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ABSTRACT 

 Due to the growing importance of Big Data, graphs are becoming huge in size and 

are rapidly getting too large for conventional computer approaches. Graph Pattern 

Matching is often defined in terms of subgraph isomorphism, an NP-Complete problem. 

Most existing graph pattern matching algorithms are very compute intensive. 

Unfortunately, for such massive graphs, sequential approaches are almost unfeasible. 

Therefore, parallel computing resources are required to meet their computational and 

memory requirements. The paper presents a novel parallel subgraph pattern matching 

algorithm, known as ParDualIso based on Akka. Since, the sequential implementation of 

ParDualIso known as DualIso adapts Dual Simulation as the pruning technique, so we also 

present the parallel implementation of Dual Simulation, referred as ParDualSim. The 

runtimes of the algorithms are tested against their sequential counter-parts on massive 

graphs of 10 million vertices and 250 million edges. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE SURVEY 

Graph Analytic has been an important research area over the several years and graph 

algorithms are becoming very important in so many applications. With this complete new 

era of Big Data, every other thing is going on-line like social networks, data mining, crowd 

sourcing, graph databases and so many other domains. Due to the increasingly growing 

size of data, scalable problems need to be designed. As a result, parallel computing 

resources are required to meet their computational and memory requirements. Our main 

topic of interests is Graph Pattern Matching Algorithms [1] which has gained lots of 

importance due to the growing importance of social networks, genetics, etc. We study 

several techniques for parallel and distributed implementation of such algorithms and 

discuss several issues faced while solving these large-scale graph algorithms. 

 

GRAPH PATTERN MATCHING PROBLEM  

The objective of all pattern matching algorithms is to find out all the matches of a given 

graph, called as query graph, in an existing larger graph, called as data graph. Graph based 

pattern matching is not a single problem, but a set of related problems.  These range from 

exact to inexact matching. Finding an exact match of a query graph in a data graph leads 

to NP-Complete problem [2] which is known as subgraph isomorphism. In recent years, 

several variants of graph pattern matching paradigm have been proposed to conduct in 

polynomial time. They fall into the category of inexact matching. These includes graph 
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simulation [3], dual simulation [4], strong simulation [4], strict simulation [5] and the most 

latest tight simulation [6]. Some libraries that implements graph pattern matching related 

problems include igraph [7], Nauty [8], vflib [9], etc.  

 To handle such large-scale graphs is very crucial and linear solutions have now become 

infeasible. Most existing graph pattern matching algorithms are highly computation 

intensive and do not fit to scale with extremely large graphs that characterize many 

emerging applications. Due to the resource limitation of single processors in graph 

processing, parallel computing [10] appears to be the most optimal solution.  

Graph problems [11] have some inherent characteristics that makes them poorly matched 

to current computational problem-solving approaches. Here are few challenges that the 

graph problems presents: 

1. Unstructured problems – The data in the graph problems is highly unstructured and 

irregular. The partitioning of the data is the major challenge which makes it difficult 

to parallelize a graph problem. So, every graph problem has a certain limit in 

scalability due to poorly partitioned data. 

2. Computations based on data – The graph problems are highly dictated by data 

dependencies specifically by the vertex and edge structure of the graph. Thus, 

computation is highly dependent on the data and as a result, it is difficult to design 

an efficient parallel algorithms as the structure of the computations is not known in 

advance. 

3. Low locality – Graphs provide an intuitive way to model various entities and 

relationships between them. Such graphs specifically which are used for data 

analysis possess highly unstructured and irregular relationships and hence a poor 
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locality. The performance of the processors is dependent upon the exploitation of 

the locality. Due to poor locality that these graph algorithms possess, high 

performance is hard to achieve. 

4. High data access to computing ratio – Graph algorithms are highly dependent on 

the exploration of the structure of the graph than in performing large computations. 

Thus, there is a high ratio of data access to computation for such applications. As a 

result, the runtime is highly dominated by the wait for memory fetches. 

 

PARALLEL AND DISTRIBUTED GRAPH PROCESSING MODELS & TECHNIQUES 

We discuss how the graph problems, software and parallel hardware are dependent to each 

other in the current state of the art and various issues that that leads to various challenges 

in solving large-scale graph problems.  

1. Distributed memory machines - The most widespread class of parallel machines are 

distributed memory computers. These machines typically consists of set of 

processors and memory connected by some high speed network. Such machines are 

now quite inexpensive and efficiently used for problems that are trivially parallel. 

MapReduce [12] despite its popularity for big data computation is unsuitable for 

supporting iterative graph algorithms. As a result, number of distributed/parallel 

graph processing systems have been proposed like Pregel [13], its open source 

implementation Apache Giraph [14], Graphlab [15], Kineograph [16], Trinity [17], 

GPS [18], Grace [19] and Giraph++ [20]. These are most commonly programmed 

by explicit message passing. Typically, they are all based upon BSP- based vertex-

centric programming model. In this model, the users focus on a local action for each 
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vertex of the data graph. Its usage of the BSP [21] model makes it free of deadlocks. 

Moreover, it can also provide very high scalability, and well-suited for distributed 

implementation.  

Data is exchanged between the processors by user-controlled messages, usually 

with the MPI communication library. This model is very easy to program and has 

been proved to be useful for many graph algorithms specifically pattern matching 

algorithms. 

By design, message passing programs need not necessarily be bulk synchronous in 

nature. It also exhibits asynchronous communication in an arbitrary manner. The 

most common platform is AKKA [22], an actor-based message passing model that 

provides asynchronous message passing communication in between the actors.  

 

2. Partitioned global address space – It is a parallel programming model. It assumes a 

global memory address space that is logically partitioned and a portion of it is local 

to each process or thread. E.g. UPC [23] language. PGAS attempts to combine the 

advantages of a SPMD programming style for distributed memory systems (as 

employed by MPI) with the data referencing semantics of shared memory systems. 

Two programming languages that use this model are Chapel [24] and X10 [25].  

Although, fine-grained programs are easier to write than with MPI, the number of 

threads of control is fixed in this and generally equal to the number of processors. 

The inability to use dynamic number of threads is a significant loss to the high 

performing graph software. 
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3. Shared memory model - In this programming model, tasks share a common address 

space, which they read and write to asynchronously. Various mechanisms such as 

locks / semaphores may be used to control access to the shared memory. Machine 

memory is physically distributed across networked machines, but appears to the 

user as a single shared memory (global address space). Generically, this approach 

is referred to as "virtual shared memory”.  

 

4. Multi-threaded Models - In the threads model of parallel programming, a single 

huge process can have multiple smaller processes concurrently executing their 

tasks. Each thread has a local data, but they also share the entire resources of the 

process. A thread's work may best be described as a subroutine within the main 

program. Any thread can execute any subroutine at the same time as other threads. 

Threads communicate with each other through global memory (updating address 

locations). This requires synchronization constructs to ensure that no two threads 

updates the same global address at same time. The programmer is responsible for 

determining the parallelism. E.g.  POSIX threads and OpenMP.  

 

DESIGN ASPECTS OF PARALLEL GRAPH ALGORITHMS 

1. Job Granularity – While designing a parallel graph algorithm, the most important 

thing is to decide and think properly as to where to introduce parallelism. For 

example, in All-Pair Shortest Path algorithm, for each vertex, single-source shortest 

path can be employed to compute the paths in parallel, thereby achieving maximum 

parallelism. 



 

6 

2. Resource Contention – The key here is to have minimum contention in terms of 

memory, disk, etc. While designing the parallel graph algorithms, we should take 

care that multiple processes or threads should not access the same resource 

simultaneously. Otherwise, system will observe performance degradation.  

3. Load Balancing – To achieve maximum parallelism, proper load-balancing among 

the processors is a major task. Each processor should be assigned tasks in such a 

way that overall computation is balanced across each processor.  

 

However, high performance graph algorithms have been proven to be difficult to develop. 

The problems that have simple sequential solutions do not necessarily have a practical 

parallel solution and may be no efficient parallel solution at all. Various graph frameworks 

and libraries have been designed which efficiently handle the graph pattern matching 

problems. These frameworks should be highly flexible, extensible, portable and 

maintainable. The most common example is Depth First Search, which is often used as a 

basis of many parallel graph pattern matching algorithms. Graph Pattern Matching also 

falls into similar category and its efficient parallel and distributed implementation is an 

open research area.  
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ABSTRACT 

Due to the growing importance of Big Data, graphs are becoming huge in size and 

are rapidly getting too large for conventional computer approaches. Graph Pattern 

Matching is often defined in terms of subgraph isomorphism, an NP-Complete problem. 

Most existing graph pattern matching algorithms are very compute intensive. As a result, 

parallel and distributed computing may be required to meet their computational and 

memory requirements. In recent years, many graph processing frameworks have been 

developed such as Pregel, Giraph, etc. However, they follow vertex centric, Bulk-

Synchronous Parallel processing model. Although some recent work such as Giraph++ 

follows graph-centric BSP approach, our goal is to come up algorithms that reduce 

synchronization bottlenecks of the BSP model, thereby achieving improved performance. 

The paper presents a novel parallel subgraph pattern matching algorithm, known as 

ParDualIso based on an actor-based concurrency asynchronous model. The sequential 

implementation of ParDualIso known as DualIso adapts Dual Simulation as the pruning 

technique, so we also present a parallel implementation of Dual Simulation. The runtimes 

of the algorithms are tested against their sequential counter-parts on massive graphs of size 

of up to 10 million vertices and 250 million edges. We demonstrate through our 

experimental results the scalability and performance of the algorithms. 
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2.1 INRODUCTION 

Graph analytics [1] has been an important research area over the past several years 

and graph algorithms are becoming very important in many applications. With this 

complete new era of Big Data, many things are going online like social networks [26], data 

mining [27], crowd sourcing, graph databases [28] and various other domains. Graph 

pattern matching [29] is an interesting problem in this domain. The problem is given a 

small query graph, find all its embeddings in a large data graph.  Due to the rapidly growing 

size of data, scalable solutions need to be designed. However, the scalability of these 

solutions is hindered by the NP-completeness of the subgraph isomorphism problem.  

Numerous applications deal with large-scale massive graphs. Graphs are used to 

represent relationships between the members of a social network, links between the web-

pages on the Internet, chemical bonds, etc. [30]. The storage and the analysis of the graph 

is also an open research area. Efficient query processing [31] on graphs is also becoming 

popular due to the growing importance of graph databases. The task of the query processing 

is to find all the subgraphs of the data graph that are similar to the given query graph. This 

leads to the subgraph isomorphism problem which is NP-complete [64]. This means that 

exact query matching is intractable in worst case scenarios. Thus, to handle such large-

scale graphs and perform exact query matching have become very crucial and sequential 

solutions may exhibit inadequate performance. Parallel and distributed computing offer 

solutions to utilize the capabilities of multi-core systems and clusters in graph processing. 

Ullmann’s algorithm [32] and the VF2 algorithm [33] are pioneering work on 

subgraph isomorphism and are widely used. They can be effectively used for labeled 

graphs with thousands of vertices. Apart from these, several state-of-the-art algorithms [34] 
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have been developed for subgraph isomorphism, including SPath [35], GADDI [36], 

GraphQL [37], QuickSI [38], SUMMA [39], Turbo-ISO [40] and the very recent DualIso 

[41]. These are all sequential algorithms that do not exploit the capabilities of multi-core 

machines or clusters. Two well-known parallel implementations have also been created: 

Ullmann [42] and STW [43]. 

Considering the benefits of parallel computing, we use efficient graph exploration 

and design a parallel version of DualIso [41], an in-memory, pruning-based algorithm for 

subgraph isomorphism. We call it as ParDualIso throughout this paper. We chose Akka 

[22] as a programming model for our implementation and discuss the advantages of it in 

the section 2.2. Since, the high performance of DualIso algorithm is largely due to the 

effectiveness of the pruning algorithm, known as Dual Simulation [43], we also 

implemented a parallel version of Dual Simulation and call it as ParDualSim. For our 

experimentation, we have compared the runtime of our parallel algorithms against their 

sequential counterparts on both synthetic and real data graphs of up to 10 million vertices 

and 250 million edges. The performance and scalability of our algorithms is evaluated 

against several parameters. 

The remaining sections of the paper are organized as follows. Section 2.2 presents 

background information on the subgraph isomorphism problem and the terms used in the 

rest of the paper. It also includes information about the Akka toolkit and an explanation 

why we chose this and how suitable it is for our algorithms. Section 2.3 discusses several 

challenges that the graph pattern matching problems possess to make them parallel. In 

section 2.4, we explain the parallel implementation of the Dual Simulation algorithm. 

Section 2.5 is dedicated to the detailed explanation of our parallel subgraph isomorphism 
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algorithm. Extensive experiments are covered in section 2.6 of the paper to illustrate the 

behavior of our algorithms. Next, we cover related work in section 2.7 followed by 

conclusions and future work in section 2.8. 

 

2.2 BACKGROUND 

Graphs have always been an important element in the fields of mathematics, 

computer science, chemistry, biotechnology (among other fields), and have become even 

more interesting for online social networks such as Facebook, LinkedIn, and Twitter, etc. 

Graphs are very attractive when it comes to modeling real world data as they are so intuitive 

and flexible. Consequentially, there are several graph databases available, Neo4j being one 

of the most popular. However, the problem arises when processing very large graphs 

comprising of huge number of vertices. There are numerous algorithms for graph 

processing with immediate applications like subgraph pattern matching [1], maximum 

common subgraph [48], graph homomorphism [49], isomorphism [50], monomorphism 

[51], etc. 

Graphs can be both directed and undirected depending upon the applications. The 

vertices and edges of the graph can have certain attributes such as vertex labels, edge labels, 

etc. Our work is focused only on directed graphs with only vertex labels. Throughout this 

paper, we have kept the same terminology as in [41] to maintain consistency. A vertex-

labeled directed graph is a triple G(V, E, l), where V is a set of vertices, E ⊆ V × V is a set 

of edges, and l: V → Z assigns a label (an integer) to each vertex. For a given vertex, v ∈ 

V, we use adj(v) to denote the adjacency set of v such that for any v ∈ V, adj(v) = {v′: (v, 

v′) ∈ E}. We sometimes refer to the vertices in adj(v) as the children of vertex v, and 



 

12 

conversely, v as the parent of all vertices in adj(v). Also, we use the term degree to refer to 

the outdegree of a vertex; i.e., the size of its adjacency set. We also assume the query graph, 

Q to be a connected graph as the disconnected query graph would mean having multiple 

queries for the same data graph, G. 

2.2.1 GRAPH PATTERN MATCHING.  

The objective of graph pattern matching problems [1] is to find the matches of a 

given graph, called as query graph Q, in an existing larger graph, called as data graph, G. 

The matches are based upon the correspondence between the vertices and edges of two 

graphs that satisfies more or less stringent constraints [1]. The problem is in huge demand 

in growing domains of social networking, science, data analysis, query processing on graph 

databases, and many others. It is typically defined in terms of subgraph isomorphism.   

SUBGRAPH ISOMORPHISM. The aim of this problem is to find out all the subgraphs 

of a data graph that are an exact match to the query graph. This is traditionally the most 

popular of all the graph pattern matching problems. Below we define the terms subgraph 

and subgraph isomorphism mentioned in [41]. 

Definition: (Subgraph) Given a graph G(V, E, l), a graph G′(V ′, E′, l′) is said to be a 

subgraph of G if V′ ⊆ V , E′ ⊆ E, and ∀ v ∈ V′, l′(v) = l(v). 

Definition: (Subgraph Isomorphism) Given a query graph Q(VQ, EQ, lQ) and a data graph 

G(V, E, l), a subgraph G′(V′, E′, l′) of G is a subgraph isomorphic match to Q if there exists 

a bijective function f : VQ → V′ such that: 

1. ∀v ∈ VQ, lQ(v) = l′ (f(v)). 

2. An edge (u, v) is in EQ if and only if (f(u), f(v)) is in E′. 
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DUAL SIMULATION. It is a pattern matching model which defines a relation from 

vertices of the query graph to vertices of the data graph with the same label. Dual 

simulation [44] is a straightforward extension of the simple graph simulation model [1], 

[52]. The ordered pair consisting of vertices u ∈ VQ and v ∈ VG is a dual match if it satisfies 

the following four constraints: label constraint, query graph coverage constraint, child 

constraint and parent constraint. The label constraint requires that the labels of u and v 

match. The query graph coverage constraint requires that each u ∈ VQ must match at least 

one vertex in V. The child constraint requires that the set of child labels of u must be a 

subset of child labels of v. Similarly, the parent constraint requires that the set of parent 

labels of u must be a subset of parent labels of v. 

Definition: Query graph Q (VQ, EQ, lQ) matches data graph G (V, E, l) via dual simulation, 

denoted by 𝑄 ⊴𝑠𝑖𝑚
𝐷 𝐺, if there is a relation RD ⊆ VQ × V such that: 

1) If (u, v) ∈ RD then lQ(u) = l(v) 

2) ∀ u ∈ VQ, ∃ v ∈ V s.t. (u, v) ∈ RD 

3) ∀ (u, u′) ∈ EQ, ∃ (v,v') ∈ E s.t. (u, v) ∈ RD and (u′, v′) ∈ RD 

4) ∀ (u′′, u) ∈ EQ, ∃ (v'',v) ∈ E s.t. (u, v) ∈ RD and (u′′, v′′) ∈ RD 

We took the algorithm for dual simulation from [41] which is novel in that it does not 

require a list of parents for each vertex in the data graph. It uses almost two times less 

memory than existing algorithms and the runtime is reduced considerably due to the 

enforcement of both the parent and child constraints inside a single loop. Figure 2.1 shows 

the data graph and query graph. In the data graph, vertices labeled as ‘d’ are the dual 

simulation result and ‘i’ represents isomorphic matches. 
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Figure 2.1: Query and Data Graph 

2.2.2 MODEL USED. 

With “large” graphs comes the desire to extract meaningful information from these 

graphs. In the age of multi-core CPUs, concurrent processing of graphs proves to be an 

important topic. The distribution of data among a set of processors has been one of the 

fundamental issues in parallel processing applications. Undoubtedly, the way one partitions 

a graph and distributes the vertices among processors affects the performance of the 

computation. The performance of the system can be measured with respect to two metrics, 

namely the cost of communication among the processors in the system and the utilization 

of processors in terms of the time they are not idle. While choosing the framework, the 

optimal solution is to alleviate the communication cost among the processors and to 

intensify the utilization of the processors. Further we describe briefly, the model of 

computation for performing graph algorithms using multiple cores as well as using a cluster 

of computers. Although the focus of the current work is on parallel processing using 

multiple cores, the code has been set up to be readily extended to be executed on a cluster. 

AKKA. It has been known that building concurrent applications/algorithms is difficult 

especially when directly managing threads with challenges of handling synchronization. 
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This is because under-synchronizing the code will lead to race conditions, while over-

synchronizing lowers the performance. The actor pattern – Akka [22] makes it easy to 

separate concerns into isolated actors that allow for safe concurrency. Akka brings the same 

pattern to Scala. 

 In an actor-based system, everything is treated as an actor which interact and share 

information with one another through message passing. There is a layer between the actors 

and the underlying system with actors processing the messages. The framework handles 

the thread scheduling and message passing transparently and in a synchronized manner. 

Some of the key features of this toolkit are high performance with adaptive load-balancing, 

routing, and remoting based on configurations [54]. With Akka, one can build simple, 

powerful, concurrent, and distributed applications easily. Also, they are resilient by design 

which means that the systems built on Akka have a self-healing nature. An actor is a light-

weight entity that receives messages and takes actions to handle them. Upon receiving a 

message, it can process those messages asynchronously using an event-driven receive loop. 

 Using the Akka framework for performing algorithms on graphs, a feasible way to 

minimize the communication cost is to partition the graph to a number of highly connected 

subgraphs with few edges between them and distribute each of these partitions among 

different processors. We take care of the processor utilization by partitioning the graphs 

into a number of files that is equal to the number of active processors. Also, we assign each 

processor their respective partitioned files for which they do the required computations and 

send back their respective results to the parent/master processor which in turn does the 

aggregated computation and gives the final results. In our system, there is less 

communication between the processors, which saves the overall running time for our graph 
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algorithms to a much greater extent and also saves the communication cost. One of the 

main reason why we chose this framework is also due to its remarkable feature that allows 

one to extend the parallel algorithms to distributed ones by making minor changes in its 

configuration file.  

2.2.3  GRAPH PARTITIONING 

Graph Partitioning [56] plays a vital role in parallel and distributed graph 

processing. The problem can be defined on data represented in the form of graph G(V, E, 

l) such that it is possible to partition G into smaller components. For instance, a k-way 

partition divides the vertex set into k smaller components [56]. We need to first decide the 

number of partitions based on each experiment we want to perform. There are two things 

to consider when we do the partitioning. Firstly, a larger partition size increases the chances 

of the neighboring vertices to belong to the same partition. Secondly, smaller partitions 

increase the potential degree of parallelism and also help balance the workload across 

different workers. 

However, the more important question is how to partition a graph. A good 

partitioning strategy should minimize the number of edges crossing different partitions. A 

wide variety of partitioning and refinement methods can be applied within the overall 

multi-level scheme. We used METIS components [56] for graph partitioning, which can 

partition an unstructured graph into k parts using either the multilevel recursive 

bisectioning or the multilevel k-way schemes. Both the models can provide high-quality 

yet different partitions. The algorithms work with a simple goal: edge-cut which basically 

tries to minimize the edges that travel between the different partitions. Since graph 

partitioning is not the focus of this work, we leave the in-depth study of the graph 



 

17 

partitioning algorithms to [56]. Referring to [55], we went for the k-way partitioning 

scheme as it was reported to perform better on average than recursive bisectioning. Overall, 

producing balanced graph partitions with minimum communication cost is an NP-hard 

problem. 

 

2.3 CHALLENGES WITH GRAPH PATTERN MATCHING PROBLEMS 

Graph pattern matching problems [11] have some inherent characteristics that 

makes them poorly matched to current computational problem-solving approaches. The 

data in the graph problems is highly unstructured and irregular. The partitioning of the data 

is the major challenge which makes it difficult to parallelize a graph problem. So, every 

graph problem has a certain limit in scalability due to poorly partitioned data. Efficient data 

access is not possible due to the poor locality of graphs. The performance of the processors 

is dependent upon the exploitation of the locality. Due to the poor locality that these graph 

algorithms possess, high performance is hard to achieve. These graph pattern matching 

problems are highly dictated by data dependencies specifically by the vertex and edge 

structure of the graph. Thus, computation is highly dependent on the data and consequently, 

it is difficult to design an efficient parallel algorithm as the structure of the computations 

is not known in advance. Moreover, graph algorithms are highly dependent on the 

exploration of the structure of the graph than in performing large computations. Thus, there 

is a high ratio of data access to computation for such applications. 

In recent years, several platforms have been designed with the aim of harnessing 

shared nothing clusters for processing massive graphs. MapReduce [12] despite its 

popularity for big data computation is unsuitable for supporting iterative graph algorithms. 
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Therefore, a number of distributed/parallel graph processing systems have been proposed 

like Pregel [13], its open source implementation Apache Giraph [14], GraphLab [15], 

Kineograph [16], Trinity [17], GPS [18], and GRACE [19]. These are most commonly 

programmed by explicit message passing. Typically, they are all based upon BSP- based 

vertex-centric programming model. BSP model may cause synchronization bottlenecks 

which can be deleterious for load-balancing and maximum parallelism cannot be achieved. 

However, while designing the parallel graph based algorithms, there are a few other 

things that need to be kept in mind, apart from addressing the above mentioned challenges. 

The most important thing is to decide and think properly as to where to introduce 

parallelism. For example, in the All-Pair Shortest Path algorithm, for each vertex, single-

source shortest path can be employed to compute the paths in parallel, thereby achieving 

maximum parallelism. Although in general, while designing parallel graph algorithms, one 

should be careful with multiple processes or threads that access the same resource 

simultaneously, this is not an issue when using Akka. 

We have considered these aspects while implementing our parallel subgraph pattern 

matching algorithm and have thus achieved considerable performance as can be seen in the 

experiments section 2.6. 

 

2.4 PARDUALSIM 

Since it is the core element of our subgraph isomorphism algorithm, so we now focus on 

Dual Simulation. In this section, we discuss the implementation of a parallel dual 

simulation algorithm, referred as ParDualSim and later move forward with the discussion 

of parallel DualIso, referred as ParDualIso in the next section.  
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Below, we highlight an outline for the ParDualSim algorithm that we designed for an actor-

based concurrency model: 

1. Partition the data graph using METIS. 

2. Start Akka ParDualSim System, refer Figure 2.2. 

a. Master assigns task to the workers, number of workers equal to number of 

partitions. 

b. Each worker performs DualSim4Worker algorithm, independently. 

c. Master aggregates the result. 

d. Master performs dual simulation on the aggregated result. 

3. Display dual simulation result. 

2.4.1 PARTITIONING APPROACH. 

The challenge here is not only to do graph partitioning but also how to maintain boundary 

vertices information. This is crucial because a poor approach can result into large number 

of communications, hence performance degradation. The way we perform graph 

partitioning, induces no communication between the workers for boundary vertices 

information. Our approach is a four step process: 

1. Convert data graph into the format of METIS input graph. 

2. Run METIS to generate an output file required for partitioning. 

3. Generate the partitioned graphs using data graph and METIS output.   

4. Load the partitioned graphs for the workers. 
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Figure 2.2. The flowchart of Akka ParDualSim system. 

 

Figure 2.3. The data graph with cuts. 
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Firstly, all our graphs are directed, while METIS partitions only the undirected graphs. 

Once we have generated data and query graph randomly through our graph generator, we 

convert the data graph to properly fit into the format of the METIS. Secondly, after 

conversion, we run METIS to partition the graph in which we feed the number of partitions 

that we want for the graph. METIS considers min-edge cut and load-balancing factors 

while partitioning. For our purpose, we have used the default value of these parameters that 

METIS provides. The output file includes partition number at each line. This partition 

number is to map a vertex to its corresponding partitioned graph. For the data graph in 

Figure 2.3, considering number of partitions equal to 2, the content in the generated output 

file is: 

                                                       1, 0, 0, 1, 0, 1 

Thirdly, this step is the most crucial step, largely due to the way we generate partitioned 

graphs and maintain boundary vertices information. Now, we consider the input data graph 

and the METIS output file together and then partition the graph into the number of 

partitions in such a way: 

a. Generate a number of files equal to the number of partitions where each line of 

the data graph is copied to the partitioned file number mentioned in the METIS 

output. The generated partitioned graphs are in the form of: 

partGi 

vertex id; label; {adjList} 

partG0              partG1 

1; 2; {}  0; 0; {} 

2; 2; {1, 3}             3; 0; {0, 4, 5} 
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4; 1; {0, 2}  5; 2; {0} 

b. The next task is how to take care of the boundary vertex information. As we know, 

to perform dual simulation pruning, we need parent and child vertex label 

information. Considering partG0, vertex 2 has child vertex 3. However, vertex 3 is 

in partG1. So, while performing dual simulation, we need to communicate in order 

to get the vertex 3 label information. To reduce this communication, while 

partitioning we store the parent and child label information separated by break line. 

Only those vertices will be mentioned below the line which are not the part of actual 

partitioned graph. For example, we can have information as shown here, 

    partG0              partG1 

1; 2; {}  0; 0; {} 

2; 2; {1, 3}             3; 0; {0, 4, 5} 

4; 1; {0, 2}  5; 2; {0} 

---------             --------- 

3; 0;          2; 2; 

0; 0;   4; 1; 

This approach has an advantage that at the time of loading the partitioned graph itself, the 

workers can load boundary information also. Therefore, while performing dual simulation, 

unnecessary communication between the workers is avoided. 

2.4.2 GRAPH LOADING FOR WORKER. 

Each worker has been assigned a task to perform dual simulation for a partitioned graph. 

So, a worker loads its corresponding partitioned graph. Workers load the file in such a way 
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that vertices which are above the break line are the only vertices that belongs to this 

particular partitioned graph. 

So, for     partG0   partG1 

               adj(1) = {}              adj(0) = {} 

               adj(2) = {1, 3}  adj(3) = {0, 4, 5} 

               adj(4) = {0, 2}  adj(5) = {0} 

However, we construct the label map on the basis of full file information, i.e., including 

the boundary vertex information too. So, the label map for this example, will be: 

partG0 - {(1 → 2), (2 → 2), (4 → 1), (3 → 0), (0 → 0)} 

partG1 - {(0 → 0), (3 → 0), (5 → 2), (2 → 2), (4 → 1)} 

2.4.3 DUAL SIMULATION FOR WORKERS. 

The key to success for ParDualSim is a modification of the dual simulation [41] algorithm. 

This modified algorithm is performed by the workers who run the dual simulation for the 

first iteration only as illustrated in the pseudo-code in Figure 2.4. Our algorithm starts by 

obtaining feasible matches in the similar way as in [41]. Given a query vertex u, Φ(u) is 

created which contains all the vertices of the data graph with the same label as u. Thus, 

feasible match sets is denoted by Φ. Below, we discuss the steps performed by the workers. 

a. The initial feasible matches are calculated on the basis of label map, and since we saw 

how the workers construct their respective label maps, we will have feasible matches 

consisting of all the vertices mentioned in the partitioned graph. 

For, partG0   partG1 

Φ(0) = {1, 2}   Φ(0) = {2, 5} 

Φ(1) = {0, 3}   Φ(1) = {0, 3} 
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Φ(2) = {0, 3}   Φ(2) = {0, 3} 

b. Dual simulation is applied using initial feasible match to prune out the unwanted 

vertices. However, in this case, worker for partG0, does not have capability to prune 

out vertex 3, as it is not the part of its own partitioned graph. Therefore, worker 

cannot evaluate those vertices which are the part of boundary information. 

c. To deal with this situation, we make two copies of Φ, consisting only of vertices of 

the partitioned graph. We refer them as ΦWC and ΦW, respectively. 

Initially, ΦW = ΦWC. 

For, partG0   partG1 

ΦW(0) = {1, 2}  ΦW(0) = {5} 

ΦW(1) = {}   ΦW(1) = {0, 3} 

ΦW(2) = {}   ΦW(2) = {0, 3} 

d. Since every worker just needs to evaluate their part's vertices, we iterate over the loop 

for ΦWC, v  ΦWC(u).  

1: procedure DUALSIM4WORKER (partGi, Q, Φ, ΦWC, ΦW): 

2:     for u  VQ  do 

3:         for u′   Q.adj(u) do 

4:             Φ′(u′)  ∅   

5:             for v  ΦWC(u) do 

6:                 Φv(u′)  partGi.adj(v) ∩ Φ(u′) 

7:                 if Φv(u′) is empty then 

8:                     remove v from ΦW(u) 

9:                 else add v in ΦW(u) 
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10:               Φ′ (u′)  Φ′ (u′) ⋃ Φv(u′) 

11:           if ΦW(u) is not empty then 

12:               ΦW(u′) = Φ′(u′) 

13:           ΦWC(u) = ΦW(u) 

14:     return ΦW 

Figure 2.4. Pseudo code of dual simulation worker. 

e. As discussed in section 2.4.2, partGi.adj(v) may contain some vertices which are not 

the part of this partGi. According to step c, these vertices will not be in ΦWC and ΦW. 

So, the intersection at line 6 of Figure 2.4 can be empty, and as a result, vertex v can be 

removed from ΦW. However, the vertex v can still be a potential match because Φ(u′) 

may contain some vertices of partGi.adj(v). So, here comes the importance of storing 

the boundary information within the same file. Thus, having that child and parent label 

information to construct the initial Φ helps in evaluating vertex v. This is why we do 

intersection of partGi.adj(v) and Φ(u′). 

For example, for the partG0 file, and u = 0, u′ = 1, ΦWC(u) = {1, 2}, v = 2; and 

partG0.adj(v) = {1, 3}. 

 So, we see that vertex v is a potential match, however, if we do partG0.adj(v) ∩ 

ΦWC(u′), v gets eliminated. This is because vertex 3 is not the part of this graph and it 

is a boundary vertex. However, its information is maintained in Φ. Because we do 

partG0.adj(v) ∩ Φ(u′), vertex v, i.e., vertex 2 will be considered as a potential match. 

f. The reason why we maintain two copies of Φ is that because we want to evaluate each 

and every vertex of the particular part graph, so we run the loop for ΦWC, however, 

prune out the vertices from ΦW. 
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g. Finally, we return ΦW as a pruned vertex feasible match set. Below is the pruned 

feasible match set returned by the workers.  

For,   partG0             partG1 

      ΦW(0) = {2}                    ΦW(0) = {5} 

      ΦW(1) = {3}                    ΦW(1) = {3} 

      ΦW(2) = {}                    ΦW(2) = {0} 

2.4.4 COMPUTATION AT MASTER. 

The master is responsible for managing the workers, the worker’s response and the result 

aggregations. The step by step procedure is as follows: 

a) Assigns the task to the workers. Master sends actor   message to the worker to perform 

DualSim4Worker (Figure 2.4) for the particular partition graph partGi, i ≤ number of 

partitions.  

b) It waits till it gets response from all the workers. Workers response are in the form of 

feasible match ΦWi. 

For, partG0   partG1 

ΦW(0) = {2}   ΦW(0) = {5} 

ΦW(1) = {3}   ΦW(1) = {3} 

ΦW(2) = {}   ΦW(2) = {0} 

c) Master maintains ΦR, which is ΦR = ΦR ⋃ ΦWi, ∀i. According to the paper [59], union 

of all the ΦWi will maintain all the potential matches. 

ΦR(0) = {2, 5} 

ΦR(1) = {3} 

ΦR(2) = {0} 
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d) Once the master has response from all the workers, it performs dual simulation on ΦR 

using the input data graph G and query graph Q. 

e) Finally, the master sends the result ΦR, to the listener, which displays the result and 

exits the system. In this case, the union result obtained after the first iteration of the 

dual simulation done by the workers is itself the final dual simulation result. 

                              ΦR(0) = {2} 

ΦR(1) = {3} 

ΦR(2) = {0} 

We would like to emphasize the importance of the first iteration of the dual simulation 

algorithm. Basically, the first iteration prunes out the maximum unwanted vertices and 

incurs the majority of the elapsed time of dual simulation. This is due to the concurrent 

pruning of parent and child vertices through a single loop. Through a detailed study and 

intensive experiments supporting it, we consider the first iteration as an ideal area to 

achieve parallelism. Thus, at the worker we just perform the first level of pruning as shown 

in the pseudo-code. The rest is done by the master itself. This is because the way we have 

partitioned and loaded the graphs for the workers, they prune out all the unwanted vertices 

belonging to their own partitioned graphs in the first iteration itself. Consequently, further 

levels/iterations of dual simulation pruning is not beneficial at the workers. Moreover, 

when the workers return their initial pruned match sets to the master, the remaining 

computation is done so quickly that it involves very minute part of the total time. We have 

shown the first iteration time vs. elapsed time taken by the dual simulation for the real as 

well as synthetic graphs in the experiments section 2.6, referring to Tables 2.2 and 2.3. 
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2.5 PARDUALISO 

We have considered the DualIso algorithm for parallel implementation on the basis of the 

paper [41] that shows its performance against the other state-of-the-art algorithms. 

DUALISO. Similar to the most of the exact graph pattern matching algorithms, DualIso 

also falls into the category of Ullmann's inspired tree search based algorithm. Although the 

general form of these algorithms remains the same, differences in the approaches affect the 

performance largely. Following the similar paradigm, DualIso follows the below 

mentioned outline. 

1) Retrieve feasible matches Φ(u) for each vertex u ∈ VQ  by selecting all vertices v of the 

data graph such that l(v) = lQ(u). For example, considering Figure 2.1,  

Φ(0) = {1, 2, 5} 

Φ(1) = {0, 3} 

Φ(2) = {0, 3} 

2) Prune the global search space using dual simulation. 

Φ(0) = {2} 

Φ(1) = {3} 

Φ(2) = {0} 

3) Traverse the remaining matches in a depth-first manner. 

a. For each traversal, apply dual simulation after isolating the matched vertices of the 

data graph for the corresponding query graph vertices. 

b. If no isomorphic match exists for current mapping, the algorithm backtracks. 

c. Otherwise, search procedure continues recursively until the maximum depth. 
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Table 2.1: DualIso Matches 

Query Vertices Match  

0 2 

1 3 

2 0 

 

For more details, please refer to the section IV of [41]. We can see that dual simulation is 

the core as well as the bottleneck of the DualIso algorithm. In order to make DualIso 

parallel and efficient, the most important part is to create a parallel implementation of dual 

simulation. The effectiveness of dual simulation at the global search space is that in 90% 

of the cases it returns only those vertices that are contained in the subgraph isomorphic 

match. The only situations we get extra vertices are when there exists a cycle in the query 

graph or when one vertex in the data graph maps to more than one vertex in the query 

graph. So we see that adapting dual simulation in DualIso at the global search space is quite 

effective. We also concluded after extensive experiments that, on an average global search 

space time of DualIso incurs most of the elapsed time. 

METHODOLOGY. The ParDualIso follows the same outline of the DualIso algorithm. 

Inferring from above, we implemented parallel implementation of Dual Simulation, 

ParDualSim as discussed in the previous section. We have demonstrated in the 

experimental section that ParDualSim is much more efficient compared to Dual 

Simulation, referred as DualSim. The ParDualIso is the re-implementation of DualIso 

algorithm which adapts ParDualSim as a faster and parallel global search space pruning 

technique. 
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In ParDualIso, instead of DualSim, we call ParDualSim to reduce the search space. After 

this initial pruning step, only 5 to 10 percent of the unwanted vertices are left for further 

pruning. Therefore, we perform the rest of the procedure at the master. It is also well known 

that making the recursive DFS parallel do not provide significant speed up [63]. Hence, the 

traversal of the Depth First Search manner is sequential. Despite of that, we have gained 

significant speed up compared to DualIso. 

Below, we highlight an outline for the ParDualIso algorithm that we designed for an actor-

based concurrency model: 

1. Partition the graph using METIS. 

2. Retrieve initial feasible matches. 

3. Master sends a message “start global search space pruning” to the master of Akka 

ParDualSim system to perform global search space pruning. 

4. Master waits till the completion of Akka ParDualSim system. 

5. On retrieval of the pruned Φ, traverse remaining matches in depth first search 

manner. 

 

2.6 EXPERIMENTAL STUDY 

In this section, we aim to evaluate our proposed parallel algorithms on the basis of various 

parameters and illustrate their performance on both synthetic as well as real life data sets. 

The factors considered are based on the impact of the number of workers, size of the data 

graph, and size of the query graph, number of distinct labels in the data graph and the 

density of the data graph. Our study attempts to discover and learn about the various 

tradeoffs based upon different inputs to the algorithms. Our algorithms are implemented 
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using the Akka framework, which is an open-source toolkit and is included as the part of 

the Scala source code library. 

We generate random graphs with vertices of uniformly distributed degree. Our synthetic 

graphs connect each vertex to a random number of other vertices based on a given desired 

average degree. The number of vertices in the data graph is denoted as |VG|. To describe 

the relationship between the number of edges and number of vertices in the graph, we use 

the term alpha, denoted by α, such that |E| = |V|α. For our purpose, we have used α = 1.2 

in general but also show the impact of density by varying the value of α. In all our 

experiments, we have chosen the number of labels l = 100, unless explicitly specified, and 

for the factor of query size, the number of vertices of query graph is denoted by |VQ|. 

 All our experiments are run on a machine with two 2GHz Intel Xeon E5-2620 

CPUs, each having six hyper-threaded cores for a total of 24 threads, and 128GB of DDR3 

RAM. The implementation of DualSim, DualIso, ParDualSim and ParDualIso are written 

in Scala version 2.10. Both ParDualSim and ParDualIso uses Akka version 2.3.2. 

 We have used our own graph generator written in Scala to synthesize the large 

randomly generated graphs. For our queries, we chose a random vertex in the data graph 

and perform a Breadth-First Search (BFS) until it obtains the desired number of vertices. 

In this way, there is at least one subgraph isomorphic match in the data graph. The average 

degree of vertices is also chosen such that α = 1.2. All the query graphs are connected 

graphs. We used amazon-2008 and enwiki-2013 real world datasets (Datasets). The 

amazon-2008 consists of 735,323 vertices and 5,158,388 edges. It is a symmetric graph 

that describes the similarity among the books. We generated different numbers of labels 

for this graph. Other real world dataset is enwiki-2013 which consists of 4,206,785 vertices, 
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101,355,853 edges and 200 labels. It represents a snapshot of the English part of Wikipedia. 

Both graphs are tested against BFS queries of size 10 with edges preserving |E| = |V|α 

where α = 1.2. 

2.6.1 SIGNIFICANCE OF FIRST ITERATION. 

Recalling what was discussed in the section 2.4 regarding the importance of the first 

iteration of dual simulation algorithm, we did extensive experiments to find out the time 

taken by the first iteration against the total running time of the algorithm. The experiments 

are tested against both synthetic and real graphs for around 500 different queries. For real 

graphs, we randomly generated 200 labels and queries of size 10, whereas synthetic graphs 

have 100 labels and queries of size 20. The Tables 2.2 and 2.3 show the consistency of the 

time incurred by the first iteration. Subsequently, making the first iteration parallel helped 

us to achieve significant speedup. The rest of the experiments shows the performance 

exhibited by our approach. 

 

Table 2.2: Significance of first iteration for synthetic graphs. 

|VG| 3e6 5e6 7e6 9e6 10e6 

First iteration 901.86 1626.67 2616.10 3304.33 4039.08 

Total time 910.61 1667.26 2637.34 3344.31 4083.18 

 

Table 2.3: Significance of first iteration for real graphs. 

|VG| amazon-2008 enwiki-2013  

First iteration 28.71 282.92 

Total time 29.34 289.75 
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2.6.2 IMPACT OF NUMBER OF WORKERS. 

This experiment demonstrates the effect of the number of workers. Recalling the strategy 

explained in section 2.4.2, the number of workers is equal to the number of partitions of 

the data graph. This resulted in achieving more parallelism and pruning overall. Looking 

at Figures 2.5 and 2.6, it can be seen that the speedup increases as the number of workers 

increases. The maximum speedup is achieved for ParDualIso when number of workers = 

20. The Figure 2.6 demonstrates the average case scenario. The rest of the experiments are 

conducted with number of workers = 20.  

 

Figure 2.5. The impact of workers on runtime and speed up for ParDualIso. 
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Figure 2.6. The impact of workers on runtime and speed up for ParDualSim. 

 

2.6.3 IMPACT OF DATA GRAPH. 

This experiment illustrates the robustness and scalability of the algorithm in terms of the 

runtime with respect to the size of the data graph denoted by |VG|. The largest data graph 

is of size 10 million vertices and 250 million edges. As expected the running time of the 

algorithms increases with the increase in the size of the data graph. The Figures 2.7 and 

2.8 show that irrespective of the data graph size, both ParDualIso and ParDualSim 

achieves an average speed up of 4.5 and 5.5, respectively. 
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Figure 2.7. The impact of data graph size on runtime for ParDualIso. 

 

 

Figure 2.8. The impact of data graph size on runtime for ParDualSim 
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2.6.4 IMPACT OF QUERY GRAPH. 

This experiment demonstrates the impact of different query sizes ranging from 5 to 100 

denoted by |VQ|. Again, irrespective of the query size, the ParDualSim is always 4 to 5 

times faster than the DualSim. For ParDualIso, we utilize parallelism only for the global 

search space pruning and the computation of the matches is solely handled by the master.  

For the queries where the number of matches is large, the master computation time is very 

high as we do not stop after the first thousand matches as is typical in other algorithms (our 

limit is one million). Still, ParDualIso gains a speed up of 2 to 5. In the worst scenario, the 

runtime is approximately the same as of DualIso. The overall runtime against query size 

mostly depends on the number of matches. 

 

 

Figure 2.9. The impact of query graph size on runtime for ParDualIso. 
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Figure 2.10. The impact of query graph size on runtime for ParDualSim. 

 

2.6.5 IMPACT OF LABELS. 

As the feasible matches are constructed on the basis of labels, the more the number of 

unique labels in the graph, higher the pruning of global search space. This results in less 

computation at the master and fewer matches comparatively. 

The Figures 2.11 and 2.12 illustrate the impact of number of unique labels on the runtime 

of the algorithms. The speed up of ParDualIso gains proportionally with respect to the 

number of unique labels. 
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Figure 2.11. The impact of labels on runtime for ParDualIso. 

 

Figure 2.12. The impact of labels on runtime for ParDualSim. 
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2.6.6 IMPACT OF DENSITY. 

The density of the data graph is directly proportional to the number of matches. As the 

density increases, the speed up of ParDualIso decreases. We gained a speed up of 

approximately 7.5 when α = 1.1. The Figures 2.13 and 2.14 show the expected behavior of 

the algorithms. 

 

Figure 2.13. The impact of density on runtime for ParDualIso. 
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Figure 2.14. The impact of density on runtime for ParDualSim. 

 

2.6.7 IMPACT OF REAL GRAPHS. 

Here we demonstrate the performance of our algorithms on the real world graphs. We took 

two real graphs, amazon-2008 and enwiki-2013 as mentioned before.  

For amazon-2008, we randomly assigned 10, 50 and 200 labels respectively keeping the 

query size of 20. This data graph has less density. The number of matches obtained for the 

queries that we generated are less. So, as the number of unique labels increases, the speed 

up of ParDualIso also increases with respect to DualIso.  

However, for enwiki-2013 data sets, which has 200 labels randomly generated, we obtained 

a large number of matches for our queries. Sometimes, the number of matches were more 

than 1 million. Looking at Figures 2.17 and 2.18, we can see that despite of speed up gained 

by ParDualSim, ParDualIso elapsed time is approximately equal to DualIso. This shows 
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one of the worst-case scenarios for our algorithm, still ParDualIso will always be at least 

better than DualIso. 

 

Figure 2.15. The impact of amazon data on runtime for ParDualIso. 

 

Figure 2.16. The impact of amazon data on runtime for ParDualSim. 
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Figure 2.17. The impact of enwiki data on runtime for ParDualIso. 

 

Figure 2.18. The impact of enwiki data on runtime for ParDualSim. 

 

 

 

2.7 RELATED WORK 

DualIso was introduced in [41]. This paper extends [41] by including 1) Parallel 

implementation of DualIso, referred to ParDualIso. 2) Parallel implementation of Dual 
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Simulation, referred to as ParDualSim. 3) A more extensive experimental study compared 

to the study of [41]. Since graph pattern matching has been widely popular, there has been 

much research going on in this particular area. We have focused ourselves mainly in 

parallel and distributed graph pattern matching techniques. 

 The Ullmann [42] algorithm is the first major algorithm for subgraph isomorphism 

algorithm, its parallel solution has been implemented on the distributed array processors. 

Parallelism is achieved using a massive parallel computer, the Active Memory Technology 

(AMT) and Distributed Array Processor (DAP).   

 In [43], they presented efficient subgraph matching for graphs deployed on a 

distributed memory store, Trinity [17]. They used graph exploration but could not avoid 

expensive join operations because of the limits of subgraph isomorphism. Their focus is on 

efficient web-scale graph processing, that avoids exhaustive usage of indices which is very 

common in most of graph processing systems.  Since they only use a simple string index 

which maps node labels to node IDs, the time needed for constructing indices and the 

capacity for their storage would be infeasible in web-scale graph processing. Moreover, 

their algorithm gets terminated after obtaining 1024 matches.  

 In [59], the authors proposed algorithms and optimizations technique for graph 

simulation in a distributed setting by using a message passing model. They have used a 

variety of complexity measures on the performance of their algorithms. The algorithms are 

implemented in Python and tested on a cluster of 16 machines. 

 Berry, Jonathan W., et al. have introduced the MultiThreaded Graph Library 

(MTGL) [61]. This is a generic graph query software for processing semantic graphs on 

multithreaded computers. They have presented a new heuristic for inexact subgraph 
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isomorphism and have explored the performance and other basic graph algorithms on large 

scale-free graphs. 

 In [62], the authors proposed a new pattern matching technique called as strong 

simulation. They presented the distributed algorithm for strong simulation based on a 

message-passing model. They consider the graphs to be already partitioned which can have 

a significant impact on the evaluation of strong simulation. However, ball-creation is a 

time-consuming process and slight imbalances can overload some machines, thus 

negatively effecting the overall speed-up. 

 In [6], they implemented vertex-centric distributed algorithms for simulation 

models on GPS following BSP approach along with newly proposed tight simulation 

model. Tight simulation is a novel improvement of strict simulation which was introduced 

in [5]. 

 Tian, Yuanyuan et al. implemented a new system, called Giraph++ in [20], based 

on Apache Giraph, an open source implementation of Pregel [13]. They have explored 

three different categories of graph algorithms, graph traversal, random walk, and graph 

aggregation, and demonstrate their performance and flexibility on well-partitioned data on 

this graph-centric model. However, they have not yet explored subgraph pattern matching. 

 

2.8. CONCLUSIONS AND FUTURE WORK 

In summary, we have presented a parallel algorithm for subgraph pattern matching, 

ParDualIso which is a modification of the sequential DualIso algorithm. Since, the 

effectiveness of DualIso [41] is largely due to the pruning technique adapted, known as 

Dual Simulation. We also present a parallel algorithm for Dual Simulation, referred as 



 

45 

ParDualSim. Both the algorithms are implemented on Akka. We found that both 

ParDualIso and ParDualSim achieve significant speedup through the experiments on both 

synthetic and real graphs. 

Future work includes the distributed implementation of these algorithms that could allow 

the algorithm to handle even larger graphs. We also foresee that parallel implementation 

of Tight Simulation [6] will also be a good choice for pruning. 
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CHAPTER 3 

SUMMARY 

In summary, we have presented a parallel algorithm for subgraph pattern matching, 

ParDualIso which is a modification of the sequential DualIso algorithm. Since, the 

effectiveness of DualIso [41] is largely due to the pruning technique adapted, known as 

Dual Simulation. We also present a parallel algorithm for Dual Simulation, referred as 

ParDualSim. Both the algorithms are implemented on Akka. We found that both 

ParDualIso and ParDualSim achieve significant speedup through the experiments on both 

synthetic and real graphs. 

Future work includes the distributed implementation of these algorithms that could allow 

the algorithm to handle even larger graphs. We also foresee that parallel implementation 

of Tight Simulation [6] will also be a good choice for pruning. 
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