
 1

PARALLEL COMPUTING FOR RECONSTRUCTING PHYSICAL MAPS

OF CHROMOSOMES

by

JINLING HUANG

 (Under the Direction of SUCHENDRA BHANDARKAR)

ABSTRACT

 This study designs and implements the parallel algorithms with several optimization
approaches including simulated annealing, large step Markov chains (LSMC),
evolutionary programming, and genetic algorithms, for a physical mapping problem
based on the maximum likelihood estimator model. The parallel algorithms are
implemented using a combination of inter-process communication via message passing
and shared memory multithreaded programming and have provided good performance.
Genetic algorithms using a heuristic crossover operator yields better results in terms of
both solution accuracy and performance compared to the simulated annealing, LSMC and
evolutionary programming approaches.

INDEX WORDS: Physical Mapping, Parallel Computing, Maximum Likelihood
Estimator, Simulated Annealing, Large Step Markov Chains,
Evolutionary Programming, Genetic Algorithm, MPI, Pthreads

 i

PARALLEL COMPUTING FOR RECONSTRUCTING PHYSICAL MAPS

OF CHROMOSOMES

by

JINLING HUANG

B.Agr., Henan Agricultural University, China, 1984

M.S., Kunming Institute of Botany, The Chinese Academy of Sciences, China, 1989

Ph.D., The University of Georgia, 2000

A Thesis Submitted to the Graduate Faculty of The University of Georgia

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2002

 ii

 2002

Jinling Huang

All Rights Reserved

 iii

PARALLEL COMPUTING FOR RECONSTRUCTING

PHYSICAL MAPS OF CHROMOSOMES

by

JINLING HUANG

 Approved:

Major Professor: Suchendra Bhandarkar

Committee: Hamid Arabnia
 Thiab Taha

Electronic Version Approved:

Gordhan L. Patel
Dean of the Graduate School
The University of Georgia
August 2002

 iv

ACKNOWLEDGEMENTS

 I am grateful to Dr. Suchi Bhandarkar for his support and guidance throughout my

study, without which this project would have never been finished. I am also thankful to

Drs. Hamid Arabnia and Thiab Taha for serving on my graduate advisory committee.

Mr. Raghu Kota and Mr. Nan Li also provided valuable assistance and discussions for

this project.

 Finally, I would like to thank the UGA Computer Science department and all my

friends for their support and helps during my study.

 v

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ... iv

CHAPTER

1 INTRODUCTION TO PHYSICAL MAPPING AND PARALLEL

 COMPUTING...1

 1.1 Physical Mapping of Chromosomes ...2

 1.2 Parallel Computing ..6

2 PARALLEL COMPUTING OF MAXIMUM LIKELIHOOD ESTIMATOR

MODEL FOR CHROMOSOME PHYSICAL MAPPING10

 2.1 Problem Formulation..10

 2.2 Simulated Annealing Algorithm...12

 2.3 Parallel Computing of Simulated Annealing Using MPI..........................14

 2.4 Conjugate Gradient Descent Procedure ..20

 2.5 Parallelization of the Conjugate Gradient Descent Procedure..................24

2.6 Parallel Computing for MLE Using the Combination

 of MPI and POSIX Threads ..29

 2.7 Experimental Results ..35

3 PARALLEL COMPUTING FOR LARGE STEP MARKOV CHAINS

 ALGORITHM..45

 3.1 Large Step Markov Chains Algorithm..45

 vi

 3.2 Parallelization of LSMC ...50

 3.3 Experimental Results ..61

4 EVOLUTIONARY ALGORITHMS FOR PHYSICAL MAPPING

 PROBLEMS ..65

 4.1 Evolutionary Programming/LSMC Hybrid for Reconstructing Physical

 Maps of Chromosomes ...68

 4.2 Genetic Algorithms for Physical Mapping of Chromosomes..................71

4.3 Parallelization of the Evolutionary Programming/LSMC Hybrid

 Algorithm..76

 4.4 Parallelization of the Genetic Algorithms..78

 4.5 Experimental Results ...79

 5 CONCLUSIONS AND FUTURE WORK ...83

BIBLIOGRAPHY..86

 1

CHAPTER 1

INTRODUCTION TO PHYSICAL MAPPING AND PARALLEL COMPUTING

 Mapping genetic markers on a chromosome is a central issue in the understanding of

the genetic structure, functions and evolution of an organism. The importance of

chromosome mapping is reflected in the major international cooperative efforts to study

the whole genomes of several organisms, including Homo sapiens, Mus musculus,

Arabidopsis thaliana, Escherichia coli etc. Chromosomal maps can be broadly divided

into two major types, i.e., genetic maps and physical maps. Genetic maps represent

genetic markers in their relative order along the chromosome, where the distance between

two markers is a measure of their recombination frequency and denoted by centimorgans.

Two genetic markers are one centimorgan apart if the recombination rate between them is

1%. Although genetic maps can be used to estimate the physical distance between

genetic markers, the result of the estimation is often not very reliable since recombination

frequencies vary in different regions of a chromosome (Watson et al. 1992). Physical

mapping, on the other hand, determines physical locations of genetic markers on a

chromosome. The distance between two markers in a physical map is measured by the

number of intervening nucleotide base pairs. As a result, a physical map is of higher

resolution and becomes a powerful tool to isolate genes and to study the organization and

evolution of genomes.

 This chapter gives a brief introduction to the procedure of physical mapping of

chromosomes and parallel computing. In chapters 2, 3, and 4, three different

 2

computational models, i.e., simulated annealing (SA), large step Markov chain (LSMC)

and the evolutionary algorithm, and their parallel implementation for constructing

physical maps are discussed. Chapter 5 summarizes the results of this project and

outlines directions for future research.

1.1 Physical Mapping of Chromosomes

 The procedure of physical mapping can be divided roughly into two steps. First, large

pieces of DNA called contigs derived from a library of cloned DNA fragments are

ordered according to their positions in the genome. This can be done using techniques

such as nonunique probes mapping (Alizadeh et al. 1995), unique probes mapping

(Alizadeh et al. 1994; Greenberg and Istrail 1995; Jain and Myers 1997), unique

endprobes mapping (Christof et al. 1997), restriction fragments mapping (Fasulo et al.

1997; Jiang et al. 1997), radiation-hybrid mapping (Ben-Dor and Chor 1997; Slonim et

al. 1997), and optical mapping (Muthukrishnan and Parida 1997; Karp and Shamir 1998;

Lee et al. 1998). Second, the cloned fragments are cut by restriction enzymes, and

smaller DNA fragments are obtained and sequenced (shotgun-sequencing), and the

detailed sequence is obtained via a sequence assembly procedure.

 The physical mapping technique used in this project is based on sampling without

replacement protocol (Prade et al. 1997). This protocol has been used successfully for

several fungal organisms, including Aspergillus nidulans, Aspergillus flavus,

Schizosaccharomyces pombe, Pneumocystis carinii etc. Under this protocol,

chromosomes are first isolated using pulsed field gel electrophoresis and then

radiolabeled. Each chromosome is then used to probe the genomic library L. As a result,

 3

clones in the genomic library can be sorted into three subsets S, R, and O. Clones in

subset S are specific to a single chromosome of the organism under study whereas those

in subset R can hybridize to several but not all the chromosomes. Clones in subset O can

hybridize to all the chromosomes. Clones in subset S are radiolabeled and used to probe

the genomic library L to derive a chromosome-specific probe set P and a clone set C.

Specifically the probe set P and the clone set C can be obtained in the following

procedure (Kececioglu et al. 2000; Bhandarkar et al. 2001):

(a) Initially, P is empty and L contains all the clones.

(b) During the ith iteration of the hybridization process, a new probe Pi is selected

from the library L and used to hybridize against all the remaining clones in L.

Remove the clone from the library L if it has a positive reaction with the probe.

The clone/probe hybridization reactions are recorded in a binary hybridization

matrix H. If the ith clone has a positive reaction with the jth probe, Hij is coded as

1. Otherwise, Hij is coded as 0 (Figure 1.1).

(c) Repeat step b until the library L becomes empty.

 The result of this selection process will be a probe set P consisting of all the probes, a

clone set C consisting of all the remaining clones in the library L, and a hybridization

matrix H recording all the probe/clone hybridization reactions. The probe set P is

essentially a maximal set of non-overlapping equal-length clones. If the probes in the

probe set P can be ordered with respect to their positions along the chromosome, then by

examining the 0 and 1 pattern of the probe/clone hybridization matrix, we can also infer

the linking clones and construct the minimum overlapping probes and clones, which is

also called the minimum tiling, along the chromosome (Figure 1.2). The minimum tiling

 4

in conjunction with the sequencing of each individual clone/probe in the tiling could then

be used to reconstruct the DNA sequence of the entire chromosome. In practice, many

difficulties may be encountered during the analysis. The most common error arises due to

a false signature. This occurs when a clone and a probe have a false positive

hybridization reaction and Hi j is coded as 1 when it in fact should be 0, or conversely a

clone and a probe have a false negative hybridization reaction and Hij is coded as 0 when

it should be 1 (Bhandarkar et al. 2001).

 In this project, we have used a maximum likelihood estimator (MLE) model for

constructing physical maps. This model will find the optimal probe ordering and inter-

probe spacings with the maximum probability of resulting in the observed data.

Essentially it derives an objective function that takes two parameters, probes order and

inter-probe spacings, and also takes into account the false hybridization errors. The

mostly likely solution will have the lowest objective function value. To optimize the

objective function value, we have used simulated annealing and its variant, the LSMC

algorithm, and evolutionary algorithms such as genetic algorithm and evolutionary

programming. The result can be used to order the entire clone set based on the available

hybridization patterns.

 5

Probes

Clones P1 P2 P3 P4 P5

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

Figure 1.1 An example of clone-probe ordering across the chromosome

Figure 1.2 An example of clone-probe ordering along a chromosome

P1
11

P2 P3 P4 P5

 6

1.2 Parallel Computing

 By definition, a parallel computer is a set of processing elements that are able to

communicate and cooperate to solve a large problem faster than a single-processor

computer could. Therefore a parallel architecture can be viewed as an extension of

conventional computer architecture with emphasis on the communication and

cooperation among the processing elements (Culler et al. 1999). Based on this definition,

the term parallel computers essentially include parallel supercomputers, networks of

workstations, and shared-memory multiprocessor computers.

 According to Flynn (1966), the architecture of a computer can be broadly classified

into four categories on the basis of their data streams and instruction streams. They are

single instruction single data (SISD), multiple instruction single data (MISD), single

instruction multiple data (SIMD), and multiple instruction multiple data (MIMD).

Among these possible architectures, the SIMD and MIMD models constitute the most

commonly encountered parallel computer systems. The SIMD system is the basic model

for data parallelism and usually consists of a parallel array of processors that are usually

mesh-connected and execute the same instructions simultaneously. The MIMD system is

often used for task parallelism and consists of an assembly of processors that execute any

task either independently or in concert with others (Fountain 1994).

 Parallel computing involves identifying workloads that can be tackled in parallel,

distributing them among processing elements, and managing the necessary data access,

communication, and synchronization (Golub and Ortega 1993; Culler et al. 1999). A

parallel program consists of several cooperating processes to solve a problem, and

therefore is extremely useful for computation-intensive problems.

 7

 To parallelize a computational problem and accomplish the goal of a sequential

program, several major steps (Culler et al. 1999) are taken:

(a) Identifying available concurrency in the underlying problem and the amount of

concurrency exposed, and decomposing a larger computational problem into

smaller subtasks.

(b) Assigning tasks to processes. The workload assigned to each process should be

balanced, and the communication among processes and the run-time overhead to

manage the assignment should be minimized.

(c) Managing the necessary data access, communication, and synchronization among

processes. The cost of communication and synchronization should be minimized.

(d) Mapping or binding processes to processors. This can be done either by the

program or by the operating system. The program can bind or map a process to a

processor and specify which process is supposed to run in certain phases.

 The performance of a parallel program is often measured by the speedup, which is

defined as
)(

)1(
processorsnTime
processorTime

speedup = . The speedup of a program is limited by

the portion of the computation that can be parallelized. Therefore, it is critical to study

the problem and identify the available concurrency before an attempt is made to

parallelize it. Another measurement of performance is efficiency, which is defined as

usedprocessorsofnumber
speedup

efficiency = . Since speedup is typically less than the

number of the processors used for execution, efficiency should be less than or equal to 1

or 100%.

 8

 The most widely used parallel programming models are Shared Memory

Programming and Message Passing.

(1) Shared Memory Programming: Communication occurs implicitly as a result of

access to a shared memory by multiple processing elements using conventional memory

access instructions (Culler et al. 1999). Communication can be between independent

processes running on different processors and sharing a common memory segment or

between threads of the same process.

 Recently, with the increasing popularity of shared-memory, symmetric multiprocessor

(SMP) machines, multithreaded programming has become more widely used. A thread is

essentially a flow of execution within a process with its own register set and stack.

Compared to a process, a thread takes less time to create and terminate. Unlike processes,

which require operating system intervention for inter-process communication,

communication among threads is more efficient since all threads within a task share a

common memory and file system and can communicate without invoking the operating

system kernel (Tanenbaum 2001). The implementation of threads can be broadly

classified into two major types, i.e., POSIX style threads and WIN32/OS/2 style threads

(Prasad 1997). POSIX is a standard document produced by IEEE aiming to provide a

standard interface for programming on different operating systems. The POSIX thread

(Pthread) standard is supported by most of the UNIX vendors. The Pthread library

provides a series of functions for thread creation, termination, management, and

synchronization.

(2) Message Passing: Message passing is fundamentally processor-to-processor

 9

communication with explicit I/O operations. Communication in the message passing

model is integrated at the I/O level rather than into the memory system (Culler et al.

1999). Each process maintains a local memory, and communication among processes is

realized via send and receive operations. In the simplest form, send specifies a local data

buffer to be transmitted and a receiving process whereas receive specifies a sending

process and a local data buffer into which the transmitted data is to be placed (Culler et

al. 1999; Gropp et al. 1999). Parallel Virtual Machine (PVM) (Sunderam 1988) and

Message Passing Interface (MPI) (Message Passing Interface Forum 1994) are two of the

common software packages that allow programmers to program based on this

programming model.

 In this project, we have used a combination of message passing and shared memory

programming models. The choice of the programming model is based on the nature of

the problem to be tackled and the ease of use for that model. We first create multiple

processes on a cluster of SMPs to parallelize the simulated annealing or the evolutionary

algorithm using MPI. Within each process, multiple threads are spawned using Pthreads

to parallelize the conjugate gradient descent search and the local exhaustive search

procedures. For our specific implementation, we have used the Master/Slaves model.

The master is mainly a thread/process responsible for coordinating and synchronizing the

computation of slave threads/processes. Slave threads/processes are responsible for the

actual computation.

 10

CHAPTER 2

PARALLEL COMPUTING OF MAXIMUM LIKELIHOOD ESTIMATOR MODEL

FOR CHROMOSOME PHYSICAL MAPPING

 The Maximum Likelihood Estimator (MLE) model for constructing physical maps of

chromosomes is based on the work of Shete, Kececioglu, and Arnold (1998). This model

determines the ordering of probes Π in the probe set P and the inter-probe spacings

Υ under a probabilistic model of hybridization errors due to false positives and false

negatives. Under this model, the probes are first ordered as opposed to clones and the

inter-probe spacings are calculated. Once the optimal probe orders are determined, the

ordering of clones can be obtained by examining the resulting probe/clone hybridization.

2.1 Problem Formulation

 The MLE function involves two independent vector parameters, i.e., probe ordering

Π and inter-probe spacings Υ . The negative log-likelihood derived from the MLE

function is computed as

 () ()∑ ∑
=

+

=

ΜΥ−−−−=ΥΠ
−

k

i

j

n

j
iii

jj
aaRCf

1

,

1

1
,, min)1)(1(ln,

1ππ (2.1)

where C is a constant given by

 () () ()ρ
ρ

ρ
−−

−
−−= 1ln

1
lnln nkPMNkC (2.2)

 11

and

 ()()11 1,

1

1

, −− −

+

=

= ∑ ji

n

j

jii aaR ππ (2.3)

()

()

==

==

=
−

othewise
njandhif

njandhif

a ji

ji

ji

0
,...,11

,...,10

,

,

,

1

ρ
η

ρ
η

 (2.4)

where

N is the length of the chromosome;

M is the length of a clone/probe;

n is the number of probes selected from the library;

κ is the number of clones in the library;

ρ is the probability of false positive;

η is the probability of false negative;

njkijihH ≤≤≤≤= 1,1,))((is the clone/probe hybridization matrix;

ijH is the coded value for ith row and jth column in the hybridization matrix;

Π = (π1, …, πn) is a permutation of {1, …, n};

),...,,(21 nYYYY = is the inter-probe spacing vector and iY is the spacing between
i

Pπ and

i
P

1−π , 1Y is the spacing before the first probe and 1+nY is the spacing after the last probe.

 Optimization of the MLE function entails minimization of the negative log-likelihood

function),(ΠΥf , which can be achieved in two levels. At the higher level, simulated

annealing is used to optimize the objective function with respect to the discrete

parameter Π . At the lower level, a conjugate gradient descent procedure is used to

 12

optimize the objective function with respect to the continuous parameter Υ (Bhandarkar

et al. 2001).

2.2 Simulated Annealing Algorithm

 Simulated annealing is an iterative optimization approach analogous to the gradual

cooling process of a physical system. A typical simulated annealing algorithm starts with

a given temperature and an initial state. The temperature is then decreased according to

an annealing function. Each temperature value corresponds to an annealing step which

consists of three phases as described in the following:

a. Perturb: An operator is applied to the current state and a new state is generated in this

phase. In our case, the perturbation is achieved by reversing the order of a probe

block that has been chosen randomly. Therefore the current solution ix is perturbed

to yield a new candidate solution jx .

b. Evaluate: The new candidate solution jx is evaluated using some criteria. In our

case, the objective function value ()ΥΠ,f of the new probe ordering jx is calculated.

This is achieved by searching for the optimal inter-probe spacing Y for the new order

jx using a conjugate gradient descent search and then calculating the negative log-

likelihood function value under the new order jx and its optimal inter-probe

spacings.

c. Decide: If)()(ij xfxf < , then jx is accepted as the new solution; otherwise jx is

accepted as the new solution with the probability p computed using the Metropolis

 13

function

 −
−=

i

ij

T
xfxf

p
)()(

exp at the temperature iT whereas ix is retained

with probability (1-p). In our implementation, a random number is generated using a

pseudorandom generator with a uniform distribution in the range [0, 1]. If this

random number happens to be less than p, then jx is accepted as the current solution.

Otherwise ix is retained.

 For a given temperature iT or an annealing step, a sufficient number of Perturb –

Evaluate - Decide cycles should always lead to an equilibrium resulting in a stationary

Boltzmann distribution of solution states (Mahfoud and Goldberg 1995). Therefore, a

sufficient number of iterations should be run to approach the equilibrium. The series of

solution states generated at a given temperature or an annealing step constitute a Markov

chain since the ith solution is constructed strictly from the i-1th one. At higher

temperatures, since almost any change to the current solution state can be accepted, the

uphill movement is more likely and simulated annealing resembles a completely random

search. This would prevent the searching from being trapped into a local optimal

solution. At lower temperatures, the annealing step is more like a deterministic local

search. The temperature continues decreasing until certain predefined criteria are met

(Figure 2.1).

T = T_max;

Finished = false;

While (not Finished)

 14

{

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

1 Phase one – Perturb

 Randomly perturb the current solution to generate a new candidate solution;

2 Phase two – Evaluate

(a) Compute the objective function value for the new candidate solution;

(b) Compute f_delta, the change in the value of the objective function;

3 Phase three - Decide

 If (f_delta < 0)

 Accept the new solution.

 Else

 Accept the new solution with the probability p computed using the

 Metropolis function.

 }

 Update the temperature using the annealing function T = A(T);

}

Figure 2.1 Outline of a typical simulated annealing algorithm

2.3 Parallel Computing of Simulated Annealing Using MPI

 Two slightly different approaches are used to parallelize the simulated annealing

algorithm on a network of SMPs in this project.

 15

a. Non-Interacting Local Markov Chain (NILM): This approach is based on multiple

independent searches. The total number of iterations in a given annealing step is

divided evenly among the SMP machines in the network. Each machine is assigned a

unique random seed number to generate its own Markov chain of solutions. The

tasks run asynchronously on each machine. At the end of the annealing process, the

locally optimal solutions obtained from all the SMPs are compared and the one with

the lowest value is chosen as the final solution (Figures 2.2, 2.3). In the case of our

MPI implementation, the local optimal objective values from slaves are sent to the

master via function calls MPI_Send and MPI_Recv. The master compares and

identifies the global optimal value and then broadcasts its identifier to all the

processes via the function call MPI_Bcast. After receiving the identifier, the process

with the global optimal value will send its local optimal solution to the master.

Finished = false;

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count +1)

 {

1 Phase One – Perturb

 Randomly perturb the existing solution to generate a new solution;

2 Phase Two – Evaluate

(a) Compute the objective function value for the new candidate solution;

 16

(b) Compute f_delta, the change in the value of the objective function;

3 Phase Three – Decide

If (f_delta < 0)

 Accept the new solution.

Else

 Accept the new solution with the probability p computed using

 the Metropolis function.

 }

 Update the temperature using annealing function T = A (T);

}

(a) Receive local optimal function values from slaves;

(b) Compare local optimal objective function values from slaves and identify the global

minimal value and its process identifier (minId);

(c) Broadcast minId to all processes;

(d) Receive probe ordering and inter-probe spacings from the process minId.

Figure 2.2 Master process for the NILM algorithm

Finished = false;

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count +1)

 17

 {

1 Phase One – Perturb

Randomly perturb the existing solution to generate a new solution;

2 Phase Two – Evaluate

(a) Compute the objective function value for the new candidate solution;

(b) Compute f_delta, the change in the value of the objective function;

3 Phase Three – Decide

If (f_delta < 0)

 Accept the new solution.

Else

 Accept the new solution with the probability p computed using

 the Metropolis function.

 }

 Update the temperature using the annealing function T = A (T);

}

(a) Send local optimal function value to the master;

(b) Receive from the master the identifier MinId of the process which yields the global

minimal objective function value;

(c) If (MinId = myId)

 Send optimal probe ordering to the master;

 Send optimal inter-probe spacings to the master.

Figure 2.3 Slave process for the NILM algorithm

 18

b. Periodically Interacting Local Markov Chain (PILM): This approach differs from

NILM in that, instead of evaluating local objective solutions at the end of the

simulated annealing function, the local solutions from slaves are compared once an

annealing step is completed. In the case of our MPI implementation, slaves send their

local optimal solutions to the master at the end of each annealing step. The master

compares and identifies the one with the lowest local objective function value as the

optimal solution at that annealing step and broadcasts this solution to all processes as

the current solution for the next annealing step (Figures 2.4, 2.5).

T = T_max;

Finished = false;

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

1 Phase one – Perturb

Randomly perturb the current solution to generate a new candidate solution;

2 Phase two – Evaluate

(a) Compute the objective function value for the new candidate solution;

(b) Compute f_delta, the change in the objective function value;

3 Phase three - Decide

 If (f_delta < 0)

 19

 Accept the new solution.

 Else

 Accept the new solution with the probability p computed using the

 Metropolis function.

 }

(a) Receive local minimal objective function values and process Ids from slaves;

(b) Compare the local minimal objective function values obtained from slaves and

identify the global minimal objective function value and its associated process Id

(minId);

(c) Broadcast minId to all the processes;

(d) Receive probe ordering and inter-probe spacings from process minId;

(e) Update the temperature using the annealing function T = A (T);

}

Figure 2.4 Master process of the PILM algorithm

T = T_max;

Finished = false;

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

1 Phase one – Perturb

 20

Randomly perturb the current solution to generate a new candidate solution;

2 Phase two – Evaluate

(a) Compute the objective function value for the new candidate solution;

(b) Compute f_delta, the change in the value of the objective function;

3 Phase three - Decide

 If (f_delta < 0)

 Accept the new solution;

Else

 Accept the new solution with the probability p computed using the

 Metropolis function;

 }

Send local minimal objective function value and process Id to the master;

Receive minId from the master;

If (myId = minId)

 Broadcast probe ordering and inter-probe spacings to all processes;

Update the temperature using the annealing function T = A (T);

}

Figure 2.5 Slave process for the PILM algorithm

2.4 Conjugate Gradient Descent Procedure

 The MLE objective function is a convex function with respect to inter-probe spacings

Y for a given probe ordering ? . Thus it possesses a unique local minimum that is also its

 21

global minimum (Kota 2000; Bhandarkar et al. 2001). This global minimum can be

reached using local search techniques such as the steepest descent and conjugate gradient

descent procedures. The steepest descent technique is an iterative procedure consisting

of three steps: (1) Start with an initial feasible value of Y, (ii) Compute the downhill

gradient at Y and (iii) Minimize the objective function in the direction of this downhill

gradient and update the value of Y (Kota 2000; Bhandarkar 2001).

 The initial value of Y = (Y1, …, Yn) is initialized by evenly dividing the sum of inter-

probe spacings among each of the Yi’s. Once the initial Y has been determined, we can

estimate the local downhill gradient of the MLE objective function by

∧∧

Υ=ΥΥ=Υ

∧

=
Υ∂

ΥΠ∂
Υ∂

ΥΠ∂
−=ΥΠ∇− |),...,(|)

),(
,...,

),(
(),(1

1
n

n

UU
ff

f (2.5)

where

 ∑
∑=

+

=

+

ΜΥ−−−

ΥΙ−−ΥΙ−−−
=

−

−
k

i
n

j jiii

nilii
l

jj

nll

aaR

aaa
U

1
1

1 ,,

1,,,

),min()1)(1(

))()1(()()1)(1(

1

1

ππ

πππ (2.6)

and

 Μ≤

=Ι
otherwise

xif
x

0
1

)((2.7)

 The current value of oldΥ=Υ is updated to yield a new value such that

sUYoldnew +=Υ , where s is a scalar, by moving along the local downhill gradient

direction oldfU Υ=Υ
∧ ∧

ΥΠ−∇= |),(. To minimize the MLE objective function ƒ along the

local downhill gradient, an optimal value of s = s* needs to be determined such that

),(min),(* sUfUsf s +ΥΠ=+ΥΠ
∧∧

 (2.8)

where

 22

 ∑ ∑
=

+

=

∧∧

Μ+Υ−−−−=+ΥΠ
−

k

i

n

j
jjiii sUaaRCsUf

jj
1

1

1
,,),min()1)(1(ln),(

1ππ (2.9)

and

 ∑ =+ Υ−Μ−=Υ
n

i in nN
11 . (2.10)

 To find *s , we consider

∑
∑
∑

= +

=

∧

+

=

∧∧

Μ+Υ−−−

+Υ−−
=

∂
+ΥΠ∂

−

−
k

i n

j jjiii

n

j jjjii

sUaaR

sUIUaa

s
sUf

jj

jj

1 1

1 ,,

1

1 ,,

),min()1)(1(

)()1)(1(),(

1

1

ππ

ππ
 (2.11)

where ∑ =+ −=
n

i in UU
11 . In addition, since the MLE objective function)(ΥΠf is convex

with respect to Y, the local optimum for s is also a global optimum. Also, the boundary

conditions on the inter-probe spacings result in the following constraints:

(i) 0≥+ sUY j , for j = 1, …, n. i.e., no inter-probe spacing should be nonnegative.

(ii) ∑ =
Μ−≤+Υ

n

j jj nNsU
1

)(, i.e., the sum of the inter-probe spacings should not

exceed the sum of available gaps, which is nMN − .

 With these constraints, we can further bracket the value of s as follows:

 Υ−Μ

 Υ−

≤≤

∧

>+∈

∧

<+∈
j

j

Unj
j

j

Unj UU
s

jj 0:)1,...,1(0:)1,...,1(
min,minmin0 (2.12)

 Once the upper and lower limits of s have been determined, s* can be calculated using

the bisection method (Press et al. 1988). New inter-probe spacings Y can be calculated

as Usoldnew
*+Υ=Υ .

 23

 Under the inter-probe spacing constraints, the value of Yi’s, where 11 +≤≤ ni , lies in

the range between 0 and M. If the Y vector is on the boundary defined by the constraints

and the local downhill gradient vector U points outside the feasible region at that point,

we will have to reset the value of s to zero and stop the iterative procedure even though

the gradient has not vanished (Bhandarkar et al. 2001). This is handled by the Project

routine in this project.

 The gradient computation and the solution update steps of the steepest descent or

conjugate gradient descent procedures are carried out until the gradient vector attains a

magnitude less than a predefined threshold. Ideally, the gradient vector should become 0.

But this may not happen because of the numerical errors associated with the computation

of s and the gradient vector on the computers (Machaka 1998; Kota 2000; Bhandarkar et

al. 2001).

 The serial algorithm for conjugate gradient descent search is outlined in Figure 2.6.

1 Start with an initial guess of iΥ=Υ ;

Calculate gradient),(ifG ΥΠ∇= ;

GGGG −=== 21 ;

2 while(1)

{

 ProjectG ;

 If (G vanished)

 Break;

 24

 Bracket the minimum along the directionG ;

 Minimize along the directionG : Find the optimal s* such that

)*,(min)*,(GsfGsf isi +ΥΠ=+ΥΠ ;

 Gs *+Υ=Υ ;

),(),(1+ΥΠ−ΥΠ=∆ ii fff ;

 1+Υ=Υ ii ;

 if)10(5−<∆f

 Break;

 Calculate gradient),(ifG ΥΠ∇= ;

 GGGg)(21 += ;

 222 GGg = ;

 213 / ggg = ;

 GG −=2 ;

 1321 GgGGG +== ;

}

3 iΥ=Υ ;

Figure 2.6 Serial algorithm for conjugate gradient descent search

2.5 Parallelization of the Conjugate Gradient Descent Procedure

 Parallelization of the conjugate gradient descent procedure follows the data

parallelism model, where several processing elements perform an action on separate

 25

subsets of the data set simultaneously. In our project, the gradient vector G and inter-

probe spacings Y are divided into subsets to be processed concurrently. Implementation

of the parallel algorithm follows the Master/Slave model, where both the master and

slaves are implemented using POSIX threads. Information on shared variables is updated

globally. The contention scope of the threads is set to PTHREAD_SCOPE_SYSTEM

using function pthread_att_setscope. This would ensure that all threads within a process

are scheduled globally in the system. Slaves are responsible for most of the computation.

Coordination and synchronization among slaves are carried out by the master.

Synchronization is realized using data types mutex and semaphore from the Pthread

library and the barrier variable implemented by us. Mutex is used to ensure that a critical

section is executed atomically. Semaphore is used to coordinate the order of execution

between the master and slaves. The barrier variable is employed so that no thread can

proceed further until all threads reach the same phase. This would prevent certain threads

from updating the global variables when some other threads are still using them. Two

barrier variables have been used in our implementation. One of these barrier variables is

used for coordinating the execution of slaves. This is useful when the computation is

conducted by slaves and does not need coordination by the master. The other barrier

variable is used when coordination and synchronization by the master are necessary.

Each slave thread is bound onto a processor using the UNIX function call processor_bind

so that the time spent in switching among processors is reduced to a minimum. The

master is not bound to any processor since the time used by the master for coordination

and synchronization is insignificant compared to that used by the slaves.

 26

 The algorithms for the master and slave threads are shown in Figures 2.7 and 2.8

respectively.

1 Start with initial guess of iΥ=Υ ;

Divide the Υ and G by marking the bounds of the beginning and end of each

subvector to be acted up by slaves;

Spawn the slave threads and pass them the bounds of their subvectors as the

arguments;

2 while (1)

{

 (a) Project with the master thread to coordinate the slave actions;

 Master-Slave barrier to allow all threads finishing Project;

(b) Read exit-bool[index] for all the slaves.

If all exit-bool[index] are 1

 EXIT = 1

 Break;

 Else

 EXIT = 0;

(c) Bracket with the master thread to coordinate slave threads;

(d) Minimization with the master to coordinate slave actions. Minimizing along

the direction G to find the optimal s* such that

),(min),(* sGfGsf isi +ΥΠ=+ΥΠ ; Update Υ using Gsii
*

1 +Υ=Υ + ;

 27

(e)),(),(1+ΥΠ−ΥΠ=∆ ii fff ;

 If)10(5−<∆f

 EXIT = 1;

 Break;

(f) Gradient with the master to coordinate slave actions.

(g) Calculate global variables 1G and 2G and coordinate generating new

gradient for next iteration;

 }

Figure 2.7 Master conjugate gradient descent procedure using Pthreads

1 Read the bounds for ciΥ and initialization data;

Calculate gradient),(cic fG ΥΠ∇= ;

cccc GGGG −=== 21 ;

2 while (1)

{

(a) Project cG ;

(b) If (cG vanished)

 exit-bool[index] = 1; //index here is the process Id

(c) Read EXIT;

 If (EXIT = 1)

 Break;

 28

(d) Bracket the minimum along the direction cG by updating the values of

 SLOW and SHIGH variables;

(e) Minimize along the direction G to find the s* such that

),(min),(* sGfGsf isi +ΥΠ=+ΥΠ ;

(f) Update Υ using Gsii
*

1 +Υ=Υ + ;

(g) Read EXIT;

 If (EXIT = 1)

 Break;

(h) Calculate gradient),(cic fG ΥΠ∇= ;

 ccc GGGg)(21 += ;

 222 cc GGg = ;

 (i) Do following operations using mutex-lock:

 11 gG =+ ;

 22 gG =+ ;

 213 / ggg = ;

 cc GG −=2 ;

 1321 ccc GgGGG +== ;

 }

Figure 2.8 Slave conjugate gradient descent procedure using pthreads

 29

2.6 Parallel Computing for MLE Using the Combination of MPI and POSIX Threads

 Parallel programs of the MLE were run on the SMP cluster in the Computer Science

Department at the University of Georgia, which consists of 1 front-end server (babbage)

and 8 identical compute nodes. Each compute node is a SunOS SMP machine with 4

processors.

 To exploit the computing power of the cluster, we have parallelized the physical

mapping algorithms at two levels using a combination of message passing and shared

memory programming. At the higher level, the simulated annealing function is

parallelized using MPI. Specifically, we created multiple processes on the SMP

machines and partitioned the workload of a single annealing step among the processes.

Each process starts with an independent seed and generates its own Markov chain of

solutions at a given annealing step. Processes communicate using MPI. Under the PILM

model, slave processes send their locally optimal solutions to the master when a given

annealing step is finished. The master identifies the best solution amongst the slave

processes and broadcasts that solution to all the slaves for the next annealing step. When

the NILM model is used, inter-process communication via MPI is carried out only at the

end of the entire simulated annealing function.

 At the lower level, the conjugate gradient descent procedure is further parallelized

using multithreaded programming techniques within each process as mentioned above.

Outlines of these parallel algorithms are shown in Figures 2.9-2.12.

T = T_max;

Finished = false;

 30

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

1 Phase one – Perturb

Randomly perturb the current solution to generate a new candidate solution;

2 Phase two – Evaluate

(a) Master conjugate gradient descent procedure. This would spawn slave threads

for the procedure to compute the optimal inter-probe spacings for the new

candidate solution;

(b) Compute the objective function value at the new probe order;

(c) Compute f_delta, the change in the value of the objective function;

3 Phase three - Decide

 If (f_delta < 0)

 Accept the new solution.

 Else

 Accept the new solution with the probability p computed using the

 Metropolis function.

 }

 Update the temperature using the annealing function T = A(T);

}

(a) Receive local optimal objective function values from slaves;

 31

(b) Compare local optimal objective function values and identify the global minimal

values and its process identifier (minId);

(c) Broadcast minId to all the processes;

(d) Receive probe ordering and inter-probe spacings from the process minId.

Figure 2.9 Master algorithm of NILM_MLE using MPI and Pthreads

T = T_max;

Finished = false;

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

 1 Phase one – Perturb

Randomly perturb the current solution to generate a new candidate solution;

2 Phase two – Evaluate

(a) Master conjugate gradient descent procedure. This would spawn slave

threads for the procedure and compute the optimal inter-probe spacings for

the new candidate solution;

(b) Compute the local minimum objective function value for the new probe

order;

(c) Compute f_delta, the change in the value of the objective function;

 32

3 Phase three - Decide

 If (f_delta < 0)

 Accept the new solution.

 Else

 Accept the new solution with the probability p computed using the

 Metropolis function.

 }

 Update the temperature using the annealing function T = A(T);

}

(a) Send local optimal function value to the master;

(b) Receive from master the identifier MinId of the process which yields the global

minimal objective function value;

(c) If (MinId = myId)

 Send optimal probe ordering to the master;

 Send optimal inter-probe spacings to the master.

Figure 2.10 Slave algorithm of NILM_MLE using MPI and Pthreads

T = T_max;

Finished = false;

While (not Finished)

{

 33

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

 1 Phase one – Perturb

Randomly perturb the current solution to generate a new candidate solution;

2 Phase two – Evaluate

(a) Master conjugate gradient descent procedure. This would spawn slave

threads for the procedure and compute the optimal inter-probe spacings for

the new candidate solution;

(b) Compute the objective function value for the new probe order;

(c) Compute f_delta, the change in the value of the objective function;

3 Phase three - Decide

 If (f_delta < 0)

 Accept the new solution.

 Else

 Accept the new solution with the probability p computed using

 the Metropolis function.

 }

(a) Receive local optimal objective function values and process Ids from slaves;

(b) Compare local optimal objective function values from slaves and identify the

global optimal objective function value and its associated process Id (minId);

(c) Broadcast minId to all the processes;

(d) Receive probe ordering and inter-probe spacings from process minId;

(e) Update the temperature using the annealing function T = A(T);

 34

}

Figure 2.11 Master algorithm of PILM_MLE using MPI and Pthreads

T = T_max;

Finished = false;

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

1 Phase one – Perturb

Randomly perturb the current solution to generate a new candidate solution;

2 Phase two – Evaluate

(a) Master conjugate gradient descent procedure. This would spawn slave

threads for the procedure and compute the optimal inter-probe spacings for

the new candidate solution;

(b) Compute the objective function value for the new probe order;

(c) Compute f_delta, the change in the value of the objective function;

3 Phase three - Decide

 If (f_delta < 0)

 Accept the new solution.

 Else

 Accept the new solution with the probability p computed using

 35

 the Metropolis function.

 }

(a) Send local optimal objective function value and process Id to the master;

(b) Receive minId from the master;

 If (myId = minId)

 Broadcast local optimal probe ordering and inter-probe spacings to all the

 processes;

(c) Update the temperature using the annealing function T = A(T);

}

Figure 2.12 Slave algorithm for PILM_MLE using MPI and Pthreads

2.7 Experimental Results

 All the algorithms in this project are implemented using the C programming language.

The performance of the algorithms is measured using speedup and efficiency as the

metrics. Speedups are calculated only for PILM algorithms where the final objective

function value for the fastest execution is used as the point P for measurement. The

speedup is measured for all executions (i.e., executions with number of processors = 4, 8,

16, and 32) using the approximate time to reach P against the serial MLE execution time.

Due to the nature of parallelization of simulated annealing, different executions often

yield different values at a given annealing step. Therefore, their respective time to reach

P is estimated based on linear interpolation of the time scales of the immediately previous

and next annealing steps. Speedups for NILM algorithms are not given since the time to

 36

reach P cannot be correctly estimated. It should also be noted that since the serial

simulated annealing algorithm constructs a single Markov chain of solution states at a

given annealing step whereas the parallel simulated annealing algorithms consist of

multiple independent ones, this parallelization technique may sometimes lead to speedups

that exceed the number of processors used.

 Algorithms were tested using artificially generated (i.e., synthetic) datasets (Shete

1998) with the number of probes ranging from 50 – 500 and the real datasets derived

from chromosomes II to VII of the fungus Aspergillus nidulans. The real datasets were

made available by Dr. Jonathan Arnold from the Genetics Department at the University

of Georgia. Testing of parallel algorithms of MLE-based physical mapping using a

combination of MPI and Pthreads was carried out using 1, 2, 4, 8 SMP machines, each

with 4 processors. Therefore, a total of 1, 4, 8, 16, and 32 processors were used

respectively. For simulated annealing, the initial temperature was set as 1 and 100

iterations were used for each annealing step. These parameters were empirically

determined.

2.7.1 Performance of Conjugate Gradient Descent Procedure

 To evaluate the performance of the parallel algorithm for the conjugate gradient

descent procedure, the procedure was first tested with a fixed number of iterations for the

serial algorithm, and then the same workload was decomposed among the 2-4 processors

on the same SMP machine. Both synthetic datasets for probe number nprobe=50, 200,

500 and the real dataset cosmid2 were used for performance comparison and the results

are shown in Figures 2.13 and 2.14 and Tables 2.1 and 2.2.

 37

Table 2.1 Speedups for parallel conjugate gradient descent procedure

Dataset Nproc=1 Nproc=2 Nproc=3 Nproc=4

Nprobe=50 1 1.69 2.32 2.13

Nprobe=200 1 1.81 2.82 2.48

Nprobe=500 1 1.89 2.80 2.99

Cosmid2 1 1.87 2.78 2.79

Table 2.2 Efficiencies (%) for parallel conjugate gradient descent procedure

Dataset Nproc=1 Nproc=2 Nproc=3 Nproc=4

Nprobe=50 100 85 77 53

Nprobe=200 100 91 94 63

Nprobe=500 100 95 93 75

Cosmid2 100 94 93 70

 38

PCG Speedup vs Number of processors

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Number of Processors

S
pe

ed
up

cosmid2 nprobe=50 nprobe=200 nprobe=500

Figure 2.13 Speedup versus number of processors used for the parallel conjugate

gradient descent procedure

PCG Efficiency vs Number of Processors

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Number of Processors

E
ffi

ci
en

cy
 (

%
)

cosmid2 nprobe=50 Nprobe=200 Nprobe=500

Figure 2.14 Efficiency versus number of processors used for parallel conjugate gradient

descent procedure

 39

 The parallel algorithm for conjugate gradient descent procedure yields a good

performance with efficiencies ranging from 53%-95. When only 2 or 3 processors are

used, the efficiencies are in the range 77%-95% (Table 2.2, Figure 2.14). In all datasets,

execution using 4 processors shows lower efficiency. The lowest efficiency comes from

the synthetic dataset nprobe = 50. This low efficiency is due to the small dataset and its

relatively high synchronization overhead. As expected, the general trend is that the

speedup increases with respect to the number of processors used. For synthetic datasets

nprobe = 50 and 200, the speedups begin to degrade when the number of processors

increases to 3. Therefore for these datasets, the parallel conjugate gradient descent

procedure with 3 processors runs the fastest whereas the serial algorithm is the slowest.

The synthetic dataset nprobe = 500 shows continuous increase in the speedup when 4

processors are used. The speedups for the real dataset cosmid2 derived from

chromosome II of Aspergillus nidulans, which has 109 probes and 2046 clones, are

approximately equal when 3 and 4 processors are used (2.79 for 4 processors versus 2.78

for 3 processors). As anticipated, given a fixed number of processors, the larger the

dataset, the higher the speedup and the more efficient of the utilization of computing

power (Figures 2.1, 2.2). Therefore, the synthetic dataset nprobe = 50 shows the lowest

speedup for a given number of processors whereas nprobe = 500 almost always shows

the highest speedup.

2.7.2 Performance for Parallel MLE Algorithm

 Figure 2.15 shows the execution time of the parallel MLE-based physical mapping

algorithm versus the number of processors used for a given dataset (cosmid2 in this case).

 40

No two of these executions have the same final objective function value. The execution

time is significantly reduced when more processors are used.

Parallel MLE for cosmid2

12500

13000

13500

14000

14500

15000

0 5000 10000 15000 20000 25000

Time (sec)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

nproc=4 nproc=8 nproc=16 nproc=32

Figure 2.15 Execution of the parallel MLE-based physical mapping for cosmid2

 Figures 2.16 and 2.17 respectively show the speedup and efficiency versus the

number of processors used during the execution for different datasets. As for the parallel

conjugate gradient descent procedure, the more the processors used, the higher the

speedup (Figure 2.16). However, the increase in speedup with respect to the number of

processors used is a slow and gradual process. This is illustrated by the efficiency values

as shown in Figure 2.17. In both the synthetic dataset nprobe = 50 and the real dataset

cosmid2, execution using 4 processors (one SMP machine) yields the highest efficiency,

 41

from 73% (nprobe = 50) to 110% (cosmid2). The efficiency for cosmid2 is more than

100% due to the stochastic nature of parallel simulated annealing processes as mentioned

above. The efficiency fluctuates when 8 and 16 processors are used. When 32

processors are used, the efficiency turns out to be the lowest.

PSA_PCG Number of Processors vs Speedup

0

5

10

15

20

25

0 5 10 15 20 25 30 35

Number of Processors

S
pe

ed
up

nprobe= 50 cosmid2

Figure 2.16 Speedup versus processor number for parallel MLE-based physical mapping

algorithm

 42

PSA_PCG Number of Processors vs Efficiency

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

Number of Processors

E
ffi

ci
en

cy
 (

%
)

nprobe=50 cosmid2

Figure 2.17 Efficiency versus processor number for parallel MLE-based physical

mapping algorithm

 Higher efficiency at lower number of processors is partially due to the communication

protocol used in this project. It should be noted again that our parallel algorithms employ

two levels of parallelization with different communication protocols. At the higher level,

inter-process communication is achieved via message passing and the task of simulated

annealing is evenly distributed among multiple slave processes. At the lower level, we

have used shared memory multithreaded programming (usually the thread number equals

the number of processors in the SMP machines, and in our case, 4 threads are usually

used) to parallelize the conjugate gradient descent procedure. When only four processors

are used, four threads in one process cooperate to compute the conjugate gradient descent

procedure. In this case, simulated annealing is essentially not parallelized. Since threads

 43

share the same address space, communication among threads is more efficient than

among processes. Therefore the performance of parallel MLE using only shared memory,

here the 4-processor scenario, would theoretically be higher. With further increase in the

number of processors used, the proportion of inter-process communication via message

passing also becomes higher, and the efficiency would correspondingly gradually

degrade.

 To illustrate the superior performance of shared memory multithreaded programming

to the inter-process communication via message passing, we have used 4 and 8 SMPs to

spawn an equal number of processes for synthetic datasets nprobe = 50 and 100. Within

each process, only one thread is used. Essentially this approach would parallelize the

simulated annealing function but keep the conjugate gradient descent procedure serial.

By doing so, we would eliminate the use of shared memory and ensure that all the

overheads are due to inter-process communication. The result of test, as shown in Table

2.3, indicates that the speedups achieved using only inter-process communication are

consistently lower compared to the shared memory multithreaded programming or a

combination of shared memory multithreaded programming and inter-process

communication via message passing. The degradation of the speedup due to inter-

process communication via message passing is especially apparent for the dataset nprobe

= 100, where the speedup using shared memory programming is 3.7 but only 1.7 when

message passing is used, suggesting a much higher overhead of inter-process

communication. This overhead caused by inter-process communication may also

contribute to the lower efficiencies associated with the higher number of processors in

 44

our timing test for the parallel MLE-PILM algorithm (see Figure 2.17), where more inter-

process communication would occur.

Table 2.3 Parallelization of MLE using shared memory versus inter-process

communication via message passing

 The size of the dataset greatly affects the performance of the parallel MLE. It is

anticipated that data parallelism for smaller datasets will incur more overheads due to

more frequent inter-process communication. This is also evidenced by Figures 2.15 and

2.16 to certain degree. The real dataset cosmid2 has 109 probes and shows consistently

higher efficiency values than the synthetic dataset nprobe = 50. Execution using

synthetic datasets nprobe = 100 and 200 show similar scenarios but their efficiencies are

occasionally more than 100% due to the nature of the parallelization approach used in

this project.

Dataset Shared Memory Shared Memory Message Passing Message Passing
 4 processors + Message Passing 4 processors 8 processors
 8 processors

nprobe=50 2.9 4.7 2.3 3.7

nprobe=100 3.7 4.2 1.7 3.2

 45

CHAPTER 3

PARALLEL COMPUTING FOR LARGE STEP MARKOV CHAINS ALGORITHM

3.1 Large Step Markov Chains Algorithm

 The Large Step Markov Chains (LSMC) algorithm was originally proposed by Martin

et al. (1991) for the Travelling Salesman Problem (TSP). This algorithm combines

deterministic local search with stochastic optimization. The LSMC is an iterative

procedure. During each iteration, a search for a new locally optimal solution is

conducted. The new locally optimal solution is compared with the current solution that is

also a locally optimal solution and is accepted based on probability p calculated using the

Metropolis function. When this is done, a new intermediate solution is created and a new

local exhaustive search is performed for the next new locally optimal solution. This

process is repeated until a predefined criterion is satisfied.

 Specifically, the LSMC algorithm comprises of the following steps:

1. Kick: Let),...,,()(21 nxxxfxf = be an n-variable function that is to be minimized.

Let ix be the current solution which is also a locally optimal solution. In this step, a

large Kick or non-local perturbation is applied to the current solution to yield a new

intermediate solution jx .

2. Local exhaustive search: Solution jx is improved using a local exhaustive search

technique to yield a locally optimal solution kx .

 46

3. Decide: If)()(ik xfxf < , then kx is accepted as the new solution. If)()(ik xfxf ≥ ,

then kx is accepted as the new solution with probability p, which is computed using

the Metropolis function

 −
−=

i

ik

T
xfxf

p
)()(

exp at a given temperature Ti whereas

ix is retained with probability)1(p− .

 The LSMC algorithm was first introduced by Kota (2000) in the context of MLE-

based physical map reconstruction. In this case, each probe resembles a city in the TSP

and the ordering of the probes corresponds to the salesman’s tour.

 The Kick step is problem dependent and represents a non-local perturbation. Care

should be taken that the new intermediate solution should not lead one back to a locally

optimal solution that has been encountered before. In our project, a double-bridge

change (Martin et al. 1991) is used as the Kick step. The double-bridge change is a non-

local perturbation that involves a 4-change. A perturbation is termed as a k-change if it

removes k different links from a sequence (or tour) and reconnects them into a new legal

sequence. According to Lin and Kernighan (1973), both 2-opt and 3-opt are sequential

changes that keep the tour connected during the intermediate steps. The 4-opt that

consists of two 2-changes is the first non-sequential change, where the first 2-change

disconnects the tour and the second 2-change reconnects it, and thereby leads to a non-

local intermediate step.

 The exhaustive search for a locally optimal solution in this project uses the 2-opt

heuristic, which tests all possible 2-changes to identify the best local solution. A

heuristic is n-opt if it tests all possible n-changes during the local exhaustive search step.

It is also possible to use a 3-opt or a 4-opt heuristic for local exhaustive search, but the

 47

execution time would be much longer since the k-opt heuristic is computationally

intensive for k>2. In fact, the straightforward LSMC algorithm based on the k-opt local

exhaustive search technique is even slower than the simulated annealing algorithm since

the MLE objective function value needs to be computed and evaluated at each local

search step. To overcome this problem, Kota (2000) modified the local exhaustive search

procedure by evaluating the Hamming distance instead of the objective function value for

each search step. The Hamming distance),(ji PPd between two probes Pi and Pj is

defined as the measure of the dissimilarity, i.e., the number of unmatched digital

signature bits, between the two probes. The optimal probe sequence resulting from the

local exhaustive search should have the following property:

 ()

 = ∑
−

=
+

1

1
1,min

n

i
ii PPdD

where n is the total number of probes, and D is referred to as the total linking distance of

the probe ordering. This approach is reasonable since two probes that hybridize with the

same set of clones should have similar hybridization signatures and their dissimilarity

should be smaller, i.e., their physical separation on the physical maps should be minimal.

Thus, the total inter-probe dissimilarities should also be minimal for an optimal solution.

As a result of this modification, the local exhaustive search time is greatly reduced

without compromising the accuracy of the solution. This leads to a variant of the

straightforward LSMC that uses a combination of local exhaustive search based on the

Hamming distance and stochastic search based on the MLE objective function as shown

in Figure 3.1.

 48

T = T_max;

Finished = false;

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count + 1)

 {

1 Phase one – Kick

Make a double-bridge change to the current locally optimal ordering Pi

 to yield a new ordering Pj;

2 Phase two – Local exhaustive search

(a) Calculate the Hamming distance for Pj called Dj;

 local_best_value = Dj;

 local_best_order = Pj;

(b) Make a 2-change to Pj to yield Pk;

Evaluate the Hamming distance for Pk, called Dk;

If (Dk < local_best_value)

 local_best_value = Dk;

 local_best_order = Pk;

(c) If all possible 2_change have been tested

 GOTO Phase Three;

 Else

 GOTO step 2(b);

 49

3 Phase Three – Decide

If local_best_order causes the value of MLE function to decrease

 Accept local_best_order.

Else

 Accept local_best_order with probability p computed

 using Metropolis function.

 }

 Update the temperature using annealing function T = A(T);

}

Figure 3.1 LSMC algorithm using a combination of Hamming distance and MLE

objective function

 Compared to straightforward simulated annealing, LSMC takes the advantage of the

deterministic local exhaustive search and, in most cases, leads to a better solution. Its

superiority can be shown in Figure 3.2 for the real dataset cosmid2, where the number of

iterations is 100 for a given annealing step. LSMC yields a better solution but takes only

about 33% of the time taken by the simulated annealing algorithm. It should also be

noted here that even with its significant computational advantage, the execution of LSMC

still takes about 10 hours. If the problem size and the number of iterations are increased,

the execution time would be even longer. Therefore, execution time is still an important

issue for application of the LSMC to the MLE-based physical mapping algorithm.

 50

SSA_SCG vs LSMC

12600

12800
13000
13200

13400
13600
13800

14000
14200

14400
14600
14800

0 20000 40000 60000 80000 100000 120000

Time (sec)

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

lsmc ssa_scg

Figure 3.2 Timing of simple simulated annealing and LSMC for cosmid2

3.2 Parallelization of LSMC

 Parallelization of the LSMC algorithm is realized through parallelizing three phases of

the LSMC algorithm. They are

(1) Parallelization of the local exhaustive search procedure;

(2) Parallelization of the simulated annealing procedure;

(3) Parallelization of the conjugate gradient descent procedure.

 The local exhaustive search procedure in LSMC attempts all possible 2-changes to

reach the locally optimal solution. This is realized by using two loops. The outer loop

shifts a probe position at each iteration so that the last probe in the sequence becomes the

first, and the first becomes the second, and so on. The inner loop conducts all possible 2-

 51

changes and the candidate solution with the current minimum Hamming distance

(best_distance) is recorded as the best_order. After the outer loop finishes execution, the

best_order and best_distance are returned, and comprises the locally optimal solution

after a large Kick has been applied (Figure 3.3).

temp_order = current_order;

best_order = current_order;

best_distance = current_distance;

for (i = 1; i <= nprobe; i++)

{

 if (i = 1)

 {

 temp = current_order[n];

 for (i = nprobe; i >= 2; i--)

 current_order[i] = current_order[i-1];

 current_order[1] = temp;

 }

 for (n1 = 2; n1< nprobe; n1++)

 for (n1 = 2; n2 < nprobe; n2++)

 {

(a) reverse probe sequences between n1 and n2 ;

(b) copy the reversed sequence into temp_order;

 52

(c) calculate the Hamming distance temp_distance for temp_order;

(d) if temp_distance < best_distance

 best_distance = temp_distance;

 best_order = temp_order;

 }

}

Figure 3.3 Algorithm for local exhaustive search of LSMC

 To parallelize the local exhaustive search procedure, we have used the Master/Slave

model. The outer loop with nprobe iterations is evenly divided among N slaves.

Therefore each slave carries out
N

nprobe
 iterations, and calculates its local_best_distance

and local_best_order. When slaves finish the execution, they report their local-

best_distances and local_best_orders to the master which would identifies the

best_distance and its corresponding probe order as the optimal solution after a Kick

operation has been applied.

 The parallel local exhaustive search algorithm with the master and slave processes is

shown in Figures 3.4 and 3.5.

Spawn N slave_threads for local exhaustive search;

threadAlive = N; //threadAlive is a global variable

if (threadAlive > 0)

 53

 wait;

for (i = 1; i <= N; i++)

{

 if (global_best_distance > local_best_distance[i])

 global_best_distance = local_best_distance[i] ;

 minIndex = i;

}

global_best_order = local_best_order[minIndex] .

Figure 3.4 Master process for parallel local exhaustive search algorithm

index = ThreadIndex;

range = nprobe/N;

base = index*range + 1;

Shift current_order for range*index positions;

temp_order = current_order;

best_order = current_order;

best_distance = current_distance;

for (i = base; i <= range; i++)

{

 if (i = 1)

 {

 54

 temp = current_order[nprobe] ;

 for (j = nprobe; j >= 2; j--)

 current_order[j] = current_order[j-1];

 current_order[1] = temp;

 }

 for (n1 = 2; n1< nprobe; n1++)

 for(n1 = 2; n2 < nprobe; n2++)

 {

(a) reverse probe sequences between n1 and n2;

(b) copy the reversed sequence into temp_order;

(c) calculate the Hamming distance temp_distance for temp_order;

(d) if temp_distance < best_distance

 best_distance = temp_distance;

 best_order = temp_order;

 }

}

local_best_distance[index] = best_distance;

local_best_order[index] = best_order;

threadAlive --;

Exit and destroy thread.

Figure 3.5 Slave process for parallel local exhaustive search algorithm

 55

 The master and slave processes for the parallel LSMC algorithms are shown in

Figures 3.6 to 3.9.

T = T_max;

Finished = false;

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

 1 Phase one – Kick

Make a double-bridge change to the current locally optimal ordering Pi

 to yield an intermediate solution Pj;

2 Phase two – Local Exhaustive Search

Invoke the master local exhaustive algorithm, which would spawn slaves to carry

out the search for a locally optimal solution Pk ;

3 Phase three - Evaluate

(a) Invoke the master conjugate gradient descent procedure. This would spawn

 slave threads for the procedure and compute the optimal inter-probe spacings

 for the locally optimal solution Pk;

(b) Compute the objective function value for Pk ;

(c) Compute f_delta, the change in the value of the objective function;

 56

4 Phase three - Decide

 If (f_delta < 0)

 Accept the new locally optimal solution Pk.

 Else

 Accept the new locally optimal solution Pk ; with the probability p computed

 using the Metropolis function.

 }

 Update the temperature using the annealing function T = A(T);

}

(a) Receive locally optimal objective function values from slaves;

(b) Compare locally optimal objective function values and identify the global minimal

 values and its process identifier (mindId);

(c) Broadcast minId to all the processes;

(d) Receive probe ordering and inter-probe spacings from the process minId.

Figure 3.6 Master process of the NILM_LSMC algorithm using MPI and Pthreads

T = T_max;

Finished = false;

While (not Finished)

{

 57

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

 1 Phase one – Kick

Make a double-bridge change to the current locally optimal ordering Pi

to yield an intermediate solution Pj;

2 Phase two – Local Exhaustive Search

Invoke the master local exhaustive algorithm, which would spawn the slaves to

carry out the search for a locally optimal solution Pk ;

3 Phase two – Evaluate

(a) Invoke the master conjugate gradient descent procedure. This would spawn

 slave threads for the procedure and compute the optimal inter-probe

 spacings for the new locally optimal solution Pk;

(b) Compute the objective function value for Pk ;

(c) Compute f_delta, the change in the value of the objective function;

4 Phase three - Decide

 If (f_delta < 0)

 Accept the new locally optimal solution Pk .

 Else

 Accept the new locally optimal solution Pk ; with the probability p computed

 using the Metropolis function.

 }

 Update the temperature using the annealing function T = A(T);

}

 58

(a) Send locally optimal function value to the master;

(b) Receive from master the identifier MinId ;

(c) If (MinId = myId)

 Send locally optimal probe ordering to the master;

 Send optimal inter-probe spacings for the locally optimal probe ordering to the

 master.

Figure 3.7 Slave process of the NILM_MLE algorithm using MPI and Pthreads

T = T_max;

Finished = false;

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

 1 Phase one – Kick

Make a double-bridge change to the current locally optimal ordering Pi

to yield an intermediate solution Pj;

2 Phase two – Local Exhaustive Search

 Invoke master local exhaustive search algorithm, which would spawn the slaves

 to carry out the search for a locally optimal solution Pk ;

3 Phase three - Evaluate

 59

(a) Invoke master conjugate gradient descent procedure. This would spawn slave

 threads for the procedure and compute the optimal inter-probe spacings for

 the new locally optimal solution;

(b) Compute the objective function value for the new locally optimal solution;

(c) Compute f_delta, the change in the value of the objective function;

4 Phase three - Decide

 If (f_delta < 0)

 Accept the new locally optimal solution Pk.

 Else

 Accept the new locally optimal solution Pk with the probability p computed

 using the Metropolis function.

 }

(a) Receive locally optimal objective function values and process Ids from slaves;

(b) Compare locally optimal objective function values from slaves and identify the

global optimal objective function value and its associated process Id (minId);

(c) Broadcast minId to all the processes;

(d) Receive locally optimal probe ordering and inter-probe spacings from process

minId;

(e) Update the temperature using the annealing function T = A(T);

}

Figure 3.8 Master process of the PILM_LSMC algorithm using MPI and Pthreads

 60

T = T_max;

Finished = false;

While (not Finished)

{

 for (count = 1; count <= COUNT_LIMIT; count = count+1)

 {

1 Phase one – Perturb

Make a double-bridge change to the current locally optimal ordering Pi

to yield an intermediate solution Pj;

2 Phase two – Local Exhaustive Search

Invoke master local exhaustive search algorithm, which would spawn the slaves

to carry out the search for a locally optimal solution Pk ;

3 Phase three - Evaluate

(a) Invoke master conjugate gradient descent procedure. This would spawn slave

 threads for the procedure and compute the optimal inter-probe spacings for

 the new locally optimal solution Pk ;;

(b) Compute the objective function value for the new probe order;

(c) Compute f_delta, the change in the value of the objective function;

4 Phase three - Decide

 If (f_delta < 0)

 Accept the new locally optimal solution.

 Else

 Accept the new locally optimal solution with the probability p computed

 61

 using the Metropolis function.

 }

(a) Send locally optimal objective function value and process Id to the master;

(b) Receive minId from the master;

 If (myId = minId)

 Broadcast locally optimal probe ordering and inter-probe spacings to all

 the processes;

(c) Update the temperature using the annealing function T = A(T);

}

Figure 3.9 Slave process for the PILM_MLE algorithm using MPI and Pthreads

 In this project, we have exploited the computing power of a network of shared-

memory multiprocessor computers for implementation of the LSMC algorithm. The

master and slaves for local exhaustive search procedure are implemented using POSIX

threads. The implementation of parallel simulated annealing and parallel conjugate

gradient descent search is the same as in Chapter 2.

3.3 Experimental Results

3.3.1 Parallel Local Exhaustive Search

The parallel algorithm for the local exhaustive search using shared memory has

 62

yielded good performance as shown in Figures 3.10 and 3.11. In larger synthetic datasets

with nprobe = 100 and 200, the speedup increases linearly with respect to the number of

processors used. The synthetic dataset nprobe = 50 shows lower speedups. The good

performance of the parallel local exhaustive search algorithm can also be demonstrated

by the efficiency values shown in Figure 3.11 where efficiencies for nprobe = 100 and

200 are all above 85%. The lowest efficiency comes from the synthetic dataset nprobe =

50, where the efficiency is only about 53% when 4 processors are used. This is expected

since nprobe = 50 is the smallest dataset for the test and its associated communication

overhead will be higher compared to the larger datasets. It can be seen that for larger

datasets with nprobe = 100 and 200, parallelization using 2 processors yields the best

efficiencies (93% and 96% respectively) for the local exhaustive search procedure. For

the smaller dataset with nprobe = 50, efficiency is the highest when 3 processors are

used.

S p e e d u p v s . D a t a s i z e f o r L o c a l E x h a u s t i v e S e a r c h

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

0 0 .5 1 1 .5 2 2 .5 3 3 .5 4 4 .5

N u m b e r o f p r o c e s s o r s

S
pe

ed
up

n p r o b e = 5 0 n p r o b e = 1 0 0 n p r o b e = 2 0 0

Figure 3.10 Speedup versus number of processors for the parallel local exhaustive search

algorithm

 63

Effenciency vs. Datasize for Exhaustive Local Search

0

20

40

60

80

100

120

1 1.5 2 2.5 3 3.5 4 4.5

Number of processors

E
ffi

ci
en

cy
 (

%
)

nprobe=50 nptobe=100 nprobe=200

Figure 3.11 Efficiency versus number of processors for the parallel local exhaustive

search algorithm

3.3.2 Performance of the Parallel LSMC Algorithm

 Timing tests using both synthetic datasets and real datasets show the increase in the

speedup with respect to the number of processors used. A higher number of processors

often leads to higher speedups for a given dataset. Figure 3.12 shows the speedups of

different datasets. With no exception, speedup is the highest when 32 processors are used

and the lowest for 4 processors. For example, for the synthetic dataset of nprobe = 100,

the speedup changes from 3.22 to 5.33, 13.65 and 21.57 respectively with the processor

number increasing from 4 to 8, 16, and 32. It is foreseeable that with the further increase

in the number of processors, the overhead of inter-process communication will also

become greater and the speedup will eventually reach its maximum and thereafter

decrease. In our timing tests, since the cluster consists of only eight SMP machines (with

 64

4 processors per SMP), we were unable to detect this phenomenon. As expected, the

speedup tends to increase for large datasets (Figure 3.11). In all cases, the synthetic

dataset nprobe = 200 yielded the highest speedup for a given number of processors. The

real dataset cosmid2, although with a probe number of 109, has always yielded the lowest

speedups.

 Increase in speedup is not always proportional to the increase in the number of

processors. For most of the synthetic datasets, there seemed to be a steady and rapid

increase in the speedup with respect to the number of processors. In the case of real

dataset cosmid2, the increase in the speedup is insignificant compared to the increase in

the number of processors. The synthetic dataset nprobe = 50 yields slightly better results

than the real dataset cosmid2, but is significantly lower than nprobe = 100 and nprobe =

200 in terms of speedup.

Number of Processors vs. Speedup for LSMC

0

5

10

15

20

25

0 5 10 15 20 25 30 35

Number of Processors

S
pe

ed
up

nprobe=50 nprobe=100 nprobe=200 cosmid2

Figure 3.11 Performance of parallel LSMC algorithms

 65

CHAPTER 4

EVOLUTIONARY ALGORITHMS FOR PHYSICAL MAPPING PROBLEMS

 The evolutionary algorithm is an adaptive problem solving procedure modeled on the

natural evolutionary process. According to Darwin (1859), an organism has the

capability of increasing its numbers geometrically. Since the natural resources needed

for the organism are limited, there is a struggle for existence and the fittest individual will

have the best chance to survive and reproduce. The underlying basis for natural selection

is genetic variations arising from mutation and recombination (i.e., crossover). The basic

evolutionary unit is the population that consists of a number of individuals.

 Evolutionary algorithms use heuristic search/optimization techniques to obtain the

best possible solution in a vast solution space using a population or subset of potential

solutions. Given certain information about the problem domain, evolutionary algorithms

focus on a subset of potential solutions that would eventually converge to a globally

optimal solution (Bhandarkar et al. 1994). Evolutionary algorithms are robust in that

they are relatively unaffected by the presence of spurious locally optimal solutions in

their pursuit of a globally optimal solution.

 A typical evolutionary algorithm consists of the following components (Michalewicz

1992; Bhandarkar et al. 1994):

a. A population of candidate solutions, which are biologically referred to as

chromosomes. The size of the population should be sufficiently large to maintain

 66

enough genetic variations, which would essentially determine the effectiveness of

evolution.

b. Genetic operators, which typically consist of crossover and mutation. Genetic

operators are mechanisms to introduce genetic variations. Crossover creates new

chromosomes through the recombination of two parents during reproduction.

Mutation is a random change in a single chromosome designed to introduce a novel

offspring.

c. Objective function and associated fitness measurement. The objective function

measures the performance or fitness of a given chromosome. The fitness value of a

chromosome determines its probability of survival into and reproduction for the

next generation.

d. Selection. This is the process that determines which chromosomes will survive

into the next generation. The higher the fitness of a chromosome, the more likely it

is to survive and reproduce. Selection leads to a new population consisting of

better offspring but usually also reduces the genetic variations in the population.

 An evolutionary algorithm is implemented as an iterative procedure. To search for the

optimal solution of a given problem, the evolutionary algorithm starts from a subset of

initial solutions (chromosomes) that evolve into different but better ones over successive

generations (iterations). This process is repeated until a certain stopping criterion is met.

The stopping criterion is a heuristic since, strictly speaking, the evolutionary process is

endless barring complete extinction.

 A typical evolutionary algorithm is described in Figure 4.1.

 67

procedure EA;

{

 t = 0;

 Initialize population P(t);

 Evaluate the fitness of individuals of P(t);

 while (1)

 {

 t = t+1;

 Select parents for reproduction;

 Apply genetic operator(s) to create offspring;

 Evaluate and select individuals for survival into the next generation;

 Create the new generation;

 Replace current population by the new generation;

 }

 Select the best individual from the population as the optimal solution to the problem.

}

Figure 4.1 A typical evolutionary algorithm

 68

 Varieties of the evolutionary algorithm include evolutionary programming,

evolutionary strategies and genetic algorithms. In this project, we have used an

evolutionary programming/LSMC hybrid and two slightly different genetic algorithms to

obtain a solution to the MLE-based physical mapping problem.

4.1 Evolutionary Programming/LSMC Hybrid for Reconstructing Physical Maps of

Chromosomes

 The evolutionary programming technique was first proposed by Fogel et al. in 1966

and has been used in a variety of areas. A typical evolutionary programming uses

mutation as the sole genetic operator to generate offspring. Unlike the simulated

annealing algorithm which starts with a single candidate solution, the evolutionary

programming technique comprises of a population of initial candidate solutions, each

going through a number of generations before reaching a locally optimal solution. The

final optimal solution is chosen from an ensemble of locally optimal solutions. Since a

larger solution space is sampled, the final solution is often better than the one obtained

from the simulated annealing algorithm. However, since a population of solutions has to

be searched, the execution time is also often longer.

 A major advantage of using evolutionary programming is its ease of parallelization.

Since simulated annealing starts with one solution, parallelization of the algorithm is

often difficult. Efforts to parallelize the simulated annealing algorithm often decompose

the Metropolis function or the annealing step, but the results often vary depending on the

underlying problem. On the other hand, since evolutionary programming iterates through

 69

a population of solutions, it is inherently parallel. A workload comprising of a population

of solutions can be easily partitioned amongst processors.

 To combine the strengths of simulated annealing and evolutionary programming

approaches, we have proposed a hybrid of evolutionary programming and LSMC as

depicted in Figure 4.2 for the physical mapping problem. In this algorithm, a population

of chromosomes is first created by double-bridge operations followed by local exhaustive

searches. Since double-bridge is a non-local perturbation technique, its application will

yield a set of distinct solution states. The local exhaustive search, on the other hand, will

ensure that each chromosome in the initial population represents a locally optimal

solution to the problem. Each chromosome in the population then starts at the initial

temperature and an independent seed and goes through the LSMC process. Essentially,

the evolutionary/LSMC hybrid algorithm comprises an ensemble of independent MLE

processes where the final solution to the problem is chosen after the execution of the

algorithm.

Create population P of N solutions using double-bridge and local exhaustive search;

T = T_max;

while (1)

{

 for (i=1; i<=N; i++)

 {

 for (j=1; j<=M; j++)

 {

 70

(a) Perform the double-bridge perturbation on P[i] to create an offspring;

(b) Perform local exhaustive search starting from the offspring

 and identify the local optimal solution P[i]*;

(c) Perform conjugate gradient descent and compute the local minimum

 objective function value at P[i]*;

(d) Compute f_delta, the change in the value of the objective function between

P[i] and P[i]*;

 (e) If (f_delta < 0)

 Accept the new solution P[i]*.

 Else

 Accept the new solution P[i]* with the probability p computed using

 the Metropolis function.

 }

 }

 Update the temperature using annealing function T = A(T);

}

Choose the best chromosome from the population.

Figure 4.2 A hybrid evolutionary programming/LSMC algorithm for MLE-based

physical mapping

 71

4.2 Genetic Algorithms for Physical Mapping of Chromosomes

 Genetic algorithms differ from evolutionary programming by introducing the

recombination (crossover) operator. During the recombination, two parental

chromosomes are selected. Child chromosomes are generated by exchanges of parental

chromosomal segments and, as a result, bring more genetic variations into the population.

However, since the crossover operator creates genetic variations only by shuffling the

parental chromosomes, these genetic variations will gradually be depleted after a certain

number of generations. To introduce novel variations into the population, mutations

should be conducted occasionally. Therefore, chromosomal recombination should be

accompanied by occasional mutations. Since most mutations have deleterious effects,

mutation rates should usually be kept relatively low. As in evolutionary programming,

selection is strictly based on the fitness of individual chromosomes. Newly created

individuals with higher fitness are more likely to replace the less fit parents and survive

into the next generation.

 Many crossover operators have been proposed. These include partially matched

crossover (PMX) (Goldberg 1989; Michalewicz 1994; Falkenauer 1998), cycle crossover

(CX) (Goldberg 1989; Michalewicz 1994), order crossover (OX) (Goldberg 1989;

Michalewicz 1994), matrix crossover (MX) (Michalewicz 1994) etc. However, since

offspring created by these crossover operators are mostly the random assortments of the

parental chromosomes, they are often less fit than their parents. As a result, most of the

newly created offspring will be deleted from the population even though a significant

amount of time has been spent creating and evaluating them. To circumvent this

 72

problem, a heuristic crossover operator was proposed by Jog et al. (1989) for the TSP.

Specifically, the heuristic crossover for the TSP does the following:

(a) Randomly select two chromosomes.

(b) Choose a start node from one of the selected chromosomes for crossover.

(c) Compare two edges leaving from the start node between two parents and choose

the shorter edge; if the shorter edge leads to an illegal sequence, choose the other

edge; if both edges introduce illegal sequences, choose an edge from the

remaining nodes that has the shortest distance from the start node.

(d) Choose the new node as the start node and repeat step c until a complete sequence

is generated.

 In our project, two parents are chosen randomly or using the roulette wheel selection

procedure (Goldberg 1989) followed by application of the heuristic crossover operator

with a slight modification. During the selection of a start node, if that node is close to the

end of the sequence, in many cases, recombination will not be effective if two parents are

similar. For example, if the start node is selected at a point after which sequences of both

parental chromosomes are the same, no actual exchange of parental chromosomal

segments will occur even though the heuristic crossover operator has been applied. To

avoid this scenario, we start from the beginning of the sequence whenever a node close to

the sequence end is selected as the start point. This often leads to a much improved child

in a single heuristic crossover operation. Mutation in this project is implemented using

the non-local double-bridge operation or the non-local double-bridge operation followed

by a local exhaustive search. The mutation rate is set dynamically based on the genetic

variations retained in the population. During the early stages of the annealing process,

 73

since genetic variations in the population are relatively high, application of the heuristic

crossover usually creates better offspring. Therefore the mutation rate is kept relatively

low. During the later stages of the annealing process, when the genetic variations in the

population are gradually reduced due to selection, newly created offspring will tend to

have the same or even lower fitness than their parents. As a result, the mutation rate will

be allowed to increase correspondingly so that more variations could be introduced into

the population.

 Two slightly different genetic algorithms have been used in this project as shown in

Figures 4.3 and 4.4. In the first genetic algorithm (Figure 4.3), parents are chosen

randomly to create offspring and selection is strictly based on a deterministic search.

During each iteration, either mutation or heuristic crossover will be applied. If the

heuristic crossover is applied, the parent with lower fitness will be replaced by the newly

created child. A local exhaustive search is conducted on each individual in the

population and the local optimal solution yielded by the search will be accepted if it has a

lower objective function value. The second genetic algorithm uses the fitness-based

roulette wheel procedure to choose parents for reproduction and incorporates the

simulated annealing process. During each iteration, heuristic crossover operation will be

conducted to create the offspring which is subject to a local exhaustive search. Mutation

is conducted on the offspring based on certain probability. If the offspring xj has a lower

objective function value than the less fit parent, it will replace that parent. Otherwise, the

offspring is accepted with the Boltzmann logistic probability, which is computed

by TEE jie
p /)(1

1
−+

= .

 74

Create the initial population P of N chromosomes using double-bridge followed by local

exhaustive search;

while (1)

{

 for (i=1; i<=N; i++)

 {

(a) If (drand()<prob)

 Perform mutation using the double-bridge perturbation on P[i];

 Else

 Select two parents randomly and apply the heuristic crossover operator to

 create the offspring which will replace the less fit parent;

(b) Perform local exhaustive search from P[i] and identify the locally optimal

solution P[i]*;

(c) Perform the conjugate gradient descent procedure and compute the objective

function value for P[i]*;

(d) Compute f_delta, the change in the value of the objective function between

P[i] and P[i]*;

 (e) If (f_delta < 0)

 Accept the new solution P[i]*.

 }

 Update prob;

}

Figure 4.3 Genetic algorithm for reconstructing physical maps using deterministic search

 75

Create the initial population P of N chromosomes using double-bridge followed by local

exhaustive search;

T = T_max;

while (1)

{

 for (i=1; i<=N; i++)

 {

(a) Select two parents using the roulette wheel procedure;

(b) Apply heuristic crossover operator on the selected parents to create offspring

S;

(c) Perform local exhaustive search from S and identify the locally optimal

solution S* ;

(d) Perform conjugate gradient descent procedure and compute the objective

function value at S*;

(e) If (drand()<prob)

 Apply mutation operation on S*;

(f) Compute f_delta, the change in the value of the objective function between

the less fit parent and S*;

(g) Retain the less fit parent with the probability p given by the Boltzmann

 function.

 }

 Update prob;

 76

 Update the temperature T = A(T);

}

Figure 4.4 Genetic algorithm for reconstructing physical maps using simulated annealing

4.3 Parallelization of the Evolutionary Programming/LSMC Hybrid Algorithm

 Parallelization of the evolutionary programming/LSMC hybrid takes advantage of the

inherent ease of parallelization of an evolutionary programming algorithm. In our

project, two levels of parallelization are again used. At the higher level, the population of

solutions is partitioned evenly into subpopulations among the SMP machines. Each

process iterates through the candidate solutions in the subpopulation and identifies the

locally optimal solution on a single SMP. The globally optimal solution is chosen from

the locally optimal solutions. At the lower level, conjugate gradient descent and local

exhaustive search procedures are performed on a single SMP using shared-memory

multithreaded programming as in the case of the parallel simulated annealing and LSMC

algorithms (see Chapters 2 and 3).

 The parallel evolutionary programming/LSMC hybrid algorithm is shown in Figure

4.5.

Partition Population P of N chromosomes among x processes (one process per SMP) such

that each process deals with a subpopulation of S = N/x individuals;

T = T_max;

while (1)

 77

{

 for (i=1; i<=S; i++)

 {

 for (j=1; j<=M; j++)

 {

(a) Perform a double-bridge perturbation on P[i] to create an offspring;

(b) Invoke master local exhaustive search procedure on the offspring.

 This would spawn slave local exhaustive search threads in the process and

 identify the locally optimal solution P[i]*;

(c) Invoke master conjugate gradient descent procedure. This would spawn slave

conjugate gradient descent threads in the process and also compute the

objective function value given by P[i]*;

(d) Compute f_delta, the change in the value of the objective function between

 P[i] and P[i]*;

 (e) If (f_delta < 0)

 Accept P[i]* and replace P[i].

 Else

 Accept the P[i]* with the probability p computed

 using the Metropolis function.

 }

 }

 Update the temperature using annealing function T = A(T);

}

 78

For the master:

(a) Receive process_Id and local_best from all the slaves;

(b) Identify the minimum among the local_best and its associated process_Id, say

minId;

(c) Broadcast minId to all the slaves;

(d) Receive the solution from the minId.

For slaves:

(a) Identify the individual with the lowest objective function value local_best in the

subpopulation and send that value and process_Id to the master;

(b) Receive minId from the master;

(c) If (minId = myId)

 Send the individual with the lowest objective function value to the master.

Figure 4.5 Parallelization of the evolutionary programming/LSMC hybrid algorithm for

physical mapping of chromosomes

4.4 Parallelization of the Genetic Algorithms

 Parallelization of the genetic algorithms in our projects also partitions the population

into subpopulations among SMPs. Each subpopulation searches for a locally optimal

solution on a SMP. Under the PILM model, slaves will send their subpopulations at the

end of each annealing step to the master which will reshuffle these subpopulations and

redistribute them to slaves again for the next annealing step. This process is similar to

 79

the gene flow among natural populations such that the variations among populations will

be reduced but those within the population will increase. In our case, more genetic

variations will be introduced into the subpopulation at each annealing step. When slaves

finish the annealing process, they send their locally optimal solutions to the master which

would identify the globally optimal solution to the problem. Under the NILM model, no

gene flow process is required at each annealing step. Slaves only need to send their

locally optimal solutions to the master at the end of the whole annealing process.

4.5 Experimental Results

 The evolutionary programming/LSMC hybrid was tested on the same cluster of SMP

machines in the Department of Computer Science at the University of Georgia using the

synthetic dataset nprobe = 50. Tests for larger datasets were not conducted due to the

significant amount of computing time required. The size of the population was limited to

10 individuals. The genetic algorithms were tested in the same computational

environment using the synthetic datasets with nprobe = 50, 100, 200, and the real datasets

cosmid2 and cosmid3 as the parallel simulated annealing and LSMC algorithms.

4.5.1 Evolutionary Programming/LSMC Hybrid

 The execution of the serial evolutionary programming/LSMC hybrid algorithm for

the synthetic dataset nprobe = 50 takes 76863 seconds and yields an objective function

value of 1601.973232. Compared to the serial LSMC algorithm that runs about 10746

seconds using the same dataset, the convergence time for this hybrid algorithm is about 7

times longer. Considering the fact that the population consists of 10 candidate solutions,

 80

the convergence time for the hybrid algorithm is reasonable. However, the final

objective function value obtained from the hybrid algorithm is lower than that from the

LSMC (1601.973232 versus 1624.094166). This would suggest that sampling from an

ensemble or a population of solutions has an inherent advantage in obtaining a better

solution to the problem.

 Parallel evolutionary programming/LSMC hybrid algorithm has been tested for the

synthetic dataset nprobe = 50 using 4 SMPs (16 processors). When 10 chromosomes are

limited in the population, the execution takes about 9501 seconds and yields an objective

function value 1621.156043, which is slightly better than the value of serial LSMC

algorithm for the same dataset and in a shorter execution time. When the population size

is increased to N = 20, the final objective function value is 1595.202606, which is even

better than that from the serial evolutionary programming/LSMC hybrid algorithm, but

the execution time is also correspondingly longer (26677 seconds). These tests indicate

that the parallel evolutionary programming/LSMC hybrid algorithm has the intrinsic

merit to yield better results in a shorter time scale if enough care is taken to select a

proper population size for the execution.

4.5.2 Genetic Algorithms

 Both genetic algorithms have yielded good results in terms of the final objective

function value and the execution time. The execution time and final objective values

using different datasets for the deterministic search-based genetic algorithm are shown in

Table 4.1. The results of the simulated annealing-based genetic algorithm are similar and

will not be shown here.

 81

Table 4.1 Timing comparison between the serial deterministic search-based genetic

algorithm and the serial LSMC algorithm

Data GA Time GA Value LSMC Time LSMC Value

nprobe=50 3714 1549.81 10746 1624.09

nprobe=100 6544 4274.29 7459 4297.50

nprobe=200 25035 11200.49 105893 11515.13

cosmid2 25469 12789.89 34704 12757.55

cosmid3 21542 12476.97 30138 12501.88

 For the same dataset, the genetic algorithm almost always has a better performance

than the LSMC (Table 4.1). The only exception is the real dataset cosmid2, where the

genetic algorithm yields a higher objective function value (12789.89 versus 12757.55)

but in a shorter execution time (25469 seconds versus 34704 seconds). The superiority of

the genetic algorithm is especially apparent for the synthetic dataset nprobe = 50, where

the genetic algorithm takes a little more than 1/3 of the execution time of LSMC (3714

seconds versus 10746 seconds), but yields a much improved solution to the problem

(1549.81 versus 1624.09). This result is impressive considering the fact that the genetic

algorithm starts with a population of 10 chromosomes and that it is also very hard to

decrease the objective function value further when it reaches a certain point. Compared

to the simple simulated annealing approach (Chapter 2 and Figure 4.6), the genetic

 82

algorithm takes about 25% of the execution time (3714 seconds versus 15068 seconds)

for the synthetic dataset nprobe = 50 to yield a significantly lower objective function

value (1549.81 versus 1665.37). Therefore, genetic algorithms using the heuristic

crossover by far provide the best solution to our physical mapping problem.

Comparison of Algorithms for nprobe = 50

1400

1500

1600

1700

1800

1900

2000

0 2000 4000 6000 8000 10000 12000 14000 16000

Time (sec)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

ssa-scg lsmc ga

Figure 4.6 Timing comparison among SA, GA, and LSMC for nprobe = 50. Each

algorithm used the serial conjugate gradient descent procedure

 83

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

 Reconstruction of physical maps of chromosomes in this project is based on a

maximum likelihood estimator model that derives an objective function of two

parameters, i.e., the probe ordering and the inter-probe spacings. The most likely

solution to the problem will have the lowest objective function value. In this project, we

have used several optimization approaches, including simulated annealing, LSMC, and

evolutionary algorithm (evolutionary programming and genetic algorithm), for the

physical mapping problem. Parallelization of the algorithms is carried out at two levels.

At the higher level, we have partitioned the workloads of the simulated annealing and

evolutionary algorithms among SMPs using the inter-process communication via

message passing. At the lower level, a conjugate gradient descent search and a local

exhaustive search are parallelized using shared-memory multithreaded programming.

These parallel algorithms are implemented on a cluster of SMP machines, and both

synthetic and real datasets have been used to test the effectiveness and performance of the

algorithms.

 Simulated annealing is our first attempt for the physical mapping problem. In this

algorithm, each annealing step iterates through a number of perturb-evaluate-decide

cycles. The probe order is first randomly perturbed to generate a new candidate solution

that is subject to a conjugate gradient descent search to yield the optimal inter-probe

 84

spacings for the new order. In our parallel simulated annealing algorithm, the workload

of each annealing step is evenly divided among multiple SMP machines. Within each

SMP, we spawn multiple POSIX threads and bind them onto processors to conduct the

local exhaustive search. The parallel simulated annealing algorithm has provided some

good performance, and the measured efficiencies for many of the test cases are above

80%.

 The LSMC is a variant of the simulated annealing algorithm with the addition of a

deterministic local exhaustive search after a large Kick has been applied to generate a

non-local intermediate solution. In our project, the Hamming distance rather than the

MLE objective function value has been used in the local exhaustive search procedure,

which leads to an improved solution in a shorter time. Both the local exhaustive search

and conjugate gradient descent search procedures are parallelized at the lower level.

Parallelization of the local exhaustive search yields an efficiency of more than 90% for

majority of the tested datasets. Both the speedups and efficiencies of the parallel LSMC

algorithms are encouraging.

 In addition to the simulated annealing and the LSMC algorithms, we have also used

the evolutionary algorithms, including an evolutionary programming/LSMC hybrid and

two versions of the genetic algorithm, for our physical mapping problem. The

evolutionary programming/LSMC hybrid algorithm starts with a population of locally

optimal solutions, each going through an independent LSMC process. Our serial

evolutionary programming/LSMC hybrid algorithm takes a longer time than the LSMC,

but yields a better solution. Parallelization of the evolutionary programming/LSMC

 85

hybrid has yielded a much improved solution in a shorter time compared to the serial

LSMC algorithm.

 In our two versions of the genetic algorithm for the physical mapping problem, we

have used the heuristic crossover operator to create offspring followed by occasional

mutations. The serial versions of the genetic algorithm are consistently better than the

simulated annealing and LSMC in both effectiveness and performance. For the synthetic

datasets nprobe = 50, the genetic algorithms take only 25% and 33% percent of the

execution time of simulated annealing and LSMC respectively but yield much improved

solutions.

 By far, the genetic algorithms using the heuristic crossover have provided the best

solutions to the physical mapping problem in our project. The implementation of parallel

genetic algorithms in this project can be easily carried out using the same combination of

inter-process communication and shared-memory programming. Improvement of the

efficiency of the genetic algorithms may also be possible by incorporating load-balancing

techniques during the implementation.

 86

BIBLIOGRAPHY

Alizadeh, F., R. M. Karp, D. K. Weisser, and G. Zweig. 1994. Physical mapping of

chromosomes using unique probes. Pp. 489-500 in Proceedings of the ACM-SIAM

Conference on Discrete Algorithms. ACM Press: New York.

Alizadeh, F., R. M. Karp, L. A. Newberg, and D. K. Weisser. 1995. Physical mapping

of chromosomes: a combinatorial problem in molecular biology. Algorithmica

13(1/2): 52-76.

Ben-Dor, A. and B. Chor. 1997. On constructing radiation hybrid maps. Pp. 17-26 in

Proceedings of the ACM Conference on Computational Molecular Biology. ACM

Press: New York.

Bhandarkar, S. M., Y. Zhang, and W. D. Potter. 1994. An edge detection technique using

genetic algorithm-based optimization. Pattern Recognition 27: 1159-1180.

Bhandarkar, S. M., Machaka, S. A., Shete, S. S., and R. N. Kota. 2001. Parallel

computation of a Maximum Likelihood estimator of a physical map. Genetics 157:

1021-1043.

Christof, T., M. Junger, J. D. Kececioglu, P. Mutzel, and G. Reinelet. 1997. A branch-

and-cut to physical mapping of chromosomes by unique end probes. J. Comput. Biol.

4(4): 433-447.

Culler, D. E., Singh, J. P., and A. Gupta. 1999. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann Publishers: San Francisco.

Darwin, C. 1859. On the Origin of Species. 1st edition. London

 87

Flynn, M. J. 1966. Very high speed computing systems. Proc. IEEE 54: 1901-1909.

Falkenauer, E. 1998. Genetic Algorithms and Grouping Problems. John Wiley & Sons:

New York.

Fasulo, D. P., T. Jiang, R. M. Karp, R. Settergren and E. C. Thayer. 1997. An

algorithmic approach to multiple complete digest mapping. Pp. 118-127 in

Proceedings of the ACM Conference on Computational Molecular Biology. ACM

Press: New York.

Fogel, L. J., A. J. Owens, and M. J. Walsh. 1966. Artificial Intelligence through

Simulated Evolution. Wiley: New York.

Fogel, D. B. 1988. An evolutionary approach to the traveling salesman problem. Biol.

Cybern. 60: 139-144.

Fountain, T. J. 1994. Parallel Computing: Principles and Practice. Cambridge

University Press: New York, NY.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley: New York.

Golub, G., and J. M. Ortega. 1993. Scientific Computing: An Introduction with Parallel

Computing. Academic Press: San Diego.

Greenberg, D. S., and S. Istrail. 1995. Physical mapping by STS hybridization:

algorithmic strategies and the challenge of software evaluation. J. Comput. Biol.

2(2): 219-273.

Gropp, W., Lusk, E., and A. Skjellum. 1999. Using MPI, 2nd ed. MIT Press:

Cambridge, MA.

 88

Jain, M., and E. W. Myers. 1997. Algorithms for computing and integrating physical

maps using unique probes. J. Comput. Biol. 4(4): 449-466.

Jiang, T. and R. M. Karp. 1997. Mapping clones with a given ordering or interleaving.

Pp. 400-409 in Proceedings of the ACM-SIAM Conference on Discrete Algorithms.

ACM Press: New York.

Karp, R. M., and S. Shamir. 1998. Algorithms for optical mapping. Pp. 117-124 in

Proceedings of the ACM-SIAM Conference on Discrete Algorithms. ACM Press:

New York.

Kececioglu, J. D., Shete, S. S., and J. Arnold. 2000. Reconstructing distances in physical

maps of chromosomes with nonoverlapping probes. Pp. 183-192 in Proceedings of

the ACM Conference on Computational Molecular Biology. Tokyo, Japan.

Kota, R. N. 2000. Parallel Algorithms for the Maximum-Likelihood Model for

Chromosome Reconstruction. MS thesis, University of Georgia.

Lee, J. K., V. Dancik, and M. S. Waterman. 1998. Estimation for restriction sites

observed by optical mapping using reversible-jump Markov chain Monte Carlo. Pp.

147-152 in Proceedings of the ACM-SIAM Conference on Discrete Algorithms.

ACM Press: New York.

Lin, S., and B. Kernighan. 1973. An effective heuristic for the traveling salesman

problem. Operations Research 21: 498-516.

Machaka, S. A. 1998. Parallel Algorithms for Chromosome Physical Mapping Using a

Cluster of Workstations. MS thesis, University of Georgia.

Mahfoud, S. W. and D. E. Goldberg. 1995. Parallel recombinative simulated annealing:

A genetic algorithm. Parallel Computing 21: 1-28.

 89

Martin, O., S. W. Otto, E. W. Felten. 1991. Large-Step Markov Chains for the Traveling

Salesman Problem. Complex Systems 5: 299.

Michalewicz, Z. 1994. Genetic Algorithms + Data Structures = Evolution Programs, 2nd

ed. Springer-Verlag: Berlin.

Message Passing Interface Forum. 1994 MPI: A Message-Passing Interface standard.

Intl. Journ. Supercomputer Appl. and High Perf. Computing 8: 165-416 .

Muthukrishnan, S., and L. Parida. 1997. Towards constructing physical maps by optical

mapping: an effective, simple, combinatorial approach. Pp. 209-219 in Proceedings

of the ACM Conference on Computational Molecular Biology. ACM Press: New

York.

Prade, R. A. et al. 1997. In vitro reconstruction of the Aspergillus (= Emericella)

nidulans genome. Proc. Natl. Acad. Sci. USA. 94: 14564-14569.

Prasad, S. 1997. Multithreading Programming Techniques. McGraw-Hill: New York.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1988. Numerical

Recipe in C. Cambridge University Press: New York.

Shete, S. S. 1998. Estimation Problems in Physical Mapping of a Chromosome and

Branching Processes with Immigration. Ph.D. dissertation, University of Georgia.

Shete, S., Kececioglu, J., and J. Arnold. 1998. Estimation problems in physical mapping

of a chromosome and in a branching process with immigration. Unpublished

manuscript, Department of Statistics, University of Georgia.

Slonim, D., L. Kruglyar, L. Stein and E. Lander. 1997. Building human genome maps

with radiation hybrids. Pp. 277-286 in Proceedings of the ACM Conference on

Computational Molecular Biology. ACM Press: New York.

 90

Sunderam, V. S. 1990. PVM: A framework for parallel distributed computing.

Concurency: Practice and Experience 2(4): 315—349.

Tanenbaum, A. S. 2001. Modern Operating Systems. 2nd ed. Prentice Hall: Upper

Saddle River, New Jersey.

Watson, J. D., Gilman, M., Witkowski, J., and M. Zoller. 1992. Recombination DNA.

2nd. Scientific American Books: New York.

