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ABSTRACT

A number of multivariate effect-size measures for MANOV A contexts have been
proposed in the statistics literature. These measures however overestimate the strength of
relationship between independent variable and dependent variable. A procedure by Tatsuoka
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simulation method. The results, when there are no true effects, indicate that eight effect- size
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CHAPTER 1
INTRODUCTION

Statistical hypothesis test and effect size

Statistical hypothesis tests have been criticized for many years (Carver, 1978; Fan, 2001;
Kirk, 1996; Thompson, 1996). Kirk (1996) identified three major criticism of statistical
significance testing. The first criticism is that “null hypothesis significant testing and scientific
inference address different questions” (1996, p.747). In other words, when researchers use the
significance test, they want to know the probability of null hypothesis given obtained set of data.
But what the probability of the hypothesis test reports is the probability of obtaining these data if
the null hypothesis is true. The second criticism is that “null hypothesis is always false, a
decision to reject it simply indicates that the research design had adequate power a true state of
affairs” (p.747). The problem with statistical significance testing that it relies too heavily on
sample size. The third criticism is that statistical significance testing “ turns a continuum of
uncertainty into a dichotomous reject-do-not-reject decision” (p.748), and this dichotomous
decision may “lead to the anomalous situation in which two researchers obtain identical
treatment effects but draw different conclusions™ (p.748).

For many years, researchers have been strongly encouraged to assess and report effect-
size estimates as a supplement to statistical hypothesis tests (Kirk, 1996; Thompson, 1996;
Wilkinson & TSFI, 1999). Today at least 23 journals require authors to report some measure of
effect-size when they present quantitative research findings.

A magnitude of effect-size means that “how much of the dependent variable can be

controlled, predicted, or explained by the independent variable (s)” (Snyder and Lawson, 1993,



p.335). Besides, the magnitude of the effect-size can clarify whether the statistically significant
result has any practical significance. According to Kirk (1996), there are three categories in
effect sizes; strength of association measures (rz, R, Rz, Hays’s 0)2, Kelly’s 82, Tatsuoka’s

mzmuhi ,etc), standardized mean difference measures(Cohen’s d, f, g , Hedges’s g, etc), and other
measures (Cohen’s Ui, Us, Us, Relative risk, Risk difference, etc). Maxwell and Delaney (1990)
classified magnitude-effect-size into measures of effect-size and measures of association strength.
In the measures of effect-size category, there are mean difference indices, estimated effect
parameter indices, and standardized differences between means. In the measure of association
category, there are n’, partial n°, Hays’s o?, Kelly’s €7, R%, Ezekiel’s adjusted R?, the Lord
formula, etc. According to Snyder and Lawson (1993), Hays’s o’, Kelly’s &, Ezekiel’s adjusted
R?, and the Lord formula are the corrected effect-size measures for biased estimators (e.g., 1> or

R?).

Multivariate measures of strength of association

Many researchers are using multivariate statistical techniques due to increased
availability of comprehensive computer programs (Bray & Maxwell; Onwuegbuzie & Daniel,
2003). When multiple outcome measures are compared in a multivariate analysis of variance
(MANOVA), a measure of strength of association can be used to for measuring the effect size. It
was not until in the early 1970s that the use of multivariate effect-size index was discussed at
least in the behavioral sciences (Huberty, 2002).

When multiple outcome measures are compared in a multivariate analysis of variance
(MANOVA), several effect-size indices have been suggested. Table 1.1 presents several popular

indices of effect-size for the MANOVA context.



Table 1.1

Multivariate strength of association indices

Wilks Index (1932)  Womuewt = 1—A

Hsu Index (1940) Wt = V.

1+V
Stevens Index (1972) Wuest = V.

1+V’
Shaffer-Gillo Index  Wmuesa =  Tr(HE') = \Y%
(1974) r+ Tr(HE™) r+V
Serlin Index (1982)  N’muieser = SSeewen = U

SSTotal r
Tatsuoka(1970)- o' = (N-K)— (N-1) A
Sachdeva (1973) (N-K) + A
Index
Hotelling (1936)- R puenri = 1 - 501 (1-p%) =1 = A= 0wt
Rozeboom (1965)
Index

Cramer-Nicewander Rpueeni =1 - 1Serrorl ? =1-] T (1- p2j) 1'"P= 1-(A)'P
Index (1979) IStotall P

Rimucenni = Tr(8 ' oaSee) = X '1p”
Tr(s_ltotalstotal) p

where A is Wilks test statistic in MANOVA, V is Hotelling-Lawley test statistic in MANOVA, V' is [V(df, -p-1)]/df.,
where df; is the degree of freedom for error, r is min(p,q), where p is the number of variables and q is the degree of
freedom for hypothesis, U is Bartett-Pillai test statistic in MANOVA, N is overall sample size, Tr( ) is trace of

matrix (), p’is the squared canonical correlation, and K is the number of groups



Smith (1972) also presented a generalization of the univariate eta squared in the
multivariate context. However, his formula, “based on stepdown procedures” (Huberty, 1983,
p-709), “do not yield values that are invariant under alternative orderings” (Smith, 1972, p.371).
Therefore, Smith (1972) index is not considered in this study. These indices (presented in Table
1.1) can be categorized into three classifications based on how they were developed: 1)
generalization of the univariate eta squared (Hsu, 1940; Serlin, 1982; Shaffer-Gillo, 1974;
Stevens, 1972; Wilks, 1932), 2) generalization of the univariate omega squared (Sachdeva, 1973;
Tatuoka, 1970), and 3) as a function of the squared canonical correlation (Cramer-Nicewander,
1979; Hotelling, 1936; Rozeboom, 1965). SPSS (2002, version 11.0) reports Shaffer-Gillo index,
Serlin index, and Cramer-Nicewander index under requested in the General Linear Model —
Multivariate program. But, SAS (SAS Institute INC, version 8, 1999-2001) does not report any

of these indices.

Adjustment procedures in MANOVA

Tatsuoka (1973) found that Tatsuoka index, Ot (TSI), is positively biased when the
number of variables is large and the sample size is small. To reduce the bias in TSI, he developed
an adjustment formula. He maintained that this adjustment would be sufficient for most
MANOVA contexts and could be used with Wilks index and Hsu index as well as the Tatsuoka
index. Serlin (1982) indicated that the Serlin index (SEI) is a biased estimator, and proposed
another adjustment analogous to Ezekiel’s (1930) adjustment for squared multiple correlation
coefficient. Bray and Maxwell (1985) have recommended Serlin’s adjustment while Huberty
(1994) favors Tatsuoka’s adjustment. Table 1.2 presents these adjustments for multivariate

measures of association.



Table 1.2

Adjustment of multivariate measure of strength of association

Tatsuoka Adjustment (1973) ((Dzmu]t)adj = (nzmuh - pz + 92 (1- wzmult)
3N

Serlin Adjustment (1982) Pt seD e =1 —  N—=1 (1 = mueser)

N-b-1

where p is the number of variable, q is the number of group minus one, and b is max(p, q), and where N is the total

sample size

Statement of problem and purpose of study

Although the multivariate effect size measures are known to be biased, among
statisticians, applied researchers are generally unaware of this problem. For example, SPSS
(2002, version 11.0) reports Shaffer-Gillo index (SGI), SEI, and Cramer-Nicewander index
(Rzmult_cm = CNI) when effect-size is requested in the General Linear Model — Multivariate
program, but provides no indication that the estimates are biased. In review of a convenience
sample of 14 multivariate textbooks published since 1985 only 10 textbooks discussed
multivariate effect-size measures and only four commented on bias. Table 1.3 provides a list of

book titles, publication dates, effect-size measures discussed, and type of adjustment suggested.

Table 1.3

Analysis of multivariate textbooks

Author Title Year Effect Size Adjustment
Bary, J. H. Multivariate Analysis 1985 nzmuh_s Serlin Adjustment
Maxwell, S. E. of Variance




Diekhoff, G. Statistics for the

Social and Behavioral

science: Univariate, 1992 nzmult_w None
Bivariate,
Multivariate

Edwards, L. K. Applied Analysis of 1993 None None

Variance in
Behavioral Science
Flury, B. A First Course in 2002 None None

Multivariate Statistics

Huberty, C. J. Applied Discriminant 1994 nzmult_w, T]zmult_s(}’ Tatsuoka
Analysis nzmuh_s, mzmult, Adjustment
R%ueent
Jobson, J. D. Applied Multivariate 1992 nzmuh_w, mzmult Tatsuoka
Data Analysis Adjustment

(volume m: categorical
and multivariate
methods)
Marcoulides, G.A. Multivariate 1997 None None
Hershberger, S.L. Statistical Methods-A
first course
Rencher, A. C. Method of 2002 nzmult_w None
Multivariate analysis

(second edition)

Sharma, S. Applied Multivariate 1996 nzmult_w None
Techniques
Srivastava, M. S.  Method of 2002 None None

Multivariate Statistics

Steven, J. Applied Multivariate 1996 nzmult_w None
Statistics for the
Social Science (3™

edition)




Tabachnick, B.G. Using Multivariate 1989 nzmult_w None
Fidell, L. S. Statistics (second

edition)
Tatsuoka, M. M. Multivariate Analysis 1988 (nzmuh Tatsuoka
Adjustment
Timm, N. H. Applied Multivariate 2002 None None
Analysis

In addition to bias, the precision with which these statistics estimate measure of
association has been given little attention. Furthermore, the adequacy of the two procedures for
adjusting for bias has not been examined. The purposes of the present study are 1) to examine the
degree of bias and precision in eight of multivariate measures of association and 2) to evaluate
the effectiveness of the Tatsuoka and Serlin procedures for adjusting the eight effect-size

measurcs.

Method

To address the purpose of this study a computer simulation method is used using
SAS/IML (SAS Institute INC, version 8, 1999-2001). The factors considered in this study are the
number of compared groups (k=2, 3, and 5), sample size (n=10 and 50), the number of variables
(p=3, 5, and 10), and population effect size (nzmult=0, .1, .3, and .5). While the effect-size
measures can be used in more complex designs, the present study only considers the one factor

multivariate analysis of variance context and when all MANOVA assumptions are met.

Significance

The reporting of an effect-size measure is currently required by several prominent
education journals. For this requirement to be useful the effect-size measure reported should be

unbiased and estimated with precision. Multivariate effect-size measures suggested in many



textbooks and those currently reported on computer output provide biased estimates population
differences. Many researchers are unaware of this bias and are unaware of procedures that are
available to adjust these effect-size measures. The present study provides estimates of the
magnitude of the bias and compares two adjustment procedures to reduce the bias. The results of
this study should be of interest to authors of multivariate related textbooks, to methodologists
interested in the distributional properties of the multivariate effect-size measures, and to applied
researchers using MANOVA and are interested in an unbiased estimate of the effect size.

The next chapter reviews the development of both univariate and multivariate effect-size
measures. In addition, studies that have examined the multivariate effect-size measures are
discussed. In chapter 3, the sampling conditions, the generating populations, and the generating
samples are described. In the results chapter, the degree of the bias of unadjusted eight effect-size
measures, the degree of the bias of adjusted eight effect-size measures using the Tatsuoka
adjustment and the Serlin adjustment, and the precision of eight unadjusted/adjusted effect-size
measures are presented. Finally, chapter 5 summarizes the results and discusses the implications

of the findings.



CHAPTER 2
LITERATURE REVIEW

The purposes of this study are: 1) to examine the degree of bias and precision in eight
multivariate measures of association and 2) to evaluate the effectiveness of the Tatsuoka and
Serlin procedures for adjusting the eight effect-size measures. This chapter describes topics
related to research purposes: 1) multivariate analysis of variance, 2) the measures of association
in the univariate and the multivariate contexts, 3) two adjustment procedures of bias in
MANOVA, and 4) previous investigation on multivariate effect-size measures.

The literature reviewed on the related studies presented in this chapter were identified by
searching ERIC (Educational Resource Information Center), PsycINFO (Psychology
Information), GALILEO (Georgia Library Learning Online), and references from previous
research. Key word used in the search are “effect size”, “measures of strength of association”,

“MANOVA”, “multivariate measures of strength of association”, and “adjustment procedure of

bias in MANOVA”.

Multivariate Analysis of Variance

MANOVA is an analysis of variance (ANOVA) model that is suitable for the analysis of
data with more than one dependent variable. When there is more than one dependent variable,
MANOVA is recommended because this procedure can control experimentwise error rate that is
inflated in the univariate analyses, if each dependent variable is considered separately. Besides, it
makes researchers can take into consideration the correlations among dependent variables.

Huberty (1983) notes that there is some natural scalar-matrix correspondence between ANOVA



and MANOVA. An ANOVA between group sum of squares, SSgeween, generalizes to, a hypothesis
SSCP (sum of squares and cross products) matrix H. Similarly, within sum of squares
generalizes to E, and a total sum of squares (SSio1) to T (Huberty, 1983).

The hypothesis tested using MANOVA is that the population mean vectors, or centroids
of k populations are equal to each other (where k is equal to number of populations). To test the
null hypothesis composite scores are created by an optimally weighted linear combination of
dependent variables. When a set of weights (raw discriminant function coefficients e.g., ai, a,
...ap) is multiplied by their respective dependent variables (Y1, Y2, ... Yy), it yields the weighted
linear combination of dependent variables (Ij = aiY: +a.Y> +...a,Y,) (Hasse & Ellis, 1987).
“These linear combinations of dependent variables are called Linear Discriminant Functions ”
(Huberty, 1994, p. 206). The number of Linear Discriminant Functions (LDFs) is determined by
either the number of dependent variables (p) or the degree of freedom for the hypothesis (q),
whichever is smaller. In addition, the number of LDFs to consider may be determined in one of
three ways; statistical tests, proportion of variance, and LDF plots (Huberty, 1994). Each LDF is
associated with eigenvalue (A:), where “an eigenvalue is a measure of concentration of shared
variance between a MANOVA effect and a Linear Discriminant Function” (Hasse & Ellis, 1987,
p. 408).

There are four test criteria in MANOVA. They are Wilks’ A, Bartlett-Pillai’s U,
Hotelling-Lawley’s V, and Roy’s ®. They can be computed as a different function of eigenvalues
(A), where A, is the jth characteristic root (eigenvalue) of H* E'; Wilks’ A=T] 1/(1 + L),
Bartlett-Pillai’s U =) A/(1 + Ai), Hotelling-Lawley’s V =3 A, and Roy’s ® = Li/(1 + A1) (Where
A is the largest eigenvalue). Instead of using the four test criteria, a F-test approximation, which
is transformed from Wilks’ A, Bartlett-Pillai’s U, Hotelling-Lawley’s V, and Roy’s © to F, is used

for the test statistic in MANOVA. If the F-test approximation test is significant, the follow- up

10



test (e.g., contrast analysis and discriminant analysis) can be conducted.

In addition, as Keselman et al (1998) noted, data conditions should be considered because
all ANOVA-type statistics require that data conform to distributional assumptions in order to
provide valid tests of statistical hypotheses. The assumptions in MANOVA are:

1. The observations on the p dependent variables follow a multivariate normal

distribution in each population.

2. The population covariance matrices for the p dependent variables in each population

are equal.

3. The observations are independent. (Stevens, 1992, p.245).

Measure of Strength of Association
Univariate context
Pearson (1905) proposed 1, correlation ratio, to describe a nonlinear relationship between
the grouping variable and the dependent variable. It reflects the relationship between the
grouping variable and the dependent variable within a sample. Later, Fisher (1925) described the
squared correlation ratio (n? ) as a measure of strength of association in the ANOVA context. The

notation n° was defined as:

n2 = &m = 1- &M

SSota SSrout
where,
SSeeween = sum of squares for between groups,
S Swithin = sum of squares for within group (error),
SSota = sum of squares for total variation.

However, it is a positively biased estimator, that is, it over estimates the relationship between the

11



grouping variable and the dependent variable. Kelly (1935) suggested an adjustment of the eta

squared (n?), €. The notation &” was defined as:

g = 1—(N-1)SSwin
(N-K) SSrou
where,
SSwithin = sum of squares for within group (error),
SSrotl = sum of squares for total variation,
N = number of total sample size,
K = number of groups.

In 1963, Hays proposed another estimator of strength of association in the ANOVA
context, ’, to reduce the estimation bias associated with the eta squared (n?). Epsilon squared
(¢") and omega squared (w?) were proposed for inferential purposes, they estimate strength of

association within the population (Richardson, 1996; Huberty, 2002). The notation o” defined as:

(,02 = &Between — !K'l ! MSM
SStoa + M Swithin

Where,
SSeeween = sum of squares for between groups (hypothesis),
SSota = sum of squares for total variation,
MSwimin = mean squares for within group (error),
K = number of groups.

These measures of associations (%, €7, and ®?) represent the proportion of variance in
the dependent variable that is explained by the grouping variable (Richardson, 1996; Olejnik and
Algina, 2000). Carrol and Nordholm (1975) and Keselman (1975) studied empirical comparisons
among 1’, &, and o using computer simulation method.

Carrol and Nordholm (1975) evaluated sampling distributions of £” and ®” using

12



computer simulation study within the context of one-way ANOVA. In the study, they considered
equal and unequal sample sizes (total sample sizes yielded 15, 30, and 90) and three levels of
variance conditions (homogeneous variances, slight heterogeneity, and marked heterogeneity)
when three groups were compared. The results indicated that 1) o was slightly biased and &* was
not biased when equal sample size and homogeneous variances were considered; 2) both ©” and
&” underestimated independent-dependent variable relationship when homogeneous variances and
unequal sample were considered; 3) both ®” and & substantially underestimated independent-
dependent variable relationship when the relationship between heterogeneous variance and
unequal sample size was positive; 4) both »® and ¢” substantially overestimated independent-
dependent variable relationship when the relationship between heterogeneous variance and
unequal sample size was negative. With regard to precision, both »” and e* had “large standard
deviations when small samples were used” (Carrol and Nordholm, 1975, p.549). However, the
standard deviations of »” were consistently lower than those of €.

Keselman (1975) compared the sampling distributions of n?, €%, and w?. He considered
normal and non-normal distributions, three levels of population effect sizes, and two levels of
variability of population. He found that @ was the least unbiased estimator among them and the
standard deviation of n* was smaller than those of ¢* and w’.

“Edgeworth (1892) used the expression coefficient of correlation for the symbol p
(parameter and statistic were not then commonly differenciated)” (Huberty, 2002, p.229).
Pearson began to “popularize the correlation coefficient, r, around 1896” (Huberty, 2002, p.229).
Currently, the notation p is considered as a parameter and the notation r is considered as a
statistic. In other words, the squared rho (p?) represents the proportion of variance in the
dependent variable that is explained by “its regression on the independent variable within the

population” (Richardson, 1996, p.16). On the other hand, the squared Pearson correlation

13



coefficient (R?) represents the magnitude of strength of association within a sample. The notation

R? defined as:
R* = SS = SS
Z(yi'Y)2 Sstotal
where,

SSee =  sum squares for regression (hypothesis),

Y(yi-Y)?= sum squares for total, where Y is the mean of y;.

“In 1914, Pearson proposed the expression coefficient of multiple correlation when he
used the symbol R” (Huberty, 2002, p.233). In multiple regression, the notation R? (squared
multiple correlation) is used as a measure of the strength of association between a dependent
variable and a linear composite of independent variables within a sample. The squared multiple
correlation (R?) is a positively biased estimator. Ezekiel (1930) proposed an adjustment to get an
unbiased strength of association of parameter. The adjustment derived as a function of sample

size and number of independent variables. The Ezekiel’s adjustment is defined as:

R::=1- N-1 (1-R)

N-P-1
where,
N = sample size,
P = number of independent variables,
R* = squared multiple correlation.

Multivariate Context

Several multivariate strength of association indices were derived by a generalization of
the univariate correlation ratio (eta squared and omega squared) and a function of canonical
correlation, which reflects a relationship between a linear composite of dependent variables and a

grouping variable (Huberty, 1994).

14



Wilks index

2

“Multivariate generalization of 1> have been proposed by Wilks (1932) and Hsu (1940)
(Huberty, 1972). The Wilks’ multivariate generalization of the eta squared index can be derived

simply as shown below.

T]z = &mz l-nghm

S STotal S STotal
from the relationship among the SS’s,

1- 1']2 = _ SSwithin___

SSBetween + SSWithin

this generalizes to

Lo = _IEL_ = A
H+ El
where, IEl = determinant of error sum of squares and cross products
(SSCP) matrix,

IH+ E| =TI = determinant of total SSCP matrix.

Thus, nzmult (WD) = 1-A
Alternatively, nzmult (WI) = 1-]]1/1+A;), where A;is the jth characteristic root
(eigenvalue) of H* E™'.

The lamda (A) is one of the multivariate test criteria and is actually a “product of two
matrices, H* E™'” (Huberty, 1994). When A;is the jth characteristic root (eigenvalue) c), A can be
expressed by A =IT'j-; 1 /1+2;. Wilks” index (*mu=1 — A) can be given by IHI/ ITI, a ratio of
the determinants of the hypothesis SSCP matrix and the total SSCP matrix. When the between
group variation is large relative to the total variation, then A will be close to zero, and hence 1 —

A will be close to 1. On the other hand, when the between groups variation is small relative to

15



the total variation, then A will be close to 1, and 1 — A will be close to zero.

Hsu index

Hsu proposed a multivariate generalization of eta squared by suggesting that V equals

n*/1- n* (Huberty, 1972,; Stevens, 1972). The Hsu’s index is defined as:

NmHD =V = IM
1+V 1+ Xj
where, V= X\, where };is the j" eigenvalue of the H* E' matrix

(Hotelling — Lawley trace Criterion).

According to Stevens (1972), the difference between 1 — A and V/(1+V) is small. To
prove why the difference between 1 — A and V/(1+V) is small, he showed that A and 1/(1+V)
differ by little because V/(1+V) equals 1 - 1/(1+V). The A can be expressed using V as a function

of A; (only when the number of dependent variables are more than one). He presented that as

shown below:

Two groups: A= _1 = 1
1+N 1+V
Thus for two groups, since there is just one eigenvalue, A and 1/(1+V) are equal.
Three groups : A= 1 = 1
(1‘1‘%1)(14‘7@) 1+V+A 0

Four groups: A= 1 = |

(1+A) (T +2)(1+A3) 1+V + A1 A A1 A3tho Asthg Ao As

Because the third eigenvalue of H* E™' usually less than .05 and remaining eigenvalues
are still smaller, for the K groups case (assuming more dependent variables than groups), the sum

of all products involving all different pairs of eigenvalues, plus the sum of all products involving
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all different triples of eigenvalues, plus the sum of all products involving all different quadruples
of eigenvalues, . . ., plus product of all nonzero q eigenvalues will be negligible (Steven, 1972).

Therefore, there is little difference between 1 — A and V/(1+V).

Stevens Index

In 1972, Stevens proposed a modification of the Hsu index. According to Stevens (1972),
“Ghosh (1963) suggested that a modification of the global measure involving V might be better
and showed that E(V) = df.X A(dfe-p-1)” (p.375), where df. is the degrees of freedom for the E
matrix, p is the number of dependent variables, and the A; are the population eigenvalues of
H* E”'. An unbiased estimate of the population sum of roots for V is given by V(df, — p — 1)/ df..

The Stevens index is defined as:

Paa(SD = _V
1+V’
Where,
V' = V(df.—p-1)/ df..

Shaffer and Gillo index

Shaffer and Gillo (1974) proposed an alternative multivariate generalization of the
univariate correlation ratio (n). They argued that in the univariate context, W + B =T, where W =
sum of squares for within groups (error), B = sum of squares for between groups, and T = sum of
squares for total variation thus, univariate correlation ratio can be computed as 1 — W/T or B/T.
However, in the multivariate context, when |El, |HI, and |T| are taken as the multivariate
generalization of univariate W, B, and T, then |E| +H| # ITI. Therefore, “the two definitions of
the correlation ratio do not produce the same measure, using these multivariate definitions, and

Wilks himself regarded both 1 — |EI/ ITI and |HI/ ITI as different possible multivariate
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generalization” (Shaffer and Gillo, 1974, p.523). In contrast to the Wilks index, the Shaffer and
Gillo index is based on the additive decomposition Tr(TE™") = Tr(EE™") + Tr(HE™") = p + Tr(HE"
1, where p is the number of dependent variables and Tr( ) is the trace of the matrix product
named in the parentheses. They insisted that their index is a more suitable multivariate

generalization of the univariate correlation ratio. The Shaffer and Gillo index is defined as:

Tmu(SGD) = 1-Te(EE) = Tr(HE™)
Tr(TE™) Tr(TE™)

where ,
T(EE") = trace of matric product of EE",
Tr(HE") = trace of matric product of HE’,
T(TE") = trace of matric product of TE".

It is equivalently expressed as:

Wma(SG) = T(HEDH = V. = I\
r+ Tr(HE™) r+V  r+ I\

where,
r = min(p,q), where p is the number of variables and q is the number
of group minus one,
V = the Hotelling — Lawley trace statistic = Tr(HE™).

“It can be regarded as a weighted average of the estimated correlation ratios for
each of the discriminant functions, with each weight equal to the total sum of
squares for that discriminant function after the functions have been standardized so
that each has the same within groups sum of squares” (Shaffer and Gillo, 1974,

p.523).
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Tatsuoka index and Sachdeva index

Tatsuoka (1970) proposed mzmuh as a multivariate analogue to the univariate Hays’ o’ It
is obtained by “replacing each sum of squares by the determinant of the corresponding SSCP

matrix, with one exception: SSeeween 1s replaced by ITI — IE| rather than IHI” (Huberty, 1972).
Hays’ univariate index is defined as:

(02 = &Bctwccn — !K'l ! MSM
SStotar + M Switin

Tatsuoka (1973) examined four expressions for a multivariate omega squared effect size
measures to prove that the most plausible estimator of ®” is the @’y presented in 1970 based on
the conditions. It is that 1 — A converge to w” when N —oo and p (the number of dependent
variables) increases. The result indicated that e i the most plausible estimator of o’ among

four expressions (Tatsuoka, 1973). Tatsuoka’s multivariate index is defined as:

ot = 1TI—IEl = (K-1) IEV/(N-K)
ITI + IEI/(N-K)
where,
N=  sample size,
K= the number of groups,
ITI=  determinant of total SSCP matrix,
IEl =  determinant of error SSCP matrix.

Since IEI/ ITI = A, an equivalent expression using A is:

Ot = 1=A—(K-1) A/AN-K)
1 + A/(N-K)
= (N-K)-(N-D) A
(N-K) + A

Sachdeva (1973) also arrived, independently, at the same index as Tatsuoka. According to
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Sachdeva (1972),

2

® =  SSseween— (K-1) MSwimin
SSroa + MSwitin
= SSgetmeen_— (K-1)/(N-K) SSwithin
SSto + 1/(N-K) SSwithin

the multivariate extension of Hays o” is obtained by replacing each sum of squares by the

determinant of the corresponding matrix of sums of squares and sums of cross products,

O mae = HI—(K-1) IEV(N-K)_
ITI + IEI/(N-K)
where,
IHI = determinant of hypothesis SSCP matrix.

It was simplified to the expression using A (Sachdeva, 1973).

O mae = 11— _ NA
A+ (N-K)

Sachdeva proposed another formula using “The 2 as defined above expression can also be

estimated by the F-ratio using the fact (Rao, 1965) that” (Sachdeva, 1973, p.629)

F = (1-A"u
Al/s
where,
s = N[p(df)’- 4]/ [p" + (dfi)’ - 5]
u = s [2df. + dfy, —p - 1] —p(dfy) +2
2 p(dfy)

df. = the degrees of freedom for the error SSCP matrix
dfy, = the degrees of freedom for the hypothesis

The formula using the F value and u is defined as:
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(Dzmult = 1- L
(N-K) F(+u)*+u®

The formulas using A and the F value obtained the exact same value of the strength of

association (Sachdeva, 1973).

Hotelling and Rozeboom index

Hotelling (1936) and Rozeboom (1965) proposed a multivariate measure of association
as a generalization of the squared multiple correlation coefficient in the multivariate regression
context: the function of the canonical correlation (Cramer and Nicewander, 1979). The Hotelling

and Rozeboom’s index is defined as:

R%uu(HRID) = 1-[Senorl = 1-IT4 (1-p%)
IStotall
where,
Seror = error sum of squares and cross products (SSCP) matrix,
Sttt = total sum of squares and cross products (SSCP) matrix,
r = the number of dependent variables (assumes p < q, where p =

the number of dependent variables and q = the number of

independent variables),

pzj = thesquared canonical correlation, where pzj =M/(1+N).

It is analogous to the Wilks index and may be interpreted as one minus the proportion of

unexplained, generalized variance.
R%u(HRD = nlouae(WD) = 1-A = 1-TI%(1-p%)

Cramer and Nicewander Index

In 1979, Cramer and Nicewander proposed several multivariate measures of association

in the multivariate regression context “derived using other generalizations of the squared
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multiple correlation coefficient” (Cramer and Nicewander, p.49). Two of them are defined as:

Rma(CND) = 1-Serod P = 1-[T (1-p%) 1"
1Stotall P
= (AW
and
RPmi(CNID) = Tr(8owSee) = X 'ip’
Tr(S_ltotalstotal) p
where,
Serror = error sum of squares and cross products (SSCP) matrix,
Siotal =  total sum of squares and cross products (SSCP) matrix,
Siee =  regression sum of squares and cross products (SSCP) matrix,
p =  the number of dependent variables (assumes p < q, where q =

the number of independent variables),

p’ i = thesquared canonical correlation.

The Rzmuh(CNI) is “equal to one minus the geometric mean of the 1- pzj, and which has a
proportion of variance interpretation” (Cramer and Nicewander, 1979, p.49). The Rzmult(CNH) 1S
the arithmetic average of the squared canonical correlation for the separate linear combinations

of two sets of variables.

Serlin Index

Serlin (1982) examined the utility of an average squared canonical correlation (RzmultCNH)
in the discriminant analysis context. In the discriminant analysis context, “the interpretation of
RzmultCNII can be closely aligned to that of Fisher’s correlation ratio, in that it can be shown to
equal a ratio of between group and total sums of squared deviations” (Serlin, 1982, p.414). When
there are r discriminant functions, where r is the min(p, q), p is the number of dependent
variables and q is the number of groups minus one, “a sum of squares between groups can be

associated with each discriminant function and is equivalent to the corresponding Roy’s criterion,
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0, the sum of squares total for each discrimiant function is unity” (Serlin, 1982, p.415). That is,

SSBetween = Z rj:] SSBetweenj = Z rj:] @_]
SSTotal = z rj:] SSTotalj = T

where:

O; = A/(L+X), Aj = SSeewweenj/ SSwithinj
The ratio of the overall between group and total sum of squares is,

&Between = Z_rji@L = z_r]i.&zl
SSTotal r r

It is the average of the squared canonical correlations between the set of dependent variables and
a set of dummy variables, and same as Cramer and Nicewander index (CNI1) in the multivariate
regression context. The Y. 'i-; ©jis the Pillai —Bartlett MANOVA test criterion, U, thus effect-size

is defined as:

Wit SED) = SSpoven = _U_
SSTotal T

Adjusting the MANOVA Measures of Association
Tatsuoka Adjustment
In 1973, Tatsuoka found that T highly positively biased when the number of
variables is large, the sample size is small, and the population value of mzmult is small. Therefore,
he decided to develop an adjustment formula to reduce the bias in ©%muie. After reviewing the
sampling distribution of cozmuh, he observed that the amount of bias seemed to be a linear function
of 1 - @y for fixed p and N, where p is the number of dependent variables and N is total sample

size. That is, the amount of bias equaled m(1 - mzmuh ). From this equation, an adjusted value of
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2
O muit Was computed as:

2 2 2
(0) mult)adj =0 mult — m(l -0 mult)

He then determined that “m was approximately inversely proportional to N and roughly directly

proportional to p” (Tatsuoka, 1973, p.18). Tatsuoka estimated m:

m = cM*Q"
where, ¢, a, and b were to be determined on a least-squares basis,
M=N-1-(p+K)/2,

Q=p(K-1).

He found c, a, and b using special equation (see, Tatsuoka, 1973, p.19): ¢ =.3680,

a=-1.0677, and b =1.3631. And the adjustment equation defined as:
(0 muagi = O mate — 368 [N—1—(p +K)/2" " p(K — D] (1 - 0’ )

Tatsuoka considered several estimators of M and Q were tried out. Three of the most promising

estimators led to following values for c, a, and b:

M=N-1-(p+K)2,Q=p*+(K-1*: ¢=.2801, a=-1.0692, b=1.1343
M=N,Q=pK-1): c=.4358, a=-1.1048, b=1.3899
M=N,Q=p>+(K-1)>*: c=.3041, a=-1.1066, b=1.1579

Tatsuoka determined that M = N and Q = p” + (K — 1)* was the most effective combination for
adjustment procedure. Observing further that the value of ¢ was close to 1/3, a was close to —1,
and b was close to 1, he proposed “alternative, simpler formula, rule- of - thumb correction”

(Tatsuoka, 1973, p.24).
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The rule- of - thumb correction formula is defined as:

(@ mui)adi= O muit — P+ a (1 - mur)
3N
where,
p = the number of variables,
q = the degree of freedom for hypothesis,
N = the sample size.

Tatsuoka believed that this formula was adequate when “p*q <49 and 75 <N <2000~
(Tatsuoka, 1973, p.31) and that this adjustment “will suffice for all practical purpose” (Tatsuoka,
1973, p.31) when used with Wilks index (nzmult_WI = 1-A) and Hsu index (nzmuh_HI = V/1+

V). That is,

(nzmult—WI ) adj = T‘Izmult—WI - _MZ_ (1 - nzmult—WI )9
3N

(nzmult—HI ) adj = nzmult—HI - _mz_ (1 - nzmult—HI )
3N

Huberty (1994, p.195) applied the Tatsuoka formula to adjust the ”pu, the Shaffer-Gillo index,

the Cramer-Nicewander index, and the Serlin index.

Serlin Adjustment

According to Serlin (1982), the nzmuh(SEI) is a biased estimator because “the expected
value of N2 mui(SEI) is nonzero when the null hypothesis is true” (p.414). In other words, the
Serlin index is a measure of the strength of association in the sample not in the population. When

there is zero association in the population, the expected value of nzmult_gEI is
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EMmuitse) = _ b
N-1

where, b = max(p, q), where p is the number of variables and q is the
number of group minus 1.

It is similar to the expected value for the multiple R*:

ER)= _p
N-1

where, p = the number of independent variables in the multiple regression.

Therefore, Serlin (1982) proposed the adjustment for nzmult—SEI, which is parallel to the R?

adjustment. It was originated by Ezekiel (1930). The adjustment is defined as:

R = 1- N-1 (1-RY,

N-p-1

MouieseD) ag = 1= N=1 (I =1’ mucser).
N-b-1

where, b = max(p, q), where p is the number of variables and q is the

number of groups minus 1.

Although the two adjustment procedures have been recommended to reduce bias in
multivariate effect size estimators, no study evaluating them has been identified. In this study,
two adjustment procedures are used with the eight of multivariate measures of association-
suggested by Wilks (WI), Hsu (HI), Stevens (SI), Shaffer-Gillo (SGI), Serlin (SEI), Tasuoka-
Sachdeva (TSI), Hotelling-Rozeboom (HRI), and Cramer-Nicewander (CNI)- under the planned

sampling conditions using SAS/IML (SAS Institute INC, version 8, 1999-2001).
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Related Study

As indicated above, several researchers have proposed indices of measure of association
in the MANOVA context. However, few studies have been conducted to examine the
distributional properties these measures. One exception was Tatsuoka (1973) who examined the
statistical properties (mean) of TSI by computer simulation study.

According to Tatsuoka, TSI was highly positively biased when the number of variables is
large, the sample size is small, and is especially biased for population sets with low effect sizes
when the ratio N/p (of total sample size to number of variables) was any lower than 40 or so. To
reduce the bias in TSI, he (1973) developed an adjustment formula. He maintained that this
adjustment formula for TSI suffices in the case of p*(k-1) <49 and 75 <N <2000 and it could

be used with WI and HI, as well as with TSI.
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CHAPTER 3
METHODS
The purposes of this study are: 1) to examine degree of bias and precision in eight

multivariate measures of association and 2) to evaluate the effectiveness of the Tatsuoka and
Serlin procedures for adjusting eight effect-size measures. SAS/IML (SAS Institute INC, version
8, 1999-2001) is used to generate normal random numbers by the rannor function and to compute
the descriptive statistics (means and standard deviation) for the following eight effect-size
measures: suggested by Wilks (WI), Hsu (HI), Stevens (SI), Shaffer-Gillo (SGI), Serlin (SEI),
Tasuoka-Sachdeva (TSI), Hotelling-Rozeboom (HRI), and Cramer-Nicewander (CNI). In
addition, each of the effect-size measures is adjusted using the methods suggested by Tatsuoka
(TA) and Serlin (SA). In this chapter the data generation procedure used is described along with

the specific sampling conditions.

Sampling conditions

Four factors are manipulated for the present study when the multivariate assumptions are
met: 1) the number of populations compared (k), 2) sample size (n), 3) the number of response
variables (p), and 4) effect size (nz). Three sets of populations (k) were considered: 2, 3, and 5.
For each population set, equal samples of two sizes were drawn: n = 10, and 50, it yielded total
sample sizes of N = 20, 30, 50, 100, 150, and 250. Three levels are used for the number of
variables (p): 3, 5, and 10. Additionally, four levels of effect-size are considered: nzm =0, .1, .3,
and .5. There are a total of 3*2*3*4 = 72 sampling conditions. When Tatsuoka (1973) examined

the sampling distribution of omega squared and developed a correction formula for the bias of
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TSI, he considered comparisons involving 5 populations, three sample sizes (n = 15, 30, and 60),
three variable sets (3, 5, and 10), five effect- size levels (.1, .3, .5, .7, and .9), and two conditions
of average intercorrelations among variables (low: .10 - .30, moderate: .40 - .60). In this study,
the factor of the intercorrelations among variables is not considered but confined as zero.
Tatsuoka (1973, p.13) indicated that the magnitude of average intercorrelations among variables

had “virtually no effect on the sampling distribution” of Tatsuoka-Sachdeva index (TSI).

Generating the populations

When effect-size is zero, the null case, each of the k populations has a normal distribution
with a mean of 0 and variance of 1 for each of the p variables. In cases where effect-size is not
zero, data are generated as in the null case, but a constant is added to each observation in one
sample on each of the p variables. The constant corresponds to the desired population mean. The
constants are chosen to meet the specified relationship (eta squared) between the grouping factor
and the dependent variables. The eta squared means that the proportion of generalized variance
or total variance of the dependent variable accounted for by membership in the different
populations. The formula for the population eta squared provided by Tatsuoka (1973) is defined

as:

nm = 1 - X (3.1)
X + ao'/ki

where, X = common variance covariance matrix,
k= number of groups,
a= ox(=12,...,p; k=12, ..., k), where j = the number of
dependent variables, k = the number of groups ,
Ojk = Mjk - Wi, where pjc = population mean for variable j and

population k, p; = grand mean for variable j.
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For the present study, p*p identity matrix is used for common variance covariance matrix
(X) because there were no intercorrelations among variables. SAS/IML was used to determine
the population means to meet the various preassigned values of eta squared effect sizes. The
complete computer program for determining the population means is shown in appendix A for
the case of 2 populations and 5 variables when the desired effect-size is .1.

The way the population means were determined was described below. When 2
populations are compared and 5 variables are considered under the desired effect-size (eta

squared) is .1, o =

1492 -.1492
1492 -.1492
1492 -.1492
1492 -.1492
1492 -.1492

With this matrix the population eta squared effect-size formula provided by Tatsuoka (1973),
effect-size equals .1001556. The solution was checked by generating a half million observations
for each group and computing n? (eta squared). The results of generating a half million
observations for each group and computing n° yielded same as population eta squared in
rounded four decimal places at all sampling conditions. Although there are many alternative
combinations of population means that would lead to the same n?, it was decided to consider
situations that one population’s means was not zero and all variables had same means. The
population means assigned to all variables in one group for the various combinations of k and p
to achieve the desired effect size, n’m, are presented in Table 3.1. All other population means

were set equal to zero.
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Table 3.1

One non-zero population mean vector of each sampling condition

k nzm p
3 5 10

2 .100 385 2984 211
.300 756 586 4141
.500 1.155 .895 .633

3 .100 409 317 224
.300 .802 6214 4393
.500 1.225 949 671

5 .100 482 373 264
.300 .946 732 518
.500 1.444 1.119 791

However, eta squared population effect-size formula (3.1) does not provide a population

effect-size for SGI, SEI, and CNI. These effect size indices are based on different definition of

effect size. The SGI represents a weighted average of the estimated correlation ratios for each of

the discriminant functions. The SEI is the arithmetic average of the squared canonical correlation

for the separate linear combinations of two sets of variables. And the CNI is equal to one minus

the geometric mean of the 1- pzj, where pzj is the squared canonical correlation between grouping

variables and jth linear discriminant function (LDF). As a result in the non-null case SGI, SEI,

and CNI have different meaning of n’. The relationship between SGI, SEI, and CNI and 1’ is a

function of the number of discriminant functions, r.

The SGI effect-size is computed as:

r+V

V = sum of the eigenvalues of H* E
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The relationship between (* and * can be formed based on Hsu’s statement that V = n%/1- n’.

Substituting this definition of V in equation 3.2, {*is defined as:

2 = n¥l-n? _ W1
r+nY/1-v’ Mm>-rn’+r)/l-v’
Thus, ¢ = n’
N’ —rn’+r

where, 1? = population eta squared,
r = min(p,q), where p is the number of variables and q is the

number of group minus one.

The population effect-size for SEI is defined as:

£ = SSuww = Y10 (3.3)
SSTottal T

Because ©; = /(1 + ) and Aj = SSeeoveenj/ SSwithinj,
Y105 = Y =t (SSsetweenj/ SSwithin)/ ( 1+ SSsetweenj / SSwitning)
= Y =1 (SSsetweenj)/ (SSwitinj + S Setwcen;)
= ¥ "i=1 (SSsetweenj)/ (SSotalj)

= (SSBetween)/ (SSTOtaI)

Eta squared, 1 2, is former defined as n 2 = SSpetmeen/ SStotal, 80 Y. j=1 ®j=1 2,

and g2 = n?
r
where : 12 = population eta squared,
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r = min(p,q), where p is the number of variables and q is the

number of group minus one.

SEI is therefore the average contribution each discriminant function makes to 1>

The formula for the population CNI can be derived simply as shown below.

vo= 1[I 1-p) 1"

Because IT-; (1-p%) = Aand > =1 — A,

o= 1-[A]", A=1-1
Thus,

where : 1”2 = population eta squared,
r = min(p,q), where p is the number of variables and q is the

number of group minus one.

From the above it is shown that SGI, SEI, and CNI provide different definitions of effect
size when 1> > 0.They are all influenced by r, where r = min(p,q). When r = 1, they are the same.
Table 3.2 provides parameters values rounded to three decimal places for SGI ({%), SEI (&%), and
CNI (%) that correspond to eta squared index (WI, HI, SI, TSI, and HRI). The means of the
sampling distribution for SGI, SEI, and CNI were compared to these values to estimate the

degree of bias associated with these three effect-size indices.

Table 3.2

Parameter values measures of effect-size

12m e £2 i
2 .100 .053 .050 051
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.300 176 150 163
.500 333 250 293
3 .100 .033 .033 .035
300 125 .100 112
.500 250 167 206
4 .100 .027 .025 .026
300 .097 075 .085
.500 200 125 159
r=min(p,q)
Generating the Samples
Data for each group (k=1, .. ., K) were generated using the following linear model:
Yi = Wt &
where, &~ N(0,I),

The error component &;; was generated using the rannor function in SAS/IML. The p; were taken

from tables 3.1. The computer program for generating samples and computing statistics is shown

appendix B.

For each condition, 10,000 replications were generated. For each replication, values for
WI, HI, SI, SGI, SEI, TSI, HRI, and CRI were calculated. The means and standard deviations of
each statistic were computed across the 10,000 replications. The bias was estimated by
subtracting the population effect-size from mean of each effect-size index. In this study,

difference between the mean effect-size and the parameters identified in Table 3.2 that was 0 to

two decimal places was considered acceptable.
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CHAPTER 4
RESULTS

The purposes of this study are: 1) to examine the degree of bias and precision in eight
multivariate measures of association and 2) to evaluate the effectiveness of the Tatsuoka and
Serlin procedures for adjusting the eight effect-size measures. In the previous chapter, the
method used to generate the sampling distributions of Wilks index (WI), Hsu index (HI), Stevens
index (SI), Shaffer-Gillo index (SGI), Serlin index (SEI), Tasuoka-Sachdeva index (TSI),
Hotelling-Rozeboom index (HRI), and Cramer-Nicewander index (CNI) was described. Each of
the effect-size measures was adjusted using the methods suggested by Tatsuoka (TA) and Serlin
(SA). The bias was estimated by subtracting population effect-size from mean of each effect-size
index.

In this chapter the results of the study are presented. First, the degree of bias associated
with each index is presented. Second, the effectiveness of the two adjustment procedures is
evaluated. And third, the precision with which adjusted and unadjusted measures of association

estimate the effect-sizes is considered. The chapter ends with a summary of the research findings.

Bias in Unadjusted Measures of Effect Size

The results indicate that all of the unadjusted effect-size measures were biased to some
degree and the amount of bias was affected by the number of populations compared, sample
sizes, the number of response variables, and effect size. The pattern of results was similar for all
eight indices, but the magnitude of the bias varied among the indices. The complete results are
presented in Appendix C, but to facilitate the understanding the main factors affecting bias

results are presented in several smaller tables which highlight the effect of 1) magnitude of the
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effect-size, 2) sample size, 3) number of variables, and 4) number of populations compared.
Effect size

Table 4.1 presents the bias of the unadjusted effect-size indices as the population effect
size increased. As shown in Table 4.1, for all of the effect-size measures bias decreased as the
population effect size increased. For example, considering the Wilks index (WI) when p=5, n=10,
and k=2, the bias was .260, .235, .181, and .131 for n2 =0.1, .3, and .5, respectively. The same

pattern is apparent for all eight indices and for group sizes of 2, 3, and 5.

Table 4.1

Bias of the unadjusted effect-size indices as population effect-size increases

p n k n’m  WI HI SI SGI SEI TSI HRI CNI
10 2 0 .260 .260 195 .260 .260 211 .260 .260
d 0235 235 159 235 235 .189 235 235

3 181 181 .090 181 181 141 181 181
S 131 131 .040 131 131 .100 131 131
3 0 321 306 257 185 173 265 321 179
d 0 287 266 213 177 161 234 287 170
3002220 195 136 .160 141 179 222 151
S 160 132 .074 135 122 128 .160 130
5 0 347 319 290 .107 .098 285 347 102

d 0 315 278 .246 .108 .095 258 315 101
30244 197 162 .106 .087 .199 244 .096
S 1730 123 .090 .098 .079 139 173 .088

Sample size

Table 4.2 presents the bias of the unadjusted effect-size as sample size increased. As can
be seen in Table 4.2, for all of the effect-size measures the bias was much greater when sample

size was small (n = 10) than when sample size was large (n = 50). Considering the Wilks index
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(WI) when k=3, p=5, 1*= 0, and n=10, the bias was .321. But when n was increased 50, the bias
of WI was .065. These results also demonstrate that even with a relatively large sample size (N =
150) all eight measures of association over-estimated the relationship between the grouping

variable and outcome measures to an unacceptable degree.

Table 4.2

Bias of the unadjusted effect-size indices as sample size increases

k p n’m n WI HI SI SGI SEI TSI HRI  CNI

3 5 0 10 321 306 257 185 173 .265 321 179
50 065  .065 .062 .033 .033 .052 .065 .033

A 10 287 .266 213 177 161 234 287 170

50 059 057 .051 .033 .031 .047 .059 032

3 10 222 195 136 .160 141 179 222 151

50 .046  .040 .031 .030 .027 .036 .046 .029

5 10 160 132 .074 135 122 128 .160 130

50 033 .026 .016 .025 .023 .025 .033 .024

Number of variables

Table 4.3 presents the bias of the unadjusted effect-size indices as the number of outcome
variables increased from 3 to 10. As shown in Table 4.3, for all of the effect-size measures the
bias increased as the number of variables was increased. For example, considering the Wilks
index (WI) when k=3, n=50, and n2 = 0, the bias was .040, .065, and .129 for p=3, 5, and 10,

respectively.

Table 4.3

Bias of unadjusted effect-size indices as the number of variables (p) increases

k n nm p WI HI SI SGI SEI TSI HRI  CNI

3 50 0 3 .040 .039  .038 .020 .020 .026 .040 .020
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5 .065 065  .062 .033 .033 .052 .065 .033
10 .129 126 117 .067 .066 A17 129 .067
1 3 .035 .034  .031 .020 .018 .023 .035 .019
5 .059 .057  .051 .033 .031 .047 .059 .032
10 .117 110 .097 .065 .063 .105 117 .065
3 3 .027 025 .019 .019 .016 .017 .027 .017
5 .046 .040  .031 .030 .027 .036 .046 .029
10 .090 .078  .060 .058 .055 .081 .090 .057
5 3 .020 .017  .010 017 .013 .012 .020 .015
5 .033 026  .016 .025 .023 .025 .033 .024
10 .064 .050 .031 .047 .048 .057 .064 .048

Number of populations

Table 4.4 presents the bias of the unadjusted effect-size indices as the number of
populations compared increases. As shown in Table 4.4, the bias all of the effect-size indices
except SGI, SEI, and CNI increased as the number of populations increased. For SGI, SEI, and
CNI bias decreased as the number of populations increased. For example, considering the Wilks
index (WI) when p=5, n=10, and n2=0, the bias was .260, .321, and .347 for k=2, 3, and 5,
respectively. On the other hand, considering Shaffer-Gillo index (SGI) when p=5, n=10, and

n2=0, the bias was .260, .185, and .107 for k=2, 3, and 5, respectively.

Table 4.4

Bias of the unadjusted effect-size indices with regard to the number of population compared

WI HI SI SGI SEI TSI HRI CNI
260 .260 195 .260 .260 211 .260 .260
321 306 257 185 173 265 321 179
347 319 290 107 .098 285 347 102
235 235 159 235 235 189 235 235
287 266 213 177 161 234 287 170

W D ;W R
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160 132 .074 135 122 128 .160 130
173 123 .090 .098 .079 139 173 .088

5 315 278 .246 .108 .095 258 315 101
3 2 181 (181 .090 181 181 141 181 181

3 222 195 136 .160 141 179 222 151

5 244 197 162 .106 .087 .199 244 .096
5 2 131 131 .040 131 131 .100 131 131

3

5

Comparing two populations

When two populations were compared, SI and TSI had less bias than WI, HI, SGI, SEI,
HRI, and CNI regardless of sample size, the number of response variables, and effect size. The
Wilks index (WI) and the Hotelling-Roseboom index (HRI) were the most biased indices under
most sampling conditions (see results in Table 4.5). Table 4.5 presents the unadjusted effect-size

bias when 2 populations are compared.

Table 4.5

Bias of the unadjusted effect-size indices when 2 populations are compared

k n% n p WI HI SI SGI SEI TSI HRI  CNI
2 0 10 3 157 157 129 157 157 106 157 157
5 260 260 195 260 260 211 260 260

10 526 526 321 526 526 489 526 526

50 3 030 030 028  .030 .030 .020 030  .030

5 051 051 048 051 .05 041 051  .051

10 .101  .101 091  .101  .101  .091  .101 .10l

1 10 3 140 140 101 140 140 091  .140 140

5 235 235 159 235 235 189 235 235

10 474 474 264 474 474 439 474 474

50 3 027 027 022 027 027 017 027  .027

5 045 045 038 045 045 035 045  .045

10 090 .090 .073  .090 090  .081  .090  .090

39



3 10 3 .109 .109 .055 .109 .109 .065 .109 .109
5 181 181 .090 181 181 141 181 181

10 365 365 156 365 365 336 365 .365

50 3 .020 .020 .011 .020 .020 .011 .020 .020

5 .034 .034 .021 .034 .034 025 .034 .034

10 .069 .069 .043 .069 .069 .061 .069 .069

5 10 3 .078 .078 .020 .078 .078 .043 .078 .078
5 131 131 .040 131 131 .100 131 131

10 264 264 .073 264 264 242 264 264

50 3 .015 .015 .005 015 .015 .008 .015 .015

5 .025 .025 .010 025 .025 .018 .025 .025

10 .050 .050 .021 .050 .050 .043 .050 .050

Comparing three or five populations

A similar pattern of results were obtained when three or five populations were compared.
To present this pattern Table 4.6 summarizes the results for a comparison of three populations.
For no or small effects (n2= 0 or .1) SGI, SEI, and CNI were less biased than WI, HI, SI, TSI,
and HRI. For moderate or large effects (°= .3 or .5) the results frequently revealed a different
pattern. When k=3, n=10, p=5, 10, and n2= .3; k=3, n=10 (50), p=3, 5, 10, and n2=.5; k=5, n=10,
p=3, 5, 10, and n>= .5, the Stevens index (SI) was the least biased measure of association. The
Serlin index (SEI) was the least biased index when three or more populations compared under

the most sampling conditions except for conditions stated above.

Table 4.6

Bias of the unadjusted effect-size indices when 3 populations are compared

k n% n p WI HI SI SGI SEI TSI HRI  CNI
30 10 3 198 193 170 110 102 135 .198  .106
5 321 306 257 185 173 265 321 179
10 580 533 409 370 346 541 580 358
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50 3 .040 .039 .038 .020 .020 .026 .040 .020

5 .065 .065 .062 .033 .033 .052 .065 .033

10 129 126 117 .067 .066 117 129 .067

1 10 3 178 .169 141 .108 .096 120 178 .102
5 287 266 213 177 161 234 287 170

10 520 468 344 351 325 484 .520 .339

50 3 .035 .034 .031 .020 .018 .023 .035 .019

5 .059 .057 .051 .033 .031 .047 .059 .032

10 117 110 .097 .065 .063 .105 117 .065

3 10 3 138 125 .088 101 .082 .089 138 .092
5 222 195 136 .160 141 179 222 151

10 404 .348 227 310 .288 375 404 .300

50 3 .027 .025 .019 .019 .016 .017 .027 .017

5 .046 .040 .031 .030 .027 .036 .046 .029

10 .090 .078 .060 .058 .055 .081 .090 .057

5 10 3 .100 .085 .047 .087 .069 .062 .100 .080
5 .160 132 .074 135 122 128 .160 130

10 287 234 124 252 251 .266 287 253

50 3 .020 .017 .010 .017 .013 .012 .020 .015

5 .033 .026 .016 025 .023 .025 .033 .024

10 .064 .050 .031 .047 .048 .057 .064 .048

In sum, even when arelatively large sample size (n=50), all of the unadjusted effect-size
measures were biased an unacceptable degree. Therefore, adjustment procedures suggested by
Tatsuoka (1973) and Serlin (1982) need to reduce a bias in all of the unadjusted effect-size
measures presented in this study. In the subsequence part, the amount of adjusted bias of eight
effect-size measures using the Tatsuoka and the Serlin procedures are described. In addition, the
effectiveness of these procedures is evaluated.

The additional means of the sampling distributions of the 8 unadjusted effect-size indices
are reported in Appendix C for comparisons of 2, 3, and 5 populations, involving 3, 5, and 10

measures, with sample sizes of 10 and 50 when the population effect sizes are 0, .1, .3, and .5,
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respectively.
Bias in Adjusted Measures of Effect Size
Comparing two populations
In this study, the bias was estimated by subtracting population effect-size from mean of
each effect-size index across 10,000 replications. The difference between the mean effect-size
and the parameters that was 0 to two decimal places was considered acceptable. The bold

number indicates the acceptable degree of bias.

Serlin Adjustment

The results indicate (see Table 4.7) that when two populations are compared, the Serlin
adjustment provides an appropriate adjustment for all measures of effect-size except the Stevens
index (SI) and the Tatsuoka-Sachdeva index (TSI) under most conditions. Table 4.7 provides the
bias of adjusted effect-size using the Serin adjustment when two populations are compared.
Applying the Serlin adjustment to the SI and TSI indices over-corrects for bias and the
relationship is underestimated. These results were consistent for all effect sizes, and number of

variables considered here.

Table 4.7
Bias of the adjusted effect-size indices using the Serin adjustment when 2 populations are
compared
k n - n P WI HI SI SGI SEI TSI HRI CNI
2 0 10 3 -000 -.000 -.033 -.000 -000 -.060 -.000 -.000

5 -003 -003 -091 -003 -003 -.069 -.003 -.003

10 001 .001 -432 001 .001 -.078 .001 .001

50 3 -.000 -.000 -.001 -.000 -000 -.010 -.000 -.000

5 000 .000 -.002 000 .000 -.009 .000 .000
10 000 .000 -.011 000 .000 -.010 .000 .000
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1 10 3 -001 -.001 -047 -001 -001 -.060 -.001 -.001
5 -001 -.001 -105 -001 -001 -.064 -.001 -.001

10 002 .002 -.442 002 .002 -071 .002 .002

50 3 000 .000 -.004 000 .000 -.010 .000 .000

5 000 .000 -.007 000 .000 -.010 .000 .000

10 000 .000 -.019 000 .000 -.010 .000 .000

3 10 3 -001 -.001 -065 -001 -.001 -.053 -.001 -.001
5 -003 -.003 -126 -.003 -.003 -.058 -.003 -.003

10 -005 -.005 -446 -.005 -.005 -.067 -.005 -.005

50 3 -000 -.000 -.009 -.000 -.000 -.010 -.000 -.000

5 -000 -.000 -014 -.000 -.000 -.010 -.000 -.000

10 -000 -.000 -030 -.000 -.000 -.010 -.000 -.000

5 10 3 -000 -.000 -068 -.000 -.000 -.041 -.000 -.000

5 000 .000 -.123 .000 .000 -.042  .000 .000
10 002 .002 -399 002 .002 -.044  .002 .002
50 3 000 .000 -.010 .000 .000 -007 .000 .000
5 000 .000 -.015 .000 .000 -007 .000 .000
10 000 .000 -.031 .000 .000 -007 .000 .000

Tatsuoka Adjustment

Table 4.8 provides the bias associated with the eight effect-size indices after using the
Tatsuoka adjustment. The results indicate that Tatsuoka procedures typically over-adjusts the
sample values and under-estimates the population parameter. Only when sample size was large
(n=50) and the number of variables was small (p=3), the Tatsuoka adjustment provides an
appropriate adjustment for some measures of effect size. The Tatsuoka adjustment for TSI did
not provide an appropriate adjustment under most sampling conditions when two populations
were compared. Table 4.8 provides the bias of adjusted effect-size indices using the Tatsuoka

adjustment when two populations were compared.
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Table 4.8

Bias of the adjusted effect-size indices using the Tatsuoka adjustment when 2 populations are

compared
k 1% n P Wil HI  SI SGI  SEI TSI HRI CNI
2 0 10 3 .017 .017 -.015 017 .017 -.042 017 .017
5 -.059 -059 -152 -059 -059 -129 -059 -.059
10 -269 -269 -821 -269 -269 -370 -269 -.269
50 3 -002 -002 -.003 -.002 -002 -012 -002 -.002
5 -.031 -031 -034 -031 -.031 .041 .031  .031

10 -201 -201 -214 -201 -201 -214 -201 -201

1 10 3 .013 013 -.031 .013 .013 -.043 013 .013

5 -052 -.052 -161 -052 -052 -118 -.052 -.052
10 -240 -240 -805 -240 -240 -335 -240 -240
50 3 -001 -.001 -.006 -001 -001 -011 -001 -.001
5 -.028 -.028 -.036 -.028 -.028 -039 -028 -.028

10 -181 -181 -204 -181 -181 -194 -181 -.181

3 10 3 .010 .010 -.051 .010 .010 -.040 .010 .010

5 -.043 -.043 -173 -.043 -043 -101 -043 -.043

10 -196  -196 -757 -196 -196 -275 -196 -.196
50 3 -002 -.002 -011 -.002 -002 -.011 -.002 -.002

5 -022  -.022 -.037 -.022 -022  -.032 -.022 -.022

10 -142 -142  -177  -.142 -142 -153 -142 -.142

5 10 3 .008 008 -.058 .008 008 -.032 .008 .008

5 -027  -.027 -.158 -.027  -.027 -073 -027 -.027
10 -132 -132  -.643 -132 -.132 -191  -132  -.132
50 3 -000 -.000 -011 -.000 -.000 -008 -.000 -.000
5 -015 -015 -032 -015 -.015 -.023  -.015 -.015

10 -100 -100 -139 -100 -.100 -109  -.100 -.100

Comparing three or five populations

Serlin adjustment

Table 4.9 provides the bias associated with the eight effect-size indices after using the
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Serlin adjustment when the sample size was large (n=50). The results indicate that the Serlin
procedure appropriately adjust for bias in SGI, SEI, and CNI when the sample size was large
(n=50). However, this procedure generally under-adjust the amount of bias in W1, HI, SI, TSI,

and HRI under all sampling conditions when three or more populations were compared.

Table 4.9

Bias of the adjusted effect-size indices using the Serlin adjustment under the selected conditions

k n p n’m WI  HI SI SGI SEI TSI HRI  CNI

3 50 3 0 .020 .020 .019 000 .000 .006 .020 000
1 .017 .016 .013 .000 -.000 .005 .017 .000
3 .014 011 .005 .002 .001 .003 .014 001
S5 .011  .007  .000 .004 -.001 .002 .011 .001
5 0 033 .032  .030 .000 -.000 .019 .033 .000
1 .030 .027 .022 .001 -.000 .018 .030 .001
3 .023  .017 .008 .003 -.001 .012 .023 .001
S5 .017  .010 -.000 .003 -.001 .008 .017 .001
0 066 .063 .054 .000 -.000 .053 .066 .000
1 .061 .053 .040 .002 .000 .048 .061 .001
10 3 .047 033 014 .003 -.001 .036 .047 .001
S5 .033 017 -.002 .003 -.001 .025 .033 .000
5 50 3 0 .031 .031 .030 .000 -.000 .016 .031 .000
1 .028 026 .024 .003 .000 .014 .028 -.000
3 .022 017 .013 .002 -.000 .010 .022 .000
S5 016 009 .005 .002 -.001 007 .016 .000
5 0 .058 056 .055 .000 -.000 .042 .058  -.000
1 .052 .047 .044 .000 -.000 .038 .052 .000
3 .040 .030 .024 .001 -.001 .028 .040 .000
S50 .029 .017 .010 .002 -.001 .020 .029 .000
10 0 117 .109 103 .000 .000 102 117 .000

A .104 090 .081 .001 -.000 .090 .104 .000
3 .082 058 .047 .002 -.000 .070 .082 .001
S5 .058 .031  .020 .003 -.001 .049 .058 .000
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Table 4.10 present the bias in adjusted SGI, SEI, and CNI using the Serlin adjustment
when the sample size was small. As shown in those two tables, when the sample size was small,
the appropriateness of the Serlin adjustment for SEI, SGI, and CNI depends on the sampling

conditions. However, it worked better for SEI than for SGI and CNI.

Table 4.10
Bias of the adjusted SGI, SEI, and CNI using the Serlin adjustment

k P N’ SGI SEI CNI
3 3 0 007 -.000 .003
1 011 -.002 .005

3 018 -.005 .006

5 020 -.008 007

5 0 015 .001 .008

1 017 -.002 007

3 022 -.006 .009

5 024 -.008 010

10 0 036 .001 021

1 -.038 -.002 018

3 -.039 -.006 018

5 034 -.010 015

5 3 0 .006 .000 .003
1 011 -.001 .003

3 013 -.000 .003

5 018 -.007 .005

5 0 .006 -.004 .000

1 010 -.004 .002

3 015 -.007 .003

5 018 -.010 -.002

10 0 025 -.000 012

1 028 -.001 013

3 031 -.005 012

5 035 -.008 012
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Tatsuoka adjustment

Table 4.11 provides the bias associated with the eight effect-size indices after using the
Tatsuoka adjustment. The Tatsuoka adjustment did provide an appropriate adjustment for some
effect-size indices when sample size was large, the number of variables was small, and
population effect-size was large but frequently it could either under-adjust or over-adjust the
magnitude of the effect.

As seen in Table 4.11, the Tatsuoka adjustment for TSI provided an appropriate
adjustment under most presented sampling conditions, especially when the sample size was large.
But, when the sample was small (n=10), the Tatsuoka adjustment for TSI frequently did not
provide an appropriate adjustment (see Appendix C). According to Tatsuoka (1973), the
adjustment formula for TSI suffices in case of p*(k-1) <49 and 75 <N < 2000. However, it also
appeared works outside these limits. For example, Tatsuoka adjustment for TSI could provide an
appropriate adjustment when k=3, n=10, p=3, and n°= .1, .3, .5 (N < 75). But, it did not provide
an appropriate adjustment although these constraints were satisfied, when k=3, n=50, p=10, and
n?=0,.1,.3,.5 (p*(k-1) <49 and 75 <N < 2000). Even though Tatsuoka (1973) believed that TA
would provide a valid adjustment in WI and HI, the results presented indicate that it depends on
the sampling conditions. Table 4.12 provides the bias of the adjusted effect-size indices using the

Tatsuoka adjustment under the selected sampling conditions.

Table 4.11
Bias of the adjusted effect-size indices using the Tatsuoka adjustment under the selected

conditions

k n p 2w WI HI  SI SGI SEI TSI HRI  CNI

3 50 3 0 .012 .012 .011 -.007 -.008 -.001 012 -007
1 .010 .009 .005 -.006 -.008 -.002 .010  -.007
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3 .008 .005 -.000 -.003 -.008 -.002 008  -.005
S5 .007 .003 -.003 -.001 -.007 -.001 007  -.004
5 0 .005 .004 .002 -.028 -.028 -.008 005 -.028
1 005 .002 -002 -025 -027 -007 .005 -.026
3 .004 -.001 -.011 -.020 -025 -006 .004 -022
S5 .003 -003 -014 -015 -023 -005 .003 -019
0 -071  -.075 -085 .147 -148 -087 -071 -.148
1 -.063 -.072 -087 -.138 -.141 -077 -.063 -.139
10 3 -.049 -.065 -087 -.118 -127 -062 -.049 -122
S -036  -.053 -.077 -095 -.113 -045 -036 -.104
5 50 3 0 .016 .015 .014 -016 -016 -000 .016 -.016
1 .014 .012 .010 -012 -015 -000 .014 -.015
3 .011 .006 .002 -012 -015 -000 .011 -.014
S5 .008 .002 -.002 -009 -015 -.000 008 -.012
5 0 027 025  .023 -033 -.033 .010 .027 -.033
A .024 018 .015 -.031 -.033 009 024 -.032
3 .004 -001 -011 -020 -025 -.006 .004 -.022
S5 .013 .001 -005 -.023 -031 .004 013 -027
10 0 021 .013  .006 -107  -.108 .004 .021 -.107

A .018 .002 -.006 -.104 -106 .002 .018 -.105
3 .015 -o011 -023 -094 -101 .002 .015 -.097
S5 .010 -018 -031 -082 -09 .001 .010 -.090

Comparing the Tatsuoka and the Serlin adjustment

Table 4.12 compares bias of adjusted effect-size indices using the Serin and the Tatsuoka
adjustments under selected sampling conditions. As shown in Table 4.12 when three or more
populations are compared, the Tatsuoka adjustment adjusts the bias of WI, HI, GI, TSI, and HRI
more effectively in comparison to the Serlin adjustment; the Serlin adjustment adjusts bias of
SGI, SEI, and CNI more appropriately in comparison to the Tatsuoka adjustment except 4

sampling conditions (k=3, n=50, p=10, and >=0, .1, .3, and .5).
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Table 4.12
Bias of the adjusted effect-size indices using the Serlin and the Tatsuoka adjustments under the

selected conditions

k p n WI HI SI SGI SEI TSI HRI CNI

3 5 10 0 TA .102 .082 .018 -.076 -.093 .028 .102 -.084
SA 180 .161 .103  .015 001 112 180 .008
50 0 TA .005 .004 .002 -028 -028 -.008 .005 -.028
SA .033 .032 .030 .000 -.000 .019 .033 .000
10 10 .1 TA .081 -.029 -298 -336 -395 .003 .081 -.364
SA 320 242 051 -.038 -002 265 320 .018
50 .1 TA -063 -072 -.087 -.138 -141 -077 -.063 -139
SA .061 .053 .040 002 .000 .048 .061 .001

5 5 10 3 TA 120 .059 .015 -111 -141 .062 .120 -.127
SA .192 139 .101 -.015 -.007 .142 .192 .003

50 3 TA .018 .007 .002 -028 -.032 .006 .018 -.030

SA .040 .030 .024 .001 -.001 028 .040 .000

10 10 5 TA .083 .020 -.021 .093 -.137 .041  .083 -.117

SA 136 .080 .043 .018 -.010 098 136  -.002

50 5 TA .010 -018 -.031 -082 -.096 001 .010 -.090

SA .058 .031 .020 .003 -.001 .049 .058 .000

TA = TA adjusted effect-size

SA = SA adjusted effect size

Precision
Table 4.14 presents the standard deviations of unadjusted and adjusted effect-size indices
across the 10,000 replications under selected sampling conditions. The results indicate that the
unadjusted effect-size measures had smaller standard deviations than either the Tatsuoka or the
Serlin adjusted effect-size measures. For example, considering the Wilks index (WI) when k=3,
p=5, n=10, and n = (), the standard deviations are .1138, .1505, and .1375 for unadjusted W1,

adjusted by TA, and adjusted by SA, respectively. The difference in precision is greatest when
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sample sizes is small. The precision of the Serlin adjusted effect-size measures is always greater
than the precision of the Tatsuoka adjusted effect-size measures. The difference in precision is
typically small and cannot compensate for the difference in bias associated with the eight effect

size indices. The standard deviations of all sampling conditions are presented in Appendix C.

Table 4.13

Standard deviations of effect-size indices across the 10,000 replications

k p n nk WI HI SI SGI SEI TSI HRI  CNI

3 5 10 0 ES .1138 .1050 .0950 .0758 .0666 .1205 .1138 .0711
TA 1505 .1388 .1256 .1003  .0880 .1593 .1505 .0940

SA 1375 1269 .1148 .0916 .0804  .1456 .1375 .0859

50 O ES .0282 .0275 .0265 .0148 .0144 .0284 .0282 .0146

TA .0300 .0293 .0283 .0158 .0154 .0302 .0300 .0156

SA .0291 .0285 .0275 .0154 .0149 .0294 .0291 .0152

10 10 .1 ES .1194 1135 .1058 .0791 .0659 .1261 .1194 .0724
TA 1367 .1299 .1210 .0906 .0754 .1443 .1367 .0829

SA 1332 1266 .1180 .0883  .0735 .1407 .1332  .0808

50 .1 ES .0522 .0493 .0471 .0310 .0284 .0527 .0522 .0297

TA .0643  .0606 .0580 .0382 .0350 .0649 .0643 .0365

SA .0560 .0528 .0505 .0332 .0304 .0565 .0560 .0318

5 5 10 3 ES .0709 .0664 .0683 .0594 .0304 .0776 .0709 .0415
TA .0903 .0845 .0870 .0756 .0388 .0989 .0903 .0528

SA .0790 .0739 .0761 .0661 .0339 .0865 .0790 .0462

50 3 ES .0443 .0426 .0422 .0194 .0121 .0449 .0443 .0154

TA .0467 .0449 .0445 .0205 .0128 .0474 .0467 .0162

SA .0452 .0434 .0431 .0198 .0123 .0458 .0452 .0157

10 10 5 ES .0535 .0523 .0579 .0611 .0379 .0589 .0535 .0458
TA .0949 .0928 .1027 .1085 .0672 .1045 .0949 .0812

SA .0672 .0658 .0727 .0768 .0476  .0740 .0672  .0575

50 5 ES .0360 .0344 .0345 .0250 .0118 .0366 .0360 .0171

TA .0415 .0397 .0399 .0289 .0136 .0422 .0415 .0198

SA .0375 .0358 .0360 .0261 .0122 .0381 .0375 .0178
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ES = Unadjusted effect Size
TA = TA adjusted effect-size

SA = SA adjusted effect size

Summary

In sum, when two populations are compared, the Serlin adjustment provides an
appropriate adjustment for all measures of effect-size except SI and TSI. However, the Sserlin
procedure could adjust the bias of SI and TSI more appropriately than the Tatsuoka adjustment.
When three or five populations were compared, the results indicated that the Tatsuoka
adjustment adjusted bias of WI, HI, GI, TSI, and HRI more effectively than the Serlin
adjustment; the Serlin adjustment adjusted bias of SGI, SEI, and CNI more appropriately in
comparison to the Tatsuoka adjustment. The Tatsuoka adjustment reduced the bias of TSI
appropriately when the sample size was large and the number of variable was small. The Serlin
adjustment for SEI provided an appropriate adjustment under most sampling conditions
presented in this study.

With regard to precision, the unadjusted effect-size measures had smaller standard
deviations than either the Tatsuoka or the Serlin adjusted effect-size measures. The difference in
precision was greatest when sample sizes are small. The precision of the Serlin adjusted effect-
size measures was always greater than the precision of the Tatsuoka adjusted effect-size
measures.

The means and standard deviations of the sampling distributions of the 16 statistics (8
effect sizes adjusted by Tatsuoka adjustment and 8 effect sizes adjusted by Serlin adjustment) are
reported in Appendix C for the comparisons of 2, 3, and 5 populations, involving 3, 5, and 10
measures, with sample sizes of 10 and 50 when the population effect sizes are zero, .1, .3, and .5,

respectively.
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CHAPTER 5
DISCUSSION

Researchers have been strongly encouraged to assess and report effect-size estimates as a
supplement to statistical hypothesis tests. The reporting of an effect-size measure is currently
required by several prominent education journals. For this requirement to be useful the effect-
size measure reported should be unbiased and estimated with precision.

However, although the multivariate effect size measures are known to be biased, many
researchers are unaware of this bias and are unaware of procedures that are available to adjust
these effect-size measures. Multivariate effect-size measures suggested in many textbooks and
those currently reported on computer output provide biased estimates population differences.

In the current study, the degree of bias and precision in eight multivariate measures of
association were examined and the effectiveness of the Tatsuoka and the Serlin procedures for
adjusting the eight effect-size measures were evaluated. The sampling distributions of the
unadjusted measures of association and measures of association adjusted by the Tatsuoka and the
Serlin procedures were investigated by a computer simulation technique under certain conditions.
The eight multivariated effect size measures studied included: Wilks index (WI), Hsu index (HI),
Stevens index (SI), Shaffer-Gillo index (SGI), Serlin index (SEI), Tasuoka-Sachdeva index (TSI),
Hotelling-Rozeboom index (HRI), Cramer-Nicewander index (CNI). The SGI, SEI, and CNI
effect size measures are routinely reported on the SPSS output for multivariate analyses. In
addition, each of the eight effect-size measures was adjusted using the methods suggested by
Tatsuoka (TA) and Serlin (SA).

The current results involving the unadjusted measures of effect-size (TSI) are compatible
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with those reported by Tatsuoka (1973) who examined the sampling distribution of TSI with
respect to the number of variables, total sample size, and effect size. The results of the present
study showed that all of the unadjusted effect-size measures were biased to some degree and the
amount of bias was affected by the number of populations compared, sample size, the number of
response variables, and effect-size. For all of the effect-size measures, the bias could be
substantial when sample sizes were small, the number of variables was large, and population
effect-size was small. For all of the effect-size measures except SGI, SEI, and CNI the bias could
be substantial when the number of populations was large. But for the SGI, SEI, and CNI effect-
size measures bias decreased as the number of groups increased.

When the two adjustment procedures were used to reduce the bias in each effect size, the
effectiveness of procedures depended on the number of populations compared and the effect size
measures used. When two populations were compared, the Serlin adjustment reduced the bias of
all eight effect size measures more effectively than the Tatsuoka adjustment and the precision of
the Serlin adjusted effect-size measures was always greater than the precision of the Tatsuoka
adjusted effect-size measures. Based on these results, the Serlin adjustment is recommended for
reducing the bias for all measures of effect-size presented in this study except for SI and TSI.
For the SI and TSI effect size measure the Serlin procedure underestimated the strength of
relationship between the grouping variable and the outcome variables.

When three or more populations are compared, the Tatsuoka adjustment reduced the bias
of WI, HI, GI, TSI, and HRI more effectively than the Serlin adjustment. The Serlin adjustment
however reduced the bias of SGI, SEI, and CNI more effectively than the Tatsuoka adjustment.
Furthermore, the Tatsuoka adjustment reduced the bias more effectively in TSI than in W1, HI,
GI, and HRI. The Serlin adjustment reduced the bias more effectively in SEI than in SGI and

CNI. Although the Tatsuoka adjustment for TSI could provide an appropriate adjustment when
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sample size is large and the number of variables is small, the Serlin adjustment for SEI more
frequently provides an unbiased effect-size index. In addition, the precision of the Serlin adjusted
effect-size measures was always greater than the precision of the Tatsuoka adjusted effect-size
measures.

When a researcher wants to report an effect-size measure in a MANOVA context when
three or more populations are compared, the SEI index adjusted by the Serlin procedure can be
recommended based on reduced bias and increased precision. However, this recommendation
cannot be made for all conditions. Because, as stated in Chapter 3, “different interpretations of
shared variation are reflected across the indices” (Huberty, 1983, p.712): WI, HI, SI, TSI, and
HRI represent the proportion of generalized variance or total variance of among the dependent
variables accounted for by the grouping variable. On the other hand, SGI represents a weighted
average of the estimated correlation ratios for each of the discriminant functions, SEI is the
arithmetic average of the squared canonical correlation for the separate linear combinations of
two sets of variables, and CNI is equal to one minus the geometric mean of the 1- p2j. Choosing
an effect-size measure depends on how a researcher defines the parameter of interest in addition
to the bias and precision of the estimator. As suggested by Huberty (1983, p. 710), choosing a
multivariate measure of effect-size “may be based on a researcher’s preference.”

A recommendations based on the researcher’s preference of measures of effect-size can
be made as follow, if a researcher prefers WI, HI, SI, TSI, or HRI to SGI, SEI, and CNI, the TSI
adjusted by the Tatsuoka procedure can be recommended, provided that the sample size is greater
then 75 and the product of the number of variables and the grouping variable degrees of freedom
are less than 49. If a researcher prefers SEI, SGI, or CNI to W1, HI, SI, TSI, and HRI, the Serlin
adjustment procedure for these effect-size can be recommended.

This study has some limitations. First, this study is limited to the one-way MANOVA
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context. Further study should include the two-way MANOVA context and more complex designs
so as to get more generalizable results. Second, this study is limited to conditions that all
assumptions for MANOVA are met. The situations where the assumptions are violated to some

degree should be examined in future studies.
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Appendix A. The SAS Program for determining the population mean

proc iml;
p=5;
k=2;

ul1=.2984;
ul2=.2984;
ul3=.2984;
ul4=.2984;
ul5=.2984;
u21=0;

u22=0;

u23=0;

u24=0;

u25=0;
ul=(ul1+u21)/2;
u2=(ul2+u22)/2;
u3=(ul3+u23)/2;
ud=(ul4+u24)/2;
uS=(ul5+u25)/2;
print ul u2 u3 u4 us;

dl1=ull-ul;
d12=ul2-u2;
d13=ul3-u3;
dl14=ul4-u4;
d15=ul5-us;
d21=u2l-ul;
d22=u22-u2;
d23=u23-u3;
d24=u24-u4;
d25=u25-u5;

d1=d11//d12//d13//d14//d15;
d2=d21//d22//d23//d24//d25;
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print d1 d2;

SSCPHI1=d1*d1";
SSCPH2=d2*d2";
SSCPH=SSCPH1+SSCPH2;
print SSCPH SSCPH1 SSCPH2;

x={10000,
01000,
00100,
00010,
00001};

print X;

y=x+(SSCPH/k);
dety=det(y);
detx=det(x);
print y dety detx;

Pomegas=1-detx/dety;
print Pomegas;

run;
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Appendix B. The SAS program for generating samples and computing statistics

proc iml;
n=10;
G=3;
p=5;

mu=.6214;
ef=j(n,p,1);
effect=mu*ef;
Pmean=j(3,8,.300);

rep=10000;
val=j(p,1,0);
ES=j(rep,8,0);
TAES=j(rep,8,0);
SAES=j(rep,8,0);
Do I=1 to rep;

X1=rannor(j(n,p,0))+eftect;
X2=rannor(j(n,p,0));
X3=rannor(j(n,p,0));

Xl1bar=X1[:,];
X2bar=X2[:,];
X3bar=X3[.,];

ml1=Xlbar[,1];
ml2=X1lbar[,2];
m1l3=Xlbar[,3];
ml4=Xlbar[,4];
m1l5=Xlbar[,5];
m21=X2bar[,1];
m22=X2bar[,2];
m23=X2bar[,3];
m24=X2bar[,4];
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m25=X2bar[,5];
m31=X3bar[,1];
m32=X3bar[,2];
m33=X3bar[,3];
m34=X3bar[,4];
m35=X3bar[,5];

A=j(n,p,1);

X11=ml1*A[,1];
X12=ml12*A[,2];
X13=m13*A[,3];
X14=m14*A[A4];
X15=ml15*A[,5];
X21=m21*A[,1];
X22=m22*A[,2];
X23=m23*A[,3];
X24=m24*A[ 4];
X25=m25*A[,5];
X31=m31*A[,1];
x32=m32*A[,2];
X33=m33*A[,3];
x34=m34*A[4];
X35=m35*A[,5];

P1=X11|[X12|[X13[X14|X15;
P2=X21||X22||X23|[X24|[X25;
P3=X31||X32|X33|[X34|[X35;

Dl=x1-pl;
D2=x2-p2;
D3=x3-p3;

SSCPE1=D1"*D1;
SSCPE2=D2"*D2;
SSCPE3=D3"*D3;
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SSCPE=SSCPE1+SSCPE2+SSCPE3;
determinantSSCPE=DET(SSCPE);
TX=X1//X2//X3;

mTX=TX]:,];
mmTX=mTX//mTX//mTX,
mX1X2=X1bar//X2bar//X3bar;
DH=mX1X2-mmTX;
SSCPH=n*DH"*DH;

SSCPT=SSCPE+SSCPH;
determinantSSCPT=DET(SSCPT);

inverseE=INV(SSCPE);
eigvals=EIGVAL(inverseE*SSCPH);
eig=eigvals[,1];
reigvals=RANK(eig);

val[1,1]=reigvals[1,1];
val[2,1]=reigvals[2,1];
val[3,1]=reigvals[3,1];
val[4,1]=reigvals[4,1];
val[5,1]=reigvals[5,1];

do jj=1 to p;

if val[jj,1]=5 then first=jj;
if val[jj,1]=4 then sec=jj;
if val[jj,1]=3 then trd=jj;
if val[jj,1]=2 then forth=jj;
if val[jj,1]=1 then fifth=jj;

end;

eigvall=eig[first,1];
eigval2=eig[sec,1];

eigval3=eig|trd,1];



W=(1/(1+eigvall))#(1/(1+eigval2));

R=eigvall;

HL=eigvall+eigval2;
BP=(eigvall/(1+eigvall))+(eigval2/(1+eigval2));

q=G-1;
S=HL#((3#n-3)-p-1)/(3#n-3);
r=min(p,q);

r=1/r;

k=g;

b=max(p,q);

WI=1-W;

HI=HL/(1+HL);

SI=S/(1+S);

SGI=HL/(r+HL);

SEI=BP/r;
TSI=((3#n-k)-(3#n-1)#W)/((3#n-k)+W);
HRI=1-W;

CNI=1-Wtrr;

TAWI=WI-(p##2-+q##2)#(1-WI)/(3#3#n);
TAHI=HI-(p##2-+q##2)#(1-HI)/(3#3#n);
TASI=SI-(p##2+q##2)#(1-ST)/(3#3#n);
TASGI=SGI-(p##2-+q##2)#(1-SGI)/(3#3#n);
TASEI=SEI-(p##2-+q##2)#(1-SEI)/(3#3#n);
TATSI=TSI-(p##2-+q##2)#(1-TSI)/(3#3#n);
TAHRI=HRI-(p##2+q##2)#(1-HRI)/(34#3#n);
TACNI=CNI-(p##2+q##2)#(1-CNI)/(34#3#n);

SAWI=1-(3#n-1)/(3#n-b-1)#(1-WI);
SAHI=1-(3#n-1)/(3#n-b-1)#(1-HI);
SASI=1-(3#n-1)/(3#n-b-1)#(1-SI);
SASGI=1-(3#n-1)/(3#n-b-1)#(1-SGI);
SASEI=1-(3#n-1)/(3#n-b-1)#(1-SEI);
SATSI=1-(3#n-1)/(3#n-b-1)#(1-TSI);
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SAHRI=1-(3#n-1)/(3#n-b-1)#(1-HRI);
SACNI=1-(3#n-1)/(3#n-b-1)#(1-CNI);

ES[i,1]=WI;
ES[i,2]=HI;
ES[i,3]=SI;
ES[i,4]=SGI;
ES[i,5]=SEI;
ES[i,6]=TSI;
ES[i,7]=HRI;
ES[i,8]=CNI;

TAES[i,1]=TAWTI;
TAES[i,2]=TAHL;
TAES[i,3]=TASI;
TAES[i,4]=TASGI;
TAESJi,5]=TASEI
TAES[i,6]=TATS;
TAES[i,7]=TAHRi;
TAESJi,8]=TACNI;

SAES[i,1]=SAWI;
SAES[i,2]=SAHI;
SAES[i,3]=SASI;
SAES[i,4]=SASGI;
SAES[i,5]=SASEL;
SAES[i,6]=SATST;
SAES[i,7]=SAHRi;
SAES[i,8]=SACNI;
END;

mES=ES[:,];
mTAES=TAES[:,];
mSAES=SAES[.,];

ESs=ES[+,];
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ESss=ES[##,];
ESsq=(ESs##2)/rep;
ESssq=ESss-ESsq;
ESv=ESssq/(rep-1);
ESsd=sqrt(ESV);

TAESs=TAES[+,];
TAESss=TAES[##,];
TAESsq=(TAESs##2)/rep;
TAESssq=TAESss-TAESsq;
TAESv=TAESssq/(rep-1);
TAESsd=sqrt(TAESV);

SAESs=SAES[+,];
SAESss=SAES[##,];
SAESsq=(SAESs##2)/rep;
SAESssq=SAESss-SAESsq;
SAESv=SAESssq/(rep-1);
SAESsd=sqrt(SAESV);

mean=mES//mTAES//mSAES;

sd=ESsd//TAESsd//SAESsd;
bias=mean-Pmean,;

title "ES(.3)10n3g5pN";
print Bias mean sd;

run;
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Appendix C.1 Bias and Standard Deviations of unadjusted Effect Size, Effect-size adjusted by
TA, Effect-size adjusted by SA when population effect-size is zero

k n |[p WI HI ST SGI SEI TSI HRI CNI
2 10 | 3 | Bias ES 157 157 129 157 157 .106 157 157
TA .017 .017 -.015 .017 .017 -.042 .017 .017

SA -.000 -.000 -.033 -.000 -.000 -.060 -.000 -.000

SD ES 1109 1109 .0954 1109 1109 1132 1109 1109

TA .1294 1294 1113 1294 .1294 1320 1294 1294

SA 1317 1317 1133 1317 1317 1344 1317 1317

5 | Bias ES .260 .260 195 .260 .260 211 .260 .260
TA -.059 -.059 -.152 -.059 -.059 -.129 -.059 -.059
SA -.003 -.003 -.091 -.003 -.003 -.069 -.003 -.003
SD ES 1346 1346 1119 1346 1346 1386 1346 1346
TA 1929 1929 .1604 1929 1929 1987 1929 1929
SA 1827 1827 1519 1827 1827 1881 1827 1827
10 | Bias ES .526 526 321 .526 526 489 526 526
TA -.269 -.269 -.821 -.269 -.269 -.370 -.269 -.269
SA .001 .001 -432 .001 .001 -.078 .001 .001
SD ES 1544 1544 1390 1544 1544 1628 1544 1544
TA 4143 4143 3731 4143 4143 4370 4143 4143

SA 3259 3259 2935 3259 3259 3438 3259 3259

50 | 3 | Bias ES .030 .030 .028 .030 .030 .020 .030 .030
TA -.002 -.002 -.003 -.002 -.002 -.012 -.002 -.002
SA -.000 -.000 -.001 -.000 -.000 -.010 -.000 -.000
SD ES .0240 .0240 .0232 .0240 .0240 .0241 .0240 .0240
TA .0248 .0248 .0239 .0248 .0248 .0249 .0248 .0248
SA .0248 .0248 .0239 .0248 .0248 .0248 .0248 .0248
5 | Bias ES .051 .051 .048 .051 .051 .041 .051 .051
TA -.031 -.031 -.034 -.031 -.031 .041 .031 .031
SA .000 .000 -.002 .000 .000 -.009 .000 .000
SD ES .0313 .0313 .0297 .0313 .0313 .0314 .0313 .0313
TA .0340 .0340 .0322 .0340 .0340 .0341 .0340 .0340
SA .0330 .0330 .0312 .0330 .0330 .0330 .0330 .0330
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10 | Bias ES 101 101 .091 101 .101 .091 101 101
TA -.201 -.201 -214 -.201 -201 -214 -201 -.201

SA .000 .000 -011 .000 .000 -.010 .000 .000
SD ES .0426 .0426 .0388 .0426 .0426 .0427 .0426 .0426
TA .0569 .0569 .0519 .0569 .0569 .0570 .0569 .0569

SA .0473 .0473 .0432 .0473 .0473 .0475 .0473 .0473

10 | 3 | Bias ES 198 193 170 110 102 135 198 .106
TA .082 076 .051 -.018 -.026 .010 .082 -.022

SA .106 .100 .075 .007 -.000 .035 .106 .003

SD ES .0995 .0951 .0868 .0612 .0535 .1045 .0995 .0573
TA 1138 .1088 .0993 .0700 .0613 1196 1138 .0656

SA 1109 .1061 .0968 .0682 .0597 1166 1109 .0639

5 | Bias ES 321 .306 257 185 173 265 321 179
TA .102 .082 .018 -.076 -.093 .028 102 -.084

SA .180 161 .103 .015 .001 112 180 .008

SD ES 1138 .1050 .0950 0758 .0666 1205 1138 0711
TA 1505 1388 1256 .1003 .0880 1593 1505 .0940

SA 1375 1269 1148 .0916 .0804 1456 1375 .0859

10 | Bias ES .580 .533 409 .370 346 541 .580 358
TA .096 -.005 -.273 -.356 -.409 .012 .096 -.382

SA 359 288 .098 .039 .001 .300 359 .021

SD ES 1133 1014 .0985 .0952 .0837 1220 1133 .0890
TA 2443 2186 2123 2052 1805 .2630 .2443 1920

SA 1730 1548 1503 1453 1278 1862 1730 1359

50 | 3 | Bias ES .040 .039 .038 .020 .020 .026 .040 .020
TA .012 012 .011 -.007 -.008 -.001 .012 -007

SA .020 .020 .019 .000 .000 .006 .020 .000

SD ES .0223 0221 0215 .0116 .0113 .0225 0223 0115
TA .0230 .0227 .0222 .0119 .0116 .0232 .0230 0118

SA .0228 0225 .0220 0118 0115 .0230 .0228 0117
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5 | Bias ES .065 .065 .062 .033 .033 .052 .065 .033
TA .005 .004 .002 -.028 -.028 -.008 .005 -.028
SA .033 .032 .030 .000 -.000 019 .033 .000
SD ES .0282 .0275 .0265 .0148 .0144 .0284 .0282 .0146
TA .0300 .0293 .0283 .0158 0154 .0302 .0300 .0156
SA .0291 .0285 0275 .0154 .0149 .0294 .0291 .0152
10 | Bias ES 129 126 117 .067 .066 117 129 .067
TA -.071 -.075 -.085 -.147 -.148 -.087 -.071 -.148
SA .066 .063 .054 .000 -.000 .053 .066 .000
SD ES 0375 .0357 .0337 .0205 .0199 .0379 .0375 .0202
TA .0462  .0439 .0414 .0252 .0246 .0466 .0462 .0249
SA .0402  .0382 .0361 .0220 .0214 .0406 .0402 .0217
10 | 3 | Bias ES 231 220 204 .088 .082 .160 231 .085
TA .102 .090 .072 -.063 -.070 .020 102 -.067
SA 161 150 133 .006 .000 .084 161 .003
SD ES .0809  .0741 .0704 .0351 .0308 .0869 .0809 .0329
TA .0943  .0864 .0821 .0410 .0359 .1014 .0943 .0384
SA .0861  .0789 .0750 .0374 .0328 .0926 .0861 .0350
5 | Bias ES 347 319 290 107 .098 285 347 .102
TA .169 133 .096 -.136 -.148 .090 169 -.142
SA 273 242 209 .006 -.004 204 273 .000
SD ES .0851  .0737 .0698 .0329 .0274 .0919 .0851 .0300
TA .1084  .0938 .0889 .0419 .0350 1170 .1084 .0382
SA .0948  .0820 0777 .0366 .0306 1023 .0948 .0334
10 | Bias ES 611 .530 461 224 .203 571 611 213
TA 310 167 .045 -376 -411 .240 310 -.394
SA S11 409 323 .025 -.000 462 511 .012
SD ES .0818 .0667 .0665 .0467 .0388 .0894 .0818 .0424
TA .1452 1184 1179 .0828 .0689 1585 1452 .0752
SA .1028 .0838 .0835 .0587 .0488 1123 1028 .0532
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50 | 3 | Bias ES .047 .047 .046 .016 .016 .032 .047 .016
TA .016 015 .014 -016 -.016 -.000 .016 -016
SA .031 .031 .030 .000 -.000 .016 .031 .000
SD ES .0189 .0184 .0182 .0066 .0064 .0191 .0189 .0065
TA .0195 .0191 .0188 .0068 .0066 .0197 .0195 .0067
SA .0191 .0187 .0184 .0067 .0065 .0193 .0191 .0066
5 | Bias ES .077 .075 074 .020 .019 .062 077 .020
TA .027 .025 .023 -.033 -.033 .010 .027 -.033
SA .058 .056 .055 .000 -.000 .042 .058 -.000
SD ES .0231 0221 .0216 .0062 .0060 .0234 .0231 .0061
TA .0243 .0233 .0228 .0066 .0063 .0246 .0243 .0065
SA .0235 0225 .0221 .0064 .0061 .0238 .0235 .0062
10 | Bias ES 152 145 139 .041 .040 138 152 .040
TA .021 .013 .006 -.107 -.108 .004 .021 -.107
SA 117 .109 .103 .000 .000 102 117 .000
SD ES .0310 .0282 .0273 .0089 .0086 .0314 .0310 .0088
TA .0357 .0326 .0316 .0103 .0100 .0362 .0357 .0101
SA 0322 .02947 .0285 .0093 .0090 .0327 .0322 .0091

ES = Unadjusted effect Size
TA = TA adjusted effect-size

SA = SA adjusted effect size
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Appendix C.2 Bias and Standard Deviations of unadjusted Effect Size, Effect-size adjusted by
TA, Effect-size adjusted by SA when population effect-size is .1

k n p WI HI ST SGI SEI TSI HRI CNI
2 10 3 Bias ES .140 .140 101 .140 .140 .091 .140 .140
TA .013 013 -.031 .013 .013 -.043 .013 .013

SA -001 -001 -.047 -.001 -.001 -.060 -.001  -.001
SD ES 1408 1408  .1252  .1408  .1408 1447 1408  .1408
TA 1643 1643 1461 1643 .1643 1688 1643 .1643
SA 1672 1672 1487 1672 1672 1718 1672 1672

5 Bias ES 235 235 159 235 235 189 235 235
TA -052  -052 -.161 -.052 -.052 -118  -.052  -.052

SA -001 -001 -.105 -.001 -.001 -.064 -001 -.001
SD ES 1492 1492 1300  .1492  .1492 1546 1492 1492
TA 2139 2139 1863 2139 2139 2217 2139 2139
SA 2025 2025 1764 2025 2025 2099 2025 2025

10 Bias ES 474 474 264 474 474 439 474 474
TA -240  -240 -.805  -240 -.240 -335  -240  -240

SA .002 .002 -.442 .002 .002 -.071 .002 .002
SD ES 1489 1489 1429 1489  .1489  .1576 1489 1489
TA 3995 3995 3837 3995 3995 4231 3995 3995

SA 3143 3143 3018 3143 3143 3329 3143 3143

50 3 Bias ES .027 .027 .022 .027 .027 .017 .027 .027
TA -.001 -.001  -.006 -.001 -001 -.011 -.001  -.001

SA .000 .000 -.004 .000 .000 -.010 .000 .000
SD ES 0579 .0579 0562 .0579 .0579 .0581 .0579 .0579

TA .0598  .0598 .0581 .0598 .0598 .0600 .0598  .0598

SA 0597  .0597 0579 .0597 .0597 .0599 .0597 .0597

5 Bias ES .045 .045 .038 .045 .045 .035 .045 .045
TA -.028 -.028 -036 -028 -028 -.039 -.028  -.028

SA .000 .000 -.007 .000 .000 -.010 .000 .000

SD ES .0587  .0587 0562 .0587 .0587 .0589 .0587  .0587

TA .0638  .0638 0611 .0638 .0638 .0640 .0638  .0638

SA .0618  .0618 0592 0618 .0618 .0620 .0618  .0618
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10 Bias ES .090 .090 .073 .090 .090 .081 .090 .090
TA -181  -181 -204 -.181 -181  -194 -181 -.181
SA .000 .000 -.019 .000 .000 -.010 .000 .000
SD ES .0624 .0624  .0580 .0624 0624 0626 .0624  .0624
TA .0834 .0834 .0775 .0834 .0834  .0837 .0834  .0834
SA 0694 .0694 .0645 .0694 0694 0697 .0694  .0694
10 3 Bias ES 178 .169 141 108 .096 120 178 102
TA 074 .064 031  -012 -.026 .007 074  -.019
SA .095 .085 .053 011 -.002 .030 095  .005
SD ES 1194 1135 1058 .0791  .0659  .1261  .1194 .0724
TA 1367 1299 1210 .0906  .0754  .1443 1367  .0829
SA 1332 1266 1180  .0883  .0735 .1407 .1332  .0808
5 Bias ES 287 .266 213 177 161 234 287 170
TA .089 062 -.007 -070  -.092 .020 .089  -.080
SA 159 134 .070 017 -.002 .096 159 .007
SD ES 1218 1122 1041 .0865 .0735 .1295 .1218 .0798
TA Jd611 1484 1377 1144 .0972 1713  .1611  .1055
SA 1472 1356 1258 1045  .0888  .1565 .1472  .0964
10 Bias ES 520 468 344 351 325 484 .520 339
TA .081 -.029 -298  -336 -.395  .003 .081 -.364
SA 320 242 051  -.038 -002 265 320 018
SD ES 1105 .0995 1001 .0978  .0858  .1193  .1105 .0913
TA 2383 2146 2158 2109 1850  .2572 2383  .1968
SA 1687 1520 1528 1493 1310 .1821  .1687  .1394
50 3 Bias ES .035 .034 .031 .020 .018 .023 .035 .019
TA .010 .009 .005  -.006 -.008  -.002 .010  -.007
SA .017 .016 .013 .000 -.000 .005 .017  .000
SD ES 0478  .0471  .0462 .0274 .0244 0482 .0478  .0259
TA 0492 .0484  .0475 .0282 0251 .0496  .0492  .0266
SA .0488  .0480 .0471 .0280 0249 0492 .0488  .0264
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5 Bias ES .059 .057 .051 .033 .031 .047 .059 .032
TA .005 002 -.002 -.025 -.027  -.007 005  -.026
SA .030 .027 .022 .001 -.000 .018 .030 .001
SD ES 0496  .0482  .0468 .0287  .0258 .0500 .0496  .0272
TA 0528  .0513  .0499 .0306 .0274 0532 .0528  .0290
SA 0513 .0498  .0485 0297  .0267 0518  .0513  .0282
10 Bias ES 117 110 .097 .065 .063 .105 117 .065
TA -.063 -072  -087 -138 -.141 -077 -.063 -.139
SA .061 .053 .040 .002 .000 .048 .061 .001
SD ES 0522 .0493  .0471 .0310 .0284  .0527 0522 .0297
TA .0643  .0606 .0580 .0382 .0350 .0649 0643 .0365
SA 0560 .0528 .0505 .0332 .0304 .0565 .0560  .0318
10 3 Bias ES 205 .188 170 .089 077 .140 205 .081
TA .089 .070 .048 -.056 -.070 .013 .089  -.065
SA 144 126 .106 .011 -.001 .052 160 -.003
SD ES .0943  .0860 .0827 .0456 .0370 .1016 .0943  .0411
TA 1100 .1004  .0965  .0533  .0432 .1186 .1100  .0479
SA 1004 .0916  .0881 .0486 .0394 .1083  .1004  .0437
5 Bias ES 315 278 .246 .108 .095 258 315 101
TA 155 .108 .067 -128  -.145 .083 155 -136
SA 248 207 171 010  -.004 185 248 .002
SD ES 0918  .0789  .0759 0397 .0313  .0994 .0918  .0351
TA 1169 11005 .0967 0506 .0399 1266 .1169  .0448
SA 1023 .0879  .0846 0442 .0349 1107 .1023  .0391
10 Bias ES .550 463 394 221 197 515 .550 209
TA 281 125 .004  -.360 -403 217 281 -.382
SA 461 351 265 .028 -.001 416 461  .013
SD ES .0790 0651  .0660 .0492  .0400 .0864 .0790 .0441
TA .1401 1155 1170 0873 .0710  .1532  .1401 .0782
SA .0993 .0818 .0829 .0619 .0503 .1086 .0993 .0554
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50 3 Bias ES .043 .040 .038 .019 .015 .028 .043 .015
TA .014 012 010 -.012 -015 -.000 .014 -.015
SA .028 .026 .024 .003 .000 .014 .028  -.000
SD ES 0371 .0361 .0357 .0148 .0128 .0376  .0371  .0137
TA 0383  .0373  .0369 .0153 .0132  .0388  .0383 .0142
SA 0375 0365 .0361 .0150 .0129  .0380 .0375 .0139
5 Bias ES .069 .064 .061 .020 .019 .055 .069 .019
TA .024 .018 015 -.031 -.033 .009 024 -.032
SA .052 .047 .044 .000 -.000 .038 .052 .000
SD ES 0385 .0366 .0360 .0120 .0103  .0391  .0385  .0111
TA .0406  .0386 .0379  .0127 .0109 .0412 .0406 .0117
SA 0393 .0373  .0367 .0123 .0105 .0399 .0393 .0113
10 Bias ES 136 122 114 .040 .038 123 136 .039
TA .018 .002 -.006 -.104 -.106 .002 018  -.105
SA .104 .090 .081 .001 -.000 .090 .104  .000
SD ES .0404  .0364  .0355 .0132 0116  .0409 .0404 .0124
TA .0466  .0421  .0410 .0153 0135 .0473  .0466 .0143
SA .0420  .0380  .0370 .0138 0121  .0426  .0420 .0129

ES = Unadjusted effect Size

TA = TA adjusted effect-size

SA = SA adjusted effect size

Bias = Estimated effect-size — Population effect size
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Appendix C.3 Bias and Standard Deviations of unadjusted Effect Size, Effect-size adjusted
by TA, Effect-size adjusted by SA when population effect-size is .3

k n p WI HI SI SGI SEI TSI HRI  CNI
2 10 3 Bias ES .109 .109 .055 .109 .109 .065 .109 .109
TA .010 .010  -.051 .010 .010  -.040 .010 .010
SA -001 -001 -065 -001 -001 -.053 -.001  -.001
SD ES 1528 1528 1444 1528 1528 1591  .1528  .1528
TA 1782 1782 1684 1782 1782 1857  .1782  .1782
SA 1814 1814 1714 1814  .1814 .1890 .1814 .1814
5 Bias ES 181 181 .090 181 181 141 181 181
TA -043  -043 -173 -.043 -.043  -101 -.043  -.043
SA -003 -003 -126 -.003 -.003  -.058 -.003  -.003
SD ES 1521 1521 1446 1521 1521 1596  .1521 1521
TA 2180  .2180  .2073  .2180  .2180 .2287  .2180  .2180
SA 2064 2064 1962 2064 2064 2166 2064  .2064
10 Bias ES 365 365 .156 365 365 336 365 365
TA -196  -196  -.757 -196  -196  -275 -.196 -.196
SA -005 -005 -.446 -.005 -.005 -067 -.005 -.005
SD ES 1338 1338 1483 .1338  .1338  .1428  .1338  .1338
TA 3591 3591 3981 3591 3591 3834 3591 3591
SA 2825 2825 3132 2825 2825 3016  .2825  .2825
50 3 Bias ES .020 .020 .011 .020 .020 .011 .020 .020
TA -002 -002 -.011 -.002 -002 -011 -.002 -.002
SA -000 -000 -.009 -.000 -.000 -010 -.000 -.000
SD ES .0700  .0700 .0690 .0700 .0700 .0705 .0700  .0700
TA .0724  .0724 .0713  .0724  .0724 .0728 .0724 .0724
SA 0722 0722 .0711  .0722 .0722 .0727 .0722  .0722
5 Bias ES .034 .034 .021 .034 .034 .025 .034 .034
TA -022  -022 -037 -.022 -.022 -.032 -.022  -.022
SA -000 -000 -.014 -.000 -.000 -.010 -.000 -.000
SD ES .0703  .0703  .0688 .0703  .0703 .0707 .0703  .0703
TA .0764 .0764 .0747 .0764 .0764 .0769 .0764 .0764
SA .0740  .0740 .0724 .0740 .0740 .0745 .0740 .0740
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10 Bias ES .069 .069 .043 .069 .069 .061 .069 .069
TA -142  -142  -177 -142 -142 -153 -142 -142
SA -000 -000 -.030 -.000 -.000 -.010 -.000 -.000
SD ES .0703  .0703  .0679 .0703  .0703 .0708 .0703  .0703
TA .0940  .0940 .0908 .0940 .0940 .0947 .0940  .0940
SA 0782 .0782 .0756 .0782 .0782 .0788 .0782  .0782
10 3 Bias ES 138 125 .088 101 .082 .089 138 .092
TA .057 .042 .000 -.002 -.028 .001 057  -014
SA .074 .059 .018 018 -.005 .019 .074 .006
SD ES 1241 1193 1158 .0980  .0704  .1323  .1241  .0842
TA 1420 1366 .1326  .1121  .0806  .1514  .1420  .0964
SA 1384 1331 1292 1093 0786  .1475  .1384  .0940
5 Bias ES 222 195 136 .160 141 179 222 151
TA .069 .033 -.045  -.052 -.086 .011 069 -.069
SA 123 .090 .018 .022 -.006 .071 123 .009
SD ES 1183 1107 .1086  .0987  .0759  .1269  .1183  .0869
TA 1565 1464 1436 1305 1004  .1678  .1565  .1149
SA 1430 1338 .1312 .1193 .0917 .1533  .1430  .1050
10 Bias ES 404 348 227 310 288 375 404 .300
TA 062 -.057 -319  -283 -.360  -.000 062 -319
SA 248 163 -021  -.039 -.006 204 248 018
SD ES .0966  .0900 .0978 .0981 .0832 .1049 .0966  .0895
TA 2083 1940 2110 2115 1795 2262  .2083  .1930
SA 1475 1373 1494 1497 1271 1601  .1475 1367
50 3 Bias ES .027 .025 .019 .019 .016 .017 .027 .017
TA .008 .005  -.000 -.003  -.008 -.002 .008  -.005
SA .014 .011 .005 .002 .001 .003 014 .001
SD ES 0566  .0559 .0554 .0401 .0290 .0572 .0566  .0346
TA 0582 .0575 .0570 .0412 .0299 .0588 .0582  .0356
SA 0577 .0571  .0565 .0409 .0296 .0584  .0577 .0353
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5 Bias ES .046 .040 .031 .030 .027 .036 046 .029
TA .004 -.001 -011  -.020 -.025  -.006 .004  -.022
SA .023 .017 .008 .003 -.001 012 023 .001
SD ES .0571 .0550 .0551 .0408 .0300 .0577 .0571 .0354
TA .0607 .0595 .0587 .0434 .0319 .0614 .0607  .0377
SA .0590 .0578 .0570 .0422 .0310 .0597 .0590  .0366
10 Bias ES .090 .078 .060 .058 .055 .081 .090 .057
TA -049  -065 -.087 -.118 -127 -.062  -.049 -122
SA .047 .033 .014 .003 -.001 .036 .047 .001
SD ES 0576 .0550 .0539 .0419 .0322 .0583 .0576  .0370
TA .0709  .0677 .0663  .0516 .0397 .0717 .0709  .0455
SA 0617 0590 .0578 .0449 .0345 .0625 .0617  .0396
10 3 Bias ES 159 134 112 .083 .068 .106 159 .076
TA .069 .040 014  -.048 -.069 .007 069 -.059
SA 110 .083 .059 .013 -.000 .052 110 .003
SD ES .0947 .0879 .0866  .0593  .0393  .1027 .0947  .0483
TA 1104 1025 1011 .0692  .0459 .1198 .1104 .0564
SA 1008 .0936  .0923  .0632 .0419 .1094  .1008  .0515
5 Bias ES 244 197 162 .106 .087 199 244 .096
TA 120 .059 .015 -111 -.141 .062 1200 -127
SA 192 139 .101 -.015  -.007 142 192 .003
SD ES .0897 .0798 .0792 .0518 .0333 .0977 .0897  .0411
TA 1143 1016 .1009  .0660  .0425 .1244  .1143 .0524
SA .0999  .0888 .0882 .0577 .0371 .1088  .0999  .0458
10 Bias ES 427 333 267 209 184 399 427 196
TA 216 .050 -.066 -326 -388 166 216 -358
SA 357 239 .156 .031  -.005 322 357 .012
SD ES .0688  .0606 .0639 .0555 .0399 .0754 .0688  .0461
TA 1220 1075 1134 .0985  .0708  .1338  .1220  .0818
SA .0864 .0761 .0803 .0698 .0501 .0948 .0864 .0579
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50 3 Bias ES .033 .028 .024 .016 .013 .021 .033 .014
TA .011 .006 .002 -012  -015 -.000 .011 -014
SA .022 .017 .013 .002  -.000 .010 .022 .000
SD ES .0443  .0434 .0431 .0239 .0154 .0449 .0443 .0194
TA .0457 .0448  .0445 .0247 .0160 .0464 .0457  .0200
SA .0448 0439 .0436  .0241 .0156 .0455 .0448 .0196
5 Bias ES .053 .043 .038 .019 .017 .042 .053 .018
TA .018 .007 .002 -.028  -.032 .006 018  -.030
SA .040 .030 .024 .001  -.001 .028 .040 .000
SD ES .0443  .0426 .0422 .0194 .0121 .0449 .0443 .0154
TA .0467  .0449  .0445 .0205 .0128 .0474 .0467 .0162
SA 0452 .0434 .0431 .0198 .0123 .0458 .0452 .0157
10 Bias ES .106 .084 .073 .038 .036 .096 .106 .037
TA .015 -.011  -.023  -.094 -.101 .002 015 -.097
SA .082 .058 .047 .002 -.000 .070 082 .001
SD ES .0432  .0400 .0395 .0198 .0131 .0439 .0432 .0160
TA .0499  .0461 .0456 .0229 .0151 .0507 .0499 .0185
SA .0450 .0416 .0412 .0207 .0136  .0457 .0450 .0167

ES = Unadjusted effect Size
TA = TA adjusted effect-size
SA = SA adjusted effect size

Bias = Estimated effect-size — Population effect size
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Appendix C.4 Bias and Standard Deviations of unadjusted Effect Size, Effect-size adjusted by
TA, Effect-size adjusted by SA when population effect-size is .5

k n p WI HI SI SGI SEI TSI HRI CNI
2 10 3 Bias ES .078 .078 .020 .078 078 .043 078 .078
TA .008 .008 -.058 .008 .008 -032  .008 .008
SA -.000  -.000 -.068  -.000 -.000 -.041  -.000 -.000
SD ES 295 1295 1315 1295 1295 1370 1295 1295
TA JAS11 1511 1534 1511 .1s11 1599 1511 1511
SA 1538 1538 1562 .1538 1538 1627  .1538  .1538
5 Bias ES 131 131 .040 131 131 .100 131 131
TA -027  -027 -.158 -.027  -027 -073 -.027 -.027
SA .000 .000 -.123 .000 .000 -.042  .000 .000
SD ES 12331233 1303 .1233 1233 1312 .1233 1233
TA 1767 1767 1868 1767 1767 1881  .1767  .1767
SA 1673 1673 1768 1673 1673 1781  .1673  .1673
10 Bias ES 264 264 .073 264 264 242 264 264
TA -132 -132  -.643 -.132  -132 -191  -132 -132
SA .002 002 -.399 .002 .002 -.044 002 .002
SD ES 1036 1036 .1374 1036  .1036  .1118 .1036 .1036
TA 2782 2782 3688 2782 2782 3000 2782 2782
SA 2189 2189 2901 2189 2189 2360 2189  .2189
50 3 Bias ES .015 .015 .005 .015 .015 .008 .015 .015
TA -.000 -.000 -.011  -.000 -.000 -.008 -.000 -.000
SA .000  .000 -.010 .000 .000 -.007  .000 .000
SD ES .0611  .0611 .0612 .0611 .0611 .0618 .0611  .0611
TA 0632 .0632 .0632 .0632 .0632 .0638 .0632  .0632
SA .0630  .0630 .0631 .0630 .0630 .0637 .0630 .0630
5 Bias ES .025 .025 .010 .025 .025 .018 .025 .025
TA -015  -015 -.032 -.015 -015 -.023 -.015 -.015
SA .000 .000 -.015 .000 .000 -.007 .000 .000
SD ES .0605 .0605 .0606 .0605 .0605 .0611 .0605 .0605
TA .0658  .0658 .0659 .0658 .0658 .0664 .0658  .0658
SA .0637 .0637 .0638 .0637 .0637 .0644 .0637  .0637
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10 Bias ES .050 .050 .021 .050 .050 .043 .050 .050
TA -.100  -.100 -139  -100 -.100 -109  -100  -.100
SA .000 .000 -.031 .000 .000 -.007 .000  .000
SD ES .0586  .0586 .0590 .0586 .0586 .0593 .0586 .0586
TA 0784 0784 .0789 .0784 .0784 .0792 .0784 .0784
SA 0652 .0652 .0657 .0652 .0652 .0659 .0652  .0652
10 3 Bias ES .100 .085 .047 .087 .069 .062 .100 .080
TA .042 025 -.017 .004 -.028  -.000 042 -.010
SA .053 .037  -.004 .020 -.008 012 053 .007
SD ES 1035 .1011  .1029  .1009  .0626 .1116 .1035  .0824
TA 185 1158 1178 1155 .0716 1277 1185  .0944
SA 155 1128 1148 1125 .0698  .1245 1155  .0920
5 Bias ES .160 132 .074 135 1220128 .160 130
TA .051 .013 -062 -035 -.079 .008 051  -.055
SA .089 .055 -014 024 -.008 .050 .089 .010
SD ES 0964  .0931 .0975 .0991 .0683 .1043  .0964  .0833
TA JA275 1231 1289 1311 .0903 1379 1275  .1101
SA 165 1125 1178 1198 .0825 1261  .1165  .1006
10 Bias ES 287 234 124 252 251 .266 287 253
TA 042 -.072 -308  -226 -.324 -.003 042 -270
SA .176 .094 -072  .034 -.010 .143 176 .015
SD ES .0746  .0739 .0882 .0912 .0748 .0814 .0746  .0807
TA 1608 1594 1901  .1966 .1613  .1756  .1608  .1740
SA 139 1129 1346 1392 1142 1243 1139 .1232
50 3 Bias ES .020 .017 .010 .017 .013 .012 .020  .015
TA .007 .003  -.003 -001  -007 -.001 .007  -.004
SA .011 .007 .000 .004 -.001  .002 .011  .001
SD ES .0493  .0491 .0491 .0447 .0256 .0500 .0493  .0357
TA .0508 .0505 .0505 .0460 .0263 .0515 .0508 .0367
SA .0504 .0501 .0501 .0456 .0261 .0511 .0504 .0364

82




5 Bias ES .033 .026 .016 .025 .023 .025 .033 .024
TA .003  -.003 -014  -015 -.023 -.005 003  -.019
SA 017 .010 -.000 .003 -.001 008 .017 .001
SD ES 0482 .0476  .0477 .0439 .0261 .0489 .0482 .0354
TA .0513  .0507 .0507 .0467 .0278 .0521  .0513 .0376
SA .0499  .0493  .0493 .0454 .0270 .0506 .0499  .0366
10 Bias ES .064 .050 .031 .047 .048 057  .064 .048
TA -036 -053 -.077 -.095 - 113 -.045 -.036 -.104
SA .033 017 -.002 .003  -.001 .025 .033 .000
SD ES .0473  .0462 .0465 .0440 .0278 .0480 .0473  .0359
TA 0582 .0569 .0572 .0541 .0342 .0591 .0582  .0442
SA .0507  .0495 .0498 .0471  .0298 .0514 .0507  .0385
10 3 Bias ES 114 .087 .065 077 .061 .075 114 .069
TA .050 .018 -.006 -.034 -.067 .004 .050  -.050
SA .081 .051 .027 018  -.007 .038 .081 .005
SD ES 0791 .0759 .0769 .0690 .0359 .0863 .0791 .0503
TA .0923  .0886 .0897 .0805 .0419 .1007 .0923  .0587
SA .0842  .0809 .0819 .0735 .0382 .0920 .0842 .0536
5 Bias ES 173 123 .090 .098 .079 139 173 .088
TA .083 020 -.021 -093  -.137 .041  .083 -117
SA 136 .080 .043 .018 -.010 098 136 -.002
SD ES .0709  .0664 .0683 .0594 .0304 .0776 .0709  .0415
TA .0903 .0845 .0870 .0756  .0388 .0989  .0903  .0528
SA .0790 .0739 .0761 .0661 .0339 .0865 .0790  .0462
10 Bias ES 305 215 .156 191 171 284 305 181
TA 154 -.003 -108 -278 -372 118 154 -328
SA 255 143 .068 .035  -.008 229 255 .012
SD ES .0535 .0523  .0579 .0611 .0379 .0589 .0535 .0458
TA 0949  .0928 .1027 .1085 .0672  .1045 .0949  .0812
SA 0672 .0658 .0727 .0768 .0476 .0740 .0672  .0575
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50 3 Bias ES .023 .018 .014 .014 012 .015 .023 .013
TA .008 002 -.002 -009 -015 -.000 .008  -.012
SA .016 .009 .005 002 -.001 .007 .016 .000
SD ES 0379 .0375 .0375 .0292 .0135 .0386 .0379  .0207
TA 0392 .0388 .0388 .0302 .0139 .0398 .0392 .0214
SA .0384  .0380 .0380  .0296 .0137 .0390 .0384  .0210
5 Bias ES .038 .026 .020 .018 .015 .029 .038 .017
TA .013 .001  -.005 -023  -.031 .004 013 -.027
SA .029 .017 .010 002 -.001 .020 .029 .000
SD ES .0378 .0370 .0370  .0253 .0107 .0384  .0378 .0168
TA .0398  .0390 .0391 .0267 .0113 .0405 .0398 .0178
SA .0385 .0378 .0378 .0258 .0109 .0392 .0385 .0172
10 Bias ES .075 .050 .039 .035 .033 .068 075 .034
TA .010  -.018 -031 -082 -.096 .001 .010  -.090
SA .058 .031 .020 .003  -.001 .049 .058  .000
SD ES .0360 .0344  .0345 .0250 .0118 .0366 .0360 .0171
TA .0415  .0397 .0399 .0289 .0136 .0422 .0415 .0198
SA .0375  .0358 .0360 .0261 .0122 .0381 .0375 .0178

ES = Unadjusted effect Size

TA = TA adjusted effect-size

SA = SA adjusted effect size

Bias = Estimated effect-size — Population effect size
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