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CHAPTER 1  

INTRODUCTION TO PHYSICAL MAPPING AND PARALLEL COMPUTING 

 

     Mapping genetic markers on a chromosome is a central issue in the understanding of 

the genetic structure, functions and evolution of an organism.  The importance of 

chromosome mapping is reflected in the major international cooperative efforts to study 

the whole genomes of several organisms, including Homo sapiens, Mus musculus, 

Arabidopsis thaliana, Escherichia coli etc.  Chromosomal maps can be broadly divided 

into two major types, i.e., genetic maps and physical maps.  Genetic maps represent 

genetic markers in their relative order along the chromosome, where the distance between 

two markers is a measure of their recombination frequency and denoted by centimorgans.  

Two genetic markers are one centimorgan apart if the recombination rate between them is 

1%.  Although genetic maps can be used to estimate the physical distance between 

genetic markers, the result of the estimation is often not very reliable since recombination 

frequencies vary in different regions of a chromosome (Watson et al. 1992).  Physical 

mapping, on the other hand, determines physical locations of genetic markers on a 

chromosome.  The distance between two markers in a physical map is measured by the 

number of intervening nucleotide base pairs.  As a result, a physical map is of higher 

resolution and becomes a powerful tool to isolate genes and to study the organization and 

evolution of genomes. 

     This chapter gives a brief introduction to the procedure of physical mapping of 

chromosomes and parallel computing.  In chapters 2, 3, and 4, three different 
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computational models, i.e., simulated annealing (SA), large step Markov chain (LSMC) 

and the evolutionary algorithm, and their parallel implementation for constructing 

physical maps are discussed.  Chapter 5 summarizes the results of this project and 

outlines directions for future research. 

 

1.1  Physical Mapping of Chromosomes 

     The procedure of physical mapping can be divided roughly into two steps.  First, large 

pieces of DNA called contigs derived from a library of cloned DNA fragments are 

ordered according to their positions in the genome.  This can be done using techniques 

such as nonunique probes mapping (Alizadeh et al. 1995), unique probes mapping 

(Alizadeh et al. 1994; Greenberg and Istrail 1995; Jain and Myers 1997), unique 

endprobes mapping (Christof et al. 1997), restriction fragments mapping (Fasulo et al. 

1997; Jiang et al. 1997), radiation-hybrid mapping (Ben-Dor and Chor 1997; Slonim et 

al. 1997), and optical mapping (Muthukrishnan and Parida 1997; Karp and Shamir 1998; 

Lee et al. 1998).  Second, the cloned fragments are cut by restriction enzymes, and 

smaller DNA fragments are obtained and sequenced (shotgun-sequencing), and the 

detailed sequence is obtained via a sequence assembly procedure. 

     The physical mapping technique used in this project is based on sampling without 

replacement protocol (Prade et al. 1997).  This protocol has been used successfully for 

several fungal organisms, including Aspergillus nidulans, Aspergillus flavus, 

Schizosaccharomyces pombe, Pneumocystis carinii etc.  Under this protocol, 

chromosomes are first isolated using pulsed field gel electrophoresis and then 

radiolabeled.  Each chromosome is then used to probe the genomic library L.  As a result, 
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clones in the genomic library can be sorted into three subsets S, R, and O.  Clones in 

subset S are specific to a single chromosome of the organism under study whereas those 

in subset R can hybridize to several but not all the chromosomes. Clones in subset O can 

hybridize to all the chromosomes.  Clones in subset S are radiolabeled and used to probe 

the genomic library L to derive a chromosome-specific probe set P and a clone set C.  

Specifically the probe set P and the clone set C can be obtained in the following 

procedure (Kececioglu et al. 2000; Bhandarkar et al. 2001): 

(a) Initially, P is empty and L contains all the clones.   

(b) During the ith iteration of the hybridization process, a new probe Pi is selected 

from the library L and used to hybridize against all the remaining clones in L.  

Remove the clone from the library L if it has a positive reaction with the probe.  

The clone/probe hybridization reactions are recorded in a binary hybridization 

matrix H.  If the ith clone has a positive reaction with the jth probe, Hij is coded as 

1.  Otherwise, Hij is coded as 0 (Figure 1.1).   

(c) Repeat step b until the library L becomes empty. 

     The result of this selection process will be a probe set P consisting of all the probes, a 

clone set C consisting of all the remaining clones in the library L, and a hybridization 

matrix H recording all the probe/clone hybridization reactions.  The probe set P is 

essentially a maximal set of non-overlapping equal-length clones.  If the probes in the 

probe set P can be ordered with respect to their positions along the chromosome, then by 

examining the 0 and 1 pattern of the probe/clone hybridization matrix, we can also infer 

the linking clones and construct the minimum overlapping probes and clones, which is 

also called the minimum tiling, along the chromosome (Figure 1.2).  The minimum tiling 
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in conjunction with the sequencing of each individual clone/probe in the tiling could then 

be used to reconstruct the DNA sequence of the entire chromosome.  In practice, many 

difficulties may be encountered during the analysis. The most common error arises due to 

a false signature.  This occurs when a clone and a probe have a false positive 

hybridization reaction and Hi j is coded as 1 when it in fact should be 0, or conversely a 

clone and a probe have a false negative hybridization reaction and Hij is coded as 0 when 

it should be 1 (Bhandarkar et al. 2001). 

     In this project, we have used a maximum likelihood estimator (MLE) model for 

constructing physical maps.  This model will find the optimal probe ordering and inter-

probe spacings with the maximum probability of resulting in the observed data.  

Essentially it derives an objective function that takes two parameters, probes order and 

inter-probe spacings, and also takes into account the false hybridization errors.  The 

mostly likely solution will have the lowest objective function value.  To optimize the 

objective function value, we have used simulated annealing and its variant, the LSMC 

algorithm, and evolutionary algorithms such as genetic algorithm and evolutionary 

programming.  The result can be used to order the entire clone set based on the available 

hybridization patterns. 

 

 

 

 

 

 



 5

Probes  

Clones P1 P2 P3 P4 P5 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

 

Figure 1.1  An example of clone-probe ordering across the chromosome 

 

 

 

 

 

 

Figure 1.2  An example of clone-probe ordering along a chromosome 
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1.2  Parallel Computing  

     By definition, a parallel computer is a set of processing elements that are able to 

communicate and cooperate to solve a large problem faster than a single-processor 

computer could.  Therefore a parallel architecture can be viewed as an extension of 

conventional computer architecture with emphasis on the communication and 

cooperation among the processing elements (Culler et al. 1999).  Based on this definition, 

the term parallel computers essentially include parallel supercomputers, networks of 

workstations, and shared-memory multiprocessor computers.   

     According to Flynn (1966), the architecture of a computer can be broadly classified 

into four categories on the basis of their data streams and instruction streams.  They are 

single instruction single data (SISD), multiple instruction single data (MISD), single 

instruction multiple data (SIMD), and multiple instruction multiple data (MIMD).  

Among these possible architectures, the SIMD and MIMD models constitute the most 

commonly encountered parallel computer systems.  The SIMD system is the basic model 

for data parallelism and usually consists of a parallel array of processors that are usually 

mesh-connected and execute the same instructions simultaneously.  The MIMD system is 

often used for task parallelism and consists of an assembly of processors that execute any 

task either independently or in concert with others (Fountain 1994).  

     Parallel computing involves identifying workloads that can be tackled in parallel, 

distributing them among processing elements, and managing the necessary data access, 

communication, and synchronization (Golub and Ortega 1993; Culler et al. 1999).  A 

parallel program consists of several cooperating processes to solve a problem, and 

therefore is extremely useful for computation-intensive problems.  
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     To parallelize a computational problem and accomplish the goal of a sequential 

program, several major steps (Culler et al. 1999) are taken: 

(a) Identifying available concurrency in the underlying problem and the amount of 

concurrency exposed, and decomposing a larger computational problem into 

smaller subtasks. 

(b) Assigning tasks to processes.  The workload assigned to each process should be 

balanced, and the communication among processes and the run-time overhead to 

manage the assignment should be minimized.  

(c) Managing the necessary data access, communication, and synchronization among 

processes.  The cost of communication and synchronization should be minimized. 

(d) Mapping or binding processes to processors.  This can be done either by the 

program or by the operating system.  The program can bind or map a process to a 

processor and specify which process is supposed to run in certain phases. 

 

     The performance of a parallel program is often measured by the speedup, which is 

defined as
)(

)1(
processorsnTime
processorTime

speedup = .  The speedup of a program is limited by 

the portion of the computation that can be parallelized.  Therefore, it is critical to study 

the problem and identify the available concurrency before an attempt is made to 

parallelize it.  Another measurement of performance is efficiency, which is defined as 

usedprocessorsofnumber
speedup

efficiency = .  Since speedup is typically less than the 

number of the processors used for execution, efficiency should be less than or equal to 1 

or 100%.    
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     The most widely used parallel programming models are Shared Memory 

Programming and Message Passing.  

(1) Shared Memory Programming:  Communication occurs implicitly as a result of  

access to a shared memory by multiple processing elements using conventional memory 

access instructions (Culler et al. 1999). Communication can be between independent 

processes running on different processors and sharing a common memory segment or 

between threads of the same process. 

     Recently, with the increasing popularity of shared-memory, symmetric multiprocessor 

(SMP) machines, multithreaded programming has become more widely used.  A thread is 

essentially a flow of execution within a process with its own register set and stack.  

Compared to a process, a thread takes less time to create and terminate. Unlike processes, 

which require operating system intervention for inter-process communication, 

communication among threads is more efficient since all threads within a task share a 

common memory and file system and can communicate without invoking the operating 

system kernel (Tanenbaum 2001).  The implementation of threads can be broadly 

classified into two major types, i.e., POSIX style threads and WIN32/OS/2 style threads 

(Prasad 1997).  POSIX is a standard document produced by IEEE aiming to provide a 

standard interface for programming on different operating systems.  The POSIX thread 

(Pthread) standard is supported by most of the UNIX vendors.  The Pthread library 

provides a series of functions for thread creation, termination, management, and 

synchronization. 

(2) Message Passing: Message passing is fundamentally processor-to-processor  
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communication with explicit I/O operations.  Communication in the message passing 

model is integrated at the I/O level rather than into the memory system (Culler et al. 

1999).  Each process maintains a local memory, and communication among processes is 

realized via send and receive operations.  In the simplest form, send specifies a local data 

buffer to be transmitted and a receiving process whereas receive specifies a sending 

process and a local data buffer into which the transmitted data is to be placed (Culler et 

al. 1999; Gropp et al. 1999).  Parallel Virtual Machine (PVM) (Sunderam 1988) and 

Message Passing Interface (MPI) (Message Passing Interface Forum 1994) are two of the 

common software packages that allow programmers to program based on this 

programming model. 

     In this project, we have used a combination of message passing and shared memory 

programming models.  The choice of the programming model is based on the nature of 

the problem to be tackled and the ease of use for that model.  We first create multiple 

processes on a cluster of SMPs to parallelize the simulated annealing or the evolutionary 

algorithm using MPI.   Within each process, multiple threads are spawned using Pthreads 

to parallelize the conjugate gradient descent search and the local exhaustive search 

procedures.  For our specific implementation, we have used the Master/Slaves model.  

The master is mainly a thread/process responsible for coordinating and synchronizing the 

computation of slave threads/processes.  Slave threads/processes are responsible for the 

actual computation. 
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CHAPTER 2 

PARALLEL COMPUTING OF MAXIMUM LIKELIHOOD ESTIMATOR MODEL  

FOR CHROMOSOME PHYSICAL MAPPING 

 

     The Maximum Likelihood Estimator (MLE) model for constructing physical maps of 

chromosomes is based on the work of Shete, Kececioglu, and Arnold (1998).  This model 

determines the ordering of probes Π  in the probe set P and the inter-probe spacings 

Υ under a probabilistic model of hybridization errors due to false positives and false 

negatives.  Under this model, the probes are first ordered as opposed to clones and the 

inter-probe spacings are calculated.  Once the optimal probe orders are determined, the 

ordering of clones can be obtained by examining the resulting probe/clone hybridization.  

 

2.1  Problem Formulation 

     The MLE function involves two independent vector parameters, i.e., probe ordering 

Π  and inter-probe spacings Υ .  The negative log-likelihood derived from the MLE 

function is computed as 

           ( ) ( )∑ ∑
=
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and       
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where 

N is the length of the chromosome; 

M is the length of a clone/probe; 

n is the number of probes selected from the library; 

κ is the number of clones in the library; 

ρ is the probability of false positive; 

η is the probability of false negative; 

njkijihH ≤≤≤≤= 1,1, ))((  is the clone/probe hybridization matrix; 

ijH is the coded value for ith row and jth column in the hybridization matrix; 

Π = (π1, …, πn) is a permutation of {1, …, n}; 

),...,,( 21 nYYYY = is the inter-probe spacing vector and iY is the spacing between 
i

Pπ and 

i
P

1−π , 1Y is the spacing before the first probe and 1+nY is the spacing after the last probe. 

     Optimization of the MLE function entails minimization of the negative log-likelihood 

function ),( ΠΥf , which can be achieved in two levels.  At the higher level, simulated 

annealing is used to optimize the objective function with respect to the discrete 

parameter Π .  At the lower level, a conjugate gradient descent procedure is used to 
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optimize the objective function with respect to the continuous parameter Υ  (Bhandarkar 

et al. 2001). 

 

2.2  Simulated Annealing Algorithm 

     Simulated annealing is an iterative optimization approach analogous to the gradual 

cooling process of a physical system.  A typical simulated annealing algorithm starts with 

a given temperature and an initial state.  The temperature is then decreased according to 

an annealing function.  Each temperature value corresponds to an annealing step which 

consists of three phases as described in the following: 

a. Perturb: An operator is applied to the current state and a new state is generated in this 

phase.  In our case, the perturbation is achieved by reversing the order of a probe 

block that has been chosen randomly.  Therefore the current solution ix is perturbed 

to yield a new candidate solution jx .   

b. Evaluate: The new candidate solution jx  is evaluated using some criteria.  In our 

case, the objective function value ( )ΥΠ,f  of the new probe ordering jx  is calculated. 

This is achieved by searching for the optimal inter-probe spacing Y  for the new order 

jx  using a conjugate gradient descent search and then calculating the negative log-

likelihood function value under the new order jx  and its optimal inter-probe 

spacings.  

c. Decide:  If )()( ij xfxf < , then jx  is accepted as the new solution; otherwise jx  is 

accepted as the new solution with the probability p computed using the Metropolis 
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function 






 −
−=

i

ij

T
xfxf

p
)()(

exp  at the temperature iT whereas ix  is retained 

with probability (1-p).  In our implementation, a random number is generated using a 

pseudorandom generator with a uniform distribution in the range [0, 1].  If this 

random number happens to be less than p, then jx is accepted as the current solution. 

Otherwise ix  is retained. 

     For a given temperature iT  or an annealing step, a sufficient number of Perturb – 

Evaluate - Decide cycles should always lead to an equilibrium resulting in a stationary 

Boltzmann distribution of solution states (Mahfoud and Goldberg 1995).  Therefore, a 

sufficient number of iterations should be run to approach the equilibrium.  The series of 

solution states generated at a given temperature or an annealing step constitute a Markov 

chain since the ith solution is constructed strictly from the i-1th one.  At higher 

temperatures, since almost any change to the current solution state can be accepted, the 

uphill movement is more likely and simulated annealing resembles a completely random 

search. This would prevent the searching from being trapped into a local optimal 

solution.  At lower temperatures, the annealing step is more like a deterministic local 

search.  The temperature continues decreasing until certain predefined criteria are met 

(Figure 2.1). 

 

 

T = T_max; 

Finished = false; 

While (not Finished) 
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{ 

    for (count = 1; count <= COUNT_LIMIT;  count = count+1) 

    { 

1 Phase one – Perturb 

   Randomly perturb the current solution to generate a new candidate solution; 

2 Phase two – Evaluate 

(a) Compute the objective function value for the new candidate solution; 

(b) Compute f_delta, the change in the value of the objective function;  

3 Phase three  - Decide 

                If (f_delta < 0) 

       Accept the new solution. 

                Else  

       Accept the new solution with the probability p computed using the 

       Metropolis function. 

   } 

   Update the temperature using the annealing function T = A(T); 

} 

Figure 2.1 Outline of a typical simulated annealing algorithm 

 

 

2.3  Parallel Computing of Simulated Annealing Using MPI 

     Two slightly different approaches are used to parallelize the simulated annealing 

algorithm on a network of SMPs in this project. 
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a. Non-Interacting Local Markov Chain (NILM):  This approach is based on multiple 

independent searches.  The total number of iterations in a given annealing step is 

divided evenly among the SMP machines in the network.  Each machine is assigned a 

unique random seed number to generate its own Markov chain of solutions.  The 

tasks run asynchronously on each machine.  At the end of the annealing process, the 

locally optimal solutions obtained from all the SMPs are compared and the one with 

the lowest value is chosen as the final solution (Figures 2.2, 2.3).  In the case of our 

MPI implementation, the local optimal objective values from slaves are sent to the 

master via function calls MPI_Send and MPI_Recv.   The master compares and 

identifies the global optimal value and then broadcasts its identifier to all the 

processes via the function call MPI_Bcast.  After receiving the identifier, the process 

with the global optimal value will send its local optimal solution to the master. 

 

  

Finished = false; 

While (not Finished) 

{ 

     for (count = 1;  count <= COUNT_LIMIT;  count = count +1) 

     { 

1 Phase One – Perturb 

              Randomly perturb the existing solution to generate a new solution; 

2 Phase Two – Evaluate 

(a) Compute the objective function value for the new candidate solution; 
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(b) Compute f_delta, the change in the value of the objective function; 

3 Phase Three – Decide 

If (f_delta < 0) 

       Accept the new solution. 

Else 

       Accept the new solution with the probability p computed using  

       the Metropolis function. 

        } 

        Update the temperature using annealing function T = A (T); 

} 

(a) Receive local optimal function values from slaves; 

(b) Compare local optimal objective function values from slaves and identify the global 

minimal value and its process identifier (minId); 

(c)  Broadcast minId to all processes; 

(d) Receive probe ordering and inter-probe spacings from the process minId. 

 

Figure 2.2  Master process for the NILM algorithm 

 

 

Finished = false; 

While (not Finished) 

{ 

     for (count = 1;  count <= COUNT_LIMIT;  count = count +1) 
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     { 

1 Phase One – Perturb 

Randomly perturb the existing solution to generate a new solution; 

2 Phase Two – Evaluate 

(a) Compute the objective function value for the new candidate solution; 

(b) Compute f_delta, the change in the value of the objective function; 

3 Phase Three – Decide 

If (f_delta < 0) 

       Accept the new solution. 

Else 

       Accept the new solution with the probability p computed using 

        the Metropolis function. 

      } 

      Update the temperature using the annealing function T = A (T); 

} 

(a) Send local optimal function value to the master; 

(b) Receive from the master the identifier MinId of the process which yields the global 

minimal objective function value; 

(c) If (MinId = myId) 

            Send optimal probe ordering to the master; 

            Send optimal inter-probe spacings to the master. 

 

Figure 2.3  Slave process for the NILM algorithm 
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b. Periodically Interacting Local Markov Chain (PILM):  This approach differs from 

NILM in that, instead of evaluating local objective solutions at the end of the 

simulated annealing function, the local solutions from slaves are compared once an 

annealing step is completed.  In the case of our MPI implementation, slaves send their 

local optimal solutions to the master at the end of each annealing step.  The master 

compares and identifies the one with the lowest local objective function value as the 

optimal solution at that annealing step and broadcasts this solution to all processes as 

the current solution for the next annealing step (Figures 2.4, 2.5).  

 

 

T = T_max; 

Finished = false; 

While (not Finished) 

{ 

    for (count = 1;  count <= COUNT_LIMIT;  count = count+1) 

    { 

1 Phase one – Perturb 

Randomly perturb the current solution to generate a new candidate solution; 

2 Phase two – Evaluate 

(a) Compute the objective function value for the new candidate solution; 

(b) Compute f_delta, the change in the objective function value;  

3 Phase three  - Decide 

 If (f_delta < 0) 
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       Accept the new solution. 

               Else  

       Accept the new solution with the probability p computed using the 

       Metropolis function. 

     } 

(a) Receive local minimal objective function values and process Ids from slaves; 

(b) Compare the local minimal objective function values obtained from slaves and 

identify the global minimal objective function value and its associated process Id 

(minId); 

(c) Broadcast minId to all the processes; 

(d) Receive probe ordering and inter-probe spacings from process minId; 

(e) Update the temperature using the annealing function T = A (T); 

} 

Figure 2.4  Master process of the PILM algorithm 

 

 

T = T_max; 

Finished = false; 

While (not Finished) 

{ 

    for (count = 1;  count <= COUNT_LIMIT;  count = count+1) 

    { 

1 Phase one – Perturb 
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Randomly perturb the current solution to generate a new candidate solution; 

2 Phase two – Evaluate 

(a) Compute the objective function value for the new candidate solution; 

(b) Compute f_delta, the change in the value of the objective function;  

3 Phase three  - Decide 

 If (f_delta < 0) 

       Accept the new solution; 

Else 

       Accept the new solution with the probability p computed using the 

                     Metropolis function; 

    } 

Send local minimal objective function value and process Id to the master; 

Receive minId from the master; 

If (myId = minId) 

      Broadcast probe ordering and inter-probe spacings to all processes; 

Update the temperature using the annealing function T = A (T); 

} 

Figure 2.5  Slave process for the PILM algorithm 

 

 

2.4  Conjugate Gradient Descent Procedure 

     The MLE objective function is a convex function with respect to inter-probe spacings 

Y for a given probe ordering ? .  Thus it possesses a unique local minimum that is also its 
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global minimum (Kota 2000; Bhandarkar et al. 2001).  This global minimum can be 

reached using local search techniques such as the steepest descent and conjugate gradient 

descent procedures.  The steepest descent technique is an iterative procedure consisting 

of three steps: (1) Start with an initial feasible value of Y, (ii) Compute the downhill 

gradient at Y and (iii) Minimize the objective function in the direction of this downhill 

gradient and update the value of Y (Kota 2000; Bhandarkar 2001). 

     The initial value of Y = (Y1, …, Yn) is initialized by evenly dividing the sum of inter-

probe spacings among each of the Yi’s.  Once the initial Y has been determined, we can 

estimate the local downhill gradient of the MLE objective function by 
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     The current value of oldΥ=Υ  is updated to yield a new value such that 

sUYoldnew +=Υ , where s is a scalar, by moving along the local downhill gradient 

direction oldfU Υ=Υ
∧ ∧

ΥΠ−∇= |),( .  To minimize the MLE objective function ƒ along the 

local downhill gradient, an optimal value of s = s* needs to be determined such that     

                 ),(min),( * sUfUsf s +ΥΠ=+ΥΠ
∧∧

                                       (2.8) 

where 
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where ∑ =+ −=
n

i in UU
11 .  In addition, since the MLE objective function )(ΥΠf  is convex 

with respect to Y, the local optimum for s is also a global optimum.  Also, the boundary 

conditions on the inter-probe spacings result in the following constraints: 

(i) 0≥+ sUY j , for j = 1, …, n. i.e., no inter-probe spacing should be nonnegative.  

(ii) ∑ =
Μ−≤+Υ

n

j jj nNsU
1

)( , i.e., the sum of the inter-probe spacings should not 

exceed the sum of available gaps, which is nMN − . 

 

     With these constraints, we can further bracket the value of s as follows: 
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     Once the upper and lower limits of s have been determined, s* can be calculated using 

the bisection method (Press et al. 1988).  New inter-probe spacings Y can be calculated 

as Usoldnew
*+Υ=Υ . 
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     Under the inter-probe spacing constraints, the value of Yi’s, where 11 +≤≤ ni , lies in 

the range between 0 and M.  If the Y vector is on the boundary defined by the constraints 

and the local downhill gradient vector U points outside the feasible region at that point, 

we will have to reset the value of s to zero and stop the iterative procedure even though 

the gradient has not vanished (Bhandarkar et al. 2001).  This is handled by the Project 

routine in this project. 

     The gradient computation and the solution update steps of the steepest descent or 

conjugate gradient descent procedures are carried out until the gradient vector attains a 

magnitude less than a predefined threshold.  Ideally, the gradient vector should become 0. 

But this may not happen because of the numerical errors associated with the computation 

of s and the gradient vector on the computers (Machaka 1998; Kota 2000; Bhandarkar et 

al. 2001). 

     The serial algorithm for conjugate gradient descent search is outlined in Figure 2.6. 

 

 

1    Start with an initial guess of iΥ=Υ ; 

Calculate gradient ),( ifG ΥΠ∇= ; 

GGGG −=== 21 ; 

2    while(1) 

{ 

       ProjectG ; 

       If ( G vanished) 

             Break; 
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       Bracket the minimum along the directionG ; 

       Minimize along the directionG : Find the optimal s* such that  

               )*,(min)*,( GsfGsf isi +ΥΠ=+ΥΠ ; 

      Gs *+Υ=Υ ; 

      ),(),( 1+ΥΠ−ΥΠ=∆ ii fff ; 

      1+Υ=Υ ii ; 

       if )10( 5−<∆f  

              Break; 

       Calculate gradient ),( ifG ΥΠ∇= ; 

       GGGg )( 21 += ; 

       222 GGg = ; 

       213 / ggg = ; 

       GG −=2 ; 

       1321 GgGGG +== ; 

} 

3    iΥ=Υ ; 

Figure 2.6  Serial algorithm for conjugate gradient descent search 

 

 

2.5  Parallelization of the Conjugate Gradient Descent Procedure 

     Parallelization of the conjugate gradient descent procedure follows the data 

parallelism model, where several processing elements perform an action on separate 
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subsets of the data set simultaneously.  In our project, the gradient vector G and inter-

probe spacings Y are divided into subsets to be processed concurrently.  Implementation 

of the parallel algorithm follows the Master/Slave model, where both the master and 

slaves are implemented using POSIX threads.  Information on shared variables is updated 

globally.  The contention scope of the threads is set to PTHREAD_SCOPE_SYSTEM 

using function pthread_att_setscope.  This would ensure that all threads within a process 

are scheduled globally in the system.  Slaves are responsible for most of the computation.  

Coordination and synchronization among slaves are carried out by the master.  

Synchronization is realized using data types mutex and semaphore from the Pthread 

library and the barrier variable implemented by us.  Mutex is used to ensure that a critical 

section is executed atomically.  Semaphore is used to coordinate the order of execution 

between the master and slaves.  The barrier variable is employed so that no thread can 

proceed further until all threads reach the same phase.  This would prevent certain threads 

from updating the global variables when some other threads are still using them.  Two 

barrier variables have been used in our implementation.  One of these barrier variables is 

used for coordinating the execution of slaves.  This is useful when the computation is 

conducted by slaves and does not need coordination by the master.  The other barrier 

variable is used when coordination and synchronization by the master are necessary.  

Each slave thread is bound onto a processor using the UNIX function call processor_bind 

so that the time spent in switching among processors is reduced to a minimum.  The 

master is not bound to any processor since the time used by the master for coordination 

and synchronization is insignificant compared to that used by the slaves.   
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     The algorithms for the master and slave threads are shown in Figures 2.7 and 2.8 

respectively. 

 

 

1    Start with initial guess of iΥ=Υ ; 

Divide the Υ and G by marking the bounds of the beginning and end of each 

subvector to be acted up by slaves; 

Spawn the slave threads and pass them the bounds of their subvectors as the 

arguments; 

2    while (1) 

{ 

 (a)  Project with the master thread to coordinate the slave actions; 

        Master-Slave barrier to allow all threads finishing Project; 

(b)  Read exit-bool[index]  for all the slaves.   

If all exit-bool[index]  are 1 

      EXIT = 1 

                   Break; 

              Else 

                    EXIT = 0; 

(c) Bracket with the master thread to coordinate slave threads; 

(d) Minimization with the master to coordinate slave actions.  Minimizing along 

the direction G to find the optimal s* such that 

),(min),( * sGfGsf isi +ΥΠ=+ΥΠ ; Update Υ using Gsii
*

1 +Υ=Υ + ; 
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(e) ),(),( 1+ΥΠ−ΥΠ=∆ ii fff ; 

  If )10( 5−<∆f   

         EXIT = 1; 

         Break; 

(f) Gradient with the master to coordinate slave actions. 

(g) Calculate global variables 1G  and 2G  and coordinate generating new 

gradient for next iteration; 

       } 

Figure 2.7  Master conjugate gradient descent procedure using Pthreads 

 

 

1    Read the bounds for ciΥ  and initialization data; 

Calculate gradient ),( cic fG ΥΠ∇= ; 

cccc GGGG −=== 21 ; 

2    while (1) 

{      

(a)  Project cG ; 

(b)  If ( cG  vanished) 

               exit-bool[index]  = 1;        //index here is the process Id         

(c) Read EXIT; 

      If ( EXIT = 1) 

        Break; 
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(d)  Bracket the minimum along the direction cG  by updating the values of  

        SLOW and SHIGH variables; 

(e)  Minimize along the direction G to find the s* such that 

),(min),( * sGfGsf isi +ΥΠ=+ΥΠ ;   

(f)  Update Υ using Gsii
*

1 +Υ=Υ + ; 

(g)  Read EXIT; 

  If (EXIT = 1) 

       Break; 

(h)  Calculate gradient ),( cic fG ΥΠ∇= ; 

      ccc GGGg )( 21 += ; 

        222 cc GGg = ; 

  (i)  Do following operations using mutex-lock: 

        11 gG =+ ; 

                    22 gG =+ ; 

                    213 / ggg =  ; 

                    cc GG −=2 ; 

                    1321 ccc GgGGG +== ; 

       } 

Figure 2.8   Slave conjugate gradient descent procedure using pthreads 
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2.6  Parallel Computing for MLE Using the Combination of MPI and POSIX Threads 

     Parallel programs of the MLE were run on the SMP cluster in the Computer Science 

Department at the University of Georgia, which consists of 1 front-end server (babbage) 

and 8 identical compute nodes.  Each compute node is a SunOS SMP machine with 4 

processors.   

     To exploit the computing power of the cluster, we have parallelized the physical 

mapping algorithms at two levels using a combination of message passing and shared 

memory programming.  At the higher level, the simulated annealing function is 

parallelized using MPI.  Specifically, we created multiple processes on the SMP 

machines and partitioned the workload of a single annealing step among the processes.  

Each process starts with an independent seed and generates its own Markov chain of 

solutions at a given annealing step.  Processes communicate using MPI.  Under the PILM 

model, slave processes send their locally optimal solutions to the master when a given 

annealing step is finished. The master identifies the best solution amongst the slave 

processes and broadcasts that solution to all the slaves for the next annealing step.  When 

the NILM model is used, inter-process communication via MPI is carried out only at the 

end of the entire simulated annealing function.   

     At the lower level, the conjugate gradient descent procedure is further parallelized 

using multithreaded programming techniques within each process as mentioned above.   

Outlines of these parallel algorithms are shown in Figures 2.9-2.12. 

 

T = T_max; 

Finished = false; 
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While (not Finished) 

{ 

    for (count = 1;  count <= COUNT_LIMIT; count = count+1) 

    { 

1 Phase one – Perturb 

Randomly perturb the current solution to generate a new candidate solution; 

2 Phase two – Evaluate 

(a) Master conjugate gradient descent procedure. This would spawn slave threads 

for the procedure to compute the optimal inter-probe spacings for the new 

candidate solution; 

(b) Compute the objective function value at the new probe order; 

(c) Compute f_delta, the change in the value of the objective function; 

3 Phase three  - Decide 

                If (f_delta < 0) 

       Accept the new solution. 

                Else  

       Accept the new solution with the probability p computed using the 

          Metropolis function. 

      } 

      Update the temperature using the annealing function T = A(T); 

} 

(a) Receive local optimal objective function values from slaves; 
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(b) Compare local optimal objective function values and identify the global minimal 

values and its process identifier (minId);  

(c) Broadcast minId to all the processes; 

(d) Receive probe ordering and inter-probe spacings from the process minId. 

 

Figure 2.9  Master algorithm of NILM_MLE using MPI and Pthreads 

 

 

T = T_max;   

Finished = false; 

While (not Finished) 

{ 

    for (count = 1;  count <= COUNT_LIMIT;  count = count+1) 

    {  

       1    Phase one – Perturb 

Randomly perturb the current solution to generate a new candidate solution; 

2 Phase two – Evaluate 

(a) Master conjugate gradient descent procedure. This would spawn slave 

threads for the procedure and compute the optimal inter-probe spacings for 

the new candidate solution; 

(b) Compute the local minimum objective function value for the new probe 

order; 

(c) Compute f_delta, the change in the value of the objective function; 



 32

3 Phase three  - Decide 

              If (f_delta < 0) 

       Accept the new solution. 

              Else  

       Accept the new solution with the probability p computed using the 

                      Metropolis function. 

      } 

      Update the temperature using the annealing function T = A(T); 

} 

(a) Send local optimal function value to the master; 

(b) Receive from master the identifier MinId of the process which yields the global 

minimal objective function value; 

(c) If (MinId = myId) 

          Send optimal probe ordering to the master; 

             Send optimal inter-probe spacings to the master. 

 

Figure 2.10  Slave algorithm of NILM_MLE using MPI and Pthreads 

 

 

T = T_max;  

Finished = false; 

While (not Finished) 

{ 
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    for (count = 1;  count <= COUNT_LIMIT;  count = count+1) 

    {   

       1    Phase one – Perturb 

Randomly perturb the current solution to generate a new candidate solution; 

2 Phase two – Evaluate 

(a) Master conjugate gradient descent procedure. This would spawn slave 

threads for the procedure and compute the optimal inter-probe spacings for 

the new candidate solution;  

(b) Compute the objective function value for the new probe order; 

(c) Compute f_delta, the change in the value of the objective function; 

3 Phase three  - Decide 

             If (f_delta < 0) 

     Accept the new solution. 

             Else  

     Accept the new solution with the probability p computed using 

     the Metropolis function. 

      } 

(a) Receive local optimal objective function values and process Ids from slaves; 

(b) Compare local optimal objective function values from slaves and identify the 

global optimal objective function value and its associated process Id (minId); 

(c) Broadcast minId to all the processes; 

(d) Receive probe ordering and inter-probe spacings from process minId; 

(e) Update the temperature using the annealing function T = A(T); 
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} 

Figure 2.11  Master algorithm of PILM_MLE using MPI and Pthreads 

 

 

T = T_max; 

Finished = false; 

While (not Finished) 

{ 

    for (count = 1;  count <= COUNT_LIMIT;  count = count+1) 

    { 

1 Phase one – Perturb 

Randomly perturb the current solution to generate a new candidate solution; 

2 Phase two – Evaluate 

(a) Master conjugate gradient descent procedure. This would spawn slave 

threads for the procedure and compute the optimal inter-probe spacings for 

the new candidate solution; 

(b) Compute the objective function value for the new probe order; 

(c) Compute f_delta, the change in the value of the objective function; 

3 Phase three  - Decide 

              If (f_delta < 0) 

       Accept the new solution. 

              Else  

       Accept the new solution with the probability p computed using  
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        the Metropolis function. 

      } 

(a) Send local optimal objective function value and process Id to the master; 

(b) Receive minId from the master; 

           If (myId = minId) 

                  Broadcast local optimal probe ordering and inter-probe spacings to all the  

                 processes; 

(c) Update the temperature using the annealing function T = A(T); 

} 

Figure 2.12  Slave algorithm for PILM_MLE using MPI and Pthreads 

 

 

2.7  Experimental Results 

     All the algorithms in this project are implemented using the C programming language.  

The performance of the algorithms is measured using speedup and efficiency as the 

metrics.  Speedups are calculated only for PILM algorithms where the final objective 

function value for the fastest execution is used as the point P for measurement.  The 

speedup is measured for all executions (i.e., executions with number of processors = 4, 8, 

16, and 32) using the approximate time to reach P against the serial MLE execution time.  

Due to the nature of parallelization of simulated annealing, different executions often 

yield different values at a given annealing step.  Therefore, their respective time to reach 

P is estimated based on linear interpolation of the time scales of the immediately previous 

and next annealing steps.  Speedups for NILM algorithms are not given since the time to 
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reach P cannot be correctly estimated.  It should also be noted that since the serial 

simulated annealing algorithm constructs a single Markov chain of solution states at a 

given annealing step whereas the parallel simulated annealing algorithms consist of 

multiple independent ones, this parallelization technique may sometimes lead to speedups 

that exceed the number of processors used.   

     Algorithms were tested using artificially generated (i.e., synthetic) datasets (Shete 

1998) with the number of probes ranging from 50 – 500 and the real datasets derived 

from chromosomes II to VII of the fungus Aspergillus nidulans.  The real datasets were 

made available by Dr. Jonathan Arnold from the Genetics Department at the University 

of Georgia.  Testing of parallel algorithms of MLE-based physical mapping using a 

combination of MPI and Pthreads was carried out using 1, 2, 4, 8 SMP machines, each 

with 4 processors.  Therefore, a total of 1, 4, 8, 16, and 32 processors were used 

respectively.  For simulated annealing, the initial temperature was set as 1 and 100 

iterations were used for each annealing step.   These parameters were empirically 

determined. 

 

2.7.1  Performance of Conjugate Gradient Descent Procedure 

     To evaluate the performance of the parallel algorithm for the conjugate gradient 

descent procedure, the procedure was first tested with a fixed number of iterations for the 

serial algorithm, and then the same workload was decomposed among the 2-4 processors 

on the same SMP machine. Both synthetic datasets for probe number nprobe=50, 200, 

500 and the real dataset cosmid2 were used for performance comparison and the results 

are shown in Figures 2.13 and 2.14 and Tables 2.1 and 2.2.  
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Table 2.1  Speedups for parallel conjugate gradient descent procedure 

Dataset Nproc=1 Nproc=2 Nproc=3 Nproc=4 

Nprobe=50 1 1.69 2.32 2.13 

Nprobe=200 1 1.81 2.82 2.48 

Nprobe=500 1 1.89 2.80 2.99 

Cosmid2 1 1.87 2.78 2.79 

 

 

 

Table 2.2  Efficiencies (%) for parallel conjugate gradient descent procedure 

Dataset  Nproc=1 Nproc=2 Nproc=3 Nproc=4 

Nprobe=50 100 85 77 53 

Nprobe=200 100 91 94 63 

Nprobe=500 100 95 93 75 

Cosmid2 100 94 93 70 
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PCG Speedup vs Number of processors
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Figure 2.13  Speedup versus number of processors used for the parallel conjugate 

gradient descent procedure 
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Figure 2.14  Efficiency versus number of processors used for parallel conjugate gradient 

descent procedure 
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     The parallel algorithm for conjugate gradient descent procedure yields a good 

performance with efficiencies ranging from 53%-95.  When only 2 or 3 processors are 

used, the efficiencies are in the range 77%-95% (Table 2.2, Figure 2.14).   In all datasets, 

execution using 4 processors shows lower efficiency.  The lowest efficiency comes from 

the synthetic dataset nprobe = 50.  This low efficiency is due to the small dataset and its 

relatively high synchronization overhead.  As expected, the general trend is that the 

speedup increases with respect to the number of processors used.  For synthetic datasets 

nprobe = 50 and 200, the speedups begin to degrade when the number of processors 

increases to 3.  Therefore for these datasets, the parallel conjugate gradient descent 

procedure with 3 processors runs the fastest whereas the serial algorithm is the slowest.  

The synthetic dataset nprobe = 500 shows continuous increase in the speedup when 4 

processors are used.  The speedups for the real dataset cosmid2 derived from 

chromosome II of Aspergillus nidulans, which has 109 probes and 2046 clones, are 

approximately equal when 3 and 4 processors are used (2.79 for 4 processors versus 2.78 

for 3 processors).   As anticipated, given a fixed number of processors, the larger the 

dataset, the higher the speedup and the more efficient of the utilization of computing 

power (Figures 2.1, 2.2).  Therefore, the synthetic dataset nprobe = 50 shows the lowest 

speedup for a given number of processors whereas nprobe = 500 almost always shows 

the highest speedup.   

 

2.7.2 Performance for Parallel MLE Algorithm 

                                         Figure 2.15 shows the execution time of the parallel MLE-based physical mapping 

algorithm versus the number of processors used for a given dataset (cosmid2 in this case).  
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No two of these executions have the same final objective function value.  The execution 

time is significantly reduced when more processors are used. 
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Figure 2.15  Execution of the parallel MLE-based physical mapping for cosmid2 

 

 

      Figures 2.16 and 2.17 respectively show the speedup and efficiency versus the 

number of processors used during the execution for different datasets.  As for the parallel 

conjugate gradient descent procedure, the more the processors used, the higher the 

speedup (Figure 2.16).  However, the increase in speedup with respect to the number of 

processors used is a slow and gradual process.  This is illustrated by the efficiency values 

as shown in Figure 2.17.  In both the synthetic dataset nprobe = 50 and the real dataset 

cosmid2, execution using 4 processors (one SMP machine) yields the highest efficiency, 
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from 73% (nprobe = 50) to 110% (cosmid2).  The efficiency for cosmid2 is more than 

100% due to the stochastic nature of parallel simulated annealing processes as mentioned 

above.  The efficiency fluctuates when 8 and 16 processors are used.  When 32 

processors are used, the efficiency turns out to be the lowest.   
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Figure 2.16  Speedup versus processor number for parallel MLE-based physical mapping 

algorithm 



 42
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Figure 2.17  Efficiency versus processor number for parallel MLE-based physical 

mapping algorithm 

 

 

     Higher efficiency at lower number of processors is partially due to the communication 

protocol used in this project.  It should be noted again that our parallel algorithms employ 

two levels of parallelization with different communication protocols.  At the higher level, 

inter-process communication is achieved via message passing and the task of simulated 

annealing is evenly distributed among multiple slave processes.  At the lower level, we 

have used shared memory multithreaded programming (usually the thread number equals 

the number of processors in the SMP machines, and in our case, 4 threads are usually 

used) to parallelize the conjugate gradient descent procedure.  When only four processors 

are used, four threads in one process cooperate to compute the conjugate gradient descent 

procedure.  In this case, simulated annealing is essentially not parallelized.  Since threads 
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share the same address space, communication among threads is more efficient than 

among processes. Therefore the performance of parallel MLE using only shared memory, 

here the 4-processor scenario, would theoretically be higher.  With further increase in the 

number of processors used, the proportion of inter-process communication via message 

passing also becomes higher, and the efficiency would correspondingly gradually 

degrade.   

     To illustrate the superior performance of shared memory multithreaded programming 

to the inter-process communication via message passing, we have used 4 and 8 SMPs to 

spawn an equal number of processes for synthetic datasets nprobe = 50 and 100.  Within 

each process, only one thread is used.  Essentially this approach would parallelize the 

simulated annealing function but keep the conjugate gradient descent procedure serial.  

By doing so, we would eliminate the use of shared memory and ensure that all the 

overheads are due to inter-process communication.  The result of test, as shown in Table 

2.3, indicates that the speedups achieved using only inter-process communication are 

consistently lower compared to the shared memory multithreaded programming or a 

combination of shared memory multithreaded programming and inter-process 

communication via message passing.  The degradation of the speedup due to inter-

process communication via message passing is especially apparent for the dataset nprobe 

= 100, where the speedup using shared memory programming is 3.7 but only 1.7 when 

message passing is used, suggesting a much higher overhead of inter-process 

communication.  This overhead caused by inter-process communication may also 

contribute to the lower efficiencies associated with the higher number of processors in 
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our timing test for the parallel MLE-PILM algorithm (see Figure 2.17), where more inter-

process communication would occur.   

 

 

Table 2.3  Parallelization of MLE using shared memory versus inter-process  

communication via message passing 

 

 

 

                            

 

 

 

     The size of the dataset greatly affects the performance of the parallel MLE.  It is 

anticipated that data parallelism for smaller datasets will incur more overheads due to 

more frequent inter-process communication.  This is also evidenced by Figures 2.15 and 

2.16 to certain degree.  The real dataset cosmid2 has 109 probes and shows consistently 

higher efficiency values than the synthetic dataset nprobe = 50.  Execution using 

synthetic datasets nprobe = 100 and 200 show similar scenarios but their efficiencies are 

occasionally more than 100% due to the nature of the parallelization approach used in 

this project. 

Dataset          Shared Memory    Shared Memory       Message Passing    Message Passing 
                        4 processors        + Message Passing    4 processors            8 processors 
                                                         8 processors       
 
nprobe=50            2.9                          4.7                            2.3                       3.7 
 
nprobe=100          3.7                          4.2                            1.7                       3.2 
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CHAPTER 3 

PARALLEL COMPUTING FOR LARGE STEP MARKOV CHAINS ALGORITHM 
 
 

3.1  Large Step Markov Chains Algorithm 

     The Large Step Markov Chains (LSMC) algorithm was originally proposed by Martin 

et al. (1991) for the Travelling Salesman Problem (TSP).  This algorithm combines 

deterministic local search with stochastic optimization.  The LSMC is an iterative 

procedure.  During each iteration, a search for a new locally optimal solution is 

conducted.  The new locally optimal solution is compared with the current solution that is 

also a locally optimal solution and is accepted based on probability p calculated using the 

Metropolis function.  When this is done, a new intermediate solution is created and a new 

local exhaustive search is performed for the next new locally optimal solution.  This 

process is repeated until a predefined criterion is satisfied.   

     Specifically, the LSMC algorithm comprises of the following steps: 

1. Kick: Let ),...,,()( 21 nxxxfxf = be an n-variable function that is to be minimized. 

Let ix be the current solution which is also a locally optimal solution. In this step, a 

large Kick or non-local perturbation is applied to the current solution to yield a new 

intermediate solution jx . 

2. Local exhaustive search: Solution jx is improved using a local exhaustive search 

technique to yield a locally optimal solution kx . 
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3. Decide: If )()( ik xfxf < , then kx is accepted as the new solution.  If )()( ik xfxf ≥ , 

then kx is accepted as the new solution with probability p, which is computed using 

the Metropolis function 
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ix is retained with probability )1( p− . 

     The LSMC algorithm was first introduced by Kota (2000) in the context of MLE-

based physical map reconstruction.  In this case, each probe resembles a city in the TSP 

and the ordering of the probes corresponds to the salesman’s tour. 

     The Kick step is problem dependent and represents a non-local perturbation.  Care 

should be taken that the new intermediate solution should not lead one back to a locally 

optimal solution that has been encountered before.  In our project, a double-bridge 

change (Martin et al. 1991) is used as the Kick step.  The double-bridge change is a non-

local perturbation that involves a 4-change.  A perturbation is termed as a k-change if it 

removes k different links from a sequence (or tour) and reconnects them into a new legal 

sequence.   According to Lin and Kernighan (1973), both 2-opt and 3-opt are sequential 

changes that keep the tour connected during the intermediate steps.  The 4-opt that 

consists of two 2-changes is the first non-sequential change, where the first 2-change 

disconnects the tour and the second 2-change reconnects it, and thereby leads to a non-

local intermediate step. 

     The exhaustive search for a locally optimal solution in this project uses the 2-opt 

heuristic, which tests all possible 2-changes to identify the best local solution.  A 

heuristic is n-opt if it tests all possible n-changes during the local exhaustive search step.  

It is also possible to use a 3-opt or a 4-opt heuristic for local exhaustive search, but the 
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execution time would be much longer since the k-opt heuristic is computationally 

intensive for k>2.  In fact, the straightforward LSMC algorithm based on the k-opt local 

exhaustive search technique is even slower than the simulated annealing algorithm since 

the MLE objective function value needs to be computed and evaluated at each local 

search step.  To overcome this problem, Kota (2000) modified the local exhaustive search 

procedure by evaluating the Hamming distance instead of the objective function value for 

each search step.  The Hamming distance ),( ji PPd between two probes Pi and Pj is 

defined as the measure of the dissimilarity, i.e., the number of unmatched digital 

signature bits, between the two probes.  The optimal probe sequence resulting from the 

local exhaustive search should have the following property: 

                                ( )






 = ∑
−

=
+

1

1
1,min

n

i
ii PPdD  

where n is the total number of probes, and D is referred to as the total linking distance of 

the probe ordering.  This approach is reasonable since two probes that hybridize with the 

same set of clones should have similar hybridization signatures and their dissimilarity 

should be smaller, i.e., their physical separation on the physical maps should be minimal. 

Thus, the total inter-probe dissimilarities should also be minimal for an optimal solution.  

As a result of this modification, the local exhaustive search time is greatly reduced 

without compromising the accuracy of the solution.  This leads to a variant of the 

straightforward LSMC that uses a combination of local exhaustive search based on the 

Hamming distance and stochastic search based on the MLE objective function as shown 

in Figure 3.1. 
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T = T_max; 

Finished = false; 

While (not Finished) 

{      

     for (count = 1;  count <= COUNT_LIMIT;  count = count + 1) 

     { 

1 Phase one – Kick 

Make a double-bridge change to the current locally optimal ordering Pi  

        to yield a new ordering Pj; 

2 Phase two – Local exhaustive search 

(a) Calculate the Hamming distance for Pj called Dj; 

       local_best_value = Dj; 

       local_best_order = Pj; 

(b) Make a 2-change to Pj to yield Pk; 

Evaluate the Hamming distance for Pk, called Dk; 

If (Dk < local_best_value) 

       local_best_value = Dk; 

       local_best_order = Pk; 

(c) If all possible 2_change have been tested 

             GOTO Phase Three; 

        Else 

              GOTO step 2(b); 
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3 Phase Three – Decide 

If local_best_order causes the value of MLE function to decrease 

      Accept local_best_order. 

Else 

      Accept local_best_order with probability p computed  

       using Metropolis function. 

       } 

       Update the temperature using annealing function T = A(T); 

} 

 

Figure 3.1  LSMC algorithm using a combination of Hamming distance and MLE 

objective function 

 

 

     Compared to straightforward simulated annealing, LSMC takes the advantage of the 

deterministic local exhaustive search and, in most cases, leads to a better solution.  Its 

superiority can be shown in Figure 3.2 for the real dataset cosmid2, where the number of 

iterations is 100 for a given annealing step.  LSMC yields a better solution but takes only 

about 33% of the time taken by the simulated annealing algorithm.  It should also be 

noted here that even with its significant computational advantage, the execution of LSMC 

still takes about 10 hours.  If the problem size and the number of iterations are increased, 

the execution time would be even longer.  Therefore, execution time is still an important 

issue for application of the LSMC to the MLE-based physical mapping algorithm. 
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Figure 3.2  Timing of simple simulated annealing and LSMC for cosmid2 

 

 

3.2  Parallelization of LSMC 

     Parallelization of the LSMC algorithm is realized through parallelizing three phases of 

the LSMC algorithm.  They are 

(1) Parallelization of the local exhaustive search procedure; 

(2) Parallelization of the simulated annealing procedure; 

(3) Parallelization of the conjugate gradient descent procedure. 

     The local exhaustive search procedure in LSMC attempts all possible 2-changes to 

reach the locally optimal solution.  This is realized by using two loops.  The outer loop 

shifts a probe position at each iteration so that the last probe in the sequence becomes the 

first, and the first becomes the second, and so on.  The inner loop conducts all possible 2-
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changes and the candidate solution with the current minimum Hamming distance 

(best_distance) is recorded as the best_order.  After the outer loop finishes execution, the 

best_order and best_distance are returned, and comprises the locally optimal solution 

after a large Kick has been applied (Figure 3.3). 

 

 

temp_order = current_order; 

best_order = current_order; 

best_distance = current_distance; 

for (i = 1;  i <= nprobe;  i++) 

{ 

     if (i = 1) 

     { 

          temp = current_order[n]; 

          for (i = nprobe;  i >= 2;  i--) 

               current_order[i] = current_order[i-1]; 

               current_order[1] = temp; 

       } 

       for (n1 = 2;  n1< nprobe; n1++) 

             for (n1 = 2;  n2 < nprobe; n2++) 

             { 

(a) reverse probe sequences between n1 and n2 ; 

(b) copy the reversed sequence into temp_order; 
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(c) calculate the Hamming distance temp_distance for temp_order; 

(d) if temp_distance < best_distance 

              best_distance = temp_distance; 

              best_order = temp_order; 

              } 

} 

Figure 3.3  Algorithm for local exhaustive search of LSMC 

 

 

     To parallelize the local exhaustive search procedure, we have used the Master/Slave 

model.  The outer loop with nprobe iterations is evenly divided among N slaves.  

Therefore each slave carries out 
N

nprobe
 iterations, and calculates its local_best_distance 

and local_best_order.  When slaves finish the execution, they report their local-

best_distances and local_best_orders to the master which would identifies the 

best_distance and its corresponding probe order as the optimal solution after a Kick 

operation has been applied.   

     The parallel local exhaustive search algorithm with the master and slave processes is 

shown in Figures 3.4 and 3.5. 

 

 

Spawn N slave_threads for local exhaustive search; 

threadAlive = N;    //threadAlive is a global variable 

if (threadAlive > 0) 
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      wait; 

for (i = 1;  i <= N;  i++) 

{ 

      if (global_best_distance > local_best_distance[i]) 

              global_best_distance = local_best_distance[i] ; 

              minIndex = i; 

} 

global_best_order = local_best_order[minIndex] . 

 

Figure 3.4  Master process for parallel local exhaustive search algorithm 

  

 

index = ThreadIndex; 

range = nprobe/N; 

base = index*range + 1; 

Shift current_order for range*index positions; 

temp_order = current_order; 

best_order = current_order; 

best_distance = current_distance; 

for (i = base;  i <= range;  i++) 

{ 

     if (i = 1) 

     {    
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          temp = current_order[nprobe] ; 

          for (j = nprobe;  j >= 2;  j--) 

                 current_order[j] = current_order[j-1]; 

          current_order[1] = temp; 

       } 

       for (n1 = 2;  n1< nprobe;  n1++) 

             for(n1 = 2;  n2 < nprobe;  n2++) 

             { 

(a) reverse probe sequences between n1 and n2;  

(b) copy the reversed sequence into temp_order; 

(c) calculate the Hamming distance temp_distance for temp_order; 

(d) if temp_distance < best_distance 

              best_distance = temp_distance; 

              best_order = temp_order; 

              } 

} 

local_best_distance[index] = best_distance; 

local_best_order[index] = best_order; 

threadAlive --; 

Exit and destroy thread. 

 

Figure 3.5  Slave process for parallel local exhaustive search algorithm 
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     The master and slave processes for the parallel LSMC algorithms are shown in 

Figures 3.6 to 3.9. 

 

 

T = T_max; 

Finished = false; 

While (not Finished) 

{ 

    for (count = 1;  count <= COUNT_LIMIT; count = count+1) 

    { 

        1    Phase one – Kick 

Make a double-bridge change to the current locally optimal ordering Pi  

 to yield an intermediate solution Pj; 

2    Phase two – Local Exhaustive Search 

Invoke the master local exhaustive algorithm, which would spawn slaves to carry 

out the search for a locally optimal solution Pk ; 

3     Phase three - Evaluate 

(a) Invoke the master conjugate gradient descent procedure. This would spawn 

    slave threads for the procedure and compute the optimal inter-probe spacings 

     for the locally optimal solution Pk; 

(b) Compute the objective function value for Pk ; 

(c) Compute f_delta, the change in the value of the objective function; 



 56

4 Phase three  - Decide     

                If (f_delta < 0) 

       Accept the new locally optimal solution Pk. 

                Else  

       Accept the new locally optimal solution Pk ; with the probability p computed 

        using the Metropolis function. 

      } 

      Update the temperature using the annealing function T = A(T); 

} 

(a) Receive locally optimal objective function values from slaves; 

(b) Compare locally optimal objective function values and identify the global minimal 

      values and its process identifier (mindId);  

(c) Broadcast minId to all the processes; 

(d) Receive probe ordering and inter-probe spacings from the process minId. 

 

Figure 3.6  Master process of the NILM_LSMC algorithm using MPI and Pthreads 

 

 

 

T = T_max;   

Finished = false; 

While (not Finished) 

{ 
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    for (count = 1;  count <= COUNT_LIMIT;  count = count+1) 

    {  

        1    Phase one – Kick 

Make a double-bridge change to the current locally optimal ordering Pi  

to yield an intermediate solution Pj; 

2 Phase two – Local Exhaustive Search 

Invoke the master local exhaustive algorithm, which would spawn the slaves to 

carry out the search for a locally optimal solution Pk ; 

3 Phase two – Evaluate 

(a) Invoke the master conjugate gradient descent procedure. This would spawn  

       slave threads for the procedure and compute the optimal inter-probe  

       spacings for the new locally optimal solution Pk; 

(b) Compute the objective function value for Pk ; 

(c) Compute f_delta, the change in the value of the objective function; 

4 Phase three  - Decide     

                If (f_delta < 0) 

       Accept the new locally optimal solution Pk . 

                Else  

       Accept the new locally optimal solution Pk ; with the probability p computed 

         using the Metropolis function. 

      } 

      Update the temperature using the annealing function T = A(T); 

} 
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(a) Send locally optimal function value to the master; 

(b) Receive from master the identifier MinId ; 

(c) If (MinId = myId) 

             Send locally optimal probe ordering to the master; 

                 Send optimal inter-probe spacings for the locally optimal probe ordering to the  

                       master. 

 

Figure 3.7  Slave process of the NILM_MLE algorithm using MPI and Pthreads 

 

 

T = T_max;  

Finished = false; 

While (not Finished) 

{ 

    for (count = 1;  count <= COUNT_LIMIT;  count = count+1) 

    {   

       1    Phase one – Kick 

Make a double-bridge change to the current locally optimal ordering Pi  

to yield an intermediate solution Pj; 

2    Phase two – Local Exhaustive Search 

 Invoke master local exhaustive search algorithm, which would spawn the slaves  

    to carry out the search for a locally optimal solution Pk ; 

3    Phase three - Evaluate 
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(a) Invoke master conjugate gradient descent procedure. This would spawn slave 

       threads for the procedure and compute the optimal inter-probe spacings for  

       the new locally optimal solution;  

(b)  Compute the objective function value for the new locally optimal solution; 

(c)  Compute f_delta, the change in the value of the objective function; 

4 Phase three  - Decide 

             If (f_delta < 0) 

     Accept the new locally optimal solution Pk. 

             Else  

     Accept the new locally optimal solution Pk with the probability p computed 

     using the Metropolis function. 

      } 

(a) Receive locally optimal objective function values and process Ids from slaves; 

(b) Compare locally optimal objective function values from slaves and identify the 

global optimal objective function value and its associated process Id (minId); 

(c) Broadcast minId to all the processes; 

(d) Receive locally optimal probe ordering and inter-probe spacings from process 

minId; 

(e) Update the temperature using the annealing function T = A(T); 

} 

 

Figure 3.8  Master process of the PILM_LSMC algorithm using MPI and Pthreads 
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T = T_max; 

Finished = false; 

While (not Finished) 

{ 

    for (count = 1;  count <= COUNT_LIMIT;  count = count+1) 

    { 

1    Phase one – Perturb 

Make a double-bridge change to the current locally optimal ordering Pi  

to yield an intermediate solution Pj; 

2    Phase two – Local Exhaustive Search 

Invoke master local exhaustive search algorithm, which would spawn the slaves 

to carry out the search for a locally optimal solution Pk ; 

3    Phase three - Evaluate 

(a) Invoke master conjugate gradient descent procedure. This would spawn slave  

       threads for the procedure and compute the optimal inter-probe spacings for 

        the new locally optimal solution Pk ;; 

(b) Compute the objective function value for the new probe order; 

(c) Compute f_delta, the change in the value of the objective function; 

4 Phase three  - Decide 

              If (f_delta < 0) 

       Accept the new locally optimal solution. 

              Else  

       Accept the new locally optimal solution with the probability p computed 
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        using the Metropolis function. 

      } 

(a) Send locally optimal objective function value and process Id to the master; 

(b) Receive minId from the master; 

          If (myId = minId) 

               Broadcast locally optimal probe ordering and inter-probe spacings to all  

                the processes; 

(c) Update the temperature using the annealing function T = A(T); 

} 

 

Figure 3.9  Slave process for the PILM_MLE algorithm using MPI and Pthreads 

 

 

     In this project, we have exploited the computing power of a network of shared-

memory multiprocessor computers for implementation of the LSMC algorithm.  The 

master and slaves for local exhaustive search procedure are implemented using POSIX 

threads.  The implementation of parallel simulated annealing and parallel conjugate 

gradient descent search is the same as in Chapter 2.  

 

3.3  Experimental Results    

3.3.1  Parallel Local Exhaustive Search 

The parallel algorithm for the local exhaustive search using shared memory has  
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yielded good performance as shown in Figures 3.10 and 3.11.  In larger synthetic datasets 

with nprobe = 100 and 200, the speedup increases linearly with respect to the number of 

processors used.  The synthetic dataset nprobe = 50 shows lower speedups.  The good 

performance of the parallel local exhaustive search algorithm can also be demonstrated 

by the efficiency values shown in Figure 3.11 where efficiencies for nprobe = 100 and 

200 are all above 85%.  The lowest efficiency comes from the synthetic dataset nprobe = 

50, where the efficiency is only about 53% when 4 processors are used.  This is expected 

since nprobe = 50 is the smallest dataset for the test and its associated communication 

overhead will be higher compared to the larger datasets.  It can be seen that for larger 

datasets with nprobe = 100 and 200, parallelization using 2 processors yields the best 

efficiencies (93% and 96% respectively) for the local exhaustive search procedure.  For 

the smaller dataset with nprobe = 50, efficiency is the highest when 3 processors are 

used.  
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Figure 3.10  Speedup versus number of processors for the parallel local exhaustive search 

algorithm  
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Effenciency vs. Datasize for Exhaustive Local Search
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Figure 3.11  Efficiency versus number of processors for the parallel local exhaustive 

search algorithm 

 

3.3.2  Performance of the Parallel LSMC Algorithm 

     Timing tests using both synthetic datasets and real datasets show the increase in the 

speedup with respect to the number of processors used.  A higher number of processors 

often leads to higher speedups for a given dataset.  Figure 3.12 shows the speedups of 

different datasets.  With no exception, speedup is the highest when 32 processors are used 

and the lowest for 4 processors.  For example, for the synthetic dataset of nprobe = 100, 

the speedup changes from 3.22 to 5.33, 13.65 and 21.57 respectively with the processor 

number increasing from 4 to 8, 16, and 32.  It is foreseeable that with the further increase 

in the number of processors, the overhead of inter-process communication will also 

become greater and the speedup will eventually reach its maximum and thereafter 

decrease.  In our timing tests, since the cluster consists of only eight SMP machines (with 
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4 processors per SMP), we were unable to detect this phenomenon.  As expected, the 

speedup tends to increase for large datasets (Figure 3.11).  In all cases, the synthetic 

dataset nprobe = 200 yielded the highest speedup for a given number of processors.  The 

real dataset cosmid2, although with a probe number of 109, has always yielded the lowest 

speedups. 

     Increase in speedup is not always proportional to the increase in the number of 

processors.  For most of the synthetic datasets, there seemed to be a steady and rapid 

increase in the speedup with respect to the number of processors.  In the case of real 

dataset cosmid2, the increase in the speedup is insignificant compared to the increase in 

the number of processors.   The synthetic dataset nprobe = 50 yields slightly better results 

than the real dataset cosmid2, but is significantly lower than nprobe = 100 and nprobe = 

200 in terms of speedup. 
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Figure 3.11  Performance of parallel LSMC algorithms 
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CHAPTER 4 

EVOLUTIONARY ALGORITHMS FOR PHYSICAL MAPPING PROBLEMS 

 

     The evolutionary algorithm is an adaptive problem solving procedure modeled on the 

natural evolutionary process.  According to Darwin (1859), an organism has the 

capability of increasing its numbers geometrically.  Since the natural resources needed 

for the organism are limited, there is a struggle for existence and the fittest individual will 

have the best chance to survive and reproduce.  The underlying basis for natural selection 

is genetic variations arising from mutation and recombination (i.e., crossover).  The basic 

evolutionary unit is the population that consists of a number of individuals. 

     Evolutionary algorithms use heuristic search/optimization techniques to obtain the 

best possible solution in a vast solution space using a population or subset of potential 

solutions.  Given certain information about the problem domain, evolutionary algorithms 

focus on a subset of potential solutions that would eventually converge to a globally 

optimal solution (Bhandarkar et al. 1994).  Evolutionary algorithms are robust in that 

they are relatively unaffected by the presence of spurious locally optimal solutions in 

their pursuit of a globally optimal solution. 

     A typical evolutionary algorithm consists of the following components (Michalewicz 

1992; Bhandarkar et al. 1994): 

a. A population of candidate solutions, which are biologically referred to as 

chromosomes. The size of the population should be sufficiently large to maintain 
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enough genetic variations, which would essentially determine the effectiveness of 

evolution.  

b. Genetic operators, which typically consist of crossover and mutation.  Genetic 

operators are mechanisms to introduce genetic variations.  Crossover creates new 

chromosomes through the recombination of two parents during reproduction.  

Mutation is a random change in a single chromosome designed to introduce a novel 

offspring.  

c. Objective function and associated fitness measurement.  The objective function 

measures the performance or fitness of a given chromosome. The fitness value of a 

chromosome determines its probability of survival into and reproduction for the 

next generation.   

d. Selection.  This is the process that determines which chromosomes will survive 

into the next generation.  The higher the fitness of a chromosome, the more likely it 

is to survive and reproduce.  Selection leads to a new population consisting of 

better offspring but usually also reduces the genetic variations in the population.   

    An evolutionary algorithm is implemented as an iterative procedure.  To search for the 

optimal solution of a given problem, the evolutionary algorithm starts from a subset of 

initial solutions (chromosomes) that evolve into different but better ones over successive 

generations (iterations).  This process is repeated until a certain stopping criterion is met. 

The stopping criterion is a heuristic since, strictly speaking, the evolutionary process is 

endless barring complete extinction. 

     A typical evolutionary algorithm is described in Figure 4.1. 
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procedure EA; 

{ 

      t = 0; 

      Initialize population P(t); 

      Evaluate the fitness of individuals of P(t); 

      while (1) 

      {  

             t = t+1; 

             Select parents for reproduction; 

             Apply genetic operator(s) to create offspring; 

             Evaluate and select individuals for survival into the next generation; 

             Create the new generation; 

             Replace current population by the new generation; 

      } 

      Select the best individual from the population as the optimal solution to the problem. 

} 

 

Figure  4.1  A typical evolutionary algorithm 
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     Varieties of the evolutionary algorithm include evolutionary programming, 

evolutionary strategies and genetic algorithms.  In this project, we have used an 

evolutionary programming/LSMC hybrid and two slightly different genetic algorithms to 

obtain a solution to the MLE-based physical mapping problem. 

 

4.1  Evolutionary Programming/LSMC Hybrid for Reconstructing Physical Maps of 

Chromosomes 

     The evolutionary programming technique was first proposed by Fogel et al. in 1966 

and has been used in a variety of areas.  A typical evolutionary programming uses 

mutation as the sole genetic operator to generate offspring.  Unlike the simulated 

annealing algorithm which starts with a single candidate solution, the evolutionary 

programming technique comprises of a population of initial candidate solutions, each 

going through a number of generations before reaching a locally optimal solution.  The 

final optimal solution is chosen from an ensemble of locally optimal solutions.  Since a 

larger solution space is sampled, the final solution is often better than the one obtained 

from the simulated annealing algorithm.  However, since a population of solutions has to 

be searched, the execution time is also often longer. 

      A major advantage of using evolutionary programming is its ease of parallelization.  

Since simulated annealing starts with one solution, parallelization of the algorithm is 

often difficult.  Efforts to parallelize the simulated annealing algorithm often decompose 

the Metropolis function or the annealing step, but the results often vary depending on the 

underlying problem.  On the other hand, since evolutionary programming iterates through 
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a population of solutions, it is inherently parallel.  A workload comprising of a population 

of solutions can be easily partitioned amongst processors.    

      To combine the strengths of simulated annealing and evolutionary programming 

approaches, we have proposed a hybrid of evolutionary programming and LSMC as 

depicted in Figure 4.2 for the physical mapping problem.  In this algorithm, a population 

of chromosomes is first created by double-bridge operations followed by local exhaustive 

searches.  Since double-bridge is a non-local perturbation technique, its application will 

yield a set of distinct solution states.  The local exhaustive search, on the other hand, will 

ensure that each chromosome in the initial population represents a locally optimal 

solution to the problem.  Each chromosome in the population then starts at the initial 

temperature and an independent seed and goes through the LSMC process.  Essentially, 

the evolutionary/LSMC hybrid algorithm comprises an ensemble of independent MLE 

processes where the final solution to the problem is chosen after the execution of the 

algorithm.  

 

 

Create population P of N solutions using double-bridge and local exhaustive search; 

T = T_max; 

while (1) 

{ 

    for (i=1; i<=N; i++) 

    { 

        for (j=1; j<=M; j++) 

        { 
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(a) Perform the double-bridge perturbation on P[i] to create an offspring; 

(b) Perform local exhaustive search starting from the offspring 

                    and identify the local optimal solution P[i]*; 

(c) Perform conjugate gradient descent and compute the local minimum 

       objective function value at P[i]*; 

(d) Compute f_delta, the change in the value of the objective function between 

P[i] and P[i]*; 

             (e)  If (f_delta < 0) 

            Accept the new solution P[i]*. 

                     Else  

             Accept the new solution P[i]* with the probability p computed using  

             the Metropolis function.  

          } 

      }         

      Update the temperature using annealing function T = A(T); 

} 

Choose the best chromosome from the population. 

 

Figure 4.2  A hybrid evolutionary programming/LSMC algorithm for MLE-based 

physical mapping 
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4.2  Genetic Algorithms for Physical Mapping of Chromosomes 

      Genetic algorithms differ from evolutionary programming by introducing the 

recombination (crossover) operator.  During the recombination, two parental 

chromosomes are selected.  Child chromosomes are generated by exchanges of parental 

chromosomal segments and, as a result, bring more genetic variations into the population.  

However, since the crossover operator creates genetic variations only by shuffling the 

parental chromosomes, these genetic variations will gradually be depleted after a certain 

number of generations.  To introduce novel variations into the population, mutations 

should be conducted occasionally.  Therefore, chromosomal recombination should be 

accompanied by occasional mutations.  Since most mutations have deleterious effects, 

mutation rates should usually be kept relatively low.  As in evolutionary programming, 

selection is strictly based on the fitness of individual chromosomes.  Newly created 

individuals with higher fitness are more likely to replace the less fit parents and survive 

into the next generation. 

      Many crossover operators have been proposed.  These include partially matched 

crossover (PMX) (Goldberg 1989; Michalewicz 1994; Falkenauer 1998), cycle crossover 

(CX) (Goldberg 1989; Michalewicz 1994), order crossover (OX) (Goldberg 1989; 

Michalewicz 1994), matrix crossover (MX) (Michalewicz 1994) etc.  However, since 

offspring created by these crossover operators are mostly the random assortments of the 

parental chromosomes, they are often less fit than their parents.  As a result, most of the 

newly created offspring will be deleted from the population even though a significant 

amount of time has been spent creating and evaluating them.  To circumvent this 
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problem, a heuristic crossover operator was proposed by Jog et al. (1989) for the TSP.  

Specifically, the heuristic crossover for the TSP does the following:  

(a) Randomly select two chromosomes. 

(b) Choose a start node from one of the selected chromosomes for crossover. 

(c) Compare two edges leaving from the start node between two parents and choose 

the shorter edge; if the shorter edge leads to an illegal sequence, choose the other 

edge; if both edges introduce illegal sequences, choose an edge from the 

remaining nodes that has the shortest distance from the start node. 

(d) Choose the new node as the start node and repeat step c until a complete sequence 

is generated. 

       In our project, two parents are chosen randomly or using the roulette wheel selection 

procedure (Goldberg 1989) followed by application of the heuristic crossover operator 

with a slight modification.  During the selection of a start node, if that node is close to the 

end of the sequence, in many cases, recombination will not be effective if two parents are 

similar.  For example, if the start node is selected at a point after which sequences of both 

parental chromosomes are the same, no actual exchange of parental chromosomal 

segments will occur even though the heuristic crossover operator has been applied.  To 

avoid this scenario, we start from the beginning of the sequence whenever a node close to 

the sequence end is selected as the start point.  This often leads to a much improved child 

in a single heuristic crossover operation.  Mutation in this project is implemented using 

the non-local double-bridge operation or the non-local double-bridge operation followed 

by a local exhaustive search.  The mutation rate is set dynamically based on the genetic 

variations retained in the population.  During the early stages of the annealing process, 



 73

since genetic variations in the population are relatively high, application of the heuristic 

crossover usually creates better offspring.  Therefore the mutation rate is kept relatively 

low.  During the later stages of the annealing process, when the genetic variations in the 

population are gradually reduced due to selection, newly created offspring will tend to 

have the same or even lower fitness than their parents.  As a result, the mutation rate will 

be allowed to increase correspondingly so that more variations could be introduced into 

the population. 

     Two slightly different genetic algorithms have been used in this project as shown in 

Figures 4.3 and 4.4.  In the first genetic algorithm (Figure 4.3), parents are chosen 

randomly to create offspring and selection is strictly based on a deterministic search.  

During each iteration, either mutation or heuristic crossover will be applied.  If the 

heuristic crossover is applied, the parent with lower fitness will be replaced by the newly 

created child.  A local exhaustive search is conducted on each individual in the 

population and the local optimal solution yielded by the search will be accepted if it has a 

lower objective function value.  The second genetic algorithm uses the fitness-based 

roulette wheel procedure to choose parents for reproduction and incorporates the 

simulated annealing process.  During each iteration, heuristic crossover operation will be 

conducted to create the offspring which is subject to a local exhaustive search.  Mutation 

is conducted on the offspring based on certain probability.  If the offspring xj has a lower 

objective function value than the less fit parent, it will replace that parent.  Otherwise, the 

offspring is accepted with the Boltzmann logistic probability, which is computed 

by TEE jie
p /)(1

1
−+

=  . 
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Create the initial population P of N chromosomes using double-bridge followed by local 

exhaustive search; 

while (1) 

{ 

    for (i=1; i<=N; i++) 

    { 

(a) If ( drand()<prob ) 

             Perform mutation using the double-bridge perturbation on P[i]; 

       Else 

            Select two parents randomly and apply the heuristic crossover operator to  

            create the offspring which will replace the less fit parent; 

(b) Perform local exhaustive search from P[i] and identify the locally optimal 

solution P[i]*; 

(c) Perform the conjugate gradient descent procedure and compute the objective 

function value for P[i]*; 

(d) Compute f_delta, the change in the value of the objective function between 

P[i] and P[i]*; 

              (e)  If (f_delta < 0) 

          Accept the new solution P[i]*. 

      }      

      Update prob;    

} 

Figure 4.3  Genetic algorithm for reconstructing physical maps using deterministic search 

 



 75

Create the initial population P of N chromosomes using double-bridge followed by local 

exhaustive search; 

T = T_max; 

while (1) 

{ 

    for (i=1; i<=N; i++) 

    { 

(a) Select two parents using the roulette wheel procedure; 

(b) Apply heuristic crossover operator on the selected parents to create offspring 

S; 

(c) Perform local exhaustive search from S and identify the locally optimal 

solution S* ; 

(d) Perform conjugate gradient descent procedure and compute the objective 

function value at S*; 

(e) If (drand()<prob) 

            Apply mutation operation on S*; 

(f) Compute f_delta, the change in the value of the objective function between 

the less fit parent and S*; 

(g) Retain the less fit parent with the probability p given by the Boltzmann  

      function. 

      }      

      Update prob;    
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      Update the temperature T = A(T); 

} 

Figure 4.4  Genetic algorithm for reconstructing physical maps using simulated annealing 

 

 

4.3  Parallelization of the Evolutionary Programming/LSMC Hybrid Algorithm  

    Parallelization of the evolutionary programming/LSMC hybrid takes advantage of the 

inherent ease of parallelization of an evolutionary programming algorithm.  In our 

project, two levels of parallelization are again used.  At the higher level, the population of 

solutions is partitioned evenly into subpopulations among the SMP machines.  Each 

process iterates through the candidate solutions in the subpopulation and identifies the 

locally optimal solution on a single SMP.  The globally optimal solution is chosen from 

the locally optimal solutions.  At the lower level, conjugate gradient descent and local 

exhaustive search procedures are performed on a single SMP using shared-memory 

multithreaded programming as in the case of the parallel simulated annealing and LSMC 

algorithms (see Chapters 2 and 3). 

    The parallel evolutionary programming/LSMC hybrid algorithm is shown in Figure 

4.5.  

 

 

Partition Population P of N chromosomes among x processes (one process per SMP) such 

that each process deals with a subpopulation of S = N/x individuals; 

T = T_max; 

while (1) 
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{ 

    for (i=1; i<=S; i++) 

    { 

        for (j=1; j<=M; j++) 

        { 

(a) Perform a double-bridge perturbation on P[i] to create an offspring; 

(b) Invoke master local exhaustive search procedure on the offspring. 

                  This would spawn slave local exhaustive search threads in the process and  

                   identify the locally optimal solution P[i]*; 

(c) Invoke master conjugate gradient descent procedure. This would spawn slave 

conjugate gradient descent threads in the process and also compute the 

objective function value given by P[i]*; 

(d)  Compute f_delta, the change in the value of the objective function between  

        P[i] and P[i]*; 

              (e)  If (f_delta < 0) 

         Accept P[i]* and replace P[i]. 

                     Else  

         Accept the P[i]* with the probability p computed  

          using the Metropolis function. 

          } 

      }         

      Update the temperature using annealing function T = A(T); 

} 
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For the master: 

(a) Receive process_Id and local_best from all the slaves; 

(b) Identify the minimum among the local_best and its associated process_Id, say 

minId; 

(c) Broadcast minId to all the slaves; 

(d) Receive the solution from the minId. 

For slaves: 

(a) Identify the individual with the lowest objective function value local_best in the 

subpopulation and send that value and process_Id to the master; 

(b) Receive minId from the master; 

(c) If (minId = myId) 

           Send the individual with the lowest objective function value to the master. 

 

Figure 4.5  Parallelization of the evolutionary programming/LSMC hybrid algorithm for 

physical mapping of chromosomes 

 

 

4.4 Parallelization of the Genetic Algorithms 

     Parallelization of the genetic algorithms in our projects also partitions the population 

into subpopulations among SMPs.  Each subpopulation searches for a locally optimal 

solution on a SMP.  Under the PILM model, slaves will send their subpopulations at the 

end of each annealing step to the master which will reshuffle these subpopulations and 

redistribute them to slaves again for the next annealing step.  This process is similar to 
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the gene flow among natural populations such that the variations among populations will 

be reduced but those within the population will increase.  In our case, more genetic 

variations will be introduced into the subpopulation at each annealing step.   When slaves 

finish the annealing process, they send their locally optimal solutions to the master which 

would identify the globally optimal solution to the problem.  Under the NILM model, no 

gene flow process is required at each annealing step.  Slaves only need to send their 

locally optimal solutions to the master at the end of the whole annealing process. 

                              

4.5  Experimental Results  

     The evolutionary programming/LSMC hybrid was tested on the same cluster of SMP 

machines in the Department of Computer Science at the University of Georgia using the 

synthetic dataset nprobe = 50.  Tests for larger datasets were not conducted due to the 

significant amount of computing time required.  The size of the population was limited to 

10 individuals.  The genetic algorithms were tested in the same computational 

environment using the synthetic datasets with nprobe = 50, 100, 200, and the real datasets 

cosmid2 and cosmid3 as the parallel simulated annealing and LSMC algorithms. 

 

4.5.1  Evolutionary Programming/LSMC Hybrid   

      The execution of the serial evolutionary programming/LSMC hybrid algorithm for 

the synthetic dataset nprobe = 50 takes 76863 seconds and yields an objective function 

value of 1601.973232.  Compared to the serial LSMC algorithm that runs about 10746 

seconds using the same dataset, the convergence time for this hybrid algorithm is about 7 

times longer.  Considering the fact that the population consists of 10 candidate solutions, 
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the convergence time for the hybrid algorithm is reasonable.  However, the final 

objective function value obtained from the hybrid algorithm is lower than that from the 

LSMC (1601.973232 versus 1624.094166).  This would suggest that sampling from an 

ensemble or a population of solutions has an inherent advantage in obtaining a better 

solution to the problem. 

      Parallel evolutionary programming/LSMC hybrid algorithm has been tested for the 

synthetic dataset nprobe = 50 using 4 SMPs (16 processors).  When 10 chromosomes are 

limited in the population, the execution takes about 9501 seconds and yields an objective 

function value 1621.156043, which is slightly better than the value of serial LSMC 

algorithm for the same dataset and in a shorter execution time.  When the population size 

is increased to N = 20, the final objective function value is 1595.202606, which is even 

better than that from the serial evolutionary programming/LSMC hybrid algorithm, but 

the execution time is also correspondingly longer (26677 seconds).  These tests indicate 

that the parallel evolutionary programming/LSMC hybrid algorithm has the intrinsic 

merit to yield better results in a shorter time scale if enough care is taken to select a 

proper population size for the execution.  

 

4.5.2  Genetic Algorithms 

     Both genetic algorithms have yielded good results in terms of the final objective 

function value and the execution time.  The execution time and final objective values 

using different datasets for the deterministic search-based genetic algorithm are shown in 

Table 4.1.  The results of the simulated annealing-based genetic algorithm are similar and 

will not be shown here. 
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Table 4.1  Timing comparison between the serial deterministic search-based genetic 

algorithm and the serial LSMC algorithm 

Data                GA Time          GA Value           LSMC Time      LSMC Value 

nprobe=50    3714       1549.81       10746          1624.09 

nprobe=100   6544       4274.29       7459          4297.50 

nprobe=200   25035      11200.49      105893         11515.13 

cosmid2     25469      12789.89      34704         12757.55 

cosmid3      21542      12476.97      30138          12501.88 

 

 

     For the same dataset, the genetic algorithm almost always has a better performance 

than the LSMC (Table 4.1).  The only exception is the real dataset cosmid2, where the 

genetic algorithm yields a higher objective function value (12789.89 versus 12757.55) 

but in a shorter execution time (25469 seconds versus 34704 seconds).  The superiority of 

the genetic algorithm is especially apparent for the synthetic dataset nprobe = 50, where 

the genetic algorithm takes a little more than 1/3 of the execution time of LSMC (3714 

seconds versus 10746 seconds), but yields a much improved solution to the problem 

(1549.81 versus 1624.09).  This result is impressive considering the fact that the genetic 

algorithm starts with a population of 10 chromosomes and that it is also very hard to 

decrease the objective function value further when it reaches a certain point.   Compared 

to the simple simulated annealing approach (Chapter 2 and Figure 4.6), the genetic 
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algorithm takes about 25% of the execution time (3714 seconds versus 15068 seconds) 

for the synthetic dataset nprobe = 50 to yield a significantly lower objective function 

value (1549.81 versus 1665.37).  Therefore, genetic algorithms using the heuristic 

crossover by far provide the best solution to our physical mapping problem.   

 

 

Comparison of Algorithms for nprobe = 50
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Figure 4.6 Timing comparison among SA, GA, and LSMC for nprobe = 50. Each 

algorithm used the serial conjugate gradient descent procedure 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

     Reconstruction of physical maps of chromosomes in this project is based on a 

maximum likelihood estimator model that derives an objective function of two 

parameters, i.e., the probe ordering and the inter-probe spacings.  The most likely 

solution to the problem will have the lowest objective function value.  In this project, we 

have used several optimization approaches, including simulated annealing, LSMC, and 

evolutionary algorithm (evolutionary programming and genetic algorithm), for the 

physical mapping problem.  Parallelization of the algorithms is carried out at two levels.  

At the higher level, we have partitioned the workloads of the simulated annealing and 

evolutionary algorithms among SMPs using the inter-process communication via 

message passing.  At the lower level, a conjugate gradient descent search and a local 

exhaustive search are parallelized using shared-memory multithreaded programming.  

These parallel algorithms are implemented on a cluster of SMP machines, and both 

synthetic and real datasets have been used to test the effectiveness and performance of the 

algorithms. 

     Simulated annealing is our first attempt for the physical mapping problem.  In this 

algorithm, each annealing step iterates through a number of perturb-evaluate-decide 

cycles.  The probe order is first randomly perturbed to generate a new candidate solution 

that is subject to a conjugate gradient descent search to yield the optimal inter-probe 
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spacings for the new order.  In our parallel simulated annealing algorithm, the workload 

of each annealing step is evenly divided among multiple SMP machines.  Within each 

SMP, we spawn multiple POSIX threads and bind them onto processors to conduct the 

local exhaustive search.  The parallel simulated annealing algorithm has provided some 

good performance, and the measured efficiencies for many of the test cases are above 

80%. 

     The LSMC is a variant of the simulated annealing algorithm with the addition of a 

deterministic local exhaustive search after a large Kick has been applied to generate a 

non-local intermediate solution.  In our project, the Hamming distance rather than the 

MLE objective function value has been used in the local exhaustive search procedure, 

which leads to an improved solution in a shorter time.  Both the local exhaustive search 

and conjugate gradient descent search procedures are parallelized at the lower level.  

Parallelization of the local exhaustive search yields an efficiency of more than 90% for 

majority of the tested datasets.  Both the speedups and efficiencies of the parallel LSMC 

algorithms are encouraging. 

     In addition to the simulated annealing and the LSMC algorithms, we have also used 

the evolutionary algorithms, including an evolutionary programming/LSMC hybrid and 

two versions of the genetic algorithm, for our physical mapping problem.  The 

evolutionary programming/LSMC hybrid algorithm starts with a population of locally 

optimal solutions, each going through an independent LSMC process.   Our serial 

evolutionary programming/LSMC hybrid algorithm takes a longer time than the LSMC, 

but yields a better solution.  Parallelization of the evolutionary programming/LSMC 
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hybrid has yielded a much improved solution in a shorter time compared to the serial 

LSMC algorithm. 

     In our two versions of the genetic algorithm for the physical mapping problem, we 

have used the heuristic crossover operator to create offspring followed by occasional 

mutations.  The serial versions of the genetic algorithm are consistently better than the 

simulated annealing and LSMC in both effectiveness and performance.  For the synthetic 

datasets nprobe = 50, the genetic algorithms take only 25% and 33% percent of the 

execution time of simulated annealing and LSMC respectively but yield much improved 

solutions.   

     By far, the genetic algorithms using the heuristic crossover have provided the best 

solutions to the physical mapping problem in our project.  The implementation of parallel 

genetic algorithms in this project can be easily carried out using the same combination of 

inter-process communication and shared-memory programming.  Improvement of the 

efficiency of the genetic algorithms may also be possible by incorporating load-balancing 

techniques during the implementation. 
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