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Abstract

This thesis describes a novel Monte Carlo simulation algorithm for the estimation of

the model parameters of kinetic rate equation systems, describing biochemical reaction net-

works; and for the quantitative prediction of the time-dependent behavior of real biochem-

ical systems described by such kinetics models. This simulation method, referred to as the

super-ensemble approach, combines Monte Carlo sampling of the kinetics model parameter

space with a simultaneous Galerkin-type variational Monte Carlo solution of the underlying

kinetic rate equation system. Unlike the recently proposed and closely related “standard”

ensemble simulation method, the super-ensemble does not rely on the high-volume execu-

tion of a conventional serial ordinary differential equation(ODE) solver algorithm, and it is

therefore amenable to an efficient scalable parallelization by straightforward time domain

decomposition techniques. With minor modifications, the super-ensemble algorithm can also

be deployed as a parallelizable variational ODE solution method, in a conventional ODE

solver setting where a unique ODE solution is sought for given initial conditions and given

rate functions. Test applications of the super-ensemble algorithm in both ODE solver mode

and in parameter estimation mode, for a simple enzyme catalysis model, will be discussed.
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Chapter 1

Introduction

Chemical reaction networks provide us a simple and general framework for quantitatively

modeling a biological system’s dynamic behavior in terms of the time-dependent concen-

trations of molecular species. These time-dependent concentrations of molecular species in

a reaction network can be expressed as a system of coupled ordinary differential equations

(ODE), the kinetic rate equations. In principle, such an ODE model of a biochemical net-

work may enable us to describe how biochemistry and genetic activity of a cell evolves as a

function of time. It has been successfully applied to systems like metabolic networks, signal

transduction, and cell cycle models [13, 19]. In a deterministic modeling approach, given all

rates coefficients and initial concentrations of the network, the chemical network’s behavior

will be completely determined by a unique solution of its ODE system.

To estimate the relevant kinetic rate equation model parameters is a crucial step in quan-

titatively describing and predicting both the dynamics and long-term steady state behavior

of a biochemical system, which, in turn, can promote further understanding of biological

mechanisms at the systems level. However, experimental biologists working with real bio-

logical networks face the problem that the model parameters are mostly unknown, and the

experimental data are typically noisy and not available in adequate amounts for quantita-

tive studies. This makes the identification of model parameters a formidable problem. The

ensemble method, using a combination of Monte Carlo simulation and ODE solving tech-

niques, has been proposed to sidestep this problem [2, 4, 20]. The essential idea is not to try

to identify one unique set of model parameters, but rather generate a statistical ensemble

of candidate models constrained by the available experimental data, in such a manner that

1
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those models yield model predictions most consistent with the experimental data. This is

achieved by sampling an ensemble probability distribution function that measures the good-

ness of fit of the model predictions with respect to the given experimental data set, using

Monte Carlo methods. Given such a sample of model parameter sets, this approach can then

predict ensemble averages along with their higher moments and statistical distribution. Move

importantly, it enables us to predict outcomes, and guide the design of, new experiments

which can then further reduce the uncertainties of model prediction [6].

In this thesis, I will develop and explore a new computational Monte Carlo-based

approach towards kinetic rate equation ensemble modeling of biological networks referred to

as the super-ensemble method. In contrast to the existing “standard” ensemble approach [2,

4, 20], the super-ensemble does not require a completely de novo numerical re-solution of

the underlying ODE system every time an ensemble Monte Carlo update is being executed.

Instead, the super-ensemble approach combines the ensemble Monte Carlo sampling of the

kinetics model parameter space with a variational Monte Carlo exploration of the ODE

solution space based on a Galerkin-type cost functional [8].

The standard ensemble method [2, 4, 20] employs conventional numerical ODE solvers,

such as the Runge-Kutta and the backward differentiation methods, which have to be exe-

cuted on the order of 106 to 108 times during a typical simulation. Since these ODE solving

algorithms are intrinsically serial in nature, the standard ensemble method does not allow

for the implementation of efficient parallelization strategies. By contrast, the super-ensemble

Monte Carlo algorithm immediately lends itself to an obviously scalable time domain decom-

position parallelization approach.

With a very simple modification in its Monte Carlo initialization and an approximate

choice of a virtual experimental input data set, the super-ensemble algorithm can also be

employed as a parallelizable ODE solution method in a conventional ODE solver setting.

In this setting all ODE initial conditions and all rate function parameters are given, and
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the super-ensemble algorithm then produces a reasonable variational approximation to the

unique exact ODE solution.

The sections of this thesis are organized as follows: in Chapter 2, I introduce the general

kinetics rate equation formalism for the modeling of chemical and biological reaction net-

works and a simple enzyme catalysis kinetics model to illustrate this formalism. In Chapter

3, I briefly recapitulate the standard ensemble method, and I then describe the proposed

new super-ensemble formalism. In Chapter 4, I reformulate the kinetics ODE system so

that the super-ensemble becomes fully parallelizable, with multiple processors being able to

performing multiple Monte Carlo updates simultaneously. In Chapter 5, I describe the gener-

ation of virtual experimental data sets and the detailed Monte Carlo protocols which will be

used to test the performance of the super-ensemble for the simple biochemical enzyme catal-

ysis kinetics model introduced in Chapter 2. In Chapter 6, I present the test results which

I have obtained, with my super-ensemble Monte Carlo code for a simple enzyme catalysis

model. Application of the code in both variational ODE solver mode and in full ensemble

simulation mode will be discussed. In Chapter 7, I present a brief summary and concluding

remarks.



Chapter 2

Kinetics ODE Models of Chemical and Biological Network

2.1 A simple Example: The Enzyme Model

Biological systems can be viewed as chemical reaction networks[3]. Here I describe a simple

reaction network for a typical enzymatic reaction in a biological system to exemplify the

reaction kinetics modeling of such networks. This model consists of four species, the enzyme

E, the substrate S, the product P , and the enzyme-substrate complex ES2, which participate

in the following four reactions

r = 1 : E + 2S → ES2 (2.1)

r = 2 : ES2 → E + P (2.2)

r = 3 : ES2 → E + 2S (2.3)

r = 4 : P + E → ES2 (2.4)

where r = 1, . . . ,R = 4 labels the reactions. This network can be viewed as a simple model

for the catalytic conversion of two copies of substrate molecules S into one copy of product

molecule P , mediated by enzyme E acting as the catalyst. Note that r = 3 is the backward

reaction to r = 1, and r = 4 is the backward reaction to r = 2.

Such a reaction network can also be graphically represented by a reaction network dia-

gram, as shown and explained in Figure 2.1 [20]. These types of network graphs, consisting

of two type of vertices (boxes and circles) with directed edges (arrows) connecting only

pairs of different types of vertices, are also referred to as Petri nets in the graph theory

4
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Figure 2.1: Graphical Representation of the reaction network defined in Equation 2.1 - 2.4.
Each rectangular box represents a molecular species. Each circle represents two possible reac-
tions: a forward reaction, proceeding in the direction of the arrow, and a backward reaction,
proceeding against the arrow direction. The number of arrows drawn from a species box or
from a reaction circle indicates the number of molecules of that species entering or leaving
the forward reaction, respectively. For the corresponding backward reaction, molecules are
entering and leaving against the respective arrow direction.
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literature [16]. A number of qualitative graph theoretical analysis tools, based solely on the

network topology, have been developed. The aim of the kinetics ensemble modeling approach

is to go beyond purely topological considerations in order to elucidate the kinetic-based time

evolution of these systems in more quantitative detail.

The kinetics of each reaction component in such a network can be characterized by the

so-called kinetic rate coefficients. For this enzyme model, the corresponding four reaction

rate coefficients are denoted by θ1, . . . , θ4. These rate coefficients govern the kinetics of this

system, described by coupled set of ODEs. Assuming mass balance kinetics [17, 18, 12], the

coupled ODEs for this enzyme model are:

d[E]

dt
= −θ1[E][S]2 + θ2[ES2] + θ3[ES2]− θ4[P ][E] (2.5)

d[ES2]

dt
= θ1[E][S]2 − θ2[ES2]− θ3[ES2] + θ4[P ][E] (2.6)

d[S]

dt
= −2θ1[E][S]2 + 2θ3[ES2] (2.7)

d[P ]

dt
= θ2[ES2]− θ4[P ][E] (2.8)

In the simulations described later, I have simplified the enzyme model somewhat by

assuming that the reaction ES2 → E + P is irreversible and therefore set

θ4 = 0 (2.9)

2.2 General Kinetics ODE Formalism for Reaction Networks

In general, the kinetic ODEs in a reaction network have the form

ψ̇s(t) = fs(ψ (t), t) (2.10)

where

ψ̇s(t) := dψs/dt, the first time derivative of the concentration of species s.
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s = 1, . . ., S, is the index of species in the reaction network.

S is the number of species in a reaction network.

ψ (t) := (. . . , ψs(t), . . .), a S-dimensional vector of all species concentrations.

and the rate functions follow mass balance kinetics

fs(ψ , t) =
R∑

r=1

gsrγr(t)θr

S∏
s′=1

(ψs′)hs′r (2.11)

where

r = 1 . . . , R, is the index of reactions in the network.

R is the number of reactions.

Θ = (. . ., θr, . . .) is the R-dimensional vector of the reaction rate coefficients for

reaction network.

hs′r is the matrix of stoichiometric input coefficient, i.e., the number of copies of

molecules of s′ entering reaction r.

gsr is the matrix of stoichiometric net production coefficients of species s in reaction

r.

γr(t) are externally controlled modulation factors, e.g. due to externally controlled

time-dependent thermal cycling, light-exposure of feeding schedules.

In this thesis I only consider the situation without external modulation, so γr(t) = 1, and

the rate functions fs do not have any explicit time-dependence, i.e., fs = fs(ψ) only. For the

enzyme model example, the values of gsr and hsr are shown in Table 2.1. Note that, in the

general case (Equation 2.11), if r̄ is the backward reaction of r, then

gsr = hsr̄ − hsr (2.12)
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Table 2.1: Table of coefficients for Enzyme model

(a) Table of hsr for Enzyme model, where hsr

is the stoichiometric input coefficient
``````````````̀Species s

Reaction r
1 2 3 4

E 1 0 0 1
ES2 0 1 1 0
S 2 0 0 0
P 0 0 0 1

(b) Table of gsr for Enzyme model, where gsr is the
net stoichiometric production coefficient
``````````````̀Species s

Reaction r
1 2 3 4

E -1 1 1 -1
ES2 1 -1 -1 1
S -2 0 2 0
P 0 1 0 -1

and hence,

gsr̄ = −gsr (2.13)

Given all rate coefficients θr, all modulation factors γr(t) and all initial concentrations

ψs(t0) at some initial time t0, the solution to the ODE system is uniquely determined and

can be obtained by conventional numerical ODE solving methods [5, 14].



Chapter 3

The super-Ensemble Method

3.1 The Standard Ensemble Monte Carlo(MC) Method

As in the study of systems biology, most realistic biological networks, for the foreseeable

future, are likely to be parameter rich and data poor. This makes identification of unique

model parameters extremely difficult. The standard ensemble approach [2, 4, 20] was devel-

oped to circumvent this problem based on ideas that are borrowed from statistical mechanics.

Instead of trying to identify one unique parameterization model, it aims to identify an

ensemble of models consistent with the available experimental data and it uses MC simula-

tion techniques to generate random samples of model parameterizations that represent this

ensemble.

The standard ensemble method starts from a probability distribution function on the

space of all model parameters Γ, given by

Q(Γ) =
1

Z
exp[−HQ(Γ)] (3.1)

here Z is the normalization factor Z =
∫
Γ exp[−HQ(Γ)], Γ is the vector of all unknown

model parameters, and
∫
Γ denotes integration over Γ space. The Γ consists of all the rate

coefficients θr and initial concentrations

X := (. . . , Xs, . . .) := (. . . , ψs(t0), . . .) (3.2)

which are required to specify a unique solution to the ODE model, i.e.,

Γ := (Γ1, . . . ,ΓM) = (X1, . . . XS , θ1, . . . , θR) (3.3)

9
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where

M = S +R (3.4)

Γm =


Xm 1 ≤ m ≤ S

θm−S S + 1 ≤ m ≤ R
(3.5)

More generally, the model parameter vector Γ could also include unknown unit conver-

sion factors or unknown stoichiometric coefficients hsr, in cases where the reaction network

topology is partially unknown. In this thesis I will not consider such cases, i.e., Γ will still

be given by Equation 3.5.

The so-called fictitious energy function HQ(Γ) is given by

HQ(Γ) =
∑
n,s

(ψs(t̄n;Γ)− Zn,s)
2/(2σ2

n,s) (3.6)

where

n is the index of the experimental observation time points, n = 1...N .

N is the number of experimental observation time points.

t̄n are the experimental observation time points.

Zn,s is the experimentally observed concentration of species s at time t̄n.

σn,s is the standard deviation of the experimental data point Zn,s of species s at

time t̄n.

Note that ψs(t;Γ) for species s at time t denotes the solution of ODE model, obtained with

the model parameter vector Γ. I now explicitly include the dependence of the ODE solution

ψs on the model parameters in the argument of ψs(t;Γ). Note that HQ(Γ) is essentially just

the standard χ2-function used in least-square fitting procedures. HQ(Γ) is a measure of how

well the model prediction Ψs(t̄n,Γ) for a given choice of model parameters Γ match as the

experimental data Zn,s. If a sufficient amount of data Zn,s of sufficient quality, i.e. “small”
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σn,s, is available, one can simply perform a non-linear least-squares fit to extract values for

the model parameters Γ from the data, by minimizing HQ(Γ) := 1
2
χ2(Γ) with respect to Γ.

However, in typical biological applications, the data are noisy and for many species s

only a few or no data points at all have been measured. As a consequence, the (absolute)

minimum of HQ(Γ) is either poorly defined, or worse, there is no unique local minimum that

clearly defines “the” best fit to the data; rather, there is an entire manifold (hypersurface)

of points in Γ-space such that all Γ-points on that manifold give an equally good fit to the

data.

The basic idea of the ensemble approach is therefore to generate not one unique Γ pro-

viding “the” best fit to the data, but rather a statistical sample of all Γ that are consistent

with the data. The probability distribution function Q(Γ) in Equation 3.1 defines that Γ-

sample. If a Γ gives a good fit to the data,HQ(Γ) is “small”; therefore Γ has a high probability

Q(Γ) for being included in the sample; Γ giving a bad fit to the data have a “large” HQ(Γ)

and therefore a low probability. The standard ensemble method then proceeds by calculating

the ensemble average over Γ space, i.e., for some quantities A(Γ), one wants to calculate

< A(.) >Q:=
∫
Γ
A(Γ)Q(Γ) (3.7)

where
∫
Γ again stands for integration over Γ. Such an average can then be used to predict

the outcome of future experiments. Also, the ensemble standard deviation(ESD) of A

σ[A] := (< [A(.)− < A(.) >Q]2 >Q)1/2 (3.8)

can be used to quantify the uncertainty of such predictions.

The evaluation of such ensemble averages < . . . >Q is carried out by standard Markov

Chain Monte Carlo(MC) approaches [10], such as the Metropolis method. In such an MC

approach one numerically performs a random walk in Γ-space in such a way that any Γ

is visited by the random walk with a probability distribution that equals Q(Γ), after a

sufficiently large number of random steps. For example in the Metropolis MC method [10],

the random walk proceeds by the following random updating scheme:
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1. Given Γ = (Γ1, . . . ,ΓM), select a random m from (1, . . . ,M)

2. Propose a change of Γm to

Γ′m = Γm + ∆m × (2u− 1) (3.9)

where u is a random number drawn uniformly from [0, 1] and ∆m is a stepwidth param-

eter to be adjusted for optimal performance, as described later ( in Section 5.4).

3. Set

Γ′ = (Γ1, . . . ,Γm−1,Γ
′
m,Γm+1, . . . ,ΓM) (3.10)

and accept the proposed change Γ → Γ′ with the Metropolis acceptance probability

pQ(Γ → Γ′) = min(1,
Q(Γ′)

Q(Γ)
) (3.11)

= min(1, exp[−∆HQ(Γ → Γ′)]) (3.12)

where ∆HQ(Γ → Γ′) = HQ(Γ′)−HQ(Γ).

4. If the change Γ → Γ′ is accepted, set Γ to Γ′, otherwise leave Γ unchanged.

This four-part updating step is repeated sufficiently many times until the random Γ

produced are distributed according to Q(Γ) [10].

3.2 The Super-Ensemble Method

Although successful in the reconstruction of smaller biological networks such as the qa gene

cluster [11, 2] and the biological clock [2], the kinetics model ensemble method in its current

standard form [20, 2, 4] has two drawbacks in large-systems applications: it is highly CPU-

time intensive and of limited parallelizability. The network’s kinetic rate equations have to

be re-solved for each proposed ensemble Monte Carlo (MC) updating step, i.e., typically 106

-108 times per simulation. Conventional ordinary differential equation (ODE) solvers, such

as adaptive Runge-Kutta or backward differentiation [14, 5], are serial and slow: the “next”
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ODE step at time t+ h requires a complete knowledge of the solution at the previous t; and

the numerics operates on an “all-or-nothing” principle in that the ODE solver either gener-

ates a highly accurate solution of typically 10−4% relative error or better or else succumbs

to numerical instability. This level of accuracy is “overkill” in kinetics model ensemble MC

applications, where a “quick and dirty” ODE solution with, say, up to 10% relative error

would suffice, since the error bars of experimental t-dependent concentration data entering

into the ensemble probability distribution Q(Θ) are typically at or above the 10% level. Also,

the equilibration of conventional MC updating schemes, such as Metropolis [10], are intrin-

sically serial in a kinetics model ensemble setting: the “next” update cannot be done before

the last one is completed, and the network’s kinetics ODE system constitutes a highly non-

local and heterogeneous coupling environment in the network-spatial and temporal domain.

This non-locality of the standard ensemble energy function HQ precludes effective domain

decomposition parallelization strategies.

The basic idea of the super-ensemble is to combine the Monte Carlo exploration of the

model parameter Γ space and the solution of ODE system into a single MC procedure. To

do this, I expand the space of MC variables to include both the orginal Θ-vector of the

standard ensemble method and an additional vector of variational variables denoted by Y,

which are used to represent an approximate variational solution to the ODE system of the

reaction network, denoted by Ψ(t;Y) = (. . ., Ψs(t;Y), . . .), as defined later.

On this expanded (Θ,Y)-space, I define an expanded fictitious energy function:

H(Θ,Y) = βXHX(Y) + βKHK(Θ,Y), (3.13)

here H is the sum of two weighted contributions HX and HK, with positive weight factors

βX and βK, respectively. In the first piece of H, HX, the so-called experimental part of the

energy, is the original standard ensemble energy function with the exact kinetic solution

ψs(t,Γ) replaced by the approximate variational solution Ψs(t;Y), i.e.,

HX(Y) =
∑
n,s

[Ψ(t̄n;Y)− Zn,s]
2/(2σ2

n,s) (3.14)



14

:=
∑
n,s

(ρ(X)
n,s )2, (3.15)

where the residues ρ(X)
n,s are given by

ρ(X)
n,s := (Ψs(t̄n;Y)− Zn,s)/(

√
2σn,s) (3.16)

The second piece of H(Θ,Y) is the so-called kinetic part of the energy function, defined

as

HK(Θ,Y) =
S∑

s=1

K∑
k=1

(Ψ̇s(t̂k;Y)− fs(Ψ(t̂k;Y), t;Θ))2 (3.17)

where K is the number of check points, t̂k is in a grid of time check points distributed

over the simulation time interval, to be defined later. The rate functions fs are defined as in

Equation 2.11,with the dependence on the Θ-variables now explicitly shown in the argument

list of fs(Ψ, t;Θ).

The vector of variational ODE solutions Ψ comprises the time-dependent variational

solutions Ψs(t;Y) for all species s

Ψ(t;Y) = (...,Ψs(t;Y), ...) (3.18)

and

Y = (..., yi,s, ...) (3.19)

The Ψs are given in terms of variational amplitude variables yi,s by:

Ψs(t;Y) =
∑

i

yi,sΦi(t), (3.20)

where the Φi(t) are an appropriately chosen set of basis functions, as described in more detail

below in Section 3.3, and i = 0, ..., I with I + 1 being the number of basis functions in the

set {Φi}.

The kinetic part of the fictitious energy, HK, is the sum of the squared residues of the

kinetic rate equations,

HK =
∑
s,k

(ρ
(K)
s,k )2 (3.21)

ρ
(K)
s,k = Ψ̇s(t̂k,Y)− fs(Ψ(t̂k;Y), t̂k;Θ) (3.22)
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that is the difference between the right hand side and left hand side of Equation 2.10,

evaluated at the check point time t̂k. If Ψs(t;Y) were to obey exactly the ODE system, then

all ρ
(K)
s,k would be zero, and HK would be minimized with zero value. In the actual super-

ensemble calculation, Ψs(t;Y) will not exactly obey the ODE. However, by minimizing

HK with respect to Y, I expect to generate a reasonably accurate approximate solution

Ψs(t;Y) to the ODE system. The larger the number of basis functions Φi(t) included in

Equation 3.20 to represent Ψs(t;Y) and the denser the check point grid t̂k being used in HK,

the more accurately I expect Ψs(t;Y) to approximate the exact solution to ODE system

(Equation 2.10) after minimizing HK.

This variational approach has been frequently used for the numerical solution of par-

tial differential and integral equations in higher dimensions and is known as the Galerkin

approach in the literature [8]. However, this approach does not appear to have been used

for ordinary differential equations. This is probably due to the fact that highly accurate

sequential ODE solving algorithms are available, which are very efficient when only a few,

high accuracy solutions of an ODE system are required, for given initial conditions. In the

present context, as noted in the earlier part of this section, I only need low-accuracy approx-

imate ODE solutions, but I need many of them, and I need a parallelizable method for

calculating them efficiently. Also, I am not given the initial conditions of the ODE system,

but rather the ODE solutions are constrained by the requirement that the solution ψ opti-

mally match the experimental data Zn,s which are spread out along the entire simulation

time interval [t0, tI ].

Furthermore, I would like to be able to take advantage of the fact that the next ODE

solution, during the MC random walk in the model parameter space, is usually similar to the

previous ODE solution already visited in the solution space. Therefore it is rather wasteful to

re-calculate the next ODE solution “from scratch” during each MC update, as is done in the

standard ensemble approach. By contrast, in the variational approach I am fully exploiting

the proximity of the next and previous ODE solution during the Monte Carlo random walk.
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Note here that minimizing HK(Θ,Y) with respect to Y will generally not produce a

unique approximate ODE solution, but rather an entire continuum of ODE solutions, cor-

responding to different choices of the initial condition X, in Equation 3.2. A unique ODE

solution would be selected from this solution continuum by performing an HK minimization

subject to the constraint

Ψ(t0;Y) = X (3.23)

However, for the task of extracting information about the ODE model parameters from

experimental data I instead constrain the ODE solution continuum by adding HX in the ficti-

tious energy H(Θ,Y). By minimizing H(Θ,Y) with respect to Θ and Y, I will then obtain

an approximate ODE solution (or a sub-continuum of such approximate ODE solutions)

which gives the best possible fit(s) to the experimental data in the limit as

βK

βX

→∞ (3.24)

In the actual ensemble simulations, I am only interested in finding approximate solutions to

the ODE system, with an accuracy not significantly better than the experimental error bars

σn,s entering in HX. I can therefore use large, but finite value of βK

βX
in the simulations.

Furthermore, the ultimate goal in the ensemble simulations is not to find the (Θ,Y)

giving the best possible fit of the model to the experimental data. Rather, I want to generate

a random sample of all model vectors (Θ,Y), which are consistent with the data. There-

fore, I again define an ensemble probability distribution analogous to the standard ensemble

distribution, but now on the expanded (Θ,Y)-space, by

Q̄(Θ,Y) =
1

Z̄
exp[−(βKHK(Θ,Y) + βXHX(Y))] (3.25)

where

Z̄ =
∫
Θ

∫
Y

exp[−(βKHK(Θ,Y) + βXHX(Y))] (3.26)

If I take

βK →∞ (3.27)
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and set

βX = 1, (3.28)

the probability distribution Q̄(Θ,Y) approximates the original standard ensemble Q(Θ,X),

to within controllable errors due to the finite basis representation. Formally this finite-basis

approximation to Q is recovered from Q̄ by integrating out the Y-variables, subject to a

δ-function constraint factor to enforce the initial conditions X on the variational functions

Ψs(t;Y), i.e.,

Q(Θ,X) ' [
∫
Y
δ(X−Ψ(t0;Y))Q̄(Θ,Y)]βK→∞,βX=1 (3.29)

So, the super-ensemble represents an approximate reformulation of the original standard

ensemble.

I again perform a Metropolis random walk over the (Θ,Y) space to generate a (Θ,Y)

MC sample drawn from Q̄(Θ,Y). The details of this Metropolis MC updating procedure

are entirely analogous to the MC updating in the standard ensemble method, as described

above in Section 3.1. The only difference is that now the (Θ,Y)-vector is subject to the MC

updates, instead of the (Θ,X)-vector used in the standard approach.

3.3 Finite Element Method and Time Grids

To define the finite element (FE) basis functions [15], I first need to lay out a grid of inter-

polation time points, defined by

ti = t0 + i× h for i = 0, . . . , I (3.30)

Although FE bases can be defined for non-equidistant grids, I will use only equidistant

grids with a grid spacing

h = (tI − t0)/I (3.31)

where t0 and tI are the initial and final time points of the simulation interval that comprises

all experimental observation times t̄n, described in Section 3.1.
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I will first consider two different choices of Lagrange FE basis functions, the first order

Lagrange FE basis, as shown in Figure 3.1(a):

Φi(t) = (1− |ξ|)Θ(1− |ξ|) (3.32)

and the second order Lagrange FE basis, as shown in Figure 3.1(b):

Φi(t) =


1
2
(|ξ| − 1)(|ξ| − 2)Θ(2− |ξ|) for even i

(1− ξ2)Θ(1− |ξ|) for odd i
(3.33)

where ξ is a re-scaled local time variable

ξ = (t− ti)/h (3.34)

and Θ(ξ) is the Heaviside step function

Θ(ξ) =


1, ξ ≥ 0

0, ξ < 0
(3.35)

The variational model solution Ψ(t) is then represented in terms of Φi(t) by

Ψs(t) =
∑

i

yi,sΦi(t) (3.36)

so that the yi,s are given by the function values at the corresponding interpolation grid

points, i.e..

yi,s = Ψs(ti) (3.37)

For Hermite FE bases [15], the basis functions acquire an additional index ν with values

ν = 0, 1, representing the value and the first order derivative of the interpolated function,

i.e, Φi(t) becomes Φi,ν(t) with corresponding local interpolation polynomials φν(ξ) so that

Φi,ν(t) = φν(|ξ|)× sgn(ξ)ν ×Θ(1− |ξ|) (3.38)

sgn(ξ) =


1, ξ ≥ 0

−1, ξ < 0
(3.39)
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(a) Illustration of first order Lagrange basis functions Φi, for i = 0, . . . , 3 with
(ti − t0)/h = i

(b) Illustration of first order Lagrange basis functions Φi, for i = 0, . . . , 3 with
(ti − t0)/h = i

Figure 3.1:
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for third order Hermite FE basis with polynomials φν(ξ).

φ0(ξ) = 2ξ3 − 3ξ2 + 1 (3.40)

φ1(ξ) = 2ξ3 − 4ξ2 + 2ξ (3.41)

The interpolated function Ψs(t) = Ψ(0)
s (t) and its first time derivative Ψ(1)

s (t) are:

Ψ(µ)
s (t) =

dµ

dtµ
Ψs(t) =

∑
i,ν

yi,s,νΦ
(µ)
i,ν (t) for µ = 0, 1 (3.42)

so that the yi,s,ν are given by function value and its first order derivative at the interpolation

grid points, i.e,.

yi,s,ν = Ψ(ν)
s (ti) for ν = 0, 1 (3.43)

Figure 3.2: Illustration for two different types of grid points: the interpolation grid ti in black
with i = 0, . . . , I = 4, and the ODE time check point grid t̂k in red with k = 1, . . . ,K. Note
that in this figure, KI = 2, thus I have K = KI × I = 8

Given the interpolation grid ti I can now also define the time check point grid t̂k referred

to earlier in Section 3.2 in the definition of HK, Equation 3.17. I have developed FE code
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for all three of the above-described FE basis functions. Preliminary results suggest that

the higher order FE bases, i.e., the second order Lagrange and third order Hermite do not

substantially improve the quality of the ODE solutions, while at the same time requiring

greater computational effort. I will therefore be using only the first order Lagrange FE

functions for the test simulations on the enzyme model, discussed below. Since Lagrange FE

basis functions have discontinuities in their first derivative at the grid points ti, I want to

construct the t̂k so as to not include any ti on the interpolation grid. I thus choose a certain

number KI of such t̂k to be equidistantly spaced in each interpolation interval [ti−1, ti], but

exclude the interval boundaries ti−1 and ti, as shown in Figure 3.2, for KI = 2 and I = 4.

Formally, the check point grid t̂k is then defined by

t̂1 =
h

KI + 1
= ĥ (3.44)

t̂k+1 =


t̂k + ĥ if t̂k + ĥ 6= ti for all i

t̂k + 2ĥ if t̂k + ĥ = ti for i 6= I
(3.45)

In all test simulations discussed in Chapter 6, I have used KI = 1 check point per

interpolation interval.



Chapter 4

Time-Domain Parallelization

4.1 Fully Parallelizable Reformulation of the super-ensemble Method

The super-ensemble method outlined in the previous section is well suited for implementation

on a serial computer. Unfortunately, it still does not lend itself to an efficient, scalable

parallelization. This is due to the fact that the energy function H depends non-locally on all

reaction rates variables Θ. That is to say, a Metropolis update of a single θr variable changes

the values of the residues ρ
(K)
s,k at all time check points t̂k. This temporal non-locality prevents

me from implementing an efficient domain decomposition along the time axis.

One could of course try to do a domain decomposition in the species (s) domain. However,

this type of decomposition would present serious difficulties with load balancing, since the

reaction networks I consider are typically very in-homogeneous, i.e., there is no regularity in

the network topology like the regular crystal lattices one encounters in solid state physics.

To make the super-ensemble method parallelizable, I remove this time non-locality from

the energy function by introducing additional fictitious molecular species into the network

labeled by species index values

s = S + 1, . . . ,S +R (4.1)

with corresponding time dependent concentration functions ψs(t). Each of these fictitious

ψs(t) is associated with a corresponding reaction

r = s− S (4.2)

or

s = S + r (4.3)

22
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and they are incorporated into the ODE model by modifying the ODE system

ψ̇s(t) = fs(ψ(t), t) (4.4)

for s = 1, . . . ,R+ S with new rate functions fs as follows:

fs(ψ , t) =


R∑

r=1

gsrγr(t)ψS+r(t)
S∏

s′=1

ψs′(t)hs′r for s = 1, . . . ,S

0 for s = S + 1, . . . ,S +R
(4.5)

Because of Equation 4.5, the fictitious ψs(t) for s = S + 1, . . . ,S + R have no time

dependence, i.e.,

ψs(t) = ψs(t0) = Xs = const (4.6)

for all t ∈ [t0, tI ].

Also note that in Equation 4.5, the fictitious ψS+r has simply replaced the rate coefficient

θr in the original rate function fs in Equation 2.11. Therefore, if I simply set the initial value

of ψS+r(t) to the rate coefficient value θr,

ψS+r(t0) = θr (4.7)

then the resulting ODE system Equation 4.4 will have exactly the same solution, as the

original ODE system in Equation 2.10. The modified ODE model Equation 4.4, 4.5 and 4.7

is mathematically equivalent to the original Equation 2.10 and 2.11.

However, I can now use this expanded fictitious species reformulation of the ODE model,

Equation 4.4 and 4.5 as the basis for a super-ensemble energy function H with a probability

distribution Q̄ in complete analogy to the construction of the super-ensemble method in

Section 3.2. Using the expanded ODE model with fictitious species ψS+r(t) has the great

advantage that the rate coefficients θr and their non-local effects on the energy function

H have been completely eliminated from the ensemble distribution: the θr variables of the

original super-ensemble method have been replaced by the amplitude variables yi,S+r of the
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variational fictitious species concentration ΨS+r(t;Y). In the limit βK/βX → ∞, or practi-

cally speaking, sufficiently large finite βK/βX, the ODE solution constraint on ΨS+r(t;Y) will

be enforced by the ensemble so that the ΨS+r(t;Y) sampled in the simulation are approxi-

mately constant and their constant values represent the original rate coefficient θr.

The expanded ODE model ψ̇s = fs with s = 1, . . . ,S +R and its rate function fs(ψ, t)

can be written in the same form as the original version Equation 2.10 and 2.11, if I set the

stoichiometric coefficients

hs,r = δs,S+r and gs,r = 0, for


s = S + 1, . . . ,S +R

r = 1, . . . ,R
(4.8)

i.e., for all fictitious species, there is no net production and a fictitious species s = S + r

affects only the rate of its own reaction r.

In the corresponding super-ensemble formulation H = H(Y) and Q̄ = Q̄(Y), with

expanded Y-vector including yi,s-variables for s = 1, . . . ,S + R, HK and HX can then be

written as sums of local coupling terms, h
(i,s)
K (Y) and h

(i,s)
X (Y), respectively, which are local

both in the time (i) and in the species (s) domain, as follows:

HK(Y) =
I∑

i=0

S+R∑
s=1

h
(i,s)
K (Y) (4.9)

HX(Y) =
I∑

i=0

S+R∑
s=1

h
(i,s)
X (Y) (4.10)

where h
(i,s)
K (Y) and h

(i,s)
X (Y) comprise all squared residues ρ

(K)
k,s and ρ(X)

n,s whose time points

at t̂k or t̄n, respectively, fall within the interval

Ii = (ti−1, ti] = {t|ti−1 < t ≤ ti} (4.11)

So,

h
(i,s)
K =

∑
k,t̂k∈Ii

(ρ
(K)
k,s )2 (4.12)

h
(i,s)
X =

∑
n,t̄n∈Ii

(ρ(X)
n,s )2 (4.13)



25

Futhermore, h
(i,s)
K and h

(i,s)
X depend only a local subset of variables yi′,s′ with (i′, s′) in

the coupling neighborhood of (i, s), denoted by V(i, s), defined by

V(i, s) = VI(i)× VS+R(s) = {(i′, s′) | i′ ∈ VI(i), s′ ∈ VS+R(s)} (4.14)

where

VI(i) = {i′ | 0 ≤ i′ ≤ I, and i− iΦ ≤ i′ < i+ iΦ} (4.15)

VS+R(s) = {s′ | ≤ s′ ≤ S +R,∃r = 1, . . . ,R : gsrhrs′ 6= 0} (4.16)

and iΦ denotes the range of the FE basis functions Φi(t), i.e.,

iΦ =


1 for the 1st order Lagrange and 3rd oder Hermite FE

2 for the 2nd order Lagrange FE
(4.17)

Here VI(i) is the set of local temporal neighbors i′ which are coupled to i within the finite

range of the FE basis function Φi(t). Also VS+R(s) is the set of all local species neighbors s′

which are coupled to s by affecting the rate of any reaction r that either produces (gs,r > 0)

or consumes (gs,r < 0) species s.

Due to the locality of H(Y), a local update of a yi′s′ variable at site (i′, s′):

yi′,s′ → y′i′,s′ = yi′,s′ + ∆i′,s′(2u− 1), (4.18)

with uniform random number u ∈ [0, 1], changes the local coupling terms

hi,s(Y) = βKh
(i,s)
K (Y) + βXh

(i,s)
X (Y) (4.19)

only for a small number of affected sites (i, s), i.e.,

∆H(Y → Y′) = H(Y′)−H(Y) =
∑

i,s∈U(i′,s′)

[hi,s(Y
′)− hi,s(Y)] (4.20)

Here U(i′, s′) is the local “sphere of influence” of site (i′, s′), defined in terms of the coupling

neighbors V(i, s) (Equation 4.14) as follows:

U(i′, s′) = {(i, s) | (i′, s′) ∈ V(i, s)} (4.21)
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Note that, in general, U(i′, s′) is not the same as V(i′, s′), since the “connectivity relation”

between s′ and s,

C(s, s′) : ∃r ∈ {1, . . . ,R} : gsrhs′r > 0 (4.22)

of the (expanded) ODE network is generally not symmetric: species s′ may affect the rate fs

for species s without fs′ being affected by s. For example, in a single-step catalytic reaction

A+ C → B + C (4.23)

the catalyst C affects the rate of net production of A and B, but A and B do not affect the

production of C.

The locality of ∆H(Y → Y′) can be exploited to achieve an efficient scalable paralleliza-

tion of the super-ensemble MC algorithm. This will now be described.

4.2 Parallel super-ensemble MC Algorithm

The MC updating procedure is organized into MC sweeps where one MC sweep consists of

D = (I + 1)× (S +R) = dim(Y) (4.24)

single-yi,s Metropolis moves and D is the dimension of Y vector, i.e,. the total number of yi,s-

variables. So during each sweep, each yi,s variable is visited once, on average, for a Metropolis

move described in Section 3.1, Equation 3.9 and in Equation 4.18.

To distribute efficiently the task of performing such an MC sweep over multiple processors,

I use a time-domain decomposition. Given P processors, numbered

p = 0, . . . ,P − 1 (4.25)

I assign a sub-domain of consecutive time slices i

i(−)(p) ≤ i ≤ i(+)(p) (4.26)

to each processor p, as illustrated in Figure 4.1 for I = 15, and P = 4. Neighboring processors

p and p+ 1 control neighboring sub-domains, that is

i(−)(p+ 1) = i(+)(p) + 1 for p = 0, . . . ,P − 2 (4.27)
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and the sub-domains cover all time slices:

i(−)(0) = 0, i(+)(P − 1) = I (4.28)

The size of the sub-domain of each processor

∆i(p) = i(+)(p)− i(−)(p) + 1 (4.29)

must cover at least twice the range of the FE basis function Φi. That is, we require

∆i(p) ≥ 2iΦ (4.30)

To achieve load balancing, the sub-domain sizes ∆i(p) of all processors should be approxi-

mately the same. So, ideally, if I + 1 is divisible by P ,

∆i(p) = (I + 1)/P for all p = 0, . . . ,P − 1 (4.31)

or else

I + 1

P
− 1 < ∆i(p) <

I + 1

P
+ 1 (4.32)

I expect linear speed-up of the computation as long as

∆i(p) � 1 (4.33)

or equivalently

I + 1 � P (4.34)

When P becomes comparable to I, the computation speed will begin to saturate, or even

decrease, as interprocessor communication time, as described below, begin to dominate over

intraprocessor computation.

For very large networks and correspondingly large P , additional speed-up may be

obtained by sub-dividing not only the time (i) but also the species (s) domain into sub-

domains and exploiting the locality of H(Y) in the s-domain. The s-domain decomposition

should be constructed so that (i) the boundary “surface” of each s-sub-domain (i.e., the
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Figure 4.1: Illustration for time sub-domain layout for parallel updating sweep with I = 15
and P = 4. The sub-domain size of each processor is therefore ∆i(p) = 4 with p = 0, . . . ,P−
1 = 3. The vertically shaded columns denote B(−)(p), and the horizontally shaded columns
denote B(+)(p), for iΦ = 1, with p = 0, . . . ,P − 1 = 3. Each Yi for i = 0, . . . , I = 15 is a
(R+ S)- dimensional vector: Yi = (yi,s|s = 1, . . . ,R+ S).

subset of sites s that are connected to different sub-domain) is minimized; and (ii) all

s-sub-domains are of approximately equal size. In the present work, I will not pursue such

a species domain composition, but rather consider only time domain decomposition.

In each MC sweep, each processor p performs

∆i(p)× (S +R) (4.35)

Metropolis updates on the yi,s-variables of the (i, s)-site of the processors time-species sub-

domain, with i(−)(p) ≤ i ≤ i(+)(p), and 1 ≤ s ≤ S + R. The random selection of the

update site (i, s) during such a sweep is constrained by the requirement that neighboring

processors p1 and p2 = p+ 1 must not simultaneously perform updates on time slices i1 and

i2, respectively, which fall within range iΦ from the common boundary of p1 and p2. If i1

and i2 do fall within this boundary region, they are connected across the sub-boundary by a

coupling term h(i1, s1) or h(i2, s2) which can depend both on yi1,s1 and on yi2,s2 ; so p1 cannot

update yi1,s1 , unless yi2,s2 is kept constant by p2 and vice versa. These boundaries layers for
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processor p are defined by

B+(p) = {(i, s) | 1 ≤ s ≤ S +R, i(+)(p)− iΦ + 1 ≤ i ≤ i(+)(p)} (4.36)

and B(−)(p) = {(i, s) | 1 ≤ s ≤ S +R, i(−)(p) ≤ i ≤ i(−)(p) + iΦ − 1} (4.37)

Note that these two boundary layers are non-overlapping,

B(+)(p) ∩B(−)(p) = � (4.38)

as long as the condition Equation 4.30 is obeyed.

To enforce the sub-domain boundary layer constraint, all processors p are embargoed

from visiting any site (i, s) ∈ B(−)(p) for updating yi,s during MC sweeps with odd sweep

number l; they are embargoed from visiting any sites (i, s) ∈ B(+)(p) during MC sweeps with

even MC sweep number l. For each single-yi,s update, each processor first selects a random

site (i, s) with uniform probability from its sub-domains, without regards to the embargo. If

(i, s) does not fall within the embargoed boundary layer, the Metropolis update is performed

on yi,s. However, if (i, s) does fall within the embargoed boundary layer, (i, s) is replaced by

its “mirror image”, (̄i, s) in the opposite layer, i.e.,

ī = i(+)(p) + i(−)(p)− i (4.39)

Instead of yi,s, the variable yī,s is then subjected to the Metropolis update.

By enforcing the embargo in this manner, each site (i, s) will, on average over many

sweeps, receive the same number of updating hits. That is, a site (i, s) outside the boundary

layers will be visited during each MC update with probability:

Pvisited(i, s) =
1

∆i(p)(S +R)
if (i, s) /∈ [B(+)(p) ∪B(−)(p)], (4.40)

whereas sites (i, s) inside either boundary layer will be visited with probability

Pvisited(i, s) =


2

∆i(p)(S+R)
if (i, s) ∈ B(+)(p), l is odd, or (i, s) ∈ B(−)(p), l is even

0 otherwise.

(4.41)
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In order to perform updates of sites (i, s) in either boundary layer B±(p), processor p

must also have access to the y-variables of the adjacent boundary B∓(p± 1) of the neighbor

processor. That is to update an (i, s) ∈ B±(p), processor p needs to access the values of

yi′,s′ for (i′, s′) ∈ B∓(p ± 1). Therefore, each processor must communicate the up-to-date

yi,s-values of its B(+)(p) (B(−)(p)) to its right (left) neighbor p+ 1 (p− 1) after completing

an odd-(even-) numbered MC sweep.

To ensure that each processor can gain access to the up-to-date y-variables of the adjacent

boundary B∓(p± 1) of the neighbor processor, I also have to set a barrier after completion

of each MC sweep. That is to say, if one processor finishes one MC sweep, it should not

continue to the next MC sweep, instead, it has to wait until other processors finish that

MC sweep. Therefore, the processor p = 0 also serves as “a master processor” during the

simulation to keep track of the MC updating sweep number l and to keep all other processor

properly synchronized after completion of each MC sweep.



Chapter 5

Virtual Experimental Data and Monte Carlo Protocols

5.1 The Enzyme Model as a Virtual Test Case

As a simple test problem, I have applied the super-ensemble approach to the enzyme model

described in Section 2.1, Figure 2.1. I am using “virtual” experimental data as input to the

ensemble simulation. These virtual data are generated by solving the ODE model (Equa-

tion 2.5 to 2.8) for a given set of “true” model parameters Γ(true) listed in Table 5.1(a). This

“true” ODE solution was obtained by a standard numerical ODE solver using second order

BDF(backward differentiation formula) ODE integration method. This “true” solution has

a numerical accuracy of 1 part in 108 or better.

A set of N = 22 “observation” time points t̄n between t0 = 0 and tI = 8 model time unit

were randomly chosen, as shown in Table 5.2. For each of the S = 4 species in the model (s

= S, E, ES2, or P ) I select a subset of these t̄n to generate “virtual” data points Zn,s by

adding a certain amount of Gaussian random noise to the true ODE solution ψ(true)
s (t),i.e.,

Zn,s = ψ(true)
s (t̄n) + ∆Zn,s (5.1)

where

ψ(true)
s (t) := ψs(t;Γ

(true)) (5.2)

and ∆Zn,s is drawn from a Gaussian distribtution

pn,s(∆Z) =
1√

2πσn,s

exp[−(∆Z)2/(2σ2
n,s)] (5.3)

with a standard deviation σn,s, given in terms of a reference concentration Zref

σn,s = ωσ × Zref (5.4)

31
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Table 5.1: Parameters in Enzyme Model

(a) List of all the “true” values of seven model
parameters Γ(true) used in generating ODE solutions
by standard numerical ODE solver and their corre-
sponding lower y

(lo)
i,s and higher y

(hi)
i,s boundaries in

super-ensemble simulation

Model Parameter Γ(true) y
(lo)
i,s y

(hi)
i,s

[E](t0) 2.400000 0.000001 1,000
[ES2](t0) 0.000030 0.000001 1,000
[P ](t0) 0.000020 0.000001 1,000
[S](t0) 26.00000 0.000001 1,000
θ1 0.000960 0.00001 10
θ2 0.102000 0.00001 10
θ3 0.190000 0.00001 10
θ4 0 0 0

(b) List of all control parameter in super-ensemble simulation

Number of Species S 4
Number of Rate Coefficients R 3

Number of Experimental Data N 22
Number of interpolation grid points ti I + 1 16, 32, 64

Number of check points t̂k K 15, 31, 63
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Here, Zref is the maximum “true” initial concentration of all species,

Zref = max
s

(ψ(true)
s (t = t0)) (5.5)

i.e., from the “true” parameter values in Table 5.1(a), Zref is the initial concentration of

“true” species S, Zref = 26 model concentration units.

Table 5.2: List of all three sets of virtual experimental data set generated from the true
kinetics solution, with ωσ = 0%, 1%, or 2%, respectively

Index Observation Time Species Data Set 0 ωσ = 0% Data Set 1 ωσ = 1% Data Set 2 ωσ = 2%
n t̄n s Zn,s Zn,s Zn,s

1 0.7 P 0.0318 0.235 0.503
2 0.9 E 1.492 1.726 1.961
3 1.4 E 1.256 1.374 1.492
4 1.5 P 0.113 0.0214 0.156
5 1.6 S 23.330 23.624 23.918
6 1.8 ES2 1.263 1.572 1.882
7 2.5 ES2 1.385 1.121 0.858
8 3.3 E 0.949 1.003 1.058
9 3.4 P 0.376 0.518 0.659
10 3.9 ES2 1.472 1.458 1.444
11 4.2 P 0.496 0.603 0.710
12 4.3 P 0.511 0.486 0.460
13 4.4 E 0.918 0.894 0.871
14 4.9 S 21.825 21.232 20.638
15 5.3 E 0.915 1.040 1.166
16 6.4 S 21.386 22.123 22.860
17 6.6 E 0.924 1.274 1.623
18 6.6 ES2 1.475 1.680 1.886
19 6.9 E 0.927 1.561 2.195
20 7.1 P 0.934 1.064 1.194
21 7.6 E 0.935 1.031 1.128
22 7.7 S 21.026 20.846 20.666

There are three such data set shown in Table 5.2, generated with ωσ = 0% (Data Set

0), ωσ = 1% (Data Set 1) and ωσ = 2% (Data Set 2). So Data Set 0 consists simply of the

“true” ODE solution ψ(true)
s (t̄n) without any noise added.
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If, for a certain species s and time point t̄n, no virtual observation Zn,s was made, I set

formally σn,s = ∞ in HX for such a data point, i.e., no data point is included for that (s, n)-

combination in Equation 3.14. On the other hand, if I decide that an observation Zn,s was

made at t̄n, then I set σn,s in Equation 3.14 to σn,s = ωσ × Zref and draw a random ∆Zn,s

to generate Zn,s for Data Sets 1 and 2 . Also I set in HX

σn,s = 1%× Zref (5.6)

for the zero-noise Data Set 0 so as to obtain a well defined continuous ensemble distribution

for this case, even though the actual data points Zn,s were generated with σn,s = 0

5.2 Monte Carlo Protocol: Initialization, Annealing, Equilibration and

Accumulation

5.2.1 MC Initialization Phase

I am using the expanded ODE model formulation described in Section 4.1 where the rate

coefficient variables θr are replaced by fictitious species ΨS+r(t). Therefore, in the super-

ensemble simulation all MC degrees of freedom are yi,s- variables with s = 1, . . . ,S +R and

S = 4,R = 3.

In the super-ensemble simulation, I impose lower and upper limits on all Y-variables

indicated by the columns labeled lo and hi in Table 5.1(a). If a new y′i,s-value proposed

during a Metropolis update falls outside of these [y
(lo)
i,s , y

(hi)
i,s ] intervals, the proposed move is

automatically rejected.

Each simulation starts from a completely randomly chosen initial configuration Y(init)

within [lo, hi] interval, i.e.

y
(init)
i,s = y

(lo)
i,s + u× (y

(hi)
i,s − y

(lo)
i,s ) (5.7)

where u is a uniform random number in [0, 1]. All random numbers u in the simulations

reported here were obtained by the RANECU pseudo random number generator algorithm [7]

with a period of approximately 1018.
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5.2.2 MC Annealing Phase

In order to find the region in Y-space where HK and HX are close to minimal, I then perform

a Monte Carlo annealing phase [9], consisting of

L̄An = 1, 000, 000MC Sweeps (5.8)

During this annealing phase, both βX and βK in Equation 3.13 are gradually increased from

some initial value to a larger final value,

β(init)
α → β(finl)

α for α = X,K, (5.9)

according to the following annealing schedule

βα(l) = β(init)
α × (β(finl)

α /β(init)
α )(l/LAn) for α = X,K (5.10)

where l = 0, . . . , LAn − 1 and

LAn = 1, 000 (5.11)

is the number of “annealing periods” and each annealing period l comprises

L̄An

LAn

= 1, 000
MC Sweeps

Annealing Period
(5.12)

During each annealing period l, i.e., for MC sweeps l̄ with

l × LAn ≤ l̄ < (l + 1)× LAn (5.13)

the values of βX and βK are kept constant.

For the results reported below in Chapter 6 I used

β
(init)
X = 1.352 (5.14)

β
(finl)
X = 3.95× 106 (5.15)

β
(init)
K = 1 (5.16)

β
(finl)
K = 3.98× 108 (5.17)
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5.2.3 MC Equilibration Phase

The annealing phase is then followed by an equilibration phase, of duration

L̄Eq = 8, 000, 000 MC Sweeps (5.18)

During this phase, βK is either kept at the β
(finl)
K -value reached during the annealing phase,

or βK is dropped to a constant lower value β
(Eq)
K < β

(finl)
K . Also βX is dropped to its constant

“target” value, i.e., to

β
(Eq)
X = 1 (5.19)

In this manner, the MC Markov chain is allowed to equilibrate to the actual “target” ensemble

distribution

Q̄(Y) =
1

Z
exp[−(β

(Eq)
X HX + β

(Eq)
K HK)] (5.20)

with β
(Eq)
K kept at a large enough value so that the variational solutions Ψ(t;Y) are still

reasonably accurate solutions to the ODE system. At the same time, β
(Eq)
K should be low

enough to still permit efficient equilibration of the MC Markov process.

5.2.4 MC Accumulation Phase

The equilibration phase is followed by an accumulation phase of duration

L̄Ac = 3, 000, 000 MC Sweeps (5.21)

with the same weights β
(Eq)
X = 1 and β

(Eq)
K as in the equilibration phase. During this accu-

mulation phase, a total number of

LAc = 30, 000 (5.22)

MC sample points Y(l) are collected, for l = 1, . . . , LAc, with a sampling period of

L̄Ac

LAc

= 100
MC Sweeps

Sample Point
(5.23)

So the sample points, denoted by

Y(l) = (. . . , y
(l)
i,s , . . .) (5.24)
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are collected after every 100 MC sweeps. Each sample point and several other quantities

depending on Y(l) are written out into a sample output file for further statistical analysis

after completion of the ensemble simulation.

5.3 MC Error Estimation

The foregoing four-phase simulation procedure consisting of MC random initialization,

annealing, equilibration and accumulation is repeated

J = 10 (5.25)

times. For each such repeat, j = 1, . . . ,J , a different new MC inital Y(init) is generated

according to Equation 5.7. These repeats are used to estimate the MC error bars of the

simulation as follows: let Y(l,j) denote the lth sample point collected during the jth repeat.

Then the “partial” MC average of some quantity A(Y) for the jth repeat is given by

< A(.) >(j)=
1

LAc

LAc∑
l=1

A(Y(l,j)) (5.26)

and its overall MC average

< A(.) >MC=
1

J

J∑
j=1

< A(.) >(j) (5.27)

This MC average should approach the ensemble average < A > defined in Equation 3.7 in

the limit LAc →∞, according to the Central Limit Theorem.

From the statistical “spread” of these partial MC average I can then estimate the MC

standard deviation(MCSD) of A(Y) by:

σMC[A] = [
1

J − 1
(
J∑

j=1

(< A(.) >(j))2 − J (
1

J

J∑
j=1

< A(.) >(j))2)]1/2 (5.28)

This MCSD characterizes the statistical convergence of the MC sampling procedure and it

depends on the total MC sample size LAc × J such that

σMC[A] ' 1√
LAcJ

(5.29)
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for sufficient large LAc. So σMC[A] should vanish for LAc →∞.

The MC standard deviation should be clearly distinguished from the ensemble standard

deviation (ESD) σ[A] defined in Section 3.1, Equation 3.8. Clearly σ[A] is a quantity that

depends only on the ensemble distribution Q̄(Y); σ[A] should not depend on any MC sam-

pling procedure or on the MC sample size LAcJ if the MC simulation is properly equilibrated.

That is, for LAc →∞, σ[A] calculated by MC simulation, should approach the sample-size-

independent value given by Equation 3.8. σ[A] characterizes how well (or poorly) the available

experimental data included in HX constrain the ensemble prediction for the outcome of a

future measurement of the quantity A(Y). Therefore, it enables us to gain insights into what

are likely to be the most informative new experiments that should be done to reduce the

uncertainty in the model predictions.

5.4 MC Stepwidth Optimization

The allowable range of original model parameter variables (θr, Xs) can cover many order of

magnitude in typical biological network simulations. One must account for this in performing

Metropolis updating steps with proposed moves of the Y-variables

yi,s → y′i,s = yi,s + ∆i,s(2u− 1) (5.30)

where u is a uniform random number drawn form [0, 1]. Namely, I must choose updating

stepwidths ∆i,s that are compatible, in order of magnitude, with the typical range of yi,s-

values being sampled in Q̄(Y) during the MC Markov chain process. If we set the ∆i,s-value

to be much larger than the typical yi,s -range, most proposed y′i,s will result in a very large

energy H(Y′). Most such “large” moves would be rejected and, as a result, the Markov chain

process would equilibrate very slowly. On the other hand, if we set ∆i,s much smaller than

the typical yi,s-range, the proposed energy change ∆H(Y → Y′) will be very small and all

such moves very likely be accepted. However the MC Markov chain will again equilibrate

very slowly since each such “small” move changes yi,s by “almost” negligible amount.
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Unfortunately, at the beginning of the MC simulation, I do not know the optimal values

of ∆i,s since I have no knowledge at all about the typical yi,s-variable ranges to be sampled.

However, based on the foregoing considerations, I can use the Metropolis acceptance proba-

bility as an indicator of whether ∆i,s is too small or too large: I should choose ∆i,s so that

the average Metropolis acceptance probability for a move yi,s → y′i,s,

pi,s(Y → Y′) = min(1, exp[−∆H(Y → Y′)]) (5.31)

is neither too close to 100% nor too close to 0%. So, as a rule of thumb, I want to adjust

∆i,s so that

< pi,s(Y → Y′) >' 50% (5.32)

To achieve this, I start the simulation with some initial guess ∆
(init)
i,s , for example,

∆init
i,s = y

(hi)
i,s − y

(lo)
i,s (5.33)

where y
(lo)
i,s and y

(hi)
i,s are the upper and lower limits imposed on yi,s during the simulation, as

given in Table 5.1(a). During the entire simulation, I then repeatedly measure the acceptance

probability for each variable yi,s over a certain number of MC sweeps by counting up the

number of proposed moves of yi,s → y′i,s, denoted by Nprop(i, s), and the number of those

proposed moves which were actually accepted Naccp(i, s). The value of Nprop(i, s) is checked

for all yi,s at the end of each MC sweep and when it reaches or exceeds a value of

Nprop(i, s) = 20 (5.34)

I do an “acceptance check”, i.e., I estimate the average acceptance probability by taking the

so-called “acceptance ratio”

paccp(i, s) = Naccp(i, s)/Nprop(i, s). (5.35)

I would like to choose or adjust ∆i,s so that paccp(i, s) stays within some target range

[p(lo)
accp, p

(hi)
accp] around 50%. In the simulation described below, I have chosen

p(lo)
accp = 35%, p(hi)

accp = 65% (5.36)
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If the actual paccp(i, s)-value found in the acceptance check is within target range, I leave

∆i,s unchanged; if paccp(i, s) is too high(low), I increase(decrease) ∆i,s as follow:

∆i,s → ∆′
i,s =


∆i,s × qi,s if paccp(i, s) > p(hi)

accp

∆i,s if paccp(i, s) ∈ [p(lo)
accp, p

(hi)
accp ]

∆i,s/qi,s if paccp(i, s) < p(lo)
accp

(5.37)

Here, qi,s is the so-called stepwidth adjustment factor, with an appropriately chosen value

qi,s > 1. (5.38)

At the start of the MC simulation, qi,s is initialized to

q
(init)
i,s = 1.50 (5.39)

During each acceptance check and before updating ∆i,s according to Equation 5.37, the value

of qi,s is also adjusted up or down, if needed. The qi,s-adjustment depends on the current

value of paccp(i, s) and its value found in the most recent prior acceptance check, as follows:

If the current paccp(i, s)-value is within target range, leave qi,s unchanged. If paccp(i, s)

has remained above target range or has remained below target range for the current and last

acceptance check , adjust qi,s upward, subject to an upper limit of

q(max) = 5.0 (5.40)

as follows:

qi,s → q′i,s = min(q(max), 1 + f (+)
q (qi,s − 1)) (5.41)

where f (+)
q is set to

f (+)
q = 1.25 (5.42)

If, on the other hand, the most recent prior acceptance check has resulted in an “overshoot”,

i.e., the most recent prior paccp(i, s) was above and the current paccp(i, s) is below target

range, or vice versa, qi,s is adjusted downward, subject to a lower limit of

q(min) = 1.05 (5.43)
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as follows

qi,s → q′i,s = max(q(min), 1 + f (−)
q (qi,s − 1)) (5.44)

where f (−)
q is set to

f (−)
q = 0.75 (5.45)

This adjusted value of q′i,s is then used to perform the update of ∆i,s according to Equa-

tion 5.37. In the simulations reported below, we find that this algorithm successfully brings

or restores paccp into the prescribed target range with typically 5 − 10 acceptance checks,

corrsponding to 100-200 MC sweeps.



Chapter 6

Application to enzymatic network

6.1 Testing the Finite-Element Based Variational Approach

Before applying the FF-based Galerkin variational approach to super-ensemble Monte Carlo

simulations, I should first test whether the FE basis and the variational method can indeed

reproduce the ODE solutions for the model with sufficient accuracy. To do so, I first calculate

a highly accurate reference solution ψ(true)
s (t) for the “true” model parameter set Γ(true) listed

in Table 5.1(a) on a sufficiently dense time grid with a relative numerical solution accuracy

of 10−8 or better, over the simulation time interval [t0, tI ] = [0, 8]. This is done with second

order backward differentiation formula (BDF) ODE integration method. I then initialize the

Y-vector by

y
(init)
i,s :=


ψ(true)

s (ti) for s = 1, . . . ,S

θr for s = S + r; r = 1 . . . ,R and all i
(6.1)

From y
(init)
i,s , I calculate the corresponding FE approximand

Ψ(R)
s (t) :=

I∑
i=0

y
(init)
i,s Φi(t) = Ψs(t;Y

(init)) (6.2)

as well as its relative error, the so-called representation error defined as

E(R)
s (t) = 2[Ψ(R)

s (t)− ψ(true)
s (t)]/(||Ψ(R)

s ||+ ||ψ(true)
s ||) (6.3)

where, for any time-dependent function ψ(t) I define a euclidean norm by

||ψ|| = [
1

K

K∑
k=1

(ψ(t̂k))
2]1/2 (6.4)

42
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E(R)
s (t) provides a relative error measure of how well the true kinetics solution can be approx-

imated in terms of an FE basis function expansion. As shown in Figures 6.1 and 6.2, already

an FE basis of I = 15 interpolation intervals, corresponding to I + 1 = 16, the first order

Lagrange FE basis is quite sufficient to obtain a Ψ(R)
s which approximates ψ(true)

s to better

than ||E(R)
s (t)|| ≤ 1.5% accuracy. This level of accuracy should be quite sufficient for a

super-ensemble simulation on typical noisy experimental data.

(a) Time-dependence concentration of species
E

(b) Time-dependence concentration of species
ES2

(c) Time-dependence concentration of species
P

(d) Time-dependence concentration of species
S

Figure 6.1: The black lines represent MC initial Ψ(R)
s (t) = Ψs(t;Y

(init)); the green lines
represent the true kinetics solution ψ(true)

s ; and the red lines represent variational solutions
after MC annealing phase Ψ(V )

s (t) = Ψs(t;Y
(finl)).
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Next, I want to test whether the Galerkin variational approach is in fact capable of

generating a reasonably accurate approximation to the true kinetics solution. To do so, with

β
(finl)
K = 3.98×108, I perform a MC annealing calculation following the protocol described in

Section 5.2.2 with the above Y(init) (Equation 6.1) as the MC initialization. In HX I include

the time initial concentration values as the only virtual experimental data points, i.e.,

Zn,s = ψ(true)
s (t0) (6.5)

σn,s = 1%× Zref = 0.26 (6.6)

t̄n = t0 (6.7)

So the initial condition ψ(true)
s (t0) is the only virtual experimental data point for each real

species s. From the final Y-vector, Y(finl), generated by this annealing procedure, I calculate

the corresponding variational minimal-energy FE approximand:

Ψ(V )
s (t) :=

I∑
i=0

y
(finl)
i,s Φi(t) = Ψs(t,Y

(finl)) (6.8)

and its relative error, the so-called variational error:

E(V )
s (t) := 2[Ψ(V )

s (t)− ψ(true)
s (t)]/(||Ψ(V )

s ||+ ||ψ(true)
s ||) (6.9)

E(V )
s (t) provides a relative error measurement of how well the true kinetics solution is approx-

imated by the variational solution Ψ(V )
s (t) with minimized kinetic energy function HK. This

variational minimum-HK solution is made unique by including the initial conditions ψ(true)
s (t0)

as virtual experimental data points in HX, i.e., by imposing the initial conditions as a con-

straint in the minimization of HK. In this manner, I am actually using the super-ensemble

MC annealing procedure as a variational, approximate ODE solver.

Figures 6.1 and 6.2 show the results of this variational ODE solving approach. Also,

in Table 6.1, I summarize the results for the corresponding values of the energy functions

HK and HX and of the overall relative errors ||E(R)
s || and ||E(V )

s || before and after the MC

annealing procedure. Clearly, from Figures 6.1 and 6.2 the true kinetics solution ψ(true)
s (t) is

well approximated by the variational solution Ψ(V )
s (t), to within a relative error ||E(V )

s || of
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(a) Representation and variational errors of
species E

(b) Representation and variational errors of
species ES2

(c) Representation and variational errors of
species P

(d) Representation and variational errors of
species S

Figure 6.2: The black lines present the representation error E(R)
s before MC annealing,

reduced by a factor of 20 for display, while the red ones represent the variational error
E(V )

s after MC annealing, starting from the MC initialization in Equation 6.1.
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Before Annealing After Annealing

||E(R)
1 || = 0.014857 ||E(V )

1 || = 0.0225404

||E(R)
2 || = 0.00886193 ||E(V )

2 || = 0.0188058

||E(R)
3 || = 0.00187586 ||E(V )

3 || = 0.0201145

||E(R)
4 || = 0.000965275 ||E(V )

4 || = 0.0031292
HK = 0.0314609 HK = 1.86099× 10−7

HX = 0 HX = 7.81489× 10−7

Table 6.1: The results of the corresponding values of the energy functions HK and HX and
of the overall relative errors ||E(R)

s || and ||E(V )
s || for species s = 1, 2, 3, 4 corrsponding to E,

ES2, P , S respectively, before and after the MC annealing procedure.

better than 2.5% for I+1 = 16 first order Lagrange basis functions. This is again sufficient for

the super-ensemble simulations on typical noisy experimental data I would like to perform.

I therefore have some confidence that the variational approach is capable of representing the

ODE solutions, at least in principle.

One should caution, however, that the foregoing test of the variational MC approach is not

a very stringent test of its practical utility as an ODE solver: by providing y
(init)
i,s = ψ(true)

s (ti)

as initial guess for the variational energy minimization, I have made it very easy for the MC

annealing to find a “good” variational minimum. By contrast, in real parameter estimation

simulation applications, I do not have a good initial guess, and the MC initial Y(init) would

be typical chosen more or less randomly. As a more realistic test of the variational MC

approach, I should therefore start the MC annealing procedure with completely randomly

chosen Y(init) and then check whether the MC annealing still generates a “good” variational

solution. This will be done in Section 6.2.

Likewise, in more conventional ODE solution applications, only the initial conditions

ψs(t0) are given. To test the performance of the super-ensemble algorithm as a variational

ODE solver, I have also performed a simulation in such a conventional ODE solution setting

where the initial concentrations Xs = [s](t0) and rate coefficients θr are given and a unique
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ODE solution for such a given parameter vector Γ = (Θ,X) is sought. This Γ is used as

time-(i-)independent MC initial, i.e.,

y
(init)
i,s =


Xs for s = 1, . . . ,S

θs−S for s= S + r = S + 1, . . . ,S +R
(6.10)

for all i = 0, . . . , I. For the test below I have used again Γ(true) from Table 5.1(a).

The standard MC annealing protocol with standard parameters described in Section 5.2.2

is performed once for I + 1 = 16 time grid with MC repetition J = 1. Figures 6.3 and 6.4

show the results for the Y(finl) reached at the end of this MC annealing. Figures 6.3 are

the species concentration Ψs(t,Y
(finl)) and Figures 6.4 are the corresponding relative error,

E(R)
s and E(V)

s , before and after the annealing, respectively. Clearly, the variational annealing

results starting from the “ODE solver” initial (Equation 6.10) is just as accurate as the ones

shown in Figures 6.1 and 6.2 generated from the true kinetics solution being used as the MC

initial. This result suggests that super-ensemble variational MC approach can be utilized as

a parallelizable ODE solver in a conventional ODE solution setting. However, it remains to

be explored, especially for larger networks, whether this approach is competitive with con-

ventional serial ODE solver algorithms, such as the Runge-Kutta or backward differentiation

approaches [5].

6.2 Super-Ensemble Monte Carlo Results

In Figures 6.5, through 6.16, I show the results for two super-ensemble simulations, using the

MC protocol described in Section 3.2, with random MC initial Y(init), Equation 5.7; for two

choices of β
(Eq)
K , β

(Eq)
K = β

(finl)
K = 3.98×108 and β

(Eq)
K = 3.98×104; J = 10 MC repetitions; a

first order Lagrange basis with I+1 = 16 interpolation grid points ti; and the zero-noise data

set 0 from Table 5.2 with σn,s set to 1%×Zref in HX. Figures 6.5 show the MC protocols and

Figure 6.6 the corresponding MC trajectories of the energies HX and HK as a function of MC

sweep number for β
(Eq)
K = 3.98×108 and 3.98×104. HX and HK have been averaged over the

J = 10 MC repetitions; the respective error bars are the standard deviations calculated from
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(a) Time-dependent concentration of species
E

(b) Time-dependent concentration of species
ES2

(c) Time-dependent concentration of species
P

(d) Time-dependent concentration of species
S

Figure 6.3: The green lines represent the true kinetics solution ψ(true)
s ; the black lines represent

MC initial Ψ(R)
s (t,Y); and the red lines represent variational solutions after MC annealing

phase Ψ(V )
s (t,Y).
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(a) Representation and variational errors of
species E

(b) Representation and variational errors of
species ES2

(c) Representation and variational errors of
species P

(d) Representation and variational errors of
species S

Figure 6.4: The black lines present the representation the y-scale transformation of error
E(R)

s , i.e. E(R)
s shown in these figures is 20 times smaller, while the red ones represent the

variational error E(V )
s .
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this sample of repetitions separately at fixed MC sweep number(i.e., without averaging over

the MC sweep number). As expected, both HX and HK start at very high values, since Y(init)

is chosen completely randomly according to Equation 5.7 in each MC repetition. During the

annealing phase, (lasting for the first 106 MC sweeps,) HX and HK both drop very rapidly.

And during the equilibration phase for β
(Eq)
K = 3.98× 108, (lasting for the next 8× 106 MC

sweeps,) HK continues to decrease while HX increases. This is due to the reduction of βX

from β
(finl)
X = 3.98×108 to β

(Eq)
X = 1.0 which softens the constraint by the experimental data

in HX and thereby allows more variational freedom to reduce HK. When β
(Eq)
K is reduced to

3.98 × 104, HK also rises in the transition from annealing to equilibration, since the ODE

solution constraint imposed by HK is now enforced less strongly during equilibration. By the

end of the equilibration phase, both HK and HX appear to have reached a stable equilibrium

where accumulation can commence, for both β
(Eq)
K .

The ensemble average < Ψs(t; .) >MC for the time-dependent real species concentrations

for β
(Eq)
K = 3.98×108 are shown in Figures 6.7 and 6.8. They agree with the experimental data

to within their MC standard deviation. Since these experimental data are a noiseless sample

of the true kinetics solution at a few random times t̄n, the MC averages < Ψs(t; .) >MC are

also in reasonably good agreement with the true kinetics solution ψ(true)
s (t).

The corresponding plots of Ψs vs. t for the fictitious species s = S + r representing the

reaction rate coefficients θr are shown in Figure 6.9. These fictitious species solutions should

actually be time-independent according to Equation 4.5. However, in the simulation, they still

show significant time-dependence. Furthermore, the results for the fictitious species s = S+r

for reactions r = 1 and r = 3 are in noticeable disagreement with the true values θ(true)
r also

shown in Figure 6.9. The lack of time independence suggests that the simulation has not yet

fully equilibrated, even after 8 × 106 equilibration sweeps. However, a lack of equilibration

alone cannot completely account for the systematic deviation of < ΨS+r(t; .) >MC from the

true values of θr. If only incomplete equilibration were to blame for this discrepancy, one

should also see similar discrepancies between the ensemble averages < Ψs(t; .) >MC and
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(a)

(b)

Figure 6.5: MC annealing, equilibration and accumulation schedule for β
(Eq)
K = 3.98× 108 in

(a) and 3.98× 104 in (b).
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(a) β
(Eq)
K = 3.98× 108

(b) β
(Eq)
K = 3.98× 104

Figure 6.6: Energy functions HX and HK v.s. Monte Carlo sweep number for zero-noise
Data Set 0, ωσ = 0%. Here I + 1 = 16 and σn,s = 1% × Zref in HX, β

(Eq)
K = 3.98 × 108

in (a) or 3.98 × 104 in (b), using the MC protocols shown in Figures 6.5(a) and 6.5(b),

respectively, with MC annealing parameters β
(init)
K = 1.0, β

(finl)
K = 3.98× 108, β

(init)
X = 1.352,

and β
(finl)
X = 3.95× 106, or given in Equations 5.15 to 5.17.



53

(a) Time-dependence concentration of species E

(b) Time-dependence concentration of species ES2

Figure 6.7: Black lines are ensemble averages for species E and ES2 along with ESD for
the MC run shown in Figures 6.5(a) and 6.6(a). Red circles present experimental data set
0, ωσ = 0%. Green dash lines are true solutions using standard numerical solution to ODE
with “true” initial concentrations and reaction coefficients listed in Table 5.1(a).
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(a) Time-dependence concentration of species P

(b) Time-dependence concentration of species S

Figure 6.8: Black lines are ensemble averages for species S and P along with ESD for the
MC run shown in Figures 6.5(a) and 6.6(a). Red circles present experimental data set 0,
ωσ = 0%. Green dash lines are true solutions using standard numerical solution to ODE
with “true” initial concentrations and reaction coefficients listed in Table 5.1(a).
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the true kinetics solutions. Evidently, as shown in Figures 6.7 and 6.8, there are no such

large discrepancies for the real species. This suggests that the discrepancies between the

ensemble and the true values for the rate coefficients might be caused by systematic errors,

for example due to the FE basis representation or due to entropy effects. The ensemble

MC process could for example try to compensate for systematic FE representation errors by

shifting the θr values so as to produce variational Ψs(t;Y) solutions which best minimize HX.

In this scenario, the ensemble averages < Ψs(t; .) >MC would still match the experimental

data, albeit at the expense of the converging to the “wrong” θr values.

Another potential source of systematic error lies in possible entropy effects arising from

the finite HX simulation “temperature”, 1/βX > 0, i.e. from the fact that βX < ∞. For

1/βX → 0, a perfectly equilibrated MC sample should include only the “ground state”

configuration of HX, where < Ψs(t; .) >MC is close to the “best” possible variational approx-

imation to the true kinetics solution, since the zero-noise experimental data used in HX do

represent the “true” kinetics solution. [Figures 6.3 illustrate a Ψs(t;Y) very close to this

ground state.] However, for finite HX simulation temperature, 1/βX > 0, entropy effects, i.e.,

the thermal availability of configurations Y that are not in the ground state, can systemati-

cally shift ensemble averages, for a perfectly equilibrated MC sample, away from their “true”

values, in spite of the fact, that the experimental data in HX do exactly represent the true

kinetics solution. I will discuss below that entropy effects are most likely responsible for the

deviations from the “true” values observed here.

Histograms for the various kinetics model parameter variables (Θ and X) were also

collected during the MC accumulation phase, along with all MC averages. They are shown

in Figure 6.10 for the initial concentrations of the real species

[s](t0) = Xs = yi,s at i = 0 (6.11)
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(a) The ensemble average for ΨS+r vs. t for
reaction r = 1.

(b) The ensemble average for ΨS+r vs. t for
reaction r = 2.

(c) The ensemble average for ΨS+r vs. t for
reaction r = 3.

Figure 6.9: Black lines are ensemble averages for virtual species ΨS+r(t) along with ESD for
the MC run shown in Figures 6.5(a) and 6.6(a). Red circles present experimental data set
0, ωσ = 0%. Green dash lines are true solution using standard numerical solution to ODE
with “true” initial concentrations and reaction coefficients listed in Table 5.1(a).
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Figure 6.10: Histograms of initial concentrations of species E, ES2, P and S for the MC run
shown in Figures 6.5(a) and 6.6(a).
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Figure 6.11: Histograms of the rate coefficients θr calculated from their fictitious species
ΨS+r according to Equation 6.12 for the MC run shown in Figures 6.5(a) and 6.6(a).
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and in Figure 6.11 for the rate coefficient variables θr, which are estimated from the time-

average of their fictitious species concentration ΨS+r, i.e., by

θr(Y) =
1

I + 1

I∑
i=0

ΨS+r(ti,Y) =
1

I + 1

I∑
i=0

yi,S+r (6.12)

The initial concentration histograms are in reasonable agreement with the corresponding

true values. One must keep in mind that species P and ES2 have very small initial concen-

trations. These are not very tightly constrained by HX, since even a change by a factor of

10 or more at t = t0 will have very little effect on [P ](t) and [ES2](t) at the later times t̄n

that are being “probed” by HX. Entropy effects discussed above can therefore easily shift the

ensemble results for these small initial concentrations. The ensemble can therefore not be

expected to provide an accurate reconstruction of the very small true values since the kinetic

solution is very insensitive even to relatively large changes in these very small initial concen-

trations. Only reasonable upper limits can be obtained from the ensemble in these cases. The

ensemble tells us that these values are “very” small, compared to the overall magnitude of

the concentrations of P and ES2 (which is around 2-10), but it doesn’t tell us how small they

are. Similarly the histograms for two of the three rate coefficients in Figure 6.11 show a very

noticeable disagreement with the true values θ(true)
r of the experimental data for r = 1 and

r = 3, as already found for the corresponding fictitious species averages < ΨS+r(t; .) >MC in

Figure 6.9. I will now try to find or rule out possible causes for these discrepancies.

A possible source of incomplete equilibration in the MC simulations could be the con-

straints imposed on local MC moves yi,s → y′i,s by the “stiff” restoring forces arising form

βKHK when the equilibration value of β
(Eq)
K is set too high. For example, the time-dervivative

term Ψ̇s(t̂k,Y) entering into HK in Equation 3.17 generates a tight coupling between the

yi,s-variables at neighboring time slices i and i + 1. This coupling along the time axis pre-

vents yi,s from being moved, unless its temporal neighbors yi−1,s and yi+1,s are moved by

about the same amount, so as to keep the derivatives Ψ̇s(t̂k,Y) in [ti−1, ti+1] approximately

constant. This coupling along the time axis is quite similar to the couplings along the chain

encountered between monomer units in continuum-models of polymers. These intra-chain
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couplings in polymers prevent a single monomer (or smaller subunit) from being moved,

unless neighboring units are moving along with it during MC updates. To overcome the equi-

libration problem, the super-ensemble MC simulation approach, especially in larger model

networks, may well require non-local or other MC updating techniques, similar to those

used in continuum-model polymer simulations. These techniques go beyond the simple local

Metropolis updating scheme and I will not consider them here.

Instead, I will try to improve the equilibration behavior by simply reducing β
(Eq)
K and

thereby softening the constraints against local MC moves. In Figures 6.6(b) and in 6.12

to 6.16, I show results obtained from an MC run with reduced β
(Eq)
K -value, β

(Eq)
K = 3.98 ×

104 using the MC protocol in Figure 6.5(b). As can be seen in Figures 6.12 and 6.13, in

comparison to the corresponding β
(Eq)
K = 3.98 × 108 results in Figures 6.7 and 6.8, the

agreement between ensemble MC averages < Ψs(t; .) >MC for real species and true kinetics

solution deteriorates somewhat when β
(Eq)
K is lowered. This is not a very big effect and it

is not surprising, since reducing β
(Eq)
K weakens the ODE solution constraint imposed by HK

and therefore allows greater fluctuations in Y. Consequently, the agreement between MC

averages and the zero-noise experimental data points also deteriorates.

The histograms for β
(Eq)
K = 3.98× 104, in Figure 6.15 and Figures 6.16 clearly show the

effect of improved equilibration, when compared to Figures 6.10 and 6.11: the sampled values

of each MC variable are much more evenly dispersed across the histogram sampling interval;

there is a “dense forest” of histogram bars now instead of a “few trees” in Figures 6.10 and

6.11. However, for the “bad actors” in Figure 6.7(b) and 6.8(a) and in Figure 6.16, (θ1 and

θ3) and the corresponding < ΨS+r(t; .) >MC in Figure 6.14, the agreement with the “true”

values has not been improved by the improved MC equilibration.

In the case of the “bad” initial concentrations, entropy effects and the poor constraints

by HX can easily explain the discrepancies. However, the foregoing results do of course not

rule out the possibility that the discrepancies between ensemble MC results and true values

for θ1 and θ3 could still be caused by inadequate equilibration, since the actual equilibration
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(a) Time-dependence concentration of species E

(b) Time-dependence concentration of species ES2

Figure 6.12: Black lines are ensemble averages for species E and ES2 along with ESD for
the MC run shown in Figures 6.5(b) and 6.6(b). Red circles present experimental data set
0, ωσ = 0%. Green dash lines are true solutions using standard numerical solution to ODE
with “true” initial concentrations and reaction coefficients listed in Table 5.1(a).
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(a) Time-dependence concentration of species P

(b) Time-dependence concentration of species S

Figure 6.13: Black lines are ensemble averages for species S and P along with ESD for the
MC run shown in Figures 6.5(b) and 6.6(b). Red circles present experimental data set 0,
ωσ = 0%. Green dash lines are true solutions using standard numerical solution to ODE
with “true” initial concentrations and reaction coefficients listed in Table 5.1(a).
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(a) The ensemble average for ΨS+r vs. t for
reaction r = 1.

(b) The ensemble average for ΨS+r vs. t for
reaction r = 2.

(c) The ensemble average for ΨS+r vs. t for
reaction r = 3.

Figure 6.14: Black lines are ensemble averages for virtual species ΨS+r(t) along with ESD for
the MC run shown in Figures 6.5(b) and 6.6(b). Red circles present experimental data set
0, ωσ = 0%. Green dash lines are true solution using standard numerical solution to ODE
with “true” initial concentrations and reaction coefficients listed in Table 5.1(a).
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Figure 6.15: Histograms of initial concentrations of species E, ES2, P and S for the MC run
shown in Figures 6.5(b) and 6.6(b).
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Figure 6.16: Histograms of the rate coefficients θr calculated from their fictitious species
ΨS+r according to Equation 6.12 for the MC run shown in Figures 6.5(b) and 6.6(b).
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times of the MC Markov chain process could, potentially, exceed the simulations by many

order of magnitude. One should therefore also explore whether these discrepancies in θ1 and

θ3 could be caused by systematic errors, due to the FE basis representation and due to finite

1/βX entropy effects, which are not related to MC equilibration.

To test for systematic errors introduced by the FE basis representation, I have performed

simulations with improved FE bases, by setting I + 1 = 32 and I + 1 = 64 FE interpolation

grid sizes, keeping all other MC parameters, and experimental input data the same as in

Figures 6.7 to 6.11. The results of those simulations, not shown here in detail, are very similar

to those obtained with I + 1 = 16. They strongly suggest that systematic approximation

errors due to the finite FE basis are negligible. That is not surprising in light of the FE basis

test results discussed in Section 6.1.

To explore whether entropy effects could cause the observed systematic errors, I have

performed a series of simulations starting from a different MC initialization Y(init), namely

the “true kinetics” initialization given in Equation 6.1 using again zero-noise experimental

data. The simulation is thus started in a configuration Y that is at or very close to the ground

state of HX and in the course of the equilibration one can “watch” how the MC Markov

process tries to escape from theHX-ground state energy minimum when equilibrating at finite

temperature 1/βX = 1.0. This is in contrast to the random MC initialization runs, discussed

above, where Y is started far away from the HX-ground state and during equilibration the

MC Markov process tries to find the minimum. The results from these simulations, again

not shown here in detail, suggest that entropic effects do indeed contribute substantially to

the discrepancies from the true values observed in θ1 and θ3.

The main finding from these “true-kinetics”-initializaed MC runs is that it really does not

matter whether the MC is initialized close to the ground state of HX or far away from it. For

either initialization, the MC Markov process will eventually “escape” from or, respectively,

fail to find the near-ground state region in Y-space during equilibratioin when the simulation

temperature 1/βX has been raised to 1.0 and β
(Eq)
K has been reduced to 3.98× 104 to allow
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for improved equilibration. After equilibration, the MC samples and averages for θ1 and θ3,

as well as all other quantities, are quite similar for the two different initializations.

As it turns out, θ1 and θ3 are poorly constrained byHX, even though θ2 is well constrained.

This can be understood in terms of a chemical quasi-equilibrium [17, 18] that establishes

itself between reaction r = 1 : E + 2S → ES2 and its time-reversed backward reaction

r = 3 : ES2 → E + 2S. In this quasi-equlibrium state, the rates of r = 1 and r = 3 are

almost balanced so that (See Equations 2.1 and 2.3), approximately:

θ1[E][S]2 ' θ3[ES2] (6.13)

Hence, the 3 species involved approximately obey the law of mass action [17, 18]

[E][S]2

[ES2]
' θ3

θ1

(6.14)

even though the system is not really in equilibrium since [E], [S] and [ES2] are actually

changing with time t. In this quasi-equilibrium state the individual values of θ1 and θ3 are

poorly constrained by the experimental concentration data for [E], [ES2] and [S]: according

to Equation 6.14, only the ratio θ3/θ1 is well constrained by the concentration data. The MC

updating process can scale the values of θ1 and θ3 up or down by an arbitrary common scale

factor without substantially changing the agreement with the experimental data, and hence,

without substantial change in energy HX. However for larger (scaled-up) values of θ1 and

θ3, the available “phase space” volume is also scaled up. Consequently, at finite temperature

1/βX > 0, entropy favors values of θ1 and θ3 that are both too large, compared to the true

values.

To test this quasi-equilibration scenario, I have calculated the MC averages and his-

tograms of the right-hand side and the left hand side of Equation 6.14. To within error bars

they agree with each other and the true value, that is

<
θ3

θ1

>' θ
(true)
3

θ
(true)
1

(6.15)

as expected.
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I have also performed super-ensemble simulations for the “noisy” virtual data sets, Data

Set 1 and Data Set 2 listed in Table 5.2, using the same Monte Carlo protocol and grid size

I+1 = 16 as for the simulations on the zero-noise data set show in Figures 6.7 to 6.11, with

β
(Eq)
K = 3.98 × 108. The results are consistent with those for the zero-noise data discussed

above. The primary effect of the noise is to broaden the ensemble distribution of most

quantities A(Y), including, e.g., the species concentrations Ψs(t;Y). This indicates that

experimental noise tends to increase the overall entropy of the ensemble distribution. As

a consequence, also the ensemble standard deviations are increased, as are the deviations

between ensemble average and true results for the time-dependent species concentrations. Not

surprisingly the entropy-induced discrepancies between ensemble predictions and true values,

e.g., for θ1 and θ3 persist. Other model parameters are still reasonably well reconstructed from

both data sets. If the data noise level is increased to σn,s = 5% × Zref , i.e., substantially

higher levels than for Data Set 1 and 2 in Table 5.2, one loses the ability to reconstruct

any model parameter values from the noisy data. Apparently, at that noise level, there is

essentially no information content left in the data.

6.3 Parallelization Speedup

To test the efficiency of the parallelization method I have described in Section 4.2, I have

also performed a series of simulation runs on different interpolation grid sizes I + 1 = 16,

32, 64, with different processor numbers P = 1, 2, 4, 8. The results are shown in Figure 6.17

represented in terms of the so-called parallelization speed-up, defined as

speed-up = T (1)/T (P) (6.16)

Here T (P) is the amount of CPU time consumed by a single processor during a simulation

run with P processors working in parallel.
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Theoretically, I would expect T (P) to scale approximately with processor number P and

and time grid size (I + 1) as follows:

T (P) = T0 + TC
I + 1

P
+ TMSlog2(P) + TSS (6.17)

where TMS, TSS, TC and T0 are constant independent of P and I+1. The TC term is the intra-

processor computation time. This should be proportional to the time sub-domain size ∆i =

(I+1)/P assigned to each processor. The TMS-term represents the communication overhead

for broadcasting data, such as the MC sweep number l, from the master to all slave processors.

This is also required to properly synchronize all slaves at the end of each MC sweep. Efficient

broadcasting algorithms typically employed in modern parallel machines scale as log2(P).

The TSS term represents the slave-to-slave communication time for sending the yi,s-values

from the most recently updated boundary layers B±(p) to the neighbor processor across the

boundary. This boundary layer communication is done in parallel, i.e., with all processors p

sending their respective yi,s-values to their neighbors p± 1 simultaneously. The TSS term is

therefore independent of P . It is also independent of (I + 1) since the boundary layer size

depends only on the network size (S + R) but not no the time grid size (I + 1). The T0

term presents P independent contribution for miscellaneous initial start-up overhead of the

simulation and the non-parallelizable part of algorithm [1].

From Equation 6.17.

T (1)

T (P)
= P 1 + [(TSS + T0)/TC ](I + 1)−1

1 + [TMSlog2P + TSS + T0]/TC ]P(I + 1)−1
(6.18)

So a linear speed-up, with

T (1)

T (P)
' P (6.19)

is expected for sufficiently large time sub-domain size

∆i =
(I + 1)

P
� TMSlog2(P) + TSS + T0

TC

=: ∆lin (6.20)

When P reaches values comparable to

Plin :=
I + 1

∆ilin
(6.21)
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the speed-up will become sub-linear. According to Equation 6.18, the speed-up would reach

a hypothetical maximum for some Pmax several times larger than Plin and it would decrease

as 1/log2(P) when P � Pmax. However, most likely, that Pmax can never be reached, since

the sub-domain size ∆i cannot be less than twice the range iΦ of the FE basis functions,

according to Equation 4.30. Therefore P is limited to values

P ≤ PΦ :=
I + 1

2iΦ
(6.22)

Any available processor in excess of PΦ cannot be employed in the time-domain decomposi-

tion algorithm and no further speed-up can be achieved by adding more processors beyond

PΦ. So for P = PΦ, the speed-up reaches its actually achievable maximum value

T (1)

T (PΦ)
=
I + 1

2iΦ

1 + [(TSS + T0)/TC ](I + 1)−1

1 + [TMSlog2(
I+1
2iΦ

) + TSS + T0]/TC ](2iΦ)−1
(6.23)

Results shown in Figure 6.17 are consistent with the foregoing scaling arguments: for

some P-range, the speed-up is approximately linear and that range of linearity increases

with increasing time domain size I + 1. For the largest P = 8 and the smaller domain sizes

(I + 1 = 16, 32) sub-linear speed-up is observed.

For the smaller processor numbers, P = 2, 4, the speed-up in Figure 6.17 is actually

slightly super -linear. I do not currently understand the cause of this. However, a possible

explanation could be the incertainties of the CPU-time measurements. Since these test runs

were performed on the UGA IBM Pcluster system, the processors may or may not have been

shared with other users during execution which could affect the CPU time in an irrepro-

ducible manner during different runs with different P numbers.
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Figure 6.17: Speedup Test for parallel super-ensemble algorithm, for data set 0(ωσ = 0%)
and σn,s = 1%× Zref in HX, MC protocols as described in Section 5.2 with MC parameters
as in Figure 6.5(a) and 6.6(a), with FE basis sizes I + 1 = 16, 32, or 64 and parallel runs
performed on P = 2, 4 and 8 processors
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Summary and Conclusion

In summary, I have developed a new formalism and algorithm, referred to as the super-

ensemble approach, for the simulation of ensembles of reaction kinetics models for chemical

and biological systems. The super-ensemble approach is similar in spirit, and based on the

same ideas, as the “standard” ensemble method, which was developed earlier [2, 20], for

the kinetics model parameterization and prediction of biological networks from incomplete,

noisy experimental data. However, at the computational level, the super-ensemble method

eliminates the need for high-volume execution of conventional serial ODE solvers that have

been used in the standard ensemble method. Instead, the super-ensemble method uses a

Galerkin-type cost function, in conjunction with a variational Monte Carlo approach, to

fully integrate the ODE solving task with the ensemble Monte Carlo exploration of the

model parameter space.

For the case of a small model network for the kinetics of a simple enzyme catalysis pro-

cess, I have demonstrated that the super-ensemble can correctly reconstruct kinetics model

parameters, such as reaction rate coefficients or initial conditions. However, this must be

understood with the caveat, that the super-ensemble can correctly reconstruct only those

model parameters, (or quantities dependent on these model parameters) for which suffi-

cient constraints are actually contained in the experimental input data. Just like any other

scientific data analysis technique, the super-ensemble approach is subject to the “garbage-in-

garbage-out” principle: it cannot extract any information from the data that is not contained

in the data, as illustrated for the pair of poorly constrained rate coefficients in the simple

enzyme model simulations. Yet, the ensemble does, in principle, provide us with the means

72
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to check which information is, or is not, contained in the data, and to quantify the degree

of ignorance, given the data.

Unlike the standard ensemble method, the super-ensemble is easily and fully parallelizable

by way of simple scalable time-domain decomposition methods. Parallelizability is achieved

by using the Galerkin cost function approach instead of conventional strictly serial ODE

solvers. In this thesis, I have implemented such a parallel algorithm as an MPI code and I

have demonstrated its linear scaling with system size and processor number.

Another important aspect of the super-ensemble approach, which I have demonstrated in

this thesis, is its potential utility as an ODE solver algorithm in conventional ODE solution

applications. Unlike an intrinsically serial conventional ODE solver, the super-ensemble is

highly parallelizable in the time domain. One should caution, however, that this computa-

tional advantage of parallelizability is “bought” at the expense of possibly having to perform

a very large number of “sweeps” through the time-domain to minimize the Galerkin cost

function HK. By contrast, a conventional ODE solver has to sweep through the time domain

only once to get a complete, highly accurate solution. A great deal of further development,

optimization, and testing will be required to establish whether the super-ensemble can really

be deployed as a competitive alternative in conventional ODE applications.

Further work will also be required to control and improve the Monte Carlo equilibration

behavior of the super-ensemble approach. Possibly this could be done by exploiting a number

of methods already developed for a problem that are computationally very similar to the

super-ensemble: the simulation of continuum models for polymer systems. Such improve-

ments in MC equilibration will likely also be critical for applications of the super-ensemble

to substantially larger model networks describing “real-life” biological and chemical systems.
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