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When three or more groups are compared, Serlin adjustment for SGI, SEI, and CNI can provide 

an appropriate adjustment. 
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CHAPTER 1 

INTRODUCTION 

Statistical hypothesis test and effect size 

Statistical hypothesis tests have been criticized for many years (Carver, 1978; Fan, 2001; 

Kirk, 1996; Thompson, 1996). Kirk (1996) identified three major criticism of statistical 

significance testing. The first criticism is that “null hypothesis significant testing and scientific 

inference address different questions” (1996, p.747). In other words, when researchers use the 

significance test, they want to know the probability of null hypothesis given obtained set of data. 

But what the probability of the hypothesis test reports is the probability of obtaining these data if 

the null hypothesis is true. The second criticism is that “null hypothesis is always false, a 

decision to reject it simply indicates that the research design had adequate power a true state of 

affairs” (p.747). The problem with statistical significance testing that it relies too heavily on 

sample size. The third criticism is that statistical significance testing “ turns a continuum of 

uncertainty into a dichotomous reject-do-not-reject decision” (p.748), and this dichotomous 

decision may “lead to the anomalous situation in which two researchers obtain identical 

treatment effects but draw different conclusions” (p.748).  

For many years, researchers have been strongly encouraged to assess and report effect-

size estimates as a supplement to statistical hypothesis tests (Kirk, 1996; Thompson, 1996; 

Wilkinson & TSFI, 1999). Today at least 23 journals require authors to report some measure of 

effect-size when they present quantitative research findings.  

A magnitude of effect-size means that “how much of the dependent variable can be 

controlled, predicted, or explained by the independent variable (s)” (Snyder and Lawson, 1993, 
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p.335). Besides, the magnitude of the effect-size can clarify whether the statistically significant 

result has any practical significance. According to Kirk (1996), there are three categories in 

effect sizes; strength of association measures (r2, R, R2, Hays’s ω2, Kelly’s ε2, Tatsuoka’s 

ω2
multi ,etc), standardized mean difference measures(Cohen’s d, f, g , Hedges’s g, etc), and other 

measures (Cohen’s U1, U2, U3, Relative risk, Risk difference, etc). Maxwell and Delaney (1990) 

classified magnitude-effect-size into measures of effect-size and measures of association strength. 

In the measures of effect-size category, there are mean difference indices, estimated effect 

parameter indices, and standardized differences between means. In the measure of association 

category, there are η2, partial η2, Hays’s ω2, Kelly’s ε2, R2, Ezekiel’s adjusted R2, the Lord 

formula, etc. According to Snyder and Lawson (1993), Hays’s ω2, Kelly’s ε2, Ezekiel’s adjusted 

R2, and the Lord formula are the corrected effect-size measures for biased estimators (e.g., η2 or 

R2). 

 

Multivariate measures of strength of association 

Many researchers are using multivariate statistical techniques due to increased 

availability of comprehensive computer programs (Bray & Maxwell; Onwuegbuzie & Daniel, 

2003). When multiple outcome measures are compared in a multivariate analysis of variance 

(MANOVA), a measure of strength of association can be used to for measuring the effect size. It 

was not until in the early 1970s that the use of multivariate effect-size index was discussed at 

least in the behavioral sciences (Huberty, 2002).  

When multiple outcome measures are compared in a multivariate analysis of variance 

(MANOVA), several effect-size indices have been suggested. Table 1.1 presents several popular 

indices of effect-size for the MANOVA context.  
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Table 1.1 
Multivariate strength of association indices 
 
Wilks Index (1932) η2

mult-WI  =  1 – Λ 
 

Hsu Index (1940) η2
mult-HI  =    V    

             1 + V 
 
Stevens Index (1972) 
 

 
η2

mult-SI   =   V΄ 
             1 + V΄ 

 
Shaffer-Gillo Index 
(1974) 

 
η2

mult-SGI  =    Tr(HE-1)    =     V    
r + Tr(HE-1)      r + V 

 
Serlin Index (1982) η2

mult-SEI   =  SSBetween  =   U  
SSTotal        r 

 
Tatsuoka(1970)-
Sachdeva (1973) 
Index 

ω2
mult   =  (N-K) – (N-1) Λ                            

(N-K) + Λ  

 
Hotelling (1936)-
Rozeboom (1965) 
Index 

 
R2

mult-HRI = 1 - Πr
j=1 (1- ρ2

j) = 1 – Λ=  η2
mult-WI  

 

 
Cramer-Nicewander 
Index (1979)  
 

 
R2

mult-CNI = 1 - ׀Serror1׀/ p  = 1 - [ Πr
j=1 (1- ρ2

j) ] 1/p =  1 – (Λ) 1/p 
 p/1׀Stotal׀

                         

R2
mult-CNI1 =  Tr(S-1

totalSreg )  =  ∑ rj=1 ρ2 
Tr(S-1

totalStotal)       p 
 

where Λ is Wilks test statistic in MANOVA, V is Hotelling-Lawley test statistic in MANOVA, V΄ is [V(dfe -p-1)]/dfe, 

where dfe is the degree of freedom for error, r is min(p,q), where p is the number of variables and q is the degree of 

freedom for hypothesis, U is Bartett-Pillai test statistic in MANOVA, N is overall sample size, Tr( ) is trace of 

matrix ( ), ρ2 is the squared canonical correlation, and K is the number of groups 
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Smith (1972) also presented a generalization of the univariate eta squared in the 

multivariate context. However, his formula, “based on stepdown procedures” (Huberty, 1983, 

p.709), “do not yield values that are invariant under alternative orderings” (Smith, 1972, p.371). 

Therefore, Smith (1972) index is not considered in this study. These indices (presented in Table 

1.1) can be categorized into three classifications based on how they were developed: 1) 

generalization of the univariate eta squared (Hsu, 1940; Serlin, 1982; Shaffer-Gillo, 1974; 

Stevens, 1972; Wilks, 1932), 2) generalization of the univariate omega squared (Sachdeva, 1973; 

Tatuoka, 1970), and 3) as a function of the squared canonical correlation (Cramer-Nicewander, 

1979; Hotelling, 1936; Rozeboom, 1965). SPSS (2002, version 11.0) reports Shaffer-Gillo index, 

Serlin index, and Cramer-Nicewander index under requested in the General Linear Model – 

Multivariate program. But, SAS (SAS Institute INC, version 8, 1999-2001) does not report any 

of these indices. 

 
  Adjustment procedures in MANOVA 

Tatsuoka (1973) found that Tatsuoka index, ω2
mult

 (TSI), is positively biased when the 

number of variables is large and the sample size is small. To reduce the bias in TSI, he developed 

an adjustment formula. He maintained that this adjustment would be sufficient for most 

MANOVA contexts and could be used with Wilks index and Hsu index as well as the Tatsuoka 

index. Serlin (1982) indicated that the Serlin index (SEI) is a biased estimator, and proposed 

another adjustment analogous to Ezekiel’s (1930) adjustment for squared multiple correlation 

coefficient. Bray and Maxwell (1985) have recommended Serlin’s adjustment while Huberty 

(1994) favors Tatsuoka’s adjustment. Table 1.2 presents these adjustments for multivariate 

measures of association. 
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Table 1.2 
Adjustment of multivariate measure of strength of association 
 

Tatsuoka Adjustment (1973) (ω2
mult)adj

 =  ω2
mult  –  p2 + q2  (1 - ω2

mult) 
                         3N 

 
Serlin Adjustment (1982) 

 
(η2

mult- SEI )adj = 1 –   N – 1  (1 – η2
mult-SEI ) 

                N – b – 1 
where p is the number of variable, q is the number of group minus one, and b is max(p, q), and where N is the total 

sample size  

 

Statement of problem and purpose of study 

Although the multivariate effect size measures are known to be biased, among 

statisticians, applied researchers are generally unaware of this problem. For example, SPSS 

(2002, version 11.0) reports Shaffer-Gillo index (SGI), SEI, and Cramer-Nicewander index 

(R2
mult-CNI = CNI) when effect-size is requested in the General Linear Model – Multivariate 

program, but provides no indication that the estimates are biased. In review of a convenience 

sample of 14 multivariate textbooks published since 1985 only 10 textbooks discussed 

multivariate effect-size measures and only four commented on bias. Table 1.3 provides a list of 

book titles, publication dates, effect-size measures discussed, and type of adjustment suggested.  

 
Table 1.3  
Analysis of multivariate textbooks 
 
Author Title Year Effect Size Adjustment 

Bary, J. H. 

Maxwell, S. E. 

Multivariate Analysis 

of Variance 

1985 η2
mult-S Serlin Adjustment 
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Diekhoff, G. Statistics for the 

Social and Behavioral 

science: Univariate, 

Bivariate, 

Multivariate 

 

 

1992 

 

 

η2
mult-W 

 

 

None 

Edwards, L. K. Applied Analysis of 

Variance in 

Behavioral Science 

1993 None None 

Flury, B. A First Course in 

Multivariate Statistics 

2002 None None 

Huberty, C. J. Applied Discriminant 

Analysis 

1994 η2
mult-W, η2

mult-SG, 

η2
mult-S, ω2

mult, 

R2
mult-CN1 

Tatsuoka 

Adjustment 

Jobson, J. D. Applied Multivariate 

Data Analysis 

(volume п: categorical 

and multivariate 

methods) 

1992 η2
mult-W, ω2

mult Tatsuoka 

Adjustment 

Marcoulides, G.A. 

Hershberger, S.L . 

Multivariate 

Statistical Methods-A 

first course 

1997 None None 

Rencher, A. C. Method of 

Multivariate analysis 

(second edition) 

2002 η2
mult-W None 

Sharma, S. Applied Multivariate  

Techniques 

1996 η2
mult-W None 

Srivastava, M. S. Method of 

Multivariate Statistics 

2002 None None 

Steven, J. Applied Multivariate 

Statistics for the 

Social Science (3rd 

edition) 

1996 η2
mult-W None 
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Tabachnick, B.G. 

Fidell, L. S. 

 

Using Multivariate 

Statistics (second 

edition) 

1989 η2
mult-W None 

Tatsuoka, M. M.   Multivariate Analysis 1988 ω2
mult Tatsuoka 

Adjustment 

Timm, N. H. Applied Multivariate 

Analysis 

2002 None None 

 

In addition to bias, the precision with which these statistics estimate measure of 

association has been given little attention. Furthermore, the adequacy of the two procedures for 

adjusting for bias has not been examined. The purposes of the present study are 1) to examine the 

degree of bias and precision in eight of multivariate measures of association and 2) to evaluate 

the effectiveness of the Tatsuoka and Serlin procedures for adjusting the eight effect-size 

measures.  

 

Method 

To address the purpose of this study a computer simulation method is used using 

SAS/IML (SAS Institute INC, version 8, 1999-2001). The factors considered in this study are the 

number of compared groups (k=2, 3, and 5), sample size (n=10 and 50), the number of variables 

(p=3, 5, and 10), and population effect size (η2
mult=0, .1, .3, and .5). While the effect-size 

measures can be used in more complex designs, the present study only considers the one factor 

multivariate analysis of variance context and when all MANOVA assumptions are met.  

 

Significance 

The reporting of an effect-size measure is currently required by several prominent 

education journals. For this requirement to be useful the effect-size measure reported should be 

unbiased and estimated with precision. Multivariate effect-size measures suggested in many 
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textbooks and those currently reported on computer output provide biased estimates population 

differences. Many researchers are unaware of this bias and are unaware of procedures that are 

available to adjust these effect-size measures. The present study provides estimates of the 

magnitude of the bias and compares two adjustment procedures to reduce the bias. The results of 

this study should be of interest to authors of multivariate related textbooks, to methodologists 

interested in the distributional properties of the multivariate effect-size measures, and to applied 

researchers using MANOVA and are interested in an unbiased estimate of the effect size.  

The next chapter reviews the development of both univariate and multivariate effect-size 

measures. In addition, studies that have examined the multivariate effect-size measures are 

discussed. In chapter 3, the sampling conditions, the generating populations, and the generating 

samples are described. In the results chapter, the degree of the bias of unadjusted eight effect-size 

measures, the degree of the bias of adjusted eight effect-size measures using the Tatsuoka 

adjustment and the Serlin adjustment, and the precision of eight unadjusted/adjusted effect-size 

measures are presented. Finally, chapter 5 summarizes the results and discusses the implications 

of the findings.        
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CHAPTER 2 

LITERATURE REVIEW 

The purposes of this study are: 1) to examine the degree of bias and precision in eight 

multivariate measures of association and 2) to evaluate the effectiveness of the Tatsuoka and 

Serlin procedures for adjusting the eight effect-size measures. This chapter describes topics 

related to research purposes: 1) multivariate analysis of variance, 2) the measures of association 

in the univariate and the multivariate contexts, 3) two adjustment procedures of bias in 

MANOVA, and 4) previous investigation on multivariate effect-size measures. 

The literature reviewed on the related studies presented in this chapter were identified by 

searching ERIC (Educational Resource Information Center), PsycINFO (Psychology 

Information), GALILEO (Georgia Library Learning Online), and references from previous 

research. Key word used in the search are “effect size”, “measures of strength of association”, 

“MANOVA”, “multivariate measures of strength of association”, and “adjustment procedure of 

bias in MANOVA”.  

 

Multivariate Analysis of Variance 

MANOVA is an analysis of variance (ANOVA) model that is suitable for the analysis of 

data with more than one dependent variable. When there is more than one dependent variable, 

MANOVA is recommended because this procedure can control experimentwise error rate that is 

inflated in the univariate analyses, if each dependent variable is considered separately. Besides, it 

makes researchers can take into consideration the correlations among dependent variables. 

Huberty (1983) notes that there is some natural scalar-matrix correspondence between ANOVA 
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and MANOVA. An ANOVA between group sum of squares, SSBetween, generalizes to, a hypothesis 

SSCP (sum of squares and cross products) matrix H. Similarly, within sum of squares 

generalizes to E, and a total sum of squares (SStotal) to T (Huberty, 1983).  

The hypothesis tested using MANOVA is that the population mean vectors, or centroids 

of k populations are equal to each other (where k is equal to number of populations). To test the 

null hypothesis composite scores are created by an optimally weighted linear combination of 

dependent variables. When a set of weights (raw discriminant function coefficients e.g., a1, a2, 

…ap) is multiplied by their respective dependent variables (Y1, Y2, … Yp), it yields the weighted 

linear combination of dependent variables (lj = a1Y1 + a2Y2 + …apYp) (Hasse & Ellis, 1987). 

“These linear combinations of dependent variables are called Linear Discriminant Functions ” 

(Huberty, 1994, p. 206). The number of Linear Discriminant Functions (LDFs) is determined by 

either the number of dependent variables (p) or the degree of freedom for the hypothesis (q), 

whichever is smaller. In addition, the number of LDFs to consider may be determined in one of 

three ways; statistical tests, proportion of variance, and LDF plots (Huberty, 1994). Each LDF is 

associated with eigenvalue (λi), where “an eigenvalue is a measure of concentration of shared 

variance between a MANOVA effect and a Linear Discriminant Function” (Hasse & Ellis, 1987, 

p. 408). 

There are four test criteria in MANOVA. They are Wilks’ Λ, Bartlett-Pillai’s U, 

Hotelling-Lawley’s V, and Roy’s Θ. They can be computed as a different function of eigenvalues 

(λi), where λj is the jth characteristic root (eigenvalue) of H* E-1; Wilks’ Λ = ∏ 1/(1 + λi) , 

Bartlett-Pillai’s U = ∑ λi/(1 + λi), Hotelling-Lawley’s V = ∑ λi, and Roy’s Θ = λ1/(1 + λ1) (where 

λ1 is the largest eigenvalue). Instead of using the four test criteria, a F-test approximation, which 

is transformed from Wilks’ Λ, Bartlett-Pillai’s U, Hotelling-Lawley’s V, and Roy’s Θ to F, is used 

for the test statistic in MANOVA. If the F-test approximation test is significant, the follow- up 
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test (e.g., contrast analysis and discriminant analysis) can be conducted.  

In addition, as Keselman et al (1998) noted, data conditions should be considered because 

all ANOVA-type statistics require that data conform to distributional assumptions in order to 

provide valid tests of statistical hypotheses. The assumptions in MANOVA are:  

1. The observations on the p dependent variables follow a multivariate normal 

distribution in each population. 

2. The population covariance matrices for the p dependent variables in each population 

are equal. 

3. The observations are independent. (Stevens, 1992, p.245). 

 

Measure of Strength of Association 

Univariate context 

Pearson (1905) proposed η, correlation ratio, to describe a nonlinear relationship between 

the grouping variable and the dependent variable. It reflects the relationship between the 

grouping variable and the dependent variable within a sample. Later, Fisher (1925) described the 

squared correlation ratio (η2 ) as a measure of strength of association in the ANOVA context. The 

notation η2 was defined as: 

 

η2  =  SSBetween =  1- SSWithin 
        SSTotal        SSTotal  

where,   
SSBetween   =  sum of squares for between groups, 

        SSWithin    =  sum of squares for within group (error), 
                   SSTotal    =  sum of squares for total variation. 
  

However, it is a positively biased estimator, that is, it over estimates the relationship between the 
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grouping variable and the dependent variable. Kelly (1935) suggested an adjustment of the eta 

squared (η2), ε2. The notation ε2 was defined as: 

 

ε2  =  1 – (N-1) SSWithin 
         (N-K) SSTotal 

  
where,   

SSWithin    =  sum of squares for within group (error), 
                    SSTotal    =  sum of squares for total variation, 
                    N       =  number of total sample size, 
                    K       =  number of groups. 
 

In 1963, Hays proposed another estimator of strength of association in the ANOVA 

context, ω2, to reduce the estimation bias associated with the eta squared (η2). Epsilon squared 

(ε2
) and omega squared (ω2) were proposed for inferential purposes, they estimate strength of 

association within the population (Richardson, 1996; Huberty, 2002). The notation ω2 defined as: 

 

ω2  =  SSBetween – (K-1) MSWithin 
  SSTotal + MSWithin 

 Where,   
SSBetween   =  sum of squares for between groups (hypothesis), 

                    SSTotal    =  sum of squares for total variation, 
  MSWithin  =  mean squares for within group (error), 

                K       =  number of groups. 
 

 These measures of associations (η2, ε2, and ω2) represent the proportion of variance in 

the dependent variable that is explained by the grouping variable (Richardson, 1996; Olejnik and 

Algina, 2000). Carrol and Nordholm (1975) and Keselman (1975) studied empirical comparisons 

among η2, ε2, and ω2 using computer simulation method. 

Carrol and Nordholm (1975) evaluated sampling distributions of ε2 and ω2 using 
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computer simulation study within the context of one-way ANOVA. In the study, they considered 

equal and unequal sample sizes (total sample sizes yielded 15, 30, and 90) and three levels of 

variance conditions (homogeneous variances, slight heterogeneity, and marked heterogeneity) 

when three groups were compared. The results indicated that 1) ω2 was slightly biased and ε2 was 

not biased when equal sample size and homogeneous variances were considered; 2) both ω2 and 

ε2 underestimated independent-dependent variable relationship when homogeneous variances and 

unequal sample were considered; 3) both ω2 and ε2 substantially underestimated independent-

dependent variable relationship when the relationship between heterogeneous variance and 

unequal sample size was positive; 4) both ω2 and ε2 substantially overestimated independent-

dependent variable relationship when the relationship between heterogeneous variance and 

unequal sample size was negative. With regard to precision, both ω2 and ε2 had “large standard 

deviations when small samples were used” (Carrol and Nordholm, 1975, p.549). However, the 

standard deviations of ω2 were consistently lower than those of ε2.  

Keselman (1975) compared the sampling distributions of η2, ε2, and ω2. He considered 

normal and non-normal distributions, three levels of population effect sizes, and two levels of 

variability of population. He found that ω2 was the least unbiased estimator among them and the 

standard deviation of η2 was smaller than those of ε2 and ω2. 

“Edgeworth (1892) used the expression coefficient of correlation for the symbol ρ 

(parameter and statistic were not then commonly differenciated)” (Huberty, 2002, p.229). 

Pearson began to “popularize the correlation coefficient, r, around 1896” (Huberty, 2002, p.229). 

Currently, the notation ρ is considered as a parameter and the notation r is considered as a 

statistic. In other words, the squared rho (ρ2) represents the proportion of variance in the 

dependent variable that is explained by “its regression on the independent variable within the 

population” (Richardson, 1996, p.16). On the other hand, the squared Pearson correlation 
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coefficient (R2) represents the magnitude of strength of association within a sample. The notation 

R2 defined as: 

 
R2  =   SSreg  =   SSreg 

 Σ(yi-Y)2     SStotal 
 where,  

 SSreg  =   sum squares for regression (hypothesis), 
              Σ(yi-Y) 2 =  sum squares for total, where Y is the mean of yi. 

 

“In 1914, Pearson proposed the expression coefficient of multiple correlation when he 

used the symbol R” (Huberty, 2002, p.233). In multiple regression, the notation R2 (squared 

multiple correlation) is used as a measure of the strength of association between a dependent 

variable and a linear composite of independent variables within a sample. The squared multiple 

correlation (R2) is a positively biased estimator. Ezekiel (1930) proposed an adjustment to get an 

unbiased strength of association of parameter. The adjustment derived as a function of sample 

size and number of independent variables. The Ezekiel’s adjustment is defined as: 

 
R2

E = 1 –   N – 1  (1 – R2) 
    N – P – 1 

where,   
N  =  sample size, 
P  =   number of independent variables, 
R2  =  squared multiple correlation.  

 
Multivariate Context 

 Several multivariate strength of association indices were derived by a generalization of 

the univariate correlation ratio (eta squared and omega squared) and a function of canonical 

correlation, which reflects a relationship between a linear composite of dependent variables and a 

grouping variable (Huberty, 1994).  
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Wilks index  

“Multivariate generalization of η2 have been proposed by Wilks (1932) and Hsu (1940)” 

(Huberty, 1972). The Wilks’ multivariate generalization of the eta squared index can be derived 

simply as shown below. 

 η2  =  SSBetween =  1- SSWithin 
SSTotal        SSTotal 

from the relationship among the SS’s,  

1 - η2  =     SSWithin   

        SSBetween + SSWithin 

this generalizes to 

                         
1 - η2

mult  =   ׀E׀   =  Λ 
 ׀H + E׀

 
where,    ׀E׀  =   determinant of error sum of squares and cross products 

(SSCP) matrix,  
 .determinant of total SSCP matrix  = ׀T׀ = ׀H + E׀       

 

Thus,               η2
mult (WI)  =  1 – Λ   

Alternatively,        η2
mult (WI)  =  1 – ∏ 1 /(1 + λj), where λj is the jth characteristic root 

(eigenvalue) of H* E-1.          

         The lamda (Λ) is one of the multivariate test criteria and is actually a “product of two 

matrices, H* E-1” (Huberty, 1994). When λj is the jth characteristic root (eigenvalue) c), Λ can be 

expressed by Λ = Πr
j=1 1 /1+ λj. Wilks’ index (η2

mult =1 – Λ) can be given by ׀H׀ /׀T׀, a ratio of 

the determinants of the hypothesis SSCP matrix and the total SSCP matrix. When the between 

group variation is large relative to the total variation, then Λ will be close to zero, and hence 1 – 

Λ will be close to 1. On the other hand, when the between groups variation is small relative to 
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the total variation, then Λ will be close to 1, and 1 – Λ will be close to zero. 

 
Hsu index 

Hsu proposed a multivariate generalization of eta squared by suggesting that V equals 

η2/1- η2 (Huberty, 1972,; Stevens, 1972). The Hsu’s index is defined as: 

 
η2

mult(HI)  =    V       =  Σ λj  
         1 + V      1 + Σ λj 

 
where,    V =  Σ λj, where λj is the jth eigenvalue of the H* E-1 matrix           

                      (Hotelling – Lawley trace Criterion). 
 

According to Stevens (1972), the difference between 1 – Λ and V/(1+V) is small. To 

prove why the difference between 1 – Λ and V/(1+V) is small, he showed that Λ and 1/(1+V) 

differ by little because V/(1+V) equals 1 - 1/(1+V). The Λ can be expressed using V as a function 

of λj (only when the number of dependent variables are more than one). He presented that as 

shown below: 

 
Two groups :  Λ =   1    =   1   

                        1 + λ1       1 + V 

        Thus for two groups, since there is just one eigenvalue, Λ and 1/(1+V) are equal. 

Three groups :  Λ =      1         =        1       
                            (1 + λ1) (1 + λ2)        1 + V + λ1 λ2 

 Four groups :   Λ =          1        =                1              

                          (1 + λ1) (1 + λ2)( 1 + λ3)    1+V + λ1 λ2 +λ1 λ3+λ2 λ3+λ1 λ2 λ3 

 

Because the third eigenvalue of H* E-1 usually less than .05 and remaining eigenvalues 

are still smaller, for the K groups case (assuming more dependent variables than groups), the sum 

of all products involving all different pairs of eigenvalues, plus the sum of all products involving 
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all different triples of eigenvalues, plus the sum of all products involving all different quadruples 

of eigenvalues, . . . , plus product of all nonzero q eigenvalues will be negligible (Steven, 1972). 

Therefore, there is little difference between 1 – Λ and V/(1+V).  

 

Stevens Index  

In 1972, Stevens proposed a modification of the Hsu index. According to Stevens (1972), 

“Ghosh (1963) suggested that a modification of the global measure involving V might be better 

and showed that E(V) = dfeΣ λj(dfe-p-1)” (p.375), where dfe is the degrees of freedom for the E 

matrix, p is the number of dependent variables, and the λj are the population eigenvalues of  

H* E-1. An unbiased estimate of the population sum of roots for V is given by V(dfe – p – 1)/ dfe.     

The Stevens index is defined as:  

 
η2

mult(SI)   =   V΄ 
                                                    1 + V΄  

Where,   
V΄ =  V(dfe – p – 1)/ dfe. 

 

Shaffer and Gillo index  

Shaffer and Gillo (1974) proposed an alternative multivariate generalization of the 

univariate correlation ratio (η). They argued that in the univariate context, W + B = T, where W = 

sum of squares for within groups (error), B = sum of squares for between groups, and T = sum of 

squares for total variation thus, univariate correlation ratio can be computed as 1 – W/T or B/T. 

However, in the multivariate context, when ׀E׀ ,׀H׀, and ׀T׀ are taken as the multivariate 

generalization of univariate W, B, and T, then ׀E׀+ ׀H׀ ≠ ׀T׀. Therefore, “the two definitions of 

the correlation ratio do not produce the same measure, using these multivariate definitions, and 

Wilks himself regarded both 1 – ׀E׀ /׀T׀ and ׀H׀ /׀T׀ as different possible multivariate 
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generalization” (Shaffer and Gillo, 1974, p.523). In contrast to the Wilks index, the Shaffer and 

Gillo index is based on the additive decomposition Tr(TE-1) = Tr(EE-1) + Tr(HE-1) = p + Tr(HE-

1), where p is the number of dependent variables and Tr( ) is the trace of the matrix product 

named in the parentheses. They insisted that their index is a more suitable multivariate 

generalization of the univariate correlation ratio. The Shaffer and Gillo index is defined as: 

  

 η2
mult(SGI)     =  1 - Tr(EE-1)  =  Tr(HE-1) 

                   Tr(TE-1)     Tr(TE-1) 
where ,     

Tr(EE-1) =  trace of matric product of EE-1, 
                    Tr(HE-1) =  trace of matric product of HE-1, 
                    Tr(TE-1) =  trace of matric product of TE-1. 

 
It is equivalently expressed as: 

 
η2

mult(SGI)    =    Tr(HE-1)    =     V  =   Σ λj  
r + Tr(HE-1)      r + V    r + Σ λj 

 
where,     

r  = min(p,q), where p is the number of variables and q is the number 
of group minus one, 

V  =  the Hotelling – Lawley trace statistic = Tr(HE-1). 
 

“It can be regarded as a weighted average of the estimated correlation ratios for 

each of the discriminant functions, with each weight equal to the total sum of 

squares for that discriminant function after the functions have been standardized so 

that each has the same within groups sum of squares” (Shaffer and Gillo, 1974, 

p.523).  
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Tatsuoka index and Sachdeva index 

Tatsuoka (1970) proposed ω2
mult as a multivariate analogue to the univariate Hays’ ω2. It 

is obtained by “replacing each sum of squares by the determinant of the corresponding SSCP 

matrix, with one exception: SSBetween is replaced by ׀T׀ – ׀E׀ rather than ׀H׀” (Huberty, 1972). 

 Hays’ univariate index is defined as: 

ω2  =  SSBetween – (K-1) MSWithin 

  SSTotal + MSWithin 
 

Tatsuoka (1973) examined four expressions for a multivariate omega squared effect size 

measures to prove that the most plausible estimator of ω2
 is the ω2

mult presented in 1970 based on 

the conditions. It is that 1 – Λ converge to ω2
 when N →∞ and p (the number of dependent 

variables) increases. The result indicated that ω2
mult is the most plausible estimator of ω2 among 

four expressions (Tatsuoka, 1973). Tatsuoka’s multivariate index is defined as: 

 

ω2
mult  =  ׀T׀ – ׀E׀ – (K-1) ׀E׀/(N-K)    

 (N-K)/׀E׀ + ׀T׀
where,   

              N =   sample size, 
              K =   the number of groups, 

 ,determinant of total SSCP matrix   = ׀T׀
 .determinant of error SSCP matrix   = ׀E׀

 

Since ׀E׀ /׀T׀ = Λ, an equivalent expression using Λ is: 

ω2
mult =  1 – Λ – (K- 1) Λ/(N-K) 

       1 + Λ/(N-K) 

                            =  (N-K) – (N-1) Λ 

                                 (N-K) + Λ  

Sachdeva (1973) also arrived, independently, at the same index as Tatsuoka. According to 
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Sachdeva (1972),  

ω2  =  SSBetween – (K-1) MSWithin 
  SSTotal + MSWithin 

        =  SSBetween – (K-1)/(N-K) SSWithin 
SSTotal + 1/(N-K) SSWithin 

 

the multivariate extension of Hays ω2 is obtained by replacing each sum of squares by the 
determinant of the corresponding matrix of sums of squares and sums of cross products, 

 
ω2

mult   =  ׀H׀ – (K-1) ׀E׀/(N-K)    
 (N-K)/׀E׀ + ׀T׀

where,  
 .determinant of hypothesis SSCP matrix   =  ׀H׀

It was simplified to the expression using Λ (Sachdeva, 1973). 

 
ω2

mult     =  1 –      N Λ    
             Λ + (N-K) 

 

Sachdeva proposed another formula using “The ω2
mult as defined above expression can also be 

estimated by the F-ratio using the fact (Rao, 1965) that” (Sachdeva, 1973, p.629) 

 
F  =  (1 – Λ1/s)u 

Λ1/s 

 where,     
s  =    √ [p2(dfh)2 - 4] / [p2 + (dfh)2 - 5]  

            u  =    s [2dfe + dfh – p - 1] – p(dfh) + 2  
                                            2 p(dfh) 

  dfe  =   the degrees of freedom for the error SSCP matrix 

dfh  =     the degrees of freedom for the hypothesis 
 

The formula using the F value and u is defined as: 
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ω2
mult     =  1 –      N us     

(N-K) F( + u)s + us 

 

The formulas using Λ and the F value obtained the exact same value of the strength of 

association (Sachdeva, 1973). 

 

Hotelling and Rozeboom index 

Hotelling (1936) and Rozeboom (1965) proposed a multivariate measure of association 

as a generalization of the squared multiple correlation coefficient in the multivariate regression 

context: the function of the canonical correlation (Cramer and Nicewander, 1979). The Hotelling 

and Rozeboom’s index is defined as: 

 
R2

mult(HRI)  = 1 - ׀Serror1  =  ׀ - Πr
j=1 (1- ρ2

j) 
 ׀Stotal׀

 where,     
             Serror  =  error sum of squares and cross products (SSCP) matrix,  

                  Stotal  =   total sum of squares and cross products (SSCP) matrix,  
    r    =  the number of dependent variables (assumes p ≤ q, where p = 

the number of dependent variables and q = the number of 
independent variables), 

      ρ2
j 

   =   the squared canonical correlation, where ρ2
j = λj/(1+ λj). 

   

It is analogous to the Wilks index and may be interpreted as one minus the proportion of 

unexplained, generalized variance. 

 
R2

mult(HRI)  =  η2
mult (WI)  =  1 – Λ  =  1 - Πr

j=1 (1- ρ2
j) 

 

Cramer and Nicewander Index 

In 1979, Cramer and Nicewander proposed several multivariate measures of association 

in the multivariate regression context “derived using other generalizations of the squared 
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multiple correlation coefficient” (Cramer and Nicewander, p.49). Two of them are defined as: 

 
R2

mult(CNI)  =  1 - ׀Serror1׀/ p   =  1 - [ Πr
j=1 (1- ρ2

j) ] 1/p 
 p/1׀Stotal׀

                  =   1 – (Λ) 1/p 
and 

R2
mult(CNI1)   =   Tr(S-1

totalSreg )  =  ∑ rj=1 ρ2 
Tr(S-1

totalStotal)       p 
 

where,     
Serror  =    error sum of squares and cross products (SSCP) matrix,  

                           Stotal   =    total sum of squares and cross products (SSCP) matrix,  
              Sreg   =   regression sum of squares and cross products (SSCP) matrix, 

    p   =   the number of dependent variables (assumes p ≤ q, where q = 
the number of independent variables), 

      ρ2
 j 

  =    the squared canonical correlation. 
 

The R2
mult(CNI) is “equal to one minus the geometric mean of the 1- ρ2

j, and which has a 

proportion of variance interpretation” (Cramer and Nicewander, 1979, p.49). The R2
mult(CNI1) is 

the arithmetic average of the squared canonical correlation for the separate linear combinations 

of two sets of variables.  

 
Serlin Index 

Serlin (1982) examined the utility of an average squared canonical correlation (R2
multCNI1) 

in the discriminant analysis context. In the discriminant analysis context, “the interpretation of 

R2
multCNI1 can be closely aligned to that of Fisher’s correlation ratio, in that it can be shown to 

equal a ratio of between group and total sums of squared deviations” (Serlin, 1982, p.414). When 

there are r discriminant functions, where r is the min(p, q), p is the number of dependent 

variables and q is the number of groups minus one, “a sum of squares between groups can be 

associated with each discriminant function and is equivalent to the corresponding Roy’s criterion, 
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Θ, the sum of squares total for each discrimiant function is unity” (Serlin, 1982, p.415). That is, 

 

SSBetween =  ∑ rj=1 SSBetweenj  =  ∑ rj=1 Θj 

SSTotal =  ∑ rj=1 SSTotalj  =  r 

where:   

                      Θj = λj/(1 + λj),  λj  =  SSBetweenj / SSWithinj 

 
The ratio of the overall between group and total sum of squares is,  

 
SSBetween =  ∑ rj=1 Θj   =  ∑ rj=1 ρ2

j 

SSTotal     r          r 
 

It is the average of the squared canonical correlations between the set of dependent variables and 

a set of dummy variables, and same as Cramer and Nicewander index (CNI1) in the multivariate 

regression context. The ∑ rj=1 Θj is the Pillai –Bartlett MANOVA test criterion, U, thus effect-size 

is defined as:   

η2
mult(SEI)  =  SSBetween  =   U  

 SSTotal       r 

 

Adjusting the MANOVA Measures of Association 

Tatsuoka Adjustment 

In 1973, Tatsuoka found that ω2
mult is highly positively biased when the number of 

variables is large, the sample size is small, and the population value of ω2
mult is small. Therefore, 

he decided to develop an adjustment formula to reduce the bias in ω2
mult. After reviewing the 

sampling distribution of ω2
mult, he observed that the amount of bias seemed to be a linear function 

of 1 - ω2
mult for fixed p and N, where p is the number of dependent variables and N is total sample 

size. That is, the amount of bias equaled m(1 - ω2
mult ). From this equation, an adjusted value of 
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ω2
mult was computed as: 

 

(ω2
mult)adj = ω2

mult  –  m(1 - ω2
mult ) 

  

He then determined that “m was approximately inversely proportional to N and roughly directly 

proportional to p” (Tatsuoka, 1973, p.18). Tatsuoka estimated m: 

 
m = cMaQb 

 
where,     c, a, and b were to be determined on a least-squares basis, 
           M = N – 1 – (p + K)/2, 
           Q = p(K – 1). 

 

He found c, a, and b using special equation (see, Tatsuoka, 1973, p.19): c = .3680,  

a = -1.0677, and b = 1.3631. And the adjustment equation defined as: 

 
(ω2

mult)adj = ω2
mult  –  .368 [N – 1 – (p + K)/2]-1.0677[ p(K – 1)]1.3631 (1 - ω2

mult ) 
 

Tatsuoka considered several estimators of M and Q were tried out. Three of the most promising 

estimators led to following values for c, a, and b: 

 
M = N – 1 – (p + K)/2, Q = p2 + (K – 1)2 :   c = .2801,  a = -1.0692,  b = 1.1343 
M = N, Q = p(K – 1):                   c = .4358,  a = -1.1048,  b = 1.3899 
M = N, Q = p2 + (K – 1)2 :               c = .3041,  a = -1.1066,  b = 1.1579 

 

Tatsuoka determined that M = N and Q = p2 + (K – 1)2 was the most effective combination for 

adjustment procedure. Observing further that the value of c was close to 1/3, a was close to –1, 

and b was close to 1, he proposed “alternative, simpler formula, rule- of - thumb correction” 

(Tatsuoka, 1973, p.24). 
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The rule- of - thumb correction formula is defined as: 

 
(ω2

mult)adj
 =  ω2

mult  –  p2 + q2  (1 - ω2
mult) 

                                          3N 
where,    

 p  =  the number of variables, 
                       q  =  the degree of freedom for hypothesis, 
                       N  =  the sample size. 

 

Tatsuoka believed that this formula was adequate when “p*q ≤ 49 and 75 ≤ N ≤ 2000” 

(Tatsuoka, 1973, p.31) and that this adjustment “will suffice for all practical purpose” (Tatsuoka, 

1973, p.31) when used with Wilks index (η2
mult-WI  =  1 – Λ) and Hsu index (η2

mult-HI  =  V / 1 + 

V). That is, 

 
(η2

mult-WI ) adj
 = η2

mult-WI   –  p2 + q2  (1 - η2
mult-WI ), 

                                           3N 
 

(η2
mult-HI ) adj

 = η2
mult-HI   –  p2 + q2  (1 - η2

mult-HI ). 
                                           3N 
 

Huberty (1994, p.195) applied the Tatsuoka formula to adjust the ω2
mult, the Shaffer-Gillo index, 

the Cramer-Nicewander index, and the Serlin index. 

 
Serlin Adjustment 

According to Serlin (1982), the η2
mult(SEI) is a biased estimator because “the expected 

value of η2
mult(SEI) is nonzero when the null hypothesis is true” (p.414). In other words, the 

Serlin index is a measure of the strength of association in the sample not in the population. When 

there is zero association in the population, the expected value of η2
mult-SEI is  
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E(η2
mult-SEI) =    b 

                                          N – 1 
 
where,     b = max(p, q), where p is the number of variables and q is the 

number of group minus 1. 
 
It is similar to the expected value for the multiple R2: 

 
E(R2) =    p 

                                         N – 1 
 

where,   p = the number of independent variables in the multiple regression. 
 

Therefore, Serlin (1982) proposed the adjustment for η2
mult-SEI, which is parallel to the R2 

adjustment. It was originated by Ezekiel (1930). The adjustment is defined as: 

 
R2

E  =  1 –   N – 1  (1 – R2), 
                                    N – p – 1 

 
(η2

mult-SEI ) adj  =  1 –   N – 1  (1 – η2
mult-SEI ). 

      N – b – 1 
  

where,     b = max(p, q), where p is the number of variables and q is the 
number of groups minus 1. 

 

Although the two adjustment procedures have been recommended to reduce bias in 

multivariate effect size estimators, no study evaluating them has been identified. In this study, 

two adjustment procedures are used with the eight of multivariate measures of association- 

suggested by Wilks (WI), Hsu (HI), Stevens (SI), Shaffer-Gillo (SGI), Serlin (SEI), Tasuoka-

Sachdeva (TSI), Hotelling-Rozeboom (HRI), and Cramer-Nicewander (CNI)- under the planned 

sampling conditions using SAS/IML (SAS Institute INC, version 8, 1999-2001).  

 



 27

Related Study 

As indicated above, several researchers have proposed indices of measure of association 

in the MANOVA context. However, few studies have been conducted to examine the 

distributional properties these measures. One exception was Tatsuoka (1973) who examined the 

statistical properties (mean) of TSI by computer simulation study.  

According to Tatsuoka, TSI was highly positively biased when the number of variables is 

large, the sample size is small, and is especially biased for population sets with low effect sizes 

when the ratio N/p (of total sample size to number of variables) was any lower than 40 or so. To 

reduce the bias in TSI, he (1973) developed an adjustment formula. He maintained that this 

adjustment formula for TSI suffices in the case of p*(k-1) ≤ 49 and 75 ≤ N ≤ 2000 and it could 

be used with WI and HI, as well as with TSI.  
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CHAPTER 3 

METHODS 

The purposes of this study are: 1) to examine degree of bias and precision in eight 

multivariate measures of association and 2) to evaluate the effectiveness of the Tatsuoka and 

Serlin procedures for adjusting eight effect-size measures. SAS/IML (SAS Institute INC, version 

8, 1999-2001) is used to generate normal random numbers by the rannor function and to compute 

the descriptive statistics (means and standard deviation) for the following eight effect-size 

measures: suggested by Wilks (WI), Hsu (HI), Stevens (SI), Shaffer-Gillo  (SGI), Serlin (SEI), 

Tasuoka-Sachdeva (TSI), Hotelling-Rozeboom (HRI), and Cramer-Nicewander (CNI). In 

addition, each of the effect-size measures is adjusted using the methods suggested by Tatsuoka 

(TA) and Serlin (SA). In this chapter the data generation procedure used is described along with 

the specific sampling conditions. 

 
Sampling conditions 

Four factors are manipulated for the present study when the multivariate assumptions are 

met: 1) the number of populations compared (k), 2) sample size (n), 3) the number of response 

variables (p), and 4) effect size (η2). Three sets of populations (k) were considered: 2, 3, and 5. 

For each population set, equal samples of two sizes were drawn: n = 10, and 50, it yielded total 

sample sizes of N = 20, 30, 50, 100, 150, and 250. Three levels are used for the number of 

variables (p): 3, 5, and 10. Additionally, four levels of effect-size are considered: η2
m =0, .1, .3, 

and .5. There are a total of 3*2*3*4 = 72 sampling conditions. When Tatsuoka (1973) examined 

the sampling distribution of omega squared and developed a correction formula for the bias of 
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TSI, he considered comparisons involving 5 populations, three sample sizes (n = 15, 30, and 60), 

three variable sets (3, 5, and 10), five effect- size levels (.1, .3, .5, .7, and .9), and two conditions 

of average intercorrelations among variables (low: .10 - .30, moderate: .40 - .60). In this study, 

the factor of the intercorrelations among variables is not considered but confined as zero. 

Tatsuoka (1973, p.13) indicated that the magnitude of average intercorrelations among variables 

had “virtually no effect on the sampling distribution” of Tatsuoka-Sachdeva index (TSI).  

  

Generating the populations 

When effect-size is zero, the null case, each of the k populations has a normal distribution 

with a mean of 0 and variance of 1 for each of the p variables. In cases where effect-size is not 

zero, data are generated as in the null case, but a constant is added to each observation in one 

sample on each of the p variables. The constant corresponds to the desired population mean. The 

constants are chosen to meet the specified relationship (eta squared) between the grouping factor 

and the dependent variables. The eta squared means that the proportion of generalized variance 

or total variance of the dependent variable accounted for by membership in the different 

populations. The formula for the population eta squared provided by Tatsuoka (1973) is defined 

as: 

 
 η 2

m
 (3.1)                ׀Σ׀   -  1  =  

 ׀Σ + αα΄/k׀
                 

where,  Σ =  common variance covariance matrix, 
k =  number of groups, 
α =  αjk (j = 1,2,…, p; k = 1,2, …, k), where j = the number of 

dependent variables, k = the number of groups , 
αjk =  µjk - µj., where µjk = population mean for variable j and 

population k, µj = grand mean for variable j.  
 



 30

For the present study, p*p identity matrix is used for common variance covariance matrix 

(Σ) because there were no intercorrelations among variables. SAS/IML was used to determine 

the population means to meet the various preassigned values of eta squared effect sizes. The 

complete computer program for determining the population means is shown in appendix A for 

the case of 2 populations and 5 variables when the desired effect-size is .1. 

The way the population means were determined was described below. When 2 

populations are compared and 5 variables are considered under the desired effect-size (eta 

squared) is .1, α =  

.1492 -.1492 

.1492 -.1492 

.1492 -.1492 

.1492 -.1492 

.1492 -.1492 

With this matrix the population eta squared effect-size formula provided by Tatsuoka (1973), 

effect-size equals .1001556. The solution was checked by generating a half million observations 

for each group and computing η2 (eta squared). The results of generating a half million 

observations for each group and computing η2 yielded same as population eta squared in 

rounded four decimal places at all sampling conditions. Although there are many alternative 

combinations of population means that would lead to the same η2, it was decided to consider 

situations that one population’s means was not zero and all variables had same means. The 

population means assigned to all variables in one group for the various combinations of k and p 

to achieve the desired effect size, η2
m, are presented in Table 3.1. All other population means 

were set equal to zero. 
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Table 3.1 
One non-zero population mean vector of each sampling condition 
 
k η 2

m p 
        3 5 10 
2 .100 .385  .2984 .211 
 .300 .756 .586 .4141 
 .500 1.155 .895 .633 
3 .100 .409 .317 .224 
 .300 .802  .6214 .4393 
 .500 1.225 .949 .671 
5 .100 .482 .373 .264 
 .300 .946 .732 .518 
 .500 1.444 1.119 .791 

 

However, eta squared population effect-size formula (3.1) does not provide a population 

effect-size for SGI, SEI, and CNI. These effect size indices are based on different definition of 

effect size. The SGI represents a weighted average of the estimated correlation ratios for each of 

the discriminant functions. The SEI is the arithmetic average of the squared canonical correlation 

for the separate linear combinations of two sets of variables. And the CNI is equal to one minus 

the geometric mean of the 1- ρ2
j, where ρ2

j is the squared canonical correlation between grouping 

variables and jth linear discriminant function (LDF). As a result in the non-null case SGI, SEI, 

and CNI have different meaning of η2. The relationship between SGI, SEI, and CNI and η2
m is a 

function of the number of discriminant functions, r. 

The SGI effect-size is computed as: 

                     
                      ζ2  =  V                   (3.2)   

                                    r + V 
                   
               where,    V = sum of the eigenvalues of H* E-1  
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The relationship between ζ2 and η2 can be formed based on Hsu’s statement that V = η2/1- η2. 

Substituting this definition of V in equation 3.2, ζ2 is defined as:  

 
ζ2  =  η2/1- η2      =      η2/1- η2      

                           r + η2/1- η2          (η 2 – r η 2 + r) /1- η2 
 
Thus,                             ζ2  =      η 2       

            η 2 – r η 2 + r 
 
where,   η 2 = population eta squared, 
         r = min(p,q), where p is the number of variables and q is the 

number of group minus one. 
 

The population effect-size for SEI is defined as: 

 
ξ2  =  SSBetween =   ∑ rj=1 Θj                    (3.3) 

SSTottal      r 
 
Because Θj = λj/(1 + λj) and λj  =  SSBetweenj / SSWithinj,  

 
∑ rj=1 Θj  =  ∑ rj=1 (SSBetweenj / SSWithinj)/ ( 1 + SSBetweenj / SSWithinj) 

 
    =  ∑ rj=1 (SSBetweenj)/ (SSWithinj + SSBetweenj) 

 
=  ∑ rj=1 (SSBetweenj)/ (SSTotalj) 

 
=  (SSBetween)/ (SSTotal) 

 

Eta squared, η 2, is former defined as η 2 = SSBetween/ SSTotal, so ∑ rj=1 Θj = η 2. 

 
and                               ξ2  =  η 2 

     r 
 
where :   η 2 = population eta squared, 
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         r = min(p,q), where p is the number of variables and q is the 
number of group minus one. 

 

SEI is therefore the average contribution each discriminant function makes to η 2.  

The formula for the population CNI can be derived simply as shown below. 

 

τ2  =  1 – [ Πr
j=1 (1- ρ2

j) ] 1/r 

 

Because Πr
j=1 (1- ρ2

j) = Λ and η2 = 1 – Λ, 

 

τ2  =  1 – [Λ] 1/r , Λ = 1 – η2 

Thus,  
τ2  =  1 – (1 - η 2) 1/r 

 
where :   η 2 = population eta squared, 
         r = min(p,q), where p is the number of variables and q is the 

number of group minus one. 
 

From the above it is shown that SGI, SEI, and CNI provide different definitions of effect 

size when η 2 > 0.They are all influenced by r, where r = min(p,q). When r = 1, they are the same. 

Table 3.2 provides parameters values rounded to three decimal places for SGI (ζ2), SEI (ξ2), and 

CNI (τ2) that correspond to eta squared index (WI, HI, SI, TSI, and HRI). The means of the 

sampling distribution for SGI, SEI, and CNI were compared to these values to estimate the 

degree of bias associated with these three effect-size indices. 

 
Table 3.2  
Parameter values measures of effect-size 
 
r η 2

m ζ2 ξ2 τ2 
2 .100 .053 .050 .051 
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 .300 .176 .150 .163 
 .500 .333 .250 .293 
3 .100 .033 .033 .035 
 .300 .125 .100 .112 
 .500 .250 .167 .206 
4 .100 .027 .025 .026 
 .300 .097 .075 .085 
 .500 .200 .125 .159 

r=min(p,q) 

 

Generating the Samples 

Data for each group (k = 1, . . . , K) were generated using the following linear model:  

 
yij  =  µj  +  εij 

 
where,    εij ~ N(0,I),  
         µj = vector of p population means for the group j. 

 

The error component εij was generated using the rannor function in SAS/IML. The µj were taken 

from tables 3.1. The computer program for generating samples and computing statistics is shown 

appendix B.  

For each condition, 10,000 replications were generated. For each replication, values for 

WI, HI, SI, SGI, SEI, TSI, HRI, and CRI were calculated. The means and standard deviations of 

each statistic were computed across the 10,000 replications. The bias was estimated by 

subtracting the population effect-size from mean of each effect-size index. In this study, 

difference between the mean effect-size and the parameters identified in Table 3.2 that was 0 to 

two decimal places was considered acceptable. 
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CHAPTER 4 

RESULTS 

The purposes of this study are: 1) to examine the degree of bias and precision in eight 

multivariate measures of association and 2) to evaluate the effectiveness of the Tatsuoka and 

Serlin procedures for adjusting the eight effect-size measures. In the previous chapter, the 

method used to generate the sampling distributions of Wilks index (WI), Hsu index (HI), Stevens 

index (SI), Shaffer-Gillo index (SGI), Serlin index (SEI), Tasuoka-Sachdeva index (TSI), 

Hotelling-Rozeboom index (HRI), and Cramer-Nicewander index (CNI) was described. Each of 

the effect-size measures was adjusted using the methods suggested by Tatsuoka (TA) and Serlin 

(SA). The bias was estimated by subtracting population effect-size from mean of each effect-size 

index. 

In this chapter the results of the study are presented. First, the degree of bias associated 

with each index is presented. Second, the effectiveness of the two adjustment procedures is 

evaluated. And third, the precision with which adjusted and unadjusted measures of association 

estimate the effect-sizes is considered. The chapter ends with a summary of the research findings.    

 

Bias in Unadjusted Measures of Effect Size 

 The results indicate that all of the unadjusted effect-size measures were biased to some 

degree and the amount of bias was affected by the number of populations compared, sample 

sizes, the number of response variables, and effect size. The pattern of results was similar for all 

eight indices, but the magnitude of the bias varied among the indices. The complete results are 

presented in Appendix C, but to facilitate the understanding the main factors affecting bias 

results are presented in several smaller tables which highlight the effect of 1) magnitude of the 
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effect-size, 2) sample size, 3) number of variables, and 4) number of populations compared. 

Effect size 

Table 4.1 presents the bias of the unadjusted effect-size indices as the population effect 

size increased. As shown in Table 4.1, for all of the effect-size measures bias decreased as the 

population effect size increased. For example, considering the Wilks index (WI) when p=5, n=10, 

and k=2, the bias was .260, .235, .181, and .131 for η2 = 0 .1, .3, and .5, respectively. The same 

pattern is apparent for all eight indices and for group sizes of 2, 3, and 5.   

 
Table 4.1  
Bias of the unadjusted effect-size indices as population effect-size increases  
 

p n k η 2
m WI     HI     SI     SGI     SEI    TSI    HRI    CNI 

5 10 2 0 .260   .260    .195    .260    .260    .211    .260    .260 

   .1 .235   .235    .159    .235    .235    .189    .235    .235 

   .3 .181   .181    .090    .181    .181    .141    .181    .181 

   .5 .131   .131    .040    .131    .131    .100    .131    .131 

  3 0 .321   .306    .257    .185    .173    .265    .321    .179 

   .1 .287   .266    .213    .177    .161    .234    .287    .170 

   .3 .222   .195    .136    .160    .141    .179    .222    .151 

   .5 .160   .132    .074    .135    .122    .128    .160    .130 

  5 0 .347   .319    .290    .107    .098    .285    .347    .102 

   .1 .315   .278    .246    .108    .095    .258    .315    .101 

   .3 .244   .197    .162    .106    .087    .199    .244    .096 

   .5 .173   .123    .090    .098    .079    .139    .173    .088 

 

Sample size 

Table 4.2 presents the bias of the unadjusted effect-size as sample size increased. As can 

be seen in Table 4.2, for all of the effect-size measures the bias was much greater when sample 

size was small (n = 10) than when sample size was large (n = 50). Considering the Wilks index 
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(WI) when k=3, p=5, η2 = 0, and n=10, the bias was .321. But when n was increased 50, the bias 

of WI was .065. These results also demonstrate that even with a relatively large sample size (N = 

150) all eight measures of association over-estimated the relationship between the grouping 

variable and outcome measures to an unacceptable degree.    

 
Table 4.2  
Bias of the unadjusted effect-size indices as sample size increases 
 
k p η 2

m n WI     HI     SI     SGI     SEI    TSI    HRI    CNI 

3 5 0 10 .321   .306    .257    .185    .173    .265    .321    .179 

   50 .065   .065    .062    .033    .033    .052    .065    .033 

  .1 10 .287   .266    .213    .177    .161    .234    .287    .170 

   50 .059   .057    .051    .033    .031    .047    .059    .032 

  .3 10 .222   .195    .136    .160    .141    .179    .222    .151 

   50 .046   .040    .031    .030    .027    .036    .046    .029 

  .5 10 .160   .132    .074    .135    .122    .128    .160    .130 

   50 .033   .026    .016    .025    .023    .025    .033    .024 

 

Number of variables 

Table 4.3 presents the bias of the unadjusted effect-size indices as the number of outcome 

variables increased from 3 to 10. As shown in Table 4.3, for all of the effect-size measures the 

bias increased as the number of variables was increased. For example, considering the Wilks 

index (WI) when k=3, n=50, and η2 = 0, the bias was .040, .065, and .129 for p=3, 5, and 10, 

respectively.  

 
Table 4.3  
Bias of unadjusted effect-size indices as the number of variables (p) increases 
 
k n η 2

m p WI     HI     SI     SGI     SEI    TSI    HRI    CNI 

3 50 0 3 .040    .039   .038    .020    .020    .026    .040    .020 
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   5 .065    .065   .062    .033    .033    .052    .065    .033 

   10 .129    .126   .117    .067    .066    .117    .129    .067 

  .1 3 .035    .034   .031    .020    .018    .023    .035    .019 

   5 .059    .057   .051    .033    .031    .047    .059    .032 

   10 .117    .110   .097    .065    .063    .105    .117    .065 

  .3 3 .027    .025   .019    .019    .016    .017    .027    .017 

   5 .046    .040   .031    .030    .027    .036    .046    .029 

   10 .090    .078   .060    .058    .055    .081    .090    .057 

  .5 3 .020    .017   .010    .017    .013    .012    .020    .015 

   5 .033    .026   .016    .025    .023    .025    .033    .024 

   10 .064    .050   .031    .047    .048    .057    .064    .048 

 

Number of populations 

Table 4.4 presents the bias of the unadjusted effect-size indices as the number of 

populations compared increases. As shown in Table 4.4, the bias all of the effect-size indices 

except SGI, SEI, and CNI increased as the number of populations increased. For SGI, SEI, and 

CNI bias decreased as the number of populations increased. For example, considering the Wilks 

index (WI) when p=5, n=10, and η2=0, the bias was .260, .321, and .347 for k=2, 3, and 5, 

respectively. On the other hand, considering Shaffer-Gillo index (SGI) when p=5, n=10, and 

η2=0, the bias was .260, .185, and .107 for k=2, 3, and 5, respectively.  

 
Table 4.4 
Bias of the unadjusted effect-size indices with regard to the number of population compared 
 
p n η 2

m k WI     HI     SI     SGI     SEI    TSI    HRI    CNI 

5 10 0 2 .260   .260    .195    .260    .260    .211    .260    .260 

   3 .321   .306    .257    .185    .173    .265    .321    .179 

   5 .347   .319    .290    .107    .098    .285    .347    .102 

  .1 2 .235   .235    .159    .235    .235    .189    .235    .235 

   3 .287   .266    .213    .177    .161    .234    .287    .170 
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   5 .315   .278    .246    .108    .095    .258    .315    .101 

  .3 2 .181   .181    .090    .181    .181    .141    .181    .181 

   3 .222   .195    .136    .160    .141    .179    .222    .151 

   5 .244   .197    .162    .106    .087    .199    .244    .096 

  .5 2 .131   .131    .040    .131    .131    .100    .131    .131 

   3 .160   .132    .074    .135    .122    .128    .160    .130 

   5 .173   .123    .090    .098    .079    .139    .173    .088 

 

Comparing two populations 

When two populations were compared, SI and TSI had less bias than WI, HI, SGI, SEI, 

HRI, and CNI regardless of sample size, the number of response variables, and effect size. The 

Wilks index (WI) and the Hotelling-Roseboom index (HRI) were the most biased indices under 

most sampling conditions (see results in Table 4.5). Table 4.5 presents the unadjusted effect-size 

bias when 2 populations are compared.  

 

Table 4.5  
Bias of the unadjusted effect-size indices when 2 populations are compared 
 
k η 2

m n p WI     HI     SI     SGI     SEI     TSI    HRI    CNI 

2 0 10 3 .157    .157    .129    .157    .157    .106    .157    .157 

   5 .260    .260    .195    .260    .260    .211    .260    .260 

   10 .526    .526    .321    .526    .526    .489    .526    .526 

  50 3 .030    .030    .028    .030    .030    .020    .030    .030 

   5 .051    .051    .048    .051    .051    .041    .051    .051 

   10 .101    .101    .091    .101    .101    .091    .101    .101 

 .1 10 3 .140    .140    .101    .140    .140    .091    .140    .140 

   5 .235    .235    .159    .235    .235    .189    .235    .235 

   10 .474    .474    .264    .474    .474    439    .474    .474 

  50 3 .027    .027    .022    .027    .027    .017    .027    .027 

   5 .045    .045    .038    .045    .045    .035    .045    .045 

   10 .090    .090    .073    .090    .090    .081    .090    .090 
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 .3 10 3 .109    .109    .055    .109    .109    .065    .109    .109 

   5 .181    .181    .090    .181    .181    .141    .181    .181 

   10 .365    .365    .156    .365    .365    .336    .365    .365 

  50 3 .020    .020    .011    .020    .020    .011    .020    .020 

   5 .034    .034    .021    .034    .034    .025    .034    .034 

   10 .069    .069    .043    .069    .069    .061    .069    .069 

 .5 10 3 .078    .078    .020    .078    .078    .043    .078    .078 

   5 .131    .131    .040    .131    .131    .100    .131    .131 

   10 .264    .264    .073    .264    .264    .242    .264    .264 

  50 3 .015    .015    .005    .015    .015    .008    .015    .015 

   5 .025    .025    .010    .025    .025    .018    .025    .025 

   10 .050    .050    .021    .050    .050    .043    .050    .050 

  

Comparing three or five populations 

 A similar pattern of results were obtained when three or five populations were compared. 

To present this pattern Table 4.6 summarizes the results for a comparison of three populations. 

For no or small effects (η2= 0 or .1) SGI, SEI, and CNI were less biased than WI, HI, SI, TSI, 

and HRI. For moderate or large effects (η2= .3 or .5) the results frequently revealed a different 

pattern. When k=3, n=10, p=5, 10, and η2= .3; k=3, n=10 (50), p=3, 5, 10, and η2=.5; k=5, n=10, 

p=3, 5, 10, and η2= .5, the Stevens index (SI) was the least biased measure of association. The 

Serlin index (SEI) was the least biased index when three or more populations compared under 

the most sampling conditions except for conditions stated above.  

 
Table 4.6 
Bias of the unadjusted effect-size indices when 3 populations are compared 
 
k η 2

m n p WI      HI     SI     SGI     SEI    TSI    HRI    CNI 

3 0 10 3 .198    .193    .170    .110    .102    .135    .198    .106 

   5 .321    .306    .257    .185    .173    .265    .321    .179 

   10 .580    .533    .409    .370    .346    .541    .580    .358 
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  50 3 .040    .039    .038    .020    .020    .026    .040    .020 

   5 .065    .065    .062    .033    .033    .052    .065    .033 

   10 .129    .126    .117    .067    .066    .117    .129    .067 

 .1 10 3 .178    .169    .141    .108    .096    .120    .178    .102 

   5 .287    .266    .213    .177    .161    .234    .287    .170 

   10 .520    .468    .344    .351    .325    .484    .520    .339 

  50 3 .035    .034    .031    .020    .018    .023    .035    .019 

   5 .059    .057    .051    .033    .031    .047    .059    .032 

   10 .117    .110    .097    .065    .063    .105    .117    .065 

 .3 10 3 .138    .125    .088    .101    .082    .089    .138    .092 

   5 .222    .195    .136    .160    .141    .179    .222    .151 

   10 .404    .348    .227    .310    .288    .375    .404    .300 

  50 3 .027    .025    .019    .019    .016    .017    .027    .017 

   5 .046    .040    .031    .030    .027    .036    .046    .029 

   10 .090    .078    .060    .058    .055    .081    .090    .057 

 .5 10 3 .100    .085    .047    .087    .069    .062    .100    .080 

   5 .160    .132    .074    .135    .122    .128    .160    .130 

   10 .287    .234    .124    .252    .251    .266    .287    .253 

  50 3 .020    .017    .010    .017    .013    .012    .020    .015 

   5 .033    .026    .016    .025    .023    .025    .033    .024 

   10 .064    .050    .031    .047    .048    .057    .064    .048 

 

 In sum, even when arelatively large sample size (n=50), all of the unadjusted effect-size 

measures were biased an unacceptable degree. Therefore, adjustment procedures suggested by 

Tatsuoka (1973) and Serlin (1982) need to reduce a bias in all of the unadjusted effect-size 

measures presented in this study. In the subsequence part, the amount of adjusted bias of eight 

effect-size measures using the Tatsuoka and the Serlin procedures are described. In addition, the 

effectiveness of these procedures is evaluated. 

The additional means of the sampling distributions of the 8 unadjusted effect-size indices 

are reported in Appendix C for comparisons of 2, 3, and 5 populations, involving 3, 5, and 10 

measures, with sample sizes of 10 and 50 when the population effect sizes are 0, .1, .3, and .5, 
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respectively.  

Bias in Adjusted Measures of Effect Size 

Comparing two populations 

In this study, the bias was estimated by subtracting population effect-size from mean of 

each effect-size index across 10,000 replications. The difference between the mean effect-size 

and the parameters that was 0 to two decimal places was considered acceptable. The bold 

number indicates the acceptable degree of bias. 

 

Serlin Adjustment 

The results indicate (see Table 4.7) that when two populations are compared, the Serlin 

adjustment provides an appropriate adjustment for all measures of effect-size except the Stevens 

index (SI) and the Tatsuoka-Sachdeva index (TSI) under most conditions. Table 4.7 provides the 

bias of adjusted effect-size using the Serin adjustment when two populations are compared. 

Applying the Serlin adjustment to the SI and TSI indices over-corrects for bias and the 

relationship is underestimated. These results were consistent for all effect sizes, and number of 

variables considered here. 

 
Table 4.7  
Bias of the adjusted effect-size indices using the Serin adjustment when 2 populations are 
compared 
 
k η 2

m n p WI     HI    SI     SGI    SEI    TSI    HRI   CNI 

2 0 10 3 -.000  -.000   -.033   -.000   -.000   -.060  -.000  -.000 

   5 -.003  -.003   -.091   -.003   -.003   -.069  -.003  -.003 

   10 .001   .001   -.432    .001   .001   -.078   .001   .001 

  50 3 -.000  -.000   -.001   -.000   -.000  -.010   -.000  -.000 

   5 .000   .000   -.002    .000   .000   -.009   .000   .000 

   10 .000   .000   -.011    .000   .000   -.010   .000   .000 
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 .1 10 3 -.001  -.001   -.047   -.001   -.001  -.060   -.001  -.001 

   5 -.001  -.001   -.105   -.001   -.001  -.064   -.001  -.001 

   10 .002   .002   -.442    .002   .002   -.071   .002   .002 

  50 3 .000   .000   -.004    .000   .000   -.010   .000   .000 

   5 .000   .000   -.007    .000   .000   -.010   .000   .000 

   10 .000   .000   -.019    .000   .000   -.010   .000   .000 

 .3 10 3 -.001  -.001   -.065   -.001   -.001   -.053  -.001   -.001 

   5 -.003  -.003   -.126   -.003   -.003   -.058  -.003   -.003 

   10 -.005  -.005   -.446   -.005   -.005   -.067  -.005   -.005 

  50 3 -.000  -.000   -.009   -.000   -.000   -.010  -.000   -.000 

   5 -.000  -.000   -.014   -.000   -.000   -.010  -.000   -.000 

   10 -.000  -.000   -.030   -.000   -.000   -.010  -.000   -.000 

 .5 10 3 -.000  -.000   -.068   -.000   -.000   -.041   -.000  -.000 

   5 .000   .000   -.123    .000   .000    -.042   .000   .000 

   10 .002   .002   -.399    .002   .002    -.044   .002   .002 

  50 3 .000   .000   -.010    .000   .000    -.007   .000   .000 

   5 .000   .000   -.015    .000   .000    -.007   .000   .000 

   10 .000   .000   -.031    .000   .000    -.007   .000   .000 

 

Tatsuoka Adjustment 

Table 4.8 provides the bias associated with the eight effect-size indices after using the 

Tatsuoka adjustment. The results indicate that Tatsuoka procedures typically over-adjusts the 

sample values and under-estimates the population parameter. Only when sample size was large 

(n=50) and the number of variables was small (p=3), the Tatsuoka adjustment provides an 

appropriate adjustment for some measures of effect size. The Tatsuoka adjustment for TSI did 

not provide an appropriate adjustment under most sampling conditions when two populations 

were compared. Table 4.8 provides the bias of adjusted effect-size indices using the Tatsuoka 

adjustment when two populations were compared.  
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Table 4.8 
Bias of the adjusted effect-size indices using the Tatsuoka adjustment when 2 populations are 
compared 
k η 2

m n p WI     HI    SI     SGI    SEI    TSI     HRI   CNI 

2 0 10 3 .017   .017   -.015    .017   .017   -.042    .017   .017 

   5 -.059  -.059   -.152   -.059   -.059   -.129   -.059   -.059 

   10 -.269  -.269   -.821   -.269   -.269   -.370   -.269   -.269   

  50 3 -.002  -.002   -.003   -.002   -.002   -.012    -.002  -.002 

   5 -.031  -.031   -.034   -.031   -.031    .041    .031   .031 

   10 -.201  -.201   -.214   -.201   -.201   -.214    -.201  -.201 

 .1 10 3 .013    .013   -.031   .013    .013    -.043   .013   .013 

   5 -.052   -.052   -.161   -.052   -.052   -.118   -.052   -.052 

   10 -.240   -.240   -.805   -.240   -.240   -.335   -.240   -.240 

  50 3 -.001   -.001   -.006   -.001   -.001   -.011   -.001   -.001 

   5 -.028   -.028   -.036   -.028   -.028   -.039   -.028   -.028 

   10 -.181   -.181   -.204   -.181   -.181   -.194   -.181   -.181 

 .3 10 3 .010    .010   -.051    .010   .010    -.040   .010    .010 

   5 -.043   -.043   -.173   -.043   -.043   -.101   -.043   -.043 

   10 -.196   -.196   -.757   -.196   -.196   -.275   -.196   -.196 

  50 3 -.002   -.002   -.011   -.002    -.002   -.011   -.002   -.002 

   5 -.022   -.022   -.037   -.022    -.022   -.032   -.022   -.022 

   10 -.142   -.142   -.177   -.142    -.142   -.153   -.142   -.142 

 .5 10 3 .008    .008   -.058    .008    .008   -.032    .008    .008 

   5 -.027   -.027   -.158    -.027   -.027   -.073   -.027   -.027 

   10 -.132   -.132   -.643   -.132   -.132    -.191   -.132   -.132 

  50 3 -.000   -.000   -.011   -.000   -.000    -.008   -.000   -.000 

   5 -.015   -.015   -.032   -.015   -.015    -.023   -.015   -.015 

   10 -.100   -.100   -.139   -.100   -.100    -.109   -.100   -.100 

 

Comparing three or five populations 

Serlin adjustment 

 Table 4.9 provides the bias associated with the eight effect-size indices after using the 



 45

Serlin adjustment when the sample size was large (n=50). The results indicate that the Serlin 

procedure appropriately adjust for bias in SGI, SEI, and CNI when the sample size was large 

(n=50). However, this procedure generally under-adjust the amount of bias in WI, HI, SI, TSI, 

and HRI under all sampling conditions when three or more populations were compared.  

 
Table 4.9  
Bias of the adjusted effect-size indices using the Serlin adjustment under the selected conditions 
 
k n p η 2

m WI    HI     SI     SGI     SEI     TSI    HRI    CNI 

3 50 3 0 .020   .020   .019    .000    .000     .006    .020    .000 

   .1 .017   .016   .013    .000    -.000    .005    .017    .000 

   .3 .014   .011   .005    .002    .001     .003    .014    .001 

   .5 .011   .007   .000    .004    -.001    .002    .011    .001 

  5 0 .033   .032   .030    .000    -.000    .019    .033    .000 

   .1 .030   .027   .022    .001    -.000    .018    .030    .001 

   .3 .023   .017   .008    .003    -.001    .012    .023    .001 

   .5 .017   .010   -.000   .003    -.001    .008    .017    .001 

   

 

10 

0 

.1 

.3 

.5 

.066   .063   .054    .000    -.000    .053    .066    .000 

.061   .053   .040    .002    .000     .048    .061    .001 

.047   .033   .014    .003    -.001    .036    .047    .001  

.033   .017   -.002   .003    -.001    .025    .033    .000 

5 50 3 0 .031   .031   .030    .000    -.000    .016    .031    .000 

   .1 .028    .026   .024   .003   .000     .014    .028    -.000 

   .3 .022    .017   .013   .002   -.000    .010    .022    .000 

   .5 .016    .009   .005   .002   -.001    .007    .016    .000 

  5 0 .058    .056   .055   .000   -.000    .042    .058   -.000 

   .1 .052    .047   .044   .000   -.000    .038    .052    .000 

   .3 .040    .030   .024   .001   -.001    .028    .040    .000 

   .5 .029    .017   .010   .002   -.001    .020    .029    .000 

  10 0 .117    .109   .103   .000    .000    .102    .117    .000 

   .1 .104    .090   .081   .001   -.000    .090    .104    .000 

   .3 .082    .058   .047   .002   -.000    .070    .082    .001 

   .5 .058    .031   .020   .003   -.001    .049    .058    .000 
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Table 4.10 present the bias in adjusted SGI, SEI, and CNI using the Serlin adjustment 

when the sample size was small. As shown in those two tables, when the sample size was small, 

the appropriateness of the Serlin adjustment for SEI, SGI, and CNI depends on the sampling 

conditions. However, it worked better for SEI than for SGI and CNI.  

 
Table 4.10   
Bias of the adjusted SGI, SEI, and CNI using the Serlin adjustment 
 
k p η 2

m SGI SEI CNI 
3 3 0 .007 -.000 .003 
  .1 .011 -.002 .005 
  .3 .018 -.005 .006 
  .5 .020 -.008 .007 
 5 0 .015 .001 .008 
  .1 .017 -.002 .007 
  .3 .022 -.006 .009 
  .5 .024 -.008 .010 
 10 0 .036 .001 .021 
  .1 -.038 -.002 .018 
  .3 -.039 -.006 .018 
  .5 .034 -.010 .015 
5 3 0 .006 .000 .003 
  .1 .011 -.001 .003 
  .3 .013 -.000 .003 
  .5 .018 -.007 .005 
 5 0 .006 -.004 .000 
  .1 .010 -.004 .002 
  .3 .015 -.007 .003 
  .5 .018 -.010 -.002 
 10 0 .025 -.000 .012 
  .1 .028 -.001 .013 
  .3 .031 -.005 .012 
  .5 .035 -.008 .012 
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Tatsuoka adjustment 

Table 4.11 provides the bias associated with the eight effect-size indices after using the 

Tatsuoka adjustment. The Tatsuoka adjustment did provide an appropriate adjustment for some 

effect-size indices when sample size was large, the number of variables was small, and 

population effect-size was large but frequently it could either under-adjust or over-adjust the 

magnitude of the effect. 

As seen in Table 4.11, the Tatsuoka adjustment for TSI provided an appropriate 

adjustment under most presented sampling conditions, especially when the sample size was large. 

But, when the sample was small (n=10), the Tatsuoka adjustment for TSI frequently did not 

provide an appropriate adjustment (see Appendix C). According to Tatsuoka (1973), the 

adjustment formula for TSI suffices in case of p*(k-1) ≤ 49 and 75 ≤ N ≤ 2000. However, it also 

appeared works outside these limits. For example, Tatsuoka adjustment for TSI could provide an 

appropriate adjustment when k=3, n=10, p=3, and η 2= .1, .3, .5 (N ≤ 75). But, it did not provide 

an appropriate adjustment although these constraints were satisfied, when k=3, n=50, p=10, and 

η 2= 0, .1, .3, .5 (p*(k-1) ≤ 49 and 75 ≤ N ≤ 2000). Even though Tatsuoka (1973) believed that TA 

would provide a valid adjustment in WI and HI, the results presented indicate that it depends on 

the sampling conditions. Table 4.12 provides the bias of the adjusted effect-size indices using the 

Tatsuoka adjustment under the selected sampling conditions.  

 
Table 4.11  
Bias of the adjusted effect-size indices using the Tatsuoka adjustment under the selected 
conditions 
 
k n p η 2

m WI     HI    SI     SGI    SEI    TSI    HRI    CNI 

3 50 3 0 .012   .012   .011   -.007   -.008   -.001    .012   -007 

   .1 .010   .009   .005   -.006   -.008   -.002    .010   -.007 
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   .3 .008   .005  -.000   -.003   -.008   -.002    .008   -.005 

   .5 .007   .003  -.003   -.001   -.007   -.001    .007   -.004 

  5 0 .005   .004   .002   -.028   -.028   -.008    .005   -.028 

   .1 .005   .002   -.002   -.025   -.027   -.007   .005   -.026 

   .3 .004   -.001  -.011   -.020   -.025   -.006   .004   -.022 

   .5 .003   -.003  -.014   -.015   -.023   -.005   .003   -.019 

   

 

10 

0 

.1 

.3 

.5 

-.071   -.075  -.085   .147   -.148   -.087  -.071   -.148 

-.063   -.072  -.087  -.138   -.141   -.077  -.063   -.139 

-.049   -.065  -.087  -.118   -.127   -.062  -.049   -.122 

-.036   -.053  -.077  -.095   -.113   -.045  -.036   -.104 

5 50 3 0 .016   .015   .014   -.016   -.016   -.000   .016   -.016 

   .1 .014   .012   .010   -.012   -.015   -.000   .014   -.015 

   .3 .011   .006   .002   -.012   -.015   -.000   .011   -.014 

   .5 .008   .002  -.002   -.009   -.015   -.000    .008   -.012 

  5 0 .027   .025   .023   -.033   -.033    .010   .027   -.033 

   .1 .024   .018   .015   -.031   -.033    .009   .024   -.032 

   .3 .004  -.001   -.011   -.020   -.025   -.006   .004   -.022 

   .5 .013   .001   -.005   -.023   -.031   .004   .013   -.027 

  10 0 .021   .013   .006    -.107   -.108   .004   .021   -.107 

   .1 .018   .002   -.006   -.104   -.106   .002   .018   -.105 

   .3 .015  -.011   -.023   -.094   -.101   .002   .015   -.097 

   .5 .010  -.018   -.031   -.082   -.096   .001   .010   -.090 

 

Comparing the Tatsuoka and the Serlin adjustment 

Table 4.12 compares bias of adjusted effect-size indices using the Serin and the Tatsuoka 

adjustments under selected sampling conditions. As shown in Table 4.12 when three or more 

populations are compared, the Tatsuoka adjustment adjusts the bias of WI, HI, GI, TSI, and HRI 

more effectively in comparison to the Serlin adjustment; the Serlin adjustment adjusts bias of 

SGI, SEI, and CNI more appropriately in comparison to the Tatsuoka adjustment except 4 

sampling conditions (k=3, n=50, p=10, and η2 = 0, .1, .3, and .5).  
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Table 4.12  
Bias of the adjusted effect-size indices using the Serlin and the Tatsuoka adjustments under the 
selected conditions  
 
k p n η2

multi  WI     HI    SI    SGI    SEI    TSI    HRI    CNI 

3 5 10 0 TA .102   .082   .018   -.076   -.093   .028   .102   -.084 

    SA .180   .161   .103   .015    .001   .112   .180    .008 

  50 0 TA .005   .004   .002   -.028   -.028  -.008   .005   -.028 

    SA .033   .032   .030   .000   -.000   .019   .033    .000 

 10 10 .1 TA .081   -.029  -.298   -.336   -.395   .003   .081   -.364 

    SA .320   .242   .051   -.038   -.002   .265   .320   .018 

  50 .1 TA -.063  -.072  -.087   -.138   -.141   -.077  -.063   -.139 

    SA .061   .053   .040    .002   .000    .048   .061   .001 

5 5 10 .3 TA .120   .059   .015   -.111   -.141   .062   .120   -.127 

    SA .192   .139   .101   -.015   -.007   .142   .192   .003 

  50 .3 TA .018   .007   .002   -.028   -.032   .006   .018   -.030 

    SA .040   .030   .024   .001   -.001    .028   .040   .000 

 10 10 .5 TA .083   .020  -.021   .093   -.137    .041   .083   -.117 

    SA .136   .080   .043   .018   -.010    .098   .136   -.002 

  50 .5 TA .010  -.018   -.031  -.082   -.096    .001   .010   -.090 

    SA .058   .031   .020   .003   -.001    .049   .058   .000 

TA = TA adjusted effect-size  

SA = SA adjusted effect size 

 

Precision 

Table 4.14 presents the standard deviations of unadjusted and adjusted effect-size indices 

across the 10,000 replications under selected sampling conditions. The results indicate that the 

unadjusted effect-size measures had smaller standard deviations than either the Tatsuoka or the 

Serlin adjusted effect-size measures. For example, considering the Wilks index (WI) when k=3, 

p=5, n=10, and η 2= 0, the standard deviations are .1138, .1505, and .1375 for unadjusted WI, 

adjusted by TA, and adjusted by SA, respectively. The difference in precision is greatest when 
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sample sizes is small. The precision of the Serlin adjusted effect-size measures is always greater 

than the precision of the Tatsuoka adjusted effect-size measures. The difference in precision is 

typically small and cannot compensate for the difference in bias associated with the eight effect 

size indices. The standard deviations of all sampling conditions are presented in Appendix C.  

 
Table 4.13 
Standard deviations of effect-size indices across the 10,000 replications 
 
k p n η 2

m  WI      HI     SI     SGI     SEI    TSI    HRI    CNI 

3 5 10 0 ES 

    TA 

SA 

.1138   .1050   .0950   .0758   .0666   .1205   .1138   .0711  

.1505   .1388   .1256   .1003   .0880   .1593   .1505   .0940 

.1375   .1269   .1148   .0916   .0804   .1456   .1375   .0859

  50 0 ES 

    TA 

SA 

.0282   .0275   .0265   .0148   .0144   .0284   .0282   .0146 

.0300   .0293   .0283   .0158   .0154   .0302   .0300   .0156 

.0291   .0285   .0275   .0154   .0149   .0294   .0291   .0152

 10 10 .1 ES 

    TA 

SA 

.1194   .1135   .1058   .0791   .0659   .1261   .1194   .0724  

.1367   .1299   .1210   .0906   .0754   .1443   .1367   .0829 

.1332   .1266   .1180   .0883   .0735   .1407   .1332   .0808

  50 .1 ES 

    TA 

SA 

.0522   .0493   .0471   .0310   .0284   .0527   .0522   .0297 

.0643   .0606   .0580   .0382   .0350   .0649   .0643   .0365 

.0560   .0528   .0505   .0332   .0304   .0565   .0560   .0318

5 5 10 .3 ES 

    TA 

SA 

.0709   .0664   .0683   .0594   .0304   .0776   .0709   .0415 

.0903   .0845   .0870   .0756   .0388   .0989   .0903   .0528 

.0790   .0739   .0761   .0661   .0339   .0865   .0790   .0462

  50 .3 ES 

    TA 

SA 

.0443   .0426   .0422   .0194   .0121   .0449   .0443   .0154 

.0467   .0449   .0445   .0205   .0128   .0474   .0467   .0162 

.0452   .0434   .0431   .0198   .0123   .0458   .0452   .0157

 10 10 .5 ES 

    TA 

SA 

.0535   .0523   .0579   .0611   .0379   .0589   .0535   .0458  

.0949   .0928   .1027   .1085   .0672   .1045   .0949   .0812 

.0672   .0658   .0727   .0768   .0476   .0740   .0672   .0575

  50 .5 ES 

    TA 

SA 

.0360   .0344   .0345   .0250   .0118   .0366   .0360   .0171  

.0415   .0397   .0399   .0289   .0136   .0422   .0415   .0198 

.0375   .0358   .0360   .0261   .0122   .0381   .0375   .0178



 51

ES = Unadjusted effect Size 

TA = TA adjusted effect-size  

SA = SA adjusted effect size 

 

Summary 

In sum, when two populations are compared, the Serlin adjustment provides an 

appropriate adjustment for all measures of effect-size except SI and TSI. However, the Sserlin 

procedure could adjust the bias of SI and TSI more appropriately than the Tatsuoka adjustment. 

When three or five populations were compared, the results indicated that the Tatsuoka 

adjustment adjusted bias of WI, HI, GI, TSI, and HRI more effectively than the Serlin 

adjustment; the Serlin adjustment adjusted bias of SGI, SEI, and CNI more appropriately in 

comparison to the Tatsuoka adjustment. The Tatsuoka adjustment reduced the bias of TSI 

appropriately when the sample size was large and the number of variable was small. The Serlin 

adjustment for SEI provided an appropriate adjustment under most sampling conditions 

presented in this study.  

With regard to precision, the unadjusted effect-size measures had smaller standard 

deviations than either the Tatsuoka or the Serlin adjusted effect-size measures. The difference in 

precision was greatest when sample sizes are small. The precision of the Serlin adjusted effect-

size measures was always greater than the precision of the Tatsuoka adjusted effect-size 

measures.  

The means and standard deviations of the sampling distributions of the 16 statistics (8 

effect sizes adjusted by Tatsuoka adjustment and 8 effect sizes adjusted by Serlin adjustment) are 

reported in Appendix C for the comparisons of 2, 3, and 5 populations, involving 3, 5, and 10 

measures, with sample sizes of 10 and 50 when the population effect sizes are zero, .1, .3, and .5, 

respectively.  
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CHAPTER 5 

DISCUSSION 

 Researchers have been strongly encouraged to assess and report effect-size estimates as a 

supplement to statistical hypothesis tests. The reporting of an effect-size measure is currently 

required by several prominent education journals. For this requirement to be useful the effect-

size measure reported should be unbiased and estimated with precision. 

However, although the multivariate effect size measures are known to be biased, many 

researchers are unaware of this bias and are unaware of procedures that are available to adjust 

these effect-size measures. Multivariate effect-size measures suggested in many textbooks and 

those currently reported on computer output provide biased estimates population differences.  

In the current study, the degree of bias and precision in eight multivariate measures of 

association were examined and the effectiveness of the Tatsuoka and the Serlin procedures for 

adjusting the eight effect-size measures were evaluated. The sampling distributions of the 

unadjusted measures of association and measures of association adjusted by the Tatsuoka and the 

Serlin procedures were investigated by a computer simulation technique under certain conditions. 

The eight multivariated effect size measures studied included: Wilks index (WI), Hsu index (HI), 

Stevens index (SI), Shaffer-Gillo index (SGI), Serlin index (SEI), Tasuoka-Sachdeva index (TSI), 

Hotelling-Rozeboom index (HRI), Cramer-Nicewander index (CNI). The SGI, SEI, and CNI 

effect size measures are routinely reported on the SPSS output for multivariate analyses. In 

addition, each of the eight effect-size measures was adjusted using the methods suggested by 

Tatsuoka (TA) and Serlin (SA). 

The current results involving the unadjusted measures of effect-size (TSI) are compatible 
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with those reported by Tatsuoka (1973) who examined the sampling distribution of TSI with 

respect to the number of variables, total sample size, and effect size. The results of the present 

study showed that all of the unadjusted effect-size measures were biased to some degree and the 

amount of bias was affected by the number of populations compared, sample size, the number of 

response variables, and effect-size. For all of the effect-size measures, the bias could be 

substantial when sample sizes were small, the number of variables was large, and population 

effect-size was small. For all of the effect-size measures except SGI, SEI, and CNI the bias could 

be substantial when the number of populations was large. But for the SGI, SEI, and CNI effect-

size measures bias decreased as the number of groups increased. 

When the two adjustment procedures were used to reduce the bias in each effect size, the 

effectiveness of procedures depended on the number of populations compared and the effect size 

measures used. When two populations were compared, the Serlin adjustment reduced the bias of 

all eight effect size measures more effectively than the Tatsuoka adjustment and the precision of 

the Serlin adjusted effect-size measures was always greater than the precision of the Tatsuoka 

adjusted effect-size measures. Based on these results, the Serlin adjustment is recommended for 

reducing the bias for all measures of effect-size presented in this study except for SI and TSI.  

For the SI and TSI effect size measure the Serlin procedure underestimated the strength of 

relationship between the grouping variable and the outcome variables.  

When three or more populations are compared, the Tatsuoka adjustment reduced the bias 

of WI, HI, GI, TSI, and HRI more effectively than the Serlin adjustment. The Serlin adjustment 

however reduced the bias of SGI, SEI, and CNI more effectively than the Tatsuoka adjustment. 

Furthermore, the Tatsuoka adjustment reduced the bias more effectively in TSI than in WI, HI, 

GI, and HRI. The Serlin adjustment reduced the bias more effectively in SEI than in SGI and 

CNI. Although the Tatsuoka adjustment for TSI could provide an appropriate adjustment when 
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sample size is large and the number of variables is small, the Serlin adjustment for SEI more 

frequently provides an unbiased effect-size index. In addition, the precision of the Serlin adjusted 

effect-size measures was always greater than the precision of the Tatsuoka adjusted effect-size 

measures.  

When a researcher wants to report an effect-size measure in a MANOVA context when 

three or more populations are compared, the SEI index adjusted by the Serlin procedure can be 

recommended based on reduced bias and increased precision. However, this recommendation 

cannot be made for all conditions. Because, as stated in Chapter 3, “different interpretations of 

shared variation are reflected across the indices” (Huberty, 1983, p.712): WI, HI, SI, TSI, and 

HRI represent the proportion of generalized variance or total variance of among the dependent 

variables accounted for by the grouping variable. On the other hand, SGI represents a weighted 

average of the estimated correlation ratios for each of the discriminant functions, SEI is the 

arithmetic average of the squared canonical correlation for the separate linear combinations of 

two sets of variables, and CNI is equal to one minus the geometric mean of the 1- ρ2
j. Choosing 

an effect-size measure depends on how a researcher defines the parameter of interest in addition 

to the bias and precision of the estimator. As suggested by Huberty (1983, p. 710), choosing a 

multivariate measure of effect-size “may be based on a researcher’s preference.”  

A recommendations based on the researcher’s preference of measures of effect-size can 

be made as follow, if a researcher prefers WI, HI, SI, TSI, or HRI to SGI, SEI, and CNI, the TSI 

adjusted by the Tatsuoka procedure can be recommended, provided that the sample size is greater 

then 75 and the product of the number of variables and the grouping variable degrees of freedom 

are less than 49. If a researcher prefers SEI, SGI, or CNI to WI, HI, SI, TSI, and HRI, the Serlin 

adjustment procedure for these effect-size can be recommended.  

This study has some limitations. First, this study is limited to the one-way MANOVA 
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context. Further study should include the two-way MANOVA context and more complex designs 

so as to get more generalizable results. Second, this study is limited to conditions that all 

assumptions for MANOVA are met. The situations where the assumptions are violated to some 

degree should be examined in future studies. 
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Appendix A. The SAS Program for determining the population mean  
 
proc iml; 
p=5;  
k=2; 
 
u11=.2984; 
u12=.2984; 
u13=.2984; 
u14=.2984; 
u15=.2984; 
u21=0; 
u22=0; 
u23=0; 
u24=0; 
u25=0; 
u1=(u11+u21)/2; 
u2=(u12+u22)/2; 
u3=(u13+u23)/2; 
u4=(u14+u24)/2; 
u5=(u15+u25)/2; 
print u1 u2 u3 u4 u5; 
 
d11=u11-u1; 
d12=u12-u2; 
d13=u13-u3; 
d14=u14-u4; 
d15=u15-u5; 
d21=u21-u1; 
d22=u22-u2; 
d23=u23-u3; 
d24=u24-u4; 
d25=u25-u5; 
 
d1=d11//d12//d13//d14//d15; 
d2=d21//d22//d23//d24//d25; 
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print d1 d2; 
 
SSCPH1=d1*d1`; 
SSCPH2=d2*d2`; 
SSCPH=SSCPH1+SSCPH2; 
print SSCPH SSCPH1 SSCPH2; 
 
x={1 0 0 0 0, 
   0 1 0 0 0, 
   0 0 1 0 0, 
   0 0 0 1 0, 
   0 0 0 0 1}; 
print x;  
 
y=x+(SSCPH/k); 
dety=det(y); 
detx=det(x); 
print y dety detx; 
 
Pomegas=1-detx/dety; 
print Pomegas; 
run; 
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Appendix B.  The SAS program for generating samples and computing statistics 
 

proc iml; 
n=10; 
G=3; 
p=5; 
 
mu=.6214; 
ef=j(n,p,1); 
effect=mu*ef; 
Pmean=j(3,8,.300); 
 
rep=10000; 
val=j(p,1,0); 
ES=j(rep,8,0); 
TAES=j(rep,8,0); 
SAES=j(rep,8,0); 
Do I=1 to rep; 
 
X1=rannor(j(n,p,0))+effect; 
X2=rannor(j(n,p,0)); 
X3=rannor(j(n,p,0)); 
 
X1bar=X1[:,]; 
X2bar=X2[:,]; 
X3bar=X3[:,]; 
 
m11=X1bar[,1]; 
m12=X1bar[,2]; 
m13=X1bar[,3]; 
m14=X1bar[,4]; 
m15=X1bar[,5]; 
m21=X2bar[,1]; 
m22=X2bar[,2]; 
m23=X2bar[,3]; 
m24=X2bar[,4]; 
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m25=X2bar[,5]; 
m31=X3bar[,1]; 
m32=X3bar[,2]; 
m33=X3bar[,3]; 
m34=X3bar[,4]; 
m35=X3bar[,5]; 
  
A=j(n,p,1); 
X11=m11*A[,1]; 
X12=m12*A[,2]; 
X13=m13*A[,3]; 
X14=m14*A[,4]; 
X15=m15*A[,5]; 
X21=m21*A[,1]; 
x22=m22*A[,2]; 
X23=m23*A[,3]; 
x24=m24*A[,4]; 
X25=m25*A[,5]; 
X31=m31*A[,1]; 
x32=m32*A[,2]; 
X33=m33*A[,3]; 
x34=m34*A[,4]; 
X35=m35*A[,5]; 
 
 
P1=X11||X12||X13||X14||X15; 
P2=X21||X22||X23||X24||X25; 
P3=X31||X32||X33||X34||X35; 
 
D1=x1-p1; 
D2=x2-p2; 
D3=x3-p3; 
 
SSCPE1=D1`*D1; 
SSCPE2=D2`*D2; 
SSCPE3=D3`*D3; 
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SSCPE=SSCPE1+SSCPE2+SSCPE3; 
determinantSSCPE=DET(SSCPE); 
TX=X1//X2//X3; 
mTX=TX[:,]; 
mmTX=mTX//mTX//mTX; 
mX1X2=X1bar//X2bar//X3bar; 
DH=mX1X2-mmTX; 
SSCPH=n*DH`*DH; 
 
SSCPT=SSCPE+SSCPH; 
determinantSSCPT=DET(SSCPT); 
 
inverseE=INV(SSCPE); 
eigvals=EIGVAL(inverseE*SSCPH); 
eig=eigvals[,1]; 
reigvals=RANK(eig); 
 
val[1,1]=reigvals[1,1]; 
val[2,1]=reigvals[2,1]; 
val[3,1]=reigvals[3,1]; 
val[4,1]=reigvals[4,1]; 
val[5,1]=reigvals[5,1]; 
 
do jj=1 to p; 
if val[jj,1]=5 then first=jj; 
if val[jj,1]=4 then sec=jj; 
if val[jj,1]=3 then trd=jj; 
if val[jj,1]=2 then forth=jj; 
if val[jj,1]=1 then fifth=jj; 
end; 
 
 eigval1=eig[first,1]; 
 eigval2=eig[sec,1]; 
 eigval3=eig[trd,1]; 
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W=(1/(1+eigval1))#(1/(1+eigval2)); 
R=eigval1; 
HL=eigval1+eigval2; 
BP=(eigval1/(1+eigval1))+(eigval2/(1+eigval2)); 
 
q=G-1; 
S=HL#((3#n-3)-p-1)/(3#n-3); 
r=min(p,q); 
rr=1/r; 
k=g; 
b=max(p,q); 
 
WI=1-W; 
HI=HL/(1+HL); 
SI=S/(1+S); 
SGI=HL/(r+HL); 
SEI=BP/r; 
TSI=((3#n-k)-(3#n-1)#W)/((3#n-k)+W); 
HRI=1-W; 
CNI=1-W##rr; 
 
TAWI=WI-(p##2+q##2)#(1-WI)/(3#3#n);  
TAHI=HI-(p##2+q##2)#(1-HI)/(3#3#n);  
TASI=SI-(p##2+q##2)#(1-SI)/(3#3#n);  
TASGI=SGI-(p##2+q##2)#(1-SGI)/(3#3#n);  
TASEI=SEI-(p##2+q##2)#(1-SEI)/(3#3#n);  
TATSI=TSI-(p##2+q##2)#(1-TSI)/(3#3#n);  
TAHRI=HRI-(p##2+q##2)#(1-HRI)/(3#3#n);  
TACNI=CNI-(p##2+q##2)#(1-CNI)/(3#3#n);  
 
SAWI=1-(3#n-1)/(3#n-b-1)#(1-WI);  
SAHI=1-(3#n-1)/(3#n-b-1)#(1-HI);   
SASI=1-(3#n-1)/(3#n-b-1)#(1-SI);   
SASGI=1-(3#n-1)/(3#n-b-1)#(1-SGI);    
SASEI=1-(3#n-1)/(3#n-b-1)#(1-SEI);  
SATSI=1-(3#n-1)/(3#n-b-1)#(1-TSI);  
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SAHRI=1-(3#n-1)/(3#n-b-1)#(1-HRI);  
SACNI=1-(3#n-1)/(3#n-b-1)#(1-CNI);  
 
ES[i,1]=WI; 
ES[i,2]=HI; 
ES[i,3]=SI; 
ES[i,4]=SGI; 
ES[i,5]=SEI; 
ES[i,6]=TSI; 
ES[i,7]=HRI; 
ES[i,8]=CNI; 
 
TAES[i,1]=TAWI; 
TAES[i,2]=TAHI; 
TAES[i,3]=TASI; 
TAES[i,4]=TASGI; 
TAES[i,5]=TASEI; 
TAES[i,6]=TATSI; 
TAES[i,7]=TAHRi; 
TAES[i,8]=TACNI; 
 
SAES[i,1]=SAWI; 
SAES[i,2]=SAHI; 
SAES[i,3]=SASI; 
SAES[i,4]=SASGI; 
SAES[i,5]=SASEI; 
SAES[i,6]=SATSI; 
SAES[i,7]=SAHRi; 
SAES[i,8]=SACNI; 
END; 
 
mES=ES[:,]; 
mTAES=TAES[:,]; 
mSAES=SAES[:,]; 
 
ESs=ES[+,]; 
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ESss=ES[##,]; 
ESsq=(ESs##2)/rep; 
ESssq=ESss-ESsq; 
ESv=ESssq/(rep-1); 
ESsd=sqrt(ESV); 
 
TAESs=TAES[+,]; 
TAESss=TAES[##,]; 
TAESsq=(TAESs##2)/rep; 
TAESssq=TAESss-TAESsq; 
TAESv=TAESssq/(rep-1); 
TAESsd=sqrt(TAESV); 
 
SAESs=SAES[+,]; 
SAESss=SAES[##,]; 
SAESsq=(SAESs##2)/rep; 
SAESssq=SAESss-SAESsq; 
SAESv=SAESssq/(rep-1); 
SAESsd=sqrt(SAESV); 
 
mean=mES//mTAES//mSAES; 
sd=ESsd//TAESsd//SAESsd; 
bias=mean-Pmean; 
title "ES(.3)10n3g5pN"; 
print Bias mean sd; 
run; 
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Appendix C.1  Bias and Standard Deviations of unadjusted Effect Size, Effect-size adjusted by 
TA, Effect-size adjusted by SA when population effect-size is zero 

 
k n p   WI      HI     SI      SGI      SEI      TSI     HRI     CNI 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.157     .157     .129     .157     .157     .106     .157     .157 

.017     .017    -.015     .017     .017     -.042     .017     .017      

-.000    -.000    -.033    -.000     -.000    -.060    -.000     -.000 

.1109    .1109    .0954    .1109    .1109    .1132    .1109   .1109     

.1294    .1294    .1113    .1294    .1294    .1320    .1294    .1294   

.1317    .1317    .1133    .1317    .1317    .1344    .1317    .1317 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.260     .260     .195     .260      .260      .211    .260     .260     

-.059    -.059    -.152     -.059     -.059     -.129    -.059    -.059     

-.003    -.003    -.091     -.003     -.003     -.069    -.003    -.003 

.1346    .1346    .1119    .1346    .1346     .1386    .1346    .1346    

.1929    .1929    .1604    .1929    .1929     .1987    .1929    .1929    

.1827    .1827    .1519    .1827    .1827     .1881     .1827   .1827 

10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.526     .526     .321     .526      .526      .489     .526    .526     

-.269    -.269    -.821     -.269     -.269     -.370     -.269    -.269    

.001     .001    -.432     .001      .001     -.078     .001     .001 

.1544    .1544    .1390    .1544    .1544     .1628     .1544    .1544   

.4143    .4143    .3731    .4143    .4143     .4370     .4143    .4143   

.3259    .3259    .2935    .3259    .3259     .3438     .3259    .3259 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA  

.030     .030     .028     .030     .030     .020     .030      .030     

-.002    -.002    -.003     -.002    -.002    -.012     -.002     -.002     

-.000    -.000    -.001     -.000    -.000    -.010     -.000     -.000 

.0240    .0240    .0232    .0240    .0240    .0241    .0240     .0240  

.0248    .0248    .0239    .0248    .0248    .0249    .0248     .0248 

.0248    .0248    .0239    .0248    .0248    .0248    .0248     .0248 

2 

50 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.051     .051      .048      .051      .051     .041     .051    .051 

-.031    -.031     -.034     -.031      -.031     .041     .031    .031    

.000     .000     -.002      .000      .000     -.009     .000    .000 

.0313    .0313    .0297     .0313     .0313    .0314     .0313    .0313 

.0340    .0340    .0322     .0340     .0340    .0341     .0340    .0340 

.0330    .0330    .0312     .0330     .0330    .0330     .0330    .0330 



 70

  10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.101     .101      .091      .101     .101     .091     .101      .101   

-.201    -.201     -.214     -.201     -.201    -.214     -.201     -.201   

.000     .000     -.011      .000     .000     -.010     .000      .000 

.0426    .0426    .0388     .0426     .0426    .0427    .0426     .0426  

.0569    .0569    .0519     .0569     .0569    .0570    .0569     .0569  

.0473    .0473    .0432     .0473     .0473    .0475    .0473     .0473 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.198     .193     .170      .110     .102      .135     .198      .106   

.082     .076     .051     -.018     -.026      .010     .082     -.022 

.106     .100     .075      .007     -.000      .035     .106     .003 

.0995    .0951    .0868     .0612    .0535     .1045    .0995     .0573  

.1138    .1088    .0993     .0700    .0613     .1196    .1138     .0656  

.1109    .1061    .0968     .0682    .0597     .1166    .1109     .0639 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.321     .306     .257     .185      .173      .265     .321      .179   

.102     .082     .018     -.076     -.093     .028     .102      -.084  

.180     .161     .103     .015      .001     .112     .180       .008  

.1138    .1050    .0950    .0758     .0666    .1205    .1138     .0711   

.1505    .1388    .1256    .1003     .0880    .1593    .1505     .0940 

.1375    .1269    .1148    .0916     .0804    .1456    .1375     .0859 

10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.580     .533     .409     .370      .346     .541     .580      .358    

.096    -.005    -.273     -.356     -.409     .012     .096      -.382 

.359    .288     .098      .039      .001     .300     .359      .021 

.1133   .1014    .0985     .0952     .0837    .1220    .1133     .0890   

.2443   .2186    .2123     .2052     .1805    .2630    .2443     .1920   

.1730   .1548    .1503     .1453     .1278    .1862    .1730     .1359 

3 

50 3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.040     .039     .038      .020     .020     .026      .040     .020    

.012     .012     .011     -.007    -.008     -.001      .012     -007  

.020     .020     .019     .000     .000      .006      .020     .000 

.0223    .0221    .0215    .0116    .0113     .0225     .0223    .0115   

.0230    .0227    .0222    .0119    .0116     .0232     .0230    .0118   

.0228    .0225    .0220    .0118    .0115     .0230     .0228    .0117 
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5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.065     .065     .062      .033     .033      .052      .065     .033   

.005     .004     .002     -.028     -.028     -.008      .005     -.028 

.033     .032     .030      .000     -.000     .019      .033      .000 

.0282    .0275    .0265     .0148    .0144     .0284     .0282    .0146  

.0300    .0293    .0283     .0158    .0154     .0302     .0300    .0156  

.0291    .0285    .0275     .0154    .0149     .0294     .0291    .0152 

  

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.129     .126    .117      .067      .066     .117      .129      .067   

-.071    -.075    -.085    -.147     -.148     -.087     -.071     -.148    

.066     .063     .054     .000     -.000     .053      .066     .000 

.0375   .0357    .0337    .0205     .0199     .0379     .0375    .0202   

.0462   .0439    .0414    .0252     .0246     .0466     .0462    .0249   

.0402   .0382    .0361    .0220     .0214     .0406     .0402    .0217 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.231     .220     .204      .088     .082      .160      .231     .085 

.102     .090     .072     -.063     -.070      .020      .102    -.067 

.161     .150     .133      .006     .000      .084      .161     .003 

.0809   .0741    .0704     .0351    .0308     .0869     .0809     .0329 

.0943   .0864    .0821     .0410    .0359     .1014     .0943     .0384 

.0861   .0789    .0750     .0374    .0328     .0926     .0861     .0350 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA  

.347     .319     .290      .107      .098      .285     .347      .102 

.169     .133     .096     -.136      -.148      .090     .169     -.142 

.273     .242     .209      .006      -.004      .204     .273     .000 

.0851   .0737    .0698     .0329     .0274     .0919    .0851     .0300 

.1084   .0938    .0889     .0419     .0350     .1170    .1084     .0382 

.0948   .0820    .0777     .0366     .0306     .1023    .0948     .0334 

5 10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.611     .530     .461     .224      .203     .571     .611     .213     

.310     .167     .045    -.376     -.411      .240     .310     -.394    

.511     .409     .323     .025     -.000     .462      .511     .012 

.0818    .0667    .0665    .0467    .0388     .0894    .0818     .0424   

.1452    .1184    .1179    .0828    .0689     .1585    .1452     .0752   

.1028    .0838    .0835    .0587    .0488     .1123    .1028     .0532 
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3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.047     .047     .046     .016      .016      .032     .047      .016 

.016     .015     .014    -.016      -.016     -.000     .016     -.016 

.031     .031     .030     .000      -.000     .016      .031     .000 

.0189    .0184    .0182    .0066     .0064     .0191    .0189     .0065 

.0195    .0191    .0188    .0068     .0066     .0197    .0195     .0067 

.0191    .0187    .0184    .0067     .0065     .0193    .0191     .0066 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.077     .075     .074      .020      .019      .062     .077     .020 

.027     .025     .023     -.033      -.033      .010     .027    -.033   

.058     .056     .055      .000     -.000      .042     .058     -.000 

.0231    .0221    .0216     .0062    .0060     .0234     .0231    .0061 

.0243    .0233    .0228     .0066    .0063     .0246     .0243    .0065 

.0235    .0225    .0221     .0064    .0061     .0238     .0235    .0062 

 50 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.152     .145     .139      .041      .040     .138     .152     .040    

.021     .013     .006     -.107     -.108     .004     .021     -.107    

.117     .109     .103      .000     .000     .102     .117      .000 

.0310    .0282    .0273     .0089    .0086    .0314    .0310     .0088   

.0357    .0326    .0316     .0103    .0100    .0362    .0357     .0101 

.0322   .02947    .0285     .0093    .0090    .0327    .0322     .0091 

ES = Unadjusted effect Size 

TA = TA adjusted effect-size  

SA = SA adjusted effect size 
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Appendix C.2  Bias and Standard Deviations of unadjusted Effect Size, Effect-size adjusted by 
TA, Effect-size adjusted by SA when population effect-size is .1 

 
k n p   WI      HI     SI     SGI     SEI     TSI    HRI    CNI 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.140    .140    .101    .140     .140    .091    .140    .140     

.013    .013   -.031    .013     .013    -.043    .013    .013     

-.001   -.001   -.047   -.001    -.001    -.060    -.001   -.001 

.1408   .1408   .1252   .1408   .1408    .1447   .1408   .1408    

.1643   .1643   .1461   .1643   .1643    .1688   .1643   .1643    

.1672   .1672   .1487   .1672   .1672    .1718   .1672   .1672 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.235    .235    .159    .235     .235    .189    .235    .235     

-.052   -.052   -.161    -.052    -.052    -.118   -.052   -.052     

-.001   -.001   -.105    -.001    -.001    -.064   -.001   -.001 

.1492   .1492   .1300   .1492   .1492    .1546   .1492   .1492    

.2139   .2139   .1863   .2139   .2139    .2217   .2139   .2139 

.2025   .2025   .1764   .2025   .2025    .2099   .2025   .2025 

10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.474     .474    .264    .474    .474     439    .474    .474     

-.240   -.240    -.805   -.240    -.240    -.335   -.240   -.240     

.002    .002    -.442    .002    .002    -.071    .002    .002 

.1489   .1489   .1429   .1489   .1489   .1576    .1489   .1489    

.3995   .3995   .3837   .3995   .3995   .4231    .3995   .3995    

.3143   .3143   .3018   .3143   .3143   .3329    .3143   .3143 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA  

.027     .027    .022    .027    .027    .017    .027    .027     

-.001    -.001   -.006    -.001   -.001   -.011    -.001   -.001     

.000     .000    -.004    .000    .000   -.010    .000    .000 

.0579   .0579    .0562   .0579   .0579   .0581   .0579   .0579    

.0598   .0598    .0581   .0598   .0598   .0600   .0598   .0598    

.0597   .0597    .0579   .0597   .0597   .0599   .0597   .0597 

2 

50 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.045     .045     .038    .045    .045    .035    .045    .045    

-.028    -.028    -.036   -.028   -.028   -.039    -.028   -.028     

.000     .000    -.007    .000    .000   -.010    .000    .000 

.0587   .0587    .0562   .0587   .0587   .0589   .0587   .0587    

.0638   .0638    .0611   .0638   .0638   .0640   .0638   .0638    

.0618   .0618    .0592   .0618   .0618   .0620   .0618   .0618 
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  10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.090    .090    .073    .090    .090    .081    .090    .090      

-.181   -.181   -.204   -.181    -.181   -.194   -.181    -.181      

.000    .000   -.019    .000     .000   -.010    .000    .000 

.0624  .0624   .0580   .0624    .0624   .0626   .0624   .0624     

.0834  .0834   .0775   .0834    .0834   .0837   .0834   .0834     

.0694  .0694   .0645   .0694    .0694   .0697   .0694   .0694 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.178    .169    .141    .108   .096    .120    .178    .102       

.074    .064    .031   -.012   -.026    .007    .074   -.019       

.095    .085    .053    .011   -.002    .030    .095   .005 

.1194  .1135   .1058   .0791   .0659   .1261   .1194   .0724      

.1367  .1299   .1210   .0906   .0754   .1443   .1367   .0829      

.1332  .1266   .1180   .0883   .0735   .1407   .1332   .0808 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.287    .266    .213    .177    .161    .234    .287    .170      

.089    .062   -.007    -.070   -.092    .020    .089   -.080       

.159    .134    .070    .017   -.002    .096    .159    .007 

.1218   .1122   .1041   .0865   .0735   .1295   .1218   .0798     

.1611   .1484   .1377   .1144   .0972   .1713   .1611   .1055     

.1472   .1356   .1258   .1045   .0888   .1565   .1472   .0964 

10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.520     .468    .344    .351    .325    .484    .520    .339     

.081    -.029    -.298   -.336    -.395   .003    .081    -.364     

.320     .242    .051   -.038    -.002   .265    .320     .018 

.1105   .0995    .1001   .0978   .0858   .1193   .1105   .0913    

.2383   .2146    .2158   .2109   .1850   .2572   .2383   .1968    

.1687   .1520    .1528   .1493   .1310   .1821   .1687   .1394 

3 

50 3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.035     .034    .031    .020    .018    .023    .035    .019     

.010     .009    .005   -.006    -.008   -.002    .010   -.007      

.017     .016    .013    .000    -.000    .005    .017   .000 

.0478   .0471   .0462    .0274    .0244   .0482   .0478   .0259   

.0492   .0484   .0475    .0282    .0251   .0496   .0492   .0266   

.0488   .0480   .0471    .0280    .0249   .0492   .0488   .0264 
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5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.059     .057    .051    .033     .031    .047    .059    .032    

.005     .002   -.002    -.025    -.027   -.007    .005   -.026     

.030     .027    .022    .001    -.000    .018    .030    .001 

.0496   .0482   .0468    .0287   .0258    .0500   .0496   .0272   

.0528   .0513   .0499    .0306   .0274    .0532   .0528   .0290   

.0513   .0498   .0485    .0297   .0267    .0518   .0513   .0282 

  

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.117     .110    .097    .065    .063    .105    .117    .065     

-.063    -.072   -.087   -.138   -.141   -.077   -.063     -.139     

.061     .053    .040    .002    .000    .048    .061    .001 

.0522   .0493   .0471   .0310   .0284   .0527    .0522   .0297    

.0643   .0606   .0580   .0382   .0350   .0649    .0643   .0365    

.0560   .0528   .0505   .0332   .0304   .0565    .0560   .0318 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.205     .188    .170    .089    .077    .140    .205    .081     

.089     .070    .048    -.056    -.070    .013    .089   -.065 

.144     .126    .106    .011    -.001    .052    .160   -.003 

.0943   .0860   .0827   .0456   .0370   .1016   .0943   .0411     

.1100   .1004   .0965   .0533   .0432   .1186   .1100   .0479     

.1004   .0916   .0881   .0486   .0394   .1083   .1004   .0437 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA  

.315     .278    .246    .108    .095    .258    .315    .101     

.155     .108    .067    -.128   -.145    .083    .155   -.136     

.248     .207    .171     .010   -.004    .185    .248   .002 

.0918   .0789   .0759    .0397   .0313   .0994   .0918   .0351    

.1169   .1005   .0967    .0506   .0399   .1266   .1169   .0448    

.1023   .0879   .0846    .0442   .0349   .1107   .1023   .0391 

5 10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.550     .463    .394    .221    .197    .515    .550    .209     

.281     .125    .004   -.360    -.403   .217    .281   -.382     

.461     .351    .265    .028    -.001   .416     .461   .013 

.0790    .0651   .0660   .0492   .0400   .0864   .0790  .0441     

.1401    .1155   .1170   .0873   .0710   .1532   .1401 .0782     

.0993    .0818   .0829   .0619   .0503   .1086   .0993  .0554 
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3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.043     .040    .038    .019    .015    .028    .043    .015     

.014     .012    .010   -.012    -.015    -.000   .014   -.015      

.028     .026    .024    .003    .000    .014    .028   -.000 

.0371   .0361   .0357   .0148    .0128   .0376   .0371   .0137    

.0383   .0373   .0369   .0153    .0132   .0388   .0383   .0142    

.0375   .0365   .0361   .0150    .0129   .0380   .0375   .0139 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.069    .064    .061     .020    .019    .055    .069    .019     

.024    .018    .015    -.031    -.033    .009    .024   -.032     

.052    .047    .044     .000    -.000    .038    .052   .000 

.0385   .0366   .0360   .0120    .0103   .0391   .0385   .0111    

.0406   .0386   .0379   .0127    .0109   .0412   .0406   .0117    

.0393   .0373   .0367   .0123    .0105   .0399   .0393   .0113 

 50 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.136     .122    .114    .040    .038    .123    .136   .039      

.018     .002    -.006   -.104   -.106    .002    .018   -.105      

.104     .090    .081    .001    -.000    .090    .104   .000 

.0404   .0364   .0355    .0132    .0116   .0409   .0404   .0124   

.0466   .0421   .0410    .0153    .0135   .0473   .0466   .0143   

.0420   .0380   .0370    .0138    .0121   .0426   .0420   .0129 

ES = Unadjusted effect Size 

TA = TA adjusted effect-size  

SA = SA adjusted effect size 

Bias = Estimated effect-size – Population effect size 
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Appendix C.3  Bias and Standard Deviations of unadjusted Effect Size, Effect-size adjusted      
              by TA, Effect-size adjusted by SA when population effect-size is .3 
 
k n p   WI     HI      SI     SGI     SEI     TSI    HRI   CNI 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.109    .109    .055    .109    .109    .065    .109    .109    

.010    .010   -.051    .010    .010   -.040    .010    .010     

-.001   -.001   -.065   -.001   -.001   -.053    -.001   -.001 

.1528   .1528   .1444   .1528   .1528   .1591   .1528   .1528   

.1782   .1782   .1684   .1782   .1782   .1857   .1782   .1782   

.1814   .1814   .1714   .1814   .1814   .1890   .1814   .1814 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.181    .181    .090    .181    .181    .141    .181    .181    

-.043   -.043   -.173   -.043    -.043   -.101    -.043   -.043 

-.003   -.003   -.126   -.003    -.003   -.058    -.003   -.003 

.1521   .1521   .1446   .1521   .1521   .1596   .1521   .1521   

.2180   .2180   .2073   .2180   .2180   .2287   .2180   .2180   

.2064   .2064   .1962   .2064   .2064   .2166   .2064   .2064 

10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.365    .365    .156    .365    .365    .336    .365    .365    

-.196   -.196   -.757    -.196   -.196   -.275   -.196    -.196 

-.005   -.005   -.446    -.005   -.005   -.067   -.005    -.005 

.1338   .1338   .1483   .1338   .1338   .1428   .1338   .1338 

.3591   .3591   .3981   .3591   .3591   .3834   .3591   .3591 

.2825   .2825   .3132   .2825   .2825   .3016   .2825   .2825 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA  

.020    .020    .011    .020    .020    .011    .020    .020    

-.002   -.002   -.011   -.002    -.002   -.011   -.002    -.002    

-.000   -.000   -.009   -.000    -.000   -.010   -.000   -.000 

.0700   .0700   .0690   .0700   .0700   .0705   .0700   .0700   

.0724   .0724   .0713   .0724   .0724   .0728   .0724   .0724   

.0722   .0722   .0711   .0722   .0722   .0727   .0722   .0722 

2 

50 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.034    .034    .021    .034    .034    .025    .034    .034    

-.022   -.022   -.037   -.022    -.022   -.032    -.022   -.022    

-.000   -.000   -.014   -.000    -.000   -.010    -.000   -.000 

.0703   .0703   .0688   .0703   .0703   .0707   .0703   .0703   

.0764   .0764   .0747   .0764   .0764   .0769   .0764   .0764   

.0740   .0740   .0724   .0740   .0740   .0745   .0740   .0740 
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  10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.069    .069    .043    .069    .069    .061    .069    .069    

-.142   -.142   -.177    -.142   -.142   -.153    -.142   -.142 

-.000   -.000   -.030    -.000   -.000   -.010    -.000   -.000 

.0703   .0703   .0679   .0703   .0703   .0708   .0703   .0703   

.0940   .0940   .0908   .0940   .0940   .0947   .0940   .0940   

.0782   .0782   .0756   .0782   .0782   .0788   .0782   .0782 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.138    .125    .088    .101     .082     .089    .138   .092   

.057    .042    .000    -.002    -.028    .001    .057   -.014   

.074    .059    .018     .018    -.005    .019    .074    .006 

.1241   .1193   .1158   .0980   .0704   .1323   .1241   .0842   

.1420   .1366   .1326   .1121   .0806   .1514   .1420   .0964   

.1384   .1331   .1292   .1093   .0786   .1475   .1384   .0940 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.222    .195    .136    .160     .141    .179    .222    .151   

.069    .033    -.045   -.052    -.086    .011    .069   -.069   

.123    .090    .018    .022    -.006    .071    .123    .009 

.1183   .1107   .1086   .0987   .0759   .1269   .1183   .0869   

.1565   .1464   .1436   .1305   .1004   .1678   .1565   .1149   

.1430   .1338   .1312   .1193   .0917   .1533   .1430   .1050 

10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.404    .348    .227    .310    .288    .375    .404    .300    

.062   -.057    -.319   -.283    -.360   -.000    .062   -.319    

.248    .163    -.021   -.039    -.006    .204    .248   .018 

.0966   .0900   .0978   .0981   .0832   .1049   .0966   .0895   

.2083   .1940   .2110   .2115   .1795   .2262   .2083   .1930   

.1475   .1373   .1494   .1497   .1271   .1601   .1475   .1367 

3 

50 3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.027    .025    .019    .019    .016    .017    .027    .017    

.008    .005   -.000    -.003   -.008    -.002    .008   -.005    

.014    .011    .005    .002    .001     .003    .014   .001 

.0566   .0559   .0554   .0401   .0290   .0572   .0566   .0346   

.0582   .0575   .0570   .0412   .0299   .0588   .0582   .0356   

.0577   .0571   .0565   .0409   .0296   .0584   .0577   .0353 
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5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.046    .040     .031    .030    .027    .036    .046   .029    

.004    -.001    -.011   -.020    -.025   -.006    .004   -.022   

.023    .017    .008     .003    -.001    .012    .023   .001 

.0571   .0550   .0551   .0408   .0300   .0577   .0571   .0354   

.0607   .0595   .0587   .0434   .0319   .0614   .0607   .0377   

.0590   .0578   .0570   .0422   .0310   .0597   .0590   .0366 

  

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.090    .078    .060     .058     .055    .081    .090   .057   

-.049   -.065   -.087    -.118    -.127    -.062   -.049   -.122   

.047    .033    .014     .003    -.001    .036    .047    .001  

.0576   .0550   .0539   .0419   .0322   .0583   .0576   .0370   

.0709   .0677   .0663   .0516   .0397   .0717   .0709   .0455   

.0617   .0590   .0578   .0449   .0345   .0625   .0617   .0396 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.159    .134    .112    .083    .068    .106    .159    .076    

.069    .040    .014   -.048    -.069    .007    .069   -.059    

.110    .083    .059    .013    -.000    .052    .110    .003 

.0947   .0879   .0866   .0593   .0393   .1027   .0947   .0483   

.1104   .1025   .1011   .0692   .0459   .1198   .1104   .0564   

.1008   .0936   .0923   .0632   .0419   .1094   .1008   .0515 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA  

.244    .197    .162    .106    .087    .199    .244    .096    

.120    .059    .015    -.111   -.141    .062    .120   -.127    

.192    .139    .101    -.015   -.007    .142    .192    .003 

.0897   .0798   .0792   .0518   .0333   .0977   .0897   .0411   

.1143   .1016   .1009   .0660   .0425   .1244   .1143   .0524 

.0999   .0888   .0882   .0577   .0371   .1088   .0999   .0458 

5 10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.427    .333    .267    .209    .184    .399    .427   .196     

.216    .050    -.066   -.326   -.388    .166    .216   -.358    

.357    .239    .156    .031   -.005    .322    .357    .012 

.0688   .0606   .0639   .0555   .0399   .0754   .0688   .0461   

.1220   .1075   .1134   .0985   .0708   .1338   .1220   .0818   

.0864   .0761   .0803   .0698   .0501   .0948   .0864   .0579 
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3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.033    .028    .024    .016    .013    .021    .033    .014    

.011    .006    .002    -.012   -.015   -.000    .011    -.014   

.022    .017    .013    .002   -.000    .010    .022    .000 

.0443   .0434   .0431   .0239   .0154   .0449   .0443   .0194   

.0457   .0448   .0445   .0247   .0160   .0464   .0457   .0200   

.0448   .0439   .0436   .0241   .0156   .0455   .0448   .0196 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.053    .043    .038    .019    .017    .042    .053    .018    

.018    .007    .002    -.028   -.032    .006    .018   -.030    

.040    .030    .024    .001   -.001    .028    .040    .000 

.0443   .0426   .0422   .0194   .0121   .0449   .0443   .0154   

.0467   .0449   .0445   .0205   .0128   .0474   .0467   .0162   

.0452   .0434   .0431   .0198   .0123   .0458   .0452   .0157 

 50 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.106    .084    .073    .038    .036    .096    .106    .037    

.015    -.011   -.023   -.094    -.101    .002    .015   -.097    

.082    .058    .047    .002    -.000    .070    .082   .001 

.0432   .0400   .0395   .0198   .0131   .0439   .0432   .0160   

.0499   .0461   .0456   .0229   .0151   .0507   .0499   .0185   

.0450   .0416   .0412   .0207   .0136   .0457   .0450   .0167 

ES = Unadjusted effect Size 

TA = TA adjusted effect-size  

SA = SA adjusted effect size 

Bias = Estimated effect-size – Population effect size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 81

Appendix C.4  Bias and Standard Deviations of unadjusted Effect Size, Effect-size adjusted by 
TA, Effect-size adjusted by SA when population effect-size is .5 

 
k n p   WI     HI      SI      SGI     SEI     TSI    HRI    CNI 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.078    .078    .020    .078     .078    .043    .078   .078   

.008    .008    -.058    .008    .008    -.032   .008    .008    

-.000   -.000    -.068   -.000   -.000    -.041   -.000   -.000 

.1295   .1295   .1315   .1295   .1295   .1370   .1295   .1295  

.1511   .1511   .1534   .1511   .1511   .1599   .1511   .1511 

.1538   .1538   .1562  .1538   .1538   .1627   .1538   .1538 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.131    .131    .040    .131    .131    .100    .131   .131 

-.027   -.027   -.158    -.027   -.027   -.073   -.027   -.027  

.000    .000   -.123    .000    .000    -.042   .000    .000 

.1233   .1233   .1303   .1233   .1233   .1312   .1233   .1233 

.1767   .1767   .1868   .1767   .1767   .1881   .1767   .1767 

.1673   .1673   .1768   .1673   .1673   .1781   .1673   .1673 

10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.264    .264    .073    .264    .264    .242    .264    .264      

-.132   -.132   -.643   -.132   -.132    -.191   -.132   -.132       

.002    .002   -.399    .002    .002    -.044   .002    .002 

.1036   .1036   .1374   .1036   .1036   .1118   .1036   .1036     

.2782   .2782   .3688   .2782   .2782   .3000   .2782   .2782     

.2189   .2189   .2901   .2189   .2189   .2360   .2189   .2189 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA  

.015    .015    .005    .015    .015    .008    .015    .015 

-.000  -.000    -.011   -.000   -.000    -.008   -.000   -.000       

.000   .000    -.010    .000    .000    -.007   .000    .000 

.0611   .0611   .0612   .0611   .0611   .0618   .0611   .0611      

.0632   .0632   .0632   .0632   .0632   .0638   .0632   .0632    

.0630   .0630   .0631   .0630   .0630   .0637   .0630   .0630 

2 

50 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.025    .025    .010    .025    .025    .018    .025    .025      

-.015   -.015   -.032    -.015   -.015   -.023    -.015   -.015      

.000    .000   -.015    .000    .000    -.007    .000    .000 

.0605   .0605   .0606   .0605   .0605   .0611   .0605   .0605     

.0658   .0658   .0659   .0658   .0658   .0664   .0658   .0658     

.0637   .0637   .0638   .0637   .0637   .0644   .0637   .0637 



 82

  10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.050    .050    .021    .050    .050    .043    .050    .050      

-.100   -.100    -.139   -.100   -.100    -.109   -.100   -.100      

.000    .000    -.031    .000    .000    -.007    .000   .000 

.0586   .0586   .0590   .0586   .0586   .0593   .0586   .0586     

.0784   .0784   .0789   .0784   .0784   .0792   .0784   .0784     

.0652   .0652   .0657   .0652   .0652   .0659   .0652   .0652 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.100    .085    .047    .087    .069    .062    .100    .080      

.042    .025   -.017    .004    -.028   -.000    .042   -.010       

.053    .037   -.004    .020    -.008    .012    .053   .007 

.1035   .1011   .1029   .1009   .0626   .1116   .1035   .0824     

.1185   .1158   .1178   .1155   .0716   .1277   .1185   .0944      

.1155   .1128   .1148   .1125   .0698   .1245   .1155   .0920 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.160    .132    .074    .135    .122   .128    .160    .130       

.051    .013    -.062   -.035   -.079   .008    .051   -.055        

.089    .055    -.014    .024   -.008   .050    .089    .010 

.0964   .0931   .0975   .0991   .0683   .1043   .0964   .0833     

.1275   .1231   .1289   .1311   .0903   .1379   .1275   .1101     

.1165   .1125   .1178   .1198   .0825   .1261   .1165   .1006 

10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.287    .234    .124    .252    .251    .266    .287    .253      

.042   -.072    -.308   -.226   -.324    -.003    .042   -.270      

.176    .094    -.072   .034    -.010    .143    .176   .015 

.0746   .0739   .0882   .0912   .0748   .0814   .0746   .0807     

.1608   .1594   .1901   .1966   .1613   .1756   .1608   .1740    

.1139   .1129   .1346   .1392   .1142   .1243   .1139   .1232 

3 

50 3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.020    .017    .010    .017    .013    .012    .020   .015       

.007    .003   -.003    -.001   -.007   -.001    .007   -.004       

.011    .007    .000    .004    -.001   .002    .011   .001 

.0493   .0491   .0491   .0447   .0256   .0500   .0493   .0357     

.0508   .0505   .0505   .0460   .0263   .0515   .0508   .0367     

.0504   .0501   .0501   .0456   .0261   .0511   .0504   .0364 
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5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.033    .026    .016    .025    .023    .025    .033    .024      

.003   -.003    -.014   -.015   -.023    -.005    .003   -.019      

.017   .010    -.000    .003    -.001    008    .017    .001 

.0482   .0476   .0477   .0439   .0261   .0489   .0482   .0354     

.0513   .0507   .0507   .0467   .0278   .0521   .0513   .0376     

.0499   .0493   .0493   .0454   .0270   .0506   .0499   .0366 

  

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.064    .050    .031    .047    .048    .057   .064    .048       

-.036   -.053   -.077   -.095    -.113   -.045   -.036   -.104       

.033    .017   -.002    .003   -.001    .025    .033    .000 

.0473   .0462   .0465   .0440   .0278   .0480   .0473   .0359     

.0582   .0569   .0572   .0541   .0342   .0591  .0582   .0442     

.0507   .0495   .0498   .0471   .0298   .0514   .0507   .0385 

3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.114    .087    .065    .077    .061    .075    .114    .069      

.050    .018    -.006   -.034   -.067    .004    .050   -.050       

.081    .051    .027    .018   -.007    .038    .081    .005 

.0791   .0759   .0769   .0690   .0359   .0863   .0791   .0503     

.0923   .0886   .0897   .0805   .0419   .1007   .0923   .0587     

.0842   .0809   .0819   .0735   .0382   .0920   .0842   .0536 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA  

.173    .123    .090    .098    .079    .139   .173    .088       

.083    .020   -.021    -.093   -.137    .041   .083   -.117        

.136    .080    .043    .018    -.010    .098   .136   -.002 

.0709   .0664   .0683   .0594   .0304   .0776   .0709   .0415     

.0903   .0845   .0870   .0756   .0388   .0989   .0903   .0528     

.0790   .0739   .0761   .0661   .0339   .0865   .0790   .0462 

5 10 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.305    .215    .156    .191    .171    .284    .305    .181      

.154    -.003   -.108   -.278   -.372    .118    .154    -.328      

.255    .143    .068    .035   -.008    .229    .255    .012 

.0535   .0523   .0579   .0611   .0379   .0589   .0535   .0458     

.0949   .0928   .1027   .1085   .0672   .1045   .0949   .0812     

.0672   .0658   .0727   .0768   .0476   .0740   .0672   .0575 
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3 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.023    .018    .014    .014    .012    .015    .023    .013      

.008    .002   -.002    -.009   -.015   -.000    .008   -.012       

.016    .009    .005    .002   -.001    .007    .016    .000 

.0379   .0375   .0375   .0292   .0135   .0386   .0379   .0207     

.0392   .0388   .0388   .0302   .0139   .0398   .0392   .0214     

.0384   .0380   .0380   .0296   .0137   .0390   .0384   .0210 

5 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.038    .026    .020    .018    .015    .029    .038    .017      

.013    .001   -.005    -.023   -.031    .004    .013   -.027       

.029    .017    .010    .002   -.001    .020    .029    .000 

.0378   .0370   .0370   .0253   .0107   .0384   .0378   .0168     

.0398   .0390   .0391   .0267   .0113   .0405   .0398   .0178     

.0385   .0378   .0378   .0258   .0109   .0392   .0385   .0172 

 50 

10 Bias 

 

 

SD 

ES  

TA 

SA 

ES  

TA 

SA 

.075    .050    .039    .035    .033    .068    .075   .034       

.010   -.018    -.031   -.082   -.096    .001    .010   -.090       

.058    .031    .020    .003   -.001    .049    .058   .000 

.0360   .0344   .0345   .0250   .0118   .0366   .0360   .0171     

.0415   .0397   .0399   .0289   .0136   .0422   .0415   .0198     

.0375   .0358   .0360   .0261   .0122   .0381   .0375   .0178 

ES = Unadjusted effect Size 

TA = TA adjusted effect-size  

SA = SA adjusted effect size 

Bias = Estimated effect-size – Population effect size 
 

 


