GENETICS, DIVERSITY, AND DISTRIBUTION OF THE DIMETHYLSULFONIOPROPIONATE (DMSP) DEMETHYLASE IN MARINE BACTERIOPLANKTON

by

ERINN C. HOWARD

(Under the Direction of Mary Ann Moran)

ABSTRACT

The flux of dimethylsulfide (DMS) from ocean surface waters is the foremost natural source of sulfur to the atmosphere and influences climate via aerosol formation. Marine bacterioplankton can regulate sulfur flux by converting the precursor dimethylsulfoniopropionate (DMSP) either to DMS via a cleavage pathway or to sulfur compounds that are not climatically active via a demethylation pathway. The gene responsible for demethylating DMSP and diverting the sulfur to the climatically inactive form is identified here, and given the gene designation *dmdA*. The gene was present in cultured representatives of the Roseobacter and SAR11 taxa, suggesting these may be primary mediators of DMSP demethylation in the ocean. It was also found in the less abundant marine Rhodospiralles and in the OM60 clade of the gammaproteobacteria. Using metagenomic data from the 2007 Global Ocean Sampling (GOS) expedition, it was determined that 58% ($\pm9\%$) of prokaryotic cells in marine surface waters contain a *dmdA* homolog, giving them the genetic capability to demethylate DMSP. This metagenomic data also revealed five DmdA protein clades, designated A-E. All clades except Clade B harbor a *dmdA* from a cultured marine taxon (A, Roseobacter and Rhodospiralles; C and

D, SAR11; E, gammaproteobacteria OM60). However, G+C content analysis indicates that most clades are taxonomically heterogeneous. An analysis of *dmdA* sequences over the course of an induced phytoplankton bloom in Gulf of Mexico surface waters revealed that *dmdA* diversity is high. Saturation for gene clusters at the 90% similarity level was not reached in a rarefaction analysis of ~90,000 sequences. The representation of the five recognized clades of *dmdA* did not shift substantially over the course of the phytoplankton bloom compared to non-bloom controls, and there was no evidence for "bloom" and "non-bloom" clades. These results may not be surprising in light of recent data showing similarity in the kinetic parameters of purified proteins from representatives of two different DmdA clades. The pool of *dmdA* genes was predictable based on the taxonomic composition of the bacterioplankton but not from environmental variables, including DMSP supply and concentration. Together these studies indicate that a large and diverse fraction of marine surface water bacterioplankton are capable of participating in DMSP demethylation, a critical step in the marine sulfur cycle.

INDEX WORDS: DmdA, DMSP, Dimethylsulfoniopropionate, MeSH, Methanethiol, Roseobacters, Sulfur, Marine Bacteria, Microbial ecology

GENETICS, DIVERSITY, AND DISTRIBUTION OF THE DIMETHYLSULFONIOPROPIONATE (DMSP) DEMETHYLASE IN MARINE BACTERIOPLANKTON

by

ERINN C. HOWARD

B.S., Illinois Wesleyan University, 2003

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

© 2008

Erinn C. Howard

All Rights Reserved

GENETICS, DIVERSITY, AND DISTRIBUTION OF THE DIMETHYLSULFONIOPROPIONATE (DMSP) DEMETHYLASE IN MARINE BACTERIOPLANKTON

by

ERINN C. HOWARD

Major Professor:

Mary Ann Moran

Committee:

James T. Hollibaugh Eric V. Stabb William B. Whitman

Electronic Version Approved:

Maureen Grasso Dean of the Graduate School The University of Georgia December 2008

DEDICATION

I wish to dedicate this work to my greatest source of inspiration, support, love, and encouragement, my family, without whom I'd be lost; my wonderful mother and traveling companion, Patricia Ann (Bowling) Howard, my awesome brother, Joseph A. Howard, Jr., my Godmother, Marjorie Bowling, my grandparents Nana and Bob (Veronica and Robert Bowling), and all the rest of the clan. I love you all very much!

I also dedicate this work to my friend Bijal P. Patel, you will be forever missed.

ACKNOWLEDGEMENTS

I wish to thank my advisor, Mary Ann Moran, who has provided endless support and guidance; I couldn't have asked for a better advisor. I would also like to thank my committee members, Tim Hollibaugh, Eric Stabb and Barny Whitman for always challenging me and providing excellent feedback over the years. Thanks to Dr. Jon Dey who first sparked my interest in microbiology and encouraged me to pursue it.

I also wish to extend my gratitude to all my friends and colleagues who have supported, encouraged and assisted me, including: my entering microbiology classmates, Laura Williams, Elizabeth Burgess, Dana Cook, Theresa Rogers, Susmitha Seshadra, Noha Mesbah, Yuchen Liu, and Bijal Patel; my poker buddies, Clint Page, Andy Nuss, Ryan Aylsworth, Andrea Zbell, Ken Bradshaw, and Jess Edwards; all other marine science or microbiology friends, past and present, Chris Lasher, Wendy Ye, Ryan Brown, Jacob Shalack, Justine Lyons, Adair Johnson, Kathy (Loftis) Bowles, Vanessa Varaljay, Scott Gifford, Marshall Bowles, Cedric Fichot, Matt First, Kate Segarra, Megan Machmuller, Peter Baas, and everyone not mentioned here!

And finally I wish to thank my college roommate, Irene (Masiulis) Bowen, who always supported me, Bill Porubsky who always believes in me, and Erin Biers who is a great friend, confidant, source of encouragement, and a fellow Alias fan (seasons 1-3).

TABLE OF CONTENTS

Pag	;e
CKNOWLEDGEMENTS	V
IAPTER	
1 INTRODUCTION AND LITERATURE REVIEW	1
2 BACTERIAL TAXA THAT LIMIT SULFUR FLUX FROM THE OCEAN2	3
3 ABUNDANT AND DIVERSE BACTERIA INVOLVED IN DMSP	
DEGRADATION IN MARINE SURFACE WATERS4	0
4 RESPONSE OF DMSP DEMETHYLATION GENES TO AN INDUCED	
PHYTOPLANKTON BLOOM IN GULF OF MEXICO SEAWATER8	3
5 CONCLUSIONS11	6
PPENDICES	
A CHAPTER 2 SUPPLEMENTARY MATERIAL	0
B CHAPTER 3 SUPPLEMENTARY MATERIAL	1

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Dimethylsulfoniopropionate (DMSP) is produced by various marine seaweeds and phytoplankton. It was first found in *Polysiphonia fastigiata* (11) and subsequently found in several marine algae, including *Polysiphonia lanosa* (10), *Enteromorpha intestinalis* (12), *Ulva lactuca* (12), as well as several non-marine plants (12). Findings suggest that DMSP is synthesized from methionine in these seaweeds and plants (2, 12, 48). Subsequent research showed DMSP production in more than just marine seaweeds, but also in marine phytoplankton (2, 68, 81). Due to the similar structure of DMSP to glycine betaine, a known osmolyte (31), combined with experimental support (17), it is hypothesized that DMSP is synthesized primarily for use as an osmolyte by marine phytoplankton (10, 68). Subsequent research showed that marine phytoplankton also can produce DMSP for use as a predator deterrent (82) and an antioxidant (63).

I. Climatic impacts of DMSP cleavage to dimethylsulfide (DMS)

Early studies concerning oceanic sulfur dynamics hypothesized hydrogen sulfide (H_2S) in the ocean surface as a significant source of sulfur to the atmosphere (29). However, the work of Lovelock, Maggs, and Rasmussen (46) found otherwise. Due to the fact that H_2S could not be detected in high concentrations in the atmosphere, and that ocean surface waters are too oxidizing to allow H_2S to be present in the concentrations necessary to support the atmospheric

equilibrium necessary (28, 46, 47), Lovelock and colleagues (46) suggested that the largest source of sulfur from the ocean to the atmosphere is dimethylsulfide (DMS). Subsequently, a globally representative dataset on the distribution and emission of DMS from the oceans (6) determined that the exchange of DMS across the ocean-atmosphere boundary amounts to ~20 Tg of sulfur annually (33, 60). Due to early studies suggesting that bacteria were not likely involved in ocean nutrient dynamics, least of all DMSP cleavage (11, 85), and neglecting studies that showed marine bacteria being highly involved in the ocean food web as well as in DMSP degradation (56, 79), it was originally hypothesized that phytoplankton were the primary organisms degrading DMSP (6, 10, 13, 15, 66).

Once DMS is released from the ocean into the atmosphere, it primarily becomes oxidized to form non-sea-salt sulfate aerosol particles (SO₄²⁻; 13, 46); intermediate oxidation products can include dimethylsulfoxide (DMSO), carbonyl sulfide (COS), methane sulfonate, and sulfide (SO₂⁻; 2, 4, 13, 45). These particles are termed cloud condensation nuclei (CCN) and are the nuclei around which water droplets accumulate to form clouds (13, 80). While some evidence exists to the contrary (83), it is widely accepted that DMS production influences global climate in this fashion (3, 45).

The discovery that DMS is the primary natural source of sulfur from the ocean to the atmosphere and leads to cloud formation caused Charlson, Lovelock, Andreae, and Warren (13) to develop the CLAW hypothesis of DMSP degradation. The CLAW hypothesis suggests a negative feedback loop between phytoplankton DMSP production and DMS evolution with subsequent cloud formation. In this feedback loop, DMS released into the atmosphere leading to cloud formation acts to cover the ocean. This cloud cover allows less light to reach the ocean surface thus causing the decline of phytoplankton populations and DMSP produced. Less DMSP

production means less is available for DMS production, release into the atmosphere, and subsequent cloud formation. This idea was the first DMSP degradation regulation hypothesis widely considered and is found in textbooks today (13, 18, 69).

However, initial studies attempting to correlate DMS production with chlorophyll (Chl a) concentrations were unsuccessful or weak, at best (6, 34, 59, 66, 67). Part of this failure is hypothesized to be from overlooking the significance of non-DMSP producing phytoplankton (60, 67, 74) and the fact that DMS released from one bloom would not lead to cloud formation directly over that same bloom (59). Clearly DMS production and Chl a concentration are part of an even more complex picture of DMSP degradation than was initially assumed (5, 60). To further complicate understanding, zooplankton grazing might obscure the relationship between phytoplankton concentrations and DMS release (15), and anaerobic sediment bacteria in estuaries can contribute to overall DMS (and methanethiol, see below) consumption (35) and production (70, 71). Coral reefs have also been implicated in DMS release (8). Finally, vertical mixing of the oceanic water column might play a role in DMS release from the ocean boundary (61). However these complicating factors may be minor issues for the Chl a:DMS ratio conundrum compared to the large number of more recent studies finding that bacterioplankton communities and individual bacterial isolates can actually degrade DMSP to DMS or MeSH (via MMPA; 44, 64, 76) and do this predominantly, in larger amounts than do phytoplankton (59, 87).

II. DMSP Demethylation: The alternative pathway

While focus had been primarily on DMS production from DMSP in marine waters, studies by Ledyard and Dacey (43) and Kiene (36), and others (50, 75, 86), found that DMSP was degraded more commonly via the demethylation pathway (~80%) as opposed to the

cleavage pathway (~20%) in natural marine surface water communities. In the demethylation pathway, a methyl group is removed from the DMSP sulfur leaving 3-methyl mercaptopropionate (MMPA; 24, 36). In some bacteria, degradation proceeds further to methanethiol (MeSH) and acrylate or propionate (24, 71). The DMSP methyl group was found to be transferred to tetrahydrofolate and later to homocysteine, forming methionine (11, 32, 42, 78). This finding suggested that while DMS is the main source of sulfur from the ocean to the atmosphere, its production is rivaled by the demethylation of DMSP. DMSP demethylation effectively prohibits sulfur from becoming climatically active due to the removal of a methyl group and elimination of DMS as a possible degradation product (36, 64).

Studies of natural marine bacterioplankton communities found that, contrary to previous research suggesting that sulfate is the only sulfur source for bacterial communities (14), 15-40% of the DMSP-sulfur (via the demethylation pathway) actually becomes incorporated into sulfurcontaining amino acids (24, 37, 39, 86), making DMSP an important sulfur source for marine bacterioplankton (61). It also represents an important carbon source for the marine microbial food web (30, 37, 38, 50, 84, 86). As well, DMSP is used by bacteria as a predator deterrent (82), an osmolyte (40, 55, 62), and an "anti-freeze" (40).

III. Marine bacterioplankton that degrade DMSP

Recent studies have focused on determining the groups of bacteria that are primarily responsible for DMSP consumption. The group found in abundance in DMSP-producing phytoplankton blooms and shown to be a consumer of DMSP-sulfur (via both pathways) is an alpha proteobacterial group, later determined to be the roseobacter clade (24-26, 51, 53, 54, 75). In the open ocean, 1 in 10 bacterial cells is a member of the roseobacter clade (21); this number increases to 1 in 5 cells in coastal or eutrophic waters (16, 25, 65, 77), making them dominant

members of the surface ocean bacterial community (9, 16). This group of marine bacteria has been found to contain large genomes, hypothesized to allow greater flexibility in trophic strategy. They also harbor more rRNA operons than many other marine bacteria (7, 52, 53), hypothesized to give faster response times to fast-changing environmental conditions. Together, these characteristics make roseobacters a versatile group both metabolically and ecologically (1, 9, 41, 52, 53). By comparison, the ubiquitous SAR11 marine cluster of bacteria, also abundant and found to be important in DMSP degradation (26, 49, 75), contains small, highly streamlined genomes with just one rRNA operon. These characterisitics suggest SAR11s are optimized for highly oligotrophic conditions (1, 22, 52).

DMSP is degraded primarily by bacterioplankton in the surface ocean, and this degradation is primarily via the demethylation pathway (24, 36). While hypotheses exist (13, 62), studies have not yet been able to conclusively elucidate the regulation of the demethylation and cleavage degradation pathways. What causes a marine surface water bacterial community, or an individual bacterium to demethylate or cleave DMSP? The genes involved in the bacterial degradation of DMSP will provide effective tools for understanding the regulation of DMSP degradation and allow (via mRNA transcript and protein analysis) studies of the factors inducing gene expression. Because marine bacterioplankton communities demethylate ~80% of DMSP (24, 36), the first gene involved in demethylating DMSP to MMPA was selected as the focus of this dissertation. Roseobacters are valuable model organisms for this effort (23, 26, 57, 86). The first sequenced organism in the Roseobacter clade, *Silicibacter pomeroyi* DSS-3 (23), can both demethylate and cleave DMSP (24, 39), making it a prime candidate for gene-discovery research.

IV. Objectives

In the first study, a transposon-insertion mutant library using the model marine Roseobacter *Silicibacter pomeroyi* DSS-3 was employed to discover the DMSP demethylation gene. Other sequenced marine bacteria containing this gene, designated *dmdA*, were identified based on sequence identity and heterologous expression. The abundance of *dmdA* in surface water bacterioplankton from the Sargasso Sea was estimated from metagenomic sequences collected as part of the Global Ocean Sampling (73).

In the second study, the focus turned to the abundance, distribution, and diversity of *dmdA* in surface waters of the ocean. The 2007 release of the Global Ocean Sampling dataset provided an enormous resource of 7.7 million sequence reads (6.3 billion bp) from surface water bacterioplankton located along a transect from the Northwestern Atlantic to the Eastern Tropical Pacific Ocean (58). In addition to this data, newly sequenced genomes were mined to look for the presence of *dmdA*, and to characterize the neighboring genes. Finally, the %G+C content of these *dmdA*s from natural populations and cultured strains was examined to investigate the importance of horizontal gene transfer.

For the final study, a universal primer set was designed for the DMSP demethylation gene (72) and used to amplify *dmdA* throughout an induced phytoplankton bloom using Gulf of Mexico surface water. Relative changes in the diversity of this gene in conjunction with chemical data were tracked throughout the bloom. Along with the amplification of this gene, 16S rRNA genes from Bacteria and Archaea were also amplified to relate community composition changes to those of *dmdA*.

These studies set up the basis for further genetic and culture-based studies to understand the complex regulation and community interaction networks that determine the fate of DMSP in the ocean.

References

- Alonso, C., and J. Pernthaler. 2006. *Roseobacter* and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environmental Microbiology 8:2022-2030.
- Andreae, M. 1990. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Marine Chemistry 30:1-29.
- 3. Andreae, M. O. 2007. Aerosols before pollution. Science 315:50-51.
- Andreae, M. O., R. J. Charlson, F. Bruynseels, H. Storms, R. Van Grieken, and W. Maenhaut. 1986. Internal Mixture of Sea Salt, Silicates, and Excess Sulfate in Marine Aerosols Science 232:1620 - 1623.
- Andreae, M. O., and P. J. Crutzen. 1997. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science 276:1052-1058.
- Andreae, M. O., and H. Raemdonck. 1983. Dimethyl Sulfide in the Surface Ocean and the Marine Atmosphere: A Global View. Science 221:744-747.
- Biers, E. J., S. Sun, and E. C. Howard. Prokaryotic Genomes and Diversity in the Surface Ocean: Interrogating the Global Ocean Sampling Metagenome. Accepted *Appl Environ Microbiol*

- Broadbent, A., and G. Jones. 2006. Seasonal and Diurnal Cycles of Dimethylsulfide, Dimethylsulfoniopropionate and Dimethylsulfoxide at One Tree Reef Lagoon. Environmental Chemistry 3:260-267.
- Buchan, A., J. M. Gonzalez, and M. A. Moran. 2005. Overview of the Marine *Roseobacter* Lineage. Applied and Environmental Microbiology 71:5665-5677.
- Cantoni, G. L., and D. G. Anderson. 1956. Enzymatic cleavage of dimethylpropiothetin by *Polysiphonia lanosa*. The Journal of Biological Chemistry 222:171-177.
- Challenger, F. 1959. Aspects of the Organic Chemistry of Sulphur, vol. Butterworths Scientific Publications, London.
- Challenger, F., R. Bywood, P. Thomas, and B. J. Hayward. 1957. Studies on Biological Methylation. XVII. The Natural Occurrence and Chemical Reactions of Some Thetins. Biochemistry and Biophysics 69:514-523.
- Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655-661.
- Cuhel, R. L., C. D. Taylor, and H. W. Jannasch. 1982. Assimilatory Sulfur Metabolism in Marine Microorganisms: Sulfur Metabolism, Protein Synthesis, and Growth of

Alteromonas luteo-violaceus and *Pseudomonas halodurans* During Perturbed Batch Growth Applied and Environmental Microbiology 43:151-159.

- Dacey, J. W. H., and S. G. Wakeham. 1986. Ocean Dimethylsulfide: Production During Zooplankton Grazing on Phytoplankton. Science 233:1314-1316.
- DeLong, E. F. 2005. Microbial Community Genomics in the Ocean. Nature Reviews: Microbiology 3:459-469.
- Dickson, D. M. J., and G. O. Kirst. 1986. The role of b-dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis. Planta 167:536-543.
- Duxbury, A. C., A. B. Duxbury, and K. A. Sverdrup. 2000. an introduction to the World's Oceans, 6 ed, vol. McGraw Hill, Boston.
- Farrand, S. K., P. B. van Berkum, and P. Oger. 2003. Agrobacterium is a definable genus of the family Rhizobiaceae. International Journal of Systematic and Evolutionary Microbiology 53:1681–1687.
- Galperin, M. Y. 2005. On the bottom of the deep blue sea. Environmental Microbiology 7:453-458.

- Giovannoni, S., and M. Rappe. 2000. Evolution, Diversity, and Molecular Ecology of Marine Prokaryotes, p. 542. *In* D. L. Kirchman (ed.), Microbial ecology of the oceans. Wiley-Liss, New York.
- Giovannoni, S. J., J. H. Tripp, S. Givan, M. Podar, K. L. Vergin, D. Baptista, L. Bibbs, J. Eads, T. H. Richardson, M. Noordewier, M. S. Rappe, J. M. Short, J. C. Carrington, and E. J. Mathur. 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242-1245.
- 23. Gonzalez, J. M., J. S. Covert, W. B. Whitman, J. R. Henricksen, F. Mayer, B. Scharf, R. Schmitt, A. Buchan, J. A. Fuhrman, R. P. Kiene, and M. A. Moran. 2003. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. International Journal of Systematic and Evolutionary Microbiology 53:1261-1269.
- Gonzalez, J. M., R. P. Kiene, and M. A. Moran. 1999. Transformation of Sulfur Compounds by an Abundant Lineage of Marine Bacteria in the alpha-subclass of the Class *Proteobacteria*. Applied and Environmental Microbiology 65:3810-3819.
- Gonzalez, J. M., and M. A. Moran. 1997. Numerical dominance of a group of marine bacteria in the alpha-subclass of the Class *Proteobacteria* in coastal seawater. Applied and Environmental Microbiology 63:4237-4242.

- 26. Gonzalez, J. M., R. Simo, R. Massana, J. S. Covert, E. O. Casamayor, C. Pedros-Alio, and M. A. Moran. 2000. Bacterial Community Structure Associated with a Dimethylsulfoniopropionate-Producing North Atlantic Algal Bloom. Applied and Environmental Microbiology 66:4237-4246.
- Goodner, B., Gregory Hinkle, Stacie Gattung, Nancy Miller, Mary Blanchard, Barbara Qurollo, and Y. C. Barry S. Goldman, Manor Askenazi, Conrad Halling, Lori Mullin, Kathryn Houmiel, Jeffrey Gordon, Mark Vaudin, Oleg Iartchouk, Andrew Epp, Fang Liu, Clifford Wollam, Mike Allinger, Dahlia Doughty, Charlaine Scott, Courtney Lappas, Brian Markelz, Casey Flanagan, Chris Crowell, Jordan Gurson, Caroline Lomo, Carolyn Sear, Graham Strub, Chris Cielo, Steven Slater. 2001. Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens C58. Science 294:2323-2328.
- Gote Ostlund, H., and J. Alexander. 1963. Oxidation rate of sulfide in sea water; a preliminary study. Journal of Geophysical Research 68:3995.
- Hartmann Hansen, M., K. Ingvorsen, and B. Barker Jpgensen. 1978. Meohanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere. Limnology and Oceanography 23:68-76.

- Howard, E. C., J. R. Henriksen, A. Buchan, C. R. Reisch, H. Bürgmann, R. Welsh, W. Ye, J. M. González, K. Mace, S. B. Joye, R. P. Kiene, W. B. Whitman, and M. A. Moran.
 2006. Bacterial Taxa That Limit Sulfur Flux from the Ocean. Science 314:649-652.
- Imhoff, J. F., and F. Rodriguez-Valera. 1984. Betaine is the main compatible solute for halophilic eubacteria. Journal of Bacteriology 160:478-479.
- Jansen, M., and T. A. Hansen. 1998. Tetrahydrofolate serves as a methyl acceptor in the demethylation of dimethylsulfoniopropionate in cell extracts of sulfate-reducing bacteria. Archives Microbiology 169:84-87.
- Kettle, A. J., and M. O. Andreae. 2000. Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models. Journal of Geophysical Research 105:26793-26808.
- Kettle, A. J. A., M. O.; Amouroux, D.; Andreae, T. W.; Bates, T. S.; Berresheim, H.;
 Bingemer, H.; Boniforti, R.; Curran, M. A. J.; DiTullio, G. R.; Helas, G.; Jones, G. B.;
 Keller, M. D.; Kiene, R. P.; Leck, C.; Levasseur, M.; Malin, G.; Maspero, M.; Matrai, P.;
 McTaggart, A. R.; Mihalopoulos, N.; Nguyen, B. C.; Novo, A.; Putaud, J. P.;
 Rapsomanikis, S.; Roberts, G.; Schebeske, G.; Sharma, S.; Simó, R.; Staubes, R.; Turner,
 S.; Uher, G. 1999. A global database of sea surface dimethylsulfide (DMS)
 measurements and a procedure to predict sea surface DMS as a function of latitude,
 longitude, and month. Global Biogeochemical Cycles 12:399-444.

- Kiene, R. P. 1987. Dimethyl sulfide metabolism in salt marsh sediments. FEMS Microbiology Letters 53:71-78.
- Kiene, R. P. 1996. Production of methanethiol from dimethylsulfoniopropionate in marine surface waters. Marine Chemistry 54:69-83.
- 37. Kiene, R. P., and L. J. Linn. 2000. Distribution and Turnover of Dissolved DMSP and Its Relationship with Bacterial Production and Dimethylsulfide in the Gulf of Mexico. Limnology and Oceanography 45:849-861.
- Kiene, R. P., L. J. Linn, and J. A. Bruton. 2000. New and important roles for DMSP in marine microbial communities. Journal of SEA Research 43:209-224.
- Kiene, R. P., L. J. Linn, J. M. Gonzalez, M. A. Moran, and J. A. Bruton. 1999. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Applied and Environmental Microbiology 65:4549-4558.
- Kirst, G. O., C. Thiel, H. Wolff, J. Nothnagel, M. Wanzek, and R. Ulmke. 1991.
 Dimethylsulfoniopropionate (DMSP) in ice-algae and its possible biological role. Marine Chemistry 35:381-388.

- Konstantinidis, K. R., and J. M. Tiedje. 2004. Trends between gene content and genome size in prokaryotic species with larger genomes. Proceedings of the National Academy of Sciences 101:3160-3165.
- Larrabee, A. R., S. Rosenthal, R. E. Cathou, and J. M. Buchanan. 1961. A Methylated Derivative of Tetrahydrofolate as an Intermediate of Methionine Biosynthesis. Journal of the American Chemical Society 83:4094-4095.
- Ledyard, K. M., and J. W. H. Dacey. 1996. Microbial cycling of DMSP and DMS in Coastal and Oligotrophic Seawater. Limnology and Oceanography 41:33-40.
- 44. Ledyard, K. M., E. F. DeLong, and J. W. H. Dacey. 1993. Characterization of a DMSPdegrading bacterial isolate from the Sargasso Sea. Archives Microbiology 160:312-318.
- Liss, P. S. 2007. Trace gas emissions from the marine biosphere. Philosophical Transactions of the Royal Society A 365:1697-1704.
- Lovelock, J. E., R. J. Maggs, and R. A. Rasmussen. 1972. Atmospheric Dimethyl Sulphide and that Natural Sulphur Cycle. Nature 237:452-453.
- 47. Luther, G. W. I., and E. Tsamakis. 1989. Concentration and form of dissolved sulfide in the oxic water column of the ocean. Marine Chemistry 27:165-177.

- Malin, G., and G. O. Kirst. 1997. Algal Production of Dimethyl Sulfide and its Atmospheric Role. Journal of Phycology 33:889-896.
- 49. Malmstrom, R. R., R. P. Kiene, M. T. Cottrell, and D. L. Kirchman. 2004. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the north atlantic ocean. Applied and Environmental Microbiology 70:4129-4135.
- 50. Merzouk, A., M. Levasseur, M. G. Scarratt, S. Michaud, R. B. Rivkin, M. S. Hale, R. P. Kiene, N. M. Price, and W. K. W. Li. 2006. DMSP and DMS dynamics during a mesoscale iron fertilization experiment in the Northeast Pacific-PartII: Biological cycling. Deep-Sea Research II 53:2370-2383.
- 51. Miller, T. R., and R. Belas. 2004. Dimethylsulfoniopropionate Metabolism by *Pfiesteria*-Associated *Roseobacter* spp. Applied and Environmental Microbiology 70:3383-3391.
- Moran, M. A., R. Belas, M. A. Schell, J. M. Gonza'lez, F. Sun, S. Sun, B. J. Binder, J. Edmonds, W. Ye, B. Orcutt, E. C. Howard, C. Meile, W. Palefsky, A. Goesmann, Q. Ren, I. Paulsen, L. E. Ulrich, L. S. Thompson, E. Saunders, and A. Buchan. 2007. Ecological Genomics of Marine Roseobacters. Applied and Environmental Microbiology 73:4559-4569.
- Moran, M. A., A. Buchan, J. M. Gonzalez, J. F. Heidelberg, W. B. Whitman, R. P. Kiene,
 J. R. Henricksen, G. M. King, R. Belas, C. Fuqua, L. Brinkac, M. Lewis, S. Johrl, B.

Weaver, G. Pai, J. A. Eisen, E. Rahe, W. M. Sheldon, W. Ye, T. R. Miller, J. Carlton, D.
A. Rasko, I. T. Paulsen, Q. Ren, S. C. Daugherty, R. T. Deboy, R. J. Dodson, A. S.
Durkin, R. Madupu, W. C. Nelson, S. A. Sullivan, M. J. Rosovitz, D. H. Haft, J.
Selengut, and N. Ward. 2004. Genome sequence of *Silicibacter pomeroyi* reveals
adaptations to the marine environment. Nature 432:910-913.

- 54. Moran, M. A., J. M. Gonzalez, and R. P. Kiene. 2002. Linking a bacterial taxon to sulfur cycling in the sea: Studies of the marine *Roseobacter* group. Geomicrobiology Journal 20:375-388.
- 55. Pichereau, V., J. A. Pocard, J. Hamelin, C. Blanco, and T. Bernard. 1998. Differential effects of dimethylsulfoniopropionate, dimethylsulfonioacetate, and other S-methylated compounds on the growth of Sinorhizobium meliloti at low and high osmolarities. Applied and Environmental Microbiology 64:1420-1429.
- Pomeroy, L. R. 1974. The Ocean's Food Web, A Changing Paradigm. Bioscience 24:499-504.
- 57. Rappe, M. S., P. F. Kemp, and S. J. Giovannoni. 1997. Phylogenetic Diversity of Marine Coastal Picoplankton 16S rRNA Genes Cloned from the Continental Shelf Off Cape Hatteras, North Carolina. Limnology and Oceanography 42:811-826.

- Rusch, D. B., A. L. Halpern, G. Sutton, K. B. Heidelberg, S. Williamson, S. Yooseph, D. Wu, J. A. Eisen, J. M. Hoffman, K. Remington, K. Beeson, B. Tran, H. Smith, H. Baden-Tillson, C. Stewart, J. Thorpe, J. Freeman, C. Andrews-Pfannkoch, J. E. Venter, K. Li, S. Kravitz, J. F. Heidelberg, T. Utterback, Y.-H. Rogers, L. I. Falcon, V. Souza, G. Bonilla-Rosso, L. E. Eguiarte, D. M. Karl, S. Sathyendranath, T. Platt, E. Bermingham, V. Gallardo, G. Tamayo-Castillo, M. R. Ferrari, R. L. Strausberg, K. Nealson, R. Friedman, M. Frazier, and J. C. Venter. 2007. The *Sorcerer II* Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biology 5:0398-0431.
- 59. Simo, R. 2001. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological, evolutionary links. TRENDS in Ecology and Evolution 16:287-294.
- Simo, R., and J. Dachs. 2002. Global ocean emission of dimethylsulfide predicted from biogeophysical data. Global Biogeochemical Cycles 16:1018.
- Simo, R., and C. Pedros-Alio. 1999. Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Letters to Nature 402:396-399.
- Stefels, J. 2000. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants Journal of SEA Research 43:183-197.
- Sunda, W., D. J. Kieber, R. P. Kiene, and S. Huntsman. 2002. An antioxidant function for DMSP and DMS in marine alga. Nature 418:317-320.

- Taylor, B. F., and D. C. Gilchrist. 1991. New Routes for Aerobic Biodegradation of Dimethylsulfoniopropionate. Applied and Environmental Microbiology 57:3581-3584.
- 65. Teira, E., J. M. Gasol, M. Aranguren-Gassis, A. Fernandez, J. Gonzalez, I. Lekunberri, and X. A. Alvarez-Salgado. 2008. Linkages between bacterioplankton community composition, heterotrophic carbon cycling and environmental conditions in a highly dynamic coastal ecosystem. Environmental Microbiology 10:906-917.
- Turner, S. M., and P. S. Liss. 1985. Measurements of Various Sulphur Gases in a Coastal Marine Environment. Journal of Atmospheric Chemistry 2:223-232.
- 67. Turner, S. M., G. Malin, P. S. Liss, D. S. Harbour, and P. M. Holligan. 1988. The Seasonal Variation of Dimethyl Sulfide and Dimethylsulfoniopropionate Concentrations in Nearshore Waters. Limnology and Oceanography 33:364-375.
- Vairavamurthy, A., M. O. Andreae, and R. L. Iverson. 1985. Biosynthesis of dimethylsulfide and dimethylpropiothetin by *Hymenomonas carterae* in relation to sulfur source and salinity variations. Limnology and Oceanography 30:59-70.
- Vallina, S. M., and R. Simo. 2007. Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315:506-508.

- VAN DER Maarel, M. J. E. C., S. v. Bergeijk, A. F. v. Werkhoven, A. M. Laverman, W. G. Meijer, W. T. Stam, and T. A. Hansen. 1996. Cleavage of dimethylsulfoniopropionate and reduction of acrylate by *Desulfovibrio acrylicus* sp. nov. Archives Microbiology 166:109-115.
- VAN DER Maarel, M. J. E. C., M. Jansen, R. Haanstra, W. G. Meijer, and T. A. Hansen.
 1996. Demethylation of Dimethylsulfoniopropionate to 3-S-Methylmercaptopropionate
 by Marine Sulfate-Reducing Bacteria. Applied and Environmental Microbiology
 62:3978-3984.
- 72. Varaljay, V. A., E. C. Howard, S. Sun, and M. A. Moran. in prep. Diversity of Dimethylsulfoniopropionate Demethylase Genes in a Marine Ecosystem Assessed by Deep Amplicon Sequencing of *dmdA* Primer Sets.
- Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.-H. Rogers, and H. O. Smith. 2004. Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science 304:66-74.
- 74. Vila-Costa, M., R. P. Kiene, and R. Simo. 2008. Seasonal variability of the dynamics of dimethylated sulfur compounds in a coastal northwest Mediterranean site. Limnology and Oceanography 52:198-211.

- Vila, M., R. Simo, R. P. Kiene, J. Pinhassi, J. M. Gonzalez, M. A. Moran, and C. Pedros-Alio. 2004. Use of Microautoradiography combined with fluorescence In Situ Hybridization to Determine Dimethylsulfoniopropionate Incorporation by Marine Bacterioplankton Taxa. Applied and Environmental Microbiology 70:4648-4657.
- 76. Visscher, P. T., M. R. Diaz, and B. F. Taylor. 1992. Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea. Marine Ecology Progress Series 89:293-296.
- Wagner-Dobler, I., and H. Biebl. 2006. Environmental Biology of the Marine Roseobacter Lineage. Annual Review of Microbiology 60:255-280.
- Wagner, C., S. M. J. Lusty, H.-F. Kung, and N. L. Rogers. 1966. Trimethylsulfonium-Tetrahydrofolate Methyltransferase, a Novel Enzyme in the Utilization of 1 Carbon Units The Journal of Biological Chemistry 241:1923-1925.
- 79. Wagner, C., and E. R. Stadtman. 1962. Bacterial Fermentation of Dimethyl-betapropiothetin. Archives of Biochemistry and Biophysics 98:331-336.
- 80. Welsh, D. T. 2000. Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate. FEMS Microbiology Reviews 24:263-290.

- Wolfe, G. V., E. B. Sherr, and B. F. Sherr. 1994. Release and consumption of DMSP from *Emiliania huxleyi* during grazing by *Oxyrrhis marina*. Marine Ecology Progress Series 111:111-119.
- Wolfe, G. V., M. Steinke, and G. O. Kirst. 1997. Grazing-activated chemical defence in a unicellular marine alga. Nature 387:894-897.
- Wolff, E. W., H. Fischer, F. Fundel, U. Ruth, B. Twarloh, G. C. Littot, R. Mulvaney, R. Rathlisberger, M. de Angelis, C. F. Boutron, M. Hansson, U. Jonsell, M. A. Hutterli, F. Lambert, P. Kaufmann, B. Stauffer, T. F. Stocker, J. P. Steffensen, M. Bigler, M. L. Siggaard-Andersen, R. Udisti, S. Becagli, E. Castellano, M. Severi, D. Wagenbach, C. Barbante, P. Gabrielli, and V. Gaspari. 2006. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440:491-496.
- Yoch, D. C. 2002. Dimethylsulfoniopropionate: Its sources, Role in the Marine Food Web, and Biological Degradation to Dimethylsulfide. Applied and Environmental Microbiology 68:5804-5815.
- Zobell, C. E. 1935. Microbiological Activities at Low Temperatures with Particular Reference to Marine Bacteria. Quarterly Review of Biology 9:460-466.
- 86. Zubkov, M. V., B. M. Fuchs, S. D. Archer, R. P. Kiene, R. Amann, and P. H. Burkill.2001. Linking the composition of bacterioplankton to rapid turnover of dissolved

dimethylsulfoniopropionate in an algal bloom in the North Sea. Environmental Microbiology 3:304-311.

87. Zubkov, M. V., B. M. Fuchs, S. D. Archer, R. P. Kiene, R. Amann, and P. H. Burkill.
2002. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Research II 49:3017-3038.

CHAPTER 2

BACTERIAL TAXA THAT LIMIT SULFUR FLUX FROM THE OCEAN¹

 ¹Howard, Erinn C., James R. Henriksen, Alison Buchan, Chris R. Reisch, Helmut Burgmann, Rory Welsh, Wenying Ye, Jose M. Gonzalez, Kimberly Mace, Samantha B. Joye, Ronald P.
 Kiene, William B. Whitman, and Mary Ann Moran. 2006. *Science*. 314: 649-652.
 Reprinted here with permission of publisher

Abstract

Flux of dimethylsulfide (DMS) from ocean surface waters is the predominant natural source of sulfur to the atmosphere and influences climate by aerosol formation. Marine bacterioplankton regulate sulfur flux by converting the precursor dimethylsulfoniopropionate (DMSP) either to DMS or to sulfur compounds that are not climatically active. Through the discovery of a glycine cleavage T-family protein with DMSP methyltransferase activity, marine bacterioplankton in the Roseobacter and SAR11 taxa were identified as primary mediators of DMSP demethylation to methylmercaptopropionate. One-third of surface ocean bacteria harbor a DMSP demethylase homolog and thereby route a substantial fraction of global marine primary production away from DMS formation and into the marine microbial food web.

Marine phytoplankton synthesize DMSP for use as an osmolyte (1), predator deterrent (2), and antioxidant (3). The degradation of DMSP to DMS and subsequent exchange of DMS across the ocean-atmosphere boundary is the main natural source of sulfur to the atmosphere. amounting to ~20 Tg of sulfur annually (4). DMS-derived atmospheric sulfur affects cloud formation and the radiative properties of Earth (5). Phytoplankton are known to degrade DMSP to DMS, but efforts to predict global patterns of ocean-atmosphere DMS flux based solely on phytoplankton parameters have been unsuccessful (6). Other members of the marine plankton must therefore influence the production and emission of DMS from the surface ocean (7). Marine bacterioplankton are known to degrade DMSP by a pathway that first converts DMSP to methylmercaptopropionate (MMPA) in a demethylation reaction, and subsequently to methanethiol (MeSH) (8) or mercaptopropionate (MPA) (Figure 2.3 in Appendix A; 9). The first step of this alternative pathway is crucial to oceanic sulfur emissions, because it removes a methyl group from DMSP and eliminates DMS as a possible degradation product. Furthermore, some of the MMPA-derived sulfur is incorporated subsequently into bacterial amino acids (10) and, through trophic transfers, into the marine microbial food web. Despite the estimated 50 to 90% of DMSP that is metabolized by marine bacterioplankton through this pathway (11, 12), the taxa that mediate DMSP demethylation in ocean surface waters are unknown.

Bacteria in the marine Roseobacter clade have been shown to demethylate DMSP in culture (8). *Silicibacter pomeroyi* DSS-3 (13) performs both DMSP demethylation to MeSH and DMSP cleavage to DMS (10). A 20,000-member Tn5-based transposon insertion library of *S. pomeroyi* was screened for interruption of MeSH formation based on failure to produce a thiol from DMSP, and phenotypes of potential mutants were monitored by analysis of sulfur gas formation. A mutant unable to make MeSH yet able to produce DMS at wild-type levels had a

transposon insertion in SPO1913 (Figure 2.1), a gene encoding a protein in the glycine cleavage T-protein family (Pfam PF01571, Enzyme Commission number 2.1.2.10 [EC]). DMSP degradation to MeSH was restored by complementation of the mutant in trans with an intact SPO1913 gene (Figure 2.4 in Appendix A). Enzyme assays in cell-free extracts of wild-type and mutant strains showed that SPO1913 encodes the protein responsible for the first step in MeSH formation: the demethylation of DMSP to MMPA (Table 2.1). This DMSP demethylase gene was designated *dmdA*.

Basic Local Alignment Search Tool (BLAST) searches of genome sequences of other cultured bacteria yielded only two complete dmdA orthologs in any non-Roseobacter genome. Both were from marine bacteria in the SAR11 clade, *Pelagibacter ubique* HTCC1062 (14) and *P*. ubique HTCC1002 (15) (Figure 2.1). One other partial dmdA sequence (Figure 2.1) was found on a small (1.4-kb) fragment of environmental DNA contaminating the genome sequence of the sea ice bacterium *Psychroflexus torquis* (15); the taxonomic origin of this sequence is unknown (16). We searched marine metagenomic libraries to determine whether *dmdA*-like sequences were present in natural bacterial communities. In the Sargasso Sea (11), dmdA homologs were sufficiently abundant to be harbored by about a third of bacterioplankton cells (Table 2.2). The Sargasso sequences formed four clades distinct from other glycine cleavage T-protein family proteins (Figure 2.2). Clade A sequences clustered with DMSP demethylases from S. pomeroyi and other Roseobacters (Table 2.3 in Appendix A). Based on the number of clade A homologs relative to Roseobacter-like 16S rDNA sequences (13), at least 80% of Roseobacters captured in the Sargasso Sea metagenome possess a *dmdA* homolog. Sequences similar to clade B and clade C were not found among cultured bacteria; these sequences may be from uncultured or unsequenced marine bacterial lineages, or they may represent sequence diversity within the

known *dmdA*-containing taxa. Clade D sequences clustered with the *dmdA* orthologs from *P*. *ubique* HTCC1062 and HTCC1002. Two sequence assemblies from the Sargasso Sea that contained clade D homologs showed similar gene organization and highest gene similarities to the *P. ubique* genomes (Figure 2.1). Based on the number of clade D homologs relative to SAR11-like 16S rDNA sequences (13), only 40% of SAR11 cells demethylate DMSP; these may belong to an ecologically distinct subgroup within the taxon (17).

Genes adjacent to *dmdA* homologs were consistent within a clade but differed across clades (Figure 2.1). Previous studies have shown that MMPA can be metabolized to MeSH or MPA in seawater (Figure 2.3 in Appendix A; 9, 18). Thus, whereas all DMSP demethylating taxa must have *dmdA* in common, a different, taxon-specific suite of genes may encode for the subsequent metabolism of MMPA (Figure 2.1).

Although sequence coverage is small compared with that of the Sargasso Sea data set (Table 2.2), other marine metagenomic databases contain evidence of DMSP demethylase genes. Two *dmdA* homologs were found in photic zone samples from the Pacific Station Aloha database (19); as expected, none were in the deep water samples from this site where DMSP flux is negligible. Ten *dmdA* homologs were found in a metagenome from southeastern U.S. coastal water. Similar to the Sargasso Sea metagenome, the abundance of *dmdA* homologs in both these samples indicated that about a third of bacteria in surface ocean waters may participate in DMSP demethylation (Table 2.2).

The marine metagenomic surveys indicated that the majority of environmental *dmdA* homologs belonged to clades for which DMSP demethylase activity has not been experimentally verified (Table 2.2). To address this issue, the *P. ubique* HTCC1062 *dmdA* (gene SAR11_0246) was synthesized and introduced in trans into *Escherichia coli*. Cell-free extracts of the

recombinant *E. coli* formed MMPA from DMSP (Table 2.1), confirming demethylation by a protein in the largest environmentally occurring clade (clade D).

DMSP synthesis is estimated to account for ~1 to 10% of global marine primary production (20), consistent with previous evidence that a large fraction of active marine bacteria assimilate sulfur from DMSP (21, 22) and the wealth of DMSP demethylation genes we found in surface water bacterioplankton communities. The evidence that oceanic *dmdA* homologs are most similar to those from cultured SAR11 bacteria (50 to 65%, Table 2.2), whereas coastal homologs are most similar to those from cultured Roseobacters (90%), is consistent with known differences in the ecology and distribution of these two abundant bacterioplankton groups (13, 14). This evidence further suggests that SAR11 bacteria may dominate demethylation in the open ocean, where DMSP concentrations are low (10 to 15 nM) and relatively constant, whereas Roseobacters may dominate in phytoplankton blooms and coastal regions, where DMSP concentrations are high (up to 100 nM) and more variable. Knowledge of the kinetic and ecological diversity of bacterial DMSP demethylases represented by these major marine taxa is critical to understanding both the routing of reduced carbon and sulfur into the microbial food web and the bacterial controls on ocean-atmosphere sulfur flux with consequences to global climate regulation.
References and Notes

- Stefels, J. 2000. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J. Sea Res. 43: 183.
- Wolfe, G. V., M. Steinke, and G. O. Kirst. 1997. Grazing-activated chemical defence in a unicellular marine alga. Nature 387: 894.
- Sunda, W., J. Kieber, R. P. Kiene, and S. Huntsman. 2002. An antioxidant function for DMSP and DMS in marine alga. Nature 418: 317.
- Kettle, A.J. and M. O. Andreae. Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models. Geophys. Res. 105: 26793.
- Andreae, M.O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem. 30: 1.
- Kettle, A.J., D. Amouroux, T.W. Andreae, T.S. Bates, H. Berresheim, H. Bingemer, R. Boniforti, M.A.J. Curran, G.R. DiTullio, G. Helas, G. B. Jones, M.D. Keller, R.P. Kiene, C. Leck, M. Levasseur, G. Malin, M. Maspero, P. Matrai, A.R. McTaggart, N. Mihalopoulos, B.C. Nguyen, A. Novo, J.P. Putaud, S. Rapsomanikis, G. Roberts, G. Schebeske, S. Sharma, R. Simó, R. Staubes, S. Turner, and G. Uher. 1999. A global data base of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea

surface DMS as a function of latitude, longitude, and month. Glob. Biogeochem. Cycles 13: 399.

- R. Simó. 2001. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological, evolutionary links. Trends Ecol. Evol. 16: 287.
- González, J.M., R. P. Kiene, and M. A. Moran. 1999. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class proteobacteria. Appl. Environ. Microbiol. 65: 3810.
- Visscher, P.T., M. R. Diaz, and B. F. Taylor. 1992. Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the caribbean sea. Mar. Ecol. Prog. Ser. 89: 293.
- Kiene, R.P., L. J. Linn, J. M. González, M. A. Moran, and J. A. Bruton.
 Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. 1999. Appl. Environ. Microbiol. 65: 4549.
- Venter, J. C., K. Remington, J. F. Heidelberg, A.L. Halpern, D. Rusch, J.A. Eisen, D.
 Wu, I. Paulsen, K.E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A.H. Knap, M. W. Lomas,
 K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C.
 Pfannkoch, Y.-H. Rogers, and H. O. Smith. 2004 Environmental genome shotgun
 sequencing of the Sargasso Sea. Science 304: 66.

- Kiene, R.P., L. J. Linn, and J. A. Bruton. 2000. New and important roles for DMSP in marine microbial communities. J. Sea Res. 43: 209.
- Moran, M. A., A. Buchan, J. M. Gonzalez, J. F. Heidelberg, W. B. Whitman, R. P. Kiene, J. R. Henricksen, G. M. King, R. Belas, C. Fuqua, L. Brinkac, M. Lewis, S. Johrl, B. Weaver, G. Pai, J. A. Eisen, E. Rahe, W. M. Sheldon, W. Ye, T. R. Miller, J. Carlton, D. A. Rasko, I. T. Paulsen, Q. Ren, S. C. Daugherty, R. T. Deboy, R. J. Dodson, A. S. Durkin, R. Madupu, W. C. Nelson, S. A. Sullivan, M. J. Rosovitz, D. H. Haft, J. Selengut, and N. Ward. 2004. Genome sequence of *Silicibacter pomeroyi* reveals adaptations to the marine environment. Nature 432: 910-913.
- Giovannoni, S. J., J. H. Tripp, S. Givan, M. Podar, K. L. Vergin, D. Baptista, L. Bibbs, J. Eads, T. H. Richardson, M. Noordewier, M. S. Rappe, J. M. Short, J. C. Carrington, and E. J. Mathur. 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309: 1242-1245.
- Gordon and Betty Moore Foundation Microbial Genome Sequencing Project (www.moore.org/microgenome/microb_list.asp).
- 16. The genome sequence of *P. torquis* ATCC 700755 includes contaminant sequences from several common marine taxa, as surmised from rDNA in unassembled reads. The partial *dmdA* homolog is located on a 1.4-kb fragment that does not assemble with the main *P. torquis* genome.

- Morris, R. M., K.L. Vergin, J.-C. Cho, M.S. Rappé, C.A. Carlson, and S.J. Giovannoni.
 2005. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol. Oceanogr. 50: 1687.
- Miller, T.R. and R. Belas. 2004. Dimethylsulfoniopropionate Metabolism by *Pfiesteria*-Associated *Roseobacter* spp. Appl. Environ. Microbiol. 70: 3383.
- DeLong, E.F., C.M. Preston, T. Mincer, V. Rich, S.J. Hallam, N.-U. Frigaard, A.
 Martinez, M.B. Sullivan, R. Edwards, B.R. Brito, S.W. Chisholm, and D.M. Karl. 2006.
 Science 311: 496.
- 20. On the basis of global emissions of DMS ranging from 0.47 to 1.03 Tmol per year (4) and the assumption that DMS emissions represent 1 to 4% of gross DMSP production, we estimated a global DMSP production rate of 11.7 to 103 Tmol of sulfur per year. Because each mole of DMSP contains 5 mol of carbon, the gross global DMSP production is 58.6 to 516 Tmol of carbon per year. With a global marine primary production of 3750 Tmol of carbon per year (23), 1.3 to 13.8% is in the form of DMSP. Similar contributions to marine carbon production can be estimated from DMSP:chlorophyll a and assumed C:chlorophyll a ratios (12).
- Vila, M., R. Simo, R. P. Kiene, J. Pinhassi, J. M. Gonzalez, M. A. Moran, and C. Pedros-Alio. 2004. Use of Microautoradiography combined with fluorescence In Situ

Hybridization to Determine Dimethylsulfoniopropionate Incorporation by Marine Bacterioplankton Taxa. Applied and Environmental Microbiology 70:4648-4657.

- 22. Malmstrom, R. R., R. P. Kiene, M. T. Cottrell, and D. L. Kirchman. 2004. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the north atlantic ocean. Applied and Environmental Microbiology 70:4129-4135.
- Falkowski, P.G, R. T. Barber, and V. Smetacek. Biogeochemical controls and feedbacks on ocean primary production. 1998. Science 281: 200.
- 24. We thank P. Capes, R. Hein, and S. Napierala for technical assistance; K. Remington and S. Sun for bioinformatics assistance; R. Belas and E. Stabb for advice on genetic techniques; J. Wiegel for equipment access; J. Mou for access to Sapelo Island metagenomic data; and C. English for graphics support. This project was funded by grants from NSF (MCB-0315200 to M.A.M., W.B.W., and R.P.K.) and the Gordon and Betty Moore Foundation (to M.A.M.). Accession numbers: *dmdA* sequences are available at NCBI under accession numbers AAV95190 (*S. pomeroyi*), ABF64177 (*Silicibacter* sp. TM1040), ABD55296 (*Jannaschia* sp. CCS1), EAP76657 (*Roseovarius nubinhibens* ISM), AAZ21068 (*P. ubique* HTCC1062), EAS85076 (*P. ubique* HTCC1002), EAS69357 (*P. torquis* genome sequence contaminant), DU750654 and DU737812 (Station Aloha metagenome), and DQ874604-DQ874613 (Sapelo Island metagenome).

Table 2.1. DMSP demethylase activity in *S. pomeroyi* and *E. coli* strains with or without functional *dmdA* genes (SPO1913 or SAR11_0246) measured as MMPA formation (nmol min⁻¹ mg protein⁻¹) in cell-free extracts. Activity in wild-type extracts was linear with both time and amount of protein, dependent on the presence of DMSP and the coenzyme tetrahydrofolate (THF), and comparable to the rate of MeSH production by whole cells. The limit of detection was 0.02 to 0.05 nmol min⁻¹ mg protein⁻¹. Activity is shown \pm SD.

Source of extract	DMSP:THF demethylase activity
S. pomeroyi DSS-3, wild-type	0.15 ± 0.02
S. pomeroyi mutant 41-H6, Tn5 inactivation of	0
SPO1913	0
E. coli with pABX101, recombinant SAR11_0246	0.24 ± 0.05
<i>E. coli</i> with pCYB1, vector alone	0

Table 2.2. Abundance of *dmdA* homologs in marine bacterioplankton metagenomic surveys. Sargasso Sea data are from surface seawater samples (Stations 1 to 7) using the unassembled shotgun library (11). Station Aloha data are grouped into photic zone (10, 70, and 130 m) and deep water (500, 770, and 4000 m) samples according to DeLong et al. (19). Sapelo Island data are from surface seawater samples (0.5 m). *recA* homologs were determined by BLAST analysis using the *E. coli recA* sequence as the query. The percentage of cells with *dmdA* was calculated as dmdA × 100/*recA*. *recA* is an essential single-copy gene. Mbp, mega–base pairs.

	Library <i>dmdA</i> homologs					S	- 400 1	% of cells
	Size	Clade				Total	homologs	with
	(Mbp)	Α	B	С	D	Total	nomologs	dmdA
Sargasso Sea (oceanic)	1,626	29	18	83	247	377	1029	37
Station Aloha (oceanic) photic zone	24.8	1	0	0	2	5	5	40
Station Aloha (oceanic) deep water	31.1	0	0	0	0	0	17	0
Sapelo Island (coastal)	15.2	9	0	0	1	10	26	38

Figure 2.1. Gene neighborhoods of cultured marine bacteria and selected Sargasso Sea contigs (labeled as IBEA CTG) harboring *dmdA* genes. Representative sequences that assembled into the Sargasso Sea contigs (i.e., with >97% identity) are indicated on Fig. 2. The *P. torquis* contaminant *dmdA* is a partial sequence on a small genome fragment. A, GntR family transcriptional regulator; B, glycine cleavage T-family protein (*dmdA*); C, dehydrogenase; D, glyoxalase family protein; E, aminotransferase class V; F, deoxyribodipyrimidine photolyase (*phrB*); G, protein of unknown function; H, acyl coenzyme A (CoA) dehydrogenase; I, acyl CoA synthase; J, hydrolase (*mhpC*); K, aspartate semialdehyde dehydrogenase; L, succinate dehydrogenase cytochrome b (*sdhC*); M, membrane protein; N, succinate dehydrogenase (*sdhA*); O, succinate dehydrogenase Fe-S protein; P, OsmC-like protein; Q, enoyl-CoA hydratase/isomerase.

Figure 2.2. Minimum evolution phylogenetic tree of amino acid sequences of glycine cleavage T-protein (GcvT) family proteins, including DmdA and related aminomethyltransferases (AMT). Sequences from cultured bacteria are labeled with organism name and gene designation. Selected Sargasso Sea metagenomic library sequences are identified by sequence identification and, if applicable, a contig designation. Proteins with confirmed DMSP demethylase activity are marked with a star. Percentage of 100 bootstrap samples supporting each node are shown if >50.

CHAPTER 3

ABUNDANT AND DIVERSE BACTERIA INVOLVED IN DMSP DEGRADATION IN MARINE SURFACE WATERS¹

¹Howard, Erinn C., Shulei Sun, Erin J. Biers, and Mary Ann Moran. 2008. *Environmental Microbiology*. 10(9): 2397-2410.

Reprinted here with permission of publisher

Abstract

An expanded analysis of oceanic metagenomic data indicates that the majority of prokaryotic cells in marine surface waters have the genetic capability to demethylate dimethylsulfoniopropionate (DMSP). The 1701 homologues of the DMSP demethylase gene, *dmdA*, identified in the (2007) Global Ocean Sampling (GOS) metagenome, are sufficient for 58% ($\pm 9\%$) of sampled cells to participate in this critical step in the marine sulfur cycle. This remarkable frequency of DMSP-demethylating cells is in accordance with biogeochemical data indicating that marine phytoplankton direct up to 10% of fixed carbon to DMSP synthesis, and that most of this DMSP is subsequently degraded by bacteria via demethylation. The GOS metagenomic data also revealed a new cluster of *dmdA* sequences (designated Clade E) that implicates marine gammaproteobacteria in DMSP demethylation, along with previously recognized alphaproteobacterial groups Roseobacter and SAR11. Analyses of G+C content and gene order indicate that lateral gene transfer is likely responsible for the wide distribution of *dmdA* among diverse taxa, contributing to the homogenization of biogeochemical roles among heterotrophic marine bacterioplankton. Candidate genes for the competing bacterial degradation process that converts DMSP to the climate-active gas dimethylsulfide (DMS) (*dddD* and *dddL*) occur infrequently in the (2007) GOS metagenome, suggesting either that the key DMSproducing bacterial genes are yet to be identified or that DMS formation by free-living bacterioplankton is insignificant relative to their demethylation activity.

Introduction

Biogeochemical studies implicate dimethylsulfoniopropionate (DMSP) as a highly labile and rapidly cycled component of the marine dissolved organic matter (DOM) pool (Kiene *et al.*, 2000). Synthesized by marine phytoplankton and coastal vascular plants for use as an osmolyte and other cellular purposes (Vairavamurthy *et al.*, 1985; Wolfe *et al.*, 1997; Sunda *et al.*, 2002), significant amounts of DMSP are released into the marine DOM pool by algal lysis and grazing. Estimates based on biogeochemical approaches (i.e. measures of DMSP concentrations and turnover in seawater) indicate that as much as 10% of primary production in marine environments is directed towards the synthesis of DMSP (Kiene *et al.*, 2000; Howard *et al.*, 2006). This suggests a major flow of surface ocean carbon and sulfur through a single compound. The recent discovery of key genes for bacterial DMSP degradation (Howard *et al.*, 2006; Todd *et al.*, 2007; Curson *et al.*, 2008) provides an opportunity to address DMSP cycling from a gene-based perspective and to determine whether, as biogeochemical data would predict, DMSP degradation activities are widespread in the ocean and mediated by diverse marine bacterioplankton taxa.

There are two major fates of bacterially degraded DMSP. The first is demethylation to 3methylmercaptopropionate (MMPA), which results in incorporation of carbon and sulfur into bacterial biomass and, through trophic transfers, the microbial food web (Kiene *et al.*, 1999; Simo, 2001). The second is cleavage to dimethylsulfide (DMS) which, while quantitatively less important than demethylation (Kiene, 1996), is the largest biogenic source of sulfur to the atmosphere (Andreae and Raemdonck, 1983). As part of the atmospheric sulfur pool, DMS oxidation products form cloud condensation nuclei and influence climate on a global scale via

cloud cover and solar radiation backscatter (Lovelock *et al.*, 1972; Charlson *et al.*, 1987; Andreae, 1990; Malin and Kirst, 1997).

Recently three bacterial genes that mediate these competing pathways of DMSP breakdown have been identified. The DMSP demethylase gene, *dmdA*, first discovered in the Roseobacter group bacterium *Silicibacter pomeroyi* DSS-3 (Howard *et al.*, 2006), encodes the protein for demethylating DMSP to MMPA. Subsequent degradation to methanethiol (MeSH; Kiene, 1996; Gonzalez *et al.*, 1999) or 3-mercaptopropionate (MPA; Visscher *et al.*, 1992) effectively routes DMSP-sulfur away from DMS formation and into the marine food web. *dmdA* was found in cultured roseobacters known to have DMSP-demethylating capabilities (Gonzalez *et al.*, 1999), as well as in cultured members of the abundant SAR11 clade, *Pelagibacter ubique* HTCC1062 and *P. ubique* HTCC1002 (Howard *et al.*, 2006). In the Sargasso Sea (Venter *et al.*, 2004), this gene was in sufficient abundance to be present in ~37% of the cells (Howard *et al.*, 2006). Based on sequences from both cultured and uncultured bacteria, the *dmdA* genes fell into four distinct phylogenetic clades designated Clade A (Roseobacter-like), Clade B, Clade C and Clade D (SAR11-like). Clades B and C have no representatives among cultured bacteria (Howard *et al.*, 2006).

Two bacterial genes encoding the first step in the cleavage pathway to DMS were also recently discovered (Todd *et al.*, 2007; Curson *et al.*, 2008). The DMSP cleavage gene *dddD* was found in marine gammaproteobacterium *Marinomonas* sp. MWYL1, and is proposed to mediate the addition of acyl coenzyme A to DMSP, leading to DMS production (Todd *et al.*, 2007). The DMSP cleavage gene *dddL* was discovered in the marine Roseobacter group bacterium *Sulfitobacter* sp. EE-36, and is proposed to cleave DMSP directly to produce DMS and acrylate

(Curson *et al.*, 2008). However, orthologues to *dddD* and *dddL* are not found in several of the known DMS-producing marine bacteria.

Recent augmentation of the Global Ocean Sampling (GOS) metagenomic data set (Rusch *et al.*, 2007) provides an opportunity to look at the abundance, diversity and distribution of *dmdA*, *dddD* and *dddL* in a broader set of marine habitats representing a wider geographic range than the Sargasso Sea metagenome. In this article we ask three questions. First, is the abundance of DMSP degradation genes in the (2007) GOS data set consistent with biogeochemical data indicating that a major fraction of marine dissolved organic carbon and sulfur passes through DMSP? Second, is the initial identification of four *dmdA* clades supported by a considerably larger metagenomic survey of 39 additional sampling sites, and does the larger data set provide new information as to the diversity of *dmdA*-containing taxa? Third, can genes adjacent to *dmdA* in genome sequences of cultured and uncultured bacterioplankton offer insights into downstream metabolic processing?

Results

Consistent standards for identification of functional orthologues in metagenomic data sets have yet to be established. Partial gene sequences, unknown phylogenetic relatedness of source organisms, public release of assembled data sets only and limited experimental evidence for gene function pose formidable challenges to gene annotation and quantification. Our strategy was to set a relatively high expect (*E*) value in blast analyses ($E \le 10^{-20}$) with multiple query sequences against unassembled translated sequences to catch all possible orthologues of the DMSP degradation genes. We then removed replicate hits, eliminated the poorer hit of paired reads, and built amino acid-based phylogenetic trees anchored with experimentally verified genes to identify evolutionarily related sequences and define clades. For environmental *dmdA* sequence

analysis, previous experimental verification of DMSP demethylase activity for the protein encoded by Roseobacter and SAR11 *dmdA* sequences (Howard *et al.*, 2006) provided the appropriate query sequences (SPO1913 and SAR11_0246); these cluster with environmental DmdA Clades A and D respectively. We also used a *dmdA*-like gene from the recently sequenced gammaproteobacterium HTCC2080 (MGP20802), although the function of this gene is yet to be confirmed experimentally. For the *dddD* sequence analysis, experimentally verified genes from *Marinomonas* sp. MWYL1 (Mmwyl1), *Rhizobium* NGR234 (RNGR00281) and *Burkholderia ambifaria* AMMD (basonym *Burkholderia cepacia*; Bamb_4298) were used as the query sequences. For the *dddL* analysis, experimentally verified genes from *Sulfitobacter* sp. EE36 (EE368) and *Rhodobacter sphaeroides* strain 2.4.1 (RSP_1433) were used as the query sequences.

dmdA abundance

We found 1701 *dmdA* orthologues in the 39 new sites surveyed in the (2007) GOS data set (Tables 3.3 and 3.4 in Appendix B). Including the 373 orthologues previously identified from the Sargasso Sea metagenome (GOS sites 1–7; Howard *et al.*, 2006), 2071 *dmdA* homologues were identified in the full GOS metagenomic data. In the (2007) GOS data, the number of *dmdA* orthologues per 100 000 sequence reads appears somewhat higher in open ocean and coastal sites (39 and 35 per 100 000 respectively; Table 1) as compared with other habitat types (estuary, 25; hypersaline lagoon, 2; all others, 22), although the differences are not statistically significant (ANOVA, P = 0.09).

We calculated the mean abundance of six single-copy essential genes as a metric for the number of genome equivalents captured in the metagenomic data sets (Table 3.3 in Appendix B). Estimates of genome equivalents range from 18 to 293 for the 39 sampling sites, in accordance

with the different sequencing efforts at each site (Table 3.3 in Appendix B). The abundance of dmdA genes was compared against this value to estimate the frequency of dmdA-like genes in bacterioplankton genomes, assuming no more than one copy of dmdA per cell. Ratios suggest that 58% (±9%) of prokaryotic cells in the (2007) GOS samples carry a homologue for dmdA (Figure 3.1; Table 3.3 in Appendix B). By habitat type, the coastal and open ocean sites yielded the highest per-cell dmdA abundance (63% and 67% respectively). Average per-cell abundance was slightly lower in the estuarine sites (43%), hypersaline lagoon and freshwater lake (4% and 6%, one site each), and other environments (embayment, reef atoll, fringing reef, warm seep and mangrove; average of 58%), but not significantly so (anova, P = 0.31).

dmdA diversity

With the addition of the (2007) GOS data, the diversity of *dmdA* expanded over the four previously identified groups (Howard *et al.*, 2006) to include a new clade (designated Clade E; Figure 3.2). Environmental sequences in this new clade cluster with the putative *dmdA* in the marine gammaproteobacterium HTCC2080 (Cho and Giovannoni, 2004), but their number is relatively small (< 1% of all sequences; Figure 3.1). All but one of the (2007) GOS sites were dominated by Clade D *dmdA* homologues (Figure 3.1), and these accounted for 67% of all *dmdA* sequences identified. Clade A homologues dominated only at the hypersaline lagoon site (Figure 3.1), and overall accounted for 5% of sequences. Of the *dmdA* homologues identified in the (2007) GOS data set, 10% could not be unambiguously assigned to one of the major protein clades and are designated here as unclassified (Figures 3.1 and 3.2). As with previous analysis (Howard *et al.*, 2006), DmdA sequences in Clades B, C and D form a sister group to sequences in Clade A, while Clade E groups the furthest from the other clades (Figure 3.2).

Taxa mediating DMSP demethylation

Two major groups of marine alphaproteobacteria were shown to carry out DMSP demethylation in ocean surface waters based on experimentally verified *dmdA* sequences from cultured Roseobacter and SAR11 bacteria. The identification of Clade E now suggests that a low abundance oligotrophic gammaproteobacterial taxon, the OM60 group [comprising 1.0% of the (2007) GOS 16S rRNA gene sequences], also participates in DMSP demethylation. Further, a *dmdA* in the newly sequenced *Rhodospirillales* group member alphaproteobacterium BAL199 expands the taxonomic affiliation of Clade A sequences beyond the Roseobacter group (Figure 3.2). *Rhodospirillales* account for only 0.5% of the (2007) GOS 16S rRNA gene sequences, however. As yet, there are no sequences from cultured bacteria that cluster within Clades B or C. An apparent Clade C *dmdA* sequence in the *Psychroflexus torquis* genome (NZ AAPR00000000) was determined to be part of the metagenomic contamination of that

genome sequence (Howard *et al.*, 2006). We explored alternate approaches to identify other marine bacterial taxa that also harbour dmdA sequences.

First, a correlation analysis of clade-specific *dmdA* counts relative to 16S rRNA gene counts for the major marine taxa was carried out for the 39 sample sites. In accordance with expectations, there was a statistically significant correlation of Clade A *dmdA* sequences with Roseobacter 16S rRNA genes (R = 0.70, P < 0.001; Figure 3.5A in Appendix B) and Clade D *dmdA* sequences with SAR11 16S rRNA genes (R = 0.91, P < 0.001; Figure 3.5B in Appendix B). As for the clades of unknown taxonomic affiliation, however, Clades B and C *dmdA* counts were significantly correlated with three taxa (SAR11, SAR86 and SAR116; R = 0.62, 0.63, 0.58 for Clade B and R = 0.86, 0.77, 0.70 for Clade C, respectively, P < 0.001 for all; Figure 3.5C in Appendix B). These multiple statistical signals likely result from comparable ecological

distributions of SAR11, SAR86 and SAR116 cells in surface ocean waters (Rappe *et al.*, 1997), and limit the value of 16S rRNA gene correlations to link *dmdA* clades with phylogenetic groups. The Clade E *dmdA* count showed no significant correlation with 16S rRNA genes from any of the taxa tested, including the OM60 taxon.

In a second approach, an environmental fosmid insert containing a Clade C *dmdA* (fosmid APKI441) from the Station ALOHA metagenomic library (DeLong *et al.*, 2006) was sequenced to investigate taxonomic affinities of the genes linked to *dmdA* on the fosmid. Most open reading frames (ORFs) had best blast hits to alphaproteobacterial proteins (27 of 31 ORFs); two had best hits to gammaproteobacteria, and one each had best hits to betaproteobacteria and actinobacteria (Table 3.5 in Appendix B). None of the predicted proteins encoded by APKI441 were for standard phylogenetic markers that could definitively identify the organism of origin. Further, there was no clear lower-level taxonomic signal among alphaproteobacteria-like ORFs, with hits to Roseobacter and *Rhizobiales* proteins occurring at equal frequencies and with one hit to a SAR11 protein (Table 3.5 in Appendix B). Thus while we suspect this *dmdA*-containing genome fragment derives from a marine alphaproteobacterium, the family-level taxonomic affiliation is unclear.

A third approach to identifying DMSP-demethylating bacterioplankton taxa was analysis of the G+C content in the third codon position of each *dmdA* sequence, to determine trends among clades and consistency with cultured genomes. The third codon position is under the least functional constraints in coding amino acids and has higher variance between taxonomic groups than overall G+C content, making it a useful taxonomic indicator (Majumdar *et al.*, 1999; Karlin, 2001; Sullivan *et al.*, 2006). Clade D *dmdA* sequences had low average third-position G+C content (19%) with minimal intra-clade variation, consistent with *dmdA* from the two sequenced

SAR11 genomes (18% and 20% respectively; Figure 3.3B). Clades A, B, C and E *dmdA* sequences had average third-position G+C contents of 41%, 41%, 26% and 49%, respectively, and quite high intra-clade variation (Figure 3.3A). The third-position G+C contents of dmdA sequences in cultured Roseobacter and Rhodospiralles BAL199 genomes are at the very high end of environmental Clade A sequences (averaging 67%), except for Roseobacter isolate HTCC2255 which is at the low end (23%; Figure 3.3A). Further, for most of the wide range of third-position G+C contents observed among the Clade A environmental sequences, there are no similar values found among the cultured Roseobacter or *Rhodospiralles* genomes. Within each clade, the average third-position G+C content was not significantly different between *dmdA* and neighbouring genes (Table 3.6 in Appendix B) or, in the case of the cultured representatives, third-position G+C content of the entire genome (data not shown), indicating that the G+C signal of *dmdA* is not anomalous relative to other genes in the genome. Thus except for Clade D, for which there is consistent evidence that these sequences are harboured by SAR11 cells, multiple taxa may be harbouring *dmdA* sequences that fall within a single evolutionary clade as defined by amino acid sequence.

dmdA neighbourhood analysis

Genes that encode steps in the same metabolic pathway may occur in clusters in prokaryotic genomes (Overbeek *et al.*, 1999), facilitating their co-regulation within the cell. In the *S. pomeroyi* DSS-3 genome, for example, 41% of the 4283 genes are predicted to be part of operons. We therefore analysed gene neighbourhoods of *dmdA* sequences to determine whether putative function of adjacent genes provides insights into the downstream metabolism of DMSP. A total of 1061 neighbouring genes could be analysed for all five clades, including environmental sequences and regions from cultured organisms with a *dmdA* homologue.

In Clade A, a GntR family transcriptional regulator is upstream of *dmdA* in 42% of sequenced roseobacters (Figure 3.4) and may serve to regulate *dmdA*. A flanking oxidoreductase gene (directly downstream in 37% of sequenced roseobacters, and either up- or downstream in 68% of environment Clade A sequences) is co-transcribed with dmdA in S. pomeroyi DSS-3 (Bürgmann et al., 2007), and may serve to oxidize the three-carbon moiety following DMSP demethylation to MMPA (Kiene, 1996). In Clade D, aspartate semi-aldehyde dehydrogenase (ASADH) is either immediately up- or downstream of 85% of *dmdA* sequences (Figure 3.4). This enzyme catalyses the second step in the aspartate biosynthetic pathway, a major route to amino acid synthesis in bacteria that yields threonine, leucine, methionine and lysine (Viola, 2001). Considering the sulfur from DMSP is readily incorporated into methionine by marine bacterioplankton carrying out demethylation (Kiene et al., 1999), the carbon in DMSP may also be efficiently shunted to amino acid production by this enzyme. Components of succinate dehydrogenase are found flanking *dmdA* in a small number of Clade A sequences in the (2007) GOS data, as well as in sequenced SAR11 genomes (Howard et al., 2006; Figure 3.4, genes I, J, K, L, M, N and O). Synthesis of this protein was found upregulated in the presence of DMSP in S. pomerovi DSS-3 (Bürgmann et al., 2007), and may indicate that succinate is an intermediate in the degradation of DMSP, possibly serving as the entry point of DMSP metabolites into the tricarboxylic acid (TCA) cycle. Overall, there was significant diversity in the function of genes adjacent to *dmdA* homologues, suggesting either a diversity of metabolic pathways following initial demethylation of DMSP (Visscher et al., 1992), or that expression of this gene is not always regulated as an operon, or both. Several cases of neighbouring genes shared across clades were found, including a putative benzaldehyde lyase adjacent to dmdA homologues in Clades B and C, and a homologous conserved hypothetical protein in Clades A, B and C.

dddD and dddL abundance and diversity

Homologues to the other two recently identified genes for DMSP degradation, *dddD* and *dddL*, were also identified in the (2007) GOS data set (Tables 3.7 and 3.8 in Appendix B). *dddD* and *dddL* homologues per 100 000 sequence reads averaged 0.2 for both (Table 3.1). The six *dddD* homologues were found in coastal (three sequences) and other sites (embayment, two sequences; mangrove, one sequence; Table 3.1). All the 42 *dddL* homologues were found at a single site, a hypersaline lagoon on the Galapagos Islands (Table 3.1). The estimated number of cells containing a *dddD*-like gene is quite low (coastal, 0.10%; open ocean, 0%; estuary, 0%; hypersaline lagoon, 0%; other, 0.75%), in keeping with findings from the Sargasso Sea GOS sites (Table 3.2; Todd *et al.*, 2007). Likewise, the number of cells containing a *dddD*-like gene is low (hypersaline lagoon, 23%; all other site types, 0%). The environmental *dddD* and *dddL* homologues grouped with sequences having confirmed DMSP cleavage activity (Todd *et al.*, 2007; Curson *et al.*, 2008) and with putative *dddD* and *dddL* genes from sequenced organisms (Figures 3.6 and 3.7 in Appendix B).

Discussion

Recent identification of the genes that mediate the first step in two competing pathways for DMSP degradation (Howard *et al.*, 2006; Todd *et al.*, 2007; Curson *et al.*, 2008), coincident with the release of large marine metagenomic data sets (Venter *et al.*, 2004; Rusch *et al.*, 2007), makes it possible to explore the taxonomic diversity and abundance of DMSP degraders over broad geographic regions of the ocean surface for the first time. These analyses show that DMSP demethylation via *dmdA* is mediated by diverse prokaryotic taxa in all marine surface waters sampled, with approximately three of every five bacterioplankton cells sampled in the (2007) GOS data set harbouring a putative orthologue. Although direct comparisons are complicated by

different and sometimes poorly documented methods for identifying orthologues in metagenomic data, this frequency is comparable to that of proteorhodopsin-containing cells (Rusch *et al.*, 2007; Table 3.2 and Figure 3.8 in Appendix B). It greatly surpasses that of several other biogeochemically important genes annotated in the GOS metagenomic data, including those encoding carbon fixation (RuBisCO; 3.6% of cells; Venter *et al.*, 2004), anoxygenic phototrophy (*pufL*, *pufM*, *bchX*; 2.5%; Yutin *et al.*, 2007) and methylotrophy (*mch*; 1.2%; Kalyuzhnaya *et al.*, 2005) (Table 3.2 and Figure 3.8 in Appendix B). Such a high frequency of *dmdA* genes in ocean metagenomic data is a strong indicator that the ability to demethylate DMSP imparts a substantial ecological benefit to surface ocean bacterioplankton.

Previous analysis of Sargasso Sea *dmdA* genes identified four evolutionarily distinct protein clades (Howard *et al.*, 2006). Most sequences from the (2007) GOS data set fell into these recognized groups (Figure 3.2), although a fifth clade of *dmdA*-like sequences linked to gammaproteobacterium HTCC2080 emerged. Clade D *dmdA* sequences dominated at the majority of sites, in accordance with the abundance of SAR11 16S rRNA gene sequences (Figure 3.1 and Figure 3.5B in Appendix B). It was hypothesized previously that Roseobacter-like *dmdA* sequences might be the majority clade in coastal oceans (Howard *et al.*, 2006), but both Clade A *dmdA* sequences and Roseobacter 16S rRNA sequences were consistently poorly represented throughout the (2007) GOS metagenome (3.4% of *dmdA* homologues and 2.7% of 16S rRNA gene sequences), including at coastal sites (Figure 3.1). From an ecological viewpoint, the open ocean and coastal ocean sites (n = 30) show significant homogeneity in distribution and relative abundance of the *dmdA* clades (Figure 3.1; mean 63.8 ± 9% of cells across all open and coastal ocean sites), suggesting that the metabolic capability of ocean bacterioplankton to route DMSPcarbon and -sulfur away from climatically active DMS and into the marine food web is both

uniform and predictable throughout marine surface waters. However, the fact that only the small, free-living bacterioplankton cells (0.1–0.8 μ m size fraction) in near-surface waters were captured in the (2007) GOS data set might influence this apparent uniformity. Roseobacters and other larger or particle-associated *dmdA*-containing cells were likely systematically excluded (Moran *et al.*, 2004; Yutin *et al.*, 2007).

The third-position G+C content of prokaryotic genes can be a robust phylogenetic marker (Majumdar *et al.*, 1999). While Clade D *dmdA* sequences have very uniform third-position G+C contents, Clades B and C *dmdA* sequences do not (Figure 3.3A), nor do their neighbouring genes (Table 3.6 in Appendix B). Clade A sequences, although originally designated as Roseobacter-like (Howard *et al.*, 2006), are even less uniform in their third-position G+C contents, and the environmental sequences do not match well with those of cultured roseobacters (Figure 3.3). Further, recent sequencing of a marine bacterial isolate genome has expanded the taxonomic affiliation of Clade A *dmdA* sequences to include marine *Rhodospiralles*. These patterns suggest that members of the same DmdA protein clades may be harboured by taxonomically heterogeneous bacterioplankton that acquired similar genes through lateral transfer and recombination events (Nelson *et al.*, 1999; Jain *et al.*, 2002), and for which the G+C content later transitioned according to taxonomy.

Conservation of gene order is related to genome divergence time, and closely related taxa are more likely to be syntenic (Dandekar *et al.*, 1998). Synteny analysis showed a high degree of consistency in gene order for Clade D *dmdA* sequences (Figure 3.4), most of which were flanked by the same two genes: ASADH and an uncharacterized hydrolase. For Clades A, B and C, however, the functional roles of the genes flanking *dmdA* were more variable (Figure 3.4). We counted the number of functionally different genes located directly adjacent to *dmdA* sequences,

and normalized to the number of sequences in each clade (including both environmental sequences and those from cultured organisms; data from Figure 3.4). Clade D demethylase genes had the lowest heterogeneity in gene order (0.02), followed by Clade C (0.16), Clade A (0.21) and Clade B (0.33) (Clade E had too few sequences to analyse).

Lateral gene transfer events are most commonly identified through inconsistencies between species trees and gene trees (Ochman *et al.*, 2000; Vergin *et al.*, 2007). However, the limited number of *dmdA* orthologues in sequenced marine prokaryotes results in several major clades without taxonomic anchors and prevents a direct comparison of DmdA phylogeny with organism phylogeny. Nevertheless, the third-position G+C content analysis as well as gene order analysis of *dmdA* neighbourhoods suggests that one of the five *dmdA* clades (Clade D; harboured by ~40% of surface water bacteria) is taxonomically homogeneous and represents proteins from SAR11 bacterioplankton, while each of the four remaining clades (A, B, C and E; collectively harboured by ~15% of surface water bacteria) represents proteins from multiple taxonomic groups, the roseobacters, *Rhodospiralles* and oligotrophic marine gammaproteobacteria among them.

The fact that DMSP demethylation genes are poorly represented among cultured bacteria, especially given the recent major sequencing effort for marine bacterioplankton isolates (Gordon and Betty Moore Foundation, 2007), suggests that yet-to-be cultured bacterioplankton taxa are the source organisms for some DmdA clusters without phylogenetic anchor sequences. Candidate uncultured taxa include SAR86 and SAR116, both of which are ubiquitous in ocean surface waters [averaging 5.4% and 3.1%, respectively, of the 16S rRNA sequences captured in the (2007) GOS data set], and possibly marine *Archaea* (but averaging only 0.4% of 16S rRNA sequences).

Bacterial DMSP degradation is a central microbial process in the ocean mixed layer (Kiene et al., 2000). Biogeochemical data indicate that up to 80% of DMSP released into seawater is demethylated, supplying about 15% and 100% of the carbon and sulfur needs, respectively, of surface ocean bacteria (Kiene and Linn, 2000; Kiene et al., 2000; Zubkov et al., 2002). Metagenomic data from the (2007) GOS study confirm this fundamental role for DMSP by showing that the majority of bacterioplankton cells across several marine habitat types harbour genes for DMSP demethylation. We hypothesize that such a high gene frequency results in part from lateral transfer events of *dmdA* among major marine taxa. Evidence of lateral gene transfer has also been found for proteorhodopsin (Frigaard et al., 2006), another abundant and biogeochemically relevant prokaryotic gene in the ocean. Regardless of the mechanism underlying the extraordinary abundance of *dmdA*, however, widespread harbouring of this gene has the consequence of homogenizing the ecological roles of seawater bacteria (Ochman *et al.*, 2000), possibly moving bacterioplankton groups away from taxon-specific specialization in biogeochemical function (Mou et al., 2008). Based simply on numbers of dmdA and proteorhodopsin homologues in marine metagenomes (Table 3.2, Figure 3.8 in Appendix B), most small bacterioplankton cells in the surface ocean are likely DMSP-demethylating photoheterotrophs.

In contrast to DMSP demethylation via *dmdA*, DMSP cleavage via *dddD* and *dddL* is not likely to be important in the ocean, unless quite rare genes can mediate major fluxes of carbon and sulfur. The low numbers of *dddD*- and *dddL*-like genes suggest either: (i) that the key genes for DMS production are yet to be identified – a third candidate gene recently found in marine Roseobacter *Roseovarius nubinhibens* ISM is reportedly also in low abundance in free-living marine bacterioplankton communities (Curson *et al.*, 2008), (ii) that DMS formation is mediated

by larger and particle-attached bacteria, perhaps associated with senescent phytoplankton, that were not captured in the < 0.8 μ m size fraction of the GOS metagenome – metagenomic data from the only larger size fraction sequenced in the GOS (0.8–3.0 μ m; Sargasso Sea Hydrostation S) had only a single sequence with high similarity to *dddD* and none with similarity to *dddL*, however, or (iii) that marine bacterioplankton are not major players in DMSP cleavage. Indeed, recent biogeochemical studies show high non-bacterial contributions to DMS production mediated directly by phytoplankton or zooplankton grazing (Slezak *et al.*, 2007; Vila-Costa *et al.*, 2008), and suggest that the major role for bacteria in regulating the flux of this volatile sulfur compound from the ocean surface may be in directing the sulfur into the competing demethylation pathway.

Experimental Procedures

Identification of *dmdA*, *dddD* and *dddL* orthologues in the (2007) GOS metagenome

Confirmed *dmdA* sequences SPO1913 and SAR_0246 from *S. pomeroyi* DSS-3 and *P. ubique* HTCC1062, respectively (Howard *et al.*, 2006), were the query sequences for a blastp analysis of the GOS peptides at CAMERA ('GOS: all ORF peptides (p)' database; Seshadri *et al.*, 2007). A maximum *E*-value of $< 10^{-20}$ was found to comprehensively capture all possible *dmdA* sequences along with a significant number of non-*dmdA* sequences; these were then manually annotated using phylogenetic tree-building (see below) to identify *dmdA* orthologues. The recently sequenced marine gammaproteobacterium isolate HTCC2080 (NZ_AAVV00000000; Cho and Giovannoni, 2004) contains a putative *dmdA* gene (MGP20802) and was similarly used as a query sequence in identifying *dmdA* orthologues. From 17 398 blastp hits, replicate sequences (i.e. those that hit more than one query sequence) were removed. The remaining 6140 unique sequences were manually annotated to remove those in incorrect COG (clusters of

orthologous genes) categories, leaving 5427 potential *dmdA* homologues. These sequences were grouped according to sample site and aligned in clustalw (Thompson *et al.*, 1994) with known *dmdA* sequences, while non-*dmdA* glycine cleavage T (GevT) sequences (SPO1648), and uncharacterized aminomethyl transferase (AMT) sequences (SPOA0311, SPOA0057 and SAR11) served as out-groups. Phylogenetic trees were constructed using MEGA version 3.1, with the James–Taylor–Thornton model for distance calculation and 100 bootstrap samplings. Sequences grouping within a *dmdA* clade (A, B, C, D or E) with a bootstrap value of \geq 70 were considered members of that clade, or were otherwise categorized as 'unclassified'. To remove duplicate sequences due to paired reads, each *dmdA* orthologue's JCVI PEP number was traced to its JCVI template number to identify sequences from the same metagenomic insert and the poorer hit was deleted. A final *dmdA* neighbour-joining tree for the (2007) GOS sampling sites (i.e. not including previously analysed Sargasso Sea sites; Howard *et al.*, 2006) was constructed using the above parameters and including representatives of all clades.

Sequences of *dddD* genes from *Marinomonas* MWYL1, *B. ambifaria* AMMD (basonym *B. cepacia* AMMD) and *Rhizobium* NGR234 (Todd *et al.*, 2007) were used as queries for a blastp analysis of the (2007) GOS data set as described above. After manual removal of paired reads and phylogenetic tree analysis [with *caiB* sequences from marine gammaproteobacterium HTCC2080 (HGP20804), *Roseovarius* sp. HTCC2601 (R26013), *Sagittula stellata* E-37 (SSE378) and *Escherichia coli* K12 (b0038) serving as out-groups], six putative *dddD* sequences remained.

Sequences of *dddL* genes from *Sulfitobacter* sp. EE-36 and *R. sphaeroides* 2.4.1 (Curson *et al.*, 2008) were used as queries for a blastp analysis of the (2007) GOS data set as described above. After manual removal of paired reads and phylogenetic tree analysis [with related

sequences from a hypothetical protein in *Rhodopsuedomonas palustris* (RPA_2344), alphaproteobacterium HTCC2255 (OM22550), *Roseobacter* sp. Azwk-3b (RAZWK3B_07579) and *Marinobacter aquaeolei* VTP (Maqu_0586) serving as out-groups], 42 putative *dddL* sequences remained. Sequences identified in these analyses are available at http://www.roseobase.org/DmdApaper.

Estimating the frequency of DMSP-degrading cells

Numbers of homologues to six essential single-copy genes (*atpD*, *rpoB*, *gyrB*, *hsp70*, *tufA* and *recA*) were determined for each site. Homologues were identified by blastp analysis at CAMERA ('GOS: all ORF peptides (p)' database) using *E. coli* K12 substrain MG1655 gene sequences as queries with a maximum *E*-value of $\leq 10^{-20}$. Manual inspection of the hits returned based on COG assignments and NCBI blast hits validated the *E*-value cut-off. Duplicate sequences due to paired reads were eliminated as described above. The homologue counts for each single-copy gene were size-normalized to the length of the *recA* gene to account for differences in length between these genes. To do this, the length of *recA* (1062 nt) was divided by the length of the single-copy gene (1383 nt for *atpD*, 4029 nt for *rpoB*, 2415 nt for *gyrB*, 1917 nt for *hsp70* and 1185 nt for *tufA*), and this value was then multiplied by the single-copy gene count. The size-normalized abundance of *dmdA* was calculated for each site as *dmdA* count × 100/(average, normalized counts of six single-copy genes).

16S rRNA gene analysis

The GOS metagenomic data were analysed by blastn with the *E. coli* K12 16S rRNA gene as the query sequence. Hits were accepted that met the following criteria: an *E*-value of $\leq 10^{-5}$, ≥ 65 bp overlapping length and > 85% similarity to the *E. coli* 16S rRNA gene sequence. Accepted hits were aligned with a taxonomic sequence library containing 195 16S

rRNA gene sequences of representative cultured and uncultured marine bacteria (Moran *et al.*, 2004). Sequences that overlapped for \geq 70% of their length with a representative sequence and had \geq 90% identity were classified to the order level, while those with poorer hits to the reference marine 16S rRNA gene library were left unclassified. *dmdA* counts were correlated against 16S rRNA gene counts for all combinations of *dmdA* clades and selected 16S rRNA clades (e.g. *dmdA* clades A, B, C, D and E versus 16S rRNA genes from Roseobacter, SAR11, SAR86, SAR116 and OM60).

Analysis of *dmdA* gene neighbourhoods

dmdA-containing GOS reads that included sequence outside the target gene were analysed further for the identity of up- and downstream genes. The neighbouring regions were analysed by blastx, with annotation criteria relaxed (an *E*-value of $\leq 10^{-5}$ or an amino acid identity of $\geq 60\%$) to account for the short length of most neighbouring gene fragments.

Station ALOHA fosmid sequencing

The Hawaii Ocean Time Series (HOTS) sequence library (DeLong *et al.*, 2006) was queried for *dmdA* orthologues. One clone, APKI441, from the 70 m sample, was selected for full sequencing based on its outlying membership in Clade C as determined by phylogenetic analysis.

G+C content analysis

Third-codon-position G+C analysis (Majumdar *et al.*, 1999; Karlin, 2001; Sullivan *et al.*, 2006) was carried out on *dmdA* sequences from cultured organisms, the GOS sequences and the APKI441 fosmid. For comparison, third-position G+C analysis was also carried out on neighbouring genes and, for cultured organisms, the full genome sequence. The genome sequence of Roseobacter member HTCC2255 is contaminated with gammaproteobacterial sequence, but the *dmdA* gene is located on a large and unambiguous Roseobacter contig.

Accession Numbers

DmdA sequences are available at NCBI under Accession No. AAV95190 (S. pomeroyi), ABF64177 (Silicibacter sp. TM1040), ABD55296 (Jannaschia sp. CCS1), EAP76657 (R. nubinhibens ISM), EAQ43549 (Roseobacter sp. MED193), EBA11882 (Roseobacter sp. CCS2), EAQ26389 (Roseovarius sp. 217), YP 001533657 (Dinoroseobacter shibae DFL 12), EBA17661 (Roseobacter sp. SK209-2-6), EBA02880 (Rhodobacterales bacterium HTCC2150), ABG31871 (Roseobacter denitrificans OCh 114), EDM32633 (Roseovarius sp. TM1035), EDM71141 (Roseobacter sp. AzwK-3b), EAU51039 (alphaproteobacterium HTCC2255), AAZ21068 (P. ubiqueHTCC1062), EAS69357 (P. torquis genome sequence contaminant), EAW42451 (gammaproteobacterium HTCC2080), EDP61332 (alphaproteobacterium BAL199), DU737812 (HOT fosmid APKI441), EAD93963 (Sargasso Sea metagenome sequence UAAO069TR), EAD14694 (Sargasso Sea metagenome sequence UBAMW22TR), EAA97724 (Sargasso Sea metagenome sequence UEAVR02TR) and EAG54780 (Sargasso Sea metagenome sequence SLAVR50TF). Six single-copy and 16S rRNA gene sequences from *E. coli*K12 are available under Accession No. P0A7G6 (RecA), NP 418188 (AtpD), AAT48201 (GyrB), AAC76961 (RpoB), AAC73125 (Hsp70), NP 417798 (TufA), NC 000913 locus tag b3851 (16S rRNA). GcvT sequences are available under Accession No. AAV94935 (S. pomeroyiSPO1648), AAV97443 (S. pomeroyiSPOA0311) and AAV97197 (S. pomeroyiSPOA0057). DddD sequences are available under Accession No. ABR72937 (MarinomonasMWYL1), ABI89851[B. ambifaria AMMD (basonym B. cepacia AMMD)], AAQ87407 (RhizobiumNGR234), EAQ63474 (Marinomonas sp. MED121), EBA01716 (Marinobacter sp. ELB17), EAS46334 (gammaproteobacterium HTCC2207), EDQ34757 (Hoeflea phototrophica DFL-43), EBA08656 (S. stellata E-37), EAU98415 (Burkholderia phymatumSTM815),

EAV54093 (B. ambifariaMC40-6), ABV95365 (D. shibae DFL 12) and AAV94987

(*S. pomeroyi* DSS-3). CaiB sequences are available under Accession No. EAW39829 (Marine gammaproteobacterium HTCC2080), EAU45027 (*Roseovarius* sp. HTCC2601), EBA07754 (*S. stellata* E-37) and NP_414580 (*E. coli*K12). DddL sequences are available at NCBI under Accession No. ZP_00955343 (*Sulfitobacter* sp. EE-36), YP_351475 (*R. sphaeroides* 2.4.1), ZP_01439508 (*Fulvimarina pelagi*), ZP_01002705 (*Loktanella vestfoldensis*), ZP_00998135 (*Oceanicola batsensis*HTCC2597), ZP_01548404 (*Stappia aggregata* IAM 12614), YP_001534647 (*D. shibae*DFL12), ZP_01015736 (*Rhodobacterales* sp. HTCC2654), ZP_00962774 (*Sulfitobacter* sp. NAS14-1). DddL-related hypothetical protein sequences are available under Accession No. NP_947689 (*R. palustris*), ZP_01446734 (alphaproteobacterium HTCC2255), ZP_01904446 (*Roseobacter* sp. Azwk-3b) and YP_957874 (*Marinobacter aquaeolei* VTP).

Acknowledgements

We would like to thank Helmut Bürgmann, Jan Mrázek, Ron Kiene, William Whitman, Eric Stabb, Tim Hollibaugh, Scott Gifford and Vanessa Varaljay for helpful discussions, and Ed DeLong for the APKI441 fosmid. This research was supported by the National Science Foundation (OCE-0724017) and the Gordon and Betty Moore Foundation.

References

- Andreae, M. 1990. Ocean–atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem 30: 1–29.
- Andreae, M.O., and Raemdonck, H. 1983 Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view. Science 221: 744–747.
- Biers, E.J., Wang, K., Pennington, C., Belas, R., Chen, F., and Moran, M.A. 2008 Occurrence and expression of gene transfer agent (GTA) genes in marine bacterioplankton. Appl Environ Microbiol 74: 2933-2939.
- Bürgmann, H., Howard, E.C., Ye, W., Sun, F., Sun, S., Napierala, S., and Moran, M.A.
 2007 Transcriptional response of *Silicibacter pomeroyi* DSS-3 to dimethylsulfoniopropionate (DMSP). Environ Microbiol 9: 2742–2755.
- Charlson, R.J., Lovelock, J.E., Andreae, M.O., and Warren, S.G. 1987 Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326: 655–661.
- Cho, J.-C., and Giovannoni, S.J. 2004 Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70: 432– 440.

- Cottrell, M.T., Yu, L., and Kirchman, D.L. 2005 Sequence and expression analyses of cytophaga-like hydrolases in a western arctic metagenomic library and the Sargasso Sea. Appl Environ Microbiol 71: 8506–8513.
- Curson, A.R.J., Rogers, R., Todd, J.D., Brearley, C.A., and Johnston, A.W.B. 2008 Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 10: 757–767.
- 9. Dandekar, T., Snel, B., Huynen, M., and Bork, P. 1998 Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23: 324–328.
- DeLong, E.F., C.M. Preston, T. Mincer, V. Rich, S.J. Hallam, N.-U. Frigaard, A. Martinez, M.B. Sullivan, R. Edwards, B.R. Brito, S.W. Chisholm, and D.M. Karl. 2006 Community genomics among stratified microbial assemblages in the ocean's interior. Science 311: 496–503.
- Frigaard, N.-U., Martinez, A., Mincer, T.J., and DeLong, E.F. 2006 Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439: 847– 850.

- Gonzalez, J.M., Kiene, R.P., and Moran, M.A. 1999 Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl Environ Microbiol 65: 3810–3819.
- Gordon and Betty Moore Foundation 2007 Microbial genome sequencing project. URL http://www.moore.org/microgenome/microb_list.asp.
- Howard, Erinn C., James R. Henriksen, Alison Buchan, Chris R. Reisch, Helmut Burgmann, Rory Welsh, Wenying Ye, Jose M. Gonzalez, Kimberly Mace, Samantha B. Joye, Ronald P. Kiene, William B. Whitman, and Mary Ann Moran. 2006 Bacterial taxa that limit sulfur flux from the ocean. Science 314: 649–652.
- Jain, R., Rivera, M.C., Moore, J.E., and Lake, J.A. 2002 Horizonal gene transfer in microbial genome evolution. Theor Pop Biol 61: 489–495.
- Kalyuzhnaya, M.G., Nercessian, O., Lapidus, A., and Chistoserdova, L. 2005 Fishing for biodiversity: novel methanopterin-linked C1 transfer genes deduced from the Sargasso Sea metagenome. Environ Microbiol 7: 1909–1916.
- Karlin, S. 2001 Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol 9: 335–343.
- Kiene, R.P. 1996 Production of methanethiol from dimethylsulfoniopropionate in marine surface waters. Mar Chem 54: 69–83.
- Kiene, R.P., and Linn, L.J. 2000 Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnol Oceanogr 45: 849–861.
- Kiene, R.P., Linn, L.J., Gonzalez, J.M., Moran, M.A., and Bruton, J.A. 1999
 Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol 65: 4549–4558.
- Kiene, R.P., Linn, L.J., and Bruton, J.A. 2000 New and important roles for DMSP in marine microbial communities. J Sea Res 43: 209–224.
- Lau, W.W.Y., and Armbrust, E.V. 2006 Detection of glycolate oxidase gene glcD diversity among cultured and environmental marine bacteria. Environ Microbiol 8: 1688– 1702.
- 23. Lovelock, J.E., Maggs, R.J., and Rasmussen, R.A. 1972 Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 237: 452–453.

- Majumdar, S., Gupta, S.K., Sundararajan, V.S., and Ghosh, T.C. 1999 Compositional correlation studies among the three different codon positions in 12 bacterial genomes. Biochem Biophys Res Commun 266: 66–71.
- Malin, G., and Kirst, G.O. 1997 Algal production of dimethyl sulfide and its atmospheric role. J Phycol 33: 889–896.
- Moran, M. A., A. Buchan, J. M. Gonzalez, J. F. Heidelberg, W. B. Whitman, R. P. Kiene, J. R. Henricksen, G. M. King, R. Belas, C. Fuqua, L. Brinkac, M. Lewis, S. Johrl, B. Weaver, G. Pai, J. A. Eisen, E. Rahe, W. M. Sheldon, W. Ye, T. R. Miller, J. Carlton, D. A. Rasko, I. T. Paulsen, Q. Ren, S. C. Daugherty, R. T. Deboy, R. J. Dodson, A. S. Durkin, R. Madupu, W. C. Nelson, S. A. Sullivan, M. J. Rosovitz, D. H. Haft, J. Selengut, and N. Ward. 2004 Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432: 910–913.
- Mou, X., Sun, S., Edwards, R.A., Hodson, R.E., and Moran, M.A. 2008 Bacterial carbon processing by generalist species in the coastal ocean. Nature 451: 708–711.
- Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Nelson, W.C., Ketchum, K.A., McDonald, L., Utterback, T.R., Malek, J.A., Linher, K.D., Garrett, M.M., Steward, A.M., Cotton, M.D., Pratt, M.S., Phillips, C.A., Richardson, D., Heidelberg, J., Sutton, G.G., Fleischmann, R.D., Eisen, J.A., White, O., Salzberg, S.L., Smith, H.O., Venter, J.C., Fraser, CM. 1999 Evidence for

lateral gene transfer between Archaea and Bacteria from genome sequence of *Thermotoga maritima*. Nature 399: 323–329.

- 29. Ochman, H., Lawrence, J.G., and Groisman, E.A. 2000 Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304.
- 30. Overbeek, R., Fonstein, M., D'Souza, M., Pusch, G.D., and Maltsev, N. 1999 The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96: 2896–2901.
- Rappe, M.S., Kemp, P.F., and Giovannoni, S.J. 1997 Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol Oceanogr 42: 811–826.
- Rusch, D. B., A. L. Halpern, G. Sutton, K. B. Heidelberg, S. Williamson, S. Yooseph, D. Wu, J. A. Eisen, J. M. Hoffman, K. Remington, K. Beeson, B. Tran, H. Smith, H. Baden-Tillson, C. Stewart, J. Thorpe, J. Freeman, C. Andrews-Pfannkoch, J. E. Venter, K. Li, S. Kravitz, J. F. Heidelberg, T. Utterback, Y.-H. Rogers, L. I. Falcon, V. Souza, G. Bonilla-Rosso, L. E. Eguiarte, D. M. Karl, S. Sathyendranath, T. Platt, E. Bermingham, V. Gallardo, G. Tamayo-Castillo, M. R. Ferrari, R. L. Strausberg, K. Nealson, R. Friedman, M. Frazier, and J. C. Venter. 2007 The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5: 0398–0431.

- Seshadri, R., Kravitz, S., Smarr, L., Gilna, P., and Frazier, M. 2007 CAMERA: a community resource for metagenomics. PLoS Biol 5: e75. doi:10.1371/journal.pbio.0050075.
- Simo, R. 2001 Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological, evolutionary. Trends Ecol Evol 16: 287–294.
- Slezak, D., Kiene, R.P., Toole, D.A., Simo, R., and Kieber, D.J. 2007 Effects of solar radiation on the fate of dissolved DMSP and conversion to DMS in seawater. Aquat Sci 69: 377–393.
- Sullivan, M.B., Lindell, D., Lee, J.A., Thompson, L.R., Bielawski, J.P., and Chisholm,
 S.W. 2006 Prevalence and evolution of core photosystem II genes in marine
 cyanobacterial viruses and their hosts. PLoS Biol 4: 1344–1357.
- Sunda, W., Kieber, D.J., Kiene, R.P., and Huntsman, S. 2002 An antioxidant function for DMSP and DMS in marine alga. Nature 418: 317–320.
- Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994 clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.

- 39. Todd, J.D., Rogers, R., Guo Li, Y., Wexler, M., Bond, P.L., Sun, L., Curson, A.R.J., Malin, G., Steinke, M. and Johnston, A.W.B. 2007 Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315: 666–669.
- Vairavamurthy, A., Andreae, M.O., and Iverson, R.L. 1985 Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol Oceanogr 30: 59–70.
- Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.-H. Rogers, and H. O. Smith. 2004 Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74.
- Vergin, K.L., Tripp, J.H., Wilhelm, L.J., Denver, D.R., Rappe, M.S., and Giovannoni,
 S.J. 2007 High intraspecific recombination rate in a native population of Candidatus
 Pelagibacter ubique (SAR11). Environ Microbiol 9: 2430–2440.
- Vila-Costa, M., Kiene, R.P., and Simo, R. 2008 Seasonal variability of the dynamics of dimethylated sulfur compounds in a coastal northwest Mediterranean site. Limnol Oceanogr 53: 198–211.

- 44. Viola, R.E. 2001 The central enzymes of the aspartate family of amino acid biosynthesis.Acc Chem Res 34: 339–349.
- Visscher, P.T., Diaz, M.R., and Taylor, B.F. 1992 Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea. Mar Ecol Prog Ser 89: 293–296.
- 46. Wolfe, G.V., Steinke, M., and Kirst, G.O. 1997 Grazing-activated chemical defence in a unicellular marine alga. Nature 387: 894–897.
- Yutin, N., Suzuki, M.T., Teeling, H., Weber, M., Venter, J.C., Rusch, D.B., and Beja, O.
 2007 Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global-Ocean-Sampling expedition metagenomes. Environ Microbiol 9: 1464–1475.
- Zubkov, M.V., Fuchs, B.M., Archer, S.D., Kiene, R.P., Amann, R., and Burkill, P.H.
 2002 Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton
 communities in the stratified euphotic zone of the North Sea. Deep Sea Res II 49: 3017–3038.

Table 3.1. dmdA, dddD and dddL homologues per 100 000 reads in the GOS data set by site. An asterisk indicates values > 0 but

< 0.5.

Site ID number	Sample number	Description	Name	<i>dmdA</i> homologues per 100 000 reads	<i>dddD</i> homologues per 100 000 reads	<i>dddL</i> homologues per 100 000 reads
2	8	Coastal	Gulf of Maine	21	2	0
3	9	Coastal	Brown's Bank-Gulf of Maine	39	0	0
4	10	Coastal	Outside Halifax Nova Scotia	34	0	0
5	11	Embayment	Bedford Basin Nova Scotia	26	3	0
6	12	Estuary	Bay of Fundy Nova Scotia	50	0	0
7	13	Coastal	Northern Gulf of Maine	20	0	0
8	14	Coastal	Newport Harbor Rhode Island	9	0	0
9	15	Coastal	Block Island New York	28	0	0
10	16	Coastal	Cape May New Jersey	36	0	0
11	17	Estuary	Delaware Bay New Jersey	7	0	0
12	18	Estuary	Chesapeake Bay Maryland	17	0	0
13	19	Coastal	Off Nags Head North Carolina	17	0	0
14	20	Coastal	South of Charleston South Carolina	42	0	0
15	21	Coastal	Off Key West Florida	35	0	0
16	22	Coastal	Gulf of Mexico	41	0	0
17	23	Open ocean	Yucatan Channel	32	0	0
18	24	Open ocean	Rosario Bank	43	0	0
19	25	Coastal	North-east of Colon	33	0	0
20	26	Fresh water lake	Lake Gatun	3	0	0
21	27	Coastal	Gulf of Panama	31	0	0
22	28	Open ocean	250 miles from Panama City	25	0	0
23	29	Open ocean	30 miles from Cocos Island	35	0	0
25	30	Fringing reef	Dirty Rock Cocos Island	5	0	0

26	31	Open ocean	134 miles north-east of Galapagos 41		0	0
27	32	Coastal	Devil's Crown Floreana Island	41	0	0
28	33	Coastal	Coastal Floreana	48	0	0
29	34	Coastal	North James Bay Santigo Island	46	0	0
30	35	Warm seep (19m depth)	Warm Seep Roca Redunda	52	0	0
31	36	Coastal (12m depth)	Upwelling Fernandina Island	57	0*	0
32	37	Mangrove (0.1 m depth)	Mangrove on Isabella Island	16	1	0
33	38	Hypersaline (0.2 m depth)	Punta Cormorant Hypersaline Lagoon Floreana Island	2	0	6
34	39	Coastal	North Seamore Island	42	0	0
35	40	Coastal	Wolf Island	38	0	0
36	41	Coastal	Cabo Marshall Isabella Island	45	0	0
37	42	Open ocean	Equatorial Pacific TAO Buoy	48	0	0
47	52	Open ocean	201 miles from French Polynesia	48	0	0
51	56	Coral reef atoll	Rangirora Atoll	28	0	0
		A	Average homologues per 100 000 reads	32	0*	0*

Gene	Gene function	Count	Abundance	Single-copy gene normalizer	Metagenome analysed	Study
dmdA	DMSP demethylation	1701	58% ^a	recA, rpoB, gyrA, dnaK, tufA, atpD	2007 GOS	This study
dmdA	DMSP demethylation	373	37%	recA	Sargasso Sea pilot study	Howard, et al 2006
dddD	DMSP cleavage	6b	0.2% ^a	recA, rpoB, gyrA, dnaK, tufA, atpD	2007 GOS	This study
dddD	DMSP cleavage	1	0.1% ^c	<i>recA</i> ^c	Sargasso Sea pilot study	Todd, et al 2007
dddL	DMSP cleavage	42	0.6%	recA, rpoB, gyrA, dnaK, tufA, atpD	2007 GOS	This study
dddL	DMSP cleavage	7	0.2% ^d	recA, rpoB, gyrA, dnaK, tufA, atpD	Total GOS	Curson, et al 2008
15 GTA genes	Gene transfer agent	~20e	<0.7%	recA, rpoB, gyrA, dnaK, tufA, atpD	Total GOS	Biers, et al 2008
proteorhodopsin	Proteorhodopsin	3608	43%	recA, rpoB, gyrA ^f	Total GOS	Rusch, et al 2007
pufM, pufL, bchX	AanP (aerobic anoxygenic photosynthesis)	99 ^{e,f}	2.5%	recA, rpoB, gyrA ^f	Total GOS	Yutin, et al 2007
glcD	Glycolate oxidase	272 ^f	33%	n/a ^g	Sargasso Sea pilot study	Lau and Armbrust, 2006
celM	Cytophaga-like hydrolase	30	2.9% ^c	<i>recA</i> ^c	Sargasso Sea pilot study	Cottrell, et al 2005
mch	methenyl-H ₄ MPT cyclohydrolase	12	1.2% ^c	<i>recA</i> ^c	Sargasso Sea pilot study	Kalyuzhnaya, et al 2005
RuBisCO	Ribulose bis-phosphate carboxylase	37	3.6% ^c	recA ^c	Sargasso Sea pilot study	Venter, et al 2004

Table 3.2. Frequency of homologues for biogeochemically relevant genes in the GOS metagenome.

^a Average over the 37 sampling sites in the (2007) GOS (see Fig. S3); ^b Curson and colleagues (2008) found three *dddD* homologues in the total GOS; ^c Calculated in this study based on *recA* counts from Howard and colleagues (2006); ^d Calculated in this study based on the six, single-copy gene counts; ^e Calculated as the average of multiple genes; ^f Includes paired reads; ^g Abundance generated from *glcD* OTUs relative to bacterial OTUs.

Figure 3.1. Calculated percent of bacterioplankton cells in ocean surface waters containing a *dmdA* homologue. The number of sample sites comprising each habitat type (n) is indicated.

Figure 3.2. Diversity of *dmdA* homologues. The neighbour-joining tree shows *dmdA* homologues from cultured marine bacteria and selected sequences from the (2007) GOS data set, and representative sequences from the Sargasso Sea metagenome (from Howard *et al.*, 2006; 'CladeB1 UAAO069TR', 'CladeB2 UBAMW22TR', 'CladeC1 UEAVR02TR' and 'CladeD SLAVR50TF'). 'APKI441 fosmid' is the *dmdA* sequence from a Station ALOHA 70-m-depth fosmid insert (DeLong *et al.*, 2006).

Figure 3.3. Third-position G+C contents of *dmdA* homologues. (A) Data from environmental sequences in Clades A, B, C and E are given, along with selected cultured bacteria [the average of 13 cultured roseobacters, Roseobacter member HTCC2255 (not included in the average), *Rhodospirillales* member alphaproteobacterium BAL199 and gammaproteobacterium HTCC2080]. (B) Data from environmental sequences in Clade D are given, along with cultured bacteria in the SAR11 group (average for *P. ubique* HTCC1062 and HTCC1002).

Figure 3.4. *dmdA* neighbouring gene analysis. Numbers indicate the percent of genes found directly up- or downstream of *dmdA* homologues from cultured marine bacteria and GOS environmental sequences. The number of flanking gene regions analysed for each group is indicated (n); no neighbouring genes were retrieved for environmental Clade E sequences. Roseo = 13 Roseobacter sequences; 'P. torquis' = the apparent contaminant sequence from the *P. torquis* genome; SAR11 = 2 SAR11 sequences; HTCC2080 = marine gammaproteobacterium HTCC2080. 'Other' refers to gene categories that constituted < 15% of the up- or downstream region. Clade A upstream 'other': RNA modification enzyme, MiaB (9%), tellurite resistance protein (3%), succinate dehydrogenase (3%), methylene THF reductase (3%), alcohol dehydrogenase (3%), DinB family protein (3%), protein of unknown function DUF1326 (3%); Clade A downstream 'other': alcohol dehydrogenase (7%), transporter (4%), RNA modification enzyme, MiaB (4%), protein of unknown function DUF1326 (7%), acyl-CoA synthase (4%), citrate lyase beta-subunit (4%), peptidyl prolyl cis-trans isomerase (4%), succinate dehydrogenase (4%); Clade C upstream 'other': aspartate semi-aldehyde dehydrogenase (4%), acetyl-CoA acetyltransferase (4%), hydrolase (4%), beta-ketothiolase (2%), cystathionine gamma-synthase (5%), OsmC/Ohr family protein (4%); Clade C downstream 'other': 2dehydropantoate 2-reductase (3%), benzaldehyde lyase (8%), cystathionine gamma-synthase (5%), acyl-CoA synthase (3%), GCN5-related *N*-acetyltransferase (3%), NAD(P) transhydrogenase, beta-subunit (3%), phytanoyl-CoA dioxygenase family protein (3%), transcription regulator (5%), uracil phosphoribosyltransferase (3%); Clade D upstream 'other': GTP-binding protein (0.2%), acyl-CoA synthetase (10%), ETC complex I subunit conserved region protein (0.2%), hypothetical protein (1%), NADP oxidoreductase, coenzyme F420 dependent (1%), YbaK/prolyl-tRNA synthetase (0.6%), benzaldehyde lyase (0.2%), transporter

(0.2%), X-Pro dipeptidase (0.4%), unknown (0.2%), GTP-binding protein TypA (0.4%); Clade D downstream 'other': acyl-CoA synthetase (5%), acetyl-CoA acetyltransferase (0.3%), ETC complex I subunit (1.4%), drug/metabolite transporter permease (0.3%), hypothetical protein (2%), transporter (0.5%), X-Pro dipeptidase (0.3%), putative transporter, RarD family (0.3%), NADP oxidoreductase, coenzyme F420 dependent (0.3%). The gene neighbourhoods in the sequenced organisms are as follows (percentages indicated are those of genes that are in > 10%of each group, except HTCC2080 in which there is only one sequenced member; those that are < 10% were removed for brevity): A, GntR family transcriptional regulator (33%); B, hypothetical protein (50%), GntR family transcriptional regulator (17%); C, hypothetical protein (60%); D, BCCT transporter (17%), hypothetical protein (17%); E, aminotransferase class V (25%), hypothetical protein (17%), 3-oxoadipate enol-lactonase family protein (17%); F, hypothetical protein (50%), GntR family transcriptional regulator (17%), Putative deoxyribodipyrimidine photolyase (17%); G, LysR regulatory protein (17%), cyclopropane fattyacyl-phospholipid synthase (17%); H, enoyl-CoA hydratase/iosmerase (100%); I, succinate dehydrogenase, flavoprotein unit sdhA (50%), 3-isopropyl malate dehydrogenase (50%); J, succinate dehydrogenase, putative membrane portion (50%), acyl-CoA dehydrogenase (50%); K, acyl-CoA synthetase (50%), succinate dehydrogenase sdhC (50%); L, succinate dehydrogenase cytochrome b (50%), acyl-CoA synthetase fadD (50%); M, succinate dehydrogenase (50%), acyl-CoA dehydrogenase mmgC (50%); N, succinate dehydrogenase (50%), 3-isopropylmalate dehydrogenase *leuB* (50%); O, 3-isopropylmalate dehydrogenase *leuD* (50%), succinate dehydrogenase (50%); P, dipeptidyl peptidase; Q, hypothetical protein; R, MscS mechanosensitive ion channel; S, aldehyde dehydrogenase; T, putative lignostilbene-alpha, betadioxygenase; U, transcriptional regulator, tetR family; V, short-chain dehydrogenase.

CHAPTER 4

RESPONSE OF DMSP DEMETHYLATION GENES TO AN INDUCED PHYTOPLANKTON BLOOM IN GULF OF MEXICO SEAWATER¹

¹Erinn C. Howard, Shulei Sun, Christopher R. Reisch, Danielle A. del Valle, Ronald P. Kiene, and Mary Ann Moran

To be submitted to Applied and Environmental Microbiology

Abstract

Over half of the bacterioplankton cellsin ocean surface waters are capable of routing sulfur away from the climatically-active DMS by demethylating DMSP and retaining it in the oceanic food web. In this study, >91,000 amplicons of the primary gene responsible for demethylation, *dmdA*, were sequenced over the course of an induced phytoplankton bloom in Gulf of Mexico surface waters. *dmdA* diversity was substantial, with 578 sequence clusters emerging at a conservative clustering level of >90% nucleotide sequence identity over the six-day study. The representation of the five recognized clades of DmdA did not shift substantially over the course of the phytoplankton bloom compared to controls, despite major changes in DMSP flux and concentration, and there was no evidence for "bloom" and "non-bloom" clades. 16S rRNA amplicon sequencing indicated the presence of taxa known to harbor dmdA genes (the Roseobacter clade, SAR11, OM60, and marine Rhodospirillales). However, the largest taxonomic change during the bloom was an increase in amplicons attributed to Flavobacteria, a taxon not known to harbor *dmdA* genes. Our results are consistent with recent data indicating that kinetic parameters of the different clades of DmdA may be quite similar. The reservoir of dmdA genes in this experimentally induced phytoplankton bloom was predictable from the taxonomic composition of the bacterioplankon but not from DMSP supply and concentration.

Introduction

Dimethylsulfoniopropionate (DMSP) is an ubiquitous phytoplankton product that is degraded by marine microorganisms in either of two ways. The cleavage pathway involves degradation of DMSP by phytoplankton or bacteria to produce dimethylsulfide (DMS). DMS is the largest natural source of sulfur from the ocean to the atmosphere (2), and upon oxidation, forms cloud condensation nuclei, hypothesized to affect climate on a global scale (1, 4, 21, 22). The alternative DMSP degradation pathway is carried out by bacteria alone and involves an initial demethylation to methylmercaptopropionate (MMPA), with some portion of the sulfur subsequently shunted to sulfur-containing amino acids (14, 16, 27).

The genes involved in the initial step of both DMSP degradation pathways have recently been discovered (7, 11, 32). Two different genes that each encode the first step of the DMSP cleavage pathway (dddD and dddL) have been identified (7, 32), although both are in low abundance in bacteria from the surface ocean water (an estimated 0.1 and 3.0% of cells contain the gene, respectively; 12). Conversely, the only gene found thus far that codes the first step in the DMSP demethylation pathway (dmdA) is highly abundant (an estimated 58% of cells contain the gene; 11, 12).

Five clades of DmdA, designated A through E, have been found in cultured marine bacteria or marine metagenomic sequences thus far. Clade A sequences include genes from various roseobacter species and a marine Rhodospirillales. Clade D sequences include genes from three SAR11 isolates (*Pelagibacter* strains HTCC1002, HTCC1062, and HTCC7211) and Clade C sequences include a second *dmdA* gene from *Pelagibacter* sp. HTCC7211. Clade E sequences include a gene from marine gamma proteobacterium HTCC2080 in the OM60 clade (11, 12, 34). To date, a Clade B *dmdA* sequence is not represented in any cultured bacterium.

The distribution of these clades can vary somewhat by environment, but their distribution across many open and coastal ocean surface water is surprisingly consistent. Generally, Clade D sequences are found in the highest abundance, and Clade E the lowest (11, 12). These *dmdA* clade distributions, however, have not been studied over time in a single environment, particularly as ecological conditions shift. Because phytoplankton blooms typically create changes in DMSP concentration and flux (9, 33, 35, 36), this study tracked the composition and diversity of the *dmdA* gene pool in Gulf of Mexico microcosms in which a phytoplankton bloom was induced by nutrient additions. Here we present relative changes in *dmdA* clade abundance based on deep sequencing of amplicons from a universal *dmdA* primer pair, in the context of simultaneous changes in DMSP concentration and fate, and bacterial and archaeal community composition.

Methods

Sample collection

Seawater was collected from oligotrophic surface waters (<1 m) in the Gulf of Mexico (30° 03.041, 87° 59.708; 27°C, 34 PSU). Water was filtered through a 200 μ m mesh into six 20L pre-rinsed cubitainers (Fold-A-Carrier; Reliance Products, Ltd.) leaving minimal headspace. Three experimental cubitainer microcosms were amended with sodium nitrate (10 μ M) and potassium phosphate (0.6 μ M) to induce bloom conditions; three control microcosms received no nutrient amendments. The microcosms were incubated at 27° C with a 12 h on/12 h off artificial light cycle (200 μ E cm⁻²) for the duration of the experiment.

DNA extraction

After an initial (T=0) sampling of the full contents of one control and one experimental microcosm (20 L each), samples were collected daily from each of the other four microcosms (two control and two experimental) over the next 6 days. The cubitainers collapsed as water volume was removed, resulting in relatively constant headspace volume throughout the experiment. For DNA samples, water was sequentially filtered through 8 μ m (293 mm diameter) and 3 μ m (47 mm diameter) prefilters, and then particles were collected on 0.2 μ m (47 mm) pore-size polycarbonate filters (Poretics®) until the filters clogged (~250-500 ml volume, depending on sample). The 0.2 μ m filters were flash frozen in liquid nitrogen and then stored at -20°C until extraction. DNA was extracted using the PowerMax Soil DNA Isolation kit (MoBio Laboratories, Inc.) following manufacturer's instructions, and concentrations were estimated by absorbance on a NanoDrop Spectrophotometer (Thermo Scientific). For chemical analyses and bacterial activity measures, 500 ml of unfiltered water was collected simultaneously and immediately used in the analyses (see below).

PCR Reactions

DNA extracted from duplicate control and experimental samples (28 total samples) was used as template for PCR reactions, followed by pyrosequencing of amplicons (23). PCR reactions were carried out with Platinum High-Fidelity Taq DNA polymerase (½U; Invitrogen) in the native 10x PCR buffer with 8 ng (for *dmdA* amplifications), 5 ng (for bacterial 16S rRNA), or 10 ng (for archaeal 16S rRNA) template DNA. Universal *dmdA* primers were modified from Varaljay, et al (34) to include 454 Life Sciences A or B adaptor sequences and 14 tetranucleotide "key" sequences for sample differentiation during sequence analysis (13, 23, 30). The *dmdA* cycling conditions were as follows: 94°C for 2 min, followed by 40 cycles of 94°C for 35 s, 41°C for 35 s, and 68°C for 60 s, with a final 10 min, 68°C extension step (34). 16S rRNA

bacterial and archaeal primers covering the V6 hypervariable region (developed by Sogin, et al (30) and modified by Huber, et al (13); these are a combination of 5 forward and 4 reverse bacterial 16S rRNA primers and 1 forward and 2 reverse archaeal 16S rRNA primers) were made with 14 distinct tetranucleotide keys, as described above. Bacterial or archaeal primers were mixed equally from 10 μ M stock solutions, and 2 μ L of this pooled solution was used in each 25 μ L PCR reaction (13). The 16S rRNA gene cycling conditions were as follows: 94°C for 2 min, followed by 30 cycles of 94°C for 30 s, 58°C for 30 s, and 68°C for 30 s, with a final 10 min, 68°C extension step.

Sequencing Preparation

PCR products were run on 1% (*dmdA* amplicons) or 2% (bacterial and archaeal 16S rRNA amplicons) agarose gels, followed by purification using the QIAquick gel extraction kit (Qiagen). As a final DNA purification, products were cleaned using the Ampure® system (Agencourt Bioscience corporation), with modifications to the volume of purified PCR products (30 μ L) and AMPure beads (50.4 μ L). After final purification, DNA concentrations were determined as above and products (61 control and 60 experimental samples) were pooled in equal amounts, except that *dmdA* amplicons were added to the mixtures at double the amount of the 16S rRNA amplicons. Two separate pools were assembled, each of which used the distinct identification keys only once, and these were sequenced on separate halves of the PicoTiterPlate (454 Lifesciences). A total of ~1,300 ng DNA was sent for Roche GS FLX LR70 pyrosequencing at the University of South Carolina Environmental Genomics Facility (Columbia, SC).

Sequence Data Analysis

For reads of high-quality (sequences containing full and correct forward primer sequences and no uncalled bases), adaptor and key sequences were removed and sequences were clustered using the CD-HIT program (20) with >90% similarity for *dmdA* clusters and \geq 99% similarity for 16S rRNA clusters. The average read length was 190 bp for *dmdA* amplicons, 70 for bacterial rRNA amplicons, and 72 bp for archaeal rRNA amplicons after trimming of adaptor, key, and primer sequence. For analysis of *dmdA* amplicons, reference sequences (defined as the longest read in the cluster) were analyzed via BLASTX against an in-house dmdA database assembled from cultured marine bacteria and the Global Ocean Sampling (26) metagenomic sequences (http://roseobase.org/DmdApaper) and augmented with a number of paralogous, non-dmdA sequences (12). Sequences were considered to be valid dmdAs if the top hit in the database was to a *dmdA* sequence with a bit score of >30. The sequences were assigned to the clade (either A, B, C, D, or E, or unclassified) of the top hit. For taxonomic analysis of bacterial 16S rRNA amplicons, reference sequences were aligned against a marine bacterial 16S rRNA database with representatives of all major marine taxa (3). Amplicons with $\geq 90\%$ similarity and overlap of \geq 70% to one of the representative marine sequences were assigned to that taxon. Otherwise they were analyzed as for the archaeal sequences. For taxonomic analysis of archaeal 16S rRNA amplicons, the SIMO RDP Agent (www.simo.marsci.uga.edu) was used to compare amplicon sequences against archaeal type species housed in the RDP database (5), using similarity cut-offs of $\geq 100\%$ for species, $\geq 95\%$ for genus, $\geq 92\%$ for family, $\geq 91\%$ for order, >85% for class, and >75% for phylum assignments. Because of the poor coverage of Archaea diversity among type species, most sequences were identified only to the phylum level or remained unclassified.

Statistical analysis

Clusters were analyzed via multi-dimensional scaling (MDS) using Primer 5 for Windows software (Plymouth Marine Laboratory, Plymouth, UK). A Bray-Curtis similarity matrix (4th root transformed to de-emphasize the contribution of any one particular dominant cluster) was constructed from the clusters from each replicate microcosm (two control and two nutrient-amended) over time (6 days). For *dmdA* sequences, the top 100 clusters (that contained 70% of the amplicons) were included in the statistical analysis. For bacterial 16S rRNA sequences, all clusters were analyzed (9,588 clusters representing 55 marine taxa). *dmdA* and 16S rRNA clusters were also evaluated with a SIMPER analysis (Primer 5), which determines the clusters contributing most to the differences between samples. A rarefaction curve of all *dmdA* sequences clustered at the 90% similarity level was created using EcoSim 7.0 (10) with 1,000 resamplings.

Chemical analysis and bacterial activity measurements

The ~500 mL of water collected for chemical and activity measurements was immediately subdivided as follows. Chlorophyll *a* (Chl *a*) samples were collected by filtration (50 ml) on Whatman GF/F filters. The filters were extracted in 90% acetone for 24 h at -20°C, and Chl *a* in the extracts was quantified by fluorometry (24). Samples for dissolved DMSP (DMSPd) were collected by small volume drip filtration through GF/F filters (18). Total DMSP (dissolved + particulate) was collected by acidifying whole seawater with 5 μ l ml⁻¹ of 50% H₂SO₄, similar to the method described by Curran et al (6). Dissolved and total DMSP were quantified as DMS after alkaline hydrolysis. Bacterial production was measured by [³H]leucine incorporation using the method developed by Kirchman, et al. (19) and modified by Smith and Azam (29); live and killed (5% trichloroacetic acid) controls were incubated with [³H]leucine (20 nM final concentration) for 1 h in the dark. [³⁵S]DMSP was synthesized using the

procedures outlined in Kiene et al. (15) and Vila et al. (35). Rate constants for DMSPd consumption were obtained with [³⁵S]DMSP as described in Slezak et al (28). Rates of DMSPd (in nM d⁻¹) were obtained by multiplying the DMSPd and DMS concentrations by their respective rate constants.

Results

Phytoplankton bloom dynamics

While control microcosms maintained low Chl *a* levels throughout the experiment (<1 μ g L⁻¹), the nutrient-amended experimental microcosms had variable and higher Chl *a* concentrations that peaked at Day 4 (6 μ g L⁻¹; Figure 4.1), indicating a phytoplankton bloom. Rates of bacterial secondary production indicated increased substrate availability in the experimental microcosms, consistent with bloom conditions (Figure 4.1).

The fraction of assimilated dissolved DMSP (DMSPd) degraded to DMS (maximally 15%; Figure 4.1) and the fraction of DMSPd-sulfur assimilated into macromolecules (maximally 55%; Figure 4.1) followed the same trend in both control and experimental microcosms (Figure 4.1). However, the ratio of particulate DMSP (DMSPp) to Chl *a*, a proxy for the relative amount of DMSP produced per phytoplankton cell (35), decreased over the course of the induced bloom in the experimental microcosms (Figure 4.1). This pattern suggests that the phytoplankton dominating the bloom were poor DMSP producers relative to those in the initial community and to those in the community that persisted in the control microcosms. Principal components analysis (PCA) using all environmental variables except NO_3^- and PO_4^{3-} (which were experimentally manipulated) showed that the conditions and processes in the experimental

microcosms became most dissimilar to the initial samples and the control microcosms on Days 4-6 (Figure 4.2A).

DMSP demethylase gene (dmdA) dynamics

The 91,418 *dmdA* sequences obtained (28 samples representing two replicates per treatment for Days 0-6) formed 578 clusters at 90% nucleotide sequence identity (average of 158 sequences per cluster). At this similarity level, the experiment-wide richness had not yet reached a plateau (Figure 4.3). Given the error rate for FLX pyrosequencing (0.5%), this vast diversity at the 10% divergence level is real. Non-*dmdA* sequences captured by the universal *dmdA* primer set were also found (20,761 sequences); these formed 647 clusters (average of 32 sequences per cluster). Overall, 82% of the total amplicons were identified as *dmdA* sequences, while 18% were identified as encoding GcvT proteins or other related sequences.

dmdA cluster richness gradually decreased throughout the experiment in both experimental and control microcosms. The greatest cluster richness for the experimental microcosms was found on Day 1 with 240 clusters present, after which the number deceased to 185 by Day 6. Similarly, the greatest cluster richness in the control microcosms was found on Day 1 with 238 clusters present, decreasing to 164 by Day 6.

There was evidence of shifts in the relative abundance of sequences in major *dmdA* clades as the bloom in the experimental microcosms progressed, however these trends are also observed in control microcosms, albeit to a smaller extent. The percent of Clade A sequences increased in experimental microcosms from 47% to 70% of the total *dmdA* sequences between Days 3 and 4, while Clade E sequences increased from 9 to 20% of sequences at the same time.

Sequences from Clades C and D decreased in relative abundance (from 18 to 4% and from 26 to 6% of *dmdA* sequences, respectively; Figure 4.4A).

To track temporal dynamics of the community *dmdA* pool at a finer scale, the 100 largest 90% identity DmdA clusters (averaging 784 sequences per cluster and accounting for 70% of all dmdA sequences) were analyzed in more detail. A multi-dimensional scaling (MDS) plot of the percent of sequences in these clusters showed that Days 4-6 in the experimental microcosms were more similar to each other than to the other time points in both control and experimental samples (Figure 4.2B). The DMSPp:Chl *a* ratio correlated well with the observed shifts in the relative abundance of the 100 largest *dmdA* clusters (Figure 4.2B). The clusters contributing the most to differences over time in experimental vs. control microcosms were from Clades A and C (Figure 4.5).

Bacterial and archaeal communities

The 180,801 bacterial 16S rRNA sequences obtained from control and experimental microcosms formed 9,588 taxonomic clusters at 99% nucleotide sequence identity (all time points considered together). The major bacterial groups represented by these clusters were Roseobacter, SAR11, and Flavobacteria (Figure 4.4B). The relative abundance of Flavobacteria amplicons increased over time in the experimental microcosms (from 12% to 34% of total sequences), while SAR11 abundance decreased (from 31% to 12%; Figure 4.4B). These changes were larger than in the control microcosms. Roseobacters were amplified in large numbers from the microcosm bacterial communities, and numbers remained relatively stable regardless of time point or treatment (average $17\% \pm 7\%$; Figure 4.4B).

The distribution of sequences among bacterial clusters diverged over Days 4-6 in the experimental microcosms compared to the control microcosms and the initial sample (Figure

4.2C). A SIMPER analysis indicates that the increases in Flavobacteria amplicons was most responsible for this difference.

Archaeal 16S rRNA genes could be amplified from microcosm DNA only for Days 0-3. The 6,578 Archaeal 16S rRNA sequences formed 519 clusters at the 99% sequence identity level. The majority of archaeal 16S rRNA amplicons (~83%) could not be classified to phylum since they were <75% identical to any type species. These unclassified archaea likely reflect an underrepresentation of mesophilic archaea among characterized isolates. Of the sequences that could be categorized to the phylum level, the majority were Euryarchaeota (averaging 16.6% of archaeal sequences) regardless of treatment or time point (Figure 4.4C), and a small number were Crenarchaeota (averaging 0.2% of archaeal sequences). Analysis of archaeal clusters, which included the unclassified sequences, showed a shift in composition over the limited timecourse in which their 16S rRNA genes could be amplified, but this was similar in control and experimental microcosms (Figure 4.2D).

Discussion

In the context of an experimentally induced phytoplankton bloom, we asked whether shifting DMSP supply and environmental conditions influenced the relative composition of the community *dmdA* sequence pool. While at least five protein clades are found in marine bacterioplankton communities (12), little information is yet available on whether or not these *dmdA* clades represent proteins with different kinetic properties and ecological roles. Manipulation of a natural marine bacterioplankton community provided a framework in which to ask whether "bloom" and "non-bloom" clades of DmdA could be identified. Because four of the

five clades are linked to specific taxa, the changes in relative DmdA abundance should likewise track changes in taxonomic composition.

Biogeochemical data confirm the initiation of a phytoplankton bloom in the experimental microcosms, peaking at Day 4 and declining by Day 6. While DMSP concentrations and flux were higher in experimental microcosms in an absolute sense due to the substantial increase in phytoplankton biomass (Figure 4.1), the ratio of DMSPp:Chl *a* showed that the blooming phytoplankton were poor producers of DMSP. Microscopic analysis (data not shown) indicated that diatoms, which are not strong DMSP producers, dominated the bloom. Thus the availability of dissolved DMSP to the bacterioplankton community in relation to other organic matter produced by the phytoplankton was likely lower in the experimental microcosms.

We found a surprising diversity of *dmdA* sequences. Overall, 578 clusters were identified at a fairly conservative definition of 90% nucleotide sequence similarity. A rarefaction curve showed amplicon nucleotide richness had not yet saturated, even at a 90% clustering level (Figure 4.3). Sequencing error (0.5%) is unlikely to be a significant source of this extensive diversity. Clusters unique to either experimental or control microcosms accounted for 29% of the total clusters. These unique clusters averaged only 1.5 sequences each, suggesting a significant amount of rare diversity that would not have been captured in shallow sequencing efforts (Figure 4.2B). There have been few exhaustive analyses of the diversity of functional genes, and even this deep sequencing approach likely underestimated diversity and richness due to mismatches with the universal primer set and PCR bias.

Despite substantial differences in the concentration and flux of DMSP between experimental and control microcosms, there were fairly limited changes in the composition of the *dmdA* genes harbored by the community. The increase in the abundance of Flavobacteria in the

experimental microcosms is consistent with previous studies suggesting a role for this group during phytoplankton bloom senescence. Yet with no evidence of DMSP demethylase capabilities in cultured Flavobacteria, or indeed any member of the Bacteroidetes, this taxonomic trend alone should have had little effect on the community *dmdA* pool.

The small changes in DmdA composition might be explained by the decreasing importance of DMSPd relative to other phytoplankton-derived substrates as the bloom developed. Decreases in the Chl a:DMSPd ratio were highly correlated with *dmdA* composition (Figure 4.2). Other organic carbon and organic sulfur sources, including S-containing amino acids, may be supplying a larger fraction of bacterial demand in the experimental microcosms compared to the control. DmdA harboring organisms are capable of using alternative sulfur sources, including organic sulfur and (except for SAR11) sulfate. The small changes in DmdA composition might also point to ecologically insignificant differences in kinetic parameters among the protein clades. To this end, Reisch, et al (25) recently found similar K_ms, catalytic efficiencies, and pH optima for purified representative proteins from Clades A and D. Reisch et al. (25) also found evidence that bacterioplankton concentrate DMSP to high concentrations (70 mM in S. pomerovi), typical for compounds used as an osmoprotectant and in agreement with field studies of natural bacterioplankton communities (31). Consistently high intracellular DMSP concentrations might decrease pressures for the protein to be optimized for external DMSP concentrations.

This study took advantage of deep amplicon sequencing made possible by pyrosequencing technology to follow the changes in the relative abundance of sequences encoding five clades of the ecologically important gene *dmdA*. While there are dynamics at the cluster level (>90% sequence similarity), *dmdA* composition at the clade level was less

responsive to shifting environmental DMSP availability or other environmental variables than hypothesized, at least among the genes that can be amplified by the universal *dmdA* primer set. Relative constancy in *dmdA* clade composition was also found spatially in the GOS metagenomic data (12). In this bloom of low DMSP-producing phytoplankton, the relative importance of major *dmdA* clades was predictable from the taxonomic composition of the bacterioplankon but not from the environmental dynamics, including DMSPd flux and concentrations and relative importance of DMSP-derived carbon and sulfur.

Acknowledgements

We thank the captain of the R/V E.O. Wilson (Dauphin Island, AL) for help in sample collection, and Bradley Tolar, Erin J. Biers, Helmut Bürgmann, Montserrat Coll-Lladó, Allison Rellinger, Casey Smith, Scott Gifford, Xiaozhen Mou, and Adam Spaulding for their assistance in sample collecting and processing. This research was supported by NSF grant OCE070724017 (to M.A.M. and R.P.K.) and by a grant from the Gordon and Betty Moore Foundation (to M.A.M.).

References

- Andreae, M. 1990. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Marine Chemistry 30:1-29.
- Andreae, M. O., and H. Raemdonck. 1983. Dimethyl Sulfide in the Surface Ocean and the Marine Atmosphere: A Global View. Science 221:744-747.
- Biers, E. J., S. Sun, and E. C. Howard. accepted Applied and Environmental Microbiology. Prokaryotic Genomes and Diversity in the Surface Ocean: Interrogating the Global Ocean Sampling Metagenome.
- 4. Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655-661.
- Cole, J. R., B. Chai, R. J. Farris, Q. Wang, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, A. M. Bandela, E. Cardenas, G. M. Garrity, and J. M. Tiedje. 2007. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Research 35:D169-D172.
- Curran, M. A. J., G. B. Jones, and H. Burton. 1998. Spatial distribution of dimethylsulfide and dimethylsulfoniopropiate in the Australasian sector of the Southern Ocean. Journal of Geophysical Research 103:16667-16689.

- Curson, A. R. J., R. Rogers, J. D. Todd, C. A. Brearley, and A. W. B. Johnston. 2008. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and *Rhodobacter sphaeroides*. Environmental Microbiology 10:757-767.
- Del Valle, D. A., D. J. Kieber, and R. P. Kiene. 2006. Depth-dependent fate of biologically-consumed dimethylsulfide in the Sargasso Sea. Marine Chemistry 103:197-208.
- Gonzalez, J. M., R. Simo, R. Massana, J. S. Covert, E. O. Casamayor, C. Pedros-Alio, and M. A. Moran. 2000. Bacterial Community Structure Associated with a Dimethylsulfoniopropionate-Producing North Atlantic Algal Bloom. Applied and Environmental Microbiology 66:4237-4246.
- Gotelli, N. J., and G. L. Entsminger. 2008. EcoSim: Null models software for ecology.
 Version 7. Acquired Intelligence Inc. & Kesey-Bear, Jericho.
- Howard, E. C., J. R. Henriksen, A. Buchan, C. R. Reisch, H. Bürgmann, R. Welsh, W. Ye, J. M. González, K. Mace, S. B. Joye, R. P. Kiene, W. B. Whitman, and M. A. Moran.
 2006. Bacterial Taxa That Limit Sulfur Flux from the Ocean. Science 314:649-652.

- Howard, E. C., S. Sun, E. J. Biers, and M. A. Moran. 2008. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environmental Microbiology 10:2397-2410.
- Huber, J. A., D. B. M. Welch, H. G. Morrison, S. M. Huse, P. R. Neal, D. A. Butterfield, and M. L. Sogin. 2007. Microbial Population Structure in the Deep Marine Biosphere. Science 318:97-100.
- Kiene, R. P. 1996. Production of methanethiol from dimethylsulfoniopropionate in marine surface waters. Marine Chemistry 54:69-83.
- Kiene, R. P., L. P. Hoffman Williams, and J. E. Walker. 1998. Seawater microorganisms have a high affinity glycine betaine uptake system which also recognizes dimethylsulfoniopropionate. Aquatic Microbial Ecology 15:39-51.
- Kiene, R. P., L. J. Linn, J. M. Gonzalez, M. A. Moran, and J. A. Bruton. 1999. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Applied and Environmental Microbiology 65:4549-4558.
- Kiene, R. P., and S. K. Service. 1991. Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate concentration. Marine Ecology Progress Series 76:1-11.
- Kiene, R. P., and D. Slezak. 2006. Low dissolved DMSP concentrations in seawater revealed by small volume gravity filtration and dialysis sampling. Limnology and Oceanography 4:80-95.
- Kirchman, D. L., E. K'nees, and R. E. Hodson. 1985. Leucine incorporation and its potential as a measure of protein synthesis by baceria in natural aquatic systems. Applied and Environmental Microbiology 49:599-607.
- 20. Li, W., and A. Godzik. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658-1659.
- Lovelock, J. E., R. J. Maggs, and R. A. Rasmussen. 1972. Atmospheric Dimethyl Sulphide and that Natural Sulphur Cycle. Nature 237:452-453.
- Malin, G., and G. O. Kirst. 1997. Algal Production of Dimethyl Sulfide and its Atmospheric Role. Journal of Phycology 33:889-896.
- Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y.-J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. V. Gomes, B. C. Godwin, W. He, S. Helgesen, C. Heen Ho, G. P. Irzyk, S. C. Jando, M. L. I. Alenquer, T. P. Jarvie, K. B. Jirage, J.-B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. McDade, M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T. Ronan, G.

T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro, A.
Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M. P. Weiner, P. Yu, R. F.
Begley, and J. M. Rothberg. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380.

- 24. Parsons, T. R., Y. Maita, and C. M. Lalli. 1984. A manual for chemical and biological methods for seawater analysis, vol. Pergamon, New York, NY.
- Reisch, C. R., M. A. Moran, and W. B. Whitman. accepted Journal of Bacteriology. Purification and Characterization of DMSP Dependent Demethylase (DmdA) from Marine Bacteria.
- Rusch, D. B., A. L. Halpern, G. Sutton, K. B. Heidelberg, S. Williamson, S. Yooseph, D. Wu, J. A. Eisen, J. M. Hoffman, K. Remington, K. Beeson, B. Tran, H. Smith, H. Baden-Tillson, C. Stewart, J. Thorpe, J. Freeman, C. Andrews-Pfannkoch, J. E. Venter, K. Li, S. Kravitz, J. F. Heidelberg, T. Utterback, Y.-H. Rogers, L. I. Falcon, V. Souza, G. Bonilla-Rosso, L. E. Eguiarte, D. M. Karl, S. Sathyendranath, T. Platt, E. Bermingham, V. Gallardo, G. Tamayo-Castillo, M. R. Ferrari, R. L. Strausberg, K. Nealson, R. Friedman, M. Frazier, and J. C. Venter. 2007. The *Sorcerer II* Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biology 5:0398-0431.
- Simo, R. 2001. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological, evolutionary links. TRENDS in Ecology and Evolution 16:287-294.

- Slezak, D., R. P. Kiene, D. A. Toole, R. Simo, and D. J. Kieber. 2007. Effects of solar radiation on the fate of dissolved DMSP and conversion to DMS in seawater. Aquatic Science 69:377-393.
- Smith, D. C., and F. Azam. 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs 6:107-114.
- 30. Sogin, M. L., H. G. Morrison, J. A. Huber, D. M. Welch, S. M. Huse, P. R. Neal, J. M. Arrieta, and G. J. Herndl. 2006. Microbial diversity in the deep sea and the unexplored "rare biosphere". Proceedings of the National Academy of Sciences 103:12115-12120.
- Sunda, W., D. J. Kieber, R. P. Kiene, and S. Huntsman. 2002. An antioxidant function for DMSP and DMS in marine alga. Nature 418:317-320.
- Todd, J. D., R. Rogers, Y. Guo Li, m. Wexler, P. L. Bond, L. Sun, A. R. J. Curson, G. Malin, M. Steinke, and A. W. B. Johnston. 2007. Structural and Regulatory Genes Required to Make the Gas Dimethyl Sulfide in Bacteria. Science 315:666-669.
- 33. Turner, S. M., G. Malin, P. S. Liss, D. S. Harbour, and P. M. Holligan. 1988. The Seasonal Variation of Dimethyl Sulfide and Dimethylsulfoniopropionate Concentrations in Nearshore Waters. Limnology and Oceanography 33:364-375.

- Varaljay, V. A., E. C. Howard, S. Sun, and M. A. Moran. in prep. Diversity of Dimethylsulfoniopropionate Demethylase Genes in a Marine Ecosystem Assessed by Deep Amplicon Sequencing of *dmdA* Primer Sets.
- 35. Vila, M., R. Simo, R. P. Kiene, J. Pinhassi, J. M. Gonzalez, M. A. Moran, and C. Pedros-Alio. 2004. Use of Microautoradiography combined with fluorescence In Situ Hybridization to Determine Dimethylsulfoniopropionate Incorporation by Marine Bacterioplankton Taxa. Applied and Environmental Microbiology 70:4648-4657.
- Zubkov, M. V., B. M. Fuchs, S. D. Archer, R. P. Kiene, R. Amann, and P. H. Burkill.
 2001. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulfoniopropionate in an algal bloom in the North Sea. Environmental Microbiology 3:304-311.

Figure 4.1. Control and experimental microcosm chemical measurements.

Figure 4.2. Multidimensional scaling of the Bray-Curtis similarity matrix generated using the relative concentrations of environmental variables (A) and the relative abundance of clusters of *dmdA* sequences (B), clusters of bacterial 16S rRNA sequences (C), and clusters of archaeal 16S rRNA sequences (D) over the time course in experimental and control samples. Bubbles (plots B-D) indicate the ratio of DMSPp:Chl a at the indicated time point and sample. Arrows follow the sample time progression through the control (blue) and experimental (red) time courses.

Dimension 1

Figure 4.3. Rarefaction curve of *dmdA* sequences clustered at the 90% similarity level.

Figure 4.4. Relative abundance of DmdA clades (A), bacterial taxa (B), and archaeal taxa (C) over the time course between control and experimental samples. The y-axis represents percent of sequences in each sample in the indicated classification.

Figure 4.5. Multidimensional scaling of the Bray-Curtis similarity matrix generated using the relative abundance of each top 100 DmdA cluster (observes the relative similarity between each indicated cluster among samples/days). Filled symbols indicate the top 10 clusters contributing to the dissimilarity between control and experimental samples as indicated by the SIMPER analysis.

CHAPTER 5

CONCLUSIONS

The intent of this study was to understand how the capability for demethylating dimethylsulfoniopropionate (DMSP) is temporally and spatially distributed among surface ocean marine bacteria. This metabolic process is responsible for diverting DMSP-sulfur away from the climatically-active gas dimethylsulfide (DMS), and for providing substantial amounts of reduced carbon and sulfur to the marine microbial food web.

In Chapter 2, the roseobacter clade bacterium *Silicibacter pomeroyi* DSS-3, which can both demethylate and cleave DMSP, was used to identify the gene responsible for bacterial demethylation. A mutant library was created by random transposon mutagenesis. A mutant was found that was unable to demethylate DMSP to methylmercaptopropionate (MMPA) but retained DMSP cleavage function. In this mutant, the transposon had inserted into gene SPO1913, originally annotated as an "amino methyltransferase" (Figure 2.1; 1). Demethylation function was restored upon complementation with a fully functional SPO1913 gene copy (Figure 2.4; 1). This gene, conclusively demonstrated to be responsible for demethylating DMSP, was named *dmdA*. DmdA was also found in the ubiquitous marine SAR11 group, represented by strains *Pelagibacter ubique* HTCC1002 and *P. ubique* HTCC1062, as well as several other roseobacter species (Figure 2.2). DMSP demethylation function was demonstrated experimentally for the *dmdA* from *P. ubique*, by synthesizing the gene with *Escherichia coli* codon usage and testing for function in trans (Figure 2.1; 1). Finding *dmdA* in the roseobacter taxon (highly abundant coastal bacteria) as well as in the SAR11 taxon (highly abundant open ocean bacteria) suggests the capability for DMSP demethylation throughout much of the surface ocean.

Using the Sargasso Sea pilot project portion of the Global Ocean Sampling (GOS) expedition (4), four clades of dmdA (designated A, B, C, and D) were found. Roseobacter organisms were found to harbor Clade A dmdA sequences and SAR11 organisms to harbor Clade D (Figure 2.2; 1). In Chapter 3, a bioinformatic analysis that included more of the GOS samples (Northwest Atlantic through the Eastern tropical Pacific; 3) provided evidence of another dmdAclade, designated Clade E. Clustering with the environmental sequences of this relatively small clade is the first cultured non-alphaproteobacterium known to contain a putative dmdA, gammaproteobacterium HTCC2080 (Figure 3.2; 2). Based on the range of G+C content and gene neighborhoods, all of the dmdA clades except Clade D are taxonomically heterogenous (Figure 3.3; 2). As more bacterioplankton genomes become sequenced, it is likely that the number and diversity of organisms harboring a dmdA gene will increase.

Normalizing the number of *dmdA* sequences found in the 2007 GOS to the average number of six, single-copy genes in the GOS (*atpD*, *rpoB*, *gyrB*, *hsp70*, *tufA* and *recA*), *dmdA* was found to be present in 58±9% of bacterioplankton cells in ocean surface waters (2). This incredible abundance of a biogeochemically relevant gene in seawater is rivaled only by the abundance of the likewise biogeochemically relevant proteorhodopsin gene (43% of cells; Table 3.2; 2, 3). Genes recently discovered to act in the cleavage pathway of DMSP degradation, *dddD* and *dddL*, are calculated to be present in only 0.2% and 0.6% of surface water bacterioplankton cells, respectively (Table 3.2; 2), suggesting that either bacteria are not primarily responsible for DMSP degradation to DMS and/or that the major DMSP cleavage genes are yet to be found.

117

In Chapter 4, a microcosm study of an induced phytoplankton bloom in Gulf of Mexico seawater over the course of six days revealed changes in the relative distribution of the *dmdA* clades during the development and decline of the bloom. The relative abundance of *dmdA* genes in Clades A and E marginally increased, while those in Clades C and D marginally decreased in relative abundance (Figure 4.4). Further analysis revealed that clusters from Clades A and C were primarily responsible for the dissimilarity between experimental (bloom) and control (non-bloom) conditions (Figure 4.5).

The discovery of the DMSP demethylase *dmdA*, and understanding its genetics, diversity, and distribution both spatially and temporally, reveals the capabilities and dynamics of marine surface water bacterioplankton. This work provides a strong basis for further studies into the regulation of bacterial DMSP demethylation in the ocean.

References

- Howard, E. C., J. R. Henriksen, A. Buchan, C. R. Reisch, H. Bürgmann, R. Welsh, W. Ye, J. M. González, K. Mace, S. B. Joye, R. P. Kiene, W. B. Whitman, and M. A. Moran.
 2006. Bacterial Taxa That Limit Sulfur Flux from the Ocean. *Science* 314:649-652.
- Howard, E. C., S. Sun, E. J. Biers, and M. A. Moran. 2008. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. *Environmental Microbiology* 10:2397-2410.
- Rusch, D. B., A. L. Halpern, G. Sutton, K. B. Heidelberg, S. Williamson, S. Yooseph, D. Wu, J. A. Eisen, J. M. Hoffman, K. Remington, K. Beeson, B. Tran, H. Smith, H. Baden-Tillson, C. Stewart, J. Thorpe, J. Freeman, C. Andrews-Pfannkoch, J. E. Venter, K. Li, S. Kravitz, J. F. Heidelberg, T. Utterback, Y.-H. Rogers, L. I. Falcon, V. Souza, G. Bonilla-Rosso, L. E. Eguiarte, D. M. Karl, S. Sathyendranath, T. Platt, E. Bermingham, V. Gallardo, G. Tamayo-Castillo, M. R. Ferrari, R. L. Strausberg, K. Nealson, R. Friedman, M. Frazier, and J. C. Venter. 2007. The *Sorcerer II* Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. *PLoS Biology* 5:0398-0431.
- Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.-H. Rogers, and H. O. Smith. 2004. Environmental Genome Shotgun Sequencing of the Sargasso Sea. *Science* 304:66-74.

APPENDIX A

CHAPTER 2 SUPPLEMENTARY MATERIAL¹

¹Supporting online material for:

Howard, Erinn C., James R. Henriksen, Alison Buchan, Chris R. Reisch, Helmut Burgmann,

Rory Welsh, Wenying Ye, Jose M. Gonzalez, Kimberly Mace, Samantha B. Joye, Ronald P.

Kiene, William B. Whitman, and Mary Ann Moran. 2006. Science. 314: 649-652.

Reprinted here with permission of publisher

Methods

Mutant library construction and screening

A random transposon insertion library of *S. pomeroyi* DSS-3 was constructed using the EZ-Tn5 <KAN-2> Tnp Transposome Kit (Epicentre) with the addition of TypeOne Restriction Inhibitor (Epicentre). A collection of 20,000 transformants were screened for lack of MeSH production as follows: to overnight cultures grown in an artificial seawater medium (with 10 mM lactate, 17 mg L-1 yeast extract, 27 mg L-1 tryptone, and 10 mg·L-1 kanamycin), DMSP was added (1 mM final concentration) followed 3 h later by Ellman's reagent (5,5-dithiobis-2-nitrobenzoic acid; 1 mM final concentration). Colorless wells indicated lack of MeSH formation. For mutants of interest, DNA flanking the transposon insertion site was determined by the RATE (random amplification of transposon ends) approach (*1*).

Analysis of sulfur compounds

For gas chromatographic analysis of sulfur gases, wild-type *S. pomeroyi* and putative MeSH_ mutants were grown overnight in 60 ml Teflon-sealed serum bottles (with 20 mM glucose and 10 mg L-1 kanamycin in artificial seawater medium). DMSP or MMPA (1 mM) was added, and 500 μ l of headspace gas was analyzed after 24 h by FPD gas chromatography (*2*) (SRI 8610-C with a Chromosil 330 column, nitrogen carrier gas at 60 ml min-1, 60°C oven temperature).

Complementation

To construct plasmid pECH01, SPO1913 plus 100 bp upstream was amplified from wildtype *S. pomeroyi* DNA and ligated into plasmid pRK415 (*3*). pECH01 was introduced into *E. coli* S17-1 and delivered to the *dmdA*- mutant 41-H6 via biparental mating. Resultant 41-H6

121

transconjugants were assayed by GC for restoration of wild-type sulfur gas formation, as described above. Mutant 41-H6 carrying the vector pRK415 alone served as a negative control. Analysis of DMSP demethylase activity in cell-free extracts Cells were grown on 1 mM glucose/artificial seawater medium with 2 mM DMSP. After 2 days, cells were harvested and resuspended in anoxic potassium phosphate buffer (50 mM, pH 7.2) plus 1 mM DTT. Under anaerobic conditions, cells were lysed by passage through a French pressure cell at 20,000 psi. Extracts (~1 mg of protein) were assayed for MMPA formation (*4*) for 90 min at 25oC in the presence of 5 mM DMSP. Reactions were quenched by freezing, and MMPA concentrations were measured by liquid chromatography (*5*) on an Eclipse XDB-C18 column (2.1 x 150 mm; Aligent) by isocratic elution (1.25% acetonitrile and 0.2% phosphoric acid at 0.75 ml min-1) and detected by absorbance at 214 nm.

Identification of *dmdA* homologs

dmdA homologs were identified in cultured organisms using BLAST analysis of the GenBank database and the Moore Foundation Marine Microbial Genome Sequencing Project database https://research.venterinstitute.org/moore/) with *S. pomeroyi* SPO1913 as the query sequence and a maximum E value of <10-80. *dmdA* homologs in the Sargasso Sea metagenomic libraries (*6*) were identified by BLAST analysis of the unassembled trace files (https://research.venterinstitute.org/sargasso/) with SPO1913 as the query sequence and a maximum E value of 10-35. Sargasso Sea homologs were translated and sequences longer than 120 amino acid residues were aligned using ClustalW in five groups, depending on the region of DmdA covered by each sequence, along with sequences of Roseobacter DmdA and related GcvT sequences. Trees were constructed with programs from the PHYLIP package (*7*) using the James-Taylor-Thornton matrix for distance calculation. Based on these trees, sequences were

122

designated orthologs and assigned to one of four putative DmdA clades or otherwise rejected. A final tree with selected sequences was constructed with MEGA version 3.1 using minimum evolution phylogenetic reconstruction tested with 100 bootstrap samplings. Other tree building algorithms (Maximum parsimony, Neighbor Joining) supported the observed topology. *dmdA* homologs in the Station Aloha (8) metagenomic libraries were identified by BLAST analysis with SPO1913 and SAR11_0246 as the query sequences and a maximum E value of 10-35. The Sapelo Island metagenomic library was generated from a 0.2-3.0 µm size fraction of surface water collected in November 2005 by pyrosequencing (454 Inc.). *dmdA* homologs were identified by BLAST analysis with SPO1913 and SAR11_0246 as the query sequences and a maximum E value of 10-5. Possible *dmdA* sequences were manually annotated.

Heterologous expression

The *dmdA* homolog in the *P. ubique* genome (9), SAR11_0246, was synthesized commercially with *E. coli* codon usage (GenScript Corporation). The synthesized gene was inserted into expression vector pCYB1 (Invitrogen) to generate pABX101 and introduced into *E. coli* Top10F'. Plasmid-bearing *E. coli* cells were grown overnight in Luria-Bertani broth, 70 μ M DMSP, and isopropyl-â-D-thiogalactopyranoside (IPTG; 500 μ M). After incubation, cell-free extracts were prepared and assayed for MMPA production by HPLC as above. *E. coli* Top10F' carrying the vector pCYB1 alone served as the negative control.

Organism	DMSP demethylation	dmdA ortholog	identity
	activity		
Silicibacter pomeroyi DSS-3	+6	+	100%
Silicibacter sp. TM1040	+c	+	68%
Roseovarious nubinhibens ISM	+ ^b	+	62%
Sulfitobacter sp. EE-36	_ ^b	-	
Sulfitobacter sp. NAS-14.1	n.d	-	
Jannaschia sp. CCS1	n.d.	+	60%
Roseobacter sp. MED193	n.d.	+	65%
Roseovarius sp. Str. 217	n.d.	+	64%
Loktanella vestfoldensis SKA53	n.d.	-	
Rhodobacterales sp. HTCC2654	n.d.	-	
Oceanicola batsensis HTCC2597	n.d.	-	
Oceanicola granulosus HTCC2516	n.d.	-	

Table 2.3. DMSP demethylation phenotype and presence of dmdA orthologs in 12 marine Roseobacter strains. n.d. = not determined. Genome sequences are available at NCBI^a.

 ^aAccession numbers: NC_006569 (S. pomeroyi), AAFG00000000 (Silicibacter sp. TM1040), AAIG00000000 (Jannaschia sp. CCS1), AALY00000000 (Roseovarius nubinhibens ISM), AALV00000000 (Sulfitobacter sp. EE-36), AAMS00000000 (Loktanella vestfoldensis SKA53), AANB00000000 (Roseobacter sp. MED193), AAMV000000000 (Roseovarius sp. 217), AAMT00000000 (Rhodobacterales sp. HTCC2654), AAMO00000000 (Oceanicola batsensis HTCC2597), and AAOT00000000 (O. granulosus HTCC2516).

^b See reference 10

^c See reference 11

Figure 2.3. Proposed pathways of dimethylsulfoniopropionate (DMSP) degradation by marine bacterioplankton (10). The gray circle indicates the gene (*dmdA*) responsible for routing DMSP to methylmercaptopropionate (MMPA) and away from the climatically active dimethylsulfide (DMS). Genes SPO1913 from *Silicibacter pomeroyi* DSS-3 and SAR11_0246 from *P. ubique* encode a confirmed DMSP demethylase. THF = tetrahydrofolate. MPA = mercaptopropionate. MeSH = methanethiol.

Figure 2.4. DMSP degradation by *Silicibacter pomeroyi* after 24 h of incubation with mM DMSP or MMPA. DSS-3 = wild type; 41-H6 = MeSH– mutant; 41-H6 (pRK415) mutant with the vector pRK415 alone; 41-H6 (pECH01) = mutant with *in trans* copy of SPO1913 in pRK415. Black bars show production of MeSH from DMSP (left axis) and demonstrate the absence of DMSP demethylase activity in mutant 41-H6 and restoration of activity with an intact copy of SPO1913. White squares show production of DMS from DMSP and white circles show production of MeSH from MMPA (right axis), both of which are unaffected by disruption of SPO1913. Standard errors are shown where they exceed the size of the symbol. n=3.

References

- Ducey, T. F. and D. W. Dyer. 2002. Rapid identification of EZ::TNTM transposon insertion sites in the genome of *Neisseria gonorrhoeae*. Epicentre Forum 9: 6.
- de Souza, M.P. and D. C. Yoch. 1995. Purification and Characterization of Dimethylsulfoniopropionate Lyase from an Alcaligenes-Like Dimethyl Sulfide-Producing Marine Isolate. Appl. Environ. Microbiol. 61: 21.
- 3. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-hostrange plasmids for DNA cloning in Gram-negative bacteria. Gene 70: 191.
- Jansen, M., and T. A. Hansen. 1998. Tetrahydrofolate serves as a methyl acceptor in the demethylation of dimethylsulfoniopropionate in cell extracts of sulfate-reducing bacteria. Archives Microbiology 169: 84-87.
- Ansede, J. H., P. J. Pellechia, and D. C. Yoch, Appl. 1999. Metabolism of Acrylate to Hydroxypropionate and Its Role in Dimethylsulfoniopropionate Lyase Induction by a Salt Marsh Sediment Bacterium, *Alcaligenes faecalis* M3A. Environ. Microbiol. 65: 5075.
- Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.-H. Rogers, and H. O. Smith. 2004. Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science 304:66-74.

- 7. Felsenstein, J. 1989. Cladistics. 5: 164.
- DeLong, E.F., C.M. Preston, T. Mincer, V. Rich, S.J. Hallam, N.-U. Frigaard, A. Martinez, M.B. Sullivan, R. Edwards, B.R. Brito, S.W. Chisholm, and D.M. Karl. 2006. Science 311: 496.
- Giovannoni, S. J., J. H. Tripp, S. Givan, M. Podar, K. L. Vergin, D. Baptista, L. Bibbs, J. Eads, T. H. Richardson, M. Noordewier, M. S. Rappe, J. M. Short, J. C. Carrington, and E. J. Mathur. 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242-1245.
- Kiene, R. P., L. J. Linn, J. M. Gonzalez, M. A. Moran, and J. A. Bruton. 1999.
 Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Applied and Environmental Microbiology 65:4549-4558.
- Miller, T. R., and R. Belas. 2004. Dimethylsulfoniopropionate Metabolism by *Pfiesteria*-Associated *Roseobacter* spp. Applied and Environmental Microbiology 70:3383-3391.

APPENDIX B

CHAPTER 3 SUPPLEMENTARY MATERIAL¹

¹Supporting online material for:

Howard, Erinn C., Shulei Sun, Erin J. Biers, and Mary Ann Moran. 2008. *Environmental Microbiology*. 10(9): 2397-2410.

Reprinted here with permission of publisher

Figure 3.5. Correlation analysis of *dmdA* and 16S rDNA counts. (A) Clade A *dmdA* and Roseobacter 16S rRNA gene counts; (B) Clade D *dmdA* and SAR11 16S rRNA gene counts; and (C) Clade C *dmdA* and SAR11 (bottom axis-black), SAR86 (top axis-red) and SAR116 (top axis-green) 16S rRNA gene counts.

Figure 3.6. Diversity of *dddD* in the (2007) GOS and cultured organisms. The neighbour-joining tree shows all *dddD* sequences in the (2007) GOS (except JCVI_PEP_1105118567433, which did not overlap). DddD sequences with confirmed function are indicated with a yellow star, and those deposited in GenBank since previous publication (Todd *et al.*, 2007) are indicated with a green star. Related *caiB* out-group sequences are indicated.

substitutions

Figure 3.7. Diversity of *dddL* in the (2007) GOS and cultured organisms. The neighbour-joining tree shows selected *dddL* sequences in the (2007) GOS. DddL sequences with confirmed function are indicated with a yellow star. Related sequences from a hypothetical protein outgroup are indicated.

0.5 substitutions

Figure 3.8. Abundance of selected genes in marine surface water by (2007) GOS sample number. AAnP abundances (average of *pufM*, *pufL* and *bchX*) are from fig. 6 in Yutin and colleagues (2007). Proteorhodopsin abundances are from fig. 12 in Rusch and colleagues (2007). The methodology used to determine AAnP and proteorhodopsin abundance is based on deconvolution of assembled data, rather than direct analysis of predicted proteins from unassembled reads, as used in this study.

Table 3.3. Single-copy gene counts, genome equivalents and *dmdA* abundance by sampling site. Homologues of six single-copy genes were identified in the (2007) GOS metagenome using a cut-off *E*-value of 10^{-20} ('original count' column). These counts were corrected by removal of duplicates from paired reads ('paired reads deleted' column) and size-normalized based on the length of *recA* (1062 bp; 'size norm.' column).

				recA			tufA			atpD			dnaK			gyrB			rpoB					
				Paired			Paired			Paired			Paired			Paired			Paired				Average	Percent of
Site ID	Sample		Original	Reads	Size	Original	Reads	Size	Original	Reads	Size	Original	Reads	Size	Original	Reads	Size	Original	Reads	Size	Total	DmdA	Genome	cells with
Number	Number	Site Name	count	Deleted	Norm."	count	Deleted	Norm.*	count	Deleted	Norm.*	count	Deleted	Norm."	count	Deleted	Norm.*	count	Deleted	Norm."	Reads	Reads	Equivalents ¹	dmdA
2	в	Gulf of Maine	54	43	43	80	63	56	87	71	55	163	110	61	115	82	36	256	158	42	121590	25	49	49.7
з	9	Browns Bank	32	32	32	48	43	39	46	45	35	101	87	48	60	52	23	105	72	19	61605	24	33	71.6
4	10	Outside Halifax	27	21	21	57	45	40	55	46	35	75	59	33	75	54	24	98	68	18	52959	18	29	61.2
5	11	Bedford Basin	25	21	21	38	31	28	33	27	21	52	43	24	76	59	26	85	59	16	61131	16	22	69.0
6	12	Bay of Fundy	56	48	48	48	45	40	58	53	41	78	62	34	79	63	28	132	99	26	59679	30	36	80.4
7	13	Northern Gulf of Maine	37	27	27	52	41	37	61	51	39	88	67	37	71	47	21	87	63	17	50980	10	30	32.8
в	14	Newport Harbor	79	56	56	245	168	151	140	94	72	164	114	63	199	127	56	386	239	63	129685	12	77	15.2
9	15	Block Island	48	26	26	83	47	42	61	36	28	110	63	35	127	73	32	167	91	24	79303	22	31	68.5
10	16	Cape May	54	49	49	72	59	53	100	80	61	138	109	60	169	127	56	175	112	30	78304	28	52	52.7
11	17	Delaware Bay	76	53	53	136	93	83	128	91	70	174	114	63	228	144	63	286	168	44	124435	9	63	13.9
12	18	Chesapeake Bay	65	49	49	138	95	85	119	80	61	167	106	59	214	142	62	264	158	42	126162	22	60	35.7
13	19	Off Nags Head	71	59	59	83	67	60	72	63	48	121	91	50	149	110	48	208	128	34	138033	23	50	44.6
14	20	South of Charleston	100	86	86	125	107	95	145	110	84	211	165	92	233	169	74	331	219	58	128885	42	82	49.8
15	21	Off Key West	83	65	65	147	104	93	121	87	67	231	168	93	195	141	62	299	206	54	127362	45	72	60.3
16	22	Gulf of Mexico	79	64	64	103	83	74	121	93	71	216	164	91	215	163	72	275	182	48	127122	52	70	72.0
17	23	Yucatan	181	156	156	241	205	184	259	206	158	363	277	153	371	284	125	548	363	96	257581	82	145	54.7
18	24	Rosario Bank	128	119	119	138	117	105	193	157	121	213	173	96	220	172	76	313	205	54	142743	62	96	63.3
19	25	Northeast of Colon	127	97	97	136	92	82	140	103	79	228	164	91	209	159	70	330	218	58	135325	44	79	53.7
20	26	Lave Gatun	211	182	182	229	180	161	237	180	138	339	203	140	449	331	140	494	324	86	2995300	9	142	0.1
21	27	Gur of Panama	88	70	70	109	77	69	144	117	90	137	102	57	188	141	62	323	200	53	131798	41	67	29.6
22	28	250 miles from Panama City	/8	61	51	123	9U 400	81 5F	130	35	14	218	149	83	207	145	80	202	127	41	121662	31	B7	44. r
23	29	30 miles from Cocos Island	85	12	12	131	105	9D 47	165	138	105	209	164	91	224	172	/6	290	188	50	133001	40	82	24. r 22. 4
20	30	ARA miles ME of Colonsons	18	10	10	24	19	17	39	31	24	09	40	20	30	400	12	335	29	14	1206/1	47	18	34.1
20	31	134 miles NE or Galapagos	474	26	26	206	100	4/54	201	7Z 224	4.70	226	260	430	109	108	48	229	134	30	102708	92	04 477	/D.Z
20	32	Constal Electron	104	147	197	200	100	101	200	440	477	320	200	1.39	ar i	212	123	202	24/	24	222000 4000000	90	144.4	12.0
20	34	North James Bay	107	55	66	133	77	89	4.87	100	68	208	110	66	220	422	54	907	473	46	131529	81	61	05.5
20	38	Warm Seen	340	407	407	347	403	473	554	207	335	640	364	104	720	404	470	4024	684	1.45	350463	100	407	97.3
31	36	Lowelling	371	265	265	410	282	253	547	373	286	575	440	744	803	534	235	1164	686	181	335404	7.67	244	98.7
32	37	Manorove	84	63	63	111	72	65	135	88	68	190	120	66	180	115	51	288	164	43	149018	24	59	39.3
33	38	Punta Comprant Hypersaline Lagoon	402	298	298	761	623	459	498	252	271	641	437	747	1037	685	301	1084	662	175	892255	12	293	40
34	30	North Seamore Island	205	58	62	134	95	95	135	100	77	225	164	85	209	144	63	349	184	49	134347	55	71	76.1
35	4n	Wolf Island	109	72	72	129	83	74	167	109	84	216	130	77	259	169	74	279	161	43	140814	50	70	75.0
36	41	Cabo Marshall	49	42	42	69	57	51	B1	69	53	101	79	44	158	117	51	163	96	26	77538	35	45	76.2
37	47	Equatorial Pacific	40	25	25	73	42	38	65	43	33	102	55	31	112	65	29	169	94	25	64570	34	30	100.2
47	52	201 miles from F. Polynesia	47	41	41	69	55	49	89	72	55	111	81	45	100	71	31	145	91	24	66023	32	41	75.8
51	56	Rangirora Atol	82	68	68	117	90	81	121	93	71	151	111	61	169	120	53	280	175	46	128962	36	63	55.1
		TOTALS	3943	3012	3012	5448	3940	3530	5788	4209	3233	7894	5490	3041	8964	6171	2715	12277	7535	1989	7688374	1701	2920	58.3 ^c

Table 3.4. (2007) GOS *dmdA* homologue PEP numbers and corresponding nucleotide read numbers, sampling sites of origin and assigned clades. The PEP number, nucleotide read number, GOS site of origin and sample number, and assigned clades are given for the 1701 identified *dmdA* homologues. ^aNumber begins "JCVI_SMPL_".

Clada	ICVI PEP PEAD	ICVI road	Sample
Claue	JCVITEI READ	JCVITtau	Numbers ^a
А	JCVI_PEP_1105078288479	JCVI_READ_1092963395135	1103283000023
А	JCVI_PEP_1105079008849	JCVI_READ_1093018300858	1103283000038
Α	JCVI PEP 1105080071775	JCVI READ 1092343732701	1103283000032
А	JCVI_PEP_1105081627505	JCVI_READ_1095344024074	1103283000032
А	JCVI_PEP_1105082014523	JCVI_READ_1095898066078	1103283000015
А	JCVI_PEP_1105082820799	JCVI_READ_1092256177530	1103283000013
А	JCVI_PEP_1105084039245	JCVI_READ_1095516040788	1103283000037
А	JCVI_PEP_1105084150227	JCVI_READ_1092963149368	1103283000035
А	JCVI_PEP_1105084394367	JCVI_READ_1095901442127	1103283000008
А	JCVI_PEP_1105087472581	JCVI_READ_1093015754535	1103283000041
А	JCVI_PEP_1105088981997	JCVI_READ_1092963159919	1103283000035
А	JCVI_PEP_1105088991279	JCVI_READ_1092963594504	1103283000019
А	JCVI_PEP_1105089433797	JCVI_READ_1093012093420	1103283000033
А	JCVI_PEP_1105089777585	JCVI_READ_1093017509089	1103283000035
А	JCVI_PEP_1105091056417	JCVI_READ_1093017608985	1103283000035
А	JCVI_PEP_1105092077639	JCVI_READ_1095898027119	1103283000017
А	JCVI_PEP_1105093134687	JCVI_READ_1093018088644	1103283000038
А	JCVI_PEP_1105093503391	JCVI_READ_1095469429005	1103283000036
А	JCVI_PEP_1105094920701	JCVI_READ_1095521403108	1103283000038
А	JCVI_PEP_1105095037479	JCVI_READ_1091140678384	1103283000021
А	JCVI_PEP_1105095133471	JCVI_READ_1092963016858	1103283000034
А	JCVI_PEP_1105095777477	JCVI_READ_1092963428749	1103283000023
А	JCVI_PEP_1105096832571	JCVI_READ_1092977802640	1103283000023
A	JCVI_PEP_1105098649061	JCVI_READ_1092255452018	1103283000013
A	JCVI_PEP_1105099256127	JCVI_READ_1093017878117	1103283000035
A	JCVI_PEP_1105100009511	JCVI_READ_1092955196983	1103283000036
A	JCVI_PEP_1105100394269	JCVI_READ_1092956086054	1103283000036
A	JCVI_PEP_1105101968521	JCVI_READ_1093017183916	1103283000038
A	JCVI_PEP_1105102351249	JCVI_READ_1092256332829	1103283000026
A	JCVI_PEP_1105103798399	JCVI_READ_1091143187299	1103283000027
A	JCVI_PEP_1105103930273	JCVI_READ_1095390181622	1103283000026
A	JCVI_PEP_1105104039623	JCVI_READ_1095403579747	1103283000033
A	JCVI_PEP_1105104050679	JCVI_READ_1092955191006	1103283000035
A	JCVI_PEP_1105104058149	JCVI_READ_1092955183754	1103283000035
A	JCVI_PEP_1105104247761	JCVI_READ_1092351376646	1103283000032
A	JCVI_PEP_1105106214621	JCVI_READ_1095949473236	1103283000008
A	JCVI_PEP_1105106433819	JCVI_READ_1092959713993	1103283000034
A	JCVI_PEP_1105106693799	JCVI_READ_1095898043614	1103283000015
A	JCVI PEP 1105107717195	JCVI READ 1091143478450	1103283000011

А	JCVI_PEP_1105108262995	JCVI_READ_1093022077637	1103283000039
А	JCVI PEP 1105108660345	JCVI READ 1091138262188	1103283000031
А	JCVI PEP 1105109112565	JCVI READ 1095454109471	1103283000031
А	JCVI PEP 1105109116723	JCVI READ 1095454109510	1103283000031
А	JCVI PEP 1105109168119	JCVI READ 1092344158471	1103283000039
А	JCVI PEP 1105109169495	JCVI READ 1092344164615	1103283000039
А	JCVI PEP 1105109230597	JCVI READ 1095526022205	1103283000038
А	JCVI_PEP_1105110279963	JCVI_READ_1093016207424	1103283000041
А	JCVI_PEP_1105111136441	JCVI_READ_1095505200058	1103283000036
А	JCVI_PEP_1105111641189	JCVI_READ_1095390093291	1103283000028
А	JCVI_PEP_1105112852551	JCVI_READ_1095516102303	1103283000037
А	JCVI_PEP_1105119294001	JCVI_READ_1091139345087	1103283000022
А	JCVI_PEP_1105120031479	JCVI_READ_1093015638778	1103283000040
А	JCVI_PEP_1105121788701	JCVI_READ_1095526030063	1103283000038
А	JCVI_PEP_1105121807015	JCVI_READ_1095522177093	1103283000038
А	JCVI_PEP_1105122788353	JCVI_READ_1095458039788	1103283000031
А	JCVI_PEP_1105122794731	JCVI_READ_1095458039827	1103283000031
А	JCVI_PEP_1105123814085	JCVI_READ_1093015307595	1103283000040
А	JCVI_PEP_1105124288309	JCVI_READ_1093012108634	1103283000019
А	JCVI_PEP_1105124711495	JCVI_READ_1091143580558	1103283000011
А	JCVI_PEP_1105124789535	JCVI_READ_1092963189556	1103283000034
А	JCVI_PEP_1105124962939	JCVI_READ_1093017537313	1103283000035
А	JCVI_PEP_1105125207349	JCVI_READ_1094338648910	1103283000039
А	JCVI_PEP_1105125596479	JCVI_READ_1095526075361	1103283000038
А	JCVI_PEP_1105125676347	JCVI_READ_1095403003847	1103283000028
А	JCVI_PEP_1105126447203	JCVI_READ_1093017169483	1103283000038
А	JCVI_PEP_1105132495987	JCVI_READ_1093018914313	1103283000028
А	JCVI_PEP_1105133662685	JCVI_READ_1092256147551	1103283000022
А	JCVI_PEP_1105137475849	JCVI_READ_1092404030365	1103283000032
А	JCVI_PEP_1105137782281	JCVI_READ_1093017683456	1103283000024
А	JCVI_PEP_1105139769329	JCVI_READ_1093012010225	1103283000033
А	JCVI_PEP_1105139970693	JCVI_READ_1091138288815	1103283000027
А	JCVI_PEP_1105140477679	JCVI_READ_1091142221572	1103283000027
А	JCVI_PEP_1105141850079	JCVI_READ_1092960052773	1103283000056
А	JCVI_PEP_1105143903453	JCVI_READ_1095901238187	1103283000052
А	JCVI_PEP_1105144039859	JCVI_READ_1091143457749	1103283000010
А	JCVI_PEP_1105144137865	JCVI_READ_1092963756310	1103283000040
А	JCVI_PEP_1105144337741	JCVI_READ_1093022075736	1103283000022
А	JCVI_PEP_1105145057351	JCVI_READ_1092351189955	1103283000038
А	JCVI_PEP_1105147756977	JCVI_READ_1095458075203	1103283000036
А	JCVI_PEP_1105147949515	JCVI_READ_1093017356142	1103283000035
А	JCVI_PEP_1105150778965	JCVI_READ_1095460237985	1103283000036
А	JCVI_PEP_1105151266945	JCVI_READ_1093015739903	1103283000040
А	JCVI_PEP_1105153393635	JCVI_READ_1093017480083	1103283000035
А	JCVI_PEP_1105155408579	JCVI_READ_1094338848952	1103283000039
А	JCVI_PEP_1105155486655	JCVI_READ_1091146501498	1103283000028

А	JCVI_PEP_1105157347892	JCVI_READ_1093016049621	1103283000020
А	JCVI PEP 1105157907368	JCVI READ 1095460102004	1103283000036
А	JCVI PEP 1105159247285	JCVI READ 1093018089988	1103283000038
А	JCVI PEP 1105160394729	JCVI READ 1095526059354	1103283000038
А	JCVI PEP 1105161041877	JCVI READ 1093015397054	1103283000040
А	JCVI PEP 1105162968531	JCVI READ 1091143249816	1103283000027
А	JCVI PEP 1105163893575	JCVI READ 1091140917091	1103283000015
А	JCVI PEP 1105164642991	JCVI READ 1092956045661	1103283000035
В	JCVI_PEP_1105078558366	JCVI READ 1093018585348	1103283000024
В	JCVI_PEP_1105079329187	JCVI READ 1092347007221	1103283000032
В	JCVI PEP 1105080057643	JCVI READ 1092998601342	1103283000023
B	JCVI PEP 1105081186809	JCVI READ 1095333013600	1103283000039
B	JCVI PEP 1105082430783	JCVI READ 1093023013696	1103283000027
B	JCVI PEP 1105083548920	JCVI READ 1095333037987	1103283000032
B	JCVI PEP 1105087440113	JCVI READ 1093015841854	1103283000025
B	JCVI PEP 1105088754567	JCVI READ 1092963680857	1103283000033
B	JCVI PEP 1105088789333	ICVI READ 1095460216701	1103283000036
B	JCVI PEP 1105089166089	JCVI READ 1092343533933	1103283000039
B	JCVI PEP 1105090724415	JCVI READ 1091140599551	1103283000016
B	JCVI PEP 1105092733833	ICVI READ 1093022046140	1103283000022
B	JCVI PEP 1105093592377	ICVI READ 1092974100487	1103283000036
B	JCVI PEP 1105094107881	JCVI READ 1092257247602	1103283000027
B	JCVI PEP 1105095976053	JCVI READ 1092961069279	1103283000034
В	JCVI PEP 1105099708657	JCVI READ 1095403268614	1103283000033
В	JCVI PEP 1105100887557	JCVI READ 1092959286086	1103283000034
В	JCVI PEP 1105101005987	JCVI READ 1092343748498	1103283000039
В	JCVI PEP 1105101173555	JCVI READ 1092963883633	1103283000040
В	JCVI PEP 1105102840187	JCVI READ 1092955145510	1103283000035
В	JCVI PEP 1105104651861	JCVI READ 1093015623567	1103283000025
В	JCVI PEP 1105104701071	JCVI READ 1091140049366	1103283000014
В	JCVI PEP 1105105085775	JCVI READ 1092963351003	1103283000052
В	JCVI PEP 1105108360499	JCVI READ 1093012256028	1103283000019
В	JCVI PEP 1105108449055	JCVI READ 1095901449664	1103283000014
В	JCVI_PEP_1105116064561	JCVI_READ_1092955108503	1103283000035
В	JCVI PEP 1105116102303	JCVI READ 1092343776027	1103283000032
В	JCVI PEP 1105117428947	JCVI READ 1092963826857	1103283000040
В	JCVI PEP 1105119728555	JCVI READ 1093015281860	1103283000019
В	JCVI PEP 1105124211229	JCVI READ 1093018204909	1103283000021
В	JCVI_PEP_1105134471846	JCVI_READ_1095462359613	1103283000036
В	JCVI_PEP_1105135300438	JCVI_READ_1095469482764	1103283000036
В	JCVI_PEP_1105135724825	JCVI_READ_1093017832949	1103283000035
В	JCVI_PEP_1105138547373	JCVI_READ_1095454064368	1103283000009
В	JCVI_PEP_1105141369079	JCVI_READ_1093016285939	1103283000041
В	JCVI_PEP_1105142874055	JCVI_READ_1092343355253	1103283000032
В	JCVI_PEP_1105144578469	JCVI_READ_1092343782371	1103283000032
В	JCVI_PEP_1105145008233	JCVI_READ_1092343671266	1103283000039

В	JCVI PEP 1105149718159	JCVI READ 1091141780989	1103283000025
В	JCVI PEP 1105150533639	JCVI READ 1091150294219	1103283000012
В	JCVI PEP 1105152792839	JCVI READ 1093015427676	1103283000040
В	JCVI PEP 1105159521923	JCVI READ 1092301001904	1103283000027
В	JCVI PEP 1105161863569	JCVI READ 1093015235265	1103283000040
В	JCVI PEP 1105162638193	JCVI READ 1091143074693	1103283000022
В	JCVI PEP 1105164395083	JCVI READ 1092963128963	1103283000056
В	JCVI PEP 1105165393249	JCVI READ 1092963964303	1103283000040
С	JCVI PEP 1105075447028	JCVI READ 1093018951181	1103283000027
С	JCVI PEP 1105075689499	JCVI READ 1095349024939	1103283000039
C	JCVI PEP 1105078147325	JCVI READ 1092961024060	1103283000036
Ċ	JCVI PEP 1105078299789	JCVI_READ_1092963588488	1103283000033
Č	JCVI PEP 1105078336841	JCVI READ 1092973902478	1103283000056
Ċ	JCVI PEP 1105078408498	JCVI READ 1093015306610	1103283000033
Ċ	JCVI PEP 1105079251997	JCVI READ 1095460040013	1103283000036
Č	ICVI PEP 1105079432667	JCVI READ 1091143680724	1103283000012
Č	ICVI PEP 1105079874869	JCVI READ 1091140902113	1103283000025
Č	JCVI PEP 1105080134701	JCVI READ 1095462316992	1103283000036
Č	JCVI PEP 1105080776095	JCVI READ 1092961104068	1103283000036
Č	JCVI PEP 1105080807611	JCVI READ 1092256082926	1103283000013
Č	JCVI PEP 1105080808129	JCVI READ 1092256080978	1103283000013
Č	JCVI PEP 1105080915151	JCVI READ 1093017824441	1103283000035
C	JCVI PEP 1105081163061	JCVI READ 1092960023555	1103283000023
С	JCVI PEP 1105081331521	JCVI READ 1093018732664	1103283000024
С	JCVI PEP 1105081364667	JCVI READ 1091145508817	1103283000010
С	JCVI PEP 1105081405771	JCVI READ 1093018463965	1103283000035
С	JCVI PEP 1105081706425	JCVI READ 1091140802047	1103283000021
С	JCVI PEP 1105083173063	JCVI READ 1091142329216	1103283000008
С	JCVI PEP 1105083254345	JCVI READ 1093017729705	1103283000045
С	JCVI PEP 1105083616426	JCVI READ 1095460097951	1103283000036
С	JCVI_PEP_1105084932855	JCVI_READ_1095403434596	1103283000033
С	JCVI PEP 1105085324469	JCVI READ 1091141019932	1103283000014
С	JCVI_PEP_1105085529136	JCVI_READ_1091143306872	1103283000008
С	JCVI_PEP_1105086296071	JCVI_READ_1093017468100	1103283000035
С	JCVI_PEP_1105086311047	JCVI_READ_1093018289165	1103283000021
С	JCVI_PEP_1105086373051	JCVI_READ_1095460226933	1103283000031
С	JCVI_PEP_1105086639891	JCVI_READ_1093022093961	1103283000035
С	JCVI_PEP_1105087266985	JCVI_READ_1092256303038	1103283000025
С	JCVI_PEP_1105087479345	JCVI_READ_1092955209154	1103283000034
С	JCVI_PEP_1105087838509	JCVI_READ_1091140882081	1103283000022
С	JCVI_PEP_1105087899375	JCVI_READ_1093015796395	1103283000040
С	JCVI_PEP_1105088427009	JCVI_READ_1095462420327	1103283000036
С	JCVI_PEP_1105088905183	JCVI_READ_1095898019566	1103283000016
С	JCVI_PEP_1105089443281	JCVI_READ_1092343145565	1103283000032
С	JCVI_PEP_1105089804661	JCVI_READ_1092344284890	1103283000029
С	JCVI_PEP_1105090433509	JCVI_READ_1093016285222	1103283000025

С	JCVI PEP 1105091603709	JCVI READ 1092961058744	1103283000034
С	JCVI PEP 1105092284679	JCVI READ 1093009831963	1103283000056
С	JCVI PEP 1105092562929	JCVI READ 1095515521782	1103283000037
С	JCVI PEP 1105092567537	JCVI READ 1093018658404	1103283000024
С	JCVI PEP 1105093467321	JCVI READ 1091142492810	1103283000027
С	JCVI PEP 1105093789563	JCVI READ 1092963507713	1103283000019
С	JCVI PEP 1105094121351	JCVI READ 1092963749586	1103283000040
С	JCVI PEP 1105094995101	JCVI READ 1093018900355	1103283000035
С	JCVI PEP 1105095414019	JCVI READ 1092955067586	1103283000018
С	JCVI PEP 1105095542633	JCVI READ 1092955342316	1103283000036
С	JCVI PEP 1105095930153	JCVI READ 1092955048574	1103283000035
Ċ	JCVI_PEP_1105096757125	JCVI READ 1092994700309	1103283000023
Č	JCVI_PEP_1105096814591	JCVI READ 1093022111063	1103283000035
Č	JCVI PEP 1105096964733	JCVI READ 1092963500234	1103283000033
Ċ	JCVI_PEP_1105097375265	JCVI READ 1091141259499	1103283000014
Č	JCVI PEP 1105097942411	JCVI READ 1093015382958	1103283000040
Č	ICVI PEP 1105098453475	JCVI READ 1091145574961	1103283000010
Č	JCVI PEP 1105098501503	JCVI READ 1092344056168	1103283000032
Č	ICVI PEP 1105099215743	JCVI READ 1093023020210	1103283000022
Č	ICVI PEP 1105100458537	JCVI READ 1091150271871	1103283000012
Č	ICVI PEP 1105100696565	JCVI READ 1091141381292	1103283000021
Č	ICVI PEP 1105100805473	JCVI READ 1092256307594	1103283000028
Č	JCVI PEP 1105101111765	JCVI READ 1093022105798	1103283000022
C	JCVI PEP 1105102117569	JCVI READ 1092955161252	1103283000034
C	JCVI PEP 1105102494333	JCVI READ 1092216042714	1103283000012
C	JCVI PEP 1105102600983	JCVI READ 1093017764654	1103283000024
С	JCVI PEP 1105102618731	JCVI READ 1091121256757	1103283000025
С	JCVI PEP 1105102624817	JCVI READ 1091121042401	1103283000025
С	JCVI PEP 1105103273771	JCVI READ 1092351324084	1103283000032
С	JCVI PEP 1105103552597	JCVI READ 1093018721482	1103283000024
С	JCVI PEP 1105103648963	JCVI READ 1095978306459	1103283000042
С	JCVI PEP 1105103765767	JCVI READ 1093015530688	1103283000020
С	JCVI_PEP_1105103922347	JCVI_READ_1095515651919	1103283000037
С	JCVI_PEP_1105104021513	JCVI_READ_1093022144484	1103283000035
С	JCVI PEP 1105104098241	JCVI READ 1092955356066	1103283000036
С	JCVI_PEP_1105104652229	JCVI_READ_1093015623759	1103283000025
С	JCVI_PEP_1105104672567	JCVI_READ_1092959489235	1103283000034
С	JCVI_PEP_1105104744003	JCVI_READ_1092959729581	1103283000023
С	JCVI_PEP_1105105165107	JCVI_READ_1091141242344	1103283000021
С	JCVI_PEP_1105105229731	JCVI_READ_1092964401138	1103283000035
С	JCVI_PEP_1105105233445	JCVI_READ_1092966000721	1103283000035
С	JCVI_PEP_1105105379649	JCVI_READ_1093017385112	1103283000035
С	JCVI_PEP_1105105472631	JCVI_READ_1093017572083	1103283000035
С	JCVI_PEP_1105105752417	JCVI_READ_1093018365779	1103283000035
С	JCVI_PEP_1105106232501	JCVI_READ_1093012197670	1103283000036
С	JCVI_PEP_1105106328557	JCVI_READ_1091145146258	1103283000011

С	JCVI_PEP_1105107086747	JCVI_READ_1092351555001	1103283000018
С	JCVI PEP 1105107594217	JCVI READ 1092963057005	1103283000023
С	JCVI PEP 1105107646817	JCVI READ 1093018628323	1103283000024
С	JCVI PEP 1105108006273	JCVI READ 1093015420325	1103283000025
С	JCVI PEP 1105108355863	JCVI READ 1093012252387	1103283000019
С	JCVI PEP 1105108538465	JCVI READ 1095949462115	1103283000008
Ċ	JCVI_PEP_1105108760357	JCVI READ 1095328072162	1103283000032
Č	JCVI_PEP_1105108771895	JCVI READ 1092256258440	1103283000023
Č	JCVI_PEP_1105109002669	JCVI READ 1091140846222	1103283000022
Č	JCVI PEP 1105109438619	JCVI READ 1092963760507	1103283000033
Č	JCVI PEP 1105109548583	JCVI READ 1091120734330	1103283000013
C	ICVI PEP 1105109830959	ICVI READ 1095403557502	1103283000028
C	ICVI_PEP_1105110015761	ICVI READ 1093016096925	1103283000040
C	ICVI PEP 1105110299851	ICVI READ 1092963655763	1103283000019
C	ICVI_PEP_1105110746487	ICVI READ 1093016093688	1103283000025
C	ICVI_PEP_1105110827185	ICVI READ 1092959548457	1103283000036
C C	ICVI_PEP_1105111750053	ICVI READ 1091150000188	1103283000028
C C	ICVI_PEP_11051112651815	ICVI READ 1095469390216	1103283000026
C C	ICVI_PEP_1105112051015	ICVI READ 1093015252459	1103283000033
C C	ICVI PEP 1105112755725	ICVI READ 1092966606140	1103283000036
C C	ICVI PEP 1105112013949	ICVI READ 1095460011534	1103283000036
C	ICVI PEP 1105112929173	ICVI READ 1093016196028	1103283000030
C	ICVI_PEP_1105113163705	ICVI READ 1091143640616	1103283000040
C C	ICVI_PEP_1105113258767	ICVI READ 1091143665182	1103283000010
C C	ICVI_PEP_1105113538325	ICVI READ 1095469418981	1103283000012
C C	ICVI_PEP_1105114595755	ICVI READ 1093018538848	1103283000035
C C	ICVI_PEP_1105114624681	ICVI READ 1093018358991	1103283000035
C	ICVI_PEP_1105115433973	ICVI READ 1091141208166	1103283000020
C	ICVI PEP 1105117375585	ICVI READ 1092216053323	1103283000028
C	ICVI PEP 1105117517181	ICVI READ 1091142763999	1103283000008
C	ICVI PEP 1105117829359	ICVI READ 1092960154779	1103283000034
C	ICVI PEP 1105117871991	ICVI READ 1093012259487	1103283000019
C	JCVI_PEP_1105118220125	JCVI READ 1095460262484	1103283000036
Č	ICVI PEP 1105118362349	JCVI READ 1095344029627	1103283000032
C	ICVI PEP 1105118851263	ICVI READ 1093018420649	1103283000035
C	ICVI PEP 1105118902577	ICVI READ 1092962040437	1103283000034
C	ICVI_PEP_1105119138697	ICVI READ 1093023082238	1103283000035
C	ICVI PEP 1105119154763	ICVI READ 1095469434942	1103283000036
C	ICVI PEP 1105120579427	ICVI READ 1092963345617	1103283000023
C C	ICVI_PEP_1105120698905	ICVI READ 1092955130895	1103283000025
C	ICVI PEP 1105121401237	ICVI READ 1093016238124	1103283000025
č	JCVI PEP 1105121513807	JCVI READ 1093018554543	1103283000035
č	JCVI PEP 1105121691895	JCVI READ 1092955010850	1103283000035
Č	JCVI PEP 1105121845179	JCVI READ 1092963536260	1103283000019
Č	JCVI PEP 1105122062837	JCVI READ 1095469514207	1103283000036
Ċ	JCVI PEP 1105122256193	JCVI READ 1092963405361	1103283000033

С	JCVI PEP 1105122669775	JCVI READ 1091141250652	1103283000021
С	JCVI PEP 1105122670359	JCVI READ 1091141284915	1103283000021
С	JCVI PEP 1105122673757	JCVI READ 1091141257397	1103283000021
С	JCVI PEP 1105123152297	JCVI READ 1095913055089	1103283000008
Ċ	JCVI_PEP_1105123991223	JCVI READ 1092344085737	1103283000032
Ċ	JCVI PEP 1105124071883	JCVI READ 1092961219634	1103283000056
Č	JCVI PEP 1105124197667	JCVI READ 1091143298062	1103283000008
Č	JCVI PEP 1105125201137	JCVI READ 1094338648890	1103283000039
Č	JCVI PEP 1105125246557	JCVI READ 1091120906570	1103283000008
C	JCVI PEP 1105125332809	JCVI READ 1094424012520	1103283000039
C	ICVI PEP 1105125607359	ICVI READ 1092960017026	1103283000036
C	ICVI PEP 1105125634013	ICVI READ 1092450624937	1103283000018
C	ICVI PEP 1105125733933	ICVI READ 1095945112848	1103283000008
C	ICVI PEP 110512575861	ICVI READ 1095454046916	1103283000031
C	ICVI_PEP_1105125976825	ICVI READ 1093017577922	1103283000024
C	ICVI_PEP_1105126167503	ICVI READ 1095975136586	1103283000052
C C	ICVI PEP 1105126727861	ICVI READ 1093015885466	1103283000032
C	ICVI_PEP_1105126222801	ICVI READ 1093015230680	1103283000040
C C	ICVI PEP 1105128244335	ICVI READ 1092955410070	1103283000055
C C	ICVI PEP 1105120244555	ICVI READ 1092039410070	1103283000030
C C	ICVI PEP 1105129090249	ICVI READ 1093018663551	1103283000040
C C	ICVI PEP 1105129295219	ICVI READ 1092255433831	1103283000024
C	ICVI PEP 1105129409129	ICVI READ 1092017627966	1103283000021
C	ICVI_PEP_11051210761	ICVI READ 1095390014204	1103283000024
C	ICVI_PEP_1105131722345	ICVI READ 1095454076597	1103283000021
C	ICVI PFP 1105132044097	ICVI READ 1095366056575	1103283000039
C	ICVI_PEP_1105132611097	ICVI READ 1091145558996	11032830000099
C C	ICVI_PEP_1105132410505	ICVI READ 1093022125071	1103283000035
C	ICVI_PEP_1105132650527	ICVI READ 1092955014573	1103283000035
C	ICVI PEP 1105133796599	ICVI READ 1092963630023	1103283000023
C	ICVI PEP 1105133926458	ICVI READ 1092256501111	1103283000023
C	ICVI PEP 1105134053771	ICVI READ 1095349009599	1103283000032
C	ICVI PEP 1105134320274	ICVI READ 1092963066155	1103283000056
C	ICVI PEP 1105134369352	ICVI READ 1092960115766	1103283000034
C C	ICVI PEP 1105134408736	ICVI READ 1091139266266	1103283000025
C	ICVI_PEP_1105135336476	ICVI READ 1095898189066	1103283000025
C C	ICVI_PEP_1105135346682	ICVI READ 1095403584918	1103283000033
C	ICVI PFP 1105135496745	ICVI READ 1091138307656	1103283000020
C	ICVI_PEP_1105135723485	ICVI READ 1093017833950	1103283000020
C	ICVI_PEP_1105136390600	ICVI READ 1093018266110	1103283000035
C	ICVI PEP 1105136757192	ICVI READ 1093018855759	1103283000035
Č	JCVI PEP 1105136774596	ICVI READ 1093017374507	1103283000024
č	JCVI PEP 1105136830072	JCVI READ 1095898221619	1103283000016
č	JCVI PEP 1105136842934	JCVI READ 1093016023679	1103283000025
Č	JCVI PEP 1105136912506	ICVI READ 1095407070995	11032830000029
č	JCVI PEP 1105137437891	JCVI READ 1093015614976	1103283000040

С	JCVI PEP 1105137467829	JCVI READ 1092404032452	1103283000032
С	JCVI PEP 1105137600577	JCVI READ 1092963532082	1103283000033
С	JCVI PEP 1105138649125	JCVI READ 1095349054847	1103283000039
С	JCVI PEP 1105139356879	JCVI READ 1092956049572	1103283000035
С	JCVI PEP 1105140038619	JCVI READ 1095901249398	1103283000015
Ċ	JCVI PEP 1105140241399	JCVI READ 1091140104585	1103283000014
Č	JCVI PEP 1105140686241	JCVI READ 1093016261191	1103283000040
Č	JCVI PEP 1105141735703	JCVI READ 1091140665291	1103283000021
Č	JCVI PEP 1105142223655	JCVI READ 1095964455755	1103283000042
Č	JCVI PEP 1105142417167	JCVI READ 1095899354710	1103283000018
C	ICVI PEP 1105142510989	ICVI READ 1092214165921	1103283000012
C C	ICVI PEP 1105142536871	ICVI READ 1095901414061	1103283000052
C C	ICVI PEP 1105142925217	ICVI READ 1092963675796	1103283000032
C C	ICVI PFP 1105143584751	ICVI READ 1095901253166	1103283000042
C C	ICVI PFP 1105145187145	ICVI READ 109112099866	1103283000042
C C	JCVI_PEP_1105145202847	ICVI READ 1092963147626	1103283000015
C C	ICVL PEP 1105145262847	ICVI READ 1092003147020	1103283000035
C	JCVI_PEP_1105145401819	ICVI_READ_1095025008010	1103283000055
C C	JCVI_PEP_1105140400727	ICVI READ 1093915005110	1103283000032
C C	JCVI_IEI_I105147404525	ICVI DEAD 1001142202808	1103283000023
C C	JCVI_FEF_1105147491005	JCVI_READ_1091142303808	1103283000027
C C	JCVI_FEF_1105147014809	JCVI_READ_1091140885058	1103283000020
C	JCVI_PEP_1105147654479	JCVI_READ_1093017002372	1103283000024
C C	JCVI_PEP_1105147975205	JCVI_READ_1093023077083	1103283000033
C	JCVI_PEP_1105148414719	JC VI_READ_1093041333743	1103283000039
C	JCVI_PEP_1105148784551	JC VI_READ_1092903240948	1103283000033
C	JCVI_PEP_1105150220575	JC VI_READ_1092351229883	1103283000032
C	JCVI_PEP_11051503305/5	JC VI_READ_1092301005414	1103283000029
C	JCVI_PEP_11051510529755	JC VI_READ_1093013293332	1103283000040
C	JCVI_PEP_1105151051011	JC VI_READ_1093023052450	1103283000022
C	JCVI_PEP_1105151/31849	JC VI_READ_1093011961432	1103283000034
C	JCVI_PEP_1105152398821	JC VI_READ_109114063001/	1103283000021
C	JCVI_PEP_1105152458859	JCVI_READ_1092256264762	1103283000023
C	JCVI_PEP_1105152/5/555	JC VI_READ_1095467527013	1103283000037
C	JCVI_PEP_1105153111281	JCVI_READ_1092986900902	1103283000034
C	JCVI_PEP_1105154340//1	JCVI_READ_1091138280172	1103283000022
C	JCVI_PEP_1105154581221	JCVI_READ_1093017461133	1103283000035
C	JCVI_PEP_1105154589001	JCVI_READ_109301/460/23	1103283000035
C	JCVI_PEP_1105154/16899	JCVI_READ_1093017309165	1103283000020
C	JCVI_PEP_1105154866415	JCVI_READ_109234339396/	1103283000032
C	JCVI_PEP_1105155706249	JCVI_READ_1092404011179	1103283000029
C	JCVI_PEP_1105156136979	JCVI_READ_1095388033584	1103283000032
C	JCVI_PEP_1105156712007	JCVI_READ_1092152010503	1103283000012
C	JCVI_PEP_1105156794891	JCVI_READ_1092963582202	1103283000023
С	JCVI_PEP_1105158232675	JCVI_READ_1093018866274	1103283000035
С	JCVI_PEP_1105158238227	JCVI_READ_1093018864354	1103283000035
С	JCVI_PEP_1105159424913	JCVI_READ_1092959522334	1103283000034

С	JCVI PEP 1105159606971	JCVI READ 1095462396120	1103283000036
С	JCVI PEP 1105159621843	JCVI READ 1092955239615	1103283000034
С	JCVI PEP 1105159774299	JCVI READ 1093018644335	1103283000024
С	JCVI PEP 1105160694823	JCVI READ 1095913002065	1103283000014
С	JCVI PEP 1105160803241	JCVI READ 1093017424670	1103283000024
С	JCVI PEP 1105161070715	JCVI READ 1091140436852	1103283000020
Ċ	JCVI_PEP_1105162495385	JCVI READ 1092960176556	1103283000036
Ċ	JCVI PEP 1105162740747	JCVI READ 1093015262183	1103283000040
Ċ	JCVI_PEP_1105162847055	JCVI READ 1093018397581	1103283000035
Ċ	JCVI_PEP_1105162850997	JCVI READ 1093018394749	1103283000035
Ċ	JCVI_PEP_1105163547385	JCVI READ 1092299172345	1103283000029
Č	ICVI PEP 1105163594683	JCVI READ 1092963106579	1103283000034
Č	ICVI PEP 1105164048473	JCVI READ 1093018503904	1103283000035
C	ICVI PEP 1105165096003	ICVI READ 1092344132499	1103283000029
C	ICVI PEP 1105165377313	ICVI READ 1093017652078	1103283000024
C	ICVI PEP 1105165797413	ICVI READ 1092959529066	1103283000035
C C	ICVI_PEP_1105166035067	ICVI READ 1092343625587	1103283000052
C	JC VI_1 EI _1105100055007	ICVI READ 1092973902478	1105205000052
C C		ICVI READ 1095349009599	
D	ICVI PEP 1105075071554	ICVI READ 1093015243623	1103283000019
D D	ICVI_PEP_1105075176102	ICVI READ 10911/1588389	1103283000015
D D	ICVI DED 1105075178452	ICVI READ 1002343703451	1103283000023
D D	JCVI_IEI_I105075178452	ICVI READ 1092015/36/30	1103283000032
D D	$JCVI_1EI_1105075194072$	ICVI DEAD 1005075050571	1102283000040
ע ח	$JCVI_FEF_1105075205074$	JCVI_READ_1093973039371	1103283000032
D D	JCVI_FEF_1105075511892	JCVI_READ_1092903803704	1103283000040
	JCVI_FEF_1105075508614	JCVI_READ_1092343/24089	1103283000032
D D	$JCVI_FEF_1105075555205$	JCVI_READ_1093409488408	1103283000030
D D	JCVI_FEF_11050755555555 JCVI_DED_1105075670440	JCVI_READ_1095011690551	1103283000023
	$JCVI_FEF_1105075692241$	JCVI_READ_1095349023203	1103283000039
D D	JCVI_PEP_1105075082341	JC VI_READ_1093349032332	1103283000039
D D	JCVI_PEP_1105075002491	JC VI_READ_1092965308904	1103283000023
D D	JCVI_PEP_1105075903481	JCVI_READ_1093017379102	1103283000041
D D	JCVI_PEP_11050750044(5	JC VI_READ_1092900010170	1103283000033
D D	JCVI_PEP_1105075994405	JC VI_READ_1093018384915	1103283000033
D	JCVI_PEP_1105075996513	JCVI_READ_1093018370384	1103283000033
D D	JCVI_PEP_1105078200521	JCVI_READ_1092351432286	1103283000017
D	JCVI_PEP_1105078290531	JCVI_READ_1092963395142	1103283000023
D	JCVI_PEP_1105078336857	JCVI_READ_10929/0301894	1103283000056
D	JCVI_PEP_11050/834/883	JCVI_READ_1095901469009	1103283000008
D	JCVI_PEP_11050/8405938	JCVI_READ_1093015306650	1103283000033
D	JUVI_PEP_1105078646662	JUVI_KEAD_109240596/56/	1103283000018
D	JCVI_PEP_1105078712150	JUVI_KEAD_1092256577335	1103283000022
D	JCVI_PEP_1105078734564	JCVI_KEAD_1095467050886	1103283000036
D	JCVI_PEP_1105078735402	JCVI_KEAD_1095467049648	1103283000036
D	JCVI_PEP_1105078777644	JCVI_KEAD_1092962044287	1103283000035
D	JCVI_PEP_1105078933414	JCVI_READ_1093018615188	1103283000024

D	JCVI_PEP_1105079033843	JCVI_READ_1093018696553	1103283000024
D	JCVI_PEP_1105079056007	JCVI_READ_1091143501495	1103283000009
D	JCVI_PEP_1105079156671	JCVI_READ_1095458069720	1103283000036
D	JCVI_PEP_1105079261291	JCVI_READ_1092402508042	1103283000032
D	JCVI PEP 1105079379523	JCVI READ 1092351019913	1103283000039
D	JCVI_PEP_1105079464927	JCVI READ 1091143513800	1103283000011
D	JCVI_PEP_1105079643041	JCVI READ 1095458133972	1103283000036
D	JCVI_PEP_1105079764795	JCVI READ 1095949510767	1103283000052
D	JCVI_PEP_1105079779455	JCVI READ 1093011900577	1103283000023
D	JCVI_PEP_1105079783473	JCVI READ 1093011900552	1103283000023
D	JCVI PEP 1105079871975	JCVI READ 1091140906836	1103283000025
D	JCVI PEP 1105079872555	JCVI READ 1091140906930	1103283000025
D	JCVI PEP 1105079873787	JCVI READ 1091140906906	1103283000025
D	JCVI_PEP_1105079935893	JCVI READ 1092256203310	1103283000020
D	JCVI_PEP_1105080016403	JCVI READ 1095898016626	1103283000018
D	JCVI_PEP_1105080077667	JCVI READ 1091145049501	1103283000009
D	JCVI PEP 1105080098969	JCVI READ 1092959534426	1103283000036
D	JCVI PEP 1105080101305	JCVI READ 1092959532676	1103283000036
D	JCVI PEP 1105080101525	JCVI READ 1092959530390	1103283000036
D	ICVI PEP 1105080139415	ICVI READ 1092344200031	1103283000032
D	ICVI PEP 1105080297695	ICVI READ 1095467032947	1103283000036
D	ICVI PEP 1105080307195	ICVI READ 1093022083920	1103283000035
D	ICVI PEP 1105080313249	ICVI READ 1093022081283	1103283000035
D	ICVI PEP 1105080318669	ICVI READ 1092343807160	1103283000032
D	ICVI PEP 1105080611543	ICVI READ 1092344348706	1103283000032
D	ICVI PEP 1105080661401	ICVI READ 1091142068353	1103283000025
D	ICVI PEP 1105080670809	ICVI READ 1093018988683	1103283000024
D	ICVI PEP 1105080700565	ICVI READ 1093012259140	1103283000033
D	ICVI PEP 1105080715549	ICVI READ 1091145188689	1103283000008
D	ICVI PEP 1105080740907	ICVI READ 1095963269835	1103283000052
D	ICVI PEP 1105080772163	ICVI READ 1091142491395	1103283000092
D	ICVI_PEP_1105080772621	ICVI READ 1091142492177	1103283000008
D	ICVI_PEP_1105080841397	ICVI READ 1095403390613	1103283000032
D D	ICVI_PEP_1105080857683	ICVI READ 1091140844121	1103283000032
D D	ICVI PEP 110508001/579	ICVI READ 1093017824611	1103283000025
D D	ICVI DED 1105081076601	ICVI READ 1003025172808	1103283000033
D D	JCVI_PEP_1105081070001	ICVI_READ_1093025101865	1103283000039
D D	ICVI DED 1105081124440	ICVI READ 1095460155240	1103283000037
D D	JCVI_DED_1105081124449	ICVI DEAD 10011/1777680	1103283000030
D D	ICVI DED 1105081295012	ICVI PEAD 1005001001674	1103283000022
	JCVI_PEP_1105081295015	JCVI_READ_10939010010/4	1103283000042
D D	JCVI_PEP_11050815/9245	JCVI_READ_1091130230102	1103283000012
ע	JC VI_IEF_1105001400557	$J \subseteq VI_{ICVI} PEAD_1075016400492$	1103283000033
ע ת	$J \subseteq VI_F \square F_1 UJU01409897$	$JCVI_READ_1092230279733$	1103283000020
ע	$J \subseteq VI_F _ I I U J U O I O I I I / I$ $I \subseteq VI_D \equiv D = 1105001017045$	$J \subseteq VI_NEAD_1092903030/8/$	1103203000030
ע	$J \cup VI_F EF_1 U J U J U J U J U J U J U J U J U J U $	$J \subseteq VI _ KEAD _ 1092903030770$	1102202000024
D	JUVI_PEP_1103081986435	JUVI_KEAD_1093018634430	1103283000024

D	JCVI_PEP_1105082042043	JCVI_READ_1095462240974	1103283000036
D	JCVI PEP 1105082044639	JCVI READ 1095462240971	1103283000036
D	JCVI PEP 1105082057823	JCVI READ 1093018417158	1103283000041
D	JCVI PEP 1105082103287	JCVI READ 1095462425353	1103283000036
D	JCVI PEP 1105082169297	JCVI READ 1092256313289	1103283000027
D	JCVI PEP 1105082190729	JCVI READ 1095900153617	1103283000042
D	JCVI PEP 1105082279755	JCVI READ 1095460051668	1103283000036
D	JCVI PEP 1105082423435	JCVI READ 1093023029395	1103283000027
D	JCVI_PEP_1105082424187	JCVI READ 1093023006619	1103283000027
D	JCVI_PEP_1105082426353	JCVI READ 1093023013723	1103283000027
D	JCVI_PEP_1105082478027	JCVI READ 1095390079788	1103283000032
D	ICVI PEP 1105082485949	ICVI READ 1095390079780	1103283000032
D	ICVI_PEP_1105082959347	JCVI READ 1095462377838	1103283000036
D	ICVI PEP 1105083036783	ICVI READ 1092962038366	1103283000035
D	ICVI_PEP_1105083125405	ICVI READ 1092960179917	1103283000056
D	ICVI_PEP_1105083490822	ICVI READ 1095898116110	1103283000016
D	ICVI_PEP_1105083537732	ICVI READ 1091140167386	1103283000014
D	ICVI_PEP_1105083544706	ICVI READ 1095333031/12	1103283000014
D	ICVI DED 1105083560458	ICVI READ 1005808168770	1103283000032
D	JCVI_IEI_I105083509458	ICVI_READ_1093898108770	1103283000010
	$JCVI_FEF_1105083827242$	JCVI_READ_1092901192400	1103283000030
	JCVI_FEF_1105085859498	JCVI_READ_1095456004925	1103283000031
	JCVI_PEP_1105083801380	JCVI_READ_1093430004007	1103283000031
	$JCVI_FEF_1105085897290$	JCVI_READ_1092331/92840	1103283000017
D	JCVI_PEP_1105085988002	JCVI_READ_1093400144110	1103283000030
D	JCVI_PEP_1105083993700	JC VI_READ_1093400143437	1103283000030
D	JCVI_PEP_1105083995010	JCVI_READ_10911400/9340	1103283000022
D	JCVI_PEP_1105084008115	JC VI_READ_1092955392555	1103283000034
D	JCVI_PEP_1105084119221	JC VI_READ_1092903/83045	1103283000040
D	JCVI_PEP_1105084201801	JC VI_READ_1093018/64136	1103283000035
D	JCVI_PEP_1105084208807	JC VI_READ_1095460124329	1103283000036
D	JCVI_PEP_1105084340243	JCVI_READ_10923436/465/	1103283000032
D	JCVI_PEP_1105084355863	JCVI_READ_1093015491175	1103283000033
D	JCVI_PEP_1105084369511	JCVI_READ_1092963302515	1103283000035
D	JCVI_PEP_1105084416675	JCVI_READ_1095901614281	1103283000008
D	JCVI_PEP_1105084419055	JCVI_READ_1095901622486	1103283000008
D	JCVI_PEP_1105084553465	JCVI_READ_1092960166706	1103283000023
D	JCVI_PEP_1105084569693	JCVI_READ_1093018404911	1103283000035
D	JCVI_PEP_1105084588039	JCVI_READ_1093018940238	1103283000022
D	JCVI_PEP_1105084607471	JCVI_READ_1092256103713	1103283000021
D	JCVI_PEP_1105084922045	JCVI_READ_1092344337001	1103283000039
D	JCVI_PEP_1105084935417	JCVI_READ_1093018999747	1103283000035
D	JCVI_PEP_1105084948033	JCVI_READ_1092257233776	1103283000027
D	JCVI_PEP_1105085032161	JCVI_READ_1092343615535	1103283000029
D	JCVI_PEP_1105085038483	JCVI_READ_1095462345915	1103283000036
D	JCVI_PEP_1105085102631	JCVI_READ_1095898283068	1103283000018
D	JCVI_PEP_1105085112315	JCVI_READ_1093025542661	1103283000035

D	JCVI_PEP_1105085121869	JCVI_READ_1093016239913	1103283000043
D	JCVI PEP 1105085125085	JCVI READ 1093015466482	1103283000043
D	JCVI PEP 1105085389721	JCVI READ 1095460031026	1103283000036
D	JCVI PEP 1105085615804	JCVI READ 1095454103108	1103283000036
D	JCVI PEP 1105085828770	JCVI READ 1092961127920	1103283000036
D	JCVI PEP 1105085959184	JCVI READ 1091140905306	1103283000022
D	JCVI PEP 1105085961840	JCVI READ 1091140908772	1103283000022
D	JCVI PEP 1105086023777	JCVI READ 1095963329029	1103283000052
D	JCVI PEP 1105086025861	JCVI READ 1095963283217	1103283000052
D	JCVI PEP 1105086026587	JCVI READ 1095963316064	1103283000052
D	JCVI PEP 1105086105483	JCVI READ 1093017378197	1103283000035
D	JCVI PEP 1105086162983	JCVI READ 1095344023057	1103283000039
D	JCVI PEP 1105086228975	JCVI READ 1091143599038	1103283000023
D	JCVI PEP 1105086256901	JCVI READ 1095390160483	1103283000039
D	JCVI_PEP_1105086370699	JCVI READ 1095460226968	1103283000031
D	JCVI_PEP_1105086448341	JCVI READ 1092344010086	1103283000023
D	JCVI PEP 1105086566953	JCVI READ 1092344151384	1103283000029
D	JCVI PEP 1105086679431	JCVI READ 1092955034575	1103283000035
D	JCVI PEP 1105086896723	JCVI READ 1095467011860	1103283000036
D	JCVI_PEP_1105086961751	JCVI READ 1092955207616	1103283000036
D	JCVI PEP 1105087029179	JCVI READ 1095462383985	1103283000036
D	JCVI PEP 1105087059453	JCVI READ 1093022138088	1103283000024
D	JCVI PEP 1105087070197	JCVI READ 1095403267546	1103283000028
D	JCVI PEP 1105087070793	JCVI READ 1095403267522	1103283000028
D	JCVI PEP 1105087352749	JCVI READ 1093018396305	1103283000041
D	JCVI PEP 1105087449515	JCVI READ 1095469414972	1103283000036
D	JCVI PEP 1105087449515	JCVI READ 1095469414972	1103283000036
D	JCVI PEP 1105087455275	JCVI READ 1095469414961	1103283000036
D	JCVI PEP 1105087475287	JCVI READ 1093015755280	1103283000041
D	JCVI PEP 1105087487505	JCVI READ 1092214987870	1103283000028
D	JCVI PEP 1105087521973	JCVI READ 1093017886060	1103283000035
D	JCVI PEP 1105087525565	JCVI READ 1093017887347	1103283000035
D	JCVI PEP 1105087528391	JCVI READ 1092256377146	1103283000028
D	JCVI_PEP_1105087544723	JCVI_READ_1092963594606	1103283000033
D	JCVI PEP 1105087569999	JCVI READ 1093018487177	1103283000033
D	JCVI PEP 1105087804909	JCVI READ 1092963721685	1103283000033
D	JCVI_PEP_1105087860379	JCVI_READ_1092963427631	1103283000033
D	JCVI_PEP_1105087944727	JCVI_READ_1092960003247	1103283000036
D	JCVI_PEP_1105087945321	JCVI_READ_1092959728774	1103283000036
D	JCVI_PEP_1105088045665	JCVI_READ_1095456070471	1103283000036
D	JCVI_PEP_1105088072703	JCVI_READ_1091145353780	1103283000010
D	JCVI_PEP_1105088073283	JCVI_READ_1091145347338	1103283000010
D	JCVI_PEP_1105088094637	JCVI_READ_1093022175545	1103283000035
D	JCVI_PEP_1105088137877	JCVI_READ_1095978212687	1103283000042
D	JCVI_PEP_1105088231149	JCVI_READ_1095500040190	1103283000036
D	JCVI_PEP_1105088426111	JCVI_READ_1095462419832	1103283000036

D	JCVI_PEP_1105088553733	JCVI_READ_1093016199615	1103283000020
D	JCVI_PEP_1105088564971	JCVI_READ_1091150278669	1103283000011
D	JCVI_PEP_1105088564971	JCVI_READ_1091150278669	1103283000011
D	JCVI_PEP_1105088564975	JCVI_READ_1091150278669	1103283000011
D	JCVI_PEP_1105088606869	JCVI_READ_1095386001070	1103283000032
D	JCVI PEP 1105088637067	JCVI READ 1092214100164	1103283000012
D	JCVI PEP 1105088705475	JCVI READ 1095898794666	1103283000015
D	JCVI_PEP_1105088876817	JCVI_READ_1095505193316	1103283000036
D	JCVI_PEP_1105088929905	JCVI_READ_1095964725863	1103283000042
D	JCVI_PEP_1105089033365	JCVI_READ_1093010299702	1103283000056
D	JCVI PEP 1105089038689	JCVI READ 1093010529383	1103283000056
D	JCVI PEP 1105089306013	JCVI READ 1092955410460	1103283000035
D	JCVI PEP 1105089373495	JCVI READ 1093017564988	1103283000035
D	JCVI PEP 1105089430279	JCVI READ 1093012098000	1103283000033
D	JCVI PEP 1105089445155	JCVI READ 1092343144372	1103283000032
D	JCVI PEP 1105089511023	JCVI READ 1092960162915	1103283000056
D	JCVI PEP 1105089515589	JCVI READ 1092960159665	1103283000056
D	JCVI PEP 1105089521985	JCVI READ 1093018349209	1103283000035
D	JCVI PEP 1105089551961	JCVI READ 1091141181229	1103283000020
D	JCVI PEP 1105089643867	JCVI READ 1095403403032	1103283000024
D	JCVI PEP 1105089701537	JCVI READ 1092152006299	1103283000010
D	JCVI PEP 1105089779037	JCVI READ 1093017511921	1103283000035
D	JCVI PEP 1105089877749	JCVI READ 1092955045914	1103283000018
D	JCVI PEP 1105089915309	JCVI READ 1095328032454	1103283000032
D	JCVI PEP 1105090131527	JCVI READ 1095388064571	1103283000021
D	JCVI PEP 1105090156763	JCVI READ 1093010718026	1103283000023
D	JCVI PEP 1105090179483	JCVI READ 1095516031477	1103283000037
D	JCVI PEP 1105090532233	JCVI READ 1093018448621	1103283000035
D	JCVI PEP 1105090562173	JCVI READ 1092257122408	1103283000025
D	JCVI PEP 1105090697775	JCVI READ 1095468221853	1103283000036
D	JCVI PEP 1105090793585	JCVI READ 1092301034850	1103283000029
D	JCVI PEP 1105090800143	JCVI READ 1093015765283	1103283000020
D	JCVI PEP 1105090815045	JCVI READ 1093018204727	1103283000041
D	JCVI PEP 1105090816541	JCVI READ 1093017610525	1103283000041
D	JCVI PEP 1105090831081	JCVI READ 1092256192796	1103283000027
D	JCVI_PEP_1105090880479	JCVI READ 1093018468153	1103283000035
D	JCVI PEP 1105091027793	JCVI READ 1091140421823	1103283000020
D	JCVI PEP 1105091028385	JCVI READ 1091140419576	1103283000020
D	JCVI PEP 1105091041979	JCVI READ 1093015550713	1103283000025
D	JCVI PEP 1105091137089	JCVI READ 1092959539659	1103283000036
D	JCVI PEP 1105091207651	JCVI READ 1092344305158	1103283000039
D	JCVI PEP 1105091659649	JCVI READ 1092963537247	1103283000033
D	JCVI PEP 1105091752795	JCVI READ 1092216085498	1103283000012
D	JCVI PEP 1105091809537	JCVI READ 1092956091967	1103283000035
D	JCVI PEP 1105091846803	JCVI READ 1095900037815	1103283000042
D	JCVI_PEP_1105091856297	JCVI_READ 1095462282191	1103283000036

D	JCVI_PEP_1105091926635	JCVI_READ_1092963087361	1103283000035
D	JCVI PEP 1105092125105	JCVI READ 1095904001311	1103283000042
D	JCVI PEP 1105092157309	JCVI READ 1092955009325	1103283000018
D	JCVI PEP 1105092200231	JCVI READ 1092343452477	1103283000039
D	JCVI PEP 1105092402237	JCVI READ 1091142266367	1103283000027
D	JCVI PEP 1105092571227	JCVI READ 1093018657593	1103283000024
D	JCVI PEP 1105092596729	JCVI READ 1093011478730	1103283000023
D	JCVI PEP 1105092604001	JCVI READ 1093017559476	1103283000033
D	JCVI PEP 1105092707619	JCVI READ 1092344105955	1103283000032
D	JCVI PEP 1105092977429	JCVI READ 1095467978016	1103283000037
D	JCVI PEP 1105093279879	JCVI READ 1095403460625	1103283000033
D	JCVI PEP 1105093281549	JCVI READ 1095403460423	1103283000033
D	JCVI PEP 1105093431611	JCVI READ 1092260600879	1103283000022
D	JCVI PEP 1105093459353	JCVI READ 1092215030247	1103283000023
D	JCVI PEP 1105093490299	JCVI READ 1093012183499	1103283000019
D	JCVI PEP 1105093498011	JCVI READ 1093012183122	1103283000019
D	ICVI PEP 1105093632343	JCVI READ 1095460120190	1103283000036
D	JCVI PEP 1105093638349	JCVI READ 1095460119810	1103283000036
D	JCVI PEP 1105093861473	JCVI READ 1091140640403	1103283000021
D	ICVI PEP 1105093911003	JCVI READ 1093006100937	1103283000023
D	JCVI PEP 1105093972775	JCVI READ 1093023047874	1103283000035
D	JCVI PEP 1105094008911	JCVI READ 1095403288606	1103283000009
D	JCVI PEP 1105094027995	JCVI READ 1093025094074	1103283000039
D	JCVI PEP 1105094184155	JCVI READ 1092152019002	1103283000011
D	JCVI PEP 1105094233633	JCVI READ 1095949485890	1103283000008
D	JCVI PEP 1105094245707	JCVI READ 1091142334015	1103283000027
D	JCVI PEP 1105094304577	JCVI READ 1093015736344	1103283000025
D	JCVI PEP 1105094365345	JCVI READ 1091142858230	1103283000009
D	JCVI PEP 1105094707519	JCVI READ 1095469472725	1103283000037
D	JCVI PEP 1105094710871	JCVI READ 1095469473925	1103283000037
D	JCVI PEP 1105094747593	JCVI READ 1093015481527	1103283000040
D	JCVI PEP 1105094782739	JCVI READ 1092961087532	1103283000034
D	JCVI PEP 1105094848533	JCVI READ 1092171435197	1103283000012
D	JCVI_PEP_1105094998509	JCVI_READ_1093018905099	1103283000035
D	JCVI PEP 1105095198775	JCVI READ 1095460104902	1103283000031
D	JCVI PEP 1105095200921	JCVI READ 1095460104507	1103283000031
D	JCVI_PEP_1105095214301	JCVI_READ_1092956013046	1103283000035
D	JCVI_PEP_1105095246771	JCVI_READ_1092963385581	1103283000033
D	JCVI_PEP_1105095398733	JCVI_READ_1091140574166	1103283000020
D	JCVI_PEP_1105095477465	JCVI_READ_1092344097718	1103283000027
D	JCVI_PEP_1105095542713	JCVI_READ_1092955348249	1103283000036
D	JCVI_PEP_1105095553789	JCVI_READ_1093016228364	1103283000041
D	JCVI_PEP_1105095639161	JCVI_READ_1095898771926	1103283000016
D	JCVI_PEP_1105095681649	JCVI_READ_1093012124179	1103283000033
D	JCVI_PEP_1105095687407	JCVI_READ_1093012126090	1103283000033
D	JCVI_PEP_1105095852279	JCVI_READ_1095949517678	1103283000008

D	JCVI_PEP_1105095920915	JCVI_READ_1095403552280	1103283000031
D	JCVI PEP 1105095979361	JCVI READ 1092961067742	1103283000034
D	JCVI_PEP_1105096115671	JCVI_READ_1091120735301	1103283000020
D	JCVI_PEP_1105096189211	JCVI_READ_1092955396375	1103283000056
D	JCVI_PEP_1105096234133	JCVI_READ_1095901434257	1103283000008
D	JCVI PEP 1105096236683	JCVI READ 1095901434473	1103283000008
D	JCVI PEP 1105096601377	JCVI READ 1095467042023	1103283000036
D	JCVI PEP 1105096780863	JCVI READ 1095403700801	1103283000022
D	JCVI PEP 1105096788911	JCVI READ 1095403702145	1103283000022
D	JCVI PEP 1105096834955	JCVI READ 1095963235602	1103283000052
D	JCVI PEP 1105097030233	JCVI READ 1095901180097	1103283000042
D	JCVI PEP 1105097051437	JCVI READ 1095462012136	1103283000036
D	JCVI PEP 1105097127273	JCVI READ 1095469446462	1103283000036
D	JCVI PEP 1105097148239	JCVI READ 1091141485279	1103283000021
D	JCVI PEP 1105097156333	JCVI READ 1091141512524	1103283000021
D	JCVI PEP 1105097164381	JCVI READ 1093015445496	1103283000040
D	JCVI PEP 1105097212073	JCVI READ 1095456015748	1103283000031
D	JCVI PEP 1105097300889	JCVI READ 1091138307459	1103283000025
D	JCVI PEP 1105097324901	JCVI READ 1091139238758	1103283000022
D	JCVI PEP 1105097508241	JCVI READ 1093022154265	1103283000028
D	JCVI PEP 1105097519635	JCVI READ 1092344062123	1103283000027
D	JCVI PEP 1105097530059	JCVI READ 1095458097469	1103283000036
D	JCVI PEP 1105097538589	JCVI READ 1095901143895	1103283000042
D	JCVI PEP 1105097542389	JCVI READ 1095901146988	1103283000042
D	JCVI PEP 1105097610651	JCVI READ 1092963635065	1103283000033
D	JCVI PEP 1105097804165	JCVI READ 1092959655655	1103283000036
D	JCVI PEP 1105097818759	JCVI READ 1095458117464	1103283000036
D	JCVI PEP 1105097903409	JCVI READ 1092955098176	1103283000035
D	JCVI PEP 1105097916833	JCVI READ 1095403006499	1103283000032
D	JCVI PEP 1105097920095	JCVI READ 1095390209240	1103283000032
D	JCVI PEP 1105098095711	JCVI READ 1091140681731	1103283000015
D	JCVI PEP 1105098241081	JCVI READ 1093018481256	1103283000024
D	JCVI PEP 1105098313857	JCVI READ 1092959727843	1103283000034
D	JCVI PEP 1105098628295	JCVI READ 1092963076914	1103283000023
D	JCVI PEP 1105098731525	JCVI READ 1092963968929	1103283000020
D	JCVI PEP 1105098742089	JCVI READ 1093015775439	1103283000041
D	JCVI PEP 1105098864449	JCVI READ 1093022166345	1103283000028
D	JCVI PEP 1105098865941	JCVI READ 1093022160747	1103283000028
D	JCVI PEP 1105099095753	JCVI READ 1091140465150	1103283000021
D	JCVI PEP 1105099178491	JCVI READ 1095467030062	1103283000036
D	JCVI PEP 1105099212025	JCVI READ 1093023027649	1103283000022
D	JCVI PEP 1105099268467	JCVI READ 1092955355137	1103283000034
D	JCVI PEP 1105099337321	JCVI READ 1093012074745	1103283000033
D	JCVI PEP 1105099409981	JCVI READ 1091121297741	1103283000022
D	JCVI PEP 1105099419259	JCVI READ 1091141140202	1103283000016
D	JCVI PEP 1105099964745	JCVI READ 1093015792711	1103283000041

D	JCVI_PEP_1105099981017	JCVI_READ_1092344292486	1103283000029
D	JCVI PEP 1105100072583	JCVI READ 1095898012612	1103283000015
D	JCVI PEP 1105100302627	JCVI READ 1094338574367	1103283000039
D	JCVI PEP 1105100315557	JCVI READ 1095462276584	1103283000036
D	JCVI PEP 1105100410731	JCVI READ 1092963507488	1103283000056
D	JCVI PEP 1105100435017	JCVI READ 1095454134064	1103283000031
D	JCVI PEP 1105100435019	JCVI READ 1095454134064	1103283000031
D	JCVI_PEP_1105100435019	JCVI READ 1095454134064	1103283000031
D	JCVI_PEP_1105100436539	JCVI READ 1095460003839	1103283000036
D	JCVI PEP 1105100456007	JCVI READ 1091150278236	1103283000012
D	JCVI_PEP_1105100697323	JCVI READ 1091141382802	1103283000021
D	JCVI PEP 1105100703637	JCVI READ 1091141389081	1103283000021
D	JCVI_PEP_1105100711351	JCVI READ 1095467009771	1103283000036
D	JCVI PEP 1105100827703	JCVI READ 1095469014006	1103283000036
D	ICVI PEP 1105100828807	ICVI READ 1095469021905	1103283000036
D	ICVI PEP 1105100830465	ICVI READ 1095468984594	1103283000036
D	ICVI PEP 1105100876477	ICVI READ 1095462438420	1103283000036
D	ICVI_PEP_1105100907295	ICVI READ 1092214171482	1103283000012
D	ICVI PFP 1105100978491	ICVI READ 1093009285776	1103283000012
D	ICVI PEP 1105101039971	ICVI READ 1091121021398	1103283000020
D	ICVI_PEP_1105101224051	ICVI READ 1095462198227	1103283000026
D	ICVI PEP 1105101224051	ICVI READ 1091145200188	1103283000000
D D	ICVI PEP 1105101554007	ICVI READ 1095462254896	1103283000007
D	ICVI PEP 1105101645005	ICVI READ 1093017380170	1103283000035
D	ICVI PEP 1105101645741	ICVI READ 1093017390471	1103283000035
D	ICVI PEP 1105101654701	ICVI READ 109344036985	1103283000033
D	ICVI PEP 1105101693469	ICVI READ 1095506124741	1103283000032
D	ICVI_PEP_1105101697317	ICVI READ 1095506062407	1103283000036
D	ICVI_PEP_1105101756015	ICVI READ 1093012117846	1103283000019
D	ICVI PEP 1105101767325	ICVI READ 1092255319246	1103283000012
D	ICVI PEP 1105101861563	ICVI READ 1091139248209	1103283000012
D	ICVI PEP 1105101989731	ICVI READ 1092255383888	1103283000012
D	ICVI_PEP_11051012481415	ICVI READ 1091141133308	1103283000012
D	ICVI_PEP_1105102401415	ICVI READ 1095403590451	1103283000033
D	ICVI PEP 1105102505577	ICVI READ 1093010383562	1103283000033
D D	ICVI PEP 1105102003003	ICVI READ 1093015556044	1103283000023
D D	JCVI_PEP_1105102095555	ICVI READ 1093015550044	1103283000040
D D	ICVI PEP 1105102767443	ICVI READ 1095458130407	1103283000027
D D	JCVI_PEP_1105102707445	JCVI_READ_1093438130407	1103283000031
D D	JCVI_FEF_1105102820085	JCVI_READ_1093017703999	1103283000024
	JCVI_PEP_1105102850705	JCVI_READ_1092933141027	1103283000033
	JCVI_PEP_1105102802979	JCVI_READ_1093899004037	1103283000010
ע ח	J_{VI} ref_1105105050981	$J \cup VI_KEAD_10922100/9/43$	1103283000012
ע ת	$J_V V_1 PEP_1105105051529$	$J \cup V _ KEAD _ 109221000910/$	1102283000012
D T	JUVI_PEP_1105103043829	JUVI_KEAD_1095964069443	1103283000052
D	JUVI_PEP_11051031108/3	JUVI_KEAD_1092153011896	1103283000012
D	JCVI_PEP_1105103125635	JCVI_KEAD_1095460114832	1103283000036

D	JCVI_PEP_1105103412995	JCVI_READ_1093011994677	1103283000033
D	JCVI_PEP_1105103421547	JCVI_READ_1093011993534	1103283000033
D	JCVI_PEP_1105103547373	JCVI_READ_1092962005874	1103283000034
D	JCVI_PEP_1105103550491	JCVI_READ_1093018722458	1103283000024
D	JCVI PEP 1105103615965	JCVI READ 1092344327405	1103283000029
D	JCVI PEP 1105103739697	JCVI READ 1091141759666	1103283000022
D	JCVI PEP 1105103886923	JCVI READ 1092402546621	1103283000029
D	JCVI PEP 1105103968567	JCVI READ 1092341843442	1103283000029
D	JCVI PEP 1105103980857	JCVI READ 1095403408772	1103283000033
D	JCVI PEP 1105104032197	JCVI READ 1095897551947	1103283000016
D	JCVI PEP 1105104032547	JCVI READ 1095897550820	1103283000016
D	JCVI PEP 1105104066579	JCVI READ 1095407071641	1103283000033
D	JCVI PEP 1105104348469	JCVI READ 1092256356641	1103283000025
D	JCVI PEP 1105104503335	JCVI READ 1095516166816	1103283000036
D	JCVI PEP 1105104542949	JCVI READ 1095390214063	1103283000028
D	JCVI PEP 1105104668757	JCVI READ 1095458149684	1103283000031
D	JCVI PEP 1105104795099	JCVI READ 1092343801274	1103283000032
D	JCVI PEP 1105104802713	JCVI READ 1092343793118	1103283000032
D	JCVI PEP 1105104915987	JCVI READ 1095898861872	1103283000042
D	JCVI PEP 1105104961773	JCVI READ 1092322703750	1103283000020
D	JCVI PEP 1105104967125	JCVI READ 1092955079668	1103283000035
D	JCVI PEP 1105105090171	JCVI READ 1092963236731	1103283000052
D	JCVI PEP 1105105097395	JCVI READ 1095458121359	1103283000036
D	JCVI PEP 1105105228835	JCVI READ 1092964200550	1103283000035
D	JCVI PEP 1105105230623	JCVI READ 1092964401129	1103283000035
D	JCVI PEP 1105105638383	JCVI READ 1093009830211	1103283000023
D	JCVI PEP 1105105740773	JCVI READ 1092960101740	1103283000023
D	JCVI PEP 1105105779057	JCVI READ 1092344119288	1103283000032
D	JCVI PEP 1105105813775	JCVI READ 1093016248525	1103283000019
D	JCVI PEP 1105105862189	JCVI READ 1093018201213	1103283000020
D	JCVI PEP 1105105889371	JCVI READ 1093015851688	1103283000041
D	JCVI_PEP_1105105946255	JCVI READ 1091140074244	1103283000015
D	JCVI PEP 1105106001611	JCVI READ 1092961193776	1103283000056
D	JCVI PEP 1105106014879	JCVI READ 1093017655102	1103283000024
D	JCVI PEP 1105106027555	JCVI READ 1092970302088	1103283000035
D	JCVI PEP 1105106233713	JCVI READ 1093011962546	1103283000036
D	JCVI PEP 1105106235811	JCVI READ 1093011969308	1103283000036
D	JCVI PEP 1105106563549	JCVI READ 1091140268879	1103283000016
D	ICVI PEP 1105106564651	ICVI READ 1091140268892	1103283000016
D	ICVI PEP 1105106616635	ICVI READ 1093018494284	1103283000035
D	ICVI PEP 1105106659955	ICVI READ 1095505139114	1103283000036
D	ICVI PEP 1105106665325	ICVI READ 1095505103928	1103283000036
D	ICVI PEP 1105106687877	ICVI READ 1095403252214	1103283000021
D	ICVI PEP 1105106839079	ICVI READ 1092256235524	1103283000021
D	ICVI PFP 1105107544857	ICVI READ 1095460135345	1103283000023
D	ICVI PFP 1105107600853	ICVI READ 1092963061316	1103283000031
D	JO VI_I DI _110J107000000	JC T KL/KL 10/2/05001510	1105205000025

D	JCVI_PEP_1105107646699	JCVI_READ_1093018628300	1103283000024
D	JCVI PEP 1105107737655	JCVI READ 1092955256645	1103283000036
D	JCVI PEP 1105107740551	JCVI READ 1092955261044	1103283000036
D	JCVI PEP 1105107935553	JCVI READ 1092344167613	1103283000029
D	JCVI PEP 1105107986353	JCVI READ 1091145737739	1103283000010
D	JCVI PEP 1105107991859	JCVI READ 1091145738123	1103283000010
D	JCVI PEP 1105108005971	JCVI READ 1093015415732	1103283000025
D	JCVI PEP 1105108032357	JCVI READ 1093018986172	1103283000022
D	JCVI PEP 1105108165995	JCVI READ 1093012001429	1103283000033
D	JCVI PEP 1105108221443	JCVI READ 1092956006459	1103283000035
D	JCVI PEP 1105108235091	JCVI READ 1093017411025	1103283000035
D	JCVI PEP 1105108268391	JCVI READ 1095462338831	1103283000036
D	JCVI PEP 1105108272109	JCVI READ 1093018204331	1103283000035
D	JCVI PEP 1105108324391	JCVI READ 1092344360334	1103283000029
D	JCVI PEP 1105108324699	JCVI READ 1092344363543	1103283000029
D	JCVI PEP 1105108666297	JCVI READ 1093018631740	1103283000035
D	JCVI PEP 1105108781737	JCVI READ 1093011990840	1103283000019
D	JCVI PEP 1105108872071	JCVI READ 1092963745685	1103283000033
D	JCVI PEP 1105108910863	JCVI READ 1092152009522	1103283000010
D	JCVI PEP 1105108982549	JCVI READ 1092955373001	1103283000034
D	JCVI PEP 1105109116533	JCVI READ 1095454112940	1103283000031
D	JCVI PEP 1105109132675	JCVI READ 1091140047137	1103283000015
D	JCVI PEP 1105109135647	JCVI READ 1091140049026	1103283000015
D	JCVI PEP 1105109152921	JCVI READ 1093015750288	1103283000041
D	JCVI PEP 1105109346081	JCVI READ 1093017637658	1103283000024
D	JCVI PEP 1105109384543	JCVI READ 1092989100348	1103283000056
D	JCVI PEP 1105109437009	JCVI READ 1092963757646	1103283000033
D	JCVI PEP 1105109667215	JCVI READ 1092344141381	1103283000032
D	JCVI PEP 1105109710683	JCVI READ 1092344312530	1103283000039
D	JCVI PEP 1105109739967	JCVI READ 1093017737517	1103283000024
D	JCVI PEP 1105109810517	JCVI READ 1092959415162	1103283000035
D	JCVI PEP 1105109865837	JCVI READ 1093015524510	1103283000040
D	JCVI PEP 1105109928735	JCVI READ 1092963104100	1103283000056
D	JCVI PEP 1105110060983	JCVI READ 1095460215559	1103283000036
D	JCVI PEP 1105110132239	JCVI READ 1092255332381	1103283000021
D	JCVI PEP 1105110270981	JCVI READ 1093016207457	1103283000041
D	JCVI PEP 1105110307789	JCVI READ 1091141024456	1103283000015
D	JCVI PEP 1105110313287	JCVI READ 1095469471000	1103283000036
D	JCVI PEP 1105110398309	JCVI READ 1092257167786	1103283000022
D	JCVI PEP 1105110437521	JCVI READ 1091141708914	1103283000020
D	JCVI PEP 1105110721157	JCVI READ 1095898293459	1103283000015
D	JCVI PEP 1105110797687	JCVI READ 1092962054649	1103283000034
D	JCVI PEP 1105110809747	JCVI READ 1092343153336	1103283000032
D	JCVI PEP 1105110826699	JCVI READ 1092959554032	1103283000036
D	JCVI PEP 1105110831455	JCVI READ 1092959552702	1103283000036
D	JCVI_PEP_1105110831903	JCVI_READ_1092959547953	1103283000036

D	JCVI_PEP_1105110906147	JCVI_READ_1093018601054	1103283000024
D	JCVI PEP 1105110951621	JCVI READ 1095469552016	1103283000036
D	JCVI PEP 1105110978795	JCVI READ 1093011969854	1103283000023
D	JCVI PEP 1105111041877	JCVI READ 1095975092310	1103283000052
D	JCVI PEP 1105111204981	JCVI READ 1092257150545	1103283000025
D	JCVI PEP 1105111460739	JCVI READ 1091143566623	1103283000011
D	JCVI PEP 1105111525133	JCVI READ 1093017671828	1103283000024
D	JCVI PEP 1105111578045	JCVI READ 1092205801303	1103283000012
D	JCVI PEP 1105111978611	JCVI READ 1093012183875	1103283000033
D	JCVI PEP 1105112054381	JCVI READ 1092954007824	1103283000018
D	JCVI PEP 1105112057507	JCVI READ 1092954001717	1103283000018
D	JCVI PEP 1105112103663	JCVI READ 1095433010689	1103283000031
D	JCVI PEP 1105112272599	JCVI READ 1091140749037	1103283000022
D	JCVI PEP 1105112412247	JCVI READ 1092955340347	1103283000056
D	JCVI PEP 1105112439893	JCVI READ 1093010568544	1103283000036
D	JCVI PEP 1105112599465	JCVI READ 1092153017627	1103283000011
D	JCVI_PEP_1105112622043	JCVI READ 1095515491117	1103283000036
D	JCVI PEP 1105112622045	JCVI READ 1095515491117	1103283000036
D	JCVI PEP 1105112622045	JCVI READ 1095515491117	1103283000036
D	JCVI PEP 1105112623759	JCVI READ 1095515491084	1103283000036
D	JCVI PEP 1105112749685	JCVI READ 1093015252265	1103283000033
D	JCVI_PEP_1105112783501	JCVI READ 1092959700216	1103283000056
D	JCVI PEP 1105112788505	JCVI READ 1095516019408	1103283000036
D	JCVI PEP 1105112804733	JCVI READ 1092959501977	1103283000036
D	JCVI PEP 1105112878119	JCVI READ 1091138045858	1103283000027
D	JCVI PEP 1105112882389	JCVI READ 1091141584227	1103283000021
D	JCVI PEP 1105112946359	JCVI READ 1092402534723	1103283000029
D	JCVI PEP 1105112993879	JCVI READ 1091140691684	1103283000021
D	JCVI PEP 1105113092727	JCVI READ 1095456039962	1103283000031
D	JCVI PEP 1105113156301	JCVI READ 1092956077444	1103283000034
D	JCVI PEP 1105113157521	JCVI READ 1092956084708	1103283000034
D	JCVI PEP 1105113173453	JCVI READ 1092962008989	1103283000035
D	JCVI PEP 1105113230669	JCVI READ 1092343702776	1103283000029
D	JCVI PEP 1105113246489	JCVI READ 1091141213807	1103283000020
D	JCVI PEP 1105113694865	JCVI READ 1092342060402	1103283000035
D	JCVI PEP 1105113729287	JCVI READ 1092301016982	1103283000029
D	JCVI PEP 1105113745391	JCVI READ 1093017447089	1103283000035
D	JCVI PEP 1105113787747	JCVI READ 1095505158286	1103283000036
D	JCVI_PEP_1105113792439	JCVI_READ_1095505158253	1103283000036
D	JCVI_PEP_1105113813811	JCVI_READ_1093017662877	1103283000024
D	JCVI_PEP_1105113868601	JCVI_READ_1095462318105	1103283000036
D	JCVI_PEP_1105113873441	JCVI_READ_1095462320188	1103283000036
D	JCVI_PEP_1105114122339	JCVI_READ_1095515642290	1103283000037
D	JCVI_PEP_1105114145509	JCVI_READ_1092961003791	1103283000036
D	JCVI_PEP_1105114148063	JCVI_READ_1092961001272	1103283000036
D	JCVI_PEP_1105114188199	JCVI_READ_1092956064157	1103283000018

D	JCVI_PEP_1105114198213	JCVI_READ_1095454095646	1103283000031
D	JCVI PEP 1105114342965	JCVI READ 1092351066170	1103283000029
D	JCVI_PEP_1105114391607	JCVI_READ_1095469557442	1103283000036
D	JCVI_PEP_1105114420637	JCVI_READ_1095454052635	1103283000031
D	JCVI PEP 1105114507983	JCVI READ 1092193661037	1103283000012
D	JCVI PEP 1105114508837	JCVI READ 1092193658343	1103283000012
D	JCVI PEP 1105114513237	JCVI READ 1092256409013	1103283000027
D	JCVI PEP 1105114621765	JCVI READ 1093018359771	1103283000035
D	JCVI PEP 1105114842125	JCVI READ 1095403483051	1103283000028
D	JCVI_PEP_1105114849457	JCVI READ 1095403445284	1103283000028
D	JCVI PEP 1105114948241	JCVI READ 1095462355497	1103283000036
D	JCVI_PEP_1105114951655	JCVI READ 1095462354961	1103283000036
D	JCVI PEP 1105114964925	JCVI READ 1092452134819	1103283000017
D	JCVI PEP 1105115061301	JCVI READ 1095458103863	1103283000031
D	JCVI PEP 1105115064317	JCVI READ 1095458103837	1103283000031
D	JCVI PEP 1105115133863	JCVI READ 1093015469550	1103283000020
D	JCVI PEP 1105115212173	JCVI READ 1095898223312	1103283000018
D	JCVI PEP 1105115218575	JCVI READ 1092343529923	1103283000036
D	JCVI PEP 1105115239693	JCVI READ 1092963029779	1103283000035
D	JCVI PEP 1105115335143	JCVI READ 1095468222118	1103283000037
D	JCVI PEP 1105115356603	JCVI READ 1093022162733	1103283000035
D	JCVI PEP 1105115595079	JCVI READ 1092344230780	1103283000039
D	JCVI PEP 1105115638791	JCVI READ 1092214957357	1103283000023
D	JCVI PEP 1105115883649	JCVI READ 1092963838618	1103283000033
D	JCVI PEP 1105115887269	JCVI READ 1092963861462	1103283000033
D	JCVI PEP 1105115960203	JCVI READ 1092962021586	1103283000036
D	JCVI PEP 1105115962771	JCVI READ 1092962025868	1103283000036
D	JCVI PEP 1105115974045	JCVI READ 1093011967700	1103283000023
D	JCVI PEP 1105116301003	JCVI READ 1091143518016	1103283000009
D	JCVI PEP 1105116354189	JCVI READ 1093025006302	1103283000035
D	JCVI PEP 1105116772823	JCVI READ 1093015843821	1103283000041
D	JCVI PEP 1105116928879	JCVI READ 1092956025210	1103283000035
D	JCVI PEP 1105117051131	JCVI READ 1092963166125	1103283000023
D	JCVI PEP 1105117179757	JCVI READ 1095975153894	1103283000052
D	JCVI PEP 1105117330947	JCVI READ 1092963391095	1103283000019
D	JCVI PEP 1105117369281	JCVI READ 1092216042504	1103283000028
D	JCVI PEP 1105117377731	JCVI READ 1092216053349	1103283000028
D	JCVI PEP 1105117566173	JCVI READ 1093018975030	1103283000035
D	JCVI PEP 1105117599433	JCVI READ 1092960169371	1103283000034
D	JCVI PEP 1105117711977	JCVI READ 1095469503604	1103283000036
D	JCVI PEP 1105117715375	JCVI READ 1095469502683	1103283000036
D	JCVI PEP 1105117743823	JCVI READ 1092961117404	1103283000018
D	JCVI PEP 1105117755237	JCVI READ 1092961044642	1103283000034
D	JCVI PEP 1105117798419	JCVI READ 1093023040327	1103283000035
D	JCVI PEP 1105117803269	JCVI READ 1093023038467	1103283000035
D	JCVI PEP 1105117884109	JCVI READ 1091150260578	1103283000012

D	JCVI_PEP_1105118206109	JCVI_READ_1093022131569	1103283000028
D	JCVI_PEP_1105118330949	JCVI_READ_1092963308253	1103283000036
D	JCVI_PEP_1105118363645	JCVI_READ_1095344026649	1103283000032
D	JCVI_PEP_1105118366073	JCVI_READ_1093023090302	1103283000035
D	JCVI PEP 1105118366227	JCVI READ 1093023090314	1103283000035
D	JCVI PEP 1105118626619	JCVI READ 1092955261245	1103283000034
D	JCVI PEP 1105118627279	JCVI READ 1092955263924	1103283000034
D	JCVI PEP 1105118667305	JCVI READ 1093018429130	1103283000035
D	JCVI PEP 1105118672459	JCVI READ 1093018784020	1103283000035
D	JCVI PEP 1105118850269	JCVI READ 1093018424535	1103283000035
D	JCVI PEP 1105118907203	JCVI READ 1092342115114	1103283000027
D	JCVI PEP 1105119009729	JCVI READ 1092962016345	1103283000034
D	JCVI PEP 1105119023753	JCVI READ 1091138286712	1103283000026
D	JCVI PEP 1105119029609	JCVI READ 1093015629344	1103283000020
D	JCVI PEP 1105119072009	JCVI READ 1093018746060	1103283000024
D	JCVI PEP 1105119122727	JCVI READ 1091143337694	1103283000009
D	JCVI PEP 1105119196999	JCVI READ 1091141121604	1103283000016
D	JCVI PEP 1105119270391	JCVI READ 1092955060249	1103283000035
D	JCVI PEP 1105119366245	JCVI READ 1091138253174	1103283000031
D	JCVI PEP 1105119470273	JCVI READ 1095351035483	1103283000032
D	JCVI PEP 1105119572375	JCVI READ 1095448006486	1103283000031
D	JCVI PEP 1105119576497	JCVI READ 1095448006910	1103283000031
D	JCVI PEP 1105119795593	JCVI READ 1095515646952	1103283000037
D	JCVI PEP 1105119833131	JCVI READ 1095403604811	1103283000033
D	JCVI PEP 1105119834325	JCVI READ 1095403607598	1103283000033
D	JCVI PEP 1105119880471	JCVI READ 1093017387794	1103283000041
D	JCVI PEP 1105119886667	JCVI READ 1093017396982	1103283000041
D	JCVI PEP 1105119908809	JCVI READ 1092344349060	1103283000029
D	JCVI PEP 1105120141643	JCVI READ 1092963707956	1103283000033
D	JCVI PEP 1105120263897	JCVI READ 1093018991935	1103283000035
D	JCVI PEP 1105120267569	JCVI READ 1092963958399	1103283000040
D	JCVI PEP 1105120333531	JCVI READ 1095516049489	1103283000036
D	JCVI PEP 1105120351085	JCVI READ 1092215075024	1103283000028
D	JCVI PEP 1105120401499	JCVI READ 1093017639543	1103283000024
D	JCVI PEP 1105120450767	JCVI READ 1092351421942	1103283000017
D	JCVI PEP 1105120505753	JCVI READ 1093018842243	1103283000035
D	JCVI PEP 1105120523573	JCVI READ 1095462206522	1103283000036
D	JCVI PEP 1105120529931	JCVI READ 1095462205347	1103283000036
D	JCVI PEP 1105120601685	JCVI READ 1095460097555	1103283000036
D	JCVI PEP 1105120618295	JCVI READ 1092341911241	1103283000029
D	JCVI PEP 1105120622879	JCVI READ 1092341911289	1103283000029
D	JCVI PEP 1105120625753	JCVI READ 1092351369482	1103283000029
D	JCVI PEP 1105120626687	JCVI READ 1092365400866	1103283000029
D	JCVI PEP 1105120680273	JCVI READ 1095403609724	1103283000036
D	JCVI PEP 1105121021623	JCVI READ 1092215101350	1103283000013
D	JCVI_PEP_1105121062333	JCVI_READ_1095897543337	1103283000018

D	JCVI_PEP_1105121252175	JCVI_READ_1092959649537	1103283000056
D	JCVI_PEP_1105121369121	JCVI_READ_1092162342305	1103283000012
D	JCVI_PEP_1105121476965	JCVI_READ_1092214963960	1103283000023
D	JCVI_PEP_1105121491345	JCVI_READ_1095505209736	1103283000036
D	JCVI PEP 1105121497541	JCVI READ 1095505216690	1103283000036
D	JCVI PEP 1105121512431	JCVI READ 1093018556696	1103283000035
D	JCVI_PEP_1105121532385	JCVI READ 1091141421832	1103283000020
D	JCVI PEP 1105121543079	JCVI READ 1092402582664	1103283000032
D	JCVI_PEP_1105121544021	JCVI READ 1092402575033	1103283000032
D	JCVI_PEP_1105121564679	JCVI READ 1093015849409	1103283000020
D	JCVI_PEP_1105121587861	JCVI READ 1091142428800	1103283000027
D	JCVI PEP 1105121656163	JCVI READ 1095458060502	1103283000036
D	JCVI_PEP_1105121656489	JCVI READ 1095458063503	1103283000036
D	JCVI PEP 1105121678793	JCVI READ 1092959726506	1103283000036
D	JCVI PEP 1105121688217	JCVI READ 1092963401323	1103283000033
D	JCVI_PEP_1105121852443	JCVI READ 1092963536281	1103283000019
D	JCVI PEP 1105121867593	JCVI READ 1093017443266	1103283000024
D	JCVI PEP 1105121876145	JCVI READ 1093017440612	1103283000024
D	ICVI PEP 1105121925203	ICVI READ 1092963834019	1103283000040
D	ICVI PEP 1105122093537	ICVI READ 1093010479942	1103283000023
D	ICVI PFP 1105122095557	ICVI READ 1091150253854	1103283000011
D D	ICVI PEP 1105122291999	ICVI READ 1095458106552	1103283000036
D	ICVI_PEP_1105122291999	ICVI READ 1095337012621	1103283000030
D D	ICVI PEP 1105122425015	ICVI READ 1091143647502	1103283000011
D D	ICVI_PEP_1105122491101	ICVI READ 1093015491779	1103283000011
D	ICVI_PEP_1105122592005	ICVI READ 1095462313833	1103283000020
D	ICVI_PEP_1105122602309	ICVI READ 1095462314879	1103283000036
D	ICVI_PEP_1105122602509	ICVI READ 1095458074849	1103283000031
D	ICVI_PEP_1105122647461	ICVI READ 1093012122247	1103283000019
D D	ICVI PEP 1105122047401	ICVI READ 1092963496340	1103283000013
D D	ICVI_PEP_1105122861225	ICVI READ 1095462407013	1103283000036
D D	JCVI_PEP_1105122601225	ICVI READ 1093018946011	1103283000030
D D	ICVI_PEP_1105122004795	ICVI READ 1091141427869	1103283000020
D D	ICVI PEP 110512325243	ICVI READ 1095458021547	1103283000021
D D	JCVI_DED_1105123525245	JCVI_READ_1093438021347	1102283000030
ע ח	JCVI_PEP_1105123385401	JCVI_READ_109290114/723	1103283000030
D	JCVI_FEF_1105125589045	JCVI_READ_1092901133391	1103283000030
ע ח	JCVI_PEP_1105123425205	JCVI_READ_1093403027012	1103283000033
D D	JCVI_FEF_1105125569915	JCVI_READ_1095409555519	1103283000037
D	JCVI_PEP_1105123597265	JC VI_READ_1093462293536	1103283000030
D	JCVI_PEP_1105123041725	JC VI_READ_1093013280337	1103283000033
D	JCVI_PEP_110512366/797	JCVI_READ_109301/968235	1103283000035
D D	JUVI_PEP_110512384628/	JUVI_KEAD_10923440/9029	1103283000032
D	JCVI_PEP_1105123846653	JCVI_KEAD_1092344081569	1103283000032
D	JCVI_PEP_1105123887609	JCVI_KEAD_1092342058292	1103283000029
D	JCVI_PEP_1105123888345	JCVI_READ_1092342050474	1103283000029
D	JCVI_PEP_1105123894179	JCVI_READ_1092342058094	1103283000029

D	JCVI_PEP_1105123927025	JCVI_READ_1092343134818	1103283000032
D	JCVI PEP 1105124009199	JCVI READ 1095899175762	1103283000017
D	JCVI PEP 1105124062961	JCVI READ 1092962005560	1103283000056
D	JCVI PEP 1105124069063	JCVI READ 1092961217855	1103283000056
D	JCVI PEP 1105124211929	JCVI READ 1093017583021	1103283000021
D	JCVI PEP 1105124582977	JCVI READ 1092960041040	1103283000056
D	JCVI PEP 1105124610807	JCVI READ 1092343738699	1103283000039
D	JCVI PEP 1105124715653	JCVI READ 1091143580902	1103283000011
D	JCVI PEP 1105124755577	JCVI READ 1092963285315	1103283000023
D	JCVI PEP 1105124796705	JCVI READ 1092214118992	1103283000012
D	JCVI PEP 1105124878485	JCVI READ 1093017729476	1103283000024
D	JCVI PEP 1105125026357	JCVI READ 1091139295816	1103283000025
D	JCVI PEP 1105125107739	JCVI READ 1091120724897	1103283000008
D	JCVI PEP 1105125387731	JCVI READ 1093012176975	1103283000033
D	JCVI PEP 1105125437599	JCVI READ 1095388036678	1103283000039
D	JCVI PEP 1105125802785	JCVI READ 1093012272070	1103283000054
D	JCVI PEP 1105125866101	JCVI READ 1093010957139	1103283000035
D	JCVI PEP 1105125867521	JCVI READ 1093010224041	1103283000035
D	JCVI PEP 1105125991219	JCVI READ 1095460007570	1103283000036
D	ICVI PEP 1105126096349	JCVI READ 1092963829219	1103283000040
D	JCVI PEP 1105126105257	JCVI READ 1095454145788	1103283000031
D	JCVI PEP 1105126181129	JCVI READ 1093018670755	1103283000024
D	JCVI PEP 1105126238325	JCVI READ 1093015729193	1103283000041
D	JCVI PEP 1105126347603	JCVI READ 1095467746060	1103283000037
D	JCVI PEP 1105126423699	JCVI READ 1093012276129	1103283000033
D	JCVI PEP 1105126476303	JCVI READ 1093018290838	1103283000035
D	JCVI PEP 1105126725855	JCVI READ 1091141431606	1103283000022
D	JCVI PEP 1105126787759	JCVI READ 1095462403071	1103283000036
D	JCVI PEP 1105127071421	JCVI READ 1093015254418	1103283000040
D	JCVI PEP 1105127139671	JCVI READ 1092404068271	1103283000032
D	JCVI PEP 1105127346937	JCVI READ 1093004100750	1103283000035
D	JCVI PEP 1105127403769	JCVI READ 1095516001648	1103283000036
D	JCVI PEP 1105127495051	JCVI READ 1095349046207	1103283000039
D	JCVI PEP 1105127519395	JCVI READ 1093017563667	1103283000024
D	JCVI PEP 1105127525669	JCVI READ 1093017570748	1103283000024
D	JCVI PEP 1105127632673	JCVI READ 1093017454207	1103283000035
D	JCVI PEP 1105127722411	JCVI READ 1091141166172	1103283000020
D	JCVI PEP 1105127933231	JCVI READ 1093018778230	1103283000035
D	JCVI PEP 1105127953881	JCVI READ 1095900077134	1103283000015
D	JCVI PEP 1105128053645	JCVI READ 1092955031316	1103283000035
D	JCVI PEP 1105128086637	JCVI READ 1092255482966	1103283000022
D	JCVI_PEP_1105128282579	JCVI_READ_1092301006753	1103283000029
D	JCVI_PEP_1105128353961	JCVI_READ_1091143210386	1103283000008
D	JCVI_PEP_1105128435871	JCVI_READ_1095460206200	1103283000031
D	JCVI_PEP_1105128476389	JCVI_READ_1092343573261	1103283000032
D	JCVI_PEP_1105128492903	JCVI_READ_1092344155615	1103283000034

D	JCVI_PEP_1105128498347	JCVI_READ_1092343577685	1103283000034
D	JCVI PEP 1105128687339	JCVI READ 1093015351945	1103283000040
D	JCVI_PEP_1105128739045	JCVI READ 1092343469897	1103283000032
D	JCVI PEP 1105128970413	JCVI READ 1095467292212	1103283000037
D	JCVI PEP 1105129209209	JCVI READ 1092962054509	1103283000056
D	JCVI PEP 1105129365287	JCVI READ 1092955238875	1103283000035
D	JCVI PEP 1105129415801	JCVI READ 1092255424820	1103283000021
D	JCVI PEP 1105129634561	JCVI READ 1095515510844	1103283000037
D	JCVI PEP 1105129678669	JCVI READ 1092216035994	1103283000023
D	JCVI PEP 1105129776425	JCVI READ 1092344099818	1103283000032
D	JCVI PEP 1105129777703	JCVI READ 1092344096343	1103283000032
D	JCVI PEP 1105129841207	JCVI READ 1092963284797	1103283000023
D	JCVI PEP 1105129854541	JCVI READ 1093012138540	1103283000019
D	JCVI PEP 1105129931031	JCVI READ 1092344157123	1103283000032
D	JCVI PEP 1105130009105	JCVI READ 1093017748680	1103283000024
D	JCVI PEP 1105130054517	JCVI READ 1092215145629	1103283000028
D	JCVI PEP 1105130063011	JCVI READ 1092256328031	1103283000027
D	JCVI PEP 1105130136797	JCVI READ 1093017288093	1103283000041
D	JCVI PEP 1105130187593	JCVI READ 1092344175354	1103283000029
D	JCVI PEP 1105130417049	JCVI READ 1093012245861	1103283000033
D	JCVI PEP 1105130591119	JCVI READ 1093018216065	1103283000035
D	JCVI PEP 1105130715161	JCVI READ 1092963918180	1103283000040
D	JCVI PEP 1105130718533	JCVI READ 1092963920342	1103283000040
D	JCVI PEP 1105130831469	JCVI READ 1091141069634	1103283000016
D	JCVI PEP 1105131031317	JCVI READ 1095462350120	1103283000036
D	JCVI PEP 1105131186815	JCVI READ 1091141357339	1103283000022
D	JCVI PEP 1105131234909	JCVI READ 1091141648627	1103283000020
D	JCVI_PEP_1105131280597	JCVI_READ_1092404082249	1103283000032
D	JCVI_PEP_1105131433155	JCVI_READ_1092963769246	1103283000033
D	JCVI PEP 1105131607427	JCVI READ 1092963176131	1103283000023
D	JCVI_PEP_1105131725653	JCVI_READ_1095454080127	1103283000031
D	JCVI_PEP_1105131754893	JCVI_READ_1095460036943	1103283000036
D	JCVI_PEP_1105131770539	JCVI_READ_1095458030442	1103283000036
D	JCVI_PEP_1105131784921	JCVI_READ_1092344152196	1103283000039
D	JCVI_PEP_1105131833489	JCVI_READ_1095368012249	1103283000032
D	JCVI_PEP_1105131833897	JCVI_READ_1095368009370	1103283000032
D	JCVI_PEP_1105132039041	JCVI_READ_1093012024617	1103283000034
D	JCVI_PEP_1105132047883	JCVI_READ_1095366056607	1103283000039
D	JCVI_PEP_1105132099761	JCVI_READ_1092963641332	1103283000023
D	JCVI_PEP_1105132146051	JCVI_READ_1095339023777	1103283000039
D	JCVI_PEP_1105132206199	JCVI_READ_1093017582276	1103283000035
D	JCVI_PEP_1105132476385	JCVI_READ_1092959555354	1103283000036
D	JCVI_PEP_1105132510373	JCVI_READ_1091140681296	1103283000020
D	JCVI_PEP_1105132650861	JCVI_READ_1092256216747	1103283000025
D	JCVI_PEP_1105132761263	JCVI_READ_1095403410504	1103283000033
D	JCVI_PEP_1105132790557	JCVI_READ_1095403541316	1103283000033

D JCVL PEP 110513282841 JCVL READ 1093022123512 1103283000035 D JCVL PEP 110513283557 JCVL READ 1092057757673 1103283000035 D JCVL PEP 1105133113777 JCVL READ 1092357757673 1103283000032 D JCVL PEP 110513315855 JCVL READ 1092950186481 1103283000032 D JCVL PEP 110513335855 JCVL READ 1092950186441 1103283000035 D JCVL PEP 110513335855 JCVL READ 1092955015032 1103283000035 D JCVL PEP 110513340771 JCVL READ 1092955015032 1103283000035 D JCVL PEP 110513340773 JCVL READ 1092953471420 1103283000033 D JCVL PEP 110513340575 JCVL READ 109296316453 1103283000035 D JCVL PEP 110513428255 JCVL READ 109240240329 1103283000035 D JCVL PEP 110513428259 JCVL READ 1095460120748 1103283000036 D JCVL PEP 1105134289259 JCVL READ 1095460120748 1103283000036 D JCVL PEP 110513428259 JCVL READ 109295501898 1103283000036 D JCVL PEP 1105134484234 JCVL READ 109295501898	D	JCVI_PEP_1105132798547	JCVI_READ_1091140570450	1103283000020
D JCVL PEP 1105132835357 JCVL READ 1093022127342 1103283000035 D JCVL PEP 110513313286425 JCVL READ 1092957757673 1103283000032 D JCVL PEP 11051331777 JCVL READ 1092351046599 1103283000032 D JCVL PEP 1105133358055 JCVL READ 1092954013674 1103283000032 D JCVL PEP 110513339355 JCVL READ 1092955015032 1103283000035 D JCVL PEP 1105133490771 JCVL READ 1092955015032 1103283000035 D JCVL PEP 1105133491379 JCVL READ 1092959471420 1103283000033 D JCVL PEP 1105133491379 JCVL READ 1092402400329 1103283000035 D JCVL PEP 1105133608275 JCVL READ 1092402400329 1103283000033 D JCVL PEP 1105134292521 JCVL READ 1095403550321 1103283000036 D JCVL PEP 1105134290521 JCVL READ 1095462012278 1103283000035 D JCVL PEP 1105134289259 JCVL READ 1092555010898 1103283000035 D JCVL PEP 1105134289259 JCVL READ 109546201129 1103283000042 D JCVL PEP 11051345848262 JCVL READ 10954	D	JCVI PEP 1105132828841	JCVI READ 1093022123512	1103283000035
D JCVI_PEP_1105132886425 JCVI_READ_109234707673 1103283000032 D JCVI_PEP_1105133113777 JCVI_READ_1092341046599 1103283000032 D JCVI_PEP_11051333284077 JCVI_READ_109295403674 1103283000033 D JCVI_PEP_1105133499761 JCVI_READ_1092955403674 1103283000035 D JCVI_PEP_1105133490771 JCVI_READ_1092955403674 1103283000033 D JCVI_PEP_1105133490771 JCVI_READ_1092959471420 1103283000033 D JCVI_PEP_1105133491379 JCVI_READ_1092963216453 1103283000033 D JCVI_PEP_1105134391379 JCVI_READ_1092402400329 1103283000033 D JCVI_PEP_1105134289259 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_109546020406 1103283000035 D JCVI_PEP_1105134289259 JCVI_READ_1092955010898 1103283000035 D JCVI_PEP_11051342890521 JCVI_READ_1092955301898 1103283000042 D JCVI_PEP_1105134890808 JCVI_READ_1095907042847 1103283000042 D JCVI_PEP_1105134899088 JCVI_READ_10995	D	JCVI_PEP_1105132835357	JCVI_READ_1093022127342	1103283000035
D JCVI_PEP_1105133113777 JCVI_READ_109235104659 1103283000039 D JCVI_PEP_110513358505 JCVI_READ_109235104659 1103283000036 D JCVI_PEP_110513358505 JCVI_READ_1092955403674 1103283000036 D JCVI_PEP_110513342635 JCVI_READ_1092955403674 1103283000033 D JCVI_PEP_110513342635 JCVI_READ_109295541656 1103283000033 D JCVI_PEP_110513342635 JCVI_READ_1092402400329 1103283000033 D JCVI_PEP_110513342675 JCVI_READ_1092402400329 1103283000033 D JCVI_PEP_1105134292651 JCVI_READ_1095460212278 1103283000033 D JCVI_PEP_1105134290521 JCVI_READ_1095460212278 1103283000032 D JCVI_PEP_1105134310798 JCVI_READ_109255010898 1103283000032 D JCVI_PEP_11051344299123 JCVI_READ_1092255447489 1103283000022 D JCVI_PEP_1105134590808 JCVI_READ_1095907042909 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1095907042807 1103283000016 D JCVI_PEP_1105134590793 JCVI_READ_1095907042805	D	JCVI_PEP_1105132886425	JCVI_READ_1092957757673	1103283000018
D JCVI_PEP_1105133124407 JCVI_READ_1092351046599 1103283000039 D JCVI_PEP_1105133358505 JCVI_READ_109295015032 1103283000036 D JCVI_PEP_1105133499765 JCVI_READ_1092955015032 1103283000035 D JCVI_PEP_110513342635 JCVI_READ_1092955015032 1103283000035 D JCVI_PEP_110513342635 JCVI_READ_1092959471420 1103283000033 D JCVI_PEP_1105133608275 JCVI_READ_1092959471420 1103283000033 D JCVI_PEP_1105133608275 JCVI_READ_1092402400329 1103283000033 D JCVI_PEP_1105134289259 JCVI_READ_10954035021 1103283000036 D JCVI_PEP_1105134289259 JCVI_READ_10954035021 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_10925501808 1103283000035 D JCVI_PEP_110513431078 JCVI_READ_10925538205 1103283000042 D JCVI_PEP_110513459088 JCVI_READ_1095907042899 1103283000042 D JCVI_PEP_110513459088 JCVI_READ_1095907042847 1103283000042 D JCVI_PEP_1105134589088 JCVI_READ_1095907042847	D	JCVI PEP 1105133113777	JCVI READ 1092344049307	1103283000032
D JCVI_PEP_1105133358505 JCVI_READ_1092960186841 1103283000023 D JCVI_PEP_1105133399365 JCVI_READ_1092955403674 1103283000035 D JCVI_PEP_11051334306731 JCVI_READ_10929551032 1103283000033 D JCVI_PEP_1105133450783 JCVI_READ_1092959471420 1103283000033 D JCVI_PEP_1105133608275 JCVI_READ_1092402400329 1103283000033 D JCVI_PEP_1105133608275 JCVI_READ_109540021278 1103283000036 D JCVI_PEP_1105134289259 JCVI_READ_10954002278 1103283000036 D JCVI_PEP_1105134289259 JCVI_READ_10954002278 1103283000036 D JCVI_PEP_1105134289259 JCVI_READ_10925501089 1103283000036 D JCVI_PEP_1105134489253 JCVI_READ_109225501089 1103283000032 D JCVI_PEP_110513459088 JCVI_READ_1092255417489 1103283000032 D JCVI_PEP_110513459088 JCVI_READ_1095907042909 1103283000042 D JCVI_PEP_110513459088 JCVI_READ_1095907042847 1103283000016 D JCVI_PEP_1105134890808 JCVI_READ_1095907042847 <td>D</td> <td>JCVI PEP 1105133124407</td> <td>JCVI READ 1092351046599</td> <td>1103283000039</td>	D	JCVI PEP 1105133124407	JCVI READ 1092351046599	1103283000039
D JCVI_PEP_1105133399365 JCVI_READ_1092955403674 1103283000036 D JCVI_PEP_1105133430971 JCVI_READ_1092955015032 1103283000035 D JCVI_PEP_110513342635 JCVI_READ_1092955015032 1103283000033 D JCVI_PEP_1105133491379 JCVI_READ_1092953216453 1103283000023 D JCVI_PEP_1105133672265 JCVI_READ_1092402400329 1103283000036 D JCVI_PEP_1105133672265 JCVI_READ_109540051231 1103283000036 D JCVI_PEP_1105134289259 JCVI_READ_109540021278 1103283000036 D JCVI_PEP_11051342890521 JCVI_READ_109546021278 1103283000036 D JCVI_PEP_1105134289128 JCVI_READ_109546021278 1103283000035 D JCVI_PEP_11051342891208 JCVI_READ_10925501898 1103283000022 D JCVI_PEP_1105134584234 JCVI_READ_109255016933 1103283000022 D JCVI_PEP_1105134584234 JCVI_READ_1095907042847 11032830000162 D JCVI_PEP_1105134584234 JCVI_READ_109255382905 11032830000162 D JCVI_PEP_1105134584234 JCVI_READ_109590704	D	JCVI PEP 1105133358505	JCVI READ 1092960186841	1103283000023
D JCVI_PEP_1105133409771 JCVI_READ_1092955015032 1103283000035 D JCVI_PEP_1105133450783 JCVI_READ_1092015346506 1103283000035 D JCVI_PEP_1105133450783 JCVI_READ_109205316453 1103283000035 D JCVI_PEP_11051336072265 JCVI_READ_109263216453 1103283000039 D JCVI_PEP_1105133672265 JCVI_READ_1095899074164 1103283000033 D JCVI_PEP_110513415103 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134299128 JCVI_READ_1092055010898 1103283000035 D JCVI_PEP_110513440772 JCVI_READ_109255447489 1103283000042 D JCVI_PEP_1105134488262 JCVI_READ_1095907042807 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1095907042807 1103283000016 D JCVI_PEP_1105134724863 JCVI_READ_109143451387 1103283000016 D JCVI_PEP_1105134724863 JCVI_READ_1095469482360 1103283000016 D JCVI_PEP_1105135077033 JCVI_READ_109546948	D	JCVI PEP 1105133399365	JCVI READ 1092955403674	1103283000036
D JCVI_PEP_1105133432635 JCVI_READ_1093015346506 1103283000033 D JCVI_PEP_1105133450783 JCVI_READ_1092959471420 1103283000035 D JCVI_PEP_110513367265 JCVI_READ_1092963216453 1103283000032 D JCVI_PEP_1105133672265 JCVI_READ_1095403550321 1103283000035 D JCVI_PEP_1105134289259 JCVI_READ_1095403550321 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_10954021278 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_1093015745933 1103283000035 D JCVI_PEP_1105134290521 JCVI_READ_109255010898 1103283000022 D JCVI_PEP_1105134290808 JCVI_READ_1095462401129 1103283000042 D JCVI_PEP_1105134584244 JCVI_READ_1095907042909 1103283000042 D JCVI_PEP_1105134580808 JCVI_READ_1095907042909 1103283000010 D JCVI_PEP_1105134724863 JCVI_READ_109143451367 1103283000010 D JCVI_PEP_1105134724803 JCVI_READ_109143451387 1103283000016 D JCVI_PEP_11051350187493 JCVI_READ_109246348	D	JCVI PEP 1105133409771	JCVI READ 1092955015032	1103283000035
D JCVI_PEP_1105133450783 JCVI_READ_1092959471420 1103283000035 D JCVI_PEP_1105133608275 JCVI_READ_1092903216433 1103283000033 D JCVI_PEP_1105133672265 JCVI_READ_1095402400329 1103283000035 D JCVI_PEP_110513472265 JCVI_READ_1095403550321 1103283000035 D JCVI_PEP_1105134289259 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_109546021278 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_1093015745933 1103283000041 D JCVI_PEP_1105134310798 JCVI_READ_1092055010898 1103283000022 D JCVI_PEP_1105134584234 JCVI_READ_109507042909 1103283000042 D JCVI_PEP_1105134584234 JCVI_READ_109507042847 1103283000042 D JCVI_PEP_1105134584234 JCVI_READ_109507042847 1103283000016 D JCVI_PEP_1105134724863 JCVI_READ_1091143451377 1103283000016 D JCVI_PEP_1105134891208 JCVI_READ_1095403482109 1103283000016 D JCVI_PEP_110513501878 JCVI_READ_1095403582	D	JCVI PEP 1105133432635	JCVI READ 1093015346506	1103283000033
D JCVI_PEP_1105133491379 JCVI_READ_1092963216453 1103283000023 D JCVI_PEP_1105133608275 JCVI_READ_1092402400329 1103283000039 D JCVI_PEP_1105134672265 JCVI_READ_1095403550321 1103283000033 D JCVI_PEP_1105134289259 JCVI_READ_109540212278 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134299128 JCVI_READ_109255010898 1103283000032 D JCVI_PEP_1105134440772 JCVI_READ_109255010898 1103283000022 D JCVI_PEP_1105134488262 JCVI_READ_1095907042809 1103283000042 D JCVI_PEP_110513458088 JCVI_READ_1095907042807 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_109143445767 1103283000016 D JCVI_PEP_1105134590760 JCVI_READ_1091434451387 1103283000016 D JCVI_PEP_1105134891208 JCVI_READ_10924425626 1103283000016 D JCVI_PEP_1105135037093 JCVI_READ_10954496080	D	JCVI PEP 1105133450783	JCVI READ 1092959471420	1103283000035
D JCVI_PEP_1105133608275 JCVI_READ_1092402400329 1103283000039 D JCVI_PEP_1105133672265 JCVI_READ_10954021214 1103283000035 D JCVI_PEP_1105134289259 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134290128 JCVI_READ_1095460212278 1103283000035 D JCVI_PEP_110513449072 JCVI_READ_109255010898 1103283000036 D JCVI_PEP_1105134584234 JCVI_READ_1095462401129 1103283000042 D JCVI_PEP_1105134580808 JCVI_READ_1095907042909 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_109143445796 1103283000010 D JCVI_PEP_1105134590706 JCVI_READ_109143445796 1103283000010 D JCVI_PEP_1105134891208 JCVI_READ_109143445796 1103283000029 D JCVI_PEP_1105135307093 JCVI_READ_1095469482360 1103283000036 D JCVI_PEP_1105135301878 JCVI_READ_10954694823	D	JCVI PEP 1105133491379	JCVI READ 1092963216453	1103283000023
D JCVI_PEP_1105133672265 JCVI_READ_1095899074164 1103283000015 D JCVI_PEP_1105134135103 JCVI_READ_1095403550321 1103283000033 D JCVI_PEP_1105134299259 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134299128 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134299128 JCVI_READ_1092055010898 1103283000022 D JCVI_PEP_1105134480772 JCVI_READ_1092255447489 1103283000022 D JCVI_PEP_1105134584234 JCVI_READ_1095907042909 1103283000042 D JCVI_PEP_1105134584234 JCVI_READ_1095907042847 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1095907042847 1103283000010 D JCVI_PEP_1105134891208 JCVI_READ_1091143445796 1103283000010 D JCVI_PEP_1105134891208 JCVI_READ_1091143445796 1103283000029 D JCVI_PEP_1105135037093 JCVI_READ_109234425627 1103283000029 D JCVI_PEP_1105135301720 JCVI_READ_1095469482360 1103283000029 D JCVI_PEP_1105135037693 JCVI_READ_10924	D	JCVI PEP 1105133608275	JCVI READ 1092402400329	1103283000039
D JCVI_PEP_1105134135103 JCVI_READ_1095403550321 1103283000033 D JCVI_PEP_1105134289259 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134299128 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134299128 JCVI_READ_1092955010898 1103283000035 D JCVI_PEP_1105134310798 JCVI_READ_1092255447489 1103283000032 D JCVI_PEP_1105134488262 JCVI_READ_1092255447489 1103283000042 D JCVI_PEP_1105134584234 JCVT_READ_1095907042847 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1092955382905 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_109143445796 1103283000016 D JCVI_PEP_1105134590368 JCVI_READ_1091143451387 1103283000016 D JCVI_PEP_1105134900766 JCVI_READ_1091143451387 1103283000029 D JCVI_PEP_1105135037093 JCVI_READ_10954693482360 1103283000029 D JCVI_PEP_110513574947 JCVI_READ_10954693482360 1103283000029 D JCVI_PEP_11051355749487 JCVI_READ_109	D	JCVI PEP 1105133672265	JCVI READ 1095899074164	1103283000015
D JCVI_PEP_1105134289259 JCVI_READ_1095460212278 1103283000036 D JCVI_PEP_1105134290521 JCVI_READ_1093015745933 1103283000036 D JCVI_PEP_1105134299128 JCVI_READ_1093015745933 1103283000036 D JCVI_PEP_1105134410772 JCVI_READ_109255010898 1103283000035 D JCVI_PEP_1105134440772 JCVI_READ_109255010898 1103283000022 D JCVI_PEP_1105134488262 JCVI_READ_1095907042909 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1095907042847 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1092955382905 1103283000016 D JCVI_PEP_1105134591208 JCVI_READ_1091143451387 1103283000016 D JCVI_PEP_1105134891208 JCVI_READ_1091143145187 1103283000029 D JCVI_PEP_1105135037093 JCVI_READ_1095469482360 1103283000029 D JCVI_PEP_1105135037093 JCVI_READ_1095469482360 1103283000026 D JCVI_PEP_1105135017497 JCVI_READ_1095469482360 1103283000026 D JCVI_PEP_1105135776497 JCVI_READ_109243	D	JCVI PEP 1105134135103	JCVI READ 1095403550321	1103283000033
D JCVT PEP 1105134290521 JCVT READ 1095460209406 1103283000036 D JCVT PEP 1105134299128 JCVT READ 1093015745933 1103283000041 D JCVT PEP 1105134299128 JCVT READ 109255010898 1103283000022 D JCVT PEP 1105134440772 JCVT READ 109255447489 1103283000022 D JCVT PEP 1105134488262 JCVT READ 1095462401129 1103283000042 D JCVT PEP 110513458088 JCVT READ 1095907042909 1103283000042 D JCVT PEP 1105134590808 JCVT READ 1095907042847 1103283000042 D JCVT PEP 1105134590808 JCVT READ 109255382905 1103283000016 D JCVT PEP 110513490764 JCVT READ 109114175421 1103283000016 D JCVT PEP 1105135037093 JCVT READ 109114175421 1103283000029 D JCVT PEP 110513507093 JCVT READ 1095469482360 1103283000029 D JCVT PEP 1105135301878 JCVT READ 1095469482360 1103283000020 D JCVT PEP 11051355078 JCVT READ 109263420674 1103283000020 D JCVT PEP 110513580789 JCVT READ 1092640420674 <td>D</td> <td>JCVI_PEP_1105134289259</td> <td>JCVI_READ_1095460212278</td> <td>1103283000036</td>	D	JCVI_PEP_1105134289259	JCVI_READ_1095460212278	1103283000036
D JCVI PEP PEP JCVI READ IO93015745933 I103283000041 D JCVI PEP I105134310798 JCVI READ IO92955010898 I103283000035 D JCVI PEP I105134440772 JCVI READ IO92255447489 I103283000022 D JCVI PEP I105134488262 JCVI READ IO92255447489 I103283000042 D JCVI PEP I105134584234 JCVI READ IO95907042809 II03283000042 D JCVI PEP I10513459808 JCVI READ IO92955382905 II03283000042 D JCVI PEP I105134724863 JCVI READ IO92955382905 II03283000010 D JCVI PEP I105134891208 JCVI READ IO91143445796 II03283000016 D JCVI PEP I105134900766 JCVI READ IO91143451387 II03283000016 D JCVI PEP I10513507093 JCVI READ IO9549608064 II03283000036 D JCVI PEP II0513507087 JCVI READ IO954469482360 II03283000036 D	D	ICVI PEP 1105134290521	ICVI READ 1095460209406	1103283000036
D JCVI_PEP_1105134310798 JCVI_READ_1092955010898 1103283000035 D JCVI_PEP_1105134440772 JCVI_READ_1092255447489 1103283000035 D JCVI_PEP_110513448262 JCVI_READ_1095462401129 1103283000042 D JCVI_PEP_1105134584234 JCVI_READ_1095907042807 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1092955382905 1103283000042 D JCVI_PEP_1105134891208 JCVI_READ_109114345796 1103283000010 D JCVI_PEP_1105134891208 JCVI_READ_1091143451387 1103283000010 D JCVI_PEP_1105134891208 JCVI_READ_1091143451387 1103283000010 D JCVI_PEP_1105134891208 JCVI_READ_1091143451387 1103283000010 D JCVI_PEP_1105134891208 JCVI_READ_1091143451387 1103283000016 D JCVI_PEP_1105135497403 JCVI_READ_1092944256276 1103283000029 D JCVI_PEP_1105135501720 JCVI_READ_1095469482360 1103283000026 D JCVI_PEP_1105135749487 JCVI_READ_1092963420674 1103283000020 D JCVI_PEP_1105136580783 JCVI_READ_109296	D	ICVI PEP 1105134299128	ICVI READ 1093015745933	1103283000041
D JCVI_PEP_110513440772 JCVI_READ_1092255447489 1103283000022 D JCVI_PEP_1105134488262 JCVI_READ_1095462401129 1103283000022 D JCVI_PEP_1105134584234 JCVI_READ_1095907042909 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1095907042847 1103283000042 D JCVI_PEP_1105134724863 JCVI_READ_109114345796 1103283000066 D JCVI_PEP_1105134891208 JCVI_READ_109114345796 1103283000010 D JCVI_PEP_110513493896 JCVI_READ_1091143451387 1103283000010 D JCVI_PEP_1105134900766 JCVI_READ_1091141175421 1103283000029 D JCVI_PEP_1105135037093 JCVI_READ_1092344256276 1103283000036 D JCVI_PEP_1105135037093 JCVI_READ_1095469482360 1103283000036 D JCVI_PEP_1105135347420 JCVI_READ_109246382210 1103283000020 D JCVI_PEP_1105135776497 JCVI_READ_1092463420674 1103283000020 D JCVI_PEP_110513586078 JCVI_READ_1092464240743 1103283000033 D JCVI_PEP_11051366078961 JCVI_READ_109246010	D	ICVI PEP 1105134310798	ICVI READ 1092955010898	1103283000035
D JCVI_PEP_110513448726 JCVI_READ_1095462401129 1103283000036 D JCVI_PEP_1105134584224 JCVI_READ_1095907042909 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1095907042847 1103283000042 D JCVI_PEP_1105134724863 JCVI_READ_1092955382905 1103283000042 D JCVI_PEP_1105134891208 JCVI_READ_1091143445796 1103283000010 D JCVI_PEP_1105134891208 JCVI_READ_1091143451387 1103283000010 D JCVI_PEP_1105134891208 JCVI_READ_1091143451387 1103283000016 D JCVI_PEP_1105134900766 JCVI_READ_1092344256276 1103283000029 D JCVI_PEP_1105135037093 JCVI_READ_1095469482360 1103283000036 D JCVI_PEP_1105135301878 JCVI_READ_1095469482360 1103283000033 D JCVI_PEP_1105135301878 JCVI_READ_109246840482360 1103283000029 D JCVI_PEP_11051353776497 JCVI_READ_1092468840718 1103283000036 D JCVI_PEP_1105136097747 JCVI_READ_1095468840718 1103283000036 D JCVI_PEP_1105136386750 JCVI_READ_10	D	ICVI_PEP_1105134440772	ICVI READ 1092255447489	1103283000033
D JCVI_PEP_110513458202 JCVI_READ_109540240129 1103283000030 D JCVI_PEP_1105134584234 JCVI_READ_1095907042909 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1095907042847 1103283000042 D JCVI_PEP_1105134724863 JCVI_READ_1092955382905 1103283000056 D JCVI_PEP_1105134891208 JCVI_READ_109114345796 1103283000010 D JCVI_PEP_1105134893896 JCVI_READ_109114345796 1103283000016 D JCVI_PEP_1105134900766 JCVI_READ_1091141175421 1103283000029 D JCVI_PEP_1105135037093 JCVI_READ_1095469482360 1103283000036 D JCVI_PEP_1105135210720 JCVI_READ_1095469482360 1103283000036 D JCVI_PEP_1105135347420 JCVI_READ_1095469482360 1103283000033 D JCVI_PEP_1105135774947 JCVI_READ_10926342037536 1103283000020 D JCVI_PEP_1105136078961 JCVI_READ_109264284071 1103283000037 D JCVI_PEP_1105136342632 JCVI_READ_1095460840718 1103283000036 D JCVI_PEP_1105136387624 JCVI_READ_10954684	D D	ICVI PEP 110513448262	ICVI READ 1095462401120	1103283000022
D JCVT_PEP_1105134584234 JCVT_READ_1095907042809 1103283000042 D JCVI_PEP_1105134590808 JCVI_READ_1095907042847 1103283000042 D JCVI_PEP_1105134724863 JCVI_READ_1092955382905 1103283000042 D JCVI_PEP_1105134724863 JCVI_READ_1091143445796 1103283000010 D JCVI_PEP_1105134891208 JCVI_READ_1091143451387 1103283000016 D JCVI_PEP_1105134900766 JCVI_READ_1091141175421 1103283000029 D JCVI_PEP_1105135037093 JCVI_READ_1092344256276 1103283000036 D JCVI_PEP_1105135037093 JCVI_READ_1095469482360 1103283000036 D JCVI_PEP_1105135037093 JCVI_READ_1095469482360 1103283000036 D JCVI_PEP_11051353147420 JCVI_READ_1095469482360 1103283000029 D JCVI_PEP_1105135776497 JCVI_READ_109263420674 1103283000020 D JCVI_PEP_1105136078961 JCVI_READ_109263420674 1103283000027 D JCVI_PEP_1105136078961 JCVI_READ_109263420674 1103283000036 D JCVI_PEP_1105136386750 JCVI_READ_109263	D D	JC VI_IEI_1105134466202	JCVI_READ_1093402401129	1103283000030
D JCV1_PEP_1105134724863 JCV1_READ_1093907042847 1103283000042 D JCVI_PEP_1105134724863 JCVI_READ_109295382905 1103283000042 D JCVI_PEP_1105134891208 JCVI_READ_1091143445796 1103283000010 D JCVI_PEP_1105134893896 JCVI_READ_1091143451387 1103283000010 D JCVI_PEP_1105134900766 JCVI_READ_1091143451387 1103283000016 D JCVI_PEP_1105135037093 JCVI_READ_1092344256276 1103283000029 D JCVI_PEP_1105135037093 JCVI_READ_1095949608064 1103283000036 D JCVI_PEP_1105135301878 JCVI_READ_1095469482360 1103283000036 D JCVI_PEP_1105135301878 JCVI_READ_1095403582219 1103283000036 D JCVI_PEP_1105135776497 JCVI_READ_109263420674 1103283000020 D JCVI_PEP_1105135860788 JCVI_READ_109263420674 1103283000027 D JCVI_PEP_1105136078961 JCVI_READ_109263420674 1103283000036 D JCVI_PEP_1105136078961 JCVI_READ_109263420674 1103283000037 D JCVI_PEP_1105136078961 JCVI_READ_109260550	D	$JCVI_FEF_1105154564254$	JCVI_READ_1095907042909	1103283000042
D JCVI_PEP_1105134/24863 JCVI_READ_109295382905 1103283000036 D JCVI_PEP_1105134891208 JCVI_READ_1091143445796 1103283000010 D JCVI_PEP_1105134893896 JCVI_READ_1091143451387 1103283000010 D JCVI_PEP_1105134900766 JCVI_READ_1091141175421 1103283000016 D JCVI_PEP_110513507093 JCVI_READ_1092344256276 1103283000029 D JCVI_PEP_1105135210720 JCVI_READ_10954608064 1103283000036 D JCVI_PEP_1105135210720 JCVI_READ_10954608064 1103283000036 D JCVI_PEP_1105135301878 JCVI_READ_109540582219 1103283000033 D JCVI_PEP_1105135776497 JCVI_READ_1092342039536 1103283000020 D JCVI_PEP_1105135776497 JCVI_READ_1092963420674 1103283000033 D JCVI_PEP_1105135850078 JCVI_READ_1092963420674 1103283000036 D JCVI_PEP_1105136097477 JCVI_READ_109246840718 1103283000036 D JCVI_PEP_1105136342632 JCVI_READ_1095468840718 1103283000036 D JCVI_PEP_1105136387624 JCVI_READ_109296051780	D D	JCVI_PEP_1105154590808	JCVI_READ_1093907042847	1103283000042
D JCVI PEP 1105134891208 JCVI READ 1091143445796 1103283000010 D JCVI PEP 1105134893896 JCVI READ 1091143451387 1103283000010 D JCVI PEP 1105134900766 JCVI READ 1091141175421 1103283000016 D JCVI PEP 1105135037093 JCVI READ 1092344256276 1103283000029 D JCVI PEP 1105135210720 JCVI READ 1095949608064 1103283000036 D JCVI PEP 1105135301878 JCVI READ 1095469482360 1103283000036 D JCVI PEP 1105135301878 JCVI READ 1095403582219 1103283000033 D JCVI PEP 1105135749487 JCVI READ 1092342039536 1103283000020 D JCVI PEP 1105135776497 JCVI READ 1092963420674 1103283000033 D JCVI PEP 1105135850078 JCVI READ 1092963420674 1103283000036 D JCVI PEP 110513669289 JCVI READ 1092963420674 1103283000036 D JCVI PEP 1105136078961 JCVI READ 1095468480718 1103283000036 D JCVI PEP 110513637624 JCVI READ 109550506434 1103283000036 D JCVI PEP 1105136386750 JCVI READ 1093018	D D	JCVI_PEP_1105154/24805	JCVI_READ_1092955382905	1103283000030
DJCVI_PEP_1105134893896JCVI_READ_10911434513871103283000010DJCVI_PEP_1105134900766JCVI_READ_10911411754211103283000016DJCVI_PEP_1105135037093JCVI_READ_10923442562761103283000029DJCVI_PEP_1105135210720JCVI_READ_1095496080641103283000008DJCVI_PEP_1105135210720JCVI_READ_10954694823601103283000036DJCVI_PEP_1105135347420JCVI_READ_10954035822191103283000033DJCVI_PEP_1105135776497JCVI_READ_10923420395361103283000029DJCVI_PEP_1105135776497JCVI_READ_10929634206741103283000020DJCVI_PEP_1105135850078JCVI_READ_10929634206741103283000027DJCVI_PEP_1105136078961JCVI_READ_10954688407181103283000036DJCVI_PEP_1105136078961JCVI_READ_10954688407181103283000036DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000036DJCVI_PEP_1105136387624JCVI_READ_10930182684001103283000035DJCVI_PEP_110513659954JCVI_READ_10929600517801103283000035DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000036DJCVI_PEP_1105136531138JCVI_READ_10923470014971103283000039DJCVI_PEP_1105136549968JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136549968JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI_PEP_1105134891208	JCVI_READ_1091143445796	1103283000010
D JCVI_PEP_1105134900/66 JCVI_READ_1091141175421 1103283000016 D JCVI_PEP_1105135037093 JCVI_READ_1092344256276 1103283000029 D JCVI_PEP_1105135210720 JCVI_READ_1095949608064 1103283000036 D JCVI_PEP_1105135301878 JCVI_READ_1095469482360 1103283000036 D JCVI_PEP_1105135301878 JCVI_READ_1095403582219 1103283000033 D JCVI_PEP_1105135749487 JCVI_READ_1092342039536 1103283000029 D JCVI_PEP_1105135776497 JCVI_READ_1092963420674 1103283000020 D JCVI_PEP_1105135850078 JCVI_READ_1092963420674 1103283000027 D JCVI_PEP_1105135869289 JCVI_READ_1095468840718 1103283000036 D JCVI_PEP_1105136097747 JCVI_READ_1095468840718 1103283000036 D JCVI_PEP_1105136342632 JCVI_READ_1095460109624 1103283000035 D JCVI_PEP_1105136387624 JCVI_READ_1093018271515 1103283000035 D JCVI_PEP_11051365493180 JCVI_READ_109260051780 1103283000035 D JCVI_PEP_1105136549354 JCVI_READ_1092347001770 1103283000036 D JCVI_PEP_1	D	JCVI_PEP_1105134893896	JCVI_READ_109114345138/	1103283000010
DJCVI_PEP_I105135037093JCVI_READ_10923442562761103283000029DJCVI_PEP_1105135210720JCVI_READ_10959496080641103283000008DJCVI_PEP_1105135301878JCVI_READ_10954694823601103283000036DJCVI_PEP_1105135347420JCVI_READ_10954035822191103283000033DJCVI_PEP_1105135749487JCVI_READ_10923420395361103283000029DJCVI_PEP_1105135776497JCVI_READ_10921420395361103283000020DJCVI_PEP_1105135850078JCVI_READ_10929634206741103283000027DJCVI_PEP_11051366078961JCVI_READ_10911431795581103283000036DJCVI_PEP_1105136078961JCVI_READ_10954688407181103283000036DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000036DJCVI_PEP_1105136386750JCVI_READ_10930182684001103283000035DJCVI_PEP_1105136529354JCVI_READ_10929600517801103283000035DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000036DJCVI_PEP_1105136531138JCVI_READ_10923470014971103283000034DJCVI_PEP_1105136550078JCVI_READ_1092955415046110328300034DJCVI_PEP_110513659078JCVI_READ_1092955415046110328300034	D	JCVI_PEP_1105134900/66	JCVI_READ_10911411/5421	1103283000016
DJCVI_PEP_1105135210720JCVI_READ_10959496080641103283000008DJCVI_PEP_1105135301878JCVI_READ_10954694823601103283000036DJCVI_PEP_1105135347420JCVI_READ_10954035822191103283000033DJCVI_PEP_1105135749487JCVI_READ_10923420395361103283000029DJCVI_PEP_1105135776497JCVI_READ_10911392485471103283000020DJCVI_PEP_1105135850078JCVI_READ_10929634206741103283000027DJCVI_PEP_1105135869289JCVI_READ_10911431795581103283000027DJCVI_PEP_1105136078961JCVI_READ_10954688407181103283000036DJCVI_PEP_1105136342632JCVI_READ_1095505564341103283000036DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182684001103283000035DJCVI_PEP_110513659354JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136550078JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI_PEP_1105135037093	JCVI_READ_1092344256276	1103283000029
D JCVI_PEP_1105135301878 JCVI_READ_1095469482360 1103283000036 D JCVI_PEP_1105135347420 JCVI_READ_1095403582219 1103283000033 D JCVI_PEP_1105135749487 JCVI_READ_1092342039536 1103283000029 D JCVI_PEP_1105135776497 JCVI_READ_1091139248547 1103283000020 D JCVI_PEP_1105135850078 JCVI_READ_1092963420674 1103283000027 D JCVI_PEP_1105135869289 JCVI_READ_1091143179558 1103283000027 D JCVI_PEP_1105136097861 JCVI_READ_1095468840718 1103283000036 D JCVI_PEP_1105136342632 JCVI_READ_1095505056434 1103283000036 D JCVI_PEP_1105136342632 JCVI_READ_1095460109624 1103283000035 D JCVI_PEP_110513638750 JCVI_READ_1093018268400 1103283000035 D JCVI_PEP_1105136387624 JCVI_READ_1092960051780 1103283000036 D JCVI_PEP_1105136531138 JCVI_READ_1092347001770 1103283000039 D JCVI_PEP_110513653078 JCVI_READ_1092347001497 1103283000039 D JCVI_PEP_1105136550078 JCVI_READ_109295	D	JCVI_PEP_1105135210720	JCVI_READ_1095949608064	1103283000008
DJCVI_PEP_1105135347420JCVI_READ_10954035822191103283000033DJCVI_PEP_11051357749487JCVI_READ_10923420395361103283000029DJCVI_PEP_1105135776497JCVI_READ_10911392485471103283000020DJCVI_PEP_1105135850078JCVI_READ_10929634206741103283000033DJCVI_PEP_1105135869289JCVI_READ_10911431795581103283000027DJCVI_PEP_1105136078961JCVI_READ_10954688407181103283000036DJCVI_PEP_110513607747JCVI_READ_10955050564341103283000036DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000035DJCVI_PEP_1105136386750JCVI_READ_10930182684001103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182715151103283000035DJCVI_PEP_1105136531138JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136549968JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI_PEP_1105135301878	JCVI_READ_1095469482360	1103283000036
DJCVI_PEP_1105135749487JCVI_READ_10923420395361103283000029DJCVI_PEP_1105135776497JCVI_READ_10911392485471103283000020DJCVI_PEP_1105135850078JCVI_READ_10929634206741103283000033DJCVI_PEP_1105135869289JCVI_READ_10911431795581103283000027DJCVI_PEP_1105136078961JCVI_READ_10954688407181103283000036DJCVI_PEP_1105136097747JCVI_READ_10955050564341103283000036DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182684001103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182715151103283000036DJCVI_PEP_1105136529354JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136549968JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI_PEP_1105135347420	JCVI_READ_1095403582219	1103283000033
DJCVI_PEP_1105135776497JCVI_READ_10911392485471103283000020DJCVI_PEP_1105135850078JCVI_READ_10929634206741103283000033DJCVI_PEP_1105135869289JCVI_READ_10911431795581103283000027DJCVI_PEP_1105136078961JCVI_READ_10954688407181103283000036DJCVI_PEP_1105136097747JCVI_READ_10955050564341103283000036DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000031DJCVI_PEP_1105136386750JCVI_READ_10930182684001103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182715151103283000036DJCVI_PEP_110513659354JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136549968JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI_PEP_1105135749487	JCVI_READ_1092342039536	1103283000029
DJCVI_PEP_1105135850078JCVI_READ_10929634206741103283000033DJCVI_PEP_1105135869289JCVI_READ_10911431795581103283000027DJCVI_PEP_1105136078961JCVI_READ_10954688407181103283000036DJCVI_PEP_1105136097747JCVI_READ_10955050564341103283000036DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000031DJCVI_PEP_1105136386750JCVI_READ_10930182684001103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182715151103283000035DJCVI_PEP_11051365493180JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136531138JCVI_READ_10923470014971103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI_PEP_1105135776497	JCVI_READ_1091139248547	1103283000020
DJCVI_PEP_1105135869289JCVI_READ_10911431795581103283000027DJCVI_PEP_1105136078961JCVI_READ_10954688407181103283000036DJCVI_PEP_1105136097747JCVI_READ_109505050564341103283000036DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000031DJCVI_PEP_1105136386750JCVI_READ_10930182684001103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182715151103283000035DJCVI_PEP_1105136493180JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136531138JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI_PEP_1105135850078	JCVI_READ_1092963420674	1103283000033
DJCVI_PEP_1105136078961JCVI_READ_10954688407181103283000036DJCVI_PEP_1105136097747JCVI_READ_10955050564341103283000036DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000031DJCVI_PEP_1105136386750JCVI_READ_10930182684001103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182715151103283000035DJCVI_PEP_1105136493180JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136531138JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI_PEP_1105135869289	JCVI_READ_1091143179558	1103283000027
DJCVI_PEP_1105136097747JCVI_READ_10955050564341103283000036DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000031DJCVI_PEP_1105136386750JCVI_READ_10930182684001103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182715151103283000035DJCVI_PEP_1105136493180JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136531138JCVI_READ_10923470014971103283000039DJCVI_PEP_1105136549968JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI_PEP_1105136078961	JCVI_READ_1095468840718	1103283000036
DJCVI_PEP_1105136342632JCVI_READ_10954601096241103283000031DJCVI_PEP_1105136386750JCVI_READ_10930182684001103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182715151103283000035DJCVI_PEP_1105136493180JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136531138JCVI_READ_10923470014971103283000039DJCVI_PEP_1105136549968JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI PEP 1105136097747	JCVI READ 1095505056434	1103283000036
DJCVI_PEP_1105136386750JCVI_READ_10930182684001103283000035DJCVI_PEP_1105136387624JCVI_READ_10930182715151103283000035DJCVI_PEP_1105136493180JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136531138JCVI_READ_10923470014971103283000039DJCVI_PEP_1105136549968JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI PEP 1105136342632	JCVI READ 1095460109624	1103283000031
DJCVI_PEP_1105136387624JCVI_READ_10930182715151103283000035DJCVI_PEP_1105136493180JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136531138JCVI_READ_10923470014971103283000039DJCVI_PEP_1105136549968JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI PEP 1105136386750	JCVI READ 1093018268400	1103283000035
DJCVI_PEP_1105136493180JCVI_READ_10929600517801103283000036DJCVI_PEP_1105136529354JCVI_READ_10923470017701103283000039DJCVI_PEP_1105136531138JCVI_READ_10923470014971103283000039DJCVI_PEP_1105136549968JCVI_READ_10929554167421103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034DJCVI_PEP_1105136550078JCVI_READ_10929554150461103283000034	D	JCVI PEP 1105136387624	JCVI READ 1093018271515	1103283000035
D JCVI_PEP_1105136529354 JCVI_READ_1092347001770 1103283000039 D JCVI_PEP_1105136531138 JCVI_READ_1092347001497 1103283000039 D JCVI_PEP_1105136549968 JCVI_READ_1092955416742 1103283000034 D JCVI_PEP_1105136550078 JCVI_READ_1092955416742 1103283000034 D JCVI_PEP_1105136550078 JCVI_READ_1092955415046 1103283000034	D	JCVI PEP 1105136493180	JCVI READ 1092960051780	1103283000036
D JCVI_PEP_1105136531138 JCVI_READ_1092347001497 1103283000039 D JCVI_PEP_1105136549968 JCVI_READ_1092955416742 1103283000034 D JCVI_PEP_1105136550078 JCVI_READ_1092955416742 1103283000034 D JCVI_PEP_1105136550078 JCVI_READ_1092955415046 1103283000034	D	JCVI PEP 1105136529354	JCVI READ 1092347001770	1103283000039
D JCVI_PEP_1105136549968 JCVI_READ_1092955416742 1103283000034 D JCVI_PEP_1105136550078 JCVI_READ_1092955415046 1103283000034	D	JCVI PEP 1105136531138	JCVI READ 1092347001497	1103283000039
D JCVI_PEP_1105136550078 JCVI_READ_1092955415046 1103283000034	D	ICVI PEP 1105136549968	ICVI READ 1092955416742	1103283000034
D = IOVI DED 110513(55030076 - 5001 MD 100205076 - 1103205000004 - 100205000004 - 100205000004 - 100205000004 - 100205000004 - 100205000004 - 100205000004 - 100205000004 - 10020500000004 - 100205000000000000000000000000000000000	D	ICVI PEP 1105136550078	ICVI READ 1092955415046	1103283000034
D JUVI PEP 1105130551300 JUVI KEAD 1092955416755 1103283000034	D	JCVI PEP 1105136551366	JCVI READ 1092955416755	1103283000034

D	JCVI_PEP_1105136706682	JCVI_READ_1095403676588	1103283000033
D	JCVI_PEP_1105136833714	JCVI_READ_1095898222018	1103283000016
D	JCVI_PEP_1105136982284	JCVI_READ_1095460190808	1103283000036
D	JCVI PEP 1105136988074	JCVI READ 1095403453957	1103283000033
D	JCVI PEP 1105136992162	JCVI READ 1095403456057	1103283000033
D	JCVI PEP 1105136993412	JCVI READ 1095403454453	1103283000033
D	JCVI PEP 1105137032441	JCVI READ 1092960132804	1103283000034
D	JCVI PEP 1105137042359	JCVI READ 1095469500368	1103283000036
D	JCVI PEP 1105137145633	JCVI READ 1091138232095	1103283000027
D	JCVI PEP 1105137273581	JCVI READ 1095403416084	1103283000033
D	JCVI PEP 1105137312639	JCVI READ 1093010383138	1103283000036
D	JCVI PEP 1105137498527	JCVI READ 1095403444468	1103283000009
D	JCVI PEP 1105137522711	JCVI READ 1095454031682	1103283000031
D	JCVI PEP 1105137582633	JCVI READ 1092959535787	1103283000034
D	JCVI PEP 1105137586513	JCVI READ 1092959533438	1103283000034
D	JCVI PEP 1105137590197	JCVI READ 1093017362594	1103283000035
D	JCVI PEP 1105137614391	JCVI READ 1095515461689	1103283000036
D	JCVI PEP 1105137665071	JCVI READ 1095964669346	1103283000042
D	JCVI_PEP_1105137683513	JCVI READ 1092963414777	1103283000019
D	ICVI PEP 1105137721959	JCVI READ 1095403433213	1103283000033
D	JCVI PEP 1105137730865	JCVI READ 1091141794223	1103283000021
D	ICVI PEP 1105137810439	ICVI READ 1093012169852	1103283000033
D	ICVI PEP 1105137846411	ICVI READ 1092988300883	1103283000036
D	ICVI PEP 1105137983231	ICVI READ 1093022137872	1103283000035
D	ICVI PEP 1105137987509	ICVI READ 1093022139046	1103283000035
D	ICVI PEP 1105138002109	ICVI READ 1091143650935	1103283000012
D	ICVI PEP 1105138191719	ICVI READ 1092351558658	1103283000041
D	ICVI PEP 1105138315111	ICVI READ 1092963468495	1103283000033
D	ICVI PEP 1105138345241	JCVI READ 1093012200944	1103283000023
D	ICVI PEP 1105138537369	ICVI READ 1093025023017	1103283000028
D	ICVI PEP 1105138592927	ICVI READ 1091141227011	1103283000020
D	ICVI PEP 1105138691771	ICVI READ 1092343452788	1103283000027
D	ICVI PEP 1105138798419	ICVI READ 1095469408058	1103283000027
D	ICVI PEP 1105138845593	ICVI READ 1092344270218	1103283000030
	ICVI DED 1105138052801	ICVI READ 1002214072267	1103283000037
D	ICVI DED 1105138952891	JCVI_READ_1092214972207	1103283000028
D	$JCVI_PEP_1105130505007$	JCVI_READ_1093013887387	1103283000020
D	$JCVI_FEF_1103139014991$	JCVI_READ_1092933000010	1103283000033
D	JCVI_PEP_1105139034119	JCVI_READ_1095458079511	1103283000030
D	JCVI_PEP_1105139123165	JC VI_READ_1095469453070	1103283000030
D	JCVI_PEP_1105139123259	JCVI_READ_1095469452018	1103283000036
D	JUVI_PEP_1105139295091	JUVI_KEAD_109296308/505	1103283000036
D	JUVI_PEP_1105139295661	JUVI_KEAD_1092963085//1	1103283000036
D	JCVI_PEP_1105139476423	JCVI_KEAD_1093018295681	1103283000035
D	JCVI_PEP_1105139566041	JCVI_READ_1092963'/67458	1103283000040
D	JCVI_PEP_1105139661307	JCVI_READ_1095462097536	1103283000036
D	JCVI_PEP_1105139708305	JCVI_READ_1093003401498	1103283000056

D	JCVI_PEP_1105139772967	JCVI_READ_1093012012904	1103283000033
D	JCVI_PEP_1105139797647	JCVI_READ_1093022136218	1103283000022
D	JCVI_PEP_1105139801943	JCVI_READ_1093022135637	1103283000022
D	JCVI_PEP_1105139815525	JCVI_READ_1092343562475	1103283000032
D	JCVI PEP 1105140131373	JCVI READ 1092960113017	1103283000034
D	JCVI PEP 1105140140169	JCVI READ 1092959498883	1103283000034
D	JCVI PEP 1105140185067	JCVI READ 1095899211255	1103283000015
D	JCVI PEP 1105140188835	JCVI READ 1095899190753	1103283000015
D	JCVI PEP 1105140202437	JCVI READ 1091139216945	1103283000021
D	JCVI PEP 1105140430069	JCVI READ 1093017626168	1103283000035
D	JCVI PEP 1105140487979	JCVI READ 1092963817619	1103283000040
D	JCVI PEP 1105140582931	JCVI READ 1095370001460	1103283000032
D	JCVI PEP 1105140675083	JCVI READ 1092956028795	1103283000035
D	JCVI PEP 1105140765347	JCVI READ 1093018683944	1103283000024
D	JCVI PEP 1105140779307	JCVI READ 1091141252794	1103283000016
D	JCVI PEP 1105140867685	JCVI READ 1093022120646	1103283000022
D	JCVI PEP 1105141159103	JCVI READ 1095899211092	1103283000016
D	JCVI PEP 1105141163995	JCVI READ 1093016306302	1103283000041
D	JCVI PEP 1105141181989	JCVI READ 1092963294887	1103283000034
D	JCVI PEP 1105141230563	JCVI READ 1091150241912	1103283000010
D	JCVI PEP 1105141374971	JCVI READ 1095462030948	1103283000036
D	JCVI PEP 1105141394441	JCVI READ 1092344122178	1103283000039
D	JCVI PEP 1105141492425	JCVI READ 1095500040142	1103283000036
D	JCVI PEP 1105141501317	JCVI READ 1093018630030	1103283000024
D	JCVI PEP 1105141522093	JCVI READ 1093023051271	1103283000039
D	JCVI PEP 1105141659109	JCVI READ 1092963487159	1103283000033
D	JCVI PEP 1105141781945	JCVI READ 1092963890175	1103283000040
D	JCVI PEP 1105141790167	JCVI READ 1092255402497	1103283000012
D	JCVI PEP 1105141828785	JCVI READ 1095900012836	1103283000042
D	JCVI PEP 1105141851365	JCVI READ 1092960054473	1103283000056
D	JCVI PEP 1105142243975	JCVI READ 1093016268349	1103283000041
D	JCVI PEP 1105142260469	JCVI READ 1093018659297	1103283000024
D	JCVI PEP 1105142322981	JCVI READ 1093011915575	1103283000023
D	JCVI PEP 1105142519833	JCVI READ 1091138257248	1103283000025
D	JCVI PEP 1105142816725	JCVI READ 1095462218845	1103283000036
D	JCVI PEP 1105142895203	JCVI READ 1095506051489	1103283000037
D	JCVI PEP 1105143290013	JCVI READ 1093016236798	1103283000041
D	JCVI PEP 1105143298417	JCVI READ 1093017503244	1103283000035
D	JCVI PEP 1105143424497	JCVI READ 1092257101685	1103283000020
D	JCVI PEP 1105143438025	JCVI READ 1093012100541	1103283000023
D	JCVI PEP 1105143446675	JCVI READ 1093017581110	1103283000035
D	JCVI PEP 1105143616523	JCVI READ 1095469472199	1103283000036
D	JCVI PEP 1105143722155	JCVI READ 1092959441357	1103283000035
D	JCVI PEP 1105143744029	JCVI READ 1095403526370	1103283000033
D	JCVI PEP 1105143777219	JCVI READ 1092343365816	1103283000032
D	JCVI_PEP_1105143792407	JCVI_READ 1091145272875	1103283000009

DJCVI_PEP_1105143983577JCVI_READ_109234426530511032830DJCVI_PEP_1105144089749JCVI_READ_109301864915611032830DJCVI_PEP_1105144129205JCVI_READ_109296375726811032830	00029 00024 00040 00040
DJCVI_PEP_1105144089749JCVI_READ_109301864915611032830DJCVI_PEP_1105144129205JCVI_READ_109296375726811032830	00024 00040 00040
D JCVI_PEP_1105144129205 JCVI_READ_1092963757268 11032830	00040 00040
	00040
D JCVI PEP 1105144131173 JCVI READ 1092963756476 11032830	
D JCVI PEP 1105144171833 JCVI READ 1091141684022 11032830	00022
D JCVI PEP 1105144493243 JCVI READ 1095458138430 11032830	00036
D JCVI PEP 1105144593825 JCVI READ 1091141411619 11032830	00020
D JCVI PEP 1105144617733 JCVI READ 1091143277489 11032830	00009
D JCVI PEP 1105144685603 JCVI READ 1093017310586 11032830	00035
D JCVI PEP 1105144698089 JCVI READ 1092963339469 11032830	00023
D JCVI PEP 1105145145583 JCVI READ 1095460246294 11032830	00036
D JCVI PEP 1105145152881 JCVI READ 1091144766747 11032830	00009
D JCVI PEP 1105145234793 JCVI READ 1091143488031 11032830	00009
D JCVI PEP 1105145238023 JCVI READ 1095462006047 11032830	00036
D JCVI PEP 1105145293415 JCVI READ 1092256058699 11032830	00022
D ICVI PEP 1105145348093 ICVI READ 1092153009563 11032830	00010
D ICVI PEP 1105145379441 ICVI READ 1091140194081 11032830	00015
D = 1000000000000000000000000000000000000	00013
$D = \frac{100145577467}{100145707143} = \frac{10011450218057}{1001145023004} = \frac{11052850}{10012882}$	00022
D = 1000000000000000000000000000000000000	00010
D = 10020000000000000000000000000000000000	00033
$D = JCVI_PEP_1105145910009 = JCVI_READ_1092901157715 = 11052850$	00023
$D = JCVI_PEP_1105145985255 = JCVI_READ_1095018559728 = 11052850 = 1005064127008 = 11022826 = 110288 = 1102886 = 1102886 = 1102886 = 1102886 = 1102886 = 1102886 = 1102886 = 1102$	00024
$D = JCVI_PEP_1105140108477 JCVI_READ_1095904127998 11052850$	00052
D JCVI_PEP_11051462/3893 JCVI_KEAD_1093018484653 11032830	00035
D JCVI_PEP_11051462/3901 JCVI_READ_1093018484653 11032830	00035
D JCVI_PEP_11051462/3901 JCVI_READ_1093018484653 11032830	00035
D JCVI_PEP_1105146400339 JCVI_READ_1092955124792 11032830	00036
D JCVI_PEP_1105146436389 JCVI_READ_1092299122588 11032830	00027
D JCVI_PEP_1105146454053 JCVI_READ_1092343801067 11032830	00029
D JCVI_PEP_1105146586499 JCVI_READ_1095521095338 11032830	00037
D JCVI_PEP_1105146876637 JCVI_READ_1095353016416 11032830	00039
D JCVI_PEP_1105146925735 JCVI_READ_1095469394448 11032830	00036
D JCVI_PEP_1105146926373 JCVI_READ_1095469391675 11032830	00036
D JCVI_PEP_1105147075741 JCVI_READ_1092344276588 11032830	00027
D JCVI_PEP_1105147133389 JCVI_READ_1092301120036 11032830	00027
D JCVI_PEP_1105147276523 JCVI_READ_1095899287409 11032830	00016
D JCVI PEP 1105147391439 JCVI READ 1092215013138 11032830	00023
D JCVI PEP 1105147527673 JCVI READ 1091140211201 11032830	00015
D JCVI PEP 1105147565941 JCVI READ 1091143577298 11032830	00011
D JCVI PEP 1105147597455 JCVI READ 1092344150289 11032830	00032
D JCVI PEP 1105147605867 JCVI READ 1092957770917 11032830	00035
D JCVI PEP 1105147613417 JCVI READ 1091140888243 11032830	00020
D JCVI PEP 1105147805773 JCVI READ 1092343611476 11032830	00039
D JCVI PEP 1105147807789 JCVI READ 1092343606825 11032830	00039
D JCVI PEP 1105147894813 JCVI READ 1095898051682 11032830	00015

D	JCVI_PEP_1105147913737	JCVI_READ_1091140650169	1103283000022
D	JCVI_PEP_1105147941649	JCVI_READ_1092255423225	1103283000022
D	JCVI_PEP_1105148271745	JCVI_READ_1091141718748	1103283000022
D	JCVI_PEP_1105148363475	JCVI_READ_1095898297307	1103283000017
D	JCVI PEP 1105148486351	JCVI READ 1095901445610	1103283000052
D	JCVI PEP 1105148495315	JCVI READ 1095901453524	1103283000052
D	JCVI PEP 1105148522081	JCVI READ 1092342083683	1103283000023
D	JCVI PEP 1105148575453	JCVI READ 1095390106107	1103283000032
D	JCVI PEP 1105148641867	JCVI READ 1091141639584	1103283000025
D	JCVI PEP 1105148668605	JCVI READ 1091143271896	1103283000009
D	JCVI PEP 1105148760501	JCVI READ 1092344211813	1103283000032
D	JCVI PEP 1105148764315	JCVI READ 1092344206367	1103283000032
D	JCVI PEP 1105148779955	JCVI READ 1092963222431	1103283000035
D	JCVI PEP 1105148810507	JCVI READ 1091143185167	1103283000027
D	JCVI PEP 1105148816209	JCVI READ 1092955025920	1103283000035
D	JCVI PEP 1105148835709	ICVI READ 1095454078325	1103283000036
D	ICVI PEP 1105149016963	ICVI READ 1092955154321	1103283000036
D	ICVI PEP 1105149036033	ICVI READ 1092963081025	1103283000034
D	ICVI PFP 1105149085405	ICVI READ 1095521073381	1103283000037
D	ICVI PEP 1105149085405	ICVI READ 1095521075501	1103283000037
D	ICVI DED 1105140002011	ICVI READ 1003017060000	1103283000037
	ICVI DED 1105149092911	ICVI DEAD 1003017900900	1103283000022
	JCVI_FEF_1103149094903	JCVI_READ_1093017937074	1103283000022
	JCVI_FEF_1105149121887	JCVI_READ_1093018470703	1103283000024
D	JCVI_PEP_1105149147771	JCVI_READ_1095018914324	1103283000033
D	JCVI_PEP_110514920/41/	JCVI_READ_1095455012216	1103283000024
D	JCVI_PEP_1105149248627	JCVI_READ_1091140399080	1103283000016
D	JCVI_PEP_1105149411611	JCVI_READ_1091145386307	1103283000009
D	JCVI_PEP_1105149411/29	JCVI_READ_1091145360560	1103283000009
D	JCVI_PEP_1105149603049	JCVI_READ_1093017355632	1103283000041
D	JCVI_PEP_1105149608745	JCVI_READ_1092255415020	1103283000021
D	JCVI_PEP_1105149645599	JCVI_READ_1092342068277	1103283000029
D	JCVI_PEP_1105149715597	JCVI_READ_1092256108723	1103283000013
D	JCVI_PEP_1105149720823	JCVI_READ_1091141784419	1103283000025
D	JCVI_PEP_1105149822547	JCVI_READ_1095454115221	1103283000031
D	JCVI_PEP_1105150254867	JCVI_READ_1092955316564	1103283000056
D	JCVI_PEP_1105150527625	JCVI_READ_1091150292439	1103283000012
D	JCVI_PEP_1105150611899	JCVI_READ_1092214969492	1103283000023
D	JCVI_PEP_1105150772781	JCVI_READ_1095460236969	1103283000036
D	JCVI_PEP_1105150772977	JCVI_READ_1095460237017	1103283000036
D	JCVI_PEP_1105150780565	JCVI_READ_1092963360988	1103283000056
D	JCVI_PEP_1105150908193	JCVI_READ_1092962031963	1103283000036
D	JCVI_PEP_1105150979767	JCVI_READ_1091140778413	1103283000025
D	JCVI PEP 1105150992739	JCVI READ 1095913019538	1103283000052
D	JCVI PEP 1105151016903	JCVI READ 1092980600318	1103283000035
D	JCVI PEP 1105151017819	JCVI READ 1092980701073	1103283000035
D	JCVI_PEP_1105151064739	JCVI_READ_1092256206168	1103283000025

D	JCVI_PEP_1105151238863	JCVI_READ_1092344284301	1103283000039
D	JCVI PEP 1105151251475	JCVI READ 1092257111659	1103283000025
D	JCVI_PEP_1105151292081	JCVI_READ_1095521078403	1103283000037
D	JCVI_PEP_1105151322293	JCVI_READ_1095522067853	1103283000037
D	JCVI PEP 1105151378745	JCVI READ 1092955175301	1103283000035
D	JCVI PEP 1105151442817	JCVI READ 1092963323587	1103283000023
D	JCVI PEP 1105151512719	JCVI READ 1092405878935	1103283000039
D	JCVI PEP 1105152161555	JCVI READ 1093018817634	1103283000035
D	JCVI PEP 1105152162073	JCVI READ 1093018819562	1103283000035
D	JCVI PEP 1105152174187	JCVI READ 1091141693035	1103283000022
D	JCVI PEP 1105152221173	JCVI READ 1092301074517	1103283000028
D	JCVI PEP 1105152298811	JCVI READ 1091141149980	1103283000016
D	JCVI PEP 1105152344387	JCVI READ 1092344136949	1103283000032
D	JCVI PEP 1105152398613	JCVI READ 1091140632775	1103283000021
D	JCVI PEP 1105152447087	JCVI READ 1092963829845	1103283000033
D	ICVI PEP 1105152496521	ICVI READ 1093025593902	1103283000049
D	ICVI PEP 1105152502359	ICVI READ 1093022103890	1103283000035
D	ICVI PEP 1105152502557	ICVI READ 1092963128606	1103283000036
D	ICVI PFP 1105152558095	ICVI READ 1095900033965	1103283000042
D	ICVI PEP 1105152556075	ICVI READ 1092963048132	1103283000042
	ICVI DED 11051528557801	ICVI READ 1002063040000	1103283000036
D	ICVI DED 1105152803211	ICVI DEAD 1005460268585	1103283000030
D	$JCVI_FEF_1103132093211$	JCVI_READ_1093400208383	1103283000009
D	$JCVI_PEP_1105155012401$	JCVI_READ_109113823/118	1103283000027
D	$JCVI_PEP_1105155021051$	JCVI_READ_1095022131908	1103283000033
D	$JCVI_PEP_1105155055175$	JCVI_READ_1095403494890	1103283000033
D	JCVI_PEP_1105153041033	JCVI_READ_1095403494568	1103283000033
D	JCVI_PEP_1105153158353	JCVI_READ_109301/544550	1103283000041
D	JCVI_PEP_11051531/3985	JCVI_READ_1092343140035	1103283000032
D	JCVI_PEP_1105153325133	JCVI_READ_1095460021909	1103283000036
D	JCVI_PEP_1105153380255	JCVI_READ_1095515636888	1103283000036
D	JCVI_PEP_1105153381467	JCVI_READ_1095515642894	1103283000036
D	JCVI_PEP_1105153546925	JCVI_READ_1092257241391	1103283000027
D	JCVI_PEP_1105153713845	JCVI_READ_1093015738369	1103283000041
D	JCVI_PEP_1105153770657	JCVI_READ_1093018430056	1103283000035
D	JCVI_PEP_1105153801301	JCVI_READ_1095978306024	1103283000042
D	JCVI_PEP_1105153807829	JCVI_READ_1095978244199	1103283000042
D	JCVI_PEP_1105153895007	JCVI_READ_1092963730937	1103283000033
D	JCVI_PEP_1105153916401	JCVI_READ_1095390062314	1103283000032
D	JCVI_PEP_1105153918447	JCVI_READ_1095390054056	1103283000032
D	JCVI_PEP_1105153930873	JCVI_READ_1091121255030	1103283000022
D	JCVI_PEP_1105154231051	JCVI_READ_1093018579325	1103283000024
D	JCVI_PEP_1105154243211	JCVI_READ_1093015318955	1103283000023
D	JCVI PEP 1105154283871	JCVI READ 1092344212140	1103283000029
D	JCVI PEP 1105154358769	JCVI READ 1095460085051	1103283000036
D	JCVI PEP 1105154428167	JCVI READ 1093018540941	1103283000035
D	JCVI_PEP_1105154520269	JCVI_READ_1093017965162	1103283000035

D	JCVI_PEP_1105154594909	JCVI_READ_1095521085663	1103283000036
D	JCVI PEP 1105154643375	JCVI READ 1095913007607	1103283000052
D	JCVI PEP 1105154697041	JCVI READ 1092956089827	1103283000035
D	JCVI PEP 1105154699769	JCVI READ 1093006100517	1103283000034
D	JCVI PEP 1105154699777	JCVI READ 1093004101675	1103283000034
D	JCVI PEP 1105154739353	JCVI READ 1093017666369	1103283000024
D	JCVI PEP 1105154941451	JCVI READ 1095469191359	1103283000036
D	JCVI PEP 1105155134059	JCVI READ 1092960120679	1103283000035
D	JCVI PEP 1105155308061	JCVI READ 1093012094944	1103283000019
D	JCVI PEP 1105155407879	JCVI READ 1093018581084	1103283000035
D	JCVI PEP 1105155460091	JCVI READ 1093022044545	1103283000027
D	JCVI PEP 1105155460399	JCVI READ 1093022064321	1103283000027
D	JCVI PEP 1105155508353	JCVI READ 1095372000722	1103283000039
D	JCVI PEP 1105155569747	JCVI READ 1093018533688	1103283000021
D	JCVI PEP 1105155602813	JCVI READ 1093016038119	1103283000040
D	JCVI PEP 1105155645509	JCVI READ 1092344207208	1103283000039
D	JCVI PEP 1105155710849	JCVI READ 1092404007067	1103283000029
D	JCVI PEP 1105155780169	JCVI READ 1091141258285	1103283000015
D	JCVI PEP 1105155821729	JCVI READ 1093015595817	1103283000025
D	JCVI PEP 1105155823813	JCVI READ 1093015602944	1103283000025
D	JCVI PEP 1105155857905	JCVI READ 1093012228824	1103283000019
D	JCVI PEP 1105155962449	JCVI READ 1095978228251	1103283000052
D	JCVI PEP 1105156013283	JCVI READ 1091141516331	1103283000020
D	JCVI PEP 1105156044087	JCVI READ 1091143658082	1103283000012
D	JCVI PEP 1105156084993	JCVI READ 1092255353935	1103283000022
D	JCVI PEP 1105156142655	JCVI READ 1095462273058	1103283000036
D	JCVI PEP 1105156143131	JCVI READ 1095462272199	1103283000036
D	JCVI PEP 1105156146509	JCVI READ 1095462271982	1103283000036
D	JCVI PEP 1105156198577	JCVI READ 1093017451778	1103283000024
D	JCVI PEP 1105156501545	JCVI READ 1091120845494	1103283000021
D	JCVI PEP 1105156713903	JCVI READ 1092152012233	1103283000012
D	JCVI PEP 1105156789893	JCVI READ 1091141725633	1103283000022
D	JCVI PEP 1105156800465	JCVI READ 1092963576224	1103283000023
D	JCVI PEP 1105156822751	JCVI READ 1095469464864	1103283000036
D	JCVI PEP 1105156951877	JCVI READ 1095467053936	1103283000036
D	JCVI PEP 1105156958011	JCVI READ 1095467056021	1103283000036
D	JCVI PEP 1105157108129	JCVI READ 1095390097257	1103283000021
D	JCVI PEP 1105157215632	JCVI READ 1095462266033	1103283000036
D	JCVI PEP 1105157488876	JCVI READ 1091140662394	1103283000022
D	JCVI PEP 1105157658600	JCVI READ 1092955389736	1103283000036
D	JCVI PEP 1105157739612	JCVI READ 1093017317754	1103283000035
D	JCVI PEP 1105157867298	JCVI READ 1091145114463	1103283000009
D	JCVI PEP 1105158018623	JCVI READ 1095462336320	1103283000036
D	JCVI PEP 1105158071479	JCVI READ 1091144221142	1103283000027
D	JCVI PEP 1105158095035	JCVI READ 1093022091275	1103283000035
D	JCVI_PEP_1105158111735	JCVI_READ_1093018496583	1103283000035
D	JCVI_PEP_1105158121819	JCVI_READ_1095964468667	1103283000052
---	------------------------	-------------------------	---------------
D	JCVI PEP 1105158126501	JCVI READ 1095964485489	1103283000052
D	JCVI PEP 1105158421553	JCVI READ 1093041178358	1103283000028
D	JCVI PEP 1105158716475	JCVI READ 1092955162597	1103283000035
D	JCVI PEP 1105158960437	JCVI READ 1092256284390	1103283000025
D	JCVI PEP 1105159076007	JCVI READ 1092960068088	1103283000036
D	JCVI PEP 1105159132559	JCVI READ 1093006409916	1103283000036
D	JCVI PEP 1105159219725	JCVI READ 1092343018482	1103283000029
D	JCVI PEP 1105159463909	JCVI READ 1092255492536	1103283000021
D	JCVI PEP 1105159597353	JCVI READ 1092256168616	1103283000021
D	JCVI PEP 1105159614781	JCVI READ 1092955238087	1103283000034
D	JCVI PEP 1105159614973	JCVI READ 1092955238074	1103283000034
D	JCVI PEP 1105159615479	JCVI READ 1092955238514	1103283000034
D	JCVI PEP 1105159814345	JCVI READ 1095516034904	1103283000036
D	JCVI PEP 1105159828239	JCVI READ 1093006404075	1103283000056
D	JCVI PEP 1105159831439	JCVI READ 1093006408781	1103283000056
D	JCVI_PEP_1105160041805	JCVI READ 1095516153982	1103283000036
D	JCVI PEP 1105160061077	JCVI READ 1092963251186	1103283000023
D	JCVI PEP 1105160135369	JCVI READ 1092351055586	1103283000029
D	JCVI PEP 1105160175313	JCVI READ 1095439025491	1103283000031
D	JCVI PEP 1105160325095	JCVI READ 1095901240925	1103283000042
D	JCVI PEP 1105160405905	JCVI READ 1091140933401	1103283000025
D	JCVI PEP 1105160437107	JCVI READ 1092963149705	1103283000036
D	JCVI PEP 1105160458449	JCVI READ 1095403534827	1103283000024
D	JCVI PEP 1105160518889	JCVI READ 1095388024714	1103283000033
D	JCVI PEP 1105160650153	JCVI READ 1093015440292	1103283000033
D	JCVI PEP 1105160673755	JCVI READ 1095366022970	1103283000039
D	JCVI PEP 1105160679971	JCVI READ 1092955090593	1103283000034
D	JCVI PEP 1105161123291	JCVI READ 1095462430891	1103283000036
D	JCVI PEP 1105161257075	JCVI READ 1092960097676	1103283000036
D	JCVI PEP 1105161540555	JCVI READ 1093022040184	1103283000035
D	JCVI PEP 1105161598481	JCVI READ 1092963884791	1103283000020
D	JCVI PEP 1105161600025	JCVI READ 1092343007318	1103283000020
D	JCVI_PEP_1105161610099	JCVI_READ_1095390126440	1103283000032
D	JCVI PEP 1105161614305	JCVI READ 1095978161484	1103283000042
D	JCVI PEP 1105161869183	JCVI READ 1093015238065	1103283000040
D	JCVI_PEP_1105161901123	JCVI_READ_1095460063739	1103283000031
D	JCVI_PEP_1105162110031	JCVI_READ_1092351462187	1103283000017
D	JCVI_PEP_1105162207753	JCVI_READ_1092216067650	1103283000012
D	JCVI_PEP_1105162284615	JCVI_READ_1093017911640	1103283000035
D	JCVI_PEP_1105162351261	JCVI_READ_1095898147473	1103283000016
D	JCVI_PEP_1105162367389	JCVI_READ_1095898039035	1103283000016
D	JCVI_PEP_1105162370961	JCVI_READ_1092963299046	1103283000023
D	JCVI_PEP_1105162395207	JCVI_READ_1092256584717	1103283000029
D	JCVI_PEP_1105162645261	JCVI_READ_1093023002906	1103283000035
D	JCVI_PEP_1105162707399	JCVI_READ_1091141770003	1103283000025

D	JCVI_PEP_1105162846355	JCVI_READ_1093018396874	1103283000035
D	JCVI_PEP_1105162853017	JCVI_READ_1092959440608	1103283000018
D	JCVI_PEP_1105162915009	JCVI_READ_1092959464600	1103283000036
D	JCVI PEP 1105163425191	JCVI READ 1092344107445	1103283000032
D	JCVI PEP 1105163429555	JCVI READ 1095469506682	1103283000036
D	JCVI_PEP_1105163457637	JCVI READ 1092960168107	1103283000036
D	JCVI_PEP_1105163519051	JCVI READ 1092961011718	1103283000023
D	JCVI PEP 1105163638771	JCVI READ 1091140753650	1103283000021
D	JCVI PEP 1105163640303	JCVI READ 1091140762670	1103283000021
D	JCVI PEP 1105163664621	JCVI READ 1095505095699	1103283000037
D	JCVI PEP 1105163734655	JCVI READ 1092963072864	1103283000023
D	JCVI PEP 1105163745917	JCVI READ 1092341867836	1103283000029
D	JCVI PEP 1105163795599	JCVI READ 1093015784899	1103283000040
D	JCVI PEP 1105163944063	JCVI READ 1095904024371	1103283000042
D	JCVI_PEP_1105163944069	JCVI READ 1095904024371	1103283000042
D	JCVI_PEP_1105163944069	JCVI READ 1095904024371	1103283000042
D	JCVI PEP 1105163944519	JCVI READ 1095904021842	1103283000042
D	ICVI PEP 1105163946039	ICVI READ 1095904024433	1103283000042
D	ICVI PEP 1105164053897	ICVI READ 1093018503277	1103283000035
D	ICVI_PEP_1105164056165	ICVI READ 1092955252549	1103283000034
D	ICVI_PEP_1105164069333	ICVI READ 1093018782879	1103283000034
D D	ICVI PEP 1105164072091	ICVI READ 1093018783658	1103283000035
D D	ICVI PEP 1105164074575	ICVI READ 1095347003804	1103283000033
D D	ICVI PEP 1105164121161	ICVI READ 109234/327635	1103283000032
D D	ICVI PEP 1105164216937	ICVI READ 1095403518516	1103283000037
D D	ICVI PEP 1105164277639	ICVI READ 1092961140792	1103283000007
D D	ICVI PEP 1105164334507	ICVI READ 1095349002864	1103283000030
D D	ICVI_PEP_1105164562285	ICVI READ 1093016266777	1103283000032
D D	ICVI PEP 1105164571227	ICVI READ 1093010200777	1103283000041
D D	ICVI PEP 1105164728017	ICVI READ 10920121/0296	1103283000032
D D	ICVI DED 1105164031780	ICVI READ 1095/60/62772	1103283000035
D D	ICVI DED 110516538/121	ICVI READ 1002063080155	1103283000030
D D	JCVI_PEP_1105165385655	ICVI_READ_1092903989133	1103283000040
D D	JCVI_DED_1105165300007	JCVI_READ_1092903980207	1103283000040
ע ח	JCVI_PEF_1105165554261	JCVI_READ_1092903903710	1103283000040
D	JCVI_FEF_1105105554201	JCVI_READ_1091141146230	1103283000020
D D	JCVI_PEP_1105165506241	JCVI_READ_1091141149852	1103283000020
D D	JCVI_PEP_1105105590541	JC VI_READ_1092230093249	1103283000021
D	JCVI_PEP_1105165604483	JC VI_READ_1091145113104	1103283000010
D	JCVI_PEP_110516568/699	JC VI_READ_1095456069136	1103283000031
D	JCVI_PEP_1105165722955	JCVI_READ_1092963346789	1103283000056
D	JUVI_PEP_1105165/30581	JUVI_KEAD_1095469525856	1103283000036
D	JCVI_PEP_1105165/85641	JCVI_KEAD_1091144002251	1103283000009
D	JCVI_PEP_1105165842461	JCVI_KEAD_1092963892848	1103283000040
D	JCVI_PEP_1105165899183	JCVI_READ_1091141800114	1103283000022
D	JCVI_PEP_1105166046341	JCVI_READ_1093008800703	1103283000036
D	JCVI_PEP_1105166054431	JCVI_READ_1095899195746	1103283000017

D	JCVI PEP 1105166059585	JCVI READ 1093009678322	1103283000023
Е	JCVI PEP 1105111458137	JCVI READ 1091143566782	1103283000011
Е	JCVI PEP 1105123772839	JCVI READ 1091140396977	1103283000016
Е	JCVI PEP 1105124123603	JCVI READ 1091120945971	1103283000014
Е	JCVI PEP 1105125782167	JCVI READ 1092963787306	1103283000040
Е	JCVI PEP 1105132411967	JCVI READ 1091145535320	1103283000009
Е	JCVI PEP 1105133555339	JCVI READ 1095456016698	1103283000036
Е	JCVI PEP 1105135390556	JCVI READ 1091150265015	1103283000011
Е	JCVI PEP 1105135593589	JCVI READ 1095898312630	1103283000016
Е	JCVI PEP 1105138193261	JCVI READ 1092351558905	1103283000041
Е	JCVI PEP 1105139813855	JCVI READ 1095456026126	1103283000036
Unclassified	JCVI PEP 1105075238518	JCVI READ 1092963728233	1103283000033
Unclassified	JCVI PEP 1105075419978	JCVI READ 1092991602266	1103283000036
Unclassified	JCVI PEP 1105078635606	JCVI READ 1093018505571	1103283000024
Unclassified	ICVI PEP 1105079152743	JCVI READ 1095458071602	1103283000036
Unclassified	ICVI PEP 1105079685537	ICVI READ 1092256249329	1103283000023
Unclassified	ICVI PEP 1105080671715	ICVI READ 1093018941818	1103283000024
Unclassified	ICVI PEP 1105080815525	ICVI READ 1092256084462	1103283000013
Unclassified	ICVI PEP 1105081115601	ICVI READ 1092955047630	1103283000018
Unclassified	ICVI PEP 1105081696247	ICVI READ 1093017499478	1103283000035
Unclassified	ICVI PEP 1105081861051	ICVI READ 1095458146341	1103283000036
Unclassified	ICVI PEP 1105082846167	ICVI READ 1095460068306	1103283000031
Unclassified	ICVI PEP 1105083588248	ICVI READ 1095462365537	1103283000036
Unclassified	ICVI PEP 1105084667519	ICVI READ 1092959544459	1103283000034
Unclassified	ICVI PEP 1105084670663	ICVI READ 1092959544084	1103283000034
Unclassified	ICVI PEP 1105085013275	ICVI READ 1092963821673	1103283000040
Unclassified	ICVI PEP 1105085201211	ICVI READ 1093022146948	1103283000070
Unclassified	ICVI PEP 1105085379925	ICVI READ 1095467504245	1103283000036
Unclassified	ICVI PEP 1105087352803	JCVI READ 1093018402596	1103283000041
Unclassified	ICVI PEP 1105087534581	ICVI READ 1092256374120	1103283000028
Unclassified	ICVI PEP 1105088118989	JCVI READ 1093015824068	1103283000040
Unclassified	ICVI PEP 1105089293811	JCVI READ 1091140766696	1103283000025
Unclassified	JCVI PEP 1105089405379	JCVI READ 1093017415276	1103283000024
Unclassified	JCVI PEP 1105089638051	JCVI READ 1093030504006	1103283000024
Unclassified	JCVI PEP 1105089853655	JCVI READ 1093018593786	1103283000024
Unclassified	JCVI_PEP_1105089916303	JCVI READ 1095328045049	1103283000032
Unclassified	JCVI PEP 1105090505081	JCVI READ 1095368022043	1103283000032
Unclassified	JCVI PEP 1105091868223	JCVI READ 1092258988485	1103283000026
Unclassified	JCVI PEP 1105092717207	JCVI READ 1092261300733	1103283000025
Unclassified	ICVI PEP 1105092793265	JCVI READ 1093018369823	1103283000035
Unclassified	JCVI PEP 1105092905569	JCVI READ 1093016253869	1103283000041
Unclassified	JCVI PEP 1105093643187	JCVI READ 1092342059294	1103283000030
Unclassified	JCVI PEP 1105093643187	JCVI READ 1092342059294	1103283000030
Unclassified	JCVI PEP 1105093643189	JCVI READ 1092342059294	1103283000030
Unclassified	JCVI PEP 1105093660215	JCVI READ 1095964194348	1103283000052
Unclassified	JCVI_PEP_1105094236853	JCVI_READ_1091142334577	1103283000027

Unclassified	JCVI PEP 1105094658153	JCVI READ 1095467559483	1103283000036
Unclassified	JCVI PEP 1105095177221	JCVI READ 1092351103478	1103283000030
Unclassified	JCVI PEP 1105095408099	JCVI READ 1092955057232	1103283000018
Unclassified	JCVI_PEP_1105095653159	JCVI_READ_1091139216750	1103283000026
Unclassified	JCVI PEP 1105096972761	JCVI READ 1091138268183	1103283000026
Unclassified	JCVI PEP 1105097965505	JCVI READ 1092960033528	1103283000034
Unclassified	JCVI PEP 1105098445525	JCVI READ 1092962035087	1103283000034
Unclassified	JCVI PEP 1105098455327	JCVI READ 1091145562928	1103283000010
Unclassified	JCVI PEP 1105098471511	JCVI READ 1092256050907	1103283000021
Unclassified	JCVI PEP 1105098813081	JCVI READ 1095949563928	1103283000052
Unclassified	JCVI PEP 1105099966723	JCVI READ 1093015791611	1103283000041
Unclassified	JCVI PEP 1105100010949	JCVI READ 1092955196958	1103283000036
Unclassified	JCVI PEP 1105101018313	JCVI READ 1092963494406	1103283000019
Unclassified	JCVI PEP 1105102898431	JCVI READ 1095403357914	1103283000032
Unclassified	JCVI PEP 1105103419433	JCVI READ 1093011995455	1103283000033
Unclassified	JCVI PEP 1105104022909	JCVI READ 1093022145976	1103283000035
Unclassified	JCVI PEP 1105104238031	JCVI READ 1095897555014	1103283000018
Unclassified	JCVI PEP 1105104805793	JCVI READ 1093010961512	1103283000023
Unclassified	JCVI PEP 1105105278891	JCVI READ 1091140133894	1103283000014
Unclassified	JCVI PEP 1105105565675	JCVI READ 1093022047655	1103283000035
Unclassified	JCVI PEP 1105106232297	JCVI READ 1093011975196	1103283000036
Unclassified	JCVI PEP 1105106890697	JCVI READ 1092344275811	1103283000029
Unclassified	JCVI PEP 1105107046397	JCVI READ 1095901386151	1103283000052
Unclassified	JCVI PEP 1105107138669	JCVI READ 1092402508167	1103283000029
Unclassified	JCVI PEP 1105107488099	JCVI READ 1091138180006	1103283000022
Unclassified	JCVI PEP 1105107597519	JCVI READ 1092963057435	1103283000023
Unclassified	JCVI PEP 1105108537315	JCVI READ 1095949463233	1103283000008
Unclassified	JCVI PEP 1105108557757	JCVI READ 1093018399007	1103283000035
Unclassified	JCVI PEP 1105108617303	JCVI READ 1095901531631	1103283000014
Unclassified	JCVI PEP 1105109883953	JCVI READ 1092963096974	1103283000035
Unclassified	JCVI PEP 1105109918105	JCVI READ 1092344167505	1103283000032
Unclassified	JCVI PEP 1105110269049	JCVI READ 1092343675300	1103283000029
Unclassified	JCVI PEP 1105110543125	JCVI READ 1092351295637	1103283000030
Unclassified	JCVI PEP 1105110793295	JCVI READ 1092962058135	1103283000034
Unclassified	JCVI PEP 1105110848685	JCVI READ 1092963449470	1103283000036
Unclassified	JCVI PEP 1105111035763	JCVI READ 1092302012473	1103283000027
Unclassified	JCVI PEP 1105112366551	JCVI READ 1092963207266	1103283000056
Unclassified	JCVI PEP 1105112996207	JCVI READ 1091140693360	1103283000021
Unclassified	JCVI PEP 1105113024757	JCVI READ 1095462393685	1103283000036
Unclassified	JCVI PEP 1105113072485	JCVI READ 1091138106770	1103283000021
Unclassified	JCVI PEP 1105113697317	JCVI READ 1092351918374	1103283000035
Unclassified	JCVI_PEP_1105113760899	JCVI_READ_1093022098547	1103283000027
Unclassified	JCVI_PEP_1105114012291	JCVI_READ_1095913056440	1103283000052
Unclassified	JCVI_PEP_1105114587597	JCVI_READ_1093018999559	1103283000035
Unclassified	JCVI_PEP_1105115967751	JCVI_READ_1093011965423	1103283000023
Unclassified	JCVI_PEP_1105117252487	JCVI_READ_1095353006327	1103283000039

Unclassified	JCVI PEP 1105117363449	JCVI READ 1092963434143	1103283000023
Unclassified	JCVI PEP 1105117479679	JCVI READ 1091141198518	1103283000015
Unclassified	JCVI PEP 1105117918985	JCVI READ 1093011411295	1103283000023
Unclassified	JCVI_PEP_1105118200497	JCVI_READ_1092959680034	1103283000036
Unclassified	JCVI PEP 1105118883737	JCVI READ 1093016301278	1103283000041
Unclassified	JCVI PEP 1105119521505	JCVI READ 1091142954019	1103283000009
Unclassified	JCVI PEP 1105119602347	JCVI READ 1095403285916	1103283000032
Unclassified	JCVI PEP 1105119793373	JCVI READ 1095515646376	1103283000037
Unclassified	JCVI PEP 1105119917437	JCVI READ 1092351113109	1103283000032
Unclassified	JCVI PEP 1105120531021	JCVI READ 1095462204382	1103283000036
Unclassified	JCVI PEP 1105121689233	JCVI READ 1092963394020	1103283000033
Unclassified	JCVI PEP 1105122438539	JCVI READ 1095898242350	1103283000016
Unclassified	JCVI PEP 1105123303773	JCVI READ 1092215010063	1103283000035
Unclassified	JCVI PEP 1105123304727	JCVI READ 1092214954862	1103283000035
Unclassified	JCVI PEP 1105123315921	JCVI READ 1093024001865	1103283000035
Unclassified	JCVI PEP 1105123377829	JCVI READ 1092215025094	1103283000028
Unclassified	JCVI PEP 1105123582271	JCVI READ 1093015544518	1103283000040
Unclassified	JCVI PEP 1105124756129	JCVI READ 1092963286482	1103283000023
Unclassified	JCVI PEP 1105126299413	JCVI READ 1093012030167	1103283000033
Unclassified	JCVI PEP 1105126668769	JCVI READ 1091143192868	1103283000008
Unclassified	JCVI PEP 1105127257543	JCVI READ 1093016163245	1103283000040
Unclassified	JCVI PEP 1105127979695	JCVI READ 1095913038410	1103283000052
Unclassified	JCVI PEP 1105128410185	JCVI READ 1092955336659	1103283000036
Unclassified	JCVI PEP 1105129162561	JCVI READ 1092961161630	1103283000036
Unclassified	JCVI PEP 1105130191225	JCVI READ 1092344185134	1103283000029
Unclassified	JCVI PEP 1105130492039	JCVI READ 1093006415497	1103283000023
unclassified	JCVI PEP 1105130883367	JCVI READ 1095901175748	1103283000052
Unclassified	JCVI PEP 1105131368163	JCVI READ 1095460163028	1103283000036
Unclassified	JCVI PEP 1105132442809	JCVI READ 1092256423441	1103283000028
Unclassified	JCVI PEP 1105132804809	JCVI READ 1092344053308	1103283000032
Unclassified	JCVI PEP 1105133357913	JCVI READ 1092960187449	1103283000023
Unclassified	JCVI PEP 1105133614583	JCVI READ 1092351082526	1103283000032
Unclassified	JCVI PEP 1105134410628	JCVI READ 1094428755081	1103283000039
Unclassified	JCVI PEP 1105135437244	JCVI READ 1092960096718	1103283000056
Unclassified	JCVI PEP 1105135642607	JCVI READ 1093015398782	1103283000040
Unclassified	JCVI PEP 1105136153795	JCVI READ 1092955381676	1103283000036
Unclassified	JCVI PEP 1105136692168	JCVI READ 1093018480508	1103283000021
Unclassified	JCVI PEP 1105137153975	JCVI READ 1095460075633	1103283000036
Unclassified	JCVI PEP 1105137240045	JCVI READ 1093018651856	1103283000024
Unclassified	JCVI PEP 1105137776559	JCVI READ 1093017682890	1103283000024
Unclassified	JCVI PEP 1105138689991	JCVI READ 1092343424058	1103283000027
Unclassified	JCVI_PEP_1105139210797	JCVI_READ_1095403242788	1103283000032
Unclassified	JCVI_PEP_1105139363107	JCVI_READ_1092956048773	1103283000035
Unclassified	JCVI_PEP_1105141071401	JCVI_READ_1093015292166	1103283000033
Unclassified	JCVI_PEP_1105141431783	JCVI_READ_1092256058012	1103283000021
Unclassified	JCVI_PEP_1105142007683	JCVI_READ_1095506218079	1103283000036

Unclassified	JCVI PEP 1105142015305	JCVI READ 1091141790382	1103283000014
Unclassified	JCVI PEP 1105142537099	JCVI READ 1095901421467	1103283000052
Unclassified	JCVI PEP 1105142952593	JCVI READ 1091143541595	1103283000010
Unclassified	JCVI PEP 1105143234265	JCVI READ 1091142117885	1103283000026
Unclassified	JCVI PEP 1105143432407	JCVI READ 1093012177160	1103283000023
Unclassified	JCVI PEP 1105144166933	JCVI READ 1093018457839	1103283000035
Unclassified	JCVI PEP 1105144540533	JCVI READ 1095467006325	1103283000036
Unclassified	JCVI PEP 1105145462177	JCVI READ 1093023071051	1103283000035
Unclassified	JCVI PEP 1105145734571	JCVI READ 1092955192059	1103283000018
Unclassified	JCVI_PEP_1105146491887	JCVI_READ_1092343156226	1103283000032
Unclassified	JCVI_PEP_1105146492625	JCVI_READ_1092343155617	1103283000032
Unclassified	JCVI PEP 1105146863003	JCVI READ 1093018974814	1103283000022
Unclassified	JCVI_PEP_1105146875843	JCVI_READ_1095353023949	1103283000039
Unclassified	JCVI_PEP_1105147226891	JCVI_READ_1093011895981	1103283000023
Unclassified	JCVI PEP 1105147466951	JCVI READ 1091142095122	1103283000026
Unclassified	JCVI PEP 1105147865431	JCVI READ 1092963172057	1103283000023
Unclassified	JCVI PEP 1105148651617	JCVI READ 1093016224521	1103283000041
Unclassified	JCVI PEP 1105148796891	JCVI READ 1095368013538	1103283000026
unclassified	JCVI PEP 1105149134023	JCVI READ 1092961116416	1103283000023
Unclassified	JCVI PEP 1105149246545	JCVI READ 1091140402706	1103283000016
Unclassified	JCVI PEP 1105149720607	JCVI READ 1091141781684	1103283000025
Unclassified	JCVI PEP 1105150329723	JCVI READ 1092301002809	1103283000029
Unclassified	JCVI PEP 1105151044139	JCVI READ 1092963141089	1103283000023
Unclassified	JCVI PEP 1105151740881	JCVI READ 1093011964696	1103283000034
Unclassified	JCVI PEP 1105151904559	JCVI READ 1092963686761	1103283000033
Unclassified	JCVI PEP 1105152888163	JCVI READ 1092343563222	1103283000030
Unclassified	JCVI PEP 1105153380005	JCVI READ 1095515642861	1103283000036
Unclassified	JCVI PEP 1105153514137	JCVI READ 1093018474546	1103283000035
Unclassified	JCVI PEP 1105153540409	JCVI READ 1095306074214	1103283000032
Unclassified	JCVI PEP 1105153564179	JCVI READ 1093018689865	1103283000024
Unclassified	JCVI PEP 1105153925155	JCVI READ 1095390067963	1103283000032
Unclassified	JCVI PEP 1105154136593	JCVI READ 1092257166906	1103283000023
Unclassified	JCVI PEP 1105154704927	JCVI READ 1093006406212	1103283000034
Unclassified	JCVI_PEP_1105155849011	JCVI_READ_1095460028921	1103283000036
Unclassified	JCVI_PEP_1105156293383	JCVI_READ_1093015402076	1103283000033
Unclassified	JCVI_PEP_1105156325957	JCVI_READ_1093010301671	1103283000034
unclassified	JCVI_PEP_1105156595841	JCVI_READ_1092963342541	1103283000023
Unclassified	JCVI_PEP_1105157731348	JCVI_READ_1093017318004	1103283000035
Unclassified	JCVI_PEP_1105158950649	JCVI_READ_1091141132490	1103283000014
Unclassified	JCVI_PEP_1105159663511	JCVI_READ_1093012156421	1103283000023
Unclassified	JCVI_PEP_1105159683031	JCVI_READ_1092959523734	1103283000036
Unclassified	JCVI_PEP_1105159771321	JCVI_READ_1093018642277	1103283000024
Unclassified	JCVI_PEP_1105160802701	JCVI_READ_1093017425997	1103283000024
Unclassified	JCVI_PEP_1105161182277	JCVI_READ_1092955185342	1103283000034
Unclassified	JCVI_PEP_1105161703519	JCVI_READ_1092955083850	1103283000018
Unclassified	JCVI_PEP_1105161868665	JCVI_READ_1093015240321	1103283000040

Unclassified	JCVI_PEP_1105162373545	JCVI_READ_1092963297298	1103283000023
Unclassified	JCVI_PEP_1105162464079	JCVI_READ_1092216073739	1103283000013
unclassified	JCVI_PEP_1105163735245	JCVI_READ_1092963069383	1103283000023
Unclassified	JCVI_PEP_1105165020927	JCVI_READ_1092351200072	1103283000032
Unclassified	JCVI_PEP_1105165753807	JCVI_READ_1093022168513	1103283000022
	Unclassified	JCVI_READ_1092955139615	

Table 3.5. Station ALOHA fosmid APKI441 annotation. Putative gene function was assigned based on the top three tblastn results against Refseq with a maximum *E*-value of $< 10^{-7}$ or an amino acid identity of > 30%. Taxonomic designations were based on the assignments of the best hits in GenBank. Genes and taxonomic affiliations not meeting the cut-off values are labelled 'n/a'; gene suites with related functions are colour-coded.

APKI441		Taxanamia Class	Ton DI AST hit Ordon
fosmid	Putative gene designation	designation	10p BLAS1 III Order
gene number		designation	designation
1	Transthyretin-like protein	Alpha proteobacteria	Roseobacter
2	dmdA	Alpha proteobacteria	P. torquis contaminant
3	Major Facilitator Superfamily (MFS) transporter	Gamma proteobacteria	Pseudomonadales
4	Glycerophosphoryl diester phosphodiesterase	Alpha proteobacteria	Rhodospiralles
5	Threonine dehydratase	Alpha proteobacteria	Roseobacter
6	Nitroreductase	Gamma proteobacteria	Oceanospirillales
7	MFS transporter	Alpha proteobacteria	Rhizobiales
8	Multi-drug and toxin efflux (MATE) family protein	Alpha proteobacteria	Roseobacter
9	NADPH-dependent FMN reductase	Alpha proteobacteria	Rhizobiales
10	n/a	n/a	
11	n/a	n/a	
12	Predicted deacylase	Gamma proteobacteria	Oceanospirillales
13	Peptidase family M20	Actinobacteria	Actinomycetales
14	GntR family transcriptional regulator	Alpha proteobacteria	Roseobacter
15	Alkylphosphonate utilization protein, PhnG	Alpha proteobacteria	Roseobacter
16	Alkylphosphonate utilization protein, PhnH	Alpha proteobacteria	Roseobacter
17	Alkylphosphonate utilization protein, PhnI	Alpha proteobacteria	Roseobacter
18	Alkylphosphonate utilization protein, PhnJ	Alpha proteobacteria	Rhizobiales
19	n/a	n/a	
20	ABC-type phosphonate transport system	Beta proteobacteria	Burkholderiales
21	Alkylphosphonate utilization protein, PhnL	Alpha proteobacteria	Roseobacter
22	Putative alkylphosphonate utilization protein, PhnN	Alpha proteobacteria	Roseobacter
23	n/a	n/a	
24	Alkylphosphonate utilization protein PhnM	Alpha proteobacteria	Roseobacter
25	Hypothetical protein	Alpha proteobacteria	Roseobacter
26	n/a	n/a	

27	Cytochrome C biogenesis protein, CycL	Alpha proteobacteria	Rhizobiales
28	Probable thiol-disulfide interchange protein, CycY	Alpha proteobacteria	Roseobacter
29	Cytochrome C biogenesis protein, CcmF	Alpha proteobacteria	Rhodobacterales
30	Aminomethyl transferase family protein	Alpha proteobacteria	SAR11
31	Aldehyde dehydrogenase family protein	Alpha proteobacteria	Rhizobiales
32	Probable alcohol dehydrogenase protein	Alpha proteobacteria	Rhizobiales
33	Glycine betaine/proline ABC transporter, permease protein	Alpha proteobacteria	Roseobacter
34	Glycine betaine/proline ABC transporter, ATP-binding protein	Alpha proteobacteria	Rhizobiales
35	Glycine betaine/proline ABC transporter, ATP-binding protein	Alpha proteobacteria	Rhizobiales
36	Glycine betaine/proline ABC transporter, periplasmic substrate-binding protein	Alpha proteobacteria	P. torquis contaminant

Table 3.6. Third-position G+C content of *dmdA* and flanking genes in the (2007) GOS

	Flanking	DmdA Outholog	Flanking
	Upstream Gene	DinuA Ortholog	Downstream Gene
Clade A ^a	37 (15)	41 (17)	39 (14)
Clade B ^b	42 (9)	41 (14)	42 (14)
Clade C ^c	29 (15)	26 (14)	29 (16)
Clade D ^d	18 (4)	19 (4)	21 (7)
Clade E ^e	37 (23)	49 (13)	60 (5)
Combined Clades	20 (9)	22 (11)	23 (10)

metagenome. Standard deviations are indicated in parentheses.

^a9 upstream flanking genes, 102 *dmdA*s, and 11 downstream flanking genes were analyzed ^b7 upstream flanking genes, 48 *dmdA*s, and 2 downstream flanking genes were analyzed

^c29 upstream flanking genes, 263 *dmdAs*, and 27 downstream flanking genes were analyzed

^d175 upstream flanking genes, 1202 *dmdA*s, and 138 downstream flanking genes were analyzed

^e7 upstream flanking genes, 11 dmdAs, and 2 downstream flanking genes were analyzed

Table 3.7. (2007) GOS *dddD* homologue PEP numbers and corresponding nucleotide read numbers, template reads and sampling sites of origin. The PEP file number, nucleotide read number, template number, and GOS site of origin and sample number, are given for the six identified *dddD* homologues.

Site Name	Sample Number	JCVI Read Number	JCVI Pep Read	JCVI Template ID
Bedford Basin, Nova Scotia	11	JCVI_READ_1091143402062	JCVI_PEP_1105118567433	JCVI_TMPL_1061000885712
Bedford Basin, Nova Scotia	11	JCVI_READ_1091145541951	JCVI_PEP_1105084285279	JCVI_TMPL_1061000895474
Northern Gulf of Maine	13	JCVI_READ_1092215112293	JCVI_PEP_1105087226519	JCVI_TMPL_1061001073648
Northern Gulf of Maine	13	JCVI_READ_1092216036910	JCVI_PEP_1105091573349	JCVI_TMPL_1061001047376
Upwelling Fernandina Island	36	JCVI_READ_1092960119971	JCVI_PEP_1105095435951	JCVI_TMPL_1061001976019
Mangrove on Isabela Island	37	JCVI_READ_1095516121784	JCVI_PEP_1105158175175	JCVI_TMPL_1061005983305

Table 3.8. (2007) GOS *dddL* homologue PEP numbers and corresponding nucleotide read numbers, template reads and sampling sites of origin. The PEP file number, nucleotide read number, template number, and GOS site of origin and sample number, are given for the 42 identified *dddL* homologues.

Sample	Site ID				
Site	Number	Site name	JCVI PEP NUMBER	JCVI READ NUMBER	TEMPLATE NUMBER
		Punta Cormorant,			
		Hypersaline Lagoon,			
38	33	Floreana Island	JCVI_PEP_1105082911943	JCVI_READ_1093016362621	JCVI_TMPL_1061002641879
		Punta Cormorant,			
		Hypersaline Lagoon,			
38	33	Floreana Island	JCVI_PEP_1105157506832	JCVI_READ_1093017112988	JCVI_TMPL_1061002617164
		Punta Cormorant,			
		Hypersaline Lagoon,			
38	33	Floreana Island	JCVI_PEP_1105092049537	JCVI_READ_1095522289323	JCVI_TMPL_1061006161091
		Punta Cormorant,			
	~~	Hypersaline Lagoon,			
38	33	Floreana Island	JCVI_PEP_1105083820790	JCVI_READ_1095527052398	JCVI_TMPL_1061006178661
		Punta Cormorant,			
20	22	Hypersaline Lagoon,		1011 DEAD 1000015100050	
38	33	Floreana Island	JCVI_PEP_1105144753569	JCVI_READ_1093017122050	JCVI_TMPL_1061002603081
		Punta Cormorant,			
20	22	Hypersaline Lagoon,	ICVI DED 1105100047500	ICVI DEAD 1002207200122	ICVI TMDL 10(1001(25022
38	33	Floreana Island	JCVI_PEP_1105109847599	JCVI_READ_1092397200132	JCVI_IMPL_1061001625022
		Punta Cormorant,			
20	22	Florence Lagoon,	ICVI DED 1105160721220	ICVI DEAD 1005521484064	ICVI TMDI 1061006002847
20	33	Pupta Cormorant	JCv1_PEP_1103100/21229	JC VI_KEAD_1093321484904	JC v1_1WPL_1001000093847
		Fund Connorant, Hyperceline Lagoon			
38	22	Floreana Island	ICVI PEP 1105103318705	ICVI READ 1005516165132	ICVI TMDI 1061005070858
50	55	Punta Cormorant	JC VI_IEI_II05105518705	JC VI_KEAD_10/5510105152	JC V1_1101 L_1001003970838
		Hypersaline Lagoon			
38	33	Floreana Island	ICVI PEP 1105146207143	ICVI READ 1095516177535	ICVI_TMPL_1061006012987
50	55	Punta Cormorant			
		Hypersaline Lagoon			
38	33	Floreana Island	JCVI PEP 1105089204191	JCVI READ 1092344322040	JCVI TMPL 1061001535308
38	33	Punta Cormorant	JCVI PEP 1105139343023	JCVI READ 1095527004563	JCVI TMPL 1061006212394

Floreana Island Punta Cormorant	
Hypersaline Lagoon	
38 33 Floreana Island ICVI PEP 1105130253769 ICVI READ 1095522286769 ICVI	TMPL 1061006174678
Punta Cormorant.	
Hypersaline Lagoon,	
38 33 Floreana Island JCVI PEP 1105123223729 JCVI READ 1092405883574 JCVI	TMPL 1061001530642
Punta Cormorant,	
Hypersaline Lagoon,	
38 33 Floreana Island JCVI_PEP_1105078443808 JCVI_READ_1095521066275 JCVI_	_TMPL_1061006007212
Punta Cormorant,	
Hypersaline Lagoon,	
38 33 Floreana Island JCVI_PEP_1105114644413 JCVI_READ_1093018143536 JCVI_	_TMPL_1061002718298
Punta Cormorant,	
Hypersaline Lagoon, 28 22 Eloroppe Island ICVI DED 1105110271167 ICVI DEAD 1005516028206 ICVI	TMDI 1061005001776
56 55 FIORealia Islalid JCVI_FEF_11051105/1107 JCVI_KEAD_1095510056290 JCVI_ Dunta Cormorant	_11VIFL_1001003991770
Hypersaline Lagoon	
38 33 Floreana Island JCVI PEP 1105131501811 JCVI READ 1093015904678 JCVI	TMPL 1061002608884
Punta Cormorant.	
Hypersaline Lagoon,	
38 33 Floreana Island JCVI_PEP_1105160401587 JCVI_READ_1095526056992 JCVI_	_TMPL_1061006224849
Punta Cormorant,	
Hypersaline Lagoon,	
38 33 Floreana Island JCVI_PEP_1105121779845 JCVI_READ_1095526032239 JCVI_	_TMPL_1061006201699
Punta Cormorant,	
Hypersaline Lagoon,	TN() (10(100)7 0(00)
38 33 Floreana Island JCVI_PEP_1105111302897 JCVI_READ_1095521696814 JCVI_ Dunte Commenter	_IMPL_1061005979600
Punta Cormorant, Hymerseline Lagoon	
38 33 Eloreana Island ICVI PEP 1105133187797 ICVI READ 1005521/363/6 ICVI	TMPI 1061006124005
38 33 Punta Cormorant JCVI PEP 1105159167797 JCVI READ 1093017217978 JCVI	TMPL 1061002710605

		Hypersaline Lagoon, Floreana Island
		Punta Cormorant,
•		Hypersaline Lagoon,
38	33	Floreana Island JCVI_PEP_1105142141135 JCVI_READ_1095521469546 JCVI_TMPL_1061006127788
		Punta Cormorant,
20	22	Hypersaline Lagoon, Elemente Island ICVI DED 1105086002015 ICVI DEAD 1005521600228 ICVI TMDI 1061006125581
30	33	Pioteana Island JCVI_PEP_1105080005015 JCVI_KEAD_1095521099528 JCVI_1WPL_1001000125581
		Funda Connorant, Hymersolino Lagoon
38	33	Floreana Island ICVI PEP 1105145273421 ICVI READ 1092403995155 ICVI TMPI 1061001620650
50	55	Punta Cormorant
		Hypersaline Lagoon
38	33	Floreana Island JCVI PEP 1105153463541 JCVI READ 1093016363183 JCVI TMPL 1061002609571
		Punta Cormorant,
		Hypersaline Lagoon,
38	33	Floreana Island JCVI_PEP_1105157446906 JCVI_READ_1095522167819 JCVI_TMPL_1061006125073
		Punta Cormorant,
		Hypersaline Lagoon,
38	33	Floreana Island JCVI_PEP_1105089224985 JCVI_READ_1093017023071 JCVI_TMPL_1061002606539
		Punta Cormorant,
20	22	Hypersaline Lagoon,
38	33	Floreana Island JCVI_PEP_1105140088201 JCVI_READ_1095522061243 JCVI_1MPL_1061006022058
		Punta Cormorant, Humarsalina Lagoon
38	33	Eloreana Island ICVI DED 1105088303641 ICVI READ 1003018020224 ICVI TMDI 1061002641870
50	55	Punta Cormorant
		Hypersaline Lagoon
38	33	Floreana Island JCVI PEP 1105093483243 JCVI READ 1092343779643 JCVI TMPL 1061001534316
20		Punta Cormorant.
		Hypersaline Lagoon,
38	33	Floreana Island JCVI_PEP_1105125182909 JCVI_READ_1095462342154 JCVI_TMPL_1061006102742
38	33	Punta Cormorant, JCVI PEP 1105085430841 JCVI READ 1095522075135 JCVI TMPL 1061006080729

		Hypersaline Lagoon, Floreana Island Punta Cormorant
		Hypersaline Lagoon,
38	33	Floreana Island JCVI_PEP_1105081741457 JCVI_READ_1093017276027 JCVI_TMPL_1061002660197
		Punta Cormorant,
		Hypersaline Lagoon,
38	33	Floreana Island JCVI_PEP_1105162579259 JCVI_READ_1095527039446 JCVI_TMPL_1061006219832
		Punta Cormorant,
• •		Hypersaline Lagoon,
38	33	Floreana Island JCVI_PEP_1105150899145 JCVI_READ_1093018267080 JCVI_TMPL_1061002711030
		Punta Cormorant,
20	22	Hypersaline Lagoon,
38	33	Floreana Island JCVI_PEP_1105109490407 JCVI_READ_1092402566235 JCVI_1MPL_1061001627532
		Punta Cormorant,
20	22	Elerand Labord ICVI DED 1105005674882 ICVI DEAD 1005527060202 ICVI TMDI 1061006215506
30	33	Fioreana Island JCV1_FEF_1105095074885 JCV1_KEAD_1095527009292 JCV1_1WFL_1001000215500
		Hypersaline Lagoon
38	33	Floreana Island ICVI PEP 1105130920897 ICVI READ 1093018084238 ICVI TMPL 1061002600970
50	55	Punta Cormorant
		Hypersaline Lagoon.
38	33	Floreana Island JCVI PEP 1105114934121 JCVI READ 1093017014668 JCVI TMPL 1061002619782
		Punta Cormorant,
		Hypersaline Lagoon,
38	33	Floreana Island JCVI_PEP_1105136170691 JCVI_READ_1095516148060 JCVI_TMPL_1061005979362
		Punta Cormorant,
		Hypersaline Lagoon,
38	33	Floreana Island JCVI PEP 1105081646699 JCVI READ 1095522123195 JCVI TMPL 1061006014154