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Abstract

Subgraph pattern matching is a fundamental operation for many applications, and it is

exhaustively studied in its classical forms. Nevertheless, there are newly emerging appli-

cations, like analyzing hyperlinks of the web graph and analyzing associations in a social

network, that need to process massive graphs in a timely manner. Regarding the extremely

large size of these graphs and knowledge they represent, not only new computing platforms

are needed, but also old models and algorithms should be revised. In recent years, a few

pattern matching models have been introduced that can promise a new avenue for pattern

matching research on extremely massive graphs. In this research, we study a family of sub-

graph pattern matching models called graph simulation, and propose two new models, called

strict and tight simulation, to increase their efficiency while preserving the quality of their

results. Moreover, we propose a new set of conditions, namely cardinality restriction, that

can improve the expressiveness of most models in this family.

Several graph processing frameworks like Pregel have recently sought to harness shared

nothing clusters for processing massive graphs through a vertex-centric, Bulk Synchronous

Parallel (BSP) programming model. However, developing scalable and efficient BSP-based

algorithms for pattern matching is very challenging on these frameworks because this prob-



lem does not naturally align with a vertex-centric programming paradigm. We design and

implement novel distributed algorithms based on the vertex-centric programming paradigm

for efficient subgraph pattern matching. Our algorithms are fine tuned to consider the chal-

lenges of pattern matching on massive data graphs. Furthermore, we present an extensive

set of experiments involving massive graphs (millions of vertices and billions of edges) to

study the effects of various parameters on the scalability and performance of the proposed

algorithms.

Regarding the fact that pattern matching can be considered as an important type of

queries for a graph database- either centralized or distributed- we study the problem of

pattern containment and caching techniques specified for subgraph pattern matching. The

proposed caching technique works based on the tight simulation model. Nevertheless, it is

also possible to use it for subgraph isomorphic queries. We identify the main challenges of

such a system, and our experiments show the effectiveness of the proposed solutions.

Index words: Query graphs, Distributed algorithms, Graph simulation, Subgraph
pattern matching, Catching techniques, Big data
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Chapter 1

Introduction

Graphs are fundamental to representing and analyzing relationships in many diverse do-

mains. Although graph storage, querying and mining have been extensively studied over

the past several decades, massive scales of modern application domains such as social net-

works, genomics and the World Wide Web have reignited interest in highly scalable graph

processing platforms and algorithms [17, 55, 67].

Graph pattern matching forms a uniquely important class of graph queries. In simple

words, the purpose of graph matching is finding correspondence between vertices and edges

of two graphs. A broad set of related problems are studied under the general topic of graph

matching. Well-known homomorphism and isomorphism matching problems are traditional

models when similarity of two graphs is evaluated. Decision problem associated to graph

homomorphism is NP-complete [10]. Graph isomorphism is neither known to be NP-complete

nor to be tractable. Nevertheless, regarding its importance in computational complexity

theory, a new complexity class is defined as GI-complete which contains any problem that

can be reduced to graph isomorphism in polynomial time [16]. A related problem is finding

the maximum common subgraph-isomorphism (MCS) which is also NP-hard [34].
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In the category of subgraph pattern matching, which is more related to our work, the

goal is finding similar instances of a smaller graph, usually called pattern or query graph, in

a bigger graph, usually called data graph. Traditionally, subgraph isomorphism has been the

most famous subgraph matching model, and its associated decision problem is well-known

to be NP-complete. Despite its intractability, subgraph isomorphism has many real-world

applications; hence, during the last decades many researchers have actively tried to design

more efficient algorithms for finding all exact subgraph pattern matches. The most famous

exact subgraph isomorphic algorithms are Ullmann [70] and VF2 [21]. Several algorithms

have also been introduced in the recent years, like GraphQL [37], QuickSI [63], SPath [78],

GADDI [76], TurboIso [36], and DualIso [62].

In general, subgraph pattern matching algorithms, can be classified as exact or inexact

algorithms. Inexact pattern matching algorithms have been considered interesting mainly

because finding inexact similar matches is more useful when the data graph is noisy. For in-

exact matching, some metrics are defined to measure similarity of the results to the pattern.

Another, classification for subgraph pattern matching algorithms is being optimal or approx-

imate. An optimal algorithm guarantees to find a correct solution; e.g., for exact matching

all the correct matches, and for inexact matching the closest match or a correctly ranked list

of matches. In comparison, an approximate algorithm does not guarantee to find a correct

solution; e.g., for exact matching, some, but not all the matches; and for inexact matching,

a close match, but not the closest. Good surveys for subgraph pattern matching are [20]

and [33]. Moreover, in [48] Lee et al. present a recent survey about subgraph isomorphism

algorithms.

Several new subgraph pattern matching models are introduced during recent years in

order to address the limits of the traditional models, like p-homomorphism [26], graph simu-

lation [40], and strong simulation [52]. Graph simulation provides a practical alternative to

subgraph isomorphism by relaxing its stringent matching conditions. This allows matches to
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be found in polynomial time. Furthermore, some researchers [17, 25, 52, 30] argue that graph

simulation is more appropriate than subgraph isomorphism for modern applications such as

social network analysis because it yields matches that are conceptually more intuitive.

In recent years, several variants of graph simulation are introduced like dual simulation

and strong simulation. These models form a spectrum with respect to the stringency of the

matching conditions – graph simulation is the least restrictive whereas strong simulation is

the most restrictive. In other words, strong simulation is conceptually closest to subgraph

isomorphism whereas graph simulation is the farthest. It is also noteworthy that, in general,

the more restrictive the model, the less scalable the corresponding algorithm.

While polynomial time algorithms exist for graph, dual and strong simulations, they

still do not scale to the massive graphs that characterize modern applications such as social

networks. Therefore, a natural question is whether these algorithms can be parallelized and

implemented efficiently on shared nothing clusters. In recent years, several graph processing

frameworks have been proposed that enable programmers to easily and efficiently imple-

ment distributed graph algorithms on shared nothing clusters. These include Pregel [55],

Giraph [4] and GPS [60] which are characterized by the BSP programming paradigm. In

these platforms, the programmer expresses algorithms in terms of the actions performed by

a generic vertex of the graph.

In recent years, researchers have designed vertex-centric algorithms for various graph

problems. Surprisingly, to the best of our knowledge, there are no studies on vertex-centric

approaches for graph simulation models. While there is some recent work on distributed basic

graph simulation [54], the proposed algorithm is not based on the vertex-centric programming

paradigm. Moreover, there is no distributed algorithm for dual or strong simulation.

We have introduced two new pattern matching models: strict simulation [32] and tight

simulation [31]. They improve upon strong simulation [52], which was the state of the art

pattern matching model in the graph simulation family in both in terms of efficiency and
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quality of the result. We have also introduced a new condition, called cardinality restriction,

that can improve the expressiveness and the quality of the results for all these models.

Furthermore, we have designed and implemented vertex-centric distributed algorithms for

different pattern matching models in the graph simulation family. We have comprehensively

studied their behaviors through an extensive set of experiments.

Although graph simulation models are tractable, they are still highly computation-

intensive for massive graphs. Most existing subgraph pattern matching systems treat each

incoming query completely independently from previous queries. We contend that reusing

query results can yield significant performance benefits. Hence, we have studied the pattern

containment, and have designed cache techniques specified for subgraph pattern matching.

We have proved the correctness of our technique. Also, we examined the effectiveness of our

techniques on real-life datasets.

The main contributions of this research can be summarized as follows:

• We identify the bottlenecks that severely limit the scalability and performance of strong

simulation pattern matching model. Towards ameliorating these limitations, we pro-

pose two new graph simulation models called strict simulation and tight simulation.

They are greatly faster, and surprisingly, we improve the quality of the result as well

as efficiency.

• We introduce a new concept, called cardinality restriction, that can be applied to all

the models in the graph simulation family to improve their expressiveness.

• We introduce novel vertex-centric distributed algorithms for five simulation models.

Our algorithms include several techniques to mitigate performance bottlenecks.

• We present a detailed experimental study on the benefits and costs of the proposed

distributed algorithms for various graph simulation models.
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• We present a novel mechanism for reusing the result of a graph pattern matching query

to answer some other new queries. This mechanism can be potentially used in a cache

system to improve the response time of a query engine that runs based on the tight

simulation model. This technique can be ultimately used for subgraph isomorphism

as well because the results of tight simulation always contain the results of subgraph

isomorphism.

• In order to design our caching technique and prove its correctness, we have investigated

some of the properties of graph simulation models. Regarding the fact that these

models enjoy polynomial algorithms, we believe the newly discovered properties can

spur further research about using these models in the field of graph pattern matching.

• We present a detailed empirical study on the performance gain of reusing the results

of subgraph pattern matching queries, and explore the affects of some parameters that

can play a pivotal role in a basic cache system for this purpose.
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Chapter 2

Background

In this section we present some background knowledge required for the understanding of our

algorithms. First, we discuss the vertex-centric framework for distributed graph processing,

and then we explain different models of pattern matching.

2.1 Vertex-centric Graph Processing

Although some researchers have used the MapReduce platform [22, 43], and especially its

free implementation Hadoop [6], to analyze massive graphs, this platform is not well-suited

for iterative algorithms including most graph algorithms. In [55] Google presented a new

platform, called Pregel, specifically designed for running graph algorithms. This platform

introduces a vertex-centric paradigm based on the BSP computing model.

Bulk Synchronous Parallel (BSP) was first proposed by Valiant [71] as a model of com-

putation for parallel processing. Computation in this model is a series of supersteps. As it

is shown in figure 2.1, each superstep contains three ordered stages: (1) concurrent com-

putation, where different processes run concurrently, (2) communication where all processes

exchange their messages, and (3) barrier synchronization in which every process waits for
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others to reach the same state before going to the next superstep. In the vertex-centric pro-

gramming model proposed in Pregel, each vertex of the data graph is a computing unit which

can be conceptually mapped to a process in the BSP model. At the time of loading, the data

graph is partitioned among several workers. Each worker is a real process which handles the

computation for each vertex. Each vertex initially knows only about its own label and its

outgoing edges. Then, vertices can exchange messages through successive supersteps to learn

about each other or to accomplish a computing task. Within each superstep, vertices are

executing the same predefined function. When a vertex believes that it has accomplished

its tasks, it votes to halt and goes to inactive mode. A vertex remains inactive until it is

triggered externally by a message from another vertex. When all vertices become inactive

the algorithm terminates.

Figure 2.1: Bulk Synchronous Parallel (BSP) computation model

The vertex-centric approach is a pure message passing model in which users focus on

a local action for each vertex of the data graph. Its usage of the BSP model makes it

inherently free of deadlocks. Moreover, it can provide very high scalability, and by design it

is well-suited for distributed implementation. A few other open source projects that follow
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the same idea as Pregel have been introduced recently, namely GPS [60], Apache Giraph [4],

Apache Hama [2], and Signal/Collect [66].

We have used GPS, which can be considered a free distribution of Pregel, to implement

our distributed algorithms. GPS is written in Java and has an extended API to provide a

type of global communication among vertices. It also supports the dynamic repartitioning

of a data graph to balance the workload during computation.

2.2 Different Pattern Matching Models

The goal of a pattern matching algorithm is to find all the matches of a given graph, called

a query graph, in an existing larger graph, called a data graph. To define it more formally,

assume that there is a data graph G(V,E, l), where V is the set of vertices, E is the set

of edges, and l is a function that maps the vertices to their labels. Given a query graph

Q(Vq, Eq, lq) the task is to find all subgraphs of G that match the query Q. G′(V ′, E ′, l′) is

a subgraph of G if and only if (1) V ′ ⊆ V ; (2) E ′ ⊆ E; and (3) ∀u ∈ V ′ : l′(u) = l(u).

Here, we assume all vertices are labeled, all edges are directed, and there are no multiple

edges. Without loss of generality, we also assume a query graph is a connected graph

because the result of pattern matching for a disconnected query graph is equal to the union

of the results for its connected components. In this paper, we use pattern and query graph

interchangeably.

2.2.1 Subgraph Isomorphism

Subgraph isomorphism is the most famous model for pattern matching. It preserves all topo-

logical features of the query graph in the result subgraph. However, finding all subgraphs

that are isomorphic to a query graph is an NP-hard problem in the general case. By defini-

tion, subgraph isomorphism describes a bijective mapping between a query graph Q(Vq, Eq)
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and a subgraph of a data graph G(V,E), denoted by Q✂iso G. That is, assuming G′(V ′, E ′)

is a subgraph of G, graph Q will be subgraph isomorphic of G if there is a bijective function

f from the vertices of Q to the vertices of G′ such that (u, v) is an edge in Q if and only if

(f(u), f(v)) is an edge in G′ [70]. It should be noticed that function f ensures that u and

f(u) have the same labels.

2.2.2 Graph Simulation

Another model, graph simulation, permits faster algorithms by relaxing some restrictions on

matches.

Definition 2.1 Pattern Q(Vq, Eq) matches data graph G(V,E) via graph simulation, de-

noted by Q✂sim G, if there is a binary relation R ⊆ Vq × V such that (1) if (u, u′) ∈ R, then

u and u′ have the same label; (2) for every u ∈ Vq there is a u′ ∈ V such that (u, u′) ∈ R;

(3) ∀(u, u′) ∈ R[(u, v) ∈ Eq ⇒ ∃v
′ ∈ V : (v, v′) ∈ R ∧ (u′, v′) ∈ E] .

Intuitively, graph simulation only preserves the child relationships of each vertex. The

result of pattern matching is a maximum match set of vertices. The maximum match set,

Rm ⊆ Vq×V , is the biggest relation set between Q and G with respect to Q✂simG. The result

match graph, Gr(Vr, Er), as suggested in [52], is a subgraph of G that can represent Rm. By

definition, Gr is a subgraph of G which satisfies these conditions: (1) (u, u′) ∈ Rm ⇔ u′ ∈ Vr;

(2) ∀(u, u′), (v, v′) ∈ Rm [(u′, v′) ∈ Er ⇔ (u, v) ∈ Eq].

A quadratic time algorithm for graph simulation was first proposed in [40] with applica-

tions to the refinement and verification of reactive systems. This model and its extensions

have been studied especially in recent years [25, 54] because of their new applications in

analysis of social networks [17].
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2.2.3 Dual Simulation

Dual simulation improves on graph simulation by taking into account not only the children

of a query node, but also the parents. That is, a vertex in a data graph becomes a dual

match with a vertex in a query graph if and only if (1) it has the same label, (2) a subset

of its children match all the children of its correspondent vertex in the query graph, (3) a

subset of its parents also match all the parents of its correspondent vertex.

Definition 2.2 Pattern Q(Vq, Eq) matches data graph G(V,E) via dual simulation, denoted

by Q✂D
sim G, if (1) Q✂sim G with a binary match relation RD ⊆ Vq × V , and (2) for every

(u, u′) ∈ RD, if there is a w ∈ Vq such that (w, u) ∈ Eq then there exists a w′ ∈ V such that

(w,w′) ∈ RD and (w′, u′) ∈ E.

In dual simulation as in graph simulation, we maintain the concept of a maximum match

set and a result match graph. Here, the result match graph is also a single graph which might

be connected or disconnected. In [52] a cubic algorithm for dual simulation is proposed.

2.2.4 Strong Simulation

Strong simulation adds a locality property to dual simulation. Shuai Ma et al. [52] introduce

the concept of a ball to define locality. A ball b in G(V,E), denoted by Ĝ[v, r], is a subgraph

of G that contains all vertices not further than a specified radius r from a center v ∈ V ;

moreover, the ball contains all edges in G that connect these vertices (i.e., it is an induced

connected subgraph).

In order to measure the distance between vertices of a graph, we consider the edges to be

undirected. Therefore, given two vertices u and v in a connected graph, the distance from

u to v is defined as the minimum number of edges in an undirected path from u to v. The

diameter of a connected graph is then defined as the greatest distance between any pair of

nodes in the graph.
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Definition 2.3 Pattern Q(Vq, Eq) matches data graph G(V,E) via strong simulation, de-

noted by Q✂S
simG, if there exists a vertex v ∈ V such that (1) Q✂D

sim Ĝ[v, dQ] with maximum

dual match set Rb
D in ball b where dQ is the diameter of Q, and (2) v is member of at least

one of the pairs in Rb
D. The connected part of the result match graph of each ball with respect

to its Rb
D which contains v is called a maximum perfect subgraph of G with respect to Q.

In contrast to the previous types of simulation, strong simulation may have multiple

maximum perfect subgraphs (MaxPGs) as its result. As indicated by [52], although strong

simulation preserves many of the topological characteristics of a pattern graph, its result can

be computed in cubic time. Moreover, the number of MaxPGs is bounded by the number of

vertices in a data graph, while subgraph isomorphism may have an exponential number of

match subgraphs.

2.2.5 Comparing the result of the models

Figure 2.2 provides an example to show the difference in the results of the mentioned pattern

matching models. This example is about finding a team of specialists on a social network like

LinkedIn, inspired by an example in [54]. A vertex in this example represents a member, and

a label represents a member’s profession. A directed edge from a member a to a member

b indicates that member a has endorsed member b. Because the query nodes here have

distinct labels, we only specify data graph node ID’s for a match rather than specifying the

full match relation. (The relation set between pattern and data graph can be inferred from

the labels.)

Given the pattern and the data graph, the maximum match set for graph simulation

consists of all vertices except {2,13}. It is clear that vertices 1, 3, and 14 are not appro-

priate matches either, because the system analysts represented by vertices 3 and 14 are

not endorsed by any database designers. Dual simulation removes these inappropriate ver-
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tices; its maximum match set contains all vertices except {1,2,3,13,14}. However, there are

still some vertices that do not provide very meaningful matches. For example, the cycle

{15,16,17,18,19,20} creates a very big subgraph match, which is not desirable for such a

small pattern. Applying strong simulation then shrinks the result match graph to a reason-

able size; the result here is the set of vertices {4,5,6,7,8,9,10,11,12}. In contrast, there are

two isomorphic subgraphs corresponding to these two set of vertices: {4,6,7,8} and {5,6,7,8}.

PM: Product Manager
SD: Software Developer
SA: System Analyst
DB: Database Designer
AI: AI specialist
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Figure 2.2: An example for different models
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Chapter 3

Strict Simulation

3.1 Introducing Strict Simulation

Strict simulation is a novel modification of Strong simulation that not only substantially

improves its performance, but also maintains a better quality of result because of its revised

definition of locality. The locality restriction defined in strong simulation is the main reason

for its long computation time because the size of balls can be potentially very big. Here, the

size of a ball means the number of vertices that it contains.

Proportional to the diameter of Q and average degree of vertices in G, each ball in strong

simulation can be fairly bulky. Furthermore, due to communication overhead during ball

creation, the problem is exacerbated in distributed systems where a data graph is partitioned

among different nodes. In order to mitigate this overhead, we introduced a pattern matching

model, named strict simulation in [31].
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3.2 Comparing Strict with Strong Simulation

Strict simulation is more scalable and preserves the important properties of strong simulation.

It is shown in [52, 23] that: (1) if Q✂G
iso, then Q ✂S

sim G; (2) if Q ✂S
sim G, then Q ✂D

sim G;

and (3) if Q ✂D
sim G, then Q✂G

sim. We show that strict simulation and another new model

we introduce in the next chapter are not only more efficient than strong simulation, but

also more stringent; i.e., their results are getting closer to subgraph isomorphism while they

become computationally more efficient.

Figure 3.1a shows the flowchart of the centralized algorithm for strong simulation. In

this algorithm, the match relation of dual simulation, RD, is computed first. Then, a ball

Ĝs[v, dQ] is created for each vertex v of the data graph contained in RD. Members of the

ball are selected regardless of their membership in pairs of RD. At the next step, the dual

match relation is projected on each ball to compute the result of strong simulation. Finally,

the maximum perfect subgraph (MaxPG) is extracted by constructing the match graph on

each ball and finding the connected component containing the center.

In comparison, Figure 3.1b illustrates the centralized algorithm for strict simulation.

The key difference between them is that in strict simulation the duality condition is enforced

before the locality condition; i.e., balls are created from the dual result match graph, GD,

rather than from the original graph. As the balls in strict simulation are often significantly

smaller, this seemingly minor difference between the two algorithms has a profoundly positive

impact on running time.

There are the same numbers of balls in strict and strong simulation; however, the ex-

tracted MaxPG from each ball in strict simulation is always a subgraph of the result in

strong simulation on a ball with the same center. Duplicate MaxPGs may be produced from

different balls, and in the case of strict simulation a result MaxPG might be subgraph of an-

other one. In a post-processing phase, the duplicate results are filtered, and only the smaller
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Figure 3.1: Comparing the algorithms of strong and strict simulation

result is kept when it is a subgraph of another result. Any possible isomorphic subgraph

match of the query will be preserved in the result of strict simulation.

Figure 3.2a shows an example that highlights the difference between the results of these

two types of simulation. In this example, all vertices except 9 will appear in the dual result

match graph. For strong simulation, a ball centered at vertex 2 would contain all the vertices

in the data graph. In contrast, because the dual match graph would not contain vertex 9

and some of the edges, the corresponding ball for strict simulation would only contain the

set of vertices {1,2,3,4}. Therefore, the MaxPG resulting from strong simulation will contain
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all vertices except 9, while the one resulting from strict simulation will contain only vertices

1, 2, and 3. One can verify that this is the only MaxPG which will result from any ball of

strict simulation.

Figure 3.2: Comparing strict and strong simulation

Figure 3.2b illustrates another example. Here, one can verify that resulting MaxPG of

strong simulation for a ball centered at vertex 2 will contain vertices 1 to 8. In comparison,

the resulting MaxPG for strict simulation will contain the set of vertices {1,2,3}.

It is noteworthy that there is no bound on the number of vertices in a MaxPG resulted

by strict simulation. Neither is there any bound on the diameter of MaxPGs with respect

to the diameter of the query. Figure 3.3 displays an example where the query, Q, has 6

vertices and diameter dQ = 4. The data graph, G, has been intentionally selected big to

show how the size of subgraph result can be bigger than the query. All the vertices of G in

this example are member of results match graph with respect to Q✂D
sim G. There are three

labels in Q and each on two vertices.

A color code is used to depict the relationship between the vertices in Q and G. The

vertices with green bodies in Q are in dual match relation with the green vertices in G. It

is the same for the blue vertices. When the vertex 12 in G is selected as the center of a
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ball with radius 4, one can verify that all the other vertices except 4 and 5 will be in the

ball. After applying dual simulation on the ball, all the vertices that are displayed with red

borders will remain in the subgraph result. It means there are 28 vertices in the resulted

MaxPG. Moreover, one can verify that the diameter of the MaxPG is 10, which is more than

twice bigger than dQ.

We have also defined a post-processing phase after filtering the balls in strict simulation.

In this phase all MaxPGs are compared with each other, and any result that is supergraph

to any other will be omitted from the set of MaxPGs. Filtering the subgraph results in this

process makes it possible to keep only more stringent results.

Figure 3.4 present an example that shows how the post-processing phase will filter the

results and makes the the total number of vertices in results of strict simulation smaller than

the total number of vertices in strong simulation. The query, Q in this example has three

vertices and its diameter is dQ = 2.

All the vertices in the data graph, G, are in dual relation with the vertices in the Q.

It can be observed that because of dense connectivity, all the subgraph results of strong

simulation contain all the vertices; therefore, if the post-processing is applied a MaxPG with

all the vertices will be left as the final result. In contrast the subgraph results generated

by strict simulation have different number of vertices because the edges displayed in red are

not part of result dual match graph. For example, the MaxPG that is generated from a

ball centered at vertex 3 contains all the vertices, but the MaxPG produced from the ball

centered at vertex 2 contains only vertices 1, 2, and 3. Here, only the smaller MaxPG with

three vertices will remain after post-processing phase.
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3.3 Properties of Strict Simulation

We formally define strict simulation as follows.

Definition 3.1 Pattern Q(Vq, Eq, lq) matches data graph G(V,E, l) via strict simulation,

denoted by Q✂Σ
simG, if there exists a vertex v ∈ V such that (1) v ∈ VD where GD(VD, ED, lD)

is the result match graph with respect to Q ✂D
sim G; (2) Q ✂D

sim ĜD[v, dQ] where ĜD[v, dQ]

is a ball extracted from GD, and dQ is the diameter of Q; (3) v is a member of the result

MaxPG.

A MaxPG for strict simulation is defined the same as a MaxPG for strong simulation.

Using the definition and the properties of dual simulation presented in [52], [23], properties

of strict simulation can be proved as follows.

Theorem 3.1 For any query graph Q and data graph G such that Q✂Σ
sim G, there exists a

unique set of maximum perfect subgraphs for Q and G.

Proof: It is proved that the result of dual simulation is unique. Therefore, the balls

extracted from its result match graph and consequently their result after applying dual filter

would be unique. ✷

Proposition 3.1 (1) If Q✂G
iso, then Q✂Σ

sim G. (2) if Q✂Σ
sim G, then Q✂S

sim G.

Proof: (1) Any subgraph isomorphic match in G is also dual match to Q; therefore, it will

appear in the result of dual match graph. Clearly, a ball with radius dQ (diameter of Q), and

centered on a vertex of this subgraph will contain its whole vertices. The subgraph later will

be also in the result of dual filter on the ball. (2) GD is a subgraph of G, and the distance

between any pair of vertices in GD is smaller than their distance in G. Therefore, any ball in

strict simulation will be a subgraph of the corresponding ball in strong simulation with the

same center. Consequently, when there is a subgraph result in the ball of strict simulation

after applying dual filter, it will be also preserved in the result of strong simulation. ✷
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Proposition 3.2 The number of maximum perfect subgraphs produced by Q✂Σ
simG is bounded

by the number of vertices in G.

Proof: GD is a subgraph of G, and the number of balls in strict simulation equals to the

number of vertices in GD. Moreover, not more than one MaxPG can be produced from each

ball. Therefore, their total number is bounded by the number of vertices in G. ✷

Theorem 3.1 ensures that strict simulation yields a unique solution for any query/data

graph pair. Proposition 3.1 indicates that strict simulation is a more stringent notion than

strong simulation, though still looser than subgraph isomorphism. Proposition 3.2 gives

an upper bound on the number of possible matches for a query graph in a data graph. It

should be noted that the number of matches in subgraph isomorphism can be exponential

to the number of vertices in G. The following theorem also shows that the asymptotic time

complexity of strict simulation is the same as that of strong and dual simulation.

Theorem 3.2 For any query graph Q and data graph G, the time complexity for finding all

maximum perfect subgraphs with respect to strict simulation is cubic.

Proof: It is proved that time complexity for finding GD is cubic. Moreover, it is proved

that time complexity of strong simulation is cubic. Regarding the fact that each ball in strict

simulation is a subgraph of its corresponding ball in strong simulation, time complexity of

strict simulation is also cubic. ✷
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Figure 3.3: Bound neither on the number of vertices nor the diameter of the result
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Chapter 4

Tight Simulation

4.1 Introducing Tight Simulation

Strict simulation reduces the computation time of Strong simulation by decreasing the size

of the balls, but the number of balls remains the same. The number of balls can be big when

the number of vertices left after of dual simulation is big which exacerbates the performance.

Moreover, it is still desirable, both in terms of computation time and the quality of the result,

to shrink the size of the balls. In this chapter, we introduce a new novel pattern matching

model, named tight simulation, which not only decreases the size of the balls further in

comparison to strict simulation, but also reduces the number of balls. This will make the

search for the pattern faster and the resulting subgraphs more stringent.

In this chapter we talk about eccentricity of vertices, and canter and radius of graphs.

The eccentricity of a vertex in a graph, Q, is its maximum distance from any other vertex in

the graph. The vertices of the graph with the minimum eccentricity are the centers of the

graph, and the value of their eccentricity is the radius, rQ, of the graph. The maximum value

of eccentricity equals to the diameter of the graph, dQ. It is proved that rQ ≤ dQ ≤ 2rQ [29].
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4.2 Comparison of Tight and Strict Simulation

A summary of the centralized algorithm for tight simulation is compared to strict simulation

in Figure 4.1. The main difference between these two is on the phases of preprocessing

the query graph, and ball creation. In the phase of preprocessing, a single vertex, u ∈ Q,

is chosen as a candidate match to the center of a potential ball on the data graph. The

appropriate radius of the ball is also calculated in this phase. Then, in the phase of ball

creation, only those vertices of the data graph which are in the dual match set of u will be

picked as the center of balls. The pre-calculated radius of such a ball is always between the

radius and the diameter of the query graph. It should be noticed that only the vertices in

the result of dual match graph will be used for ball creation, similar to strict simulation.

Apply dual simulation on G
to find DualSim match set

Q and G as inputs

Create a ball centered at each 
matching node via DualSim in G

Apply dual simulation
on each ball

Construct a match graph
 for each ball

For each ball, extract the connected
 component containing the center

Extracting MaxPGs 
& Post-processing

(a) Strong Simulation

Apply dual simulation on G
to find DualSim match set

Q and G as inputs

Create a ball centered at each 
node in the match graph

Apply dual simulation
on each ball

Construct match graph
 for DualSim

(b) Strict Simulation

Construct a match graph
 for each ball

Extract the connected component
containing the center from each ball

Extracting MaxPGs 
& Post-processing

Apply dual simulation on G
to find DualSim match set

Q and G as inputs

Create a ball centered at each 
node in the match graph

Apply dual simulation
on each ball

Construct match graph
 for DualSim

(c) Tight Simulation

Construct a match graph
 for each ball

Extract the connected component
containing the center from each ball

Extracting MaxPGs 
& Post-processing

Finding vertex candidate in Q

Figure 4.1: Comparing the algorithms of strong, strict, and tight simulation
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We introduce multiple selectivity criteria for finding the candidate vertex and radius out

of the query graph. A vertex u ∈ Q with the minimum eccentricity (a center of Q) which has

the highest ratio of degree to label frequency (in Q) will be picked as the candidate vertex.

Selecting one of the centers of Q as the candidate vertex makes it also possible to select the

candidate radius of balls equal to the radius of Q. It is the tightest ball which also preserves

all the subgraph isomorphic matches of the query graph in the result. Among the potential

vertex candidates those with the highest degree and lowest label frequency present higher

selectivity condition. In the case that there are several vertices with same selectivity score,

one of them will be selected randomly.

In a centralized algorithm, it is possible to postpone selecting the candidate vertex and

radius until the end of dual simulation phase and right before ball creation. One may

consider that a vertex u ∈ Q with the smallest dual match set in G would be the best vertex

candidate. In this case, the candidate radius would be equal to the eccentricity of u in Q.

Although this choice might be a good option in a centralized algorithm, it is not viable for a

distributed algorithms based on vertex-centric framework. In such a distributed environment

every vertex of G will learn if it is a member of a dual match set to a few vertices in Q, but

no global view of this set would be available. Proposed vertex-centric distributed algorithms

will be explained in the next section.

The results of tight simulation are subgraphs of the corresponding results of strict simu-

lation while they always contain all the subgraph isomorphic matches. Therefore, the results

of tight simulation are closer to subgraph isomorphism in comparison to strict simulation. It

should be noted that the post-processing phase explained in the last section will be applied

to the results of strong, strict, and tight simulation in the same way.

Figure 4.2 shows an example which displays the difference between the results of tight

versus strict and strong simulation. In this example, all the vertices shown in the data graph

will remain in the dual match graph. Clearly, the vertex labeled B in the pattern is its center;
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hence, will be picked as the candidate vertex. Therefore, vertices {2,4,6,10,12,14} will be

picked as the center of balls with radius rQ = 1 in tight simulation. Only the ball centered at

2 can result a MaxPG which contains these vertices {1,2,3}. In contrast in strict and strong

simulation, a ball with radius dQ = 2 will be created for any vertex of the data graph. One

can verify that for the ball created on vertex 1, strict simulation results a MaxPG containing

{1,2,3,4,5,6,7,8}, and strong simulation results a MaxPG containing all the vertices.
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Figure 4.2: Comparing tight with strict and strong simulation

For tight simulation, we also use a post-processing phase to filter the resulted MaxPGs.

Similar to what was explained for strict simulation, we filter any MaxPG that is supergraph

to any other MaxPG. Furthermore, It should be noticed that similar to strict simulation,

there is neither a bound on the number of vertices in a resulted MaxPG nor its diameter.
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In figure 4.3 the real-world application of these models for advertisement targeting is

illustrated through another example. Here we use the idea of Amazon product co-purchasing

graph. This graph is collected by crawling Amazon website [49]. If a product i is frequently

co-purchased with product j, the graph contains a directed edge from i to j. Figure 4.3a

shows the query pattern. Here, labels are different book departments in Amazon. Figure

4.3b displays the data graph (or part of it). Figure 4.3c shows the result of tight simulation

and figure 4.3d shows the results of strict or strong simulation.
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Figure 4.3: An example for graph pattern matching

4.3 Properties of Tight Simulation

We formally define tight simulation as follows.

Definition 4.1 Pattern Q(Vq, Eq, lq) matches data graph G(V,E, l) via tight simulation,

denoted by Q ✂T
sim G, if there are vertices u ∈ Q and u′ ∈ G such that (1) u is a center of

Q with highest defined selectivity; (2) (u, u′) ∈ RD where RD is dual relation set between Q

and G; (3)Q✂D
sim ĜD[u

′, rQ] where ĜD[u
′, rq] is a ball extracted from GD(VD, ED, lD) which

is the result match graph with respect to Q ✂D
sim G, and rQ is the radius of Q; (4) u′ is a

member of the result MaxPG.

26



The criterion for selectivity of u in Q is the ratio of its degree to its label frequency. The

definition of MaxPG is also similar to its definition for strong and strict simulation. Similar

to strict simulation, we can assert and prove the properties of tight simulation as follows.

Theorem 4.1 For any query graph Q and data graph G such that Q✂T
sim G, there exists a

unique set of maximum perfect subgraphs for Q and G.

Proof: It is proved that the result of dual simulation is unique. The candidate vertex

selected from the query is also unique when the query and the selectivity criteria are fixed.

Therefore, the balls created in tight simulation and their result after dual filter will be also

unique. ✷

Proposition 4.1 (1) If Q✂G
iso, then Q✂T

sim G. (2) if Q✂T
sim G, then Q✂Σ

sim G.

Proof: (1) Any subgraph isomorphic match in G is also dual match to Q; therefore, it

will appear in the result of dual match graph. The dual match to candidate vertex of Q

is one of the vertices of the isomorphic match and will be selected as the center of a ball

with radius rQ. As the candidate vertex was the center of Q, the isomorphic match will be

entirely enclosed in the ball and therefore will appear in the result of tight simulation. (2)

When there is a subgraph result in the ball of strict simulation, it will also appear as a part

of the result of strict simulation because there is a corresponding ball in strict simulation

created on GD with a bigger radius. In other words, a ball in tight simulation is always a

subgraph of its corresponding ball in strict simulation. ✷

Proposition 4.2 The number of maximum perfect subgraphs produced by Q✂T
simG is bounded

by the number of vertices in G.

Proof: The results of tight simulation are subset of the results of strict simulation. The

number of maximum perfect subgraphs produced by Q✂sim G is bounded by the number of

vertices in G; hence, it is the same for Q✂T
sim G. ✷
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Theorem 4.2 For any query graph Q and data graph G, the time complexity for finding all

maximum perfect subgraphs with respect to tight simulation is cubic.

Proof: The time complexity for finding the center and the radius of Q(Vq, Eq, lq) is

(|Vq|
3|). The procedure of tight simulation is similar to strict simulation, but it deals with a

smaller number of balls which are most likely smaller than the corresponding balls in strict

simulation; therefore, its time complexity must be smaller as well. Taking into account that

the time complexity of dual simulation phase is cubic, we can conclude that it is the same

for tight simulation. ✷
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Chapter 5

Distributed Pattern Matching

In contrast to the usual graph programming models, an algorithm in the vertex-centric

programming model should be designed from the perspective of each vertex of a graph. In

this chapter, we present distributed algorithms for different types of graph simulation based

vertex-centric programming model.

5.1 Distributed Graph Simulation

Figure 5.1 shows a summary of our algorithm for a vertex in distributed graph simulation.

Initially, we distribute the query graph among all workers. The cost of this distribution is

negligible because the size of query is small and the total number of workers is limited to

the number of processing elements in the system. Different tasks in different supersteps are

distinguished using an if-else ladder. Moreover, the BSP framework ensures that all vertices

are always at the same superstep.

A Boolean flag, named match, is defined for each vertex in G in order to track if it

matches a vertex in Q. It is initially assumed that the vertex is not a match. Then at the

first superstep, the match flag becomes true if its label matches the label of a vertex in Q.
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Superstep 1:

• Set match flag true if there is any vertex in query with same label

– Make a local match set, matchSet, of potential match vertices

– Ask children about their status

• Otherwise vote to halt

Superstep 2:

• If the flag is true reply back with matchSet

• Otherwise vote to halt

Superstep 3:

• If match flag is true evaluate the members of matchSet

– In the case of any removal from matchSet, inform parents and set match flag accordingly

– Otherwise vote to halt

• Otherwise vote to halt

Superstep 4 and beyond:

• If there is any incoming removal message reevaluate matchSet

– In the case of any removal from matchSet, inform parents and set match flag accordingly

– Otherwise vote to halt

• Otherwise vote to halt

Figure 5.1: Summary of Distributed Graph Simulation algorithm

In this case, a local match set, named matchSet, is created to keep track of its potential

matches in Q. Each vertex, then, learns about the matchSet of its children during the

first three supersteps and keeps them in a local list for later evaluation of graph simulation

conditions.

Any match is removed from the local matchSet if it does not satisfy the simulation con-

ditions. The vertex should also inform its parents about any changes in its matchSet. Con-

sequently, any vertex that receives changes in its childrens matchSet reflects those changes

in its list of match children and reevaluates its own matchSet. The algorithm can terminate
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after the third superstep if no vertex removes any match from its matchSet. This procedure

will continue in superstep four and beyond until there is no change. To guarantee the ter-

mination of the algorithm, any active vertex with no incoming message votes to halt after

the third superstep. At the end, the local matchSet of each vertex contains the correct and

complete set of matches between that vertex and the vertices of the query graph.

Figure 5.2 displays an example for distributed graph simulation. Here, all the vertices of

the data graph labeled a, b, and c make their match flag true at the first superstep, and then

vertices 1, 2, and 5 send messages to their children. At the second superstep only vertices 5,

6, and 7 will reply back to their parents. At the third superstep, vertices 1, 5, 6, 7, and 8 can

successfully validate their matchSets, but vertex 2 makes its flag false, because it receives

no message from any child. Therefore, vertex 2 sends a removal message to vertex 1. This

message will be received by vertex 1 at superstep four. It will successfully reevaluate its

match set, and the algorithm will finish at superstep five when every vertex has voted to

halt (there is no further communication).

Figure 5.2: An example for distributed graph simulation
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The pseudo code of our algorithm is also displayed in figure 5.3. Here, chMatch is the

local list that each vertex keeps the learned matchSets of its children. Each condition of the

if-else ladder in the pseudo code will be executed simultaneously by all the active vertices of

the data graph at the same superstep.

To clarify the algorithm further, we explain its running behavior for the pattern and

data graphs presented in figure 5.4. The IDs of vertices stored in matchSet or chMatch

are displayed in figure 5.5 for each superstep. Initially, both sets are empty for all vertices

and their match flags are false as well. In the first superstep, all vertices except 5 find a

potential match based on their labels, so they change their match flags to true. For the

sake of space, the vertices whose matchSets become empty are not displayed. In the second

superstep, each vertex learns the IDs of its parents and replies back with its matchSet. No

changes in either matchSet or chMatch are expected. At the third superstep, each vertex

learns about the matchSets of its children; consequently, vertex 4 discovers that it is not

an appropriate match to q2 and makes its membership false. Vertex 4 informs vertex 3

of its removal. Thus, in superstep 4, vertex 3 will also remove itself from membership and

inform vertex 2 of this change. Because vertex 2 can rely on vertex 1 to satisfy its required

child relationships, no changes in matchSet occur and the algorithm terminates in the fifth

superstep.
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5.1.1 proof of correctness

The correctness of the proposed distributed algorithm can be derived from the following

lemmas.

Lemma 5.1 The proposed distributed algorithm for graph simulation will eventually termi-

nate.

Proof: The algorithm will terminate when all the vertices vote to halt and become

inactive. After the third superstep, only the vertices are active which have received removal

messages. A removal messages is sent from a vertex to its parents when it removes a member

of its matchSet. The total number of members of all matchSets is finite; therefore, the

algorithm will terminate eventually in a finite time when all the matchSets become empty

in the worst case. ✷

Lemma 5.2 At the end of the proposed algorithm, the matchSet of each vertex contains the

correct and complete set of matches for that vertex.

Proof: At the first superstep, each vertex creates its matchSet from any vertex in Q with

the same label. Hence, any potential match initially becomes a member of this set. The

set is filtered during the next supersteps, and it is expected that it will contain only correct

matches at the end. In other words, the completeness condition of the set is satisfied at the

first superstep, and we should only prove the correctness of its members when the algorithm

terminates.

BSP computational model ensures that all vertices are synchronized at the beginning of

each superstep. Having this property in mind, the set of supersteps 4 and beyond in the

proposed algorithm (Figure 5.1) is very similar to a while loop. Therefore, this lemma can

be proved using loop invariant theorem [41]. Here, the invariant is the validation of each

matchSet with respect to the local list of match children. At the end of the third superstep,
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each vertex has a matchSet which its members are validated based on the information gath-

ered from the matchSet of its children. The guard condition for iterating through supersteps

4 and beyond is receiving at least one removal message. The invariant condition is true at

the beginning of each superstep, and will be also true at the end of the superstep because

the vertices that have received any removal message will update their list of match children

accordingly and reevaluate their matchSets. According to lemma 5.1, the guard condition

will become false after a finite number of iterations. Existence of no removal message means

that all vertices have satisfied the children condition. Therefore, the invariant is true after

termination; i.e., each member of a matchSet is a correct match. ✷

Figure 5.4 demonstrates the number of supersteps in the worst case. One can verify that

if the length of path 1,2,3,4 is increased to Lp in such a way that the label pattern of vertices

3 and 4 are repeated, the algorithm will need Lp + 1 supersteps to terminate. In general,

the minimum number of supersteps is 3, and its upper bound is O(|E|).

5.2 Distributed Dual Simulation

The distributed algorithm for dual simulation is a smart modification of the distributed

algorithm proposed for graph simulation in the previous subsection. Indeed, we extend the

algorithm to check parent relationship as well. Therefore, each vertex also needs to keep

track of the matchSets of its parents.

At the first superstep each vertex sends not only its ID, but also its label to its children.

At the second superstep a vertex can infer the matchSets of its parents from the received

labels and store them. Having this initial list at the second superstep allows each vertex

to verify the parent relationships for each of the candidate matches in its matchSet. Very

similar to the idea explained in the previous subsection for child relationships, removals from

matchSet caused by evaluating the parent relationship must be reported to the children.
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The rest of the algorithm remains similar to the algorithm for graph simulation, with

a few small modifications to consider the evaluation of a vertex with respect to its parent

relationships.

The proof of correctness for this algorithm is very similar to the proof of correctness

for the graph simulation algorithm. Similarly, the upper bound on the number of required

supersteps for the distributed algorithm of dual simulation is O(|E|).

5.3 Distributed Strong, Strict, and Tight Simulation

The algorithms for distributed strong, strict, and tight simulation are built on top of the

algorithm for distributed dual simulation. In the case of strong and strict simulation, each

vertex that has successfully passed the filter of dual simulation will create a ball around

itself. Recalling their definitions, each ball in strong simulation is an induced connected

subgraph of the data graph; whereas, each ball in strict simulation is an induced connected

subgraph of the dual match graph. In the case of tight simulation, only those vertices that

find themselves a dual match of the candidate vertex of Q will create a ball around itself.

The distributed algorithms that we have designed and implemented for strong and strict

simulation follow the flowcharts of Figure 3.1, but in a distributed fashion. The first step

for applying dual simulation is the same as the distributed algorithm for dual simulation.

At the end of the dual simulation phase, each vertex of the data graph has a matchSet that

contains the IDs of vertices of Q that match to that vertex. Any vertex with a non-empty

matchSet which is qualified to make a ball centered at itself, finds the member of its ball in

a breadth-first search (BFS) fashion.

Ball creation phase takes 2(R− 1) supersteps where R is the selected radius for the ball.

For strong and strict simulation R = dQ, while it is R = rQ for tight simulation. Moreover,

all the vertices in the neighborhood are considered as members of a ball in strong simulation.
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In contrast for strict and tight simulation, only vertices with the match flag set to true will

answer the request for neighborhood information. In the latter case, while the center vertex

of the ball receives neighborhood information, it adds a vertex to the ball only if there is

a corresponding edge in the pattern graph. Eventually, the center vertex of each ball will

perform the rest of the computation on that ball in a sequential fashion. Because vertices are

distributed among workers, this phase can be considered an embarrassingly parallel workload.

5.4 Experimental Study

This section is dedicated to experimental study which aims to evaluate the new pattern

matching models and the proposed distributed algorithms. Regarding the distributed al-

gorithms, the study attempts to learn about their bottlenecks and design trade-offs with

respect to the properties of their inputs. We implemented our distributed algorithms on the

GPS platform [60], which is similar to Googles proprietary Pregel system.

The parameters for data graphs are the number of vertices, denoted by |V |, the density

of the graph, denoted by parameter α, where |E| = |V |α, and the number of distinct labels,

denoted by l. In all experiments, l = 200, unless it is mentioned explicitly. The parameters

for queries are also the number of vertices, denoted by |Vq|. Another parameter in the

experiments is the number of workers denoted by k.

5.4.1 Experimental setting

We used both real world and synthesized datasets in our experiments. In terms of real world

datasets, we used uk-2002 with 18,520,486 vertices and 298,113,762 edges; ljournal-2008 with

5,363,260 vertices and 79,023,142 edges; and amazon-2008 which has 735,323 vertices and

5,158,388 edges [7, 15].

36



We used graph-tool [5] to synthesize small and medium size randomly generated data

graphs, but because of its memory limits we also implemented our own graph generator

to synthesize large semi-randomly generated graphs. The input parameters of our graph

generator are the number of vertices, the average number of outgoing edges degO, and the

number of distinct labels. It picks a random integer between 0 and 2degO as the number

of outgoing edges for every vertex. Then, for each outgoing edge, the endpoint of the edge

is randomly selected. The label of each vertex is also a randomly picked integer number

between 1 and l.

To generate a pattern graph, we randomly extract a connected subgraph from a given

dataset. Our query generator has two input parameters: the number of vertices and the

desired average number of outgoing edges. Unless mentioned otherwise, the average number

of outgoing edges is set to such a value that α = 1.2. In order to randomly extract a query

with n vertices and average degree d from a given data graph, we first randomly pick one

vertex of the data graph. Then, we generate a random number between 1 and d. We add

this number of neighbors to the query and continue this process in a BFS fashion until the

required number of vertices are added to the query.

The experiments were conducted using GPS on a cluster of 8 machines. Each one has

128GB DDR3 RAM, two 2GHz Intel Xeon E5-2620 CPUs, each with 6 cores. The intra-

connection network is 1Gb Ethernet. One of the machines plays the role of master.

5.4.2 Experimental results

The results of the experiments are categorized in four groups. It should be mentioned that

distributed strong simulation is so slow on large datasets that we could run it only on fairly

small datasets to be compared with strict and tight simulation. It is also noteworthy that

presenting running time or speedup of different models in the same chart is only for studying

their scalability. In other words, when the quality of pattern matching increases from graph
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simulation to dual and then strong simulation, the running time also increases. Strict and

tight simulation are exceptions; i.e., we observe decrease in running time when the quality

increases from strong to strict and then tight simulation.

We also performed a set of experiments to compare the quality of the results of strong,

strict, and tight simulation. For comparison, we measured a few parameters in their set of

subgraph results including: the number of subgraph results, their total number of distinct

vertices, their total number of distinct edges, and the average and standard deviation of their

diameters. We found that the number of subgraph results is increasing and their diameters

are decreasing while we change the model from strong to strict and from strict to tight

simulation. However, our experiments have yet shown no significant difference in either the

total number of distinct vertices or the total number of distinct edges.

Experiment 1- Running time and Speedup

We examine the running time and speedup of the proposed algorithms to study their per-

formance and scalability (Figure 5.6). It can be observed that the running time of tight

simulation is always less than the running time of strict simulation. In the experiment dis-

played in Figure 5.6a, we could not run the test on a single machine because of memory

limits. Therefore, we extrapolate its running time.

As expected, the BSP model scales very well on bigger datasets. Moreover, all types of

simulation exhibit a filtering behavior, meaning that they start by processing a large set and

then refine it; this causes light workload at the final supersteps.

Experiment 2- Impact of pattern

Figure 5.7 shows that running time increases as the size of the query becomes bigger, which

is not surprising. The behavior remains similar across datasets with different numbers of

vertices. The running times of strict and tight simulations are similar for small patterns

38



because the difference in the overhead of ball-creation phase is negligible. However, it can be

observed that the difference between their running-time increases with increase in the size

of pattern.

Experiment 3- Impact of dataset

In the first experiment of this group (Figure 5.8a), we compare the running time of different

pattern matching models with respect to the number of vertices in the data graph. As

expected, the running time increases with growth in the size of data graph. The ratio

between the running times of graph simulation and dual simulation shows the difference

between their computational complexities. The increasing difference between the running

times of strict and dual simulation can be explained by the fact that the number of balls

increases proportionally to the number of vertices in the result of dual simulation. However,

the rate of increase in difference of tight and strict simulation is very smaller because even

in the case of tight simulation all the active vertices after dual-filtering phase will contribute

to the ball creation although the number of balls is smaller as well.

Figure 5.8c shows the total number of supersteps for the same set of experiments. It is

not surprising that tight simulation needs less number of supersteps to terminate because

the radius of its ball is smaller. The stable number of supersteps indicates the scalability

of the algorithms with respect to the number of vertices in data graph. That is, increase in

the size of the data graph mostly increases the local computation of the workers not their

communication.

Figure 5.8b shows the impact of the density of a data graph on running time. An increase

in running time is to be expected. The unchanged cost of ball creation (difference between

dual, strict and tight simulation) reveals a good feature of strict and tight simulation; because

the density of the data graph does not have a big impact on the density of the dual match

graph, the balls do not necessarily increase in size as the density of the data graph increases.
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The total number of supersteps for these experiments is reported in Figure 5.8d. The small

changes in the number of supersteps indicate the scalability of the algorithms with respect

to the density of data graph.

Experiment 4- Comparison of strong, strict, and tight simulation

The difference in behavior between the algorithms for strong, strict, and tight simulation

can be seen in Figure 5.9. Because of the high cost of ball creation in distributed strong

simulation, it was only possible to test it on fairly small datasets.

Figure 5.9a and Figure 5.9b compare the running time of the three algorithms on two

different datasets and a range of query sizes. The differences between strong simulation and

the other two are huge on both datasets, though they are small for |Vq| ≤ 10. The running

time of tight simulation is always slightly better than strict simulation.

Figure 5.9c shows the total size of the communication in the system per superstep for

strong, strict, and tight simulation. The chart shows three phases for the procedure. The first

phase is the dual simulation phase that occurs before superstep 6. The ball creation occurs

between supersteps 6 and 19 for strong and strict simulation, while it finishes at superstep

13 for tight simulation. Supersteps 20 and 21 in strong and strict algorithms correspond to

processing balls and terminating the algorithms. This phase occurs in supersteps 14 and 15

of tight simulation. It is clear that, there is no communication in these supersteps.

There is a difference in communication at the first superstep because in strong simulation

every vertex needs to learn about its neighborhood regardless of its matching status. Strict

and tight algorithms perform exactly the same in the first phase. The exponential increase of

communication size in strong simulation during creating balls is because of the involvement

of all vertices in that process.
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The jagged shape of communication is because of our BFS-style algorithm for discovering

balls, which contains requests at one superstep and responses at the next. Expectedly, the

communication size of tight simulation is less than strict during the second phase.

Figure 5.9d displays the difference between the numbers of active vertices in the three

different types of simulation. Although the number of balls is smaller in tight in comparison

to strict simulation, it has the same number of active vertices in the phase of ball creation

because all the vertices of dual-match result graph stay active in this phase.

After the dual simulation phase, though the number of active vertices in strict and tight

simulation does not experience a significant change, the number of active vertices in strong

simulation increases exponentially because inactive vertices become active again during ball

creation.
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procedure Vertex(u, inMessages)
match← false

if superstep = 1 then

retrieve labelIndex containing the labels of Q
matchSet← labelIndex(label(u))
if matchSet 6= ∅ then

match← true

if matchSet has any non-leaf node then

send id of u to its children
else vote to halt

else if superstep = 2 then

if match = true then

store received ID of parents and return label(u)
else vote to halt

else if superstep = 3 then

find chMatch from received labels
∆match← evaluateChildren()
if ∆match 6= ∅ then

send ∆match to all parents
if matchSet = ∆match then

match← false

else vote to halt
else if superstep ≥ 4 and inMessages 6= ∅ then

if match = true then

for all ∆chMatch ∈ inMessages do

chMatch← chMatch\∆chMatch

∆match← evaluateChildren()
if ∆match 6= ∅ then

send ∆match to all parents
if matchSet = ∆match then

match← false

else vote to halt
else vote to halt

else if superstep ≥ 4 and inMessages = ∅ then
vote to halt

end procedure

Figure 5.3: Distributed graph simulation algorithm
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Figure 5.4: An example for the number of supersteps

initialization

1,2,3,4,5: matchSet = {}, chMatch = {}
superstep = 1

1,3: matchSet = {q1}, chMatch = {}
2,4: matchSet = {q2}, chMatch = {}
superstep = 2

1,3: matchSet = {q1}, chMatch = {}
2,4: matchSet = {q2}, chMatch = {}
superstep = 3

1: matchSet = {q1}, chMatch = {q2}
2: matchSet = {q2}, chMatch = {q1, q1}
3: matchSet = {q1}, chMatch = {q2}
superstep = 4

1: matchSet = {q1} chMatch = {q2}
2: matchSet = {q2} chMatch = {q1, q1}
superstep = 5

1: matchSet = {q1}, chMatch = {q2}
2: matchSet = {q2}, chMatch = {q1}
finish

Figure 5.5: Example for running distributed graph simulation algorithm
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(a) Synthesized (|V | = 1e8, α = 1.2)

(b) uk-2002-hc (|V | ≈ 1.8e7, |E| ≈ 2.9e8)

(c) ljournal-2008 (|V | ≈ 5.3e6, |E| ≈ 7.9e7)

Figure 5.6: Running time and speedup of the distributed algorithms (l = 200, |Vq| = 20)
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(a) Synthesized (|V | = 1e8, α = 1.2)

(b) uk-2002-hc (|V | ≈ 1.8e7, |E| ≈ 2.9e8)

(c) ljournal-2008 (|V | ≈ 5.3e6, |E| ≈ 7.9e7)

Figure 5.7: Impact of pattern for both real-world and synthesized datasets (l = 200, k = 7)
on running time
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(a) Running time, synthesized (α = 1.2) (b) Running time, synthesized (|V | = 1e8)

(c) Number of supersteps, synthesized (α = 1.2) (d) Number of supersteps, synthesized (|V | = 1e8)

Figure 5.8: Impact of size and density of G (|Vq| = 20, l = 200, k = 7) on running time and
the number of supersteps
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(a) Running time, synthesized (|V | = 1e6, α = 1.2) (b) Running time, amazon-2008 (|V | ≈ 7.3e5, |E| ≈
5.1e6)

(c) Communication size, amazon-2008 (d) Number of active vertices, amazon-2008

Figure 5.9: Comparison of strong, strict, and tight simulation for real-world and synthesized
datasets (l = 200, k = 14)
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Chapter 6

Cardinality Restricted Simulation

Dual simulation, the way it was first introduced in [52], does not consider cardinality of

vertices in the child or parent relationships. We found that in many real-world graphs, like

co-purchasing and citation networks, distribution of labels are very skewed; e.g., there are

communities that many vertices have the same label. Dual simulation produces not very

meaningful results in these regions when some of the vertices in the query have the same

label because they all may match to the same vertex or very simple connection of vertices

in the data graph.

Here, we introduce a modified version, called cardinality restricted or CAR-dual simu-

lation, in which the number of match children or parents with the same label in the data

graph should not be less than their correspondents in the query. This extra condition does

not increase the time complexity of dual simulation, but it improves its expressiveness. Our

experiments show a significant drop in the number of vertices in the results of CAR-dual

simulation in comparison to dual simulation.

All the models defined so far based on dual simulation; e.g., strong [52], strict [32], and

tight simulation [31], can be revised to employ CAR-dual simulation. This modification, not

only improves the quality of their results, but also can impact their performance because
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Figure 6.1: An example for comparing cardinality restricted models with their older coun-
terparts

they will be constructed on less number of vertices. A smaller result is clearly more amenable

for cache storage. Following, we present the formal definition of these new models.

The difference of models is illustrated through an example in figure 6.1. This example is

inspired from Amazon product co-purchasing network [49], where if a product i is frequently

co-purchased with product j, the graph contains a directed edge from i to j. Here, each

letter inside the vertex is the category of the product and represents its label. Moreover,

each number beside a vertex represents its ID number. The subgraph matching results of

this example are displayed in table 6.1.

In figure 6.1, subgraph isomorphic match of patternQ to data graphG has three subgraph

results. As it is displayed in table 6.1, the result of graph simulation contains all the vertices

of G except 10 because they all have the same label and meet child relationship with respect

to their counterpart vertices in Q. Only vertex 11 will be omitted in the result of dual

simulation because it does not satisfy parent relationship.

To find the result of tight simulation, we first need to find candidate vertices for the

center of balls. The candidate vertices in G are those that are dual match to the center of

Q. In our example 2 is the center of the query; therefore, vertices 2, 7, and 13 are candidate

vertices. Moreover, the distance for finding the neighbor vertices equals to the radius of Q,
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Table 6.1: Results of different pattern matching models

Model Symbol Subgraph Results

subgraph isomorphism Q✂iso G f(1, 2, 3, 4)→ (1, 2, 3, 4)

, (1, 2, 3, 5), (1, 2, 4, 5)

graph simulation Q✂sim G R(1, 2, 3, 4)→ ({1, 6, 8, 12}, {2, 7, 13}

, {3, 4, 5, 9, 11, 14}, {3, 4, 5, 9, 11, 14})

dual simulation Q✂D
sim G R(1, 2, 3, 4)→ ({1, 6, 8, 12}, {2, 7, 13}

, {3, 4, 5, 9, 14}, {3, 4, 5, 9, 14})

tight simulation Q✂T
sim G R(1, 2, 3, 4)→ (1, 2, {3, 4, 5}

(based on ✂D
sim) , {3, 4, 5}), (12, 13, 14, 14)

CAR-dual simulation Q✂CD
sim G R(1, 2, 3, 4)→ ({1, 6, 8}, {2, 7}

, {3, 4, 5, 9}, {3, 4, 5, 9})

CAR-tight simulation Q✂CT
sim G R(1, 2, 3, 4)→ (1, 2, {3, 4, 5}

(based on ✂CD
sim) , {3, 4, 5})

which is one in our example. As it is displayed in table 6.1, the result of tight simulation in

our example will be two subgraphs.

It should be noticed that in this example, vertex 13 in G is a dual match to vertex 2 in Q

because the vertex 14 is a dual match to both vertices 3 and 4 at the same time. In example

of figure 6.1, vertices 12, 13, and 14 are excluded in the result of CAR-dual simulation.

Consequently, CAR-tight simulation, which is defined based on the new dual simulation, will

have a single subgraph result as it is displayed in table 6.1. Following, we present the formal

definition of these new models.
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6.1 CAR-dual Simulation

We first present formal mathematical definition of dual simulation, and based on that we

define CAR-dual simulation. By definition [52], pattern Q matches data graph G via dual

simulation, denoted by Q ✂D
sim G, if there is a binary relation RD ⊆ VQ × VG such that it

meats the following conditions. (1) Having the same label: (u, u′) ∈ RD ⇒ lQ(u) = lG(u
′);

(2) All vertices of Q are covered: ∀u ∈ VQ, ∃u
′ ∈ VG : (u, u′) ∈ RD; (3) Child relationship:

∀(u, u′) ∈ RD[(u, v) ∈ EQ ⇒ ∃v
′ ∈ VG : (v, v′) ∈ RD ∧ (u′, v′) ∈ EG] (4) Parent relationship:

∀(u, u′) ∈ RD[(w, u) ∈ EQ ⇒ ∃w
′ ∈ VG : (w,w′) ∈ RD ∧ (w′, u′) ∈ EG].

The result of this model is defined as a maximum dual match set, RD ⊆ VQ × VG, which

is the biggest relation set between Q and G with respect to Q ✂D
sim G. The result dual

match graph, GD(VD, ED, lD), for this model is a subgraph of G that can represent RD. By

definition, GD is a subgraph of G which satisfies these conditions: (1) (u, u′) ∈ RD ⇔ u′ ∈

VD; (2) ∀(u, u
′)(v, v′) ∈ RD[(u, v) ∈ EQ ⇔ (u′, v′) ∈ ED].

To define CAR-dual simulation, we add cardinality condition to the children and parents

with the same labels. Other definitions remain the same.

Definition 6.1 Pattern Q matches data graph G via CAR-dual simulation, denoted by

Q ✂CD
sim G, if there is a relation RD with respect to Q ✂D

sim G, and for every (u, u′) ∈ RD:

(1) the number of children of u′ in GD with a particular label is not less than the number

of children of u in Q with the same label; (2) the number of parents of u′ in GD with a

particular label is not less than the number of parents of u in Q with the same label.

6.2 CAR-tight Simulation

The only difference between CAR-tight simulation and tight simulation, defined in [31],

is its construction based on CAR-dual simulation instead of dual simulation. To find the
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neighborhood of a vertex to enforce locality condition, it uses a concept called ball [52]. A

ball b in G, denoted by Ĝ[c, r], is a subgraph of G that contains all vertices in distance r from

the vertex c (including c). The vertex c is called the center of the ball, and the integer value

r is called the radius of the ball. Moreover, the ball contains all edges in G that connect

these vertices (i.e., it is an induced connected subgraph). Given two vertices u and v in a

connected graph, the distance between them is defined as the minimum number of edges in

an undirected path which connects them.

Definition 6.2 Pattern Q matches data graph G via CAR-tight simulation, denoted by

Q✂CT
simG, if there are vertices u ∈ Q and u′ ∈ G such that (1) u is a center of Q with highest

defined selectivity; (2) (u, u′) ∈ RD where RD is maximum dual match set with respect to

Q✂CD
simG; (3) Q✂CD

sim ĜD[u
′, rQ] with maximum dual match set Rb

D, where ĜD[u
′, rQ] is a ball

extracted from GD(VD, ED, lD). GD is the result dual match graph with respect to Q✂CD
sim G,

and rQ is the radius of Q; (4) u′ is member of at least one of the pairs in Rb
D.

The connected part of the result match graph of each ball with respect to its Rb
D which

contains u′ is called a maximum perfect subgraph (MaxPG) of G with respect to Q. The

subgraph results of the model is actually distinct set of these MaxPGs. The criterion for

selectivity of u in Q is the ratio of its degree to its label frequency.

After this point, when we mention about dual or tight simulation, we mean their new

modification unless it is explicitly expressed. Moreover, we may use dual-sim and tight-sim

for abbreviation. It is straightforward to show that CAR-tight simulation, preserves all the

nice features of the old tight simulation including the fact that it contains all the results of

subgraph isomorphism.
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6.3 Empirical studies

We used three real-world labeled graphs for our experiment: (a) Patent graph [35], a dataset

on US patents where each vertex represents a patent and an edge from i to j means that

patent i cites patent j. There are about 3.7M vertices and 16M edges in this graph. The

label of the vertices are 37 different subcategories of the patents. (b) Citation graph [68],

a citation network of papers where an edge from vertex i to vertex j means paper i has

cited paper j. It has about 2.2M vertices and 4.3M edges. We selected publishing year of

the papers as the label of vertices, which means 80 different labels. (c) Amazon product co-

purchase network [49], with about 548K vertices and 1.7M edges. Each vertex is a product,

and an edge from i to j means that product i is frequently co-purchased with product j. We

used the first category of each product as its label, which led to 104 distinct labels for all

vertices.

For our experiments, we randomly extract a set of base queries from each data graph.

These queries are from five different sizes: (10, 3), (15, 3), (20, 4), (25, 5), and (30, 5). We

extract 100 randomly extracted queries for each size; hence, the base query set for each data

graph contains 500 unique queries. As these queries are directly extracted from data graph,

they all have some results. The experiments were performed on a machine that has 128GB

DDR3 RAM, and two 2GHz Intel Xeon E5-2620 CPUs, each with 6 cores.

It is expected that the result of Cardinality Restricted (CAR for abbreviation) version of

dual and tight simulation to be more stringent than their old counterparts. Our experiments

summarized in figure 6.2 show this property in practice. We used the base query set and

performed dual, CAR-dual, tight, and CAR-tight simulation for each query graph, and

measured the percentage of decrease in the number of vertices in the results. For CAR-tight

simulation, we also measured the decrease in the number of subgraph results.
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As it is displayed in figure 6.2a, we observed more than 25% decrease in the average

number of vertices in the results of both models for all three data graphs under the test.

Moreover, the average number of subgraph results in CAR-tight simulation decreased sig-

nificantly for amazon and patent data graphs. The number of subgraph results has dropped

faster than the number of their containing vertices because of the post-processing phase

of tight simulation. At this phase, all subgraph results that are the superset of any other

one are filtered. While some subgraphs share many vertices in common, they may not be

filtered because of their small differences. Removing less meaningful vertices in CAR-tight

simulation makes many of these subgraphs been filtered.

The cost of achiving more meaningful and more stringent results by CAR modification

may be longer running time. Figure 6.2b shows the percentage of increase in the running

time of dual and tight simulation after CAR modification. Clearly, the running time of

the algorithm for CAR-dual is longer than dual because it needs to check extra conditions.

However, it is more likely that a decrease in the number of balls can compensate the extra cost

of CAR-dual to some extent. Indeed, we could observe that the running time of CAR-tight

decreased about 16% on average for Patent data graph.
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(a) More stringent results)

(b) Difference in running time

Figure 6.2: Effect of CAR modification
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Chapter 7

Effective Caching Techniques for

Accelerating Pattern Matching

Queries

7.1 Introduction to the Cache System

To speedup the process of finding subgraph isomorphism matches several indexing techniques

are introduced like [42] and [19]; however, as it is argued in [67] the construction time and

the storage capacity for complicated indices make them unsuitable for large graphs.

Notwithstanding the fact that the time complexity of the new graph pattern matching

models, like tight simulation, are polynomial, the size of the graphs representing social net-

works or web graphs have become so massive that it would be challenging both in terms of

response time and required computing resources to query graph patterns inside them. There-

fore, a cache system specifically designed for graph pattern matching seems very appealing.

Surprisingly, there is very limited research on the design of such a system.
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Almost all the previous research works on subgraph pattern matching treat each query

as completely independent. In other words, they do not reuse the results from one query

to answer another different query. In a specific domain, the recent works in [56, 65] present

preliminary ideas for reusing the results of SPARQL queries. The other related work, which

very recently published, is in [27] for answering graph pattern queries using views.

The lack of studies in this area is mostly because of intrinsic limits of traditional subgraph

pattern matching models. For example, let us assume that G1 is a graph corresponding to

the collection of the results of subgraph isomorphism of query graph Q1 on a large data

graph G. Then, let us have a new query Q2 which contains a subgraph isomorphic match

of Q1. Although it can be concluded that the results of subgraph isomorphism of Q2 on G

will contain G1, but it is not sufficient by itself to find these results. Indeed, in subgraph

isomorphism model, a new query can be answered using the results of several old queries

only if it can be decomposed to those old queries. This idea is sometimes used for indexing

a graph [57, 73]. However, indexing a massive data graph is not feasible.

In contrast to subgraph isomorphism, we show that the new concepts introduced by the

family of graph simulation models can be employed to design an efficient mechanism for

reusing the result of old queries to answer new ones. In an analogy to the previous example,

assuming that G1 contains the results of tight simulation match of the Q1 on G, the result

of tight simulation of the new query Q2 on G can be answered using only G1 provided that

Q2 is a special type of tight simulation match to Q1.

As the result of subgraph isomorphism is always embedded in the result of tight simula-

tion, this technique can also be used to speedup response time of queries for traditional type

of queries. Intuitively, it would be a significant gain in the performance if we can answer the

new popular queries using a relatively small graph which is resulted by the previous queries

instead of repeatedly using the main massive data graph.
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Existence of popular queries is very common in real-life scenarios. For example, the

social network of Facebook has currently more than 1 billion users and every user has links

to many different objects [3]. It is reported in [12], however, that less than 10% of the data

were accessed during a 6-day trace. The benefits of using a cache system are clear in this

example.

7.2 Motivation

Given a query graph Q and a data graph G, the idea is storing its results of subgraph pattern

matching in a cache-like system, and using that to answer new queries. This technique can

reduce the average response time of queries provided that there are popular new queries which

their answers are contained in the answer of Q. Hence, the main challenge in designing an

effective content-aware cache system for subgraph pattern matching is the problem of pattern

containment.

The main focus of this paper is about pattern containment problem. Let us assume that

Qold is an old graph query on G and its set of results is Aold. The subproblems are (1) how

to store the pair of Qold, Aold in the cache space; (2) receiving a new query Qnew different

from Qold, how we can evaluate the relation between the two to realize if the answer of the

new query is contained in Aold. The goal is answering more number of new queries without

referring to G.

Each time that a new query is received, it should be compared to all old queries in the

cache to find out if there is any match. For a large graph, it is likely that after awhile

the number of stored queries in the cache grows to a large number; therefore, the overhead

of search process in the cache can become restricting. We have designed simple methods

to filter the queries in the cache space when we search for a match to a new query. The

implemented mechanism for searching the cache shows very efficient in our experiments.
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Figure 7.1: The overall architecture of the proposed cache system

When the cache space becomes full, an appropriate replacement mechanism should be

available to remove some of the old contents from the cache in order to open space for new

queries. Cache replacement strategies are extensively studies in other contexts [59]. The

most popular cache replacement policies are based on replacing least frequently used (LFU),

or least recently used (LRU) items. As a future work, it might be worthwhile to design

a specific replacement policy for pattern matching queries. At this work, we have only

implemented a simple replacement mechanism which works based on LFU policy in order

to test our proposed caching mechanism. We have not tested LRU policy, but we do not

expect it to significantly affect our results.
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7.3 Architecture

The caching system proposed in this paper works based on tight simulation model; neverthe-

less, it can also be used to retrieve subgraph isomorphic matches because the result of tight

simulation always contains the result of subgraph isomorphism. The overall architecture of

the proposed cache system is depicted in figure 7.1. ”Graph Pattern Matching Engine” is

the main query processing engine that maintains the data graph. It can be a centralized or

a distributed system. Cache system resides on top of this engine.

At the warm-up phase of the system, or when a query cannot be answered using the

contents of the cache, it will be submitted to the main query engine. Then its result will be

stored in the cache space for the future usage. Nevertheless, instead of storing the original

query, we retain its spanning polytree. Using polytree as a more inclusive representation will

improve the cache hit rate and reduce cache overhead because of its special properties. By

definition, polytree is a directed acyclic graph whose underlying undirected graph is a tree.

The data structure of the cache space is a key-value map from a polytree to a subgraph.

To find the appropriate map-value for this polytree, we first find its tight-simulation result

in the data graph and then extract the induced subgraph corresponding to all the vertices

in this result. The pair of polytree and its corresponding induced subgraph is stored in the

cache space.

In order to facilitate the search in the cache space, we have designed a simple indexing

system based on the signature of the polytrees. The data structure of the index is a key-

value map from a signature to a set of polytrees. When a new query matches to a polytree

based on pattern containment conditions, all of its expected results can be retrieved from

the polytree’s correspondent subgraph; therefore, there would be no need to refer to the

original data graph. We will explain about signature and pattern containment conditions in

section 7.4.
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7.4 The caching mechanism

As it was mentioned earlier, we store pairs of polytree-subgraph in the cache space. We

show that any new query which is cover-tight match to a polytree can be answered using

its corresponding subgraph. We call graph Q2 cover-tight match to graph Q1, if there is a

tight-simulation relation from Q1 to Q2 and this relation covers all the vertices in Q2. Using

polytree of an old query graph instead of itself has several advantages. First, it can be used

to answer a wider range of new queries. Moreover, a polytree has a number of properties

that makes it possible to compute its dual-simulation set instead of tight-simulation for our

purpose. Dual-simulation is always faster than tight-simulation. We explain these properties

in the next section in detail.

Figure 7.2 shows the main idea. The initial received query is displayed in part (a). Its

extracted polytree is illustrated in part (b). After storing the pair of this polytree and its

pattern matching result based on tight simulation in the cache, queries in (c) and (d) can

be answered without using data graph because they are cover-tight match to the polytree.

The designed system has two main modules, each containing several steps as follows. The

flowchart of these steps are also displayed in figure 7.3.

7.4.1 Storing the result of an old query

When a query cannot be answered using the contents of the cache, we store an appropriate

key-value item to the cache space. The steps for creating such a key-value element follows.

Each steps is explained using the example displayed in figure 7.2.

• We first find the spanning polytree of the query graph. For example, when the query in

figure 7.2a is received as a new query which cannot be answered using cache contents,

its spanning polytree will be the query displayed in figure 7.2b. To find the polytree,

we first find a candidate vertex in the query, the same way that we find it for tight
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Figure 7.2: An example for the procedure of caching and reusing the results

simulation. That is, we find a center vertex in the query which has the highest ratio of

degree to the frequency of its label. Then we traverse the underlying undirected graph

of the query in a BFS fashion to find its spanning tree. The spanning ploytree is then

created by adding direction to the edges. It should be noticed that the undirected graph

may have multiple edges; for instance, the multiple edges between between vertices 4

and 5 in our example. In this case, when the undirected edge in the tree is converted

to the directed edge in the polytree, it can have any direction.

• We perform a CAR-dual simulation for the polytree on the data graph, and find the

set of vertices in the data graph that are present in the resulting dual-relation set. We

will show in the section 7.5 that these set of vertices are the same as the set of vertices

in the maximum perfect subgraphs if we had performed tight-simulation.

• We extract an induced subgraph of the data graph using the set of vertices found in

the previous step.
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• The pair of the polytree and the induced subgraph will be stored in the cache space as

a key-value pair.

• In order to facilitate the later search in the cache, the signature of the new polytree

is calculated. Here, we define the signature of each graph as its set of label-edges. An

label-edge for an edge is the pair of the labels of its source vertex and its target vertex.

The signature of the graphs in figure 7.2 are displayed for example. We store a map

from any created signature to the set of polytrees with the same signature. Therefore,

the new polytree will be added to such a set of polytrees with the same signature.

We explain the concept of our defined graph signature further using figure 7.2c. One can

verify that there are nine edges in this graph. Considering the label of the vertices, it can

be inferred that label-edge will be a pair of labels for each edge; for example, the label-edge

for the edge (1, 2) is (B,C). As another example, the label-edge for both edges (4, 5) and

(6, 7) is (E,D). As we define the signature as the set of label-edges, the number of pairs in

the signature can be smaller than the number of the edges in the graph. Consequently, the

signature of the graph in 7.2c contains only six label-edges.

7.4.2 Search in the cache

When a new query is received, the cache space should be searched for any old polytree which

is a cover-tight match to this query. Clearly, it can be very time consuming to check all

the polytrees which are available in the cache space. Therefore, we use a simple filtering

technique based on the stored signatures.

A polytree can be a candidate match to a new graph query if it has exactly the same set

of labels and its signature is a subset of the signature of the new query. Let us assume that

the polytree in figure 7.2b and its corresponding subgraph are stored in the cache space, and

the new query is the graph in figure 7.2d. It should be noticed the new query has six vertices
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and seven edges, while the polytree has five vertices and four edges. Therefore, only a smart

caching technique can measure their similarity, and guarantee the existence of all the results

of the new query in the cache. The main steps of this phase are:

• The signature of the new query is calculated. For example, the signature of the query

graph in figure 7.2d contains five pairs of label-edges.

• The signature of the new query is compared against all the signatures stored in the

cache to find the set of candidate match polytrees. There two comparison conditions:

(1) the two signature must have exactly the same set of individual labels; (2) the

signature of the polytree must be a subset of the signature of the new query.

In our example, the new query has a set of five labels, A,B,C,D,E which is the same

as the polytree in figure 7.2b. If we compare the set of their signatures we can see that

they also satisfy the second condition; i.e., the signature of the polytree is a subset of

the signature of the new query.

• Any polytree found through the previous step as candidate match will be compared

with the new query to check for cover-tight match. Indeed, the new query might be

cover-tight match with several polytrees; this means that any of them can be used to

answer the new query. Therefore, when the first tight-cover match is found the other

candidates will be ignored.

There is only one candidate polytree in our example. In order to check if the graph

in figure 7.2d is a cover-tight match to the polytree in figure 7.2b, their CAR-tight

simulation should be calculated. However, it will be proved in section 7.5 that it would

be enough to calculate only the maximum CAR-dual relation set. One can verify that

the vertices of the new query graph are in such a CAR-dual relation set from the

polytree to the query graph. Therefore, the new query is a cover-tight match to the

polytree.
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• When a cover-tight match is found among candidate polytrees, its correspondent value

in the cache space, which is an induced subgraph of the data graph, will be used to

perform tight simulation and the results will be returned as the final results.

• When there is no cover-tight match present in the cache for the new query, it should

be answered using the original data graph.

Another example illustrated in figure 7.4. Assuming that the query displayed in part (a)

has no match in the cache, its polytree is created as it is shown in part (b) of the figure.

Then the corresponding subgraph of this polytree will be found from the data graph, and

the pair of the polytree and its corresponding subgraph will be stored in the cache. Having

this entry in the cache, not only the original query can be answered using the cache content,

but also the queries displayed in (c) and (d) can be answered because they are all cover-tight

match to the polytree.

7.5 Proof of correctness

In this section, we present the theoretical concepts that prove the correctness of our ap-

proach. Here, we state the materials only for CAR-dual and CAR-tight simulation which

were introduced in chapter 6, but they are also valid for the previous version of these mod-

els. Theorem 7.1 guarantees the pattern containment in our proposed approach. In order to

prove the theorem, we first need to define a few new concepts and prove a few lemmas.

Definition 7.1 A graph Q2 is a cover-tight match to another graph Q1 when all of its

vertices are present in the MaxPGs returned by Q1 ✂
CT
sim Q2.
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Definition 7.2 Assuming that RD is maximum match set for Q✂CD
simG, we define RminD ⊆

RD as a minimum dual match set when (1) it is a complete match set; i.e., u ∈ VQ ⇒ ∃u
′ ∈

G : (u, u′) ∈ RminD (2) removing any vertex of data graph which participate in the match set

from RminD makes it incomplete. We also call the subgraph of G corresponding to a RminD,

a minimum dual match subgraph.

Lemma 7.1 Any maximum perfect subgraph produced by CAR-tight simulation is a union

of some minimum dual match subgraphs.

Proof: Let us assume that X(VX , EX) is a maximum perfect subgraph produced by

Q✂CT
simG. Therefore, X is a connected graph, and any u ∈ VX is in a CAR-dual relationship

with a vertex in Q according to the definition of maximum perfect subgraph. To prove this

lemma, it would be clearly enough to show that u is member of at least one minimum dual

match subgraph, like M , which is also a subgraph of X. We create M as a subgraph for X

that initially contains single vertex u. Then, we add minimal number of parents and children

of u in X to M (including the necessary edges) that it relies on them to satisfy CAR-dual

match conditions.

For any added new vertex to M , we continue to add its minimal set of parents and

children in the same way. Clearly, at some point there would be no need to add any extra

vertex to M because the existent vertices are all satisfied the CAR-dual conditions. This

will certainly happen because of the definition of X. At this point, M is a minimal dual

match subgraph because at each step we added only the vertices which their existence were

necessary for CAR-dual match conditions. It is also clear that we always kept it a subgraph

of X. ✷

The example illustrated in figure 7.5 can clarify the proposed concept by lemma 7.1.

Assuming that the graph depicted in part (a) is a query Q, its maximum perfect subgraph

can be a graph like X depicted in part (b) of the figure. First, It is clear that all the vertices
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in X are in CAR-dual relationship with the vertices in Q, and X is a result dual match

graph. Second, although both vertices 3 and 5 are centers of Q, 3 will be selected as the

candidate vertex because it has lower label frequency. Moreover, the radius of Q is 3. Third,

the only match to candidate center in X is 5, and a ball centered at this vertex with radius 3

contains all the 9 vertices of X. If we look closer at X, we can see that it is actually a union

of three minimum dual match subgraphs. The set of vertices in each of these subgraphs are:

{1,2,3,4,5,8,9}, {1,7,5,8,9}, and {2,6,5,8,9}.

Lemma 7.2 When a query graph Q is a polytree with diameter dQ, none of its minimum

dual match subgraphs on G has a diameter bigger than dQ.

Proof: Let us assume that dQ = n and M(VM , EM) is a minimum dual match subgraph

with respect to Q✂CD
sim G with diameter dM = m. We use proof by contradiction for proving

this lemma. Let us assume that m > n. It means that there is a shortest path, P , in

undirected underlying of M that its length is m. Also, let us assume that the distinct

vertices on this path are < v1, v2, ..., vn, ..., vm >. Clearly, v1 is a match to a vertex in Q, like

u1. Because of the definition for M , v2 must be match to a neighbor (either parent or child)

of u1, like u2.

If we keep traversing on P , we will find more match vertices in Q. These vertices must be

all distinct because first, Q is a polytree; second, if we assume that vi and vj, where j > i are

match to the same ui, then regarding the fact that there is no other link between the vertices

of P (because it is a shortest path between v1 and vm), it means that they belong to different

minimum dual match subgraphs inside M ; this is in contradiction with our assumption that

M is a minimum dual match subgraph. Moreover, adding distinct vertices ui cannot go

beyond n steps because it means the longest path in Q is traversed. As Q is a polytree, un

cannot have any other neighbor except un−1; therefor, vn+1 must be a match to un−1 and

this leads to contradiction as we stated earlier. Hence, m cannot be bigger than n. ✷
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Proposition 7.1 When Q is a polytree, the set of vertices in MaxPGs returned by Q✂CT
simG

is the same as the set of vertices in the result dual match graph returned by Q✂CD
sim G.

Proof: It is clear that the result dual match graph returned by Q ✂CD
sim G is a union

of several minimum dual match subgraphs. It is also known that any of these minimum

dual match subgraphs has at least one candidate vertex for creating the CAR-tight balls.

Moreover, none of these minimum dual match subgraphs has diameter bigger than the diam-

eter of Q according to lemma 7.2. Therefore, every ball and consequently any MaxPG will

contain all the minimum dual match subgraphs that share its center. Furthermore, lemma

7.1 implies that a MaxPG cannot have any vertex which is not member of a minimum dual

match subgraph. Hence, we can conclude that the set of vertices in MaxPGs is the same as

the set of vertices in the result dual match graph. ✷

Lemmas 7.1 and 7.2 are used to prove proposition 7.1, and then the proposition is used

to prove theorem 7.1. Moreover, this propsition indicates that for extracting the induced

subgraph, which should be stored for a polytree in the cache, it would be enough to run

dual-simulation instead of tight-simulation. It should be noticed that dual-simulation is a

preliminary step in calculating tight-simulation; therefore, the extra cost of ball creation

would be avoided. For the same reason, it would be enough to run dual simulation when a

new query should be compared to the existent polytree to realize if it is a cover-tight match

for that polytree.

Theorem 7.1 Consider G as a data graph and Q1 as a query graph. Given that P is

a spanning polytree of Q1, and VP is the set of all vertices in the MaxPGs resulting by

P ✂CT
sim G, for Q1 or any other new query Qi that is a cover-tight match to P , the set of the

vertices, VR, in the MaxPGs resulting by Qi ✂
CT
sim G is a subset of VP (VR ⊆ VP ).
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Proof: As Qi is a cover-tight match to P , we can conclude that any vertex in Qi is in a

CAR-dual relation with a vertex in P with respect to P ✂CD
sim Qi. It is also clear that any

vertex in VR is in a CAR-dual relation with a vertex in Qi with respect to Qi✂
CD
simG. As the

matching conditions in the latter relation can be considered as more restricted conditions in

the former relation, we can conclude that any vertex in VR is in a CAR-dual relation with

a vertex in P . Moreover, VP contains all the vertices in the maximum dual match set with

respect to P ✂CD
sim G according to proposition 7.1. Hence, VR ⊆ VP . ✷

7.6 Empirical studies

We have conducted several sets of experiments to evaluate the effectiveness of the proposed

caching technique. We call a query that cannot be answered by cache a miss query, otherwise

a hit query. We calculate hit-rate ratio by finding the percentage of hit queries in a workload

of queries. The response time of a query is the elapsed time from submitting the query until

receiving its results either from cache or main engine.

7.6.1 Experimental setting

We have implemented a basic cache system in Java. A data graph is provided in adjacency-

list format from a text file. The queries are also fed to the system by their files, which have

the same format. For submitting a workload of queries, the path to the folder of query files

is passed to the program.

All the experiments were performed on a machine that has 128GB DDR3 RAM, and

two 2GHz Intel Xeon E5-2620 CPUs, each with 6 cores. Moreover, we used JDK-1.7.0 55 to

compile and run our program.

We observed that the probability distribution of the label of vertices can greatly affect the

performance of the algorithms. Regarding the fact that there is no study on the distribution
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of the labels in real-world graphs, we decided not to use any synthesized graph for our tests.

Instead, we used three real-world labeled graphs for our experiment: (a) Patent graph [35],

a dataset on US patents where each vertex represents a patent and an edge from i to j

means that patent i cites patent j. There are about 3.7M vertices and 16M edges in this

graph. The label of the vertices are 37 different subcategories of the patents. (b) Citation

graph [68], a citation network of papers where an edge from vertex i to vertex j means paper

i has cited paper j. It has about 2.2M vertices and 4.3M edges. We selected publishing

year of the papers as the label of vertices which means 80 different labels. (c) Amazon

product co-purchase network [49], with about 548K vertices and 1.7M edges. Each vertex

is a product, and an edge from i to j means that product i is frequently co-purchased with

product j. We used the first category of each product as its label, which led to 104 distinct

labels for all vertices.

To generate a query graph with guaranteed result in data graph, we randomly extract a

connected subgraph from a given dataset. Our query generator has a pair of input parameters

(n, d̄), where n is the number of vertices in the query, and d̄ is the desired average degree

of each vertex. The program first randomly picks a vertex of the data graph, and then

randomly extracts between 0 and d̄ neighbors of this vertex regardless of the edge-direction.

It continues adding the local vertices in a BFS-fashion until the requested number of vertices

are extracted.

7.6.2 Experimental results

The experiments are categorized in two groups. First, we study the potential speedup that

can be achieved by reusing the results of queries. Then, we examine cache-hit ratio and

performance improvement achieved by our caching technique for a synthesized workload.

For our experiments, we randomly extract a set of base queries from each data graph.

These queries are from five different sizes: (10, 3), (15, 3), (20, 4), (25, 5), and (30, 5). We
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randomly extract 100 queries for each size; hence, the base query set for each data graph

contains 500 unique queries. As these queries are directly extracted from data graph, they

all have some results.

Speedup

We use the base query set of each data graph to test the speedup that can be achieved by

our caching mechanism. We first submit each new individual query to the system and have

their corresponding cache contents been created. Then, we submit all the queries again and

measure speedup in their response time caused by the cache system. Table 7.1 displays the

average speedup of queries for each data graph. The speedup of each query depends on many

features in both data graph and query graph. Intuitively, one can expect a relation between

the number of vertices in the output of a query and its caching speedup. The Pearson-

Product-Moment Correlation of these two variables are displayed in table 7.1. The degree

of freedom in this experiment is 488. Considering significance level 0.01 and two-tailed

probabilities, the critical value is 0.115. It indicates a statistically significant correlation

between the two variables. We can use this property to determine a criterion for the queries

that are not worth storing their results in the cache.

Charts in figure 7.6 show the caching speedup of base queries versus the number of

vertices in their results, which is normalized with the total number of vertices in the data

graph. After drawing the Power-regression line of the data points, we can select 0.7% as a

common optimal criterion for storing the result of queries. In other words, we do not consider

the queries that the number of vertices in their results is bigger than this limit for storing

in the cache. In our experiments, they are 9.6%, 1.2%, and 8.8% of queries respectively for

Amazon, Citation, and Patent graphs.
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Table 7.1: Speedup achieved by caching

Data graph Amazon Citation Patent

Average speedup 99 487 887

Meadian speedup 60 92 41

Pearson Correlation between the number of vertices in -0.37 -0.39 -0.29

the results and the caching speedup of individual queries

Cache Hit

To evaluate the proposed caching technique, an appropriate workload of queries is needed.

Because of the lack of such a workload, we had to create our own. In general, any caching

technique is useful when there are popular queries that are asked during the time. In our

context, pattern containment technique improves cache hit ratio with utilizing the cache to

answer not only the same repeated queries but also similar queries.

In order to create an appropriate test-set of queries for each data graph, we use the 500

queries randomly extracted in the previous experiment as the set of base queries; i.e.; they are

5 different sizes, each 100 queries. Then, we create a set of similar queries by incrementally

adding a vertex to each base query and connecting the new vertex to a random number of old

vertices with random directions. The label of the new vertex is also randomly selected from

the set of available labels. We continue this incremental process until 5 steps; therefore,

we synthesize 5 new query graphs for each base query. At the end, we have 2500 newly

synthesized queries.

This approach for generating new queries resembles the behavior of real users who tweak

their old queries to explore more interesting patterns. It is noteworthy to mention that there

is no guarantee that newly synthesized queries meat the similarity condition (cover-tight

match) proposed in this paper in order to enjoy pattern containment. Moreover, many of
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these synthesized queries may not have any match in data graph, similar to the real-world

situation.

We form the test-set of queries from the union of base queries and synthesized queries;

hence, there are 3000 unique queries in the test-set. The workload is a sequence of queries

randomly picked from the the test-set. We do not eliminate a selected query from the set;

therefore, there is a chance that it is selected again. To provide a reasonable chance for each

unique query to be picked once, we set the number of queries in the workload 5 times bigger

than the number of unique queries; that is, the workload comprises of 15000 queries.

Figure 7.7 illustrates the measured hit-rate ratio versus different cache sizes. The hori-

zontal axis displays the cache size based on its ratio to the total number of unique queries

in the test-set, and the vertical axis shows the ratio of the number of queries hit the cache

to the total number of queries in the workload. Least Frequently Used (LFU) policy is im-

plemented for replacement when the cache becomes full. As it is expected, the hit-rate ratio

goes towards saturation after some point.

Improvement in the average response time of CAR-tight simulation queries versus the

cache size is displayed in figure 7.8. Table 7.2 presents more detail information about this

experiment. In this table, the average response time without cache represents the situation

when the size of the cache is zero, and the average response time with cache corresponds

to unlimited cache space. It can be observed that the behavior of Citation graph has been

slightly different from the other two graphs; e.g., slower increase in the hit-rate ratio, and

higher ratio of response times comparing with and without cache. This difference can be

explained using features of the graph; i.e., Citation graph is sparser than the others and

has less number of undirected cycles. These features cause shorter response times, less

number of vertices in the results, and less similarity among the queries in the test-set. Less

similarity among the queries will lead to lower hit-rate ratio, and having smaller subgraphs

corresponding to the polytrees makes response times from cache even faster.
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Table 7.2 also shows that the main overhead of the cache system, which is search time, is

negligible in our tests. Average store time includes the spent times for extracting the polytree,

finding its CAR-tight simulation results in data graph, and extracting corresponding induced

subgraph. These steps can be executed in parallel to the main engine; hence, the store time

is not considered in the response time.

Table 7.2: More detail information about cache behavior

Data graph Amazon Citation Patent

Average response time without cache, CAR-tight (msec) 905 607 3482

Average response time with cache, CAR-tight (msec) 329 14 306

Average response time without cache, ✂iso (sec) 591 49 200

Average response time with cache, ✂iso (sec) 130 1.2 175

Average number of vertices in cache for each polytree 990 478 5281

Average search time in cache (msec) 2 6 2

Average store time in cache (msec) 567 793 4315

We have also tested cache performance for subgraph isomorphism. We used DualIso

algorithm [62] to find the first 1000 subgraph isomorphic matches. Exactly the same caching

mechanism used in this test; however, we ran DualIso on data graph when the query did

not hit the cache, and on its correspondent subgraph when it hit the cache. The average

response time versus the size of the cache is illustrated in figure 7.9. Similar to the tight

simulation, the average response times with and without cache are also reported in table 7.2.

Figure 7.10 shows the warm-up behavior of the cache for different data graphs. The

horizontal axis is the percentage of queries submitted from the workload, and vertical axis is

the cumulative percentage of the queries which hit the cache. As one may expect, there is a

transition phase for warm-up and then the curve becomes linear. Comparing with figure 7.7,

it can also be observed that the pace of the transition is faster for a data graph with higher

cache-hit ratio.
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Figure 7.3: The overall procedure of the proposed mechanism
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(a) Amazon graph

(b) Citation graph

(c) Patent graph

Figure 7.6: Caching speedup
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Figure 7.7: Hit-rate ratio

Figure 7.8: Average response time for CAR-tight simulation
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Figure 7.9: Average response time for subgraph isomorphism

Figure 7.10: Cumulative cache hits
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Chapter 8

Related Work

In this chapter, the most important related works are reviewed. We introduce several pattern

matching models which is related to the context of this research, but not introduced earlier

in this document. In this research we have only used vertex-centric BSP programming model

for designing our distributed algorithms. Here, we review some other alternative distributed

computing models which can be considered for future work. Furthermore, we will also present

a brief review of graph partitioning which can be considered important for distributed graph

algorithms. The status-of-the-art of related work for caching techniques is presented at the

end.

8.1 A few other new pattern matching models

The problem of subgraph pattern matching and its different solutions is exhaustively studied

in the literature. We surveyed related work in two categories: pattern matching models, and

distributed algorithms for pattern matching on massive graphs.

There are varieties of models for graph pattern matching. Many matching models find

similarity between graphs based on exact structural matching like subgraph isomorphism
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and its approximate algorithms. On the other hand, there are some matching models that

take into account the meaning of attributes of vertices and edges and their relationship in

addition to graph structure. We are interested in the recent type of matching which is also

called semantic graph matching [33].

A few graph pattern matching models introduced during recent years to response the

emerging need of applications to find a proper semantic graph match like p-homomorphism

[26] and bounded simulation [25]. Our work closely looks at the new extensions of graph

simulation, namely dual simulation and strong simulation [52].

8.1.1 Bounded Simulation

Bounded simulation [25] is an extension of graph simulation where instead of edge-to-edge

mapping there is edge-to-path mapping. That is, similar to graph simulation each vertex of a

data graph should satisfy children condition to be in match relation with a vertex in a query

graph; however, the children can be in a bounded distance instead of being the adjacent

a child. It is noteworthy to mention that graph simulation is a special case of bounded

simulation where all the edges have bound labels ”1”. A cubic algorithms is proposed in [25]

for finding the results of bounded simulation of a query graph on a data graph. The example

displayed in figure 8.1 can clarify the concept.

Part (a) of figure 8.1 is a sample query graph for bounded simulation. In this type of

simulation, each edge of the query has a numeric label which represents the maximum length

of a path that can be matched to the edge. When the label is specified as ”*” instead of a

number, it indicates no bound of the length of matching path.

In our example, existing ”*” as the label on the edge from vertex 3 to vertex 4 means

that the match vertex to 3 must have a path to a vertex that is match to 4. The same way,

label 5 on the edge from vertex 1 to vertex 2 means that match vertex to 1 must have a

path with length not longer than 5 to a vertex that is match to 2. The result of bounded
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simulation of this query on the data graph is displayed on part (b) of the figure. This result

contains vertices 1, 4, 5, 7, 8, 10.
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a) A query graph, Q

b) A data graph, G
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Figure 8.1: An example about bounded simulation

8.1.2 p-homomorphism

P-homomorphism (p-hom) [26] is an extension to graph homomorphism. Similar to relation

between graph homomorphism and graph isomorphism, 1-1 p-homomorphism (1-1 p-hom)
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can be defined as a special case of p-hom, which can be considered as an extension to

graph isomorphism. An important notion for defining p-hom is called similarity matrix

mat(). Consider two labeled graphs G1(V1, E1, L1) and G2(V2, E2, L2). For each pair of

(u, v) ∈ V1×V2, mat(u, v) is a real number in [0, 1], which indicates the similarity of the two

vertices. In other words, mat(u, v) = 0 means that there is no similarity between vertices

u and v. On the other hand, mat(u, v) = 1 means that these two vertices are completely

similar.

Graph G1 is p-homomorphism (p-hom) to graph G2 with respect to a similarity matrix

mat() and a threshold ξ, if there is a function σ from each u ∈ V1 to a v ∈ V2 such that

(1) mat(u, σ(u)) ≥ ξ, and (2) for each edge (u, u′) in E1 there is a path v ❀ v′ in E2 such

that v = σ(u) and v′ = σ(u′); i.e., each edge in G1 is mapped to a path in G2. 1-1 p-

homomorphism (1-1 p-hom) is a special case that σ defines a 1-1 mapping (injective) from

vertices in V1 to V2. It should be noticed that subgraph isomorphism is a special case of 1-1

p-hom.

Figure 8.2 shows an example for explaining these two models. In this example, we assume

that mat(u, v) = 1 if u and v have the same label, and mat(u, v) = 0 otherwise. One can

realize that there is a p-hom mapping from G1 to G2, but there is no 1-1 p-hom mapping

from G1 to G2 because the vertices 2 and 4 in G1 are mapped to the single vertex 1 in G2.

In comparison, there is not only a p-hom mapping from G1 to G3, but also a 1-1 p-hom

mapping.

Fan et al. have shown in [26] that the decision problems for p-hom and 1-1 p-hom are NP-

complete. They have even proved that these problems are approximation-hard. Nevertheless,

they have proposed approximation algorithms for these two problems, and have examined

their effectiveness for Web site matching using real-life and synthesized datasets.
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Figure 8.2: An example about p-hom and 1-1 p-hom

8.2 Alternative distributed computing models

In [52] that introduces dual and strong simulation, the idea of a distributed algorithm is

talked in abstract, and it is not based on a vertex-centric approach. There are also very

interesting theoretical investigation about different types of simulation presented in [23], but

it never becomes close to a distributed algorithm for strong simulation.
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In [54] a distributed algorithm for graph simulation is proposed. They have also analyzed

distributed algorithms for graph simulation and identified three complexity measures for

their analysis: (1) visit time, which measures maximum visiting time of a machine in a

cluster system and indicates the complexity of interactions, (2) makespan, which is response

time to the query from submitting query until when its answer is ready, (3) data shipment,

which is the total size of messages exchanged between machines of the cluster system during

computation. They have implemented and tested their algorithm on a cluster of 16 machines;

however, neither the algorithm nor its implementation is adapted to a widely in use cluster

computing platform like GPS, but it is implemented all in Python.

There are also some approaches proposed based on indexing to increase efficiency of

answering graph pattern matching queries; for example, the framework proposed in [42], or

the algorithm introduced in [19]. However, creating and storing indexes for massive data

graphs does not seem to be feasible.

In [67] a distributed algorithm is introduced for finding isomorphic subgraph matches of a

given query graph in a huge data graph. They deploy graphs on Trinity [13] which provides

a distributed memory cloud environment. This work focuses on efficient web-scale graph

processing, so it avoids exhaustive usage of indices which is very common in most of graph

processing systems. Indeed, they only use a simple string index which maps node labels to

node IDs. It is argued that the time needed for constructing indices and the capacity for

their storage would be infeasible in web-scale graph processing. Index size and time of the

proposed approach, in addition to the query processing time, is compared with estimation

for some other existent systems. Conceptually similar to our approach, their main idea is

based on graph exploration, but they cannot avoid expensive joins because of the intrinsic

limits of subgraph isomorphism.

Fan et al. have studied the theoretical concerns about distributed graph simulation in

[28]. They have a new notion called parallel scalable to measure scalability of a distributed
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algorithm for graph simulation. Given a pattern query Q and a data graph G that is

fragmented into (F1, F2, ..., Fn) and distributed among several sites (S1, S2, ..., Sn), they study

the conditions that an algorithm A for distributed graph simulation can be parallel scalable,

according to their definition, in response time and data shipment. The distributed algorithm

A is parallel scalable in response time if its computation time is determined only by the

largest fragment, Fm, and the size of Q. Moreover, it is parallel scalable in data shipment if

its total required data shipment is a function of the size of Q and the number of fragments.

Then, they prove an impossibility theorem that indicates it is impossible to have such an

algorithm that is either parallel scalable in response time or data shipment. Nevertheless,

they show that the response time of a distributed algorithm for graph simulation can be

bounded to three parameters: |Q|, |Fm|, and |Vf |, which is the number of vertices in G with

edges across different fragments. Also, they show that data shipment can only depend on

Q and the number crossing edges |Ef |. At the end, they design and examine a distributed

algorithm for graph simulation which considers all these parameters.

Ma et al. have designed an implemented a distributed algorithm for strong simulation.

They do not use any general platform for their implementation. Instead, they have imple-

mented their own simple platform, which consists of two main modules: Coordinator module

and Site module. Their algorithm completely rely on the locality conditions of strong simu-

lation. They assume that the partitions of a data graph is distributed among the nodes of

a cluster. The single Coordinator, running on the master node, is responsible to distribute

the query graph among all the Site processes, which are running on the client nodes of the

cluster.

Each ball can be processed independently after creation. All the balls can be built locally

except those that need vertices in the other partitions. To address the problem, they create

part of the balls centered on the boundary vertices of each partition and send them to all

the Sites the center has direct neighbor (parent or child). After all the Sites receive all
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the exchanged partial balls, they update their partitions by incorporating the shipped balls.

After this point, all the balls can be created and processed locally on each Site. As an

optimization technique to reduce the number of shipping balls, they find a maximum partial

dual match relation on each partition. It is similar to the ordinary maximum dual match

relation except for the boundary vertices where only their labels will be checked for matching

not their parent and child relationship conditions.

Following, we review a few generic distributed programming environment for specifically

provided for distributed graph algorithms beside the vertex-centric BSP that was explained

earlier.

8.2.1 Asynchronous Vertex-centric

Although designing and implementing a distributed algorithm on an asynchronous platform

is more difficult than a synchronous one, it may achieve higher efficiency. In general in an

asynchronous platform, it is upon the algorithm designer to take care of problems like data

races and deadlocks. Nevertheless, the authors of GraphLab platform [51] attempt to provide

an asynchronous distributed environment for graph algorithms (iterative machine learning

algorithms in general) that as much as possible insulate users from the complexities of such

a system. It is implemented in C++, but it has also API in Python.

The abstraction model of GraphLab consists of several parts [50]: data graph, update

function, scheduling primitives, consistency model, and sync mechanism. Similar to what

is presented in Pregel-like systems each vertex is a computing unit; i.e., it is a vertex-

centric programming model. According to the definition of its authors, the data graph in its

abstraction represents the data blocks and computational dependencies.
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Moreover, the update functions describe local computation. The scheduling primitives

state the order of the computations and may rely on the data. The data consistency model

specifies how much the local computations can overlap. The sync mechanism is also provided

for the users to be able to aggregate global states.

Signal/Collect [66] is another parallel graph processing platform that provides an asyn-

chronous vertex-centric programming environment. It is implemented in Scala. Similar to

GraphLab, each vertex is a computing unit. Communication between vertices occurs through

the edges using signal and collect mechanism. Edges signal and vertices collect. When an

edge signals, it computes a message based on the state of its source vertex. This message

is sent through the edge to the target vertex. When the target vertex collects, it uses the

received message to update its state. All these signals and collects in parallel across the

graph until all the signals have been collected and all the vertices have been converged to

their final state.

8.2.2 Graph-centric

For running any distributed graph algorithm, it is necessary to partition the data graph

among different processing elements. In vertex-centric programming models, either syn-

chronous like Pregel [55] or asynchronous like GraphLab [51], an algorithm should be de-

signed from perspective of a vertex. It means the partitioning information is hidden from

the users. However, this information can be used for many algorithms to increase efficiency;

i.e., shortening their running time by reducing either network communication that is needed

for synchronization (e.g. in Pregel) or scheduling overhead that is imposed by ensuring data

consistency (e.g. in GraphLab).

To address the mentioned problem, Tian et al. have proposed a graph-centric program-

ming model in [69]. Under this model, the programmer can utilize partition structure of

the graph to avoid unnecessary message passing or scheduling machinery. They have imple-
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mented their model, called Giraph++, as an add-in for Apache Giraph [4] and have examined

its applicability for several graph algorithms.

The proposed graph-centric model is indeed an extension to the vertex-centric model. In

their model, they define vertices in very similar way; however, they divide them to two group:

internal vertices and boundary vertices. Every vertex of the real data graph is considered

internal vertex for exactly one partition that it belongs to. This partition is called the owner

of the internal vertex. A local copy of an internal vertex on another partition, where it has

an edge to a vertex of that partition, is called a boundary vertex on that partition. One

can imagine that a vertex may have copies on several partitions. Moreover, they provide the

compute method for a partition class in contrast to the vertex-centric platforms where the

compute method belongs the vertex class. That is, subgraph partitions are programming

units, and there would be no need for the vertices of the same partition to exchange any

message. Indeed, all the communication will be among different partitions and through

boundary vertices.

8.3 Graph partitioning

Before a distributed graph algorithm can be executed on a system with underlying distributed

architecture, the graph should be partitioned among different nodes of the system. The way

the graph is partitioned can greatly affect the efficiency of the algorithm.

The classical definition of graph partitioning, in simple words, is dividing the vertices of

a graph to roughly equal groups while the number of edges among these groups is minimal.

A more formal definition of this concept follows [18].
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Given a graph G(V,E), a p-way partition of the graph is a mapping Φ : V → [1...p] of

its vertices into p subsets S1, S2, ..., Sp where
⋃

i Si = V and Si

⋂
Sj = ∅ where i 6= j. Every

partition generates a set of cut edges, Ec, defined as the subset of E whose endpoints lie in

distinct partitions; formally:

Ec = {(vi, vj)|(vi, vj) ∈ E,Φ(vi) 6= Φ(vj)}

The weight of each subset, |Si|, is defined to be the number of vertices mapped to that

subset by Φ.

Given a graph as input, the graph partitioning problem seeks to find a p-way partition

in which each subset contains roughly the same number of vertices (|Si| ≤ ⌈|V |/p⌉) and the

number of cut edges, |Ec|, is minimized. Usually, each partitioned subset represents data

and computation that should be assigned to a single processor, and the cut edges represent

the inter-processor communication required by the distribution of workload among different

processors. In other variations, it is possible to assign weight to vertices and edges; therefore,

instead of the same number of vertices, the total weight of vertices in each partition should

be equal. The same way, instead of minimizing the number of cut edges, the their total

weight should be minimized.

The classic definition is based on using edge separator which is a group of edges whose

removal breaks the graph into disjoint subsets. A related problem tries to break the graph

into subsets using a vertex separator of minimum size.

Figure 8.3 displays an example for graph partitioning. In this example, there are the

graph is split to four partitions. There are five cut-edges in this partitioning, which are:

(4, 12), (6, 5), (9, 22), (10, 16), and (17, 18).

Multi-level algorithms and spectral heuristics have been shown to be very effective for par-

titioning graph abstractions derived from physical topologies, such as finite-element meshes

91



A

B C

P1

P3

1

2 3

12 F

B4

E

C

B

A

13

15

17

14
16

D

5

F

E

C

B

A

B

6

8

10

7

9

D 11

P2

A

B

C

19

20

21

B

23

C

18

C

22

P4

Figure 8.3: An example for graph partitioning

arising in scientific computing. Software packages implementing these algorithms (e.g.,

Chaco [39] and Metis [45, 46]) are freely available, computationally efficient, and produce

high-quality partitions in most cases.

Multi-level partitioning algorithms, first obtain a sequence of successive approximations

of the original graph [9]. Each of these approximations represents a problem whose size is

smaller than the size of the initial graph. This procedure continues until the graph contains

a manageable number of vertices. At this point, these algorithms compute a min-cut par-
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titioning of that graph. Since the size of this graph is quite small, even simple algorithms

lead to reasonably good solutions.

The final step of these algorithms is to take the partitioning computed at the smallest

graph and use it to derive a partitioning of the original graph. This is usually done by

propagating the solution through the successive better approximations of the graph and

using simple approaches to further refine the solution. Since the successive finer graphs have

more degrees of freedom, such refinements improve the quality of the resulting partitioning.

8.3.1 Challenges

Applying the classic definition of graph partitioning faces some challenges in real-world

applications. The main challenges are listed as follows.

Time complexity

When the desired number of partitions for graph partitioning is selected as p = 2 the problem

would be equivalent to well-known Minimum Bisection problem which is NP-complete. Due

to the importance of the problem much effort has been made to develop efficient heuristics

and approximation algorithms. If p is not constant the problem is hard to approximate

within any finite factor [11].

Although extensive efforts are made during the last decades to find approximate algo-

rithms and heuristics to efficiently solve graph partitioning problem, it is still an active area

of research. Because of its importance graph partitioning was one of the implementation

challenges of the 10th DIMACS hold in February 2012 [1].

Shortcomings of the classic edge-cut metric

Classic approach of minimizing cut edges has several major flaws [38]. First, although it is

not widely acknowledged, cut edges are not always proportional to the total communication
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volume. Second, in addition to the message size, the latency of communication is also an

important factor in a parallel computer. Graph partitioning approaches try to minimize the

total volume but not the total number of messages. However, depending on the machine

architecture and problem size, message latency can be more important than message volume.

Third, the slowest processor generally limits the performance of a parallel application.

Even when the computational work is well balanced, the communication effort might not

be. Rather than minimizing the total communication volume or even the total number of

messages, we may instead wish to minimize the maximum volume and/or number of messages

handled by any single processor.

Last, on many machine architectures the time to send a message depends upon the dis-

tance between the sending and receiving processors. Although most modern machines have

some mechanism that enables a single message to travel quickly between distant processors,

the communication network is usually handling many messages simultaneously. A message

between distant processors ties up many wires that cannot be used by other messages. To

avoid message contention and improve the overall throughput of the message traffic, it is

preferable to have communication restricted to nearby processors.

Small-world Network Analysis and Partitioning

Many real-world graphs (networks), especially graphs corresponding to social networks, have

a fairly small diameter; this phenomenon is called small-world [72]. Partitioning of these

types of graphs using traditional edge-cut approach will not result a good computational

balance among the nodes of a distributed memory system. SNAP [14] is a parallel net-

work analysis framework which is designed for efficiently partitioning of massive small-world

graphs. In its core it uses graph clustering methods for partitioning.

A key problem in social network analysis is that of finding communities, dense compo-

nents, or detecting other latent structure. This is usually formulated as a graph clustering
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problem, and several algorithms are suggested for finding communities and also several crite-

ria have been proposed for measuring the quality of their result. SNAP finds graph clusters

based on modularity measure. Intuitively, modularity is a measure that is based on optimiz-

ing intra-cluster density over inter-cluster sparsity [8].

Power-law graphs

Many real world graphs like Web-graph, instant messenger graphs, biological networks, and

various social networks are power-law graphs. A power-law graph is a graph whose degree

distribution follows a power-law function [9]. More precisely, a function of the form f =

αdβ, where f is the number of vertices whose degree is d and β < 0. These graphs have

a large number of vertices with very low degree and a few vertices with relatively high

degrees. Classic graph partitioning approaches do not create very well balanced subgraphs

for graphs that follow power-law property. Abou-Rjeili et al. [9] present new multilevel

graph partitioning algorithms that are specically designed for partitioning graphs whose

degree distribution follows a power-law curve. They use graph clustering methods to find

well-balanced partitions.

8.4 Caching techniques for subgraph pattern matching

There are rare previous studies about caching techniques for subgraph pattern matching

queries. In the field of semantic web, many RDF engines cache intermediate results of

SPARQL queries in order to speedup the computation of other queries when they have

common triple patterns [47]. These techniques rely on triple structure of RDF datasets and

the fact that a SPARQL query is mainly composed of triple patterns. Then, they try to

mitigate the cost of expensive joins between the results of common triple patterns.
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Martin et al. [56] have proposed a caching system for SPARQL queries. Nevertheless,

their cache system is content-blind ; i.e., a new query can be answered using the cache only if

it is identical to an old query stored in the cache. Indeed, their contribution is about cache

maintenance; that is, updating the cache contents according to the changes in the underlying

knowledge bases.

A content-aware caching technique for SPARQL queries is introduced in [65]. The authors

propose a few conditions for containment checking of conjunctive SPARQL queries with

simple filter conditions. The first difference from our work is that their work is about

SPARQL queries. Properties of SPARQL queries, which fall in the category of path pattern

queries, are different from the type of subgraph pattern queries that we study in this research.

Because of the nature of SPARQL queries and the way they store their results, they also

need to define evaluability notion because containment conditions cannot guarantee that a

new query can be answered using the cache contents.

Another related work has been published very recently in [27]. The authors have inves-

tigated pattern containment problem for graph simulation [40] and bounded simulation [25]

models. They statically generated a set of views from a given data graph. Each view repre-

sents an interesting part of the data graph. Then, they define their containment conditions

and show how the queries can be evaluated to learn if their answers are contained in a view.

Their experiments eventually shows that the response time of the queries will improve when

they can be answered using initially defined views. The main difference to our work lies in

the intrinsic differences of view and cache. A cache space for graph queries has a dynamic

characteristic; therefore, new issues like cache size, cache-hit ratio, and query replacement

arise that are not considered under concept of views. Moreover, our work is based on a

different pattern matching model that suits a completely different set of applications.
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Chapter 9

Conclusions and Future Work

In the recent years, graph analytics on massive graphs has become an important subfield

of big data analytics especially for applications related to social networks. A good number

of distributed programming platforms are implemented specifically for big graph analytics,

such as Pregel [55], GPS [61], Apache-Giraph [4], GraphLab [51], Pegasus [44], GraphX [75],

and Signal/Collect [66]. Because of the dramatical increase in the size of the graphs, the old

graph algorithms are not efficient for solving the new problems. Therefore, it is necessary to

revise them or design new models and algorithms that suit better to the new problems.

One of the important problems in graph analytics is subgraph pattern matching [33].

Subgraph pattern matching has been increasingly used in analysis of social networks [17, 25].

Although it is extensively studied, the search for efficient methods of answering subgraph

pattern matching still remains open. Using graph simulation models is relatively a new

approach for subgraph pattern matching. Different models are introduced in this family

during recent years that are mainly aiming to provide alternative solutions to traditional

subgraph pattern matching models [31, 32, 52, 25, 26, 74]. It is shown that these new

models can be very useful for new applications like analyzing social networks because of

their promising properties [17]. The first and the most important property of these models
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is the tractability of their algorithms for finding all matches; in comparison, the algorithms for

subgraph isomorphism or subgraph homomorphism are NP-complete. Moreover, the number

of subgraph results returned by these models is linear to the number of the vertices in a data

graph, while it can be exponential for the traditional models. Also, graph simulation models

can return meaningful results for new applications that are not captured by traditional

subgraph pattern matching models [54, 17, 24, 23, 58, 30].

In this research we introduce two new graph pattern matching models in the family of

graph simulation, called strict simulation and tight simulation. These models are indeed

smart improvement of a model called strong simulation [53], and can be considered as al-

ternatives to subgraph isomorphism on massive graphs. Figure 9.1 compares several related

pattern matching models in this family with each other and with subgraph isomorphism in

terms of both efficiency and the quality of results. It is traditionally thought that when

the result of a pattern matching model becomes closer to subgraph isomorphism, the corre-

sponding algorithm will become computationally less efficient. This behavior is depicted in

figure 9.1a for graph simulation, dual simulation and strong simulation. However, we show

that moving from strong simulation towards strict simulation, and then tight simulation not

only improves efficiency, but also makes the results more stringent; i.e., their results become

closer to subgraph isomorphism (figure 9.1b).

Furthermore, we have introduce the concept of cardinality restriction for dual simulation.

Adding this restriction to dual simulation does not increase the time complexity of its al-

gorithms, but improves its expressiveness. Moreover, new version of dual simulation, called

CAR-dual, can be used to make updated versions of the other models that are defined based

on dual simulation; i.e., strong simulation, strict simulation, and tight simulation. These

updated models become more stringent in comparison to their older counterparts.

It seems that it is still possible to improve the available pattern matching models in the

graph simulation family. For example, a straightforward but important extension to the
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Figure 9.1: Comparing different pattern matching models

current graph simulation models is adding label to the edges. This extension will make these

model applicable to a wider range of applications. This will also require the algorithms and

different related definitions to be revised.

In this research, we also designed and implemented distributed algorithms for graph sim-

ulation, dual simulation, strong simulation, strict simulation, and tight simulation. All these

distributed algorithms were designed and implemented based on vertex-centric BSP pro-

gramming model. Although, this programming has many advantages and many platforms

are implemented based on that, it has also some disadvantages. The property of synchro-

nizing all the supersteps at the end of each superstep may add a noticeable overhead at the

last supersteps when only small number of vertices left active.

For future work, it might be worthwhile to try distributed algorithms designed for other

distributed computing models. For example, an asynchronous vertex-centric programming

environment like GraphLab [51] seems to be a good candidate for this purpose. Another

promising alternative might be Graph-centric programming model suggested in [69].

99



We have also proposed a novel pattern containment approach based on tight simulation

model. Furthermore, we have designed and implemented an efficient cache system based

on this technique. This is one of the first works that investigates caching techniques for

subgraph pattern matching queries.

Although the employed filtering mechanism for searching the cache has been very efficient

in our experiments, it might be worthwhile for future work to investigate more complex

indexing algorithms in order to support very heavy workloads in extremely massive datasets.

This problem is very similar to the problem that is studied under the title of supergraph

query processing in the literature [77, 64]. However, the problem in the context of our

research has two main distinguishing differences: (1) All the available index systems are based

on subgraph isomorphism and there is no work about other matching models particularly

simulation; (2) the queries gradually populate the cache space; therefore, unlike the previous

works the index should be formed and evolved dynamically.

The cache replacement policy that we have implemented in this project is very similar to

the policies in other contexts. Nevertheless, it seems appealing to design new replacement

policies specifically revised for subgraph pattern matching. For example, it should be possible

to merge two graph queries stored in the cache when they have a large overlap.

Another future work can be adding support for time evolving data graphs. Real-life data

graphs are time evolving [30]; i.e., there are minor changes in their structure through the

time. The content of cache for pattern matching queries should be updated according to

these changes using incremental algorithms. Incremental algorithms for subgraph pattern

matching are in their infancy stages. In [24], Fan et al. have investigated incremental

algorithms for graph simulation, bounded simulation, and subgraph isomorphism.
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