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Abstract

The aim of this dissertation is to provide a waiting time focused method for calculat-

ing transition probabilities of a disability model. The challenge that the traditional

approach, i.e, differential-difference approach faces is its computational difficulty.

The waiting time approach described in the dissertation transforms the event that

describes an insured state at time t given its initial state into an equivalent event that

considerably eases the calculation burden. The dissertation is composed of five chap-

ters: (1) Introduction, referring to the model, and the history of the investigation

about the model, and a sketch of the contents from chapter 2 to 5; (2) Literature

Review, reviewing the academic background for the investigation of compartment

models and the waiting time approach; (3) Waiting time approach for disability

models, deriving the transition probabilities with the waiting time approach for a

disability model and their sensitivities to the parameters; (4) Application to insur-

ance functions, investigating the sensitivities of some insurance functions of interest



to the parameters; (5) Future work, discussing possible theoretical simulation work

based on the results of chapter 3 and 4.
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Chapter 1

Introduction

The investigation of population behavior modeling can be traced back to the malaria

model built by Ross (1911). With the mathematic theory derived by Kermack and

McKendrick (1927), such deterministic models were widely used for predicting re-

action mechanisms in chemistry such as Zilversmit and Fishler (1943), and Shep-

pard and Housholder (1951). Since Feller (1939) claimed the importance of building

stochastic models for population behavior, a lot of papers have contributed to the

development of stochastic models, such as Bartlett (1949) and Bartholomay (1958).

A series of papers (e.g. Thakur et al. (1972), Purdue (1974a), Purdue (1974b), Pur-

due (1975) and Matis and Tolley (1979)) built stochastic theory behind their models.

Matis and Hartley (1971) developed least squares methods for the parameter esti-

mation of compartment models.

The basic disability model in our work is composed of the states, defined as healthy,

disabled and death. An individual can move back and forth between healthy and
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disabled states. We unfold the process so that the process has 2m+1 compartments,

in which states 2i− 1 and 2i are, respectively, denoted as the ith time that an indi-

vidual is healthy and disabled for i = 1, 2, ...,m. State 2m+1 is the state death, and

is an absorbing state. Also, individuals in any state other than death can go directly

to state death for an unexpected reason.

In Chapter 2 of this dissertation, we review the development of the methods for

investigating compartment system by introducing deterministic models as well as

stochastic models, the theories behind the one compartment, two compartment and

multi-compartment models, the general process for solving the differential-difference

equation, and the parameter estimations for stochastic models. In addition, we go

through the waiting time approach for an AIDS model and extract some general

information about disability insurance.

In Chapter 3, based on the investigated disability model, we derive the general for-

mula for transition probabilities. In addition, under the condition that an insurance

period is fixed as one year, and the insured is either healthy or disabled in the end

of the period, the transition probabilities are specified; Then the sensitivities of the

transition probabilities to the waiting time rates are investigated.

In Chapter 4, based on the transition probabilities derived in Chapter 3, some func-

tions of interest to insurance companies are derived and their sensitivities to the

waiting time rates are investigated as well.

Future work is discussed in Chapter 5. We plan to compare how the different dis-

tributions of accidental waiting time for the first time, D1, will affect transition

probability to death for the long term.
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Chapter 2

Literature Review

2.1 Deterministic Models

The simplest deterministic model governing the spread of infection over time is the

Ross (1911) model for malaria, i.e., the simple epidemic model,

dX

dt
= λX(N −X + 1), t > 0, (2.1)

where X = X(t) is the number of malaria cases in a population of size N at time t

with a constant infection rate λ. This is a logistic differential equation with solution

X = (N + 1)[1 + e(N+1)(c−λt)]−1 (2.2)

where c is a known constant given the initial number of people who are infected

with malaria. This was followed by many different deterministic models, the most
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notable being the Kermack and McKendrick (1927) model, which model was revisited

in Brauser (2005). There is a huge literature establishing deterministic models for a

vast number of population models. For example, deterministic models were built to

model chemical reactions in Zilversmit and Fishler (1943). Sheppard and Housholder

(1951) extends deterministic models to n-compartment systems. Beauchamp and

Cornell (1968) develop a two-step method for the estimation of parameters, a general

partial total approach for the linear coefficients followed by a nonlinear method from

Beauchamp and Cornell (1966) for exponential parameter estimation.

2.2 Stochastic Models

Feller (1939) reminded researchers that life was stochastic; i.e., models should be

stochastic models rather than deterministic ones. Instead of assuming that the num-

ber of cases, i.e., infected people in the above example, is a function of time t,

stochastic models consider that the number of cases at time t is a random variable,

and has a distribution at each time point. In particular, the stochastic version of the

simple epidemic model in equation (2.1) is

dPx(t)

dt
= β[(N − x)(x+ 1)Px+1(t)− x(N − x+ 1)Px(t)], (2.3)

x = 1, 2, ..., N − 1,

dPN(t)

dt
= −βNPN(t), X = N, (2.4)

where Px(t) is the probability that the number of infected individuals at time t is

X(t) = x given that there is X(0) = 1 infected person in a population of size N

6



at time t = 0, and where β is the rate of infection. Typically, the deterministic

equations are much simpler to solve than are their stochastic analogues which are

usually non-trivial. For example, while the deterministic malaria model was solved

by Ross (1911), it was not until Bartlett (1949) that a solution was found for the

stochastic simple epidemic model of equation(2.3). Bartholomay (1958) compares

the stochastic theory to deterministic theory based on a basic unimolecular chemical

reaction, and concludes that the derived stochastic model is consistent in the mean

with the deterministic model where the transition rate is linear in time. Our focus

is on stochastic models.

Compartment analysis is widely used in many disciplines. It is assumed that the

system is composed of at least one compartment. Compartment is also called state

in stochastic models. Material will enter the system via different compartments, stay

some time in some compartments, flow between compartments and finally leave the

system. For each compartment, researchers are usually interested in the inflow and

outflow rates at different time points so that the probability distribution that the

material in each compartment at any time can be obtained, given its state at time

0. Next, we will review one compartment models, two compartment models, and

extensions to general n compartment models, for n ≥ 2.

Stochastic Models for One Compartment Systems

Let us first review stochastic models for one compartment systems. Let X(t) denote

the number of particles in the compartment, i.e., the system at any time t. This

X(t) describes a time continuous Markov process. Thakur et al. (1972) assumes

that all particles are homogeneous and any one particle can enter the compartment

7



with probability f(t)∆t and leave the compartment with probability µ∆t in the time

interval (t, t + ∆t). Also the probability that two or more particles enter or leave

the system in the time interval (t, t+ ∆t) is assumed to be an infinitesimal of higher

order than ∆t. The generating function of X(t), Gx(s, t), is calculated as

Gx(s, t) = g[1− (1− s)e−µt]exp[−(1− s)f(t) ∗ e−µt] (2.5)

where, in equation (2.5), g(s) =
∞∑
i=0

pi(0)si, and the notation f(t)∗e−µt is the convolu-

tion integral
∫ t
0
e−µ(t−τ)f(τ)dτ . This Gx(s, t) of equation (2.5) looks like the product of

two new random variables Y (t) and Z(t), with their probability generating function

Gy(s, t) and Gz(s, t) given by, respectively,

Gy(s, t) = g[1− (1− s)e−µt], (2.6)

Gz(s, t) = exp[−(1− s)f(t) ∗ e−µt]. (2.7)

If the number of particles, x0, in the compartment at time 0 is known, then Gy(s, t) =

[1 − (1 − s)e−µt]x0 , which indicates that Y (t) has a binomial distribution. Purdue

(1974a) assumes that there are an input process and an output process for the com-

partment. The number of particles in the compartment at time t, X(t), will be the

sum of those in the system at the starting time and still there at time t, denoted by

Y (t), and those who enter the system at some time in (0, t], Z(t), and are still in the

compartment at time t. The input and output processes are characterized as time

8



dependent intensity functions λ(t) and µ(t), respectively. It can be shown that

Y (t) =

X(0)∑
i=0

Bi(t) (2.8)

where the Bi(t)s are identically independent random variables with a Bernoulli dis-

tribution as follows

P [Bi(t) = 1] = exp{−
∫ t

0

µ(τ)dτ}, i = 1, 2, ..., X(0). (2.9)

This is confirmative with the definition of Y (t) in Thakur et al. (1972). The Z(t)

has been shown to have a Poisson process with intensity h(t), i.e.,

P (Z(t) = k) = e−h(t)
[h(t)]k

k!
, k = 0, 1, ..., (2.10)

where h(t) =
∫ t
0
λ(x)exp{−

∫ t
x
µ(τ)dτ}dx.

The population moment values of X(t) are summarized as:

E[X(t)] = E[(X0)]E[B(t)] + E(Z(t)) (2.11)

= µ0[1− F0(t)] + h(t), (2.12)

Var[X(t)] = Var[Z(t)] + Var[

X(0)∑
i=0

Bi(t)]

= h(t) + E[X(0)]F0(t)[1− F0(t)] + Var[X(0)][1− F0(t)]
2 (2.13)

where 1 − F0(t) = exp{−
∫ t
0
µ(τ) dτ}, and h(t) =

∫ t
0
λ(x)[1 − F (x, t)]dx. Matis and

Tolley (1979) summarizes the mean and variance of X(t) for different sources of

9



stochasticity.

Stochastic Models for Two or Multi-Compartment Systems.

Purdue (1974b) extends the one compartment stochastic theory to a two compart-

ment system. The method to obtain the distribution for the number of particles in

the first compartment at time t is the same as the situation of the one compartment

system. The input process of the second unit will include the inflow from the first

unit as well as from outside the system. Assume that λ01(t) and λ02(t) are the in-

put rates of the two Poisson processes to compartments 1 and 2, respectively. Let

F1(x, t) and F2(x, t) be the distributions of the residence time for particles that enter

the first and second compartment at time x, respectively. For those particles that are

in the first and second compartment initially, their residence time has distribution

function F10(t) and F20(t), respectively. Let α(t) be the proportion of the particles

from compartment 1 that will go to compartment 2. Then, we have that the number

of particles in the compartments 1 and 2, X1(t) and X2(t), are, respectively,

X1(t) =

X1(0)∑
i=0

B1i(t) + Z1(t), (2.14)

X2(t) =

X2(0)∑
i=0

B2i(t) + Z20(t) +

X1(0)∑
i=0

B∗2i(t) + Z21(t) (2.15)

where B1i(t) is the Bernoulli random variable with parameter 1−F10(t); the Z1(t) is

a Poisson process with rate h1(t) =
∫ t
0
[1 − F1(x, t)]λ01(x)dx; B2i(t) is the Bernoulli

random variable with parameter 1−F20(t); Z20(t) is a Poisson process with intensity

h2(t) =
∫ t
0
[1−F2(x, t)]λ02(x)dx; and B∗2i(t) is a random variable with possible values

10



1 and 0. If a particle stays in compartment 2 at time t given that it is in compartment

1 at time 0, then B∗2i(t) will be 1, else it will be 0; so, it is a Bernoulli random variable

with parameter
∫ t
0
α(t)[1− F(x, t)]F

′
01(x)dx. Finally, Z21(t) is also a Poisson process

with parameter h21(t) =
∫ t
x1=0

∫ t
x2=x1

α(x2)λ01(x1)F
′
i (x1, x2)[1− F2(x2, t)]dx1dx2.

The mean and variance of the two units of the system are given as follows:

E[X1(t)] = µ1[1− F10(t)] + h1(t), (2.16)

E[X2(t)] = µ2[1− F20(t)] + h2(t) + h21(t)

+ µ1

∫ t

0

α(t)[1− F2(x, t)]F
′
10(x)dx, (2.17)

V ar[X1(t)] = µ1F10(t)[1− F10(t)] + σ2
1[1− F10(t)]

2 + h1(t), (2.18)

V ar[X2(t)] = µ2F20(t)[1− F20(t)] + σ2
2[1− F20(t)]

2

+µ1[1−B12(t)][B12(t)] + σ2
1[1−B12(t)]

2 + h2(t) + h21(t)(2.19)

where E[Xi(0)] = µi, and Var[Xi(0)] = σ2
i for i = 1, 2.

Purdue (1975) further discussed a reversible two compartment system, where the

particles can go back and forth between the two units of the system. Assume the λi

and Fi(t), i = 1, 2, is the input rate from the ith unit and the distribution function

of residence time in unit i, respectively. Let αij be the probability that a particle

moves from unit i to j, i, j = 1, 2. Let αi, i = 1, 2, be the probability of a particle

to leave the system from the ith unit. In addition, it is assumed that there is no

particle in the system at time 0. To investigate the number of particles in the system

in any time t, Purdue (1975) establishes that the system can be considered as a one

compartment system, but with two types of particles with different input rates and

11



residence distributions. The residence time distribution function of a particle on the

condition that it is in the ith unit at the beginning, i.e., Gi = P [S ≤ t|E = i], for

i = 1, 2, respectively, is as follows:

G1(t) = (α1F1 + α12α2F1 ∗ F2) ∗
∞∑
n=0

H(n)(t), (2.20)

G2(t) = (α2F2 + α21α1F1 ∗ F2) ∗
∞∑
n=0

H(n)(t) (2.21)

where H(t) = α12α21F1 ∗ F2(t). The number of particles in the system at time t

will follow a Poisson process with mean Γ(t) = (λ1 + λ2)
∫ t
0
[1 − G(x)]dx, where

G(t) = λ1

λ1+λ2
G1(t) + λ2

λ1+λ2
G1(t). It is also shown that the particles in the two units

are independently Poisson distributed. The result is confirmative with that of Thakur

et al. (1973) obtained from the generating function method.

The methods to investigate one way n-compartments models are not new. Assume

that the input and output rate for each compartment are λi0 and λ0i, i = 1, 2, ..., n,

the transition rate from compartment i to i + 1 is λi+1,i, i = 1, 2, ..., n − 1, µi, and

σ2
ii, i = 1, 2, ..., n, are the mean and variance of Xi(0), and σij is the covariance of

Xi(t) and Xj(t).

2.3 Differential-Difference Equation Approach

For one way n-compartment models, one typical method to obtain the joint distri-

bution for the number of particles in each unit given the initial states is to construct

and solve the differential-difference equations with appropriate assumptions. Thakur
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et al. (1973) obtains the distribution of particles in each compartment at any time t

assuming that the transition rates of each compartment are constant. More generally,

Matis (1974) derived the joint cumulant generating function of X1(t), X2(t), ..., Xn(t)

at any time t for an n-comparment system with time dependent transition rates.

Billard and Zhao (1994) extended this approach to general m + 1 multiple-stage

models, under the assumption that the infinitesimal transition rate is

P{X(t + h) = x− ej + ej+1|X(t) = x} = λj(x; t)h + o(h) (2.22)

where ei is the m+ 1 component vector with its ith element equal to 1, and 0 for all

other elements. Also, o(h)/h −→ 0 as h −→ 0. The forward differential-difference

equation can be constructed as

d

dt
P(x ; t) = −

m∑
j=0

λj(x ; t)P(x ; t)

+
m∑
j=0

λj(x + ej − ej+1; t)P(x + ej − ej+1; t) (2.23)

where P(x ; t) = P{X(t) = x|X(0) = x0}. To solve the equation (2.23), Billard

and Zhao (1994) shows that there exists a function of the coordinates of the point

x = (x1, x2, ..., xm), k(i) such that P (x; t) ≡ Zk(i)(t). After the transformation, the

13



Zk(i)(t) can be solved as the following

Zk(i)(t) = exp

[
−
∫ t

0

{ m∑
l=1

λl(i, u)
}

du

](
ak(i) +

∫ t

0

{ m∑
l=1

λl(i− cl, u)Zk(i−cl)(µ)
}

×exp

[
−
∫ u

0

{ m∑
l=1

λl(i, v)
}

dv

]
du

)
(2.24)

where cl is an m component vector with its lth element equal to 1, and 0 for others,

and ak(i) is the k(i)th element of Z(0). While, in theory, this is an explicit solution

for the equation (2.24), however, in practice, it is computationally difficult in solving

extensive recursively such an algorithm.

2.4 Parameters Estimations for Compartment Mod-

els

Once compartmental models were built, a lot of papers discussed concern about the

estimation. Beauchamp and Cornell (1968) developed a model that can apply to the

biological mammillary and catenarry systems as follows:

Yij = αi0 +
n∑
k=1

αike
−λkxj + εij (2.25)

for i = 1, 2, ..., n, and j = 0, 1, ..., N − 1. In the equation (2.25), Yij is the jth ob-

servation of the ith equation. In the catenary system, Yij is the amount of particles

in the ith compartment at time j. The parameters αi0, αi1, ..., αin and λ1, λ2, ..., λn

are constants that we need to estimate. The estimation procedure includes two
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steps. The first step is to estimate the exponential parameters by the generalized

partial total approach described by Cornell (1962). Beauchamp and Cornell (1969)

discussed the generalized Spearman estimation approach originated from Johnson

and Brown (1961) assuming that the independent variables in the model are equally

spaced on a logarithmatic scale. The second step is to estimate the linear coefficients

α11, α1n, ..., αnn via least squares methods after substituting for the exponential es-

timates of (λ1, λ2, ..., λn) obtained in the first step.

For a general m-compartment system, where particles can transfer among all the

states, it is assumed there are m2 transition rates. Matis (1974) set up m random

variables denoting the number of particles in each compartment at time t, i.e., Ni(t),

where i = 1, 2, ...,m. By assuming that the occurrence of more than two migra-

tions in ∆t is o(∆t), the joint generating function of the number of particles for

each compartment was derived, so was the joint probability function. As a result,

Ni(t), for t = 1, 2, ...,m, given t known, was interpreted as a mixture of multinomial

distributions. Two propositions were derived in the paper as follows.

Proposition 2.4.1. The expected value, µi(t), of the number of units in each com-

partment i of a stochastic m-compartment system is identically equal to its determin-

istic solution.

Proposition 2.4.2. Let the m-vector ∆(t) be defined by ∆T (t) = [N1(t), N2(t), ...,

Nm(t)]. Also, let Γi(t), where ΓTi (t) = [γ1i(t), γ2i(t), ..., γmi(t)] for i = 1, 2, ...,m, be

distributed as a multinomial distribution with parameters Ni(0), p1i(t), p2i(t), ..., pmi(t);
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i.e.,

Prob[γ1i, γ2i(t), ..., γmi(t)] =
Ni(0)!

∏m
i=1 p

rji
ji [1−

∑m
j=1]

Ni(0)−
∑m
j=1 γji∏m

j=1 γji![Ni(0)−
∑m

i=1 γji]!
.

Then, ∆(t) is distributed as the sum of the m independent variables Γi(t), i.e.,

∆(t) =
m∑
i=1

Γi(t).

With Proposition (2.4.2), the estimation does not only allow for the correlation of

observations over time but also enables the construction of specific functions between

the covariance matrix and the estimated parameters to enhance the calculation ef-

ficiency. Under the condition that the covariance matrix is not specified, a two-fold

procedure is proposed in the paper. The initial loop is to assume that the covariance

matrix be the identity matrix to calculate the coefficient estimates as starting values

to improve the estimates of the covariance matrix in the next cycle until convergence

criteria are satisfied.

In a series of papers focusing on the HIV/AIDS process, Longini and Clark(1989)

estimates the transition probabilities by formulating the likelihood function through

the stages of infection for all the individuals as follows:

L(λ) =
n∏
j=1

(

mj−1∏
k=0

pyjk,yjk+1
(τjk+1 − τjk)) (2.26)

where pyjk,yjk+1
denotes the transition probability from state k to k + 1 for the jth

individual, and τjk is the time at which that jth individual is in the stage k. Then the

16



maximum likelihood estimates of the parameters transition intensities as well as the

estimated variance covariance matrix were obtained with the use of the derivative-

free, pseudo-Gauss-Newton algorithm in the BMDP statistical package derived by

Ralston (1985). Longini et al. (1992) extends the back calculation method for esti-

mating the number of HIV infected individuals. The idea is to build the likelihood

function for X(t), t = 1, 2, ..., n, where X(t) is the number of incidences of HIV

at time t. Guihenneuc-Jouyaux et al. (2000) introduces Bayesian methods for the

parameter estimation.

On the other hand, instead of focusing on the transition probabilities and inten-

sities with a Markov process assumption, Datta et al. (2000b) directly estimates

the stage-occupation probabilities with nonparametric methods. Datta and Satten

(2000a) focus on estimating future stage entry and occupation probability for right-

censored data. Datta and Satten (2001) also discuss the Aalen-Johansen estimators

described by Aalen (1978) for stage occupation probabilities and Nelson-Aalen es-

timators described by Andersen et al. (1993) for integrated transition hazards for

non-Markov models. Datta and Satten (2002) proposed nonparametric estimators

of integrated transition hazards and stage occupation probabilities for non-markov

models.

The above parametric models all require the solution of differential-difference equa-

tions. It is known that the solution, such as equation (2.24), can be very computa-

tionally difficult and intensive. We will review another approach called the waiting

time approach.
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2.5 Waiting Time Approach

Instead of focusing on building a traditional differential-difference equation, Billard

and Dayananda (2014a, b) focus on the waiting time in each state until moving to

the next state and includes the possibility of unexpected death. A four-state model

is discussed, in which states 0, 1, 2, and 3 denote the susceptible status, the first

and second stage of infection and death, respectively. Generally, an individual goes

through the process successively from the susceptible state to death. In addition,

at each state, other than death, an individual can move to death directly for any

unexpected reason outside of the disease (AIDS) in their case. Assume that Ui

denotes the waiting time in state i until going to state i+1, and Vi denotes the waiting

time in state i until going to death for any AIDS-unrelated reason, for i = 0, 1, 2.

Let Hi = min(Ui, Vi), and Wi = Ui − Vi; then Wi > 0 implies that disease happens

without unexpected death. To obtain the transition probability qij(t) = P (S(t) =

j|S(0) = i), a theory is derived in the paper as follows:

qij = P (S(t) = j|S(0) = i)

= P (Wk > 0, k = i, i+ 1, .., j − 1)[P (Yij > t|Wk > 0, k = i, i+ 1, .., j − 1)

−P (Yi,j−1 > t|Wk > 0, k = i, i+ 1, .., j − 1)] (2.27)

where Yij =
j∑
k=i

Hk. Hence, the problem is transformed to one where it is necessary

to calculate the probability that Yij > t conditional on no unexpected death.
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2.6 Disability Insurance

Insurance companies are always interested in the premium they should collect and

the payout they will have to make for the insured. Since this project is to investigate a

disability model with a waiting time approach, we will describe some general concepts

about disability insurance policy using Permanent Health Insurance policy as an

example. Let x be the age of the insured when the policy is issued, and let S(t+ x)

denote the status of the insured after a period of time t. Assume that an insurance

company needs to pay out a continuous annuity of dt in the time interval of (t, t+dt)

on condition that the insured is disabled until he/she either recovers or dies. Let Yx

denote the present value of the payout by insurance companies; this can be expressed

as

Yx =

∫ ∞
0

υuI{S(x+u)=i|S(x)=a}du (2.28)

where I{S(x+u)=i|S(x)=a} is an indicator function, and υ is the annual discount factor.

In the actuarial area, φ(x, u) = P{S(x + u) = i|S(x) = a} is used to denote the

probability that the insured is disabled given the initial state is active, i.e., not

disabled. On the other hand, the net single premium, āaix , is defined as the expected

payout, i.e.,

āaix = E(Yx|S(x) = a) =

∫ ∞
0

υuP{S(x+ u) = i|S(x) = a}du. (2.29)
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The set of policy conditions is formally represented by a set of five parameters Γ =

(n1, n2, f,m, r) refering to Pitacco (1995), where (n1, n2) denotes the insured period,

that is to say, an annuity would be payable if disability inception falls in this interval;

f means the deferred period since a disability occurs, that is to say, an annuity would

be payable after a disability lasts at least f units of time long; m is the maximum

number of years of annuity payment since disability happens. In the end, r is the

stopping time, that is to say, the number of years from the start of covering time to

the time that the insured is not qualified for coverage any more. Another important

term is the transition intensity defined as

µgh(x) = lim
u→0

P{S(x+ u) = h|S(x) = g}
u

. (2.30)

By assuming that one single insurance policy is independent of the others and every

transition could be observed under the policy, The recovery rate ρ was estimated as

the ratio of the observed number of recoveries that happened to the total time spent

sick both in a valid policy time period by Water (1991). Similar results were derived

for the mortality of sick intensities and sick intensities. Billard and Dayananda

(2014b) list and run simulations about a series of functions of interest to insurance

companies as follows:

1.) The net single premium for a t-year pure endowment, assuming that an individual

was in stage i when he/she was covered. At time t, one dollar would be paid to

him/her as long as he/she would be in some qualified state j. The present expected
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valued for the individual would be

Ei(t) =
m+1∑
j=i

e−δtqij(t) (2.31)

where qij(t) is the probability of moving into stage j given he started in stage i of

equation (2.27) and e−δu is the present value of one dollar at time t.

2.) For continuous t-year life annuity policy, the present expected valued ai(t) can

be expressed as follows

ai(t) =

∫ t

0

e−δuqij(u)du. (2.32)

3.) On the other hand, under the continuous t-year insurance policy, the net single

premium Ai(t) can be expressed as

Ai(t) =
m+1∑
j=i

µ
′

j

∫ t

0

e−δuqij(u)du. (2.33)

4.) The long-term annual premium rates P i(∞) defined was

P i(∞) = lim
t→∞

Ai(t)

ai(t)
. (2.34)

Further details were seen in Billard and Dayananda (2014b).
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Chapter 3

Waiting Time Approach for

Disability Models

The waiting time approach will be applied to a disability model in this chapter. The

description of the model will be given in section 3.1. Then the transition probabil-

ities are derived with the waiting time approach by assuming the waiting time is

exponentially distributed in section 3.2. In section 3.3, the sensitivities of transition

probabilities to the change of parameters are investigated based on some specific

health insurance policies.

3.1 The Description of the Disability Model

The description of the disability model

The disability model that is investigated in this chapter can be described clearly with

reference to Figure 3.1. During a period of an effective insurance policy, an individual
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is assumed to be healthy (denoted as being in the state S11) at the beginning of the

period; after waiting for time X1, the individual would become disabled (denoted as

being in the state S21); and then after staying disabled for time X2, the individual

comes back to a healthy state (denoted as being in the state S12). Then, another cycle

begins as described in Figure 3.1. The process iterates for m times, which assumes

that the individual will go through the disability state m times. In addition, it is

assumed that death could be attained independently from every healthy or disabled

state.

To investigate the model more clearly, we unfold it so that it is formulated as a

2m+ 1 multistage compartmental process as described in Figure 3.2. An individual

could be healthy (by moving to state S1i) or disabled (in state S2i) at time t for the

ith time, where i = 1, 2, ...,m. At each state, an individual can die (by going to state

S2m+1) with some probability. Overall, the state space will be represented by the

states as {1, 2, ..., 2i, 2i+1, ..., 2m+1}, where the state 2i−1 denotes the ith time of

being healthy, the state 2i denotes the ith time of being disabled for i = 1, 2, ...,m,

and the state 2m+ 1 is considered as the state death.

Waiting time approach for the disability model

In this chapter, we will apply the waiting time approach for the calculation of

transition probabilities. Referring to Figure 3.2, X2i−1 is defined as the waiting time

in the ith healthy state until the individual goes to the ith disabled state; X2i is

defined as the waiting time in the ith disabled state until the individual goes to the

(i + 1)th healthy state, and D2i−1 is the waiting time in the ith healthy state until

the individual dies instead of transferring to the ith disabled state. Similarly, D2i is
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Figure 3.1: State transition diagram for a disabled model

defined as the waiting time in the ith disabled state until the individual dies without

further transition back to the next healthy state, for i = 1, 2, ...,m + 1. Next, we
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need variables W2i−1,W2i, H2i−1 and H2i defined as

W2i−1 = D2i−1 − X2i−1 (3.1)

W2i = D2i − X2i (3.2)

H2i−1 = min(X2i−1,D2i−1) (3.3)

H2i = min(X2i,D2i) (3.4)

where i = 1, 2, ...,m+ 1. Here, W2i−1 > 0 means that the individual moves from the

ith healthy state to the next disabled state without going to the death state. On

the other hand, W2i−1 < 0 means that the individual in the ith healthy state moves

to the state death without having a chance to go to the next disabled state. The

variable H2i−1 corresponds to the length of time that the individual spends in the

ith healthy state, and H2i means the length of time that the individual spends in the

ith disabled state. Let S(t) denote the state in which an individual stays at time t;

the state space would be {S(t) = 1, 2, ..., 2m + 1}. One of our goals is to calculate

the transition probabilities that an individual is in stage j at time t given that the

initial stage is i at time 0, i.e., qij(t). This is expressed as follows:

qij(t) = P (S(t) = j|S(0) = i) (3.5)

for i ≤ j, and i, j = 1, 2, ..., 2m.
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3.2 Waiting Time Approach for the Disability

Model with Exponentially Distributed

Waiting Time

Description of the exponential case

In this section, we would assume all the waiting time variables are independent to

each other with exponential distributions. To be specific, we assume that X1 is

exponentially distributed with rate λ11; X3, X5, ..., X2i−1,..., and X2m−1 are

exponentially distributed with rates λ3, λ5, ..., λ2i−1,..., and λ2m−1, respectively;

X2, X4, ..., X2i,...,and X2m are exponentially distributed with rates

λ2, λ4, ..., λ2i,..., and λ2m, respectively. On the other hand, we assume that D1 is

exponentially distributed with rate α(z), where α(z) is a function of age;

D3, D5, ..., D2i−1, ..., and D2m−1 are independently exponentially distributed with

rates α3, α5, ..., α2i−1,..., and α2m−1, respectively; D2, D4, ..., D2i, ..., and D2m are

independently exponentially distributed with rates α2, α4,...,α2i,...,and α2m

respectively. As we claimed in section 3.1, one of our goals is to calculate the tran-

sition probabilities defined in equation (3.5). Thus, we will show how the transition

probabilities qij(t)s are derived for i, j = 1, 2, ..., 2m.

Distributions of H2i−1, H2i, W2i−1, and W2i

First, we start with H2i−1 and H2i for i = 1, 2, ...,m. Because Di and Xi are inde-

pendent to each other for i = 1, 2, ...,m, the joint probability distribution function

of Di and Xi is the product of the two probability distribution functions. Based on
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the definitions of H2i−1 in equation (3.3) and H2i in equation (3.4), we have that:

P (H1 > t) = P (X1 > t,D1 > t)

= P (X1 > t)P (D1 > t)

= e−λ11te−α(z)t

= e−(λ11+α(z))t; (3.6)

P (H2i+1 > t) = P (X2i+1 > t,D2i+1 > t)

= P (X2i+1 > t)P (D2i+1 > t)

= e−λ2i+1te−α2i+1t

= e−(λ2i+1+α2i+1)t, i = 1, 2, ...,m; (3.7)

and

P (H2i > t) = P (X2i > t,D2i > t)

= P (X2i > t)P (D2i > t)

= e−λ2ite−α2it

= e−(λ2i+α2i)t. i = 1, 2, ...,m. (3.8)

Next, we will calculate P (W2i−1 > 0) and P (W2i > 0) for i = 1, 2, ...,m, based on the

definitions of Wi in equations (3.1) and (3.2). We start with P (W1 > 0) as follows:

P (W1 > 0) = P (D1 −X1 > 0) = P (D1 > X1). (3.9)
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Since we have that D1 and X1 are independent to each other, also that, D1 and X1

are both exponentially distributed with rates α(z) and λ11, equation (3.9) becomes

that

P (W1 > 0) = P (D1 −X1 > 0)

= P (D1 > X1)

=

∫ +∞

0

∫ +∞

x1

λ11α(z)e−(λ11x1+α(z)d1)dd1dx1

=

∫ +∞

0

λ11e
−λ11x1(

∫ +∞

x1

α(z)e−α(z)d1dd1)dx1

=

∫ +∞

0

λ11e
−λ11x1e−α(z)x1dx1

=
λ11

λ11 + α(z)
. (3.10)

Also, based on the definition of W2i+1 in equation (3.1), we have that

P (W2i+1 > 0) = P (D2i+1 −X2i+1 > 0). (3.11)

We have assumed that D2i+1 and X2i+1 are independent to each other and that both

are exponentially distributed with rates α2i+1 and λ2i+1, for i = 1, 2, ...,m, equation

(3.11) can be written as
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P (W2i+1 > 0) = P (D2i+1 −X2i+1 > 0)

= P (D2i+1 > X2i+1)

=

∫ +∞

0

∫ +∞

x2i+1

λ2i+1α2i+1e
−(λ2i+1x2i+1+α2i+1d2i+1)dd2i+1dx2i+1

=

∫ +∞

0

λ2i+1e
−λ2i+1x2i+1(

∫ +∞

x2i+1

α2i+1e
−α2i+1d2i+1dd2i+1)dx2i+1

=

∫ +∞

0

λ2i+1e
−λ2i+1x2i+1e−α2i+1x2i+1dx2i+1

=
λ2i+1

λ2i+1 + α2i+1

, (3.12)

for i = 1, 2, ...m.

Similarly, based on the definition of W2i in equation (3.2), we have that

P (W2i > 0) = P (D2i −X2i > 0) (3.13)

We have assumed that D2i and X2i are independent to each other and that both

exponentially distributed with rates α2i and λ2i, for i = 1, 2, ...,m. Thus, we have
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P (W2i > 0) = P (D2i −X2i > 0)

= P (D2i > X2i)

=

∫ +∞

0

∫ +∞

x2i

λ2iα2ie
−(λ2ix2i+α2id2i)dd2idx2i

=

∫ +∞

0

λ2ie
−λ2ix2i(

∫ +∞

x2i

α2ie
−α2id2idd2i)dx2i

=

∫ +∞

0

λ2ie
−λ2ix2ie−α2ix2idx2i

=
λ2i

λ2i + α2i

(3.14)

for i = 1, 2, ...m. As we defined in equations (3.1) - (3.4), state Hi is the time

an individual stays in state i before he/she goes to the next state. Next, we will

calculate the conditional probabilities P (Hi > t|Wi > 0) for i = 1, 2, ..., 2m, i.e., the

probability that an individual stays in either a healthy or a disabled state longer

than time t conditional on no accidental death. Based on these definitions, we have

that

P (Hi > t|Wi > 0) =
P (min(Xi, Di),Wi > 0)

P (Wi > 0)

=
P (Di > Xi, Xi > t)

P (Di > Xi)
. (3.15)
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We will start with P (H1 > t|W1 > 0). Based on the equation (3.15), we have that

P (H1 > t|W1 > 0) =
P (D1 > X1, X1 > t)

P (W1 > 0)
. (3.16)

Since D1 and X1 are independently and exponentially distributed with rates α(z)

and λ11, we have that

P (H1 > t|W1 > 0) = K1[

∫ +∞

t

∫ d1

t

λ11e
−λ11x1α(z)e−α(z)d1dx1dd1]

= K1[

∫ ∞
t

α(z)e−α(z)d1(

∫ d1

t

λ11e
−λ11x1dx1)dd1]

= K1[

∫ +∞

t

α(z)e−α(z)d1(e−λ11t − e−λ11d1)dd1]

= K1[

∫ +∞

t

α(z)e−α(z)d1e−λ11tdd1 −∫ +∞

t

α(z)e−α(z)d1e−λ11d1dd1]

= K1[e
−(λ11+α(z))t − α(z)

λ11 + α(z)
e−(λ11+α(z))t]

= e−(λ11+α(z))t (3.17)

where K1 = [λ11/(λ11 + α(z))]−1. Similarly, since D2i+1 and X2i+1 are independent

and exponentially distributed with rates α2i+1 and λ2i+1, for i = 1, 2, ...,m − 1, re-

spectively, we have that
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P (H2i+1 > t|W2i+1 > 0)

=
P (D2i+1 > X2i+1, X2i+1 > t)

P (W2i+1 > 0)

= K2i+1[

∫ +∞

t

∫ d2i+1

t

λ2i+1e
−λ2i+1x2i+1α2i+1e

−α2i+1d2i+1dx2i+1dd2i+1]

= K2i+1[

∫ ∞
t

α2i+1e
−α2i+1d2i+1(

∫ d2i+1

t

λ2i+1e
−λ2i+1x2i+1dx2i+1)dd2i+1]

= K2i+1[

∫ +∞

t

α2i+1e
−α2i+1d2i+1(e−λ2i+1t − e−λ2i+1d2i+1)dd2i+1]

= K2i+1[

∫ +∞

t

(α2i+1e
−α2i+1d2i+1e−λ2i+1t

−α2i+1e
−α2i+1d2i+1e−λ2i+1d2i+1)dd2i+1]

= K2i+1[e
−(λ2i+1+α2i+1)t − α2i+1

λ2i+1 + α2i+1

e−(λ2i+1+α2i+1)t]

= e−(λ2i+1+α2i+1)t (3.18)

where K2i+1 = [λ2i+1/(λ2i+1 + α2i+1)]
−1. Likewise, since D2i and X2i are indepen-

dently and exponentially distributed with rates α2i and λ2i, for i = 1, 2, ...,m − 1,

we have that
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P (H2i > t|W2i > 0)

=
P (D2i > X2i, X2i > t)

P (W2i > 0)

= K2i[

∫ +∞

t

∫ d2i

t

λ2ie
−λ2ix2iα2ie

−α2id2idx2idd2i]

= K2i[

∫ +∞

t

∫ d2i

t

λ2ie
−λ2ix2iα2ie

−α2id2idx2idd2i]

= K2i[

∫ ∞
t

α2ie
−α2id2i(

∫ d2i

t

λ2ie
−λ2ix2idx2i)dd2i]

= K2i[

∫ +∞

t

α2ie
−α2id2i(e−λ2it − e−λ2id2i)dd2i]

= K2i[

∫ +∞

t

(α2ie
−α2id2ie−λ2it − α2ie

−α2id2ie−λ2id2i)dd2i]

= K2i[e
−(λ2i+α2i)t − α2i

λ2i + α2i

e−(λ2i+α2i)t]

= e−(λ2i+α2i)t (3.19)

where K2i = [λ2i/(λ2i + α2i)]
−1. From the equations (3.6) -(3.8), and (3.17)- (3.19),

we have that for the exponential case, P (Hi > t) = P (Hi > t|Wi > 0), for i = 1, 2, ...,

and 2m − 1; i.e., the probabilities that the holding time Hi is greater than t would

not change when the condition of no accidental death is added. This only applies to

the exponential case, and does not apply to the general case.

Total holding time

Let Yij denote the total length of time that an individual stays where from the time

point of entering the state i to the time of leaving from state j for the next stage.
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Then, we have the following definition:

Yij =

j∑
k=i

Hk (3.20)

for i ≤ j, i, j = 1, 2, ..., 2m + 1, where Hk is the holding time in state k. Based

on the definition of Hk (see equations (3.3) and (3.4)), we know that the random

variable Yij will be the sum of a series of independent random variables with expo-

nential distributions. Akkouchi (2008) describes the probability density of the sum

of n independent random variables having exponential distributions with different

parameters as in equation (3.21). Assume that A1, A2, ..., An are independently ex-

ponentially distributed random variables with rates β1, β2,..., βn, respectively. The

sum Sn =
n∑
i=1

Ai will have the probability density function as follows:

fSn(t) =
n∑
i=1

β1β2...βn
n∏

j=1,j 6=i
(βj − βi)

exp(−tβi). (3.21)

Applying equation (3.21) to Yij in equation (3.20), we will have that

fYij(t) =

j∑
p=i

βiβi+1...βj
j∏

k=i,k 6=p
(βk − βp)

e(−tβp) (3.22)
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where βi, βi+1, ..., βj would be the rate parameters for Hi, Hi+1, ..., Hj, respectively.

Then, we will have that

P (Yij > t) =

j∑
p=i

j∏
k=i,k 6=p

βk
βk − βp

e−tβp (3.23)

for i, j = 1, 2, ..., 2m and i < j.

Transition probability

Billard and Dayananda (2014a) proves that the transition probabilities qij of equa-

tion (2.27) satisfy

qij(t) = P (S(t) = j|S(0) = i)

= P (Wk > 0, k = i, i+ 1, .., j − 1)[P (Yij > t|Wk > 0, k = i, i+ 1, .., j − 1)

−P (Yi,j−1 > t|Wk > 0, k = i, i+ 1, .., j − 1)]. (3.24)

Since in our case we have P (Hi > t) = P (Hi > t|Wi > 0), for i = 1, 2, ..., 2m − 1,

the transition probabilities become

qij(t) = P (S(t) = j|S(0) = i)

= P (Wk > 0, k = i, i+ 1, .., j − 1)[P (Yij > t)− P (Yi,j−1 > t)]. (3.25)

Then, based on the equation (3.23), we have the general transition probabilities
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P (S(t) = j|S(0) = i) as follows:

qi,j(t) = P (S(t) = j|S(0) = i)

= P (Wk > 0, k = i, i+ 1, .., j − 1)[P (Yij > t)− P (Yi,j−1 > t)]

=

[ j∑
p=i

j∏
k=i,k 6=p

βk
βk − βp

e−tβp −
j−1∑
p=i

j−1∏
k=i,k 6=p

βk
βk − βp

e−tβp
]

×P (Wi > 0)P (Wi+1 > 0)...P (Wj−1) > 0 (3.26)

where i < j, and i, j = 1, 2, ...., 2m − 1. In addition, β1 = λ11 + α(z), β2i+1 =

λ2i+1 + α2i+1, and β2i = λ2i + α2i for i = 1, 2, ...,m − 1. The P (Wi > 0) for

i = 1, 2, ..., 2m− 1 are calculated in equations (3.10), (3.12) and (3.14). When i = j,

we have the special case of transition probabilities as follows:

q11(t) = P (S(t) = 1|S(0) = 1)

= P (Y11 > t); (3.27)

from the equations (3.20)and (3.6), we have

q11(t) = P (H1 > t)

= e−(λ11+α(z))t. (3.28)

From the equation (3.5), we have that

qi,i(t) = P (S(t) = i|S(0) = i). (3.29)
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The event that an individual still stays in state i at time t given that he/she stays

in the state i at the beginning of the policy is the same as the event that the waiting

time for the individual stays in state i before he/she goes to the next stage is longer

than time t. In this case, then we have that

P (S(t) = i|S(0) = i) = P (Yi,i > t). (3.30)

Based on the equations (3.23), (3.29), and (3.30), we have the transition probabilities

q2i+1,2i+1(t) and q2i,2i(t) as the following:

q2i+1,2i+1(t) = P (S(t) = 2i+ 1|S(0) = 2i+ 1)

= P (Y2i+1,2i+1 > t)

= P (H2i+1 > t)

= e−(λ2i+1+α2i+1)t, i = 1, 2, ...,m− 1; (3.31)

and

q2i,2i(t) = P (S(t) = 2i|S(0) = 2i)

= P (Y2i,2i > t)

= P (H2i > t)

= e−(λ2i+α2i)t, i = 1, 2, ...,m− 1. (3.32)
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So far, all the transition probabilities are derived in equations (3.26), (3.31) and

(3.32). As we emphasized in the beginning of the chapter, the transition probabilities

are important for some important insurance functions. In section 3.3, we will discuss

the sensitivity of the transition probabilities to the parameter changes under specific

insurance policies.

3.3 Discussion of the Times of Disease Occurrence

The equation (3.26) is general but has obvious drawbacks. For example, if βk = βp

for different k and p, the formula would be meaningless. In Section 3.3, we discuss

three cases where the iteration time m is 1, 2 and 3, respectively. We assume that

an individual covered by an insurance policy in the beginning of a policy period

has a healthy status. Then, the insured person will go through m times of disease

occurrences and recoveries. At the end of the policy, the insured will stay in either a

healthy or a death state. In addition, since the policy spans only one year, we assume

that λ11 = λ3 = ... = λ2m−1, λ2 = λ4 = ... = λ2m, and α(z) = α3 = ... = α2m−1,

α2 = α4 = ... = α2m.

The case that m = 1

When m = 1, the transition diagram is as shown in Figure 3.3. It is assumed that

an individual is healthy when he/she is first covered by a healthy insurance policy,

then goes through one stage of disease and either recovers or dies. We will calculate

the transition probabilities q11(t), q12(t), q13(t) and q14(t).

First, the transition probability q11(t) can be calculated based on equation (3.28) as
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follows:

q11(t) = e−(λ11+α(z))t. (3.33)

Applying equation (3.26), we have q12(t) as follows:

q12(t) = P (S(t = 2)|S(0) = 1))

= P (W1 > 0)[P (Y12 > t)− P (Y11 > t)]

= P (W1 > 0)[P (H1 +H2 > t)− P (H1 > t)]

= P (W1 > 0)[P (H1 < t)− P (H1 +H2 < t)]

=
λ11
A

[

∫ t

0

Ae−Ah1dh1 −
∫ t

0

∫ t−h1

0

Ae−Ah1Be−Bh2dh2dh1]

=
λ11
A

[1− e−At − (1− Ae−Bt −Be−At

A−B
)]

=
λ11

B − A
[e−At − e−Bt] (3.34)

where A = λ11 + α(z) and B = λ2 + α2. The event that the individual would be

healthy at the end of the policy on condition that the insured is healthy at the be-

ginning of the policy, is the same as when the insured person smoothly goes through

the state 1 and 2 without death and the total time that the individual stays in state

1 and 2 is less than time t, i.e.,
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q13(t) = P (S(t) = 3|S(0) = 1)

= P (W1 > 0)P (W2 > 0)[P (H1 +H2 < t|W1 > 0,W2 > 0)]

= P (W1 > 0)P (W2 > 0)P (H1 +H2 < t)

=
λ11
A

λ2
B

∫ t

0

∫ t−h1

0

Ae−Ah1Be−Bh2dh2dh1

=
λ11
A

λ2
B

[1 +
A

B − A
e−Bt − B

B − A
e−At] (3.35)

Since we have transition probabilities q11(t), q12(t) and q13(t), the transition prob-

ability q14(t), i.e., the probabilities that the individual is dead at time t given that

he/she is in the state healthy at time 0 is

q14(t) = 1− q11(t)− q12(t)− q13(t). (3.36)

As we discussed in section 2.6, transition probabilities are crucial for many insurance

functions; so it is important to investigate the sensitivity of parameter values to these

transition probabilities. First, with reference to Billard and Dayananda (2014a), we

take the healthy death rate of D1, i.e., α(z), as taking values 0.001, 0.0026, 0.0042,

and 0.0057 corresponding to the average death rate for a 20, 30, 40 and 50 years

old person. The disease rate, λ11, is set at 0.0384, which means the average waiting

time until getting sick for the first time is approximately half a year. Plots of q11(t)
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against time are shown in Figure 3.4 for these healthy death rates α(z). From Figure

3.4, we see that the transition probability q11(t) is not sensitive to different death

rates, α(z). The reason is that the healthy death rate is relatively small compared

to the rate of becoming sick.

Next, we assume that λ11 = 0.0384, α(z) = 0.0026, and the recovery rate, λ2, takes

values 0.0625, 0.125, 0.25 and 0.5 corresponding to an average sick time of 16 weeks, 8

weeks, 4 weeks and 2 weeks to get recovered, respectively. The transition probability

q12(t) is plotted in Figure 3.5. The Figure 3.5 shows that the transition probability

q12(t) is sensitive to the recovery rate λ2. The smaller values the λ2 is, i.e., the

longer the sickness lasts, the larger the transition probability q12(t) is. In addition,

as time passes, the transition probability q12(t) firstly increases, and then starts to

decrease since the chance to transfer to the next healthy state becomes higher. Next,

as Figure 3.6 shows, the q13(t) is also shown to be sensitive to λ2. As λ2 decreases,

i.e., the sickness status lasts longer, the transition probability q13(t) decreases, i.e.,

the probability to recover becomes lower. In addition, since it is assumed that the

individual would stay healthy at the end of a policy, the transition probability to be

healthy keeps increasing.

The case that m=2

When m = 2, and the process is diagramed in Figure 3.7. In this case, we assume

that an individual is covered by an insurance policy when he/she is healthy, and

goes through a disabled state two times during the one-year policy period. In the

end of the policy, the insured is either healthy or dead. We have that the transition

probabilities q11(t) and q12(t) are the same as in equations (3.33) and (3.34). We
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will derive the formula for q14(t), q15(t),and q16(t). As we discussed, P (W1 > 0)

and P (W2 > 0) have been derived in equation (3.10) and equation (3.14). Since

H1 and H3 are identically independently exponential distributed with the parameter

λ11 + α(z), the sum is a gamma distributed random variable with parameters 2

and λ11 + α(z). Furthermore, the distribution of the sum of H1, H2 and H3 is

the convolution of H2 and the sum of H1 and H3. Thus, P (H1 + H2 < t) and

P (H1 +H2 +H3 < t) are calculated as follows:

P (H1 +H2 < t) =

∫ t

0

∫ t−h1

0

Ae−Ah1Be−Bh2dh2dh1

=

∫ t

0

−A(

∫ −B(t−h1)

0

e−Bh2d(−Bh2))e−Ah1dh1

=

∫ t

0

−A(e−B(t−h1) − 1)e−Ah1dh1

=

∫ t

0

−Ae(B−A)h1e−t(B−A)dh1 +

∫ t

0

Ae−Ah1dh1

= −A(e(B−A)t − 1)e−Bt

(B − A)
+ 1− e−At

= 1− Ae−Bt −Be−At

A−B
(3.37)

where A = λ11 + α(z) and B = λ2 + α2; and
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P (H1 +H2 +H3 < t)

=

∫ t

0

∫ t−h2

0

Be−Bh2A2h13e
−Ah13dh13dh2

=

∫ t

0

Be−Bh2(

∫ −At+Ah2

0

−e−Ah13Ah13d(−Ah13))dh2

=

∫ t

0

(−(Ah13 + 1)e−Ah13−Bh2B|t−h2
h13=0)dh2

=

∫ t

0

Be−Bh2(A(h2 − t)eA(h2−t) − eA(h2−t) + 1)dh2

= 1 + (−ABte
−At+Ah2−Bh2

A−B
+

+
BA(e(A−B)h2−AtAt+ e(A−B)h2−At((A−B)h2 − At)− e(A−B)h2−At)

(A−B)2

−Be
−At+Ah2−Bh2

A−B
− e−Bh2)|th2=0

= 1 +
ABte−At

A−B
− A2e−Bt − 2ABe−At +B2e−At

(A−B)2
(3.38)

where A = λ11 + α(z), and B = λ2 + α2.

Since H1 and H3 are identically independently exponentially distributed with param-

eter λ11+α(z), andH2 andH4 are identically independently exponentially distributed

with parameter λ2 +α2, the probability density of
∑4

i=1Hi would be the convolution

of two gamma distributions, one with parameter 2 and λ11 +α(z) = A, and another

one with parameters 2 and λ2 + α2 = B. Thus, we have

48



P (
4∑
i=1

Hi < t)

=

∫ t

0

∫ t−h13

0

A2h13e
−Ah13B2h24e

−Bh24dh24dh13

=

∫ t

0

A2h13e
−Ah13(

∫ e−B(t−h13)

1

ln(e−Bh24)d(e−Bh24))dh13

=

∫ t

0

(−(Bh24 + 1)A2h13e
−Ah13−Bh24|t−h13

h24=0)dh13

=

∫ t

0

[A2h13e
−Ah13(−B(t− h13)− 1)e−B(t−h13) + 1]dh13

= 1 + (−A
2Bt(e(−A+B)h13−BtBt+ e(−A+B)h13−Bt((−A+B)h13 −Bt)− e(−A+B)h13−Bt)

(−A+B)2

+
1

(−A+B)3
(BA2(e(−A+B)h13−BtB2t2 + 2Bt(e(−A+B)h13−Bt((−A+B)h13 −Bt)

−e(−A+B)h13−Bt) + e(−A+B)h13−Bt((−A+B)h13 −Bt)2 − 2e(−A+B)h13−Bt

((−A+B)h13 −Bt) + 2e(−A+B)h13−Bt))− A2(e(−A+B)h13−BtBt+ e(−A+B)h13−Bt)

(−A+B)2

−Ah13e−Ah13 − e−Ah13)|th13=0

= 1− A2Bte−Bt + AB2te−At

(A−B)2
− A3e−Bt − 3A2Be−Bt + 3AB2e−At −B3e−At

(A−B)3
. (3.39)

Applying equation (3.37)and equation (3.38), we can show that q13(t) is calculated

as follows:
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q13(t) = P (S(t) = 3|S(0) = 1)

= P (W1 > 0)P (W2 > 0)[P (Y13 > t)− P (Y12 > t)]

= P (W1 > 0)P (W2 > 0)[P (
2∑
i=1

Hi < t)− P (
3∑
i=1

Hi < t)]

=
λ11
A

λ2
B

[
Ae−Bt −Be−At + ABte−At

B − A

−A
2e−Bt − 2ABe−At +B2e−At

(B − A)2
]. (3.40)

Similarly, applying equations (3.38) and (3.39), q14(t) can be calculated as follows:

q14(t) = P (S(t) = 4|S(0) = 1)

=
3∏
i=1

P (Wi > 0)[P (Y14 > t)− P (Y13 > t)]

=
3∏
i=1

P (Wi > 0)[P (
3∑
i=1

Hi < t)− P (
4∑
i=1

Hi < t)]

= (
λ11
A

)2
λ2
B

[
ABte−At

A−B
− A2e−Bt − 2ABe−At +B2e−At

(A−B)2

+
A2Bte−Bt + AB2te−At

(A−B)2

+
A3e−Bt − 3A2Be−Bt + 3AB2e−At −B3e−At

(A−B)3
]. (3.41)

Likewise, the event that the individual would be healthy (in state 5) at the end of

the policy on the condition that the insured is healthy at the beginning of the policy,

is the same as the fact that the insured smoothly goes through the states 1, 2, 3 and
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4 without death and the total time that the individual stays in states 1, 2, 3 and 4 is

less than time t. Therefore, we have the the transition probability q15(t) as follows:

q15(t) = P (S(t) = 5|S(0) = 1))

= P (
4∑
i=1

Hi < t|W1 > 0,W2 > 0,W3 > 0,W4 > 0)
4∏
i=1

P (Wi > 0)

= P (
4∑
i=1

Hi < t)
4∏
i=1

P (Wi > 0)

= (
λ11
A

)2
λ2
B

[1− A2Bte−Bt + AB2te−At

(A−B)2

−A
3e−Bt − 3A2Be−Bt + 3AB2e−At −B3e−At

(A−B)3
]; (3.42)

and hence

q16(t) = 1− q11(t)− q12(t)− q13(t)− q14(t)− q15(t) (3.43)

Then the impacts of parameters λ11 and λ2 on these probability transitions are shown

from Figures 3.8 to 3.13. As Figure 3.8 shows, the disease rate λ11 is set up as 0.025,

0.033, 0.05 and 0.1, corresponding to the average waiting time from a healthy to

a disabled state is 40, 30, 20 and 10 weeks. Figure 3.8 shows that the transition

probability q13(t) firstly increases as time goes on, then decreases as the chance to

transition to the next state increases. Thus, Figure 3.8 shows that q13(t) is sensitive

to λ11. Initially, the larger value the λ11 has, i.e., the shorter waiting time from a

healthy to a disabled state, the larger the transition probability q13(t) will be. As

time passes by, larger value in λ11 tends to result in lower value in the transition
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probability q13(t) considering that the chance to transfer to next stages increases.

Figure 3.9 plots the transition probability q13(t) when the recovery rate λ2 is set

as 0.0833, 0.125, 0.25 and 0.5, corresponding to the average recovery time of 12, 8,

4 and 2 weeks, respectively. The Figure 3.9 shows that the transition probability

is sensitive to λ2 in the first half year. As λ2 increases, q13(t) increases, i.e., as

the disabled state lasts for a shorter time, the transition probability to return to the

healthy state increases. It makes sense that as time passes, the transition probability

q13(t) increases firstly, then starts to decrease as the chance to transition to the next

states increases.

Figures 3.10 and 3.11 test the sensitivity of the parameters λ11 and λ2 to the transi-

tion probabilities q14(t). In Figure 3.10, λ11 takes values 0.025, 0.033, 0.05, and 0.1,

corresponding to the average waiting time until an individual becomes ill is 40, 30,

20 and 10 weeks, respectively. In Figure 3.11, λ2 takes values 0.0833, 0.125, 0.25,

and 0.5, which corresponds to the average time of 12, 8, 4 and 2 weeks. The two

figures show that q14(t) is sensitive to both λ11 and λ2. As λ11 increases, i.e., the

average waiting time for a sickness occurrence decreases, the transition probability

q14(t) increases. As time passes, the transition probability q14(t) decreases because

the chance to transition to the next state increases. Also from the Figure 3.11, we

see that q14(t) is sensitive to λ2 as time passes. As λ2 increases, q14(t) decreases.

That is to say, as the duration of the disease becomes shorter, the chance to become

sick decreases in the last half year.

Figures 3.12 and 3.13 test the sensitivity of the parameters λ11 and λ2 to the tran-

sition probabilities q15(t), with λ11 taking values 0.025, 0.033, 0.05 and 0.1, and λ2
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taking values 0.0833, 0.125, 0.25, and 0.5, as in Figures 3.10 and 3.11, respectively.

Both plots show that the q15(t) is sensitive to λ11 and λ2. Since it is assumed that

the individual will stay healthy when the policy ends, q15(t) increases as time passes.

As either λ11 or λ2 increases, i.e., the shorter the time that an individual stays in

the interval states, the higher the chance the insured will be in the last state given

time t.

53



The case that m=3

When m = 3, and transition diagrams are shown in Figure 3.14. In this case, we

assume that an individual is covered by an insurance policy when he/she is healthy,

and goes through the disabled state three times during the one-year policy period.

At the end of the policy, the insured is either healthy or dead. The transition proba-

bilities q11(t), q12(t), q13(t) and q14(t) will be the same as for the cases of m = 1 and

m = 2. Similarly, the probability density of
∑5

i=1Hi would be the convolution of two

gamma distributions, one with parameters 3 and A, and another one with 2 and B,

where A = λ11 + α(z), and B = λ2 + α2. The probability density of
∑6

i=1Hi is the

convolution of two gamma distributions, one with parameter 3 and A, and another

one with 3 and B. In this case, we have P (
∑5

i=1Hi < t) and P (
∑6

i=1Hi < t) as the

following:
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P (
5∑
i=1

Hi < t)

=

∫ t

0

∫ t−h135

0

1

2
A3h2135e

−Ah135B2h24e
−Bh24dh24dh135

=

∫ t

0

(−(Bh24 + 1)A3h2135e
−Ah135−Bh24

2
|t−h135
h24=0 )dh135

=

∫ t

0

1

2
A3[h2135e

−Ah135 −Be−Ah135−Bt+Bh135th2135

+Be−Ah135−Bt+Bh135h3135 − h2135e−Ah135−Bt+Bh135 ]dh135

= 1 + (−e
−Ah135A2h2135

2
− Ah135e−Ah135 − e−Ah135

− 1

2(−A+B)3
(A3Bt(e(−A+B)h135−BtB2t2

+2Bt(e(−A+B)h135−Bt((−A+B)h135 −Bt)− e(−A+B)h135−Bt)

+e(−A+B)h135−Bt((−A+B)h135 −Bt)2 − 2e(−A+B)h135−Bt((−A

+B)h135 −Bt) + 2e(−A+B)h135−Bt))

+
1

2(−A+B)4
(A3B(e(−A+B)h135−BtB3t3 + 3B2t2(e(−A+B)h135−Bt((−A+B)h135

−Bt)− e(−A+B)h135−Bt) + 3Bt(e(−A+B)h135−Bt((−A+B)h135 −Bt)2

−2e(−A+B)h135−Bt((−A+B)h135 −Bt) + 2e(−A+B)h135−Bt)

+e(−A+B)h135−Bt((−A+B)h135 −Bt)3

−3e(−A+B)h135−Bt((−A+B)h135 −Bt)2 + 6e(−A+B)h135−Bt((−A+B)h135

−Bt)− 6e(−A+B)h135−Bt))− 1

2(−A+B)3
(A3(e(−A+B)h135−BtB2t2

+2Bt(e(−A+B)h135−Bt((−A+B)h135 −Bt)− e(−A+B)h135−Bt) + e(−A+B)h135−Bt((−A

+B)h135 −Bt)2 − 2(−A+B)h135−Bt((−A+B)h135 −Bt) + 2e(−A+B)h135−Bt)))|th135=0
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= 1− A2B2

2(A−B)2
e−Att2 − A3Be−Btt

(A−B)3
− AB2e−Att(3A−B)

(A−B)3

− 1

(A−B)4
(A4e−Bt − 4A3Be−Bt + 6A2B2e−At − 4AB3e−At

+B4e−At); (3.44)

and

P (
6∑
i=1

Hi < t)

=

∫ t

0

∫ t−h135

0

1

2
A3h2135e

−Ah135
1

2
B3h2246e

−Bh246dh246dh135

=

∫ t

0

(−(h2246B
2 + 2Bh246 + 2)A3h2135e

−Ah135−Bh246

4
|t−h135
h246=0)dh135

=

∫ t

0

(
A3h2135e

−Ah135

2
− A3B2e−Ah135−Bt+Bh135t2h2135

4
+
A3B2e−Ah135−Bt+Bh135th3135

2

−A
3B2e−Ah135−Bt+Bh135h4135

4
− A3Be−Ah135−Bt+Bh135th2135

2

+
A3Be−Ah135−Bt+Bh135h2135

2
− A3h2135e

−Ah135−Bt+Bh135

2
)dh135

= 1 + (−e
−Ah135A2h2135

2
− Ah135e−Ah135 − e−Ah135

− 1

4(−A+B)3
(A3B2t2(e(−A+B)h135−BtB2t2 + 2Bt(e(−A+B)h135−Bt((−A

+B)h135 −Bt)− e(−A+B)h135−Bt) + e(−A+B)h135−Bt((−A+B)h135 −Bt)2

−2e(−A+B)h135−Bt((−A+B)h135 −Bt) + 2e(−A+B)h135−Bt))

+
1

2(−A+B)4
(A3B2t(e(−A+B)h135−BtB3t3 + 3B2t2(e(−A+B)h135−Bt((−A
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+B)h135 −Bt)− e(−A+B)h135−Bt) + 3Bt(e(−A+B)h135−Bt((−A+B)h135 −Bt)2

−2e(−A+B)h135−Bt((−A+B)h135 −Bt) + 2e(−A+B)h135−Bt) + e(−A+B)h135−Bt((−A

+B)h135 −Bt)3 − 3e(−A+B)h135−Bt((−A+B)h135 −Bt)2 + 6e(−A+B)h135−Bt((−A

+B)h135 −Bt)− 6e(−A+B)h135−Bt))− 1

4(−A+B)5
(A3B2(e(−A+B)h135−BtB4t4

+4B3t3(e(−A+B)h135−Bt((−A+B)h135 −Bt)− e(−A+B)h135−Bt)

+6B2t2(e(−A+B)h135−Bt((−A+B)h135 −Bt)2 − 2e(−A+B)h135−Bt((−A

+B)h135 −Bt) + 2e(−A+B)h135−Bt) + 4Bt(e(−A+B)h135−Bt((−A+B)h135 −Bt)3

−3e(−A+B)h135−Bt((−A+B)h135 −Bt)2 + 6e(−A+B)h135−Bt((−A+B)h135 −Bt)

−6e(−A+B)h135−Bt) + e(−A+B)h135−Bt((−A+B)h135 −Bt)4 − 4e(−A+B)h135−Bt((−A

+B)h135 −Bt)3 + 12e(−A+B)h135−Bt((−A+B)h135 −Bt)2 − 24e(−A+B)h135−Bt((−A

+B)h135 −Bt) + 24e(−A+B)h135−Bt))− 1

2(−A+B)3
(A3Bt(e(−A+B)h135−BtB2t2

+2Bt(e(−A+B)h135−Bt((−A+B)h135 −Bt)− e(−A+B)h135−Bt) + e(−A+B)h135−Bt((−A

+B)h135 −Bt)2 − 2e(−A+B)h135−Bt((−A+B)h135 −Bt) + 2e(−A+B)h135−Bt))

+
1

2(−A+B)4
(A3B(e(−A+B)h135−BtB3t3 + 3B2t2(e(−A+B)h135−Bt((−A

+B)h135 −Bt)− e(−A+B)h135−Bt) + 3Bt(e(−A+B)h135−Bt((−A+B)h135 −Bt)2

−2e(−A+B)h135−Bt((−A+B)h135 −Bt) + 2e(−A+B)h135−Bt) + e(−A+B)h135−Bt((−A

+B)h135 −Bt)3 − 3e(−A+B)h135−Bt((−A+B)h135 −Bt)2 + 6e(−A+B)h135−Bt((−A

+B)h135 −Bt)− 6e(−A+B)h135−Bt))− 1

2(−A+B)3
(A3(e(−A+B)h135−BtB2t2

+2Bt(e(−A+B)h135−Bt((−A+B)h135 −Bt)− e(−A+B)h135−Bt) + e(−A+B)h135−Bt((−A

+B)h135 −Bt)2 − 2e(−A+B)h135−Bt((−A+B)h135 −Bt) + 2e(−A+B)h135−Bt)))|th135=0

57



= 1− A2B2t2(Be−At − Ae−Bt)
2(A−B)3

−A
3Be−Bt(A− 4B)t

(A−B)4
− AB3e−At(B − 4A)t

(A−B)4

−A
3e−Bt(A2 − 5AB + 10B2)

(A−B)5

+
B3e−At(10A2 − 5AB +B2)

(A−B)5
. (3.45)

Applying equation (3.39) and equation (3.44), we can calculate q15(t) as follows:

q15(t) = [P (
5∑
i=1

Hi > t)− P (
4∑
i=1

Hi > t)]
4∏
i=1

P (Wi > 0)

= [P (
4∑
i=1

Hi < t)− P (
5∑
i=1

Hi < t)]
4∏
i=1

P (Wi > 0)

= (
λ11
A

)2(
λ2
B

)2{ A2B2

2(A−B)2
e−Att2 +

A3Be−Btt

(A−B)3
+
AB2e−Att(3A−B)

(A−B)3

+
1

(A−B)4
(A4e−Bt − 4A3Be−Bt + 6A2B2e−At − 4AB3e−At +B4e−At)

−A
2Bte−Bt + AB2te−At

(A−B)2

−A
3e−Bt − 3A2Be−Bt + 3AB2e−At −B3e−At

(A−B)3
}. (3.46)

Similarly, applying equation (3.44) and equation (3.45), the transition probability
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q16(t) is calculated as follows:

q16(t) = [P (
6∑
i=1

Hi > t)− P (
5∑
i=1

Hi < t)]
5∏
i=1

P (Wi > 0)

= [P (
5∑
i=1

Hi < t)− P (
6∑
i=1

Hi < t)]

5∏
i=1

P (Wi > 0)

= (
λ11
A

)3(
λ2
B

)2{A
2B2t2(Be−At − Ae−Bt)

2(A−B)3
+
A3Be−Bt(A− 4B)t

(A−B)4

+
AB3e−At(B − 4A)t

(A−B)4
+
A3e−Bt(A2 − 5AB + 10B2)

(A−B)5

−B
3e−At(10A2 − 5AB +B2)

(A−B)5
− A2B2

2(A−B)2
e−Att2

−A
3Be−Btt

(A−B)3
− AB2e−Att(3A−B)

(A−B)3

− 1

(A−B)4
(A4e−Bt − 4A3Be−Bt + 6A2B2e−At

−4AB3e−At +B4e−At)}. (3.47)

Similarly, the event that the individual would be healthy (in state 7) at the end of

the policy on the condition that the insured person is healthy in the beginning of the

policy, is the same as the fact that the insured smoothly goes through the state 1, 2,

3, 4, 5 and 6 without death and the total time that the individual stays in states 1,

2, 3, 4, 5 and 6 is less than time t. Then we have the transition probability q17(t) as

follows:
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q17(t) = P (
6∑
i=1

Hi < t)
6∏
i=1

P (Wi > 0)

= (
λ11
A

)3(
λ2
B

)3[1− A2B2t2(Be−At − Ae−Bt)
2(A−B)3

− A3Be−Bt(A− 4B)t

(A−B)4

−AB
3e−At(B − 4A)t

(A−B)4
− A3e−Bt(A2 − 5AB + 10B2)

(A−B)5

+
B3e−At(10A2 − 5AB +B2)

(A−B)5
]; (3.48)

and hence,

q18(t) = 1− q11(t)− q12(t)− q13(t)− q14(t)− q15(t)− q16(t)− q17(t) (3.49)

Similarly, we can see the sensitivities of q15(t), q16(t) and q17(t) to the parameters

λ11 and λ2 from the plots of Figures 3.15 - 3.18. As Figure 3.15 shows, the λ11 is set

up as taking values 0.05, 0.1, 0.2 and 0.5, corresponding to the average waiting time

of 20, 10, 5 and 2 weeks to become sick, respectively. Figure 3.15 shows that q15(t)

is sensitive to λ11. In general, the larger is the value of λ11, i.e., the shorter waiting

time to become sick, will tend to result in a lower chance to stay in state 5, which is

a healthy state, although increasing λ11 increases q15(t) during the first short period

because of the trend to transferring to state 5 increases. Figure 3.16 shows that q15(t)

is sensitive to λ2 as well, where we have taken values of λ2 as 0.0833, 0.125, 0.25 and

0.5, corresponding to an average recovery time of 12, 8, 4 and 2 weeks, respectively.

In general, the larger is the value of λ2, i.e., the shorter waiting time to recover, will

result in higher chance to stay in state 5, which is a healthy state, although in the
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late period, higher value in λ2 results in lower transition probability q15(t) due to the

transition to next stages. Figure 3.17 shows the sensitivity of q16(t) to λ11, where λ11

takes values 0.05, 0.1, 0.2 and 0.5 corresponding to a waiting time to become sick the

first time of 40, 30, 20 and 10 weeks, respectively. In general, the larger value in λ11,

i.e., the shorter waiting time to become sick, will result in a higher chance to stay in

state 6, which is a disabled state, although as time passes, the transition probability

q16(t) decreases with larger value λ11 due to the higher chance to transition to next

stages. Figure 3.18 shows the sensitivity of q16(t) to λ2, where λ2 takes values 0.0833,

0.125, 0.25, and 0.5 corresponding the average waiting time until getting recovered

12, 8, 4 and 2 weeks. In general, the larger value of λ2, i.e., the less waiting time

to recover, will result in a lower chance to stay in state 6, which is a disabled state,

although in the first short period, the transition probability q16(t) increases as λ2

due to the increasing trend to transferring to the state 6.

Figures 3.19 and 3.20 show the sensitivity of q17(t) to λ11 as well as λ2. Here,

λ11 takes values 0.05, 0.1, 0.2 and 0.5 corresponding to an average waiting time to

become ill the first time 20, 10, 5 and 2 weeks, respectively; and, λ2 takes values

0.0833, 0.125, 0.25 and 0.5 corresponding to an average recovery time of 12, 8, 4 and

2 weeks, respectively. Since it is assumed that the individual will stay healthy when

the policy ends, the transition probability q15(t) increases as time passes. As either

λ11 or λ2 increases, i.e., the shorter the time that an individual stays in the interval

states, the higher the chance will be in the last state given time t.
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Figure 3.3: State transition diagram for a disabled model in which m = 1 ended
with health or death.
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Figure 3.4: P (S(t) = 1|S(0) = 1) for α(z) = (0.0001, 0.0026, 0.0042, 0.0057) in which
m = 1 and ended with healthy state.
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Figure 3.5: P (S(t) = 2|S(0) = 1) for λ2 = (0.0625, 0.125, 0.25, 0.5) in which m = 1
and ended with healthy state.
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Figure 3.6: P (S(t) = 3|S(0) = 1) for λ2 = (0.0625, 0.125, 0.25, 0.5) in which m=1
and ended with healthy state.
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Figure 3.7: State transition diagram for a disabled model in which m = 2.
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Figure 3.8: P (S(t) = 3|S(0) = 1) for λ11 = (0.025, 0.033, 0.05, 0.10) in which m = 2
and ended with healthy state.
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Figure 3.9: P (S(t) = 3|S(0) = 1) for λ2 = (0.0833, 0.125, 0.25, 0.5) in which m = 2
and ended with healthy state.
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Figure 3.10: P (S(t) = 4|S(0) = 1) for λ11 = (0.025, 0.033, 0.05, 0.1) in which m = 2
and ended with healthy state.
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Figure 3.11: P (S(t) = 4|S(0) = 1) for λ2 = (0.0833, 0.125, 0.25, 0.5) in which m = 2
and ended with healthy state.
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Figure 3.12: P (S(t) = 5|S(0) = 1) for λ11 = (0.025, 0.0333, 0.05, 0.1) in which m =
2 and ended with healthy state.
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Figure 3.13: P (S(t) = 5|S(0) = 1) for λ2 = (0.0833, 0.125, 0.25, 0.5) in which m = 2
and ended with healthy state.
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Figure 3.15: P (S(t) = 5|S(0) = 1) for λ11 = (0.05, 0.1, 0.2, 0.5) in which m = 3 and
ended with healthy state.
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Figure 3.16: P (S(t) = 5|S(0) = 1) for λ2 = (0.0833, 0.125, 0.25, 0.5) in which m = 3
and ended with healthy state.

76



Figure 3.17: P (S(t) = 6|S(0) = 1) for λ11 = (0.05, 0.1, 0.2, 0.5) in which m = 3 and
ended with healthy state.
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Figure 3.18: P (S(t) = 6|S(0) = 1) for λ2 = (0.0833, 0.125, 0.25, 0.5) in which m = 3
and ended with healthy state.
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Figure 3.19: P (S(t) = 7|S(0) = 1) for λ11 = (0.05, 0.1, 0.2, 0.5) in which m = 3 and
ended with healthy state.

Table 3.1 Summarizes the sensitivity of the transition probabilities to the parameter
values.

Figure Parameter m Transition Parameter Description

Number Probability vector

3.4 α(z) 1 q11(t) λ11= 0.0384 Insensitive

α(z)= (0.001, 0.0026, 0.0042, 0.0057)

λ2= NA

α2= NA

3.5 λ2 1 q12(t) λ11= 0.0384 Sensitive

α(z)= 0.0026

λ2= (0.0625, 0.125, 0.250, 0.5)

α2= 0.0052
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3.6 λ2 1 q13(t) λ11= 0.0384 Sensitive

α(z)= 0.0026

λ2= (0.0625, 0.125, 0.250, 0.5)

α2= 0.0052

3.8 λ11 2 q13(t) λ11= (0.025, 0.0333, 0.50, 0.10) Sensitive

α(z)=0.0026

λ2= 0.25

α2= 0.0052

3.9 λ2 2 q13(t) λ11= 0.05 Sensitive

α(z)= 0.0026

λ2= (0.0833, 0.125, 0.25, 0.5)

α2= 0.0052

3.10 λ11 2 q14(t) λ11= (0.025, 0.033, 0.05, 0.1) Sensitive

α(z)= 0.0026

λ2= 0.25

α2=0.0052

3.11 λ2 2 q14(t) λ11= 0.05 Sensitive

α(z)= 0.0026

λ2=(0.0833, 0.125, 0.25, 0.5)

α2= 0.0052

3.12 λ11 2 q15(t) λ11= (0.025, 0.0333,0.05, 0.10 ) Sensitive

α(z)= 0.0026

λ2= 0.25

α2= 0.0052

3.13 λ2 2 q15(t) λ11= 0.05 Sensitive

α(z)= 0.0026

λ2= (0.0833, 0.125, 0.25, 0.5)

α2= 0.0052

3.15 λ11 3 q15(t) λ11= (0.05, 0.10, 0.20, 0.50) Sensitive

α(z)=0.0026

λ2= 0.25

α2= 0.0052

3.16 λ2 3 q15(t) λ11= 0.2 Sensitive

α(z)= 0.0026

λ2= (0.0833, 0.125, 0.25, 0.5)

α2= 0.0052

3.17 λ11 3 q16(t) λ11= (0.05, 0.1, 0.2, 0.5) Sensitive

α(z)= 0.0026

λ2= 0.25

α2= 0.0052

3.18 λ2 3 q16(t) λ11= 0.2 Sensitive

α(z)= 0.0026

λ2= (0.00833, 0.125, 0.25, 0.50)
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α2= 0.0052

3.19 λ11 3 q17(t) λ11= (0.05, 0.1, 0.2, 0.5) Sensitive

α(z)= 0.0026

λ2=0.25

α2= 0.0052

3.20 λ2 3 q17(t) λ11= 0.2 Sensitive

α(z)= 0.0026

λ2= (0.0833, 0.125, 0.25, 0.5)

α2= 0.0052

Table 3.1: Sensitivity of transition probabilities to parameter values

All of the above discussion on the transition probabilities qij(t) is based on the

assumption that at the end of the policy, the insured will be healthy or dead. Next,

we assume that in the end of a policy, the insured will be either disabled or dead.

The relevant unfolded state transition diagram is described in Figure 3.21. When

m = 1, the transition diagram is shown in Figure 3.22.

Similarly, q11(t), q12(t), and q13(t) are derived as follows. First, q11(t) is the same as

in equation (3.33). Secondly, based on Figure 3.22, the event that an insured is in

state 2 given he/she is in the state 1 is the same as the fact that he/she smoothly

transfers to state 2 and the time he/she spends in state 1 is less than time t. Then

we have the following equation:

q12(t) = P (S(t) = 2|S(0) = 1)

= P (W1 > 0)P (H1 < t|W1 > 0)

= P (W1 > 0)P (H1 < t)

=
λ11

λ11 + α(z)
[1− e−(λ11+α(z))]; (3.50)
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Figure 3.20: P (S(t) = 7|S(0) = 1) for λ2 = (0.0833, 0.125, 0.25, 0.5) in which m = 3
and ended with healthy state.

and

q13(t) = P (S(t) = |S(0) = 1)

= 1− q11(t)− q12(t). (3.51)
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The sensitivity of q12(t) to parameter α(z) is shown in Figure 3.25. We fix the aver-

age disease rate at 0.0384 corresponding to the average waiting time for an disease

occurrence as half a year; and we take the death rates of D1, i.e., α(z), as 0.001,

0.0026, 0.0042 and 0.0057 corresponding to the average death rate for 20, 30, 40 and

50 years old persons. The plots in Figure 3.25 show that q12(t) is not sensitive to

α(z). This does make sense since the death rate α(z) is relatively small compared to

the disease rate λ11.

When m = 2, the transition diagram is shown in Figure 3.23. The transition prob-

abilities q11(t), q12(t), q13(t), q14(t), and q15(t) are derived as follows. First, q11(t) is

the same as equation (3.33). Second, q12(t) and q13(t) are the same as in equation

(3.34) and equation (3.40). Secondly, based on Figure 3.23, the event that an insured

individual is in state 4 given he/she is in the state 1 is the same as the fact that

he/she smoothly transfers to state 4 and the time he/she spends in state 1, 2, and 3

is less than time t. Then, we have the following equation:

q14(t) = P (S(t) = |S(0) = 1)

=
3∏
i=1

P (Wi > 0)[P (
3∑
i=1

Hi < t|W1 > 0,W2 > 0,W3 > 0)]

=
3∏
i=1

P (Wi > 0)[P (
3∑
i=1

Hi < t)]. (3.52)
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Applying equations (3.17), (3.18), (3.19)and (3.38), we have that

q14(t) =
3∏
i=1

P (Wi > 0)[P (
3∑
i=1

Hi < t)]

= (
λ11
A

)2(
λ2
B

)(1− ABte−At

B − A
− A2e−Bt − 2ABe−At +B2e−At

(B − A)2
); (3.53)

and

q15(t) = 1− q11(t)− q12(t)− q13(t)− q14(t). (3.54)

The sensitivities of q14(t) to parameters λ11 and λ2 are plotted in Figures 3.26 and

3.27. In Figure 3.26, λ11 takes values 0.025, 0.033, 0.05 and 0.1, corresponding to

average waiting time to become sick 40, 30, 20 and 10 weeks, respectively; and in

Figure 3.27, λ2 takes values 0.0833, 0.125, 0.25 and 0.5, which correspond to an

average recovery time of 12, 8, 4 and 2 weeks, respectively. Figures 3.26 and 3.27

both show that as time passes by, the chance to transition to state 4 will keep

increasing. On the other hand, it is assumed that state 4 is one of the states that

the insured will stay in at the end of the policy; so, increasing either λ11 or λ2, i.e.,

decreasing the waiting time on either a healthy or a disabled state will increase the

transition probability q14(t).

When m = 3, the transition diagram is shown in Figure 3.24, and the transition

probabilities q11(t), q12(t), q13(t), q14(t), q15(t), q16(t) and q17(t) are derived as follows.

First, q11(t), q12(t), q13(t), q14(t), and q15(t) are the same as in equations (3.33), (3.34),

(3.40), (3.41) and (3.46), respectively. For q16(t), based on the Figure 3.24, we have
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the event that an insured is in state 6 given he/she is in the state 1 is the same as

the fact that he/she smoothly transfers to state 6 and the total time he/she spends

in state 1, 2, 3, 4, 5 and 6 is less than time t. Then, we have the following equation:

q16(t) =
5∏
i=1

P (Wi > 0)[P (
5∑
i=1

Hi < t|W1 > 0,W2 > 0, ...,W5 > 0)]

=
5∏
i=1

P (Wi > 0)[P (
5∑
i=1

Hi < t]. (3.55)

Applying equations (3.17), (3.18), (3.19) and (3.44) tp equation (3.55), we have that

q16(t) =
5∏
i=1

P (Wi > 0)[P (
5∑
i=1

Hi < t]

= (
λ11
A

)3(
λ2
B

)2(1− A2B2

2(A−B)2
e−Att2 − A3Be−Btt

(A−B)3
− AB2e−Att(3A−B)

(A−B)3

− 1

(A−B)4
(A4e−Bt − 4A3Be−Bt + 6A2B2e−At − 4AB3e−At

+B4e−At)). (3.56)

The sensitivities of q16(t) to parameters λ11 and λ2 are plotted in Figures 3.28 and

3.29. Thus, in Figure 3.28, λ11, takes values 0.05, 0.1, 0.2 and 0.5 corresponding to

an average waiting time until the first time of being ill of 20, 10, 5 and 2 weeks, re-

spectively. In Figure 3.29, λ2 takes values 0.0833, 0.125, 0.25, and 0.5 corresponding

to an average recovering time 12, 8, 4 and 2 weeks, repectively. Figures 3.28 and

3.29 both show that as time passes by, the chance to transition to state 6 will keep

increasing. On the other hand, it is assumed that state 6 is one of the states that
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the insured will stay in at the end of the policy; so, increasing either λ11 or λ2, i.e.,

decreasing the waiting time on either a healthy or a disabled state will increase the

transition probability q16(t).
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Figure 3.22: Unfolded state transition diagram for a disabled model ended either
disabled or dead in which m=1
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Figure 3.25: P (S(t) = 2|S(0) = 1) for α(z) = (0.0001, 0.0026, 0.0042, 0.0057) in
which m = 1 and ended with disabled or death.
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Figure 3.26: P (S(t) = 4|S(0) = 1) for λ11 = (0.025, 0.033, 0.05, 0.1) in which m = 2
and ended with disabled or death.
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Figure 3.27: P (S(t) = 4|S(0) = 1) for λ2 = (0.0833, 0.125, 0.25, 0.5) in which m = 2
and ended with disabled or death.
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Figure 3.28: P (S(t) = 6|S(0) = 1) for λ11 = (0.05, 0.1, 0.2, 0.5) in which m = 3 and
ended with disabled or death.
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Figure 3.29: P (S(t) = 6|S(0) = 1) for λ2 = (0.0833, 0.125, 0.25, 0.5) in which m = 3
and ended with disabled or death.
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Chapter 4

Application in Insurance Functions

As discussed in section 2.6, transition probabilities are vital for many insurance

functions of interest. In this chapter, we will focus on premium, expected payout

and annual premium rate functions based on specific insurance policies described in

Billard and Dayananda (2014b).

4.1 Some Insurance Functions of Interest

A t-year pure endowment policy

Under a t-year pure endowment policy, the insured is paid if and only if he/she

survives to the end of the policy by definition. In addition, the payout will happen

at the end of the policy. For calculation convenience, payout and premium rates will

be assumed to be one dollar. Under a t-year pure endowment policy, an individual

at stage i at initial time, will receive one dollar if he/she is still alive at time t.

Also, one dollar at time t will have the present value e(−δt) (see, e.g., Billard and
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Dayananda, 2014b). Then, the expected present value, denoted as Ei(t), that an

insurance company should pay out will be Ei(t) =
2m∑
j=i

e−δtqij(t). With the general

expression of qij(t), in equation (3.26), for Ei(t), we have that,

Ei(t) =
2m∑
j=i

e−δtqij(t)

=
2m∑
j=i

[ j∑
p=i

j∏
k=i,k 6=p

βk
βk − βp

e−t(βp+δ) −

j−1∑
p=i

j−1∏
k=i,k 6=p

βk
βk − βp

e−t(βp+δ)
]

×P (Wi > 0)P (Wi+1 > 0)...P (Wj−1 > 0) (4.1)

where

β1 = λ11 + α(z), (4.2)

β2i+1 = λ2i+1 + α2i+1, (4.3)

β2i = λ2i + α2i, (4.4)

for i = 1, 2, ...,m−1, and the P (Wi > 0)′s were calculated in equations (3.10), (3.12)

and (3.14) for i = 1, 2, ..., 2m− 1.

Continuous t-year Life Annuity Policy

A continuous t- year life annuity is a contract in which the insured is provided

continuous payment at 1 per unit time for t years. Assuming that the starting and

ending time for the payment is 0 and t, respectively, the expected present value of
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the payout, denoted as Ai(t), has the following expression

Ai(t) =
2m∑
j=i

∫ t

0

e−δuqij(u)du

=
2m∑
j=i

[ j∑
p=i

j∏
k=i,k 6=p

βk
βk − βp

1− e−(βp+δ)t

βp + δ
−

j−1∑
p=i

j−1∏
k=i,k 6=p

βk
βk − βp

1− e−(βp+δ)t

βp + δ

]
×P (Wi > 0)P (Wi+1 > 0)...P (Wj−1 > 0) (4.5)

where β1, β2i+1 and β2i are denoted in equations (4.2), (4.3), and (4.4). The expected

net single premium based on the same policy is defined as the present value of the

future death benefit. It assumes that the premium would be paid in the beginning of

the policy. Assuming that one dollar would be paid to the insured at the end of the

policy if death happened, the net single premium is calculated by the present value

of this one dollar based on the death rate in each state and the continuous t-year life

policy. It will be denoted as Bi(t), and calculated as follows
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Bi(t) =
2m∑
j=i

θj

∫ t

0

e−δuqij(u)du

=
2m∑
j=i

{
θj

[ j∑
p=i

βi...βp−1βp+1...βj
j∏

k=i,k 6=p
(βk − βp)

1− e−(βp+δ)t

βp + δ

−
j−1∑
p=i

βi...βp−1βp+1...βj−1
j−1∏

k=i,k 6=m
(βk − βp)

1− e−(βp+δ)t

βp + δ

]

×P (Wi > 0)P (Wi+1 > 0)...P (Wj−1 > 0)

}
(4.6)

where θj is the death rate at state j, i.e., θ1 = α(z), θ2i = α2i, and θ2i+1 = α2i+1

for i = 1, 2, ...,m. Having the payout Ai(t) in equation (4.5) and the net premium

Bi(t) in equation (4.6), we will be able to find the annual premium rate Pi(t), i.e.,

the ratio of Bi(t) to Ai(t), as

Pi(t) = Bi(t)/Ai(t) (4.7)

To estimate their cost, insurance companies are often interested in the long term

situation, as time goes into infinity. Then, for both Ai(t) and Bi(t) in equations

(4.5) and (4.6), as time goes to infinity., i.e., t→∞, we have that
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lim
t→+∞

Ai(t) = lim
t→+∞

2m∑
j=i

[ j∑
p=i

j∏
k=i,k 6=p

βk
βk − βp

1− e−(βp+δ)t

βp + δ
−

j−1∑
p=i

j−1∏
k=i,k 6=p

βk
βk − βp

1− e−(βp+δ)t

βp + δ

]
×P (Wi > 0)P (Wi+1 > 0)...P (Wj−1 > 0)

=
2m∑
j=i

{[ j∑
p=i

βi...βp−1βp+1...βj

(βp + δ)
j∏

k=i,k 6=p
(βk − βp)

−
j−1∑
p=i

βi...βp−1βp+1...βj−1

(βp + δ)
j−1∏

k=i,k 6=m
(βk − βp)

]

×P (Wi > 0)P (Wi+1 > 0)...P (Wj−1 > 0)

}
; (4.8)
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and

lim
t→+∞

Bi(t) =
2m∑
j=i

{
θj

[ j∑
p=i

βi...βp−1βp+1...βj
j∏

k=i,k 6=p
(βk − βp)

1− e−(βp+δ)t

βp + δ

−
j−1∑
p=i

βi...βp−1βp+1...βj−1
j−1∏

k=i,k 6=m
(βk − βp)

1− e−(βp+δ)t

βp + δ

]

×P (Wi > 0)P (Wi+1 > 0)...P (Wj−1 > 0)

}

=
2m∑
j=i

{
θj

[ j∑
p=i

βi...βp−1βp+1...βj

(βp + δ)
j∏

k=i,k 6=p
(βk − βp)

−
j−1∑
p=i

βi...βp−1βp+1...βj−1

(βp + δ)
j−1∏

k=i,k 6=m
(βk − βp)

]

×P (Wi > 0)P (Wi+1 > 0)...P (Wj−1 > 0)

}
. (4.9)

Based on the above two equations (4.8) and (4.9), we can calculate the long-term

annual premium rate as follows

lim
t→+∞

Pi(t) = lim
t→+∞

Bi(t)/ lim
t→+∞

Ai(t). (4.10)

Life Expectancies

The life expectancy for an individual in stage i at time 0, Li, is defined as equation
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(4.11). Once we have have qij(t), we can calculate the life expectancy as

Li =

∫ +∞

0

2m∑
j=i

θjtqij(t)dt

=
2m∑
j=i

θj

{[ j∑
p=i

βi...βp−1βp+1...βj

β2
p

j∏
k=i,k 6=p

(βk − βp)

−
j−1∑
p=i

βi...βp−1βp+1...βj−1

β2
p

j−1∏
k=i,k 6=p

(βk − βp)

]

×P (Wi > 0)P (W2 > 0)...P (Wj−1 > 0)

}
(4.11)

where β1, β2i+1 and β2i are denoted in equations (4.2), (4.3), and (4.4). In addition,

the P (Wi > 0)′s were calculated in equations (3.10), (3.12) and (3.14) for i =

1, 2, ..., 2m− 1.

4.2 Health Care Discussion for Disability Model

In chapter 3, we discussed the transition qij(t) for the cases that m equals 1, 2 and

3. In this section, we assume that a certain amount of money C, needs to be paid if

the insured is disabled. The expected health cost until time t for the insured who is

in state i initially assuming that the insured will go through m times of disease will

be denoted as H(t, i,m) and can be calculated as follows:

H(t, i,m) =

j∑
k=i

∫ t

0

Ce−δuqik(u)du (4.12)
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where i ≤ k ≤ j and k denote all the disabled states spanning from state i to state

j. Next, we will discuss the expected cost described in equation (4.12), where m =

1, 2 and 3.

The case where m = 1

When m = 1, we know that state 2 would be the only disabled state that the insured

would go through assuming the insured will be either healthy or dead at the end of

the policy. Applying equation (3.34), we have that

H(t, 1, 1) =

∫ t

0

Ce−δuq12(u)du

=

∫ t

0

Ce−δu
λ11

B − A
(e−Au − e−Bu)du

=

∫ t

0

C
λ11

B − A
(e−(A+δ)u − e−(B+δ)u)du

= C
λ11

B − A
[

1

δ + A
− 1

δ +B
− (

1

δ + A
e−(δ+A)t

− 1

δ +B
e−(δ+B)t)]. (4.13)

The sensitivity of expected cost H(t, 1, 1) to the interest rate is plotted in Figure

4.1. The weekly interest rate δ is taken at values 0.000189, 0.000377, 0.000755,

and 0.001511, corresponding to the annual interest rate 0.01, 0.02, 0.04 and 0.08.

The disease rate λ11, is set as 0.0384, the death rate of D1, i.e., α(z), takes the

value 0.0026, the disabled rate, λ2 has the value 0.125 and the recovery rate, α2, is

given the value 0.0052. The plots in Figure 4.1 show that the expected payout is

not sensitive to the interest rate, since the plots are essentially the same over time
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regardless of the value of δ. It does make sense since the interest rate is relatively

small to other parameters. Also, this is only one year policy.

The case where m = 2

When m = 2, we know that states 2 and 4 would be the two disabled states that

the insured would go through assuming the insured will be either healthy or dead at

the end of the policy. Applying equation (4.12), we will have that

H(t, 1, 2) =

∫ t

0

Ce−δu(q12(u) + q14(u))du

=

∫ t

0

Ce−δuq12(u)du+

∫ t

0

Ce−δuq14(u)du. (4.14)

The first part of the equation (4.14),
∫ t
0
Ce−δuq12(u)du, has been solved in equa-

tion (4.13); In addition, we already have q14(t) solved in equation (3.41). Then, for∫ t
0
Ce−δuq14(u)du, we have that
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∫ t

0

Ce−δuq14(u)du =

∫ t

0

Ce−δu(
λ11
A

)2
λ2
B

[
ABue−Au

A−B
− A2e−Bu − 2ABe−Au +B2e−Au

(A−B)2

+
A2Bue−Bu + AB2ue−Au

(A−B)2

+
A3e−Bu − 3A2Be−Bu + 3AB2e−Au −B3e−Au

(A−B)3
]du

= C
λ11

2λ2A
2B

A2B(A−B)3(A+ δ)2(B + δ)2
[(B − A)3 + 2A2Be−(A+δ)tδt

+A2Be−(B+δ)tδt− AB2e−(A+δ)tδt− 2AB2e−(B+δ)tδt

+ABe−(A+δ)tδ2t− ABe−(B+δ)tδ2t+ A3Be−(B+δ)tt

+A3e−(B+δ)tδt+ A2B2e−(A+δ)tt− A2B2e−(B+δ)tt

+A2e−(A+δ)tδ2t+ 2A2e−(B+δ)tδ2t− AB3e−(A+δ)tt

+Ae−(A+δ)tδ3t+ Ae−(B+δ)tδ3t−B3e−(A+δ)tδt

−2B2e−(A+δ)tδ2t−B2e−(B+δ)tδ2t−Be−(A+δ)tδ3t

−Be−(B+δ)tδ3t+ 2ABe−(A+δ)tδ − 4ABe−(B+δ)tδ

+4ABe−(A+δ)tδ − 2ABe−(B+δ)tδ − 2A2Be−(B+δ)t

−A2Be−(B+δ)t − 2A2e−(B+δ)tδ + 2A2e−(B+δ)tδ + AB2e−(A+δ)t

+2AB2e−(A+δ)t + Ae−(A+δ)tδ2 − 4Ae−(B+δ)tδ2 + 2Ae−(A+δ)tδ2

+Ae−(B+δ)tδ2 − 2B2e−(A+δ)tδ + 2B2e−(A+δ)tδ −Be−(A+δ)tδ2
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−2Be−(B+δ)tδ2 + 4Be−(A+δ)tδ2 −Be−(B+δ)tδ2

+A3e−(B+δ)t −B3e−(A+δ)t − 2e−(B+δ)tδ3 + 2e−(A+δ)tδ3]

= C
λ11

2λ2A
2B

A2B(A−B)3(A+ δ)2(B + δ)2
[(B − A)3 + e−(B+δ)t(A2Bδt

−2AB2δt− ABδ2t+ A3Bt+ A3δt− A2B2t+ 2A2δ2t+ Aδ3t

−B2δ2t−Bδ3t− 6ABδ − 3A2B − 3Aδ2 − 3Bδ2 + A3 − 2δ3)

+e−(A+δ)t(2A2Bδt− AB2δt+ ABδ2t+ A2B2t+ A2δ2t

−AB3t+ Aδ3t−B3δt− 2B2δ2t−Bδ3t+ 6ABδ + 3AB2

+3Aδ2 + 3Bδ2 −B3 + 2δ3)]. (4.15)

Figures 4.2 and 4.3 test the sensitivity of expected payout H(t, 1, 2) to the parameters

λ11 and λ2. The two figures show that H(t, 1, 2) is sensitive to both λ11 and λ2. In

Figure 4.2, we take the weekly interest rate δ as 0.000377, the recovery rate λ2 as

0.25, corresponding to average waiting time to recover from a disease as 4 weeks, the

healthy death rate as 0.0026, and λ11 as 0.05, 0.033, 0.05, and 0.1, corresponding to

the average waiting time to get sick as 40, 30, 20 and 10 weeks. As λ11 increases,

i.e., the average waiting time for a sickness occurrence decreases, the chance to get

sick increases, the expected payout would increase. On the other hand, as time

passes by, the expected payout would increase as well. For Figure 4.3, we take λ11

as 0.05, corresponding to the average waiting time to get sick as 20 weeks, weekly

interest rate δ as 0.000377, healthy death rate α(z) as 0.0026, and the recovery rate,

λ2, as 0.0833, 0.125, 0.25 and 0.5, corresponding to the average waiting time to get

recovered 12, 8, 4 and 2 weeks. As λ2 increases, i.e., as the average waiting time for

106



recovery decreases, as the chance to get sick decreases, the expected payout would

decrease as well.

The case where m=3

When m = 3, we know that states 2, 4 and 6 would be the three disabled states that

the insured would go through assuming the insured will be either healthy or dead in

the end of the policy. Applying equation (4.12), we will have that

H(t, 1, 3) =

∫ t

0

Ce−δu(q12(u) + q14(u) + q16(u))du

=

∫ t

0

Ce−δuq12(u)du+

∫ t

0

Ce−δuq14(u)du

+

∫ t

0

Ce−δuq16(u)du. (4.16)

In this equation (4.16), the first and second parts, i.e.,
∫ t
0
Ce−δuq12(u)du

and
∫ t
0
Ce−δuq14(u)du have been solved in equations (4.14) and (4.15), respectively.

We will focus on the calculation of the third part
∫ t
0
Ce−δuq16(u)du. Applying (3.47)

to the third term of equation (4.16), we will have that
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∫ t

0

Ce−δuq16(u)du =

∫ t

0

Ce−δu(
λ11
A

)3(
λ2
B

)2{A
2B2u2(Be−Au − Ae−Bu)

2(A−B)3

+
A3Be−Bu(A− 4B)u

(A−B)4
+
AB3e−Au(B − 4A)u

(A−B)4

+
A3e−Bu(A2 − 5AB + 10B2)

(A−B)5
− B3e−Au(10A2 − 5AB +B2)

(A−B)5

− A2B2

2(A−B)2
e−Auu2 − A3Be−Buu

(A−B)3
− AB2e−Auu(3A−B)

(A−B)3

− 1

(A−B)4
(A4e−Bu − 4A3Be−Bu + 6A2B2e−Au

−4AB3e−Au +B4e−Au)}du

= − Cλ11
3λ2

2

2(A−B)5(B + δ)3(A+ δ)3A3B2
[−10A4Be−(B+δ)t

+8A3B2e−(B+δ)t + 12A3B2e−(B+δ)t − 12A3e−(B+δ)tδ2

+12A3e−(B+δ)tδ2 − 8A2B3e−(A+δ)t − 12A2B3e−(A+δ)t

−8A2e−(A+δ)tδ3 − 16A2e−(B+δ)tδ3 + 36A2e−(B+δ)tδ3

−12A2e−(A+δ)tδ3 + 10AB4e−(A+δ)t − 6Ae−(A+δ)tδ4

−6Ae−(B+δ)tδ4 + 36Ae−(B+δ)tδ4 − 24Ae−(A+δ)tδ4

+12B3e−(A+δ)tδ2 − 12B3e−(A+δ)tδ2 + 16B2e−(A+δ)tδ3

+8B2e−(B+δ)tδ3 + 12B2e−(B+δ)tδ3 − 36B2e−(A+δ)tδ3

+6Be−(A+δ)tδ4 + 6Be−(B+δ)tδ4 + 24Be−(B+δ)tδ4

−36Be−(A+δ)tδ4 − 20A3B2 + 10A4B + 20A2B3

−10AB4 − 2A5 + 2B5 + 2A5Be−(B+δ)tδt2

−3A4B2e−(A+δ)tδt2 − A4B2e−(B+δ)tδt2
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−3A4Be−(A+δ)tδ2t2 + 4A4Be−(B+δ)tδ2t2

+4A3B3e−(A+δ)tδt2 − 4A3B3e−(B+δ)tδt2

−8A3B2e−(B+δ)tδ2t2 − 4A3Be−(A+δ)tδ3t2

+A2B4e−(A+δ)tδt2 + 3A2B4e−(B+δ)tδt2

+8A2B3e−(A+δ)tδ2t2 + 8A2B2e−(A+δ)tδ3t2

−8A2B2e−(B+δ)tδ3t2 + A2Be−(A+δ)tδ4t2

−4A2Be−(B+δ)tδ4t2 − 2AB5e−(A+δ)tδt2

−4AB4e−(A+δ)tδ2t2 + 3AB4e−(B+δ)tδ2t2

+4AB3e−(B+δ)tδ3t2 + 4AB2e−(A+δ)tδ4t2

−AB2e−(B+δ)tδ4t2 + 2ABe−(A+δ)tδ5t2

−2ABe−(B+δ)tδ5t2 − 10A4Be−(B+δ)tδt

−24A3B2e−(A+δ)tδt− 16A3B2e−(B+δ)tδt

−24A3Be−(A+δ)tδ2t− 36A3Be−(B+δ)tδ2t

+16A2B3e−(A+δ)tδt+ 24A2B3e−(B+δ)tδt

−12A2B2e−(A+δ)tδ2t+ 12A2B2e−(B+δ)tδ2t

−32A2Be−(A+δ)tδ3t− 28A2Be−(B+δ)tδ3t

+10AB4e−(A+δ)tδt+ 36AB3e−(A+δ)tδ2t

+24AB3e−(B+δ)tδ2t+ 28AB2e−(A+δ)tδ3t

+32AB2e−(B+δ)tδ3t− 2ABe−(A+δ)tδ4t

+2ABe−(B+δ)tδ4t+ 2A5e−(B+δ)t

−2B5e−(A+δ)t + 12e−(B+δ)tδ5 − 12e−(A+δ)tδ5
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+36A2B2e−(B+δ)tδ − 36A2B2e−(A+δ)tδ − 24A2Be−(A+δ)tδ2

−12A2Be−(B+δ)tδ2 + 72A2Be−(B+δ)tδ2 − 36A2Be−(A+δ)tδ2

+24AB3e−(A+δ)tδ − 24AB3e−(A+δ)tδ + 12AB2e−(A+δ)tδ2

+24AB2e−(B+δ)tδ2 + 36AB2e−(B+δ)tδ2 − 72AB2e−(A+δ)tδ2

−8ABe−(A+δ)tδ3 + 8ABe−(B+δ)tδ3 + 72ABe−(B+δ)tδ3

−72ABe−(A+δ)tδ3 + A5B2e−(B+δ)tt2A5e−(B+δ)tδ2t2

−A4B3e−(A+δ)tt2 − 2A4B3e−(B+δ)tt2 − A4e−(A+δ)tδ3t2

+3A4e−(B+δ)tδ3t2 + 2A3B4e−(A+δ)tt2 + A3B4e−(B+δ)tt2

−2A3e−(A+δ)tδ4t2 + 3A3e−(B+δ)tδ4t2 − A2B5e−(A+δ)tt2

−A2e−(A+δ)tδ5t2 + A2e−(B+δ)tδ5t2 −B5e−(A+δ)tδ2t2

−3B4e−(A+δ)tδ3t2 +B4e−(B+δ)tδ3t2 − 3B3e−(A+δ)tδ4t2

+2B3e−(B+δ)tδ4t2 −B2e−(A+δ)tδ5t2 +B2e−(B+δ)tδ5t2

+2A5Be−(B+δ)tt+ 2A5e−(B+δ)tδt− 10A4B2e−(B+δ)tt

−8A3B3e−(A+δ)tt+ 8A3B3e−(B+δ)tt− 8A3e−(A+δ)tδ3t

−12A3e−(B+δ)tδ3t+ 10A2B4e−(A+δ)tt− 14A2e−(A+δ)tδ4t

−16A2e−(B+δ)tδ4t− 2AB5e−(A+δ)tt− 6Ae−(A+δ)tδ5t

−6Ae−(B+δ)tδ5t− 2B5e−(A+δ)tδt+ 12B3e−(A+δ)tδ3t

+8B3e−(B+δ)tδ3t+ 16B2e−(A+δ)tδ4t+ 14B2e−(B+δ)tδ4t
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+6Be−(A+δ)tδ5t+ 6Be−(B+δ)tδ5t− 24A3Be−(B+δ)tδ

+24A3Be−(B+δ)tδ − 24A2B2e−(A+δ)tδ + 24A2B2e−(B+δ)tt]

= − Cλ11
3λ2

2

2(A−B)5(B + δ)3(A+ δ)3A3B2
[2(B − A)5

+e−(A+δ)t(−20A2B3 − 20A2δ3 + 10AB4 − 30Aδ4

−20B2δ3 − 30Bδ4 − 3A4B2δt2 − 3A4Bδ2t2 + 4A3B3δt2

−4A3Bδ3t2 + A2B4δt2 + 8A2B3δ2t2 + 8A2B2δ3t2

+A2Bδ4t2 − 2AB5δt2 − 4AB4δ2t2 + 4AB2δ4t2

+2ABδ5t2 − 24A3B2δt− 24A3Bδ2t+ 16A2B3δt

−12A2B2δ2t− 32A2Bδ3t+ 10AB4δt+ 36AB3δ2t

+28AB2δ3t− 2ABδ4t− 2B5 − 12δ5

−36A2B2δ − 60A2Bδ2 − 60AB2δ2 − 80ABδ3 − A4B3t2

−A4δ3t2 + 2A3B4t2 − 2A3δ4t2 − A2B5t2

−A2δ5t2 −B5δ2t2 − 3B4δ3t2 − 3B3δ4t2

−B2δ5t2 − 8A3B3t− 8A3δ3t+ 10A2B4t− 14A2δ4t

−2AB5t− 6Aδ5t− 2B5δt+ 12B3δ3t

+16B2δ4t+ 6Bδ5t− 24A2B2δ) + e−(B+δ)t(−10A4B + 20A3B2

+20A2δ3 + 30Aδ4 + 20B2δ3 + 30Bδ4

+2A5Bδt2 − A4B2δt2 + 4A4Bδ2t2 − 4A3B3δt2

−8A3B2δ2t2 + 3A2B4δt2 − 8A2B2δ3t2 − 4A2Bδ4t2

+3AB4δ2t2 + 4AB3δ3t2 − AB2δ4t2 − 2ABδ5t2
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−10A4Bδt− 16A3B2δt− 36A3Bδ2t+ 24A2B3δt

+12A2B2δ2t− 28A2Bδ3t+ 24AB3δ2t+ 32AB2δ3t

+2ABδ4t+ 2A5 + 12δ5 + 36A2B2δ − 12A2Bδ2

+72A2Bδ2 + 60AB2δ2 + 80ABδ3 + A5B2t2

+A5δ2t2 − 2A4B3t2 + 3A4δ3t2 + A3B4t2

+3A3δ4t2 + A2δ5t2 +B4δ3t2 + 2B3δ4t2

+B2δ5t2 + 2A5Bt+ 2A5δt− 10A4B2t

+8A3B3t− 12A3δ3t− 16A2δ4t− 6Aδ5t

+8B3δ3t+ 14B2δ4t+ 6Bδ5t+ 24A2B2t). (4.17)

Sensitivity of the expected payout

Figures 4.4 and 4.5 test the sensitivity of expected cost H(t, 1, 3) to the parameters

λ11 and λ2. The two figures show that H(t, 1, 3) is sensitive to both λ11 and λ2, and

has the similar trend with the case where m = 2. In Figure 4.4, we take the weekly

interest rate δ as 0.000377, which corresponds to an annual interest rate of 2 percent,

the recovery rate λ2 as 0.25 corresponding to average waiting time to recover from a

disease as 4 weeks, the healthy death rate as 0.0026 corresponding to a 30-year old

person, and λ11 as 0.05, 0.1, 0.15, and 0.2, corresponding to the average waiting time

to get sick as 20, 10, 7 and 5 weeks. As λ11 increases, i.e., as the average waiting

time for a sickness occurrence decreases, the chance to get sick increases, so that the

expected payout would increases. On the other hand, as time passes by, the expected

payout would increase as well. In Figure 4.5, we take the weekly interest rate δ as
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0.000377, the recovery rate λ2 as 0.0833, 0.125, 0.25 and 0.5 corresponding to average

waiting time to recover from a disease as 12, 8, 4 and 2 weeks, the healthy death rate

α(z) as 0.0026, and λ11 as 0.05, corresponding to the average waiting time to get sick

as 20 weeks. As λ2 increases, i.e., as the average waiting time for recovery decreases,

the chance to get sick decreases, so that the expected payout would decrease as well.

Figure 4.1: Expected payout H(t,1,1) for δ = (0.0001, 0.000377, 0.000755, 0.001511)
where m=1
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Figure 4.2: Expected payout H(t,1,2) for λ11 = (0.025, 0.033, 0.05, 0.10) where m=2.
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Figure 4.3: Expected payout H(t,1,2) for λ2 = (0.0833, 0.125, 0.25, 0.5) where m=2.
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Figure 4.4: Expected payout H(t,1,3) for λ11 = (0.05, 0.1, 0.15, 0.2), where m=2
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Figure 4.5: Expected payout H(t,1,3) for λ2 = (0.0833, 0.125, 0.25, 0.5), where m=2
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Chapter 5

Future Work

In this chapter, we discuss some ideas about future work.

5.1 Discussion of the Death Distribution

In Chapter 3 and 4, we focused on the health insurance, in which the insured will

receive a payout paid when he/she becomes sick. Next, we plan to focus on the prob-

ability of transferring to death in the long term. In this section, we plan to change

the distribution of the waiting time to death. In chapter 3 and 4, we assume that

the waiting time to death for the first time, D1, is exponentially distributed with

death rate α(z). In future work, we plan to compare the probability of transferring

to death with four distributions for D1, i.e., the death rate for individual in a healthy

status. The four distributions are exponential, uniform, Weibull and Gompertz dis-

tribution based on their hazard function. First De Moivre’s Law assumes that the

death happens uniformly over the interval of deaths, i.e., the waiting time for the

119



next death to happen is uniformly distributed with density fz(z) as

fz(z) = 1/w, for 0<z<w. (5.1)

where w is the extreme age, and z here is the age of the insured. The hazard function,

hz(z), will be

hz(z) = 1/(w − z), for 0<z<w. (5.2)

The hazard function shows that the risk to death will increase with age. Second we

assume that D1 has a Weibull distribution with pdf as follows

fz(z) = kzne−
kzn+1

n+1 , for z>0. (5.3)

Similarly, z denotes age here. The hazard function, hz(z), will be

hz(z) = kxn, for z>0. (5.4)

The hazard function shows that the risk to death will be linearly related to xn. Next,

we assume that D1 is Gompertz distributed with pdf as follows

fz(z) = aebze−
a
b
(ebz−1), for z>0. (5.5)
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The hazard function, hz(z), will be

hz(z) = aebz (5.6)

We know from the hazard function that the mortality risk is exponential increasing

with the age function bx.

We assumed in Chapters 3 and 4 that D1 is exponentially distributed with healthy

death rate α(z). The associated hazard function is α(z). Based on the results from

chapter 3 and 4, we plan to run the simulation about the transition probability to

death based on the four different distributions.

5.2 Discussion of Different Distributions

In chapter 3 and 4, we assume that all the waiting times are exponentially distributed

for calculation simplicity. Once we limit the insurance period to one year, it is

reasonable to assume that the number of iterations between healthy and disabled

states m is equal to 2 based on the results of chapter 3 and 4. Then, we plan to try

different distributions for the waiting times.
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Appendix A

Some Appendix

The following code is for figure 3.4

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

print(‘output redirected...‘); # input placeholder

lambda__11 := 0.384e-1;

zlist := [0.1e-2, 0.26e-2, 0.42e-2, 0.57e-2];

A1 := lambda__11+zlist[1];

A2 := lambda__11+zlist[2];

A3 := lambda__11+zlist[3];

A4 := lambda__11+zlist[4];

functionlist := [exp(-A1*t), exp(-A2*t), exp(-A3*t), exp(-A4*t)];

colorlist := [red, blue, purple, yellow];

legendlist := [alpha(z) = 0.1e-2, alpha(z) = 0.26e-2,

alpha(z) = 0.42e-2, alpha(z) = 0.57e-2];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k], k = [1, 2, 3, 4])],
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’legend’ = [seq(legendlist[k], k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8],

’location’ = bottom], thickness = 2,

labels = [Time, q__11(t)],

labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])], resolution = 8000000);

The following code is for figure 3.5

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]), h[2] = 0 .. t-h[1]),

h[1] = 0 .. t);

P(W[1] < 0) := lambda[11]/A;

q12t := P(W[1] < 0)*(P(H__1 < t)-P(H__1+H__2 < t));

g := proc (A, B) options operator, arrow; 0.384e-1*(1-exp(-A*t)

+(A*exp(-B*t)-exp(-A*t)*B-A+B)/(A-B))/A end proc;

g(0.410e-1, 0.677e-1);

g(0.410e-1, .1302);

g(0.410e-1, .2552);

g(0.410e-1, .5052);

functionlist := [g(0.410e-1, 0.677e-1), g(0.410e-1, .1302),

g(0.410e-1, .2552), g(0.410e-1, .5052)];

NULL;

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__2 = 0.625e-1, lambda__2 = .1250,

lambda__2 = .2500, lambda__2 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k], k = [1, 2, 3, 4])],

’legend’ = [seq(legendlist[k], k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8],

’location’ = bottom], thickness = 2,

labels = [Time, q__12(t)], labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])], resolution = 8000000);

The following code is for figure 3.6
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f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]), h[2] = 0 .. t-h[1]),

h[1] = 0 .. t);

P(W[1] < 0) := lambda[11]/A;

P(W[2] < 0) := lambda[2]/B;

q13t := ‘&x‘(‘&x‘(P(W[1] < 0), P(W[2] < 0)), P(H__1+H__2 < t));

A = 0.384e-1+0.26e-2;

B = [0.625e-1+0.52e-2, .125+0.52e-2, .25+0.52e-2, .5+0.52e-2];

g := proc (lambda__2, B) options operator, arrow;

(-1)*0.384e-1*lambda__2*(0.436e-1*exp(-B*t)-exp((-1)*0.436e-1*t)*B

-0.436e-1+B)/(0.436e-1*B*(0.436e-1-B)) end proc;

NULL;

g(0.625e-1, 0.677e-1);

g(.125, .1302);

g(.25, .2552);

g(.5, .5052);

functionlist := [g(0.625e-1, 0.677e-1), g(.125, .1302), g(.25, .2552),

g(.5, .5052)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__2 = 0.625e-1, lambda__2 = .1250, lambda__2 = .2500,

lambda__2 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k], k = [1, 2, 3, 4])],

’legend’ = [seq(legendlist[k], k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8], ’location’ = bottom],

thickness = 2,

labels = [Time, q__13(t)], labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])], resolution = 8000000);

The following code is for figure 3.8
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f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]), h[2] = 0 .. t-h[1]),

h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]), h[13] = 0 .. t-h[2]),

h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(W[1] > 0) := lambda[11]/A;

P(W[2] > 0) := lambda[2]/B;

q13t := ‘&x‘(‘&x‘(P(W[1] > 0), P(W[2] > 0)), [P(H__1+H__2 < t)-P(H__1+H__2+H__3 < t)]);

NULL;

f := proc (A, B) options operator, arrow; -(A*exp(-B*t)

-exp(-A*t)*B-A+B)/(A-B)-(A^2*B*t*exp(-A*t)

-A*B^2*t*exp(-A*t)-A^2*exp(-B*t)

+2*A*B*exp(-A*t)-B^2*exp(-A*t)+A^2-2*A*B+B^2)/(A-B)^2 end proc;

f(0.276e-1, .2552);

f(0.3593e-1, .2552);

f(0.526e-1, .2552);

f(.1026, .2552);

lambda__11 = [1/40.0, 1/30.0, 1/20.0, 1/10.0];

alpha__z = 0.26e-2;

A = [1/40+0.26e-2, 1/30+0.26e-2, 1/20+0.26e-2, 1/10+0.26e-2];

B = .25+0.52e-2;

lambda__2 = .25;

(0.25e-1*.25)/(0.276e-1*.2552);

(0.333e-1*.25)/(0.3593e-1*.2552);

(0.5e-1*.25)/(0.526e-1*.2552);

(.1*.25)/(.1026*.2552);

functionlist := [.8873404207*f(0.276e-1, .2552),

.9079174326*f(0.3593e-1, .2552),

.9312013540*f(0.526e-1, .2552), .9547990492*f(.1026, .2552)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__11 = 0.25e-1, lambda__11 = 0.333e-1,
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lambda__11 = 0.5e-1, lambda__11 = .1];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k], k = [1, 2, 3, 4])],

’legend’ = [seq(legendlist[k], k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8],

’location’ = bottom],

labels = [Time, q__13(t)], labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])], resolution = 8000000);

The following code is for figure 3.9

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]), h[2] = 0 .. t-h[1]),

h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]),

h[13] = 0 .. t-h[2]), h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(W[1] > 0) := lambda[11]/A;

P(W[2] > 0) := lambda[2]/B;

q13t := ‘&x‘(‘&x‘(P(W[1] > 0), P(W[2] > 0)),

[P(H__1+H__2 < t)-P(H__1+H__2+H__3 < t)]);

f := proc (A, B) options operator, arrow; -(A*exp(-B*t)

-exp(-A*t)*B-A+B)/(A-B)-(A^2*B*t*exp(-A*t)

-A*B^2*t*exp(-A*t)-A^2*exp(-B*t)+2*B*A*exp(-A*t)

-B^2*exp(-A*t)+A^2-2*B*A+B^2)/(A-B)^2 end proc;

NULL;

lambda__11 = 0.5e-1;

alpha__z = 0.26e-2;

A = 0.526e-1;

lambda__2 = [1/12.0, 1/8.0, 1/4.0, 1/2.0];

B = [1/12.0+0.52e-2, 1/8.0+0.52e-2, 1/4.0+0.52e-2, .5+0.52e-2];

alpha__2 = 0.52e-2;
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f(0.526e-1, 0.8853e-1);

f(0.526e-1, .1302);

f(0.526e-1, .2552);

f(0.526e-1, .5052);

(0.5e-1*0.833e-1)/(0.526e-1*0.885e-1);

(0.5e-1*.125)/(0.526e-1*.1302);

(0.5e-1*.25)/(0.526e-1*.2552);

(0.5e-1*.5)/(0.526e-1*.5052);

functionlist := [.8947176215*f(0.526e-1, 0.8853e-1),

.9126059353*f(0.526e-1, .1302),

.9312013540*f(0.526e-1, .2552), .9407861661*f(0.526e-1, .5052)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__2 = 0.83e-1, lambda__2 = .125, lambda__2 = .25,

lambda__2 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])],

t = 1 .. 53,

’colour’ = [seq(colorlist[k], k = [1, 2, 3, 4])],

’legend’ = [seq(legendlist[k], k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8],

’location’ = bottom], labels = [Time, q__13(t)],

labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])],

resolution = 8000000);

The following code is for figure 3.10

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]), h[2] = 0 .. t-h[1]),

h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]),

h[13] = 0 .. t-h[2]), h[2] = 0 .. t);
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P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(W[1] > 0) := lambda[11]/A;

P(W[3] > 0) := lambda[11]/A;

P(W[2] > 0) := lambda[2]/B;

q14t := ‘&x‘(‘&x‘(‘&x‘(P(W[1] > 0), P(W[2] > 0)),

P(W[3] > 0)), [P(H__1+H__2+H__3 < t)

-P(H__1+H__2+H__3+H__4 < t)]);

f := proc (A, B) options operator, arrow; (A^2*B*t*exp(-A*t)

-A*B^2*t*exp(-A*t)-A^2*exp(-B*t)+2*B*A*exp(-A*t)

-B^2*exp(-A*t)+A^2-2*B*A+B^2)/(A-B)^2+(A^3*B*exp(-B*t)*t

-A^2*B^2*exp(-B*t)*t+A^2*B^2*exp(-A*t)*t-A*B^3*exp(-A*t)*t

+A^3*exp(-B*t)-3*A^2*B*exp(-B*t)+3*A*B^2*exp(-A*t)-B^3*exp(-A*t)

-A^3+3*A^2*B-3*A*B^2+B^3)/(A-B)^3 end proc;

NULL;

lambda__11 = [0.25e-1, 0.33e-1, 0.5e-1, .1];

alpha__z = 0.26e-2;

A = [0.25e-1+0.26e-2, 0.3333e-1+0.26e-2, 0.5e-1+0.26e-2,

.1+0.26e-2];

lambda__2 = .25;

B = .25+0.52e-2;

alpha__2 = 0.52e-2;

f(0.276e-1, .2552);

f(0.3593e-1, .2552);

f(0.526e-1, .2552);

f(.1026, .2552);

.25*0.25e-1^2/(.2552*0.276e-1^2);

.25*0.33e-1^2/(.2552*0.3593e-1^2);

.25*0.5e-1^2/(.2552*0.526e-1^2);

.25*.1^2/(.2552*.1026^2);

functionlist := [.8037503811*f(0.276e-1, .2552),

.8263666539*f(0.3593e-1, .2552),

.8851723898*f(0.526e-1, .2552), .9306033618*f(.1026, .2552)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__11 = 0.25e-1, lambda__2 = 0.33e-1,

lambda__2 = 0.5e-1, lambda__2 = .1];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k], k = [1, 2, 3, 4])],

’legend’ = [seq(legendlist[k], k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8],

’location’ = bottom],
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labels = [Time, q__14(t)], labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])],

resolution = 8000000);

The following code is for figure 3.11

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]),

h[2] = 0 .. t-h[1]), h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]),

h[13] = 0 .. t-h[2]), h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(W[1] > 0) := lambda[11]/A;

P(W[3] > 0) := lambda[11]/A;

P(W[2] > 0) := lambda[2]/B;

q14t := ‘&x‘(‘&x‘(‘&x‘(P(W[1] > 0), P(W[2] > 0)),

P(W[3] > 0)), [P(H__1+H__2+H__3 < t)-P(H__1

+H__2+H__3+H__4 < t)]);

NULL;

f := proc (A, B) options operator, arrow; (A^2*B*t*exp(-A*t)

-A*B^2*t*exp(-A*t)-A^2*exp(-B*t)

+2*B*A*exp(-A*t)-B^2*exp(-A*t)+A^2-2*B*A+B^2)/(A-B)^2

+(A^3*B*exp(-B*t)*t-A^2*B^2*exp(-B*t)*t+A^2*B^2*exp(-A*t)*t-A*B^3*exp(-A*t)*t

+A^3*exp(-B*t)-3*A^2*B*exp(-B*t)+3*A*B^2*exp(-A*t)-B^3*exp(-A*t)-A^3

+3*A^2*B-3*A*B^2+B^3)/(A-B)^3 end proc;

lambda__11 = 0.5e-1;

alpha__z = 0.26e-2;

A = 0.526e-1;

lambda__2 = [1/12.0, 1/8.0, 1/4.0, 1/2.0];

B = [1/12.0+0.52e-2, 1/8.0+0.52e-2, 1/4.0+0.52e-2,

1/2.0+0.52e-2];

alpha__2 = 0.52e-2;

f(0.526e-1, 0.8853e-1);
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f(0.526e-1, .1302);

f(0.526e-1, .2552);

f(0.526e-1, .5052);

0.8333e-1*0.5e-1^2/(0.8853e-1*0.526e-1^2);

.125*0.5e-1^2/(.1302*0.526e-1^2);

.25*0.5e-1^2/(.2552*0.526e-1^2);

.5*0.5e-1^2/(.5052*0.526e-1^2);

functionlist := [.8505100268*f(0.526e-1, 0.8853e-1),

.8674961362*f(0.526e-1, .1302), .8851723898*f(0.526e-1, .2552), .8942834278*f(0.526e-1, .5052)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__2 = 0.833e-1, lambda__2 = .125,

lambda__2 = .25, lambda__2 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])],

t = 1 .. 53,

’colour’ = [seq(colorlist[k], k = [1, 2, 3, 4])],

’legend’ = [seq(legendlist[k],

k = [1, 2, 3, 4])], ’legendstyle’ = [’font’ = [TIMES, ROMAN, 8],

’location’ = bottom], labels = [Time, q__14(t)],

labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])],

resolution = 8000000);

The following code is for figure 3.12

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]),

h[2] = 0 .. t-h[1]), h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]),

h[13] = 0 .. t-h[2]), h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(W[1] > 0) := lambda[11]/A;

P(W[3] > 0) := lambda[11]/A;
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P(W[2] > 0) := lambda[2]/B;

P(W[4] > 0) := lambda[2]/B;

q15t := ‘&x‘(‘&x‘(‘&x‘(‘&x‘(P(W[1] > 0), P(W[2] > 0)),

P(W[3] > 0)), P(W[4] > 0)),

[P(H__1+H__2+H__3+H__4 < t)]);

f := proc (A, B) options operator, arrow; -(A^3*B*exp(-B*t)*t

-A^2*B^2*exp(-B*t)*t

+A^2*B^2*exp(-A*t)*t-A*B^3*exp(-A*t)*t+A^3*exp(-B*t)

-3*A^2*B*exp(-B*t)+3*A*B^2*exp(-A*t)

-B^3*exp(-A*t)-A^3+3*A^2*B-3*A*B^2+B^3)/(A-B)^3 end proc;

NULL;

lambda__11 = [0.25e-1, 0.3333e-1, 0.5e-1, .1];

alpha__z = 0.26e-2;

A = [0.25e-1+0.26e-2, 0.3333e-1+0.26e-2, 0.5e-1+0.26e-2,

.1+0.26e-2];

lambda__2 = .25;

B = .2552;

f(0.276e-1, .2552);

f(0.3593e-1, .2552);

f(0.526e-1, .2552);

f(.1026, .2552);

0.25e-1^2*.25^2/(0.276e-1^2*.2552^2);

0.3333e-1^2*.25^2/(0.3593e-1^2*.2552^2);

0.5e-1^2*.25^2/(0.526e-1^2*.2552^2);

.1^2*.25^2/(.1026^2*.2552^2);

functionlist := [.7873730222*f(0.276e-1, .2552),

.8257999841*f(0.3593e-1, .2552), .8671359617*f(0.526e-1, .2552),

.9116412243*f(.1026, .2552)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__11 = 0.25e-1, lambda__11 = 0.333e-1,

lambda__11 = 0.5e-1, lambda__11 = .1];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k], k = [1, 2, 3, 4])],

’legend’ = [seq(legendlist[k],

k = [1, 2, 3, 4])], ’legendstyle’ = [’font’ = [TIMES, ROMAN, 8],

’location’ = bottom], labels = [Time, q__15(t)],

labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])],

resolution = 8000000);

The following code is for figure 3.13

f(h[1]) := A*exp(-A*h[1]);
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f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]),

h[2] = 0 .. t-h[1]), h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]),

h[13] = 0 .. t-h[2]), h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(W[1] > 0) := lambda[11]/A;

P(W[3] > 0) := lambda[11]/A;

P(W[2] > 0) := lambda[2]/B;

P(W[4] > 0) := lambda[2]/B;

q15t := ‘&x‘(‘&x‘(‘&x‘(‘&x‘(P(W[1] > 0), P(W[2] > 0)),

P(W[3] > 0)), P(W[4] > 0)), [P(H__1+H__2+H__3+H__4 < t)]);

NULL;

f := proc (A, B) options operator, arrow; -(A^3*B*exp(-B*t)*t

-A^2*B^2*exp(-B*t)*t+A^2*B^2*exp(-A*t)*t-A*B^3*exp(-A*t)*t

+A^3*exp(-B*t)-3*A^2*B*exp(-B*t)+3*A*B^2*exp(-A*t)-B^3*exp(-A*t)

-A^3+3*A^2*B-3*A*B^2+B^3)/(A-B)^3 end proc;

lambda__11 = 0.5e-1;

alpha__z = 0.26e-2;

A = 0.526e-1;

lambda__2 = [1/12.0, 1/8.0, 1/4.0, 1/2.0];

B = [1/12.0+0.52e-2, 1/8.0+0.52e-2, 1/4.0+0.52e-2,

1/2.0+0.52e-2];

f(0.526e-1, 0.8853e-1);

f(0.526e-1, .1302);

f(0.526e-1, .2552);

f(0.526e-1, .5052);

0.5e-1^2*0.833e-1^2/(0.526e-1^2*0.8853e-1^2);

0.5e-1^2*.125^2/(0.526e-1^2*.1302^2);

0.5e-1^2*.25^2/(0.526e-1^2*.2552^2);

0.5e-1^2*.5^2/(0.526e-1^2*.5052^2);

functionlist := [.7999771728*f(0.526e-1, 0.8853e-1),

.8328495931*f(0.526e-1, .1302),

.8671359617*f(0.526e-1, .2552), .8850786103*f(0.526e-1, .5052)];
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colorlist := [red, blue, purple, yellow];

legendlist := [lambda__2 = 0.833e-1, lambda__2 = .125,

lambda__2 = .25, lambda__2 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k], k = [1, 2, 3, 4])],

’legend’ = [seq(legendlist[k],

k = [1, 2, 3, 4])], ’legendstyle’ = [’font’ = [TIMES, ROMAN, 8],

’location’ = bottom], labels = [Time, q__15(t)],

labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])],

resolution = 8000000);

The following code is for figure 3.15

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]), h[2] = 0 .. t-h[1]),

h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]),

h[13] = 0 .. t-h[2]), h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5 < t) := int(int(f(h[135])*f(h[24]),

h[24] = 0 .. t-h[135]), h[135] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5+H__6 < t) := int(int(f(h[135])*f(h[246]),

h[246] = 0 .. t-h[135]), h[135] = 0 .. t);

P(W[1] > 0) := lambda[11]/A;

P(W[3] > 0) := lambda[11]/A;

P(W[2] > 0) := lambda[2]/B;

P(W[4] > 0) := lambda[2]/B;

P(W[6] > 0) := lambda[2]/B;

P(W[5] > 0) := lambda[11]/A;

q15t := ‘&x‘(‘&x‘(‘&x‘(‘&x‘(P(W[1] > 0), P(W[2] > 0)),

P(W[3] > 0)), P(W[4] > 0)), [P(H__1+H__2+H__3+H__4 < t)
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-P(H__1+H__2+H__3+H__4+H__5 < t)]);

f := proc (A, B) options operator, arrow; -(A^3*B*exp(-B*t)*t

-A^2*B^2*exp(-B*t)*t+A^2*B^2*exp(-A*t)*t-A*B^3*exp(-A*t)*t

+A^3*exp(-B*t)-3*A^2*B*exp(-B*t)+3*A*B^2*exp(-A*t)

-B^3*exp(-A*t)-A^3+3*A^2*B-3*A*B^2+B^3)/(A-B)^3

+(1/2)*(A^4*B^2*exp(-A*t)*t^2-2*A^3*B^3*exp(-A*t)*t^2

+A^2*B^4*exp(-A*t)*t^2+2*A^4*B*exp(-B*t)*t

-2*A^3*B^2*exp(-B*t)*t

+6*A^3*B^2*exp(-A*t)*t-8*A^2*B^3*exp(-A*t)*t

+2*A*B^4*exp(-A*t)*t+2*A^4*exp(-B*t)-8*A^3*B*exp(-B*t)

+12*A^2*B^2*exp(-A*t)

-8*A*B^3*exp(-A*t)+2*B^4*exp(-A*t)-2*A^4+8*A^3*B-12*A^2*B^2

+8*A*B^3-2*B^4)/(A-B)^4 end proc;

lambda__11 = [1/20.0, 1/10.0, 1/5.0, 1/2.0];

alpha__z = 0.26e-2;

A = [1/20.0+0.26e-2, 1/10.0+0.26e-2, 1/5.0+0.26e-2, 1/2.0+0.26e-2];

NULL;

lambda__2 = .25;

B = .25+0.52e-2;

f(0.526e-1, .2552);

f(.1026, .2552);

f(.2026, .2552);

f(.5026, .2552);

0.5e-1^2*.25^2/(0.526e-1^2*.2552^2);

.1^2*.25^2/(.1026^2*.2552^2);

.2^2*.25^2/(.2026^2*.2552^2);

.5^2*.25^2/(.5026^2*.2552^2);

functionlist := [.8671359617*f(0.526e-1, .2552),

.9116412243*f(.1026, .2552),

.9351898543*f(.2026, .2552), .9497596557*f(.5026, .2552)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__11 = 0.5e-1, lambda__11 = .1,

lambda__11 = .2, lambda__11 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k], k = [1, 2, 3, 4])],

’legend’ = [seq(legendlist[k],

k = [1, 2, 3, 4])], ’legendstyle’ = [’font’ = [TIMES, ROMAN, 8],

’location’ = bottom], labels = [Time, q__15(t)],

labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])],
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resolution = 8000000);

The following code is for figure 3.16

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]),

h[2] = 0 .. t-h[1]), h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]),

h[13] = 0 .. t-h[2]), h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5 < t) := int(int(f(h[135])*f(h[24]),

h[24] = 0 .. t-h[135]), h[135] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5+H__6 < t) := int(int(f(h[135])*f(h[246]),

h[246] = 0 .. t-h[135]), h[135] = 0 .. t);

P(W[1] > 0) := lambda[11]/A;

P(W[3] > 0) := lambda[11]/A;

P(W[2] > 0) := lambda[2]/B;

P(W[4] > 0) := lambda[2]/B;

P(W[6] > 0) := lambda[2]/B;

P(W[5] > 0) := lambda[11]/A;

q15t := ‘&x‘(‘&x‘(‘&x‘(‘&x‘(P(W[1] > 0), P(W[2] > 0)),

P(W[3] > 0)), P(W[4] > 0)), [P(H__1+H__2+H__3+H__4 < t)

-P(H__1+H__2+H__3+H__4+H__5 < t)]);

f := proc (A, B) options operator, arrow; -(A^3*B*exp(-B*t)*t

-A^2*B^2*exp(-B*t)*t+A^2*B^2*exp(-A*t)*t

-A*B^3*exp(-A*t)*t+A^3*exp(-B*t)-3*A^2*B*exp(-B*t)

+3*A*B^2*exp(-A*t)-B^3*exp(-A*t)-A^3+3*A^2*B-3*A*B^2

+B^3)/(A-B)^3+(1/2)*(A^4*B^2*exp(-A*t)*t^2

-2*A^3*B^3*exp(-A*t)*t^2+A^2*B^4*exp(-A*t)*t^2

+2*A^4*B*exp(-B*t)*t-2*A^3*B^2*exp(-B*t)*t+6*A^3*B^2*exp(-A*t)*t

-8*A^2*B^3*exp(-A*t)*t+2*A*B^4*exp(-A*t)*t
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+2*A^4*exp(-B*t)-8*A^3*B*exp(-B*t)

+12*A^2*B^2*exp(-A*t)-8*A*B^3*exp(-A*t)

+2*B^4*exp(-A*t)-2*A^4+8*A^3*B-12*A^2*B^2

+8*A*B^3-2*B^4)/(A-B)^4 end proc;

NULL;

lambda__11 = .2;

alpha__z = 0.26e-2;

A = .2026;

lambda__2 = [1/12.0, 1/8.0, 1/4.0, 1/2.0];

B = [1/12.0+0.52e-2, 1/8.0+0.52e-2, 1/4.0+0.52e-2,

1/2.0+0.52e-2];

f(.2026, 0.8853e-1);

f(.2026, .1302);

f(.2026, .2552);

f(.2026, .5052);

.2^2*0.8333333333e-1^2/(.2026^2*0.8853e-1^2);

.2^2*.125^2/(.2026^2*.1302^2);

.2^2*.25^2/(.2026^2*.2552^2);

.2^2*.5^2/(.2026^2*.5052^2);

functionlist := [.8634509842*f(.2026, 0.8853e-1),

.8982126493*f(.2026, .1302),

.9351898543*f(.2026, .2552), .9545406634*f(.2026, .5052)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__2 = 0.833e-1, lambda__2 = .125,

lambda__2 = .25, lambda__2 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k],

k = [1, 2, 3, 4])], ’legend’ = [seq(legendlist[k], k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8], ’location’ = bottom],

labels = [Time, q__15(t)], labeldirections = ["horizontal", "vertical"],

linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])],

resolution = 8000000);

The following code is for figure 3.17

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

137



P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]),

h[2] = 0 .. t-h[1]), h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]),

h[13] = 0 .. t-h[2]), h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5 < t) := int(int(f(h[135])*f(h[24]),

h[24] = 0 .. t-h[135]), h[135] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5+H__6 < t) := int(int(f(h[135])*f(h[246]),

h[246] = 0 .. t-h[135]), h[135] = 0 .. t);

P(W[1] > 0) := lambda[11]/A;

P(W[3] > 0) := lambda[11]/A;

P(W[2] > 0) := lambda[2]/B;

P(W[4] > 0) := lambda[2]/B;

P(W[6] > 0) := lambda[2]/B;

P(W[5] > 0) := lambda[11]/A;

q16t := ‘&x‘(‘&x‘(‘&x‘(‘&x‘(‘&x‘(P(W[1] > 0), P(W[2] > 0)), P(W[3] > 0)),

P(W[4] > 0)), P(W[5] > 0)), [P(H__1+H__2+H__3+H__4+H__5 < t)

-P(H__1+H__2+H__3+H__4+H__5+H__6 < t)]);

f := proc (A, B) options operator, arrow; -(1/2)*(A^4*B^2*exp(-A*t)*t^2

-2*A^3*B^3*exp(-A*t)*t^2+A^2*B^4*exp(-A*t)*t^2

+2*A^4*B*exp(-B*t)*t-2*A^3*B^2*exp(-B*t)*t+6*A^3*B^2*exp(-A*t)*t

-8*A^2*B^3*exp(-A*t)*t+2*A*B^4*exp(-A*t)*t

+2*A^4*exp(-B*t)-8*A^3*B*exp(-B*t)+12*A^2*B^2*exp(-A*t)-8*A*B^3*exp(-A*t)

+2*B^4*exp(-A*t)-2*A^4+8*A^3*B-12*A^2*B^2+8*A*B^3-2*B^4)/(A-B)^4

+(1/2)*(A^5*B^2*exp(-B*t)*t^2-A^4*B^3*exp(-A*t)*t^2-2*A^4*B^3*exp(-B*t)*t^2

+2*A^3*B^4*exp(-A*t)*t^2+A^3*B^4*exp(-B*t)*t^2-A^2*B^5*exp(-A*t)*t^2

+2*A^5*B*exp(-B*t)*t-10*A^4*B^2*exp(-B*t)*t-8*A^3*B^3*exp(-A*t)*t

+8*A^3*B^3*exp(-B*t)*t+10*A^2*B^4*exp(-A*t)*t-2*A*B^5*exp(-A*t)*t

+2*A^5*exp(-B*t)-10*A^4*B*exp(-B*t)+20*A^3*B^2*exp(-B*t)-20*A^2*B^3*exp(-A*t)

+10*A*B^4*exp(-A*t)-2*B^5*exp(-A*t)-2*A^5+10*A^4*B-20*A^3*B^2+20*A^2*B^3-10*A*B^4+2*B^5)/(A-B)^5 end proc;

NULL;

lambda__11 = [0.5e-1, .1, .2, .5];

alpha__z = 0.26e-2;

A = [0.5e-1+0.26e-2, .1+0.26e-2, .2+0.26e-2, .5+0.26e-2];

lambda__2 = .25;

B = .2552;

f(0.526e-1, .2552);

f(.1026, .2552);

f(.2026, .2552);

f(.5026, .2552);
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0.5e-1^3*.25^2/(0.526e-1^3*.2552^2);

.1^3*.25^2/(.1026^3*.2552^2);

.2^3*.25^2/(.2026^3*.2552^2);

.5^3*.25^2/(.5026^3*.2552^2);

functionlist := [.8242737280*f(0.526e-1, .2552), .8885392050*f(.1026, .2552),

.9231884049*f(.2026, .2552), .9448464538*f(.5026, .2552)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__11 = 0.5e-1, lambda__11 = .1, lambda__11 = .2, lambda__11 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k],

k = [1, 2, 3, 4])], ’legend’ = [seq(legendlist[k],

k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8],

’location’ = bottom], labels = [Time, q__16(t)],

labeldirections = ["horizontal", "vertical"], ’linestyle’ = [seq(linestylelist[k],

k = [1, 2, 3, 4])], resolution = 8000000);

The following code is for figure 3.18

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]), h[2] = 0 .. t-h[1]),

h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]), h[13] = 0 .. t-h[2]),

h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5 < t) := int(int(f(h[135])*f(h[24]),

h[24] = 0 .. t-h[135]), h[135] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5+H__6 < t) := int(int(f(h[135])*f(h[246]),

h[246] = 0 .. t-h[135]), h[135] = 0 .. t);

q16t := P(H__1+H__2+H__3+H__4+H__5 < t)

-P(H__1+H__2+H__3+H__4+H__5+H__6 < t);

f := proc (A, B) options operator, arrow;

-(1/2)*(A^4*B^2*exp(-A*t)*t^2-2*A^3*B^3*exp(-A*t)*t^2
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+A^2*B^4*exp(-A*t)*t^2+2*A^4*B*exp(-B*t)*t-2*A^3*B^2*exp(-B*t)*t

+6*A^3*B^2*exp(-A*t)*t-8*A^2*B^3*exp(-A*t)*t

+2*A*B^4*exp(-A*t)*t+2*A^4*exp(-B*t)-8*A^3*B*exp(-B*t)

+12*A^2*B^2*exp(-A*t)-8*A*B^3*exp(-A*t)

+2*B^4*exp(-A*t)-2*A^4+8*A^3*B-12*A^2*B^2

+8*A*B^3-2*B^4)/(A-B)^4

+(1/2)*(A^5*B^2*exp(-B*t)*t^2-2*A^4*B^3*exp(-B*t)*t^2

-A^4*B^3*exp(-A*t)*t^2+A^3*B^4*exp(-B*t)*t^2

+2*A^3*B^4*exp(-A*t)*t^2-A^2*B^5*exp(-A*t)*t^2

+2*A^5*B*exp(-B*t)*t-10*A^4*B^2*exp(-B*t)*t

+8*A^3*B^3*exp(-B*t)*t

-8*A^3*B^3*exp(-A*t)*t+10*A^2*B^4*exp(-A*t)*t

-2*A*B^5*exp(-A*t)*t+2*A^5*exp(-B*t)-10*A^4*B*exp(-B*t)

+20*A^3*B^2*exp(-B*t)-20*A^2*B^3*exp(-A*t)

+10*A*B^4*exp(-A*t)-2*B^5*exp(-A*t)-2*A^5

+10*A^4*B-20*A^3*B^2

+20*A^2*B^3-10*A*B^4+2*B^5)/(A-B)^5 end proc;

lambda__11 = .2;

alpha__z = 0.26e-2;

A = .2026;

lambda__2 = [1/12.0, 1/8.0, 1/4.0, 1/2.0];

B = [1/12.0+0.52e-2, 1/8.0+0.52e-2, 1/4.0+0.52e-2, 1/2.0+0.52e-2];

f(.2026, 0.8853e-1);

f(.2026, .1302);

f(.2026, .2552);

f(.2026, .5052);

.2^3*0.8333e-1^2/(.2026^3*0.88533e-1^2);

.2^3*.125^2/(.2026^3*.1302^2);

.2^3*.25^2/(.2026^3*.2552^2);

.2^3*.5^2/(.2026^3*.5052^2);

functionlist := [.8522442228*f(.2026, 0.8853e-1),

.8866857348*f(.2026, .1302),

.9231884049*f(.2026, .2552), .9422908823*f(.2026, .5052)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__2 = 0.833e-1, lambda__2 = .125,

lambda__2 = .25, lambda__2 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k],

k = [1, 2, 3, 4])], ’legend’ = [seq(legendlist[k],

k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8], ’location’ = bottom],

labels = [Time, q__16(t)], labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])], resolution = 8000000);

The following code is for figure 3.19

f(h[1]) := A*exp(-A*h[1]);
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f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]),

h[2] = 0 .. t-h[1]), h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]),

h[13] = 0 .. t-h[2]), h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5 < t) := int(int(f(h[135])*f(h[24]),

h[24] = 0 .. t-h[135]), h[135] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5+H__6 < t) := int(int(f(h[135])*f(h[246]),

h[246] = 0 .. t-h[135]), h[135] = 0 .. t);

q17t := P(H__1+H__2+H__3+H__4+H__5+H__6 < t);

f := proc (A, B) options operator, arrow;

-(1/2)*(A^5*B^2*exp(-B*t)*t^2-A^4*B^3*exp(-A*t)*t^2

-2*A^4*B^3*exp(-B*t)*t^2+2*A^3*B^4*exp(-A*t)*t^2

+A^3*B^4*exp(-B*t)*t^2-A^2*B^5*exp(-A*t)*t^2

+2*A^5*B*exp(-B*t)*t-10*A^4*B^2*exp(-B*t)*t

-8*A^3*B^3*exp(-A*t)*t+8*A^3*B^3*exp(-B*t)*t

+10*A^2*B^4*exp(-A*t)*t-2*A*B^5*exp(-A*t)*t

+2*A^5*exp(-B*t)-10*A^4*B*exp(-B*t)+20*A^3*B^2*exp(-B*t)

-20*A^2*B^3*exp(-A*t)+10*A*B^4*exp(-A*t)

-2*B^5*exp(-A*t)-2*A^5+10*A^4*B-20*A^3*B^2+20*A^2*B^3

-10*A*B^4+2*B^5)/(A-B)^5 end proc;

lambda__11 = [0.5e-1, .1, .2, .5];

alpha__z = 0.26e-2;

A = [0.5e-1+0.26e-2, .1+0.26e-2, .2+0.26e-2, .5+0.26e-2];

lambda__2 = .25;

B = .2552;

f(0.526e-1, .2552);

f(.1026, .2552);

f(.2026, .2552);

f(.5026, .2552);

0.5e-1^3*.25^3/(0.526e-1^3*.2552^3);

.1^3*.25^3/(.1026^3*.2552^3);
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.2^3*.25^3/(.2026^3*.2552^3);

.5^3*.25^3/(.5026^3*.2552^3);

functionlist := [.80747818170*f(0.526e-1, .2552),

.8704341741*f(.1026, .2552), .9043773555*f(.2026, .2552),

.9255940965*f(.5026, .2552)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__11 = 0.5e-1, lambda__11 = .1,

lambda__11 = .2, lambda__11 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k],

k = [1, 2, 3, 4])], ’legend’ = [seq(legendlist[k],

k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8], ’location’ = bottom],

labels = [Time, q__17(t)],

labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])],

resolution = 8000000);

The following code is for figure 3.20

f(h[1]) := A*exp(-A*h[1]);

f(h[2]) := B*exp(-B*h[2]);

f(h[3]) := A*exp(-A*h[3]);

f(h[4]) := B*exp(-B*h[4]);

f(h[5]) := A*exp(-A*h[5]);

f(h[6]) := B*exp(-B*h[6]);

f(h[13]) := A^2*h[13]*exp(-A*h[13]);

f(h[24]) := B^2*h[24]*exp(-B*h[24]);

f(h[135]) := (1/2)*A^3*h[135]^2*exp(-A*h[135]);

f(h[246]) := (1/2)*B^3*h[246]^2*exp(-B*h[246]);

P(H__1 < t) := int(f(h[1]), h[1] = 0 .. t);

P(H__1+H__2 < t) := int(int(f(h[1])*f(h[2]),

h[2] = 0 .. t-h[1]), h[1] = 0 .. t);

P(H__1+H__2+H__3 < t) := int(int(f(h[2])*f(h[13]),

h[13] = 0 .. t-h[2]), h[2] = 0 .. t);

P(H__1+H__2+H__3+H__4 < t) := int(int(f(h[13])*f(h[24]),

h[24] = 0 .. t-h[13]), h[13] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5 < t) := int(int(f(h[135])*f(h[24]),

h[24] = 0 .. t-h[135]), h[135] = 0 .. t);

P(H__1+H__2+H__3+H__4+H__5+H__6 < t) := int(int(f(h[135])*f(h[246]),

h[246] = 0 .. t-h[135]), h[135] = 0 .. t);

f := proc (A, B) options operator, arrow;

-(1/2)*(A^5*B^2*exp(-B*t)*t^2-2*A^4*B^3*exp(-B*t)*t^2

-A^4*B^3*exp(-A*t)*t^2+A^3*B^4*exp(-B*t)*t^2

+2*A^3*B^4*exp(-A*t)*t^2-A^2*B^5*exp(-A*t)*t^2
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+2*A^5*B*exp(-B*t)*t-10*A^4*B^2*exp(-B*t)*t

+10*A^2*B^4*exp(-A*t)*t-2*A*B^5*exp(-A*t)*t

+2*A^5*exp(-B*t)-10*A^4*B*exp(-B*t)

+20*A^3*B^2*exp(-B*t)-20*A^2*B^3*exp(-A*t)

+10*A*B^4*exp(-A*t)

-2*B^5*exp(-A*t)-2*A^5+10*A^4*B-20*A^3*B^2

+20*A^2*B^3-10*A*B^4+2*B^5)/(A-B)^5 end proc;

lambda__11 = .2;

alpha__z = 0.26e-2;

A = .2026;

lambda__2 = [1/12.0, 1/8.0, 1/4.0, 1/2.0];

B = [1/12.0+0.52e-2, 1/8.0+0.52e-2, 1/4.0+0.52e-2,

1/2.0+0.52e-2];

f(.2026, 0.8853e-1);

f(.2026, .1302);

f(.2026, .2552);

f(.2026, .5052);

.2^3*0.8333e-1^3/(.2026^3*0.88533e-1^3);

.2^3*.125^3/(.2026^3*.1302^3);

.2^3*.25^3/(.2026^3*.2552^3);

.2^3*.5^3/(.2026^3*.5052^3);

functionlist := [.8021586423*f(.2026, 0.8853e-1),

.8512727868*f(.2026, .1302),

.9043773555*f(.2026, .2552), .9325919264*f(.2026, .5052)];

colorlist := [red, blue, purple, yellow];

legendlist := [lambda__2 = 0.833e-1, lambda__2 = .125,

lambda__2 = .25, lambda__2 = .5];

linestylelist := [solid, dot, dash, dashdot];

plot([seq(functionlist[k], k = [1, 2, 3, 4])], t = 1 .. 53,

’colour’ = [seq(colorlist[k],

k = [1, 2, 3, 4])], ’legend’ = [seq(legendlist[k], k = [1, 2, 3, 4])],

’legendstyle’ = [’font’ = [TIMES, ROMAN, 8], ’location’ = bottom],

labels = [Time, q__17(t)], labeldirections = ["horizontal", "vertical"],

’linestyle’ = [seq(linestylelist[k], k = [1, 2, 3, 4])], resolution = 8000000);
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