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 The purpose of this dissertation was to investigate the role of background, experience, 

and interactions with colleagues and students in the development of mathematical proficiency for 

teaching, operationalized as teachers’ content knowledge for teaching and beliefs about learning 

and mathematics.  I conducted three studies in different contexts. The purpose of the first study 

of Texas K–12 mathematics teachers in their first 5 years of teaching was to describe how 

mathematical proficiency for teaching multiplicative reasoning varied across preparation, school 

contexts, and a wide range of grade levels.  

Surprising findings from the first study led to two follow-up studies: (1) content 

knowledge for teaching was not positively related to length of teaching experience and (2) the 

length of student teaching had no significant relationship to mathematical proficiency for 

teaching. The second study used a longitudinal design to study change in Grades 6–8 teachers’ 

mathematical proficiency for teaching multiplicative reasoning topics. I found that teachers’ 

content knowledge for teaching increased over the semester, especially for teachers with less 

mathematical preparation, but that their self-efficacy beliefs decreased.  In the third study, I 



 

found that the quality, timing, and length of student teaching were significant predictors of 

content knowledge and beliefs.  For all three outcomes, practicum length was found to moderate 

the effect of timing, with early timing of student teaching having significant positive effects for 

prospective teachers in programs with shorter student teaching. These results will support future 

work designing and investigating interventions that support teachers’ on-the-job development of 

mathematical proficiency for teaching. 
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CHAPTER 1 

INTRODUCTION 

In the United States, Grades K–12 mathematics teachers spend anywhere from a handful 

of weeks up to 5 years in preparation before accepting responsibility for a critical portion of the 

school learning of 20 to 200 students each year.  This preparation often includes student 

teaching, a practicum or field-based training experience in school classrooms during which 

prospective teachers take on the work of teaching in increasingly complex and authentic ways.  

Many teachers entering the profession through alternative routes have little or no student 

teaching experience; for these teachers, the bulk of the learning that might happen during 

traditional student teaching must happen on the job, if it happens at all.  Thus, schools and 

teachers’ professional activity are an important context for teachers’ and prospective teachers’ 

development and change. 

Teachers (and prospective teachers) in schools learn from other teachers, from school and 

university mentors, in concurrent university coursework, at professional development 

workshops, and from their own classroom experiences working with students.  The multitude of 

sites for teacher learning in schools illustrates just how complex and multifaceted the problem of 

understanding teachers’ learning really is.  There can be no single solution to this problem for the 

simple reason that there is no single experience.  

The variation in prospective and new teachers’ preparation experiences (of which the 

overall length of preparation is but a single feature) is the consequence of a wide range of 

policies at the federal, state, and district levels—policies that are based on differing assumptions 
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about what is necessary or propitious for teacher preparation and development.  For over a 

decade, there have been persistent calls for more research on the effects of various features of 

teacher preparation programs including student teaching (e.g., Wilson, Floden, & Ferrini-Mundy, 

2002; Wilson et al., 2009).  Little can be said with confidence about how teachers should learn 

because little is known about how teachers do learn.  At the same time, the wide range of teacher 

education experiences provides an opportunity to explore the question of how teachers learn 

across a variety of contexts.  In this dissertation, I report empirical research that compares 

learning outcomes across contexts with the aim of providing evidence to support both 

empirically-based and theoretical arguments that are relevant to the question of how teachers 

should learn, the question that current polices already seek to answer. 

Research Problem and Purpose 

The research reported in this dissertation lies at the intersection of teacher education 

policy and mathematics education research. Policy differences at the state and district level 

contribute to the variation in context that affords the comparisons made in the three studies 

reported in the present dissertation, and the results of the research have implications for policy.  

In a similar fashion, theoretical accounts of how mathematics teachers learn provide hypotheses 

explored in the studies reported in the dissertation, and the results of those explorations feed back 

to inform and refine theoretical accounts of learning.  In an effort to find evidence of the sites 

and processes of conceptual change that matter most across teachers’ experience, the present 

studies provide a wide view rather than all focusing on a single process, mechanism, or occasion 

for teacher development (e.g., mentoring).  Because of prior research on how teachers help 

students learn mathematics in schools, the common teacher outcome across all studies was 

mathematical proficiency for teaching. Kilpatrick, Swafford, and Findell (2001) argued that 
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mathematics teaching proficiency involves several interrelated components. I focus on two: 

content knowledge and “a productive disposition toward mathematics, teaching, learning, and the 

improvement of practice” (p. 380). Productive disposition for teaching mathematics can thus be 

defined as mathematics teachers’ orientation toward—and their related beliefs and attitudes 

about—the subject of mathematics, teaching and learning it, and their own professional growth. 

This dissertation reports evidence pertaining to how teachers develop mathematical proficiency 

for teaching from their professional experience in schools. 

I hypothesized interactions between teachers’ content knowledge and beliefs, and I 

addressed aspects of a broad research problem: How do teachers develop mathematical 

proficiency for teaching in the context of professional experience? A promising, unexplored site 

for this research is the changing practice of student teachers and early entry teachers (who begin 

teaching before completing the requirements for certification) because conceptual and 

dispositional change are likely to be more extreme and therefore more evident with these 

teachers than with others. 

My research program is structured loosely on recommendations for a research agenda 

that includes “proofs of concept, then broader studies of conditions of effectiveness, and finally 

experiments to determine whether interventions can produce conditions of effectiveness in 

various contexts” (Heck, Weiss, & Pasley, 2011, pg. 5). These recommendations came from a 

team at Horizon Research tasked with identifying an agenda for research in response to the 

national mathematics standards released in 2010 by the National Governors Association Center 

for Best Practices and the Council of Chief State School Officers.  To generate their 

recommendations for research, the team solicited input from mathematics education and 
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educational policy researchers.  In the report, Heck and colleagues (2011) argued that the three 

kinds of recommended studies had “different and complementary” roles: 

Proofs of concept are generally opportunistic, or conducted under fairly special 
circumstances; they can be used to establish the viability of a particular relationship. 
Broader studies of the conditions of effectiveness extend beyond those special 
circumstances to examine the range of conditions under which particular relationships 
exist, and for whom. These studies can also offer explanations of why and how particular 
conditions result in various outcomes. Finally, experiments/quasi-experiments are useful 
for establishing whether creating particular conditions in fact facilitates the relationships 
of interest, and for whom. (p. 5) 

In a proof-of-concept study, I compared two cases of early entry teachers who 

participated in a professional development workshop and found evidence that the pedagogical 

content knowledge for fraction and proportions they learned in the workshop was mediated by 

their professional goals, their attention to student thinking, and their habits of collaboration with 

other teachers (Jacobson, in press).  This dissertation includes three studies of the “conditions of 

effectiveness” of teaching experience on subsequent conceptual and dispositional change.  The 

purpose of the studies was to investigate the role of background, experience, and interactions 

with colleagues and students in the development of mathematical proficiency for teaching.  The 

results will support future work in designing and investigating interventions that support 

teachers’ on-the-job development of mathematical proficiency for teaching. 

Research Questions 

The three studies reported in this dissertation all address aspects of the same broad 

problem stated above. Each study dealt with a different population of participants and used 

different measures and different psychometric models to operationalize mathematical proficiency 

for teaching (see Table 1).  In this section, I describe the purpose, population, and research 

question for each study. Rationales for the design of each study are given at the beginning of 

Chapter 3, 4, and 5. 
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Table 1.  

Summary of the Three Dissertation Studies. 

 TX Study (Chapter 3) GA Study (Chapter 4) U.S. Study (Chapter 5) 

Purpose • Validate domain-specific 
measures 

• Describe variation in 
mathematical proficiency for 
teaching  

• Explore change in 
mathematical proficiency for 
teaching  

• Describe the features of 
student teaching associated 
with mathematical 
proficiency for teaching 

Participants • K–12 math teachers from 
Texas in 1st to 6th year 

• Grades 6–8 mathematics 
teachers from Georgia 

• Prospective K–6 teachers 
in U.S. public institutions 

Outcomes    

Teachers’ 
content 
knowledge 

• Mathematical knowledge 
for teaching multiplicative 
reasoning topics (25 items) 

 

• Mathematical knowledge 
for teaching multiplicative 
reasoning topics (17 items) 

 

• Mathematics content 
knowledge (74 items) 

• Mathematics pedagogical 
content knowledge (32 
items) 

Teachers’ 
beliefs 

• Teachers’ self-efficacy 
beliefs for teaching fraction, 
ratio, and proportion topics 
(11 items) 

 

• Teachers’ self-efficacy 
beliefs for teaching ratio and 
proportion topics (11 items) 

 

• Teachers’ beliefs about 
mathematics as an inquiry 
activity (5 items) 

• Teachers’ beliefs about 
active learning in 
mathematics (6 items) 

Psychometric 
models used 

• Confirmatory factor 
analysis and structural 
equation models of latent 
traits 

• Raw scores and a two 
parameter logistic item 
response theory model (a 
latent trait model) 

• One and two parameter 
logistic item response theory 
models (latent trait models) 

 

The purpose of the first study was to validate measures of teachers’ content knowledge 

and beliefs that focused on the content domain of multiplicative reasoning.  This focus was 

strategic because teachers’ content knowledge of and disposition toward that domain can inform 

good teaching across Grades K–12, but the content is primarily taught in Grades 4 to 7. Focused 

instruments that are sensitive to domain-specific mathematical proficiency for teaching can 

support the investigation of hypotheses related to domain-specific experience that cannot be done 

with existing, coarser instruments. The second purpose of the first study was to describe how 

mathematical proficiency for teaching multiplicative reasoning varied in a sample of practicing 
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teachers who had diverse preparation experiences and who were working in a wide range of 

grade levels.  

In the first study, I collected survey data from teachers of Grades K–12 mathematics in 

Texas certified in the previous 5 years (N = 492).  The research questions for the first study were 

as follows:  

1. How valid and reliable are the content knowledge and teaching self-efficacy measures 

adapted for the domain of multiplicative reasoning? 

2. How does mathematical proficiency for teaching multiplicative reasoning vary (a) with 

academic preparation, student teaching, and teaching experience and (b) by early entry 

status and across certification grade level? 

Surprising findings from the first study led to the second and third studies reported in this 

dissertation.  These results were that (1) mathematical knowledge for teaching was not positively 

related to length of teaching experience and (2) the length of student teaching had no significant 

relationship to mathematical proficiency for teaching.  

I addressed limitations in the design of the first study that may have affected these 

findings in the follow-up studies.  In the first study, I compared different cohorts to describe the 

relationship between length of teaching experience and mathematical proficiency for teaching, a 

strategy susceptible to cohort bias.  In the second study, I addressed this limitation by using a 

longitudinal design.  In addition, the first study lacked adequate controls for differences among 

teachers that may have been common causes of program selection (and hence the length of 

student teaching) and the outcome measures. The data I used in the third study included 

covariates that have been used by other researchers in similar kinds of analyses to mitigate 

selection bias (e.g., Ronfeldt & Reininger, 2012).  
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The purpose of the second study was to study change in mathematical proficiency for 

teaching longitudinally using the domain-specific measures validated in the first study, and to 

investigate how that change was related to features of teachers’ professional experience and 

especially to teachers’ interactions with colleagues and students.  The data I used in the second 

study came from three waves of surveys of 199 Grade 6–8 mathematics teachers in Georgia over 

one semester and interviews of 17 of the surveyed teachers.  The research questions for the 

second study were as follows: 

3. What features of teachers’ experience in schools are associated with change in 

mathematical proficiency for teaching multiplicative reasoning topics? 

4. How does change in mathematical proficiency for teaching multiplicative reasoning topics 

differ (a) across schools, (b) between teachers who teach that content and those who do 

not, and (c) with the frequency of teachers’ collaboration and collegial activity focused 

on student learning? 

The purpose of the third study was to examine how features of student teaching affect 

mathematical proficiency for teaching.  In the study, I used data collected from a nationally 

representative sample of public universities preparing teachers in the United States (Teacher 

Education and Development Study in Mathematics  [TEDS-M], Tatto et al., 2012), and in 

particular the available sample of Grades K–6 prospective teachers (N = 1044). The research 

question for the third study was as follows: 

5. How are the timing, length, and quality of student teaching related to prospective teachers’ 

mathematical proficiency for teaching the K–6 curriculum?  
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Significance 

The significance of the research problem addressed in this dissertation follows from the 

mediocre ranking of United States students and teachers in international comparisons, the 

growing recognition of teachers’ critical role in improving the quality of mathematics education, 

recent progress in identifying what makes teachers effective, and lackluster results of 

professional development aimed at improving teachers’ content knowledge over the last decade.  

Moreover, national changes in how teachers are prepared have led an ever-increasing number of 

new teachers to rely on schools and districts for professional training.  Little is known about how 

best to support these teachers’ induction and professional growth. 

Persistent and widespread concern for inadequate student achievement and poor 

international standing have been used as rallying calls for educational reform and driven decades 

of policy aimed to improve mathematics education in the United States.  These efforts have been 

spurred on by bleak national assessments (e.g., National Commission on Excellence in 

Education, 1983; National Mathematics Advisory Panel [NMAP], 2008) and continued poor 

performance in international comparison exams (e.g., National Center for Education Statistics, 

2008).  Teachers are increasingly seen as a key lever for improving educational quality.  Recent 

legislation and related policy initiatives in the United States have addressed concerns about 

mathematics teachers, including the No Child Left Behind Act of 2001, which stipulated “highly 

qualified” teachers in Title-I schools, and the American Recovery and Reinvestment Act of 

2009, which encouraged improved teacher effectiveness through the Race to the Top funding 

competition.  

Definitions of effective teaching vary widely, as do recommendations for necessary 

teacher qualifications (Goe, Bell, & Little, 2008).  The lack of consensus may be traced to 
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decades of mixed and uneven results from research on the relationship between teacher 

characteristics and student achievement (Hanushek, 1986, 1996; Wayne & Youngs, 2003).  In 

survey-based research, methodological and statistical limitations often prevent strong causal 

claims, and uncontrolled selection bias can precipitously affect results.  Teacher educators 

conduct primarily qualitative research on teacher characteristics and face limitations that often 

preclude generalizing results beyond the cases they study (Kennedy, 2008).  Moreover, little is 

known about the processes by which teacher characteristics might influence student 

achievement.  Less is known about how teachers develop desirable characteristics during teacher 

preparation (Johnson & Birkeland, 2008; Wilson et al., 2002; Wilson et al., 2009).  

The current lack of knowledge of effective ways to help teachers learn content 

knowledge for teaching impedes the ability of teacher education policies to make a difference in 

the classroom.  Between 2002 and 2007, over 1 billion federal dollars were spent on Math-

Science Partnerships, a professional development funding mechanism designed to increase the 

content knowledge of mathematics and science teachers; yet these programs and other 

professional development efforts over the last decade in the United States have unfortunately had 

at best modest effects on increasing teachers’ mathematical knowledge for teaching (Hill, 2011).   

One promising avenue forward is to explore and potentially leverage the interdependence 

of teachers’ content knowledge and beliefs about teaching.  If teachers’ content knowledge and 

beliefs are truly interdependent, then focusing on content knowledge in isolation may not be 

enough.  If mathematics education in the United States is to improve by improving the quality 

and effectiveness of teaching, then a broader, more comprehensive approach to teachers’ 

professional growth may be warranted.  This dissertation improves on previous research that has 

focused on teachers’ content knowledge by taking seriously the possibility that change in 
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knowledge and beliefs are related.  Each study in the dissertation examined aspects of teachers’ 

productive disposition for teaching together with teachers’ content knowledge and aims to 

uncover relationships between the two. 

Teachers’ experience with children’s mathematical thinking in the course of professional 

experience and during student teaching is an important theme in the research on teachers’ 

knowledge and beliefs about mathematics and learning, and a key marker of quality for field 

experiences.  A randomized experiment (Philipp et al., 2007) compared the change over a 

semester-long mathematics content course in the beliefs and content knowledge of prospective 

teachers who were assigned to guided experiences that focused on children’s mathematical 

thinking with that of prospective teachers assigned to clinical experiences that lacked such a 

focus. The authors found significant differences between the groups and called for prospective 

research to investigate mathematical knowledge for teaching (MKT) as an outcome.  Silverman 

and Thompson (2008) have also argued that teachers’ experience and knowledge of children’s 

thinking is critical for developing MKT.  

Each study in this dissertation was framed in relation to research and theory suggesting 

the importance of teachers’ experience with children’s mathematical thinking.  To the extent that 

professional experience can be viewed as a “treatment” that promotes the growth of 

mathematical proficiency for teaching, children’s mathematical thinking is the active ingredient. 

This dissertation addresses the field’s critical lack of knowledge about how teachers develop 

mathematical proficiency for teaching by exploring the concurrent development of MKT and 

teaching self-efficacy (TSE) on the job across a variety of school contexts and by extending 

experimental work (Phillip et al., 2007) on how MKT and beliefs about mathematics and 

teaching mathematics develop during student teaching.  
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Dissertation Overview 

The three studies that comprise this dissertation share an overarching theoretical 

framework built from research on and theorizing about teacher knowledge and beliefs in the field 

of mathematics education and from Albert Bandura’s (1986, 1997) social cognitive learning 

theory.  Accounts of mathematics teacher knowledge and beliefs transcend the discipline of 

mathematics and emphasize the role of children’s mathematical thinking.  Social cognitive 

theory highlights the role of beliefs about oneself in human behavior and learning. It also 

highlights the reciprocal interaction of behavior, individual cognitive and affective factors, and 

the social environment in human functioning.  In particular, the human capabilities of self-

reflection and self-regulation allow people to make sense of past experiences and adjust their 

actions in the future.  All three studies reported in this dissertation investigated theoretically 

informed hypotheses about how teachers develop mathematical proficiency for teaching.   

I framed all three studies in the context of recent policy for teacher education. The first 

study (Texas) explored a feature of some alternative routes to teaching certification—early entry. 

Early entry teachers begin teaching full-time before completing the requirements for full 

licensure; for these teachers, the learning associated with student teaching happens after they 

begin working if at all. The second study (Georgia) focused on induction, mentoring, and 

professional development of beginning teachers. The third study (United States) examined 

student teaching, the period of professional experience in schools that is typically the 

culmination of traditional teacher preparation routes. 

Chapters 3, 4, and 5 report on the three dissertation studies. In Chapter 6, the final 

chapter, I discuss results from the findings of each study and from across the set of findings 

taken together.  I also discuss the implications of those results for policy concerning certification 
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routes, the professional development of beginning teachers, and student teaching. I then discuss 

the theoretical implications of the results.  In particular, I take up questions related to the nature 

of teacher’s content knowledge and beliefs and their measures in light of the findings.  Finally, I 

discuss the implications of the findings for future research, especially for the design of 

interventions positioned within student teaching or targeting the professional development of 

beginning teachers. 



 

 13 

 

 

CHAPTER 2 

FRAMEWORK AND LITERATURE REVIEW 

 In this chapter, I define how the term multiplicative reasoning is used in the present 

dissertation. I next discuss mathematical proficiency for teaching and summarize research on 

teachers’ knowledge and beliefs about teaching and about mathematics and past work developing 

measures of teachers’ knowledge and beliefs. In the last section of the chapter, I discuss teaching 

experience and summarize what is known and what remains to be discovered about how 

teachers’ mathematical proficiency changes during student teaching, induction, and early years 

on the job. 

Multiplicative Reasoning 

 Two of the studies in this dissertation used measures of teacher knowledge that focus on 

the content domain of multiplicative reasoning. In this section, I define multiplicative reasoning 

and summarize key findings from the mathematics education research on the multiplicative 

reasoning of Grades K–12 students and their teachers. The discussion of multiplicative reasoning 

in this section lays the foundation for the next section, in which I examine existing measures of 

content knowledge for teaching, including measures that tap teachers’ content knowledge for 

teaching multiplicative reasoning topics. 

Defining Multiplicative Reasoning 

 In this subsection, I will discuss both what is multiplicative and what entails reasoning in 

the content domain of multiplicative reasoning. I begin with reasoning. To speak of a knowledge 
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domain as a kind of reasoning means that the knowledge signified goes beyond propositional 

knowledge; the domain of multiplicative reasoning cannot be written down as a list of facts.   

For me, reasoning is of two kinds, both of which build on the notion that reasoning is 

fundamentally about argumentation made up of claims that are logically supported by warrants. 

The first kind is formal reasoning by which I mean the discursive activity involving an abstract 

linguistic system that is arbitrated by mathematicians. This kind of reasoning involves standard 

definitions and theorems, deductive and inductive practices of argumentation, proofs, and 

methods of validating proofs. The second kind of reasoning that has particular relevance for 

defining multiplicative reasoning is quantitative reasoning (Thompson, 1994); it is also 

mathematical, but it is concrete in the sense that its referents are perceptible to the senses or 

composed of referents that are perceptible to the senses. According to Smith and Thompson 

(2008), quantities arise when people conceptualize aspects or attributes of objects, events, or 

situations as being measurable (such as distance or speed). Quantification is the mental act of 

assigning a value to the aspect or attribute so conceived. The measure of a quantity defines a unit 

and a process for assigning a number that represents the (proportional) relationship between a 

particular value of the quantity and the unit (Thompson, 2011). Therefore, quantitative reasoning 

is by definition proportional and multiplicative. 

I turn next to the multiplicative aspect of multiplicative reasoning. The content domain of 

multiplicative reasoning cannot be easily defined in reference to school curriculum—

multiplicative topics appear as early as second or third grade (e.g., whole number multiplication 

and division by grouping and sharing) and continue to be developed in secondary and even post-

secondary coursework (e.g., similarity in Euclidean geometry and the derivative in calculus). 

Instead, multiplicative reasoning is defined by appealing to abstract mathematical 
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relationships—multiplicative structures—that are common to a wide range of curricular topics 

and applications (including those in science, technology, and engineering) and circumscribe a 

large set of problems (Vergnaud, 1983, 1988).  

Vergnaud (1983, 1988) discussed three types of multiplicative structures. In this 

dissertation, I am not concerned with the whole domain of multiplicative reasoning, but only 

with an elementary subset. I therefore restrict my definition of (elementary) multiplicative 

reasoning to the first mathematical structure discussed by Vergnaud (1983), the isomorphism of 

measures, “a simple direct proportion between two measure-spaces” (p. 129). Vergnaud 

excluded inverse proportions from this structure, but he included multiplication, sharing and 

measurement division, and “rule-of-three” problems (p. 132). Thus, this multiplicative structure 

captures multiplication and division problems (including fraction arithmetic) and the fraction and 

ratio comparison problems and missing value problems that have traditionally defined the 

domain of ratio and proportion (Lamon, 2007; Tourniaire & Pulos, 1985).  

 Elementary multiplicative reasoning means supplying reasons in support of claims made 

about problem situations classified as having the isomorphism of measures multiplicative 

structure, and consists of the ability to form multiplicative comparisons between two quantities. 

(A multiplicative comparison is a comparison of two quantities A and B that answers the 

question, How many times as much (many) is A than B?). Because I do not take on advanced 

multiplicative reasoning topics, I will use the shorthand multiplicative reasoning hereon to refer 

to elementary multiplicative reasoning as it has just been defined. This definition of (elementary) 

multiplicative reasoning very closely follows the one proposed by Lamon (2007) for proportional 

reasoning. 

Proportional reasoning means supplying reasons in support of claims made about the 
structural relationships among four quantities (say a, b, c, d) in a context simultaneously 



 

 16 

involving covariance of quantities and invariance of ratios or products [italics added]; 
this would consist of the ability to discern a multiplicative relationship between two 
quantities as well as the ability to extend the same relations to other pairs of quantities. 
(p. 638) 

I have two objections to Lamon’s definition of proportional reasoning that led me to define 

multiplicative reasoning as I have.  

My first objection is that Lamon’s definition seems too broad. I agree that proportional 

reasoning is “a long-term process that is not easily segmented” (Lamon, 2007, p. 637). For 

consistency, if problems with invariant products are included in the set of situations that may 

elicit what’s to be called “proportional reasoning,” then many other problems which are 

mathematically similar should be included as well, including the full range of problems that 

constitute the product of measures multiplicative structure and the multiple proportion 

multiplicative structure discussed by Vergnaud (1988). Yet Lamon made an effort to distinguish 

between proportional reasoning and the broader notion understanding of proportionality that 

“develops only as one studies higher mathematics and science” (p. 640). For Grades K–12 school 

mathematics, the most important multiplicative structure is the isomorphism of measures (Behr 

et al., 1992).  In my view, problems with invariant products (and even the so-called simple 

inverse proportion problems) are the provenance of this more advanced understanding of 

proportionality. Invariant product problems and invariant ratio or quotient problems are more 

different than alike; I will return to this point later. 

My second objection to Lamon’s (2007) definition is that the term “proportional 

reasoning” is too narrow for all that is captured by Lamon’s definition. Vergaud’s (1988) 

analysis of the isomorphism of measures multiplicative structure suggests that multiplication and 

division are special cases of the reasoning Lamon described. In particular, if any one of the 

quantities (a, b, c, d) in her definition has the value 1, then any problems that can be posed can 
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be interpreted as multiplication or division problem. The reasoning that Lamon’s definition of 

proportional reasoning includes is more broadly multiplicative than the term proportional 

reasoning may suggest.  

The revelation that proportional reasoning—challenging for many secondary students—

has the same mathematical structure as whole number multiplication and division suggests that it 

may be possible to bootstrap students’ (and teachers’) knowledge of whole number 

multiplication to support their understanding of other aspects of elementary multiplicative 

reasoning (A. Izsák, personal communication, July 20, 2011). In Appendix A, I present a 

conceptual analysis of multiplicative reasoning that informs the instructional trajectory currently 

used in the Numbers and Operations content courses for middle grades and secondary teachers at 

the University of Georgia (Jacobson & Izsák, 2012a). In that analysis, I begin with whole 

number multiplication defined as grouping, then define fractions in terms of multiplication, use 

fractions and multiplication to describe two types of division, and finally demonstrate how 

proportions are a generalization of division. I also show how invariant product (inverse 

proportion) problems have mathematically distinct multiplicative structures, a conclusion that 

supports recent empirical work suggesting that direct and inverse proportion problems are 

psychologically distinct (e.g., Jacobson & Izsák, 2012b, Izsák & Jacobson, 2013). 

Children’s and Teachers’ Multiplicative Reasoning 

 For decades, extensive research has been conducted on students’ multiplicative reasoning 

(see Behr et al., 1992, and Lamon, 2007, for reviews). Although problems solved through 

multiplicative reasoning have a common structure, the domain itself is extremely complex. 

Research on multiplicative reasoning has focused on children’s reasoning about multiplication 

and division of whole numbers, fractions, and rational numbers; on children’s reasoning with 
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ratios including their understanding of ratio and fraction comparison and of ratio as a measure of 

an intensive quantity (see Appendix A); and on children’s reasoning with proportions. Compared 

with the body of research on children’s multiplicative reasoning, little is known about teachers’ 

multiplicative reasoning. Many studies have found that some teachers have difficulty with the 

content their students should be learning, and that finding suggests that there may be parallels 

between children’s and teachers’ knowledge of the domain (e.g., Cramer, Post, & Currier, 1993; 

Harel & Behr, 1995; Post, Harel, Behr, & Lesh, 1991; Sowder, Philipp, Armstrong, & 

Schappelle, 1998). 

 Multiplication, division, and fractions. Researchers have used conceptual analysis to 

identify subconstructs of rational number including quotient, measure, ratio number, and 

multiplicative operator (Kieren, 1988, 1993; Behr et al., 1992). A fifth subconstruct called part-

whole relationships was identified by Behr, Wachsmuth, Post, and Lesh (1984). These 

subconstructs are related to various ways of reasoning about multiplication and division of whole 

numbers and fractions and are also relevant for reasoning about proportional quantities. Lamon 

(2007) argued that empirical research focused on children’s thinking may hold more promise for 

mathematics education than theoretical analyses. Some of this work has identified the 

importance of partitioning (equal-sharing) in children’s understanding of multiplication and 

division with whole numbers and fractions (e.g., Confrey, 1994; Confrey & Smith, 1994, 1995; 

Empson, 1999; Empson, Junk, Dominguez, & Turner, 2005; Empson & Turner, 2006). Another 

line of work that has also dealt with students’ partitioning has additionally shown the important 

role that children’s understanding of units plays in how they make sense of multiplicative 

relationships (Hackenberg, 2007, Hackenberg, 2010, Hackenberg & Tillema, 2009; Steffe, 1988, 

1993, 2001, 2003, 2004).  
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 A number of studies have documented teachers’ limited understanding of multiplication 

and division of fractions and decimals.  One overarching finding is that teachers’ have difficulty 

forming accurate verbal or graphical representations of the operations of multiplication and 

division and their results in the context of problem situations—a hallmark of quantitative 

reasoning (e.g., Ball, Lubienski, & Mewborn, 2001; Eisenhart et al., 1993; Izsák, 2008; Izsák, 

Tillema, & Tunç-Pekkan, 2008; Sowder et al., 1998). More evidence that teachers lack 

proficiency with quantitative reasoning comes from studies that described teachers incorrectly 

solving problems with situations that call for multiplying decimals (e.g., Graeber & Tirosh, 

1988; Graeber, Tirosh, & Glover, 1989; Harel & Behr, 1995). Other studies reported the 

challenges U.S. teachers experience when explaining the operation of division in problem 

situations (e.g., Armstrong & Bezuk, 1995; Ball, 1990; Borko et al., 1992; Graeber & Tirosh, 

1988; Izsák, Jacobson, de Araujo, & Orrill, 2012; Ma, 1999; Rizvi & Lawson, 2007; Simon 

1993). Another over-arching finding from these studies is that teachers frequently rely on 

additive conceptions of multiplication and division (i.e., repeated addition and subtraction). 

Teachers may lack multiplicative conceptions of division such as those contained in the 

following quantitative division questions: How many are in one group? (sharing division); How 

many times as many/much? (measurement division). 

 Ratios and fractions. Forming a ratio is a kind of quantitative reasoning that requires the 

coordination of two quantities using a multiplicative comparison. Many researchers have found 

this coordination is difficult for children.  One limitation arises from students focusing on change 

in a single quantity and ignoring others which precludes the formation of a ratio (Harel, Behr, 

Lest, & Post, 1994). Children can also form inappropriate additive comparisons instead of 

multiplicative comparisons (e.g., Hart, 1981, 1988; Karplus, Pulos, & Stage, 1983).  The ratio 
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between two quantities forms a new quantity, and the ratio in fraction form can be understood as 

a rational number that conveys the value of the new quantity.  This concept can be challenging 

for children to understand; researchers have documented the difficulty that students have 

reasoning about ratios as measures of speed (e.g., Thompson, 1994; Thompson & Thompson, 

1994), ratios as measures of the slope of a ramp (e.g., Lobato & Siebert, 2002; Lobato & 

Thanheiser, 2002), and ratios as a measure of the intensity of a taste (e.g., Harel et al., 1994). 

 Several studies show that teachers can have difficulty understanding ratios and fractions.  

In a large-scale study of kindergarten teachers’ knowledge of proportional reasoning that used 

Lamon’s (2007) framework, Pitta-Pantazi and Christou (2011) found that although the teachers 

did relatively well on traditional missing value and comparison problems, they did poorly on 

items that tapped other conceptions of fraction and ratio, including those intuitive conceptions 

that research has shown many children bring with them into the classroom.  In other studies, 

prospective elementary teachers struggled to make sense of ratios that expressed the measure of 

quantity like speed (the ratio of distance and time), the color or taste of a mixture, and steepness 

(e.g., Akar, 2010; Simon & Blume, 1994; Thompson & Thompson, 1994). 

 Ratios and proportions. Conceptions of ratios and the ability to form multiplicative 

comparisons between quantities are foundational elements of children’s multiplicative reasoning 

about situations where covarying quantities maintain an invariant (constant) quotient, yet 

instruction can lead to reliance on poorly understood algorithms (Lamon, 2007). ).  Many 

researchers have found that students apply methods for solving problems with proportional 

relationships to problems that have a constant difference (i.e., a − b = c − d), constant product or 

inverse proportion (i.e., ab = cd), and other nonproportional relationships (e.g., Lamon, 2007, 

Van Dooren, De Bock, Janssens, & Verschaffel, 2008).  Prior to instruction, students use a wide 
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range of appropriate strategies for reasoning with ratios, including forming a composed unit by 

joining two quantities that can then be iterated and partitioned to solve problems involving 

proportional relationships (Confrey, 1994; Lamon, 1995).  Students can also solve problems 

involving proportional relationships using multiplicative comparison (Kaput & Maxwell-West, 

1994). Lobato and Ellis (2010) argued that more sophisticated proportional reasoning such as 

that involving multiplicative comparison can arise from composed unit reasoning as children 

reflect upon the number of groups they create through successive iteration or partitioning 

operations.  Thompson (1992) has argued that the most sophisticated proportional reasoning 

involves rate, the “reflected abstraction of constant ratio” (p. 7).  With this conception, children 

recognize that a ratio represents an equivalence class of ratios; it is clear that rational numbers as 

defined in abstract mathematical terms are intimately connected to this form of proportional 

reasoning. 

Teachers share many of the misconception that students have about ratio and proportions 

(e.g., Cramer et al., 1993; Harel & Behr, 1995; Simon & Blume, 1994; Sowder et al., 1998), and 

several studies show that teachers can rely on formal algorithms like cross multiplication even if 

their use is not appropriate (e.g., Fisher, 1988; Harel & Behr, 1995; Orrill & Brown, 2012; Riley, 

2010). Just as students do, teachers make additive comparisons when multiplicative comparisons 

are appropriate (e.g., Canada, Gilbert, & Adolphson, 2010; Lim, 2009; Son, 2010). Teachers can 

have difficulty coordinating the covarying quantities in a proportion (e.g., Orrill & Brown, 

2012). On the other hand, teachers make use of knowledge resources such as strategic 

multiplication and division when solving proportional reasoning problems that students do not 

use (Lobato, Orill, & Jacobson, under review).  
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 Teachers learning and multiplicative reasoning. Increasing teachers’ content 

knowledge in the domain of multiplicative reasoning is challenging work. There are examples of 

successful professional development that resulted in measurable gains in teachers’ ability to 

reason about division, fractions, and proportional relationships (e.g, Ben-Chaim, Keret, & Ilany, 

2007; Orrill & Brown, 2012; Sowder et al., 1998). Other cases are discouraging in that carefully 

designed interventions seemed to have little effect on teachers’ knowledge (e.g., Garet et al., 

2011, Jacobson & Izsák, 2012b). In the next section, I describe how teachers’ knowledge of the 

domain of multiplicative reasoning is related to the mathematical knowledge they might use for 

teaching topics in this domain. 

Mathematical Proficiency for Teaching 

Kilpatrick et al. (2001) argued in the National Research Council report Adding It Up that 

teachers’ mathematical proficiency for teaching depended on their knowledge of and beliefs 

about mathematics and learning. A compelling set of prior and subsequent results substantiates 

that claim. Teachers need to know the content they teach, and other kinds of teacher knowledge 

that are consequential for student learning have long been recognized. Historically, as measures 

of mathematics teachers’ knowledge have increasingly focused on mathematical knowledge that 

is used in practice (rather than advanced disciplinary knowledge), the strength of the observed 

relationship with student achievement has increased (Hill, Sleep, Lewis, & Ball, 2007). Several 

recent measures of teacher knowledge have been framed in light of Shulman’s (1986) notion of 

pedagogical content knowledge, a construct I discuss at length in the first part of this section. In 

the second part, I discuss teachers’ beliefs about mathematics learning and teaching and how 

those beliefs affect teachers’ instruction, including their use of knowledge in the classroom. In 
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the last part, I review literature describing the relationship between knowledge and beliefs and 

the rationale for studying them simultaneously. 

Content Knowledge for Teaching and Its Measures  

Little is known about the content knowledge that teachers need for teaching in part 

because most of the studies of teachers’ knowledge have relied on crude proxies such as the 

number of content courses taken or degrees (e.g., Ball, Lubienski, & Mewborn, 2001; National 

Mathematics Advisory Panel, 2008).  Early attempts to link teachers’ mathematical knowledge 

with student performance led Begle (1979) to conclude that teacher’s knowledge and 

effectiveness could not be linked.  Yet in the last decade, large-scale studies using more sharply 

focused instruments have found evidence of the expected relationships between teacher 

knowledge and student achievement (Baumert et al., 2010; Hill, Rowan, & Ball, 2005; 

Tchoshanov, 2010).   

These new instruments share a focus on the content knowledge that teachers’ arguably 

use in practice, but the approach used by each research group was different. Ball, Thames, and 

Phelps (2008) proposed a framework for content knowledge for teaching (“subject-matter–

specific professional knowledge”, p. 389) that can be used to classify each approach. 

Tchoshanov (2010) designed the Teacher Content Knowledge Survey (TCKS) instrument for 

teachers with content objectives that were “closely aligned with corresponding objectives in 

state-mandated standardized tests for students” (p. 148). It included three subconstructs for 

different types of knowledge at different cognitive levels: procedural, conceptual, and abstract 

(e.g., explaining and proving). Only the conceptual knowledge sub-construct had a statistically 

significant relationship with student achievement, but this correlation was substantial (r = .26).  
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In the second study, Hill et al. (2005) used the Learning Mathematics for Teaching 

(LMT) instrument that also included items about the content knowledge that teachers might 

teach; for example, an item about evaluating exponents (p. 387). This kind of knowledge (like 

that assessed on Tchoshanov’s instrument) is expected of educated adults, and Ball et al. (2008) 

called it common content knowledge (CCK). The measure used by Hill and her colleagues 

included items of another kind that were more the special province of teachers; for example, an 

item that asked whether or not a student strategy was valid (p. 388). The authors argued that 

these items assessed a kind of mathematical knowledge that teachers but few other adults or 

professionals would possess. Ball et al. (2008) called this kind of content knowledge for teaching 

specialized content knowledge (SCK). SCK goes beyond the content of instruction and informs 

teachers’ explanations of why standard algorithms work and not just how to use them.  It allows 

teachers to make sense of students’ mathematical ideas, reasoning, and nonstandard strategies 

(Ball et al., 2008). Common content knowledge and specialized content knowledge items were 

modeled together on the same, one-dimensional scale using Item Response Theory (IRT). The 

major contribution of the study by Hill et al. was to provide evidence that teachers’ content 

knowledge matters for student learning; the estimated effect size of teachers’ content knowledge 

on student achievement was “in league with the effects of student background characteristics” (p. 

396). 

The third project called the Professional Competence of Teachers, Cognitively Activating 

Instruction, and the Development of Students’ Mathematical Literacy (COACTIV, Baumert et 

al., 2010) created a measure of teacher knowledge that had two distinct dimensions: content 

knowledge and pedagogical content knowledge (PCK). The COACTIV content knowledge 

instrument was similar to the second and third subconstruct of the instrument used by 
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Tchoshanov (2010) in that it focused on teachers’ conceptual understanding of mathematical 

topics in the curriculum, and “all items required complex mathematical argumentation or proofs” 

(Baumert et al. p. 148). The COACTIVE PCK measure had three dimensions: identification of 

multiple solutions for tasks, recognition of students’ thinking, and knowledge of representations 

and explanations for instruction. Baumert et al. (2010) found that PCK had greater power than 

content knowledge to predict student achievement, and was associated with higher student 

cognitive activation during instruction and greater individual learning support (p. 164). One 

contribution of the Baumert et al. study was in creating measures of two dimensions of teacher 

knowledge that were empirically distinct. Hill, Schilling, and Ball (2004) attempted to measure 

aspects of pedagogical content knowledge such as teachers’ knowledge of content and students, 

but results from their factor analysis did not support the theoretical claim that this knowledge 

was a distinct subdomain from the mixture of CCK and SCK items that were used to form a 

unidimensional IRT scale. 

All three of the instruments I have discussed are examples of measures of mathematical 

knowledge for teaching (MKT) in the Ball et al. (2008) framework. MKT includes pure content 

knowledge (CCK and SCK) as well as a mixture of content knowledge and pedagogical 

knowledge called pedagogical content knowledge (PCK). The term PCK was introduced by Lee 

Shulman (1986) and captured a provocative idea that has energized research on teachers’ 

professional knowledge: Some of the knowledge that teachers use when teaching is a 

transformed combination of two distinct knowledge domains—knowledge of the content they are 

teaching and knowledge of general pedagogy. Shulman called for assessments that “could 

distinguish between a biology major and a biology teacher, and in a pedagogically relevant and 

important way” (p. 10). The Baumert et al. (2010) group succeeded in meeting this challenge, 
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and measures of MKT stemming from Hill and Ball’s pioneering work are supported by a 

validity argument that includes strong relationships with student achievement and instructional 

quality (Hill et al., 2008; Hill et al., 2005; Hill, Kapitula, & Umland, 2011). 

Part of the confusion around the use of the terms PCK and MKT may stem from the fact 

that the Hill et al. (2005) paper is one of the most widely cited papers on the significance of the 

MKT construct but it reported results from an MKT instrument that did not include any items on 

teachers’ knowledge of students (p. 387) and thus did not include any PCK items as classified by 

Ball et al. (2008). Baumert et al. (2010) classified SCK as a component of PCK, and argued that 

that the Hill et al. instrument tapped PCK because it included “mathematical knowledge related 

to the instructional process” (p. 141). Other mathematics education researchers have also 

conceptualized the domain of content knowledge for teaching in different ways. For example, 

many descriptions of MKT have focused on the “deep” or “profound” understanding of 

mathematics that mathematics teachers need to support instruction that promotes student 

understanding (e.g., Ball, 1993; Ma, 1999; Simon, 2006). 

More recently, Schmidt et al. (2007) and Tatto et al. (2008) conceptualized teachers’ 

mathematics content knowledge (MCK) as advanced high school knowledge (rather than as deep 

conceptual understanding of school mathematics) for the Teacher Education and Development 

Survey in Mathematics (TEDS-M), an international comparison study conducted by the 

International Association for the Evaluation of Educational Achievement. The TEDS-M study 

also included a measure of mathematics PCK (MPCK), and the framework for that measure had 

three components: mathematics curricular knowledge, knowledge of planning for mathematics 

teaching and learning, and enacting mathematics for teaching and learning (Tatto et al., 2012). 

Other research groups have created measures of MKT or PCK for a variety of purposes, 
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including assessing teacher education programs (e.g., Diagnostic Teacher Assessment in 

Mathematics and Science [DTAMS]; Saderholm, Ronau, Brown & Collins, 2010) or assessing 

specific professional development interventions (e.g., SimCalc; Shechtman, Roschelle, Haertel, 

& Knudsen, 2010). The DTAMS project assessed four types of knowledge. The first three 

mapped closely to Tchoshanov’s (2010) types: content knowledge that is procedural (Type 1), 

conceptual (Type 2), and involving higher-order thinking (Type 3). The fourth type of 

knowledge assessed by DTAMS was PCK; it included “identifying and correcting student 

misconceptions and errors, creating analogies and examples to explain procedures and 

phenomena, and helping students make connections across mathematical concepts and ideas” 

(Saderholm et al., 2010, p. 182). In the SimCalc instrument (Shechtman et al., 2010), MKT was 

defined as “essentially mathematical knowledge, but a specialized type that teachers need to 

make sense of students’ mathematical work” (p. 328). 

The field has also seen recent innovation in test design. Kersting, Givvin, Thompson, 

Santagata, and Stigler (2012) designed the Classroom Video Analysis (CVA) measure of teacher 

knowledge that used a rubric to assess teachers written responses to video clips of instruction. 

The Diagnosing Teachers Multiplicative Reasoning (DTMR) project (Bradshaw, Izsák, Templin, 

& Jacobson, under review) has developed two paper-and-pencil instruments for measuring 

middle grades teachers’ knowledge that use Diagnostic Classification Models (DCMs), an 

emerging family of psychometric models. The first assessment is intended to measure aspects of 

multiplicative reasoning critical for multiplication and division of fractions; the second 

assessment is intended to measure core aspects of proportional reasoning. In terms of the 

framework for mathematical knowledge for teaching, the DTMR tests emphasize SCK and 

conceptual understanding of the content.  The knowledge assessed includes teachers’ reasoning 



 

 28 

with quantities such as lengths, areas, and volumes rather than using computational procedures, 

and it assessed teachers’ understanding fraction arithmetic and proportional relationships in the 

context of problem situations and drawn models (e.g., number lines and rectangular areas).  

Table 2 

Content Knowledge for Teaching Instruments, Constructs, Subconstructs, and Categories 

Classified by Three Kinds of MKT 

 Kinds of MKT 
Project or 
Instrument 

Conceptual (or 
advanced) knowledge 
of the content taught 

Knowledge to understand 
or appraise students’ 
responses and reasoning 
(mathematical thinking) 

Knowledge about the 
mathematical and 
instructional entailments of 
tasks and representations 

COACTIV • Content knowledge 
• PCK-Tasks • PCK-Students • PCK-Instruction 

DTAMS • Type 2 (conceptual) 
• Type 3 (higher-order) • Type 4 (PCK) • Type 4 (PCK) 

DTMR Implicitly assessed Not assessed Explicitly assessed 

LMT 
• CCK items 
• Implicitly assessed in 

SCK items 

• SCK items 
• Knowledge of content & 

students (not assessed) 
• SCK items 

SimCalc Explicitly assessed Explicitly assessed Explicitly assessed 

TCKS • Type 2 (conceptual) 
• Type 3 (abstract) Not assessed Not assessed 

CVA Not assessed Explicitly assessed Not assessed 

TEDS-M • MCK • MPCK • MPCK 

Note. Explicitly assessed means that some aspect of the framework for the construct can be 
mapped to this category of MKT; implicitly assessed means that descriptions of the instrument 
invoked the argument that some level of content knowledge is required to answer PCK items so 
PCK items implicitly assess content knowledge. 
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The Ball et al. (2008) framework for MKT is a useful lens for understanding what has 

been accomplished over the last decade in measuring mathematics teachers’ professional 

knowledge. The framework also provided promising avenues for future research that are outside 

the scope of this discussion (e.g., horizon knowledge, p. 403).  As I have described, the 

terminology and definitions suggested by the framework have not proved canonical, and using 

those terms and definitions when speaking across projects invites misunderstanding.   

Looking across projects that had successfully measured constructs, components, or 

categories of MKT, I noticed three overarching kinds of MKT: (a) conceptual (e.g., TCKS: Type 

2) or advanced (e.g., TEDS-M) knowledge of the content taught, (b) knowledge to understand or 

appraise students’ responses and reasoning (i.e., their mathematical thinking; e.g., COACTV: 

PCK-Students), and (c) knowledge about the instructional use of mathematical tasks (e.g., 

DTMR). The last two kinds of MKT are directly related to specific kinds of work (pedagogical 

tasks) that teachers must do in the classroom: understand and appraise student responses and 

select and use tasks and representations for instruction (Ball et al., 2008). Table 2 shows how I 

classified various instruments, constructs, subconstructs, and categories of MKT by these three 

kinds. 

The classification in Table 2 makes it clear how the terms one might expect to have 

common meanings (e.g., PCK, SCK, CCK) do not coincide across projects. For example, items 

that formed the COACTIV: PCK-Tasks subconstruct required teachers to provide multiple 

representations and solutions. Teachers with this capacity clearly would have more opportunities 

for providing rich mathematical explanations and better instructional quality, but those activities 

require something beyond the ability to generate multiple solutions and explanations.  On its 

own, this category of COACTIV seems quite similar to the characterization of SCK items used 
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on the LMT instrument: items that assess mathematical capacities teachers need that other adults 

and professionals may not. In other projects, no effort was made to classify the instrument or 

parts of the instrument with subconstructs or categories of MKT and PCK or to distinguish MKT 

and PCK (e.g., CVA, TEDS-M, and SimCalc). Another striking observation that can be made 

from this classification is the range in choices that projects have made with respect to framing 

“pure” content knowledge: It is assessed explicitly (and, for TCKS, is the entirety of the 

domain); it is assessed implicitly by other kinds of MKT items because PCK logically depends 

on some minimum amount of content knowledge (e.g., DTMR); or it is not assessed (e.g., CVA). 

Given the progress that these groups have made by creating measures that have provided some of 

the first evidence of how content knowledge for teaching (conceptualized and measured in the 

various ways that have been described) is related to student learning, researchers efforts would 

be advised to move future research in this area towards more synthesis.  

Productive Disposition for Teaching and Measures of Teachers’ Beliefs 

Knowledge is only one component of mathematical proficiency for teaching.  Teachers’ 

beliefs and affect, orientations and dispositions have important consequences for the work of 

teaching as well. Work in psychology and in mathematics education over the last several decades 

also provides a foundation for operationalizing the notion of productive disposition for teaching 

mathematics. I repeat the definition from the first chapter for clarity: Productive disposition for 

teaching mathematics refers to mathematics teachers’ orientation toward—and their related 

beliefs and attitudes about—the subject of mathematics, teaching and learning it, and their own 

professional growth. Two constructs that I used in the present studies concerned teachers’ 

beliefs. The first construct, teachers’ self-efficacy beliefs, has to do with what teachers believe 

about themselves as teachers.  This belief is important because it is related to teachers’ 
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motivation to teach. The second construct concerns teachers’ beliefs about the nature of teaching 

and the discipline of mathematics. These beliefs are important because what teachers believe 

shapes how they select and pursue goals in the classroom (see Philipp, 2007, for a review).  

Teaching self-efficacy (TSE) beliefs are a teacher’s own judgments about her or his 

capability to teach and confidence that her or his instruction will affect student learning 

(Bandura, 1977; Pajares, 1992).  The construct of TSE has been used extensively for several 

decades (e.g., Gibson & Dembo, 1984; Hoy & Woolfolk, 1993), and several measures of TSE 

exist (Tschannen-Moran & Hoy, 2001; Tschannen-Moran, Hoy, & Hoy, 1998). Under Bandura’s 

(1986) social-cognitive theory, TSE beliefs determine teachers’ “persistence when things do not 

go smoothly and their resilience in the face of setbacks” (Tschannen-Moran & Hoy, 2001, p. 

784), and thus is clearly related to the productive disposition identified by the NRC (Kilpatrick et 

al., 2001).  

In a comprehensive review, Tschannen-Moran et al. (1998) summarized the established 

associations between TSE and students’ achievement and motivation.  These authors concluded 

that TSE is likely to form early in teachers’ careers and remain relatively difficult to change later 

on.  The development of TSE is thus a crucial goal for programs preparing and supporting novice 

teachers. An extension of the Hill et al. (2007) argument for teacher knowledge measures that are 

close to the practice of teaching suggests that content-specific self-efficacy measures would be 

more highly predictive of student achievement in that content area than more general measures. 

Moreover, self-efficacy to teach may vary with the content taught.  Bandura (1986) wrote that 

self-efficacy as such was too broad to be useful for research without narrowing one’s attention to 

self-efficacy beliefs that are relevant to the specific situation or activity being researched. 
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The construct of self-efficacy plays a central role in the social-cognitive theory of 

psychology (Bandura, 1977, 1986, 1997).  Self-efficacy influences “how much effort will be 

expended and how long it will be sustained in the face of obstacles and aversive experiences” 

(Bandura, 1977, p. 191), and is the key factor of human agency.  Social-cognitive theory 

identifies four sources of self-efficacy:  

Enactive mastery experiences that serve as indicators of capability; vicarious 
experiences that alter efficacy beliefs through transmission of competencies and 
comparisons with the attainments of others; verbal persuasion and allied types of 
social influences that one possesses certain capabilities; and physiological and 
affective states from which people partly judge their capableness, strength, and 
vulnerability to dysfunction. (p. 79) 

Reviewing measures of the sources of self-efficacy, Usher and Pajares (2008) critiqued the 

validity of measures that were not aligned with theory.  Morris (2010), one of Usher’s students, 

has done extensive work in selecting and validating measures of the sources of TSE, and has 

found compelling evidence that TSE and its sources are related as theory would predict. 

Teachers’ beliefs about mathematics and learning are also related to student achievement 

(see Philipp, 2007, for a review).  For example, Fennema et al. (1996) found in a longitudinal 

study that teachers who have opportunities to understand children’s mathematical thinking come 

to believe that learning mathematics is a process of inquiry involving active student participation 

and that students of teachers with these beliefs experience larger gains in achievement than 

students whose teachers believe that mathematics is a set of rules best learned by rote.  Staub and 

Stern (2002) conducted a quasi-experimental study and found that the students of mathematics 

teachers with inquiry and active learning beliefs demonstrated greater achievement gains than 

students of teachers without those beliefs. Researchers on the TEDS-M project (Tatto et al., 

2012) cited these promising results as a rationale for their use of similar measures to assess 
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teachers’ beliefs about whether mathematics involves inquiry and whether mathematics students 

should be engaged in active learning. 

Connections Between Knowledge and Belief 

Outside of teaching situations, researchers have consistently found close relationships 

between knowledge and self-efficacy; for example, in studies of Grades K–12 mathematics 

students (see Pajares, 1996, for review).  Although MKT and TSE are both correlated with 

student achievement, little work has been done exploring how these two consequential 

characteristics of teachers interact.  Kilpatrick et al. (2001) argued that the components of 

knowledge and disposition in mathematical proficiency for teaching are interdependent; one 

cannot develop without the other.  Thompson (1992), in her handbook chapter on mathematics 

teachers’ beliefs and conceptions, argued that, “to look at research on mathematics teachers’ 

beliefs and conceptions in isolation from research on mathematics teachers’ knowledge will 

necessarily result in an incomplete picture” (p. 131); the inverse is certainly true as well.  

It is plausible that MKT and TSE are interdependent, but little empirical evidence exists 

to support that hypothesis.  In the only survey study that relates MKT with a disposition-related 

construct, Hill (2010) found that MKT is predicted by mathematical self-concept, one component 

of motivation that is likely correlated with TSE.  The only qualitative study to investigate the 

interaction between teachers’ MKT and teaching beliefs (Hill et al., 2008) discussed beliefs 

about mathematics and how students learn, but the researchers did not consider teachers’ 

motivation or TSE.  A promising, unexplored site for identifying the conditions and constraints 

governing teachers’ simultaneous development of MKT and TSE is the changing practice of 

novice teachers. 
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Teachers’ Professional Experience in Schools 

Student Teaching 

Recent policy recommendations for teacher preparation in the United States (e.g., 

National Research Council [NRC], 2010; National Council for the Accreditation of Schools 

[NCATE], 2010) have focused on the promise of school-based field experiences for producing 

desired outcomes for prospective teachers.  Those recommendations echo an international 

consensus on the importance of clinical experiences for teacher education (e.g., Musset, 2010; 

Wang, Coleman, Coley, & Phelps, 2003) and an international trend over the last few decades 

among teacher educators of increased emphasis on clinical experiences (Maandag, Deinum, 

Hofman, & Buitink, 2007; Ronfeldt & Reininger, 2012). Policy recommendations call for 

increased field-based teacher education by scheduling earlier clinical experiences and extending 

their duration (Goodson, 1993; Villegas-Reimers, 2003).  

At the same time, descriptive studies of clinical experiences in the United States suggest 

that they can be poorly aligned with teacher education program goals and that placements in 

schools can be haphazard, with little university oversight (Wilson et al., 2002). Some researchers 

argue that earlier or longer clinical experiences may be ineffective or even detrimental if the 

quality is poor; for example, by leading to beliefs about mathematics teaching and learning that 

are inconsistent with university course work (Zeichner & Gore, 1990). 

Feedback from a supervisor or mentor during student teaching is critical, because novice 

teachers tend not to notice what might be of significance (such as how students are reasoning) 

during clinical experiences (e.g., Jacobs, Lamb, & Philipp, 2010).  Research-based reports of 

high quality clinical experiences in the United States consistently describe feedback from 

supervising teachers as a critical component (Boyle-Baise, & McIntyre, 2008; Clift & Brady, 
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2005; Darling-Hammond & Bransford, 2007).  Feedback has important consequences for the 

educative value of clinical experiences (Conderman, Morin, & Stephens, 2005; Fernandez & 

Erbilgin, 2009), and there is concurring evidence that student teacher mentoring has positive 

effects on prospective teachers’ instructional practice (e.g., Murray, Nuttall, & Mitchell, 2008). 

There is less empirical support for the recommendations for longer student teaching; the 

relevant research has been primarily descriptive and has frequently lacked adequate controls for 

selection bias.  Some studies have provided evidence for positive effects of extended field 

experiences on teacher outcomes (e.g., Andrew, 1990; Andrew & Schwab, 1995; Silvernail & 

Costello, 1983).  By contrast, large-scale studies (also lacking adequate controls) have compared 

teachers completing one versus two semesters of student teaching and found no difference in 

teaching self-efficacy beliefs (Chambers & Hardy, 2005; Spooner, Flowers, Lambert, & 

Algozzine, 2008).  Only two studies of which I am aware estimated pseudo-causal effects for 

student teaching. Boyd, Grossman, Lankford, Loeb, and Wyckoff (2009) used a robust set of 

controls and found that estimates of the effect of no student teaching on teachers’ value added to 

student achievement was unstable across models; Ronfeldt and Reininger (2012) used similar 

controls and concluded that the length of student teaching had no effect on teachers’ 

preparedness to teach, but that the quality of student teaching had significant positive effects.  

Teacher Development 

The research literature on learning to teach is expansive but has been criticized for being 

fragmented and of uneven quality (Wideen et al., 1998).  Until recently, researchers focused 

primarily on the effects of particular features of university teacher education programs or highly 

delimited professional development interventions.  Only in the last decade or so has the focus of 

research shifted to analyzing learning to teach as a complex, situated process (Feiman-Nemser, 



 

 36 

2001). Discussing the current state of professional development and promising directions, Borko 

(2004) emphasized the importance of a situated perspective for research on teachers’ 

development that carefully attends to multiple contexts and influences.  She also highlighted the 

consensus that professional development programs should focus on teachers’ content knowledge 

and on developing their facility with student thinking. 

Looking at teachers’ first year of practice is not sufficient.  Recent qualitative studies 

have suggested that effects of teacher preparation may appear during teachers’ second and 

subsequent years of practice that were not apparent during the teachers’ first years of practice 

(Ensor, 2001; Grossman et al., 2000; Peressini, Borko, Romagnano, Knuth, & Willis, 2004). 

Large gaps in the literature remain. For example, none of the research reviewed by Wideen et al. 

(1998) addressed teacher content knowledge or self-efficacy beliefs for teaching, and more than 

10 years later, Charalambous (2009) observed that little is known about how novices learn MKT.  

The idea that teachers learn from experience is certainly plausible; in fact, the 

proliferation of alternative certification routes may be due in no small part to policy arguments 

that rely on that assumption.  Evidence exists that novice teachers become more effective in their 

first few years and (for mathematics teachers) is consistent with the hypothesis that novices learn 

MKT.  In each study, however, alternative explanations of the results are not ruled out.   

New teachers are not as effective as experienced teachers (e.g., Rivkin, Hanushek, & 

Kain, 2005; Rockoff, 2004), and a wide body of research has documented the positive 

association between experience and student achievement.  The research has further suggested 

that the benefit associated with experience tapers off after 4 or 5 years (e.g., Clotfelter, Ladd, & 

Vigdor, 2006; Darling-Hammond, Berry, & Thoreson, 2001). These results were all possibly 

subject to cohort bias (varying employment conditions lead to hiring cohorts that differ in 
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characteristics that affect student achievement) and attrition bias (the teachers who leave and 

those who remain differ in characteristics that affect student achievement).  Although 

inconclusive on the whole, research comparing teachers who follow traditional versus alternative 

routes appears to agree that most differences in effectiveness have equalized after 2 or 3 years of 

experience (Feistritzer & Haar, 2008).  Some alternative routes, such as Teach for America, 

recruit very well-educated college graduates but have 80% attrition by the fourth year (Heilig & 

Jez, 2010), so the result that differences between traditional and alternative route teachers 

disappear as a consequence of experience may also be affected by attrition bias. 

A much smaller set of studies has suggested a similar relationship between teacher 

experience and MKT.  Hill (2007, 2010) found a significant linear relationship between 

experience and MKT among random national samples of elementary and middle grades teachers, 

but she hypothesized that cohort bias might be responsible for the observed effects. She also 

called for more research describing the content knowledge of alternative route teachers Using a 

covariance adjustment model of middle grades teachers’ algebra MKT, Hill (2011) found that 

experience teaching algebra between the two waves of knowledge measurement had a large and 

significant effect (d = .34, p < .001) on algebra MKT after controlling for pretest scores.  The 

results might have been biased, however, by large score increases among a relatively few 

teachers who were teaching algebra for the first time and by the recency effect documented in 

experimental psychology whereby the most recently seen items on a list are the easiest to recall 

(H. Hill, personal communication, August 29, 2011). In this case, having recently taught the 

material may have biased experienced teachers’ scores upwards relative to those of teachers with 

similar knowledge who had not seen the material in over a year and were remembering “on the 

fly” while taking the knowledge survey. Humphrey, Wechsler, and Hough (2008) compared 
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participants in seven alternative certification programs and found that initial differences in MKT 

associated with the selectivity of undergraduate institution had disappeared by the end of the first 

year and that all teachers had made gains in MKT.  

Recent results about professional development have not been as promising as the 

apparent effects of experience. Hill (2011) found only modest effects of professional 

development on teachers’ MKT in a national sample of middle grades teachers. Garet et al. 

(2011) found in a large, well-designed research study that a mandatory professional development 

intervention for rational number did not have a statistically significant effect on teacher 

knowledge. 

Research on how novice teachers’ beliefs develop is rare, but several studies supported 

the claim that teacher preparation affects teachers’ beliefs.  Newton (2009) adapted a 

mathematics motivation instrument to examine prospective elementary teachers’ motivation for 

solving mathematical problems involving fractions and found that a course on the conceptual 

understanding of elementary mathematics significantly increased their motivation for solving 

problems with fractions.  Woolfolk and Hoy (1990) found that TSE increased during student 

teaching, and Darling-Hammond, Chung, and Frelow (2002) reported that traditional route 

teachers had significantly greater TSE than alternative route teachers with less preparation.  

There has been some work on theoretical explanations for how teacher expertise might 

develop, but little has focused on teachers’ professional knowledge. Berliner (1994) 

hypothesized that teachers develop expertise in stages but later observed (Berliner, 2001) that 

stage theories do not explicate the developmental process between stages that are of greatest 

interest to teacher educators.  Silverman and Thompson (2008) presented a developmental 

account of learning MKT that fundamentally involved “decentering” (p. 502), or a teacher’s 
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ability to set aside his or her own perspective and imagine moving through a particular 

mathematical terrain from the perspective of a student.  This step, they argue, allows teachers to 

transform their own personal mathematical understanding into a powerful pedagogical resource.  

In a similar vein, Darling-Hammond (2000) observed:  

Developing the ability to see beyond one’s own perspective, to put oneself in the shoes of 
the learner and to understand the meaning of that experience in terms of learning, is 
perhaps the most important role of universities in the preparation of teachers. (p. 170) 

It is also a role that must not be neglected by professional development programs and other 

forms of support for inservice teachers, especially those aimed at increasing teachers’ MKT. 

Teachers’ experience with children’s mathematical thinking is an important theme in the 

research on teachers’ knowledge and beliefs about mathematics and learning, and a key marker 

of quality for field experiences.  A randomized experiment (Philipp et al., 2007) compared the 

change over a semester-long mathematics content course in the beliefs and content knowledge of 

prospective teachers who were assigned to guided experiences that focused on children’s 

mathematical thinking with that of prospective teachers assigned to clinical experiences that 

lacked such a focus.  A critical design feature was the early timing of the clinical experience to 

be concurrent with a content course.  Philipp et al. (2007) hypothesized that experience with 

children’s mathematical thinking would promote the prospective teachers’ development of 

beliefs and content knowledge; they found significant differences between the groups with 

respect to changes in beliefs but no significant differences in changes in content knowledge.  

They did not use an instrument to measure PCK and called for future research to investigate 

measures of that construct. 
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CHAPTER 3 

THE TEXAS STUDY 

This study explores the relationship between professional experience and mathematical 

proficiency for teaching. Teachers certified for high school usually take more mathematics 

classes in college and may enjoy mathematics more than teachers certified for earlier grade 

levels. High school teachers therefore may have more knowledge resources and more motivation 

for explaining multiplicative reasoning topics than middle grades or elementary teachers. On the 

other hand, teachers frequently teach only a small portion of the curriculum, and one might 

reasonably expect an experienced fifth-grade teacher to have more mathematical proficiency for 

teaching fraction division than a similarly experienced second-grade teacher or high school 

geometry teacher. Past research has not addressed the extent to which experience teaching 

mathematics is conducive for developing mathematical knowledge for teaching. 

Existing coarse-grained instruments assess a wide range of knowledge and beliefs, much 

of which specific teachers may rarely use in practice.  In the Texas study, I narrowed the focus of 

instruments for measuring mathematical proficiency for teaching by selecting or adapting 

existing items to form new instruments that targeted the specific content domain of 

multiplicative reasoning.  This sharp focus afforded a more meaningful analysis of the 

relationship between mathematical proficiency for teaching and features of teachers’ experience, 

such as the grade level at which they teach. 

The first purpose of the Texas study, therefore, was to assess the reliability of the adapted 

instruments of mathematical proficiency for teaching.  Mathematical proficiency for teaching 



 

 41 

was operationalized in the Texas study on two dimensions: mathematical knowledge for teaching 

and teaching self-efficacy beliefs.  A separate instrument was developed for each of these 

dimensions of mathematical proficiency for teaching.  In addition, supplemental instruments 

were adapted or used verbatim on the survey to inform the validity argument for the instrument 

of mathematical knowledge for teaching multiplicative reasoning and the instrument of self-

efficacy beliefs for teaching multiplicative reasoning. 

The second purpose of the Texas Study was to study how mathematical proficiency for 

teaching multiplicative reasoning varied in a sample of practicing teachers with diverse 

preparation experiences and who were working in a wide range of grade levels and school 

contexts.  A key feature of this study was the opportunity to compare early entry teachers who 

begin teaching before completing the requirements for certification with those teachers who were 

certified before beginning to teach.  Early entry status is of greater interest than a comparison 

between, say, alternative and traditionally certified teachers because the former is a specific 

feature that can be influenced directly by policy, whereas the latter distinction holds little 

meaning because of the great variation within and between alternative and traditional 

certification programs (Johnson & Birkland, 2008).  My research in service of the second 

purpose of the study was essentially descriptive, and it laid the empirical groundwork for the 

hypotheses that were further explored in the longitudinal Georgia study (see Chapter 4) and in 

the study of U.S. student teaching (see Chapter 5). 

The research questions for this study were as follows:  

1. How valid and reliable are the content knowledge and teaching self-efficacy measures 

adapted for the domain of multiplicative reasoning? 
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2. How does mathematical proficiency for teaching multiplicative reasoning vary (a) with 

academic preparation, student teaching, and teaching experience and (b) by early entry 

status and across certification grade level? 

Data and Methods 

Participants 

The analytic sample for this study comprised volunteers from among the participants in 

two studies of Grades K–12 mathematics teachers in Texas conducted by Michigan State 

University (see http://usteds.msu.edu).  The two Texas studies were designed to supplement the 

U.S. portion of the international Teacher Education and Development Survey in Mathematics 

(TEDS-M; Tatto et al., 2012), which had sampled only teachers prepared in public institutions.  

Because of the large and growing number of teachers following alternative routes to certification 

in the United States, those studies were aimed to provide data on teacher education more 

broadly.  The prevalence of teachers who follow alternative routes to certification varies widely 

by state, and Texas was a strategic choice because of the large percentage of new teachers in 

Texas who follow an alternative route.  I asked the volunteers to complete the Teachers and 

Teaching Multiplicative Reasoning (TTMR) survey, which contained the focused measures of 

teachers’ knowledge and beliefs I had developed, as well as various other questions about 

teachers’ background, preparation, and experience.  Data from the TTMR survey and from the 

U.S. TEDS-M supplemental studies were used in the study reported in this chapter. 

The first U.S. TEDS-M supplemental study (TX-TEDS1) was conducted between June 

and October of 2010 and aimed to reach all Grades K–12 mathematics teachers in Texas who 

had been given initial certification between 2006 and 2010 to teach either in the elementary 

grades (generalist, early childhood, EC, to Grade 6) or in the middle and upper grades 
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(mathematics, Grades 4 to 8 and Grades 8 to 12).  There were approximately 17,750 individuals 

contacted for the first survey, but only 1,015 completed it (a response rate of 5.7%).  These 

individuals were invited to take the TTMR survey, and of the 166 who volunteered to do so, 106 

responded to at least one question on the TTMR survey (64%).  

The second study (TX-TEDS2) differed from TX-TEDS1 in two ways.  First, it was a 

representative probability sample of the population of Grades K–12 mathematics teachers 

certified to teach in Texas between 2006 and 2010.  Second, the teachers in the sample were 

offered a small honorarium to encourage participation. Approximately 8400 teachers were 

contacted and even though the sample was smaller, the number of participants that completed the 

survey was higher (N = 1937).  The response rate for TX-TEDS2 was consequently higher than 

for TX-TEDS1 (23% versus 6%), and these participants volunteered to take the TTMR survey at 

a higher rate as well (27% versus 16%).  Of 516 volunteers, 386 responded to at least one 

question on the TTMR survey (75%).   

Instruments 

 The TTMR survey included an instrument of mathematical knowledge for teaching 

(MKT), a teaching self-efficacy (TSE) beliefs instrument (TSE Beliefs), and an instrument 

measuring the sources of TSE (TSE Sources). These instruments were adapted from existing 

instruments to focus on the domain of multiplicative reasoning.  The TTMR survey also included 

several questions that addressed the background, preparation, and school context of the 

participants. 

Mathematical Knowledge for Teaching instrument (MKT).  I selected 23 items 

written for the Measures of Effective Teaching project (Bill & Melinda Gates Foundation, 2010) 

that focused on fractions, ratios, and proportions to form the MKT instrument used for this study. 
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The teacher knowledge instrument developed by the Measures of Effective Teaching project was 

similar in design to the LMT instrument (see Chapter 2). I also adapted 3 items from the 

Diagnosing Teachers Multiplicative Reasoning project (DTMR; Bradshaw, Izsák, Templin, 

Jacobson, under review). 

The items that I selected explicitly addressed two kinds of MKT identified in Chapter 2: 

(a) understanding and evaluating students’ mathematical thinking and (b) selecting and using 

tasks and representations.  The third kind of MKT (conceptual knowledge of the content taught) 

was implicitly assessed by the selected items because such knowledge is prerequisite for 

answering them. The selected items could be further classified in three topical categories that 

make up the domain of multiplicative reasoning as defined for this study (fraction multiplication 

and division, fraction and ratio comparison, and proportional reasoning). These categories 

correspond to the categories I used to organize the review of students’ and teachers’ 

multiplicative reasoning in Chapter 2.  Table 3 shows how the items were distributed in this 

cross-classification and it demonstrates the higher number (hence emphasis) of items on the 

MKT instrument that dealt with students’ mathematical thinking.  Figure 1 shows examples of 

the MKT items. 

Teaching Self-Efficacy Beliefs (TSE Beliefs) instrument. The instrument for TSE 

Beliefs was adapted from measures for prospective science teachers (Enochs & Riggs, 1990; 

Roberts & Henson, 2000). The items measuring TSE Beliefs were modified to address the 

domain of multiplicative reasoning by replacing the word “science” with the phrase “topics 

involving fractions, ratios, and proportions.”  For example, the question “I usually do a poor job 

teaching science” became “I usually do a poor job teaching topics involving fractions, ratio, and 

proportion.”  Following Roberts and Henson (2000), the TSE Beliefs instrument had two factors: 



 

 45 

personal teaching efficacy (PE) and knowledge efficacy (KE).  Sample items for each of these 

factors are presented in Table 4.  A central question in the instrument validation work described 

below was the evaluation of this two-factor structure for the TSE Beliefs instrument. 

 
(a) 

 

 
(b) 

 
Figure 1. Sample (a) dichotomous response and (b) multiple-choice items used in the MKT 
instrument. Copyright © 2012 Bill & Melinda Gates Foundation and Educational Testing 
Service, all rights reserved. 
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Table 3 

Classification of MKT Items by Pedagogical Task, Content Topic, and Problem Type 

 Pedagogical task  

Content topic 

Understanding and 
appraising students’ 
mathematical thinking 

Selecting and using tasks 
and representations for 
instruction Total 

Proportional reasoning 5 – DR  
(e.g., Richmond in Fig. 1) 3 – DR 8 

Fraction and ratio 
comparison 

3 – MC 
6 – DR 

1 – MC  
(e.g., Hayes in Fig. 1) 10 

Fraction multiplication 
and division 4 – DR 4 – DR 8 

Total 18 8 26 

Note. Cells give the number of items and the type in each category.  Dichotomous response items 
(DR) had a common stem and asked participants to respond given two options (e.g., 
mathematically valid vs. not mathematically valid).  Multiple-choice (MC) items had four 
options. 

 

Sources of Teaching Self-Efficacy (TSE Sources) instrument.  The TTMR survey 

included an instrument to assess the sources of teaching self-efficacy to support a validity 

argument based on Bandura’s (1986, 1997) theoretical account of self-efficacy beliefs.  Social 

cognitive theory stipulates four sources of self-efficacy beliefs: mastery experiences, vicarious 

experiences, social persuasions, and emotional and physiological states.  Mastery experiences are 

individuals’ interpretation and evaluation of their own competence and confidence after 

completing a task.  Mastery experiences are the most powerful source of self-efficacy beliefs.  

Individuals also construct self-efficacy beliefs through vicarious experiences from peers or from 

their own memories of themselves.  Vicarious experiences involve watching or remembering 

another’s performance (including one’s own past performance) and imagining oneself 

completing the task in a similar manner.  Social persuasions from students, other teachers, and 

administrators provide another source for teachers to develop their self-efficacy beliefs.  Finally, 
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individuals’ emotional and physiological states before and after performing a task influence how 

they interpret their own competence.  Anxiety, fatigue, and mood are all aspects of this fourth 

source of self-efficacy beliefs.   

Table 4 

Sample Items From the TSE Beliefs and the TSE Sources Instruments 

 Factor Example Item α 
TSE 

Beliefs 
PE – personal 
efficacy  

I am not sure I have the necessary skills to teach every 
topic involving fractions, ratios, or proportions. 

.83 

.77a 
 KE  – knowledge 

efficacy  
I understand concepts involving fractions, ratios, and 
proportions well enough to be effective in teaching my 
students. 

.88 

TSE 
Sources 

ME – mastery 
experience  
 

I have succeeded at teaching topics involving fractions, 
ratios, and proportions even with the most challenging 
students. 

.82 

 VE – vicarious 
experience  
 

When I am preparing to teach topics involving fractions, 
ratios, and proportions, I often try to visualize myself 
working through the most difficult teaching situations.  

.58 

.79b 

 SP – social 
persuasion  
 

My students have told me that I have taught them a great 
deal about topics involving fractions, ratios, and 
proportions. 

.82 

 EP – emotional 
& physiological 
states  

I would be worried if I was asked to demonstrate how to 
teach a lesson that involved fractions, ratios or 
proportions. 

.91 

a One item was not used in the final PE scale because of differential additive effects across the 
certification grade level grouping; the second value for α indicates Cronbach’s reliability 
coefficient after removing this item.  See the Measurement Invariance section for more details. 
b One item was not used in the final VE scale because of misfit, and the Spearman-Brown 
reliability coefficient was ρ = .79  after removing the misfitting item. With 2-item scales, 
Spearman-Brown’s ρ is more appropriate than Cronbach’s α (Eisinga, Grotenhuis, & Pelzer, 
2012).   
 

Morris (2010) reviewed and empirically validated a wide range of instruments for the 

sources of teaching self-efficacy.  Using item-level information from Morris, I selected 6 to 8 of 

the best performing items to address each source, adapting the wording in each to focus on 

multiplicative reasoning rather than teaching in general. These revised items comprised the TSE 
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Sources instrument. For example, the vicarious experience question “I often try to visualize 

myself working through the most difficult teaching situations” became “When I am preparing to 

teach topics involving fractions, ratios, and proportions, I often try to visualize myself working 

through the most difficult teaching situations.”  (Recall that vicarious experience can involve 

recollection of a past performance as well as observation of another’s performance.) Sample 

items for each source instrument are provided in Table 4. A second question in the validation 

work described below was whether TSE Sources would predict TSE Beliefs in the ways 

stipulated by social cognitive theory. 

Other survey items and instruments.  The TTMR survey and TX-TEDS studies 

included a range of items and instruments on the background, preparation, and school context of 

participants. Both demographic and certification data were provided by the Texas Department of 

Education and reflect official records. These variables include age, ethnicity, gender, and 

certification grade level. Age was reported in years; the categories of the ethnicity variable 

follow the corresponding U.S. Census question; and the gender and certification grade level 

variables were included in the analysis using binary dummy indicators (i.e., values of 1 or 0 for 

each category based on whether that individual was included). There were six certification grade 

level categories in the original data: EC–4 (n = 201), EC–6 (n = 6), 4–8 (n = 245), EC–8 (n = 

15), 8–12 (n = 196), and 4–12 (n = 16).  Three certification grade level categories (EC–6, EC–8, 

& 4–12) were too small for independent analysis, so I combined each of these with the most 

similar remaining category, resulting in an elementary category (EC–4 and EC–6), a middle 

grades category (4–8 and EC–8), and a high school category (8–12 and 4–12). Data for all four 

of these variables were obtained from the Texas Department of Education and reflect official 

records. 
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Participants in both TX-TEDS surveys reported the institution where they obtained their 

bachelor’s degree, and I used rating data describing the selectivity of participants’ undergraduate 

institution from a 6-point selectivity rating scale (Barron’s Educational Services, 2001).  The 

scale ranged from 1 (noncompetitive) to 6 (most competitive), and was calculated for each school 

by Barron’s Educational Services from various factors including students’ average SAT and 

ACT scores, minimum class rank of accepted students, percentage of incoming students in the 

top 40% of their high school class, and percentage of applicants accepted. Educational 

economists have used undergraduate selectivity as a proxy for cognitive ability (see, e.g., 

Humphrey et al., 2008); it may also reflect students’ opportunities for education. In the following 

analysis, this variable was used to characterize the analytic sample and as an auxiliary variable to 

mitigate the uncertainty due to missing data; both uses were warranted under either 

interpretation. Participants were asked on the TTMR survey whether they had begun teaching 

full time before receiving full certification, and a dummy variable was used to incorporate this 

early entry variable into the analyses.  

An important piece of teachers’ preparation and certification program is their academic 

preparation during university coursework.  I created a composite perceived academic 

preparation variable to summarize teachers’ responses to the following question on the TX-

TEDS surveys, “How well prepared academically do you feel you are—you feel you have the 

necessary disciplinary coursework and understanding—to teach each of the following at the 

grade level you are currently teaching?”  To correspond with the focus on multiplicative 

reasoning in the outcome instruments, I selected a subset of the available items for the composite 

academic preparation variable.  Teachers in the primary grades (EC–6) were asked about their 

academic preparation for teaching (a) fractions and (b) decimal topics, among others.  Teachers 
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in the secondary (4–12) grades were asked about their academic preparation for teaching (a) 

fraction and decimal topics and (b) proportion and ratio topics, among others.  The teachers 

responded to each item on a 4-point Likert scale (1: not well prepared; 2: somewhat prepared; 3: 

fairly well prepared; and 4: very well prepared).  To create the composite variable, I took the 

average of items a and b described above or the score of a single item (a or b) if one was 

missing.  

On the one hand, the composite perceived academic preparation variable has different 

absolute meanings across different grade levels: The score reflects elementary teachers’ reports 

on fraction and decimal topics separately but secondary teachers’ reports on these topics together 

and then on the additional topics of proportion and ratio.  On the other hand, the composite 

variable has a clear meaning for the analysis that is coherent across certification grade levels—

the variable reflects the sense of academic preparedness teachers reported relative to the 

multiplicative reasoning topics they were most likely to be asked to teach at the grade level for 

which they were certified.  The perceived academic preparation variable was entered into the 

analyses as a continuous variable. 

The teachers were also asked about their student teaching experiences.  Two variables 

related to the practicum were used in the analyses. First, the participants were asked about the 

frequency of their experience with three high quality student teaching experiences: enrollment in 

coursework connected to the practicum, meeting individually with mentor during practicum, and 

observing fellow student teachers and discussing their practice. These items were on a 3-point 

scale (1: never; 2: sometimes; 3: always) and were used as indicators for a variable called high 

quality experiences and modeled as a latent factor (α = .89). Second, the participants reported the 

student teaching length they experienced in weeks, “How many weeks did you spend in your 
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teacher preparation program actually teaching as part of a practicum for more than one day a 

week?” The distribution of reported student teaching length is shown in Figure 2. 

Student Teaching Length (N = 420) 

 

Months 

Teaching Experience (N = 490) 

 

Years 

Figure 2. Histograms of the independent variables for student teaching length and teaching 
experience. 

 

The teachers were asked several questions about their experience teaching.  First, the 

variable teaching experience was calculated from official records of initial certification and the 

date each participant took the survey (administration dates ranged from July 2011 to April 2012).  

Adding the survey administration lag time more accurately represented differences in teaching 

experience between participants in the same certification cohort, and the ten spikes in the 

histogram correspond to members of the five certification cohorts who participated in either TX-

TEDS-1 (July to October 2011) or TX-TEDS-2 (November 2011 to May 2012) studies (see 

Figure 2). 

The second variable describing teachers’ experience teaching had to do with the content 

they were teaching. The TX-TEDS survey included a question on the number of class periods in 

the 2010–2011 school year that teachers had spent teaching various topics.  These data were 

combined to form a variable called topical experience.  Teachers in the primary grades were 
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asked how often they had taught (a) fractions and (b) decimal topics, among others.  Teachers in 

the secondary grades were asked how often they had taught (a) fractions and decimals and (b) 

proportions and ratios, among others. Responses to each item were entered on a 6-point scale (1: 

0 periods; 2: less than 1 or 1 period; 3: 2 to 5 periods; 4: 6 to 10 periods; 5: 11 to 15 periods; 6: 

15 or more periods).   

I summed the codes from Topics a and b described above to combine these data into a 

single measure of topical experience across grade levels, but this sum was skewed by the fact 

that 1 point on the original scale meant an increase of less than a class period of experience at the 

low end of the scale, but also meant an increase of 4 or 5 class periods at the high end of the 

scale. To mitigate the shift in meaning for a 1-point difference across the scale, I subtracted 1 

from each sum for each item with a code of 2 or greater.  For example, a teacher with a code of 1 

(0 periods) and 3 (2 to 5 periods) would have a combined code of 4 – 1 or 3 (2 to 5 periods), and 

a teacher coded 4 (6 to 10 periods) on both items would have a combined code of 8 – 2 or 6 (15 

or more periods).  The first six codes of the composite variable obtained in this way had 

approximately the same meaning as the original six codes. I defined additional codes for 

composites codes of 7 and above (7: 17 or more periods, 8: 21 or more periods, 9: 26 or more 

periods, and 10: 30 or more periods). These definitions necessarily overlap because the original 

codes indicate a range of possible values.  Such codes were necessary to reflect the probable 

differences in frequency of topical experience of participants who had reported codes above 3 on 

the original scale for both topics in the composite. Using a composite code for the topical 

experience variable across grade levels even though different teachers were asked about different 

topics by grade level is defensible because opportunities to teach multiplicative reasoning topics 
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at each grade level were likely constrained to the topics each teacher was asked about.  This 

composite code was entered into the analyses as a continuous variable.  

The third variable describing each teacher’s experience teaching was collaborative 

activity.  This variable was included in the analysis to reflect differences in teachers’ professional 

work environment.  This variable was modeled in analyses as a latent factor with five indicators 

(α = .78), each a 5-point scale (1: never; 2: once a year; 3: once or twice each semester; 4: once a 

month; 5: once each week).  These five indicators asked about the frequency of professional 

activities that might support teachers’ learning with colleagues, especially activities focused on 

student thinking.  Teachers were asked how frequently in the past 3 years they had done each of 

the following activities with colleagues: analyzed sample student work, sought advice about 

instructional issues, discussed teaching practice, discussed the strengths or needs of specific 

students, and discussed student assessment data to make instructional decisions.  

Distributional statistics for the independent variables used in the analysis are shown in 

Table 5. The variables are grouped by analytic purpose and meaning. The first group (age and 

undergraduate selectivity) were used as auxiliary variables to mitigate bias from missing data. 

The other three groups (preparation, student teaching, and teaching) describe categories of 

teachers’ experience that address the second research question of the study. The analytic methods 

I used assume that all independent variables have normal distributions, and the low skewness and 

kurtosis values for these variables (see Table 5) indicated that all of these variables were 

approximately univariate normal. 
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Table 5 

Auxiliary and Independent Variables Used in Multivariate Regression Analyses 

Variable M  SD Skewness Kurtosis 
Auxiliary 

Age (years) 39.37 10.97 0.65 -0.66 

Undergraduate selectivity 3.17 1.36 0.06 -0.80 
Preparation 

Perceived academic preparation  3.60 0.70 -1.78 2.55 

Student teaching 
Length (months) 4.14 3.76 0.90 0.34 

High quality experiences  
(α = .89, ρ = .68) a     

1 2.12 0.84 -0.24 -1.54 
2 2.28 0.69 -0.44 -0.88 
3 1.84 0.74 0.26 -1.15 

Teaching  
Topical experience 6.0 3.2 -0.12 -1.36 

Teaching experience (years) 3.4 1.4 0.07 -1.19 
Collaborative activity (α = .78)     

1 2.67 1.34 0.39 -1.01 
2 4.04 1.14 -0.99 0.00 
3 3.91 1.14 -0.90 0.09 
5 3.69 1.30 -0.74 -0.56 
8 3.31 1.13 -0.49 -0.38 

a Item 1 was not used in PQ composite because of differential additive effects across the early 
entry status grouping; see the Measurement Invariance section for more details. For 2-item 
scales, the Spearman-Brown reliability coefficient ρ is more appropriate than Cronbach’s α 
(Eisinga et al., 2012).   
 

Characteristics of the Analytic Sample  

The analytic sample for this study includes all responders (N = 492) to the TTMR survey, 

and thus, the analytic sample combined volunteers from among the participants of both TX-

TEDS studies. Combining the TTMR respondents from both TX-TEDS studies increases the 

precision of the analytic results of this study because of the larger N, but it also means that the 

analytic sample and findings based on this sample are not representative of the population of K–

12 mathematics teachers in Texas.  I chose to combine these groups because the primary purpose 
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of the study was to evaluate the validity of measures and to describe possible relationships 

between teachers’ experience and their mathematical proficiency for teaching to inform further 

research. The primary concern was to obtain a sample that included a large portion of the 

variation in the population of Grades K–12 teachers certified in the last 5 years in Texas, and this 

goal was almost certainly achieved with the data available in the combined analytic sample. The 

characteristics and composition of the analytic sample and the samples for each TX-TEDS study 

are described in detail in Table 6. 

The sampling strategy of the TX-TEDS1 study was a census, but the sample is better 

understood as a convenience sample because the response rate (6%) was extremely low.  The 

sampling strategy for TX-TEDS2 was stratified sample randomized by grade-level strata, and 

thus is more likely to be representative (within grade-level) of the population of Texas 

mathematics teachers. The low response rate of 23% for that study, however, precluded high 

confidence of accurately generalizing results to the population.  The demographic variables in 

Table 6 provide further evidence that the two TX-TEDS studies did not sample the same 

population.  The biggest difference was in the distribution of participants by certification grade 

level. Almost three-quarters of the TX-TEDS-1 participants were elementary certified whereas 

less than one-quarter of the TX-TEDS-2 participants were certified for those grades. This 

difference may underlie other apparent differences. For example, the TX-TEDS1 study had 90 

female participants, but TX-TEDS2 had just 64 female participants, which is not surprising given 

that elementary teachers are more frequently women than men. The TX-TEDS1 study 

participants were also slightly younger, slightly less Asian, and slightly more African American 

and Hispanic than participants of the TX-TEDS2 study.   
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Table 6 
 
Demographic and Certification Characteristics as a Percentage of Two TX-TEDS Study Samples and the Analytic Sample 
 

 TX-TEDS 1 (Jul–Oct 2010)  TX-TEDS 2 (Nov–May 2011)  Analytic sample  

Characteristic 
Full TX-

TEDS1 sample 
(n = 1015) 

TTMR 
volunteers 
(n = 166) 

TTMR 
responders 
(n = 106) 

 Full TX-
TEDS2 sample 

(n = 1937) 

TTMR 
volunteers 
(n = 516) 

TTMR 
responders 
(n = 386) 

 All TTMR 
responders 
(n = 492) 

Gender - female 90 90 90  64  68  68   73  
Ethnicity          

African American 9 6 6  8  8  7   7  
Asian 2 2 3  6  3  2   2  
Hispanic 19 17 16  18  15  15   15  
Native American 1 2 1  <1  <1 <1  <1 
Other 2 1 2  2  1  1   1  
White 67 73 73  67  73  75   74  

Certification type          
Alternative 29 29 32  57  57  57   52  
Out of state 9 12 11  19  20  22   19  
Standard 62 59 58  24  23  21   29  

Certification year          
2006 21 17 14  18  17  17   16  
2007 20 26 22  18  18  19   20  
2008 21 20 24  21  22  22   23  
2009 20 18 20  20  20  19   19  
2010 19 20 21  23  24  23   22  

Certification grade           
EC–4 & EC–6 74 66 63  22  19  19   28  
Grades 4–8 & EC–8 20 23 25  45  43  42   38  
Grades 8–12 & 4–12 6 11 12  33  38  40   34  

 



 

 57 

Two important questions about the analytic sample are relevant for the subsequent 

analyses and for understanding the implications of the results: How similar were the TTMR 

volunteers to the participants in the TX-TEDS studies? How similar were the TTMR responders 

(the analytic sample) to the nonresponding volunteers? These questions address the possibility of 

two forms of selection bias. First, I was concerned that those volunteering to take the TTMR 

survey differed systematically from those who were invited. Second, I was concerned that 

TTMR respondents differed systematically from the TTMR volunteers (e.g., perhaps low-

knowledge volunteers chose not to take the survey more often than high-knowledge volunteers 

after seeing the MKT items). The available data showed that neither of these concerns was 

founded; overall, the TTMR volunteers were similar to the respective TX-TEDS study 

participants who might have volunteered instead, and those who chose to respond to the TTMR 

survey were very similar to the TTMR volunteers who did not respond.  

From Table 6, it is evident that the TTMR volunteers from each TX-TEDS study had 

similar demographic characteristics to the corresponding TX-TEDS study sample except in mean 

age: Each group of TTMR volunteers tended to be slightly older on average than the 

corresponding TX-TEDS study participants. There were no substantial differences between each 

group of TTMR volunteers and the corresponding TX-TEDS study sample with respect to 

certification variables, or with respect to age or undergraduate selectivity (see Table 7). 

To address the degree of balance between TTMR volunteers and the eventual responders 

(the analytic sample), I used the MatchBalance function of the R package Matching that is 

designed to compare treatment and control groups for equivalence on multiple variables using t-

tests, bootstrap Kolmogorov-Smirnov tests, and summary statistics for the empirical cumulative 

distribution function, and an empirical quantile-quantile plot of categorical and continuous 
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variables. There were no significant differences on any of the variables between TX-TEDS1 

volunteers who responded to the TTMR survey and those who did not.  There were two variables 

that exhibited significant differences between the TX-TEDS2 volunteers who responded to the 

TTMR survey and those who did not.  First, relatively more Grades 4–8 and EC–8 teachers 

responded to the TTMR survey than those who did not (38% versus 26%). Second, relatively 

more teachers certified in 2007 responded to the TTMR survey than those who did not (20% 

versus 12%). Finally, I compared all teachers in the analytic sample with all the volunteers who 

did not respond to the TTMR survey.  That analysis revealed three significant differences: 

Teachers in the analytic sample were relatively older than nonresponding volunteers (with mean 

age 39 years versus 37), relatively less likely to be elementary Grades EC–4 or EC–6 certified 

(28% versus 36%), and relatively more likely to be secondary Grades 4–12 or Grades 8–12 

certified (34% versus 24%). 

Table 7 

Age and Undergraduate Selectivity of Participants by TX-TEDS Study and Analytic Sample 

 

 

 TX-TEDS 1  
(Jun–Oct 2010) 

 TX-TEDS 2  
(Nov–May 2011) 

 Analytic 
Sample  

Characteristic TTMR 
volunteers  

M (SD) 

TTMR 
responders  

M (SD) 

 TTMR 
Volunteers 

M (SD) 

TTMR 
responders 

M (SD) 

  All TTMR 
responders 

M (SD) 

Age (years) 41 (12) 41 (12) 
 

38 (11) 39 (11) 
 

39 (11) 
Undergraduate selectivity  
(1: noncompetitive to 6: 
most competitive) 

2.9 (1.3) 2.9 (1.3) 
 

3.2 (1.3) 3.3 (1.4) 
 

3.2 (1.4) 
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Figure 3. Histograms of participant age for nonresponding volunteers and the analytic sample. 

 

I explored the differences in participation by age and certification grade level by 

examining histograms and summary statistics for each group to gain a better understanding of 

how the analytic sample might have differed from the group of nonresponding volunteers.  

Histograms of participants’ age in the analytic sample and among nonresponding volunteers 

show that volunteers younger than 30 were less common in the analytic sample than among 

nonresponding volunteers.  In addition, volunteers older than 40 were more common in the 

analytic sample than among nonresponding volunteers (see Figure 3).  Next, I compared the 

analytic sample and nonresponding volunteers on the variable from the TX-TEDS surveys with 

the most relevance for the planned analysis: their reported level of preparedness to teach 

fractions (see Table 8).  This variable provided no evidence that the differential response pattern 

at each certification grade level was related to the teachers’ sense of preparedness to teach 

fractions.  
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Table 8 

Preparedness to Teach Fractions by Certification Grade Level and Participant Subgroup 

 Mean preparedness to teach 
fractions (SD) 

Subgroup 
Analytic sample 

Nonresponding 
volunteers 

Elementary generalists certified 
Grades EC–6 (n = 6) & Grades EC–
4 (n = 201) 

3.28 (0.80) 3.54 (0.69) 

Middle grades math specialists 
certified Grades EC–8 (n = 15) & 
Grades 4–8 (n = 245)  

3.53 (0.81) 3.65 (0.57) 

Secondary math specialists certified 
Grades 4–12 (n = 16) & Grades 8–
12 (n = 196) 

3.85 (0.45) 3.77 (0.64) 

 

In summary, neither of the two sub-samples from the TX-TEDS studies nor the combined 

analytic sample were representative of the population of Grades K–12 mathematics teachers in 

Texas that were certified in the last 5 years.  There were no differences between TX-TEDS study 

participants who volunteered to take the TTMR survey and those who did not, suggesting that 

there was no additional selection bias associated with volunteering to take the TTMR survey.  

There were some small differences between TTMR volunteers and responders. Those who 

responded to the TTMR survey were slightly older and were relatively less likely to be 

elementary certified and relatively more likely to be middle or secondary certified.  On the other 

hand, the TTMR responders did not on average have more experience or a greater sense of 

preparation for teaching fractions than the nonresponding volunteers. Together these findings 

support increased confidence that the analytic sample reflected a range of school and preparation 

experiences of the population of Grades K–12 teachers certified in the last 5 years in Texas and 

that the selection bias affecting the analytic sample was generally limited to the selection bias 

associated with the sampling for the TX-TEDS studies. 
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Missing Data 

Because of missing data, the size of the analytic sample available for any given analysis 

did not attain the total of 492.  Omitted responses were grouped toward the end of the survey, 

which suggested that almost all of the omissions occurred because participants stopped before 

reaching the end of the survey.  To estimate the IRT parameters for the MKT instrument, I used 

data from the 409 respondents that had answered at least one item on that instrument.  For the 

TSE instruments, the data did not satisfy the normality assumptions, and I used estimation 

methods that are robust to violations of the normality assumptions but require complete 

responses.  There were 426 respondents with complete responses available on the TSE Beliefs 

instrument. The TSE Sources instruments were given only to volunteers from the TX-TEDS2 

study, so the available sample for this instrument was limited to 320.  To perform the final SEM 

analyses, I used the software program MPLUS and full information maximum likelihood 

estimation with robust standard errors, which allows all respondents (even those with missing 

data) to be incorporated in the analysis. 

Results 

 I describe the results of the study in this section, addressing the each research question in 

turn.  First, I describe the psychometric work and validity argument supporting the MKT 

instrument and the TSE Beliefs instrument.  Next, I describe the variation in mathematical 

proficiency for teaching multiplicative reasoning in the analytic sample in relation to 

participants’ background, preparation, and school experience. 
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Instrument Reliability and Validity 

 One major purpose of this study was to establish the reliability and validity of domain-

specific instruments of mathematical proficiency for teaching. The first research question for this 

study was as follows: 

1. How valid and reliable are the instruments of content knowledge for teaching and 

teaching self-efficacy that were adapted to target the domain of multiplicative reasoning? 

Validity has been discussed extensively in the psychometric literature and theory and 

practice are evolving (e.g., Messick, 1988; Kane, 2001, 2004). Following Kane (2001, 2004) and 

Schilling and Hill (2007), I consider the elemental and structural validity of both the MKT and 

the TSE Beliefs instruments.  Elemental validity concerns valid measurement at the item level. 

For the MKT instrument, for example, this meant finding evidence that the individual items 

actually measured teachers’ mathematical knowledge for teaching in the domain of 

multiplicative reasoning, and moreover that how teachers answered an item (i.e., the reasoning 

that they used) was aligned with the choice they selected and what that choice was supposed to 

signify via the official item key (i.e., possessing or not possessing the MKT in question). 

Structural validity concerns valid measurement at the instrument level. The major questions of 

structural validity for this study concerned whether the MKT instrument had a single 

unidimensional structure (as expected) and whether the TSE Beliefs instrument had the two-

factor structure predicted by theory.   

A third kind of validity discussed by Schilling and Hill (2007) was ecological validity. 

Ecological validity is similar to construct validity and concerns the relationship of an instrument 

with other instruments and with other sources of empirical data. I tested the ecological validity of 
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the TSE Beliefs instrument by examining its relationship to the TSE Sources instrument. 

Assessing the structural validity of the MKT instrument was outside the scope of this study. 

MKT instrument. The validity argument for the MKT instrument is based on my 

analysis of the content the items included in the instrument (see Table 3) and the item 

development work conducted by the Measures of Effective Teaching project (Bill & Melinda 

Gates Foundation, 2010). The MKT item development work was overseen by the Educational 

Testing Service. The rigorous process led from item writing, to item revisions or rejection based 

on expert content review, to item response interviews that elicited teachers’ reasoning about the 

item and their rationale for choosing answers, and concluded with standard psychometric 

screening based on pilot data.  The source items for those items adapted from the DTMR project 

were subject to similar item-response interviews but had not been psychometrically validated 

with pilot data. By selecting items for the multiplicative reasoning MKT instrument that were 

already deemed appropriate for measuring elementary or middle grades MKT, I addressed the 

key question in this study with respect to the elemental validity of the MKT instrument: Do the 

items individually provided valid measurement of MKT related to multiplicative reasoning 

topics? My analysis of the content of these items and review of item-response interview data led 

me to believe they do tap MKT for multiplicative reasoning. This judgment was informed by the 

review of literature on students’ and teachers’ multiplicative reasoning that is summarized in 

Chapter 2.  

The major question with respect to the structural validity of the MKT instrument was 

whether the subset I had identified was psychometrically coherent. I relied on psychometric 

evidence to determine that the MKT instrument was unidimensional and that each item was 

related to the others.  In response to initial IRT analyses, I removed 1 of the 26 items from the 
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instrument (see Appendix B). The final, 25-item, instrument had high internal consistency 

(Cronbach’s alpha of .95), and the final item parameters of the retained items were in an 

acceptable range (Baker, 2001; see Appendix B for more detail). All items had point-biserial 

correlations greater than or equal to .2; with a sample size of approximately 400, these values are 

much higher than the recommended cutoff for inclusion of two standard deviations above 0 

(Crocker & Algina, 2006).  The estimated abilities of respondents on the MKT instrument were 

distributed normally (see Figure 4), with more test information and hence smaller errors of 

estimate for the lower half of the observed score distribution than for the upper half.  

TSE Beliefs Instrument.  The elemental validity of the TSE Beliefs argument is based 

on the elemental validity of the instruments from which it was adapted. Enochs and Riggs (1990) 

and Roberts and Henson (2000) described the item construction and psychometric validation 

work conducted to produce the items that were modified to create the TSE Beliefs instrument.  

These items have also been similarly modified for use with preservice mathematics teachers and 

validated in that context (Enochs, Smith, & Huinker, 2000). In related work, Newton (2009) 

modified mathematics anxiety and motivation questionnaire items to make them specific to 

fractions by replacing the word mathematics with the word fractions. This prior work taken 

together provides confidence that the modifications I made to adapt the TSE Beliefs items to 

make them domain-specific have not affected the validity of individual items with respect to 

construct of teaching self-efficacy beliefs.  

The types of validity are not independent, and lack of validity at the elemental level 

would likely cause a lack of evidence for structural and ecological validity. To examine the 

structural validity of the TSE Beliefs instrument, I used confirmatory factor analysis and found 

the expected two-factor model showed no evidence of misfit. It demonstrated a statistically 
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significant improvement in fit over a one-factor model of TSE Beliefs. Similar psychometric 

work provided strong evidence of the structural validity of the TSE Sources instrument. More 

details about these results are available in Appendix B. 

 
 
Figure 4. The score distribution and standard error of estimate and over the range of observed 
ability (θ) for the MKT instrument. 
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Evidence of ecological validity for the TSE Beliefs instrument came from two findings.  

First, I expected significant correlations between the factors of the TSE Beliefs instrument 

(personal efficacy (PE) and knowledge efficacy (KE)), and the four factors of TSE Sources 

instrument (mastery experience (ME), vicarious experience (VE), social persuasion (SP), 

emotional and physiological states (EP)). Second, I expected that the factors of TSE Sources 

could be used to predict TSE Beliefs and furthermore, that they would explain a large amount of 

the variance in PE and KE.  Table 9 shows the correlations between the factors of TSE Beliefs 

and TSE Sources instruments; they are all statistically significant at the p = .05 level except the 

correlation between vicarious experience and PE.  I also used structural equation modeling to 

regress PE and KE on the TSE Sources, and found that the TSE Sources explained 82% of the 

variance of PE and 69% of the variance of KE. 

Table 9 

Correlations Among the Factors of TSE Beliefs and TSE Sources (Raw Scores) 

Factor Knowledge 
efficacy 

Mastery 
experience 

Social 
persuasion  

Vicarious 
experience  

Emotional & 
physiological states 

Personal efficacy  .67* .73* .45* .10 .68* 

Knowledge efficacy  .69* .59* .23* .58* 

Mastery experience   .56* .14* .67* 

Social persuasion    .28* .42* 

Vicarious experience     .10* 

* p < .05. 
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Figure 5. Structural equation model for the factors of TSE Beliefs regressed on the TSE Sources 
factors. All bold path coefficients were statistically significant at p < .01 except KE on VE which 
was close to statistical significance at the p < .05 level (p = .06, not shown).   
 

Figure 5 shows the fitted model. Each factor was modeled as a latent (unobserved) 

variable and is represented by an oval; each item was modeled as a manifest (observed) indicator 

and is represented by a square.  Arrows indicate the predictive paths between these latent and 

manifest variables. Path coefficients can be read as standardized regression coefficients; for 

every unit increase in the variable at the tail of a path, one can expect an increase in the variable 

at the head of the path of magnitude equal to the number of units represented by the path 
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coefficient. Standard errors are given in parentheses in the diagram in Figure 5, and p values can 

be calculated for each coefficient by dividing the coefficient by the standard error to obtain the 

appropriate z-score. 

I used the Satorra–Bentler (SB) χ2 test statistic to test model fit, which is appropriate 

when data are nonnormally distributed (Bentler, 2005), and the test of model fit was significant 

(χ2
SB = 409.7, df  = 309, p < .001). Significant χ2 tests of model fit indicate that the data do not 

fit the model perfectly, but this test is overly sensitive, and in practice fit indices are used to 

evaluate lack of model fit instead (Kline, 2005; Bandalos & Finney, 2010). These indices do not 

prove that the model fits the data but can indicate whether the model exhibits various kinds of 

misfit. Kline (2005) recommended that if the model fits, then the comparative fit index (CFI) 

should be above .90; the upper bound of the root mean square error of approximation (RMSEA) 

90% confidence interval should be less than .10; and the square root mean residual (SRMR) 

should be less than .08.  The structural equation model of TSE Beliefs regressed on TSE Sources 

showed no signs of misfit (CFI = .94, RMSEA = .032 with a 90% confidence interval of .020 to 

.040, SRMR = .050).  

Bandura (1997) theorized that mastery experience is the most powerful source of self-

efficacy and that the three other sources influence self-efficacy to a lesser degree.  He also 

argued that individuals would give different emphasis to the different sources of self-efficacy in 

different contexts. Both of these aspects of social cognitive theory were well reflected in the 

results of a structural equation model of the TSE Beliefs factors regressed on the TSE Sources 

factors. First, mastery experience (ME) was the strongest predictor for both factors of TSE 

Beliefs.  Second, the regression (path) coefficients for each source were different for different 

factors of TSE Beliefs.  For example, the emotional and physiological states (EP) factor was a 
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significant predictor of PE but not a significant predictor of KE.  Conversely, social persuasion 

(SP) is a significant predictor of KE but not a significant predictor of PE. Vicarious experience 

(VE) predicted KE with a path coefficient of .08 and a standard error of .04 was very close to 

statistical significance at the .05 level (p = .06) but VE did not predict PE with statistical 

significance (B = .01, SE = .05, p = .76). 

Predictors of Mathematical Proficiency for Teaching 

In this final section, I report on results pertaining to the second research question: 

2. How does mathematical proficiency for teaching multiplicative reasoning topics 

vary (a) with perceived academic preparation, student teaching, and teaching 

experience and (b) by early entry status and across certification grade level? 

I hypothesized that perceived academic preparation, student teaching, and teaching experience 

would all have significant positive relationships with mathematical proficiency for teaching.  

A central concern in addressing this question was the hypothesized interaction between 

aspects of certification (early entry and grade level) and the other antecedents of mathematical 

proficiency for teaching under analysis. I expected no differences in means between the standard 

entry and the early entry groups, but I did hypothesize that student teaching and teaching 

experience would be more weakly related to mathematical proficiency for teaching in the group 

of early entry teachers than in the group of standard entry teachers.  With respect to grade level 

certification, I hypothesized that that perceived academic preparation and student teaching as 

well as teaching experience might have stronger relationships with mathematical proficiency for 

teaching multiplicative reasoning in the middle grades group than in the other groups because 

multiplicative reasoning topics are more prevalent in the middle grades curriculum and thus 

perhaps more of a focus in middle grades preparation programs and middle grades teachers’ 
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experiences in schools.  I also expected differences in the mean mathematical proficiency for 

teaching multiplicative reasoning between the different certification grade level groups. Past 

research (e.g., Hill, 2007) and my own experience teaching and conducting interviews with 

prospective and practicing teachers suggested that secondary certified teachers might have higher 

MKT and TSE for multiplicative reasoning topics than middle grades teachers, and both might 

have higher mathematical proficiency for teaching than teachers certified for the elementary 

grades.  At the same time, I was curious as to whether there was evidence that experience 

teaching in grades with the curriculum focused on multiplicative reasoning topics would 

moderate initial differences. It seemed plausible to me that a middle grades teacher after 5 years 

of teaching proportion would have greater mathematical proficiency for teaching multiplicative 

reasoning topics than a first year, secondary certified teacher assigned to teach statistics and 

calculus.  

Measurement invariance. To make valid comparisons between groups, I needed to 

ensure that the instruments used to measure the latent traits used in the analysis functioned in 

similar ways across the two sets of certification groups (grade level and early entry status).  I 

used multiple group CFA analyses to check whether the instruments were invariant across 

groups.  I also used the Mantel-Haenszel (Holland & Thayer, 1988) and the generalized Mantel-

Haenszel (Penfield, 2001) chi-square tests to examine differential item functioning in the MKT 

instrument.  (Multiple sample CFA methods require continuous variables—and the rating scale 

responses from the beliefs instruments were sufficiently continuous for these methods—but the 

MKT items were dichotomously scored.)  

Polytomously scored instruments.  Measurement invariance was tested with a sequence 

of nested CFA models: First, the measurement model was fit with item loadings and item 
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intercepts for each latent factor allowed to vary by group (Model 1); next, the item loadings were 

constrained to be equal between groups (Model 2); finally, the item intercepts were constrained 

to be equal between groups (Model 3).  Subsequent models in this sequence have fewer 

parameters than previous models, so they do not fit the data as well.  A chi-square test of model 

fit was used to test the null hypothesis that the earlier model with more parameters has a 

significantly better fit.  

Tests that fail to reject the hypothesis that Model 1 fits better than Model 2 are evidence 

of metric invariance, and tests that fail to reject the hypothesis that Model 2 fits better than 

Model 3 are evidence of strong factorial invariance.  Metric invariance supports valid 

comparisons of structural path coefficients between groups, and strong factorial invariance 

supports valid comparisons of group factor means (Meredith, 1993).  An intermediate case, 

where some (preferably most) item intercepts are constrained to be equal across groups, is 

termed partial measurement invariance and is frequently accepted in practice (Byrne, Shavelson, 

& Muthen, 1989). 

Results of the measurement invariance analysis are reported in Table 10 (early entry 

status) and Table 12 (certification grade level).  Both sets of analyses used the same overall 

measurement model with four correlated factors: Personal Efficacy (PE), Knowledge Efficacy 

(KE), Quality of Student Teaching (QU), and Collaborative Activity (CA) (see Figure 6).  In 

both tables, Models 1, 2, and 3 refer to the increasingly constrained nested models: all 

parameters free, item loadings constrained between groups, and item loadings and intercepts 

constrained between groups, respectively.  In both multiple group analyses, the metric invariance 

assumption held, but the strong factorial invariance assumption (required for testing differences 

in means) did not hold.  It was necessary to relax that assumption and allow some item intercepts 
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to vary with groups (for both grade level and early entry groupings) to obtain partial factorial 

invariance models (Model 4) that did not have significantly worse fit than the metric invariance 

models. 

 

Figure 6. The common measurement model used to test invariance across certification grade 
level and early entry status groupings; each latent factor is allowed to correlate with all others. 
 

A chi-square test of strong factorial invariance for the early entry grouping determined 

that there was significant variation (see Table 13), evidence that one or more items had different 

thresholds across groups after taking into account differences in group means on the 

corresponding factor.  I examined the estimated item intercepts and found that the misfit in this 

case was caused by Quality of Practicum (QP) Item 1 (“I was enrolled in a course that was 

connected to my practicum/student teaching.”).  Early entry teachers often continue to take 

university courses towards full certification after they have begun teaching fulltime, which is a 

plausible reason for the observed differential additive effects (see Table 14).  Model 4 in Table 

13 is a partial measurement invariance model where the intercept for QP Item 1 is allowed to 

vary by group.  The nonsignificant chi-square difference test for Model 4 and Model 2 is 

evidence that partial measurement invariance held.  To prevent the bias that can arise from 

differential additive effects of items across groups, I did not include QP Item 1 in the composite 

score for QP in the remaining analyses. Model 4 for the early entry grouping had a significant 
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chi-square statistic of model fit (χ2
S-B= 587.265, df = 359, p = .000), and the other fit indices 

suggested fit was marginally acceptable (CFI = .90, RMSEA = .06, SRMR = .08).  

Table 10  

Tests of Multiple Group Measurement Invariance Across Early Entry Status for the 

Polytomously Scored Instruments: Personal Efficacy (PE), Knowledge Efficacy (KE), Quality of 

Practicum (QP), and Collaborative Activity (CA)  

Model Equality 
constraint χ2

SB
 a df Comparison Δχ2

SB test 
statistic 

Δχ2
SB

 

test df p 

1 None 563.929 328 - -  - 
2 Item loadings 574.513b 344 1-2 13.635 16 .635 
3 Item intercepts 612.272c 360 2-3 38.501 16 .001 
4 All intercepts 

but QP Item 1 587.265d 359 2-4 12.470 15 .643 
a The SB scaling correction factors were as follows: 1.015 (Model 1), 1.026 (Model 2), 1.023 
(Model 3), and 1.026 (Model 4). 
 

Table 11  

Mean and Mean Differences of Quality of Practicum (QP) Item Responses by Early Entry Status 

Status QP 1a QP 2 QP 3 
Early entry 1.71 2.06 1.70 
Standard entry 2.51 2.48 2.04 
Difference 0.80 0.42 0.34 
a Item QP 1 exhibited more than double the difference in means between groups than did the 
other items. 

 

Similarly, the chi-square test of strong factorial invariance for the certification grade level 

grouping determined that there was significant variation (see Table 12), evidence that one or 

more items had different thresholds across groups after taking into account differences in group 

means on the corresponding factor.  I examined the estimated item intercepts and found that the 

misfit in this case was caused by TSE Beliefs Item 8 (“I am not sure I have the necessary skills to 
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teach every topic involving fractions, ratios, or proportions.”), which loaded on the PE factor.  It 

is plausible that the wording “every topic”—unique to this item—led to the observed differential 

additive effects across certification grade level groups (see Table 16).  Model 4 in Table 15 is a 

partial measurement invariance model in which the intercept for Item 8 is allowed to vary by 

group.  The nonsignificant chi-square difference test for Model 4 and Model 2 is evidence that 

partial measurement invariance held.  To prevent the bias that can arise from differential additive 

effects, I did not include TSE Beliefs Item 8 from the composite score for PE in the remaining 

analyses.  Model 4 for certification grade level grouping had a significant chi-square test of 

model fit (S-Bχ2 = 850.498, df = 554, p = .000), and the other fit indices suggested fit was 

marginally acceptable (CFI = .88, RMSEA = .06, SRMR = .09).  

Table 12  

Tests of Multiple Group Measurement Invariance Across Certification Grade Level for the 

Polytomously Scored Instruments: Personal Efficacy (PE), Knowledge Efficacy (KE), Quality of 

Practicum (QP), and Collaborative Activity (CA) 

Model Equality 
constraint χ2

SB
 a df Comparison Δχ2

SB test 
statistic 

Δχ2
SB

 

test df p 

1 None 797.028 492 - -  - 
2 Item loadings 810.925 524 1-2 23.046 32 .876 
3 Item intercepts 877.765 556 2-3 66.300 32 .000 
4 All intercepts 

but PE Item 8 850.498 554 2-4 39.573 30 .113 
a The SB scaling correction factors were as follows: 0.995 (Model 1), 1.016 (Model 2), 1.018 
(Model 3), and 1.016 (Model 4). 
 

Dichotomously scored MKT instrument.  To assess differential item functioning (DIF) 

of the MKT instrument between the certification grade level groups and between the standard 

and early entry groups, I used the difR package in R (Magis, Beland, Tuerlinckx, & De Boeck, 
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2010) to compute the Mantel-Haenszel (Holland & Thayer, 1988) and the generalized Mantel-

Haenszel (Penfield, 2001) chi-square tests for each item and across both the grade level groups 

and the entry timing groups.  I used standard entry teachers (n = 190) as the referent group and 

early entry teachers as the focus group (n = 149) when evaluating DIF between the entry timing 

groups.  Because the MKT items were produced for middle grades teachers, I used the middle 

grades group (n = 185) as the referent group and the elementary (n = 137) and high school (n = 

167) groups as focus groups when evaluating DIF between the certification grade level groups.  I 

found that none of the 25 items exhibited significant DIF for either grouping (see Table 14). This 

finding is strong evidence that the instrument is behaving in a similar way across groups and that 

group comparisons using the instrument are meaningful. 

Table 13  

Mean and Mean Differences of Personal Efficacy (PE) Item Responses by Certification Grade 

Level 

Grade level TSE 2 TSE 5 TSE 7 TSE 8a TSE 11 
Elementary (EC–4 & EC–6) 3.57 3.65 3.17 2.98 3.61 
Middle (4–8 & EC–8) 3.89 4.11 3.88 4.04 4.14 
High (8–12 & 4–12) 3.96 4.09 4.08 4.39 4.24 
Difference middle, elementary 0.32 0.46 0.71 1.06 0.53 
Difference high, middle 0.07 -0.02 0.20 0.35 0.10 
a Item TSE 8 exhibited approximately double the difference in means between groups than did 
the other items. 

 

Multivariate regression analysis. Structural equation modeling (SEM) can be used to 

test how well hypothesized models fit data.  I hypothesized that the teachers’ student teaching 

and experience would account for a significant amount of the variation in their mathematical 

proficiency for teaching.  To test my hypotheses about the predictors of mathematical 

proficiency for teaching, I used SEM in which the structural part of the model was a multivariate 
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regression of the three correlated factors of mathematical proficiency for teaching on preparation 

and experience variables.  Then I used Wald tests to evaluate the hypotheses. 

Table 14 

The Mantel-Haenszel (MH) and Generalized MH Chi-Square Test for Differential Item 

Functioning Across Certification Groupings 

 Entry timing Grade level 
MKT item MH statistic p Generalized MH statistic p 
1 2.367 .124 1.256 .534 
2 0.022 .881 0.674 .714 
3 0.688 .407 1.397 .498 
4 0.025 .874 0.327 .849 
5 1.966 .161 0.975 .614 
6 0.866 .352 0.580 .748 
7 0.008 .927 0.578 .749 
8 0.003 .960 0.133 .936 
9 1.752 .186 1.598 .450 
10 0.009 .925 2.222 .329 
11 1.050 .305 0.868 .648 
12 0.199 .656 1.618 .445 
13 0.216 .642 1.311 .519 
14 0.002 .965 0.004 .998 
15 0.001 .970 1.010 .604 
16 0.176 .675 0.155 .925 
17 1.021 .312 0.461 .794 
18 1.189 .276 0.947 .623 
19 0.001 .979 0.671 .715 
21 0.055 .815 0.872 .647 
22 0.025 .874 1.613 .447 
23 0.331 .565 0.170 .919 
24 1.061 .303 0.650 .723 
25 0.312 .576 0.450 .799 
26 0.446 .504 1.256 .534 

 

Auxiliary variables.  The auxiliary variables (age and undergraduate selectivity) and the 

other independent variables used in this analysis are summarized in Table 4.  Auxiliary variables 

can be used to minimize bias and enhance the efficiency (power) of analyses that include missing 

data, especially when the variables are correlated with the variables that have missing values or 
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are correlated with missing data patterns (Enders, 2010).  Age was related to missing data 

patterns, as older participants were more likely to finish the test.  Gender was also correlated 

with the self-efficacy outcomes, and undergraduate selectivity was correlated with the MKT 

outcome.  I decided that age and undergraduate selectivity were best used in the analysis to 

mitigate the problem of missing data rather than as additional covariates, because all the 

outcomes were subject to missing data and because the relationships of these variables to the 

outcome variables did not address the research questions. 

Model fit and selection.  I evaluated four SEMs to address the research question.  First, I 

needed to ensure that the measurement model (and especially with the revised PE and practicum 

quality scales) was still exhibiting adequate fit before proceeding with the analysis of the 

structural portion of the models.  The (revised) measurement model is denoted Model 0 in Table 

15.  Next I fit Model 1, which included a full structural model: The correlated outcomes were 

regressed on all the predictors in Table 4, and the predictors were allowed to be correlated.  The 

purpose of Model 1 was to evaluate the early entry indicator as a predictor of mathematical 

proficiency for teaching.  Because early entry was not a statistically significant predictor, I then 

fit Model 2, which was simpler because it did not include the early entry indicator.  Model 2 

allowed tests of whether teaching experience and practicum length at different grade levels 

contributed differently to mathematical proficiency for teaching.  I did not find a significant 

interaction between grade level and experience or between grade level and practicum length, so I 

then fit the last (and most parsimonious) model to obtain estimates of the regression coefficients 

(Model 3). This model included just 4 independent variables: the grade level indicators, 

perceived academic preparation, topical experience, and teaching experience. 



 

 78 

Table 15 summarizes information describing the fit of the measurement CFA and the 

three SEMs. Because these models have different predictors, they are not nested and cannot be 

compared using likelihood ratio tests.  Instead, the Bayesian information criterion (BIC) and 

Akaike’s information criterion (AIC) can used to compare the fit of nonnested models.  For both 

criteria, the model in a set of putative models that has the smallest criterion is statistically 

preferred.  Both AIC and BIC indicate that Model 2 is statistically preferred over Model 1 and 

that Model 3 is preferred over Model 2. 

Table 15 

Model Fit Indices for the Measurement CFA Model and SEMs of Mathematical Proficiency for 

Teaching 

Model χ2
SB

 a df p CFI RMSEA b SRMR AIC BIC 

0: Measurement CFA 113.28 43 .000 .948 .058 
(.045, .071) .035 - - 

1: Early entry & 
grade level SEM 392.85 268 .000 .949 .031 

(.024, .037) .028 4044
1 42584 

2: Grade level SEM  350.47 232 .000 .951 .032 
(.025, .039) .027 3354

0 35356 

3: Final SEM 198.52 97 .000 .949 .046 
(.037, .055) 

.033 2215
2 22710 

 a The SB scaling correction factors were as follows: 1.326 (Model 0), 1.037 (Model 1), 1.057 
(Model 2), and 1.152 (Model 3). 
b The 90% confidence interval for the RMSEA fit index is indicated within parentheses. 
 

I also examined the fraction of variance in each factor of mathematical proficiency for 

teaching explained by the three models (see Table 16).  As I expected, the models with more 

parameters explained a greater amount of the variance in each factor; however, the differences 

were not great, especially between Model 1 and Model 2.  Although these models explained less 
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of the variance in PE and KE than the model of TSE regressed on the sources of TSE, none of 

the decreases in R2 was statistically significant. 

Because .20 to .30 of the variance in mathematical proficiency for teaching was 

accounted for by preparation and experience, the models had substantial explanatory power, 

especially as the set of covariates in these models did not include pretreatment covariates for the 

outcome measures such as the TSE or MKT scores of the participants before they began 

teaching.  The variance of MKT explained was also remarkable, even for the most parsimonious 

model.  In a study using multiple regression to model the MKT of elementary school teachers, 

Hill (2010) reported an adjusted R2 between .10 and .14.  

Table 16 

Variance of Mathematical Proficiency for Teaching Explained by Each Model 

Model PE 
R2 (SE) 

KE 
R2 (SE) 

MKT 
R2 (SE) 

1 .298 *** (.052)  .468 *** (.042)  .238 *** (.034)  
2 .298 *** (.052)  .469 *** (.042)  .229 *** (.031)  
3 .237 *** (.047)  .397 *** (.041)  .194 *** (.032)  

*** p < .001 

 

Wald tests of hypotheses.  The multivariate Wald test statistic describes the change in 

model chi-square when one or more parameters are constrained (i.e., set equal to zero or to some 

other value).  The statistic has a chi-square distribution with k degrees of freedom, where k is the 

number of constrained parameters (Kline, 2005, p. 148).  The Wald test has a null hypothesis of 

no loss of fit, and allows a researcher to determine whether the tested parameter constraints 

significantly decrease the fit of the model to the data.  Thus, significant Wald test statistics 

indicate that the constrained parameters result in a statistically significant loss of model fit and 

nonsignificant Wald test statistics imply one cannot reject the null hypothesis of no loss of fit.  
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I used Wald test statistics in conjunction with the three SEMs to evaluate the hypotheses I 

had about the predictors of mathematical proficiency for teaching.  The Wald test statistics and 

outcomes are summarized in Table 17.  For Model 1, I wanted to know if early entry was a 

significant predictor of any of the factors of mathematical proficiency for teaching.  I also 

wanted to know if the interaction between early entry and teaching experience or student 

teaching length was different than zero.  For example, a significant positive interaction between 

early entry and teaching experience on the MKT outcome might indicate that the relationship 

between teaching experience and MKT was stronger for early entry teachers.  Instead, I found 

that the decrease in model fit after constraining all 9 of these parameters to zero was not 

statistically significant (p = .239).  This result supported my decision to not include the early 

entry indicator in subsequent models. 

I used Wald tests with Model 2 to evaluate all six predictors of mathematical proficiency: 

three related to the preparation (and practicum), and three related to teaching experience.  I 

performed two general kinds of tests.  First, I used a Wald test to examine the change in model 

fit after constraining all regression coefficients for a predictor to zero to evaluate whether the 

predictor contributed significantly to the estimates of mathematical proficiency for teaching.  If 

the test was statistically significant (rejecting the null hypothesis that the constrained parameters 

did not reduce fit), I next used a Wald test to examine the change in model fit if the coefficients 

for the parameter were equal for each outcome across all three grade levels.  I found that 

practicum length, practicum quality, and collaborative activity did not improve model fit, 

whereas preparation, teaching experience length, and topical experience did (see Table 17).  The 

Wald tests for constraining the coefficients for these parameters to have the same value across 

grade levels, however, led me to conclude that the null hypothesis of similar fit could not be 
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rejected.  This result supported my decision to consider the simpler Model 3, in which only one 

coefficient for each parameter regressed on each outcome was estimated across all three grade 

levels. 

In Model 3, I used Wald tests to examine whether the middle and high school grade level 

indicators were equal on the outcome measures (see Table 17).  Constraining the coefficients for 

these indicators to be equal on the TSE factors did not significantly reduce model fit (p = .173), 

but constraining their coefficients to be equal on MKT did (p = .020).  Finally, I checked whether 

the predictive contribution of the preparation, teaching experience, and topical experience were 

different for PE and KE; constraining these coefficients to equality resulted in a significant Wald 

test (p = .049), and I rejected the hypothesis that these predictors contributed equally to the 

factors of TSE.  In the next section I discuss findings related to values of the estimated 

parameters in Model 3. 

Final model parameters.  Table 18 summarizes the parameter estimates for Model 3.  All 

parameter estimates were statistically significant at the α = .01 level except for the coefficient for 

teaching experience on MKT and the coefficients for topical experience on the two factors of 

TSE.  The parameter estimates are standardized and thus carry information about the associated 

effect size.  For example, the coefficients for the grade level indicators express mean differences 

between each grade level and the elementary certified (EC–4 or EC–6) teachers in the sample. 

These differences were large, about 0.59 SD for PE, 0.92 SD for KE, and 0.50 SD for MKT.  

Perceived academic preparation had an effect size of medium to large, ranging from 0.20 SD for 

MKT to 0.67 SD for KE.  By contrast, the only significant regression coefficient for topical 

experience had a negative sign and a very small effect size (0.03 SD).  This result may reflect the 
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likely higher probability that low knowledge high school certified teachers are more often 

assigned to teach classes that involve multiplicative reasoning topics. 

Table 17 

Wald Tests of Hypotheses Across the Models Predicting Mathematical Proficiency for Teaching 

Path coefficient hypothesis χ2
Δ df p 

Model 1: Early entry & grade level SEM    
Early entry indicator variable and the interaction terms for early entry 
with practicum length and teaching experience length  

on PE, KE, & MKT are all zero. 
11.573 9 .239 

Model 2: Grade level SEM    
Preparation  

on PE, KE, & MKT are 0 for all grade levels. 64.843 9 .000 

on PE, KE, & MKT are equal for all grade levels. 7.820 6 .252 
Practicum length  

on PE, KE, & MKT are 0 for all grade levels. 11.019 9 .274 

Practicum quality  
on PE, KE, & MKT are 0 for all grade levels. 13.405 9 .145 

Teaching experience length  
on PE, KE, & MKT are 0 for all grade levels. 16.569 9 .056 

on PE & KE are 0 for all grade levels. 14.412 6 .025 
on PE & KE are equal for all grade levels. 2.262 4 .688 

Collaborative activity  
on PE, KE, & MKT are 0 for all grade levels. 9.452 9 .397 

Topical experience  
on PE, KE, & MKT are 0 for all grade levels. 18.076 9 .034 

on PE, KE, & MKT are equal for all grade levels. 7.337 6 .291 
Model 3: Final SEM    

Middle grades and high school indicators  
equal on PE and equal on KE. 3.508 2 .173 

Middle grades and high school indicators  
equal on MKT. 5.388 1 .020 

Preparation, teaching experience length, and topical experience each 
equal on PE and KE   7.846 3 .049 
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Table 18 

Standardized Path Coefficients and Standard Errors for the Structural Portion of Model 3, a 

SEM of Mathematical Proficiency for Teaching (N = 492) 

 Mathematical proficiency for teaching 
Predictor PE  

B (SE) 
KE  

B (SE) 
MKT  
B (SE) 

Certification indicator    
Grades 4 – 8 or EC - 8 0.587 **  

(0.18)  
.923 ***  

(0.19) 
0.501 ***  

(0.09) 
Grades 8 – 12 or 4 –12 0.746 ***  

(0.18)  
1.021 ***  

(0.18) 
0.695 *** 

(0.09) 
Perceived academic preparation 
for multiplicative reasoning 

0.430 ***  
(0.12) 

0.670 ***  
(0.13) 

0.205 ***  
(0.05) 

Recent topical experience with 
multiplicative reasoning 

0.023  
(0.02) 

0.040  
(0.02) 

-0.033 **  
(.01) 

Teaching experience (years) 0.146 ***  
(0.04) 

0.107 **  
(0.04) 

0.036  
(0.03) 

** p < .01; *** p < .001. 

 

Teaching experience was a positive and significant predictor for the factors of TSE, but 

an increase by 1 year of experience showed an effect size of only approximately 0.10 to 0.15 SD.  

Over 5 years (a period over which novice teachers might come to be called veterans), the effect 

size became medium to large, ranging from approximately 0.50 to 0.75 SD. 

Given the evidence discussed above from the Wald tests, the coefficients for grade level 

as a predictor of TSE were not significantly different between middle and high school certified 

teachers. The grade level differences in estimates of MKT, however, were significant, and the 

difference between those estimates (0.695 − 0.501= 0.194) was about the same as the effect size 

for a one standard deviation increase in perceived academic preparation (0.194 ≈ 0.205).  The 

Wald tests also showed that the differences between the PE and KE parameter estimates were 

significant.  These parameters show that preparation was relatively more important for KE than 
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for PE, and that experience was relatively more important for PE than for KE.  Finally, the 

estimate of teaching experience as a predictor of MKT was not significant.  

In summary, I found that early entry teachers did not differ from standard teachers on 

outcomes related to mathematical proficiency for teaching.  Contrary to what I had hypothesized, 

the effects of practicum length and teaching experience on mathematical proficiency for teaching 

were not significantly different for early entry teachers compared with standard entry teachers.  I 

also hypothesized significant interactions between grade level certification and the effects of 

preparation, practicum, and experience on mathematical proficiency for teaching.  Instead, the 

relevant Wald tests provided no evidence of significantly worse fit when effects were 

constrained to equality across certification grade levels.  I did find mean differences in the 

factors of mathematical proficiency for teaching between different grade level certification 

groups.  Rather than the middle grades certified teachers—who are directly responsible for the 

multiplicative reasoning content—it was the secondary certified teachers who were estimated to 

have higher means on the measures of mathematical proficiency for teaching (although those 

differences were not significant for the teaching self-efficacy factors).  This finding is concerning 

but not surprising given research conducted recent at the University of Georgia (Izsák & 

Jacobson, 2013) and findings elsewhere in the literature on teachers’ mathematical knowledge 

for teaching (e.g., Hill, 2007). The parameters estimated in the final and most parsimonious 

model of mathematical proficiency for teaching suggest that different outcomes have different 

antecedents—and thus may develop with some independence. 
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CHAPTER 4 

THE GEORGIA STUDY  

This study was designed to address a problem facing administrators and teacher educators 

working at the district level in Georgia: How can schools and districts in Georgia support 

teachers’ development of mathematical proficiency for teaching? This local policy problem is an 

instantiation of a national problem that contemporary educational policy seeks to address.  

Teachers are thought to develop expertise on the job, especially in their first few years of 

practice, but the conditions that are consequential for learning are not well understood.  The 

ongoing debate of how best to support teachers on the job intersects a related conversation about 

which teacher characteristics (such as teachers’ level of education or their knowledge and 

beliefs) are related to effective teaching, and thus which characteristics teacher educators and 

district policies should aim to develop.  

Explaining the role of work-related experience in teachers’ learning is an important part 

of research that addresses the problem of school and district support for teacher development, 

and identifying the relevant aspects of teachers’ work-related experiences is an important first 

step.  Several districts in Georgia, inspired by research reporting the positive effects of 

professional learning communities, have implemented common planning time for grade-level 

mathematics teachers.  Prior research comparing cases of teachers in two different schools 

suggested that teachers’ collaborative work on lesson planning and assessment data can provide 

opportunities for teachers to develop knowledge useful for teaching mathematics.  In one case, a 
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teacher’s collaboration with other grade-level teachers contributed to productive beliefs and 

goals that supported his professional learning (Jacobson, in press). 

The primary goal of this study was to inform local and national policy by exploring the 

hypothesis that teachers’ development of mathematical proficiency for teaching is related to 

collaboration with other teachers. (As in the Texas study in Chapter 3, I used a mathematical 

knowledge for teaching, MKT, instrument and a teaching self-efficacy beliefs, TSE Beliefs, 

instrument to operationalize mathematical proficiency for teaching.) A second goal of the study 

was to explore why collaboration may support teachers’ development in some situations but not 

in others, with results for practitioners such as administrators and teacher educators. A third goal 

of the study was to address an open theoretical question concerning the grain size of teachers’ 

conceptual change: Do teachers develop MKT and TSE only for the content topics they teach, or 

does the mathematical proficiency for teaching developed in one domain of experience transfer 

to other domains? Under the first hypothesis, one would expect to find change in multiplicative 

reasoning MKT (for example) only among those teachers who were actively teaching these 

topics, but if MKT develops at a larger grain size (e.g., teachers learn to apply general 

principles), then one might see similar change in multiplicative reasoning MKT between teachers 

who taught different content. Under this second hypothesis, one might also find that 

multiplicative reasoning MKT was highly correlated with MKT more broadly assessed.  

I used measures of mathematical proficiency for teaching in this study that were focused 

on multiplicative reasoning topics to compare Grade 6 and 7 teachers who teach that content 

with Grade 8 teachers who do not.  The purposes for the study led to the following research 

questions: 
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3. What features of teachers’ experience in schools are associated with change in 

mathematical proficiency for teaching multiplicative reasoning topics? 

4. How does change in mathematical proficiency for teaching multiplicative reasoning topics 

differ (a) across schools, (b) between teachers who teach that content and those who do 

not, and (c) with the frequency of teachers’ collaboration and collegial activity focused 

on student learning? 

Data and Methods 

 The participants in this study were Grade 6, 7, and 8 mathematics teachers in Georgia.  

They were surveyed three times over the course of the spring semester in 2012.  All participants 

were invited to take the survey on the same date (January 15, March 10, and May 1), and they 

were allowed to respond to the survey any time in the subsequent 2-week period. Aiming to 

study change in mathematical proficiency for teaching over a period as short as one semester 

seemed reasonable to me because teacher educators expect to effect change in prospective 

teachers’ knowledge and beliefs during classes that last only one semester. Because I anticipated 

that teaching—creating lesson plans, giving explanations, grading assessments, adapting 

instruction to respond to student learning, and so forth—was educative for teachers under the 

right conditions (e.g., in collaborative environments), I expected to find measurable change in 

MKT and TSE over the span of one semester. 

I chose to conduct the study during the second semester of the school year to rule out a 

possible cause of change in MKT and TSE scores that otherwise might have affected the results. 

It was quite plausible to me that a new teacher (or a newly assigned teacher) of the relevant 

content—multiplicative reasoning topics—might have substantially higher MKT scores for that 

content after their first semester as they gained familiarity with the curriculum. If this had 
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happened then the estimates of teachers’ change in MKT would have been biased upwards for 

new teachers, and I could not have distinguished gains due to teaching experience from those due 

to familiarization with the curriculum. I wanted to make sure that the baseline measure of 

teachers’ knowledge (Wave 1) reflected teachers’ MKT after having some familiarity with the 

content they were assigned to teach. The curriculum used in Georgia during the 2011–2012 

school year included some multiplicative reasoning topics in the fall and spring semesters in both 

Grades 6 and 7.  Multiplicative reasoning topics were not a direct focus of instruction in the 

Grade 8 curriculum in either the fall or spring semester.  

Multilevel modeling methods work best with large data sets, so I made efforts to 

maximize the amount of survey data collected for this study.  Districts in Georgia have local 

control, so I contacted all districts in Georgia that served 5000 or more students to solicit 

participation in the study.  I did not include very small districts in the solicitation because these 

districts generally have fewer than 10 Grade 6 to 8 mathematics teachers, and thus there was a 

low chance that even 1 teacher would participate.  In addition, only about 17% of the students in 

Georgia attended very small districts (see Table 19). 

 I contacted 74 districts, and 28 agreed to participate, 19 declined, and the rest did not 

respond. The survey was hosted online. Districts that agreed sent me contact information for 

teachers, and I emailed these teachers with an identification code to maintain the confidentiality 

of their responses.  In all, I emailed 799 teachers in the 14 small and 10 medium-sized districts 

that agreed to participate.  I additionally emailed 198 teachers in the two large districts.  Of these 

997 teachers, 329 teachers began taking the first survey. The 199 teachers who completed the 

first survey formed the analytic sample for this study (a 20% response rate).  The teachers in the 

analytic sample came from 85 schools and 26 districts. Although this sample was not a 
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representative probability sample, it is likely that the variability in the analytic sample captured 

much of the variability in the state because the sample included teachers from a large number of 

different schools and districts. 

Table 19 

District Participation in the Study 
 Districts in Georgia Of agreeing districts 

 Total 
% of 

students 
served 

No reply 
or not 

eligible 
Denied Agreed Participated 

 

% of 
students 
served 

Large districts 
(>90k students) 5 27.3 1 0 4 2 15 

Medium districts 
(11k to 51k 
students) 

28 40.7 5 13 10 10 13 

Small districts 
(11k to 5k 
students) 

34 15.2 14 6 14 14 6 

Very small 
districts 

(<5k students) 
125 16.7 125 - - - - 

Total 192 100 139 19 28 26 34 
 

Table 20 describes how response rates were distributed by survey wave.  The teachers in 

the analytic sample responded to three surveys available online on January 15 (Wave 1), on 

March 9 (Wave 2), and on May 1 (Wave 3). In general, respondents replied within 2 or 3 weeks 

and none took longer than a month; the last survey was received on May 15. In an effort to 

reduce attrition, I used 1 email forewarning, 1 email request, and 3 email reminders for each of 

these waves. There were 149 teachers who completed the second survey, and 132 who completed 

the third survey.  Only 35 teachers in the analytic sample took only one survey (the first), and 47 

others took only two surveys (the first and either the second or the third).  
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Table 20 

Number of Participants in the Analytic Sample Who Did and Did Not Participate in Different 

Survey Waves 

 Wave 
 1 2 3 2 & 3 

Participated 199 149 132 117 
Did not participate 0 15 32 35 

 

I was primarily interested in discovering how districts might better support beginning 

teachers, so I selected a subset of participants based on years of teaching experience to interview.  

Of the 199 survey participants, I found 35 who had 5 or fewer years of experience.  I contacted 

all 35 and asked them to participate in interviews.  Of the 35, 8 did not respond, 6 declined to 

participate, and 21 agreed to participate.  Two of the 21 who agreed to participate did not 

respond to emails for scheduling the interview, and another one opted to answer the survey 

questions by email rather than face-to-face but did not reply to follow up emails.  I conducted 

interviews with the remaining 18 teachers.  The data from one interview—with a first-year 

special education teacher from a small district—were unusable because of a technical problem 

with the recording. The data reported for this study include 480 surveys from 199 participants 

and 17 audio-recorded interviews, each about 1 hour in length. 

Instruments 

 All three surveys included an instrument for measuring mathematical knowledge for 

teaching (MKT) and a teaching self-efficacy (TSE Beliefs) instrument. The MKT instrument 

used for this study was the short MKT instrument (17 items) described in Appendix B. The TSE 

Beliefs instrument used for this study was very similar to the instrument used in the Texas study 

and described in Chapter 3 and in Appendix B.  The difference is that I changed each item from 
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asking about “topics involving fractions, ratios, and proportions” to asking instead about “topics 

involving ratios and proportions.” I made this change to ensure a better fit between the TSE 

Beliefs measure and the experiences of the teachers participating in the study. None of the 

curriculum topics in 6th, 7th, or 8th grade in Georgia in the year of this study focused explicitly 

on fraction topics, but all three grade levels made use of ratios or proportions to some extent. 

Direct instruction of ratio and proportion topics was limited to the 6th and 7th grades. I 

compared the fit of a one-factor and two-factor confirmatory factor analysis models with data 

from the revised TSE Beliefs instrument and found strong evidence that the revised TSE Beliefs 

instrument was working as expected. In particular, the TSE Beliefs instrument was composed of 

two factors: personal efficacy (PE) and knowledge efficacy (KE). 

The first survey included several questions that addressed the participants’ background, 

preparation, and school contexts, including questions about the grade level they currently.  The 

third survey asked about professional learning activities (such as coaching and hours of 

mathematics-related professional development) and the teachers’ experiences over the spring 

semester including their (1) frequency of activity with colleagues focused on student assessment 

data, instruction, and lesson planning (see Chapter 2 for more information about this measure), 

(2) whether or not they had experience teaching (or extensive tutoring time) with multiplicative 

reasoning topics such ratio and proportion topics. 

The variables used in the analysis included categorical indicators for gender, ethnicity, 

early entry certification route, and Grades 6–12 credential. I also used a categorical indicator for 

whether teachers had relevant topical experience in the first semester (i.e., they taught ratio and 

proportion topics).  In addition, I used the following continuous variables: teaching experience 

measured in years, teachers’ self-reports of their number of hours of mathematics related 
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professional development for each semester, and a scale score summarizing 5 Likert items 

concerning collaborative activity for each semester. Summary statistics for these variables are 

provided in Table 21.  

Table 21. 

Summary Statistics for the Explanatory Variables. 

 Percentage 
Gender (male) 18.1 
Ethnicity  

Asian 0.5 
Black 13.1 
Hispanic 1.0 
White 83.4 
Other or no response 2.0 

Certification route (early entry) 26.6 
Credentialed for Grades 6–12 23.1 
Grade level a  

Grade 6 37.2 
Grade 7 38.7 
Grade 8 41.2 

Topical experience 76.4 

 Mean 
Years of experience (years) 10.6 
Math PD – semester 1 (hours) 8.1 
Math PD – semester 2 (hours) 9.9 
Collaboration b – semester 1 4.0 
Collaboration b – semester 2 3.8 

a Grade level percentages do not add to 100 because many teachers were assigned to more than 
one grade. 
b The scale for collaboration ranges from 1 (never) to 5 (once each week). 
 

The continuous variables were recoded (or summed, in the case of the collaboration 

variable) before analysis. Teaching experience was reported in years, and recoded for analysis on 

an 8-point scale: <1, 1–2, 3–5, 6–10,11–16, 17–24, 25–32, >32 years.  The topical experience 

variable came from a list of topics teachers were asked to check if they taught those topics or 

spent an extensive amount of time tutoring students in those topics. The variable used in analysis 
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indicated whether or not teachers checked the box for “ratio and proportion.” Mathematics 

professional development was measured in total hours and recoded on an 8-point scale: <1, 1–2, 

3–5, 6–10, 11–16, 17–24, 25–32, and >32 hours.  

The collaboration variable was included in the analysis to reflect differences in teachers’ 

professional work environment.  This variable was modeled in analyses as a latent factor with 

five indicators (α = .78), each a 5-point scale (1: never; 2: once a year; 3: once or twice each 

semester; 4: once a month; 5: once each week).  These five indicators asked about the frequency 

of professional activities that might support teachers’ learning with colleagues, especially 

activities focused on student thinking.  Teachers were asked how frequently in the past 3 years 

they had done each of the following activities with colleagues: analyzed sample student work, 

sought advice about instructional issues, discussed teaching practice, discussed the strengths or 

needs of specific students, and discussed student assessment data to make instructional decisions.   

Retrospective interview protocol. The 18 interviews conducted for this study followed a 

semi-structured interview protocol (Kvale, 2007; Seidman, 2006; see Appendix C).  The 

participants were asked to describe various aspects of their teaching practice, such as the use of 

manipulatives, and how these aspects of practice had changed from their first year of teaching. 

To assess teaching self-efficacy, I asked the participants about their confidence for teaching 

mathematics (personal efficacy, PE) and their confidence in their knowledge of the mathematics 

they used in teaching (knowledge efficacy, KE).  I also asked how their confidence had changed 

since they began teaching.   

The format of the interview balanced an open-ended aspect for eliciting descriptions true 

to the experiences of the participant, on the one hand, with a deliberate focus on how change in 

mathematical proficiency for teaching might be experienced, on the other.  The semi-structured 
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nature of the interview protocol gave me opportunities to follow up on surprising statements that 

I perhaps could not have anticipated before the interview and helped yield data that 

complemented the survey data. For example, one of the first teachers I interviewed contrasted 

her first-year experience of a mentor teacher who taught in a different grade with her experience 

in her second year of a mentor teacher who taught in the same grade. She found the same-grade 

pairing critical for the mentoring to be helpful. From that point on, I asked all of the teachers 

who described mentor teachers about grade level similarities and differences. 

Qualitative Analysis  

In this study, I emphasized quantitative analysis, and I used qualitative data to augment 

and help interpret the quantitative findings. I transcribed 8 of the 17 interviews verbatim and had 

a transcription service produce initial transcripts for the remaining 9 interviews.  I listened to and 

revised these externally produced transcripts to verify and improve their accuracy.  Then I 

organized transcript data from participant interviews into two documents to find patterns across 

interviewees about (1) how teaching practice had changed from the first year until the interview, 

and (2) how MKT, PE, and KE had changed over the same time period. The patterns I noticed 

across participants helped me better understand the context of the results I obtained from 

analyzing the survey data. At the end of each interview, I asked about the most important factor 

that had contributed to their professional growth, and teachers’ responses to this question helped 

answer research question 3.  I also had asked interview questions about each teacher’s 

collaborative work with colleagues or mentors, how that work had changed over time, and the 

impact it had had on their professional growth.  These data helped me answer research question 

4. 
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I had hoped that I could steer the conversation during these interviews to focus on 

multiplicative reasoning topics so that I would be able to better understand the change in 

mathematical proficiency for teaching multiplicative reasoning topics.  In some interviews, I was 

able to do this, but in most I was not. Overall, the interview data reflected the teachers’ accounts 

of their changing mathematical proficiency for teaching, but at a coarser grain size than the 

domain of multiplicative reasoning. The descriptions of changing practice provided evidence of 

changes in teachers’ mathematical knowledge for teaching, particularly their knowledge of 

curriculum, tasks, and representations. I also asked about how the teachers’ PE and KE changed, 

and looked across the set of responses to find common themes. 

Quantitative Analysis  

I used the lmer method in the R package lme4 to analyze the survey data, and used a 

general multi-level model with three levels. The first level describes individual change over time, 

the second explains how individual change differs between participants, and the third level 

describes how participants differ between schools (Hox, 2010; Singer & Willett, 2003).   

The first level of the model I used in this study hypothesized linear growth in 

participants’ MKT, PE, and KE over time.  It is quite possible that growth in MKT is not actually 

linear. Research with children in the Piagetian tradition (e.g., Steffe & Olive, 2010) has shown 

that proficiency with problem solving in the domain of multiplicative reasoning can be rapid as 

students apply similar ways of thinking across a wide range of new problems with similar 

mathematical structures through assimilation, and that there are long plateaus wherein students 

struggle to accommodate existing mental operations to solve new problems with novel 

mathematical structures. On the other hand, research on expertise suggests that time and 

experience under the right conditions are related to the development of expertise (Ericsson, 
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2004). Change in beliefs about mathematics and teaching can be similarly complex (Philipp, 

2007). The linear model used in this study is a reasonable first approximation, and more 

complex, curvilinear models of change should be explored in future studies. (An investigation of 

nonlinear models of change requires more than three survey waves and thus was not possible 

with the data collected for this study.)  

Under the assumption of linearity at Level 1, different versions of the model can be 

obtained by including different variables at the second and third level, such as a participant-level 

(Level 2) variable reflecting the frequency of collegial activity or a school-level (Level 3) 

variable reflecting average collegial activity to explain differences in individual change over 

time. Two models are called nested if one has all the variables in the other plus additional 

variables.  Hypothesis tests exist for comparing nested models, and those tests allowed me to 

determine whether models that included key variables (whether or not teachers taught ratio and 

proportion; whether or not teachers worked with mentors or colleagues) fit the data better than 

simpler models without those variables.  The final models for MKT, PE, and KE provided 

estimates of the effects and standard errors of key variables on the outcome variables.  Selection 

bias remained a limitation in this analysis in that teachers who varied on the variables of interest 

(e.g., mentoring or teaching ratio and proportion) might also have systematically differed on 

characteristics that affect MKT, PE, and KE.  Known predictors of MKT (e.g., Hill, 2007, 2010) 

were included in the models as covariates to mitigate possible bias, but unobserved covariates 

might have remained.  The results must be interpreted as descriptive rather than causal. 

Missing Data 

One current best practice for handling missing data is to use the method of multiple 

imputation (Enders, 2010).  In this method, many data sets are created that contain all observed 



 

 97 

data and plausible values (imputations) for the missing data; then each data set is analyzed, and 

the results are combined (Rubin, 1987).  Because the imputed values differ across the different 

data sets, the variability that observed data would have had is reconstructed for the analysis.  

Imputation works well when there are many observed variables for an individual and only a few 

missing values—the observed data are used to predict (with appropriate variability) values to 

replace the missing data.  Longitudinal data created further complications because some 

variables are time varying (the outcomes vary within individuals over time), but others are time 

invariant.  In the present study, data on time-invariant variables were collected on the first or 

third surveys, and because of attrition, time-invariant variables collected on the third survey had 

a greater percentage of missing values than those collected on the first survey.  

Table 22 

Percentage of Missing Data on the Explanatory Variables 

Explanatory variable 
  

Wave 1 participants 
(n = 199) 

 
Wave 3 participants 

(n =132) 
Gender 2.0 - 
Race/ethnicity 1.5 - 
Early entry 1.5 - 
6–12 credential 1.5 - 
Grade level 0.5 - 
Years of experience 1.0 - 
Topical experience 1.0 - 
Math PD – Semester 1 1.5 - 
Collaboration – Semester 1 0.5 - 
Math PD – Semester 2 39.2 8.3 
Collaboration – Semester 2 41.7 12.1 

 

I used a three-step process recommended by Gelman and Hill (2007, p. 541) to impute 

the missing data for this study.  The goal was to create 50 complete versions of the data set, each 

representing a plausible data set that might have been collected if all 199 participants had taken 

all 3 surveys (597 surveys in all) and answered all of the questions on each survey. In fact, only 
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480 surveys were completed, and a substantial portion of the data from individual surveys were 

missing because some participants did not complete the whole survey.  The MKT, PE, and KE 

outcome variables were missing data on 6%, 2%, and 3% of the completed surveys (n = 480), 

respectively, and they were missing data on 24%, 21%, and 22% of the 597 administered 

surveys, respectively. Table 22 reports the percentage of missing data on the predictors; the 

questions about second semester professional development and collaboration activity were on the 

third survey. 

To make the final 50 imputed data sets used for analysis, I first created 5 data sets with 

imputed values for each participant’s outcome variables on each survey (597 values) using the R 

software package Amelia II.  This package uses a regression model and expectation-

maximization algorithm to predict missing values using observed data.  The initial imputation 

step used school climate (not otherwise used in this analysis) and collaboration items for which 

there was complete response data.  I used each of the 5 initial data sets to calculate individual 

MKT, PE, and KE means for the 199 participants.  Then I used each set of outcome means and 

the observed data on the predictors to create 5 new data sets with imputed values for each of the 

199 participants.  Each of the resulting 25 imputed data sets had complete imputed data on the 

predictors, and I used each to create 2 new imputed data sets with reimputed MKT, PE, and KE 

values. The resulting 50 data sets were used for analysis. 

Results 

In this section, I address each research question in turn with quantitative methods at both 

the individual and school level.  I conclude by drawing on findings from the interviews to 

provide a context for and to help making sense of the results of the quantitative analysis. 
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Quantitative Results 

I began the analysis of the quantitative survey data by using multilevel models with no 

predictors to examine the variation in the three outcome variables: mathematical knowledge for 

teaching (MKT) and the two factors of teaching self-efficacy beliefs, personal teaching self-

efficacy (PE) and knowledge self-efficacy (KE).  The goal of this analysis was to determine how 

the observed variation in scores was partitioned within and between the individual (Levels 1 and 

2) and between schools (Level 3).  That is, I found how much overall differences between 

teachers initial MKT, PE, and KE could be attributed to the fact that they were working in 

different schools. 

Table 23 

Median Variance and Variance Partition Coefficients for the Individual and School Levels in 2- 

and 3-Level Models of MKT, PE, and KE Across 50 Imputed Data Sets 

Outcome Model Residual 
variance 

Individual 
variance School variance Individual 

VPC 
School 
VPC 

MKT 2 levels .207 .351 - .629 - 
 3 levels .207 .338 .0108 .608 .019 
PE 2 levels .406 .574 - .586 - 
 3 levels .406 .551 .0272 .560 .028 
KE 2 levels .341 .592 - .634 - 
 3 levels .341 .538 .0536 .577 .057 
Note. Residual variance is all the variance not accounted for by the higher levels and in particular 
includes within individual variance over time. 

 

I found that little variation in any of the outcomes was accounted for at the school level.  

The variance partition coefficient (VPC) describes the portion of overall variance observed at the 

specified level of the model. A school-level VPC of less than .02 for the MKT outcome meant 

that less than 2% of the variance in the teachers’ MKT scores was accounted for by random 

school-level effects (see Table 23).  The percentage of variance in PE and KE at the school level 
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was higher but still relatively small compared with the overall variance in those outcomes; less 

than 3% of the variance in PE and less than 6% of the variance in KE was accounted by school-

level random effects.  These findings mean that across the data set, the outcomes of the teachers 

in the same school were not much more similar than the outcomes of teachers in different 

schools.  In contrast, I found that random effects at the individual level accounted for a large 

percentage of the variance in each outcome.  The individual VPCs were greater than 50% for all 

of the outcomes: The individual VPC for MKT was 61%, for PE it was 56%, and for KE it was 

58%.  These results confirm that (on average and across the data set) two measurements of an 

outcome from the same individual were much more similar than two measurements of that 

outcome from different individuals. 

The results about how variance in the outcomes was partitioned between individuals and 

schools justified the use of 2-level longitudinal models for these data.  These results explained 

why 2-level models fit these data much better than either single-level regression models (which 

constrain all individuals to have the same initial value and rate of change) or 3-level models, 

which estimate common intercepts and slopes for teachers in the same school.  In the rest of the 

analysis, I focus on results from 2-level models of outcomes that estimate separate initial values 

and rates of change for each individual.  For each model reported below that includes predictors, 

I also fit analogous single and 3-level models (which are not reported), and in each case, the fit 

of the 2-level model was significantly better than either of the others.  

The analysis presented thus far supports the conclusion that that the features of teachers’ 

experience in schools have little differential effect by schools (3rd research question) and that 

initial values of outcome and rates of change in mathematical proficiency for teaching differs 

little across schools (4th research question).  To address these research questions (both the 
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relationship between teachers’ school experiences and their mathematical proficiency for 

teaching and how change differs between teachers) when individual teachers are the unit of 

analysis, I next fit a sequence of four models for each outcome variable.  Each sequence included 

two baseline models recommended by Singer and Willet (2003) that did not have any predictors.  

The first baseline model is called the unconditional means model (Model 1) and predicts 

the outcome as the sum of an intercept term (the grand mean of the outcome) and a random error 

term, both at the measurement occasion level (Level 1) of the model. The variance of the random 

error term in Model 1 captures the variation of the outcome across individuals and measurement 

occasions. The unconditional growth model (Model 2) predicts the outcome as the sum of an 

intercept term and a random error term at the measurement occasion level (Level 1) and an 

intercept term and a random error term for time at the individual level (Level 2). The variance of 

the random error term for time captures the variation in growth rates across individuals in the 

study.  

The unconditional means model (Model 1) and the unconditional growth mode (Model 

2), provide useful comparisons with the models that include predictors (Models 3 and 4).  

Moreover, by comparing Model 1 and Model 2 and calculating the percentage decrease in 

residual (Level 1) variance, one can determine the amount of variation explained by time.  Time 

accounted for .062 of the within-individual variance in the MKT outcome, .074 of the within-

individual variance in the PE outcome, and .261 of the within-individual variance in the KE 

outcome. 

The unconditional growth model also provided baseline estimates of the rate of change 

for each outcome over the period of the study.  The estimated rate of change was positive in the 

model of MKT and estimated to be 0.03 SD per month or about 0.12 to 0.13 SD over the 
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semester.  The estimated rate of change for the teaching self-efficacy beliefs outcomes were both 

negative, and estimated to be -0.06 and -0.07 SD per month for PE and KE, respectively, or 

about -0.22 and -0.26 SD, respectively, over the semester.  In Model 2 for all three outcomes, the 

intercept (outcome at time zero) and the rate of change in the outcome associated with time were 

moderately and negatively correlated (-.43 or -.44), which means that higher outcomes at the 

beginning of the study were associated with slower growth in MKT and a faster decrease in PE 

and KE.  These findings are noteworthy because they indicate that measureable change in 

knowledge and beliefs did occur within the 4-month period of the study and that the effect size 

for one semester of teaching experience was small to moderate, between 0.10 and 0.30 SD on the 

outcomes used in this study. 

Next, I consider each outcome in turn and address the research questions by reporting 

how and to what extent experience teaching multiplicative reasoning topics and collaborative 

activity focused on student learning were related to the outcomes.  I also consider the teachers’ 

background and experience in schools more generally and report on how features of background 

and experience were related to initial outcomes at the beginning of the study and to change in the 

outcome measures over the course of the study. 

Predictors of initial status and change in MKT. Table 24 reports the parameter 

estimates for the four models of MKT.  Model 4 includes all predictors examined in the study, 

and Model 3 is a more parsimonious model that includes just those predictors that were 

statistically significant. Model 1 and Model 2 are the unconditional means and unconditional 

growth model and have already been introduced. 

Several statistics are useful for understanding how well these models fit the data.  In 

regression analyses, the R2 statistic can be interpreted as the fraction of variance explained and 
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can be computed by squaring the predicted and observed outcome variable.  In multilevel 

models, there is not a single statistic with the same interpretation, and many so-called pseudo R2 

statistics are used.  The R2
yŷ  statistic reports the squared correlation between the model-predicted 

and observed outcomes.  This value was already high for the unconditional means model (.75) 

and increased slightly for Models 2, 3, and 4 (.77 to .78). The increased number of predictors in 

the last two models did not change this measure of fit very much.  Two other R2 statistics are 

reported in Table 24, and these have a different meaning: they describe the fraction of variance 

in the initial status (at time equals 0) and slope (rate of change associated with time) in the 

unconditional growth model that is explained by the added predictors.  A little more than 11% 

and 12% of the variance in initial status MKT was explained by Model 3 and Model 4, 

respectively.  In addition, 50% and 41% of the slope for MKT was explained by the predictors in 

Model 3 and Model 4, respectively.  One of the curious features of multilevel models is that, 

unlike in regression models, the amount of variance explained does not always go down when 

more predictors are added (Singer & Willet, 2003, p. 104). The reason for this surprising 

behavior is that predictors added at one level can affect the variance in other levels of the model. 

Such behavior is especially common in models—like the ones reported in this study—where 

most of the variation is between individuals rather than more evenly balanced within and 

between individuals. 
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Table 24 

Models of Mathematical Knowledge for Teaching (MKT) 

 Model 
Variable 1 2      3 4 
Fixed effects     
Initial status      

Intercept 0.055 (.048) -0.009 (.056) -0.236  (0.164) -0.234 (0.177) 
Male - - - 0.126 (0.124) 
Nonwhite - - -0.463 *** (0.130) -0.495 *** (0.148) 
6–12 credential - - 0.254 * (0.107) 0.237 * (0.109) 
Experience - - 0.071 * (0.031) 0.072 * (0.031) 
Math PD  - - - -0.011 (0.020) 
Collabor. (COL) - - -0.192 * (0.098) -0.183 (0.101) 
Topics (TOP) - - -0.073  (0.110) -0.058 (0.114) 
COL × TOP - - 0.179 b (0.109) 0.182 (0.110) 

Slope     
Intercept - 0.031 (.016) 0.051 * (0.023) 0.057 (0.032) 
Nonwhite - - - 0.017 (0.043) 
Early entry - - 0.066 * (0.030) 0.062 * (0.031) 
Math PD - - -0.011 * (0.006) -0.011 (0.006) 
COL - - - 0.005 (0.025) 
Grade 6, 7 (GR67) - - - -0.012 (0.029) 
COL × GR67 - - - -0.002 (0.028) 

Random effects a     
Level 2     

Var. - Initial status  0.351 0.396 0.351 0.348 
Var. - Slope - 0.0032 0.0016 0.0019 
Corr. - Initial-slope  - -.43 - .56 - .52 

Level 1     
Residual variance 0.207 0.194 0.193 0.193 

Goodness-of-fit a     
Initial status R2 - - .11 .12 
Slope R2 - - .50 .41 
R2

yŷ .75 .78 .77 .77 
Log-likelihood -558 -559 -554 -569 
AIC 1122 1129 1137 1178 
BIC 1135 1155 1186 1265 
Note. Standard errors for the regression coefficients are given in parentheses. 
* p < .05; ** p < .01; *** p < .001. 
a The random effects and goodness of fit estimates reported are the median estimate across the 50 
imputed data sets used for this study. 
b The p-value for this estimate is .102. 
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I next discuss the relative fit of the models to provide context for interpreting the 

estimated model parameters.  To assess relative model fit, I computed log-likelihood ratio tests 

between each model fit to each of the 50 imputed data sets.  There are standard rules (e.g., 

Rubin, 1987) for combining parameter estimates and standard errors across models, but none for 

combining the log-likelihood test statistics.  There is evidence from a simulation study 

(Asparouhov & Muthén, 2010) that the mean of these test statistics is biased.  I therefore report 

the median as well as the 1st and 3rd quartiles to give a sense of the range of test results across 

the set of 50 imputed data sets (see Table 25). This range is not a confidence interval, but it does 

reflect the variability between the imputed data sets and can support the assessment of model fit.  

The tests between Model 1 and Model 2 for the MKT outcome reveal mixed support for 

including time as a random effect.  The likelihood ratio test (LRT) statistic has three degrees of 

freedom because Model 2 specifies two new variance parameters for the random effects 

associated with the intercept and slope of time and a parameter for the covariance.  Variance 

parameters cannot be negative, and the null hypothesis for this test constrains the two variance 

parameters to zero.  This is the boundary of the parameter domain, and thus the test statistic is a 

mixture of different chi-square distributions and does not follow χ2
df=3.  The reported p-value in 

Table 25 for the Model 1 vs. Model 2 test is an upper bound on the possible p-value of the test.  

Thus, the finding that half of the models have upper bounds on p-values that are close to 

statistical significance at the .05 level suggests that this test might yield a significant value. 

Certainly the null hypothesis (that setting the variance and covariance parameters for the 

intercept and slope of time to zero does not reduce model fit) is not tenable in at least a quarter of 

the imputed data sets. 
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I next considered two other criteria of model fit.  Statistically preferred models in a set 

have a smaller Bayesian information criterion (BIC) and a smaller Akaike’s information criterion 

(AIC). These criteria can used to compare the fit of nonnested models, but are also useful for 

assessing the fit of nested models.  Table 25 shows that Model 2 has a slightly lower increase in 

AIC but a higher increase in BIC.  These indexes both penalize extra parameters to favor 

parsimony, but the way parameters are penalized differs and can sometime result in conflicting 

signals about fit. On balance, the mixed information on model fit led me to retain the random 

effects for the intercept and slope of time.  

Table 25 

Comparisons of MKT Models Over 50 Imputed Data Sets 

Comparison LRT df p Increase in AIC Increase in BIC 
Model 1 vs. 2 a      

3rd quartile  9.38 3 .025 -3 9 
Median 7.12 3 .068 -1 12 
1st quartile 5.02 3 .171 1 14 

Model 2 vs. 3      
3rd quartile  48.8 8 < .001 -33 2 
Median 42.6 8 < .001 -27 8 
1st quartile 37.3 8 < .001 -21 14 

Model 3 vs. 4      
3rd quartile  4.35 6 .629 8 34 
Median 2.55 6 .863 9 35 
1st quartile 1.90 6 .928 10 36 

a Testing variance components involve the domain boundary (variance cannot be less than zero), 
and so the distribution of the test statistic does not follow χ2

df=3; the reported p-value is an upper 
bound for the true p-value of the test. 

 

Testing Model 2 against Model 3 (the model that included all significant predictors) had 

clearer results. Although the BIC increased somewhat across the majority of the imputed data 

sets, there was strong evidence from the p-values of the LRT for rejecting the null hypothesis (no 

loss of fit with Model 2) and retaining Model 3: the tests across all 50 data sets were highly 
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significant.  (Model 3 also had a statistically significantly better fit than Model 1.)  Finally, I 

tested Model 3 against Model 4, but found no reason to prefer the more complex model.   

I next interpret the results of the parameters for Model 3.  The statistically significant and 

large coefficient for the nonwhite indicator was surprising. No other research on MKT of which I 

am aware has reported significant differences in MKT related to participants race or ethnicity. 

The term represents a comparison between 165 self-identified white teachers in the sample and a 

heterogeneous group of 34 others (26 black, 2 Hispanic, 1 Asian, and 4 others). Analysis of 

further subgroups was not possible because of the size of the subgroups severely limited power. 

This result has several possible meanings, but none make much sense to me.  The result could 

reflect true differences in knowledge, but these differences have not been observed in other 

research and I did not find them in the study of Texas teachers using a very similar MKT 

measure. The result could also reflect selection bias into the study. It is possible, for example, 

that only high knowledge white teachers participated in the study. However, the question about 

race was the second to last question on the survey, so any effect like this should have been 

evident in different rates of attrition as well, but this was not the case. The result could also 

reflect selection bias into the teaching profession, but only if we accept the possibility that race 

and teacher hiring in Georgia are related by a relationship that is not evident in other states, 

including Texas. A third explanation is provided by the hypothesis of differential item 

functioning (DIF); something about the wording of some questions may have made them easier 

for white participants. This possibility also lacks plausibility because most of the items (all but 

the 2 items from the DTMR project) were screened for DIF by the Educational Testing Service, 

and all the items were administered in the Texas study and no DIF related to the race variable 

was observed. At the same time, there was not enough information in the data set to rule out any 
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of these hypotheses. (The limited number of participants in the Georgia study precludes DIF 

analysis.) 

As I expected from prior research identifying predictors of MKT (e.g., Hill, 2007, 2011), 

the indicator for a Grades 6–12 credential was a significant predictor of MKT at the beginning of 

the study.  Teaching experience was also a significant predictor of initial MKT.  Collaborative 

activity was measured at the beginning and end of the survey, and participants were asked to 

report their collaborative activity around student learning for the first and second semesters, 

respectively.  The topics variable indicated which teachers reported teaching ratio and proportion 

topics in the school year.  The significant negative parameter estimate for collaborative activity 

indicates that teachers who regularly worked with others to plan lessons, evaluate student work, 

and the like had lower MKT at the beginning of the study than teachers who did not engage in 

such activities.  Similarly (although the parameter was not statistically significant), the model 

described teachers who taught ratio and proportion topics as having lower MKT than those who 

did not.  What is most interesting about these two parameters, however, comes in their 

interaction.  Collaborative activity had a positive (but not significant) effect on MKT for those 

teaching ratio and proportion topics.  If the interaction term is removed from the model, then 

neither collaborative activity nor ratio and proportion topics experience is a significant predictor 

of initial MKT. 

I found that collaborative activity had no significant effect on the slope of MKT, contrary 

to my hypothesis.  Moreover, the Grades 6 and 7 teachers—who were responsible for teaching 

ratio and proportion and other multiplicative reasoning topics—did not increase their MKT at 

different rates than Grade 8 teachers. There was no significant interaction between grade level 

and collaborative activity on the estimated rate of change for MKT.  Instead, I found that the 
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early entry teachers (those who had begun teaching before completing full licensure) learned 

MKT significantly faster over the semester than the teachers who were traditionally certified.  

Mathematics professional development during the second semester was negatively associated 

with the rate of change in MKT, with slower growth for those who were involved in more 

mathematics professional development. In the sample, 41 teachers did not participate in 

mathematics professional development during the second semester, and of those who did, the 

median score was 4 or about 11 to 16 hours. 

The estimated rate of change for MKT in Model 3 was higher than in Model 2 at 0.05 

standard deviations per month, or 0.2 standard deviations over the semester.  Among the 53 early 

entry teachers, the average rate of change more than doubled, to 0.12 standard deviations per 

month or approximately 0.5 standard deviations over the semester. Most of these teachers (42), 

however, were involved in professional development during the second semester, and thus the 

predicted growth rate was lower.  In all, for 9 early entry teachers, the positive effects of early 

entry and the negative effects of mathematics professional development cancelled out (a score of 

6 on the mathematics PD scale).  The 2 early entry teachers who participated in more than 24 

hours of professional development (scores of 7 and 8 on the mathematics PD scale) saw an 

overall negative effect on their MKT rate of change from these two variables. 

Predictors of initial status and change in personal efficacy (PE). Table 26 reports the 

comparisons of fit between the four models of PE, and Table 27 reports the goodness-of-fit 

statistics and parameter estimates for these models. The test directly comparing Model 1 and 

Model 2 (see Table 26) was significant for more than 75 of the imputed data sets (the upper 

bound for the p-value was less than .05).  As with the analogous models for MKT, the AIC and 

BIC criteria gave conflicting information about which model was statistically preferred, with 
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decreases in the AIC but increases in the BIC associated with Model 2.  The test between Model 

2 and Model 3 provided strong evidence that Model 3 was preferred (although BIC increased 

slightly).  The test between Model 3 and Model 4 showed that the more parsimonious model did 

not have worse fit than the model with more predictors. The R2
yŷ  statistic increased from .72 to 

.76 in the three models that included time and other predictors (see Table 27), indicating that 

observed and predicted values of PE were more highly correlated in Models 2, 3, and 4.  Models 

3 and 4 both explained a substantial portion of the variance in initial PE status and the slope for 

PE—more than 20.  Together, these results indicate that the models of PE that include time and 

other predictors more accurately reflect the data than the unconditional means models. 

Table 26 

Comparisons of Personal Efficacy (PE) Models Over 50 Imputed Data Sets 

 LRT df p Increase in AIC Increase in BIC 
Model 1 vs. 2 a      

3rd quartile  12.9 3 .005 -7 6 
Median 9.7 3 .021 -4 9 
1st quartile 7.9 3 .048 -2 11 

Model 2 vs. 3      
3rd quartile  62.2 10 < .001 -42 2 
Median 58.0 10 < .001 -38 6 
1st quartile 54.5 10 < .001 -34 9 

Model 3 vs. 4      
3rd quartile  4.4 4 .238 2 20 
Median 2.6 4 .518 5 22 
1st quartile 1.9 4 .757 6 24 

a Testing variance components involves the domain boundary (variance cannot be less than zero), 
and so the distribution of the test statistic does not follow χ2

df=3; the reported p-value is an upper 
bound for the true p-value of the test. 
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Table 27 

Models of Personal Efficacy (PE) 

 Model 
Variable 1 2 3 4 

Fixed effects     
Initial status      

Intercept 0.003 (.060) 0.115 (0.076) -0.911*** (0.213) -0.940*** (0.222) 
Male - - - 0.118  (0.158) 
Nonwhite - - -0.325 * (0.161) -0.542 ** (0.191) 
6–12 credential - - - 0.128  (0.137) 
Experience - - 0.188*** (0.039) 0.194*** (0.040) 
Math PD  - - 0.064 ** (0.024) 0.062 * (0.025) 
Collabor. (COL) - - -0.161  (0.126) -0.142  (0.128) 
Topics (TOP) - - 0.118  (0.142) 0.108  (0.143) 
COL × TOP - - 0.281 * (0.136) 0.275 * (0.137) 

Slope     
Intercept - -0.055 * (0.022) -0.067 * (0.034) -0.092 * (0.044) 
Nonwhite - - - 0.105  (0.058) 
Early entry - - - 0.005  (0.041) 
Math PD - - - -0.001  (0.008) 
COL - - 0.085 * (0.034) 0.084 * (0.036) 
Grade 6, 7 (GR67) - - 0.015  (0.038) 0.029  (0.039) 
COL × GR67 - - -0.100 ** (0.038) -0.099 * (0.039) 

Random effects a     
Level 2     

Var. - Initial status  0.574 0.667 0.514 0.516 
Var. - Slope - 0.0072 0.0051 0.0054 
Corr. - Initial-slope  - - .44 - .45 - .44 

Level 1     
Residual variance 0.406 0.377 0.374 0.374 

Goodness-of-Fit a     
Initial status R2 - - .23 .23 
Slope R2 - - .25 .29 
R2

yŷ .723 .762 .755 .754 
Log-likelihood -744 -741 -733 -739 
AIC 1494 1495 1498 1519 
BIC 1507 1521 1568 1606 
Note. Standard errors for the regression coefficients are given in parentheses. 
* p < .05; ** p < .01; *** p < .001. 
a The random effects and goodness of fit estimates are the median estimates across the 50 
imputed data sets. 
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In Model 3 for PE (as in Model 3 for MKT), the coefficient for the nonwhite indicator 

was statistically significant and positive, and that finding was surprising for the same reasons as 

those discussed for Model 3 of MKT.  Additionally, teaching experience was a statistically 

significant predictor of the initial PE, along with mathematics professional development.  Both 

of those predictors were positively associated with initial PE. The interaction between 

collaborative activity and teaching experience with ratio and proportion topics was statistically 

significant, and was positively related to initial PE. Collaborative activity was negatively related 

to initial PE (but that relationship was not significant), and the indicator for teaching ratio and 

proportion topics was positively related to initial PE (also without statistical significance).  These 

relationships may have substantive significance even though they are somewhat ambiguous 

because the p-values for each were above .05. Model 3 suggested that the teachers who 

collaborated would have lower initial PE for multiplicative topics, but if the collaborating 

teachers also taught ratio and proportion topics, then they were predicted to have higher initial 

PE than the initial PE of those who taught ratio and proportion but did not collaborate.  

Next, I discuss the Model 3 predictors of the rate of change in PE.  The overall estimate 

for the rate of change was negative, a predicted loss of about 0.07 SD per month.  The estimate 

of the effect of collaborative activity on the rate of change was significant and positive.  Grades 6 

or 7 teaching experience was not significantly related to the rate of change in PE.  The 

interaction term between collaborative activity and the indicator for teaching Grade 6 or 7 was 

significant, but it was negative.  Together, these estimates mean that the teachers who taught 

Grade 8 only and were more involved in collaborative activity had a much slower decrease in PE 

than the other teachers (and actually a predicted increase of almost 0.02 SD per month for those 1 

SD above the mean on the collaborative activity scale), but that the Grades 6 and 7 teachers who 
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worked with others frequently had a much faster decrease (almost twice as fast) as the Grades 6 

and 7 teachers who worked less frequently with other teachers. 

Predictors of initial status and change in knowledge efficacy (KE). Table 28  reports 

the comparisons of fit between the four models of KE, and Table 29 reports the goodness-of-fit 

statistics and parameter estimates for these models. The tests of model fit reported in Table 28 

provide strong evidence that Model 2 significantly outperformed Model 1 and that Model 3 

significantly outperformed Model 2 in terms of model fit.  Both of these comparisons show 

decreases in AIC and BIC in addition to highly significant upper bounds for p-values of the tests 

across the majority of the imputed data sets.  Model 4 did not fit the data better than Model 3. 

Table 28 

Comparisons of Knowledge Efficacy (KE) Models Over Imputed Data Sets 

 LRT df p Increase in AIC Increase in BIC 
Model 1 vs. 2 a      

3rd quartile  30.9 3 < .001 -25 -11 
Median 27.1 3 < .001 -21 -8 
1st quartile 21.3 3 < .001 -15 -2 

Model 2 vs. 3      
3rd quartile  36.9 4 < .001 -29 -11 
Median 34.8 4 < .001 -27 -9 
1st quartile 32.8 4 < .001 -25 -7 

Model 3 vs. 4      
3rd quartile  12.7 10 .242 7 51 
Median 10.8 10 .374 9 53 
1st quartile 9.5 10 .485 10 54 

a Testing variance components involves the domain boundary (variance cannot be less than zero), 
and so the distribution of the test statistic does not follow χ2

df=3; the reported p-value is an upper 
bound for the true p-value of the test. 
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Table 29 

Models of Knowledge Efficacy (KE) 

 Model 
Variable 1 2 3 4 

Fixed effects     
Initial status      

Intercept 0.006 (.060) 0.142 (.076) -0.751*** (0.187) -0.922*** (0.227) 
Male - - - 0.272  (0.160) 
Nonwhite - - - -0.272  (0.190) 
6–12 credential - - 0.268b (0.137) 0.255  (0.139) 
Experience - - 0.196*** (0.039) 0.200*** (0.040) 
Math PD  - - - 0.020  (0.025) 
Collabor. (COL) - - - -0.076  (0.129) 
Topics (TOP) - - - 0.120  (0.144) 
COL × TOP - - - 0.182  (0.139) 

Slope   -  
Intercept - -0.066** (.022) -0.109*** (0.032) -0.105 * (0.044) 
Nonwhite - - - 0.070  (0.058) 
Early entry - - - -0.004  (0.042) 
Math PD - - 0.013c (0.007) 0.010  (0.008) 
COL - -  0.023  (0.036) 
Grade 6, 7 (GR67) - - - -0.006  (0.040) 
COL × GR67 - - - -0.013  (0.040) 

Random effects a     
Level 2     

Var. initial status  0.351 0.767 0.636 0.626 
Var. slope - 0.0267 0.0258 0.0263 
Corr. init. & slope  - - .43 - .39 - .40 

Level 1     
Residual variance 0.341 0.252 0.252 0.252 

Goodness-of-fit a     
Initial status R2 - - .17 .18 
Slope R2 - - .03 .01 
R2

yŷ .756 .865 .863 .863 
Log-likelihood -709 -700 -691 -705 
AIC 1425 1411 1401 1450 
BIC 1438 1438 1445 1538 
Note. Standard errors for the regression coefficients are given in parentheses. 
* p < .05; ** p < .01; *** p < .001. 
a The random effects and goodness of fit estimates are the median estimates across the 50 
imputed data sets. 
b The p-value for this estimate is .051. 
c The p-value for this estimate is .078. 
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The R2
yŷ  statistic increased from .75 in the unconditional means model (Model 1) to 

about .86 with the inclusion of time and other predictors in the three other models (see Table 29), 

indicating a substantial increase in ability of the model to predict the observed data.  Although 

about 17 of variance in initial KE status was explained by predictors in Model 3 and 18 of the 

this variance was explained by predictors in Model 4, very little—3 or less—of the variance in 

slope was explained by the predictors in either model. These estimates of explained variance are 

so small that they are not meaningful different than zero even if they do reflect slight 

improvement in the ability of Model 3 and 4 to explain the rate of change in KE over that of 

Model 2. 

In Model 3 of KE, the indicator for nonwhite was not statistically significant. Teaching 

experience was the only statistically significant predictor of initial KE status in Model 3, and the 

relationship was positive and strong.  The indicator for a secondary credential predicting initial 

KE status was very close to statistical significance at the .05 level.  Collaborative activity and 

experience teaching ratio and proportion were not significantly related to initial KE status. The 

estimate for the overall slope was statistically significant and negative.  This estimate was -0.11 

SD per month, and a little less than -.4 SD over the 4-month period of the study. Collaborative 

activity was not related to the rate of change in KE either, nor were the indicator for teaching 

Grades 6 or 7 and the interaction between those variables. The only predictor for rate of change 

in KE that approached statistical significance was mathematics PD.  The estimate was positive, 

but it had a p-value of .078, and thus did not attain significance at the .05 level. 

Summary of findings. The research questions for this study were as follows: 3. What 

features of teachers’ experience in schools are associated with change in mathematical 

proficiency for teaching multiplicative reasoning topics?  4. How does change in mathematical 
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proficiency for teaching multiplicative reasoning topics differ (a) across schools, (b) between 

teachers who teach that content and those who do not, and (c) with the frequency of teachers’ 

collaboration and collegial activity focused on student learning? I found evidence of change in 

the teachers’ MKT, PE, and KE over the semester of the study.  On average, the teachers’ MKT 

increased, and their PE and KE decreased.  Several factors contributed to the teachers’ 

mathematical proficiency for teaching multiplicative reasoning topics at the beginning of the 

semester as measured by those three outcomes.  Teaching experience was positively related to 

the teachers’ initial status on all three outcomes, and the parameters for teaching experience were 

statistically significantly in the best-fitting models (Model 3 for MKT, PE, and KE).  Having a 

secondary (Grade 6–12) teaching certificate was positively associated with the teachers’ MKT 

and KE, but statistically significant only in the model of MKT.  Collaboration and experience 

teaching multiplicative reasoning topics were related to initial values in teachers’ MKT and PE, 

with interaction terms reaching (PE) and nearly reaching (MKT) statistical significance at the .05 

level. The teachers with more frequent collaborative activity had higher PE than those who 

collaborated less frequently, but only if they were also teaching multiplicative reasoning topics.  

In contrast, the teachers who were teaching multiplicative reasoning topics had higher initial 

MKT than those who were not, but only if they were also working with colleagues.   

The models of KE explored in this study did not explain the variation in the rate of KE 

change over the semester, and only one predictor—mathematics professional development—was 

close to reaching statistical significance (p = .078).  This predictor was positively associated with 

slope and can be interpreted to mean that involvement in professional development mitigated the 

model-predicted decrease in KE over the semester of the study, but with the caveat that there is a 
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1 in 13 chance of observing an association of similar or greater strength when no such 

relationship exists.   

The models of MKT and PE explained more of the observed variation in rate of change 

than the models of KE.  In the interpreted model of MKT (Model 3), the early entry indicator and 

the mathematics professional development variable explained 50% of the variance in an 

individual’s rate of MKT change, with early entry positively—and mathematics PD negatively—

associated with MKT change.  This finding means that half of the observed differences between 

how the teachers’ MKT changed over the semester were explained by whether or not they were 

early entry and whether or not they were taking PD.  The early entry teachers’ MKT increased 

faster than that of those who were not early entry, and (somewhat surprisingly) the MKT of those 

in mathematics PD increased more slowly than that of those not in mathematics PD.  I did not 

ask about the content of the PD, so those teachers in mathematics PD may have been focused on 

learning in a different domain of mathematics that did not affect their MKT related to 

multiplicative reasoning topics. 

Model 3 of the PE outcome accounted for 20 of the variance in the individual rate of PE 

change.  Thus, predictors in this model explained about one-fifth of the variation in the rate of 

change in PE observed across the teachers in the study.  The significant predictors of the rate of 

change included collaborative activity, the indicator for teaching Grades 6 or 7, and the 

interaction between these variables.  The interaction was statistically significant and can be 

interpreted to mean that the teachers who collaborated more frequently with others had a slower 

decrease in PE than those who collaborated less frequently, unless they taught in Grades 6 or 7.  

For Grades 6 and 7 teachers, more frequent collaboration was associated with a faster decrease in 

PE. 
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Qualitative Results  

In this section, I discuss results from the qualitative data in the context of the results 

presented in the previous section.  I take each research question in turn, and for each unit of 

analysis (the school and individual) I discuss findings from the retrospective interviews.  Then I 

discuss how these results fit together with those from the quantitative analyses discussed above. 

Question 3. What features of teachers’ experience in schools are associated with change 

in mathematical proficiency for teaching multiplicative reasoning topics? I used the individual 

teacher as the unit of analysis to analyze the participants’ accounts of their own teaching practice 

and how it had changed since they began teaching.  All of the interviewed teachers with useable 

data (n = 17) reported increased confidence in their knowledge of the mathematics they taught 

(KE) and in their ability to teach mathematics well (PE).  Their descriptions of changing practice 

also reflected increased MKT: greater content and curricular knowledge, better understanding of 

student misconceptions, more effective explanations of difficult concepts, and increased 

knowledge of representations (including manipulatives) and how to use them effectively. 

To understand how the teachers explained their growth to themselves, I asked them at the 

end of the interview which of the many things we had discussed—university coursework and 

field experience, mentoring and coaching, common lesson planning and other forms of 

collaborative work with other teachers, professional development, trial and error in their own 

classroom, and curricular materials—had been most important for learning to be a better 

mathematics teacher.  Of the 17 participants, 12 named collaborative work with other teachers as 

the most important factor in learning to teach mathematics better.  For example, one participant 

said,  

I would definitely say that having that group of teachers at school, working 
collaboratively with the other sixth-grade math grade teachers who are teaching 
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exactly what I'm teaching and to the exact same age group that I'm teaching has 
been invaluable for me. 
 

Another participant said,  

The biggest thing would be working with my peers, the other math teachers, my 
mentor math teacher, who is still a mentor to me, even though she’s in eighth 
grade and I’m in seventh, or the group that I’m working with now.  That has to be 
the number one thing …  And my course work, I thoroughly enjoyed.  Some 
classes were useful and some not so useful, but it definitely gave me a broader 
background than I would have had.  But as far as—I’m not the teacher I am 
because of classwork that I had.  It’s more because of the experiences I had with 
other math teachers. 
 
The next most common category of response was feedback from students.  Six teachers 

described interactions with students as the motivation or source of their improved practice.  One 

teacher said,  

So, the one thing is the collaboration, and the other one is the kids leaving here 
thinking, answering the questions I ask them and getting most of them right.  I 
feel like we’ve done something today, and the next day is the new day, so we’ll 
figure it out.  Basically, collaboration with other teachers and feeling like my 
students get what I’m talking about. 
 

Another said, 

I just find definitely what makes me a better teacher is the student interaction.  
That to me is the key.  When I get the light bolt moment, that makes me want to 
be a better teacher. … Just that with that “Oh, I get it!”  I love that.  That to me is 
the best part of teaching. 
 
I also asked the participants about professional development, and almost all said that it 

had only a minor role in their development or had not been useful.  On the whole, the 

professional development they described was general not mathematics specific, limited to a 

single day or afternoon, and focused on new ideas or novel practices rather than on improvement 

or master of existing skills. Three teachers, however, credited professional development 

experiences with significant changes in their teaching practice.  One remarked,  
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Professional developments are just continuation of learning; it’s probably [the] number 
one [thing that has made the difference].  Constantly learning new ways to teach 
something and not getting stuck in some kind of rote or practice where you’ve done it for 
3 years. 
 

The other two mentioned particular professional development experiences that had had a 

profound impact on their teaching and classroom management.  One was a professional 

development workshop on using Socratic questioning techniques, and the other was about 

differentiated instruction. These kinds of professional development may not have effected the 

survey outcome measures of MKT, PE, and KE. 

Question 4. How does change in mathematical proficiency for teaching multiplicative 

reasoning topics differ (a) across schools, (b) between teachers who teach that content and those 

who do not, and (c) with the frequency of teachers’ collaboration and collegial activity focused 

on student learning? The retrospective interviews aimed to elicit data from participants on the 

teachers they worked with—their grade-level departments or mixed-subject teams—and to use 

those data to make narrative inferences about how knowledge and teaching self-efficacy beliefs 

in groups of teachers changed over time.  

In the end, pursuing this line of analysis was not fruitful because the groups of teachers 

that participants had worked with and described had little stability.  The participants reported 

frequent changes in schools and grade levels: 6 of the 17 teachers reported working at two or 

more schools, and all those who had more than 1 year of teaching experience reported working at 

more than one grade level.  Since the teachers in different schools (and even the teachers 

working at different grade levels in the same school) organized their collaborative work in 

different ways and to a different extent, most of the participants reported a wide variety of 

experience with different groups of teachers from year to year.  These data offer some 

elucidation of the absence of variation in mathematical proficiency for teaching and its change at 
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the school level: The frequent turnover in schools and grade-level teams may undermine the 

utility of school affiliation for studying teacher change because teachers working at a particular 

school may have only recently joined that faculty and may be in different roles from year to year. 

The data were more useful for understanding change at the individual level.  There was 

strong evidence that individual teachers thought they had experienced change in their knowledge 

and beliefs.  One participant said of her confidence to teach Grade 8 mathematics, “It grows 

more and more every year.”  All of the interviewed participants made similar comments about 

their confidence in knowing the mathematics they were responsible to teach (KE) and about their 

confidence in being able to teach effectively (PE).  

The retrospective interviews highlighted the role of collaboration (Question 4c) and of 

experience teaching particular topics (Question 4b).  Most of the teachers interviewed credited 

collaboration with other teachers as the biggest factor in improving their own practice, a finding 

already discussed in the Question 3 subsection. 

One advantage of the interview data was the opportunity to learn about the process of 

improvement and understand the role of collaboration and work with other teachers in this 

process.  Twelve of the 17 interviewees credited work with other teachers as a critical factor in 

developing their mathematical proficiency for teaching and described a range of activities 

including planning common lessons and assessments, observing teachers, discussing 

instructional problems and techniques, and sharing teaching resources. The descriptions 

frequently included affective descriptions—the participants reported mutual trust; feeling it was 

“safe” to ask questions; and feeling that their peers were approachable, welcoming, and helpful.  

One teacher described an experience with a peer when she had been assigned to teach Grade 8 

after teaching in her first 2 years at Grade 6: 
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One of the eighth grade teachers actually came to me when I was teaching last year and 
brought me a gift.  And it was everything they had done last year on a little flash drive.  
And she said, “It’s going to overwhelm you but you’ll have the summer to look through 
and see what we’re going to teach,” you know.  “It’s all in order.”  And she left her phone 
number, and she said, “Look it over and start thinking about questions, start thinking 
about what are you going to need help with and then call me.” … I am comfortable going 
to any one of those math teachers and saying, “I need help with this.” 

Unlike this teacher, other participants who reported working on common lesson planning or 

other activities with peers and who did not say that other teachers were important for their 

professional growth did not describe relationships with a positive affective dimension like the 

one described in the quotation above.  These negative cases provided supporting evidence that a 

positive affective component in mentoring and collegial relationships may be critical for their 

utility in helping beginning teachers develop.  

The wide range of teachers’ assignments made it impractical to ask each teacher about 

multiplicative reasoning topics in particular, but 8 of the 17 teachers described changes in self-

efficacy beliefs for teaching particular topics or at particular grade levels.  For example, one 

participant made distinctions between her teaching self-efficacy for different grade levels, “Now 

put me in ninth grade and who knows?  But sixth grade and seventh grade—so far so good.”  She 

also described changes in confidence at an even smaller grain-size than that of grade-level: 

Once I teach something once I feel a lot more confident about it.  And some 
things I walk in knowing exactly how I’m going to teach it.  And some things are 
a little bit trickier.  But I guess each new unit is different.  I don’t really have a 
pattern that I can say, “Oh, it’s gotten easier since last year,” or anything like that.  
I can say that the things I’m teaching this year that I had taught last year already 
are easier for me. 
 

Fifteen of the teachers made similar distinctions, and six described how being assigned to teach 

at a different grade level led to an initial drop in confidence in their knowledge of the material 

and their ability to teach it.  
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 The findings on teachers’ assessments of their changing self-efficacy for teaching were 

surprising given the evidence from the quantitative data that teaching self-efficacy decreased 

over the semester.  The interviews were conducted in February, however, when the teachers’ 

self-efficacy beliefs—according to the survey—were on average higher than they were at the end 

of the year. One significant factor in understanding these results is the end-of-year exam which 

was scheduled in mid-April. Scores were not released until the end of June (a month after the 

conclusion of the study), so the teachers only knew how their students seemed to be doing, not 

how they had actually performed.  Several teachers mentioned receiving the results of the end-

of-year exam in previous years and the associated change in their self-confidence.  One teacher 

reported a boost in confidence after receiving the score results:  

The last year I was scared to death that after the CRCT [end-of-year exam] results 
came back in, that … all the three senior math teachers in the sixth grade you 
know would have these wonderful scores and mine would be like just miserable. 
It didn't end up that way, my results were just a little bit behind theirs. 
 

Another teacher reported a similar experience: 

I really expected my scores to not compete with [those of] my colleagues that 
have been doing this for a long time, but mine were right in the mess with theirs.  
So when posttest scores came around, which was what we call our finals, they, 
my scores were right in line with theirs too, so that was a confidence booster.  
Okay, I am doing something right. 
 

It is possible that these teachers’ peers had the same expectations and instead experienced a drop 

in self-efficacy after seeing that their scores were not better.  Such a reaction to disappointing 

end-of-year scores at a wide scale would explain the drop in self-efficacy beliefs for teaching 

found in the survey results, and yet still agree with the reports of growing self-efficacy among 

newer teachers.  That teaching experience was not strongly correlated with the rate of change in 

the outcome variables on the survey may be explained by the diversity of the teachers’ 
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experiences.  Only some of the new teachers experienced growth in self-efficacy beliefs for 

teaching during the semester and other teachers’ self-efficacy beliefs decreased.   
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CHAPTER 5 

THE UNITED STATES STUDY 

There is a critical lack of large-scale research studies that compare the relative effects of 

differences in clinical experiences across a wide range of teacher education programs (Clift & 

Brady, 2005; Ronfeldt & Reininger, 2012; Wilson et al., 2002). The timing, length, and quality 

of clinical experiences vary widely within and between nations (Cobb, 1999), and this fact at 

once demonstrates the need for comparative research and the opportunity to conduct it. In the 

present study, I exploited the variability in U.S. teacher preparation to provide some of the first 

large-scale, cross-institutional evidence about the effects of student teaching on mathematical 

proficiency for teaching.  The results of this study have implications for teacher education policy 

in the United States and internationally.  

Rather than examining student outcomes directly, I examined teacher outcomes that are 

predictive of student achievement.  Student teaching might not have the same effects across the 

wide range of content areas and grade levels for which teachers are prepared, so focusing on a 

single subject and a population of similarly prepared teachers made sense. Mathematics teacher 

education urgently needs improvement (e.g., National Mathematics Advisory Panel, 2008; 

Center for Research in Mathematics & Science Education, 2010), and in this study, I focused on 

the preparation of primary (Grades K–6) teachers to teach mathematics.  I designed the study to 

address the following research question:  

5. How are the timing, length, and quality of student teaching related to prospective 

teachers’ mathematical proficiency for teaching the K–6 curriculum?  
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Data and Methods 

This study used data from U.S. prospective teacher and teacher preparation program 

surveys conducted by the Teacher Education and Development Study in Mathematics (TEDS-M; 

Brese & Tatto, 2012). To facilitate future international comparison of the results (which are 

outside the scope of this study), the analytic sample was restricted to teachers in programs 

identified by TEDS-M as involving concurrent preparation in content, practice, and pedagogy to 

teach primary (Grades K–6) mathematics.  The TEDS-M data set includes scales of knowledge 

and beliefs, and the U.S. sample is nationally representative of the public institutions that prepare 

teachers.  The large-scale data sets used in prior research have not included scales of pedagogical 

content knowledge and have been restricted to single school districts (Boyd et al., 2009; Ronfeldt 

& Reininger, 2012) or states (Goldhaber & Liddle, 2011; Harris & Sass, 2007).  

The relevant TEDS-M sample for the United States consisted of 1,119 prospective 

primary school teachers in 49 concurrent U.S. preparation programs operated by public 

institutions.  The data set included sample weights that allowed the sample to accurately 

represent the population of 20,548.  A substantial portion of the data from some institutional and 

individual surveys was missing.  Table 30 reports the percentage of missing data on outcomes 

and key predictors.  I used standard data imputation techniques to handle the missing data 

problem (see Chapter 4 for more details).  Because of the large number of variables in the data 

set related to the participants’ prior experience with mathematics, their education, and their 

teacher education programs, I was confident that the imputed values for the outcome measures of 

teachers knowledge and beliefs were appropriate.  

Little is known, however, about how programs for prospective teachers set policies 

related to the length and timing of student teaching—key predictors of substantive interest in the 
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present study.  As a result, I had little confidence that the data set included reasonable predictors 

of those variables and was concerned that imputation mechanisms would not improve estimates 

over chance.  In fact, preliminary analyses with the fully imputed data set revealed inflated 

standard errors for these predictors.  Because only 4 programs were missing these data, and 

because those 4 programs contributed only 75 prospective teachers (7% of the sample), who 

represented only 1,024 teachers in the population (5% of the sample), I elected to remove those 

programs and the teachers in them from the analytic sample.  Table 30 also reports the 

percentage of missing data on key predictors and outcome variables for the analytic sample.  In 

most cases, the percentage of missing data was reduced in the analytic sample, indicating that the 

participants in programs that did not report the timing or length of student teaching were missing 

data on other variables as well.  

Table 30  

Percentage of Missing Data on Key Analytic Variables for the Sample, the Analytic Sample, and 

Those Represented by These Samples 

 Key predictor Outcome 
 Student 

teaching timing 
& length 

Student 
teaching 
quality 

Knowledge 
(both scales) 

Beliefs 
(both scales) 

Of sample (N = 1,119) 6.7 24.7 25.5 22.3 
Of those represented by sample 

(N = 20,548) 5.0 25.1 27.5 23.6 

Of analytic sample (N =1,044) 0 25.1 25.3 22.5 
Of those represented by analytic 

sample (N = 19,524) 0 25.1 26.8 23.5 

 

I used the R program Amelia II (which employs a bootstrap expectation-maximization 

algorithm; see Honaker, King, & Blackwell, 2011) to create 50 imputed data sets for all 1,119 

individuals in the sample using 70 individual- and program-level variables from the TEDS-M 
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data set.  Thus, the observed data from the 75 individuals with missing data on student teaching 

length and timing and who were excluded from the analytic sample nevertheless contributed to 

the imputation of missing data for other individuals. The missing data on the variables used for 

imputation ranged from 0 to 28%.  

Predictors of Substantive Interest 

The TEDS-M study distinguished introductory field experiences (e.g., observation) from 

extended teaching practice, defining the latter as “two weeks or more of continuous work in 

schools when the main purpose is to prepare and enable future teachers to assume overall 

responsibility for teaching a class or classes of students” (Tatto et al., 2012, p. 109). I did not 

consider introductory field experiences in the present study, and I use the term student teaching 

to refer to extended teaching practice, as defined in the TEDS-M study.  

All the U.S. teacher preparation programs in TEDS-M reported some student teaching, 

but the programs varied with respect to the timing of student teaching, with many reporting 

student teaching prior to the final year of the program. The student teaching timing variable was 

a binary indicator variable: A value of 1 was defined as attending a teacher preparation program 

that involved student teaching prior to the final year of preparation, and a value of 0 was defined 

as attending a program that did not involve student teaching prior to the final year, a so-called 

normal student teaching timing.  About 45% of the U.S. institutions in the analytic sample (20 of 

the 44) scheduled student teaching before the final year of the teacher preparation program, and 

after adjusting for the sample weights, an estimated 37.6% of the prospective teachers 

represented by this sample experienced early student teaching. Early student teaching timing did 

not look the same at every institution. In some institutions, early student teaching involved 20 to 

30 six-hour days. In other schools, the early student teaching lasted several months or a whole 
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year but was only 2 to 4 hours a day. The evidence available from the survey data points clearly 

to one common feature: All programs with early student teaching involved a student teaching 

experience that was either concurrent with or followed by other preparation activities such as 

content and methods coursework. 

The length of student teaching was operationalized as the total number of student 

teaching hours taken as the product of days of extended teaching practice per year and the 

corresponding annual estimate of the average number of hours per day.  The unit of weeks—

defined as 40 contact hours—was used for analysis to aid interpretation.  This point bears 

stressing because in the following analysis, the unit week could refer to 40 contact hours 

stretched over a whole month at 2 hours per weekday or it could refer to five 8-hour days. 

The length of student teaching in the sample institutions ranged from 6 weeks (240 

contact hours) to 30.6 weeks (1224 contact hours), but calendar time for these same student 

teaching experiences ranged from approximately 1 to 3 semesters.  Programs that had early 

student teaching also generally had longer student teaching (see Figure 2).  The median length of 

student teaching was 16 weeks (640 contact hours).  To aid interpretation in multilevel 

regression modeling, it is convenient to center variables so that a score of 0 is within the 

observed data range and has some substantive meaning.  Predictors are frequently centered on 

the mean, but there were no observed programs with the mean program length.  Instead, I 

subtracted the median (16 weeks) from the student teaching length variable before doing any 

analysis. 
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Figure 7. Histograms showing the distribution of student teaching length in programs with 
normal timing (last year only) and early timing (before the last year) for student teaching; the 
reported frequencies are population estimates based on sampling weights. 

 

The quality of student teaching was operationalized using a Rasch rating scale model 

released with the TEDS-M data set (see Table 31; Brese & Tatto, 2012). The resulting 

continuous variable had a neutral value of 10 and summarized the prospective teachers’ rating 

responses (1: never, 2: rarely, 3: occasionally, 4: often) on questions about the frequency of 

various student teaching activities that can support connections between teaching and children’s 

learning. Using a Rasch rating scale model enabled the TEDS-M researchers to assess whether 

the instrument would provide valid comparisons between teachers in different countries; the 

variable was modeled as a latent rather than manifest variable because each rating item captured 
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the perception of the respondent rather than an objective measure of frequency. Rather than 

mean centering the student teaching quality variable before analysis, I subtracted 10 because the 

scores were designed with a neutral position of 10 points. 

Table 31 

Quality of Student Teaching Measure: Frequency of Opportunities to Connect Teaching and 

Learning 

Item 
During the school experience part of your program, how often were you required to 
do each of the following? (1: Never, 2: Rarely, 3: Occasionally, 4: Often) 

1 Observe models of the teaching strategies you were learning in your courses 
2 Practice theories for teaching mathematics that you were learning in your courses 
3 Complete assessment tasks that asked you to show how you were applying ideas you 

were learning in your courses 
4 Receive feedback about how well you had implemented teaching strategies you were 

learning in your courses 
5 Collect and analyze evidence about pupil learning as a result of your teaching 

methods 
6 Test out findings from educational research about difficulties pupils have in learning 

in your courses 
7 Develop strategies to reflect upon your professional knowledge 
8 Demonstrate that you could apply the teaching methods you were learning in your 

courses 
Note. These items were combined under a Rasch rating scale model to produce a continuous 
variable with neutral value of 10 named MFB13CLP; see the forthcoming TEDS-M 2008 
Technical Report available at http://www.iea.nl/teds-m.html for more information. 

 

Outcome Measures  

The four outcomes used in this study were operationalized using IRT scales developed 

for the TEDS-M project.  These outcomes were well matched to the underlying constructs I was 

interested in studying and well aligned with the research question and framework of the study. 

Two outcomes were measures of teacher knowledge.  The TEDS-M instrument for mathematics 

pedagogical content knowledge was based explicitly on Shulman’s work (1986), and LMT items 

were used in its development.  This measure did not focused on multiplicative reasoning, and 
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instead assessed PCK for the K–6 mathematics curriculum, including 32 items from the content 

domains of algebra, geometry, number, and data and the pedagogical domains of planning and 

enacting (see Brese & Tatto, 2012). The TEDS-M content knowledge instrument assessed 

teachers’ knowledge in the same content domains and included 74 items.  Because of the rotated 

block design and booklet administration of these tests, participants only answered a subset of the 

items that composed each instrument (Tatto et al., 2012). Both scales had a mean score of 500 

and a standard deviation of 100 scale points. 

The other two outcomes used in the present study were measures of teachers’ beliefs 

about teaching and learning mathematics. These TEDS-M measures were created using Rasch 

rating scale models to aggregate participants ratings of agreement across a number of statements 

that captured two kinds of beliefs about mathematics teaching and learning: beliefs about 

mathematics as a process of inquiry (abbreviated here as math-as-inquiry beliefs) and beliefs 

about learning mathematics through active involvement (abbreviated here as active learning 

beliefs). The items that comprised these two scales are presented in Table 32. Each scale was 

constructed with a neutral value of 10. The TEDS-M researchers described these measures as 

“largely consistent” (Tatto et al., 2012, p. 157) with the work of Philipp (2007) and Staub and 

Stern (2002). 

Covariates to Mitigate Selection Bias 

Selection bias is a concern when comparing teachers in different programs; individual 

characteristics rather than program characteristics may be responsible for the observed outcomes.  

Individual-level and program-level covariates similar to those used in earlier research (Boyd et 

al., 2009; Ronfeldt & Reininger, 2012) to mitigate bias in estimates of the effects of student 

teaching duration and quality were available in the TEDS-M dataset and were used in the present 
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analysis.  These included age, gender, socioeconomic status, length of the program, and 

(average) student achievement in secondary school at both the program and individual levels. 

Table 32 

TEDS-M Measures for Teachers’ Beliefs: Mathematics-as-Inquiry and Active Learning Beliefs 

Item 

Mathematics-as-Inquiry Beliefs a 
To what extent do you agree or disagree with the following beliefs about the nature of 
mathematics? (1: Strongly disagree, 2: Disagree, 3: Slightly disagree, 4: Slightly 
agree, 5: Agree, 6: Strongly agree) 

1 In mathematics many things can be discovered and tried out by oneself  
2 If you engage in mathematical tasks, you can discover new things (e.g., connections, 

rules, concepts) 
3 Mathematical problems can be solved correctly in many ways 
4 Many aspects of mathematics have practical relevance 
5 Mathematics helps solve everyday problems and tasks  

Item 

Active Learning Beliefs b 
From your perspective, to what extent would you agree or disagree with each of the 
following statements about learning mathematics? (1: Strongly disagree, 2: Disagree, 
3: Slightly disagree, 4: Slightly agree, 5: Agree, 6: Strongly agree) 

1 In addition to getting a right answer in mathematics, it is important to understand why 
the answer is correct  

2 Teachers should allow pupils to figure out their own ways to solve mathematical 
problems  

3 Time used to investigate why a solution to a mathematical problem works is time well 
spent  

4 Pupils can figure out a way to solve mathematical problems without a teacher’s help  
5 Teachers should encourage pupils to find their own solutions to mathematical 

problems even if they are inefficient  
6 It is helpful for pupils to discuss different ways to solve particular problems 

Note. Items were combined under a Rasch rating scale model to produce a continuous variable 
with neutral value of 10; see the forthcoming TEDS-M 2008 Technical Report available at 
http://www.iea.nl/teds-m.html for more information. 
a The TEDS-M derived variable MFD1PROC. 
b The TEDS-M derived variable MFD2ACTV. 
 

Estimates of the effects of teacher preparation programs can combine selection into the 

program with program features (Goldhaber & Liddle, 2011; Harris & Sass, 2007), so I also 

included program-level variables related to selectivity and individual-level high school 

achievement to control for self-selection bias.  The sets of pretreatment covariates at the program 
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and individual levels also included many of the variables used to predict college choice (e.g., 

Cabrera & La Nasa, 2000) and teacher knowledge (e.g., Hill, 2007, 2010).  Thus, those 

covariates likely reduce bias from omitted variables. The covariates included the number of 

mathematics and mathathematics pedagogy classes, the importance of standardized tests for 

selection into the program, and circumstances hindering program participation.  

Descriptions of the covariates used are presented in Table 33. In addition to the 

covariates already described, I included two scales related to student teaching and one scale 

related to the program quality overall. The Student Teaching Supervisor Reinforced University 

Goals scale included items such as, “I learned the same criteria or standards for good teaching in 

my courses and in my student teaching.”  The Student Teaching Supervisor Feedback Quality 

scale included items such as, “The feedback I received from my supervising teacher helped me to 

improve my understanding of pupils.”   And the Coherence of Preparation Program scale 

included items such as, “Later courses in the program built on what was taught in earlier courses 

in the program.” These items were rated on a 4-point scale from disagree to agree. I also 

included as individual level covariates three scales of the tertiary mathematics topics prospective 

teachers had studied.  The scales were designed for use with secondary teachers as well, and 

many of the topics are not frequently studied by Grades K–6 prospective teachers in the United 

States.  Still the scales provided a way of distinguishing different levels of post-secondary 

mathematical training among the prospective teachers in the sample.  An example of a 

Continuity scale topic was limits; an example of a Discrete structures scale topic was prime 

numbers; and an example of a Geometry scale topic was Euclidean axioms.  The topics used to 

form these scales are described in more detail in Appendix D. 
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Table 33 

Covariates Used to Mitigate Selection Bias. 

Covariate Scale Question or description 
Program level    

Length of program  Number of years Length of the program was reported in years and months; this is the sum as a value in years. 
Math and math pedagogy 
classes 

Number of classes Sum of the reported number of classes for mathematics pedagogy, mathematics content related to the 
school mathematics curriculum, and academic mathematics 

Average student 
achievement 

6-point scale With reference to national achievement norms for their age group, are students? 1: Far below average, 
2: Below average, 3: Average, 4: Above average, 5: High (top 20%), 6: Very high (top 10%). 

Importance of standardized 
tests for selection 

4-point scale How important is candidates’ performance as measured by their performance on a national or state 
examination in selecting prospective teachers entering the program? (1: Not considered, 2: Not very 
important, 3: Somewhat important, 4: Very important) 

Individual level    
Student teaching supervisor 
reinforced university goals 

Rasch rating scale, 
neutral is 10 points 

Rated 5 statements on a 4-point scale (1: Disagree to 4: Agree), e.g., “I learned the same criteria or 
standards for good teaching in my courses and in my student teaching;” TEDS-M variable MFB14STRa 

Student teaching supervisor 
feedback quality  

Rasch rating scale, 
neutral is 10 points  

Rated 4 statements on a 4-point scale (1: Disagree to 4: Agree), e.g., “The feedback I received from my 
supervising teacher helped me improve my teaching methods;” TEDS-M variable MFB14STF a 

Secondary school 
achievement 

5-point scale What was your level of grades compared with your class? 1: Below average, 2: About average, 3: 
Above average, 4: Near the top, 5: Always at the top. 

Age Number of years Participants reported their age in a blank space in response to the question, How old are you? 
Gender Binary indicator Participants reported their gender by checking Female or Male in response to the question, What is 

your gender? 
Socioeconomic status Raw score ranging 

from 3 to 19 
Sum of ratings on the following scales: (i) 5-point scale on the number of books, (ii) 7-point scale on 
mother’s education, and (iii) 7-point scale on father’s education. 

Hindering circumstances Raw score ranging 
from 3 to 6 

Sum of ratings (1: No, 2: Yes) on following circumstances hindering studies: (i) had family 
responsibilities that made it difficult to do my best; (ii) had to borrow money; (iii) had to work a job. 

Coherence of preparation 
program 

Rasch rating scale, 
neutral is 10 points 

Rated 6 statements on a 4-point scale (1: Disagree to 4: Agree), e.g., “Later courses in the program 
built on what was taught in earlier courses in the program;” TEDS-M variable MFB15COH a 

Tertiary mathematics   Prospective teachers checked each topic as “Studied” or “Not studied.” 
Continuity & functions  Rasch scale score, 

neutral is 10 points 
Based on 5 topics, e.g., “Beginning Calculus Topics (e.g., limits, series, sequences);” TEDS-M variable 
MFB1CONT a 

Discrete structures & 
logic 

Rasch scale score, 
neutral is 10 points 

Based on 6 topics, e.g., “Number Theory (e.g., divisibility, prime numbers);” TEDS-M variable 
MFB1DISC a 

Geometry Rasch scale score, 
neutral is 10 points 

Based on 4 topics, e.g., “Axiomatic Geometry (e.g., Euclidean axioms);” TEDS-M variable 
MFB1GEOM a 

a See the forthcoming TEDS-M 2008 Technical Report for more information on these variables (http://www.iea.nl/teds-m.html).
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I elected to use covariates to minimize bias rather than other methods, such as propensity 

score matching techniques.  Building a valid propensity estimation model was not feasible given 

the current state of the literature on the selection of individuals into teacher education programs 

and on the determinants of program policies for student teaching.  

Multilevel Modeling With Survey Weights 

The statistical software MPLUS (Version 6.11 for Mac) was used to estimate a separate 

multilevel model for each outcome variable (prospective teachers nested within preparation 

programs).  The software also estimates standard errors of individual regression coefficients and 

the likelihood statistic for testing nested models.  The complex sampling design of the TEDS-M 

data was addressed by incorporating sampling weights into the analysis.  Weights should not be 

used without appropriate scaling because unscaled weights can bias estimates (Carle, 2009).  

Both scaling methods recommended by Carle (2009; cluster sample size and effective cluster 

sample size) were available in MPLUS, and I used both methods and compared the results.  I 

also ran the analyses without weights.  The results across all three methods were very consistent 

with each other. 

The statistical model for this study (Equation Set 1) was adapted from VanderWeele 

(2008) and is appropriate for estimating neighborhood effects—effects at the program rather than 

individual level.  This model accommodates the expected homogeneity among prospective 

teachers in the same program (Gelman & Hill, 2007).  

€ 

Yij = µ j + γ1Qij + β1Xij + eij
µ j = α + γ 2Tj + γ 3L j + γ 4TjL j + β2Z j + u j

eij ~ N(0,σ1); u j ~ N(0,σ 2)
 (1) 

The first equation expresses the individual level of the model. The model predicts the 

outcome Y (prospective teachers’ knowledge or beliefs) with i indexing individuals and j 
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indexing programs. The matrix Qij represents the student teaching quality experienced by person 

i in program j; the matrix X represents the individual-level covariates (for a detailed listing, see 

Table 33); and eij is the random error term associated with individual i in program j. The 

coefficient γ1 and vector of coefficients β1 are estimated by fitting the model to the observed 

data; these terms provide estimates of the relationships between these variables and the outcome 

Y. The last term in the first equation is the intercept term µj. It represents the average outcome for 

each program; predicting this term using program-level variables is the role of the second 

equation. 

The second equation includes Tj, the binary indicator variable representing whether 

program j has early student teaching. It also includes Lj, the variable representing the length of 

the student teaching in program j. The matrix Z represents the program-level covariates (for a 

detailed listing, see Table 33). The interaction term TjLj expresses the possibility of an increase in 

the outcome for timing and length beyond that accounted for by each independently. Finally, uij 

is the random error term associated with program j. A fitted model provides estimates of the 

coefficients γ2 and γ3 and of the vector of coefficients β2. I also estimated the coefficient for the 

program-level interaction between timing and length, γ4. The last line of Equation Set 1 indicates 

the assumption that the error terms are normally distributed. 

Results 

The research question for this study asked: What are the effects of earlier, longer, or 

better student teaching on prospective teachers’ knowledge and beliefs with respect to 

mathematics?  To address that question, I modeled teachers’ knowledge (content knowledge and 

pedagogical content knowledge) and beliefs (mathematics as inquiry and active learning) using 

program- and individual-level covariates to control for selection bias and three substantive 
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predictors: an indicator for whether the student teaching was timed before the last year, the 

length of student teaching in weeks (each week defined as 40 contact hours), and the quality of 

the student teaching operationalized as the frequency of opportunities to connect students’ 

learning to teaching practice.  I also included an interaction term between student teaching 

timing and length at the program level.  In this section, I first describe the model selection 

process and then interpret results from the final models. 

Model Fit and Selection 

For each outcome, I fit a series of three nested models: the unconditional means or null 

model for baseline comparison, a model including all covariates, and a full model with the 

covariates and the substantive predictors.  Because these models were nested, consecutive 

models could be tested using log-likelihood ratio tests (LRT) to determine at each step whether 

adding more predictors improved model fit.  In addition to considering LRT, I also looked at the 

Bayesian information criterion (BIC) and Akaike’s information criterion (AIC).  These model 

criteria are used to compare the fit of nonnested models (particularly when LRTs are not an 

option) and provide alternative evidence of model fit.  For both, the model in a set of putative 

models that has the smallest criterion is preferred (e.g., Singer & Willet, 2003, pp. 120–122).  

Table 34 summarizes the model fit results. 

For all four teacher outcomes, the LRT showed that the full model (that with the 

substantive predictors) had significantly improved fit over the model with just the covariates (see 

Table 34). The information criteria provided consistent information, except in the case of the 

model for pedagogical content knowledge, in which the smallest BIC selected the model with 

covariates rather than the full model.  



 

 139 

Table 34 

Fit Information for the Models of Teacher Outcomes 

Model LRT df BIC AIC 
1: Pedagogical content knowledge     

a: Null model - - 11706.7 11691.9 
b: With covariates 122.8 *** 15 11688.2 a 11599.1 
c: With all predictors 12.1 * 4 11704.0 11595.1 a 

2: Content knowledge      
a: Null model - - 11699.4 11684.6 
b: With covariates 143.0 *** 15 11660.7 11571.6 
c: With all predictors 38.0 *** 4 11650.5 a 11541.6 a 

3: Beliefs – math as inquiry      
a: Null model - - 3882.1 3867.2 
b: With covariates 145.0 *** 15 3841.3 3752.2 
c: With all predictors 50.7 *** 4 3818.4 a 3709.5 a 

4: Beliefs – active learning     
a: Null model - - 3493.9 3479.1 
b: With covariates 105.3 *** 15 3492.9 3403.8 
c: With all predictors 33.8 *** 4 3487.0 a 3378.0 a 

*  p < .05;  ***  p < .001. 
a The model with the smallest Bayesian information criterion (BIC) or Akaike’s information 
criterion (AIC) is y preferred. 

 

In multilevel models (and in multiple regression more generally), it is possible for the 

model fit to improve with a group of predictors even though none of the predictors is 

significantly related to the outcomes or meaningful for explanation.  In strict prediction models, 

when the purpose of the model is to identify the most accurate values for an outcome on 

unobserved values of predictors, the best-fitting model will give the best predictions even in 

those cases.  In the present study, the purpose of the model was dual: The covariates served to 

predict the outcomes across systematic differences in programs and individuals, and the 

substantive predictors served an explanatory role.  Thus model fit was not sufficient to justify 

selecting the full model for each outcome.  I also considered to what extent each model 
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explained the individual- and program-level outcome variance (i.e., observed outcome 

differences within and between programs). 

Table 35 reports the partitioned individual- and program-level outcome variance along 

with the intraclass correlation (ICC) coefficient for each model.  The ICC describes the portion 

of overall variance that exists at the program level.  It can also be interpreted as the degree to 

which the outcomes of individuals in the same program resemble each other.  With each 

consecutive model, the portion of variance explained at the individual and program level 

increased—suggesting that the covariates were functioning as intended to control for individual 

and program differences.  In addition, the ICCs exhibit a decreasing pattern showing that 

relatively more of the program-level than individual-level variance was explained by models 

with more variables.  Across outcomes, the covariates and predictors explained 10–15% of the 

individual-level variance in outcomes and 50–70% of the program-level variance. 

Table 35 also reports variance standard errors and significance tests that variance is 

greater than zero.  Of note is the fact that the program-level variance in Model 1b was not 

significantly different from zero (p = .124).  This finding suggests that the covariates in Model 

1b accounted for the variance in pedagogical content knowledge at the program level, and that 

very little variance remained at the program level to be accounted for by the substantive 

predictors in Model 1c.  This means that the program-level differences in prospective Grades K–

6 teachers’ PCK cannot be explained with student teaching variables. By contrast, content 

knowledge variance at the program level remained significantly different from zero even under 

the full model.  This result calls into question the utility of Model 1c in explaining prospective 

Grades K–6 teachers’ PCK. 
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Table 35 

Partitioned Level 1 (Individual) and Level 2 (Program) Variance in Teacher Outcomes 

 Level 1 Level 2  

Model Variance (SE) 
Variance 
explained Variance (SE) 

Variance 
explained ICC 

1: Pedagogical content 
knowledge 

     

a: Null model 4074.0 *** (251.5) - 330.8 * (142.5) - .067 
b: With covariates 3699.2 *** (222.4) .092 114.8 (74.7) .653 .032 
c: With all predictors 3670.9 *** (217.8) .099 89.2 (63.9) .730 .036 

2: Content knowledge       
a: Null model 3915.5 *** (241.3) - 880.0 ** (254.3)  .189 
b: With covariates 3481.5 *** (220.4) .111 436.7 ** (133.5) .504 .141 
c: With all predictors 3379.1 *** (211.2) .137 341.1 ** (116.3) .612 .143 

3: Beliefs – math as inquiry       
a: Null model 2.267 *** (0.113) - 0.173 ** (0.059) - .059 
b: With covariates 1.992 *** (0.098) .121 0.103 * (0.043) .405 .051 
c: With all predictors 1.908 *** (0.094) .158 0.077 (0.039) .555 .050 

4: Beliefs – active learning      
a: Null model 1.555 *** (0.101) - 0.144 *** (0.041) - .109 
b: With covariates 1.428 *** (0.087) .082 0.070 * (0.028) .514 .094 
c: With all predictors 1.392 *** (0.083) .105 0.049 * (0.024) .660 .088 

* p < .05; ** p < .01; *** p < .001. 
 

The model-fit results suggest five models for final analysis.  For the pedagogical content 

knowledge outcome, conflicting fit results and disturbing information about the variance 

explained warranted a close comparison of Model 1b and Model 1c.  For the other three 

outcomes, the most detailed models (Models 2c, 3c, & 4c) had the best fit and also exhibited 

appropriate variance characteristics.  Moreover, the results clearly indicated that the substantive 

predictors that were the focus of this study—student teaching timing, length, and quality—

contributed significantly to an explanation of these teacher outcomes.  The five models are 

discussed in detail in the next section. 
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Final Model Parameters for Knowledge Outcomes 

I begin with a comparison of the two models for pedagogical content knowledge and the 

final model of content knowledge.  Both of these outcomes were on a similar scale, which 

facilitated comparison of the unstandardized regression coefficients. First, I evaluated the 

covariates to check for significance and usual signs.  Because the critical role of these variables 

was to mitigate selection bias (a predictive rather than explanatory role), the statistical 

significance of individual covariates was not an appropriate criterion for exclusion; even 

nonsignificant covariates reduce bias.  Inappropriate signs, however, especially for statistically 

significant coefficients, could indicate that the covariates were not functioning as intended. 

Table 36 shows that average student achievement was the only statistically significant 

program-level covariate for Models 1b, 1c, and 2c; it had a positive sign, as expected.  On the 

individual level covariates, secondary school achievement and a self-report measure of 

preparation program coherence were significant covariates and positive across all three models.  

Although not significant, variables measuring SES and circumstances hindering students’ 

participation in the teacher education program had the expected signs.  Student teaching 

supervisor covariates were nonsignificant except for the coefficient of supervisor feedback on 

pedagogical content knowledge.  Rather than an implausible causal effect (feedback that helps 

one learn reduces one’s knowledge), this result could be a signal that supervisors were 

systematically spending more time working with those prospective teachers with relatively low 

knowledge.  Because the data set did not include preprogram knowledge measures, these 

students could have shown lower final outcomes even if they had made significant gains in 

knowledge during their student teaching. 
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Table 36 

Predictors of Teachers’ Pedagogical Content Knowledge and Content Knowledge 

Predictor 
Model 1b: 
covariates 

B (SE) 

Model 1c: all 
predictors 

B (SE) 

Model 2c: all 
predictors 

B (SE) 
Intercept 551.8 *** (6.35) 551.4 *** (7.18) 530.6 *** (7.54) 
Z – Program level covariates      

Length of program (years) 3.63  (4.35) 2.14  (3.84) 0.42  (5.51) 
Number of math & math pedagogy 

classes 
-1.04  (1.49) -0.76  (1.41) 0.78  (2.11) 

Avg. student achievement 6.83 * (3.44) 6.80 * (3.39) 12.13 ** (4.31) 
Importance of standardized tests for 

selection 
0.70  (2.27) 1.33  (2.17) 3.18  (2.78) 

X – Individual level covariates          
Student teaching supervisor 

reinforced university goals 
-0.45  (1.65) 0.16  (1.66) -1.85  (1.62) 

Student teaching supervisor 
feedback helped improve teaching 

-2.80 * (1.34) -2.50  (1.35) -0.68  (1.41) 

Secondary school achievement 11.53 *** (2.53) 11.52 *** (2.47) 14.45 *** (2.09) 
Age (years) -0.70 * (0.35) -0.77 * (0.35) -0.32  (0.40) 
Gender (male) 5.88  (7.97) 5.93  (7.95) 22.68 ** (8.10) 
SES (e.g., mothers’ education) 2.24 * (1.10) 2.07  (1.10) 1.83  (0.97) 
Hindering circumstances (e.g., need 

to work) 
-2.70  (3.12) -2.99  (3.09) -1.16  (2.68) 

Coherence of preparation program 3.74 *** (1.09) 4.27 *** (1.15) 3.95 ** (1.20) 
Tertiary math topics studied          

Continuity & functions  6.21 ** (2.06) 6.16 ** (2.04) 7.77 *** (2.11) 
Discrete structures & logic -4.63 ** (1.59) -4.42 ** (1.57) 0.20  (1.63) 
Geometry -3.42  (1.83) -3.38  (1.81) -7.35 *** (1.90) 

Student teaching variables    
T – Early timing (0 or 1)    8.76  (7.19) 15.37  (10.55) 
L – Length (40-hr weeks)     0.99  (0.95) 2.52 ** (0.96) 
T × L – Timing & length 

interaction 
   -0.86  (1.20) -3.92 * (1.58) 

Q – Freq. of opportunities to 
connect teaching and learning 

   -3.14  (1.76) -7.23 *** (1.45) 

*  p < .05; **  p < .01; ***  p < .001. 
 

 
There were several differences between the models for pedagogical content knowledge 

and content knowledge.  Age was a significant (and negative) predictor for pedagogical content 

knowledge but not a significant predictor for content knowledge.  Gender was positive for both 
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outcomes, but significant only for common content knowledge—indicating a significant gender 

gap in the content knowledge of prospective Grades K–6 teachers in this sample.  There were 

111 men (about 10%) in the sample. 

The tertiary mathematics topics covariates also require some discussion.  Continuity 

topics (e.g., those encountered in a class on series or calculus) were significantly and positively 

related to both knowledge outcomes, whereas discrete structures (e.g., linear algebra and number 

theory) and geometry (e.g., Euclidean, analytic, or differential geometry) were significantly and 

negatively related to knowledge outcomes.  Regression coefficients are generally interpreted by 

holding all other variables fixed—which in this case would lead to the somewhat implausible 

interpretation that studying geometry leads to less content knowledge.  

In fact, the number of tertiary mathematics courses taken by prospective elementary 

teachers is likely restricted.  Increasing the number of continuity topics studied would almost 

certainly decrease the number of geometry (or discrete structure) topics studied.  Seen this way, 

the coefficients together represent a trade-off in teacher knowledge: One might expect the 

prospective teachers who studied more continuity topics (and thus fewer geometry or discrete 

structure topics) to have had a relative advantage of about 10 to 14 points on the knowledge 

outcomes compared with those prospective teachers who studied more geometry or discrete 

structure topics. 

It is also entirely possible that these results do not indicate a causal mechanism: Those 

prospective elementary school teachers who took calculus might have done better on the 

knowledge measures than those who did not take calculus because of a common cause—their 

experiences studying mathematics in secondary school, for example.  In addition, these results 

might simply reflect the content focus of the teacher knowledge measures: If the instruments had 
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more items that involved continuity topics than geometric topics, then one would expect those 

participants with more tertiary exposure to those ideas to do better on the instrument than those 

with less experience. I examined the framework for the content knowledge instrument (Tatto et 

al., 2012, pp. 129–132) and the TEDS-M User Guide (Brese & Tatto, 2012) but was not able to 

determine the relative weight placed on each subdomain (i.e., number and operations, geometry 

and measurement, algebra and functions, data and chance) in terms of the fraction of items on the 

instrument.  Overall, the covariates predicting knowledge outcomes appeared to have functioned 

as expected to mitigate selection bias.  I next discuss the substantive predictors—the timing, 

length, and quality of student teaching. 

None of the substantive predictors in Model 1c of pedagogical content knowledge were 

significant predictors, although the signs for all four (student teaching timing, length, timing-

length interaction, and quality) were the same as in the model of teacher content knowledge.  

Individually, the coefficients for those predictors were not significantly different from 0, 

although the set provides significantly more information for predicting the teachers’ pedagogical 

content knowledge than a model without these predictors.  One mathematical reason for this 

finding was that little of the variance of pedagogical content knowledge was at the program 

level, which means that (after controlling for covariates) the programs achieved similar outcomes 

with respect to pedagogical content knowledge, regardless of the features of student teaching.  

This result is surprising because of the theoretical reasons that the pedagogical content 

knowledge—even more than the content knowledge—might have been learned in the context of 

teaching practice.  A possible explanation is that the preparation programs did little to influence 

the prospective teachers’ pedagogical content knowledge because the classes and student 

teaching experience had not been designed for that outcome.  Given the widely cited research 
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about the deficits in elementary teachers mathematical knowledge (e.g., Ma, 1999) and the large 

number of other content areas that generalists must study, mathematics teacher educators may 

feel they need to spend the available time on content knowledge rather than on pedagogical 

content knowledge.  

The results of Model 2c (content knowledge) pertaining to student teaching timing, 

length, timing-length interaction, and quality are more interesting.  Perhaps most surprising was 

the result that the student teaching quality coefficient was negatively related to the prospective 

teachers’ content knowledge and that this effect was statistically significant.  There are (at least) 

two possible explanations for this result but neither is entirely satisfactory.  First, the result could 

represent the operation of a causal mechanism—opportunities to connect student learning and 

practice somehow disrupted what the prospective teachers knew about the content, which led to 

lower performance on the outcome measures.  I find this explanation rather implausible.  A 

second explanation is that the student teaching quality measure was indicative of support for 

those prospective teachers with weak content knowledge.  Under this hypothesis, the weak 

teachers (hence the negative sign) reported more frequent opportunities to connect their learning 

with their teaching, because the teacher educators and supervisors in their program had identified 

those prospective teachers as needing more support than the others.  This second explanation is 

more plausible, but to rule out either would require data that are not available in the TEDS-M 

data set.  

The second result is that the interaction of timing and length was significant.  This 

interaction can be interpreted to mean that the length of the student teaching moderated the effect 

of its early timing on the teachers’ content knowledge.  Using the simple slope method (e.g., 

Bauer & Curran, 2005; Preacher, Curran, & Bauer, 2006), I calculated the region of significance 
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(α = .05) for the interaction.  From 16.4 to 26.7 weeks, the effect of early timing for student 

teaching was not significantly different from zero, but when student teaching length was less 

than 16.4 weeks or more than 26.7 weeks, early timing had a positive effect on the content 

knowledge outcome that was statistically significant.  Very little data are in the upper region of 

significance, which includes teachers from only two programs, both of which had early timing.  

The important point to be learned from the upper region of significance is that those teachers in 

programs with early student teaching that were also very long nevertheless could have had 

relatively lower content knowledge outcomes after controlling for individual and program-level 

covariates.  This result may suggest a principle of diminishing returns and higher cost for 

extending student teaching: Programs with very long student teaching (more than 26 weeks) may 

not have enough university coursework. It is also possible that those programs differ from the 

other programs in the study in ways that were not accounted for by the covariates included in the 

estimation model; they may recruit a particular kind of prospective teacher such as military 

veterans, for example. The available data preclude further inquiry into the nature of these 

programs. 

The lower region of significance is more illuminating because that region included 65% 

of the sample and (after adjusting for sampling probability) represented more than 50% of the 

population of publically prepared prospective Grades K–6 elementary school teachers in the 

United States.  The effect of timing was statistically significant below 16.4 weeks, and the effect 

ranged between 30.2 points at 5 weeks (2 SD below the median) and 15.3 points at 16 weeks (the 

median).  Thus timing had an average effect size of approximately .20 in the lower region of 

significance.  Moreover, for student teaching scheduled in just the last year of the program, the 

effect of each week of student teaching on content knowledge was significant (p < .01).  Under 
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Model 2c, a 5.23-week (1 SD) increase in student teaching length would have had an estimated 

effect of 13.18 points on the content knowledge outcome, an effect size of approximately .13 

(see Figure 8). 

 
Figure 8.  The effect of early timing student teaching on content knowledge with 95% 
confidence bands as compared to predicted knowledge after 16 weeks of normal timing student 
teaching (marked ×); early timing had a statistically significant effect when student teaching was 
less than 16.4 weeks or more than 26.7 weeks. 

Final Model Parameters for Belief Outcomes 

The results for the belief measures were similar in many respects to the results for the 

content knowledge outcomes.  As with the discussion of the knowledge outcome results, I begin 

with a summary of the covariates and conclude by reporting results pertaining to the predictors 

of substantive interest.  Because the belief scores ranged from -1.81 to 5.48 with a standard 

deviation of 1.6, the unstandardized coefficients of predictors in these models were much smaller 

than those for the same variables in the models of teacher knowledge. 
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Table 37 shows that of the program-level predictors, only one—the importance of test 

scores as a selection criterion—was significant in predicting beliefs about mathematics as 

inquiry.  Similarly, only one program level predictor—the length of program—was a significant 

predictor of active learning beliefs (p < .05).  It is interesting that the coefficient for this predictor 

had a negative sign; the sign for coefficients of the same variable in the knowledge models was 

positive.  This negative sign may indicate that the longer programs were less successful than the 

shorter programs at fostering active learning beliefs. 

Many of the individual level predictors were statistically significant for both Models 3c 

and 4c.  The signs of their coefficients were all in the expected direction with the exception of 

the student teaching supervisor variable on reinforcing university goals.  I had expected this 

predictor to have a positive sign because I assumed that many universities were promoting 

inquiry-based instruction in pedagogy classes and that a greater reinforcement of university goals 

would lead to more opportunities for inquiry-based teaching during student teaching.  Instead, 

the coefficient for this variable was negative.  This result might have occurred because those 

schools that lacked inquiry learning goals might also have been the schools that employed 

supervisors who were supportive of the university’s (noninquiry focused) goals and standards.  

Unfortunately, the data to evaluate this hypothesis do not exist in the US-TEDS-M data set.  As 

with the knowledge models, the coherence of the preparation program had a significant (p < 

.001) positive relationship with the belief outcomes. 

Also interesting is the result that the tertiary mathematics topics were not a significant 

predictor of the beliefs outcomes concerning the teaching and learning mathematics.  This result 

could mean that studying tertiary mathematics did not contribute to the formation of the teachers’ 

beliefs, but it could also simply indicate that the content areas did not contribute more than other 
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content areas to the teachers’ beliefs.  I next discuss the predictors of substantive interest: the 

timing, length, and quality of student teaching. 

Table 37 

Predictors of Teachers’ Beliefs 
 
 Model 3c: math as 

inquiry  
B (SE) 

Model 4c: active 
learning  
B (SE) 

Intercept 1.789 *** (0.164) 1.725 *** (0.141) 
Z – Program level covariates     

Length of program (years) -0.088 (0.083) -0.170 * (0.072) 
Number of math & math pedagogy classes 0.030 (0.035) 0.041 (0.032) 
Avg. student achievement 0.104 (0.058) 0.092 (0.054) 
Importance of standardized tests for 

selection 
0.095 * (0.048) 0.070 (0.052) 

X – Individual level covariates     
Student teaching supervisor reinforced 

university goals 
-0.078 * (0.035) -0.010 (0.033) 

Student teaching supervisor feedback helped 
improve teaching 

0.044 (0.027) -0.009 (0.021) 

Secondary school achievement 0.104 * (0.047) 0.135 ** (0.045) 
Age (years) 0.035 *** (0.010) 0.004 (0.007) 
Gender (male) 0.531 ** (0.196) 0.345 (0.190) 
SES (e.g., mothers’ education) 0.032 (0.026) 0.056 * (0.022) 
Hindering circumstances (e.g., need to 

work) 
-0.151 * (0.065) -0.195 *** (0.057) 

Coherence of preparation program 0.143 *** (0.028) 0.077 *** (0.022) 
Tertiary math topics studied     

Continuity & functions  0.008 (0.052) 0.055 (0.038) 
Discrete structures & logic -0.050 (0.035) -0.051 (0.035) 
Geometry 0.014 (0.040) -0.064 (0.036) 

Student teaching variables   
T – Early timing (0 or 1) 0.265 (0.138) 0.182 (0.111) 
L – Length (40-hr weeks)  0.028 (0.017) 0.034 (0.020) 
T × L – Timing & length interaction -0.061 * (0.025) -0.049 * (0.024) 
Q – Freq. of opportunities to connect 

teaching and learning 
0.210 *** (0.045) 0.139 *** (0.033) 

* p < .05; **  p < .01; ***  p < .001. 
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The first result of interest concerns the quality of student teaching.  This effect was highly 

significant for both models (p3c < .001; p4c < .001).  Moreover, the direction of the effect was 

positive (unlike the negative estimated effect of quality on content knowledge in Model 2c).  For 

a one standard deviation in frequency of opportunities to connect learning and teaching, the 

model for math-as-inquiry beliefs predicted an increase in 0.21 scale points with an effect size of 

approximately 0.13.  The model for active learning beliefs predicted an increase in 0.14 scale 

points with an effect size of approximately .09. These effect sizes are small, yet even so they 

provide evidence that student teaching can have a role in shifting (if not dramatically shaping) 

prospective teachers’ beliefs about teaching and learning mathematics. 

The second result is that the interaction of timing and length was significant for both 

beliefs outcomes.  This result can be interpreted to mean that the length of student teaching 

moderates the effect of early timing on teachers’ beliefs.  Using the simple slope method, I 

calculated the region of significance (α = .05) for each interaction.  For math-as-inquiry beliefs, 

the effect of early student teaching was statistically significant and positive when student 

teaching length was less than 15.8 weeks.  For active learning beliefs, the effect of early student 

teaching was also statistically significant and positive when student teaching length was less than 

14.6 weeks.  These regions include 42% and 38% of the sample, respectively, and represent 40% 

and 35% of the population, respectively, of prospective publically prepared Grades K–6 

elementary school teachers in the United States. 

The effects of an early student teaching on both belief outcomes were positive in the 

regions of significance, but the regression coefficient for practicum length was not significantly 

different from zero in either model (see Figures 9 and 10).  The statistically significant and 

positive effect of an early student teaching on math-as-inquiry beliefs ranged between 0.61 scale 
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points at 5 weeks (2 SD below the median) and 0.35 scale points at 13.5 weeks (1/2 SD below 

the median).  The standard deviation of the math-as-inquiry outcome was 1.56 scale points, and 

so early student teaching had an average effect on the math-as-inquiry beliefs of approximately 

0.30 SD in the region of significance.  Similarly, the effect of an early student teaching on the 

prospective teachers’ active learning beliefs ranged between 0.34 scale points at 5 weeks (2 SD 

below the median) and 0.22 scale points at 13.5 weeks (1/2 SD below the median). The standard 

deviation of the active learning beliefs outcome was 1.31 scale points, and so early student 

teaching had an average effect on active learning beliefs of approximately .20 SD in the region of 

significance.  In neither model was the coefficient for the length of student teaching statistically 

significant, suggesting that the length of a normally timed student teaching did not significantly 

affect prospective teachers’ beliefs about teaching and learning mathematics. 

 

 
Figure 9. The effect of early timing of student teaching on math-as-inquiry beliefs with 95% 
confidence bands as compared with predicted beliefs after 16 weeks of normally timed student 
teaching (marked ×); early timing had a statistically significant positive effect when student 
teaching was less than 15.8 weeks. 
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Figure 10. The effect of early timing of student teaching timing on active learning beliefs with 
95% confidence bands as compared with predicted beliefs after 16 weeks of normally timed 
student teaching (marked ×); early timing had a statistically significant positive effect when 
student teaching was less than 14.6 weeks. 
 

 In summary, I found that program coherence was a significant positive predictor across 

all outcomes and that student teaching supervisor quality covariates were generally negative and 

not significant.  The tertiary mathematics topics studied by the prospective teachers were 

statistically significant predictors in models of knowledge but not in models of beliefs.  Turning 

next to the predictors of primary interest in the study—the quality, timing, and length of student 

teaching—I found that those variables were not significant predictors of pedagogical content 

knowledge.  This result may have followed from the low program-level variance observed for 

that outcome, reflected by an ICC of .03 after including individual and program covariates.  By 

contrast, the quality, timing, and length of student teaching were significant predictors of content 

knowledge and beliefs.  For all three outcomes, student teaching length was found to moderate 
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the effect of timing, with early timing having significant positive effects only for prospective 

teachers in programs with shorter student teaching experiences.  The quality of student 

teaching—measured as the frequency of practicum opportunities for connecting teaching and 

learning—was negatively associated with the prospective teachers’ content knowledge and 

positively associated with both of their belief outcomes. 
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

In this chapter, I discuss findings from each study and from across the set of studies taken 

together.  The findings have implications for policy concerning certification routes, the 

professional development of beginning teachers, and student teaching, and I address each of 

these topics in turn. The findings also have theoretical implications about the nature of teachers’ 

knowledge and beliefs examined in these studies. In Chapter 1 and 2, I argued that those 

constructs (e.g., MKT, TSE) can be understood as components of mathematical proficiency for 

teaching, and so the results of the dissertation studies with respect to these constructs have 

implications for the nature of mathematical proficiency for teaching.  These implications have 

consequences for how these and other components of mathematical proficiency for teaching are 

defined and measured, and I discuss measurement and how measures might be designed to better 

enable research on change in teachers’ knowledge and beliefs.  Finally, I discuss the implications 

of the findings for future research and especially for the design of an intervention positioned 

within student teaching. 

Texas Study 

One important finding of the Texas study was the statistical significance and large effect 

size of the perceived academic preparation measure across outcomes.  This finding is somewhat 

surprising because it suggests that teachers’ self-reports about their content-specific preparation 

in teacher education programs may have predictive utility for mathematical proficiency for 

teaching.  For example, teacher education programs could use similar items at the end of the 



 

 156 

program for evaluation.  On the other hand, Hill (2010) argued that self-concept of mathematics 

(a similar self-report measure about mathematical ability) may not be useful as an outcome 

measure for professional development because it was only moderately correlated (r = .25) with 

mathematical knowledge for teaching (MKT).  In this study, I found that academic preparedness 

to teach multiplicative reasoning topics was similarly correlated with MKT (r = .27) and slightly 

more highly correlated with the factors of teaching self-efficacy (TSE) (rPE = .30, rKE = .47).  

These results imply that although self-reports of academic preparation are strongly predictive of 

the outcome measures, they would not be sufficient to evaluate whether a teacher education 

program was producing teachers with mathematical proficiency for teaching. Certainly the 

outcome measures are only some of the components of the broad set that makes up mathematical 

proficiency for teaching, and moreover, the observed correlations are too low for self-reports of 

academic preparation to be reliable as replacements for these outcome measures. 

Next I consider the results related to the student teaching variables.  The first finding was 

that there was no effect of student teaching length or quality on the outcomes.  Student teaching 

length ranged from 0 to 20 months, but that variation did not explain any of the variation in 

mathematical proficiency for teaching.  The student teaching quality measure was also not 

significantly related to the outcomes.  These findings are disturbing because student teaching is 

where teachers are supposed to integrate their study of theory and content with teaching practice.  

Ronfeldt and Reininger (2012) found that the quality (but not the length) of student teaching was 

positively related to teachers’ reported feelings of preparedness to teach, teaching self-efficacy, 

and plans for teaching.   

One limitation of the Texas study was the lack of adequate controls for selection bias.  

Limitations in the data set, including a small sample and potentially uncontrolled selection bias, 
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may be masking the true relationships. The finding that student teaching variables were 

nonsignificant predictors of mathematical proficiency for teaching demanded further exploration, 

particularly in a research design that would mitigate potential confounding variables.  The U.S. 

study  (Chapter 5) focused on student teaching and used a data set with numerous covariates 

including those similar to the set used by Ronfleldt and Reininger (2012). 

I turn next to the teaching experience variables.  I had hypothesized that the participants’ 

collaborative activity related to student responses and reasoning would be related to their 

mathematical proficiency for teaching. The relationship was plausible because of pilot work and 

other research showing how teachers engaged in collaborative work can improve. For example, 

Koehler (2010) found that a school-based intervention called Instructional Consultation Teams 

positively affected the teaching self-efficacy beliefs of teachers in the intervention schools as 

compared with teachers in nonintervention schools in the same district.  The intervention 

involved teachers working closely with other school personnel to solve an instructional problem 

with particular students.  The measure of collaborative activity used in the Texas study would 

have picked up on the kind of work the IC Teams intervention might engender in a school—

frequent collaboration with colleagues focused on student work and assessment data.  

The predictive relationship in the Texas study between the variable representing 

collaborative activity and MKT or TSE lacked statistical significance, a surprising finding.  The 

lack of significance may have been due to the nature of the measure used in the Texas study, 

which reflected the frequency of collaborative activities rather than their quality.  Changing 

teachers’ beliefs was an explicit goal of the IC Teams intervention (Koehler, 2010, p. 18), and 

teachers who work together habitually without external input on student assessment data, for 

example, may not have similar opportunities to experience change in their beliefs about their 
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own capabilities even though the activity might be similar in some respects to the activity 

entailed by the IC Teams intervention.  The finding in the Texas study that collaborative activity 

did not have a significantly significant positive relationship with MKT or TSE suggests that 

frequency of collaborative activity is not the whole story when it comes to the role of teachers’ 

collaboration in schools.  In addition, the collaborative activity measure was not domain-specific.  

The elementary teachers might have collaborated frequently but might rarely have discussed 

mathematics teaching. 

The length of teaching experience variable was significantly related to teachers’ efficacy 

beliefs but not significantly related to their knowledge.  This finding was surprising because Hill 

(2007, 2010) found that years of experience was a significant predictor of MKT.  One difference 

is that the data set in the present study was restricted to teachers with 5 or fewer years of 

experience teaching, whereas both samples in the Hill studies were national samples that 

included veteran teachers.  Perhaps the effect of experience is visible only over greater time 

spans.   

Hill (2007) suggested that cohort bias could also explain the relationship between 

experience and MKT.  Several decades ago, women had fewer professional opportunities, and 

more talented individuals might have become teachers in the past. As with Hill’s study, the 

Texas study was not longitudinal, and therefore the teaching experience conflates comparisons 

across time with comparisons between cohorts.  Participants in this study were hired between 

2006 and 2010, a period that overlapped with the Great Recession.  It is quite possible that 

teachers with different levels of experience (and thus hired in different years) were consequently 

dissimilar.  The experience variable used in the Texas study accounts for the time people took 

the survey to mitigate that effect, but cohort bias could still drive the nonsignificance of results.  
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For example, even if the cohort hired in 2007 increased in mathematical proficiency for teaching 

over their first 2 years of experience, the mean outcomes for 2007 hires might be lower than the 

mean outcomes of those hired in 2009 if the weaker job market during the recession attracted 

more skilled applicants for the available teaching jobs.  

Future research is needed to explore whether MKT changes over time and to confirm that 

domain-specific teaching self-efficacy develops with experience.  In addition, to accurately 

investigate the relationship between experience and mathematical proficiency for teaching and to 

overcome the potential cohort bias in the present study, a longitudinal design is needed that 

would follow the same individuals as they gain experience. The development of mathematical 

proficiency for teaching over time was the central phenomenon addressed in the longitudinal 

Georgia study (Chapter 4). 

Georgia Study  

The main finding from the Georgia study was that mathematical proficiency for teaching 

did change over the semester of the study; on average, the teachers’ MKT increased, and their 

personal teaching efficacy (PE) and knowledge efficacy (KE) decreased. The key challenge in 

interpreting the results of this study was to understand why PE and KE might have decreased 

over the semester even as MKT improved.  One possibility is that the end-of-year exam 

functioned as a mastery experience, an opportunity for teachers to reevaluate their estimation of 

their own knowledge and ability to teach. Given some participants’ comments about their 

experiences with the end-of-year exam in the previous year, and the apparent influence that exam 

had had on their self-efficacy beliefs, it is plausible that preparing for the test at the end of the 

semester depressed the self-efficacy scores in the last survey wave (early May). 
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Two other main groups of findings warrant discussion: the significant predictors of initial 

mathematical proficiency for teaching and the significant predictors of change. In contrast to the 

findings about MKT in the Texas study, teaching experience was statistically significantly and 

positively related to the teachers’ initial status on all three outcomes including MKT.  Having a 

secondary (Grades 6–12) teaching certificate was positively associated with the Georgia 

teachers’ MKT and KE, but was statistically significant only in the model of MKT.  This 

difference (and the finding of no relationship with PE) suggests that different factors of 

mathematical proficiency for teaching may stem from different kinds of preparation experiences. 

A secondary teaching certificate implies more mathematical training than an elementary 

certificate does, and it makes sense that teachers with that training might have higher MKT and 

KE scores.  Their confidence in knowing how to teach multiplicative reasoning topics (PE) 

might not have been affected by their collegiate mathematical training. 

Collaboration and experience teaching multiplicative reasoning topics were related to 

initial values in the Georgia teachers’ MKT and PE, with interaction terms reaching (for PE) and 

nearly reaching (for MKT) statistical significance at the .05 level. The teachers with more 

frequent collaborative activity had a higher PE score for ratio and proportion topics than those 

who collaborated less frequently, but only if they were also teaching multiplicative reasoning 

topics.  In contrast, the teachers involved in frequent collaborative activity had lower initial MKT 

scores than those who were not, unless they were also teaching ratio and proportion topics. This 

result might reflect school interventions in poorly performing schools (i.e., schools with less 

knowledgeable teachers might be more likely to have collegial activity focused on student 

thinking). Unfortunately, the estimated effect of school policies implementing this kind of 

intervention in these data (i.e., the estimate of collaboration on growth rate) was not significantly 
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different from zero. These findings suggest that collaborative activity has implications for 

mathematical proficiency for teaching, but that the relationships are complex. More research 

designed to untangle these relationships is needed before one can fully understand the nature of 

the relationship between collaborative activity and mathematical proficiency for teaching. 

I next discuss the significant predictors of change in the outcome measures. The third 

model of MKT showed that early entry and mathematics professional development explained 

half of the observed variance in an individual’s rate of change in MKT. The MKT growth over 

one semester teaching middle grades mathematics was significantly greater for early entry 

teachers, suggesting that MKT can be learned on the job by alternative route teachers. Somewhat 

surprisingly, more PD was negatively associated with the rate of change in MKT. I did not ask 

about the content of the PD, so these teachers may have been focused on learning in a different 

domain of mathematics that did not affect their MKT related to multiplicative reasoning topics. 

Predictors in the third model of the PE outcome explained about one-fifth of the variation 

in PE rate of change observed across teachers in the Georgia study. As with the initial status for 

MKT and PE, collaboration activity interacted with the grade level at which the participants were 

teaching.  The teachers who collaborated more frequently with others had a slower decrease in 

PE than those who collaborated less frequently, unless they taught in Grades 6 or 7.  For Grades 

6 and 7 teachers, more frequent collaboration was associated with a faster decrease in PE.  

Returning to the overall point about end-of-year test preparation as a mastery experience, I 

conjecture that collaborative activity among Grade 6 and 7 teachers during this same time 

functioned as social persuasion and a vicarious experience source of teaching self-efficacy.  

Discouraged teachers in these collaboration teams might have decreased the self-efficacy beliefs 

of other teachers. 
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The models of KE explored in the Georgia study did not explain the variation in the rate 

of change in KE over the semester.  The only predictor that approached statistical significance (p 

= .78) was mathematics professional development, which had an ameliorative effect on the 

overall negative rate of change in KE. This estimate was surprising given the finding that 

professional development had a negative effect on MKT. Once again, the bigger message from 

these data is that these different outcomes for mathematical proficiency for teaching behave in 

different ways.  Teacher education for prospective or practicing teachers may need to address 

each dimension of mathematical proficiency for teaching in different ways; there is little room 

left by these findings to hope for a panacea that would address all aspects of mathematical 

proficiency for teaching at once. 

 I turn now to the qualitative results of the Georgia study and the implications that arise 

when the results from the multilevel models of survey data and the qualitative interview data are 

integrated. Most obviously, the finding from the multilevel models that PE and KE decreased 

over the semester does not agree with the interviewed participants’ accounts of steadily 

increasing confidence in their own mathematical knowledge of the curriculum and in their ability 

to teach effectively. One explanation for this discrepancy is that the end-of-year exam (and the 

teachers’ work leading up to the exam reviewing content with their students) had a large effect 

on the measured PE and KE of the participating teachers. I have already described possible 

mechanisms (i.e., mastery experience or vicarious experience and social persuasion stemming 

from collaborative activity) that would account for the decrease. The teachers surveyed may have 

reported a generally increasing trend because they were looking at change over several years and 

perhaps even in reference to their first year of teaching. 
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This possibility suggests that there may be a cyclic, nonlinear relationship between 

teaching self-efficacy and time.  For example, there might be an annual increase in teaching self-

efficacy until the end-of-year exam, followed by a dip in self-efficacy beliefs once teachers 

received their students’ scores.  In this conjectured model, each year of experience would see an 

overall rise in MKT, PE, and KE together with a decrease in PE and KE during the second 

semester. Such a cyclic relationship would be consistent with the results from the interviews that 

described overall gains and with the surveys that described declines in PE and KE.  One 

limitation of this longitudinal study is that it included only three points in time.  To evaluate the 

possibility of nonlinear change, more than three points would be required, and to evaluate the 

possibility of overall year-to-year increases, the span of the study would need to be increased 

from one semester to two or more years. 

United States Study  

In the U.S. study, I aimed to estimate the effects of student teaching on the mathematical 

proficiency of prospective K–6 mathematics teachers.  I hypothesized that high quality student 

teaching (i.e., providing opportunities to connect teaching with children’s mathematical learning) 

that was timed early in the preparation program and thus concurrent with or followed by some of 

the content and methods courses would enable otherwise comparable prospective teachers in 

otherwise comparable programs to develop greater knowledge and more productive beliefs about 

teaching mathematics.  The ability of the U.S. study to address this hypothesis was limited by the 

kind of measures of mathematical proficiency for teaching available in the TEDS-M data set 

(Tatto et al, 2012).  

Observational survey-based studies such as the U.S. study one have many limitations for 

studying the possible effects of teacher education programs.  The key limitation in this study was 
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an absence of what are frequently the best predictors of observed outcomes: pretreatment 

covariates for the outcome measures. Having such data and including them in the analysis would 

have increased the power of the study to detect significance in observed differences, and would 

have increased my confidence that selection bias had been adequately controlled.  In addition, 

several important covariates (e.g., the program coherence and student teaching supervisor scales) 

and one substantive predictor (the quality of student teaching scale) were based on self-report 

data rather than more reliable data that might have been obtained through direct observation.  

Finally, the large amount of missing data in this study is not unusual for survey studies but 

remains problematic for analysis.  I chose to impute missing data so that I could include almost 

all individuals in the sample. That choice reduced the ability of the analysis to detect significant 

results (i.e., standard errors in an analysis using listwise deletion would have been smaller), but 

that choice allowed more accuracy in the parameter estimates and produced results that could 

more validly be generalized to the population of Grades K–6 teachers being prepared in U.S. 

public institutions.  

Another limitation of the U.S. study was that the student teaching—defined as “extended 

teaching practice” on the TEDS-M survey—was not directly observed.  Direct discussion of 

children’s thinking was one of the variables that was manipulated experimentally in Philipp et 

al.’s (2007) study, and field experiences that focused on children’s mathematical thinking were 

more beneficial for teachers’ knowledge and beliefs outcomes than field experiences that did not.  

The inferences in the present study were based on the assumption that the student teachers who 

were responsible for instruction would have many opportunities to attend to children’s thinking.  

It is possible (even likely), however, that some student teachers responsible for instruction may 

not have noticed how their students were reasoning and responding during early student 
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teaching. The data set does not include data on what kinds of opportunities prospective teachers 

in early student teaching might have had to reflect on children’s thinking and learning.  

Despite these limitations, several well-warranted conclusions can be made from the 

findings of the U.S. study.  First, the early timing of student teaching has a significant and 

positive relationship to teacher content knowledge and beliefs in programs with short student 

teaching (less than approximately 600 contact hours).  These findings confirm (on a national 

scale) the results from Philipp et al.’s (2007) experiment in one teacher preparation program 

indicating that field experiences that are timed early can make a difference on teacher outcomes.  

Moreover, the results support the theoretical claim that experience of children’s thinking is 

critical for teachers’ learning.  

The effect of timing on the prospective teachers’ pedagogical content knowledge, 

however, was not significant, nor were the effects of student teaching length or quality.  In fact, 

the only significant predictors of pedagogical content knowledge were tertiary mathematics 

coursework and prior secondary school achievement at the individual and program level.  A 

related finding was that very little of the observed variability in pedagogical content knowledge 

could be attributed to differences in programs and none attributed to differences in student 

teaching.  That finding suggests that all of the programs had similar effects on the prospective 

teachers’ pedagogical content knowledge.  Two options are possible: The programs did have a 

positive effect that was the same across all programs, or none of the programs had much if any 

effect.  Because of the wide variety of programs in the study, I find it more plausible that the 

programs had little to no effect on the participants’ pedagogical content knowledge than that they 

all had very similar effects.  the available data, however, cannot support that claim.  Preprogram 

scores on the pedagogical content knowledge measure would be necessary.  Future research 
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should explore when and how pedagogical content knowledge develops in elementary teacher 

education programs. 

Philipp et al. (2007) argued that their study provided evidence that prospective teachers 

would benefit from Dewey’s laboratory approach in which teachers are guided in the careful 

exploration and study of children’s mathematical thinking.  These authors also recognized that 

establishing such an approach in teacher education programs might not be feasible because of the 

required cost and training for personnel.  The U.S. study reported here provides some promising 

avenues for overcoming that obstacle: Timing student teaching before the last year and making it 

concurrent with or prior to content and methods courses might bring some of the benefit of the 

laboratory approach to prospective teachers.  This timing would be particularly helpful if the 

early student teaching had an explicit focus on children’s thinking—something that participants 

in the U.S. study may not have had. With programs that have constraints on the length of student 

teaching, simply scheduling some of the student teaching experience before the last year might 

be far more feasible that an intensive early field experience because only a minimal increase in 

resources would be needed.  Future research—in particular randomized clinical trials—could be 

used to investigate the efficacy of such an intervention. 

Looking Across the Studies 

 In this section, I discuss some implications of the findings from all three studies for 

teacher education.  The relationship of early entry routes to certification and mathematical 

proficiency for teaching was explored in the Texas study and the Georgia study. I found no 

evidence in either study that early entry teachers have less MKT, PE, or KE than teachers who 

complete training before beginning to teach.  In the Texas study, I did not find any differences in 

the relationships between other aspects of teachers’ preparation (e.g., their perceived academic 
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preparation) and the outcome measures associated with early entry status.  The best fitting model 

of mathematical proficiency for teaching did not distinguish among those groups of teachers.  In 

the Georgia study, I found encouraging evidence that the MKT of early entry teachers changed 

more rapidly over the course of the semester than the MKT of other teachers—a finding 

suggesting that early entry status does not prevent and may even encourage learning on the job. 

The policy implications for the results from these two studies are clear: Early entry is a viable 

feature for teacher education programs, at least as far as the outcome measures used in these 

studies are concerned. 

 The results across the Texas and Georgia studies with respect to the professional 

development of beginning teachers are not as clear. I examined the possible effects of 

collaborative activity and professional development on mathematical proficiency for teaching. I 

found no evidence that collaboration makes a difference in the Texas study, and some evidence 

that collaboration has effects in the Georgia study. I also found mixed effects for mathematics 

professional development in the Georgia study: it decreased the rate of change in MKT and 

increased the rate of change in PE. The interview data from the Georgia study described a range 

of professional development experiences, but all experiences were short (just a day or two) and 

on the whole had limited perceived utility.  

In contrast to the lackluster findings concerning professional development, there was 

strong qualitative evidence from interviews with some participants in the Georgia study that 

collaborating with mentors and other teachers (especially teachers with the same grade-level 

assignment) was of significant help to new teachers. These data warrant the recommendation to 

districts that new and novice teachers should be paired with mentors who teach the same subject 

and that collaborative activity should be encouraged. Such a recommendation must include the 
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caveat that such collaboration is only likely to be effective if the focus is improved teaching 

practice and student learning rather than a mechanism to distribute the labor of planning lessons 

or preparing activities. 

 Next, I turn to the implications of the Texas and U.S. study for policy concerning student 

teaching. I have already described the warrants from the U.S. study for recommending that 

teacher education programs with shorter (less than sixteen, 40-contact-hour weeks) schedule at 

least some of their student teaching earlier in the program. Such a change may increase 

prospective teachers content knowledge and beliefs.  The lack of significant effects of student 

teaching on MKT or pedagogical content knowledge was disturbing. It certainly warrants further 

exploration, but also presents a challenge to teacher educators to find ways of designing student 

teaching to better support the transformative integration of content knowledge and pedagogical 

knowledge so that prospective teachers have better opportunities to learn content knowledge for 

teaching during their student teaching experience. 

The results from all three studies have theoretical implications about the nature of 

mathematical proficiency for teaching and how it is formed and changes.  All three studies have 

shown that the different factors of mathematical proficiency for teaching are not related to 

teachers’ background or characteristics in the same way (TX and GA Study), and are not related 

in the same way to teachers experience on the job or in student teaching (GA and U.S. studies). 

In addition, the findings from the Georgia study suggest that teachers’ domain-specific 

experiences (e.g., teaching ratio and proportion or teaching in Grades 6 or 7) can interact with 

their collaborative activity to affect initial status and rate of change with respect to domain-

specific measures of mathematical proficiency for teaching.  These findings mean that future 

work on mathematical proficiency for teaching should carefully specify how the constructs being 
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researched are defined and measured. Researchers should study teachers’ characteristics with 

respect to different constructs (even subtly different constructs such as PE and KE) and how 

those characteristics might change as a function of different background and experiences. 

Mathematical proficiency for teaching may develop independently in different content domains 

of mathematics, such as multiplicative reasoning and geometry. Future teacher education efforts 

that aim to develop teachers’ mathematical proficiency for teaching may require different 

experiences for the teachers for different outcomes. Different interventions and approaches 

tailored to each construct may be required. 

Future Research 

Each of the studies described in this dissertation invited several avenues for further 

research on mathematical proficiency for teaching.  The findings from the Texas study led to the 

longitudinal Georgia study and the U.S. study of student teaching. The data collected for the 

Georgia study present an opportunity for another kind of analysis that would help further the 

conceptualization of mathematical proficiency for teaching.  One important question is how the 

various components of mathematical proficiency might influence each other.  Does knowledge 

influence teachers’ knowledge efficacy, for example? Are there effects in the other direction? 

Cross-lagged structural equation models allow the investigation of these kinds of effects over 

time: Each outcome at time n +1 is modeled as a function of the other outcomes at time n. 

Differences in individuals can be controlled using covariates, and, for example, the effects of 

MKT on subsequent PE and KE could be estimated to provide evidence concerning the 

interdependence of knowledge and beliefs that make up mathematical proficiency for teaching. 

The data used for the U.S. study offers similar opportunities for future research. I used 

the data from one country (the United States), and the international TEDS-M data set includes 
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data from 17 countries.  A natural next step would be a comparative study of student teaching in 

other countries.  In particular, the Philippines and Japan have similar variability in the timing of 

student teaching and have national mean outcomes below and above the United States, 

respectively.  A comparative study of the three countries could ascertain the extent to which 

models that are viable in the U.S. sample would also describe the other two countries.  Such a 

study would help explore the generalizability of the findings from the U.S. study. 

A Word on Instruments 

 A major component of the Texas study was investigating the validity of domain-specific 

instruments of MKT, PE, and KE. The argument for the validity of these adapted instruments 

relied on the validity of the original instruments, which were designed for constructs that were 

broader or otherwise different. One limitation in the two studies that used these measures (Texas 

and Georgia) and of the U.S. study which used similar measures constructed using item response 

theory (IRT) comes from the assumptions imposed by the IRT model about how knowledge and 

beliefs might change.  

The explicit goal of IRT is to create measures that are analogous to measures of physical 

quantities—just as a ruler is a measure of length. The standard error of measurement with IRT 

instruments can be quite large relative to observed variation in the scale (e.g. 0.3 to 0.5 SD on a 

scale with a range of 6 SD), so one should adjust the metaphor and further specify that the ruler 

has smudged markings.  Or perhaps if the ruler is understood to be clearly marked, then one can 

only make measurements at dusk while looking through a dirty window pane.  

Educational researchers (and others) might like to interpret increases in knowledge scores 

as indicative of learning, but what does knowledge change look like under the ruler metaphor? 

Under the metaphor, knowledge continuously increases from A units to become B units long and 
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passes through all the possible knowledge-lengths in between.  It is not at all clear (indeed there 

is much evidence to the contrary) that conceptual change associated with learning happens in a 

way that is consistent with the ruler metaphor.  Conceptual change is understood in scheme 

theory through jumps as children develop qualitatively different ways and means of operating to 

solve different classes of problems (e.g., Steffe & Olive, 2010).  Conceptual change from a 

knowledge-in-pieces perspective involves the gradual refinement and increased coordination of a 

variety of knowledge resources that may all be “known” to the novice but in ways that are 

disconnected and inconsistent from the perspective of an expert (diSessa & Sherin, 1998; 

Wagner, 2006). Neither of these perspectives on conceptual change bears much resemblance to 

the naïve metaphor of accretion that IRT models foist upon those who use IRT instruments. 

Fortunately, other psychometric options have recently been developed that hold more 

promise.  One example is the diagnostic classification model (DCM), which reports the test-

takers’ “mastery” with respect to knowledge categories (e.g., Rupp, Templin, & Henson, 2010). 

The DTMR project used these models for the design of the DTMR instrument described in 

Chapter 2.  DCMs may be more useful than IRT for large-scale research on conceptual change 

because DCMs do not make assumptions that the knowledge categories are ordered. In addition, 

mastery of a category implies a discrete jump in knowledge and does not specify how change 

happened, unlike the problematic implication of continuous accretion with IRT models.  

I am concerned that studies that use IRT instruments to model change in knowledge may 

be making assumptions about the nature of conceptual change that are not warranted given 

current theory and research in mathematics education.  Other kinds of assumptions are at the 

heart of the measures of teaching self-efficacy beliefs, and I consider those assumptions next. 
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The measures of teaching self-efficacy beliefs assume that the referent on an instrument 

has a similar meaning across participants. Suppose Teacher A agrees with the statement “I 

believe I am a good teacher,” and Teacher B disagrees with the same statement.   If “good 

teacher” does not have the same meaning for both teachers, their apparent disagreement may be 

illusory. When teaching self-efficacy is assessed for broad domains, such as teaching science, the 

risk of different meanings is lower and this issue is perhaps less problematic. When measures 

aim to focus on specific domains such as multiplicative reasoning, however, the question of how 

the items are interpreted becomes more important. 

In the first two of the studies I reported, I was concerned with the domain of 

multiplicative reasoning.  My definition of the domain (see Chapter 2) draws on perspectives that 

most teachers would not have access to, and teachers’ conception of multiplicative reasoning 

may be quite different than my own.  To get around this problem in the teaching self-efficacy 

measures, I used topics that can entail multiplicative reasoning (fractions, ratios, and 

proportions) rather than using the phrase “multiplicative reasoning.” But this solution introduces 

a second problem. There are ways of conceiving of these topics that do not include reasoning of 

any kind; some teachers and some curricula used in the United States focus on procedures for 

solving problems but do not engage students in conceptual understanding of the problems or 

solutions.  

Returning to the example of measuring teaching self-efficacy, suppose Teacher A agrees 

she is a good teacher of ratio topics (understanding ratio as a measure) and Teacher B disagrees 

that she is a good teacher of ratio topics (understanding ratio as a part-part comparison). In a 

second scenario, suppose Teacher C agrees that she is a good teacher (defining good teaching as 

procedural) before taking an extensive professional development course that changes her 
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understanding of what good teaching means. After professional development Teacher C 

disagrees that she is a good teacher, because she now interprets the question to be about teaching 

for understanding. In either scenario, comparing the scores tells us little about what is really 

different between Teacher A’s and B’s beliefs or about how Teacher C’s beliefs about teaching 

changed.  

The examples just described are hypothetical and somewhat extreme.  The items I used in 

the Texas and Georgia studies included language that was less ambiguous about the tasks 

teaching involves; items asked about “answering student questions” and “monitoring student 

solutions.”  Yet even with more specific wording, interpretation of the language used in items on 

measures of beliefs may be problematic and warrants more careful investigation. To better study 

change in teachers’ knowledge, instruments are needed that are well aligned to the hypothesized 

processes of change.  Diagnostic classification models offer one promising solution because 

these models make fewer assumptions than IRT models about the nature of knowledge and how 

it changes. To better study teachers’ beliefs, teachers’ interpretation of items must be considered 

in validation work on new instruments and before the use of established measures, such as those 

used for measuring teaching self-efficacy beliefs in science or mathematics. 

Designing an Intervention 

 I conclude this dissertation by sketching out the design of an intervention study that is 

informed by the findings I have discussed. The goal of the intervention is to increase prospective 

elementary teachers mathematical knowledge for teaching. I am particularly interested in MKT 

that belongs to the second and third categories I described in Chapter 2: knowledge to understand 

or appraise students’ responses and reasoning and knowledge about the mathematical and 

instructional entailments of tasks and representations.  
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In the U.S. study I found that student teaching timed early in the program has positive 

effects on teachers’ knowledge and beliefs. This finding motivated me to design an early student 

teaching experience that would supplement rather than replace traditional student teaching. The 

disturbing finding of a small to nonexistent effect of student teaching on pedagogical content 

knowledge motivated the goal of increasing MKT. By early student teaching, I mean the 

intervention would occur prior to the last year of a teacher education program. Such an 

intervention is different than an initial field experience because prospective teachers would plan 

and manage daily instruction over a monthlong period. 

The intervention would take place in a semester-long content course on multiplicative 

reasoning. This course would draw on the tasks and sequencing used in current Number and 

Operation courses at the University of Georgia for middle and secondary teachers: an initial 

discussion of whole number multiplication and division, followed by fractions, and finishing 

with ratio and direct proportion. The first half of the course would be focused on that content.  

The second half of the course would focus on children’s mathematical thinking and 

would have two parts. The first part would be discussion of videos of children working on 

multiplicative reasoning tasks as in one of the laboratory approaches in Philipp et al.’s (2007) 

study of early field experiences. During this part each pair of prospective teachers would design 

5 days of instruction focused on a specific topic from the content course (such as partitive 

division). All instruction would make use of the double number line representation. In the second 

part (a month long), prospective teachers would teach (and then revise) their lesson 4 times to 4 

different groups of students. In light of the findings from the Georgia study concerning the value 

of collaboration, each pair of prospective teachers would meet daily and the class would meet 



 

 175 

weekly to report on their instruction and collaborate on revisions in light of observed student 

reasoning and responses.  

The monthlong student teaching portion of the course would provide a series of weeklong 

tutorial sessions for fourth- and fifth-grade children on a variety of multiplicative reasoning 

topics.  Children participating in the tutorial would work with a pair of prospective teachers for a 

week before rotating to work with another pair on another topic.  The instruction given by the 

prospective teachers would be constrained to have the same kinds of representations and 

language so that participating students would have a coherent experience. The tutorial could be 

scheduled during the school day or during an afterschool program, depending on the partner 

schools and other constraints.  The instructor of the course and cooperating teachers would 

provide feedback to prospective teachers over the monthlong series of tutorials. 

The intervention offers several opportunities for research. First, the intervention is 

promising as a means to increase prospective teachers’ MKT because of the focus on children’s 

thinking and because of the collaborative aspects; these hypotheses could be evaluated in a pilot 

study of the intervention.  Second, the intervention can provide a site for research on how 

teachers’ beliefs and knowledge change. Of particular interest is understanding the role of 

content, experience teaching, supervisor feedback, and collaboration in knowledge change. The 

monthlong tutorial section of the course may provide prospective teachers with mastery 

experiences that will help them develop positive beliefs about the content, their knowledge of the 

content, and their ability to teach the content. This hypothesis about how teachers’ self-efficacy 

beliefs change could be examined during the intervention. 

As I argued in the previous section, appropriate measures of teachers’ beliefs and 

knowledge that are well aligned with the relevant theoretical explanations of how knowledge and 
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beliefs change are critical for research on teachers’ knowledge and beliefs. Existing measures, 

including those developed and used in the three dissertation studies, leave many opportunities for 

improvement. Interviews conducted during the intervention would provide an opportunity to 

pilot items for use in large-scale measures. Should initial pilot work warrant scaling up the 

intervention beyond a single school of education, these measures would be needed for studies of 

effectiveness. Improved measures of teachers’ knowledge and beliefs would have a wide range 

of applications in research on mathematics teacher education. 
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APPENDIX A 

CONCEPTUAL ANALYSIS OF MULTIPLICATIVE REASONING 

In this section, I argue that a wide range of problems have the same mathematical and 

quantitative structure as whole number multiplication problems. I am not arguing that students or 

teachers do or should understand these problems in the way I will describe. I do believe, 

however, that this analysis shows the coherence of the domain of elementary multiplicative 

reasoning as defined in Chapter 2 and reveals promising opportunities for teaching and learning 

in this domain. Others have made similar arguments before (perhaps Vergaud, 1983 was first); 

my contribution here is to use Schwartz’s (1988) categories of intensive and extensive quantities 

to distinguish fractions as numbers and fractions as ratios or rates and to in turn distinguish the 

multiplicative and quantitative structure of direct and inverse proportion problems. The extent to 

which the connections highlighted by this analysis are beneficial for mathematics teacher 

education is an open question under investigation at the University of Georgia. 

The following analysis of multiplicative reasoning informs the instructional trajectory 

currently used in the Numbers and Operations content courses for middle grades and secondary 

teachers at the University of Georgia (Jacobson & Izsák, 2012a). In the analysis, I begin with 

whole number multiplication defined as grouping, then define fractions in terms of 

multiplication, use fractions and multiplication to describe two types of division, and finally 

demonstrate how proportions are a generalization of division. I also show how invariant product 

(inverse proportion) problems have mathematically and quantitatively distinct multiplicative 

structures. 
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The set of problem situations defining (elementary) multiplicative reasoning conform to 

what Schwartz (1988) called the (I E E') semantic triad. Schwartz distinguished between 

extensive quantities (denoted E and E'), which can be directly counted or measured, and 

intensive quantities (denoted I), which cannot be counted or measured directly but are composed 

from other quantities. He claimed that “intensive quantity is essential to understanding the vast 

majority of situations that call for the arithmetic acts of multiplication and division” (p. 46).   

The most common multiplicative structure is the (I E E') semantic triad, which relates 

two extensive quantities and the intensive quantity defined by their quotient.  For example, speed 

(I) is an intensive quantity defined as the quotient of time (E) and distance (E'); this definition is 

equivalent to the multiplication statement I × E = E' and gives rise to two division statements: I 

= E'/E and E = E'/I.  As I show below, these division statements are implicated in simple direct 

proportion problems. 

I begin the content analysis by relating whole number multiplication understood as 

grouping (a common presentation in the early grades) to the (I E E') semantic triad. Under this 

view of multiplication, the product (P) can be defined as the number of units in the collection of 

G groups such that there are K units in each group: K × G = P. Consider the following 

multiplication problem: Sam has 5 cans, and there are 3 tennis balls in each can. How many 

tennis balls does he have? There are three quantities in this problem: the number of balls which 

is the product (P); the number of cans which is the number of groups (G); and the number of 

balls-per-can (K). The first two quantities are extensive and can be counted directly.  The 

quantity of balls-per-can is intensive and is composed by taking the quotient of corresponding 

quantities of balls and cans, either from the given information (1 can contains 3 balls), from what 

Sam has in all (5 cans contain 15 balls), or from any hypothetical number of cans (including 
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partial cans) and balls (including partial balls). Therefore, K can be understood to represent an 

equivalence class [K], the rational numbers pK/p, where p is any whole number.  

 In Figure A1, I use a double number line to illustrate how whole number multiplication is 

an isomorphism of measures. The size of the product (denoted P) is measured in units, and the 

number of groups (G) that compose the product is measured in groups. These quantities can be 

understood as the two extensive quantities (denoted E' and E, respectively). The size of one 

group is given as K units, and the quantity K is measured in units. K is not the third (intensive) 

quantity in the semantic triad, but K can be used to construct the third quantity. The intensive 

quantity (denoted I) is represented with vertical dashed double-headed arrows. There is more 

than one such arrow because I is an equivalence class. In Thompson’s (1994) language, each 

arrow is a ratio between a specific quantity of units and the corresponding quantity of groups. 

The equivalence class is a rate, a “reflected abstraction of constant ratio” (p. 7). The symbol I 

signifies all possible ratios between these measures as a single abstraction and thus highlights the 

invariant multiplicative comparison between units and groups. This multiplicative relationship 

defines the isomorphism between measures. 

 

Figure A1. A double number line representation for the isomorphism of measures multiplicative 
structure.  
 

The definition of multiplication can be used to define fractions, A/B. To define fractions 

for any denominator B, we interpret the unit as the product B/B = 1/B × B, or B groups such that 

each group has the size of the unit fraction 1/B. It follows that any fraction A/B can be 
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understood as the product of A groups such that each group has size 1/B: A/B = 1/B × A. As 

before, there are three quantities but only two are extensive and can be measured directly. These 

quantities are (1) the product A/B which when measured is A/B times as long as 1 unit and (2) the 

number of unit fractions A, which is extensive because it can be counted.  

The key for completing the analysis of fractions is understanding the unit fraction 1/B as 

an intensive quantity. This understanding is difficult because the “units per group” status of this 

term in the product A/B = 1/B × A is easily confused with 1/B as a number of units.  We 

encountered the same difficulty in the multiplication example when interpreting K as the 

intensive quantity balls-per-can. The term 1/B defines the size of each unit fraction and, as such, 

is a quotient between any quantity of A/B units and the corresponding number of unit fractions, 

A. This could, for example, be the quotient between 1 unit and the count of B unit fractions, or it 

could be the quotient between 1/B units and the count of a single unit fraction. Therefore, [1/B] 

is an equivalence class, in the same way that [K] is an equivalence class (see Figure A2). 

 

Figure A2. The multiplicative structure that defines the fraction A/B as an extensive quantity. 
 

The definition of whole number multiplication by grouping can be extended to define 

fraction multiplication. To do that, we let K, G = M/N, and P = Q/R be fractions, and (as before) 

we define the product (P) as the number of units in G groups such that there are K units in each 

group: K × G = P. Note that the factors K and G have a different quantitative status; K is an 

intensive quantity (the equivalence class that defines an isomorphism between units and groups) 
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whereas G is an extensive quantity. Because K under whole number multiplication was already 

seen to be multiplicatively defined as an equivalence class, understanding K as a fraction in this 

more general definition of multiplication presents no difficulty.  This notion of fraction as an 

equivalence class is closely related to the quantitative meaning of fraction as a ratio or rate, the 

multiplicative comparison between two quantities.  

To make sense of the fractions G and P as extensive quantities, we use their respective 

denominators N and R to define two more isomorphisms of measures. The quantitative meaning 

for fraction as extensive quantities is closely related to the mathematical meaning of fractions as 

numbers—a single value defined in relation to 1. The first isomorphism relates the quantity of 

groups to the quantity of unit fractions of groups (size 1/N groups) and is defined by the 

equivalence [1/N], and the second isomorphism relates the quantity of units to the quantity of 

unit fractions of units (size 1/R units) and is defined by [1/R] (see Figure A3). Each of the 

fractions P and G entail a multiplicative comparison between its magnitude and the magnitude of 

the constituent unit fractions, 1/R or 1/N. 

The multiplication statement K × G = P yields two division statements that are distinct 

because of the role played by the intensive quantity K. The first type of division, P/G = K is 

often called sharing or partitive division; it answers the quantitative question, How many are in 

each (one) group? There are two ways to understand the quotient. A child sharing 12 marbles 

among 3 friends equally might answer this question, “4 marbles” (see X in Figure A4a). Instead, 

we take the view that the answer is “4 marbles per friend” to stress that this quotient is an 

intensive quantity formed by composing any number of marbles and the corresponding number 

of friends. Thus under this view, the answer to a sharing division question is always an 

equivalence class (see [X] in Figure A4a). 
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(a) 

 
 

(b) 

 
 

(c) 
 

Figure A3. Multiplicative structures for (a) the product P = Q/R of the fractions K and G = M/N, 
(b) the fraction P = Q/R, and (c) the fraction G = M/N. 

 

 

 

(a) 

 

(b) 

Figure A4. In (a) sharing division the quotient is an equivalence class [X]; in (b) measurement 
division the quotient is a quantity of groups Y. 
 

The second type of division, P/K = G, is often called measurement or quotitive division. 

This form of division answers the quantitative question, How many groups are there? A 

measurement division problem in the marble context would be as follows: Twelve marbles are 

shared equally and each friend gets 4; how many friends got marbles? This kind of division 
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returns some number of groups as the quotient, and, like the previous kind can be illustrated with 

a double number line representation (see Y in Figure A4b). 

Next I show how multiplicative comparisons can be used to relate simple proportions to 

the preceding discussion of division and multiplication. Let E and E' be two extensive quantities 

that covary proportionally, and let A and C be values of E that correspond to B and D, 

respectively, values of E'. We assume that three values are known and the fourth is unknown, 

and without loss of generality we can assume that either C or D is the so-called missing value. 

Partitive division yields K = A/B (see Figure A5), the intensive quantity I that is a constant 

quotient between corresponding values of E and E'. There are many routes to a solution. The 

quantity K defines the homogeneous linear functions f(E) = KE and f'(E') = E’/K between the 

two extensive quantities. It follows that A/B = C/D and that B/A = D/C. Moreover, several useful 

multiplicative comparisons (in this case, scale factors) can be made between values within each 

measure. For example, D is D/B times B and C is C/A times A. By the composition of 

multiplication, it follows that C/A = D/B. These relationships demonstrate that simple direct 

proportions share the same multiplicative structure as the arithmetic operations of multiplication 

and division and of fractions (and hence rational numbers).  

 

Figure A5. An elaborated illustration of the isomorphism of measures multiplicative structure for 
the simple proportion A/C = B/D showing the rate or constant quotient K, the equality of the 
scale factors C/A and D/B, and the associated homogenous linear functions f and its inverse f’. 
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By contrast, invariant product situations involve a different multiplicative structure that 

Vergnaud (1983) called the product of measures.  This structure “consists of the Cartesian 

composition of two measure-space … into a third” (p. 134).  Schwartz (1988) categorized these 

problems with the (E E' E'') semantic triad, which had the defining multiplication statement E × 

E' = E''.  Schwartz observed that the referent for E'' is “entirely new” and “it remains to be 

defined along with its measure” (p. 51).  There is some empirical evidence that this problem of 

quantification—defining the new extensive quantity and defining its measure as a Cartesian 

product—may be a significant challenge for preservice middle grades and preservice secondary 

teachers reasoning about these kinds of problems (Jacobson & Izsák, 2012b; Izsák & Jacobson, 

2013).  The multiplicative structure given by an isomorphism of measures or equivalently by the 

(I E E') semantic triad is not adequate for reasoning about problems that involve an invariant 

product. 

To make the point another way, consider the following example of an invariant product 

problem from Lamon (2007, p. 638): If 3 people can mow and trim a lawn in 2 hours, how long 

will it take 2 people to do the same work? The covarying quantities in this situation are all 

extensive: people, hours, and work, but for the sake of argument, I show how any corresponding 

pair of people and hours can be shoehorned into the multiplicative structure of the (I E E') 

semantic triad. This multiplicative structure, however, cannot support the coordination between 

pairs that is the required to solve the problem.  

Take the given pair of 3 people who finish the job in 2 hours. We begin by interpreting 

the number of people as an extensive quantity—after all, they can be counted.  People will play 

the role of “groups” in this analysis. It is then necessary (but not very natural) to interpret hours 

as person-hours per person, an intensive quantity. It follows that the work accomplished is the 
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product 2 × 3 = 6 and has the appropriate unit of person-hour. This situation is illustrated in 

Figure A6a. The isomorphism between the measures of people and of work in the given case of 3 

people and 2 hours is defined by the equivalence class [K = 2].  The same structure 

(isomorphism of measures) cannot accommodate the next pair of 2 people and 3 hours (the 

problem’s answer), because for this next pair the isomorphism between work and people is 

defined by [K = 3] (see Figure A6b). The appropriate multiplicative structure for coordinating 

these two pairs can be represented with a Cartesian plane, as in Figure A6c). The invariant 

product can be seen in the areas of the rectangles defined by the origin and each person-hour 

coordinate pair. The locus of solutions is the graph of the function f(people) = 6 / time, which is 

equivalent to the quantitative equation K × G = P. 

 

 
(a) 

 

 
(b) 

 
 

 
 

(c) 
 
Figure A6. A multiplicative structure for (a) the 3 people, 2 hours pair; (b) a multiplicative 
structure for the 2 people, 3 hour pair; and (c) a multiplicative structure for K × G = P when all 
three are extensive quantities. 
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APPENDIX B 

 MATHEMATICAL KNOWLEDGE FOR TEACHING AND TEACHING SELF-EFFICACY 

INSTRUMENT DEVELOPMENT 

 In this appendix, I describe the details of the instrument development and revision 

process for the measures of mathematical proficiency for teaching multiplicative reasoning 

topics.  First, I describe how I used item response theory (IRT) to develop and revise the MKT 

instrument and produce a short MKT instrument measuring the same construct.  Next I describe 

the how I used confirmatory factor analysis (CFA) techniques to develop and revise the teaching 

self-efficacy beliefs instrument. 

Mathematical Knowledge for Teaching Multiplicative Reasoning Topics 

 I used item response theory (IRT, e.g., Baker & Kim, 2004) to evaluate the strength of 

the MKT instrument and to obtain estimates of participants’ latent trait ability (θ).  Item response 

theory provides several advantages over classical test theory, including more robust methods for 

estimating θ in cases of missing data.  I used the statistical package ltm available in R for the 

estimation of the IRT models discussed below.  I also checked results by running equivalent 

models in MPLUS. 

Missing Data 

The response data used to calibrate the MKT instrument had a large amount of missing 

data owing to many not-reached items.  The frequency of omissions is shown in Table A1.  In 

summary, 83 individuals did not answer any of the MKT items, 58 individuals responded to only 

one item (25 missing values), and 238 individuals answered all of the MKT items.  Missing data 
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on individual items ranged from 1.2% (Item 1) to 35.5% (Item 23); 18 items had less than 29% 

missing data. Missing data on item pairs ranged from 17.1% (Items 3 and 4) to 36.9%  (Items 19 

and 23).  Missing data were handled in the analysis by using full information maximum 

likelihood (FIML) estimation, which is robust against bias and preferred over other missing data 

techniques (such as listwise deletion) because it uses all available data.  Both the ltm package in 

R and MPLUS use FIML estimation by default. 

Table B1 
 
Numbers of Respondents With Omissions in the MKT Instrument Response Data 
 

 Number of missing responses   
0 1 2 to 8 9 to 16 17 to 24 25 All 26 

238 22 15 27 49 58 83 

 

Instrument Evaluation and Revision  

First, I fit response data for 409 individuals on all 26 MKT items with a one-parameter 

logistic model (1PL) that estimates the difficulty (β) of each item but constrains all items to have 

the same discrimination parameter (α).  In IRT, item difficulty is measured on the θ scale and is 

the ability level at which respondents have a 50 likelihood of answering the item correctly.  The 

discrimination parameter quantifies how well an item distinguishes between high and low ability 

respondents.  The 1PL model showed several indicators of misfit, including a significant 

parametric Bootstrap goodness-of-fit statistic using Pearson’s χ2 statistic (p = .04) in favor of 

rejecting the 1PL model and two items with significant χ2 statistics (χ2 = 18.00, p = .035; χ2 = 

26.03, p = .002) indicating item misfit. 

Next, I fit response data on all 26 MKT items with a two-parameter logistic (2PL) model 

that estimated unique ability and discrimination parameters for each item.  The 2PL model was 
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better fitting than the 1PL model; only one item exhibited significant model misfit (χ2 = 20.54, p 

= .008).  The overall model goodness-of-fit test is not available for 2PL models in the ltm 

package.  Instead, I compared the fit of the 2PL model with that of the 1PL model to see how 

much fit improved with the estimation of discrimination parameters.  The information criterion 

indices (AIC and BIC) are based on the log-likelihood function and are used for model 

comparison.  Models with smaller values are preferred.  The BIC index penalizes the increase in 

parameters more severely than the AIC index; this difference was reflected in the contradictory 

indication provided by these indices about which model was better fitting (see Table A2).  I also 

used a log-likelihood ratio test to compare model fit between the 1PL and 2PL models for MKT.  

The significant p value of the test (p < .001) provides evidence that the MKT items did not all 

share the same discrimination parameter, and so the 2PL model was statistically preferred.  

Table B2 

The Log-Likelihood Ratio Test and Model Fit Indices Comparing the 1PL and 2PL Models for 

All 26 MKT Items 

Model AIC BIC Log-likelihood LRT df 
1PL  8113.81 8222.18 -4029.91   
2PL  8056.18 8264.89 -3976.09 107.63*** 25 
*** p < .001. 

 

I was not satisfied with the 26-item 2PL instrument, because one item exhibited misfit.  I 

examined the estimated parameters and found that Item 20 had an estimated difficulty of β20 = 

57.7 SD and discrimination of α20 = .030.  I ran the same 2PL model in MPLUS and obtained 

similar item parameters (β20 = 56.8, α20 = .018).  The low discrimination can be interpreted to 

mean that Item 20 had very little ability to separate high and low ability respondents.  The 

difficulty estimate suggests that it was extremely difficult.  After I examined the item (see Figure 
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B1), I could see that it had been designed to tap an important aspect of teaching multiplicative 

reasoning—distinguishing quantities that maintain a constant quotient (direct proportion) from 

quantities that do not.  It is plausible, however, that the content knowledge for teaching being 

tapped by Item 20 assessed a different dimension of MKT in the sense that responses on this 

item might vary independently of overall ability in the domain as measured by the other 25 MKT 

items.  Prior research on with a similar problem (e.g., Fisher, 1988) has suggested that this kind 

of task is difficult for experienced teachers who might otherwise have strong content knowledge 

for teaching multiplicative reasoning topics.  Answering this question correctly may require 

knowledge of a different multiplicative structure (the product of measures structure) than the one 

shared by all other items on the MKT instrument (isomorphism of measures, see Vergaud, 1983, 

1988 and Appendix A).  If that were true, then Item 20 would be unsuitable for a one-

dimensional scale that included the other items. 

Figure B1. Item 20 on the MKT instrument, which did not function well with the rest of the 
items. (Copyright Erik Jacobson, 2013). 
 

I revised the MKT instrument by removing Item 20 for two reasons.  First, the item 

parameter estimates provided clear empirical evidence that Item 20 would not add precision to 
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the estimates of respondents’ θ.  Secondly, the risk that estimates of theta would be biased by 

removing Item 20 was mitigated because the test included several other items that dealt with the 

issue of appropriate multiplicative reasoning without introducing a novel multiplicative structure.  

For example, Item 18 asked respondents to distinguish quantities that maintain a constant 

difference versus a constant quotient (direct proportionality), and Items 23 and 26 required 

respondents to distinguish (invalid) additive and (valid) multiplicative reasoning strategies 

involving ratios.  

Response data on the 25 MKT items remaining after removing Item 20 were fit to a 2PL 

model and evidenced no statistically significant item misfit at the .01 level.  After evaluating 

item fit, I then examined person fit.  The ltm package person-fit function computes the L0 

statistic of Levine and Rubin (1979) and the standardized analog Lz from Drasgow, Levine, and 

Williams (1985), including a p value for testing misfit.  Of 409 respondents, 2 exhibited misfit at 

the .01 level, and 9 exhibited misfit at the .05 level.  I removed those participants and re-

estimated the 2PL model.  The revised estimates of 398 respondents had only one person with 

misfit at the .05 level.  Table B3 shows that there was minimal difference between the item 

parameter estimates obtained under each model and little difference between ability estimates 

either among the 11 individuals that originally exhibited misfit or across all respondents. 

Final MKT Instrument.  

The revised instrument (calibrated without the 11 misfits) was used as the final MKT 

instrument in the Texas study because person misfit can bias estimates of latent trait ability.  The 

final instrument had high internal consistency (Cronbach’s α = .95).  The final item parameters 

of the retained items are shown in Table B4.  The item parameters were in an acceptable range 

(Baker, 2001).  All items except one had difficulty parameters between -2.8 and 2.5 (Item 13 was 
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very hard, β13 = 4.1).  Only one item had very low discrimination (α1 = .24), 5 items had low 

discrimination (α < .65; Items 13, 16, 17, 18, & 26), and the remaining 19 items had moderate to 

very high discrimination.  All items had point-biserial correlations greater than or equal to .2; 

with a sample size of approximately 400, these values are much higher than the recommended 

cutoff for inclusion of two standard deviations above 0 (Crocker & Algina, 2006).  

Table B3 

Increases in Item and Person Parameter Estimates From the Original to the Revised 25-Item 

2PL Model  

 Item parameter   Person ability (∆θ) 
 Discrimination 

(∆β) 
Difficulty  

(∆α)  Misfits  
(n = 11) 

All 
respondents  

(n = 409) 
Maximum   0.334  0.129   0.096  0.123 
3rd quartile   0.093 0.044   0.007  0.039 
Median  0.018  0.005  -0.011  0.016 
1st quartile -0.005 -0.096  -0.028 -0.002 
Minimum -0.093 -0.802  -0.078 -0.091 
 

Short MKT Instrument.  

 When I applied to do research in Georgia, some districts balked at the length of the 

surveys I proposed giving teachers.  Negotiations with one large district (that in the end 

contributed 20% of the final sample) led to an agreement that I would shorten the MKT 

instrument and remove a number of background surveys and questionnaires.  I analyzed the 25 

successful items and selected 17 to cover the domain.  Table B5 compares the content 

distribution of the MKT and short MKT instruments; the short MKT instrument retained a 

similar balance of content category and pedagogical tasks in the MKT instrument. 
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Table B4 

Item Parameters for the Final MKT Instrument 

Item 
 

Difficulty 
(β) 

Discrimination 
(α) 

Point biserial 
correlation 

1 2.457 0.24 .26 
2 -1.887 1.58 .37 
3 -2.646 0.68 .33 
4 -1.760 2.27 .38 
5 -1.294 1.01 .48 
6 -2.655 1.35 .21 
7 -0.188 0.68 .38 
8 -1.147 0.95 .41 
9 -0.518 1.99 .53 
10 0.057 1.81 .57 
11 0.145 0.77 .38 
12 -0.644 0.67 .37 
13 4.108 0.48 .26 
14 -1.506 0.89 .35 
15 -0.968 0.65 .36 
16 -1.881 0.49 .32 
17 1.322 0.62 .39 
18 0.132 0.42 .33 
19 -1.563 0.77 .36 
21 -1.511 1.09 .40 
22 -1.404 1.20 .44 
23 -2.292 0.70 .34 
24 -0.862 1.45 .44 
25 -1.992 1.90 .31 
26 -2.776 0.42 .30 

 

I then analyzed a 2PL IRT model of these 17 items and found that the model fit well. 

Response data on the 17 MKT items evidenced no statistically significant item misfit at the .01 

level.  After evaluating item fit, I then examined person fit.  I used the ltm package person-fit 

function to obtain p value for testing person misfit.  Of 350 respondents (excluding some items 

meant that more people were missing data on all the rest), 2 exhibited misfit at the .01 level, and 

9 exhibited misfit at the .05 level, a similar level of misfit as that calculated for the 25-item MKT 

model.   
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Table B5 

Distribution of MKT Items by Pedagogical Task, Content Topic, and Problem Type on the MKT 

and Short MKT Instruments 

 Pedagogical task  

Content topic 

Understanding and 
appraising students’ 
mathematical thinking 

Selecting and using tasks 
and representations for 
instruction Total 

Proportional reasoning MKT: 5 
Short: 4 

MKT: 2  
Short: 2 

MKT: 7  
Short: 6 

Fraction and ratio 
comparison 

MKT: 9 
Short: 5 

MKT: 1  
Short: 1 

MKT: 10  
Short: 6 

Fraction multiplication 
and division 

MKT: 4  
Short: 3 

MKT: 4  
Short: 2 

MKT: 8  
Short: 5 

Total MKT: 18  
Short: 12 

MKT: 7  
Short: 5 

MKT: 25  
Short: 17 

 

The short MKT instrument had high internal consistency (Cronbach’s α = .86).  The item 

parameters are displayed in Table B6.  The item parameters were in an acceptable range (Baker, 

2001).  All items except two had difficulty parameters between -3.1 and 3 (Item 13 was very 

hard, β13 = 4.8; Item 3 was very easy, β3 = -3.6).  No items had very low discrimination; 5 items 

had low discrimination (α < .65; Items 3, 13, 16, 17, 18), and the remaining 12 items had 

moderate to very high discrimination.  All items had point biserial correlations greater than or 

equal to .2; with a sample size of approximately 350, these values are much higher than the 

recommended cutoff for inclusion of two standard deviations above 0 (Crocker & Algina, 2006). 

As a final check of the agreement between the MKT instrument and the short MKT instrument, I 

calculated the correlation between participants’ MKT scores on these two instruments. It was 

extremely high, r = .96.  
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Table B6 

Item Parameters for the Short MKT Instrument 

Item 
 

Difficulty 
(β) 

Discrimination 
(α) 

Point biserial 
correlation 

3 -3.624 0.44 0.26 
4 -1.736 2.30 0.40 
5 -1.245 1.06 0.50 
6 -3.049 1.00 0.22 
7 -0.197 0.67 0.40 
9 -0.534 1.92 0.56 

10 0.043 1.68 0.59 
11 0.128 0.83 0.45 
13 4.781 0.39 0.27 
16 -1.903 0.50 0.38 
17 1.369 0.57 0.42 
18 0.061 0.44 0.35 
19 -1.537 0.76 0.39 
21 -1.567 1.03 0.41 
22 -1.412 1.13 0.45 
24 -0.948 1.31 0.45 
25 -2.229 1.36 0.30 

 

Self-Efficacy for Teaching Multiplicative Reasoning Topics and Its Sources 

 As noted in Chapter 3, the Teaching Self-Efficacy Beliefs (TSE Beliefs) instrument was 

adapted from existing instruments to focus on practicing teachers (existing instruments focused 

on prospective teachers) and on teaching the content domain of multiplicative reasoning (existing 

instruments focused on teaching science).  The general validity argument for the new instrument 

was based on the established validity and reliability of existing instruments (e.g., Hoy & 

Woolfolk, 1993).  Researchers have been successful in modifying these items to focus on 

different school subjects (e.g., the Mathematics Teaching Efficacy Beliefs Instrument [MTEBI], 

Enochs, Smith, & Huinker, 2000, focused on mathematics rather than science) and on focused 

content (e.g., Newton, 2009, modified self-concept measures for mathematics to focus on 

fractions).  Rather than using exploratory factor analysis to find a plausible factor structure of the 
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measures, I used MPLUS to estimate confirmatory factor analysis (CFA) models to determine 

whether the factor structure of the new instruments matched that of previous instruments.  I also 

used CFA to determine whether the new instruments for the sources of teaching self-efficacy 

(which were adapted from existing instruments in the same manner) matched the four-factor 

structure predicted by theory and substantiated empirically with previously developed 

instruments. 

The first important question was whether the TSE Beliefs instrument had a single-factor 

model (teaching self-efficacy for multiplicative reasoning) or a two-factor model (personal 

teaching efficacy and knowledge efficacy) in line with existing instruments (e.g., Roberts & 

Henson, 2000).  The second question was whether the TSE Sources instrument evidenced a 

single-factor structure or the four-factor structure predicted by theory.  Because these models are 

nested, I used a chi-square difference test to evaluate which model better fit the data and used 

overall indices of fit to evaluate whether the better model had adequate fit.  

Missing Data  

The response data for the TSE Beliefs instruments and the TSE Sources instruments 

included some missing data.  As with the MKT instrument response data, the primary cause of 

missing data was not-reached items (i.e., participants stopped taking the survey before 

responding to all of the survey items).  The pattern of missing data for the two instruments is 

presented in Table B7.  For the TSE instruments, item omissions ranged from 0.2% (Item 3) to 

1.1% (Item 15). On item pairs, omissions ranged from 0.4% (Items 3 & 7) to 1.8% (Items 8 & 

12). For the Sources of TSE instruments, missing data on individual items ranged from .2%  

(Item A1) to 7.6% (Item S4). Missing data on item pairs ranged from .2% (Item A3 and Item A4) 

to 9%  (Item S6 and M6). Because there were a relatively small number of missing values and 



 

 212 

because the MLMV estimation method in MPLUS which corrects for nonnormal data required 

complete data (see below), I used listwise deletion to handle missing data when evaluating the 

TSE and TSE sources instruments. 

Table B7 

Number of Respondents With Omissions in Response Data for the TSE (Both TTMR Surveys, 

N=492) and TSE Sources Instruments (Second TTMR Survey, N=386) 

 Number of missing responses 
Instrument 0 1 <50 <90 All 

TSE Beliefs  426 15 2 2 47 

TSE Sources  320 12 30 1 23 

 

Assumptions  

Most CFA estimation methods, including maximum likelihood estimation, assume that 

the data are multivariate normal.  To assess that assumption, I computed the Shapiro-Wilk test 

for each TSE Beliefs and TSE Sources item; in all cases, the statistic was significant (p < .001) 

and led to rejecting the null hypothesis of univariate normality.  This test is known to be 

extremely sensitive to small deviations from the normal distribution, so I next examined the 

skewness and kurtosis of each item.  Kline (2005) suggested that absolute skewness should be 

less than 3.0 and absolute kurtosis less than 8.0 in structural equation models; these cutoff values 

were satisfied (see Tables A8 and A9).  Next I examined Mardia’s multivariate kurtosis 

coefficient using the mardia function from the R package psych.  The multivariate kurtosis 

coefficient was 57.68 for the TSE Beliefs items and 50.17 for the TSE Sources items indicating 

multivariate non-normality.  
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Next, I examined at the Mahalanobis distance of individuals from the centroid.  The 

square of the Mahalanobis distance is distributed as χ2 with k degrees of freedom, where k is the 

number of variables.  For both the TSE Beliefs data and the TSE Sources data, about 40 

individuals had Mahalanobis distances beyond the χ2 critical value at the .01 level of Type 1 

error, suggesting that these individuals were multivariate outliers.  Taken together, this 

information led me to conclude that that the TSE Beliefs and TSE Sources data were not 

multivariate normal.  Instead of using the default MPLUS estimation method of maximum 

likelihood, I used the mean- and variance-corrected maximum-likelihood estimation (MLMV), 

which is designed to provide valid estimates when normality assumptions do not hold.  

Unfortunately, this method requires complete data, and therefore the subsequent analyses 

included only those individuals who answered all items (NTSE Beliefs = 426 and NTSE Sources = 320, 

NBoth = 312).  

Instrument Evaluation and Revision  

In a preliminary analysis involving the first 266 TTMR survey participants, I identified a 

subset of items for each source that (a) had high (> .5) standardized factor loadings, (b) had 

moderate to high (> .3) r2 values indicating the variance in each item explained by the latent trait, 

and (c) maintained the highest possible Cochran’s alpha coefficient of reliability (Jacobson, 

2012).  Removing items that did not fit these criteria led to more parsimonious models for each 

factor of the TSE Sources instrument without sacrificing the overall psychometric quality.  

Descriptive statistics for these sets of items are presented in Tables B8 and B9. 

One factor of TSE Sources—vicarious experience—had an unacceptable alpha 

coefficient of .58 in the preliminary study.  Researchers have had difficulty constructing 

internally consistent instruments for measuring vicarious experience as a source of other self-
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efficacy constructs and have noted that vicarious experiences from peers and those from self may 

function as separate subfactors (Usher & Pajares, 2009).  After I examined a preliminary model, 

I saw that Items v3 and v4 were the cause of the model misfit, and an analysis of the wording of 

the items suggested that Items v3 and v4 were about vicarious experience from peers (e.g., Item 

v4: “By watching excellent teachers around me, I often learn better ways to approach my own 

teaching of topics involving fractions, ratios, and proportions.”), whereas Items v5 and v6 had to 

do with vicarious experiences from self (e.g., Item v5: “When I am preparing to teach topics 

involving fractions, ratios, and proportions, I often try to visualize myself working through the 

most difficult teaching situations.”).  Moreover, Items v3 and v4 did not correlate strongly with 

each other (r = .44) or with the other two items (r < .24), but Items v5 and v6 had a significant 

correlation at r = .648.  The Spearman-Brown reliability is more appropriate than Cronbach’s 

alpha for two-item scales (Eisinga, Grotenhuis, & Pelzer, 2012), and Items v5 and v6 alone had a 

Spearman-Brown reliability coefficient of .79.  To minimize measurement error and to meet 

minimum reliability criteria for a measurement factors, I used a simplified instrument for the 

sources of vicarious experience that included only Items v5 and v6. 

Using additional response data from the full analytic sample, I was able to confirm the 

expected factor structure for the TSE Beliefs instrument and for the TSE Sources instrument.  In 

addition, I was able to identify two misfitting items in the vicarious experience factor and find a 

substantive explanation for the misfit.  Removing these items increased the coefficient alpha for 

the vicarious experience factor to .78.  The final CFA models show that both the TSE Beliefs and 

the TSE Sources instruments are well behaved psychometrically. 
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Table B8 

Univariate Statistics for Item Data From the TSE Beliefs Instrument 

TSE Beliefs 
item M SD Skewness Kurtosis 

Personal 
efficacy 

  
  

2 3.84 0.97 -0.68 0.12 
5 4.05 0.80 -1.10 1.24 
7 3.85 0.82 -0.82 0.10 
8 4.00 0.95 -0.92 -0.14 
11 4.28 0.84 -1.23 1.59 

Knowledge 
efficacy     

3 3.79 1.08 -0.94 1.61 
4 3.92 1.18 -0.52 0.26 
6 4.01 1.00 -1.20 1.46 
9 4.25 0.77 -1.11 0.91 
10 4.05 0.92 -1.07 1.86 
12 4.38 0.76 -1.26 1.83 
15 4.23 0.79 -0.90 1.00 

 

 To evaluate the TSE Beliefs instrument, I fit a single factor CFA model and compared it 

with the theoretically predicted two-factor CFA fit using the same data.  Because these models 

were nested, I used a log-likelihood ratio test (χ2 = 144.08, df = 1, p = .000) and concluded that I 

could reject the null hypothesis of no increase in model fit due to the extra factor.  To evaluate 

the TSE Sources instrument, I fit a single factor CFA model and compared it with the 

theoretically predicted four-factor CFA fit using the same data.  Again, I used a log-likelihood 

ratio test (χ2 = 651.33, df = 6, p = .000) and concluded that I could reject the null hypothesis of 

no increase in model fit due to the extra factors.  These results provide a strong confirmation that 

these measures have a factor structure analogous to that of the measures from which they were 

adapted and therefore are well aligned with Bandura’s (1997) social cognitive theory. 
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Table B9 

Univariate Statistics for Item Data from the TSE Sources Instrument 

TSE Sources item M SD Skewness Kurtosis 
Mastery experience (ME)     

m2 4.22 0.76 -1.09 1.83 
m3 3.86 0.99 -0.80 -0.02 
m4 3.83 0.94 -0.75 0.27 
m5 4.19 0.81 -1.23 2.22 

Social persuasion (SP)     
s2 4.19 0.65 -0.48 1.19 
s3 2.95 1.02 0.20 -0.15 
s4 3.81 0.75 0.00 -0.36 
s5 3.76 0.87 -0.65 0.84 
s6 3.65 0.82 -0.23 0.09 

Vicarious experience (VE)     
v3a 4.09 0.84 -0.85 0.87 
v4a 3.45 0.95 -0.76 0.38 
v5 3.52 1.01 -0.49 -0.41 
v6 3.74 0.88 -0.63 0.3 

Emotional & physiological states (EP)     
e3 3.83 1.12 -0.79 -0.27 
e4 4.07 0.92 -1.09 0.97 
e5 4.04 1.02 -1.08 0.51 
e7 4.04 1.06 -1.19 0.84 

a These items were removed from the final scale because of item misfit. 
 

Finally, to further evaluate the validity of the instruments, I fit a structural equation 

model in which both factors of TSE were regressed on the four sources of TSE.  To check the fit 

of the models, I used the Satorra–Bentler (SB) χ2 test statistic, which is appropriate when data 

are nonnormally distributed (Kline, 2005).  The two-factor TSE models, the four-factor TSE 

sources model, and the structural equation model of sources predicting TSE all exhibited 

significant χ2, which led to rejection of the null hypothesis that the model fits the data (Table 

B10).  Scholars widely agree (e.g., Kline, 2005; Bandalos & Finney, 2010), that the χ2 is overly 

sensitive and in practice rely on fit indices instead.  I used three other indices to determine the fit 

of each CFA and structural equation model: the comparative fit index (CFI); the root mean 
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square error of approximation (RMSEA); and the standardized root mean square residual 

(SRMR).  Kline (2005) stated that CFI less than .95, RMSEA greater than .05 with 95 

confidence interval exceeding the interval of 0 to .10, and SRMR greater than .08 can all indicate 

model misfit.  Table B10 lists the fit indices for each model.  All fit indices for each of the 

preferred models were within the acceptable range, except the CFI index for the model of 

sources predicting TSE, which at .94 was very close to the accepted cutoff.  AIC and BIC are 

relative fit criteria (described previously), and smaller values indicated that the 2-factor and 4-

factor models were preferred over their 1-factor counterparts. 

Table B10 

Model Fit Indices for the CFA Models of the Teaching Self-Efficacy (TSE) and TSE Sources 

Instruments and for the SEM Regressing TSE on Its Sources 

Model χ2
SB df CFI RMSEA a SRMR AIC               BIC 

TSE Beliefs        

(1 factor) 
190.5 

p = .000 
54 .91 

.077  
(.06, .09) 

.054 10863 11009 

(2 factors) 
116.4 

p = .000 
53 .96 

.053  
(.04, .07) 

.037 10720 10871 

TSE Sources        

(1 factor) 
409.1 

p = .000 
90 .70 

.105  
(.09, .12) 

.113 11012 11182 

(4 factors) 
110.1 

p = .030 
84 .98 

.031  
(.01, .05) 

.047 10373 10565 

TSE Sources and 
TSE Beliefs 

409.7 
p = .000 

309 .94 
.032  

(.02, .04) 
.050 17192 17551 

a The 90% confidence interval for the RMSEA fit index is indicated within parentheses. 
 

The final measurement models for the TSE Beliefs instrument and for the TSE Sources 

instrument are presented in Figures B2 and B3. Each factor of TSE Beliefs and TSE Sources was 
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modeled as a latent (unobserved) variable. Recall from Chapter 3 that latent variables are 

represented in SEM diagrams with an oval. Each item was modeled as a manifest (observed) 

indicator and is represented by a square.  The CFA measurement framework postulates a unique 

latent error term for each item. For example, e2 in Figure B2 is the latent error term for the PE 

item t2. The path coefficients from these latent error terms to the items can be interpreted as 

estimates of measurement error, the proportions of variance in the observed item scores that is 

not explained by the latent factor the item loads onto. Arrows indicate the predictive paths 

between latent and manifest variables. Path coefficients can be read as regression coefficients; 

for every unit increase in the variable at the tail of a path, we can expect an increase in the 

variable at the head of the path of magnitude equal to the number of units represented by the path 

coefficient. Standard errors are given in parentheses in the diagram in Figures B2 and B3, and p 

values can be calculated for each coefficient by dividing the coefficient by the standard error to 

obtain the appropriate z-score 

All standardized loadings for both models were significant at the p = .01 level and ranged 

in magnitude from .65 to .85 on the TSE Beliefs instrument and from .62 to .89 on the TSE 

Sources instrument.  In the TSE Beliefs measurement model, personal efficacy and knowledge 

efficacy were significantly correlated at r = .80.  The four factors of the TSE Sources instrument 

were allowed to correlate, and all correlation estimates were significant and ranged from r = .15 

between vicarious experience and emotional and physiological states to r = .75 between mastery 

experiences and emotional and physiological states.  In the TSE Beliefs measurement model, the 

minimum r2 was .33, and the r2 for half of the items (6 items) was greater than .56.  In the TSE 

Sources measurement model, the minimum r2 was .38, and the r2 for half of the items (8 items) 
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was greater than .56. These results confirm that both the TSE Beliefs and the TSE Sources 

instruments were functioning as expected under social cognitive theory. 

 

 
 
Figure B2. Measurement model for the 12-item Teaching Self-Efficacy instrument.  All path 
coefficients were statistically significant at p < .01.  
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Figure B3. Measurement model for the 15-item Sources of Teaching Self-Efficacy instrument.  
All path coefficients were statistically significant at p < .01.   
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APPENDIX C 

INTERVIEW PROTOCOL FOR THE GEORGIA STUDY 

1. Tell me about how you came to be a mathematics teacher: Why teaching? Why math? 

2. I’m interested to learn more about how you teach. 

a. What are your mathematical goals for students? Have these changed since you started 

teaching? How? 

b. What do you do to support the students that are doing well?  What about the students who 

are not doing well?  Have these strategies changed since you started teaching?  How? 

c. Do you use manipulatives?  Do you use partial credit? How and when? Has your use 

changed since you started teaching? How? 

3. Can you think of a time that a student’s mathematical work surprised you?  Why was it 

surprising?  How did you handle the situation?  If you encountered the situation again, would 

you do the same thing?  Would you have done the same when you were a beginning teacher? 

a. Can you think of a time when you knew a student had a misconception.  How did you 

know?  What did you do in response?  If you encountered the situation again, would you 

do the same thing?  Would you have done the same when you were a beginning teacher? 

4. How confident are you that you know the mathematics well enough to teach it? How 

confident are you that you know how to teach math well?  Has your confidence changed 

since you started teaching? Why? 

5. Do you remember any activities with other teachers that helped you learn how to interpret 

student responses?  What were they and how did they help?  
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a. Do you remember any activities with other teachers that helped you improve as a 

teacher?  What were they and how did they help?  

b. Did you ever work with a mentor teacher or coach?  In a grade level planning team or 

subject-area department? 

6. Can you remember any formal learning experiences—such as college classes or professional 

development workshops—that helped you learn how to interpret student responses?  Do you 

remember any that helped you improve as a teacher?  What were they and how did they 

help? 

7. Last question: Of all the things we’ve talked about—and anything you might have 

remembered but that we didn’t get a chance to talk about— what past experiences have made 

the biggest difference in becoming a better teacher?  

 


