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Abstract

In this dissertation, we present CensNet, Convolution with Edge-Node Switching

graph neural network, for semi-supervised classification and regression in graph-

structured data with both node and edge features. CensNet is a general graph

embedding framework, which embeds both nodes and edges to a latent feature

space. By using line graph of the original undirected graph, the role of nodes

and edges are switched, and two novel graph convolution operations are proposed

for feature propagation. Experimental results on real-world academic citation

networks and quantum chemistry graphs show that our approach has achieved or

matched the state-of-the-art performance.

Index words: Deep learning, Statistical graph analysis, Relational learning,
Semi-supervised learning



Graph Convolutional Neural Networks with

Edge-Node Switching

by

Xiaodong Jiang

B.S., Beijing University of Technology, 2014

M.S., University of Georgia, 2016

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2019



c©2019

Xiaodong Jiang

All Rights Reserved



Graph Convolutional Neural Networks with

Edge-Node Switching

by

Xiaodong Jiang

Approved:

Major Professor: Sheng Li

Committee: Pengsheng Ji
Jaewoo Lee

Electronic Version Approved:

Suzanne Barbour
Dean of the Graduate School
The University of Georgia
May 2019



Graph Convolutional Neural Networks

with Edge-Node Switching

Xiaodong Jiang

May 2019



For Mom and Dad

v



Acknowledgments

I would like to thank my major advisor, Dr. Sheng Li, for his continuous, self-

less, and endless help, support, and guidance, this dissertation cannot be finished

without him. Dr. Li introduced me to the field of deep learning, and he always

encourages me when I get lost, confused, and uninspired in my research. He is my

role model researcher in the filed of computer science - knowledgeable, determined,

passionate, and hard working. I would also thank my committee members, Dr.

Pengsheng Ji and Dr. Jaewoo Lee, for the participation and valuable discussions

for this topic.

There is never an easy path that leads to the destination. I would like to

thanks my parents for their love, encouragement, support, and providing me the

best education in my life, without whom I will never enjoy so many opportunities.

Finally, I want to thank my wife, Xuan Zhang, who gives me the best time in

my life. Without her accompany, I will never achieve so many goals in my life.

vi



Contents

Acknowledgments vi

List of Figures ix

List of Tables x

1 Introduction 1

2 Preliminaries 6

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Graph Convolution and Embedding . . . . . . . . . . . . . . . . . . 7

3 Methodology 10

3.1 Propagation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Task-Dependent Loss Functions . . . . . . . . . . . . . . . . . . . . 13

3.3 Training Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Experiments 16

4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



4.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusion 24

Bibliography 25

viii



List of Figures

1.1 Illustrative depiction of Convolution with Edge-Node Switching (Cen-

sNet). The upper (orange color) components are convolution oper-

ations on node adjacency matrix and node features, while the lower

(green color) components are the corresponding line graph convolu-

tion. Two types of layers as a combo, (1). Node Layer, update the

node embedding with node and edge embedding from the previous

layer, and (2). Edge Layer, update the edge embedding with the

edge and node embedded features from the preceding layer. . . . . . 5

4.1 AUC/RMSE in validation set for Tox21/Lipophilicity. The name of

each curve is formed with algorithm name and label ratio in training

set. For example, CensNet90 means the CensNet algorithm with

90% data in training set. . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



List of Tables

4.1 Experimental results on Tox21 and Lipophilicity data sets. . . . . . 21

4.2 Node classification accuracy (in percent) on three citation graph

data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

x



Chapter 1

Introduction

Deep learning models like convolutional neural networks (CNN) have been remark-

ably successful in many domains LeCun et al. [2015], including computer vision,

natural language processing, signal processing, etc. In particular, CNN and its

variants are capable of extracting multi-scale localized spatial features and pro-

ducing highly expressive representations Krizhevsky et al. [2012]; He et al. [2016].

Instead of using sophisticated feature engineering procedures that heavily rely on

domain expertise, CNN based models are usually trained in an end-to-end fashion,

and they can model the high-order interactions among input features for specific

tasks. The convolution operations in CNN are well defined on data with under-

lying Euclidean structures (e.g., images and speech), but they cannot be directly

generalized to non-Euclidean data such as graphs and manifolds Bronstein et al.

[2017].

Graph-structured data is ubiquitous, from social network platforms to cita-
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tion and co-authorship relations, from protein-protein interactions to chemical

molecules. Graph, as a complex data structure, is very effective in describing the

relationships (edges) of objects (nodes). Due to the expressive power and flexibility

of graph-structured data, graph neural networks (GNN) have attracted increas-

ing attention in recent years, which try to adapt the effective deep representation

learning approaches from Euclidean to non-Eculidean domains Zhou et al. [2018].

The earliest GNN method might be traced back to the work in Scarselli et al.

[2009], which extends the general neural networks to graph domain. Along this

research direction, many other GNN models have been proposed recently, such as

the ChebNet Defferrard et al. [2016b], graph convolutional networks (GCN) Kipf

and Welling [2017], GraphSAGE Hamilton et al. [2017], Lanczosnet Liao et al.

[2019], etc. By leveraging the node adjacency matrix, these GNN models analo-

gously define convolution operators on graphs in either spectral or spatial spaces

and have obtained promising performance in tasks like node classification Zhou

et al. [2018]. With a few notable exceptions Monti et al. [2017]; Velikovi et al.

[2018]; Schlichtkrull et al. [2018], GNN methods mainly focus on obtaining effec-

tive node embeddings, but ignore the information associated with edges that can

be beneficial to many tasks such as node or edge classification, link prediction,

community detection, and regression.

In this paper, we aim to learn both node embeddings and edge embeddings for

graphs. Graphs in reality usually contain both node and edge features. In social

networks, the node features could be demographic information or user behaviors,

while the edge features might be the type of relationships or the years of friendship.
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In citation networks, the node features could be document-level embeddings of

papers, and the edge features might indicate the common keywords or co-authors

of two articles. In chemistry domain, each compound can be considered as a

graph, where atoms are nodes, and properties of chemical bonds are edge features.

We justify the motivation of jointly learning node and edge embeddings from

the following two aspects. First, it is clear that edge and nodes always provide

complementary feature information, which will be helpful for graph embedding.

Second, learning edge embeddings is essential for edge-relevant tasks, such as edge

classification and regression.

Inspired by the Line Graph in graph theory Harary and Norman [1960], we pro-

pose a novel convolution with edge-node switching network (CensNet) for learning

node and edge embeddings. Let G denote the node adjacency matrix of a graph,

its line graph L(G) can be constructed to represent the adjacencies between edges

of G. In our framework, the role of node and edge can be switched, and CensNet

conducts the graph convolution operations on both the input graph G and its line

graph counterpart. With the help of node and edge features, CensNet employs

two forward-pass feature propagation rules on G and L(G) to alternatively update

the node and edge embeddings. Also, a mini-batch training algorithm for CensNet

is devised to handle large-scale graphs.

The main contributions of this work are summarized below.

• Co-embedding of nodes and edges. The proposed CensNet is a gen-

eral graph embedding framework which can embed both nodes and edges

to a latent feature space simultaneously, with the help of graph structure
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and node/edge features. Moreover, the node and edge embeddings can be

mutually enriched owing to the alternative update rules.

• Convolution on line graph. We design convolution operations on both

the input graph and its line graph counterpart, where the role of node and

edge are switched.

• Diverse learning tasks on graphs. We apply CensNet to several graph-

based learning tasks, including multi-task graph classification, graph regres-

sion, and semi-supervised node classification.

• Extensive evaluations on benchmark data sets. The extensive experi-

ments on citation networks (Cora, Citeseer Sen et al. [2008], and PubMed Na-

mata et al. [2012]) and Quantum Chemistry data sets (Tox21 and Lipophilic-

ity Wu et al. [2018]) show that our method has achieved or matched state-

of-the-art performance.
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Figure 1.1: Illustrative depiction of Convolution with Edge-Node Switching (Cen-
sNet). The upper (orange color) components are convolution operations on node
adjacency matrix and node features, while the lower (green color) components are
the corresponding line graph convolution. Two types of layers as a combo, (1).
Node Layer, update the node embedding with node and edge embedding from the
previous layer, and (2). Edge Layer, update the edge embedding with the edge
and node embedded features from the preceding layer.
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Chapter 2

Preliminaries

2.1 Notations

We present the mathematical notations for a graph with node and edge features

in the following numbered list.

• We assume an undirected graph G = {V,E} with node set V and edge set

E, and Nv = |V | and Ne = |E| denote the number of nodes and edges,

respectively.

• Let Av ∈ RNv×Nv be the adjacency matrix of G, where each element Av(i, j)

denotes the connectivity of node i and node j, where i, j ∈ {1, 2, ..., Nv}. Av

is a binary matrix in unweighted graph.

• Let X ∈ RNv×dv be the node feature matrix, where each node is associated

with a dv-dimensional feature vector.
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• Let Ae ∈ RNe×Ne be the binary edge adjacency matrix of G, or node adja-

cency matrix of L(G). Ae(m,n) equals to 1 if the edge m and edge n are

connected by a node in G, otherwise 0, where m,n ∈ {1, 2, ..., Ne}.

• Let Z ∈ RNe×de denote the edge feature matrix, where each edge has a

de-dimensional feature vector.

• Let H
(l)
v be the l-th hidden layer of node convolution with H

(0)
v = X; Define

H
(l)
e as the l-the layer of edge convolution, and H

(0)
e = Z.

We will also introduce other notations in the rest of the paper when necessary.

2.2 Graph Convolution and Embedding

Given a graph G and its corresponding node feature matrix X, there are two major

graph convolutions in literature, spectral convolution in the Fourier domain and

spatial convolution in the node (or vertex) domain. We discard the subscripts of

our notations for a moment, assuming X is the node feature matrix, and A is the

node adjacency matrix.

Spectral graph convolution. A spectral graph convolution is defined as the

multiplication of a signal with a filter in the Fourier domain of the graph. The

graph Fourier transform Y is defined as the multiplication of a graph signal (e.g.,

node features X) with the eigenvector matrix U of the graph Laplacian L, i.e., Y =

UTX and UΣUT = L. The graph Laplacian L can be defined in different ways:

the simple Laplacian D−A, the symmetric normalized Laplacian I −D− 1
2AD−

1
2 ,
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or the random walk Laplacian I − D−1A, where I is an identity matrix and D

is the diagonal degree matrix. The symmetric normalized Laplacian is usually

desirable due to the nice properties including symmetric, positive-semidefine, and

all eigenvalues are in [0, 2]. The ChebyNet Defferrard et al. [2016b] and GCN Kipf

and Welling [2017] are based on spectral graph convolutions. The GCN proposes

a layer-wise propagation rule based on an approximated graph spectral kernel as

follows

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l))

where Ã = A + I is the adjacency matrix with self-connections, D̃ is the degree

matrix, H(l) and W (l) are the hidden feature matrix and learnable weight in the

l-th layer.

Spatial graph convolution. A spatial graph convolution is defined on the

node domain, which can integrate or aggregate the signals among its neighbor

nodes. MoNet Wu et al. [2018] and GraphSAGE Hamilton et al. [2017] are aggre-

gation based representation learning models in this direction.

Node and Edge Embeddings. There have only been a few scattered ex-

amples that can link both node and edge features in a graph convolution simul-

taneously, which can be categorized as two approaches. The first one is to define

different weight matrices for each relation or dimension on the edge features and

aggregate different relation propagation in an additive fashion. Schlichtkrull et al.
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[2018] used the following rule for the forward-pass update

hl+1
i = σ(

∑
r∈R

∑
j∈N r

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i )

where each relation r ∈ R has its corresponding weight matrix Wr. Such a sim-

ple aggregation enjoys the efficiency in computation but cannot capture the de-

pendence of different relations and the interaction between the node and edge

features. The second approach is to add the attention mechanism to graph con-

volutions by specifying different weights to different nodes in a neighborhood.

MonNet Monti et al. [2017] and GAT Velikovi et al. [2018] are examples along this

line. More importantly, both of these two approaches can only handle discrete or

low-dimensional edge features.

Different from existing graph convolution and embedding methods, the pro-

posed CensNet framework is independent of the choice of graph convolution, al-

though we only implement one representative spectral-based method Kipf and

Welling [2017] in this paper. Moreover, the co-embedding of nodes and edges in

CensNet is inspired by line graph and driven by mutually-enriched feature propa-

gation rules, which can handle high-dimensional discrete or continuous node/edge

features.
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Chapter 3

Methodology

The CensNet framework consists of two types of layers, node layer and edge layer.

Figure 1.1 shows the CensNet architecture for semi-supervised node classification.

The input layer comprises of a node adjacency matrix and the corresponding node

features, as well as its line graph counterpart - the edge adjacency matrix and

edge features. The three colored edges (i.e., z1, z2 and z3) in the sample graph

are converted to three line graph nodes (squared shape). We define an CensNet

combo as two types of layers, node layer and edge layer. In the node layer, all

input data are processed to update the node embedding, while keeping the line

graph (edge adjacency matrix and edge features) flow forward without any change.

In the edge layer, we combine the updated node embedding with the line graph to

update the edge embedding. Depending on the specific task and the availability

of labels, CensNet adopts different types of activation functions for the node or

edge embedding matrices. For example, in the graph node semi-classification task
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(e.g., paper classification in citation networks), we have the label for each node,

and thus we can use the sigmoid function for the node embedding matrix in the

final layer. For the graph classification or regression task (e.g., the molecular

property prediction), we may apply an average pooling layer to reshape the node

embeddings and obtain graph-level embeddings.

We should note, the CensNet framework is a high-level abstract of the inter-

active graph embedding with both nodes and edges. One does not necessarily use

the approximated spectral graph kernel for the convolution. Other new techniques

such as the kernels in Lanczos Network Liao et al. [2019] can also be applied to

our framework.

3.1 Propagation Rules

The CensNet uses approximated spectral graph convolution in the layer-wise prop-

agation. We define the normalized (Laplacianized) node adjacency matrix with

self-loop as

Ãv = D
− 1

2
v (Av + INv)D

− 1
2

v (3.1)

where Dv is the diagonal degree matrix of Av + INv , and I is an identity matrix.

Propagation rule for node layer. The layer-wise propagation rule for node

feature in the (l + 1)-th layer is defined as

H(l+1)
v = σ(TΦ(H(l)

e Pe)T
T � ÃvH

(l)
v Wv) (3.2)
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where the matrix T ∈ RNv×Ne is a binary transformation matrix and Ti,m represents

whether edge m connects node i. Given the fact that each edge is formed by two

nodes, each column of matrix T has two elements being 1 and all others are 0. Pe is

a de-dimensional vector, defined as the learnable weights for edge feature vectors.

Φ denotes the diagonalization operation, which places a one dimensional vector to

the diagonals of a square matrix. � denotes the Hadamard product or element-

wise product. Another view of this rule is to map corresponding element from

TΦ(H
(l)
e Pe)T

T to the normalized node adjacency matrix, and the TΦ(H
(l)
e Pe)T

T �

Ãv is a fused node adjacency matrix by using information from the line graph

counterpart. The line graph brings zero impact if there is no physical edge, and

thus we maintain the sparsity of the original graph, bringing significant computing

benefits.

Another notable and interesting character of CensNet is that it degrades to

the regular GCN when the edge feature is a scalar 1. In this case, the first com-

ponent in Equation (3.2) (i.e., TΦ(H
(l)
e Pe)T

T ) reduces to an identity matrix and

the remaining part ÃvH
(l)
v Wv is exactly the propagation rule defined in Kipf and

Welling [2017].

Propagation rule for edge layer. Similarly, the normalized (Laplacian-

ized) edge adjacency matrix is defined as

Ãe = D
− 1

2
e (Ae + INe)D

− 1
2

e , (3.3)

where De is the degree matrix of Av + INv .
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Furthermore, we define the propagation rule for edge features as follows

H(l+1)
e = σ(T TΦ(H(l)

v Pv)T � AeH
(l)
e We). (3.4)

The T matrix is same as Equation (3.2), while Pv represents the learnable weight

for the nodes. As a return, the node feature and adjacency matrix are used to

improve the edge embedding. These two components bridge signals on nodes and

edges, and the node and edge embeddings are updated alternatively.

3.2 Task-Dependent Loss Functions

The designs of the output layer, as well as the loss function, are task dependent.

For node or edge classification tasks, we may apply the sigmoid function to the

final hidden node or edge layers; for the graph classification task, we need an

extra pooling operation that maps the node-level embeddings to a graph-level

representation. For example, we take the average prediction of the atoms in a

molecule as the graph-level output. The graph-level max pooling might not be

appropriate from a practical point of view; a learnable parameter (weight) for

each node is also not acceptable because of the tendency to overfitting.

For the semi-supervised node classification task, the loss function is defined as

L(Θ) = −
∑
l∈YL

F∑
f=1

Ylf logMlf (3.5)

where YL is a set of nodes with labels, and M is the softmax results of the output
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from the last node layer, assuming the final node feature map has F dimensions.

The Θ = (Wv,We, Pv, Pe) is the parameter set. For multi-task graph classification,

we may sum up the cross entropy from each target.

For regression task where the response is a continuous variable, we define the

following loss function by using the lp regularized mean square error (MSE)

L(Θ) =
∑
l∈YL

F∑
f=1

||Ylf − Ŷlf ||22 + λ||Θ||p (3.6)

where Ŷ is the predicted outcome from the last node hidden layer. The regularized

term is used to control the model complexity and avoid overfitting.

3.3 Training Algorithms

We show our algorithm for semi-supervised node classification in Algorithm 1,

which uses the layer-wise propagation rules defined in Equations (3.2) and (3.4).

Optimization algorithms, such as Adam or SGD, are employed to deal with the

cross-entropy loss function. When the input data cannot fit into the GPU memory,

a mini-batch strategy is usually preferred Kingma and Ba [2014]. Thus, we also

design a mini-batch training algorithm for large graphs in Algorithm 2 for the node

classification task with few labeled nodes. The key idea is to sample the nodes

from training, validation, and test set proportionally, to construct the batches. Our

empirical results show that such a training strategy could match the performance

of training with the entire graph.
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Algorithm 1 CensNet for Node Classification

1: Input: Node adjacency matrix Av

node feature matrix X
node label Y
edge feature matrix Z
nonlinearity σ

2: Build transformation matrix T and edge adjacency matrix Ae

3: Run Adam to minimize L

Wv,We, Pv, Pe := arg min
Wv ,We,Pv ,Pe

L

4: Output: softmax(Hv)

Algorithm 2 Mini-batch CensNet

1: for each epoch do
2: Construct batches to make each batch containing subgraph G′ ∈ G and the

nodes in G′ are proportionally selected from training, validation, and testing
sets.

3: for each batch do
4: Run Algorithm 1
5: end for
6: end for

15



Chapter 4

Experiments

We evaluate the proposed CensNet method for three tasks on five benchmark data

sets.

4.0.1 Data Description and Preprocessing

Tox21. The Toxicology in the 21st Century (Tox21, Wu et al. [2018]) initiative

created a public database measuring toxicity of compounds, which has been used

in the 2014 Tox21 Data Challenge. This dataset contains quantitative toxicity

measurements for 7,831 environmental compounds and drugs. A compound struc-

ture (in SMILE format) is usually expressed as a graph with atoms as nodes and

bonds being edges. There are 55 bond features, and each atom has 25 features.

Each compound is associated with 12 binary labels that represent the outcome

(active/inactive) of 12 different toxicological experiments. There are about 20%

missing values in these labels, and we exclude those observations when computing
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the loss but still keep them in the training process.

Lipophilicity. The Lipophilicity is an important feature of drug molecules

that affects both membrane permeability and solubility Wu et al. [2018]. This

dataset provides experimental results of octanol/water distribution coefficient (logD

at pH 7.4) of 4,200 compounds. There are 34 features on the edge (bond) and 25

features on the node (atom), while the response is one single continuous variable.

We follow the preprocessing steps in Wu et al. [2018] to convert each compound

in Tox21 and Lipophilicity to a small graph, and remove the compounds whose

SMILE representation cannot be converted to a graph structure. We then ran-

domly split the dataset to different partitions as training, validation and test sets,

respectively. We consider 4 data splitting settings, by keeping 60%, 70%, 80%,

and 90% of the molecule graphs as training set, while equally breaking the rest of

the data sets as validation and test sets.

Cora, Citeseer, and PubMed. These three data sets are benchmarks for

the semi-supervised node classification task, which has been analyzed by many

graph convolutional network models such as the ones in Defferrard et al. [2016b];

Kipf and Welling [2017]; Hamilton et al. [2017]; Velikovi et al. [2018]; Liao et al.

[2019]. Cora has 2,708 nodes (papers) and 5,429 edges (citation links), and each

node has 1,433 tf-idf features. The papers are classified to 7 different research

areas thus the response has seven different values. Citeseer has 3,327 nodes and

4,732 edges with 3,703 node features; the papers are grouped into 6 research fields.

PubMed contains 19,717 nodes and 44,338 edges, each node has 500 features and

the papers are in 3 categories. Please remark that these citation graphs are not
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naturally good benchmarks for CensNet because there is no available edge feature.

However, we still run our algorithm with effortless hand-crafted edge features to

show the competitive performance of CensNet. Examples of such edge features

could be the pairwise node feature correlations or cosine similarities.

For three citation graphs, we create two simple edge features: (1) the pairwise

cosine similarities between corresponding node features, and (2) a 2-dimensional

vector to represent the edge directions. If paper A cites paper B then the vector

is [1, 0], otherwise [0, 1]. We follow the splitting strategy in Liao et al. [2019] and

implement the experiments for different label rate. We evaluate our method and

baselines with 3%, 1% and 0.5% labeled data in training set on Cora, 1%, 0.5%

and 0.3% on Citeseer, and 0.1%, 0.05% and 0.03% on PubMed. For all three data

sets, we random select 50% for validation and the rest for testing.

4.1 Experimental Settings

Three tasks are implemented in our experiments.

Multi-task graph classification. We evaluate the performance of CensNet

on the Tox21 dataset under 4 data splitting scenarios. Wu et al. [2018] presented

a comprehensive model comparisons for the Tox21 data, and the state-of-the-art

method is GCN Kipf and Welling [2017]. We implemented the minibatch GCN,

and other two classical classification algorithms, logistic regression and random

forest, as three baselines. We report the area under the ROC curve (AUC) metric

in both validation and test data sets for all compared methods.
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Graph regression. The regression task is similar to graph classification but

using different loss function and performance metric. We use the same data split-

ting strategies as in Tox21. The baseline algorithms are GCN, linear regression,

and random forest regression. We also report the root mean square error (RMSE)

in both validation and test sets.

Semi-supervised node classification. This is a classical task in graph learn-

ing and statistical learning communities, and the most widely used benchmark data

sets are three citation networks, Cora, Citeseer and PubMed. We adopt a few-shot

learning strategy, i.e., only keep a small number of labeled data in training set while

splitting the rest of the data for validation and test. We compare CensNet with

seven representative graph convolution networks when using different percentages

of labeled data. The seven baselines include ChebyNet Defferrard et al. [2016a],

GCN Kipf and Welling [2017], GraphSAGE Hamilton et al. [2017], GAT Velikovi

et al. [2018], LNet and AdaLet Liao et al. [2019]. To the best of our knowledge,

LNet and AdaLet are the state-of-the-art methods for this task Liao et al. [2019],

and we will present a comprehensive comparison between these two methods and

the proposed CensNet.

All experiments are conducted on an Azure Linux VM (CPU: Intel(R) Xeon(R)

CPU E5-2690 v3, GPU: NVIDIA Tesla K80). We implemented all graph convolu-

tion network algorithms in PyTorch Paszke et al. [2017] v1.0.0. For other classical

algorithms (random forest, linear regression, logistic regression), we used the imple-

mentations in the Python package Scikit-learn Pedregosa et al. [2011]. For graph

convolution models, we didn’t implement any sophisticated fine-tuning strategies
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but tried different settings of learning rate from {0.01, 0.005, 0.001, 0.0005}, batch

size {16, 32, 64, 128, 256}, number of epochs {200, 300, 500, 1000}, etc. We report

the best-performed results for each algorithm. For tree-based methods, we use

cross-validation to tune the parameters; for linear and logistic regression models,

we run the algorithms without using variable selection.

4.2 Results and Discussions

Multi-task graph classification. Table 4.1 shows the AUC values on the vali-

dation and test sets, with four different training label rates. We replicate all ex-

periments three times and report the mean and standard deviation of AUC values.

The CensNet algorithm maintains significant advantages over all other methods

in all settings, while both GCN and CensNet perform better than the other two

traditional methods. The logistic regression and random forest models can hardly

capture the association between signals and response, even with increased train-

ing sets. Figure 4.1(a) shows the changes in validation AUC in 200 epochs. The

GCN’s curve becomes flat within 20 epochs while the CensNet can continuously

improve. Also, the CensNet with fewer training set can beat the GCN with more

training data, uniformly and consistently.

Graph regression. Compared with three baseline methods, our CensNet

has achieved the best performance in both validation and test sets under four

training settings. For a fair comparison, we replicate all experiments three times

and report the mean RMSE with standard errors. The following conclusions can be
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summarized from Table 4.1: (1). all these 4 algorithms achieve better performance

with larger training sets, while random forest and logistic regression only obtain

limited performance lift. (2). both GCN and CensNet have large positive margins

over traditional methods, indicating that the graph structure is not neglectable

in the molecule regression task. (3). CensNet improves the performance of GCN

by 5% - 15% in RMSE, which implies that considering the edge features in the

molecule can improve the quality of node embedding, as a consequence, bring

significant benefits to the learning process. Figure 4.1(b) shows that the CensNet

gains leading positions after around 50-75 epochs, while GCN’s curves still keep

flat.

Train Data Tox21 (AUC) Lipophilicity (RMSE)
PCT Split RF Logistic GCN CensNet RF LR GCN CensNet

60%
Val. 0.69±0.01 0.69±0.01 0.72±0.00 0.76±0.00 1.19±0.01 1.46±0.37 1.04±0.01 0.94±0.01
Test 0.71±0.01 0.71±0.01 0.73±0.00 0.77±0.00 1.16± 0.02 1.17 ±0.03 1.06±0.00 0.97±0.01

70%
Val. 0.70 ± 0.01 0.70±0.01 0.73±0.00 0.76±0.00 1.18±0.02 1.19±0.01 1.02±0.01 0.92 ±0.01
Test 0.70 ± 0.01 0.71±0.01 0.74±0.00 0.77±0.00 1.16±0.02 1.17±0.04 1.05 ±0.01 0.95±0.01

80%
Val. 0.71±0.01 0.71±0.01 0.72±0.00 0.76±0.00 1.17±0.02 1.16±0.02 1.05±0.01 0.96±0.01
Test 0.71±0.01 0.71±0.01 0.75±0.00 0.78±0.00 1.16±0.01 1.15±0.01 1.05±0.01 0.93±0.01

90%
Val. 0.71±0.02 0.71±0.01 0.74±0.00 0.78±0.01 1.18±0.02 1.18±0.03 1.08±0.00 0.94±0.02
Test 0.71±0.02 0.71±0.02 0.75±0.00 0.79±0.01 1.13±0.03 1.13±0.03 0.97±0.00 0.83±0.02

Table 4.1: Experimental results on Tox21 and Lipophilicity data sets.

Semi-supervised node classification. We follow the same experimental

settings in Liao et al. [2019] and re-use the benchmark results as our baselines.

For all the experiments, we observed significant overfitting with low label rates for

all graph convolution networks. We highlight the best-performed method (with

the highest accuracy in the test set) in each setting for all three data sets. Our

CensNet method obtains the best accuracy in 4 out of 9 experiments, which is

followed by LNet and AdaLNet - the state-of-the-art algorithms for this task. One
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Data TrainPCT ChebyNet GCN GraphSAGE GAT LNet AdaLNet CensNet (Ours)

Cora
3% 62.1±6.7 74.0±2.8 64.2±4.0 56.8±7.9 76.3±2.3 77.7±2.4 79.4±1.0
1% 44.2±5.6 61.0±7.2 49.0±5.8 48.6±8.0 66.1±8.2 67.5±8.7 67.1±1.3

0.5% 33.9±5.0 52.9±7.4 37.5±5.4 41.4±6.9 58.1±8.2 60.8±9.0 57.7±3.9

Citeseer
1% 59.4±5.4 58.3±4.0 51.0±5.7 46.5±9.3 61.3±3.9 63.3±1.8 62.5±1.5

0.5% 45.3±6.6 47.7±4.4 33.8±7.0 38.2±7.1 53.2±4.0 53.8±4.7 57.6±3.0
0.3% 39.3±4.9 39.2±6.3 25.7±6.1 30.9±6.9 44.4±4.5 46.7±5.6 49.4±3.6

PubMed
0.1% 55.2±6.8 73.0±5.5 65.4±6.2 59.6±9.5 73.4±5.1 72.8±4.6 69.9±2.1
0.05% 48.2±7.4 64.6±7.5 53.0±8.0 50.4±9.7 68.8±5.6 66.0±4.5 65.7±1.2
0.03% 45.3±4.5 57.9±8.1 45.4±5.5 50.9±8.8 60.4±8.6 61.0±8.7 61.4±2.8

Table 4.2: Node classification accuracy (in percent) on three citation graph data
sets.

may believe that adding edge information to the algorithm is not a fair comparison

to the benchmarks; however, our newly created edge features are all from the

benchmark data; thus no extra signal is introduced. The classical GCN Kipf and

Welling [2017] also achieves competitive results in most scenarios, which coincides

the conclusion from the extensive experiments in Shchur et al. [2018].
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Figure 4.1: AUC/RMSE in validation set for Tox21/Lipophilicity. The name of
each curve is formed with algorithm name and label ratio in training set. For
example, CensNet90 means the CensNet algorithm with 90% data in training set.
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Chapter 5

Conclusion

Graph convolution models open up an exciting area of deep learning in non-

Euclidean space. Our newly proposed CensNet framework established a novel

approach to learn the node and edge feature embeddings simultaneously. The ex-

tensive experiments on five benchmark data sets show that the proposed CensNet

algorithm can achieve the state-of-art performance in three major graph learning

tasks. We are currently exploring other graph kernels and more efficient training

algorithms to scale up the deep graph learning to larger and more complex data

sets.
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