GUS SB - A SCHEMA BROWSER FOR THE GENOMICS UNIFIED SCHEMA (GUS)
by
CONRAD V. IBANEZ
(Under the Direction of Eileen T. Kraemer)
ABSTRACT

The Genomics Unified Schema (GUS) is a relational database schema that supports a
wide range of data types including genomics, gene expression, transcript assemblies, proteomics,
and many others. Together with the GUS Application Framework and the GUS Web
Development Kit (WDK), GUS is used by many genomics projects and groups to store diverse
data and provide query-based websites for the scientific community. As the number of
bioinformatics projects and groups using GUS as their schema of choice for storing information
in their respective fields of study continues to grow, there is a need for an application allowing
users to effectively browse information about GUS tables, especially relationships among them.
Not only will such an application help current users understand the schema, but it will facilitate
the popularity and use of GUS overall in genomics research. Thus, we introduce GUS SB, a

schema browser and relationship viewer for GUS.

INDEX WORDS: Genomics Unified Schema, GUS, Schema Browser, Database
Visualization, Information Visualization

GUS SB - A SCHEMA BROWSER FOR THE GENOMICS UNIFIED SCHEMA (GUS)

by

CONRAD V. IBANEZ

BBA, Georgia College & State University, 2003

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2009

© 2009
Conrad V. Ibafiez

All Rights Reserved

GUS SB - A SCHEMA BROWSER FOR THE GENOMICS UNIFIED SCHEMA (GUS)

by

CONRAD V. IBANEZ

Major Professor: Eileen T. Kraemer
Committee: John A. Miller
Maria Hybinette

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School
The University of Georgia
August 2009

DEDICATION

To my Lord and Savior, Jesus Christ.

v

ACKNOWLEDGEMENTS

First, I would like to thank God for all His blessings. I would like to thank my parents,
sisters, and relatives both here in the U.S. and abroad who have given me support and prayers
over the years. I would like to thank Dr. Kraemer for her tremendous patience, support, and
guidance in this endeavor. 1 would like to thank the other professors on my committee, Dr.
Miller and Dr. Hybinette, as well as other professors at the University of Georgia for helping me
advance in this field of study and developing me into the person I am today.

I would like to thank all those who have helped me with this project. I would like to
thank members of the Kissinger Lab at UGA, Dr. Kissinger, and especially Mark Heiges and
Cristina Aurrecoechea. 1 would like to thank current and past members at the Computational
Biology and Informatics Laboratory (CBIL), University of Pennsylvania Center for
Bioinformatics, especially Steve Fischer for his input and Michael Saffitz who laid the technical
foundation for this project. I would like to thank Joseph Hohenstern for providing the graphical
images for GUS SB and for his presence along this journey. I want to thank the creators of open
source software that have been utilized in GUS SB, especially the JUNG graph framework.

I would like to thank the Filipino-American Student Association at UGA and the Filipino
community for making my years in Athens memorable. I would like to thank the graduate
students who I met and have inspired me to complete my own work, especially Maria Mosqueda
for believing in me. Finally, I would like to thank all the friends, especially from UGA, who

have made an impression in my life.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ..ottt ettt ettt sttt st et sbe et saee i ens v

LIST OF FIGURESooiiiiiiiiteei ettt sttt ettt ettt et s nbe e viil
CHAPTER

I INTRODUCTION ..ottt ettt ettt sttt sttt s nae e saees 1

2 BACKGROUND AND RELATED WORKccccooitiriiiiniinieieeieneeeseeeee e 6

2.1 Data Modeling TOOIS.......ccoiiiiiiiiiiiiieeiieeciteeete ettt 6

2.2 Database Development TOOIS.......cccueiiiiiiriiiiniieeiieeiee e 8

2.3 Ontology Development TOOISc..eoriiiiriiiiiniiiiiniieeiee e 12

2.4 Information Visualization and Information Interfaces..........c..ccccoeveeriieennncen. 13

2.5 Schemaballccc.ooiiiiiiiiee e 15

3 GUS SB - SCHEMA BROWSERcooiiiiiiiiiiiiiiesteeeeetee ettt 16

3.1 GUS Schema Browser Basic Layout and Controls............cccecueeeviieinieennieenns 16

3.2 GUS Schema Browser — Table BrowSingc.cccceviieniieiniiieiniieeieenieene 17

3.3 GUS Schema Browser — Find Keyword Feature...........cccccoeviiiiiiiiniiiennieenns 19

3.4 Online GUS Schema Browser Enhancements...........ccccceevvevniiniieinienicnneennnen. 20

4 GUS SB - RELATIONSHIP VIEWERcccccciiiiiiiiiiiinieteienteneeeeseeeeee e 24

4.1 Relationship Viewer Basic Layout..........ccooceeiiiiiniiiiniiiiniceiieeieeceeeeeeen 24

4.2 VIEW CONLIOIS...c.uiiiiiiiiiiiiiiiteeeetee st 25

vi

4.3 Semantic Z0OM FEAtUTIE.........ccouvmmuiiieiiieeiiiieeeee ettt e e e e evaaaaes 27

4.4 Single Table View and Relationship Explorationccccccoevviiriiiiinieennneen. 28

4.5 Graph LayOutscoooiiiiiiiiiiiieeiieete ettt e 29

5 IMPLEMENTATION DETAILSoooiiiiiiiiitteteeeeseee ettt 32

5.1 Online Schema Browser Enhancements...........cccccoceeviiniiinienieenicniceneenee. 32

5.2 GUS SB — Schema BrOWSETccceeviiriiiriiiiiieeeeieeeceeeeeeee e 32

5.3 GUS SB — Relationship VIEWETcoviiiiiiiiiiiiiiiieeieeceeeeee e 33

6 CASE STUDIES AND EVALUATIONcocciiiiiiiiieienieeeceeneeeetese et 35

6.1 Case Study 1 — Basic Relationship Exploration.............ccoeceeeviiiniieinnieennneen. 35

6.2 Case Study 2 — Advanced Relationship Exploration............cccccccevvveennieennneen. 37

6.3 User EValuationcoceeiiiiiiinieiiecieceiecee ettt 40

7 CONCLUSION AND FUTURE WORKcccoooiiiiiiiniinieieiienteeeeese e 41

7.1 CONCIUSION......eiiiiiiiieiiieie ettt ettt sttt re e 41

7.2 FUture WOTKooviiiiiiiiiiieeec e 41
REFERENCES ...ttt ettt ettt st b e et sat bt et sbeenbe et e saeas 43
APPENDICES ...ttt ettt st ettt st a e et b e b et sbe e b et e naeen 46
A SNIPPET OF XML FILE CONTAINING GUS SCHEMA INFORMATION 46

B XML FILE CONTAINING GUS SCHEMA CATEGORY INFORMATION........... 48

vii

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 4.1:

Figure 4.2:

LIST OF FIGURES

Page
Online GUS Schema Browser — Table-Centric VIEWc..ccocceeviiriiinieniicineeniceieene 3
Online GUS Schema Browser — Category-Centric VIEWccccovvueeivieennieennieenineen. 3
Online GUS Schema Browser Displaying the PROT::Feature Table............c.c..cc........ 4
AN ERD DIQ@IAIM ettt ettt ettt ettt et e e 8
SQuirrel SQL Client — Schema Browsing..........coocuieriiiiiniiiiiniieeniieeieeeiee e 9
SQuirrel SQL — SQL EXECULIONccoiiiiiiiiiieiee ettt eeeevrere e e e 10
OWLViz EXtension t0 Proté@e...........couuiiiiiiiiiiiiiiiiieieeeieceiee e 13
Schemaball Image for Anopheles gambiae Genome Database.............cccccveeevveennnenn. 15
GUS Schema Browser Basic Layout.........cocueoiiiiiiiiiiniiiiiiecieeceeeeeeeeee e 17
GUS Schema Browser Displaying Single Table.........cccccoviiiiiiiiiiiiiniiieiieeeieeee, 18
Children Tab Displaying Children Tables in @ Treecoceevieeiiiniciiiiniccienieee 18
GUS Schema Browser Find Functionalitycocceeoviiiiniiiiniieiniieeieecieeeeeeeee 20
Layout Changes to Online GUS Schema Browser...........cccceeeviieiniiennieennieenieeeee, 21
Drop-down Menu VIEWScoouiiiiiiiiiiieiite ettt e e e 22
Drop-down Menu NavIZate........c.ceovuiiiriiiiiiieiiee ettt ettt 22
Online GUS Schema Browser Smart Searchccccooveriiiniiiiiniiicceceee 22
Predictive Text Search FUnctionalityccooveeiiiiiiiiiiniiienicceee e 23
The Relationship Viewer Showing All Tables in GUS..........c.ccooviiiiiiiiniiiiiiee 25
The Relationship Viewer Showing All Tables in DOTS ..o 26

viii

Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 5.1:
Figure 6.1:
Figure 6.2:
Figure 6.3:

Figure 6.4:

[lustration of the Data Displayed Depending on the Semantic Zoom Level 27
Expanding Table Relationships by One Level.........cccccooviiiiiniiiiiiniiiiiececeee 28
Resulting Graph After Expanding Relationships by One Levelccooceevieennee. 29
All GUS Tables Using Kamada-Kawai Layoutc.ccceeeviieniiiiniiiiniieiieeceeeeee, 31
All GUS Tables Using Circle Layout..........cc.ceoruieiiiiiinieeniieeniieeieeeiee e 31
GUS SB AICHITECTULEeeueeeiieeiieeeeete ettt ettt s 33
Possible Results of Browsing Relationships in Online GUS Schema Browser-.......... 36
Results of Browsing Relationships With GUS Schema Browserccoccceeeeeeennee. 37

SQL Developer Diagram Showing DoTS::AAFeature Among All GUS Tables....... 38

Relationship Viewer Showing DoTS::AAFeature Expanded Two Levels 39

X

CHAPTER 1

INTRODUCTION

The Genomics Unified Schema (GUS) is a relational database schema that supports a
wide range of data types that include genomics, gene expression, transcript assemblies,
proteomics and many others [1]. Together with the GUS Application Framework and the GUS
Web Development Kit (WDK), GUS forms an extensible system for storing, integrating, and
analyzing functional genomic data, which is the analysis of gene, RNA, and protein information
and its biological function. GUS consists of seven schemas. Among them are DoTS (Database
of Transcribed Sequences), RAD (RNA Abundance Database), TESS (Transcription Element
Search System), SRes (Shared Resources), and Core, used for non-biological tracking and
overhead. It has over four hundred tables. As the number of bioinformatics projects and groups
that use GUS as the schema of choice for storing information in their respective fields of study
continues to grow, there is a stronger need for an application that allows users to effectively
browse tables in GUS, including all of their attributes and relationships. Thus, we introduce
GUS SB, a schema browser and relationship viewer for the Genomics Unified Schema.

GUS is open source and is used in a number of projects, including GeneDB, TcruziDB,
CryptoDB, ApiDB, PlasmoDB, BiowebDB, and many others listed at the GUS website [1].
Numerous genomics databases exist today such as Ensemble [2] and GMOD, the Generic Model
Organism Database project [3]. To allow users to explore the use of GUS over other comparable
genomics database schemas, users must be able to evaluate the schemas and determine which, if

any, is suitable and is the best option to use for their research area. However, navigating and

comprehending large database schemas have proven to be difficult. Fortunately, certain tools
exist or can be developed to help users browse large database schemas.

A well-designed schema browser for GUS will make it easier for users to explore and
become familiar with the schema. An effective schema browser will help application
programmers, especially those who lack background in biology and genomics, learn the GUS
schema. It will show them table information from which they can determine where certain data
should be stored. This will make development of applications built on the GUS framework
become easier and faster.

Some projects may customize GUS to include new tables for storing data unique to their
projects. Being that the GUS community is active, the GUS schema can evolve to include new
tables per community needs and requests. The GUS Schema Browser can facilitate the evolution
of the GUS schema through its use of visualization techniques to display relationships among
tables. GUS SB will help contributors determine whether changes, both additions and
modifications to the schema, are necessary.

GUS already has an online version of a schema browser that is available at its host site,
which we will refer to as the Online GUS Schema Browser. The Online GUS Schema Browser
was created by a team at the Computational Biology and Informatics Laboratory (CBIL) at the
University of Pennsylvania. It uses Spring [4] and Hibernate [5] technologies and is powered by
a database on the back end to store account-protected table and column documentation. The
current web-based version of the GUS Schema Browser offers two basic views: a table-centric
view and a category-centric view. The table-centric view displays the GUS tables grouped by
their schemas as shown in Figure 1.1. The category-centric view groups the GUS tables by their

super category and category as shown in Figure 1.2.

sdb.org | Schema Browser - Mozilla Firefox

Elle Edit “iew History Bookmarks Tools Help

@ - ar | [| hitkpsjwn gusdh.orgfSchemarowser tableist, htm -

ENn _;'" 18] Mast Visited ﬂ VYahooMall @ JungZ @ JUNG FAQ |_1'] Hotmail |_1'] Gmail ﬂ Chase m Citicard 2>

GUS Schema Browser z
Table-Centric Wiew | Category-Centric View
Schema::Table Superclass Cateqory
Study:: Study Experimental Design View Documentation | E_
Study: :BioMaterial Wiew Table | View Documentation | Edit
Study::BioSource Study::BioMaterial Biomaterials Wiew Table | View Documentation | Edit
Study::LabeledExtract Study::BioMaterial Biomaterials wiew Table | View Documentation | Edit
M; Stud}gDesignDescr\Qtion Experimental Design Wiew Table | View Documentation | Edit
Study::BioMaterialCharacteristic Biomaterials wiew Table | View Documentation | Edit
Study: : StudyFactor Experimental Design Wiew Table | View Documentation | Edit
M; Stud}gDesignTer Experimental Design wWiew Table | View Documentation | Edit
Study::BioSample Biomaterials. Wiew Table | View Documentation | Edit
Study:: BMCRelationship Biomaterials Wiew Table | View Documentation | E_
Study: : OntologvEntry Wiew Table | View Documentation | Edit
Study:: StudyDesign Experimental Design wWiew Table | View Documentation | Edit
SRes: OntologyRelationshipType Wiew Table | View Documentation | Edit
SRes: ExternalDatabasel ink External Database wiew Table | View Documentation | Edit
SRes::Abstract Bibliographic Wiew Tahle | View Documentation | Edit
SRes: :EnzggmeCIass Enzymes Vocabulary wWiew Table | View Documentation | Edit
SRes:BibReffuthaor Bibliographic Wiew Table | View Documentation | Edit
SRes: :SeguemceOntolOg} Seguence Ontology wWiew Table | view Documentation | Edit
SRes: :BibliographicReference Biblingraphic wiew Table | View Documentation | E_
SRes:: Author Biblingraphic wiew Table | View Documentation | Edit
SRes: GOEvidenceCode Gene Ontology wiew Table | View Documentation | Edit
Bes (SOSwRAny T Gene Ontolog Wigw Table | View Docurnentation | Edit (4

htkp:ffvww gusdb, org/SchemaBrowser ftable, htm?schema=Studyg able=Study

Figure 1.1: Online GUS Schema Browser — Table-Centric View

3 gusdb.org | Schema Browser - Mozilla Firefox EE'E'

File Edit View History Bookmarks Tools Help

@ - ‘ot U1 | httpsifewe.qusdb.orgiSchemaBrowsericategoryList htm
|G|+ pern J 8] Most wisited | | ahooMal @ Jungz & umeFaQ | Hotmal | mail |] chase B citicard »
GUS Schema Browser =
Table-Centric View | Category-Centric Wiew
Table Superclass
Sequence and Features
NA Sequence Return to Super Category
DoTS: :Assembly DoTS::NASeguence Wiew Table | View Documentation | Edit
DoTS: :DbRefMASequence View Table | View Documentation | Edit
DoTS: :ExternalASequence DoTS::NASequence Wiew Table | Wiew Documentation | Edit
DoTS: MNASequence View Table | view Documentation | Edit
DoTS: :SequenceFiece Wiew Table | View Documentation | Edit
OoTs: :SthedNASeguence DoTS::MASegquence Wiew Table | View Documentation | Edit
DoTsS::\irtualSeguence DoTS::NASequence Wiew Table | Wiew Documentation | Edit
AL Sequence Return to Super Category
DoTS::AASequence Wiew Table | view Documentation | Edit
DoTS: :DbRefPfamEntry Wiew Table | View Documentation | Edit
CoTsS: :ExternalAASeguence DoTS::AfSequence View Table | view Documentation | Edit
DoTE: :MotifiASequence DoTs::A8Sequence View Tahle | View Dacumentation | Edit
DoTS: :NROBENtry Wiew Table | View Documentation | Edit
DoTs: .PFamEntrg Wiew Table | View Documentation | Edit
DoTS: Translated®dSequence DoTS::éASequence View Table | View Documentation | Edit
CoTsS: : TrivialTranslation DoTS::AfSequence View Table | view Documentation | Edit
MA Sequence Features Return to Super Category
DoTsS::AlleleFeature DoTS::NAFeature Wiew Table | Wiew Documentation | Edit
DoTS: :BindingSiteFeature DoTs::NAFeature View Table | view Documentation | Edit
DTS ChromosomeFlementFeatre DoTS::NAFeature View Table | View Documentation | Edit et
Dane

Figure 1.2: Online GUS Schema Browser — Category-Centric View

When a single table is selected in the current online GUS Schema Browser, all
information for that table is shown to the user as can be seen in Figure 1.3. The displayed
information includes the schema and table name, all of the columns for the tables, column types,
description, and whether the column can be null. Child tables organized by category along with
subclasses are also shown for the table.

We refer to child tables as those having a foreign key attribute that is the primary key of a
particular table, called the parent. Therefore, parent tables are those tables containing the
primary keys that correspond to the foreign keys found in the child tables. GUS also supports

one-level subclassing as described in its documentation.

|) pusdb.org | Schema Browser - Mozilla Firefox E]E|
] File Edit Wew History Bookmarks Tools Help

6 - c far | |_1'] hitkp: e gusdb, orgfSchemaBrowser table . htm?schema=PROT et able=Feature

‘ double buffering java).' 12| Most Wisiked _L] “ahoomail %‘ Jung# %‘ JUMNG FAG |_1'] Hotrnail |_L] Gmail |_1'] Chase [Citicard »»
] |_1‘] gusdb.org | Schema Browser 8 -'l double buffering java - Google Search

GUS Schema »» PROT:iFeature

column nulls? type description
Feature_ID no NUMBER(12,0) Edit
I sUBCLASS WIEW no STRIMG(20) Edit
Feature SET_ID PROT: :FeatureSet (MUMBER(12,0)) Edit
ELEMENT_TYPE_ID NUMBER([12,0) Edit
EXTERNAL_DATABASE_RELEASE_ID NUMBER(12,00 Edit
SOURCE_ID STRING(50) Edit
MODIFICATION_DATE no DATE Edit
USER_READ no NUMBER(1,0) Edit
USER_WRITE no MUMBER[1,0 Edit
GROUP_READ no MUMBER[1,0 Edit
GROUP_WRITE no NUMBER(1,0) Edit
OTHER_READ no NUMBER(1,0) Edit
OTHER_WRITE no NUMBER(1,0) Edit
ROW_USER_ID no NUMBER(12,0} Edit
ROW_GROUP_ID no NUMBER(4,0) Edit
ROW_PROJECT_ID no NUMBER(4,0) Edit
ROW_ALG_IMWOCATION_ID no MUMBER[12,07 Edit
Child tables:
Platform
PROT: FeatureInput
Assay

PROT: AssayProduct

Subclasses:

PROT::MALDISpOL

webrnaster@gusdb.org

Done

Figure 1.3: Online GUS Schema Browser Displaying the PROT::Feature Table

Numerous improvements in how the Online GUS Schema Browser displays information
about the schema can be made. Currently, it is very limited in the visualization techniques it
utilizes. It either shows a listing of all the tables without showing much information about each
table, or it shows a single table and all of its information. Few HTML links and the forward and
back buttons of the web browser provide limited navigation capabilities. Furthermore, it lacks an
effective way of displaying the relationships among the tables.

For this project, we develop a stand-alone version of the Online GUS Schema Browser
called the GUS Schema Browser or GUS SB, which includes both a schema browser and a
relationship viewer. This stand-alone version can be uploaded to the GUS website and be made
available for download by any potential user who can then begin to evaluate the GUS schema.
The stand-alone version will add more functionality compared to the current online web version,
such as a search feature, better layout and navigation controls, and a relationship viewer. GUS
SB will allow prospective users to browse GUS without the need to install the database locally,
obtain access to an existing GUS instance and connect to it via a database client, or purchase and
install additional software on their local machines. We also implement enhancements to the
Online GUS Schema Browser similar to features found in the stand-alone version that will

improve overall navigation and visualization of table information on the website.

CHAPTER 2

BACKGROUND AND RELATED WORK

The GUS Schema Browser relies upon prior work and concepts implemented in today’s
existing technologies. In section 2.1, we present data modeling tools and their importance in
database design. In section 2.2, we discuss the usefulness of database development tools.
Section 2.3 covers tools for ontology creation and visualization. In section 2.4, we describe
research in information visualization and information interfaces that can be applied to GUS SB.
In the last section, we will discuss a similar project for browsing genomics schemas, called

Schemaball [6].

2.1 Data Modeling Tools

Perhaps the most important tools for database architects are data modeling tools. Gary
Cemosek describes certain characteristics of projects for which data modeling may not be
necessary [7]. Projects where the domain is well known or the solution is trivial may not warrant
data modeling. In addition, data modeling may not be as useful in projects where very few
people collaborate and the scope of future needs and ongoing maintenance are minimal.
However, these conditions are not usually the case with large enterprise projects in which
numerous people or groups are involved and the functionality of applications expands over time.
Bert Scalzo describes modeling as a way to obtain data requirements and transform them into a
dependable database structural design [8]. For most projects, data modeling is an essential part

of the software development life cycle.

Data modeling tools help database designers create diagrams that provide a logical view
of data. A well-known example is the entity-relationship model first proposed by Chen in 1976
[9]. Entity relationship diagrams (ERDs) help to identify data entities and their relationships, as
well as attributes. ERDs facilitate the creation of Data Definition Language (DDL) in Structured
Query Language (SQL) which can be executed to create tables based on entities and foreign keys
that represent relationships. Models generated by these tools also assist application developers
who must manipulate the information stored in the database. The models provide documentation
of where data is stored and facilitate in the creation of SQL statements in the form of Data
Manipulation Language (DML) that are used to modify table data.

There are many data modeling tools available today with varying features and price
ranges. They provide functionalities similar to those originally implemented in Schemadesign, a
window-based tool developed by Sun Microsystems that allows users to graphically create and
display database schema [10]. Existing open source data modeling tools include StarUML [11],
ArgoUML [12], and Dia [13]. Some popular examples of professional tools are Microsoft Visio
[14], Rational Rose Modeler [15], and IBM Rational Software Modeler [16]. The tools generally
use the Unified Modeling Language (UML) to express data models. UML is a specification
maintained by the Object Management Group (OMG) consortium that defines a graphical
language for visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems [17]. Figure 2.1 shows a UML diagram generated by the StarUML application in

the form of an entity relationship diagram.

P e e R = IB]X]|
File Eda Fgrmnat Moedel Yiew Tools Help ;
DE@@é thm>x o FEE G &, [0k 88 m|E.

R el g | FE T S L R 1 i s

[Tastbax LI €711 15 Cisranl (Design Medsl; [[Fodel Explarer ofx

Aot g - T . oy | ELIEL % ¢ 8

: \ -

ER[}EJE}D!_&!M = g Bl | = 2 Design Model Al

s PRODUCT oo |7 oRDERLID AOTMAL R CLSTOMER: a o] Marn =
0 Tabe e Dt LR | o e b moT il et a] ERAIE} Disgraml
T A e Y e il & ROOCET. NOTAEL TR i CElENR LA £ <etabies> SALES_ORDEF
X i @ & == > _
:—,; ideritiying @ DESCRIFTION MOT MULL T ™ & ACTUAL FRICE NOT LLL " hOE ?snm#u]. - onDER)JD
-3 nan-identifying CUANTITY NOT NOLL s RDORE
A 3 5 CITY MOTMLRL @ CUSTOMMER_ID
DR & STATE HOT WULL S
Uik 3 ZIP_COTE MOT 1AL A ROERPATE
& AREA_CODE NAT AL SHE |
:M_MIER H:l;% L i
S ESPERSON T E -
& CRECIT_LIMIT WOT AL 23 Model Expiorer [tuagrar 4 b
LR LN [Properties ofx|
el 1 [UMLClassDiagram] EFJIE]
PRICE SALES_ORDER EEE Ninnrami
ﬁmmwwrma [CRDER_ID WOT ML : B —
i1 START_DATE MOT FLL & CLSTOMPER_ID MOTARAL [P ke e e
& LIST_PRICE WOTAULL % GRDER_DATE WOT NLLL i DiagramTyy ER(IE) Duagram
< MIN_PRICE NOT MULL & SHIP_DATE NOT RLLL R # D aukDiag
» END_DATE NOT NLLL @ TOTAL MOT NLLL uR
+ 8
~ | [7]

| Outpue o=

125 6:33:300 i Wovogram Files Wt ML W Samples YSamale Miodeld,uml Fils aaving complete,

B output | (D) Mescsge [properties [[Docmsrrat 4 ¢
Modified {UMLClaz=0lagram) -:Design Model=ERIIE) Diagrami

Figure 2.1: An ERD Diagram(taken from [11])

2.2 Database Development Tools

Numerous database development tools exist today, and most database management
systems include such software as part of their package. Database development tools vary in
features and price as well. Some open source applications are free to use while others are large-
scale applications with abundant features and are priced in the hundreds or even thousands of
dollars. Examples of open source tools are SQuirrel SQL Client [18] and PKLite SQL Client
[19]. An example of a web-based open source data development tool is phpMyAdmin [20]. It is
used for MySQL databases and is written in Hypertext Preprocessor language, PHP. Proprietary
tools include PL/SQL Developer [21], Oracle SQL Developer for Oracle databases [22], and

TOAD [23]. Most of these database development tools provide users the ability to perform

common tasks, which include the ability to browse the database and also make changes to the
database schemas. They also allow users to manipulate underlying data through the execution of
SQL statements. Figure 2.2 and Figure 2.3 show screenshots of how browsing and SQL

execution are supported by the SQuirrel SQL client.

Bd SQuirreL SQL Client Version 2.1 rc2 <)

File Drivers Aliases Plugins Session liindows Help

Connect to DEZ TestDB @& EE I & O AdiveSession 1 DE2 TestDB als dbZinstl «| & @ [§ &

0 1 - DB2 TestDB_ als db2instL :
Hep £ 3 e @A Ell'se?m &
Objects |, 5L Pet Store
E"%EEDE‘S&;% 4 Info ', Content | Row Count* Colurns ' Primany Key |, Exported Keys | Imparted Keys | Indexes | Privileges ', Calumn < b
B3 ALAS [coLumn_... [TvPEN... [cotumn... [DECMAL OB Jis_utLasLe] coLumn.. JRema. [DATAT. | BUFFER_LEN... [NUM_I
503 HIERARCHY TABLE PRODLCTID CHAR 10 <nuil> cnulls enulis 1 <null>-
-3 INOPERATIVE VIEW LOCALE CHAR 10 <null>- <mull> <nulis 1 <null>-
£ C1 MATERIALZED QUERY TABLE FAME VARCHAR 80 <l <null> <null> 12 <null>-
MACE VARCHAR 755 <null>- <l <null 12 <null>-
DESCN WARCHAR 755 <null>- <nulls <nullz 12 <null>-

(1 CATEGORY
] CATEGORY_DETAILS
1 Mew_oerais Use of tabbing for
i B P SETl presenting information
TYPED TABLE
TYPED YIEW

Drop
&5 Refrash Tree
PROCEDURE Refresh ltem

Limit cell ecit WHERE clause size
24 Contents Tab SOL Fier

Copy Object Name

Copy Qualified! Object Marme

Create Table Script

Create Data Seript

Create Template Data Script

2}
8
-
+-
-
]
Ga
. |
. |
]
]
]
ca

G -

Tree selection for
browsing database

/DB2 TestDB/DB2INST1/TABLE/PRODUCT_DETAILS

I | Logs: Errors 0, Warnings 0,Infos 8 1 | 202534 c0ET

Figure 2.2: SQuirrel SQL Client — Schema Browsing(taken from [18])

i SQuirrel SQL Client Version 2.1rc2 =

File Drivers Aliases Flugins Session Windows Help

Cannect 1o: |DB2 TestDE v @ & E E @ & O AdtivesSession |1 - DB2 TestDB als dh2instl ~| 0 & [¥ &
—
T o= e Tembl il e L
¢ % & HEBE @M aga &
abjects " SOL | Pet Store

[SELECT " FROM ARMNATAB 'l 4+] Lirnit rowes: | 100

SELECT * FROM PRODUCT_DETATLS WHERE PRODUCT_DETATLS.

PRODUCTID CHAR(10) NOT MULL
LOCALE CHAR(10) WOT NULL
WAME VARCHAR(E0) NOT WULL
IMAGE WARCHAR[2S55) NULL
DESCN WARCHAR{255) NULL

av
SELECT " FROM A}
SELECT * FROM ANNATAB
Results | MetaData | Info |
[annap |
Anha
Sara
Birgit

l Ings:Ernns 0, Warnings 0,Infos 9 [[20:1913 CET

Figure 2.3: SQuirrel SQL Client - SQL Execution(taken from [18])

Current database development tools have not adapted some of the features described in
prior work for browsing databases. The reason is that most of the database tools today focus on
allowing the application programmer to develop complex SQL queries that when executed,
return a result set or make changes to the data or schema. In the past, researchers proposed
browsing tools that included an application layer in which users were able to browse and query
the databases without knowing the underlying schema and without developing any SQL
statements. Amihai Motro presented BAROQUE (BROwse and QUEry), a browser for
relational databases. BAROQUE provides views that resemble semantic networks that combine
both schema and data [24]. He stresses the importance of an alternative retrieval as opposed to
systematic retrieval where users specify a formal query to satisfy their needs while the database

management system retrieves the data for them. A related work is the “Bags and Viewers”

10

approach described by Inder and Stader, in which they propose interfaces that allow data to be
retrieved without knowledge of database structures [25]. A bag is a logical container for a
collection of objects that satisfy a set of constraints, and a viewer is attached to a bag that
displays attributes of objects. Similarly, D’ Atri et al. proposed ViewFinder, an object browser,
which facilitates exploratory searches through the use of views attached to objects and frames,
which hold object information such as members, superclasses, subclasses, and properties [26].

An interesting group of database development tools combine certain features of both
database development tools and data modeling tools. This group includes the following
proprietary software: Toad Data Modeler [27], DbVisualizer [28], CA Erwin Data Modeler [29],
and DeZign for Databases [30]. Both the Toad Data Modeler and DbVisualizer are proprietary
data modeling software that allow reverse engineering of databases by creating models of
existing ones. DbVisualizer has most features associated with database development tools, while
Toad Data Modeler can only change database schema through the creation of alter scripts which
deploy any changes made to the data model into the corresponding database. CA Erwin Data
Modeler and DeZign for Databases allow for both forward engineering and design generation, as
well as database reverse engineering. One tool that is freely available and can be considered in
this category of database development tools is SQL Developer [31]. SQL Developer provides
users the ability to browse database structures and to create and execute SQL queries. It also has
an integrated diagram editor that allows users to reverse engineer existing databases.

A closely related work to the GUS Schema Browser for visualizing database schemas is
SchemaSpy. SchemaSpy is a Java-based tool that generates a web-based visual representation of
a database schema [32]. It allows users to navigate through a hierarchy of tables using child and

parent table relationships, which are represented by HTML links. It generates entity-relationship

11

diagrams of the schema. It also provides for a limited amount of interaction with users by

allowing them to expand table relationships up to two degrees of separation.

2.3 Ontology Development Tools

T. R. Gruber defines an ontology as an explicit specification of a conceptualization, a
description of the concepts and relationships that can exist for an agent or a community of agents
[33]. An ontology contains a domain with objects and explicit relationships among them. As the
use of ontologies continues to expand, so does the rise of development tools that are used to
create and browse them, similar to those that exist for databases today. Protégé [34] is an open
source platform of tools used in developing domain models and knowledge-based applications
with ontologies. Noy et al. described Protégé as a conceptual modeling tool that can be used to
express concepts and relationships in a domain [35]. Protégé-Frames editor and Protégé-OWL
editor are used for building ontologies and provide interfaces that are similar to those found in
database development tools. Furthermore, extensions of Protégé provide views comparable to

data modeling tools as seen in Figure 2.4.

12

travel Protége 3.1

File Edt Project OWL Code Window Tools Help
DoE tRE md ¢9% HH B BE a» \ <§pmrégé

(file:\C:\protege-owlvowl\travel. pprj, OWL Files [.owlor .rdf))

Ir . OWLClasses r- Properties r = Forms r’ Indivicuals r @ Metadata r,". OO WIZ |

asell = 4
D B E RN ENEIE
r Asserted Moclel r Inferred Model |
k\FarmIancI‘) 1=
For Project 4 travel o
Asserted Hierarchy /(RuraIArea\%—‘s‘-‘—' NatlonaIPalk _Z'
ML
—— Alhanmea'zd—m—' Town b
N B S - Mo o
(EudgetHutelDeshnaEl_un 2 |\c|_ty/'€]—‘5“‘—|’c:aﬂt-al
.——-’/ —_—
Qetlreel}eshnatmn)
f Destlnatlon *1—‘5=3—| Beach |
— - “‘-=--m___ e
— M o S a—a—mllynemnatlu;\
““"-t&_gx = ||
/éulet[)eshnatlunh}
—— e, I Surflng I
Cﬂackpackelsbestinatinn:) _ﬂ_,,——l* —
= e o - /' =
MECESSARY & SUFFICIENT

pa
1\, Contact
i

i
)

—

(Ac::nmmudatlunﬁatlng

e

[T —

A

[Sy

e Q Destination

@ 3 hazsAccommodation BudgetAccommodation
" B 3 hasActivity (Sports L Adventure)

P
L Sigh

HECESSARY

—
4

Figure 2.4: OWLViz Extension to Protégé(Taken from[34])

2.4 Information Visualization and Information Interfaces

GUS is a large relational database and contains close to five hundred tables. Because of
this, we look into research that investigates different ways to display large amounts of
information in a meaningful way. Thus, we briefly discuss research in the fields of information
visualization and information interfaces.

There is much research in graph visualization and navigation in information visualization

Herman et al. discuss the issues that large graphs pose [36]. One issue is that large graphs can

compromise performance and usability. Although displaying an entire large graph has the

advantage of showing the overall structure and relationship between nodes, detailed analysis and

13

comprehension of the data in the graph become difficult. They also describe graph drawing
problems that include aesthetic rules, such as minimizing edge crossings, minimizing the number
of bends, and maximizing symmetry within graphs.

Displaying substantial amounts of information simultaneously to users can hinder their
ability to distinguish between important and irrelevant information. This situation describes the
current design and layout of the current Online GUS Schema Browser. Cockburn et al. describe
several interface approaches that allow users to work at, and navigate between, focused and
contextual views of a dataset [37]. We are especially interested in two interface schemes:
zooming and cue-based techniques, which selectively highlight or suppress items within the
information space. For the relationship viewer, we must consider the interaction controls for
zooming in and out and also the relationship between zoom and controls for movement
(panning). The concept of semantic zoom is also introduced in which objects are represented
differently depending on different scales. The idea of cue-based techniques for rendering objects
differently to gain focus is also applicable for GUS SB implementation.

The foundation of the designs for current modeling and database development tools can
be described in the survey of Visual Query Systems (VQSs) discussed by Catarci et al. [38].
They define Visual Query Systems as systems for querying databases that use visual
representations to depict domains of interest and related requests. They describe browsing as a
viewing technique for gaining knowledge about the information content of a schema. They also
distinguish among different types of users and the different types of VQSs that fit user needs.
For example, they suggest that sophisticated users, who develop complex queries that require a
good understanding of the database schema, may find diagrammatic systems useful for learning

the data model.

14

2.5 Schemaball

A closely related project to the GUS Schema Browser is Schemaball, developed by
Martin Krzywinski for the Ensembl project [2]. Ensemble is a project for producing genome
databases for eukaryotic species. To address the issue of ERDs becoming difficult to follow for
very large databases, Krzywinski proposes Schemaball as a circular method of composition for
producing schema images [39]. Even with this method, comprehending relationships is still
difficult in large graphs, so Schemaball has functionality for highlighting links and tables based

on a recursive constraint trace. An example of an image generated by Schemaball can be seen in

Figure 2.5.

alt_allele

® nalysis

:

schemaball .03 | mkweb.bcgsc.calschemaball

Figure 2.5: Schemaball Image for Anopheles gambiae Genome Database(taken from [6])

15

CHAPTER 3

GUS SB - SCHEMA BROWSER

This project applies concepts discussed in the background and related work section and
focuses on improving the Online GUS Schema Browser. In the next two chapters, we discuss
new features that are implemented in the stand-alone version, which we will refer to as the GUS
Schema Browser or simply GUS SB. In this chapter, we focus on the schema browser module.
Furthermore, we discuss improvements for the Online GUS Schema Browser that we have

implemented.

3.1 GUS Schema Browser Basic Layout and Controls

The GUS Schema Browser provides many of the same functions as the Online GUS
Schema Browser but attempts to present information to its users in a more effective design and
layout. It essentially utilizes the same layout pattern that can be found in many of the existing
database tools. As shown in Figure 3.1, the right content panel of GUS SB is devoted to
displaying information. The left side contains controls that determine what should be displayed
in the content window. A view options drop-down menu allows the user to toggle between a
selection tree that organizes tables based on categories or schemas to which they belong.
Backward and forward buttons allow the user to show previously displayed tables. A button
with a magnifying glass image opens a search window, while a button containing a graph image

initializes the Relationship Viewer.

16

£ GUS SB Version 2.0 - Schema Browser + Relationship Viewer for Genomics Unified Schema [GLIS)
File Edt Help

ERERCIEN

‘\View Options

I TESS

Controls Main Content Window

Choose atable.

Figure 3.1: GUS Schema Browser Basic Layout

3.2 GUS Schema Browser — Table Browsing

Instead of displaying all table information in a single flat view, the GUS Schema Browser
separates table information and hides data that is not in focus through the use of tabbed
browsing. This limits the amount of information displayed to users. It allows them to control
what information they can see and to concentrate on particular details of the table. We consider
attributes as the most important characteristics of a table, and thus, that information is displayed
in the main tab view, as seen in Figure 3.2. Other tab views include children, parent, and
description. Figure 3.3 shows how the children tab view displays a list of child tables in a tree

structure. The parent tab view displays parent tables in a similar tree structure.

17

GUS SB Yersion 2.0 - Schema Browser + Relationship Viewer for Genomics Unified Schema (GUS)

File Edit Help Button To Open Button To View Table In

] (2] [@/ Relationship Viewer Relationship Viewer
o —) —

1 Wiew Optiohs

TABLE NAME: PROT::Feature é

= ‘I\;ain|ChiIdren|| Parent | Description| @——————Tabs To Display Table Information

----- # PROT:Acquisition Column Name Null? Type Parent Tahle Column Info.
""" # PROT:AcquisitionChain ||FEATURE_ID No NUMBER(12)
----- # PROT:AcquisiionChannel |.:SLIBCLASS_VIEW No STRING(30)

|AI\ Schemas v|

=

""" @ PROT:bequistiorbuandfication | | FEATURE_SET_ID s NOMEER[1Z) |PROTFeatureGet
""" # PROT:Action ELEMENT_TYFE_ID Yes MUMBER(TZ)
""" # PROT:Actioninstance |'E><TERNAL_DATAEASE_F!ELEASE_\D Yes NUMBER[2)

""" # PROT:Assay SOURCE_ID Yes STRING(50)
----- # PROT:Azzawdnnotation

""" # PROT:AssapChain
----- & PROT:Azzaplnout
----- # PROT:AszapParentFile

PROT:AssapProduct
----- # PROT:BioMaterialMeasurement
""" # PROT:DataTransformation
----- # PROT:ElementResult
SGARnOtation

e
Featurelnput
----- # PROT:FeatureSet
PROT:Hardware
----- # PROT:MaLDIPlate
----- #® PROT:MALDISpot
PROT:MZPeak
----- # PROT:MZPeakResult
----- # PROT:MZRun
----- # PROT:MZScan
----- # PROT:Parameter
----- # PROT:Parameterlnstance
----- # PROT:Parameterizable
----- # PROT:Parameterizableinstance
""" # PROT::Parameterizablelink
----- # PROT:ParentFile
----- # PROT:Protocal
""" # PROT::Protocoltction
----- # PROT:ProtocolH ardware
----- # PROT::Protocollnstance
coor o . - / / / / /¥

Figure 3.2: GUS Schema Browser Displaying Single Table

TABLE NAME: PROT::Feature

.

Main | Children | Parent || Description |

Child Tables of : PROT::Feature
-4 PROT:AzzapProduct
PROT::Featurelnput

Figure 3.3: Children Tab Displaying Children Tables in a Tree

18

3.3 GUS Schema Browser — Find Keyword Feature

The GUS Schema Browser allows a user to search the schema for a keyword. It returns
tables that contain the keyword in the options that the user specifies. Those search options are
characteristics of the GUS tables and include Column Name, Column Info, Table Name, Parent,
Child, or Table Info.

The Find Keyword feature is very useful. It helps users explore relationships by using
the parent or child option. For example, the user can choose the ‘Parent’ option and enter the
complete name of a specific table in GUS to use in the search. The search results will contain all
tables that have that specific table as a parent. The search functionality also assists users in
determining tables in which to store data by allowing them to search for a term in the column
name and column information. To perform a similar search using a database development tool,
users would need to connect to a GUS instance and then compose and execute SQL queries on
database system tables that yield the same results. Figure 3.4 shows the Find window and list of
options. Results are displayed in a box at the bottom of the Find window. Matching keywords

in the table view are colored in blue.

19

£ GUS SB Version 2.0 - Schema Browser + Relationship Viewer for Genomics Unified Schema _(GUS]
File Edit Help

iew Opti ==
Ik RIS TABLE NAME: DoTSAlleleComplementation [
|A|| Schemas - |
| Ut of il Tabios Main | children | Parent | Description|
(-] Care Column Name Null? Type Parent Table Column Info.
8- ALLELE_COMPLEMENTATION_ID No MUMBER
8- ALLELE_ID No MUMBER DoTS:Allele
E-[) - Kepward COMPLEMENTATIOM_ID N HUMBER DaT5::Complementation
-] [alelz ‘ G No STRING
&-{] || REVIEw_STATUS_ID Tes MUMEER SFRes:FeviewStatus
E- 1 Tables
@ Al () Individual
Options

Column Name [¥] Parent
Column Info Child
Table Mame Table Infa

(Find Il Close

Results

DaT5:Alsle

Dol S::4lleleComplementation
Dol 5::AlleleF sature

DoT S:Alelelnstance

DoT 5:bllelePhenctype
DoT5:AllelePhenctypeClass
DoT S:GeneFeature
DoT5:5eqv ariation

77 start O s BT B B

Figure 3.4: GUS Schema Browser Find Functionality

3.4 Online GUS Schema Browser Enhancements

Based on the features introduced in the stand-alone GUS Schema Browser, we have
enhanced the Online GUS Schema Browser as seen in Figure 3.5. First, we implement a new
layout similar to the one in GUS SB where the controls are on a left panel and the content
window is to the right. We introduce tree structures for navigating between tables and tabbed

browsing for focusing on specific table data.

20

) GUS SchemaBrowser Frameset - Mozilla Firefox

Fle Edt Wiew History Bookmarks Tools Help
@ - {ar | L1 |hetpefiiocalhost:a080fwmgst fosbMain. jsp

- z |2 Most visite vahooMail @ Jungz @ JUMNG FAQ Hotmail Gmai Chase [BH Citicar Bof & i atisDemo UG Ebay s "V Facebook »»
F d h | @ £ | I h. d ® Bofa oY e Eby b, book,

GUS Schema Browser GUS Schema > Core:tAlgorithmParamKey

Browser Options *

SEAREH column nulls? vbe description
. algorithm_param_key_id no number(s,0) Read col doc from
&1 Core db.
"D DoTs algorithm_implementation_id no core::algorithmimplementation Read col doc from
-1 PROT db.
2 RAD algorithr_param_key no stringi60) Read col doc from
C1sRes db.
(23 Study algorithrm_pararm_key_type_id no core:algorithrmparamkeytype Read col doc from
CaTESS db.
is_list_walued no number(1,0) Read col doc from
db.
description stringi{1024) Read col doc from
db.

Done

Figure 3.5: Layout Changes to Online GUS Schema Browser

A menu bar is also displayed to allow the users to choose between different views or
different trees to navigate either by schema or category as shown in Figure 3.6 and 3.7
respectively. We introduce a similar search feature as was implemented for the stand-alone GUS
SB. The basic search functionality returns tables that contain the search string in their schema
name, table name, table info, column name, column info, parent, child, super category, or

category information. Smart Search allows users to specify which of those table characteristics

to apply in the search as seen in Figure 3.8.

21

— . i ICl- F [&] Maost visited |] YahooMal §
~ 2| Mast Yisited Y ahaooMail —
< I Most isted |4 vahoottal { 3US Schema Browser

5US Schema Browser
Browser Options *

Browser Options * Vigws ’I
V'EWS | Flat Table Mavigate b Schema Tree
AErigEte 4 categery vakls Smart Search Category Tree
Smart Search

) [:I Core

[:I Care #-C1 DaTs

#-_1 DaTs -1 PROT

&-C1PROT - RAD

&1 RAD -1 SRes

#-[] SRes =-(] Study

&1 study =-C1TESS

-1 TESS

Figure 3.6: Drop-down Menu Views Figure 3.7: Drop-down Menu Navigate

,

Search GUS Schema Browser

Browser Options *

Schema MName
Table Mame
Table Info
Column Name
Column Info
Parent

Child
SuperCategory
Category

Figure 3.8: Online GUS Schema Browser Smart Search

To accomplish tabbed browsing for enhancements to the Online GUS Schema Browser,

we use the Dojo Toolkit [40] that features DHTML and AJAX functions. We also use the toolkit

22

to implement a predictive text search functionality similar to those used by Google, YouTube,
and other websites. Not only will this speed up the process in searching for keywords, but it will
also broaden searches by proposing search terms in GUS that may be unknown to the user.

Figure 3.9 shows the predictive text (type-ahead) search functionality.

¥ GUS SchemaBrowser Frameset - Mozilla Firefox

File Edit “ew History Bookmarks Tools Help

@' c e} |: |j http: fflocalhost: 5080Mwwgsh/gsbMain.jsp -
G- e [&] Mast visited | YahooMal % Jungz @ InGFAgQ | Hotmal |] Gmail |] Chase B Citicard ® Bof & (Y atisDemo [T} UG &Y Ehay |] c5 7 Facebook >

Search GUS Schema Browser GUS Schema > > Core::AlgorithmParamKey

Browser Options * m

all |

Algarithm .
Agorithrn_id column nulls? vpe description
algorithm_implementation_id algorithm_param_key_id na number(s,0) ggad col doc fram
algur!thm_mvocatmn_m algorithm_implementation_id no core:: algorithmimplementation Read col doc from
algorithrm_name dh.

algorithr_pararm_id algorithm_param_key no string(60) Read cal dac from
algarithrm_param_key db.
algarithm_param_key id
aIgun.thm_param_key._type_\d is_list_valued no number(1,0) Read col doc from
Algarithmlmplermentation db.
Algarithminvocation description string(1024) Read col doc from
AlgorithrmParam db.
AlgorithmParambey
AlgorithmParamieyType
alignment_method

Allele
allele_complementation_id
allele_id

allele_instance_id
allele_phenotype_class_id
allele_phenotype_id
AlleleCamplermentation
AlleleF eature
Alleleinstance
AllelePhenotype
AllelePhenotypeClass

algorithm_param_key_type_id no core:: algorithmparamkeyvtype Read col doc from

Done

Figure 3.9: Predictive Text Search Functionality

23

CHAPTER 4

GUS SB - RELATIONSHIP VIEWER

The Online GUS Schema Browser does not provide an effective way for users to explore
relationships among the tables of the GUS Schema due to its layout design and lack of
navigation controls. Most of all, it does not display a graphical representation of the GUS
schema. Therefore, we introduce the Relationship Viewer module for the GUS Schema
Browser. The Relationship Viewer attempts to create a model of the GUS Schema in the form of

a graph in which the nodes are the tables and the edges represent the foreign key relationships.

4.1 Relationship Viewer Basic Layout

The controls for the Relationship Viewer can be found on the top pane of the window.
The graph representing the tables and their relationships can be found on the bottom pane as seen
in Figure 4.1. Users can choose to view all tables of GUS, all tables of a single schema, or just

one table at a time.

24

£ GUS SB Version 2.0 - The Relationship Viewer FEX
.

Other Controls

Semantic Zoom Controls View Contrals Transfarming w

E ‘Tml | Core w | Al Tables v | K.amada-K.awmai v —
-10 0 10 [

Display Set Focus] [DizplayalT ables] P
1< T — L ~

=

|A
%

Figure 4.1: The Relationship Viewer Showing All Tables in GUS

4.2 View Controls

Due to the large number of tables in the GUS Schema, the size of a graph generated
representing all GUS tables can become very large to the point that not much meaningful
information can be obtained from the graph itself. In addition, exploring the entire schema puts a
strain on system resources as indicated by noticeable slowdown of browsing capabilities. We
attempt to address the issues encountered with very large graphs by allowing the user to locate a
particular table in the graph by hitting the ‘Set Focus’ button, by showing table information in
tool tips for mouse-over functionality, and allowing the user to indicate incoming and outgoing

edges from a table by changing the colors of the edge. Furthermore, we attempt to decrease the

25

size of graphs that are generated by allowing the user to display graphs showing only tables and
relationships within one particular schema or just a single table. Figure 4.2 shows all the tables
in the DoTS schema. Showing a graphical representation of one schema presents a smaller
graph and makes it easier for users to browse the graph, isolate single tables, and explore
relationships. Table nodes with lots of edges are more visible and may indicate a higher level of

importance among other tables.

£ GUS SB Version 2.0 - The Relationship Viewer = EIES
o~

Other Controls

Semantic Zoom Controlz “Wigw Controls Transfaormning w

=3

|DDTS DoT5: A4Featue A | Fiuchterman-Feingald +
L Display Set Focus [DizplawallT ables

i

] 5

Figure 4.2: The Relationship Viewer Showing All Tables in DoTS

26

4.3 Semantic Zoom Feature

In most modeling tools, the zooming functionality does not change the underlying data
that is being displayed. Due to the size of the graphs that are generated when all tables in the
GUS Schema are being displayed, a semantic zoom feature is useful to have. We have attempted
to create the effect of semantic zooming in the Relationship Viewer. Currently, there are two
levels of table detail that provide the semantic zoom feature. Depending on the zoom level,
either all table information on the graph is displayed or only the table name is displayed as seen

in Figure 4.3.

/ [y \

|
j Tahle Setnantic Dootn
EROT Feature Level Showing
I / Table Matne
] 7 I
[,
Table
PROT:Feature
FEATURE_ID numser pi Sermantic
FEATURE_SET_ID MuMsER (FK PROT-FasuraSe Zoom Level
SUBCLAS Ei_ﬁv'IIEI'.'“\'I STRING Show]_ng Tab]_e
ELEMENT_TYPE_ID suusmsss TDietails
EXTERMAL_DATABASE_RELEASE_ID numess
I/SOU?CE‘I\D STRING /

. Table 1 /

Figure 4.3: Illustration of the Data Displayed Depending on the Semantic Zoom Level

27

4.4 Single Table View and Relationship Exploration

The Relationship Viewer allows users to isolate a single table in a graph and to add nodes
by expanding the relationships of that table. As the graph continues to grow, users can expand
the relationships of newly added tables until all foreign key relationships have been exhausted
among all the tables in the graph. Expansion of the foreign key relationships among the tables is
limited to the child to parent table relationships only. This means that the graph gets larger by
evaluating only outgoing edges that represent foreign key relationships to other tables. For now,
we also limit the degree level of expansion for a table to ten degrees, as graphs could get
extremely large. Figure 4.4 shows the setup of expanding the foreign key relationships for a

table by one degree, and Figure 4.5 shows the resulting graph.

= GUS SB Version 2.0 - The Relationship Viewer

Other Controls -

Semantic Zoom Controls Yiew Controls Picking -
; 37 [cors ~ [40 Tables ~ | KemadaKawsi ~
L) o0 o 10 [Display I et Focus | [_DrplaeiTabes | .,|

Table
CorezAlgorithmParamKey.

ALGORITHM_PARAM_KEY_ID nusser px
ALGORITHM_IMPLEMENTATION_ID nutses 7 Gerer g emessascr
AL GORITHM_PARAM_KEY_TYPE_ID numess (7 Cora sigprmmeaansiorTyoe)
ALGORITHM_PARAN_KEY strme
IS_LIST_VALUED wussss
DESCRIPTION stamc

:r) Expansion Level: {default/fmin=1;max=10)
ve

[]

72 start O BT € O [0 [DL [Os w (26 4 < @io 3Ly

Figure 4.4: Expanding Table Relationships by One Level

28

£ GUS SB Version 2.0 - The Relationship Viewer.

Semantic Zoom Controlz

Other Controls

Picking ~

ALGORITHNM_ID sumssr (7% Care-sigarigm}
WERSION stamc
CWS_REVISION stamne
CVS_TAG stamc
EXECUTABLE stams
EXECUTABLE_MDS stamc
DESCRIPTION stRme

ALGORITHM_IMPLEMENTATION_ID smusmsss (7x cares
BLGORITHM_PARAN_KEY_TYPE_ID numsEr iF
ALGORITHM_PARAM_KEY strme
IS_LIST_VALUED nusmser
DESCRIPTION stamc

)

K CoreAlgaritimPararnbiny Tyoe)

[9 + | CoreAlgorithmParamiey v| | Kamada-Kawai v =
- . _ |
An 10 Display Set Focus] [Displawal T ables] w
al
Core:AlgorithmParamKeyType
IALGORITHM_PARAM_KEY_TYPE_ID numser px.
TYPE strmc
%
"
o)
%
%
Tahle Table
Core:Algorithmimplementation Core:AlgorithmParamK:
ALGORITHM_IMPLEMENTATION_ID numBer Pk | has FK to ALGORITHM_PARAM_KEY _ID numBer Pk 3

=

Figure 4.5: Resulting Graph After Expanding Relationships by One Level

4.5 Graph Layouts

The Relationship Viewer has been implemented using JUNG - the Java Universal

Network/Graph Framework [41]. The JUNG graphing library comes with several built-in graph

layout implementations. Applying layouts to a graph containing all GUS tables takes some time

to render, so we use JUNG’s persistent graph layout capabilities to generate and save static

layout information when viewing all GUS tables.

29

For this project, we utilize the following JUNG graph layouts:

Kamada-Kawai [42] — Lays out vertices according to a virtual dynamic system
where the total spring energy is minimal.

Fruchterman-Reingold [43] — A spring-embedder model that attempts to produce
aesthetically-pleasing graphs by drawing vertices connected by an edge near each
other, while making sure vertices are not drawn too close to each other.

Spring [36] — A force-directed method that models nodes and edges as physical
bodies tied with springs

ISOM [44] — Implementation of Meyer’s Self-Organizing Graphs based on a
competitive learning algorithm

Circle — Lays out all the vertices along the circumference of a circle.

We show two figures to illustrate the layout functionality included with JUNG that has

been incorporated in GUS SB. Figure 4.6 shows all tables in GUS using Kamada-Kawai layout,

and Figure 4.7 shows all tables in GUS using Circle layout, which resembles images created by

Schemaball.

30

= GUS SB Version 2.0 - The Relationship Viewer

Other Cantrols

Semantic Zoom Conliols Yiews Controks Ficking a1l

Core | CoretlgortmParsmk ey v| [KamadaKawai

Display Hli Set Focus [DisplayAiTables

= GUS SB Yersion 2.0 - The Relationship Viewer

Other Cantrols &l

Semantic Zoom Controls Yiew Contrals m = |
[coe | core-tigorttmPaiankey | [Cicke ‘| |

P [Displapiables |

&

|

=

|

|
|
. =

Figure 4.7: All GUS Tables Using Circle Layout

31

CHAPTER 5

IMPLEMENTATION DETAILS

5.1 Online Schema Browser Enhancements

The architecture of the Online Schema Browser remains the same with our new
enhancements. We accomplish the layout changes by using HTML frames. Spring is still used
as the Java Model-View-Controller (MVC) framework, but as previously mentioned, new
technologies have been added to implement new functionality. We will now go into more details
about those technologies.

We have integrated WebWork 2.2 [45], a Java web-application development framework,
on top of the Spring MVC. Together with the DOJO toolkit [40], the tabbed browsing for the
table information has been implemented. The predictive text (type-ahead) search functionality is
accomplished with AJAX calls. To create the navigation trees and menu lists, we use
JSCookTree [46] and JSCookMenu [47] respectively, which are written in JavaScript and were

created by Heng Yuan.

5.2 GUS SB - Schema Browser

The GUS Schema Browser uses Java 1.5 and the Swing widget toolkit to generate the
graphical user interface. GUS SB obtains schema information from GUS XML specification
files. It parses data from the files and then stores the information in Java objects. See Appendix
A and Appendix B to see samples of the XML files containing GUS schema details. Information

is retrieved from the Java objects and is processed for display in the user interface for both the

32

schema browser and relationship viewer modules. Figure 5.1 shows the architecture for GUS

SB.

Figure 5.1: GUS SB Architecture

5.3 GUS SB - Relationship Viewer

As already mentioned, the Relationship Viewer has been implemented using JUNG — the
Java Universal Network/Graph Framework. JUNG is an open-source library and has been used
as the framework for many graph/network analysis and visualization projects, including RDF
Gravity, The Graph Exploration System (GUESS), InfoVis Cyberinfrastructure, and
GraphExplore [41]. Many more applications and a list of papers describing the use of JUNG in
research topics can be found at its website. The Relationship Viewer also uses some aspects of
the Piccolo toolkit [48].

We rely extensively on the JUNG framework and its ease of customization to accomplish

many of the Relationship Viewer’s functionality. In order to display the graph nodes in

33

rectangular shapes with GUS table information, we have customized how JUNG renders the
vertex of the graphs. As previously described, for generating aesthetically pleasing graphs, we
utilize the graph layouts included with the framework. To prevent application performance
degradation when displaying all tables of GUS and applying layout algorithms, we use saved

layout files.

34

CHAPTER 6

CASE STUDIES AND EVALUATION

6.1 Case Study 1 — Basic Relationship Exploration

We can illustrate the effectiveness of the GUS Schema Browser versus the Online
Schema Browser with a simple example. We begin with the Online GUS Schema Browser and
choose the Core::AlgorithmParamKey table. We attempt to exhaustively search related tables by
evaluating its foreign keys, as represented by HTML links. We see that the table has two foreign
keys, Core::AlgorithmImplementation and Core::AlgorithmParamKeyType. We follow a depth-
first method for searching and choose the first foreign key by clicking on its link. We see that
Core::AlgorithmImplementation has one foreign key, Core::Algorithm. We click on a link to
display that table and find it has no foreign keys. We are done with this branch, so we go back to
Core::AlgorithmParamKey and evaluate its second foreign key, Core::AlgorithmParamKeyType,
by clicking on its link. We find that it has no foreign keys, and we are done with our exhaustive
search. It appears we have identified four tables but we might be left with a vague idea of their
relationships. Figure 6.1 illustrates the likely result of our exhaustive search of foreign key
relationships from child to parent when using the Online GUS Schema Browser. It is probable
that we lose track of the relationships that we uncover using the basic link navigation within the

Online GUS Schema Browser.

35

Core: : AlgorithmParaanlleyType

?

Core: : Alzorithanlp lereentaton

Core:: Aloorithm

Core: : AlzorithimParamKey

Figure 6.1: Possible Results of Browsing Relationships in Online GUS Schema Browser

Now using the GUS Schema Browser and the relationship exploration functionality of its
Relationship Viewer, we can isolate Core::AlgorithmParamKey and begin expanding its
relationships and the relationships of subsequent related tables by applying a breadth-first search

method. Eventually, we will generate a graph as seen in Figure 6.2 where the relationships

among the tables are clearly shown.

36

£ GUS SB Version 2.0 - The Relationship Viewer fz
-~

Other Controls [
Semanlic Zoom Conlrols Wiew Cortrols Picking v |
— 9, Care + | CorertigoithmParamkey ~| [Circle ~ li
10 I} 10 [Display][Set Focus] [DisplayalT ables] =0
Tahle
CorezAlgorithmParamKeyType l
(AL GORITHM_PARAM_KEY TYPE_ID numBEer px
TYPE smng hag
\
Tahle
Core:Algorithmimplementation Table
Core:AlgorithmParamKey
(ALGORITHM_IMPLEMENTATION_ID numaEr PK. has FK to
ALGORITHM_ID NuMBER {Fx Core-tigerigvn ALGORITHM_PARAM_KEY_ID numser e
VERSION stamc ALGORITHM_IMPLEMENTATION_ID siusissn {7k Core-igerismimpies
CVS_REVISION s (RLGORITHM_PARAM_KEY_TYPE_ID NUMSER (Fxt Care-tgarismParar
CWS_TAG strms ALGORITHM_PARAM_KEY stams
EXECUTABLE stamc IS_LIST_WALUED numesss
EXECUTABLE_MDS stams DESCRIPTION strme
DESCRIPTION stRmG
T Fig Tabls
Core:Algorithm
IALGORITHM_ID numser ek
MAME sTRsg
DESCRIPTION stRmc
-
< 3

Figure 6.2: Results of Browsing Relationships With GUS Schema Browser

6.2 Case Study 2 — Advanced Relationship Exploration

We can illustrate the effectiveness of the GUS Schema Browser against the diagrams
generated by SQL Developer version 2.3.0. We will use DoTS::AAFeature as our table for this
example. Our goal is to expand the relationships for DoTS::AAFeature by two degrees, so our
objective will be to view all the parent tables for DoTS::AAFeature and then view those tables’
parent tables as well.

We begin with SQL Developer and use it to create a diagram. SQL Developer creates a
diagram based on the schema and corresponding tables that we choose. We cannot just choose
one table and begin exploring relationships interactively. Since we have no idea what foreign
keys DoTS::AAFeature contains, we create a graph to include all schemas and all tables in GUS.

We isolate DoTS::AAFeature and begin tracing the outgoing edges to other tables. This proves

37

rather difficult since all tables of GUS are shown and there are many edges. Also, SQL
Developer does not implement a semantic zoom feature so table information causes clutter in the
graph. See Figure 6.3. Perhaps an easier but still ineffective way to generate the diagram that
we desire is to query the database system tables to first identify the parent tables of
DoTS::AAFeature and then create another query to identify the parent tables of those tables. In
doing so, we manually generate a list of tables that we want in our graph so that we can use SQL
Developer to generate the diagram containing only those tables and their relationships. This

process takes some time.

¥ SQL Developer E
File: g_d_lt E;Fras _w_lndow ﬂelp
a5 YPRY REE AL &

[+ DaE GUSAlTablesLayout,sqlddm |

-

[= C:\Documents and Settings\Conrad\My Documents\2009ThesisWork\ThesisWritinglgusdb\diagrams\GUSAllTablesLayout.sqlddm
R ERE G ERT EVEIEEl BT

[
o

DoTS::AAFeature 2

ARCOMMENT ~
[AaENTRY

| ABFAMILYEXPERIMENT
[ARFEATURECOMMENT
|| AAFEATUREDEREF

W AnFEATUREIMP
| ABGENE

— - =

[AAGENESYHONYM

[] ABLOCATION

"] AAMOTIFGOTERMRILE

| ABMOTIFGOTERMRILESET

[AASEQEROLPEXPERIMENTIMP
[AASEQUENCEDEREF

I AASEQUENCEENZYMECLASS
| ABSEQUENCEFAMILY

[AASEQUENCEGROUPFAMILY
[AASEQUENCEGROUPTMP

[AASEQUENCEIMP

| ABSEQUENCEKEYWORD

[AASEQUENCECRGANELLE

] AASEQUENCEREF | |2

e
hd
w
[o]
2
5
g
el
o
2
g
g
& |

L

Figure 6.3: SQL Developer Diagram Showing DoTS::AAFeature Among All GUS Tables

38

Using GUS SB’s Relationship Viewer, we can generate an aesthetically pleasing graph
showing the information that we want with little effort. First, we need to isolate the
DoTS::AAFeature table. We can do this by searching for it in the navigation tree of GUS SB’s
schema browser module and then clicking on the button to view the table in the Relationship
Viewer. In the Relationship Viewer window, we right-click on the table and choose to expand
the relationship by two levels. After adjusting the semantic zoom level to view only the table

names, we get a neat graph similar to Figure 6.4, showing DoTS::AAFeature, its parent tables,

and the parents of those parent tables.

£ GUS SB Version 2.0 - The Relationship Viewer, CEX
Other Cantrals A
Semantic Zoom Cantrols “iew Cortrols WW\
B e J IDUTS + | DoT5:AAFeature :I| IKamada-Kawai v“‘
10 1] 10 [Dizplay Set Focus] [DizplavAlT ables] P

Figure 6.4: Relationship Viewer Showing DoTS::AAFeature Expanded Two Levels

39

6.3 User Evaluation

We conducted informal interviews with two people who are currently using GUS. One
person has been using GUS for more than five years and is very familiar with the GUS schema.
Because of his experience, GUS SB is not an extremely helpful tool for his work. The
experienced developer is able to browse GUS by creating and executing SQL queries with ease.
The second person is relatively new to GUS and is more concerned with data in the tables and
the relationships among the data rather than the tables within the GUS schema. Thus, GUS SB
would not be extremely useful for this developer’s work since he is more concerned with
instance data retrieval and analysis. However, the inexperienced GUS developer did say that the
GUS Schema Browser would be helpful for learning the schema and would probably be more
beneficial to application programmers responsible for loading data into GUS. GUS SB would be
able to help those individuals with identifying in which tables and attributes certain data should

be stored.

40

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The new stand-alone GUS Schema Browser, along with its relationship viewer, provides
current and potential users of the GUS schema with a more effective way to view tables and their
relationships in contrast to the Online Schema Browser that is available today. The Online
Schema Browser helps the user understand tables and their attributes but does not facilitate
exploring relationships among them. The stand-alone GUS Schema Browser provides the
missing functionality to browse GUS tables and their relationships. It also allows for some user
interaction in its graphs, which is an advantage over the static diagrams that are generated by
some database development tools. As demonstrated in our case studies, GUS SB introduces new
features, such as semantic zooming and relationship exploration to allow users to effectively
browse the schema. GUS SB can prove to be a valuable tool for new users of GUS or potential

users who want explore the schema.

7.2 Future Work

The new version of the stand-alone GUS Schema Browser with its Relationship Viewer
should be tested more thoroughly and then released to the public. This will help potential users
evaluate the use of GUS versus other genomics schemas since they can browse the schema

effectively without having to install GUS into a database or obtain new software. GUS

41

SB should be released as open source software. There is the possibility that GUS SB can be
converted into a generic schema browser for use with other schemas. One feature that should be
implemented before GUS SB is released is to support the notion of superclasses and subclasses
that are characteristics of the GUS schema. Tables that are subclasses inherit attributes of
superclasses and are not depicted accurately by GUS SB at this time. Furthermore, XML
schema specification files should be updated and database connection to schema documentation
should be considered upon deployment of enhancements to the Online GUS Schema Browser.

The potential exists to develop more functionality within the Relationship Viewer module
of GUS SB. Currently only the foreign key relationships between child to parent are utilized.
There may be value in showing relationships of parent to child and in supporting the super
category/category specifications in GUS. Currently, the GUS Schema Browser and the
Relationship Viewer display information in separate windows. Perhaps integrating the two
modules into a single window application may be a better design for improving interaction and
control.

Future work includes deploying the changes that have been implemented as part of this
project to the current Online GUS Schema Browser. The possibility of a web-based GUS
Relationship Viewer implementation should be explored. For now, perhaps the stand alone GUS

SB can be deployed online as a Java applet.

42

(1]
(2]
[3]
[4]
[5]
[6]
[7]

[8]

[9]

[10]

[11]
[12]
[13]
[14]

[15]

REFERENCES

http://www.gusdb.org

http://www.ensembl.org/index.html

http://gmod.org/wiki/Main_Page

http://www.springsource.org/

https://www.hibernate.org/

http://mkweb.bcgsc.ca/schemaball/

Cemosek, Gary. “The Value of Modeling.” A technical discussion of software
modeling : June 2004 <

ftp://ftp.software.ibm.com/software/rational/web/whitepapers/ValueOfModeling.p
df>.

Scalzo, Bert. “Why Modeling is Still Relevant.” : Information Management
Direct: May 2009 < http://www.information-
management.com/infodirect/2009_123/data_modeling_databases_management-
10015423-1.html>.

Chen, Peter Pin-Shan. The Entity-Relationship Model — Toward a Unified View
of Data. ACM Transaction on Database Systems, 1(1):9-36, March 1976.

Rogers, T.R., and R.G.G. Cattell. Entity-Relationship Database User Intefaces:
Information Management Group, Sun Microsystems, Incorporated.

http://staruml.sourceforge.net/
http://argouml.tigris.org/
http://projects.gnome.org/dia/
http://office.microsoft.com/visio

http://www-01.ibm.com/software/awdtools/developer/rose/modeler/

43

[16] http://www-01.ibm.com/software/awdtools/modeler/swmodeler/index.html

[17] http://www.uml.org/

[18] http://squirrel-sql.sourceforge.net/

[19] http://pklite.sourceforge.net/

[20] http://www.phpmyadmin.net/home_page/

[21] http://www.allroundautomations.com/plsqldev.html

[22] http://www.oracle.com/technology/products/database/sql_developer/index.html
[23] http://www.toadsoft.com/

[24] Motro, Amihai. BAROQUE: A Browser for Relational Databases. ACM
Transactions on Office Information Systems, 4(2), April 1986

[25] Inder, Robert, and Jussi Stader. Bags and Viewers: A Metaphor For Intelligent
Database Access. Advanced Visual Interfaces (AVI'94), Bari, Italy, January
1994.

[26] D’Atri, Alessandro, Amihai Motro, and Laura Tarantino. ViewFinder : An
Object Browser. Technical Report ISSE-TR-95-115. February 1995.

[27] http://www.quest.com/toad-data-modeler/

[28] http://www.ming.se/products/dbvis/

[29] Product Family Brief: CA Erwin Modeling Family — At the Center of Your Data
Management Initiatives. <http://www.ca.com/files/ProductBriefs/ca-erwin-
model-family-prod-family-brief 145815.pdf>

[30] http://www.datanamic.com/dezign/index.html

[31] http://sqldeveloper.solyp.com/

[32] http://schemaspy.sourceforge.net/

[33] Gruber, T. A Translation Approach to Portable Ontologies. Knowledge
Acquisition, 1993. 5(2).

[34] http://protege.stanford.edu

44

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]
[46]
[47]

[48]

Noy, Natalya F., Michael Sintek, Stefan Decker, Monica Crubézy, Ray

W .Fergerson, and Mark A. Musen. Creating Semantic Web Contents with
Protégé-2000. IEEE Intelligent Systems, 60-71. March/April 2001.

Herman, Ivan, Guy Melancon, and M. Scott Marshall. Graph Visualization and
Navigation in Information Visualization: a Survey. IEEE Transaction on
Visualization and Computer Graphics, Vol. 6. 2000.

Cockburn, Andy, Amy Karlson, and Benjamin B. Bederson. A Review of
Overview+Detail, Zooming, and Focus+Context Interfaces. ACM Comput. Surv.
41, 1, Article2. December 2008. 31 pages.

Catarci, Tiziana, Maria F. Costabile, Stefano Levialdi, Carlo Batini. Visual
Query Systems for Databases: A Survey. 1995

Krzyvinski, Martin. Schemaball: A New Spin on Database Visualization.
SysAdmin Journal. August 2004. Vol. 13 Issue 08.

http://www.dojotoolkit.org/
http://jung.sourceforge.net/

Kamada, Tomihisa, and Satoru Kawai. An Algorithm for Drawing General
Undirected Graphs. Information Processing Letters. 31. 7-15. 1989

Fruchterman, Thomas M.J., and Edward M. Reingold. Graph Drawing by Force-
directed Placement. Software-Practice and Experience, Vol. 21(1 1), 1129-1164.
November 1991

Meyer, Bernd. Self-Organizing Graphs A Neural Network Perspective of Graph
Layout. Graph Drawing. August 1998.

http://www.opensymphony.com/webwork/
http://jscook.yuanheng.org/JSCookTree/
http://jscook.yuanheng.org/JSCookMenu/

http://www.cs.umd.edu/hcil/jazz/

45

APPENDIX A

SNIPPET OF XML FILE CONTAINING GUS SCHEMA INFORMATION

<?xml version="1.0"7>

<database name="null"><schemas>

<schema name="Core">

<tables>

<table id="Core/Algorithm" name="Algorithm" housekeeping="true" versioned="true"
tablespace="USERS" categoryRef="Algorithm" updatable="true">

<columns>

<column id="Core/Algorithm/ALGORITHM_ID" name="ALGORITHM_ID" nullable="false"
length="5" precision="0" type="NUMBER"/>

<column id="Core/Algorithm/NAME" name="NAME" nullable="false" length="100"
precision="0" type="STRING"/>

<column 1d="Core/Algorithm/DESCRIPTION" name="DESCRIPTION" nullable="true"
length="255" precision="0" type="STRING"/>

</columns>

<indexes>

<index name="PK_ALGORITHM" tablespace="USERS" type="NORMAL">
<columns>

<column idref="Core/Algorithm/ALGORITHM_ID"/>

</columns>

</index>

</indexes>

<constraints>

<constraint name="PK_ALGORITHM" type="PRIMARY_KEY">
<constrainedColumns>

<column idref="Core/Algorithm/ALGORITHM_ID"/>

</constrainedColumns>

</constraint>

</constraints>

</table>

<table id="Core/AlgorithmImplementation" name="AlgorithmImplementation"
housekeeping="true" versioned="true" tablespace="USERS" categoryRef="Algorithm"
updatable="true">

<columns>

<column id="Core/AlgorithmImplementation/ALGORITHM_IMPLEMENTATION_ID"
name="ALGORITHM_IMPLEMENTATION_ID" nullable="false" length="5" precision="0"
type="NUMBER"/>

<column id="Core/AlgorithmImplementation/ALGORITHM_ID" name="ALGORITHM_ID"
nullable="false" length="5" precision="0" type="NUMBER"/>

46

<column id="Core/AlgorithmImplementation/VERSION" name="VERSION" nullable="true"
length="10" precision="0" type="STRING"/>

<column id="Core/AlgorithmImplementation/CVS_REVISION" name="CVS_REVISION"
nullable="true" length="20" precision="0" type="STRING"/>

<column id="Core/AlgorithmImplementation/CVS_TAG" name="CVS_TAG" nullable="true"
length="100" precision="0" type="STRING"/>

<column id="Core/AlgorithmImplementation/EXECUTABLE" name="EXECUTABLE"
nullable="true" length="255" precision="0" type="STRING"/>

<column id="Core/AlgorithmImplementation/EXECUTABLE_MDS5"
name="EXECUTABLE_MD5" nullable="true" length="32" precision="0" type="STRING"/>
<column id="Core/AlgorithmImplementation/DESCRIPTION" name="DESCRIPTION"
nullable="true" length="500" precision="0" type="STRING"/>

</columns>

<indexes>

<index name="ALGORITHMIMPLEMENTATION_INDO1" tablespace="USERS"
type="NORMAL">

<columns>

<column idref="Core/AlgorithmImplementation/ALGORITHM_ID"/>

</columns>

</index>

<index name="PK_ALGORITHMIMPLEMENTATION" tablespace="USERS"
type="NORMAL">

<columns>

<column idref="Core/AlgorithmImplementation/ALGORITHM_IMPLEMENTATION_ID"/>
</columns>

</indexes>

<constraints>

<constraint name="ALGORITHMIMPLEMENTATION_FK04" type="FOREIGN_KEY">
<constrainedColumns>

<column idref="Core/AlgorithmImplementation/ALGORITHM_ID"/>
</constrainedColumns>

<referencedTable idref="Core/Algorithm"/>

<referencedColumns>

<column idref="Core/Algorithm/ALGORITHM_ID"/>

</referencedColumns>

</constraint>

<constraint name="PK_ALGORITHMIMPLEMENTATION" type="PRIMARY_KEY">
<constrainedColumns>

<column idref="Core/AlgorithmImplementation/ALGORITHM_IMPLEMENTATION_ID"/>
</constrainedColumns>

</constraint>

</constraints>

</table>

47

APPENDIX B

XML FILE CONTAINING GUS SCHEMA CATEGORY INFORMATION

<?xml version="1.0"7>
<organization>

<supercategory name="Sequence and Features">
<category name="NA Sequence"/>
<category name="AA Sequence"/>
<category name="NA Sequence Features"/>
<category name="AA Sequence Features"/>
<category name="Feature Relations"/>
<category name="GenBank Sequence Record"/>
<category name="Similarity"/>
<category name="Assembly"/>
<category name="Motifs"/>

</supercategory>

<supercategory name="Function">
<category name="Central Dogma"/>
<category name="Paralog and Family"/>
<category name="Sequence Ortholog, Paralog, Family"/>
<category name="AA Ortholog"/>
<category name="Mapping"/>
<category name="Clones"/>
<category name="Interaction"/>
<category name="GO Association"/>
<category name="Variation"/>
<category name="Raw Mass Spectrometry Results"/>
<category name="Protein Identification (From Mass Spec Analysis)"/>

</supercategory>

<supercategory name="Transcription Regulation">
<category name="Regulation Framework"/>
<category name="Regulatory Moieties"/>
<category name="Regulatory Activities"/>
<category name="Comments"/>
<category name="Models"/>
<category name="Multinomial Models"/>
<category name="Families of Similar Models"/>
<category name="Occam's Razor"/>
<category name="High Volume Genome Annotation"/>
<category name="Training Sets"/>

48

</supercategory>

<supercategory name="Experiment">
<category name="Protocols"/>
<category name="Data Transformations and Analyses"/>
<category name="Learning Models"/>
<category name="Model-based Regulatory Feature Prediction"/>
<category name="Bounded Collection Grammars"/>
<category name="Platform"/>
<category name="Assay"/>
<category name="Quantified Data"/>
<category name="Experimental Design"/>
<category name="Biomaterials"/>
<category name="(Mixed) Ontologies"/>
<category name="Integrity"/>

</supercategory>

<supercategory name="Provenance'">
<category name="Algorithm"/>
<category name="External Database"/>
<category name="Bibliographic"/>
<category name="Evidence"/>

</supercategory>

<supercategory name="Vocabularies">
<category name="Anatomy Vocabulary"/>
<category name="Gene Ontology"/>
<category name="Enzymes Vocabulary"/>
<category name="Taxon Vocabulary"/>
<category name="Developmental Stage Vocabulary"/>
<category name="Disease Vocabulary"/>
<category name="Genetic Code Vocabulary"/>
<category name="Generic Ontology"/>
<category name="Mutagens Vocabulary"/>
<category name="Phenotype Vocabulary"/>
<category name="Sequence Ontology"/>
<category name="Repeat Types Vocabulary"/>
<category name="Sequence Types Vocabulary"/>

</supercategory>

<supercategory name="Administration">
<category name="Meta Info"/>
<category name="Administration"/>
<category name="Misc Applications"/>
<category name="Text Search"/>

</supercategory>

</organization>

49

