
USING THE LEVENSHTEIN ALGORITHM FOR AUTOMATIC LEMMATIZATION IN
OLD ENGLISH

by

BERNADETTE E. JOHNSON

(Under the Direction of William Kretzschmar)

This study was undertaken to develop and test an automatic lemmatization program for

the Old English language utilizing the Levenshtein edit distance algorithm, stemming, and other

techniques to help overcome issues such as rampant spelling irregularity and the presence of

inflectional endings. The primary goal was to create a lemma list for import into text analysis

software to equate Old English words with their variants, which was met with limited but

promising success. The main lemmatization program is written in the Perl programming

language. Other scripts in Perl and XSLT, as well as Unix command line commands and

AntConc 3.2.0 corpus analysis software, were used to extract text files from the Dictionary of

Old English Corpus XML files, to generate sorted lists of all the words in the available texts for

use by the main program, and to manipulate and analyze the data.

INDEX WORDS: Levenshtein Algorithm, Levenshtein, Lemmatization, Lemma, Lemma list,

Stemmer, Stemming, Old English, Text analysis, Corpus analysis, Dictionary of Old English,

Dictionary of Old English Corpus, Perl, Unix, XSLT, XML, AntConc, oXygen XML Editor.

USING THE LEVENSHTEIN ALGORITHM FOR AUTOMATIC LEMMATIZATION IN
OLD ENGLISH

by

BERNADETTE E. JOHNSON

B.A., The University of Georgia, 1995

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF ARTS

ATHENS, GA

2009

© 2009

Bernadette E. Johnson

All Rights Reserved

USING THE LEVENSHTEIN ALGORITHM FOR AUTOMATIC LEMMATIZATION IN
OLD ENGLISH

by

BERNADETTE E. JOHNSON

Major Professor: William Kretzschmar

Committee: Jonathan Evans
Amanda Gailey

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2009

iv

ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. William Kretzschmar, for his friendly and
valuable guidance throughout the thesis writing process and for teaching me everything I know
about text analysis, Dr. Jonathan Evans for his Old English tutelage over the last few years, and
Dr. Amanda Gailey for providing advice and allowing me to sit in on her Humanities Computing
class, and all three for taking time out of their busy schedules to be on my committee. All of
their classes have been most enjoyable, and their help with this endeavor has been invaluable.

The other people who contributed to my overall education and academic success are too
numerous to list, but I would like to thank all of my wonderful teachers, my friends and my
family for giving me support and guidance over the years, and Jeff for a tremendous amount of
moral support throughout graduate school.

v

TABLE OF CONTENTS
Page

ACKNOWLEDGEMENTS..iv

LIST OF FIGURES... vii

CHAPTER

1 INTRODUCTION..1

1. Purpose of the Study.. 1

2. How This Study is Original..4

2 USING THE LEVENSHTEIN ALGORITHM FOR AUTOMATIC

LEMMATIZATION IN OLD ENGLISH..7

1. Overview of the Levenshtein Algorithm..7

2. Existing Stemming and Lemmatization Tools... 11

3. Necessity for a New Lemmatization Method for Old English........................... 15

4. Methods and Programs Used in This Study... 16

5. Results.. 38

6. Issues and Possibilities for Future Improvement..50

3 CONCLUSION.. 57

WORKS CITED.. 59

APPENDICES

A Custom Scripts..61

B Code from Other Sources... 69

vi

C Porter Stemmer... 78

D Unicode Character Set.. 81

vii

LIST OF FIGURES
Page

Figure 1.1: Levenshtein difference matrix between dryhten and drihten......................................10

Figure 1.2: Levenshtein difference matrix between dryhtin and drihten.......................................10

Figure 1.3: Levenshtein difference matrix between drihtenes and dryhten...................................10

Figure 2.1: Screenshot of lemma list after importing into AntConc..46

Figure 2.2: Second page of wordlist before AntConc lemma list importation.............................. 47

Figure 2.3: Second page of wordlist after AntConc lemma list importation................................. 48

Figure 2.4: First page of keyword list before AntConc lemma list importation............................49

Figure 2.5: First page of keyword list after AntConc lemma list importation...............................50

1

CHAPTER 1

INTRODUCTION

1. Purpose of the Study

The purpose of this study was to make headway in performing automatic lemmatization

of the Old English language using the Levenshtein edit distance algorithm to deal with issues of

spelling irregularity in the language. I started the project specifically for creating lemma files

that equate variant versions of the same words with each other for import into text analysis

software in the hopes of generating more accurate analysis that did not require searching for and

manually combining all the statistics for variants of the same words or undertaking the laborious

task of taking a list of all the words in a corpus and manually creating such a lemma file.

For Modern English, it would be difficult enough to find all the related words by going

over the results manually, but it is even more difficult with Old English, which has many more

inflectional endings than Modern English, and a large amount of spelling irregularity from

document to document (and often enough even within the same text). Simply looking down an

alphabetized list of words to find related words becomes far more difficult when many letters are

used interchangeably with each other and a variety of different spellings for the same word are

possible. And even alphabetization poses difficulties where special characters that are not part of

the Modern English alphabet are concerned.

A “lemma” is essentially the most basic form of a word, the type you would find as the

headword in a dictionary as representative of all other forms of the word. The Oxford English

Dictionary definition as regards Lexicography is “A lexical item as it is presented, usu. in a

2

standardized form, in a dictionary entry; a definiendum” (OED Online “lemma1”). Note that

when I used the terms “lemmas,” “lemma list,” and “lemma file,” I am referring to variants of

the same word grouped together for use in text analysis, rather than to headwords. The definition

of “lemmatize” illustrates the aim of this study perfectly: “To sort (words as they occur in a text)

so as to group together those that are inflected or variant forms of the same word” (OED Online,

“lemmatize”).

The main program takes in a list of words generated from the Dictionary of Old English

Corpus and outputs a “lemma file” containing related words (variants with different declensional

endings and spellings) grouped together into small comma delimited lists (or as close as the

current methods will get us to this goal). With some modification, the file can be imported into

commonly used text analysis software such as AntConc or Wordsmith Tools, from which

wordlists and keyword lists can be generated that will consider all of the lemmatized variants as

part of the same word so that frequency and keyword statistics will be calculated based on all the

words in each group. Without a lemma file, all the variant words and their statistics are

calculated and output separately on a word-by-word basis. But with a lemma file, for instance,

instead of separate entries and calculations for the word dryhten (meaning “ruler, king, lord,

prince” (Hall 89)), and some of its declined forms such as dryhtenes (the genitive singular form)

and dryhtenum (the dative plural form), these words would be grouped together with statistics

reflecting all occurrences of all three words. If dryhten occurs three times, drythenes four times,

and dryhtenum two times, the frequency will be shown as nine under one headword rather than

as three separate frequencies of separate words.

Unlike Modern English (at least since the advent of the printing press and the overall

standardization of spelling that eventually occurred as a result of this invention), Old English

3

texts exhibit a large number of spelling variations of the same words, with certain characters or

groups of characters being used interchangeably, sometimes in a somewhat unpredictable

manner. For instance, for “a” you might find “æ” (the Old English character “ash”), “aa,” or

“aæ,” not to mention a number of accented versions of the letter “a.” The Old English characters

eth (“ð”) and thorn (“þ”) were very often used interchangeably, as were “y” and “i,” and “c” and

“k” (though “k” is somewhat rare compared to “c”). Many letters were doubled and vowels in

general were quite unpredictably substituted for one another. The word dryhten, as an example

once again, appears in A Concise Anglo-Saxon Dictionary under that spelling and no other (Hall

89). Its headword in the Bosworth-Toller dictionary is drihten, with dryhten listed at the end of

the entry as a variant form (Bosworth 213). Though drihten and dryhten are the common

dictionary headwords, it appears in the Dictionary of Old English Corpus in at least fourteen

separate variant forms: dræhton, drehtan, drehten, drehton, drihtan, drihtæn, dryhtæn, drihten,

dryhten, drihtin, drihtyn, dryhtin, dryhtyn, and drihton. I extracted this data by using the Unix

command grep "^dr.ht.n$" wordlist_sorted.txt, which calls the grep searching program

to find all occurrences matching the regular expression within quotation marks (where “^” means

beginning of line, “.” means any single character, and “$” means end of line) in the file

wordlist_sorted.txt (a file containing every unique word in the corpus, each on a separate line).

This count does not include any of the declined versions or any that might contain doubled or

additional letters. This makes matching the variant forms with any built-in comparison

functions, which are generally looking for exact matches, difficult to impossible.

Current Modern English lemmatizers would be ineffective for this reason and also

because of the presence of inflectional endings that for the most part differ a great deal from any

we find in English today. The most commonly used lemmatizers involve stemming modern

4

words (i.e. removing the endings from words and using their root or stem forms as the main

headword) based on a strict set of rules, but this requires very predictable spelling, which is

present in Modern English and most other modern languages, but is not present in Old English.

This makes the Levenshtein algorithm, which measures the edit distance, or in other words the

number of changes necessary to change one word into another, a good candidate for aiding in

lemmatization of Old English. Rather than relying on exact spellings of words, a minimum

acceptable difference between the words (or their stemmed forms) can be set in order to group

like words together that are not necessarily spelled exactly alike.

My repetition of the word dryhten as the most frequently used example throughout the

paper is the result of dryhten and its variants coming up as the most frequent content word in

wordlist and keyword searches of the entire corpus and various smaller sections of the corpus

(including the prose and poetry subsets). It was the results of the keyword lists, with every

variant of every word on a separate line with a separate keyness and frequency, that made me

believe that a lemma list was necessary for effective corpus analysis in Old English, and the

incredibly daunting task (likely impossible within a reasonable time frame) of assembling one

manually which made me think to attempt automatic lemmatization. Issues arising due to

unpredictable spelling variations during my early lemmatization attempts led me to search for

solutions that would match on similarity rather than exact spelling, which ultimately led me to

the Levenshtein algorithm.

2. How This Study Is Original

I was unable to find any instances of the Levenshtein algorithm being used in the

lemmatization of Old English, and was in fact unable to find any Old English specific

lemmatizers, or even stemmers, of any sort. I found reference to Levenshtein being used to

5

compare Modern English proper names in order to find equivalents that were not spelled exactly

the same ("Smith" versus "Smythe," for instance), and decided that it might also be of use in

dealing with Old English spelling variation. I have created original programs that allow me take

word lists generated by existing corpus analysis software from a large Old English corpus, sort

the lists based on a sort order more appropriate to Old English than is normally allowed in

existing sorting functions, and generate an at least partially accurate lemma list (which includes

words that are similar enough to possibly be considered variations of the same word, grouped

together in individual comma delimited lists).

Upon searching, I was also unable to find any existing Old English lemma lists, and if

there are any in existence, it is doubtful that they contain very many spelling variants of each

word. Using Levenshtein, it is theoretically possible to generate one with every spelling variant

in existence in a particular corpus, although in practice there are some issues that need to be

overcome and this study only scratches the surface.

This project includes one XSLT program used to extract text only versions of the Old

English texts from the Dictionary of Old English Corpus XML files, two Perl programs used to

do sorting and lemmatization respectively, and analysis of the resulting lemma list and its effect

on analysis of the corpus. I used AntConc text analysis software for generation of the original

word lists and importation and testing of the final lemma lists.

The set of texts from which all of my word lists were generated is the Dictionary of Old

English Corpus, a corpus compiled at the University of Toronto for the Dictionary of Old

English project covering English vocabulary from around 600 AD to 1150 AD. The dictionary is

"based on a computerized Corpus comprising at least one copy of each text surviving in Old

English" (Healey "About"). The corpus was obtained in CD form and contains copies of all of

6

the texts in HTML, SGML, and XML formats. The XML versions of the texts were used for this

study by extracting one plain text file from each XML encoded text.

7

CHAPTER 2

USING THE LEVENSHTEIN ALGORITHM FOR AUTOMATIC LEMMATIZATION IN

OLD ENGLISH

1. Overview of the Levenshtein Algorithm

The Levenshtein, or Edit-Distance, algorithm calculates the minimum number of

operations that would be necessary to convert one string into another string, including character

deletions, insertions, and substitutions (www.levenshtein.net; Gilleland "ld.htm"). Put simply,

the algorithm moves forward through each letter of the two strings and adds 1 to the edit distance

if the letters do not match and a change is necessary at any given step. If the words being

compared are cyning and cining, for instance, the Levenshtein distance would be 1, because only

one change (“y” to “i”) is necessary to transform cyning into cining. It is one type of "fuzzy" or

approximate string matching, as opposed to exact string matching (Orwant "Section 9.2"), the

latter of which is what most existing string comparison functions perform. Levenshtein has been

used in such applications as spell checking, speech recognition, and plagiarism detection

(Gilleland "ld.htm”).

The Perl implementation of the Levenshtein algorithm used in this project is from the

www.wikibooks.org page "Algorithm implementation/Strings/Levenshtein distance." The Perl

code at this site is a modified version of the Perl code created by Eli Bendersky at

http://www.merriampark.com/ldperl.htm. The code itself can be found in Appendix B (section

B2) or in Appendix A as the "levenshtein” subroutine in the main program (oe_lemma.pl, section

8

A3). The following paragraph is a walk through of the algorithm as implemented in the program

code (note that I omitted "use strict" from the oe_lemma.pl program as it was causing problems).

The algorithm takes two arguments for comparison (any two strings you pass into the

subroutine) and sets the variables $a and $b to the values of the two strings. It then sets $len1

and $len2 to the lengths of string $a and string $b respectively. If $len1 equals zero, the

subroutine returns $len2 and terminates, and if $len2 equals zero, the subroutine returns $len1

and terminates (in other words, if one string is blank, the length of the other string is returned,

since that is the number of changes that would be necessary to make the blank string into the

non-blank string). An associative array %d is declared (where each value in %d is accessible

using the variable $d{n}, “n” being the number of the location of any element in the array), and a

set of nested for loops starts, the outermost looping through the variable $i starting at the value

zero and going until the value of $len1 is reached, and the innermost looping through the

variable $j starting at zero and going until the value of $len2 is reached. A for loop is a control

structure that allows a program to iterate through a group of something, in this case the members

of an associative array, generally starting with a control variable set at a fixed number and

ending when that variable reaches another number, with the variable incrementing or

decrementing on each iteration through the loop so that the ending condition will be reached at

some point. In this case, during each iteration through either loop, the value of the $i or $j

variable is incremented by one so that the loop is exited when the length of each word is reached.

This set of nested loops initializes the minimum distance values of each possible pair of letters

(all are set to zero except for $d{0}{$j} and $d{$i}{0} which are set to the values of $j and $i

respectively). This, in effect, creates a matrix of possible edit distances, with a top “row”

numbered from zero to the length of string $b and a left side “column” numbered from zero to

9

the length of string $a (each location containing the Levenshtein distance at that spot, and the

values at the diagonal of this matrix containing the minimum edit distance up to that point in the

words). In the case of, say, comparing drihten to dryhtan, both the top row and side column

would consist of 0, 1, 2, 3, 4, 5, 6, and 7 since both strings are of the same length. “Row” and

“column” are really just concepts here, since no literal rows or columns are returned by this

particular code, but they help conceptualize the process (see Figures 1.1, 1.2, and 1.3 at end of

this section for illustration). After this initialization, two arrays are created and populated with

all the characters from each string, @ar1 with the characters from string $a and @ar2 with the

characters from string $b. Another set of nested for loops (this time $j from 1 to $len2 within $i

from 1 to $len1) go through and compare all the characters to each other and determine the

Levenshtein cost between the letters being compared (i.e. the number 1 if a change is necessary

and the number 0 if no change is necessary). Since the loop iterating through every value of $i is

on the outside, this section will start with $i =1 and then iterate through every value of $j from 1

to the length of $b, making calculations for each comparison until the next value of $i, where it

will start over with $j =1, and so on until all values of $i (the total length of string $a) are

exhausted (in effect creating values for each “row” and “column”), and the final resulting

Levenshtein value is returned. The following line, the first executed statement within the nested

“for” loops, is somewhat obfuscated and probably needs explanation:

my $cost = ($ar1[$i - 1] eq $ar2[$j - 1]) ? 0 : 1;

The () ? : structure is actually a sort of shortcut for if/then/else, so the above means if $ar1[$i-1]

equals $ar2[$j-1], then $cost equals zero, else $cost equals 1 (i.e. if the letters are equal, there is

no Levenshtein cost, but otherwise there is). $min1 is then set to $d{$i-1}{$j} + 1 (i.e. the value

at the location in the matrix that is immediately above the current location plus one), $min2 is set

10

to $d{$i}{$j-1} + 1 (i.e. the value at the location immediately to the left of the current location

plus one), and $min3 is set to $d{$i-1}{$j-1} plus $cost (i.e. the value at the location diagonally

above and to the left of the current location plus the cost calculated at the beginning of the loop).

The value at $d{$i}{$j} (which would be the row/column location where the two letters being

compared intersect) is then set to the minimum (or lowest value) of the three variables ($min1,

$min2, or $min3). The increasing cost values from zero to the eventual final Levenshtein value

are therefore held in the diagonal between the letters being compared all the way to

$d{$len1}{$len2} (the bottom right-hand value in the matrix, which is returned after the $i for

loop is exited). This final lower right-hand value is the Levenshtein distance. In the case that

one string is longer than the other, it will have extra rows or columns (depending upon which

string is longer) in the number of the difference between the length of the two strings, and for

every extra row or column, another cost of 1 will be added to the edit distance.

Figures 1.1, 1.2, and 1.3 (from left to right). These show examples of Levenshtein difference
matrices for comparisons between the pairs of words dryhten and drihten (with Levenshtein
distance of 1), dryhtin and drihten (with Levenshtein distance of 2), and drihtenes and dryhten
(with Levenshtein distance of 3) respectively. The final Levenshtein distance value is the
number in the lower right-hand corner of each matrix (1, 2, and 3 in these cases). Note that in
Figure 1.3, the diagonal starting at 0 in the upper left hand corner ends with 1 three spaces from
the lower right, then continues to the right with 2 and 3, for a final Levenshtein distance of 3 due
to a difference in word length.

11

2. Existing Stemming and Lemmatization Tools

Stemmers, commonly used lemmatization tools, use rules to remove inflectional endings

and reduce words down to their stem (or root) form. They often contain hard-coded lists of

possible endings, along with the rules for what to do with the suffixes when they are encountered

(either removal or transformation into another string ending). One distinction in meaning

between stemming and lemmatization is that lemmatizers aim to reduce words down to the

simplest uninflected form resulting in a word upon which all the inflected forms are based,

whereas stemmers will remove both inflectional endings and derivational suffixes and the

resulting stem might not even be a complete word (Mason 179), although often enough these two

terms are used interchangeably. Stemmers are often used for Information Retrieval as well

(Tzoukerman 531), where indexing based on a root form that may or may not be a real word can

be quite useful for text search and retrieval functions (in applications such as search engines).

But not all stemmers reduce words to partial non-word forms. The Porter Stemmer, for instance,

makes an attempt after suffix removal in some cases to add other suffixes or final letters back to

make a complete word (Porter “def.txt”). Other well-known stemmers, aside from the Porter

Stemmer mentioned above, are the Lovins Stemmer and the Lancaster Stemmer, though there are

a number of others in existence for use with various languages. Most of the existing lemmatizers

that are not primarily stemmers appear at least to use stemmers in some way.

The Porter Stemmer was developed by Martin Porter at the University of Cambridge

beginning with a paper on his stemming algorithm written in 1979 entitled "An Algorithm for

Suffix Stripping," and an early programming incarnation written in BCPL, a now defunct

language. It has since been re-written and distributed in a variety of programming languages by

Martin Porter and others. All of the programmed versions (including the original BCPL) contain

12

slight improvements over the originally published algorithm. Implementations of his stemmer

are available at the main Porter Stemmer web site in a variety of languages, including Perl, Java,

Ruby, php, and C (Porter "Porter Stemmer").

The algorithm from Porter's original paper (available at

http://tartarus.org/~martin/PorterStemmer/def.txt) lists a set of rules a word can be taken through

in order to remove or translate expected suffixes to reduce it down to its most basic uninflected

form. Some of the rules test for various conditions, including one or more of the following:

patterns of vowels and consonants repeated a certain number of times (generally there is a

minimum applied in the condition that if not met, no transformation of the word will take place),

the stem ending with an “s,” the stem containing a vowel, the stem ending with a double

consonant, and the stem ending consonant/vowel/consonant where the second consonant is not

“w,” “x,” or “y.” Following the possible conditions, it tests for the presence of certain suffixes,

and if more than one is found, only the longest matched suffix is removed or converted. The

matched suffix maps to a replacement value for that suffix (which is sometimes blank, but

sometimes a shorter suffix). For instance, these examples straight from the paper show one

value (the suffix the program is looking for on the left) mapping to a new value (to the right of

"->"):

SSES -> SS
IES -> I
SS -> SS
S -> (Porter "def.txt")

One of his examples is the word "caresses," which could match either the first or the fourth

condition above. Note that the fourth suffix (an “s” at the end of a word) would result simply in

the removal of the final letter. Because "-sses" is the longest match, "caresses" is converted to

"caress." As well as including a large number of possible suffixes, the algorithm takes each

13

word through a number of steps in an attempt to get a more correct root word. For instance, if

"-ed" is removed from a word and the stem now ends with "-at," "-bl," or "-iz," a subsequent step

that checks for these endings will add an "-e" back on to the end of the stem, so that "conflated"

becomes "conflat" and then the more correct "conflate.” There are five steps described in all, the

first (of which the above are examples) covering plurals and past participles, and the subsequent

four including much simpler rules for removal of specific suffixes. A word with multiple

suffixes will go through removal processes in multiple steps. For the word “generalizations,” for

example, step one will remove the "-s" making it "generalization," step two will map the

"-ization" to "-ize" making it "generalize," step three will map the "-alize" to "al" reducing it to

"general," and step four will map the "al" to null, reducing the word further to "gener" (Porter,

"def.txt"). The last step makes it an incorrect lemma for linguistic purposes, but one likely quite

useful for Information Retrieval purposes, for which the algorithm seems to have been designed

originally (even though in many cases suffixes are added that result in real words). But the steps

and concepts contained in the algorithm, and in the subsequent programming language versions,

are quite useful for linguistic lemmatization as well. For a Perl implementation of the Porter

Stemmer written by Martin Porter, see Appendix C.

An even earlier stemming algorithm is the Lovins Stemmer, which is described in Julie

Beth Lovins's paper "Development of a Stemming Algorithm" published in 1968 (Snowball "The

Lovins Stemming Algorithm"). It is the first published stemming algorithm, and includes an

extensive list of endings, conditions, and transformation rules, and stems the longest of the

possible endings found. Unlike the Porter Stemmer, it was designed to stem a word in a single

pass rather than multiple steps (Lancaster "The Lovins Stemmer"), though the general concept is

very similar.

14

Another well-known stemmer is the Lancaster (or Paice/Husk) Stemmer, developed in the

late 1980s at Lancaster University. This stemmer starts with the last letter of the word and looks

in a file of various conditions grouped by letter for suffixes ending in that letter and their

associated rules. Each possible rule is tried until one is applied or none are found, then the next

remaining ending letter is used to find the next group of rules that might apply to the remaining

stem. Before application of a rule, conditions are checked to make sure the suffix removal would

leave an acceptable stem (for example, one that is not too short or would still contain a vowel).

Rather than just once or a certain number of times, this algorithm will iterate over a word as

many times as there are still applicable rules (Lancaster "stemming/general/paice.htm").

Aside from their IR functions, stemmers are also incorporated into linguistics specific

programs, such as MorphAdorner (http://morphadorner.northwestern.edu/morphadorner/), which

is a "morphological adorning" or tagging program that takes texts and marks them up with

morphological information, including "standard spelling, parts of speech, and lemmata," among

other things (MorphAdorner "Home"). This application includes the Porter, Lancaster, and

Lovins stemmers among its other lemmatization tools (MorphAdorner "Lemmatization").

One can see how reducing a word down to its base stem could be of great use in finding

words that are inflected forms of each other and grouping them together, but the stemmers and

MorphAdorner, like many such existing linguistic software tools, are written specifically for

Modern English and are not very applicable to Old English. The MorphAdorner Web site's

"Lemmatization" page states that its lemmatization tools work best with standardized modern

spellings, and it offers tools to help take earlier Modern English spelling variants and convert

them to modern standard spellings before the lemmatization process. The original forms of the

three above-mentioned stemmers were all written specifically for Modern English spellings and

15

suffixes. Though there are currently many variations available online for other mostly modern

languages which include rules specific to their intended languages, they are dependent upon the

words exhibiting standard modern spellings for accurate results.

3. Necessity for a New Lemmatization Method for Old English

The existing tools mentioned previously are all quite useful in linguistic research

including their uses in lemmatization, but none of them are satisfactory for stemming or

lemmatizing in Old English, mainly because of the unfixed spelling that existing tools cannot

handle (even if they were reworked with rules and endings specific to Old English). Because of

this lack, I began work on an Old-English-specific lemmatizer that uses a list of language

specific possible endings to mimic some of the work of the stemmers, but also includes a few

character translations of commonly interchangeable letters, and most importantly Levenshtein

comparisons of the resulting stems in order to find differently spelled but related words and

group them together. The results, while not perfect, are very promising. That said, because the

algorithm is used in this case to find the edit distance between similar but different spellings, this

lemmatizer will not do anything to find and match up highly irregular words. Known irregular

words, including the verb beon ("to be"), and words like the demonstrative pronouns (seo and its

declensions, equivalent to "the"), could be included in a lemma list manually, although it might

be better to hard code them into the program for comparison to words in the word list in order to

find unexpected irregular spellings). They are also likely, in any sort of corpus analysis, to be

included in a stop list (or list of words to be excluded from analysis) since these particular

examples are function words rather than content words, so in many cases their inclusion may not

be necessary. Because the program is not equipped to deal with them, the ones spelled similarly

may be grouped together, but their more irregular variants will be elsewhere.

16

In this project, a Perl implementation of the Levenshtein algorithm, along with an Old

English specific sorting program, translations of certain characters, a primitive form of

stemming, and other programmatic methods, have been used to compare words in a word list

generated from all the texts in the Dictionary of Old English Corpus, and to place words with the

appropriate level of similarity with each other into groups as related lemmas. This required the

use of pre-existing text analysis software (namely AntConc 3.2.0m for Macintosh OSX), along

with the writing of custom scripts in XSLT and Perl.

4. Methods and Programs Used in This Study

Three custom programs were created for this project, including one XSLT program to

extract text files from the DOOE XML files, one Perl file to sort word lists generated by

AntConc, and another Perl program to generate the lemma file and two additional files (one of

possible compounds and one of unmatched words). The sorting and lemmatization programs go

hand in hand, as the current incarnation of the lemmatizer depends upon the words being in a

particular sort order. It goes through the words sequentially, comparing the previous word to the

current word until it runs out of words in the sorted word list, and then outputs the three files.

The first step was creating a small XSLT program, called multiple_files.xsl, which

extracted plain text files from the 3,047 XML files in the Dictionary of Old English Corpus (see

Appendix A, section A1 for the code). It was run using the oXygen XML Editor (version 9.3),

software created by SyncRO Soft LTD for creating and executing XML, XSL, and other related

documents and scripts. The XSLT job was run against the file corpus.xml in the Dictionary of

Old English Corpus, a file which contains a reference to each separate XML encoded Old

English work in the corpus. In the program itself, an <xsl:output> command sets the output

method to "text" and encoding type to "UTF-8." It has been vital every step of the way to make

17

sure, wherever possible, that the texts are both output from programs and input into software

applications as UTF-8, one possible flavor of Unicode encoding. UTF-8 (as well as other types

of Unicode) contains the ASCII subset as the first 128 possible characters (from codes 0 to 127,

including a number of control characters, numbers zero through nine, the Modern English

alphabet, a number of punctuation marks, and other common keyboard characters), but then also

includes a number of additional characters in codes 128 to 255. Default encoding types tend to

be ASCII, as most files we work with do not contain characters outside of the ASCII encoding

range, but the Old English texts in this corpus (along with most Old English digital texts in

existence) contain a number of characters that are beyond the ASCII range but included in

Unicode. For example, lowercase ash (“æ”), thorn (“þ”), and eth (“ð”), as well as their

uppercase counterparts, are very common Old English characters that are not contained within

the ASCII subset, but are in Unicode. UTF-8 is one of the standardized versions of Unicode (see

Appendix D for the UTF-8 character set), and is fairly well integrated into Perl, so this was my

encoding choice.

After setting the output parameters, the program multiple_files.xsl then executes a

template that matches on the TEI.2 element in the XML document it is acting upon, which then

executes an <xsl:for-each> statement that iterates through every matched element, sets the

"filename" variable to concatenate "teiHeader/fileDesc/publicationStmt/idno," an underscore,

and another statement that drills down to teiHeader/fileDesc/titleStmt/title[@type='st'] (meaning

the attribute with type equals “st” within the element <title> within <titleStmt> within

<fileDesc> within <teiHeader>) and does a translation of all characters "*", "/", ":", and " " to

underscore. This translation was necessary for removing special characters that were wreaking

havoc with Unix commands and other software. The colon character was causing issues with the

18

XSLT program that were keeping it from working, asterix is generally a regular expression

wildcard character, the forward slash (“/”) is part of a file's pathname, and space (“ “) causes

issues when referencing filenames in Unix.

After this, an <xsl:result-document> section creates a file with path

text_files3/{$filename}.txt ($filename being the value of the filename variable set in the

previous statements), and within the result-document statement another for-each loop iterates

through every <s> (sentence) tag in the XML documents (using the statement <xsl:for-each

select="text/body/p/s"> to drill down from the <text> element to <body> to <p>

(paragraph) to <s> and retrieve each sentence, outputting each sentence followed by a carriage

return and line feed (the "" and "&@x0A;" entities respectively) until the end of the file,

then exiting the result-document and starting the outer for-each loop on the next file, until the

folder text_files3 contains a text file for every XML Old English file in the corpus. In effect, by

running the program against "corpus.xml" (which contains an entity reference to each XML file

in the corpus, such as "&T01370;" which points to the Beowulf file "T01370.xml"), it generated

a file for each separate XML OE file in the corpus, each consisting of sentences separated by

carriage return and line feed.

After these files were created, the next step was to run the entire corpus through text

analysis software in order to generate a list of all the unique words in the corpus. For this I used

AntConc version 3.2.0m, corpus linguistics software developed by Lawrence Anthony that

allows for generation of word lists, keyword lists, concordances, collocations, and word clusters,

among other data useful for text analysis. AntConc allows you to select either a group of files

individually or an entire directory, which was fortunate, because the individual file selection

would not work due to special Old English characters in the file names. The program saw them

19

as multiple ASCII characters instead of single Unicode characters just in the file selection area,

but a setting within the software allowed proper processing of the special characters within the

files. The language encoding in AntConc had to be changed from the default "Western Europe

'Latin1' (iso-8859-1)” to “Unicode (utf8)” before proceeding. If the wrong language encoding is

selected, the special characters will not be output properly.

The software allows generation of word lists either by word (in alphabetical order) or by

frequency (number of occurrences in descending order). As is the case with many software

applications' built-in sort functions (which I will go into in more detail in the section on the

oe_sort.pl program below), the resultant word list is not sorted in an order optimal for viewing

and grouping Old English words. Words starting with ash, thorn, and eth end up at the end of the

list after words starting with Roman alphabetic characters “a” through “z.” Words beginning

with other special characters such as accented vowels, “c” with cedilla (“ç”) and l-bar (“ł”) end

up at the end, as well.

AntConc outputs a file with three fields per line: "rank," "frequency," and "word." The

rank is simply the numeric order in which the words were output (1 for the first word, 2 for the

second, etc.). Frequency is the number of times the word occurs in the corpus (therefore, each

word is only output once), and word is the word itself. I selected "Treat all data as lowercase,"

which resulted in an all-lowercase output file, to eliminate issues with case in subsequent

processing. I did a sort by frequency and another by word, and saved the resulting output files as

"wl_all_byfreq.txt" and “wl_all_byword.txt” respectively. Both files contain 260,557 lines, each

line with one separate unique word from the corpus (mostly Old English words, but also

including some Latin words and at least one Greek word).

20

I created two Perl programs, oe_sort.pl and oe_lemma.pl. The first one, oe_sort.pl, sorts

the word list generated by AntConc into a word order more appropriate to Old English than one

would get by using the built-in Perl (or Unix) sort functions. The second program, oe_lemma.pl,

iterates through the sorted word list created by the former program and groups the words into

sets of possible lemmas, or words that are essentially the same word but with different spellings

or declensional and/or conjugational endings.

For the oe_sort.pl program, I had little success with existing sort functions (on the Unix

command line or in Perl). I researched and located a CPAN (Comprehensive Perl Archive

Network) module called Sort::ArbBiLex, created by Sean Burke, which was created specifically

to allow users to sort using more arbitrary user-defined sort orders than the standard ASCII sort

order of most built-in sort functions. This can be quite useful for languages that do not use the

twenty-six letter Roman alphabet exclusively, or for languages in which some groupings of

letters might be equivalent to other single letters. In the case of Old English, you really need to

do things like sort “æ” and “a” as equivalent characters, and “ð” and “þ” as equivalents with each

other and with “th” (though “th” is relatively rare). Using built-in system sorting methods (for

example, the sort command on the Unix command line and the sort() function in Perl), the

special characters such as “æ,” “ð,” and “þ” always end up sorted well after their ASCII

equivalents “a” and "th," since the former are UTF-8 character codes 166, 176, and 190

respectively, whereas “a” is code 97 and “t” is code 116 (see Appendix D for the decimal values

of UTF-8 characters, which also includes ASCII as a subset). If the sort program or function

uses the characters’ positions in the character encoding method in use in the file or program, the

characters contained in the ASCII subset up to 126 will end up before the special characters with

higher decimal values in UTF-8 or any other encoding type that uses the standard ASCII

21

character values. Also, the UTF-8 special characters are represented by multiple bytes rather

than single bytes (all ASCII characters are single bytes), which affects the way the characters are

handled by a number of built-in Perl functions. The lemmatization program (oe_lemma.pl)

depends upon the words being sorted in the correct order, and the program I created using the

Sort::ArbBiLex module solved this issue for the most part, though it does have the shortcoming

of not allowing rules for equating one letter or set of letters with other letters more than once.

For instance, you cannot both equate “i” and “y,” and still have “y” sort in its normal place

before “z” under certain circumstances. I chose to include all the versions of the letter “y” in

with all the versions of the letter “i” because this was more likely to yield correct sorting results

than separating them (since these two letters were so often used interchangeably in the extant

Old English texts).

In oe_sort.pl, I created a function with Sort::ArbBiLex called "oe_sort" in which I

equated various letters or groups of letters with each other based on manual visual scans of the

word lists for evidence of possible equivalent letters. For instance, for the letter “a,” I found

instances of “aa,” “aæ,” etc. for words containing “a” and “æ,” spellings like aæfter, after, and

æfter all for the same word, and aarwyrðe and arwyrð, both variants of the word arweorð,

meaning "honorable, venerable, revering, pious" (Hall 25). Because of this evidence, and

because of the a number of accented characters also present in the corpus, I equated “a,” “A,”

“à,” “À,” “á,” “Á,” “â,” “Â,” “ã,” “Ã,” “ä,” “Ä,” “å,” “Å,” “æ,” “Æ,” “aa,” “aæ,” "æa,” “ææ,”

“Aa,” “Aæ,” “Æa,” “Ææ,” “AA,” “AÆ,” “ÆA,” and “ÆÆ” with each other, then the expected

“b” and “B, then “c,” “C,” “ç,” “Ç,” “k,” and “K” (because, as with “i” and “y,” “c” and “k” are

often used interchangeably), “d” and “D,” etc. Despite having output all words as lowercase

from AntConc, and having included a conversion to all lowercase letters in the subsequent

22

oe_lemma.pl program (to be discussed later), I equated both lower and uppercase letters in the

oe_sort function definition just in case there was ever a need to sort a file that includes uppercase

letters. I also equated all forms and double instances of thorn and eth with each other and with

all possible variations of “th.” And as with “a,” I equated all accented vowels with their

unaccented counterparts (to view the full oe_sort() function and all its equated letters, see the

oe_sort.pl source code in Appendix A). Some of the included accented characters are rare (or

even non-existent) in the corpus, but I decided to err on the side of caution and include a few

other possibilities since many accented characters are present in the text.

After the sort order definition, the program then takes the file "wl_all_byword.txt" (a

complete wordlist generated from the entire DOOE Corpus using AntConc text analysis

software) as input, splits the three fields in each line (number, frequency, and word), and outputs

a new text file called wl_all_words_only.txt that includes each word on a separate line without

the other information (this file is created for use within the program, but it is one of the output

results of the program). It then takes the new file, sorts it using the oe_sort() function, and

outputs the sorted list of words to the file wordlist_sorted.txt, which after running against

wl_all_byword.txt contains 260,557 separate words just like the input file.

The second program, oe_lemma.pl, takes the sorted word list from the previous program

as input (the file wordlist_sorted.txt) and outputs a file containing the equivalent words (or at

least words that are very similar to each other) grouped together. The program first makes a few

character conversions to conflate commonly interchangeable letters for normalization purposes.

For instance, the program translates eth (“ð”) into thorn (“þ”) in every case since these

characters are entirely interchangeable and really should not count toward the number of edits. It

also translates ash (“æ”) into “a,” “c” into “k,” and “i” into “y” because they are similarly

23

interchangeable, at least in practice, throughout the corpus. I also added in translations of all

accented characters (for all the vowels and the l-bar (“ł”) and c with cedilla (“ç”)) into their base

characters for similar reasons (for instance, “à,” “á,” “â,” “ã,” “ä,” “å,” and “æ” all became “a”

for stemming and comparison purposes). Despite the translations, the letters in the original

words retain their accented forms for output purposes since the original remains in its own

variable. Removing these accents permanently for inclusion in the lemma list would, once it was

imported into text analysis software, cause any words with accented characters not to be

recognized as equivalents to the same words without the accented characters. The program then

stems the words (removes common endings based on a list of possible endings and their

variants). And after stemming and character conversion, the program does comparisons of the

first stemmed word to the second stemmed word in the list, the second to the third, and so on and

so on, using the Levenshtein algorithm. It compares the stems rather than the full words since

inclusion of the endings could cause the Levenshtein edit distance to be high even for words that

are essentially different forms of the same word, and could therefore fail to group like words

together as it should unless the allowed difference was set higher. A higher allowed difference,

however, would likely cause many words to be grouped together that should not be. Because in

this case the word lists were generated from the text analysis software as all lower case, case was

irrelevant, but the code converts each word to lowercase using the Perl lc() function just in case

this is not true of every input file (changing the source code to convert them all to uppercase

instead, if the user’s purpose requires it, is as easy as changing lc() to uc() in the code, and

changing the cases of the hard-coded letters in the character conversion section). Some

additional code might be required to handle mixed cases. For some purposes it might be best

not to change the case; however, it is often essential to normalize to one case or the other, since

24

for the purposes of importing a list into analysis software you most likely want Drihten equal to

drihten. Using multiple cases may result in incorrect results for sorting and other functions as

well if you do not explicitly make your sorts and other functions case-insensitive. In the current

code implementation, everything is case sensitive, but this, too, could be changed with a little

added code.

The following is a close step-by-step explanation of the workings of the oe_lemma.pl

program. It was necessary to include two Perl modules using the "use" command: "utf8" and

“Encode,” (the latter a CPAN module developed by Dan Kogai) both to allow for proper

handling of UTF-8 characters. In earlier versions, I also utilized CPAN versions of the

Levenshtein algorithm (Text::Levenshtein and Text::LevenshteinXS), but found that they were

not handling the special characters properly (characters such as “æ,” “þ,” and “ð” would count as

two characters rather than one in the Levenshtein calculations), so I abandoned them in favor of

a hard-coded Levenshtein algorithm function within the main program and tested it thoroughly

with various word pairs to make sure that it was returning correct results.

The program opens the files wordlist_sorted.txt (the output of oe_sort.pl) and endings.txt

(a list of common Old English inflectional endings) as input files, and opens

wordlist_lemmas.txt, wordlist_unmatched.txt, and wordlist_compounds.txt as output files (the

first will contain all the groups of lemmas, the second any individual words that were

unmatched, and the third any suspected compounds). Each word in wordlist_sorted.txt is read

into the array @words, and each ending from endings.txt is read into the array @ends. Currently

the endings include the following, some taken from Introductory Old English by Jonathan Evans

(297-309), and others emulated using spelling variants existing in the texts (in the file itself each

ending is on a separate line):

25

a, æ, e, i, þ, ð, an, æn, as, æs, aþ, æþ, að, æð, de, en, es, eþ, eð, ie, iþ, ið, ra, re, st,

um, ast, æst, ena, est, don, ede, ese, iaþ, iað, ode, dest, edon, esse, odon, edest,

odest

Note that the above list has been changed many times in testing, altering the results in various

ways every time, and can be modified outside of the program to best suit the user’s purposes.

Variables $curr, $currshort, $currtrans, $prev, $prevshort, $prevtrans, $currlist,

$lastchars, $endflag, $endflag2, and $j are all initialized for use in the main loop (most are set to

blank, with the exception of $prev and $prevshort which are set to “fakeword” and “fakew,” the

latter of which is used in an if statement within the program to skip Levenshtein comparison of

the very first word before an actual previous word exists). A little later within the main loop, the

first three “curr” related values will be set to the current word being processed, a stemmed

version of the current word (known endings removed), and a translated version of the current

word (various characters translated into other characters for normalization purposes)

respectively. The next three “prev” related variables will be set to the current word, current

stem, and current translation at the end of the main loop so that during the next iteration, the last

current word is the previous word. The @wordlist, @compounds, and @unmatched arrays are

initialized to empty arrays (their values, as with all the initialized variables, will be filled within

the main loop).

Most of the main processes of the program are held in a foreach loop, a control structure

in Perl specifically for looping through every element in an array. The loop iterates through

every word in the @words array, and appears as follows (the ellipsis indicates code within the

loop):

foreach $word (@words) {
...
}

26

The above code defines the variable $word to be the current element in the @words array and

begins the loop. The first actions within the loop are used to weed out short one and two

character words. The whitespace is trimmed from the current word (and set to the new variable

$word_trim) and any existing newline character at the end of the word is removed using the

trim() and chomp() functions (trim is a user defined function defined after the main program

code, and chomp() is a built-in Perl function). $word_trim is then decoded from “UTF-8”

(using the decode() function that is part of the included Encode module). This allows the special

characters within the current word (if present) to be recognized as single characters rather than

two bytes (due to the nature of Unicode and the built-in functions, strings have to be decoded in

order for functions like length() to yield correct results), and the length of the decoded word is

determined using the built-in length() Perl function. An if statement determines whether the

length of the current word is greater than two, and if so, continues. Allowing these very short

words caused some adverse effects, including them not matching each other properly and

generally skewing the other results for the worse when using them to determine possible

compounds, so I made the decision to make these words appear as unmatched. This if statement

surrounds the rest of the code within the main foreach loop and, at the end, an else statement

pushes any word of two or fewer characters to the @unmatched array automatically.

$endflag and $endflag2 variables are then set to “n” (for later use in setting the

appropriate $currshort value and looking for compounds). The $curr variable is set to a trimmed

version (whitespace removed) of $word (the current word being processed), and then chomped

of any newline character. $curr is converted to lowercase using the Perl function lc() (as I noted

earlier, in my testing the input file was always all lower case, and therefore case was irrelevant in

this study, but this might not be the case if someone else uses the software). Then $curr is

27

decoded from UTF-8 using the decode() function. After decoding $curr, a variable $currlen is

set to the length of $curr, using the code $currlen = length($curr). $prevlen is similarly set

to the length of $prev (which again is a variable that is set to $curr at the end of the main loop for

use in the next comparison; in the first iteration through the loop, $prev is equal to “fakeword,”

the value it was initialized to before the loop). $currtrans is then set to the value of $curr and

undergoes a number of transformations using the tr/// operator to prepare it for later use in

stemming and in identifying compounds. The code $currtrans =~ tr/kiæð/cyaþ/; translates

every character on the left of the second slash mark to the corresponding character to the right

(i.e. “k” is changed to “c,” “i” is changed to “y,” “æ” is changed to “a,” and “ð” is changed to

“þ” in the $currtrans variable so that it is a transformed version of $curr). Similar translations

are done to change all accented vowels to their unaccented counterparts, and “ç” to “c.” An

additional transformation uses the s/// operator, which allows you to search for the pattern to the

left of the second slash mark and replace it with the pattern to the right (this can be used in a way

similar to tr///, but also allows for regular expression pattern matching). The code $currtrans

=~ s/(.)\1/\1/; finds any characters that appear twice and reduces them to a single character

(“aa” will become “a,” “ll” will become “l,” etc.). In regular expressions, the backslash (“\”)

followed by a number repeats anything that was contained in parentheses that correspond to that

number (i.e. if you have three different patterns contained in three sets of parentheses, “\1”

matches whatever is contained in the first set, “\2” whatever is contained in the second, and “\3”

whatever is contained in the third). In this case the “.” matches any one character, and the “\1”

repeats the character (in the first section to match the previous character and in the second to

replace everything in the first section with the single character).

28

Another foreach loop is then started, this one iterating through every ending in the @ends

array (using foreach $end (@ends){ ... }). This section in effect emulates a stemmer by

removing any endings that are found that match one from the endings.txt file (which are stored in

the @endings array). The foreach line sets each ending in the array to the variable $end. Within

the loop, the current $end variable is trimmed of whitespace and chomped of its final newline

character. $end is then decoded from UTF-8 to allow for proper processing, and $endlen is set to

the length of $end.

An if statement checks to make sure that $currlen (the length of the current word) is

greater than $endlen (the length of the current ending) before proceeding (since it would be

impossible to remove an ending that was longer than the current word). If the test is true,

$lastchars is set to the last characters in the current translated word ($currtrans) for the exact

same number of characters as the current $end length with the following code:

$lastchars = substr($currtrans, ($currlen - $endlen), $endlen);

This is using the Perl substr() (or substring) function, whose three arguments are the string you

want to reduce to a smaller subset, the starting location, and the number of characters you want

to grab. Positions in Perl start at zero (which is a little confusing), so, for instance, if you did

substr('Hello', 2, 3), it would return "llo," because you start at position 2 (which is in

reality the third position of 0, 1, 2, 3, and 4 in the word “Hello”) and go for three characters,

returning what is found in those positions. With the above code, $lastchars is taking $currtrans

and returning the position equal to $currlen minus $endlen for the value of $endlen characters

(the length variables contain integer values equal to the length of the current word or ending).

Again, because positions in Perl start with zero rather than one, all the code has to do to find the

29

position of the beginning of the last characters is subtract $endlen (the length of the current

ending) from $currlen (the length of the current word).

Then another if statement checks to see if $end is equal to $lastchars, and if it is, $rootlen

is set to $currlen minus $endlen (giving us the length of the root word or stem). $currshort is set

to the substring of $currtrans starting at position zero for $rootlen characters (with the code

$currshort = substr($currtrans, 0, $rootlen);), which in other words results in the

current translated version of the word minus the ending. Then $endflag is set to “y” to indicate

that a matching ending was found and $currshort was set. This could conceivably result in

$currshort being set multiple times if there are multiple possible endings that match the end of

the word. The endings in the file endings.txt are currently arranged from shortest to longest so

that the longest match ends up being removed (since the longer endings are checked for last).

The @ends loop is then exited, and an if statement checks to see if $endflag equals “n” (meaning

no matching endings were found). If so, $currshort is set to $currtrans (the full translated version

of the current word) rather than a shortened version.

The next lines of code start the Levenshtein comparison. The program sets $pshortlen

and $cshortlen to the lengths of $prevshort and $currshort, and performs the Levenshtein

comparison of $prevshort versus $currshort with the following code:

$lev = levenshtein($prevshort, $currshort);

The function levenshtein() is defined at the end of the program (and the function is described in

detail above in the “Levenshtein Algorithm” section). The code passes the variables $prevshort

and $currshort (the translated shortened versions of the previous and current words) into the

levenshtein() function, which does the comparison and returns the edit distance between the two

(i.e. the number of changes that would have to be made to turn one into the other). The short

30

versions are used instead of the full words because the presence of differing declensional endings

would skew the results and make many of the words appear more different than they actually are.

For instance cining and cyningum should be equated, and comparing the translated and stemmed

short versions using Levenshtein should result in the two both being compared as cyning, which

would result in a 100% match. The program then tests for $pshortlen greater than $cshortlen. If

the condition is true, it sets $diffpercent to a ratio of $lev (the Levenshtein value calculated

above) divided by $cshortlen, and if false, sets $diffpercent to $lev divided by $pshortlen.

Dividing the Levenshtein value by the shorter of the lengths of the two compared words provides

a percentage value that helps take into consideration the possible effect of the length of the words

on the importance of the Levenshtein value. For instance, if the compared words are both only

three characters long and the Levenshtein edit distance is 1, that is a much bigger deal than a

Levensthain distance of 1 with two words eight characters in length. The $diffpercent value is

.333 percent in the first case, whereas it is only .125 in the second case. This decimal value is

then used by the program to determine whether the words are similar enough to consider

essentially equal, and if they are, it groups them together as related lemmas in the code that

follows.

The next section of code checks for a $diffpercent of less than 0.3. I tested with various

other numbers, as well, and a smaller number would likely be better with some improvements in

the sort order and code functionality. Before continuing the code explanation, here are some

examples of $lev and $diffpercent calculations with certain word pairs to show what Levenshtein

does and what these comparisons really mean in practice. All were output by two versions of a

short program that takes a two-word file, does a Levenshtein comparison identical to the one in

the main program, and prints the results to the screen (the version run on the first three examples

31

did a straight Levenshtein comparison, and the other version run on the fourth and fifth examples

also did the character translations before comparison). The first is of two equivalent words that

contain three alternate but often interchangeable letters:

Previous word: æðelcininge

Current word: aþelcyninge

Levenshtein distance: 3

Prevword length: 11

Currword length: 11

Difference percentage of shortest word: 0.272727272727273

The above results in a Levenshtein distance of 3 (which would not be the case in the actual

program because of the translations, although in this case the $diffpercent result would still allow

inclusion in the same @wordlist element). But below, changing the ending of the current word

from -e to –um causes the difference to go above the acceptable threshold for the program:

Previous word: æðelcininge

Current word: aþelcyningum

Levenshtein distance: 5

Prevword length: 11

Currword length: 12

Difference percentage of shortest word: 0.454545454545455

The above case is an example of why the ending removal and character conversion can be quite

useful in getting better matches using Levenshtein. In both of the previous cases, normalizing

the previous and current word to a shortened and converted version (as the program does) yields

this result:

32

Previous word: aþelcyning

Current word: aþelcyning

Levenshtein distance: 0

Prevword length: 10

Currword length: 10

Difference percentage of shortest word: 0

The above shows an exact match. If this happened in every case, Levenshtein would be

unnecessary, but often enough there are other variations, such as substitutions of various vowels

for one another or endings that are not in the list of expected endings. The following example

shows a case from the wordlist_lemmas.txt result file that would not have been a 100% match

but instead relied on Levenshtein to equate the words (namely dryncfæt and drincfatu with the

first two vowels normalized to “y” and “a”):

Previous word: dryncfæt

Current word: drincfatu

Translated previous word: dryncfat

Translated current word: dryncfatu

Levenshtein distance: 1

Prevword length: 8

Currword length: 9

Difference percentage of shortest word: 0.125

These words end up with a difference threshold below the acceptable level of 0.3 and are equated

in the lemma file (in a line including drincfæt, dryncfæt, drincfatu, and dryncfatu).

33

Another example of equivalent words that required Levenshtein to get a match is the comparison

between dropfag and dropfah:

Previous word: dropfag

Current word: dropfah

Translated previous word: dropfag

Translated current word: dropfah

Levenshtein distance: 1

Prevword length: 7

Currword length: 7

Difference percentage of shortest word: 0.142857142857143

 The program, after stemming and in one case conflating a double character, correctly equates

dropfag, dropfaag, dropfagum, and dropfah and puts them in their own @wordlist element. The

letters “g” and “h” are used interchangeably quite a bit, but not often enough to do a permanent

translation of one into the other in the program. We would not, for instance, want to translate

heap, meaning “host, crowd, assembly, company, troop, band,” (Hall 174) into geap, meaning

“open, wide, extensive, broad, spacious,” etc. (Hall 149).

In the current incarnation of the program, the next section of code uses an if statement to

check for the difference percentage and continues if it is below the threshold:

if ($diffpercent < 0.3 && $prevshort ne "fakew") {

The second part after the logical “and” operator (“&&”) checks to make sure that $prevshort is

not equal to "fakew" (the initial fake previous shortened word, which would only happen on the

first iteration through the main loop) because we do not want to do a comparison on the very first

word until the next iteration through the @words array when it will be the previous word. If the

Levenshtein comparison results in a value below the threshold, the $currlist variable is set to

34

$prev plus a comma and space plus $curr (to create a list containing previous word and current

word separated by a comma). If $wordlist[$j] (which will begin as $wordlist[0], the first value

of the array @wordlist, and then increase to the next element of the array each time $j is

incremented) is blank, the last added value of @unmatched is removed via the command

pop(@unmatched) (words will begin to be pushed to @unmatched later in the code, but the

removal is here to remove any that were considered unmatched during the previous iteration but

now appear to have a match), and $wordlist[$j] is set to $currlist. Otherwise (via the else portion

of the if statement) if $wordlist[$j] is not blank, $wordlist[$j] is set to $wordlist[$j] plus comma

and space plus $curr, in effect adding the current word to the end of the current $wordlist. This

is how words are continuously added to each group (until a word that is too different is

encountered).

The if $diffpercent < 0.3 if statement is continued with an elsif (or “else if”)

segment and then an else segment. This means that if the threshold is not below 0.3, it does the

test in the elsif statement (which if true, executes the code enclosed within its brackets), and if

the elsif is likewise not true, it executes the statements within the else statement’s brackets (since

else is a sort of default or catchall that does not perform any sort of test). The first, the elsif, is as

follows:

} elsif ($currshort =~ /^${prevshort}(.+)/ || $currtrans =~

/^${prevtrans}(.+)/) {

The above uses the pattern-matching operation that is sometimes rendered as m//, although the

“m” is optional and has been omitted. The material in between the slash marks (in both cases) is

a regular expression used to look for a pattern. In this case the first matching operator is looking

for a pattern in the variable $currshort. The “^” symbol indicates the beginning of the string you

are searching and “${prevshort}” is simply the variable $prevshort (the curly brackets are

35

necessary within regular expressions in Perl to represent variables), so in this case, it is looking

for the value of the variable $prevshort at the beginning of $currshort. In the next section within

parenthesis, the “.” means any one character, and the “+” that follows indicates one or more

times. In other words, the entire first matching operator is looking for $currshort to begin with

the stem of the previous word plus any other characters. The second matching operator is

looking for $currtrans to match $prevtrans plus one or more characters. This line of code is the

beginning of the check for possible compounds, or at least for words that begin with something

like the previous word but end with characters that are not a known ending, in an attempt to root

out words that might be breaking up the sort order, or rather separating words that would

otherwise match (this can happen when the next word’s ending begins with a character greater

than that of the first word, but less than the last word’s; for instance the words drihtena,

drihtenbealu, and drihtene, where the letter “b” in –bealu, separates the first and third words

because “e” comes after “b” alphabetically). The logical or operator (“||”) means that if either

the first or second condition is true, then the test is true and the statements within the elsif section

are executed. If either is true, a new foreach loop iterates through the endings. First, $end is

trimmed of whitespace, chomped of the newline character, and decoded just as before. Then an

if statement checks to see if $currtrans matches a pattern beginning with $prevtrans and followed

by $end or a pattern beginning with $prevshort and followed by $end via the following code:

if (($currtrans =~ /^(${prevtrans}){${end})$/) || ($currtrans =~

/^(${prevshort}){${end})$/))

In this case, much like “^” checks for a pattern at the beginning of the string being checked, “$”

at the end of the pattern-matching operator is checking for the preceding pattern at the end of the

string (this is a regular expression convention that can be a little confusing in this case since “$”

also indicates a variable, which is likely why the curly brackets are required for variables within

36

Perl pattern matches). If either condition is met, $endflag2 is set to “y” to indicate that a match

was found. After the foreach loop ends, an if statement checks to see if $endflag2 equals “n”

(meaning no matching word plus ending was found) and $cshortlen is greater than $pshortlen

plus two, and if both conditions are true, $curr (the current word) is pushed into the

@compounds array as a possible compound, the variables $currshort, $currtrans and $curr are

reset, and the “next” statement takes the program back to the beginning of the $word foreach

loop (in other words, skipping over all the following code and starting at the next $word in the

@words array). As stated before, the compound checking is not so much finding words that are

definitely compounds, but words that begin with the previous word plus something that is not a

known ending (which makes the word a likely compound candidate). The “+ 2” keeps

something that begins with the previous word but ends with something that cannot be a full word

(and therefore would not indicate a compound but might just be an unmatched word, meaning a

new @wordlist element should be started) from being skipped over as a possible compound. If

the two conditions are not met, an else section pushes the word to the @unmatched array since it

is above the allowed threshold (for possible removal from @unmatched in the next iteration

through the main loop depending upon how the next comparison turns out).

Regarding the compounds code above, later in the program the @compounds array will

be output into a file, which can be run through the program later as the input file to generate

another lemma list of just these words. These words, which may or may not be proper

compounds, will be dealt with as their own lemmas for comparison to each other, and the new

lemma list can be easily added to the larger lemma file.

The next else segment is the third and final element in the $diffpercent < 0.3 if

statement, which executes if neither the main if ($diffpercent < 0.3 && $prevshort ne

37

"fakew") check nor the following elsif check are true. It pushes $curr to @unmatched as well,

and this time increments the value of $j by one (this will only happen if, by the standards of the

program, the words are not matches at all and therefore a new @wordlist array element needs to

be started to end the previous lemma group and start a new one). The two pushes to

@unmatched might seem repetitive, but the first one is pushing a word that seems to be the

previous word plus a known ending to the array just in case it does not match the next word

(which is why the next time it goes through the levenshtein() check the last word added to

@unmatched may be removed), and the second one is pushing words that appear not to be

matches at all so that a new lemma group can be created.

The final lines of the $word foreach loop set $prev to $curr, $prevshort to $currshort,

and $prevtrans to $currtrans, and then set $currshort, $currtrans and $curr to blank, so that the

current word in the current iteration becomes the previous word in the next iteration through the

main loop.

Note that @wordlist will only be populated when matches are found; therefore, if a word

is not deemed to be a close match to the word previous to or following it (and is not deemed a

possible compound), it will not be included in the lemma list but should be included in

@unmatched. Because my purpose is to create an importable lemma list that allows text analysis

software to equate words with each other, it is not necessary (and may even cause problems) to

include lone words with no matches in the main file, but it may be useful to keep track of the

unmatched words for other purposes including error checking, so I included the @unmatched

array to keep track of these words.

Once the program has iterated through every word in the @words array, the loop is

exited. A very short loop iterates through all the words in the @compounds array, encodes each

38

word back into UTF-8 for output, and then prints the words to the wordlist_compounds.txt file

one at a time via the following code:

foreach $compound (@compounds) {

 $compound = encode('UTF-8', $compound);

 print MYCOMPS "$compound\n";

}

Note that after decoding a variable, encoding via the encode() function (also defined in the

Encode module included at the beginning of the program) is necessary in order for the special

characters to output to the file properly. The code print MYCOMPS "$compound\n"; prints each

element $compounds in the @compounds array to the MYCOMPS file (an alias given to the file

wordlist_compounds.txt when it was initially opened). The “\n” indicates a newline character so

that each word is printed on a new line.

Two nearly identical foreach loops (foreach $unmatch (@unmatched) (... } and

foreach $word (@wordlist) { ... }) iterate through all the words in @unmatched and lists

in @wordlist, encodes them, and prints them to the wordlist_unmatched.txt and

wordlist_lemmas.txt files respectively. After this, all the open files are closed. The remainder of

the program consists of the definitions of the trim() and levenshtein() subroutines (or user

defined functions) used in the main program above them.

5. Results

The result that I hoped for was a file containing accurate groups of equivalent words that

could be used as a lemma file for import into text analysis software. Unfortunately, the current

results are not perfect, but they are good enough to show a great deal of promise toward reaching

this goal using the Levenshtein algorithm, and the current basic lemmatizer may be a good

39

jumping off point for development of a more robust lemmatizer for Old English. The following

is the first page of the file wordlist_lemmas.txt (27 lines/groups total):

abacæ, abacen, abaken

abaci, abacta

abacuc, abacus

abad, abæd, æbæd, abædan, abædað, abædde

abædede, abæden, abædeþ, abædeð

abal, abælgede

abær, æbær, æbæra, abarast, abarað, abære, æbære, abæred, abarede

abarian, abarim

abarn, abarndest, abarnodest, abaro, abæron, abærst, abarude

abbad, abbade

abbadissan, abbadisse, abbadyssena

abbadunæ, abbadune

abbae, abban, æbban

abbas, abbaso

abbate, abbatem, abbates

abbati, abbatis, abbatissan

abbedesse, abbedessę, abbedessen, abbedisse, abbedysse

abbendone, abbendune, abbendunes

abbod, abboda, abbodæ, abbodan, abbodas

abboddum, abboddune

abbode, abbodes, abbodessene

40

abbodhade, abbodhades

abbodyssa, abbodissan, abbodyssan, abbodisse, abbodysse, abbodissum

abbodrice, abbodricen, abbodrices

abbote, abboten

abbotrice, abbotrices, abbotriche

abbud, abbuda, abbudas

Each line is an element of the array @wordlist from the program. All the words in each line are

very similar, though there has been some breaking up of like words, such as abbadunæ and

abbadune from abboddune, which appears eight lines further down. Also, there are a couple of

cases where words do not necessarily belong with one another (for instance abarian (“to lay

bare, disclose” (Hall 1)) and abarim (uncertain definition) are likely not related unless the latter

is a misspelling), which would be an issue with the Levenshtein comparison. Another later

Levenshtein failure (though not the only other one) is the grouping of the three words dryhtum,

drihð and dryhð in one list. The latter two are the same word, the present third person singular

of the verb dreogan meaning “to lead a (certain) life, do, work, perform, fulfill…” (Hall 90),

whereas the first is the dative plural of dryht, which means "multitude, army, company, body of

retainers, nation, people" (Hall 89). There is only one different character between them (once

the -um is stemmed), which would have resulted in a Levenshtein difference of 1, and at five

characters for the stem, a difference percentage of 0.2, below the 0.3 threshold.

When the acceptable level of similarity was not met by the current word to previous word

comparison, the next @wordlist element was begun and another complete @wordlist element

resulted until the next dissimilar word was encountered. Any words meeting the requirements

for a “compound” were pushed to the @compounds array (skipped in favor of the next possible

41

match) and printed to the file wordlist_compounds.txt, the first page of which is as follows (27

words total, divided into three columns left to right):

abædendre

abanet

abanlake

abannan

abanne

abans

abarcit

abarimathia

abarimathiam

abbachus

abbacuc

abbacvc

abbadesse

æbbadesse

abbanberghe

abbandune

abbandunes

abbatibus

abbeddune

abbedessan

abbodesbirig

abbodesbyrig

abbodessan

abbudessan

abbutissan

abbutissena

abdicare

The compounds file can be run through the same program, resulting in a shorter lemma list of the

suspected compounds with similar words grouped together in wordlists. As stated before, the

results should be easy to manually add to the wordlist_lemmas.txt lemma file before import into

the text analysis software. In fact, I ran wordlist_compounds.txt through a version of the

program changed only to modify the expected input and output file names, and the results were

surprisingly accurate, with a few erroneous matches at first glance (abeam does not belong with

abeat, abeate, and abeatne in the results below, for example). The following is the first page of

the results (the first 27 lines of the file wordlist_lemmas_2.txt, generated from

wordlist_compounds.txt):

abanne, abans

abarimathia, abarimathiam

abbacuc, abbacvc

42

abbadesse, æbbadesse

abbandune, abbandunes

abbodesbirig, abbodesbyrig

abbodessan, abbudessan, abbutissan, abbutissena

abdicare, abdicat, abdicatio, abdicatione, abdicatis, abdicatiue, abdicatus

abdicauit, abdicit, abdictis, abdictus

abdidere, abdidit

abducere, abducit

abducti, abductio, abductione, abductionem

abduxione, abduxit

abead, abeag, abeah

abealg, abealh

abeam, abeat, abeate, abeatne

abegelata, abegerant, abegerunt

abeodende, abeodenne

abigerant, abigerunt

abilgnesse, abylgnesse, æbylgnesse, æbilignesse, æbylignesse, æbilinesse,

æbylinesse, æbilinysse

abisgodne, abysgodne

abitationibus, abitationis

ablæcungum, æblæcungum

ablænd, ablændan

ablawung, ablawunge

43

abolgenne, abolgennes

abrerdnysse, abryrdnesse, abryrdnysse

And the third file, wordlist_unmatched.txt, should contain a list of words that were not included

in the other files. The following is the first page of wordlist_unmatched.txt (27 words total,

divided into three columns left to right):

a

æ

aa

aæ

æa

ææ

ab

abacene

abactus

abaddir

abæde

abædon

abalhc

abælige

aballanus

abamita

aban

abaredum

abaritia

abaso

abæst

abat

abatis

abauctor

abauditu

abauia

abauunculus

Note that there are possible compounds in the unmatched list (for example abbedrice,

from the second page of the list). The conditional checks that result in words being added to the

@compounds array are ways to weed out words that appear to be compounds beginning with the

previous non-compound word, but it is not foolproof and not a valid way of getting actual

compounds in the strictest sense. It is simply an expedient way of skipping what appear to be

compounds that could be separating sets of like words. And some words that should have been

grouped together appear in this list (such as abæde and abædon). They were likely separated in

such a way that they were not near their close matches, resulting in them being pushed to

@unmatched.

44

Dryhten, once again, is a good example of a group that ends up with both erroneous

words included, and groups broken up erroneously. In the program running with a 0.3

difference, the following are the results for dryhten and some surrounding words:

drihst, driht, dryht, drihta, dryhta, drihtan, drihtæn, dryhtæn

drihte, drihten, dryhten, drihtena, dryhtene, drihtenes, dryhtenes, drihtenna,

drihtenne, drihtennes, drihtenum, drihter

drihtin, drihtyn, dryhtin, dryhtyn, drihtine, drihtines

drihtlecu, dryhtleoð, drihtlic, dryhtlic, drihtlican, drihtlice, dryhtlice, drihtlicu,

drihtlicum

drihtman, dryhtmon, drihtn, drihtna, dryhtna, drihtnas, drihtnæs, dryhtnas,

dryhtnæs, drihtne, dryhtne, drihtnen, drihtnes, dryhtnes, drihtneum,

drihtny, drihtnys, drihtno, drihtnum, drihton

drihtscipe, drihtscype, dryhtscipe, dryhtscype, drihtscipes, dryhtscipes

drihtsele, dryhtsele

drihtten, drihttenes

dryhtum, drihð, dryhð

drii, dryi

driyhten, driyten

One of the issues causing some of the erroneous matches and breaks is the use of a list of

endings (discussed in a bit more detail in the next section), which includes –en and –ena, among

others, for stemming purposes. These are not inflectional endings in words like dryhten and

dryhtena, but they are being removed before comparison, causing them to match dryht and

related words, but not match dryhtenum (which is stemmed to dryhten). Some possible solutions

45

are discussed in the next section. And actually, in this particular case, lowering the allowed

difference ratio to 0.25 causes dryhtenum to be pushed to the unmatched list, leaving drihð and

dryhð correctly matched. Others are broken up by unmatched words in between various groups

that should match. Notice the previously mentioned dryhtum, drihð, and dryhð line above.

Dryhtum should be grouped with driht, dryht, dryhta, drihte, etc., but the former are near the

very beginning of this segment and dryhtum is near the very end, separated by many dryhten

related words and compounds.

The program does not work perfectly and anomalies will no doubt be found in many

places, but the current results show moderate success in automatic lemmatization that can be

expanded upon with future research. And the lists of grouped words should be easier to go

through and correct than a long list of ungrouped words.

To illustrate the effect on text analysis results, I ran the following sed command on the

Unix command line to take the wordlist_lemma.txt file and convert the first comma in each

group into “->” since that is the format expected by AntConc for the lemma file:

sed "s/, / -> /" wordlist_lemma.txt > wordlist_lemmafile.txt

To convert every comma, you would put a “g” at the end of the s// search and replace command,

but in this case, finding and replacing the first instance found in each line is what I wanted. It

results in a file like the following (as exemplified by a few lines from the middle of the first

page; see Figure 2.1 for the lemma list as rendered by AntConc):

abær -> æbær, æbæra, abarast, abarað, abære, æbære, abæred, abarede

abarian -> abarim

abarn -> abarndest, abarnodest, abaro, abæron, abærst, abarude

46

abbad -> abbade

abbadissan -> abbadisse, abbadyssena

Figure 2.1. Screenshot of beginning of lemma list after importing into AntConc text analysis
software.

AntConc is now ready to generate word lists and keyword lists using the lemma list. The

following figures (Figures 2.2, 2.3, 2.4, and 2.5) illustrate some of the differences between the

analysis results before and after importation of the lemma file (using the entire DOOE Corpus as

the reference corpus and the poetry files as the analyzed corpus). Notice the addition of the

lemma forms to the right of the words in the second wordlist image, and the conflation of drihten

47

and some other forms under drihte in the second, along with the increase in frequency. And in

the two keyword list figures following, notice the changes, including drihte being moved up in

rank to the fourth word with the fourth highest “keyness” value. Though some of the words are

conflated incorrectly, there is such a high number of drihten related words that with a correct

lemma list, the results would be to bump drihten up to one of the higher keywords, as well.

Importation of the lemma file also significantly changed the makeup of the second version of the

keyword list; only three words are the same on both the first list (Figure 2.4) and the second list

(Figure 2.5), and the keyness values increased considerably.

Figure 2.2. Screenshot of the second page of a word list generated by AntConc before the
lemma list is imported (in descending order by word frequency).

48

Figure 2.3. Screenshot of the second page of a word list generated by AntConc, this time with
the lemma list. Note that scrolling to the right in the program is necessary to see all of the
lemma forms.

49

Figure 2.4. First page of keyword list from AntConc with all DOOE Corpus texts as reference
corpus and smaller poetry-only subset as analyzed corpus, before importation of lemma list.

50

Figures 2.5. First page of keyword list from AntConc with all DOOE Corpus texts as reference
corpus and smaller poetry-only subset as analyzed corpus, after importation of lemma list. Note
that there are only three words on this page that were also in the pre-lemma-list results on the
previous page: ond, þar (a version of þær from the previous page), and wordnum (a version of
wordum from the previous page), and the keyness values have increased significantly.

6. Issues and Possibilities for Future Improvement

Though the results are promising, there are a number of issues that need to be addressed

in order to make a more accurate automatic lemmatizer. The sequential nature of the

comparisons in the current program contributes to some of the inaccuracies in the results, so

perhaps in future versions, methods can be employed to compare arrays of words to one another

51

rather than using sequential comparison. It might be possible to use loops to compare every

word to every other word, saving the pairs and Levenshtein values into another array and

grouping the ones with the lowest difference percentage to each other (with some testing of the

allowed difference threshold to pick an appropriate number). This would, however, require long

run times and some work would have to be done to come up with the most efficient code

possible for handling long word lists. Currently, with the job running against a list of 260,557

words, it is looping through every word once, with multiple loops against all the endings within

each iteration. But to compare every word with every other word, within each iteration through

the words another iteration through all the words would have to be performed, meaning the

words would be looped through 260,557 x 260,557 times (or 67,889,950,249 times), which is a

massive increase. The program takes approximately ten minutes to run against the current word

list, so one can imagine that the increase in runtime would be substantial. Grouping and

comparing only words that begin with the same letter might be another solution (still taking a

while, but reducing the time required to compare every word to every other word), though some

issues with first letter variations (such as “æ” and “e” in variants like Edgar and Ædgar) would

have to be addressed. The sequential method seemed the most expedient for producing output

values for every word right now, but some experimentation with comparison of larger groups of

words with each other should be done to produce a better program.

Another possible solution somewhat related to the above would be comparison with a list

of dictionary headwords. Comparing every word to a list of headwords, generated from a

reliable source, would still be a large number of comparisons, but not nearly as large as the

number of all the unique words in a large corpus, and it would have the additional advantage of

allowing for a built-in first lemma. Currently for any groups of like words that are found, the

52

first word in the sorted list of words is the first one in the group. When imported into AntConc

(or other text analysis software), this will make the first word in each group the on that shows up

as representative of all the other words in the group (all statistics will show up as if they are for

this word in a keyword list, for instance, although AntConc does include a list of the other

conflated words to the right of the keyword). The first word is often not the best choice. The

better choice would be the most basic uninflected form of the word, with the most commonly

expected spelling. The current input data does not provide the program with enough data to

determine this, but comparing against a fairly comprehensive list of dictionary words would be a

start to solving this issue.

An additional possibility for solving the first word issue would be to use frequency (i.e.

whichever version of the word appears most often in the text) as the first word in each lemma

group. This could be attained by keeping a hash or array of words and their frequencies (loaded

from the original word list from AntConc or other software), and for each group, doing a look up

to find the highest number and moving that word to the beginning of the wordlist array. Again,

this would add to run-time, but produce better results.

There are also issues with the way the way the program pushes “compounds” and

unmatched words. Checking for a word starting with the previous word or stem, not containing

an ending, and being greater in the length of the previous word plus two is not a very exact way

to try to identify compounds, but with lots of trial and error, it yielded some promising results.

Suspected compounds need to be removed because of the problem they present of dividing

possible matching lemmas from one another. For instance, due to spelling irregularity, where

you expect drihten or dryhten, you might actually find drihtan, drihtæn, dryhtæn, dryhtin, etc. In

the sorted word list, there are variants and compounds that will separate the “a” and “æ” versions

53

of the word from the versions that would come later alphabetically (those with “e” and “i”),

including drihtanliccan, drihtealdor, and dryhtenbealo, so that you end up with a list something

like this (excerpt from actual oe_sort.pl results):

drihtan, drihtæn, dryhtæn, drihtanliccan, dryhtbearn, dryhtcwen, drihte,

drihtealdor, dryhtealdor, drihtealdormen, drihtealdre, drihtelican, drihtelice,

drihtelicum, drihtelm, drihten, dryhten, drihtena, dryhtenbealo, dryhtenbealu,

dryhtendom, drihtene, dryhtene, drihtenes, dryhtenes...

The drihtin, drihtyn, dryhtin, and dryhtyn variants end up much farther toward the end after

many other compounds such as dryhtenfolc, dryhtgestreona, and dryhtguma, in effect separating

variant versions of the same word with various compounds and non-equivalent words. And even

with the compound pushing, these words are often still separated from each other when

unmatched words appear within the long list of their variants (such as drihtelm above, which

would not meet the criteria for a compound). One possible future solution would be to do a

translation that removes all vowels (which exhibit much more irregularity in spelling than the

consonants) and sort by the consonants only (or to both stem and remove consonants). But at the

moment this is not possible with the current sorting program using Sort::ArbBiLex. The words

would need to be sorted by the consonant-only version, but kept with the original intact word in a

hash or array, so that the resulting sorted word list would contain only the original words.

The ending choices make a huge difference in the resultant data, as well, since some

inflectional endings can also match legitimate word endings, such as the –en in the word drihten

(inclusion of this ending causes drihten to be stemmed to driht, which is itself an Old English

word, variant of dryht defined earlier, and it should not be lumped in with drihten). The endings

are subject to the same spelling variations as the rest of the words, which causes problems with

54

correct stemming, as well. I included some possible variant endings in the endings.txt file, but

some of those endings are also not always inflectional endings, but rather the last characters of

legitimate words as in the above example. More experimentation is needed with selection of

endings, and the program can also be expanded to include more rules for deciding when to stem

and when not to stem. With the inclusion of a dictionary, rules could be put in place to take

away the shortest possible ending (in this case -a) first and look for an equivalent dictionary

word (or a very close "fuzzy" match), and then if it did not find a match, remove the next shortest

possible ending (in this case -na) and look for a stem match, and then the next (-ena) and so on

and so on. This would also allow for the possibility of removal of prefixes, which I deemed too

risky given the likelihood of error in this simple lemmatizer. At present, prefixes are left on and

prefixed variants of words are lemmatized together with their similarly prefixed counterparts.

There is also a possible issue with use of the Dictionary of Old English Corpus for

generating the word lists, depending upon the user’s needs. Though it is an invaluable resource

in that it contains one copy of every extant text, it does not include multiple variant versions of

the same texts. A corpus that includes all known versions of all texts, rather than one version of

each, would be even more useful for generating an all inclusive word list that would include

every variant that you might find. If a scholar used the DOOE Corpus to generate a lemma list,

and used that list to analyze texts outside of this corpus, some words would not be properly

equated with each other, resulting in some skewing of the data or a lot of manual labor to find

and add all the missing variants to the lemma file.

Another issue with the lemmatization program that could not be solved (at least within

the scope of this project) is with homographs, words that are spelled the same but have entirely

different meanings (for example god in Old English, which can be either "god" or "good," one a

55

noun and one an adjective). Distinguishing two words spelled identically cannot be done easily

in any computer automated way. One possible solution is to use inflectional endings to

determine part of speech, but this would be difficult with Old English a least partially due to

overlap in the endings between nouns, adjectives, adverbs, and even verbs. For instance while

the endings -est and -eþ are almost always verb endings, the endings -a and -e can indicate a

noun, verb or adjective, and -um can be either a noun or an adjective (and again, spelling

irregularity makes them still harder to disambiguate). The use of an annotated corpus (one

marked up with information such as part of speech of the words) is another possibility, or barring

the existence of such a corpus, the production of one using an automatic tagger. The texts in the

corpus itself could be encoded in such a way that the program could distinguish parts of speech

of the variants of god and all surrounding words, and use this information to determine the likely

meaning of god in context (although using the contextual information around the word itself

could be problematic since word order was not as set in Old English as it is in Modern English).

There are rule based part of speech tagging programs in existence currently for Modern English,

but not Old English, unfortunately. Stringent tagging based on close reading and interpretation

would likely be far more accurate, but very time consuming. As it stands, the current

oe_lemma.pl program will generate lemma lists that conflate instances of the two possible

meanings and parts of speech of god, and it will take human reading of each instance to

determine where each actually belongs. Addressing semantic issues such as these is one good

candidate for future study.

And as mentioned before, like the stemmers, this lemmatizer does not work for highly

irregular forms, such as beon (the word "to be") and seo (the demonstrative pronoun “the”). As

one solution, known irregular verbs in Old English could be entered manually into the lemma

56

list, though spelling irregularity would make this method somewhat ineffective at catching every

instance. The irregulars could be hard coded into the software so that the variants could be

compared and, if adequate matches were found, grouped with their more dissimilar forms.

57

CHAPTER 3

CONCLUSION

This project was undertaken in the hopes of achieving some success in Old English

lemmatization in the face of a vast number of spelling variants and irregularities. It met with

some success, but also many limitations, as none of the processes I employed produce correct

results 100% of the time. Language rules, especially in relation to languages with as much

variation as Old English, do not amount to an exact science, unfortunately. In many cases there

is no way a program can know the difference between a correct and incorrect match (especially

where semantic differences of very similar or related words are concerned), and whatever

improvements are made on the processes in the future, human intervention will likely still be

required. The aim will be to reduce further and further the amount of manual labor required to

make the lemma lists correct.

The study has shown that the Levenshtein algorithm used in conjunction with sorting and

other methods can be useful in trying to lemmatize the words found in Old English texts in their

many forms. The common current lemmatization method of stemming alone does not work for

Old English with all its variant spellings, but using Levenshtein alone does not work, either.

Stemming by removal of common endings brings many of the equivalent words closer to

matching, and conversion of some of the characters nearer still, so that the Levenshtein algorithm

can be used to get more accurate matches.

The code could also be modified to include more translations, and more complex rules

involving the removal of endings can be implemented using a dictionary or a more heavily

58

marked-up group of texts or corpus (although an annotated corpus is not available for Old

English at the moment). Some manual intervention with the data will be required in any case, as

it is with nearly any automated stemmer, lemmatizer, or tagger. Tzoukermann, Radev, and Gale

in an article on automatically tagging French corpora speak of the need to leave some words in

an “ambiguous” category, and that not even the human taggers always agree with one another

(57). With the current program, the user has some leeway as to what type of intervention they

would find it easier to perform, at least as far as whether it is easier to separate erroneously

conflated words or group erroneously separated words, by such means as changing the possible

endings and modifying the allowed minimum edit distance ratio until the more desired effects are

produced.

The results of the current lemmatizer are not perfect and will require manual reading and

intervention to correct them for import into text analysis software in order to provide the best

accuracy level possible. But using these automated methods gets us closer to having a valid

lemma list far more quickly than reading through the word list one word at a time and manually

grouping the words, greatly speeding up the laborious task of lemma list creation. The work

done on this lemmatizer would be a good jumping off point for development of a more robust

lemmatizer for use with Old English.

59

WORKS CITED

"Algorithm Implementation/Strings/Levenshtein Distance." Wikibooks. Jan. 2009. 9 Feb. 2009

<http://en.wikibooks.org/wiki/Algorithm_implementation/Strings/Levenshtein_distance>.

Anthony, Lawrence. "Software." Lawrence Anthony's Homepage. 30 December 2008

<http://www.antlab.sci.waseda.ac.jp/software.html>.

Bosworth, Joseph. An Anglo-Saxon Dictionary. Ed. T. Northcote Toller. Oxford: Clarendon

Press, 1898. 1 March 2009 < http://beowulf.engl.uky.edu/~kiernan/BT/Bosworth-

Toller.htm>.

Burke, Sean M. "Sort-ArbBiLex-4.01." CPAN. March 2004. 1 Jan. 2009

<http://search.cpan.org/dist/Sort-ArbBiLex>.

CPAN. 14 Feb 2009 <http://www.cpan.org/>.

Evans, Jonathan. Introductory Old English. 2006.

Gilleland, Michael. Levenshtein Distance, in Three Flavors. 9 Feb. 2009

<http://www.merriampark.com/ld.htm>.

Hall, J.R. Clark. A Concise Anglo-Saxon Dictionary. Toronto: U of Toronto P, 1960.

Healey, Antonette diPaolo. "About." The Dictionary of Old English. University of Toronto.

November 2008. 14 Feb. 2009 <http://www.doe.utoronto.ca/about.html>.

Kogai, Dan. “Encode-2.30.” CPAN. 29 Jan. 2009 <http://search.cpan.org/~dankogai/Encode-

2.30/Encode.pm>.

60

The Lancaster Stemming Algorithm. Lancaster University. 8 Feb. 2009

<http://www.comp.lancs.ac.uk/computing/researche/stemming/>.

Levenshtein. 3 Feb. 2009 <http://www.levenshtein.net/>.

"The Lovins Stemming Algorithm." Snowball. 12 Feb. 2009

<http://snowball.tartarus.org/algorithms/lovins/stemmer.html>.

Mason, Oliver. Programming for Corpus Linguistics. Edinburgh: Edinburgh U P, 2000.

MorphAdorner. Northwestern University. Dec. 2007. 9 Feb. 2009

<http://morphadorner.northwestern.edu/morphadorner/>.

Oxford English Dictionary Online. Ed. John Simpson. Oxford University Press. 2009. Feb. 28

2009 <http://dictionary.oed.com>.

Porter, Martin. The Porter Stemming Algorithm. Jan. 2006. 7 Feb. 2009

<http://tartarus.org/~martin/PorterStemmer/>.

Tzoukermann, E., D. Radev, and W. Gale. Natural Language Processing Using Very Large

Corpora. Ed. Susan Armstrong, Kenneth Church, Pierre Isabelle, Sandra Manzi, Evelyne

Tzoukermann, and David Yarowsky. Dordrecht: Kluwer Academic Publishers, 1999.

61

APPENDIX A

Custom Scripts

A1. multiple_files.xsl. XSLT file run using Oxygen XML editor to output text files from
Dictionary of Old English Corpus XML files.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:tei="http://www.tei-c.org/ns/1.0"
xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="tei"
version="2.0">

<xsl:output
method="text"
encoding="UTF-8"
omit-xml-declaration = "yes" />

<xsl:template match="TEI.2">

<xsl:for-each select=".">
<xsl:variable name="filename"

select="concat(teiHeader/fileDesc/publicationStmt/idno, '_',
translate(teiHeader/fileDesc/titleStmt/title[@type='st'], '*/: ', '____'))" />

<xsl:result-document href="text_files3/{$filename}.txt">
<xsl:for-each select="text/body/p/s">

<xsl:apply-templates
/><xsl:text></xsl:text><xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:result-document>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

62

A2. oe_sort.pl. Perl program that sorts the word lists generated by AntConc into an alphabetical
order better suited to Old English than most program’s built-in ASCII alphabetical sort order.

#!/usr/bin/perl

oe_sort.pl 02/02/2009 - Latest version of sort program using Sort::ArbBiLex
CPAN module to perform a custom Old English sort.

use Sort::ArbBiLex (
 'oe_sort' =>
 "
 a A à À á Á â Â ã Ã ä Ä å Å æ Æ aa aæ æa ææ Aa Aæ Æa Ææ AA AÆ ÆA ÆÆ
 b B
 c C ç Ç k K
 d D
 e E è È é É ê Ê ë Ë ę Ę
 f F
 g G
 h H
 i I ì Ì í Í î Î ï Ï y Y ý Ý ÿ
 j J
 l L ł Ł
 m M
 n N
 o O ò Ò ó Ó ô Ô õ Õ ö Ö ø Ø œ Œ
 p P
 q Q
 r R
 s S
 t T
 þ Þ ð Ð þþ ðþ þð ðð Þþ Ðþ Þð Ðð ÞÞ ÐÞ ÞÐ ÐÐ th Th TH
 u U ù Ù ú Ú û Û ü Ü ų Ų
 v V
 w W
 x X
 z Z
 "
);

open(MYFILE, "<wl_all_byword.txt") or die "Cannot open wl_all_byword.txt: $!";
open(MYWORD, ">wl_all_words_only.txt") or die "Cannot open
wl_all_words_only.txt: $!";
my(@lines) = <MYFILE>;

Takes three field per line input file (with rank, frequency, and word
and outputs word only.

foreach $line (@lines) {
 ($num, $freq, $word) = split '\t', $line;
 chomp($word);

print MYWORD "$word\n";
}

close MYFILE;
close MYWORD;

63

open(MYWORD2, "<wl_all_words_only.txt") or die "Cannot open
wl_all_words_only.txt: $!";
open(MYOUT, ">wordlist_sorted.txt") or die "Cannot open wordlist_sorted.txt:
$!";
my(@words) = <MYWORD2>;

Performs oe_sort defined at beginning of program on file of words and
prints to output file.

@sorted = oe_sort(@words);

foreach (@sorted) {
print MYOUT "$_"

}

64

A3. oe_lemma.pl. Perl program that takes wordlist_sorted.txt file from oe_sort.pl and
endings.txt file as input and generates lemma file (wordlist_lemmas.txt), compounds file
(wordlist_compounds.txt), and file of unmatched words (wordlist_unmatched.txt) as output.

#!/usr/bin/perl

oe_lemma.pl 02/22/2009 (latest of several versions)
Attempt to automate creation of lemma list with Levenshtein algorithm
and various character translations. Takes output of oe_sort.pl as input.

use utf8;
use Encode qw(encode decode);

sub trim($);

open(MYFILE, "<wordlist_sorted.txt") or die "Cannot open wordlist_sorted.txt:
$!";
open(ENDFILE, "<endings.txt") or die "Cannot open endings.txt: $!";
open(MYOUT, ">wordlist_lemmas.txt") or die "Cannot open wordlist_lemmas.txt:
$!";
open(MYUNMATCHED, ">wordlist_unmatched.txt") or die "Cannot open
wordlist_unmatched.txt: $!";
open(MYCOMPS, ">wordlist_compounds.txt") or die "Cannot open
wordlist_compounds.txt: $!";
my(@words) = <MYFILE>;
my(@ends) = <ENDFILE>;

Initialize most variables.

$curr = '';
$currshort = '';
$currtrans = '';
$prev = 'fakeword';
$prevshort = 'fakew';
$prevtrans = '';
@wordlist = ();
@compounds = ();
@unmatched = ();
$currlist = '';
$lastchars = '';
$endflag = '';
$endflag2 = '';
$j = 0;

Loops through each word in input file wordlist_sorted.txt.

foreach $word (@words) {
 $word_trim = trim($word);
 chomp($word_trim);
 $word_decode = decode('UTF-8', $word_trim);
 $wordlen = length($word_decode);
 if ($wordlen > 2) {

$endflag = 'n';
$endflag2 = 'n';
$curr = trim($word);
chomp($curr);

65

$curr = lc($curr);
$curr = decode('UTF-8', $curr);
$currlen = length($curr);
$prevlen = length($prev);
$currtrans = $curr;
$currtrans =~ tr/kiæð/cyaþ/;
$currtrans =~ tr/àáâãäåæ/a/;
$currtrans =~ tr/èéêëę/e/;
$currtrans =~ tr/ìíîï/i/;
$currtrans =~ tr/òóôõöøœ/o/;
$currtrans =~ tr/ùúûüų/u/;
$currtrans =~ tr/ýÿ/y/;
$currtrans =~ tr/ç/c/;
$currtrans =~ s/(.)\1/\1/;

Loops through each ending in endings.txt file and if present at end of
word, removes ending, sets results to $currshort, and takes $currshort
through several translations. If no ending found, sets $currshort to
to translated current word.

foreach $end (@ends) {
$end = trim($end);
chomp($end);
my $end = decode('UTF-8', $end);
$endlen = length($end);
if ($currlen > $endlen) {

$lastchars = substr($currtrans, ($currlen - $endlen),
$endlen);

if ($end eq $lastchars) {
$rootlen = $currlen-$endlen;
$currshort = substr($currtrans, 0, $rootlen);
$endflag = 'y';

}
}

}
if ($endflag eq 'n') {

$currshort = $currtrans;
}

Levenshtein comparison section. Finds lengths of the previous and current
stem, runs stems through levenshtein function, and calculates a percentage
difference based on the Levenshtein result divided by the length of the
shortest of the two words.

$pshortlen = length($prevshort);
$cshortlen = length($currshort);
$lev = levenshtein($prevshort, $currshort);
if ($pshortlen > $cshortlen) {

$diffpercent = $lev/$cshortlen;
} else {

$diffpercent = $lev/$pshortlen;
}

Levenshtein results used to determine if words are close enough to be
grouped together in @wordlist array elements. Words that match previous
or shortened previous word followed by something other than a known
ending are pushed to @compounds array if current short length is greater

66

than previous short length plus 2. Words that do not appear to have a
match are pushed to the @unmatched array.

if ($diffpercent < 0.3 && $prevshort ne "fakew") {
$currlist = $prev . ", " . $curr;
if ($wordlist[$j] eq '') {

pop(@unmatched);
$wordlist[$j] = $currlist;

} else {
$wordlist[$j] = $wordlist[$j] . ', ' . $curr;

}
} elsif ($currshort =~ /^${prevshort}(.+)/ || $currtrans =~

/^${prevtrans}(.+)/) {
foreach $end (@endings) {

$end = trim($end);
chomp($end);
$end = decode('UTF-8', $end);
if ($currtrans =~ /^(${prevtrans})(${end})$/ || $currtrans

=~ /^(${prevshort})(${end})$/) {
$endflag2 = 'y';

}

}
if ($endflag2 eq 'n' && $cshortlen > $pshortlen + 2) {

push(@compounds, $curr);
$currshort = '';
$currtrans = '';
$curr = '';
next;

} else {
push(@unmatched, $curr);

}
} else {

push(@unmatched, $curr);
$j++;

}
$prev = $curr;
$prevshort = $currshort;
$prevtrans = $currtrans;
$currshort = '';
$currtrans = '';
$curr = '';

 } else {
 push(@unmatched, $word_decode);
 }
}

Loops throuh arrays to output compounds, unmatched and lemma files.

foreach $compound (@compounds) {
$compound = encode('UTF-8', $compound);
print MYCOMPS "$compound\n";

}

foreach $unmatch (@unmatched) {
$unmatch = encode('UTF-8', $unmatch);
print MYUNMATCHED "$unmatch\n";

67

}

foreach $word (@wordlist) {
$word = encode('UTF-8', $word);
if ($word ne '') {

print MYOUT "$word\n";
}

}

close MYFILE;
close ENDFILE;
close MYOUT;
close MYUNMATCHED;
close MYCOMPS;

Perl trim function to remove whitespace from the start and end of a string
sub trim($)
{

my $string = shift;
$string =~ s/^\s+//;
$string =~ s/\s+$//;
return $string;

}

Levenshtein algorithm function. Expects two strings as parameters.
Usage: levenshtein(<string1>, <string2>)
#
Algorithm adopted from here: http://www.merriampark.com/ldperl.htm
Code below from:
http://en.wikibooks.org/wiki/Algorithm_implementation/Strings/
Levenshtein_distance
sub levenshtein
{
 my ($a, $b) = @_;
 my ($len1, $len2) = (length $a, length $b);

 return $len2 if ($len1 == 0);
 return $len1 if ($len2 == 0);

 my %d;

 for (my $i = 0; $i <= $len1; ++$i)
 {
 for (my $j = 0; $j <= $len2; ++$j)
 {
 $d{ $i }{ $j } = 0;
 $d{ 0 }{ $j } = $j;
 }

 $d{ $i }{ 0 } = $i;
 }

 # Populate arrays of characters to compare
 my @ar1 = split(//, $a);
 my @ar2 = split(//, $b);

 for (my $i = 1; $i <= $len1; ++$i)

68

 {
 for (my $j = 1; $j <= $len2; ++$j)
 {
 my $cost = ($ar1[$i - 1] eq $ar2[$j - 1]) ? 0 :
1;

 my $min1 = $d{ $i - 1 }{ $j } + 1;
 my $min2 = $d{ $i }{ $j - 1 } + 1;
 my $min3 = $d{ $i - 1 }{ $j - 1 } + $cost;

 if ($min1 <= $min2 && $min1 <= $min3)
 {
 $d{ $i }{ $j } = $min1;
 }
 elsif ($min2 <= $min1 && $min2 <= $min3)
 {
 $d{ $i }{ $j } = $min2;
 }
 else
 {
 $d{ $i }{ $j } = $min3;
 }
 }
 }

 return $d{ $len1 }{ $len2 };
}

69

APPENDIX B

Code from Other Sources

B1. Sort::ArbBiLex CPAN module source code. Module that allows definition of arbitrary
sort orders which allows sorting of the word list in a more Old English friendly order.
Downloaded from CPAN (from http://cpansearch.perl.org/src/SBURKE/Sort-ArbBiLex-
4.01/ArbBiLex.pm on 02/12/2009) and installed in Perl.

-*-Fundamental-*-
require 5; # Time-stamp: "2004-03-27 17:19:11 AST"
package Sort::ArbBiLex;
use strict;
use vars qw(@ISA $Debug $VERSION);
$VERSION = "4.01";
$Debug = 0;
use Carp;
use integer; # vroom vroom

BEGIN { *UNICODE = eval('chr(256)') ? sub(){1} : sub(){0} }

#POD at end
###

sub import {
 my $class_name = shift(@_);
 my $into = scalar caller;
 return unless @_;
 croak "Argument list in 'use $class_name' must be list of pairs" if @_ % 2;
 my($sym, $spec);
 while(@_) {
 ($sym, $spec) = splice(@_,0,2);
 defined $sym or croak "Can't use undef as the name of a sub to make";
 length $sym or croak "Can't use \"\" as the name of a sub to make";
 defined $spec or croak "Can't use undef as a sort-order spec";
 length $sym or croak "Can't use \"\" as a sort-order spec";
 $sym = $into . '::' . $sym unless $sym =~ m/::/ or $sym =~ m/'/;
 no strict 'refs';
 *{$sym} = maker($spec);
 }
 return;
}

#--

sub maker {
 my $subr = eval(&source_maker(@_));
 die "Compile error <$@> in eval!?!" if $@; # shouldn't be possible!
 return $subr;
}

70

Implementation note: I didn't /need/ to use eval(). I could just return
an appropriate closure. But one can't do tr/$foo/$bar/ -- eval is the
only way to get things to (so to speak) interpolate there; and the
efficiency cost of requiring that Perl parse more code is offset by
the efficiency benefit of being able to use tr/// (instead of s///) in
appropriate cases.

#--

sub source_maker {
 no locale;
 my($decl) = $_[0];
 croak "usage: Sort::ArbBiLex::maker(DECLARATION). See the docs."
 unless @_ == 1;

 my $one_level_mode = 0;
 my @decl;
 if(ref $decl) { # It's a rLoL declaration
 croak "Sort order declaration must be a string or a listref"
 unless ref($decl) eq 'ARRAY';
 print "rLoL-decl mode\n" if $Debug > 1;
 # Make @decl into a list of families
 @decl = @$decl;
 # and each one of the items in @decl must be a ref to a list of scalars
 foreach my $f (@decl) {
 croak "Each family must be a listref" unless ref($f) eq 'ARRAY';
 @$f = grep(defined($_) && length($_), @$f); # sanity
 foreach my $g (@$f) { # more sanity.
 croak "A reference found where a glyph was expected" if ref($g);
 }
 }

 } else { # It's a string-style declaration
 print "string-decl mode\n" if $Debug > 1;
 # Make @decl into a list of families
 if($decl =~ /[\cm\cj\n]/) { # It contains majors and minors
 @decl = grep /\S/, split(/[\cm\cj]+/, $decl);
 } else { # It's all majors, on one line
 print "Strangeness trap 1.\n" if $Debug;
 @decl = grep /\S/, split(/\s+/, $decl);
 $one_level_mode = 1;
 }

 # Now turn @decl into a list of lists, where each element is a
 # family -- i.e., a ref to a list of glyphs in that family.

 print "Glyph map:\n", map(" {<$_>}\n", @decl) if $Debug > 1;
 foreach my $d (@decl) { # in place changing
 #print " d $d -> ", map("<$_> ",grep($_ ne '',split(/\s+/, $d))), "\n";
 $d = [grep($_ ne '', split(/\s+/, $d))];
 #print " d $d -> ", map("<$_> ", @$d), "\n";
 }
 }

 @decl = grep(scalar(@{$_}), @decl); # nix empty families
 croak "No glyphs in sort order declaration!?" unless @decl;

71

 @decl = map [$_], @{$decl[0]} if @decl == 1;
 # Change it from a family of N glyphs into N families of one glyph each

 # Iterate thru the families and their glyphs and build the tables
 my(@glyphs, @major_out, @minor_out);
 my $max_glyph_length = 0;
 my $max_family_length = 0;
 my %seen;
 my($glyph, $minor); # scratch
 for (my $major = 0; $major < @decl; $major++) {
 print "Family $major\n" if $Debug;
 croak "Too many major glyphs" if !UNICODE and $major > 255;
 $max_family_length = @{ $decl[$major] }
 if @{ $decl[$major] } > $max_family_length;

 for ($minor = 0; $minor < @{ $decl[$major] }; $minor++) {
 $glyph = $decl[$major][$minor];
 print " Glyph ($major)\:$minor (", $glyph, ")\n" if $Debug;
 croak "Glyph <$glyph> appears twice in the sort order declaration!"
 if $seen{$glyph}++;
 croak "Too many minor glyphs" if !UNICODE and $minor > 255;

 $max_glyph_length = length($glyph) if length($glyph) >
$max_glyph_length;

 $glyph =~ s/([^a-zA-Z0-9])/_char2esc($1)/eg;
 push @glyphs, $glyph;
 push @major_out, _num2esc($major);
 push @minor_out, _num2esc($minor);
 # or unpack 'H2', pack 'C', 12 or unpack 'H2', chr 12; ?
 }
 }
 die "Unexpected error: No glyphs?!?" if $max_glyph_length == 0; # sanity
 $one_level_mode = 1 if $max_family_length == 1;

 ###
 # Now start building the code.

 my($prelude, $coda, $code, $minor_code, $major_code);
 if($max_glyph_length == 1) {
 # All glyphs are single characters, so we can do this all with tr's
 $prelude = "# Single character mode.";
 $coda = '';
 my $glyphs = join '', @glyphs;
 my $major_out = join '', @major_out;
 my $minor_out = join '', @minor_out;

 $minor_code = <<"EOMN"; # contents of a FOR block mapping $$x[0] => $$x[2]
 \$x->[2] = \$x->[0];
 \$x->[2] =~ tr[$glyphs][]cd;
 \$x->[2] =~ tr[$glyphs]
 [$minor_out];
EOMN

 $major_code = <<"EOMJ"; # expression returning a scalar as a major key
 do { # major keymaker

72

 my(\$key) = \$_;
 \$key =~ tr[$glyphs][]cd;
 \$key =~ tr[$glyphs]
 [$major_out];
 scalar(\$key);
 }
EOMJ

 # End of single-glyph stuff.

 } else {
 # There are glyphs over 2 characters long -- gotta use s's.
 # End of multi-glyph stuff.
 my $glyphs = join ',', map "\"$_\"", @glyphs;
 my $major_out = join ',', map "\"$_\"", @major_out;
 my $minor_out = join ',', map "\"$_\"", @minor_out;

 if(!$one_level_mode) {
 $prelude = <<"EOPRELUDE";
{ # Multi-character mode. So we need a closure for these variables.
my(\%major, \%minor);
\@major{$glyphs}
 = ($major_out);
\@minor{$glyphs}
 = ($minor_out);
my \$glyph_re = join "|", map(quotemeta,
 sort {length(\$b) <=> length(\$a)} keys \%major);
 # put the longest glyphs first
EOPRELUDE
 } else { # Multi-character mode
 $prelude = <<"EOPRELUDE2";
{ # Multi-character mode. So we need a closure for these variables.
my(\%major); # just one-level mode, tho.
\@major{$glyphs}
 = ($major_out);
my \$glyph_re = join "|", map(quotemeta,
 sort {length(\$b) <=> length(\$a)} keys \%major);
 # put the longest glyphs first
EOPRELUDE2
}
 $coda = "} # end of closure.";

 $minor_code = <<"EOMN2"; # contents of a FOR block mapping $$x[0] =>
$$x[2]
 \$x->[2] = join '',
 map \$minor{\$_},
 \$x->[0] =~ m<(\$glyph_re)>go;
EOMN2

 $major_code = <<"EOMJ2"; # expression returning a scalar as a major key
 join('', map \$major{\$_}, m<(\$glyph_re)>go) # major keymaker
EOMJ2

 }

 ###
 # Now finish cobbling the code together.

73

 my $now = scalar(gmtime);

if(!$one_level_mode) { # 2-level mode
 $code = <<"EOVOODOO";
\# Generated by Sort::ArbBiLex v$VERSION at $now GMT
$prelude
Two-level mode
sub { # change that to "sub whatever {" to name this function
 no locale; # we need the real 8-bit ASCIIbetical sort()
 use strict;
 return
 # map sort map is the Schwartzian Transform. See perlfaq4.
 map { \$_->[0] }
 sort {
 \$a->[1] cmp \$b->[1] ||
 do {
 foreach my \$x (\$a, \$b) {
 if(!defined(\$x->[2]) and defined(\$x->[0])) {
$minor_code
 }
 }
 \$a->[2] cmp \$b->[2]; # return value of this do-block
 }
 }
 map { [\$_,
$major_code
 , undef
]
 }
 \@_;
}
$coda

EOVOODOO

} else { # one-level mode

 $code = <<"EOVOODOO2";
\# Generated by Sort::ArbBiLex v$VERSION at $now GMT
$prelude
One-level mode
sub { # change that to "sub whatever {" to name this function
 no locale; # we need the real 8-bit ASCIIbetical sort()
 use strict;
 return
 # map sort map is the Schwartzian Transform. See perlfaq4.
 map { \$_->[0] }
 sort { \$a->[1] cmp \$b->[1] }
 map { [\$_,
$major_code
]
 }
 \@_;
}
$coda

74

EOVOODOO2

}

 print "\nCode to eval:\n", $code, "__ENDCODE__\n\n" if $Debug;

 return $code;
}

-

sub _char2esc {
 my $in = ord($_[0]);
 return sprintf "\\x{%x}", $in if $in > 255;
 return sprintf "\\x%02x", $in;
}

sub _num2esc {
 my $in = $_[0];
 return sprintf "\\x{%x}", $in if $in > 255;
 return sprintf "\\x%02x", $in;
}

###

"cmp" returns -1, 0, or 1 depending on whether the left argument is
stringwise less than, equal to, or greater than the right argument.

sub xcmp {
 carp "usage: xcmp(\\&sorter,$a,$b)" unless @_ and ref($_[0]);
 return 0 if $_[1] eq $_[2]; # We have to trap this early.
 return 1 if $_[1] ne ($_[0]->($_[1], $_[2]))[0];
 # If they were switched when sorted, then the original-first was
 # lexically GT than the original-second.
 return -1 if $_[1] eq ($_[0]->($_[2], $_[1]))[0];
 # If they were switched BACK when REVERSED and sorted, then the
 # original-first was lexically LT than the original-second.
 return 0;
 # Otherwise they were lexically identical.
}

And two actually simpler ones:

sub xlt {
 carp "usage: xlt(\\&sorter,$a,$b)" unless @_ and ref($_[0]);
 #AKA: xcmp(@_) == -1;
 return 0 if $_[1] eq $_[2]; # We have to trap this early.
 return 1 if $_[1] eq ($_[0]->($_[2], $_[1]))[0];
 # If they were switched BACK when REVERSED and sorted, then the
 # original-first was lexically LT than the original-second.
 return 0;
}

sub xgt {
 carp "usage: xgt(\\&sorter,$a,$b)" unless @_ and ref($_[0]);
 #AKA: xcmp(@_) == -1;
 return 0 if $_[1] eq $_[2]; # We have to trap this early.

75

 return 1 if $_[1] ne ($_[0]->($_[1], $_[2]))[0];
 # If they were switched when sorted, then the original-first was
 # lexically GT than the original-second.
 return 0;
}

And then two easy ones:

sub xle {
 carp "usage: xle(\\&sorter,$a,$b)" unless @_ and ref($_[0]);
 !xgt(@_); #AKA: xcmp(@_) < 1;
}

sub xge {
 carp "usage: xge(\\&sorter,$a,$b)" unless @_ and ref($_[0]);
 !xlt(@_); #AKA: xcmp(@_) > -1;
}

76

B2. Levenshtein Algorithm. This is the code incorporated into oe_lemma.pl (see Appendix A1)
as the levenshtein() function. Removed “use strict;” from program as it was causing issues.
From http://en.wikibooks.org/wiki/Algorithm_implementation/Strings/Levenshtein_distance.

The function expects two string parameters
Usage: levenshtein(<string1>, <string2>)
#
Algorithm adopted from here: http://www.merriampark.com/ldperl.htm

use strict;

sub levenshtein
{

my ($a, $b) = @_;
my ($len1, $len2) = (length $a, length $b);

return $len2 if ($len1 == 0);
return $len1 if ($len2 == 0);

my %d;

for (my $i = 0; $i <= $len1; ++$i)
{

for (my $j = 0; $j <= $len2; ++$j)
{

$d{ $i }{ $j } = 0;
$d{ 0 }{ $j } = $j;

}

$d{ $i }{ 0 } = $i;
}

Populate arrays of characters to compare
my @ar1 = split(//, $a);
my @ar2 = split(//, $b);

for (my $i = 1; $i <= $len1; ++$i)
{

for (my $j = 1; $j <= $len2; ++$j)
{

my $cost = ($ar1[$i - 1] eq $ar2[$j - 1]) ? 0 : 1;

my $min1 = $d{ $i - 1 }{ $j } + 1;
my $min2 = $d{ $i }{ $j - 1 } + 1;
my $min3 = $d{ $i - 1 }{ $j - 1 } + $cost;

if ($min1 <= $min2 && $min1 <= $min3)
{

$d{ $i }{ $j } = $min1;
}
elsif ($min2 <= $min1 && $min2 <= $min3)
{

$d{ $i }{ $j } = $min2;
}
else
{

77

$d{ $i }{ $j } = $min3;
}

}
}

return $d{ $len1 }{ $len2 };

}

78

APPENDIX C

Porter Stemmer

C. Perl Implementation of Porter Stemmer by Martin Porter. From
http://tartarus.org/~martin/PorterStemmer/perl.txt.

#!/usr/bin/perl -w

Porter stemmer in Perl. Few comments, but it's easy to follow against the
rules in the original
paper, in
#
Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
no. 3, pp 130-137,
#
see also http://www.tartarus.org/~martin/PorterStemmer

Release 1

local %step2list;
local %step3list;
local ($c, $v, $C, $V, $mgr0, $meq1, $mgr1, $_v);

sub stem
{ my ($stem, $suffix, $firstch);
 my $w = shift;
 if (length($w) < 3) { return $w; } # length at least 3
 # now map initial y to Y so that the patterns never treat it as vowel:
 $w =~ /^./; $firstch = $&;
 if ($firstch =~ /^y/) { $w = ucfirst $w; }

 # Step 1a
 if ($w =~ /(ss|i)es$/) { $w=$`.$1; }
 elsif ($w =~ /([^s])s$/) { $w=$`.$1; }
 # Step 1b
 if ($w =~ /eed$/) { if ($` =~ /$mgr0/o) { chop($w); } }
 elsif ($w =~ /(ed|ing)$/)
 { $stem = $`;
 if ($stem =~ /$_v/o)
 { $w = $stem;
 if ($w =~ /(at|bl|iz)$/) { $w .= "e"; }
 elsif ($w =~ /([^aeiouylsz])\1$/) { chop($w); }
 elsif ($w =~ /^${C}${v}[^aeiouwxy]$/o) { $w .= "e"; }
 }
 }
 # Step 1c
 if ($w =~ /y$/) { $stem = $`; if ($stem =~ /$_v/o) { $w = $stem."i"; } }

79

 # Step 2
 if ($w =~ /(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|
ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/)
 { $stem = $`; $suffix = $1;
 if ($stem =~ /$mgr0/o) { $w = $stem . $step2list{$suffix}; }
 }

 # Step 3

 if ($w =~ /(icate|ative|alize|iciti|ical|ful|ness)$/)
 { $stem = $`; $suffix = $1;
 if ($stem =~ /$mgr0/o) { $w = $stem . $step3list{$suffix}; }
 }

 # Step 4

 if ($w =~ /(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|
iti|ous|ive|ize)$/)
 { $stem = $`; if ($stem =~ /$mgr1/o) { $w = $stem; } }
 elsif ($w =~ /(s|t)(ion)$/)
 { $stem = $` . $1; if ($stem =~ /$mgr1/o) { $w = $stem; } }

 # Step 5

 if ($w =~ /e$/)
 { $stem = $`;
 if ($stem =~ /$mgr1/o or
 ($stem =~ /$meq1/o and not $stem =~ /^${C}${v}[^aeiouwxy]$/o))
 { $w = $stem; }
 }
 if ($w =~ /ll$/ and $w =~ /$mgr1/o) { chop($w); }

 # and turn initial Y back to y
 if ($firstch =~ /^y/) { $w = lcfirst $w; }
 return $w;
}

sub initialise {

 %step2list =
 ('ational'=>'ate', 'tional'=>'tion', 'enci'=>'ence', 'anci'=>'ance',
'izer'=>'ize', 'bli'=>'ble',
 'alli'=>'al', 'entli'=>'ent', 'eli'=>'e', 'ousli'=>'ous',
'ization'=>'ize', 'ation'=>'ate',
 'ator'=>'ate', 'alism'=>'al', 'iveness'=>'ive', 'fulness'=>'ful',
'ousness'=>'ous', 'aliti'=>'al',
 'iviti'=>'ive', 'biliti'=>'ble', 'logi'=>'log');

 %step3list =
 ('icate'=>'ic', 'ative'=>'', 'alize'=>'al', 'iciti'=>'ic', 'ical'=>'ic',
'ful'=>'', 'ness'=>'');

 $c = "[^aeiou]"; # consonant
 $v = "[aeiouy]"; # vowel
 $C = "${c}[^aeiouy]*"; # consonant sequence

80

 $V = "${v}[aeiou]*"; # vowel sequence

 $mgr0 = "^(${C})?${V}${C}"; # [C]VC... is m>0
 $meq1 = "^(${C})?${V}${C}(${V})?" . '$'; # [C]VC[V] is m=1
 $mgr1 = "^(${C})?${V}${C}${V}${C}"; # [C]VCVC... is m>1
 $_v = "^(${C})?${v}"; # vowel in stem

}

that's the definition. Run initialise() to set things up, then stem($word)
to stem $word, as here:

initialise();

while (<>)
{
 { /^([^a-zA-Z]*)(.*)/ ;
 print $1;
 $_ = $2;
 unless (/^([a-zA-Z]+)(.*)/) { last; }
 $word = lc $1; # turn to lower case before calling:
 $_ = $2;
 $word = stem($word);
 print $word;
 redo;
 }
 print "\n";
}

inputs taken from the files on the arg list, output to stdout.

As an easy speed-up, one might create a hash of word=>stemmed form, and
look up each new
word in the hash, only calling stem() if the word was not found there.

81

APPENDIX D

Unicode Character Set

D. UTF-8 Encoding Table and Unicode Characters. From http://www.utf8-
chartable.de/unicode-utf8-table.pl?utf8=dec&view=3 on 02/12/2009.

Unicode
code point character UTF-8

(dec.) name

U+0000 0 <control>
U+0001 1 <control>
U+0002 2 <control>
U+0003 3 <control>
U+0004 4 <control>
U+0005 5 <control>
U+0006 6 <control>
U+0007 7 <control>
U+0008 8 <control>
U+0009 9 <control>
U+000A 10 <control>
U+000B 11 <control>
U+000C 12 <control>
U+000D 13 <control>
U+000E 14 <control>
U+000F 15 <control>
U+0010 16 <control>
U+0011 17 <control>
U+0012 18 <control>
U+0013 19 <control>
U+0014 20 <control>
U+0015 21 <control>
U+0016 22 <control>
U+0017 23 <control>
U+0018 24 <control>
U+0019 25 <control>
U+001A 26 <control>
U+001B 27 <control>
U+001C 28 <control>
U+001D 29 <control>
U+001E 30 <control>
U+001F 31 <control>

82

U+0020 32 SPACE
U+0021 ! 33 EXCLAMATION MARK
U+0022 " 34 QUOTATION MARK
U+0023 # 35 NUMBER SIGN
U+0024 $ 36 DOLLAR SIGN
U+0025 % 37 PERCENT SIGN
U+0026 & 38 AMPERSAND
U+0027 ' 39 APOSTROPHE
U+0028 (40 LEFT PARENTHESIS
U+0029) 41 RIGHT PARENTHESIS
U+002A * 42 ASTERISK
U+002B + 43 PLUS SIGN
U+002C , 44 COMMA
U+002D - 45 HYPHEN-MINUS
U+002E . 46 FULL STOP
U+002F / 47 SOLIDUS
U+0030 0 48 DIGIT ZERO
U+0031 1 49 DIGIT ONE
U+0032 2 50 DIGIT TWO
U+0033 3 51 DIGIT THREE
U+0034 4 52 DIGIT FOUR
U+0035 5 53 DIGIT FIVE
U+0036 6 54 DIGIT SIX
U+0037 7 55 DIGIT SEVEN
U+0038 8 56 DIGIT EIGHT
U+0039 9 57 DIGIT NINE
U+003A : 58 COLON
U+003B ; 59 SEMICOLON
U+003C < 60 LESS-THAN SIGN
U+003D = 61 EQUALS SIGN
U+003E > 62 GREATER-THAN SIGN
U+003F ? 63 QUESTION MARK
U+0040 @ 64 COMMERCIAL AT
U+0041 A 65 LATIN CAPITAL LETTER A
U+0042 B 66 LATIN CAPITAL LETTER B
U+0043 C 67 LATIN CAPITAL LETTER C
U+0044 D 68 LATIN CAPITAL LETTER D
U+0045 E 69 LATIN CAPITAL LETTER E
U+0046 F 70 LATIN CAPITAL LETTER F
U+0047 G 71 LATIN CAPITAL LETTER G
U+0048 H 72 LATIN CAPITAL LETTER H
U+0049 I 73 LATIN CAPITAL LETTER I
U+004A J 74 LATIN CAPITAL LETTER J
U+004B K 75 LATIN CAPITAL LETTER K
U+004C L 76 LATIN CAPITAL LETTER L

83

U+004D M 77 LATIN CAPITAL LETTER M
U+004E N 78 LATIN CAPITAL LETTER N
U+004F O 79 LATIN CAPITAL LETTER O
U+0050 P 80 LATIN CAPITAL LETTER P
U+0051 Q 81 LATIN CAPITAL LETTER Q
U+0052 R 82 LATIN CAPITAL LETTER R
U+0053 S 83 LATIN CAPITAL LETTER S
U+0054 T 84 LATIN CAPITAL LETTER T
U+0055 U 85 LATIN CAPITAL LETTER U
U+0056 V 86 LATIN CAPITAL LETTER V
U+0057 W 87 LATIN CAPITAL LETTER W
U+0058 X 88 LATIN CAPITAL LETTER X
U+0059 Y 89 LATIN CAPITAL LETTER Y
U+005A Z 90 LATIN CAPITAL LETTER Z
U+005B [91 LEFT SQUARE BRACKET
U+005C \ 92 REVERSE SOLIDUS
U+005D] 93 RIGHT SQUARE BRACKET
U+005E ^ 94 CIRCUMFLEX ACCENT
U+005F _ 95 LOW LINE
U+0060 ` 96 GRAVE ACCENT
U+0061 a 97 LATIN SMALL LETTER A
U+0062 b 98 LATIN SMALL LETTER B
U+0063 c 99 LATIN SMALL LETTER C
U+0064 d 100 LATIN SMALL LETTER D
U+0065 e 101 LATIN SMALL LETTER E
U+0066 f 102 LATIN SMALL LETTER F
U+0067 g 103 LATIN SMALL LETTER G
U+0068 h 104 LATIN SMALL LETTER H
U+0069 i 105 LATIN SMALL LETTER I
U+006A j 106 LATIN SMALL LETTER J
U+006B k 107 LATIN SMALL LETTER K
U+006C l 108 LATIN SMALL LETTER L
U+006D m 109 LATIN SMALL LETTER M
U+006E n 110 LATIN SMALL LETTER N
U+006F o 111 LATIN SMALL LETTER O
U+0070 p 112 LATIN SMALL LETTER P
U+0071 q 113 LATIN SMALL LETTER Q
U+0072 r 114 LATIN SMALL LETTER R
U+0073 s 115 LATIN SMALL LETTER S
U+0074 t 116 LATIN SMALL LETTER T
U+0075 u 117 LATIN SMALL LETTER U
U+0076 v 118 LATIN SMALL LETTER V
U+0077 w 119 LATIN SMALL LETTER W
U+0078 x 120 LATIN SMALL LETTER X
U+0079 y 121 LATIN SMALL LETTER Y

84

U+007A z 122 LATIN SMALL LETTER Z
U+007B { 123 LEFT CURLY BRACKET
U+007C | 124 VERTICAL LINE
U+007D } 125 RIGHT CURLY BRACKET
U+007E ~ 126 TILDE
U+007F 127 <control>
U+0080 194 128 <control>
U+0081 194 129 <control>
U+0082 194 130 <control>
U+0083 194 131 <control>
U+0084 194 132 <control>
U+0085 194 133 <control>
U+0086 194 134 <control>
U+0087 194 135 <control>
U+0088 194 136 <control>
U+0089 194 137 <control>
U+008A 194 138 <control>
U+008B 194 139 <control>
U+008C 194 140 <control>
U+008D 194 141 <control>
U+008E 194 142 <control>
U+008F 194 143 <control>
U+0090 194 144 <control>
U+0091 194 145 <control>
U+0092 194 146 <control>
U+0093 194 147 <control>
U+0094 194 148 <control>
U+0095 194 149 <control>
U+0096 194 150 <control>
U+0097 194 151 <control>
U+0098 194 152 <control>
U+0099 194 153 <control>
U+009A 194 154 <control>
U+009B 194 155 <control>
U+009C 194 156 <control>
U+009D 194 157 <control>
U+009E 194 158 <control>
U+009F 194 159 <control>
U+00A0 194 160 NO-BREAK SPACE
U+00A1 ¡ 194 161 INVERTED EXCLAMATION MARK
U+00A2 ¢ 194 162 CENT SIGN
U+00A3 £ 194 163 POUND SIGN
U+00A4 ¤ 194 164 CURRENCY SIGN
U+00A5 ¥ 194 165 YEN SIGN
U+00A6 ¦ 194 166 BROKEN BAR

85

U+00A7 § 194 167 SECTION SIGN
U+00A8 ¨ 194 168 DIAERESIS
U+00A9 © 194 169 COPYRIGHT SIGN
U+00AA ª 194 170 FEMININE ORDINAL INDICATOR
U+00AB « 194 171 LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
U+00AC ¬ 194 172 NOT SIGN
U+00AD 194 173 SOFT HYPHEN
U+00AE ® 194 174 REGISTERED SIGN
U+00AF ¯ 194 175 MACRON
U+00B0 ° 194 176 DEGREE SIGN
U+00B1 ± 194 177 PLUS-MINUS SIGN
U+00B2 ² 194 178 SUPERSCRIPT TWO
U+00B3 ³ 194 179 SUPERSCRIPT THREE
U+00B4 ´ 194 180 ACUTE ACCENT
U+00B5 µ 194 181 MICRO SIGN
U+00B6 ¶ 194 182 PILCROW SIGN
U+00B7 · 194 183 MIDDLE DOT
U+00B8 ¸ 194 184 CEDILLA
U+00B9 ¹ 194 185 SUPERSCRIPT ONE
U+00BA º 194 186 MASCULINE ORDINAL INDICATOR
U+00BB » 194 187 RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
U+00BC ¼ 194 188 VULGAR FRACTION ONE QUARTER
U+00BD ½ 194 189 VULGAR FRACTION ONE HALF
U+00BE ¾ 194 190 VULGAR FRACTION THREE QUARTERS
U+00BF ¿ 194 191 INVERTED QUESTION MARK
U+00C0 À 195 128 LATIN CAPITAL LETTER A WITH GRAVE
U+00C1 Á 195 129 LATIN CAPITAL LETTER A WITH ACUTE
U+00C2 Â 195 130 LATIN CAPITAL LETTER A WITH CIRCUMFLEX
U+00C3 Ã 195 131 LATIN CAPITAL LETTER A WITH TILDE
U+00C4 Ä 195 132 LATIN CAPITAL LETTER A WITH DIAERESIS
U+00C5 Å 195 133 LATIN CAPITAL LETTER A WITH RING ABOVE
U+00C6 Æ 195 134 LATIN CAPITAL LETTER AE
U+00C7 Ç 195 135 LATIN CAPITAL LETTER C WITH CEDILLA
U+00C8 È 195 136 LATIN CAPITAL LETTER E WITH GRAVE
U+00C9 É 195 137 LATIN CAPITAL LETTER E WITH ACUTE
U+00CA Ê 195 138 LATIN CAPITAL LETTER E WITH CIRCUMFLEX
U+00CB Ë 195 139 LATIN CAPITAL LETTER E WITH DIAERESIS
U+00CC Ì 195 140 LATIN CAPITAL LETTER I WITH GRAVE
U+00CD Í 195 141 LATIN CAPITAL LETTER I WITH ACUTE
U+00CE Î 195 142 LATIN CAPITAL LETTER I WITH CIRCUMFLEX
U+00CF Ï 195 143 LATIN CAPITAL LETTER I WITH DIAERESIS
U+00D0 Ð 195 144 LATIN CAPITAL LETTER ETH
U+00D1 Ñ 195 145 LATIN CAPITAL LETTER N WITH TILDE
U+00D2 Ò 195 146 LATIN CAPITAL LETTER O WITH GRAVE
U+00D3 Ó 195 147 LATIN CAPITAL LETTER O WITH ACUTE

86

U+00D4 Ô 195 148 LATIN CAPITAL LETTER O WITH CIRCUMFLEX
U+00D5 Õ 195 149 LATIN CAPITAL LETTER O WITH TILDE
U+00D6 Ö 195 150 LATIN CAPITAL LETTER O WITH DIAERESIS
U+00D7 × 195 151 MULTIPLICATION SIGN
U+00D8 Ø 195 152 LATIN CAPITAL LETTER O WITH STROKE
U+00D9 Ù 195 153 LATIN CAPITAL LETTER U WITH GRAVE
U+00DA Ú 195 154 LATIN CAPITAL LETTER U WITH ACUTE
U+00DB Û 195 155 LATIN CAPITAL LETTER U WITH CIRCUMFLEX
U+00DC Ü 195 156 LATIN CAPITAL LETTER U WITH DIAERESIS
U+00DD Ý 195 157 LATIN CAPITAL LETTER Y WITH ACUTE
U+00DE Þ 195 158 LATIN CAPITAL LETTER THORN
U+00DF ß 195 159 LATIN SMALL LETTER SHARP S
U+00E0 à 195 160 LATIN SMALL LETTER A WITH GRAVE
U+00E1 á 195 161 LATIN SMALL LETTER A WITH ACUTE
U+00E2 â 195 162 LATIN SMALL LETTER A WITH CIRCUMFLEX
U+00E3 ã 195 163 LATIN SMALL LETTER A WITH TILDE
U+00E4 ä 195 164 LATIN SMALL LETTER A WITH DIAERESIS
U+00E5 å 195 165 LATIN SMALL LETTER A WITH RING ABOVE
U+00E6 æ 195 166 LATIN SMALL LETTER AE
U+00E7 ç 195 167 LATIN SMALL LETTER C WITH CEDILLA
U+00E8 è 195 168 LATIN SMALL LETTER E WITH GRAVE
U+00E9 é 195 169 LATIN SMALL LETTER E WITH ACUTE
U+00EA ê 195 170 LATIN SMALL LETTER E WITH CIRCUMFLEX
U+00EB ë 195 171 LATIN SMALL LETTER E WITH DIAERESIS
U+00EC ì 195 172 LATIN SMALL LETTER I WITH GRAVE
U+00ED í 195 173 LATIN SMALL LETTER I WITH ACUTE
U+00EE î 195 174 LATIN SMALL LETTER I WITH CIRCUMFLEX
U+00EF ï 195 175 LATIN SMALL LETTER I WITH DIAERESIS
U+00F0 ð 195 176 LATIN SMALL LETTER ETH
U+00F1 ñ 195 177 LATIN SMALL LETTER N WITH TILDE
U+00F2 ò 195 178 LATIN SMALL LETTER O WITH GRAVE
U+00F3 ó 195 179 LATIN SMALL LETTER O WITH ACUTE
U+00F4 ô 195 180 LATIN SMALL LETTER O WITH CIRCUMFLEX
U+00F5 õ 195 181 LATIN SMALL LETTER O WITH TILDE
U+00F6 ö 195 182 LATIN SMALL LETTER O WITH DIAERESIS
U+00F7 ÷ 195 183 DIVISION SIGN
U+00F8 ø 195 184 LATIN SMALL LETTER O WITH STROKE
U+00F9 ù 195 185 LATIN SMALL LETTER U WITH GRAVE
U+00FA ú 195 186 LATIN SMALL LETTER U WITH ACUTE
U+00FB û 195 187 LATIN SMALL LETTER U WITH CIRCUMFLEX
U+00FC ü 195 188 LATIN SMALL LETTER U WITH DIAERESIS
U+00FD ý 195 189 LATIN SMALL LETTER Y WITH ACUTE
U+00FE þ 195 190 LATIN SMALL LETTER THORN
U+00FF ÿ 195 191 LATIN SMALL LETTER Y WITH DIAERESIS

