -Infinity Infinity 
PC [c] : atp + hco3 + pyr --> adp + h + oaa + pi U 0 Infinity 
PC11M [c] : amet + pre4 --> ahcys + h + pre5 U 0 Infinity 
PC17M [c] : amet + pre3b --> ahcys + (3) h + pre4 U 0 Infinity 
PC20M [c] : amet + shcl --> ahcys + h + pre3a U 0 Infinity 
PC3BS [c] : h + (0.5) o2 + pre3a --> pre3b U 0 Infinity 
PC6AR [c] : h + nadph + pre6a --> nadp + pre6b U 0 Infinity 
PC6YM [c] : (2) amet + pre6b --> (2) ahcys + co2 + (2) h + pre8 U 0 Infinity 
PC8XM [c] : h + pre8 --> hgbyr U 0 Infinity 
PDH [c] : coa + nad + pyr --> accoa + co2 + nadh U 0 Infinity 
PFK [c] : atp + f6p --> adp + fdp + h U 0 Infinity 
PFL [c] : coa + pyr <==> accoa + for U -Infinity Infinity 
PGAMT [c] : gam1p <==> gam6p U -Infinity Infinity 
PGCD [c] : 3pg + nad --> 3php + h + nadh U 0 Infinity 
PGI [c] : g6p <==> f6p U -Infinity Infinity 
PGK [c] : 13dpg + adp <==> 3pg + atp U -Infinity Infinity 
PGLUSYN [c] : atp + glu-D --> adp + h + pi + polglu U 0 Infinity 
PGLYCP [c] : 2pglyc + h2o --> glyclt + pi U 0 Infinity 
PGM [c] : 3pg <==> 2pg U -Infinity Infinity 
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PGMT [c] : g1p <==> g6p U -Infinity Infinity 
PGPPH [c] : h2o + pglyp --> pgly + pi U 0 Infinity 
PHCYT [c] : 12dag3p + ctp + h --> cdpdag + ppi U 0 Infinity 
PHETA1 [c] : akg + phe-L <==> glu-L + phpyr U -Infinity Infinity 
PIabc atp[c] + h2o[c] + pi[e] --> adp[c] + h[c] + (2) pi[c] U 0 Infinity 
PIt6 h[e] + pi[e] <==> h[c] + pi[c] U -Infinity Infinity 
PIt7 (3) na1[e] + pi[e] <==> (3) na1[c] + pi[c] U -Infinity Infinity 
PMANM [c] : man1p <==> man6p U -Infinity Infinity 
PMDPHT [c] : 5aprbu + h2o --> 4r5au + pi U 0 Infinity 
PMPK [c] : 4ampm + atp --> 2mahmp + adp U 0 Infinity 
PNTEH [c] : h2o + ptth --> cysam + pnto-R U 0 Infinity 
PNTK [c] : atp + pnto-R --> 4ppan + adp + h U 0 Infinity 
POR [c] : coa + fdxo-4:2 + pyr <==> accoa + co2 + fdxr-4:2 + h U -Infinity Infinity 
PPA [c] : h2o + ppi --> h + (2) pi U 0 Infinity 
PPA_1 h2o[c] + ppi[c] --> h[e] + (2) pi[c] U 0 Infinity 
PPBNGS [c] : (2) 5aop --> h + (2) h2o + ppbng U 0 Infinity 
PPCDC [c] : 4ppcys + h --> co2 + pan4p U 0 Infinity 
PPCK [c] : atp + oaa --> adp + co2 + pep U 0 Infinity 
PPDK [c] : atp + pi + pyr --> amp + h + pep + ppi U 0 Infinity 
PPIK [c] : atp + ppi --> adp + pppi U 0 Infinity 
PPNCL [c] : 4ppan + ctp + cys-L --> 4ppcys + cdp + h + pi U 0 Infinity 
PPND [c] : nad + pphn --> 34hpp + co2 + nadh U 0 Infinity 
PPNDH [c] : h + pphn --> co2 + h2o + phpyr U 0 Infinity 
PPPGO [c] : (1.5) o2 + pppg9 --> (3) h2o + ppp9 U 0 Infinity 
PPS [c] : atp + h2o + pyr --> amp + (2) h + pep + pi U 0 Infinity 
PPTGS2 [c] : uaagtmdga --> (2) h + pptg1 + udcpdp U 0 Infinity 
PPTT [c] : ipdp + pendp --> hexdp + ppi U 0 Infinity 
PRAGS [c] : atp + gly + pram --> adp + gar + h + pi U 0 Infinity 
PRAI [c] : pran <==> 2cpr5p U -Infinity Infinity 
PRAIS [c] : atp + fpram --> adp + air + h + pi U 0 Infinity 
PRAMPC [c] : h + h2o + prbamp --> prfp U 0 Infinity 
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PRASCS [c] : 5aizc + asp-L + atp <==> 25aics + adp + h + pi U -Infinity Infinity 
PRATPP [c] : h2o + prbatp --> h + ppi + prbamp U 0 Infinity 
PRE6AS [c] : amet + h2o + pre5 --> ac + ahcys + h + pre6a U 0 Infinity 
PRFGS [c] : atp + fgam + gln-L + h2o --> adp + fpram + glu-L + (2) h + pi U 0 Infinity 
PRMICI [c] : prfp <==> prlp U -Infinity Infinity 
PRPPS [c] : atp + r5p <==> amp + h + prpp U -Infinity Infinity 
PSCVT [c] : pep + skm5p <==> 3psme + pi U -Infinity Infinity 
PSERT [c] : 3php + glu-L --> akg + pser-L U 0 Infinity 
PSP_L [c] : h2o + pser-L --> pi + ser-L U 0 Infinity 
PTAr [c] : accoa + pi <==> actp + coa U -Infinity Infinity 
PTHPS [c] : ahdt --> 6pthp + pppi U 0 Infinity 
PTPAT [c] : atp + h + pan4p <==> dpcoa + ppi U -Infinity Infinity 
PYK [c] : adp + h + pep --> atp + pyr U 0 Infinity 
PYRZAM [c] : h2o + malm --> male + nh4 U 0 Infinity 
QULNS [c] : dhap + iasp --> (2) h2o + pi + quln U 0 Infinity 
RBFK [c] : atp + ribflv --> adp + fmn + h U 0 Infinity 
RBFSa [c] : 4r5au + db4p --> dmlz + (2) h2o + pi U 0 Infinity 
RBFSb [c] : (2) dmlz --> 4r5au + ribflv U 0 Infinity 
RBK [c] : atp + rib-D --> adp + h + r5p U 0 Infinity 
RBZP [c] : 5prdmbz + h2o --> pi + rdmbzi U 0 Infinity 
RNDR1 [c] : adp + trdrd --> dadp + h2o + trdox U 0 Infinity 
RNDR2 [c] : gdp + trdrd --> dgdp + h2o + trdox U 0 Infinity 
RNDR3 [c] : cdp + trdrd --> dcdp + h2o + trdox U 0 Infinity 
RNDR4 [c] : trdrd + udp --> dudp + h2o + trdox U 0 Infinity 
RPE [c] : ru5p-D <==> xu5p-D U -Infinity Infinity 
RPI [c] : r5p <==> ru5p-D U -Infinity Infinity 
SADT2 [c] : atp + gtp + h2o + so4 --> aps + gdp + pi + ppi U 0 Infinity 
SBDH [c] : nadp + sbt6p --> h + nadph + srb1p U 0 Infinity 
SDPDS [c] : h2o + sl26da --> 26dap-LL + succ U 0 Infinity 
SDPTA [c] : akg + sl26da <==> glu-L + sl2a6o U -Infinity Infinity 
SERAT [c] : accoa + ser-L <==> acser + coa U -Infinity Infinity 
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SERD_L [c] : ser-L --> nh4 + pyr U 0 Infinity 
SHCHCS2 [c] : ichor + ssaltpp --> 2shchc + h + pyr + thmpp U 0 Infinity 
SHCHD [c] : nadp + shcl --> (2) h + nadph + srch U 0 Infinity 
SHCHF [c] : fe2 + srch --> (2) h + sheme U 0 Infinity 
SHK3D [c] : 3dhsk + h + nadph <==> nadp + skm U -Infinity Infinity 
SHKK [c] : atp + skm --> adp + h + skm5p U 0 Infinity 
SO4t2 h[e] + so4[e] --> h[c] + so4[c] U 0 Infinity 
SOD [c] : (2) h + (2) o2- --> h2o2 + o2 U 0 Infinity 
SPMS [c] : ametam + ptrc --> 5mta + h + spmd U 0 Infinity 
SUCBZL [c] : atp + coa + sucbz --> amp + ppi + sbzcoa U 0 Infinity 
SUCBZS [c] : 2shchc --> h2o + sucbz U 0 Infinity 
SUCFUMtdc fum[e] + succ[c] <==> fum[c] + succ[e] U -Infinity Infinity 
SUCOAS [c] : atp + coa + succ <==> adp + pi + succoa U 0 Infinity 
SULR [c] : (3) h2o + h2s + (3) nadp <==> (5) h + (3) nadph + so3 U -Infinity Infinity 
SULabc atp[c] + h2o[c] + so4[e] --> adp[c] + h[c] + pi[c] + so4[c] U 0 Infinity 
TADSK [c] : atp + h2o + lipidA --> adp + h + lipid4 + pi U 0 Infinity 
TAL [c] : g3p + s7p <==> e4p + f6p U -Infinity Infinity 
TDACPHL [c] : h2o + tdeacp --> acp + h + myrt U 0 Infinity 
TDMAT6 [c] : 2ttdeacp + h + nadh --> nad + tdeacp U 0 Infinity 
TDPDRR [c] : dtdp6dm + nadp <==> dtdpddm + h + nadph U -Infinity Infinity 
TDPGDH [c] : dtdpglc --> dtdpddg + h2o U 0 Infinity 
THDPS [c] : h2o + succoa + thdp --> coa + sl2a6o U 0 Infinity 
THPDH [c] : nad + phthr --> amopbut-L + h + nadh U 0 Infinity 
THRA [c] : thr-L <==> acald + gly U -Infinity Infinity 
THRD_L [c] : thr-L --> 2obut + nh4 U 0 Infinity 
THRLAD [c] : thr-LA --> acald + gly U 0 Infinity 
THRS [c] : h2o + phom --> pi + thr-L U 0 Infinity 
TKT1 [c] : r5p + xu5p-D <==> g3p + s7p U -Infinity Infinity 
TKT2 [c] : e4p + xu5p-D <==> f6p + g3p U -Infinity Infinity 
TMDK1 [c] : atp + thymd --> adp + dtmp + h U 0 Infinity 
TMDS [c] : dump + mlthf --> dhf + dtmp U 0 Infinity 



 

 

157 

TMPK [c] : atp + thmmp --> adp + thmpp U 0 Infinity 
TMPPP [c] : 2mahmp + 4mpetz + h --> ppi + thmmp U 0 Infinity 
TPI [c] : dhap <==> g3p U -Infinity Infinity 
TRDR [c] : h + nadph + trdox --> nadp + trdrd U 0 Infinity 
TRE6PP [c] : h2o + tre6p --> pi + tre U 0 Infinity 
TRPS1 [c] : 3ig3p + ser-L --> g3p + h2o + trp-L U 0 Infinity 
TYRTA [c] : akg + tyr-L <==> 34hpp + glu-L U -Infinity Infinity 
UAAGDS [c] : 26dap-M + atp + uamag --> adp + h + pi + ugmd U 0 Infinity 
UACAT [c] : 3htdacp + uacgam --> acp + u3aga U 0 Infinity 
UAG2E [c] : uacgam <==> uacmam U -Infinity Infinity 
UAG2EMA [c] : h2o + uacgam <==> acmana + h + udp U -Infinity Infinity 
UAGCVT [c] : pep + uacgam --> pi + uaccg U 0 Infinity 
UAGDP [c] : acgam1p + h + utp --> ppi + uacgam U 0 Infinity 
UAGPT3 [c] : uacgam + uagmda --> h + uaagmda + udp U 0 Infinity 
UAGT3 [c] : (5) gly + uaagtmda --> (5) h2o + uaagtmdga U 0 Infinity 
UAMAGS [c] : atp + glu-D + uama --> adp + h + pi + uamag U 0 Infinity 
UAMAS [c] : ala-L + atp + uamr --> adp + h + pi + uama U 0 Infinity 
UAPGR [c] : h + nadph + uaccg --> nadp + uamr U 0 Infinity 
UDCPDP [c] : h2o + udcpdp --> h + pi + udcpp U 0 Infinity 
UDCPK [c] : atp + udcp --> adp + h + udcpp U 0 Infinity 
UDPDPS [c] : decdp + ipdp --> ppi + udcpdp U 0 Infinity 
UDPG4E [c] : udpg <==> udpgal U -Infinity Infinity 
UDPGD [c] : h2o + (2) nad + udpg <==> (3) h + (2) nadh + udpglcur U -Infinity Infinity 
UGMDDS [c] : alaala + atp + ugmd --> adp + h + pi + ugmda U 0 Infinity 
UGSAT [c] : acp + h + u23ga <==> 3htdacp + u3hga U -Infinity Infinity 
UHGADA [c] : h2o + u3aga --> ac + u3hga U 0 Infinity 
UPP3MT [c] : (2) amet + uppg3 --> (2) ahcys + h + shcl U 0 Infinity 
UPP3S [c] : hmbil --> h2o + uppg3 U 0 Infinity 
UPPDC1 [c] : (4) h + uppg3 --> (4) co2 + cpppg3 U 0 Infinity 
UPPRT [c] : prpp + ura --> ppi + ump U 0 Infinity 
URIDK1 [c] : atp + ump --> adp + udp U 0 Infinity 
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URIDK2 [c] : atp + dump --> adp + dudp U 0 Infinity 
VALTA [c] : akg + val-L <==> 3mob + glu-L U -Infinity Infinity 

agg_GS13m 

[c] : (0.022284123) 26dap-M + (0.0177014) 3pg + (0.021845986) akg + 
(0.022284123) ala-D + (0.372353) ala-L + (0.20157662) arg-L + (0.164274185) asn-L 
+ (0.164274) asp-L + (18.218804) atp + (0.000940527) ca2 + (0.040129178) ctp + 
(0.062409843) cys-L + (0.020714) datp + (0.020714656) dctp + (0.020714656) dgtp + 
(0.020714656) dttp + (0.001307) fa1 + (0.062391063) fa3 + (0.002733323) fa4 + 
(0.011170971) fa9 + (0.191964286) g3p + (0.026552099) g6p + (0.17933863) gln-L + 
(0.022284123) glu-D + (0.17933863) glu-L + (0.417500331) gly + (0.925925926) 
glycogen + (0.064652564) gtp + (13.07392627) h2o + (0.225997835) hdca + 
(0.276897481) hdcea + (0.064561907) his-L + (0.197989848) ile-L + (0.221964448) k 
+ (0.307027735) leu-L + (0.233857574) lys-L + (0.10473376) met-L + (0.031977929) 
mg2 + (0.021391222) myrt + (0.0177014) nad + (0.056687258) nadph + 
(0.061393371) nh4 + (0.003862304) ocdca + (0.023114403) ocdcea + (0.0177014) 
pep + (0.126254396) phe-L + (0.28381802) ppi + (0.150644449) pro-L + (0.0177014) 
r5p + (0.471859373) ser-L + (0.17288244) thr-L + (0.038737144) trp-L + 
(0.093973442) tyr-L + (0.034085056) uacgam + (0.022284123) uamr + 
(0.011800933) udpg + (0.043314033) utp + (0.288376518) val-L --> (18.166254) adp 
+ (18.20524) h + (0.0177014) nadh + (0.056687) nadp + (18.214415) pi 

U -Infinity Infinity 

EX_h(e) [e] : h <==> U -Infinity Infinity 
EX_fe2(e) [e] : fe2 <==> U -Infinity Infinity 
EX_co2(e) [e] : co2 <==> U -Infinity Infinity 
EX_so4(e) [e] : so4 <==> U -Infinity Infinity 
EX_pi(e) [e] : pi <==> U -Infinity Infinity 
EX_nh4(e) [e] : nh4 <==> U -Infinity Infinity 
EX_mg2(e) [e] : mg2 <==> U -Infinity Infinity 
EX_k(e) [e] : k <==> U -Infinity Infinity 
EX_h2o(e) [e] : h2o <==> U -Infinity Infinity 
EX_fe3(e) [e] : fe3 <==> U -Infinity Infinity 
EX_ac(e) [e] : ac <==> U -Infinity Infinity 
EX_zn2(e) [e] : zn2 <==> U -Infinity Infinity 
EX_val-L(e) [e] : val-L <==> U 0 Infinity 
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EX_ura(e) [e] : ura <==> U 0 Infinity 
EX_succ(e) [e] : succ <==> U 0 Infinity 
EX_ss(e) [e] : ss <==> U 0 Infinity 
EX_s(e) [e] : s <==> U 0 Infinity 
EX_pro-L(e) [e] : pro-L <==> U 0 Infinity 
EX_oxa(e) [e] : oxa <==> U 0 Infinity 
EX_ni2(e) [e] : ni2 <==> U -Infinity Infinity 
EX_na1(e) [e] : na1 <==> U -Infinity Infinity 
EX_n2(e) [e] : n2 <==> U -Infinity Infinity 
EX_mobd(e) [e] : mobd <==> U -Infinity Infinity 
EX_mn2(e) [e] : mn2 <==> U -Infinity Infinity 
EX_mal-L(e) [e] : mal-L <==> U 0 Infinity 
EX_lys-L(e) [e] : lys-L <==> U 0 Infinity 
EX_leu-L(e) [e] : leu-L <==> U 0 Infinity 
EX_lac-L(e) [e] : lac-L <==> U 0 Infinity 
EX_ile-L(e) [e] : ile-L <==> U 0 Infinity 
EX_h2s(e) [e] : h2s <==> U 0 Infinity 
EX_h2(e) [e] : h2 <==> U 0 Infinity 
EX_gly(e) [e] : gly <==>  U 0 Infinity 
EX_gln-L(e) [e] : gln-L <==> U 0 Infinity 
EX_fum(e) [e] : fum <==> U 0 Infinity 
EX_for(e) [e] : for <==> U 0 Infinity 
EX_cu2(e) [e] : cu2 <==> U -Infinity Infinity 
EX_cobalt2(e) [e] : cobalt2 <==> U -Infinity Infinity 
EX_cl(e) [e] : cl <==> U -Infinity Infinity 
EX_cit(e) [e] : cit <==> U 0 Infinity 
EX_cd2(e) [e] : cd2 <==> U -Infinity Infinity 
EX_ca2(e) [e] : ca2 <==> U -Infinity Infinity 
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Table A.2: Metabolites utilized in the Geobacter sulfurreducens models presented in Chapters 4 and 5.  Abbreviations are provided 

and “Type” refers to whether a metabolite is a balanced (i.e. “Cytosol”) or an unbalanced, external metabolite (“Extracellular”). 

Abbreviation Type Full name 
10fthf Cytosol 10-Formyltetrahydrofolate 
12dag3p Cytosol 1,2-Diacyl-sn-glycerol 3-phosphate 
12dgr Cytosol 1,2-Diacylglycerol 
13dpg Cytosol 3-Phospho-D-glyceroyl phosphate 
1ag3p Cytosol 1-Acyl-sn-glycerol 3-phosphate 
1ap2ol Cytosol 1-Aminopropan-2-ol 
1p3h5c Cytosol L-1-Pyrroline-3-hydroxy-5-carboxylate 
1pyr5c Cytosol 1-Pyrroline-5-carboxylate 
23ddhb Cytosol 2,3-Dihydro-2,3-dihydroxybenzoate 
23dhdp Cytosol 2,3-Dihydrodipicolinate 
23dhmb Cytosol (R)-2,3-Dihydroxy-3-methylbutanoate 
23dhmp Cytosol (R)-2,3-Dihydroxy-3-methylpentanoate 
25aics Cytosol (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate 
25dhpp Cytosol 2,5-Diamino-6-hydroxy-4-(5'-phosphoribosylamino)-pyrimidine 
26dap-LL Cytosol LL-2,6-Diaminoheptanedioate 
26dap-M Cytosol meso-2,6-Diaminoheptanedioate 
2ahbut Cytosol (S)-2-Aceto-2-hydroxybutanoate 
2ahhmd Cytosol 2-Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine diphosphate 
2ahhmp Cytosol 2-Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine 
2beacp Cytosol But-2-enoyl-[acyl-carrier protein] 
2cpr5p Cytosol 1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate 
2dda7p Cytosol 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate 
2dhp Cytosol 2-Dehydropantoate 
2dmmq8 Cytosol 2-Demethylmenaquinone 8 
2ippm Cytosol 2-Isopropylmaleate 
2mahmp Cytosol 2-Methyl-4-amino-5-hydroxymethylpyrimidine diphosphate 
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2mbcoa Cytosol 2-Methylbutanoyl-CoA 
2me4p Cytosol 2-C-methyl-D-erythritol 4-phosphate 
2mecdp Cytosol 2-C-methyl-D-erythritol 2,4-cyclodiphosphate 
2mop Cytosol 2-Methyl-3-oxopropanoate 
2obut Cytosol 2-Oxobutanoate 
2oph Cytosol 2-Octaprenylphenol 
2p4c2me Cytosol 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol 
2pg Cytosol D-Glycerate 2-phosphate 
2pglyc Cytosol 2-Phosphoglycolate 
2shchc Cytosol 2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate 
2tddacp Cytosol trans-Dodec-2-enoyl-[acyl-carrier protein] 
2tdeacp Cytosol trans-Dec-2-enoyl-[acyl-carrier protein] 
2thdeacp Cytosol trans-Hexadec-2-enoyl-[acyl-carrier protein] 
2theacp Cytosol trans-Hex-2-enoyl-[acp] 
2tocdacp Cytosol trans-Octadec-2-enoyl-[acyl-carrier-protein] 
2toceacp Cytosol trans-Oct-2-enoyl-[acp] 
2ttdeacp Cytosol trans-Tetradec-2-enoyl-[acyl-carrier protein] 
34hpp Cytosol 3-(4-Hydroxyphenyl)pyruvate 
3c2hmp Cytosol 3-Carboxy-2-hydroxy-4-methylpentanoate 
3c3hmp Cytosol 3-Carboxy-3-hydroxy-4-methylpentanoate 
3c4mop Cytosol 3-Carboxy-4-methyl-2-oxopentanoate 
3dhq Cytosol 3-Dehydroquinate 
3dhsk Cytosol 3-Dehydroshikimate 
3hbacp Cytosol (3R)-3-Hydroxybutanoyl-[acyl-carrier protein] 
3hddacp Cytosol (R)-3-Hydroxydodecanoyl-[acyl-carrier protein] 
3hdeacp Cytosol (3R)-3-Hydroxydecanoyl-[acyl-carrier protein] 
3hhacp Cytosol (R)-3-Hydroxyhexanoyl-[acp] 
3hmp Cytosol 3-Hydroxy-2-methylpropanoate 
3hocacp Cytosol (R)-3-Hydroxyoctanoyl-[acyl-carrier protein] 
3hocdacp Cytosol (3R)-3-Hydroxyoctadecanoyl-[acyl-carrier protein 
3hpaacp Cytosol (3R)-3-Hydroxypalmitoyl-[acyl-carrier protein] 
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3htdacp Cytosol (3R)-3-Hydroxytetradecanoyl-[acyl-carrier protein] 
3ig3p Cytosol C'-(3-Indolyl)-glycerol 3-phosphate 
3mob Cytosol 3-Methyl-2-oxobutanoate 
3mop Cytosol (S)-3-Methyl-2-oxopentanoate 
3ophb Cytosol 3-Octaprenyl-4-hydroxybenzoate 
3oxddacp Cytosol 3-Oxododecanoyl-[acyl-carrier protein] 
3oxdeacp Cytosol 3-Oxodecanoyl-[acyl-carrier protein] 
3oxhacp Cytosol 3-Oxohexanoyl-[acyl-carrier protein] 
3oxhdacp Cytosol 3-Oxohexadecanoyl-[acp] 
3oxocacp Cytosol 3-Oxooctanoyl-[acyl-carrier protein] 
3oxocdacp Cytosol 3-Oxooctadecanoyl-[acp] 
3oxtdacp Cytosol 3-Oxotetradecanoyl-[acyl-carrier protein] 
3pg Cytosol 3-Phospho-D-glycerate 
3php Cytosol 3-Phosphohydroxypyruvate 
3psme Cytosol 5-O-(1-Carboxyvinyl)-3-phosphoshikimate 
4abz Cytosol 4-Aminobenzoate 
4adcho Cytosol 4-amino-4-deoxychorismate 
4ahmmp Cytosol 4-Amino-5-hydroxymethyl-2-methylpyrimidine 
4ampm Cytosol 4-Amino-2-methyl-5-phosphomethylpyrimidine 
4c2me Cytosol 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol 
4hbz Cytosol 4-Hydroxybenzoate 
4hglu Cytosol 4-Hydroxy-L-glutamate 
4mop Cytosol 4-Methyl-2-oxopentanoate 
4mpetz Cytosol 4-Methyl-5-(2-phosphoethyl)-thiazole 
4pasp Cytosol 4-Phospho-L-aspartate 
4ppan Cytosol D-4'-Phosphopantothenate 
4ppcys Cytosol N-((R)-4-Phosphopantothenoyl)-L-cysteine 
4r5au Cytosol 4-(1-D-Ribitylamino)-5-aminouracil 
5aizc Cytosol 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate 
5aop Cytosol 5-Amino-4-oxopentanoate 
5aprbu Cytosol 5-Amino-6-(5'-phosphoribitylamino)uracil 
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5apru Cytosol 5-Amino-6-(5'-phosphoribosylamino)uracil 
5fothf Cytosol 5-Formyltetrahydrofolate 
5mdr1p Cytosol 5-Methylthio-5-deoxy-D-ribose 1-phosphate 
5mta Cytosol 5-Methylthioadenosine 
5mthf Cytosol 5-Methyltetrahydrofolate 
5mtr Cytosol 5-Methylthio-D-ribose 
5prdmbz Cytosol N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole 
6pthp Cytosol 6-Pyruvoyl-5,6,7,8-tetrahydropterin 
8aonn Cytosol 8-Amino-7-oxononanoate 
CO Cytosol Carbon monoxide 
Lhpro Cytosol L-Hydroxyproline 
aaacp Cytosol Acetoacetyl-[acyl-carrier protein] 
ac Extracellular Acetate 
ac[e] Cytosol Acetate 
acacp Cytosol Acetyl-[acyl-carrier protein] 
acald Cytosol Acetaldehyde 
acamoxm Cytosol N-Acetyl-L-2-amino-6-oxopimelate 
accoa Cytosol Acetyl-CoA 
acg5p Cytosol N-Acetyl-L-glutamyl 5-phosphate 
acg5sa Cytosol N-Acetyl-L-glutamate 5-semialdehyde 
acgam1p Cytosol N-Acetyl-D-glucosamine 1-phosphate 
acglu Cytosol N-Acetyl-L-glutamate 
achms Cytosol O-Acetyl-L-homoserine 
acmam Cytosol N-Acetyl-D-muramoate 
acmama Cytosol N-Acetyl-D-muramoyl-L-alanine 
acmana Cytosol N-Acetyl-D-mannosamine 
acnam Cytosol N-Acetylneuraminate 
acoa Cytosol Acyl-CoA 
acorn Cytosol N2-Acetyl-L-ornithine 
acp Cytosol Acyl-carrier Protein 
acser Cytosol O-Acetyl-L-serine 
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actp Cytosol Acetyl phosphate 
adcoba Cytosol Adenosyl cobinamide 
adcobap Cytosol Adenosyl cobinamide phosphate 
adcobdam Cytosol Adenosyl cobyrinate diamide 
adcobhex Cytosol adenosyl-cobyric acid 
ade Cytosol Adenine 
adgcoba Cytosol Adenosine-GDP-cobinamide 
adn Cytosol Adenosine 
adp Cytosol ADP 
adpglc Cytosol ADPglucose 
agm Cytosol Agmatine 
ahcys Cytosol S-Adenosyl-L-homocysteine 
ahdt Cytosol 2-Amino-4-hydroxy-6-(erythro-1,2,3-trihydroxypropyl)dihydropteridine triphosphate 
aicar Cytosol 5-Amino-1-(5-Phospho-D-ribosyl)imidazole-4-carboxamide 
air Cytosol 5-amino-1-(5-phospho-D-ribosyl)imidazole 
akg Cytosol 2-Oxoglutarate 
ala-B Cytosol beta-Alanine 
ala-D Cytosol D-Alanine 
ala-L Cytosol L-Alanine 
alaala Cytosol D-Alanyl-D-alanine 
alac-S Cytosol (S)-2-Acetolactate 
alpro Cytosol S-Aminomethyldihydrolipoylprotein 
amet Cytosol S-Adenosyl-L-methionine 
ametam Cytosol S-Adenosylmethioninamine 
amob Cytosol S-Adenosyl-4-methylthio-2-oxobutanoate 
amopbut-L Cytosol 2-Amino-3-oxo-4-phosphonooxybutyrate 
amp Cytosol AMP 
anth Cytosol Anthranilate 
aps Cytosol Adenosine 5'-phosphosulfate 
ara5p Cytosol D-Arabinose 5-phosphate 
arg-L Cytosol L-Arginine 
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argsuc Cytosol N(omega)-(L-Arginino)succinate 
asn-L Cytosol L-Asparagine 
asp-L Cytosol L-Aspartate 
aspsa Cytosol L-Aspartate 4-semialdehyde 
atp Cytosol ATP 
btn Cytosol Biotin 
butacp Cytosol Butyryl-[acyl-carrier protein] 
ca2 Extracellular Calcium 
ca2[e] Cytosol Calcium 
cbasp Cytosol N-Carbamoyl-L-aspartate 
cbl1 Cytosol Cob(I)alamin 
cbm Cytosol Carbamate 
cbp Cytosol Carbamoyl phosphate 
cd2 Extracellular Cadmium 
cd2[e] Cytosol Cadmium 
cdlp Cytosol Cardiolipin 
cdp Cytosol CDP 
cdpdag Cytosol CDPdiacylglycerol 
chor Cytosol Chorismate 
cit Extracellular Citrate 
cit[e] Cytosol Citrate 
citr-L Cytosol L-Citrulline 
ckdo Cytosol CMP-3-deoxy-D-manno-octulosonate 
cl Extracellular Chloride 
cl[e] Cytosol Chloride 
cmp Cytosol CMP 
cmpacna Cytosol CMP-N-acetylneuraminate 
co1dam Cytosol Cob(I)yrinate a,c diamide 
co2 Extracellular CO2 
co2[e] Cytosol CO2 
co2dam Cytosol Cob(II)yrinate a,c diamide 
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coa Cytosol Coenzyme A 
cobalt2 Extracellular Co2+ 
cobalt2[e] Cytosol Co2+ 
cobamcoa Cytosol Cobamide coenzyme 
cpppg3 Cytosol Coproporphyrinogen III 
creat Cytosol Creatine 
crtn Cytosol Creatinine 
ctp Cytosol CTP 
cu2 Extracellular Cu2+ 
cu2[e] Cytosol Cu2+ 
cys-L Cytosol L-Cysteine 
cysam Cytosol Cysteamine 
cysth-L Cytosol L-Cystathionine 
dad-5 Cytosol 5'-Deoxyadenosine 
dadp Cytosol dADP 
damp Cytosol dAMP 
dann Cytosol 7,8-Diaminononanoate 
datp Cytosol dATP 
db4p Cytosol 3,4-dihydroxy-2-butanone 4-phosphate 
dcamp Cytosol N6-(1,2-Dicarboxyethyl)-AMP 
dcdp Cytosol dCDP 
dcmp Cytosol dCMP 
dctp Cytosol dCTP 
ddeacp Cytosol Dodecanoyl-[acyl-carrier protein] 
decacp Cytosol Decanoyl-[acyl-carrier protein] 
decdp Cytosol all-trans-Decaprenyl diphosphate 
dgdp Cytosol dGDP 
dgmp Cytosol dGMP 
dgsn Cytosol Deoxyguanosine 
dgtp Cytosol dGTP 
dhap Cytosol Dihydroxyacetone phosphate 
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dhf Cytosol 7,8-Dihydrofolate 
dhlpro Cytosol Dihydrolipolprotein 
dhna Cytosol 1,4-Dihydroxy-2-naphthoate 
dhor-S Cytosol (S)-Dihydroorotate 
dhpt Cytosol Dihydropteroate 
dmbzid Cytosol 5,6-Dimethylbenzimidazole 
dmlz Cytosol 6,7-Dimethyl-8-(1-D-ribityl)lumazine 
dmpp Cytosol Dimethylallyl diphosphate 
dnad Cytosol Deamino-NAD+ 
dpcoa Cytosol Dephospho-CoA 
dtbt Cytosol Dethiobiotin 
dtdp Cytosol dTDP 
dtdp6dm Cytosol dTDP-6-deoxy-L-mannose 
dtdpddg Cytosol dTDP-4-dehydro-6-deoxy-D-glucose 
dtdpddm Cytosol dTDP-4-dehydro-6-deoxy-L-mannose 
dtdpglc Cytosol dTDPglucose 
dtmp Cytosol dTMP 
dttp Cytosol dTTP 
dudp Cytosol dUDP 
dump Cytosol dUMP 
dutp Cytosol dUTP 
dxyl5p Cytosol 1-deoxy-D-xylulose 5-phosphate 
e4p Cytosol D-Erythrose 4-phosphate 
eig3p Cytosol D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphate 
f6p Cytosol D-Fructose 6-phosphate 
fa1 Cytosol Fatty acid (Iso-C14:0) 
fa3 Cytosol Fatty acid (Iso-C15:0) 
fa4 Cytosol Fatty acid (Anteiso-C15:0) 
fa9 Cytosol Fatty acid (Iso-C17:1) 
fad Cytosol FAD 
fadh2 Cytosol FADH2 
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fdp Cytosol D-Fructose 1,6-bisphosphate 
fdxo-4:2 Cytosol ferrodoxin (oxidized form 4:2) 
fdxr-4:2 Cytosol ferrodoxin (reduced form 4:2) 
fe2 Extracellular Fe2+ 
fe2[e] Extracellular Fe2+ 
fe3[e] Cytosol Fe3+ 
fgam Cytosol N2-Formyl-N1-(5-phospho-D-ribosyl)glycinamide 
ficytc Cytosol Ferricytochrome c 
fmn Cytosol flavin mononucleotide 
focytc Cytosol Ferrocytochrome c 
fol Cytosol Folate 
for Extracellular Formate 
for[e] Cytosol Formate 
fpram Cytosol 2-(Formamido)-N1-(5-phospho-D-ribosyl)acetamidine 
fprica Cytosol 5-Formamido-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide 
frdp Cytosol Farnesyl diphosphate 
fum Extracellular Fumarate 
fum[e] Cytosol Fumarate 
g15lac Cytosol D-Glucono-1,5-lactone 
g1p Cytosol D-Glucose 1-phosphate 
g3p Cytosol Glyceraldehyde 3-phosphate 
g6p Cytosol D-Glucose 6-phosphate 
gal1p Cytosol alpha-D-Galactose 1-phosphate 
gam1p Cytosol D-Glucosamine 1-phosphate 
gam6p Cytosol D-Glucosamine 6-phosphate 
gar Cytosol N1-(5-Phospho-D-ribosyl)glycinamide 
gcald Cytosol Glycolaldehyde 
gdp Cytosol GDP 
gdpddm Cytosol GDP-4-dehydro-6-deoxy-D-mannose 
gdpfuc Cytosol GDP-L-fucose 
gdpman Cytosol GDP-D-mannose 
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gdpofuc Cytosol GDP-4-oxo-L-fucose 
gdptp Cytosol Guanosine 3'-diphosphate 5'-triphosphate 
ggdp Cytosol Geranylgeranyl diphosphate 
glc-D Cytosol D-Glucose 
gln-L Extracellular L-Glutamine 
gln-L[e] Cytosol L-Glutamine 
glntrna Cytosol L-Glutaminyl-tRNA(Gln) 
glu-D Cytosol D-Glutamate 
glu-L Cytosol L-Glutamate 
glu1sa Cytosol L-Glutamate 1-semialdehyde 
glu5p Cytosol L-Glutamate 5-phosphate 
glu5sa Cytosol L-Glutamate 5-semialdehyde 
glutrna Cytosol L-Glutamyl-tRNA(Glu) 
gly Extracellular Glycine 
gly[e] Cytosol Glycine 
glyc Cytosol Glycerol 
glyc-R Cytosol (R)-Glycerate 
glyc3p Cytosol sn-Glycerol 3-phosphate 
glyclt Cytosol Glycolate 
glycogen Cytosol glycogen 
gmp Cytosol GMP 
grdp Cytosol Geranyl diphosphate 
gthox Cytosol Oxidized glutathione 
gthrd Cytosol Reduced glutathione 
gtp Cytosol GTP 
gua Cytosol Guanine 
h Cytosol H+ 
h2 Extracellular H2 
h2[e] Cytosol H2 
h2mb4p Cytosol 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate 
h2o Cytosol H2O 
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h2o2 Extracellular Hydrogen peroxide 
h2o[e] Cytosol H2O 
h2s Extracellular Hydrogen sulfide 
h2s[e] Extracellular Hydrogen sulfide 
h[e] Cytosol H+ 
hco3 Cytosol Bicarbonate 
hcys-L Cytosol L-Homocysteine 
hdca Cytosol Hexadecanoate (n-C16:0) 
hdcea Cytosol hexadecenoate (n-C16:1) 
hdeacp Cytosol Hexadecanoyl-[acyl-carrier protein] 
hepdp Cytosol all-trans-Heptaprenyl diphosphate 
hexacp Cytosol Hexanoyl-[acyl-carrier protein] 
hexdp Cytosol all-trans-Hexaprenyl diphosphate 
hg0 Cytosol Mercury (uncharged) 
hg2 Cytosol Mercury (charged +2) 
hgbam Cytosol Hydrogenobyrinate a,c diamide 
hgbyr Cytosol Hydrogenobyrinate 
his-L Cytosol L-Histidine 
hisp Cytosol L-Histidinol phosphate 
histd Cytosol L-Histidinol 
hmbil Cytosol Hydroxymethylbilane 
hom-L Cytosol L-Homoserine 
hpyr Cytosol Hydroxypyruvate 
hxan Cytosol Hypoxanthine 
iasp Cytosol Iminoaspartate 
ibcoa Cytosol Isobutyryl-CoA 
ichor Cytosol Isochorismate 
icit Cytosol Isocitrate 
ile-L Extracellular L-Isoleucine 
ile-L[e] Cytosol L-Isoleucine 
imacp Cytosol 3-(Imidazol-4-yl)-2-oxopropyl phosphate 
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imp Cytosol IMP 
ipdp Cytosol Isopentenyl diphosphate 
ivcoa Cytosol Isovaleryl-CoA 
k Extracellular K+ 
k[e] Cytosol K+ 
kdo Cytosol 3-Deoxy-D-manno-2-octulosonate 
kdo8p Cytosol 3-Deoxy-D-manno-octulosonate 8-phosphate 
lac-L Extracellular L-Lactate 
lac-L[e] Cytosol L-Lactate 
leu-D Cytosol D-Leucine 
leu-L Extracellular L-Leucine 
leu-L[e] Cytosol L-Leucine 
lgt-S Cytosol (R)-S-Lactoylglutathione 
lipid4 Cytosol 2,3,2'3'-Tetrakis(3-hydroxytetradecanoyl)-D-glucosaminyl-1,6-beta-D-glucosamine 1,4'-bisphosphate 
lipidA Cytosol 2,3-Bis(3-hydroxytetradecanoyl)-D-glucosaminyl-1,6-beta-D-2,3-bis(3-hydroxytetradecanoyl)-beta-

D-glucosaminyl 1-phosphate 
lipidAds Cytosol Lipid A Disaccharide 
lipidX Cytosol 2,3-Bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl 1-phosphate 
lpro Cytosol Lipoylprotein 
lys-L Extracellular L-Lysine 
lys-L[e] Cytosol L-Lysine 
mal-L Extracellular L-Malate 
mal-L[e] Cytosol L-Malate 
malacp Cytosol Malonyl-[acyl-carrier protein] 
malcoa Cytosol Malonyl-CoA 
male Cytosol Maleate 
malm Cytosol Maleamate 
man1p Cytosol D-Mannose 1-phosphate 
man6p Cytosol D-Mannose 6-phosphate 
met-L Cytosol L-Methionine 
methf Cytosol 5,10-Methenyltetrahydrofolate 
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mg2 Extracellular Mg 
mg2[e] Cytosol Mg 
mlthf Cytosol 5,10-Methylenetetrahydrofolate 
mmcoa-R Cytosol (R)-Methylmalonyl-CoA 
mmcoa-S Cytosol (S)-Methylmalonyl-CoA 
mn2 Extracellular Mn2+ 
mn2[e] Cytosol Mn2+ 
mobd Extracellular Molybdate 
mobd[e] Cytosol Molybdate 
mql7 Cytosol Menaquinol 7 
mqn7 Cytosol Menaquinone 7 
mqn8 Cytosol Menaquinone 8 
mthgxl Cytosol Methylglyoxal 
myrt Cytosol Myristate; Fatty acid (n-C14:0) fa2 
n2 Extracellular N2 
n2[e] Cytosol N2 
na1 Extracellular Sodium 
na1[e] Cytosol Sodium 
nac Cytosol Nicotinate 
nad Cytosol Nicotinamide adenine dinucleotide 
nadh Cytosol Nicotinamide adenine dinucleotide - reduced 
nadp Cytosol Nicotinamide adenine dinucleotide phosphate 
nadph Cytosol Nicotinamide adenine dinucleotide phosphate - reduced 
ncam Cytosol Nicotinamide 
nh3 Cytosol Ammonia 
nh4 Extracellular Ammonium 
nh4[e] Cytosol Ammonium 
nh4oh Cytosol Ammonium hydroxide 
ni2 Extracellular Ni2+ 
ni2[e] Cytosol Ni2+ 
nicrnt Cytosol Nicotinate D-ribonucleotide 
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no2 Cytosol Nitrite 
nondp Cytosol all-trans-Nonaprenyl diphosphate 
o2 Cytosol O2 
o2- Cytosol Superoxide 
oaa Cytosol Oxaloacetate 
ocdacp Cytosol Octadecanoyl-[acyl-carrier protein] 
ocdca Cytosol octadecanoate (n-C18:0) 
ocdcea Cytosol octadecenoate (n-C18:1) 
octacp Cytosol Octanoyl-[acyl-carrier protein] 
octdp Cytosol all-trans-Octaprenyl diphosphate 
orn-L Cytosol L-Ornithine 
orot Cytosol Orotate 
orot5p Cytosol Orotidine 5'-phosphate 
oxa Extracellular Oxalate 
oxa[e] Cytosol Oxalate 
pan4p Cytosol Pantetheine 4'-phosphate 
pant-R Cytosol (R)-Pantoate 
pap Cytosol Adenosine 3',5'-bisphosphate 
paps Cytosol 3'-Phosphoadenylyl sulfate 
pendp Cytosol all-trans-Pentaprenyl diphosphate 
pep Cytosol Phosphoenolpyruvate 
pgly Cytosol Phosphatidylglycerol 
pglyp Cytosol Phosphatidylglycerophosphate 
phe-L Cytosol L-Phenylalanine 
pheme Cytosol Protoheme 
phom Cytosol O-Phospho-L-homoserine 
phpyr Cytosol Phenylpyruvate 
phthr Cytosol O-Phospho-4-hydroxy-L-threonine 
pi Extracellular Phosphate 
pi[e] Cytosol Phosphate 
pmcoa Cytosol Pimeloyl-CoA 
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pnto-R Cytosol (R)-Pantothenate 
polglu Cytosol Poly-gamma-D-glutamate 
polypi Cytosol Polyphosphate 
ppbng Cytosol Porphobilinogen 
ppcoa Cytosol Propanoyl-CoA 
pphn Cytosol Prephenate 
ppi Cytosol Diphosphate 
ppp9 Cytosol Protoporphyrin 
pppg9 Cytosol Protoporphyrinogen IX 
pppi Cytosol Inorganic triphosphate 
pptg1 Cytosol Peptidoglycan subunit 
pram Cytosol 5-Phospho-beta-D-ribosylamine 
pran Cytosol N-(5-Phospho-D-ribosyl)anthranilate 
prbamp Cytosol 1-(5-Phosphoribosyl)-AMP 
prbatp Cytosol 1-(5-Phosphoribosyl)-ATP 
pre3a Cytosol Precorrin 3 A 
pre3b Cytosol Precorrin 3B 
pre4 Cytosol Precorrin 4 
pre5 Cytosol Precorrin 5 
pre6a Cytosol Precorrin 6A 
pre6b Cytosol Precorrin 6B 
pre8 Cytosol Precorrin 8 
prfp Cytosol 1-(5-Phosphoribosyl)-5-[(5-phosphoribosylamino)methylideneamino]imidazole-4-carboxamide 
prlp Cytosol 5-[(5-phospho-1-deoxyribulos-1-ylamino)methylideneamino]-1-(5-phosphoribosyl)imidazole-4-

carboxamide 
pro-L Extracellular L-Proline 
pro-L[e] Cytosol L-Proline 
prpp Cytosol 5-Phospho-alpha-D-ribose 1-diphosphate 
ps Cytosol Phosphatidylserine 
pser-L Cytosol O-Phospho-L-serine 
ptrc Cytosol Putrescine 
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ptth Cytosol Pantetheine 
pyr Cytosol Pyruvate 
quln Cytosol Quinolinate 
r5p Cytosol alpha-D-Ribose 5-phosphate 
rdmbzi Cytosol N1-(alpha-D-ribosyl)-5,6-dimethylbenzimidazole 
rhcys Cytosol S-Ribosyl-L-homocysteine 
rib-D Cytosol D-Ribose 
ribflv Cytosol Riboflavin 
ru5p-D Cytosol D-Ribulose 5-phosphate 
s Cytosol Sulfur 
s7p Extracellular Sedoheptulose 7-phosphate 
s[e] Cytosol Sulfur 
sbt6p Cytosol D-Sorbitol 6-phosphate 
sbzcoa Cytosol O-Succinylbenzoyl-CoA 
ser-L Cytosol L-Serine 
shcl Cytosol Sirohydrochlorin 
sheme Cytosol Siroheme 
skm Cytosol Shikimate 
skm5p Cytosol Shikimate 5-phosphate 
sl26da Cytosol N-Succinyl-LL-2,6-diaminoheptanedioate 
sl2a6o Cytosol N-Succinyl-2-L-amino-6-oxoheptanedioate 
so3 Cytosol Sulfite 
so4 Extracellular Sulfate 
so4[e] Cytosol Sulfate 
spmd Cytosol Spermidine 
srb1p Cytosol Sorbose 1-phosphate 
srch Extracellular Sirochlorin 
ss[e] Cytosol Disulfide 
ssaltpp Cytosol Succinate semialdehyde-thiamin diphosphate anion 
sucbz Cytosol o-Succinylbenzoate 
succ Extracellular Succinate 
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succ[e] Cytosol Succinate 
succoa Cytosol Succinyl-CoA 
tdeacp Cytosol Tetradecanoyl-[acyl-carrier protein] 
thdp Cytosol 2,3,4,5-Tetrahydrodipicolinate 
thf Cytosol 5,6,7,8-Tetrahydrofolate 
thmmp Cytosol Thiamin monophosphate 
thmpp Cytosol Thiamine diphosphate 
thr-L Cytosol L-Threonine 
thr-LA Cytosol L-Allo-threonine 
thymd Cytosol Thymidine 
trdox Cytosol Oxidized thioredoxin 
trdrd Cytosol Reduced thioredoxin 
tre Cytosol Trehalose 
tre6p Cytosol alpha,alpha'-Trehalose 6-phosphate 
trnagln Cytosol tRNA(Gln) 
trnaglu Cytosol tRNA (Glu) 
trp-L Cytosol L-Tryptophan 
tyr-L Cytosol L-Tyrosine 
u23ga Cytosol UDP-2,3-bis(3-hydroxytetradecanoyl)glucosamine 
u3aga Cytosol UDP-3-O-(3-hydroxytetradecanoyl)-N-acetylglucosamine 
u3hga Cytosol UDP-3-O-(3-hydroxytetradecanoyl)-D-glucosamine 
uaagmda Cytosol Undecaprenyl-diphospho-N-acetylmuramoyl-(N-acetylglucosamine)-L-alanyl-D-glutamyl-meso-2,6-

diaminopimeloyl-D-alanyl-D-alanine 
uaagtmda Cytosol Undecaprenyl-diphospho-N-acetylmuramoyl-(N-acetylglucosamine)-L-alanyl-D-glutaminyl-meso-

2,6-diaminopimeloyl-D-alanyl-D-alanine 
uaagtmdga Cytosol Undecaprenyl-diphospho-N-acetylmuramoyl-(N-acetylglucosamine)-L-alanyl-D-glutaminyl-meso-

2,6-diaminopimeloyl-(glycyl)5-D-alanyl-D-alanine 
uaccg Cytosol UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine 
uacgam Cytosol UDP-N-acetyl-D-glucosamine 
uacmam Cytosol UDP-N-acetyl-D-mannosamine 
uagmda Cytosol Undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-
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alanyl-D-alanine 
uama Cytosol UDP-N-acetylmuramoyl-L-alanine 
uamag Cytosol UDP-N-acetylmuramoyl-L-alanyl-D-glutamate 
uamr Cytosol UDP-N-acetylmuramate 
udcp Cytosol Undecaprenol 
udcpdp Cytosol Undecaprenyl diphosphate 
udcpp Cytosol Undecaprenyl phosphate 
udp Cytosol UDP 
udpg Cytosol UDPglucose 
udpgal Cytosol UDPgalactose 
udpglcur Cytosol UDP-D-glucuronate 
ugmd Cytosol UDP-N-acetylmuramoyl-L-alanyl-D-gamma-glutamyl-meso-2,6-diaminopimelate 
ugmda Cytosol UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine 
ump Cytosol UMP 
unknown1 Cytosol Unknown Product 
uppg3 Cytosol Uroporphyrinogen III 
ura Extracellular Uracil 
ura[e] Cytosol Uracil 
utp Cytosol UTP 
val-L Extracellular L-Valine 
val-L[e] Cytosol L-Valine 
xmp Cytosol Xanthosine 5'-phosphate 
xu5p-D Cytosol D-Xylulose 5-phosphate 
zn2 Extracellular Zinc 
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Table A.3: Reporter metabolites for a comparison between the most efficient phenotype in each of the clusters depicted in Figure 5.1. 

Only the top ten metabolites are shown. E,g, “1-2” refers to the reporter metabolites determined for the comparison between clusters 1 

and 2. Abbreviations as given in Table A.2. 

 
1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 

Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite 
h         coa       h         h         h         h         h         h         h         
akg       h         pi        coa       nh4       akg       coa       akg       coa       
h2o       co2       pyr       akg       h2o       glu-L     h2o       coa       akg       
nh4       akg       akg       glu-L     akg       nadp      akg       glu-L     pi        
glu-L     succ      glu-L     succ      glu-L     nadph     nh4       co2       h2o       
nad       succoa    h[e]      nadp      nadp      h[e]      pi        nadp      adp       
nadh      accoa     h2o       nadph     nadph     h2o       glu-L     nadph     atp       
pi        fdxo-4:2  nadp      accoa     fdxo-4:2  coa       accoa     fdxo-4:2  nh4       
co2       fdxr-4:2  nadph     h[e]      fdxr-4:2  accoa     nadp      fdxr-4:2  glu-L     
coa       mql7      mql7      mql7      h[e]      for       nadph     h[e]      fdxo-4:2  
 

1-11 1-12 2-3 2-4 2-5 2-6 2-7 2-8 2-9 
Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite 
succ      mql7      h         h         h         h         h         h         h         
mql7      mqn7      pi        pi        coa       coa       coa       coa       pi        
mqn7      fum       h2o       atp       pi        akg       akg       akg       adp       
fum       succ      adp       h2o       adp       co2       pi        adp       atp       
h         h         atp       coa       atp       nad       nad       atp       glu-L     
nadp      glu-L     glu-L     pyr       akg       nadh      nadh      pi        gln-L     
nadph     h2o       nh4       akg       accoa     glu-L     co2       accoa     h2o       
coa       nadp      akg       h[e]      co2       gln-L     fdxo-4:2  co2       nh4       
accoa     nadph     succ      co2       nad       h[e]      fdxr-4:2  succoa    coa       
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h[e]      h[e]      nadp      nad       nadh      mql7      adp       glu-L     accoa     
         

2-10 2-11 2-12 3-4 3-5 3-6 3-7 3-8 3-9 
Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite 
h         succ      mql7      h         h         coa       coa       h         coa       
coa       mql7      mqn7      pi        akg       h         h         akg       h         
accoa     mqn7      h         coa       coa       akg       akg       h2o       accoa     
h[e]      fum       fum       akg       co2       h2o       accoa     nad       akg       
mql7      h         succ      pyr       nad       nh4       nad       nadh      glu-L     
mqn7      coa       pi        atp       nadh      pi        nadh      coa       h2o       
succ      nadp      glu-L     h2o       accoa     accoa     co2       nh4       pyr       
pyr       nadph     adp       accoa     h2o       succoa    succ      co2       nad       
akg       akg       atp       co2       glu-L     nad       succoa    accoa     nadh      
nad       pi        h2o       succoa    pyr       nadh      glu-L     glu-L     actp      
 

3-10 3-11 3-12 4-5 4-6 4-7 4-8 4-9 4-10 
Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite 
h         h         h         pi        pi        h         pi        h         h         
h2o       co2       coa       h         h         pi        h         pi        pi        
nh4       coa       akg       atp       h2o       pyr       atp       coa       atp       
pi        nadp      glu-L     coa       atp       fum       h2o       pyr       coa       
glu-L     nadph     nad       pyr       pep       succ      succ      co2       adp       
akg       nad       nadh      actp      pyr       amp       adp       akg       h2o       
adp       nadh      co2       adp       amp       atp       pep       succoa    succoa    
atp       accoa     h2o       amp       h2        pep       coa       amp       h[e]      
accoa     pyr       adp       pep       nh4       pi[e]     pyr       atp       pyr       
coa       akg       atp       pi[e]     pi[e]     h[e]      h[e]      pep       nh4       
         

4-11 4-12 5-6 5-7 5-8 5-9 5-10 5-11 5-12 
Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite 
h         h         pi        succ      h         coa       h         h         h         
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pi        pi        adp       coa       h2o       succoa    pi        nadp      coa       
nadp      pyr       atp       fum       succ      co2       h2o       nadph     glu-L     
nadph     glu-L     coa       actp      fum       akg       coa       akg       adp       
atp       h[e]      actp      adp       h2        h         adp       nad       atp       
h2o       atp       h2        atp       nh4       accoa     atp       nadh      pi        
h[e]      h2o       nh4       pi        pi        actp      nh4       glu-L     accoa     
coa       mql7      h2o       accoa     nad       adp       fdxo-4:2  h2o       succ      
akg       mqn7      h         mql7      nadh      atp       fdxr-4:2  h[e]      h[e]      
nad       amp       accoa     mqn7      mql7      pi        co2       for       mql7      
 

6-7 6-8 6-9 6-10 6-11 6-12 7-8 7-9 7-10 
Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite 
fum       succ      h         h         h         h         pi        coa       h         
succ      coa       coa       coa       nadp      glu-L     adp       co2       pi        
h2o       h         fdxo-4:2  adp       nadph     h2o       atp       akg       adp       
h2        fum       fdxr-4:2  atp       h2o       pi        h         fum       atp       
nh4       actp      co2       pi        nh4       fdxo-4:2  coa       succ      coa       
pi        adp       akg       succoa    pi        fdxr-4:2  actp      succoa    succ      
h         atp       succoa    co2       akg       h[e]      h2        h         succoa    
mql7      h2        h2o       akg       coa       adp       nh4       mql7      h2o       
mqn7      pi        h2        accoa     adp       atp       h2o       mqn7      nh4       
fdxo-4:2  accoa     nh4       actp      atp       mql7      accoa     fdxo-4:2  mql7      
         

7-11 7-12 8-9 8-10 8-11 8-12 9-10 9-11 9-12 
Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite Metabolite 
succ      fum       coa       h         h         succ      pi        h         h         
fum       succ      pi        mql7      succ      fum       h         coa       coa       
mql7      mql7      h         mqn7      fum       mql7      adp       akg       akg       
mqn7      mqn7      adp       coa       mql7      mqn7      atp       nadp      glu-L     
h         h         atp       co2       mqn7      h         h2o       nadph     co2       
nadp      glu-L     succ      nad       nadp      pi        nh4       co2       fdxo-4:2  
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nadph     h[e]      succoa    nadh      nadph     coa       coa       nad       fdxr-4:2  
coa       coa       nad       akg       h2o       adp       actp      nadh      h[e]      
akg       accoa     nadh      adp       nad       atp       ctp       succoa    accoa     
nad       akg       fdxo-4:2  atp       nadh      glu-L     h2        accoa     nad       
 

10-11 10-12 11-12 
Metabolite Metabolite Metabolite 
h         h         h         
h2o       pi        nadp      
akg       coa       nadph     
nadp      adp       glu-L     
nadph     atp       coa       
nh4       glu-L     h2o       
co2       h2o       nad       
glu-L     akg       nadh      
coa       fdxo-4:2  akg       
pi        fdxr-4:2  adp       
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