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Abstract

Monte Carlo and spin dynamics techniques have been used to perform large-scale simu-

lations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a

simple cubic lattice. Systems are of size L × L × D with linear sizes L 6 40 and D 6 40

at a temperature below the Néel temperature. Nanoparticles are modeled with completely

free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free-

surfaces in the spatial z-direction and periodic boundaries parallel to the surfaces in the

x-,y-directions. Results are compared to those for the “infinite”system with fully periodic

boundary conditions. The temporal evolutions of spin configurations were determined numer-

ically from coupled equations of motion for individual spins using a fast spin dynamics

algorithm based on the fourth-order Suzuki-Trotter decomposition of exponential operators,

with initial spin configurations generated by Monte Carlo simulations. The local dynamic

structure factor S(r0,q, ω) was calculated from the local space- and time-displaced spin-spin

correlation function, where r0 denotes the starting point from which the correlation func-

tion is calculated. Multiple excitation peaks for wave vectors within the first Brillouin zone

appear in the spin-wave spectra for the transverse component of the dynamic structure factor

ST (r0,q, ω) in the classical Heisenberg antiferromagnetic nanofilms and nanoparticles, which



are lacking if periodic boundary conditions are used. With the assumption of q-space spin-

wave reflection with broken momentum conservation due to free-surface confinements, we

successfully explained the locations of those excitations quantitatively in the linear disper-

sion region. Meanwhile, we also observed two novel quantized spin-wave excitation modes

in the spatial z-direction in nanofilms for ST (r0,q, ω). Results of this study indicate the

presence of new forms of spin-wave excitation behavior which have yet to be observed exper-

imentally but could be directly tested through neutron scattering experiments on nanoscale

RbMnF3 particles or films.

Index words: spin waves, correlation function, dynamic structure factor, neutron
scattering experiment, dispersion relationship, Hybrid Monte Carlo,
spin dynamics, Suzuki-Trotter decomposition, antiferromagnetic,
nanostructure, classical Heisenberg model, completely free boundary
conditions, partially free boundary conditions
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Chapter 1

Introduction

Magnetism is one of the oldest phenomena in solid state physics, but nevertheless still far

from being fully understood, although there have been extensive experimental and theoretical

studies of this phenomenon.

The equilibrium magnetic system has been the most investigated magnetic system, in

which both static and dynamic magnetic properties of magnetism are studied. As one of the

principal static magnetic properties, the magnetic ordering has been the most widely studied

property since the turn of the century before last, when Curie [1] in 1895 and Weiss [2, 3] in

1904 and 1907 laid down the experimental and theoretical foundations for the quantitative

study of static properties of magnetic system. They introduced the Curie-Weiss law which

describes the dependence of magnetization on temperature in paramagnets, and which later

was generalized to describe the phenomenon of ferromagnetism. As its name suggests, mag-

netic ordering introduces a regular ordered magnetic structure in many crystals; This means

that in the absence of an external field the mean magnetic moment of at least one atom

in each unit cell of the crystal is non-zero. Ferromagnetism is the most well known form

of magnetic ordering. In addition to ferromagnetism, other types of spontaneous magnetic

ordering of magnetic moments including antiferromagnetism and ferrimagnetism [4] were

discovered in the middle of the century before last. In ferromagnets, the simplest type of

magnetically ordered crystals, such as Fe, Ni, and Co, the mean magnetic moments of all

the atoms have the same orientation provided that the temperature of the ferromagnet does

not exceed a critical value, i.e., Curie temperature Tc. For this reason, ferromagnets have

spontaneous magnetic moments, i.e., non-zero macroscopic magnetic moments, even in the

1



2

absence of an external field. In antiferromagnets such as carbonates, anhydrous sulphates,

oxides and fluorides of the transition metals (Mn, Ni, Co, Rb and Fe), the mean atomic

magnetic moments compensate each other within each unit cell in zero external magnetic

field. In other words, an antiferromagnet consists of a set of antiparallel magnetic sublattices,

each of which has a non-zero mean magnetic moment. This type of magnetic ordering occurs

if the temperature of the antiferromagnet is lower than a critical temperature, known as the

Néel temperature TN . As for ferrimagnetism, another type of magnetic ordering, there exists

a number of antiparallel magnetic sublattices whose magnetic moments are uncompensated

in contrast to antiferromagnetism. Thus, ferrites exhibit spontaneous net magnetic moments

even though there is no external field. Examples of this type magnetic crystal are compounds

of transition metals, such as the salts MnO·Fe2O3 and 3Y2O3·5Fe2O3.

As the temperature approaches the critical temperature, independent of the form of the

magnetic ordering, usually a second order phase transition occurs between the ordered phase

and the paramagnetic phase. The static critical behavior at the critical temperature is mani-

fested by divergent correlation length and some thermodynamic quantities, e.g. specific heat

Cυ and magnetic susceptibility χm, according to power laws with a set of constant indices

known as static critical exponents, e.g., α, β, γ, which describe the behavior of thermo-

dynamic quantities near continuous phase transitions. It is a remarkable fact that phase

transitions arising in different physical systems often possess the same set of static critical

exponents. This phenomenon is known as universality. Based on the universality of static

critical exponents, the principle of universality [5] was developed in 1967. This theory states

that physical systems with different physics, Hamiltonian and geometries can be grouped

into “Universality Classes” with common symmetry and common static critical exponents.

Universality is a prediction of the renormalization group theory of phase transitions, which

states that the thermodynamic properties of a system near a phase transition depend only

on a small number of features, such as dimensionality and symmetry, and are insensitive to
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the underlying microscopic properties of the system. The divergence of the correlation length

is the essential point.

Other theoretical work have been done to study those static critical phenomena by intro-

ducing simple models, e.g., Ising model [6] and Heisenberg model [7]. A mean field theory was

developed by Landau [8] in 1937 to describe those static critical phenomena quantitatively,

but inaccurately, by ignoring magnetic fluctuations which become increasingly important as

the system approaches the critical region. In 1944, the first analytical work was done by

Onsager [9] by solving the 2-D Ising model exactly which provides an exact mathematical

description of a second order transition. Further theoretical work on static critical phe-

nomena, on models for which no exact solution is possible, have been carried out by using

numerical series expansion techniques [5] and Monte Carlo simulations [10, 11]. With Monte

Carlo simulations, the study of static critical phenomena has been widely expanded to even

more complex physical systems [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

The magnetic order in ferromagnets and antiferromagnets is the result of correlation

between the directions of the electron spins on individual atoms. The correlation between

the directions of atomic spins in magnetically ordered crystals leads to the existence of a

particular type of collective mode in such crystals. To understand the origin of these modes

consider to begin with a isotropic ferromagnet at T = 0. All the atomic magnetic moments

then have the same direction which corresponds to minimum energy of the ferromagnet. Let

us now deflect the magnetic moment of a particular atom and let go. This change of direction

will not remain localized at the original atom, but owing to the presence of the correlation

between spins, it will be propagated through the crystal in the form of a mode of wave

motion. Such waves are called as spin waves which give rise to dynamic magnetic properties

of magnetism in the crystal. Spin waves were theoretically discovered by Bloch [23] in 1930,

and were first observed through the inelastic neutron scattering experiment developed by

Brockhouse [24] in 1960. In this experiment, the energy loss of a beam of neutrons that

excite a spin wave is measured, typically as a function of scattering vector (or equivalently
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momentum transfer), temperature and external magnetic field. Inelastic neutron scattering

measurements can determine the dynamic structure factor S(q, ω), which is the Fourier

transform of the space- and time-displaced spin-spin correlation function, and the dispersion

curve for spin waves, which defines a characteristic dependence of the frequency on the wave

vector, i.e., dispersion relationship.

The theoretical study of the dynamic magnetic properties of magnetism has been carried

out in three thermodynamic regimes: the hydrodynamic regime with T < Tc and qξ ≪ 1,

the critical regime with T ∼ Tc and qξ ≫ 1 and the high temperature regime with T > Tc

and qξ ≪ 1, where q is the wave vector of spin wave and ξ is the correlation length, which

diverged as temperature approached the critical temperature Tc.

The linear spin-wave theory, which describes the collective mode of magnetic moments

of atoms at the limit of zero temperature, is the simplest low-temperature approximation

for the Heisenberg model. This theory describes the dynamic magnetic properties of low-

temperature magnetism in terms of a dispersion curve expressing the spin-wave excitation

energy frequency ω as a function of the wave vector q. A general theory of spin-wave inter-

action at the low temperature limit was developed by Dyson [25, 26] in 1956. In this theory,

a temperature dependence of T 3/2 for the dispersion curve was given. In 1969, a general

hydrodynamic spin-wave theory, which is applicable for the whole hydrodynamic regime,

was developed by Halperin and Hohenberg [27] in 1969. Later, renormalization group theory

was developed and applied to study the dynamic magnetic properties in both the hydrody-

namic regime [28] and critical regime [29].

In the critical regime, the dynamic properties are defined by the phenomenon of crit-

ical slowing down, in which as the temperature approaches to Tc the relaxation time goes

to infinity, and thus the system approaches thermal equilibrium extremely slowly. This phe-

nomenon was proposed by Van Hove [30] and Landau [31] in 1954. They pointed out that the

transport or kinetic coefficient in no case can diverge as fast as the magnetic susceptibility.

Later in 1969, in their work on the theory of dynamic critical phenomena, Halperin and
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Hohenberg [32] developed quantitative scaling laws to describe this phenomenon by intro-

ducing the classification of the different dynamic universality classes in terms of a dynamic

critical exponent z, which depends on the conservation laws, lattice dimension and the static

critical exponents. According to the classification of dynamic universality classes proposed

by Hohenberg and Halperin [33] in 1977, the classical Heisenberg ferromagnet is of class J for

which the order parameter (the uniform magnetization) is conserved in the critical dynamics,

and the classical Heisenberg antiferromagnet is of class G for which the order parameter (the

staggered magnetization) is not conserved. To study the critical dynamics, spin dynamics

simulation techniques have been extensively used. The spin dynamics simulation technique

is a simulation technique to simulate the real time evolution of magnetic spin system and

further to determine the dynamic structure factor S(q, ω) at a specific temperature.

The deterministic time-dependent dynamic properties of “infinite”bulk magnetic sys-

tems with periodic boundary conditions (PBC) has been extensively studied by experi-

ments [34, 35, 36] and spin dynamics simulations [37, 38, 39, 40, 41, 42] with classical

Heisenberg models. Early simulations for the transverse component of the dynamic struc-

ture factor, ST (q, ω), on isotropic, antiferromagnetic body-centered cubic systems at tem-

peratures below the critical temperature Tc, show a single spin-wave excitation peak of finite

intensity with finite width, becoming narrow and increasing in excitation energy frequency

ω as T decreases. The behavior approaches the predictions of linear spin-wave theory, and a

diffusive central peak appears increasing in strength with increasing T at ω = 0, which is in

qualitative agreement with experiments [35, 36]. Large-scale computer simulations carried

out by Tsai, Bunker and Landau [39] on antiferromagnetic, isotropic, simple cubic systems

below Tc found that by fitting the line shape of ST (q, ω) to a Lorentzian form [28], in the

[100] direction the dispersion curves are approximately linear for wave vector within the first

Brillouin zone. For increasing T towards Tc the dispersion curve turns into a power law,

reflecting the crossover from hydrodynamics to critical behavior with the dynamic critical

exponent estimated to be z = 1.43(0.03), which is in agreement with the experimental esti-
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mate of the dynamic critical exponent z = 1.43(0.04) [36]. This estimate is slightly lower than

the theoretical predicted value [29, 32, 33, 43] of z = 1.5 for an isotropic, three-dimensional

Heisenberg antiferromagnet. With larger lattice sizes, and thus smaller values of q than pre-

vious simulations, Tsai and Landau [41] probed the asymptotic critical region in momentum

to the limit of q ∼ 0, and estimated z = 1.49(0.03), which is in good agreement with

the renormalization group theory and dynamic scaling predictions. The dynamic behavior

of the longitudinal component of the dynamic structure factor, SL(q, ω), has been studied

by Bunker and Landau [44]. For both the isotropic and anisotropic antiferromagnets, both

annihilation and creation two-spin-wave peaks are observed. The splitting of longitudinal

spin-wave peak into two spin-wave peaks with the energy separation of twice the energy gap

at the Brillouin zone center are predicted for all anisotropic antiferromagnets.

Recent developments in the field of magnetic material applications brought much atten-

tion to the static and dynamic properties of confined magnetic elements of small dimen-

sions [45]. Recent experiments [46, 47, 48] on micron-scale array elements showed quantized

and localized spin-wave excitation modes as eigen-excitations by the selection rules intro-

duced by laterally confined boundary conditions of the elements. In addition, the intrinsic

broken translational invariance caused by confinement effects in one or more directions in

those small laterally confined magnetic elements leads to a broken conservation law of corre-

sponding momentum for a spin wave [49]. The broken conservation law of momentum brings

uncertainty into the wave vector for a specific spin-wave excitation energy. This uncertainty

is reported to be inversely proportional to the confinement length [50]. Therefore, instead

of a continuous spin-wave spectrum with spin-wave excitation energy uniquely determined

by each wave vector, quantized spin-wave excitation modes, each of them observed within a

given wave-vector interval, are obtained from those experiments.

As for nanoscale magnetic systems, extensive Monte Carlo simulations have been per-

formed recently by Brown et al [51, 52] to study thermoinduced magnetization (TiM) in anti-

ferromagnetic nanoparticles. TiM is a ferromagnetic response predicted to occur in nanopar-
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ticles of normally antiferromagnetic materials, with the magnetization vanishing at T = 0

and increasing linearly with increasing temperature in the vicinity of zero point. TiM is

predicted to be an intrinsic property of the antiferromagnetic Heisenberg model below the

Néel temperature TN , and have a volume dependence as a function of both temperature and

anisotropy.

In order to gain further understanding of the dynamic properties of nanoscale magnetic

systems, in this study we carried out large-scale spin dynamics simulations of the dynamic

behavior of the nanoscale classical Heisenberg antiferromagnet on a simple cubic lattice. We

modeled nanoparticles and nanofilms with completely and partially free boundary condi-

tions, respectively. We focus mainly on the spin-wave excitation spectra for the transverse

component of the local dynamic structure factor ST (r0,q, ω) obtained in the nanoscale, clas-

sical Heisenberg isotropic antiferromagnet at a temperature below the Néel temperature but

also have results for nanoscale, anisotropic Heisenberg antiferromagnet.

The remainder of the contents is as follows: Chapter 2 contains the theoretical back-

ground and the introduction of inelastic neutron scattering experiment. First, related fun-

damental concepts of thermodynamics, statistical physics and magnetism are introduced.

Second, the theory of classical spin dynamics and the general linear spin-wave theory are dis-

cussed. Third, inelastic neutron scattering techniques and scattering function are described.

Chapter 3 presents details of the simulation techniques applied in this work, including model

and boundary condition setup, hybrid Monte Carlo methods, derivation of equations of

motion for classical spin systems, Suzuki-Trotter decomposition algorithm for the integra-

tion for solving the equations of motion, and post analysis methods. In Chapter 4, we present

and discuss our simulation results and show how conclusions are drawn. First, several static

results for nanoscale spin systems are presented. Next, dynamic results of local dynamic

structure factor for those nanoscale spin systems are presented. Chapter 5 presents conclu-

sions of our work. Appendix A and B list our data generating and analyzing programs

developed in C++ for the simulations. The Ψ −Mag Toolset (or Toolkit) [53], a secondary
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C++ template library developed by Oak Ridge National Laboratory (ORNL) for computa-

tional magnetism and serving as a prototype for a more general library for computational

material science , was utilized in this work.



Chapter 2

Experimental and Theoretical Background

2.1 Fundamental Concepts of Thermodynamics and Statistical Physics

In statistical mechanics, the partition function Z encodes the statistical properties of a

system in thermodynamic equilibrium. It is a function of temperature and other parameters,

such as the Hamiltonian of the system. Most of the aggregate thermodynamic variables of

the system, such as the internal energy, free energy, specific heat, and susceptibility, can be

expressed in terms of the partition function or its derivatives. The partition function for a

canonical ensemble is defined as [54]

Z =
∑

all states

e−βH, (2.1)

where the “inverse temperature”, β, is defined as β = 1/kBT , with kB denoting the Boltz-

mann constant, and H denoting the Hamiltonian of the system. The term e−βH is known as

the Boltzmann factor. The summation defined in Eqn.(2.1) is over all possible microstates

of the system and should be rewritten as appropriate integrals for a system with continuous

degrees of freedom, e.g., Heisenberg spin system. The partition function can be related to

thermodynamic properties because it has a very important statistical meaning. The proba-

bility Ps that the system occupies microstate s is given by

Ps = e−βH(s)/Z. (2.2)

And the free energy of a system can be determined by

F = − lnZ/β. (2.3)

9
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Other thermodynamic quantities can be calculated from the derivatives of the free energy

defined in Eqn.(2.3). The internal energy is given by

U = kBT
2∂ lnZ

∂T
. (2.4)

The equilibrium statistical expected value, or ensemble average for a thermodynamic

quantity A at a specific temperature, such as thermodynamic energy, magnetization and

specific heat, can be determined by

⟨A(T )⟩ = 1

Z

∑
s

A(s)e−βH(s), (2.5)

where ⟨. . .⟩ denotes the ensemble average and A(s) is the microscopic value of A in the s-th

state. Thus, the first moment of H, i.e. internal energy U ≡ ⟨H⟩, and its second moment

⟨H2⟩ are given by

⟨H⟩ =
∑
s

H(s)e−βH(s)/
∑
s

e−βH(s),

⟨H2⟩ =
∑
s

H2(s)e−βH(s)/
∑
s

e−βH(s). (2.6)

Therefore, we obtain the specific heat defined in terms of the fluctuations of the internal

energy as [54]

kBT
2Cν = ⟨H2⟩ − ⟨H⟩2 = ⟨(H− ⟨H⟩)2⟩NV T = ⟨(△U)2⟩NV T . (2.7)

Similar fluctuation relations also hold for many other quantities, such as the isothermal

susceptibility χ = (∂⟨M⟩/∂H)T is defined in terms of the fluctuation of the magnetization

M as

kBTχ = ⟨M2⟩ − ⟨M⟩2. (2.8)

This important equation is known as the fluctuation-response theorem [55], which shows that

the linear response of a magnet to a small magnetic field reduces to the probing of fluctuations

that are present even in the absence of the magnetic field. The larger the fluctuations, the

higher the susceptibility. In turn, the high susceptibilities indicate large fluctuations, as in

the vicinity of critical Curie point [56].
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2.2 Theory of Magnetism

2.2.1 Local Magnetic moment and the Curie-Weiss Law

The modern theory of magnetism started at the turn of the twentieth century with the

theoretical study made in understanding magnetic transitions with various theoretical

models [57]. Those models have in common the feature that they assume the magnetic

moments with fixed sizes to be localized on fixed lattice sites, and that they influence one

another through pairwise interactions with an energy that achieves its maximum value of J

when the moments are parallel or antiparallel in orientation.

Using the concept of local magnetic moment with a fixed size, Langevin [58] in 1905 firstly

explained the Curie law of magnetic susceptibility. He started with a set of atomic magnetic

moments each with a fixed magnitude m under an external magnetic field H applied in the

z direction. Thus, the statistical mean value of the magnetization is parallel to the external

field and its value per atom at a temperature T is given by

⟨mz⟩ =

∫
dΩm cos θ exp (mH cos θ/kBT )/

∫
dΩexp (mH cos θ/kBT )

= mL(x),

L(x) = ⟨cos θ⟩ = cothx− 1 = x/3− x3/45 + . . . ,

x = mH /kBT, (2.9)

where m cos θ is the z component of a magnetic moment, kB the Boltzmann constant and

the integrals are over the solid angle dΩ. L(x) is known as the Langevin function, which

gives the component parallel to H of a unit vector in the direction of the magnetization, by

definition of the angle θ, namely,

⟨mz⟩
m

= ⟨cos θ⟩ = L(mH /kBT ). (2.10)

Using an expansion form of L(x) gives the following expression for the magnetic suscep-

tibility which is inversely proportional to the temperature T , which is also known as Curie’s
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Law :

χ = N0 lim
H→0

⟨mz⟩/H = N0m
2/3kBT ≡ C/T, (2.11)

where N0 is the number of atoms in the crystal, and C is the Curie Constant.

In 1907, two years after Langevin’s theory of paramagnetism, Pierre Weiss [59] proposed

a phenomenological theory of ferromagnetism in which he assumed that the atomic magnetic

moments in solids interact with one another through a molecular field, i.e., Weiss molecular

field, proportional to the average magnetization. To approximate its effect, a molecular field

term Γ⟨mz⟩ was added to the external field in the Langevin equation Eqn.(2.9) and obtained

⟨mz⟩ = mL(y),

y = m(H + Γ⟨mz⟩)/kBT, (2.12)

Ferromagnetism is described by Eqn.(2.12) with ⟨mz⟩ > 0 for H = 0. By using the expansion

form Eqn.(2.9) of L(y), the condition for ferromagnetism is given by

T < Tc = m2Γ/3kB, (2.13)

where Tc is the Curie temperature below which ferromagnetism occurs. The susceptibility at

T > Tc is obtained from Eqn.(2.12) as

χ = C/(T − Tc), (2.14)

where C is the Curie Constant given by Eqn.(2.11). Equation (2.14) is known as the Curie-

Weiss law, which applies both for ferromagnets and for antiferromagnets. The temperature

dependence of magnetization and that of the inverse susceptibility as obtained by the Weiss

theory are shown in Figure 2.1. These forms ofM vs. T and χ−1 vs. T relations are commonly

observed in almost all ferromagnets.

The approximation approach of the Curie-Weiss law to ferromagnetism is widely known

as the mean-field theory or molecular-field theory. In this theory the exchange interaction

is replaced by an average molecular field; deviations from the average, i.e. fluctuations of
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Figure 2.1: The temperature dependence of magnetization and that of the inverse magnetic sus-
ceptibility according to the Weiss theory.

the molecular field, are ignored. Therefore, this approximation is not appropriate especially

in the paramagnetic region close to the transition temperature Tc. The observed transition

temperature to the ordered state is expected to be generally lower than predicted by the

molecular-field approximation. There have been many attempts to extend the molecular-field

theory to take account of the energy due to the spin correlations. Representative approaches

include the methods proposed by Weiss [60] in 1948, which corresponds to the Bethe approx-

imation for the order-disorder transition in binary alloys, and the constant-coupling approx-

imation [61, 62].
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2.2.2 Critical Exponents and Scaling Hypothesis

Magnetic materials generally undergo a phase transition at a critical temperature Tc, which

is accompanied by singular behavior in physics quantities such as the susceptibility and the

specific heat. The singularities are characterized by critical exponents which are universal

quantities. More modern studies of the critical region, namely the near-vicinity of the Curie

point, are based on two general assumptions, or axioms [65]. The first one is that the asymp-

totic behavior governing the approach to the critical point, i.e., the Curie temperature Tc,

of all physical quantities is a power law in |T − Tc|.

In accordance with this basic assumption, for the limit T → Tc, several critical exponents,

or critical indices, are defined. In particular, for the specific heat,

C ∼ |T − Tc|−α, (2.15)

for the spontaneous magnetization below Tc,

M ∼ |T − Tc|−β, (2.16)

and for the magnetic susceptibility,

χ ∼ |T − Tc|−γ. (2.17)

It can be proven by general thermodynamics that α and γ have the same value for both

T > Tc and T < Tc. The three exponents in the above equations, i.e. α, β, and γ, are called

“critical exponents”, and there exists a simple relation, the so-called Rushbrooke equality,

relating the exponents [54]

α+ 2β + γ = 2. (2.18)

In principle, the power laws in Eqns.(2.15 - 2.17) are based on experimental observations [63],

and are not just arbitrary assumptions.

The second basic assumption of the theories of critical exponents is known as the scaling

hypothesis. It assumes first of all that ξ, the spin correlation length, over which fluctua-

tions of the magnetization are correlated, increases and diverges at T = Tc with decreasing
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temperature towards to Tc, i.e.,

ξ ∼ |T − Tc|−ν , (2.19)

where ν is the critical exponent defining the diverging behavior of ξ in the near-vicinity of

the Curie point. It further assumes that in the critical region, the dominating temperature-

dependence of all the physical quantities of the system is only through their dependence on

ξ. If the length scale is increased by a factor, the correlation length shrinks by the same

factor. The quantity of |T − Tc| then increases according to Eqn.(2.19), and all the physical

quantities will also change by fixed power laws. However, ξ → ∞ as T → Tc, and the

scaled system can be renormalized, namely be mapped back on the original system. This

procedure is the basis of an important tool for calculating the critical exponents, known as

the renormalization group theory [64].

2.3 Theory of Classical Spin Dynamics

Spin-wave theory is a good approximation to study dynamic properties of spin systems

described by the Heisenberg Hamiltonian. Consider an excited state in a S = 1
2
spin system

in which a single spin is flipped from the complete ferromagnetic state, i.e. the ground state

in which all spins are aligned. This excited state is not an eigenstate of the Heisenberg

Hamiltonian. Due to the exchange interaction, the flipped spin is not localized and moves

around in the lattice. Thus, the eigenstate is a state in which a wave of spins is excited.

At low temperatures, states excited above the ground state can be well approximated as a

collection of independent spin waves. Such a spin-wave theory was proposed by Bloch [66] in

1930. The T 3/2 law for the decrease of the spontaneous magnetization of ferromagnets was

derived from this theory.

2.3.1 The Heisenberg Model

A key aspect of magnetic modeling is the description of individual spins. The spins may

be quantum mechanical or classical, isotropic or anisotropic. A very important model is the
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Heisenberg model. For a S = 1
2
spin system, the quantum-mechanical Heisenberg model in

terms of the quantum Heisenberg Hamiltonian is given by

H = −2
∑
i>j

JijŜi · Ŝj − gµ0µB

∑
i

Hi · Ŝi, (2.20)

where Ŝ is the spin operator closely related to Pauli matrices as Ŝ = 1
2
σ. µ0 is the vacuum

permeability and µB is the Bohr magneton. Ignoring the orbital magnetic moment contribu-

tion, g = 2.0023. Hi is the local magnetic field acting on the i-th spin. The spin in the S = 1
2

Heisenberg model has two states (↑ and ↓). Compare to the above quantum-mechanical

Heisenberg model, the classical Heisenberg model with S = ∞ has a continuum of states,

which is defined by the classical Heisenberg Hamiltonian as

H = −2
∑
i>j

JijSi · Sj − gµ0µB

∑
i

Hi · Si, (2.21)

where Si is the classical spin vector with | Si |= 1. Jij in Eqn.(2.20) and Eqn.(2.21) denotes

the coupling coefficient of exchange interaction between the i-th and j-th spins. As intro-

duced in Chapter 1, the exchange interaction comes from a purely quantum-mechanical

exchange effect which results from the fact that electrons obey Fermi-Dirac statistics. In

both quantum-mechanical and classical models, the Jij may be positive (ferromagnetism) or

negative (antiferromagnetism). The Heisenberg exchange interaction is not restricted to the

nearest neighbors (nn), although the interactions tend to rapidly decrease with an increasing

distance to the second-nearest neighbors (sn) and even more distant neighbors.

The classical Heisenberg Hamiltonian with anisotropy in this work takes the form as

H = −
∑
<i,j>

Jij(S
x
i S

x
j + Sy

i S
y
j + λSz

i S
z
j ) +D

∑
i

(Sz
i )

2, (2.22)

where Jij is the nearest-neighbor coupling coefficient of exchange interaction in the nearest-

neighbor spin pair denoted as < i, j >. λ is the exchange anisotropy and D is the single-site

anisotropy. For an isotropic system, λ = 1 and D = 0. For a uniaxial anisotropic system,

in which the spins intrinsically tend to align to z-axis, λ ≥ 1 and D > 0. For a planar
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anisotropic system, in which the spins intrinsically tend to align to xy-plane, λ ≤ 1 and

D < 0. Figure 2.2 shows three energy landscapes for isotropic, uniaxial anisotropic, and

planar anisotropic systems, respectively.

Figure 2.2: Anisotropy-energy landscapes: isotropic (λ = 1 and D = 0) landscape with an energy
uniformity in all spatial orientations (left); uniaxial anisotropic (λ ≥ 1 and D > 0) landscape with
an easy axis along the z-axis (middle); planar anisotropic (λ ≤ 1 and D < 0) landscape with an
easy plane in the xy-plane.

2.3.2 Equations of Motion for the Spin Dynamics

The Heisenberg model has true dynamics with the real time evolution of spins governed by

the equations of motion (EOM). The general recipe of spin dynamics is to generate initial

spin states drawn from a canonical ensemble using Monte Carlo methods, and to use these

as starting states for the integration of the coupled equations of motion. The SD method has

been effective for the study of the dynamic properties of Heisenberg ferromagnets [37, 42]

and antiferromagnets [38, 40, 41, 39].

The equations of motion can be derived from the quantum-mechanical commutator

dŜi

dt
= − i

~
[Ŝi,H]. (2.23)

As an example, we can consider the Heisenberg Hamiltonian defined in Eqn.(2.22) for the

quantum-mechanical isotropic case, i.e., H = −
∑

<j,k> JjkŜj · Ŝk. The x-component of the
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commutator given in Eqn.(2.23) is[
Ŝx
i ,−

∑
<j,k>

Jjk(Ŝ
x
j Ŝ

x
k + Ŝy

j Ŝ
y
k + Ŝz

j Ŝ
z
k)

]
=

[
Ŝx
i ,−

∑
<j,k>

JjkŜ
x
j Ŝ

x
k

]
+

[
Ŝx
i ,−

∑
<j,k>

JjkŜ
y
j Ŝ

y
k

]
+

[
Ŝx
i ,−

∑
<j,k>

JjkŜ
z
j Ŝ

z
k

]
= 0 +

[
Ŝx
i ,−

∑
<j,k>

JjkŜ
y
j Ŝ

y
k

]
+

[
Ŝx
i ,−

∑
<j,k>

JjkŜ
z
j Ŝ

z
k

]
=

[
Ŝx
i ,−

∑
<j,k>

JjkŜ
y
j Ŝ

y
k

]
+

[
Ŝx
i ,−

∑
<j,k>

JjkŜ
z
j Ŝ

z
k

]
= −

∑
k

JikŜ
y
k

[
Ŝx
i , Ŝ

y
i

]
−
∑
k

JikŜ
z
k

[
Ŝx
i , Ŝ

z
i

]
= −i

∑
k

JikŜ
y
k Ŝ

z
i + i

∑
k

JikŜ
z
kŜ

y
i

= −i
∑
k

Jik(Ŝ
y
k Ŝ

z
i − Ŝz

kŜ
y
i )

= i(Ĥeff
i × Ŝi)x, (2.24)

where Ĥeff
i is an effective field acting on Ŝi defined as

Ĥeff
i ≡ −2

∑
j

JijŜj, (2.25)

where the factor 2 comes from the fact that Jij is just half of the actual bonding energy

between Ŝi and Ŝj according to Eqn.(2.22). Combining Eqn.(2.23) and Eqn.(2.24), we obtain

dŜi

dt
=

1

~
Ĥeff

i × Ŝi. (2.26)

Let S → ∞ and normalize the length of spin to unity, we obtain the classical equation of

motion as

dSi

dt
=

1

~
Heff

i × Si. (2.27)

where S is a classical spin vector with unit length. In numerical operations, ~ is usually taken

as 1 to reduce units.

Although the Eqn.(2.27) is derived for an isotropic Heisenberg Hamiltonian, it is also

valid for the general Hamiltonian form defined in Eqn.(2.22).
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2.3.3 Linear Spin-Wave Theory

At the temperature limit T → 0, spins deviate slightly from the ground state of complete

ordering and form an excitation of very low energy. The elementary excitations are in the

form of linear spin waves with an infinite lifetime. As a result of infinite lifetime, the dynamic

structure factor for a linear spin wave is a delta function at the value of ω(q) defined by the

dispersion curve.

Kittel [4] gave a classical description of the linear spin-wave dispersion relationship for

one- and three-dimensional ferromagnets on simple cubic lattices with nearest-neighbor inter-

actions. Ashcroft and Mermin [68] took a quantum-mechanical approach considering arbi-

trary exchange interaction range to get the dispersion relation. Here we will not show the

details of their work on the linear spin-wave calculations.

At the long wavelength limit q → 0, independent of lattice structure and direction in

q-space, the dispersion relation for isotropic ferromagnets is quadratic as

ω = D(0)q2, (2.28)

and the dispersion relation for isotropic antiferromagnets is linear as

ω = D(0)q, (2.29)

where D(0) is the spin-wave stiffness coefficient at zero temperature, defined as

D(0) = 2JSa2, (2.30)

where J is the nearest-neighbor exchange interaction coefficient, S is the spin length, and

a is the lattice parameter. The dispersion curve in the [100], [110] and [111] directions in

q-space are shown as a summary in Table 2.1 for simple-cubic (SC) isotropic ferromagnetic

and antiferromagnetic systems.



20

Table 2.1: Linear spin-wave dispersion curve for the simple-cubic isotropic ferromagnet and anti-
ferromagnet with the nearest-neighbor only interactions

Simple-cubic Ferromagnet Antiferromagnet

[100] 4J sin2( qa2 ) J
√
2
[
9− 8 cos(qa)− cos(2qa)

]

[110] 8J sin2( qa2 ) 2J
√

2
[
3− 2 cos(qa)− cos(2qa)

]

[111] 12J sin2( qa2 ) 6J sin(qa)

From the linear spin-wave theory, Bloch [66, 67] obtained the so called Bloch T 3/2 law

for general interaction range. This law stats that at low temperature the spontaneous mag-

netization should deviate from its saturation value by an amount proportional to T 3/2, i.e.,

M(T ) = M(0)

[
1−BT 3/2 +O(T 5/2)

]
. (2.31)

Bloch T 3/2 law has been well confirmed by the experiment [69] in1964.

For a quantum-mechanical spin system, the temperature dependence of the spin-wave

stiffness [26] in the low temperature limit is given by

D(T ) = D(0)(1− AT 5/2). (2.32)

The zeroth order approximation, which is approached at the low temperature limit, for

both a quantum-mechanical and a classical spin system is

D(T ) = D(0)M =

 D(0)(1− AT 3/2), for spin− 1
2

D(0)(1− AT ), for spin−∞
(2.33)

where M is the order parameter, either uniform magnetization or staggered magnetization.

Since the temperature dependence of magnetization varies from ∼ (1−AT 3/2) for spin-1
2
to
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∼ (1−AT ) for spin-∞, we can see there is a breakdown at the low temperature limit where

the quantum fluctuation effect becomes increasingly important.

2.4 Dynamic Structure factor

The magnetism of materials originates from the magnetic moment of electrons, which are

either itinerant or localized. The electron has a characteristic angular momentum ~s associ-

ated with its spin degree of freedom, and has spin magnetic moment as

us = −gµBs, (2.34)

where µB is the Bohr magneton; g is called the g-value and the magnitude for free electron

is g = 2.0023.

In addition to the spin magnetic moment, the electron also has the orbital magnetic

moment as

uo = − e

2mc
(r× p) = −µBl, (2.35)

which arise from the orbital motion of the electron. r is the position vector of the electron;

p is the momentum and l is the angular momentum divided by ~.

The atomic nuclei in materials also have magnetic moments. Similar to Eqn.(2.34), the

magnetic moment of a nucleus with nuclear spin I is

uN = −gNµNI, (2.36)

where µN is called the nuclear magneton with the magnitude of µN = µB/1836; gN is a

quantity corresponding to the g-value and is of order of unity.

In most cases, the orbital contribution is negligibly small, and the magnetic moments of

atomic nuclei can also be ignored compared with those of electrons. The “magnetic”electrons,

either itinerant or localized, reside in partly occupied energy bands, which are often the

highest occupied energy states in solid. Thus, those electrons also contribute to the binding

energy and bulk thermodynamic properties of the solid. An understanding of the origin of
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electron magnetic behavior is not only significant for the understanding of magnetism itself,

but also important for the understanding of other fundamental solid state properties.

For most materials, the dynamic properties of the magnetism are defined by the time

dependence of the site energies and the spin orientations. These can be uniquely determined

in terms of pair correlation function.

To illustrate the quantitative relation between the dynamic structure factor and the

correlation function, we define the space- and time-displaced spin-spin correlation function

Ck(r− r′, t) for a periodic lattice as

Ck(r− r′, t) = ⟨Sk
r (t)S

k
r′(0)⟩ − ⟨Sk

r (t)⟩⟨Sk
r′(0)⟩, (2.37)

where ⟨. . .⟩ denotes the ensemble average; k = x, y or z; Sk
r (t) stands for the k component

of a spin at the lattice site r and time t. For a system with periodic boundary conditions

the second term in Eqn.(2.37) gives a constant term of M2 and can be dropped in a Fourier

transformation to get the dynamic structure factor Sk(q, ω), which is defined by

Sk(q, ω) =
1

N

∑
r,r′

eiq·(r−r′)

∫ +∞

−∞
e−iωtCk(r− r′, t)

dt√
2π

=
1

N

∑
r,r′

eiq·(r−r′)

∫ +∞

−∞
e−iωt⟨Sk

r (t)S
k
r′(0)⟩

dt√
2π

, (2.38)

where N is the total number of spins in a lattice. The factor 1/N comes from the discrete

space Fourier transform and it ensures the inverse space Fourier transform of Sk(q, t) recovers

Ck(r− r′, t), i.e., ∑
q

eiq·(r−r′)Sk(q, t)

=
∑
q

eiq·(r−r′)

(
1

N

∑
r1,r′1

Ck(r1 − r′1, t)e
iq·(r1−r′1)

)
=

1

N

∑
r1,r′1

Ck(r1 − r′1, t)
∑
q

eiq·((r1−r′1)−(r−r′))

=
1

N

∑
r1,r′1

Ck(r1 − r′1, t)Nδr1−r′1,r−r′

= Ck(r− r′, t). (2.39)
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2.5 Inelastic Neutron Magnetic Scattering Experiment

Inelastic neutron scattering is an experimental technique commonly used in condensed matter

research to study atomic and molecular motion as well as magnetic and crystal field excita-

tions. It distinguishes itself from other neutron scattering techniques by resolving the change

in kinetic energy that occurs when the collision between neutrons and the sample is an

inelastic one. Results are generally obtained as the dynamic structure factor S(q, ω), some-

times also as the dynamic magnetic susceptibility χ(q, ω). The dynamic structure factor is

related to the dynamic magnetic susceptibility χ(q, ω) by [70]

S(q, ω) = I
[
χ(q, ω)

]
, (2.40)

where I
[
. . .

]
denotes taking the imaginary part, the scattering vector q is the difference

between incoming and outgoing wave vector, and ~ω is the energy change experienced by the

sample. The scattering results of the dynamic structure factor S(q, ω) and the dynamic mag-

netic susceptibility χ(q, ω) can be plotted as functions of ω, which can often be interpreted

in the same way as the spectra obtained by conventional spectroscopic techniques.

2.5.1 Properties of Neutrons

Thermal neutrons, which are free neutrons that are Boltzmann distributed with kBT =

0.0253eV ∼ 300K at room temperature [71], have been used in the inelastic neutron scat-

tering experiment to explore many important features of condensed matter, especially the

dynamic magnetic properties, due to their intrinsic properties. In many substances, thermal

neutrons have a much larger effective cross-section than faster neutrons, and can therefore

be absorbed more easily by any atomic nuclei that they collide with. The neutron is a sub-

atomic particle with a mass of ∼ 1.675 × 10−27kg, zero net electric charge, a spin angular

momentum of ~/2 and a magnetic moment of 1.913µN (µN = µB/1836) [72].

First, as a result of their mass, thermal neutrons have a de Broglie wavelength of ∼ 1.81Å,

which is of the order of magnitude of the interatomic spacing in most solids. Thus, the
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interference effects between the incoming neutrons and the scattering sample will yield inner

structural information of the scattering materials.

Second, the neutron has zero net electronic charge. This enables a neutron to penetrate

deeply into the target sample with the penetrating depth 10 cm, which is much larger than

those of low energy electrons (∼ 10 − 1000 Å), low energy photons (∼ 1000 − 5000 Å) and

X-rays (∼ 1 − 5mm). The lack of charge also means that neutrons are unaffected by the

Coulomb barrier, which allows neutrons to come close to the nuclei, and then be directly

scattered off of the nuclei. This property makes the neutron a perfect probe of lattice structure

and dynamic phonon or magnon excitations.

Third, the energy of the thermal neutron is of the same order as that of most magnetic

excitations in condensed matter. When the neutron is inelastically scattered by the creation

or annihilation of an excitation, the energy change of the neutron is a large portion of its

initial energy. Thus, measurement of the change in the energy of the neutron provides an

accurate method to obtain information about the energy excitation spectra. In a real scat-

tering experiment, the key experimental variables are the change in the neutron energy and

the associated change in the wave vector. We denote the transfer of energy and momentum

to the target sample by ~ω and ~q, respectively. In the rest of this document, we drop ~ in

our discussions for simplicity, i.e., ω represents both the excitation frequency and the energy

transfer; q represents both the wave vector and the momentum transfer.

Last, neutrons are fermions with spin ~
2
. Their spin magnetic moments interact with

those of the unpaired electrons in a material. It is through this interaction that the mag-

netic properties of a material can be probed. In the inelastic scattering experiment, not

only the energies of magnetic excitations, but also the space- and time-dependent spin-spin

correlations can be investigated.
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2.5.2 Inelastic Neutron Scattering

In an inelastic neutron scattering experiment both the momentum and the energy transfer

between the neutron and the sample are determined. What is actually measured in a magnetic

scattering experiment is the partial differential cross-section [73] defined as(
d2σ

dΩdE

)
αβ

=
Nαβ(θ, ϕ)

ΦαdΩdE
, (2.41)

where α and β = x, y, or z. Nαβ is the number of neutrons with incident polarization α and

scattered polarization β scattered into differential solid angle dΩ in the direction of (θ, ϕ)

with final energy between E and E+dE. Φα is the flux of incident neutrons with polarization

α. By using Fermi’s Golden rule and the first Born approximation [73, 74, 75], we obtain

the cross-section as

d2σ

dΩdE
=

k′

k

(
mn

2π~2

)2 ∑
λσ

pλσ
∑
λ′σ′

∣∣⟨k′σ′λ′∣∣V̂ ∣∣kσλ⟩∣∣2δ(Eλ′ − Eλ − ~ω)δ(k′ − k− q), (2.42)

where k is the magnitude of momentum, mn is the mass of the neutron, pλσ is the probability

of the state λσ to be occupied, σ and λ are the spin indexes of the neutrons and the

scattering system respectively, and V̂ is the interaction potential term of the Hamiltonian of

the scattering system. The non-primed quantities are for the initial states before scattering

and primed quantities are for final states after scattering. When only magnetic interactions

are considered the following relationship can be derived from Eqn.(2.42) [75] as(
d2σ

dΩdE

)
αβ

=
k′

k

∣∣f(q)∣∣2 1√
2π

∫ +∞

−∞
dte−iωt

∑
r

⟨
Sα
0 (0)S

β
r (t)

⟩
eiq·r, (2.43)

where f(q) is the neutron scattering form factor and contains all of the microscopic physics

relevant to the interacting neutrons and electrons. If the scattering is measured with the

same incident and scattering polarization, i.e., α = β, then from Eqns.(2.38) and (2.43) we

get (
d2σ

dΩdE

)
αα

=
k′

k

∣∣f(q)∣∣2Sα(q, ω). (2.44)
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The above Eqn.(2.44) gives an expression for the dynamic structure factor as a function of

experimentally observable quantities measured by neutron scattering. On the other hand, the

dynamic structure factor can also be calculated with spin dynamics simulation techniques.

Inelastic neutron scattering triple-axis (or three-axis) spectrometer (TAS) is the most

versatile and useful instrument for the use in inelastic scattering because it allows one to

probe nearly any coordinate in energy and momentum space in a precisely controlled manner.

The concept of the triple-axis spectrometry method was first developed by Brockhouse [76]

in 1961. The first results from the prototype triple-axis spectrometer were published in 1955

and the first true triple-axis spectrometer was built in 1956. The three axes correspond to

the axes of rotation of the monochromator, the sample, and the analyzer. The orientation

of the three axes can be varied independently. The monochromator defines the direction

and magnitude of the momentum of the incident neutron beam and the analyzer performs

a similar function for the scattered or final beam, which is Bragg scattered by the sample.

Figure 2.3 shows a schematic diagram of a TAS at Oak Ridge National Laboratory [77].
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Figure 2.3: A schematic diagram of an inelastic neutron scattering triple-axis spectrometer at
Oak Ridge National Laboratory (after Ref.[77]).



Chapter 3

Simulation Methods

3.1 Overview of Spin Dynamics

As stated in Section 2.3.2, the Heisenberg model has true dynamics with the real time

evolution of spins governed by the equations of motion. The general recipe of spin dynamics

is to generateN equilibrium spin configurations drawn from a canonical ensemble at a specific

temperature T using a hybrid Monte Carlo (MC) method, and to use these N equilibrium

spin configurations as starting states for the integration of the coupled equations of motion

using spin dynamics (SD) method, with the real SD time evolving from t = 0 to t = ndt,

where n is the total number of SD time steps and dt is the SD time step (dt = 0.2/|J |).

From those data the local space- and time-displaced spin-spin correlation function C(r0, r, t)

is calculated. We take a set of N initial conditions of a finite lattice size and average their

results for the local space-time correlation function. If this set of N configurations is an

equilibrium distribution at the temperature T , then the average over all the C(r0, r, t) will

be a result for the local space-time correlation function at T for a finite lattice size. The

hybrid MC method is an efficient simulation method by which we use to generate such an

equilibrium distribution of states at a given temperature for a given lattice size and a given

model.

The local space-time spin-spin correlation function is Fourier transformed in the post

calculation, from which we get the local dynamic structure factor S(r0,q, ω). Detailed infor-

mation on the quantities C(r0, r, t) and S(r0,q, ω) can be found in Section 3.4.

28
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To illustrate the whole process of SD simulation, Figure 3.1 gives an overview of a spin

dynamics simulation decomposed into three procedural sub-processes, i.e., the static MC,

the dynamic SD, and the post calculation.

In this chapter, we will first discuss the hybrid MC method we used to obtain the equi-

librium states including the three MC methods which constitute the algorithm, i.e., the

Metropolis algorithm [78], the Wolff algorithm [80], and the Overrelaxation algorithm [81].

Then, the numerical integration method we used for SD, i.e., the fourth-order Suzuki-Trotter

decomposition algorithm will be discussed. Next, a description of the computational methods

for calculating the local space-time correlation function and the local dynamic structure

factor will be given.

3.2 The Monte Carlo Method

For an isothermal system G governed by the HamiltonianH(x), where x is the phase vector in

phase space, the thermal average of any observable A(x) is defined in the canonical ensemble

as

⟨
A(x)

⟩
β

=
1

Z

∫
dxe−βH(x)A(x),

Z =

∫
dxe−βH(x), (3.1)

where β = 1/kBT . The normalized Boltzmann probability density describing the statistical

weight with which the configuration x occurs in thermal equilibrium is defined as

p(x) =
1

Z
e−βH(x). (3.2)

Although Eqn.(3.2) gives a formally exact description of the probability distribution p(x), it

is impossible to carry out the integration in the general case with a high-dimensional phase

space.
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3.2.1 The Simple sampling Monte Carlo Method

The Monte Carlo method in equilibrium statistical mechanics starts from an approximation

to the exact equation Eqn.(3.1), where one integrates overall states {x} with their p(x), by

a summation using only a characteristic subset of phase space points {x1, x2, x3, . . . ,xM},

which forms a statistical sample. As M → ∞, we obtain an approximation to Eqn.(3.1)

as [11] ⟨
A(x)

⟩
β
≈ A(x)β =

∑M
i=1 A(xi)e

−βH(xi)∑M
i=1 e

−βH(xi)
. (3.3)

where M is the number of states in the subset. The problem of selecting a representative

distribution of states in a high-dimensional phase space can be solved by using a random

number generator to select the M sampled states as random points in phase space. This

method is known as simple sampling [11] Monte Carlo, which is the simplest of the Monte

Carlo sampling techniques and is usually inefficient and even unreliable for a thermody-

namic quantity as a function with any sharp peak. This is because many of chosen states in

{x1, x2, x3, . . . ,xM} are physically improbable and contribute little to the average. It would

be more statistically sensible to sample preferentially around physically favorable states. To

realize this purpose, Metropolis importance sampling Monte Carlo [78] has been developed.

3.2.2 The Metropolis importance sampling Monte Carlo Method

Metropolis et al. realized the importance sampling Monte Carlo method by constructing a

Markov process where each state xl is constructed from a previous state xk via a transition

probability W (xk → xl) based on the energy difference between the initial and final states.

The equilibrium probability distribution of a classical system being at the phase point xl

at the Monte Carlo time t is

Pxl
(t) =

1

Z
e−βH(xl). (3.4)

And the equilibrium probability distribution obeys a master equation [54]

∂Pxl
(t)

∂t
= −

∑
l ̸=k

[
Pxl

(t)W (xl → xk)− Pxk
(t)W (xk → xl)

]
, (3.5)
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where W (xk → xl) is the transition rate from point xl to point xk in phase space. For

a system in equilibrium, we have ∂Pxl
(t)/∂t = 0. This condition imposes the principle of

detailed balance

Pxl
(t)W (xl → xk) = Pxk

(t)W (xk → xl). (3.6)

Then from Eqn.(3.4) and Eqn.(3.6)

Pxk
(t)

Pxl
(t)

=
W (xl → xk)

W (xk → xl)
= e−δHβ, (3.7)

where δH is the energy change between the initial and final states, i.e., (H(xk)−H(xl)). This

relation does not uniquely specify W (xl → xk). A convenient choice [79] that fits Eqn.(3.7)

is

W (xl → xk) =

 e−δHβ, if δH > 0

1, otherwise
(3.8)

The recipe of the Metropolis importance sampling is given as follows

(1) Choose an initial configuration

(2) Randomly pick a site i

(3) Propose a change of the spin at site i, and calculate the energy change ∆E

(4) Generate a random number r such that 0 < r < 1(uniformly distributed on

the interval [0, 1])

(5) Make the proposed change of the spin if r < exp(−β∆E)

⇒ Complete a single Monte Carlo step

(6) Pick a new site and go to step (3)

This process can be repeated as many times as needed to realize a random walk across

phase space that will trace out a set of M states which can be used in the sampling. In
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practice, to improve the accuracy of the method, one needs to discard the first certain

number of steps to approach the equilibrium and then use the subsequent steps to collect

data and determine the properties of a system.

One limitation of the Monte Carlo method is the correlation, which diverges as T → Tc,

between successive generated states. There are two kinds of relaxation time [11, 54, 79].

The first one is called the non-linear relaxation time τnl which can be used to examine the

approach to equilibrium. τnl can be derived by defining a non-linear relaxation function

ϕM(t) =

⟨
M(t)−M(∞)

⟩⟨
M(0)−M(∞)

⟩ , (3.9)

where t is the Monte Carlo time in terms of MCS. ϕM(t) describes relaxation of magnetization

M approaching its equilibrium value and has an exponential decay at long time. The non-

linear relaxation time τnl is defined as [54]

τnl =

∫ ∞

0

ϕM(t)dt. (3.10)

τnl diverges as

τnl ∼ ξz
M
nl , (3.11)

where ξ is the correlation length and zMnl has a relationship with static critical exponents β

and ν and the dynamic critical exponent z as [54]

z = zMnl + β/ν. (3.12)

Similarly, if the non-linear relaxation is calculated for the internal energy then

z = zMnl + (1− α)/ν. (3.13)

The other kind of relaxation time is called linear relaxation time τl. τl is associated with

the normalized linear relaxation function which describes time correlations within equilibrium

and is defined as

ϕA(t) =

⟨
A(0)A(t)

⟩
−

⟨
A
⟩2⟨

A2
⟩
−
⟨
A
⟩2 , (3.14)
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where t is the Monte Carlo time in terms of Monte Carlo steps (MCS) and A is a thermo-

dynamic quantity, e.g., M or E. ϕA(0) = 1 and ϕA(t) decays asymptotically with t as [54]

ϕA(t) → e−t/τl , t → ∞. (3.15)

As T → Tc, the equilibrium linear relaxation time τl diverges as

τl ∼ ξz, (3.16)

And according to Eqn.(2.19), ξ ∼ |T − Tc|−ν , then

τl ∼ |T − Tc|−zν . (3.17)

As T → Tc, τl diverges dramatically and thus causes long temporal correlation between

successive generated states, which is known as critical slowing down. To lower this correlation

and improve the efficiency of the Monte Carlo simulation, multiple simulation techniques

have been developed such as the Wolff cluster flipping and overrelaxation algorithms. Both

algorithms are collective updating algorithms, in contrast to the local updating scheme of

Metropolis.

3.2.3 The Wolff Algorithm

The Wolff cluster flipping algorithm is appropriate for spins with continuous degrees of

freedom.It updates clusters of spins simultaneously to reduce the critical slowing down at the

critical region. This algorithm turns the original classical Heisenberg spin model with uniform

interaction into an Ising model with inhomogeneous couplings. An elementary cluster update

step, which is adapted for interactions beyond nearest neighbors, consists of the following

operations [80]
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(1) Randomly choose a unit direction vector r̂ and a spin Si at site i as the first spin of

a cluster to be constructed

(2) Visit all neighboring spins Sj that have exchange interaction with Si and assign

bond between Si and Sj according to the probability

p = 1− emin
[
0, 2βJij(r̂·Si)(r̂·Sj)

]

(3) Visit all neighboring spins Sj and repeat step (2) iteratively until the process stops

(4) Flip the cluster of spins connected with bonds with respect to the hyperplane orthog-

onal to r̂

The Wolff cluster algorithm is ergodic and detailed balance is fulfilled. This algorithm

is efficient for Heisenberg exchange interaction without exchange anisotropy. Single site

anisotropy can be taken into account by creating the cluster using only the exchange interac-

tion term of the Hamiltonian then flipping the cluster according to a probability determined

by the single site anisotropy term of the Hamiltonian.

3.2.4 The Overrelaxation Algorithm

The overrelaxation algorithm, which was borrowed from the concept that used to speed up

convergence of matrix inversion [81, 82], is not a stand-alone Monte Carlo method because

it does not guarantee ergodicity, and can be added into hybrid Monte Carlo to reduce the

correlation between successive states and thus increase the efficiency of the simulation. This

algorithm is only applicable to the Heisenberg model without single site anisotropy. Since no

random number creation is required in an overrelaxation step, it is deterministic and much

more efficient than either a Metropolis or Wolff cluster step.



36

For an isotropic Heisenberg model, each spin is in an effective field given by Eqn.(2.25),

and the energy of the spin is determined by

Ei = Heff
i · Si. (3.18)

Any precession of the spin around the effective field Heff
i will not change the total energy

of the system.

In practice, a lattice is decomposed into two sublattices so that there is exchange inter-

action between spins belonging to different sublattices. So all spins in one sublattice can

be precessed simultaneously around their individual effective fields with energy conserved.

An effective way is to precess each spin 180◦ around its effective field. If this updating is

performed on each sublattice, one sublattice at a time, then all spins will be reoriented

at constant energy. The spin updating via overrelaxation is essentially microcanonical. To

obtain canonical ensemble average of thermodynamic quantities, a sensible combination of

overrelaxation with Metropolis Monte Carlo or with Metropolis-Wolff hybrid Monte Carlo

is imperative. Since we are not performing any high precision Monte Carlo simulations, the

optimized hybrid Monte Carlo, i.e., two Metropolis with eight overrelaxation steps for an

isotropic system and two Metropolis with eight Wolff steps for an anisotropic system, which

has been determined to be optimal in a previous study [37], is applied in this work.

3.3 The Spin Dynamics Method

3.3.1 Methods for Integration of the Equation of Motion

Given an equilibrium distribution of starting states at a temperature T , we need a numerical

integration method to solve the coupled differential equations of motion. Traditional inte-

gration methods include Runge-Kutta and predictor-corrector methods [83]. Runge-Kutta

methods are an important family of iterative methods for the approximation of solutions

of differential equations. Runge-Kutta methods propagate a solution over an interval by

combining the information from several Euler-style steps, and then using the information
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obtained to match a Taylor series expansion up to some higher order. The fourth-order

Runge-Kutta method has been so commonly used that it is often referred to as “RK4”,

“classical Runge-Kutta method”or simply as the “RungeKutta method”. Predictor-corrector

methods are numerical methods that proceed in two steps. First, the prediction step extrap-

olates a rough approximation of the desired quantity one step advance. Second, the corrector

step refines the extrapolation using derivative information at the new point. The predictor-

corrector methods have been used in some early spin dynamics simulations [37, 84].

A severe restriction on the size of the SD time step is applied to any kind of numerical

integration methods. This restriction is imposed by the accuracy within which the numerical

method observes the conservation law of the dynamics. It is evident from Eqn.(2.27) that the

length of spin Si at lattice site i and the total energy of a system are conserved. Additionally,

for a isotropic Heisenberg model, the uniform magnetization M = ΣiSi should also be a

conserved quantity. The predictor-corrector methods observe the conservation laws for the

uniform magnetization to within the machine accuracy and other conservation laws within

the accuracy set by the truncation error [86]. Typically, it limits the SD time step to about

δt = 0.01/|J | and the total integration time about 600/|J | [87].

As mentioned in Section 3.2.4 on the overrelaxation method, for the Heisenberg Hamilto-

nian without single site anisotropy, each spin subjected to an effective field undergoes Larmor

precession around this field, which is itself changing in time. The lattice can be decomposed

into two sublattices so that a spin on one sublattice performs a Larmor precession in a local

field Ω of neighboring spins which are all located on the other sublattice. For the Heisenberg

Hamiltonian with only nearest-neighbor interactions there are only two sublattices if the

lattice is simple cubic or body-center cubic. This procedure has been implemented as the

Suzuki-Trotter decomposition [88, 89] algorithm. A similar method was developed indepen-

dently by Frank, Huang and Leimkuhler [90] and named as the Staggered Red-Black Method.
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3.3.2 Suzuki-Trotter Decomposition Algorithm

The Suzuki-Trotter decomposition treats the dynamics directly through the rotation of a spin

about its local field Ω by an angle α = |Ω|∆t. This procedure guarantees the conservation of

the spin length S and energy to within machine accuracy. Unlike the predictor-corrector algo-

rithm, conservation of magnetization is only observed to within truncation error. Denoting

the two sublattices by A and B, respectively. We can write Eqn.(2.27) into

d

dt
Sk∈A = ΩB[{S}]× Sk∈A,

d

dt
Sk∈B = ΩA[{S}]× Sk∈B, (3.19)

where ΩA[{S}] and ΩB[{S}] denote the local field produced by the spins on sublattice A

and B, respectively. The equations in Eqn.(3.19) can be reduced into a linear system of

differential equations if the spins on the other sublattice are kept fixed. This suggests an

alternating update scheme with the spins Sk∈A rotated for the fixed Sk∈B and vice versa.

In this alternating update scheme, the scalar products ΩB[{S}] · Sk∈A remains constant

during the update of Sk∈A and the scalar products ΩA[{S}] · Sk∈B remains constant during

the update of Sk∈B. Thus, the energy is exactly conserved during this alternating update

scheme. The conservation of magnetization according to the symmetry of the Hamiltonian,

however, will not be observed during the above updating scheme.

To describe the updating operations on the spin configuration during the integration

of the equation of motion, we use a vector y to represent a full spin configuration, and

decompose it into two sublattice vector components yA and yB according to y = (yA, yB).

The cross products in Eqn.(3.19) can be expressed by matrices A and B which are the

infinitesimal generators of rotation of the spin configuration yA on sublattice A at fixed yB

and of the spin configuration yB on sublattice B at fixed yA, respectively. The update of

the configuration y from time t to t + ∆t can then be expressed by an exponential matrix

operator as

y(t+∆t) = e(A+B)∆ty(t). (3.20)



39

The exponential operators e(A+B)∆t in Eqn.(3.20), which rotates each spin of the configu-

ration, has no simple explicit form, because the rotation axis for each spin depends on the

configuration itself. However, the operators eA∆t and eB∆t, which rotates yA at fixed yB and

rotates yB at fixed yA, respectively, have a simple explicit form.

For an isotropic Heisenberg model with D = 0 in Eqn.(2.22), for each k ∈ A, we have

ΩA[{S}] = −J
∑

l=NN(k)

Sl ≡ Ωk, (3.21)

where NN(k) denotes the nearest neighbor on yB of spin Sk. From Eqn.(3.19) and Eqn.(3.21)

we obtain [85, 86]

Sk(t+∆t) =
Ωk(Ωk · Sk(t))

Ω2
k

+

[
Sk(t)−

Ωk(Ωk · Sk(t))

Ω2
k

]
cos(|Ωk|∆t)+

Ωk × Sk(t)

|Ωk|
sin(|Ωk|∆t).

(3.22)

According to Eqn.(3.22), we have

Ωk · Sk(t+∆t) = Ωk · Sk(t). (3.23)

The above equation explicitly confirms energy conservation. For k ∈ B, Eqn(3.22) also holds

in the same form.

The lowest-order Suzuki-Trotter decomposition of Eqn.(3.20) is

e(A+B)∆t = eA∆teB∆t +O(∆t2), (3.24)

which is only correct up to terms of the order ∆t2. The magnetization will only be conserved

up to terms of the order ∆t, which is insufficient for practical purpose. To increase the order

of the truncation error of the algorithm and thus improve the conservation of magnetization,

the second-order Suzuki-Trotter decomposition of the exponential operator in Eqn.(3.20) is

used and given by [89]

e(A+B)∆t = eA
∆t
2 eB∆teA

∆t
2 +O(∆t3), (3.25)

and the fourth-order Suzuki-Trotter decomposition is

e(A+B)∆t =
5∏

i=1

epiA
∆t
2 epiB∆tepiA

∆t
2 +O(∆t5), (3.26)
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where p1 = p2 = p4 = p5 ≡ p = 1/(4− 41/3) ≃ 0.41449 and p3 = 1− 4p ≃ −0.65780, which

are determined by a recursive scheme developed by Suzuki et al. [89].

The higher the order of the algorithm the more computer time each SD time step will

take. All Suzuki-Trotter algorithms use more computer time per SD time step than the

predictor-corrector method. This time can be compensated for by using larger SD time steps

since the higher order algorithm is significantly more accurate. In this work, we applied

the fourth-order Suzuki-Trotter decomposition of the exponential operator with an SD time

step of ∆t = 0.2/|J |. A comparison on the performance of Suzuki-Trotter decomposition

algorithms with the second and fourth order with different ∆t is detailed in Section 4.2.1.

The Suzuki-Trotter decomposition algorithm discussed above can be generalized to the

case of anisotropic ferromagnetic and antiferromagnetic systems where the anisotropy is

single site in nature with D ̸= 0 [86]. For a spin on sublattice A, the equation of motion is

d

dt
Sk∈A = ΩB[{S}]× Sk∈A − 2DSz

k∈Aez × Sk∈A, (3.27)

where ez is the unit vector pointing along the z-axis; the equation of motion for a spin on

sublattice B obeys the same form. In contrast to the isotropic case with Eqn.(3.19), the

equation of motion for each individual spin on each sublattice is nonlinear. In practice, to

include the effects of the nonlinearity in Eqn.(3.27), we add a single site anisotropy into the

condition for energy conservation [Eqn.(3.23)], and obtain

Ωk · Sk(t+∆t)−D[Sz
k(t+∆t)]2 = Ωk · Sk(t)−D[Sz

k(t)]
2 (3.28)

for k ∈ A and k ∈ B, where Ωk is given by Eqn.(3.21). If we make the transformation Ω → Ω̃

such that

Ω̃ · Sk(t+∆t) = Ω̃ · Sk(t), (3.29)

then we will be able to perform the dynamics using Eqn.(3.22) with Ω replaced by Ω̃. From

Eqn.(3.28) and Eqn.(3.29), we obtain Ω̃ as

Ω̃ = Ω−D(0, 0, Sz
k(t) + Sz

k(t+∆t)). (3.30)
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The solution of Eqn.(3.30) requires that Sz
k(t + ∆t) must be known in advance. This can

be solved through an iterative scheme. In this work, we started from the initial value of

Sz
k(t+∆t) with the second order Taylor expansion as

Sz
k(t+∆t) = Sz

k(t) +
dSz

k(t)

dt
dt

= Sz
k(t) +

{
Ωx

k(t)S
y
k(t)− Ωy

k(t)S
x
k (t)

}
dt, (3.31)

where Ωx
k(t) and Ωy

k(t) are the x and y components of the effective field [Eqn.(3.21)] on site

k at spin dynamics time t. We perform an update according to the decomposition given by

Eqn.(3.26). We then perform a second update using results for Sz
k(t+∆t) from the previous

iteration as the input. To guarantee a good accuracy, we continue this process repeatedly. As

an iterative procedure, it leads to s substantial slowdown of the integration algorithm, where

the energy is no longer exactly conserved. In this work, to balance the trade-off between

accuracy and efficiency, we used three iterations at each spin dynamics time.

3.4 The Post Calculation on Local Correlation Functions

3.4.1 Model Nanostructures and Boundary Conditions

In this work, we modeled nanofilms and nanoparticles on a simple cubic lattice of different

linear dimensions with two kinds of boundary conditions which are required both geometri-

cally and physically by the modeling, i.e., partially free boundary conditions and completely

free boundary conditions, respectively.

Model nanofilms consist of L2
xyLz spins on a Lxy × Lxy × Lz simple cubic lattice with

partially free boundary conditions with two free-surfaces in the spatial z-direction, which

is labeled as the “FBCZ” direction, and periodic boundaries parallel to the surfaces in the

x- and y-direction, which is labeled as the “PBCXY” direction in this study. Lxy denotes

linear dimensions in the x-, y-directions and Lz denotes linear dimension in the z-direction,

respectively.
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Model nanoparticles consist of L3 spins on a L×L×L simple cubic lattice with completely

free boundary conditions with six free surfaces. The model nanofilm and model nanoparticle

are illustrated graphically in Figure 3.2 and Figure 3.3, respectively.

z

x

y

Lxy

Lxy

Lz

o

Figure 3.2: Model nanofilm with two free-surfaces in the spatial z-direction and periodic bound-
aries parallel to the surfaces in the x-, y-directions on Lxy × Lxy × Lz simple cubic lattices. Lxy

denotes linear dimensions in the x-, y-directions and Lz denotes linear dimension in the z-direction,
respectively.
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Figure 3.3: Model nanoparticle with completely free boundary conditions with six free surfaces
on L× L× L simple cubic lattices.
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3.4.2 Local Correlation Function

As is known, fully periodic boundary conditions have been implemented to preserve the

translational invariance and emulate “infinite”systems. In the modeling of nanofilms and

nanoparticles in this work, we introduced free boundary conditions either partially in one

spatial direction or completely in all spatial directions. As one of consequences of introducing

free boundary conditions, the translational invariance of system is broken in the directions

we introduced free boundary conditions. Accordingly, to express the broken translational

symmetry, the formalism of the space- and time-displaced spin-spin correlation function has

been modified from a translational invariant one with a form of C(r, t) to a localized one with

a form of C(r0, r, t), where the parameter r0 denotes a fixed lattice site as the starting point

for the calculation of the local correlation. According to the specific localization performed,

r0 can be chosen to be fixed at the bulk center, the surface center, or even the lattice corner,

i.e., r0 ⇒Bulk Center, Surface Center, or Lattice Corner.

The definition of the local space- and time-displaced spin-spin correlation function is

defined as

Ck(r0, r, t) = ⟨Sk(r0, t0)S
k(r0 + r, t0 + t)⟩ − ⟨Sk(r0, t0)⟩⟨Sk(r0 + r, t0 + t)⟩, (3.32)

where r0 and t0 denote the spatial and temporal starting points for the local correlation

function, respectively; r and t denote the spatial and time intervals, respectively; ⟨. . .⟩ gives

the ensemble average; k = x, y or z; Sk(r0 + r, t0 + t) stands for the k component of a

spin at the lattice site r + r0 and the time t0 + t. To give the details, the formalisms of the

local correlation function C(r0, r, t) defined for model nanoparticles and model nanofilms are

discussed separately in Section 3.4.3 and 3.4.4.
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3.4.3 Local Correlation Function for Model Nanoparticles

For model nanoparticles with completely free boundary conditions on simple cubic lattices,

we define the first and second terms in Eqn.(3.32) as

⟨Sk(r0, t0)S
k(r0 + r, t0 + t)⟩ =

1

S(nt − t+ 1)

S∑
s=1

nt−t∑
t0=0

Sk(r0, t0)S
k(r0 + r, t0 + t)

∣∣
s
,

⟨Sk(r0, t0)⟩ =
1

S(nt + 1)

S∑
s=1

nt∑
t0=0

Sk(r0, t0),

⟨Sk(r0 + r, t0 + t)⟩ =
1

S(nt − t+ 1)

S∑
s=1

nt−t∑
t0=0

Sk(r0 + r, t0 + t)
∣∣
s
, (3.33)

where S is the parameter giving the total number of geometrically symmetric [100] directions,

along which we perform the correlation calculations; s ∈ [1, S] is an integer index on those

S directions; nt is the total number of SD time steps.

With an odd lattice size L, where L = 2i+ 1, i = 1, 2, 3, . . ., the bulk center and six free

surface centers can be determined uniquely. As r0 ⇒ Bulk Center, we have six symmetric

[100] directions off from the bulk center to six surface centers, as shown in Figure 3.4,

i.e., Sr0⇒Bulk Center = 6; As r0 ⇒ Surface Center, we define two sets of symmetric [100]

directions, which are called within-surface directions, along which we calculate the spin-spin

correlation off from each surface center within the free surface, and off-surface directions

along which we calculate the correlation off from each surface center to the bulk center,

as shown in Figure 3.5, respectively. In within-surface directions, we have four symmetric

[100] directions for each of six surface centers, and thus we have Swithin−surface
r0⇒Surface Center = 24; In

off-surface directions, we only have one [100] direction for each of six surface centers, and

thus we have Soff−surface
r0⇒Surface Center = 6; As r0 ⇒ Lattice Corner, we have three symmetric [100]

directions off from each of eight lattice corners, as shown in Figure 3.6, i.e., Sr0⇒Lattice Corner =

24.
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r
0 

=>Bulk Center

Figure 3.4: Geometrically symmetric [100] directions along which we calculate the spin-spin cor-
relation as r0 ⇒ Bulk Center with Sr0⇒Bulk Center = 6.

X

Y

Z

O

r0 = Surface Center

off-surface

Figure 3.5: Geometrically symmetric [100] directions along which we calculate the spin-spin cor-

relation as r0 ⇒ Surface Center with Swithin−surface
r0⇒Surface Center = 24 and Soff−surface

r0⇒Surface Center = 6.

With an even lattice size L, where L = 2i, i = 2, 3, . . ., the bulk-center spin and surface-

center spins can not be determined uniquely. To overcome this problem, we take the geometric
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r
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Figure 3.6: Geometrically symmetric [100] directions along which we calculate the spin-spin cor-
relation as r0 ⇒ Lattice Corner with Sr0⇒Lattice Corner = 24.

mean bulk- and surface-center spins into our calculations. Figure 3.7 and Figure 3.8 illustrate

the method we used to define twelve mean bulk-center spins. We take the unit cell at the

center of the bulk and magnify it, as shown in the top right portion of the figures. Four spins,

which are on the same sublattice, are labeled with solid dots at four symmetric corners of

the unit cell. Those four spins are taken as both geometrically and physically equivalent. Six

dashed lines on the unit cell surfaces connect any two spins as a pair. We define the average

of two spins in a pair as a mean bulk-center spin, which is labeled with an open circle.

As is shown in the figures, we have twelve such mean bulk-center spins which are located

separately on six unit cell surfaces. From each mean bulk-center spin, a [100] direction is

defined and labeled with a thick arrow, along which we perform the calculation of the local

correlation. Thus, we have twelve symmetric [100] directions as r0 ⇒ Bulk Center, i.e.,

Sr0⇒Bulk Center = 12, for an even lattice size L. Accordingly, the bulk-center spin component
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Sk(r0) in Eqn.(3.33) is replaced by the component of a mean bulk-center spin, according to

which [100] direction is used in the calculation.

X

Y

Z

O

Figure 3.7: Illustration of the method defining six mean bulk-center spins and six symmetric [100]
directions on one sublattice of the center unit cell.

X

Y

Z

O

Figure 3.8: Illustration of the method defining six mean bulk-center spins and six symmetric [100]
directions on another sublattice of the center unit cell.
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Figure 3.9 and Figure 3.10 illustrate the method we used to define twelve mean surface-

center spins. Similar to the method we used to define twelve mean bulk-center spins, we take

the unit square at the center of each free surface and define the average of two diagonal

spins which are on the same sublattice as a mean surface-center spin, which is labeled with

an open circle. In within-surface directions, we have four symmetric [100] directions for

each of twelve mean surface centers, and thus we have Swithin−surface
r0⇒Surface Center = 48; In off-surface

directions, we only have one [100] direction for each of twelve mean surface centers, and thus

we have Soff−surface
r0⇒Surface Center = 12. Accordingly, the surface-center spin component Sk(r0) in

Eqn.(3.33) is replaced by the component of a mean surface-center spin, according to which

[100] direction is used in the calculation.

X

Y

Z

O

off-surface

Figure 3.9: Illustration of the method defining six mean surface-center spins and six symmetric
[100] directions on one sublattice of the center unit cell.

3.4.4 Local Correlation Function for Model Nanofilms

For model nanofilms with partially free boundary conditions on simple cubic lattices, as

discussed before, we defined the FBCZ direction in the spatial z-direction with two free sur-

faces, and the PBCXY direction in the x- and y-direction with periodic boundaries parallel
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X

Y

Z

O

off-surface

Figure 3.10: Illustration of the method defining six mean surface-center spins and six symmetric
[100] directions on another sublattice of the center unit cell.

to the free surfaces. Since the boundary conditions are periodic, the translational invariance

is preserved in the PBCXY directions. In this part of work, we calculated the local corre-

lations both in PBCXY and FBCZ directions with even linear dimensions Lxy and Lz, i.e.,

Lxy = 2i and Lz = 2i, i = 2, 3, . . .. The starting point r0 for the calculation of the local

correlation is chosen to be at the bulk center, i.e., r0⇒Bulk Center.

Figure 3.11 illustrates how we define sixteen mean bulk-center spins when we calculate

the local correlations in the PBCXY directions. Similar to the method we used to define

mean bulk-center spins for nanoparticles with an even lattice size L, for nanofilms with the

translational invariance in the PBCXY directions, we take the center unit cell and extend it

horizontally in the x- and y-direction into two rectangular tubes crossing at the center, which

are magnified and illustrated in Figure 3.12 and Figure 3.13, respectively. In Figure 3.12, each

open circle represents a mean bulk-center spin, which is geometrically averaged from spins



50

X

Y

Z

O

Figure 3.11: Illustration of the method defining sixteen mean bulk-center spins for the calculation
of the local correlation in the PBCXY directions.

of the same sublattice on each side wall of the rectangular tube. Thus, we have eight such

mean bulk-center spins averaged from two sublattices on four side walls. From each mean

bulk-center spin, a [100] direction is defined and labeled with a thick arrow, along which we

perform the calculation of the local correlation. Figure 3.13 shows another rectangular tube

which is perpendicular to the one in Figure 3.12. We have another eight mean bulk-center

spins and eight symmetric [100] directions. Thus, totally we have sixteen symmetric [100]

directions as r0 ⇒ Bulk Center, i.e., Sr0⇒Bulk Center = 16, for nanofilms with an even lattice

size L in the PBCXY directions. Accordingly, to calculate the local correlation function, the

bulk-center spin component Sk(r0) in Eqn.(3.33) is replaced by the component of a mean

bulk-center spin, according to which [100] direction is used in the calculation.

Figure 3.14 and Figure 3.15 illustrate how we define four mean bulk-center spins when we

calculate the local correlations in the FBCZ directions. Similar to the geometric extension
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o

x

y

z

Figure 3.12: Illustration of the method defining eight mean bulk-center spins and eight symmetric
[100] directions from two sublattices on one extended rectangular tube for the calculation of the
local correlation in the PBCXY directions.

o

x

y

z

Figure 3.13: Illustration of the method defining eight mean bulk-center spins and eight symmetric
[100] directions from two sublattices on another extended rectangular tube for the calculation of
the local correlation in the PBCXY directions.
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we conducted to define mean bulk-center spins for the calculation of the local correlation

in the PBCXY directions, with the translational invariance in the PBCXY directions, we

extend the top and bottom surfaces of the center unit cell horizontally into two center planes,

which are labeled in the figures as “Plane-0” and “Plane-1”. On the Plane-0, an open circle

represents a mean bulk-center spin, which is geometrically averaged from spins of the same

sublattice. Thus, we have two such mean bulk-center spins averaged from two sublattices on

that plane. From each mean bulk-center spin, a [100] direction is defined and labeled with a

thick arrow, along which we perform the calculation of the local correlation. On the Plane-1,

we have another two mean bulk-center spins and two symmetric [100] directions. Thus, totally

we have four symmetric [100] directions as r0 ⇒ Bulk Center, i.e., Sr0⇒Bulk Center = 4, for

nanofilms with an even lattice size L in the FBCZ directions. Accordingly, to calculate the

local correlation function, the bulk-center spin component Sk(r0) in Eqn.(3.33) is replaced

by the component of a mean bulk-center spin, according to which [100] direction is used in

the calculation.

3.4.5 Local Dynamic Structure Factor

Similar to the definition of the dynamic structure factor Sk(q, ω), defined in Eqn.(2.38)

for the “infinite”system with fully periodic boundary conditions, the definition of the local

dynamic structure factor S(r0,q, ω), which is the Fourier transform of the local space- and

time-displaced spin-spin correlation function C(r0, r, t), is given by

Sk(r0,q, ω) =
1

N

∑
r

eiq·r
∫ +∞

−∞
e−iωtCk(r0, r, t)

dt√
2π

=
1

N

∫ +∞

−∞
e−iωt dt√

2π

∑
r

eiq·rCk(r0, r, t), (3.34)

where k = x, y or z; N is the total number of spins in a lattice (discussed in Eqn.(2.39)).

Due to limited computer resources, there are two major practical limitations on the

computer simulation of dynamic behavior, i.e., finite evolution or integration time and finite

system size. In our simulations, the simple cubic lattice sizes used range from 10 to 40; the
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Plane-0

Figure 3.14: Illustration of the method defining two mean bulk-center spins and two symmetric
[100] directions from two sublattices on one center plan for the calculation of the local correlation
in the FBCZ directions.
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Y

Z

O

Plane-1

Figure 3.15: Illustration of the method defining two mean bulk-center spins and two symmetric
[100] directions from two sublattices on another center plan for the calculation of the local correla-
tion in the FBCZ directions.
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SD time cutoff, which is denoted as tc in simulations, is usually the order of 103 to 104,

i.e., tc ∼ 103 to 104. tc should be distinguished from nt, the total number of SD time steps,

defined previously in Eqn.( 3.33). With the finite integration time tc, the above Eqn.(3.34)

can be rewritten as

Sk(r0,q, ω) =
1

N

∫ +tc

−tc

e−iωt dt√
2π

∑
r

eiq·rCk(r0, r, t). (3.35)

The calculation of the local correlation is performed in [100] direction, i.e., in momentum

space q = (q, 0, 0). q is determined differently according to r0 for the calculation of the local

correlation, as given below,

• For r0 ⇒Bulk Center or Surface Center (within-surface):

q =


2πnq

L
, nq = 0, 1, 2, . . . , nqmax ≡ L

2
for even L = 2i, i = 2, 3, . . .

2πnq

L
, nq = 0, 1, 2, . . . , nqmax ≡ L−1

2
for odd L = 2i+ 1, i = 1, 2, 3, . . .

(3.36)

• For r0 ⇒Lattice Corner or Surface Center (off-surface):

q =
2πnq

L
, nq = 0, 1, 2, . . . , nqmax ≡ L (3.37)

Combined with Eqn.(3.32), the discrete spatial Fourier transform in Eqn.(3.34) can be

written as

∑
r

eiq·rCk(r0, r, t) =
∑
r

eiq·r[⟨Sk(r0, t0)S
k(r0 + r, t0 + t)⟩ − ⟨Sk(r0, t0)⟩⟨Sk(r0 + r, t0 + t)⟩]

= term 1− term 2, (3.38)
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where

term 1 =
∑
r

eiq·r⟨Sk(r0, t0)S
k(r0 + r, t0 + t)⟩,

term 2 =
∑
r

eiq·r⟨Sk(r0, t0)⟩⟨Sk(r0 + r, t0 + t)⟩

= ⟨Sk(r0, t0)⟩
∑
r

eiq·r⟨Sk(r0 + r, t0 + t)⟩

= S
∑
r

eiq·r⟨Sk(r0 + r, t0 + t)⟩, (3.39)

where S ≡ ⟨Sk(r0, t0)⟩ is a constant independent of r and t. Without considering the ⟨· · · ⟩

ensemble average (discussed in Eqns.(3.33)), for q = (q, 0, 0), term 1 and term 2 can be

written as

term 1 =
∑
r

eiq·rSk(r0, t0)S
k(r0 + r, t0 + t)

=
∑
rx

eiqrx
∑
ry ,rz

Sk(r0, t0)S
k(r0 + r, t0 + t)

=
∑
rx

eiqrxSk(r0, t0)
∑
ry ,rz

Sk(r0 + r, t0 + t)

=
∑
rx

eiqrxSk(r0, t0)
∑

plane−rx

Sk(r0 + r, t0 + t), (3.40)

term 2 = S
∑
r

eiq·rSk(r0 + r, t0 + t)

= S
∑
rx

eiqrx
∑
ry ,rz

Sk(r0 + r, t0 + t)

= S
∑
rx

eiqrx
∑

plane−rx

Sk(r0 + r, t0 + t). (3.41)

Thus, combining Eqn.(3.40) and Eqn.(3.41), we have

∑
r

eiq·rCk(r0, r, t) = term 1− term 2

=
∑
rx

eiqrx
[
Sk(r0, t0)

∑
plane−rx

Sk(r0 + r, t0 + t)− S
∑

plane−rx

Sk(r0 + r, t0 + t)

]
=

∑
rx

eiqrxCk
L(r0, rx, t), (3.42)
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where Ck
L(r0, rx, t) is defined as the local intermediate sum product. At this point, we consider

the ⟨· · · ⟩ ensemble average discussed in Eqns.(3.33), and rewrite Ck
L(r0, rx, t) as

Ck
L(r0, rx, t) =

1

S(nt − t+ 1)

S∑
s=1

nt−t∑
t0=0

[
Sk(r0, t0)

∑
plane−rx

Sk(r0 + r, t0 + t)

]
s

−

1

S(nt − t+ 1)

S∑
s=1

nt−t∑
t0=0

[
S

∑
plane−rx

Sk(r0 + r, t0 + t)

]
s

, (3.43)

where S is the total number of geometrically symmetric [100] directions discussed in Sec-

tion 3.4.3 and 3.4.4; s ∈ [1, S] is an integer index on those S directions; S ≡ ⟨Sk(r0, t0)⟩ =
1

S(nt+1)

∑S
s=1

∑nt

t0=0 S
k(r0, t0); r0 and t0 denote the spatial and temporal starting points for

the local correlation function, respectively, and nt is the total number of SD time steps.

In the case of antiferromagnets, the wave vectors are measured with respect to the Λ ≡

(π, π, π) point, i.e., q → q + Λ, which corresponds to the Brillouin zone center. Then the

discrete spatial Fourier transform in Eqn.(3.42) can be rewritten as

∑
r

ei(q+Λ)·rCk(r0, r, t)

=
∑
r

eiΛ·reiq·rCk(r0, r, t)

=
∑
rx

eiqrx
[
Sk(r0, t0)

∑
plane−rx

eiΛ·rSk(r0 + r, t0 + t)− S
∑

plane−rx

eiΛ·rSk(r0 + r, t0 + t)

]
=

∑
rx

eiqrx
[
Sk(r0, t0)

∑
plane−rx

eiΛ·rSk(r0 + r, t0 + t)− e−iΛ·r0S
∑

plane−rx

eiΛ·(r0+r)Sk(r0 + r, t0 + t)

]
=

∑
rx

eiqrx
[
Sk(r0, t0)

∑
plane−rx

f1S
k(r0 + r, t0 + t)− f2S

∑
plane−rx

f3S
k(r0 + r, t0 + t)

]
=

∑
rx

eiqrxCk
L(r0, rx, t), (3.44)

where f1 ≡ eiΛ·r, f2 ≡ e−iΛ·r0 , and f3 ≡ eiΛ·(r0+r) are newly introduced parameters with

values that can be easily calculated as
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f1 =

 +1 if two spins S(r0) and S(r0 + r) are on the same sublattice,

−1 otherwise.
(3.45)

f2, f3 =


+1 if the summation over spatial coordinates x, y, and z of the spin

S(r0) or S(r0 + r) is even,

−1 otherwise.

(3.46)

Thus, in the case of antiferromagnets, the local intermediate sum product Ck
L(r0, rx, t)

with the ⟨· · · ⟩ ensemble average taken into account has a similar form as the one defined in

Eqn.(3.43) as

Ck
L(r0, rx, t) =

1

S(nt − t+ 1)

S∑
s=1

nt−t∑
t0=0

[
Sk(r0, t0)

∑
plane−rx

f1S
k(r0 + r, t0 + t)

]
s

−

1

S(nt − t+ 1)

S∑
s=1

nt−t∑
t0=0

[
f2S

∑
plane−rx

f3S
k(r0 + r, t0 + t)

]
s

, (3.47)

In addition to the ensemble average discussed in Eqns.(3.33), we must also average over

the multiple integration runs. Each run starts from an initial equilibrium configuration drawn

from the canonical ensemble (discussed in Section 3.1). It is obtained by starting from a

random distribution, running Monte Carlo and discarding the first 10τnl MCS [54] (Monte

Carlo time) configurations, or discarding the first 10τl MCS configurations if the starting

equilibrium configuration is used for integration.

The above defined local sum product Ck
L(r0, rx, t) should be distinguished from the local

space- and time-displaced spin-spin correlation function C(r0, r, t) because the former is

partially Fourier transformed from the latter. To calculate the local dynamic structure factor

in [100] direction with q = (q, 0, 0), we combine Eqn.(3.35), Eqn.( 3.44) and Eqn.( 3.42) and
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obtain

Sk(r0,q, ω) =
1

N

∫ +tc

−tc

e−iωt dt√
2π

∑
rx

eiqrxCk
L(r0, rx, t)

=
1

N

∫ +tc

−tc

e−iωt dt√
2π

nqmax∑
rx=−nqmax

eiqrxCk
L(r0, rx, t)

=
2

N

∫ +tc

−tc

e−iωt dt√
2π

nqmax∑
rx=0

cos(qrx)C
k
L(r0, rx, t)

=
4

N

∫ +tc

0

cos(ωt)
dt√
2π

nqmax∑
rx=0

cos(qrx)C
k
L(r0, rx, t), (3.48)

where nqmax is defined in Eqn.(3.36) and Eqn.(3.37). In last two lines, we replace eiqrx by

cos(qrx) and e−iωt by cos(ωt) because there is space and time reversal symmetry due to

constant energy in the simulation, and thus the imaginary components of both the time and

space Fourier transforms vanish.

We have finite time cutoff tc in the time Fourier transform. The finite time cutoff will

result in oscillations in S(r0,q, ω) of frequency 2π
tc
. To alleviated this problem, we did the

convolution of the dynamic structure factor with a Gaussian resolution function in frequency

ω, i.e.,

Sk(r0,q, ω) =
4

N

∫ +tc

0

cos(ωt)e−
1
2
(tδω)2

dt√
2π

nqmax∑
rx=0

cos(qrx)C
k
L(r0, rx, t), (3.49)

where δω is a parameter determining the width of the resolution function and needs to be

chosen properly such that the effects of the finite time cutoff can be neglected.

In the simulations for ferromagnetic systems with periodic boundary conditions, after we

generate an equilibrium initial spin configuration, we choose a cartesian coordinate frame

of reference in the spin space such that its z-axis is parallel to the uniform magnetization

M , which is a constant of motion and the order parameter of the system. We then evolve

the spin configuration with tc, i.e., SD time cutoff, to a maximum time tmax. The dynamic

structure factor can then be regrouped in the spin space into a longitudinal component

SL(q, ω) = Sz(q, ω), (3.50)
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and a transverse component

ST (q, ω) =
1

2

(
Sx(q, ω) + Sy(q, ω)

)
, (3.51)

since x and y components are equivalent. The longitudinal component SL(q, ω) of propa-

gating excitations for all classical Heisenberg models was found to be made up of two-spin

wave peaks [38, 44].

In the simulations for antiferromagnetic nanostructures, we applied the same approach to

regroup the local dynamic structure factor in the spin space into a longitudinal component

SL(r0,q, ω) = Sz(r0,q, ω), (3.52)

and a transverse component

ST (r0,q, ω) =
1

2

(
Sx(r0,q, ω) + Sy(r0,q, ω)

)
. (3.53)

However, for the antiferromagnet the order parameter, i.e., the staggered magnetization, is

not a constant of motion; therefore, regrouping components of the spin parallel (longitudinal

component) and perpendicular (transverse component) to the order parameter is challenging.

As we integrate the equations of motion, the direction of the staggered magnetization changes

slightly because it is not a conserved quantity. Our approach to overcome this problem is

to rotate the coordinate frame of reference continually after each integration step so that

the z-axis is to be realigned to the staggered magnetization and restored the z-axis as the

longitudinal direction. This procedure is called as the z-polarization in our simulations.

3.4.6 The Ψ-Mag Toolset

Our simulations are carried out by utilizing elements of the Ψ−Mag Toolset (or Toolkit) [53],

which is a secondary C++ template library developed by ORNL for computational mag-

netism and serves as a prototype for a more general library for computational material

science. Its design is modeled after and inspired by the generic programming techniques of

the C++ standard template library (C++ STL). The major Ψ-Mag elements applied in our

simulation codes include
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1. EHModel.h: Generic extendable Heisenberg Hamiltonian

2. EHTerms.h: Generic term in Heisenberg Hamiltonian

3. EHTerms ExchangeScaler.h: Scalar exchange interaction term in the Heisenberg

Hamiltonian

4. EHTerms AnisotropyUniaxial.h: Single-site anisotropy term in the Heisenberg Hamil-

tonian

5. HeisenbergSpinStepper.h: Metropolis Monte Carlo

6. OverRelaxation.h: Overrelaxation algorithms

7. WolffCluster.h: Wolff cluster flipping algorithms

8. RotationOperator.h: Single spin rotation

9. SuzukiTrotter ani.h: Originally SuzukiTrotter.h, which arranges the operators in

the sequence defined in Eqn.(3.26) for isotropic systems. It was modified to Suzuk-

iTrotter ani.h to add the iterative procedure for anisotropic systems

10. LatticeIndexMapper.h: Mapping between lattice coordinates and the lattice index

11. StatisticalMoments.h: Statistical moments for error bars

Using Toolset requires the specification of lattice structure, neighbor list, exchange param-

eter list for each lattice site, Monte Carlo (Monte Carlo, Hybrid Monte Carlo composition,

number of Monte Carlo steps to discard for equilibrium, and number of Monte Carlo steps

to run), and spin dynamics (SD time step dt, total number of SD time steps nt, the SD time

cutoff tc, and sublattice decomposition A and B).



Chapter 4

Results

4.1 Static Monte Carlo Results

4.1.1 Free Boundary Effects on the Antiferromagnetic Order Parameter

of Nanoparticles

In the beginning of our simulations, we investigated the static effects of free boundaries on the

antiferromagnetic order parameter ϕ; namely, the staggered magnetization, of nanoparticles

at a specific temperature T = 0.4TN . TN is the Néel temperature which has been determined

to a high degree of accuracy of TN = 1.442929(77)|J |/kB, by Chen et al. [18] for the isotropic

Heisenberg system with simple cubic lattice geometry.

The antiferromagnetic order parameter, i.e., the staggered magnetization, is defined

as [51]

ϕ =

∣∣∣∣ 1L3

L∑
x=1

L∑
y=1

L∑
z=1

(−1)x+y+zS(x, y, z)

∣∣∣∣, (4.1)

where L is the lattice size of nanoparticles; S(x, y, z) is the spin located at r = (x, y, z).

To study the free boundary effects on the order parameter, we did the so-called “cel-

lization”procedure, in which we split the simple cubic lattice into non-overlapped 2× 2× 2

unit cells, each with eight spins. We then calculate the staggered magnetization for each unit

cell. As the location shifts from the center unit cell to the boundary one in a specific direc-

tion, the unit-cell staggered magnetization varies as a function of the displacement from the

center unit cell in that direction. Figures 4.1, 4.2, and 4.3 show the results in [100], [110],

and [111] directions, respectively, on a lattice with a lattice size of L = 18 at T = 0.4TN .

In addition to the isotropic system with D/|J | = 0, we also performed the calculation on

61
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anisotropic systems with D/|J | ̸= 0, as shown in the figures. For the isotropic system, in

a previous study [37] that used a hybrid of the Metropolis and overrelaxation algorithms a

hybrid step of 2 Metropolis sweeps and 8 overrelaxation steps was determined to be optimal.

For anisotropic systems, 1 hybrid MC step consists of 2 Metropolis sweeps and 8 Wolff cluster

spin flips [40]. For both isotropic and anisotropic systems, 2×104 hybrid MC steps were dis-

carded to approach equilibrium and 2 × 104 hybrid MC steps were used for the canonical

ensemble average at T = 0.4TN . Error bars in the figures are smaller than the symbols.
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Figure 4.1: The unit-cell staggered magnetization as a function of the displacement with the unit
of lattice constant a from the center unit cell in the [100] direction for nanoparticles with L = 18 at
T = 0.4TN . Boundary unit cell has the displacement of 8. Error bars are smaller than the symbols.

As shown in the figures, for both isotropic and anisotropic systems, the unit-cell staggered

magnetization drops as the displacement from the center unit cell approaches the maximum

values, i.e., the free boundaries of the system, in [100], [110], and [111] directions, respectively.

Approximately, the drop in the [100] direction is ∼ 0.10, in the [110] direction ∼ 0.20, and

in the [111] direction ∼ 0.35. Thus, if we take the drop of the order parameter as the
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Figure 4.2: The unit-cell staggered magnetization as a function of the displacement with the unit
of lattice constant a from the center unit cell in the [110] direction for nanoparticles with L = 18
at T = 0.4TN . Boundary unit cell has the displacement of 11.312. Error bars are smaller than the
symbols.

criteria of the magnitude of free boundary effects, the maximum boundary effect on the

antiferromagnetic order parameter is in the [111] direction.

4.1.2 Thermodynamic Properties of Nanoparticles

In this section, we show the static Monte Carlo simulation results for thermodynamic quan-

tities of nanoparticles, as functions of temperature T . Figures 4.4 and 4.5 show the data

for the antiferromagnetic order parameter ϕ and the mean energy per spin E/N , respec-

tively, where N is the total number of spins on the modeled nanoparticles with three lattice

sizes, i.e., L = 5, 11, and 21; Figures 4.6 and 4.7 show the results for the specific heat

Cν and the magnetic susceptibility χ, respectively. Our simulations were conducted both on

isotropic systems with D/|J | = 0 and anisotropic systems withD/|J | = 1.0 with the classical

Heisenberg Hamiltonian defined in Eqn.(2.22). As discussed before, for isotropic systems, 1

hybrid MC step consists of 2 Metropolis sweeps plus 8 overrelaxation steps; for anisotropic



64

0 3.464 6.928 10.392 13.856

Displacement from Center Unit Cell

6.70

6.80

6.90

7.00

7.10

7.20

7.30

U
ni

t-
ce

ll 
St

ag
ge

re
d 

M
ag

ne
tiz

at
io

n
D/|J| = 0 (isotropic)

D/|J| = 0.02
D/|J| = 0.04
D/|J| = 0.10
D/|J| = 0.20

Figure 4.3: The unit-cell staggered magnetization as a function of the displacement with the unit
of lattice constant a from the center unit cell in the [111] direction for nanoparticles with L = 18
at T = 0.4TN . Boundary unit cell has the displacement of 13.856. Error bars are smaller than the
symbols.

systems, 1 hybrid MC step consists of 2 Metropolis sweeps plus 8 Wolff cluster spin flips.

We performed annealing simulations in three temperature ranges, i.e., kBT/|J | = 0.4 ∼ 0.7,

0.7 ∼ 1.7, and 1.7 ∼ 3.0. For temperature ranges kBT/|J | = 0.4 ∼ 0.7 and 0.7 ∼ 1.7, 5× 104

hybrid MC steps were discarded to approach equilibrium and 5× 104 hybrid MC steps were

used for the canonical ensemble average for three lattice sizes. For the temperature range

kBT/|J | = 1.7 ∼ 3.0, 1× 104 hybrid MC steps were discarded to approach equilibrium and

1× 104 hybrid MC steps were used for the canonical ensemble average for three lattice sizes.

Error bars in the figures are smaller than the symbols.

As shown in Figure 4.6, for nanoparticles with free boundary conditions, the Néel tem-

perature TN varies as the lattice size varies; a larger systems has a higher TN . For isotropic

systems with D/|J | = 0, kBTN/|J | ∼ 1.04 with L = 5, kBTN/|J | ∼ 1.24 with L = 11;

kBTN/|J | ∼ 1.36 with L = 21; For anisotropic systems with D/|J | = 1.0, kBTN/|J | ∼ 1.32
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Figure 4.4: The antiferromagnetic order parameter ϕ as a function of temperature T for isotropic
(red solid symbols) and anisotropic (black open symbols) nanoparticles with completely free
boundary conditions with L = 5, 11, and 21. Error bars are smaller than the symbols.
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Figure 4.5: The mean energy per spin E/N as a function of temperature T for isotropic (red
solid symbols) and anisotropic (black open symbols) nanoparticles with completely free boundary
conditions with L = 5, 11, and 21. Error bars are smaller than the symbols.
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Figure 4.6: The specific heat Cν as a function of temperature T for isotropic (red solid symbols)
and anisotropic (black open symbols) nanoparticles with completely free boundary conditions with
L = 5, 11, and 21. Error bars are smaller than the symbols.
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Figure 4.7: The magnetic susceptibility χ as a function of temperature T for isotropic (red solid
symbols) and anisotropic (black open symbols) nanoparticles with completely free boundary con-
ditions with L = 5, 11, and 21. Error bars are smaller than the symbols.
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with L = 5, kBTN/|J | ∼ 1.59 with L = 11; kBTN/|J | ∼ 1.70 with L = 21, i.e., for the same

lattice size the TN of an anisotropic system is higher than that of the isotropic one.

4.2 Spin Dynamics Simulation Results

4.2.1 SD Time Series of Magnetization: A Test on Effects of SD Time Step

of Algorithm with Nanoparticles

As discussed in Section 3.3.2, the greatest advantage of the Suzuki-Trotter decomposition

algorithm is its capability for handling large SD time steps and the exact conservation of

spin length |S| [86]. For isotropic systems it also conserves the energy exactly. For anisotropic

system, energy conservation can be obtained to a high accuracy using iterative schemes; exact

magnetization conservation, however, is lost by the algorithm. In this work, to obtain a higher

degree of accuracy, we applied the fourth-order Suzuki-Trotter decomposition algorithm. To

determine the SD time step dt to be used in the time integration, we conducted tests on dt

based on its performance on magnetization conservation.

We first consider an isotropic, antiferromagnetic nanoparticle on a simple cubic lattice

with a lattice size of L = 10 at a temperature kBT/|J | = 1.0. We performed the Suzuki-

Trotter algorithm with nt = 10400, where nt is the total number of SD time steps, and four

different SD time steps, i.e., dt = 0.1/|J |, 0.2/|J |, 0.3/|J |, and 0.4/|J |, and obtained the SD

time series of the z component of the total magnetization denoted as Mz(t), as shown in

Figure 4.8.

Next, we consider anisotropic, antiferromagnetic nanoparticles with D/|J | = 0.01 on

a simple cubic lattice with lattice sizes of L = 10, 20, and 40 at the same temperature

kBT/|J | = 1.0. We performed the SD simulations with the same nt = 10400 and four SD

time steps, i.e., dt = 0.1/|J |, 0.2/|J |, 0.3/|J |, and 0.4/|J |. For anisotropic systems we used

an iterative procedure in the spin dynamics, and the total number of iterations we used is

3. Figures 4.9, 4.10 and 4.11 show Mz(t) for three lattice sizes, respectively.
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Figure 4.8: The SD time series of the z component of the total magnetization Mz(t) for an
isotropic, antiferromagnetic nanoparticle on a simple cubic lattice with a lattice size of L = 10 at
a temperature kBT/|J | = 1.0, with nt = 10400 and dt = 0.1/|J |, 0.2/|J |, 0.3/|J |, and 0.4/|J |.
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Figure 4.9: The SD time series of the z component of the total magnetization Mz(t) for an
anisotropic, antiferromagnetic nanoparticle with D/|J | = 0.01 on a simple cubic lattice with a
lattice size of L = 10 at a temperature kBT/|J | = 1.0, with nt = 10400 and dt = 0.1/|J |, 0.2/|J |,
0.3/|J |, and 0.4/|J |.
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Figure 4.10: The SD time series of the z component of the total magnetization Mz(t) for an
anisotropic, antiferromagnetic nanoparticle with D/|J | = 0.01 on a simple cubic lattice with a
lattice size of L = 20 at a temperature kBT/|J | = 1.0, with nt = 10400 and dt = 0.1/|J |, 0.2/|J |,
0.3/|J |, and 0.4/|J |.
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Figure 4.11: The SD time series of the z component of the total magnetization Mz(t) for an
anisotropic, antiferromagnetic nanoparticle with D/|J | = 0.01 on a simple cubic lattice with a
lattice size of L = 40 at a temperature kBT/|J | = 1.0, with nt = 10400 and dt = 0.1/|J |, 0.2/|J |,
0.3/|J |, and 0.4/|J |.
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As shown in the figures, the Suzuki-Trotter decomposition algorithm yields substantially

smaller magnetization fluctuations with smaller SD time steps of dt = 0.1/|J | and 0.2/|J |

than those with dt = 0.3/|J | and 0.4/|J |. To balance the trade-off between accuracy and

efficiency, we used dt = 0.2/|J | as the SD time step in this work.

4.2.2 Comparison with Low Temperature Spin-Wave Theory

In order to demonstrate the proper functioning of the SD algorithm, we performed spin

dynamics runs at T = 0.1TN and T = 0.2TN . At those low temperatures the spin-wave

frequency should match the linear spin-wave results given in Section 2.3.3. Our simulations

were performed for the isotropic ferro- and antiferromagnet on simple cubic lattices of L = 24

with periodic boundary conditions. We found agreement between the positions of spin-wave

peaks and the predicted dispersion curve from linear spin-wave theory as shown in the

figures 4.12 and 4.13. It was also observed that our simulation results are slight lower than

the predicted values from linear spin-wave theory. This slight lowering of simulation results

are due to the finite temperature and finite lattice size used in our simulations.

4.2.3 Isotropic Antiferromagnetic Nanofilms in PBCXY [100] Directions I:

spectra for ST (r0,q, ω)

In this section, we give the results for the transverse component of the local dynamic structure

factor ST (r0,q, ω) with r0 ⇒ Bulk Center for isotropic, antiferromagnetic nanofilms on

Lxy×Lxy×Lz simple cubic lattice. The results were obtained in the PBCXY [100] directions

(discussed in Section 3.4.4), i.e., the directions parallel to the free surfaces, as shown in

Figure 4.14.

We performed spin dynamics runs at a specific temperature T = 0.4TN . We discarded

5 × 103 hybrid MC steps to approach the first equilibrium spin configuration and used

5×103 hybrid MC steps to generate each of the rest of N−1 equilibrium spin configurations
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Figure 4.12: Comparison with linear spin-wave theory results for the isotropic ferromagnet. Three
black lines give the predicted dispersion curves in the [100], [110], and [111] momentum space
directions, respectively. Solid symbols give simulation results at T = 0.1Tc (blue symbols) and
T = 0.2Tc (red symbols) in three momentum space directions, respectively. Error bars are smaller
than the symbols.

drawn from a canonical ensemble at T = 0.4TN . The total number of SD time steps in

our simulations was nt = 5000; the SD time cutoff was tc = 4000; the SD time step was

dt = 0.2/|J |.

Figure 4.15 shows the spectra for ST (r0,q, ω), obtained from isotropic, antiferromag-

netic nanofilms with the same Lxy = 20 and three different thicknesses, i.e., Lz = 10,

20, and 30. For convenience, we labeled the y-axis of our results with ST (r0, nq, ω) with

nq = 0, 1, 2, . . . (defined in Eqn.(3.36) and Eqn.(3.37)). In the figure, we give the spectra for

nq = 0, 1, 2, . . . , 5.



72

0 0.5 1
q (π)

0

1

2

3

4

5

6
ω/J

Linear spin-wave theory [100]

Linear spin-wave theory [110]

Linear spin-wave theory [111]

Simulation T=0.1T
n
 [100]

Simulation T=0.1T
n
 [110]

Simulation T=0.1T
n
 [111]

Simulation T=0.2T
n
 [100]

Simulation T=0.2T
n
 [110]

Simulation T=0.2T
n
 [111]

Simple cubic, PBC

L = 24
k

B
T

N
/|J| = 1.442929(77)

Figure 4.13: Comparison with linear spin-wave theory results for the isotropic antiferromagnet.
Three black lines give the predicted dispersion curves in the [100], [110], and [111] momentum
space directions, respectively. Solid symbols give simulation results at T = 0.1TN (blue symbols)
and T = 0.2TN (red symbols) in three momentum space directions, respectively. Error bars are
smaller than the symbols.

The vertical dashed lines in the figure labeled with ωPBC show the single spin-wave

excitation locations for each wave vector of the “infinite”system with periodic boundary

conditions. Three major observations have been made pertinent to the above spectra:

1. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the

spin-wave spectra for the transverse component of the local dynamic structure factor

ST (r0, nq, ω) in the classical Heisenberg isotropic antiferromagnetic nanofilms, which

are lacking if periodic boundary conditions are used (discussed in Section 4.2.5);

2. The width of the energy gap between the main peak and the secondary peak with a

higher energy frequency, which is denoted as ∆ω12, in spectra for some wave vectors,

e.g., nq = 1, 2, 3, is closely related to the linear dimension of the system (discussed in

Section 4.2.4);
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Figure 4.14: PBCXY [100] directions with r0 ⇒ Bulk Center for isotropic, antiferromagnetic
nanofilms.

3. Negative spin-wave excitation peaks originated from the time phase flip of local corre-

lation function were observed in spectra for each wave vector.

In addition to the above three major observations, we also observed that, as the thickness Lz

of nanofilms, i.e., the distance between the free surfaces, becomes larger, the main excitation

peak for some wave vectors, e.g., nq = 1, 2, 3, shifts closer to the ωPBC . This observation

is reasonable considering the free-surface effects become weaker as free surfaces increasingly

get separated from each other, and thus the dynamics behaves more like that of the “infi-

nite”system with periodic boundary conditions.

To complete our results, we give another set of spectra for ST (r0,q, ω), obtained from

isotropic, antiferromagnetic nanofilms with the same thickness Lz = 10 and three different

horizontal dimensions, i.e., Lxy = 10, 20, and 30, as shown in Figure 4.16.

There have been similar observations made on the spectra in Figure 4.16 and Figure 4.15.

It should be noted that,
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Figure 4.15: The spectra for ST (r0,q, ω) obtained from isotropic, antiferromagnetic nanofilms
with the same Lxy = 20 and three different thicknesses, i.e., Lz = 10, 20, and 30. The results
were obtained in the PBCXY [100] directions, i.e., the directions parallel to the free surfaces, with
r0 ⇒ Bulk Center at T = 0.4TN with SD parameters of nt = 5000, tc = 4000, and dt = 0.2/|J |.
We give the spectra for nq = 0, 1, 2, . . . , 5. N is the total number of initial configurations.

• The bigger oscillations of the spectra for nq = 1 in Figure 4.16 for Lxy = 20 and

30 are due to the finite time cutoff tc, which introduces oscillations into the results

of the Fourier transformation. These oscillations, however, can be smoothed out by

convoluting the local correlation function with a Gaussian resolution function e−
1
2
tδω

in the time Fourier transformation, where δω is a parameter determining the resolution
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Figure 4.16: The spectra for ST (r0,q, ω) obtained from isotropic, antiferromagnetic nanofilms
with the same Lz = 10 and three different horizontal dimensions, i.e., Lxy = 10, 20, and 30.
The results were obtained in the PBCXY [100] directions, i.e., the directions parallel to the free
surfaces, with r0 ⇒ Bulk Center at T = 0.4TN with SD parameters of nt = 5000, tc = 4000,
and dt = 0.2/|J |. We give the spectra for nq = 0, 1, 2, . . . , 5. N is the total number of initial
configurations.

in frequency and needs to be chosen properly such that effects of the cutoff in the

evolution time can be neglected [37];

• The shifting to lower energy frequency of the main excitation peak in Figure 4.16 is

due to the finite-size effects in the xy-directions with periodic boundary conditions.
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4.2.4 Isotropic Antiferromagnetic Nanofilms in PBCXY [100] Directions II:

Systematic Examination of Size Effects on ∆ω12

We investigated the relationship between ∆ω12 and the linear dimension of the system, i.e., Lz

and Lxy. Figure 4.17 shows ∆ω12 as an exponentially decaying function of L
1/3
z for nq = 1, 2, 3,

respectively; the inset shows ∆ω12 for nq = 1, 2, 3 with one lattice size of Lxy = Lz = 20.

Figure 4.18 shows ∆ω12 as a logarithmically increasing function of Lxy for nq = 1, 2, . . . 5;

the inset shows ∆ω12 for nq = 1, 2, 3 with one lattice size of Lz = 10 and Lxy = 20.
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Figure 4.17: ∆ω12 as an exponentially decaying function of L
1/3
z with the same Lxy=20 for

nq = 1, 2, 3, respectively; the inset shows ∆ω12 for nq = 1, 2, 3 with one lattice size of Lz = 20.
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nq = 1, 2, . . . 5; the inset shows ∆ω12 for nq = 1, 2, 3 with one lattice size of Lxy = 20.

4.2.5 Isotropic Antiferromagnetic Nanofilms in PBCXY [100] Directions III:

Quantitative Explanation of Multiple Spin-Wave Excitations with

the Assumption of Q-Space Spin-Wave Reflection

As discussed in Section 4.2.3, the most significant observation of the spectra for ST (r0, nq, ω)

in isotropic, antiferromagnetic nanofilms is those multiple spin-wave excitation peaks

with high resolution. To illustrate the high resolution of those multiple spin-wave peaks,

Figure 4.19 shows the comparison between the magnitude of those multiple spin-wave peaks

and the magnitude of the intrinsic noise in our simulations for nq = 1 of the nanofilm with

Lxy = Lz = 20. As shown in the figure, there is a significant difference in the magnitude,

which makes it very difficult to draw a conclusion that those multiple spin-wave excitations
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simply originate from noise fluctuations. There should be real physics superimposed on the

much less intense noise background. Note that the noise is ∼ 10−4 as big as the single

spin-wave peak.

Real physics there!

Noise magnitude

~ 87

Figure 4.19: The high resolution of multiple spin-wave excitation peaks; the comparison between
the magnitude of those multiple spin-wave peaks and the magnitude of the intrinsic noise in our
simulations for nq = 1 of the nanofilm with Lxy = Lz = 20. Note that the noise is ∼ 10−4 as big as
the single spin-wave peak.

As mentioned in Chapter 1, for those small laterally confined magnetic systems like

nanofilms or nanoparticles, there is intrinsic broken translational invariance caused by free-

surface confinement effects in one or more directions, which leads to a broken conservation law

of corresponding momentum for a spin wave [49]. The broken conservation law of momentum

brings uncertainty into the wave vector for a specific spin-wave excitation energy. To explain

those multiple spin-wave excitation peaks, we proposed the assumption of q-space spin-wave

reflection with broken momentum conservation as follows,
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In the linear dispersion region with small momentum q, the reflected spin-wave energy

and momentum should satisfy a geometric relationship defined by

ωrefl

ωbulk

=
qrefl
qbulk

, (4.2)

where qbulk and qrefl are the bulk momentum and reflected momentum, respectively;

ωbulk and ωrefl are bulk energy frequency and reflected energy frequency, respectively.

Figure 4.20 gives an illustration of this assumption.

Figure 4.20: An illustration of the assumption of q-space spin-wave reflection with broken
momentum conservation.

With the assumption of q-space spin-wave reflection with broken momentum conserva-

tion, we successfully explained those multiple spin-wave excitation spectra quantitatively

in the linear dispersion region with small momentum q. Figure 4.21 gives the same spectra

shown in Figure 4.19. The thick red dashed line gives the single spin-wave excitation location

for the wave vector of nq = 1 of the system with periodic boundary conditions; the thick



80

back dashed line labeled with ω = ωbulk gives the bulk excitation location for the wave vector

of nq = 1 of the nanofilm. To locate multiple spin-wave excitation locations quantitatively,

we took the bulk energy frequency ω = ωbulk and then multiplied it with all possible ratios

of
qrefl
qbulk

, which are illustrated in Figure 4.20. The results of those multiplications are shown

by thin black dashed lines with a ratio multiplying ω labeled on each.
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Figure 4.21: Determination of multiple spin-wave excitation locations with the assumption of
q-space spin-wave reflection with broken momentum conservation in the linear dispersion region
with small momentum of nq = 1 for an isotropic, antiferromagnetic nanofilm with a lattice size
of Lxy = Lz = 20. The results were obtained in the PBCXY [100] directions, i.e., the directions
parallel to the free surfaces, with r0 ⇒ Bulk Center at T = 0.4TN with SD parameters of nt = 5000,
tc = 4000, and dt = 0.2/|J |. The thick red dashed line gives the single spin-wave excitation location
for the wave vector of nq = 1 of the system with periodic boundary conditions; the thick back
dashed line labeled with ω = ωbulk gives the bulk excitation location for the wave vector of nq = 1
of the nanofilm.
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Similarly, Figure 4.22 shows the determination of multiple spin-wave excitation locations

quantitatively with nq = 2.
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Figure 4.22: Determination of multiple spin-wave excitation locations with the assumption of
q-space spin-wave reflection with broken momentum conservation in the linear dispersion region
with small momentum of nq = 2 for an isotropic, antiferromagnetic nanofilm with a lattice size
of Lxy = Lz = 20. The results were obtained in the PBCXY [100] directions, i.e., the directions
parallel to the free surfaces, with r0 ⇒ Bulk Center at T = 0.4TN with SD parameters of nt = 5000,
tc = 4000, and dt = 0.2/|J |. The thick green dashed line gives the single spin-wave excitation
location for the wave vector of nq = 2 of the system with periodic boundary conditions; the thick
back dashed line labeled with ω = ωbulk gives the bulk excitation location for the wave vector of
nq = 2 of the nanofilm.

Comparing the results in Figure 4.21 and Figure 4.22, we observed that, with our assump-

tion of q-space spin-wave reflection, the proportion of successfully explained multiple excita-

tions with nq = 1 is larger than that with nq = 2, which means our assumption works better
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with nq = 1 than nq = 2, i.e., works better with a smaller momentum. This is observation

is reasonable considering that the linear dispersion region with small momentum q is the

region for the assumption to be correctly applied.

4.2.6 Isotropic Antiferromagnetic Nanofilms in FBCZ [100] Directions:

spectra for ST (r0,q, ω)

In this section, we give the results for the transverse component of the local dynamic structure

factor ST (r0,q, ω) with r0 ⇒ Bulk Center for isotropic, antiferromagnetic nanofilms in the

FBCZ [100] directions (discussed in Section 3.4.4), i.e., the directions perpendicular to the

free surfaces, as shown in Figure 4.23.

z
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y
Lxy

Lxy

Lz

FBCZ [100]

r0

Figure 4.23: FBCZ [100] directions with r0 ⇒ Bulk Center for isotropic, antiferromagnetic
nanofilms.

We performed spin dynamics runs using the same simulation conditions and parameters

as introduced in the beginning paragraphs of Section 4.2.3. Figure 4.24 shows the spectra

for ST (r0,q, ω), obtained from an isotropic, antiferromagnetic nanofilm with a lattice size of

Lxy = Lz = 20. In the figure, we give the spectra for ST (r0, nq, ω) with nq = 0, 1, . . . , 4.
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Figure 4.24: The spectra for ST (r0,q, ω) obtained from an isotropic, antiferromagnetic nanofilm
with a lattice size of Lxy = Lz = 20. The results were obtained in the FBCZ [100] directions, i.e.,
the directions perpendicular to the free surfaces, with r0 ⇒ Bulk Center at T = 0.4TN with SD
parameters of nt = 5000, tc = 4000, and dt = 0.2/|J |. We give the spectra for nq = 0, 1, . . . , 4.

As shown in the figure, we observed two novel quantized spin-wave excitation modes for

ST (r0, nq, ω), i.e., “Excitation Mode I”and “Excitation Mode II”, in the spatial z-direction in

isotropic, antiferromagnetic nanofilms. This is a new form of spin-wave excitation behavior

which needs further study, but at least our results indicate that those novel quantized exci-

tation modes could be potentially caused by, but not limited to the free-surface confinement

effects.
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4.2.7 Isotropic Antiferromagnetic Nanoparticles I: spectra for ST (r0,q, ω)

In this section, following the results we obtained from isotropic, antiferromagnetic nanofilms,

we give the results for the transverse component of the local dynamic structure factor

ST (r0,q, ω) with r0 ⇒ Bulk Center for isotropic, antiferromagnetic nanoparticles on L ×

L×L simple cubic lattice. The results, discussed in Section 3.4.3, were obtained in six sym-

metric [100] directions, as shown in Figure 4.25.
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Figure 4.25: [100] directions with r0 ⇒ Bulk Center for isotropic, antiferromagnetic nanoparti-
cles.

Our simulations were conducted at the same temperature T = 0.4TN we used for the

simulations on nanofilms. We discarded 104 hybrid MC steps to approach the first equilibrium

spin configuration and used 104 hybrid MC steps to generate each of the rest of N − 1

equilibrium spin configurations drawn from a canonical ensemble at T = 0.4TN . The total

number of SD time steps in our simulations was nt = 5000; the SD time cutoff was tc = 4000;

the SD time step was dt = 0.2/|J |.

Figure 4.26 shows the spectra for ST (r0,q, ω), obtained from isotropic, antiferromagnetic

nanoparticles with L = 10, 14, and 20. For the convenience of labeling, we labeled the y-axis
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of our results with ST (r0, nq, ω) with nq = 0, 1, 2, . . . (defined in Eqn.(3.36) and Eqn.(3.37)).

In the figure, we give the spectra for ST (r0, nq, ω) with nq = 1, 2, . . . , 5.
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Figure 4.26: The spectra for ST (r0,q, ω) obtained from isotropic, antiferromagnetic nanoparticles
with L = 10, 14, and 20. The results were obtained in the [100] directions with r0 ⇒ Bulk Center
at T = 0.4TN with SD parameters of nt = 5000, tc = 4000, and dt = 0.2/|J |. We give the spectra
for nq = 1, 2, . . . , 5.

Three major observations have been made pertinent to the above spectra for isotropic,

antiferromagnetic nanoparticles:

1. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in

the spin-wave spectra for the transverse component of the local dynamic structure

factor ST (r0, nq, ω) in the classical Heisenberg isotropic antiferromagnetic nanoparti-

cles, which are lacking if periodic boundary conditions are used;



86

2. The width of the energy gap between the main peak and the secondary peak with a

higher energy frequency for wave vectors, e.g., nq = 1, is closely related to the linear

dimension of the system;

3. A secondary excitation peak with approximately half the energy of the main peak

appears for all wave vectors, which is lacking in the spectra for nanofilms.

4. Negative spin-wave excitation peaks were observed in spectra for each wave vector.

As noted previously in Section 4.2.3, the bigger oscillations of the spectra for nq = 1 in

Figure 4.26 for L = 20 are due to the finite time cutoff tc, which introduces oscillations can

be smoothed out by convoluting the local correlation function with a Gaussian resolution

function in the time Fourier transformation; and the shifting to lower energy frequency of

the main excitation peak in the figure is due to the finite-size effects.

4.2.8 Isotropic Antiferromagnetic Nanoparticles II: Quantitative Expla-

nation of Multiple Spin-Wave Excitations with the Assumption of Q-

Space Spin-Wave Reflection

As shown in Figure 4.26, the spectra for isotropic, antiferromagnetic nanoparticles are even

more complicated than the spectra for isotropic, antiferromagnetic nanofilms given in Sec-

tion 4.2.3. Not only are there many more multiple spin-wave excitations for each wave vector,

but also the excitation patterns themselves become more intricate. Those observations are

due to the fact that the completely laterally confined nanoparticles have much stronger free-

surface effects on dynamics than those of nanofilms. However, in the linear dispersion region

with the assumption of q-space spin-wave reflection, we can still determine the locations of

those excitations quantitatively.

Figure 4.27 gives the spectra for nq = 1 of the nanoparticle with a lattice size of L = 10.

The thick red dashed line gives the single spin-wave excitation location for the wave vector

of nq = 1 of the system with periodic boundary conditions; the thick back dashed line
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labeled with ω = ωbulk gives the bulk excitation location for the wave vector of nq = 1 of

the nanoparticle. The determination of multiple spin-wave excitation locations are shown by

thin black dashed lines with a ratio multiplying ω labeled on each.
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Figure 4.27: Determination of multiple spin-wave excitation locations with the assumption of
q-space spin-wave reflection with broken momentum conservation in the linear dispersion region
with small momentum of nq = 1 for an isotropic, antiferromagnetic nanoparticle with a lattice size
of L = 10. The results were obtained in the [100] directions with r0 ⇒ Bulk Center at T = 0.4TN

with SD parameters of nt = 5000, tc = 4000, and dt = 0.2/|J |. The thick red dashed line gives
the single spin-wave excitation location for the wave vector of nq = 1 of the system with periodic
boundary conditions; the thick back dashed line labeled with ω = ωbulk gives the bulk excitation
location for the wave vector of nq = 1 of the nanoparticle.
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4.2.9 Anisotropic Antiferromagnetic Nanoparticles: spectra for ST (r0,q, ω)

To complete our results, in Figure 4.28 we show the data of the transverse component of

the local dynamic structure factor ST (r0,q, ω) with r0 ⇒ Bulk Center for anisotropic,

antiferromagnetic nanoparticles with L = 15, 21, and 29; Figure 4.29 and Figure 4.30 show

the data of ST (r0,q, ω) with r0 ⇒ Surface Center with L = 15 in within-surface and

off-surface directions, respectively; Figure 4.31 shows the data of ST (r0,q, ω) with r0 ⇒

Lattice Corner with L = 15.

We performed spin dynamics simulations at the temperature T = 0.4TN . We discarded

5 × 103 hybrid MC steps to approach the first equilibrium spin configuration and used

5×103 hybrid MC steps to generate each of the rest of N−1 equilibrium spin configurations

drawn from a canonical ensemble at T = 0.4TN . The total number of SD time steps in

our simulations was nt = 2000; the SD time cutoff was tc = 1000; the SD time step was

dt = 0.2/|J |.

Compared to the spectra shown in Figure 4.26, the spectra for ST (r0,q, ω) for anisotropic,

antiferromagnetic nanoparticles have higher spin-wave excitation energies than those for

isotropic ones. As r0 ⇒ Bulk Center, the main excitation peak can be easily located and

compared to the single spin-wave excitation locations for each wave vector of the system

with periodic boundary conditions. As r0 ⇒ Surface Center, the excitation patterns in the

within-surface directions behave more like those of single spin-wave excitations than in the

off-surface directions. For the spectra in the off-surface directions with r0 ⇒ Surface Center

and the spectra with r0 ⇒ Lattice Corner, however, further study is needed to determine

all excitation locations.
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Figure 4.28: The spectra for ST (r0,q, ω) obtained from anisotropic, antiferromagnetic nanopar-
ticles with L = 15, 21, and 29. The results were obtained in the [100] directions with r0 ⇒
Bulk Center at T = 0.4TN with SD parameters of nt = 2000, tc = 1000, and dt = 0.2/|J |. We give
the spectra for nq = 1, 2, . . . , 5. N is the total number of initial configurations.
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Figure 4.31: The spectra for ST (r0,q, ω) obtained from an anisotropic, antiferromagnetic nanopar-
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T = 0.4TN with SD parameters of nt = 2000, tc = 1000, and dt = 0.2/|J |. We give the spectra for
nq = 1, 2, . . . , 5. N is the total number of initial configurations.



Chapter 5

Conclusion

With large scale Monte Carlo and spin dynamics simulations, we have investigated the

dynamic behavior of antiferromagnetic nanostructures on a simple cubic lattice geometry,

using both an isotropic and an anisotropic classical Heisenberg model of classical spins with

unit length and with the nearest-neighbor exchange interactions. Nanoparticles are modeled

with completely free boundary conditions, and nanofilms are modeled with partially free

boundary conditions i.e., two free-surfaces in the spatial z-direction and periodic boundaries

parallel to the surfaces in the x-,y-directions. Hybrid Monte Carlo methods are used to

obtain the static properties of modeled nanostructures. The Monte Carlo methods are also

used to generate equilibrium spin configurations as initial states of the coupled differential

equations of motion. A fast spin dynamics algorithm based on the fourth-order Suzuki-

Trotter decomposition of exponential operators has been applied to integrate the equations

of motion. Our spin dynamics simulations are performed at a low temperature T = 0.4TN .

The integrations are carried to tc = 4000 with an SD time step dt = 0.2/|J |.

With the time evolution of the spin configurations, the local space- and time-displaced

spin-spin correlation function C(r0, r, t) is calculated, where r0 denotes the starting point

from which the correlation function is calculated and can be chosen to be fixed at the bulk

center or the surface center of nanoparticles and nanofilms, or the lattice corner of nanopar-

ticles in the simulations. The local dynamic structure factor S(r0,q, ω) is the Fourier trans-

formation of C(r0, r, t), which can be observed in inelastic magnetic neutron scattering. For

the temperature T = 0.4TN , compared to the single spin-wave excitation spectra for the
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“infinite”system with fully periodic boundary conditions, much more complicated excita-

tion spectra for the transverse component of the local dynamic structure factor ST (r0,q, ω)

appear in the nanoscale classical Heisenberg antiferromagnets. The spectra for ST (r0,q, ω)

have multiple excitation peaks for wave vectors within the first Brillouin zone, which are

lacking if periodic boundary conditions are used. We were able to simulate these systems

with sufficiently high accuracy such that multiple excitation peaks distinguish themselves

from the intrinsic simulation noise by showing a significant difference in magnitude between

the two signals. A systematic examination of size effects on ∆ω12 with isotropic, antifer-

romagnetic nanofilms has shown that, for small wave vectors the width of the energy gap

between the main peak and the secondary peak with a higher excitation energy behaves as

an exponentially decaying function of L
1/3
z and a logarithmically increasing function of Lxy.

With the assumption of q-space spin-wave reflection with broken momentum conservation

due to lateral free-surface confinements, we successfully explained the locations of those exci-

tations quantitatively for isotropic, antiferromagnetic nanostructures in the linear dispersion

region with small wave vectors.

Moreover, we have also observed two novel quantized spin-wave excitation modes for

ST (r0,q, ω) in the spatial z-direction of isotropic, antiferromagnetic nanofilms , which is a

novel spin-wave excitation behavior needs further study.

Results of this study indicate the presence of new forms of spin-wave excitation behavior

which have yet to be observed experimentally but could be directly tested through neutron

scattering experiments on nanoscale RbMnF3 films or particles.
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Appendix A

Data Generation Programs

A.1 Compilation and Execution

A.1.1 Compilation with makefile

♯ This is a makefile

♯ -DLOCAL BC PBCXY define the function to calculate local correlation function for nanofilms

with r0 ⇒ Bulk Center

CFLAGS = -ansi -pedantic

OPT = -O3

all:

g++ $(CFLAGS) $(OPT) -DLOCAL BC PBCXY -I ./include -I ./ main.cpp -o main.exe

A.1.2 Execution

Prepare in.dat and use the following command to execute.

main.exe in.dat

A.2 Input Data File in.dat

#=============================PARAMETERS=================================

outFileTitle h004J-1A0h2w0i0o8DkNkC1nkI1r0_OIC_

modelType Heisenberg

initConfig ORDERED

masterSeedType RANDOM

latDimension 3
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latSize(zyx) 4 10 10

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~BC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

BC(pbc/pbcXY/fbc/sbc) pbcXY

#~~~~~~~~~~~~~~~~~~~~~~~~~~DoWhat(0:no/1:yes)~~~~~~~~~~~~~~~~~~~~~~~~~~~~

iDoWhat(0:SD/3:MC) 0

#------------------------------------------------------------------------

print_EMhs 0

print_EMtm 0

#------------------------------------------------------------------------

doCorre_Real(pbc) 0

doCorre_Real_In (100)

print_Corre_Real 0

#------------------------------------------------------------------------

doCorre_Fly(pbc) 0

print_Corre_Fly 0

#------------------------------------------------------------------------

doCorre_LocalSL(f/sbc) 0

doCorre_LocalSL_In (100)

print_Corre_LocalSL 0

startIndex 52

localSL_Direction udlrf

whichDirToPrint f

ave_On_Direction 0

localSL_Ave_Direction udlr

#------------------------------------------------------------------------

doCorre_Local_BC(f/sbc) 0

print_Corre_Local_BC 0

#------------------------------------------------------------------------

doCorre_Local_SC(f/sbc) 0

print_Corre_Local_SC 0

#------------------------------------------------------------------------

doCorre_Local_CR(f/sbc) 0

print_Corre_Local_CR 0

#------------------------------------------------------------------------

doCorre_Local_BC_PBCXY(pbcXY) 0

print_Corre_Local_BC_PBCXY 0

#------------------------------------------------------------------------

doCorre_FSUR_PBCXY(pbcXY) 1

print_Corre_FSUR_PBCXY 1

#------------------------------------------------------------------------

doCellization 0

print_(OP/COM) OP

print_2Cell 0

cellIndex1 50

cellIndex2 0

print_Quant-R 0

#------------------------------------------------------------------------
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withSingleConfig 0

noAveOnCombined 0

doAveOnCombined 1

NConfig 1

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Anisotropy~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

isAnisotropic 0

aniStrength 0

aniDirection(Dxyz) 0 0 1

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~SD~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SuzukiOrder 4

nt 2000

tc 1000

dt 0.2

tIntv 20

totalIterations 1

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~MC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

T 0.4

NHeisen 2

NWolff 0

NIsing 0

NOverRelax 8

NDiscard 2000

NHybrid 2000

everyNSteps 20

EBin 0.000025

MBin 0.000025

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

NShells 1

NSubLat 2

N_per_Site_pbc 6

sh1Neigh_J -1.0

#================================END=====================================

A.3 Source Code Samples

A.3.1 main.cpp

#include <iostream>

#include <cstdlib>

#include "timer.h"

#include "build_Program.h"

// Main program
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int main(int argc, char* argv[])

{

if(argc!=2) {

std::cerr<<"Usage: <program> <input file>"<<std::endl;

return EXIT_FAILURE;

}

timer timing;

std::cout<<"\nLatest Compile Time: "<<timing.compile_time()<<std::endl;

std::cout<<"Program Start Time: "<<timing.currentTime()<<std::endl;

Build_Program program(argv[1]);

program.run();

std::cout<<"Program Run Time(D/H:M:S): "<<timing()<<std::endl<<std::endl;

return EXIT_SUCCESS;

} // End of main

A.3.2 build Program.h

#ifndef BUILD_PROGRAM_H

#define BUILD_PROGRAM_H

#include <vector>

#include <iostream>

#include <cstdlib>

#include <ctime>

#include "Real.h" // double (or single if -DSINGLE_PRECISION)

#include "Vec.h" // define 3-D vectors, e.g. spins and fields

#include "timer.h" // get time

#include "Random.h" // use various kinds of random number generators

#include "EHModel.h" // Extended Heisenberg Model Hamiltonian

#include "Metropolis.h" // importance sampling MC method

#include "input.h" // read data in in.dat

#include "sclattice.h" // define SC lattice and its sublattices

#include "build_EHModel.h" // build up Hamiltonian with JList

#include "database.h" // given a spin configuration, collect data

#include "spindynamics_Bunker.h"

// following Bunker’s style to run SuzukiTrotter

#include "simulator.h" // run the SD process

#include "controller.h" // pass T to simulation

/*

#if defined(USE_MPAX)
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typedef psimag::MPAX RndGen;

#elif defined(USE_RAN2)

typedef psimag::Ran2 RndGen;

#elif defined(USE_R1279)

typedef psimag::R1279 RndGen;

#endif

*/

class Build_Program

{

typedef std::vector<unsigned int> DataContainer;

typedef psimag::Vec<psimag::Real,3> SpinType;

typedef psimag::Vec<psimag::Real,3> FieldType;

typedef std::vector<SpinType> SpinContainer;

typedef std::vector<FieldType> FieldContainer;

typedef psimag::Ran2 RndGen;

typedef Input<RndGen,DataContainer> In;

typedef ScLattice<DataContainer> SC;

typedef psimag::EHModel<SpinContainer,FieldContainer> EHModel_D0;

typedef psimag::EHModel<SpinContainer,FieldContainer> EHModel_D;

typedef Build_EHModel<SpinContainer,FieldContainer,0> Build_EHModel_D0;

typedef Build_EHModel<SpinContainer,FieldContainer,1> Build_EHModel_D;

typedef Database<In,SC,EHModel_D,DataContainer,SpinContainer> DataBase;

typedef Spindynamics<In,SC,EHModel_D0,SpinContainer,FieldType> SpinDynamics;

typedef Simulator<EHModel_D0,EHModel_D,psimag::Metropolis,

RndGen,In,DataBase,SpinDynamics,

SpinContainer,FieldType> Simulate;

typedef Controller<In,Simulate> Control;

public:

explicit Build_Program(const char*);

~Build_Program() {}

void run();

private:

Build_Program(Build_Program&);

Build_Program& operator=(const Build_Program&);

SpinContainer spins;

In in;

RndGen ran;

SC sc;

EHModel_D0 model_D0;

EHModel_D model_D;

Build_EHModel_D0 buildModel_D0;
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Build_EHModel_D buildModel_D;

DataBase database;

SpinDynamics spindynamics;

Simulate simulate;

Control control;

};

/******************************************************************************/

Build_Program::Build_Program(const char* infile)

: spins(),

in(infile,spins),

ran(in.para().master_random_seed),

sc(in),

model_D0(),

model_D(),

buildModel_D0(model_D0,sc),

buildModel_D(model_D,sc,in),

database(in,sc,model_D),

spindynamics(in,sc,model_D0),

simulate(sc,model_D0,model_D,ran,in,database,spindynamics),

control(in,simulate)

{}

inline void Build_Program::run() { control.run(spins); }

#endif

A.3.3 spindynamics Bunker.h

#ifndef SPINDYNAMICS_BUNKER_H

#define SPINDYNAMICS_BUNKER_H

#include <vector>

#include "Real.h"

// Spindynamics is designed to run SD in one SDdt (not decompTime!)

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

class Spindynamics

{

typedef std::vector<unsigned int> DataContainer;

public:
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Spindynamics(const Input&, const SC&, EHModel_D0&);

~Spindynamics();

void run(SpinContainer&);

void run(SpinContainer&, const std::vector<bool>&);

const std::vector<DataContainer>& getSublat_index() const

{ return sublat_index; }

private:

Spindynamics(const Spindynamics&);

Spindynamics& operator=(const Spindynamics&);

void ROTSPIN_A_Tylor(const psimag::Real, SpinContainer&, psimag::Real*);

void ROTSPIN_B_Tylor(const psimag::Real, SpinContainer&, psimag::Real*);

void ROTSPIN_A(const psimag::Real, SpinContainer&, psimag::Real*);

void ROTSPIN_B(const psimag::Real, SpinContainer&, psimag::Real*);

void ROTSPIN_A_Tylor(const psimag::Real, SpinContainer&, psimag::Real*,

const std::vector<bool>&);

void ROTSPIN_B_Tylor(const psimag::Real, SpinContainer&, psimag::Real*,

const std::vector<bool>&);

void ROTSPIN_A(const psimag::Real, SpinContainer&, psimag::Real*,

const std::vector<bool>&);

void ROTSPIN_B(const psimag::Real, SpinContainer&, psimag::Real*,

const std::vector<bool>&);

const Input& in;

const SC& sc;

const unsigned int totalIterations;

const psimag::Real DT,

RP1, RP2, RP3, RP4, RP5,

RP1h, RP2h, RP3h, RP4h,

RP5h, RP12h, RP23h,

RP34h, RP45h,

CJT,

D;

DataContainer sublat_index_A,

sublat_index_B;

std::vector<DataContainer> sublat_index,

nl;

psimag::Real* decompTime_futureSz_A1;

psimag::Real* decompTime_futureSz_A2;

psimag::Real* decompTime_futureSz_A3;

psimag::Real* decompTime_futureSz_A4;

psimag::Real* decompTime_futureSz_A5;

psimag::Real* decompTime_futureSz_A6;
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psimag::Real* decompTime_futureSz_B1;

psimag::Real* decompTime_futureSz_B2;

psimag::Real* decompTime_futureSz_B3;

psimag::Real* decompTime_futureSz_B4;

psimag::Real* decompTime_futureSz_B5;

};

/*****************************************************************************/

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

Spindynamics(const Input& input, const SC& scLatt, EHModel_D0& model_D0)

: in(input),

sc(scLatt),

totalIterations(in.para().totalIterations),

DT(in.para().SDdt),

RP1(0.414490771794376*DT),

RP2(0.414490771794376*DT),

RP3(-0.657963087177503*DT),

RP4(0.414490771794376*DT),

RP5(0.414490771794376*DT),

RP1h(RP1*0.5),

RP2h(RP2*0.5),

RP3h(RP3*0.5),

RP4h(RP4*0.5),

RP5h(RP5*0.5),

RP12h(RP1h+RP2h),

RP23h(RP2h+RP3h),

RP34h(RP3h+RP4h),

RP45h(RP4h+RP5h),

CJT(in.para().exchange_factor[0]),

D(in.para().D),

sublat_index_A(sc.sublattice_length()[0]),

sublat_index_B(sc.sublattice_length()[1]),

sublat_index(2),

nl(sc.neighbor_list_forBunker()),

decompTime_futureSz_A1(NULL),

decompTime_futureSz_A2(NULL),

decompTime_futureSz_A3(NULL),

decompTime_futureSz_A4(NULL),

decompTime_futureSz_A5(NULL),

decompTime_futureSz_A6(NULL),

decompTime_futureSz_B1(NULL),

decompTime_futureSz_B2(NULL),

decompTime_futureSz_B3(NULL),

decompTime_futureSz_B4(NULL),
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decompTime_futureSz_B5(NULL)

{

for(unsigned int i=0; i<sublat_index_A.size(); i++)

sublat_index_A[i] = sc.sublattice_index()[i];

for(unsigned int i=0; i<sublat_index_B.size(); i++)

sublat_index_B[i] = sc.sublattice_index()[sc.sublattice_length()[0]+i];

sublat_index[0].assign(sublat_index_A.begin(),sublat_index_A.end());

sublat_index[1].assign(sublat_index_B.begin(),sublat_index_B.end());

decompTime_futureSz_A1 = new psimag::Real[sublat_index_A.size()];

decompTime_futureSz_A2 = new psimag::Real[sublat_index_A.size()];

decompTime_futureSz_A3 = new psimag::Real[sublat_index_A.size()];

decompTime_futureSz_A4 = new psimag::Real[sublat_index_A.size()];

decompTime_futureSz_A5 = new psimag::Real[sublat_index_A.size()];

decompTime_futureSz_A6 = new psimag::Real[sublat_index_A.size()];

decompTime_futureSz_B1 = new psimag::Real[sublat_index_B.size()];

decompTime_futureSz_B2 = new psimag::Real[sublat_index_B.size()];

decompTime_futureSz_B3 = new psimag::Real[sublat_index_B.size()];

decompTime_futureSz_B4 = new psimag::Real[sublat_index_B.size()];

decompTime_futureSz_B5 = new psimag::Real[sublat_index_B.size()];

}

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::~Spindynamics()

{

delete [] decompTime_futureSz_A1;

delete [] decompTime_futureSz_A2;

delete [] decompTime_futureSz_A3;

delete [] decompTime_futureSz_A4;

delete [] decompTime_futureSz_A5;

delete [] decompTime_futureSz_A6;

delete [] decompTime_futureSz_B1;

delete [] decompTime_futureSz_B2;

delete [] decompTime_futureSz_B3;

delete [] decompTime_futureSz_B4;

delete [] decompTime_futureSz_B5;

}

// run SD in one SDdt (not decompTime!)

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

void Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

run(SpinContainer& spins)

{

SpinContainer spins0;
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spins0.assign(spins.begin(),spins.end());

// Taylor iteration_4th order Suzuki_Trotter

ROTSPIN_A_Tylor(RP1h,spins,decompTime_futureSz_A1);

ROTSPIN_B_Tylor(RP1,spins,decompTime_futureSz_B1);

ROTSPIN_A_Tylor(RP12h,spins,decompTime_futureSz_A2);

ROTSPIN_B_Tylor(RP2,spins,decompTime_futureSz_B2);

ROTSPIN_A_Tylor(RP23h,spins,decompTime_futureSz_A3);

ROTSPIN_B_Tylor(RP3,spins,decompTime_futureSz_B3);

ROTSPIN_A_Tylor(RP34h,spins,decompTime_futureSz_A4);

ROTSPIN_B_Tylor(RP4,spins,decompTime_futureSz_B4);

ROTSPIN_A_Tylor(RP45h,spins,decompTime_futureSz_A5);

ROTSPIN_B_Tylor(RP5,spins,decompTime_futureSz_B5);

ROTSPIN_A_Tylor(RP5h,spins,decompTime_futureSz_A6);

// Iterative iterations_4th order Suzuki_Trotter

if(in.para().isAnisotropic==true && totalIterations>1) {

for(unsigned int iIteration=1; iIteration<totalIterations; iIteration++) {

spins.assign(spins0.begin(),spins0.end());

ROTSPIN_A(RP1h,spins,decompTime_futureSz_A1);

ROTSPIN_B(RP1,spins,decompTime_futureSz_B1);

ROTSPIN_A(RP12h,spins,decompTime_futureSz_A2);

ROTSPIN_B(RP2,spins,decompTime_futureSz_B2);

ROTSPIN_A(RP23h,spins,decompTime_futureSz_A3);

ROTSPIN_B(RP3,spins,decompTime_futureSz_B3);

ROTSPIN_A(RP34h,spins,decompTime_futureSz_A4);

ROTSPIN_B(RP4,spins,decompTime_futureSz_B4);

ROTSPIN_A(RP45h,spins,decompTime_futureSz_A5);

ROTSPIN_B(RP5,spins,decompTime_futureSz_B5);

ROTSPIN_A(RP5h,spins,decompTime_futureSz_A6);

}

}

}

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

void Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

run(SpinContainer& spins, const std::vector<bool>& surfaceLabel)

{

SpinContainer spins0;

spins0.assign(spins.begin(),spins.end());

// Taylor iteration_4th order Suzuki_Trotter

ROTSPIN_A_Tylor(RP1h,spins,decompTime_futureSz_A1,surfaceLabel);

ROTSPIN_B_Tylor(RP1,spins,decompTime_futureSz_B1,surfaceLabel);

ROTSPIN_A_Tylor(RP12h,spins,decompTime_futureSz_A2,surfaceLabel);

ROTSPIN_B_Tylor(RP2,spins,decompTime_futureSz_B2,surfaceLabel);
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ROTSPIN_A_Tylor(RP23h,spins,decompTime_futureSz_A3,surfaceLabel);

ROTSPIN_B_Tylor(RP3,spins,decompTime_futureSz_B3,surfaceLabel);

ROTSPIN_A_Tylor(RP34h,spins,decompTime_futureSz_A4,surfaceLabel);

ROTSPIN_B_Tylor(RP4,spins,decompTime_futureSz_B4,surfaceLabel);

ROTSPIN_A_Tylor(RP45h,spins,decompTime_futureSz_A5,surfaceLabel);

ROTSPIN_B_Tylor(RP5,spins,decompTime_futureSz_B5,surfaceLabel);

ROTSPIN_A_Tylor(RP5h,spins,decompTime_futureSz_A6,surfaceLabel);

// Iterative iterations_4th order Suzuki_Trotter

if(in.para().isAnisotropic==true && totalIterations>1) {

for(unsigned int iIteration=1; iIteration<totalIterations; iIteration++) {

spins.assign(spins0.begin(),spins0.end());

ROTSPIN_A(RP1h,spins,decompTime_futureSz_A1,surfaceLabel);

ROTSPIN_B(RP1,spins,decompTime_futureSz_B1,surfaceLabel);

ROTSPIN_A(RP12h,spins,decompTime_futureSz_A2,surfaceLabel);

ROTSPIN_B(RP2,spins,decompTime_futureSz_B2,surfaceLabel);

ROTSPIN_A(RP23h,spins,decompTime_futureSz_A3,surfaceLabel);

ROTSPIN_B(RP3,spins,decompTime_futureSz_B3,surfaceLabel);

ROTSPIN_A(RP34h,spins,decompTime_futureSz_A4,surfaceLabel);

ROTSPIN_B(RP4,spins,decompTime_futureSz_B4,surfaceLabel);

ROTSPIN_A(RP45h,spins,decompTime_futureSz_A5,surfaceLabel);

ROTSPIN_B(RP5,spins,decompTime_futureSz_B5,surfaceLabel);

ROTSPIN_A(RP5h,spins,decompTime_futureSz_A6,surfaceLabel);

}

}

}

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

void Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

ROTSPIN_A_Tylor(const psimag::Real DF, SpinContainer& spins,

psimag::Real* decompTime_futureSz_A)

{

psimag::Real WX, WY, WZ, W2,

WXSx, WXSy, WXSz, WdotS,

SINF, COSF;

unsigned int index;

for(unsigned int i=0; i<sublat_index_A.size(); i++) {

index = sublat_index_A[i];

WX = 0.;

WY = 0.;

WZ = 0.;

for(unsigned int ni=0; ni<nl[index].size(); ni++) {

WX += spins[nl[index][ni]][0]*-CJT;

WY += spins[nl[index][ni]][1]*-CJT;

WZ += spins[nl[index][ni]][2]*-CJT;

}
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WZ -= D*(2.*spins[index][2]+(WX*spins[index][1]-WY*spins[index][0])*DF);

W2 = WX*WX+WY*WY+WZ*WZ;

WXSx = WY*spins[index][2]-WZ*spins[index][1];

WXSy = WZ*spins[index][0]-WX*spins[index][2];

WXSz = WX*spins[index][1]-WY*spins[index][0];

WdotS=(WX*spins[index][0]+WY*spins[index][1]+WZ*spins[index][2])/W2;

SINF = (sin(sqrt(W2)*DF))/sqrt(W2);

COSF = cos(sqrt(W2)*DF)-1.0;

spins[index][0] = spins[index][0]+(spins[index][0]-WX*WdotS)*COSF+WXSx*SINF;

spins[index][1] = spins[index][1]+(spins[index][1]-WY*WdotS)*COSF+WXSy*SINF;

spins[index][2] = spins[index][2]+(spins[index][2]-WZ*WdotS)*COSF+WXSz*SINF;

decompTime_futureSz_A[i] = spins[index][2];

}

return;

}

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

void Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

ROTSPIN_B_Tylor(const psimag::Real DF, SpinContainer& spins,

psimag::Real* decompTime_futureSz_B)

{

psimag::Real WX, WY, WZ, W2,

WXSx, WXSy, WXSz, WdotS,

SINF, COSF;

unsigned int index;

for(unsigned int i=0; i<sublat_index_B.size(); i++) {

index = sublat_index_B[i];

WX = 0.;

WY = 0.;

WZ = 0.;

for(unsigned int ni=0; ni<nl[index].size(); ni++) {

WX += spins[nl[index][ni]][0]*-CJT;

WY += spins[nl[index][ni]][1]*-CJT;

WZ += spins[nl[index][ni]][2]*-CJT;

}

WZ -= D*(2.*spins[index][2]+(WX*spins[index][1]-WY*spins[index][0])*DF);

W2 = WX*WX+WY*WY+WZ*WZ;

WXSx = WY*spins[index][2]-WZ*spins[index][1];

WXSy = WZ*spins[index][0]-WX*spins[index][2];

WXSz = WX*spins[index][1]-WY*spins[index][0];

WdotS=(WX*spins[index][0]+WY*spins[index][1]+WZ*spins[index][2])/W2;
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SINF = (sin(sqrt(W2)*DF))/sqrt(W2);

COSF = cos(sqrt(W2)*DF)-1.0;

spins[index][0] = spins[index][0]+(spins[index][0]-WX*WdotS)*COSF+WXSx*SINF;

spins[index][1] = spins[index][1]+(spins[index][1]-WY*WdotS)*COSF+WXSy*SINF;

spins[index][2] = spins[index][2]+(spins[index][2]-WZ*WdotS)*COSF+WXSz*SINF;

decompTime_futureSz_B[i] = spins[index][2];

}

return;

}

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

void Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

ROTSPIN_A(const psimag::Real DF, SpinContainer& spins,

psimag::Real* decompTime_futureSz_A)

{

psimag::Real WX, WY, WZ, W2,

WXSx, WXSy, WXSz, WdotS,

SINF, COSF;

unsigned int index;

for(unsigned int i=0; i<sublat_index_A.size(); i++) {

index = sublat_index_A[i];

WX = 0.;

WY = 0.;

WZ = 0.;

for(unsigned int ni=0; ni<nl[index].size(); ni++) {

WX += spins[nl[index][ni]][0]*-CJT;

WY += spins[nl[index][ni]][1]*-CJT;

WZ += spins[nl[index][ni]][2]*-CJT;

}

WZ -= D*(spins[index][2]+decompTime_futureSz_A[i]);

W2 = WX*WX+WY*WY+WZ*WZ;

WXSx = WY*spins[index][2]-WZ*spins[index][1];

WXSy = WZ*spins[index][0]-WX*spins[index][2];

WXSz = WX*spins[index][1]-WY*spins[index][0];

WdotS=(WX*spins[index][0]+WY*spins[index][1]+WZ*spins[index][2])/W2;

SINF = (sin(sqrt(W2)*DF))/sqrt(W2);

COSF = cos(sqrt(W2)*DF)-1.0;

spins[index][0] = spins[index][0]+(spins[index][0]-WX*WdotS)*COSF+WXSx*SINF;

spins[index][1] = spins[index][1]+(spins[index][1]-WY*WdotS)*COSF+WXSy*SINF;

spins[index][2] = spins[index][2]+(spins[index][2]-WZ*WdotS)*COSF+WXSz*SINF;
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decompTime_futureSz_A[i] = spins[index][2];

}

return;

}

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

void Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

ROTSPIN_B(const psimag::Real DF, SpinContainer& spins,

psimag::Real* decompTime_futureSz_B)

{

psimag::Real WX, WY, WZ, W2,

WXSx, WXSy, WXSz, WdotS,

SINF, COSF;

unsigned int index;

for(unsigned int i=0; i<sublat_index_B.size(); i++) {

index = sublat_index_B[i];

WX = 0.;

WY = 0.;

WZ = 0.;

for(unsigned int ni=0; ni<nl[index].size(); ni++) {

WX += spins[nl[index][ni]][0]*-CJT;

WY += spins[nl[index][ni]][1]*-CJT;

WZ += spins[nl[index][ni]][2]*-CJT;

}

WZ -= D*(spins[index][2]+decompTime_futureSz_B[i]);

W2 = WX*WX+WY*WY+WZ*WZ;

WXSx = WY*spins[index][2]-WZ*spins[index][1];

WXSy = WZ*spins[index][0]-WX*spins[index][2];

WXSz = WX*spins[index][1]-WY*spins[index][0];

WdotS=(WX*spins[index][0]+WY*spins[index][1]+WZ*spins[index][2])/W2;

SINF = (sin(sqrt(W2)*DF))/sqrt(W2);

COSF = cos(sqrt(W2)*DF)-1.0;

spins[index][0] = spins[index][0]+(spins[index][0]-WX*WdotS)*COSF+WXSx*SINF;

spins[index][1] = spins[index][1]+(spins[index][1]-WY*WdotS)*COSF+WXSy*SINF;

spins[index][2] = spins[index][2]+(spins[index][2]-WZ*WdotS)*COSF+WXSz*SINF;

decompTime_futureSz_B[i] = spins[index][2];

}

return;

}

template<class Input, class SC, class EHModel_D0, class SpinContainer,
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class FieldType>

void Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

ROTSPIN_A_Tylor(const psimag::Real DF, SpinContainer& spins,

psimag::Real* decompTime_futureSz_A,

const std::vector<bool>& surfaceLabel)

{

psimag::Real WX, WY, WZ, W2,

WXSx, WXSy, WXSz, WdotS,

SINF, COSF;

unsigned int index;

for(unsigned int i=0; i<sublat_index_A.size(); i++) {

index = sublat_index_A[i];

if(!surfaceLabel[index]) {

WX = 0.;

WY = 0.;

WZ = 0.;

for(unsigned int ni=0; ni<nl[index].size(); ni++) {

WX += spins[nl[index][ni]][0]*-CJT;

WY += spins[nl[index][ni]][1]*-CJT;

WZ += spins[nl[index][ni]][2]*-CJT;

}

WZ -= D*(2.*spins[index][2]+(WX*spins[index][1]-WY*spins[index][0])*DF);

W2 = WX*WX+WY*WY+WZ*WZ;

WXSx = WY*spins[index][2]-WZ*spins[index][1];

WXSy = WZ*spins[index][0]-WX*spins[index][2];

WXSz = WX*spins[index][1]-WY*spins[index][0];

WdotS=(WX*spins[index][0]+WY*spins[index][1]+WZ*spins[index][2])/W2;

SINF = (sin(sqrt(W2)*DF))/sqrt(W2);

COSF = cos(sqrt(W2)*DF)-1.0;

spins[index][0] = spins[index][0]+(spins[index][0]-WX*WdotS)*COSF+WXSx*SINF;

spins[index][1] = spins[index][1]+(spins[index][1]-WY*WdotS)*COSF+WXSy*SINF;

spins[index][2] = spins[index][2]+(spins[index][2]-WZ*WdotS)*COSF+WXSz*SINF;

}

decompTime_futureSz_A[i] = spins[index][2];

}

return;

}

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

void Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

ROTSPIN_B_Tylor(const psimag::Real DF, SpinContainer& spins,

psimag::Real* decompTime_futureSz_B,

const std::vector<bool>& surfaceLabel)
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{

psimag::Real WX, WY, WZ, W2,

WXSx, WXSy, WXSz, WdotS,

SINF, COSF;

unsigned int index;

for(unsigned int i=0; i<sublat_index_B.size(); i++) {

index = sublat_index_B[i];

if(!surfaceLabel[index]) {

WX = 0.;

WY = 0.;

WZ = 0.;

for(unsigned int ni=0; ni<nl[index].size(); ni++) {

WX += spins[nl[index][ni]][0]*-CJT;

WY += spins[nl[index][ni]][1]*-CJT;

WZ += spins[nl[index][ni]][2]*-CJT;

}

WZ -= D*(2.*spins[index][2]+(WX*spins[index][1]-WY*spins[index][0])*DF);

W2 = WX*WX+WY*WY+WZ*WZ;

WXSx = WY*spins[index][2]-WZ*spins[index][1];

WXSy = WZ*spins[index][0]-WX*spins[index][2];

WXSz = WX*spins[index][1]-WY*spins[index][0];

WdotS=(WX*spins[index][0]+WY*spins[index][1]+WZ*spins[index][2])/W2;

SINF = (sin(sqrt(W2)*DF))/sqrt(W2);

COSF = cos(sqrt(W2)*DF)-1.0;

spins[index][0] = spins[index][0]+(spins[index][0]-WX*WdotS)*COSF+WXSx*SINF;

spins[index][1] = spins[index][1]+(spins[index][1]-WY*WdotS)*COSF+WXSy*SINF;

spins[index][2] = spins[index][2]+(spins[index][2]-WZ*WdotS)*COSF+WXSz*SINF;

}

decompTime_futureSz_B[i] = spins[index][2];

}

return;

}

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

void Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

ROTSPIN_A(const psimag::Real DF, SpinContainer& spins,

psimag::Real* decompTime_futureSz_A,

const std::vector<bool>& surfaceLabel)

{

psimag::Real WX, WY, WZ, W2,

WXSx, WXSy, WXSz, WdotS,

SINF, COSF;

unsigned int index;
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for(unsigned int i=0; i<sublat_index_A.size(); i++) {

index = sublat_index_A[i];

if(!surfaceLabel[index]) {

WX = 0.;

WY = 0.;

WZ = 0.;

for(unsigned int ni=0; ni<nl[index].size(); ni++) {

WX += spins[nl[index][ni]][0]*-CJT;

WY += spins[nl[index][ni]][1]*-CJT;

WZ += spins[nl[index][ni]][2]*-CJT;

}

WZ -= D*(spins[index][2]+decompTime_futureSz_A[i]);

W2 = WX*WX+WY*WY+WZ*WZ;

WXSx = WY*spins[index][2]-WZ*spins[index][1];

WXSy = WZ*spins[index][0]-WX*spins[index][2];

WXSz = WX*spins[index][1]-WY*spins[index][0];

WdotS=(WX*spins[index][0]+WY*spins[index][1]+WZ*spins[index][2])/W2;

SINF = (sin(sqrt(W2)*DF))/sqrt(W2);

COSF = cos(sqrt(W2)*DF)-1.0;

spins[index][0] = spins[index][0]+(spins[index][0]-WX*WdotS)*COSF+WXSx*SINF;

spins[index][1] = spins[index][1]+(spins[index][1]-WY*WdotS)*COSF+WXSy*SINF;

spins[index][2] = spins[index][2]+(spins[index][2]-WZ*WdotS)*COSF+WXSz*SINF;

}

decompTime_futureSz_A[i] = spins[index][2];

}

return;

}

template<class Input, class SC, class EHModel_D0, class SpinContainer,

class FieldType>

void Spindynamics<Input,SC,EHModel_D0,SpinContainer,FieldType>::

ROTSPIN_B(const psimag::Real DF, SpinContainer& spins,

psimag::Real* decompTime_futureSz_B,

const std::vector<bool>& surfaceLabel)

{

psimag::Real WX, WY, WZ, W2,

WXSx, WXSy, WXSz, WdotS,

SINF, COSF;

unsigned int index;

for(unsigned int i=0; i<sublat_index_B.size(); i++) {

index = sublat_index_B[i];

if(!surfaceLabel[index]) {

WX = 0.;

WY = 0.;
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WZ = 0.;

for(unsigned int ni=0; ni<nl[index].size(); ni++) {

WX += spins[nl[index][ni]][0]*-CJT;

WY += spins[nl[index][ni]][1]*-CJT;

WZ += spins[nl[index][ni]][2]*-CJT;

}

WZ -= D*(spins[index][2]+decompTime_futureSz_B[i]);

W2 = WX*WX+WY*WY+WZ*WZ;

WXSx = WY*spins[index][2]-WZ*spins[index][1];

WXSy = WZ*spins[index][0]-WX*spins[index][2];

WXSz = WX*spins[index][1]-WY*spins[index][0];

WdotS=(WX*spins[index][0]+WY*spins[index][1]+WZ*spins[index][2])/W2;

SINF = (sin(sqrt(W2)*DF))/sqrt(W2);

COSF = cos(sqrt(W2)*DF)-1.0;

spins[index][0] = spins[index][0]+(spins[index][0]-WX*WdotS)*COSF+WXSx*SINF;

spins[index][1] = spins[index][1]+(spins[index][1]-WY*WdotS)*COSF+WXSy*SINF;

spins[index][2] = spins[index][2]+(spins[index][2]-WZ*WdotS)*COSF+WXSz*SINF;

}

decompTime_futureSz_B[i] = spins[index][2];

}

return;

}

#endif

A.3.4 simulator.h

#ifndef SIMULATOR_H

#define SIMULATOR_H

#include <fstream>

#include <vector>

#include <cmath>

#include <cstdlib>

#include <ctime>

#include "Real.h"

#include "HeisenbergSpinStepper.h"

#include "IsingFlip.h"

#include "WolffCluster.h"

#include "OverRelaxation.h"

#include "RotationOperator.h"

#include "LatticeIndexMapper.h"
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template<class EHModel_D0, class EHModel_D, class AcceptProb, class RndGen,

class Input, class DataBase, class SpinDynamics, class SpinContainer,

class FieldType>

class Simulator

{

typedef psimag::RotationOperator<typename SpinContainer::value_type,FieldType>

RotationOp;

public:

template<class SC>

Simulator(const SC&, EHModel_D0&, EHModel_D&, RndGen&, const Input&,

DataBase&, SpinDynamics&);

~Simulator() {}

void run(SpinContainer&, psimag::Real);

private:

Simulator(const Simulator&);

Simulator& operator=(const Simulator&);

void MC_moves(SpinContainer&, psimag::Real);

void MC_moves(SpinContainer&, psimag::Real, const std::vector<bool>&);

void zPolarize_Iso(SpinContainer&);

void zPolarize_Iso(SpinContainer&, const std::vector<bool>&);

// monte carlo moves

psimag::HeisenbergSpinStepper<EHModel_D,AcceptProb> heisenberg;

psimag::WolffCluster<AcceptProb> wolff;

psimag::IsingFlip<EHModel_D0, AcceptProb> ising;

psimag::OverRelaxation<RotationOp, EHModel_D0> overRelax;

RndGen& ran;

const Input& input;

DataBase& database;

SpinDynamics& spindynamics;

const std::vector<unsigned int>& sublatticeLabel;

const std::vector<bool>& surfaceLabel;

};

/*****************************************************************************/

template<class EHModel_D0, class EHModel_D, class AcceptProb, class RndGen,

class Input, class DataBase, class SpinDynamics, class SpinContainer,
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class FieldType>

template<class SC>

Simulator<EHModel_D0,EHModel_D,AcceptProb,RndGen,Input,DataBase,SpinDynamics,

SpinContainer,FieldType>::

Simulator(const SC& sc, EHModel_D0& md_D0, EHModel_D& md_D, RndGen& rn,

const Input& in, DataBase& dbase, SpinDynamics& spind)

: heisenberg(md_D),

wolff(sc.neighbor_list(), sc.neighbor_size(), sc.J_list()),

ising(md_D0),

overRelax(md_D0),

ran(rn),

input(in),

database(dbase),

spindynamics(spind),

sublatticeLabel(sc.sublattice_label()),

surfaceLabel(sc.surface_label())

{}

template<class EHModel_D0, class EHModel_D, class AcceptProb, class RndGen,

class Input, class DataBase, class SpinDynamics, class SpinContainer,

class FieldType>

void Simulator<EHModel_D0,EHModel_D,AcceptProb,RndGen,Input,DataBase,

SpinDynamics,SpinContainer,FieldType>

::run(SpinContainer& spins, psimag::Real T)

{

if(input.para().boundary!="sbc")

{ for(unsigned int i=0; i<input.para().NDiscard; i++) MC_moves(spins,T); }

else { for(unsigned int i=0; i<input.para().NDiscard; i++)

MC_moves(spins,T,surfaceLabel); }

if(input.para().idowhat==3) {

unsigned int NHybrid = input.para().NHybrid,

everyNSteps = input.para().everyNSteps;

bool print_EMhs = input.para().print_EMhs,

print_EMtm = input.para().print_EMtm,

doCellization = input.para().doCellization;

for(unsigned int i=0; i<NHybrid; i++) {

#ifdef EM

if(print_EMtm==true || print_EMhs==true) database.collect_EM(spins,i);

#endif

#ifdef CELL

if(doCellization==true) database.collect_Cell(spins,i);

#endif

if(input.para().boundary!="sbc")
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{ for(unsigned int j=0; j<everyNSteps; j++) MC_moves(spins,T); }

else { for(unsigned int j=0; j<everyNSteps; j++)

MC_moves(spins,T,surfaceLabel); }

}

#ifdef EM

if(print_EMtm==true || print_EMhs==true) database.collect_EM(spins,NHybrid);

#endif

#ifdef CELL

if(doCellization==true) database.collect_Cell(spins,NHybrid);

#endif

long int Id = time(NULL);

#ifdef EM

if(print_EMtm==true || print_EMhs==true) database.output_EM(Id);

#endif

#ifdef CELL

if(doCellization==true) database.output_Cell(Id);

#endif

database.clearup();

}

else {

unsigned int NHybrid = input.para().NHybrid,

everyNSteps = input.para().everyNSteps,

NConfig = input.para().NConfig,

nt = input.para().nt;

psimag::Real SDdt = input.para().SDdt;

bool singleConfig = input.para().singleConfig,

print_EMhs = input.para().print_EMhs,

print_EMtm = input.para().print_EMtm,

doCorre_Fly = input.para().doCorre_Fly,

doCorre_Real = input.para().doCorre_Real,

doCorre_LocalSL = input.para().doCorre_LocalSL,

doCorre_Local_BC = input.para().doCorre_Local_BC,

doCorre_Local_SC = input.para().doCorre_Local_SC,

doCorre_Local_CR = input.para().doCorre_Local_CR,

doCorre_Local_BC_PBCXY = input.para().doCorre_Local_BC_PBCXY,

doCorre_FSUR_PBCXY = input.para().doCorre_FSUR_PBCXY,

doCellization = input.para().doCellization;

SpinContainer spins0;

spins0.assign(spins.begin(),spins.end());

for(unsigned int iConfig=0; iConfig<NConfig; iConfig++) {

std::cout<<"iConfig = "<<iConfig<<" of "<<NConfig<<" with dt = "

<<std::setprecision(2)<<std::fixed<<SDdt<<std::endl;
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if(input.para().isAnisotropic==false) {

if(input.para().boundary!="sbc") zPolarize_Iso(spins);

else zPolarize_Iso(spins,surfaceLabel);

}

for(unsigned int it=0; it<nt; it++) {

#ifdef EM

if(print_EMtm==true || print_EMhs==true) database.collect_EM(spins,it);

#endif

#ifdef FLY

if(doCorre_Fly==true) database.collect_Corr_Intermd(spins,it);

#endif

#ifdef REAL

if(doCorre_Real==true) database.collect_Corr_Real(spins,it);

#endif

#ifdef LOCAL_SINGLE_LINE

if(doCorre_LocalSL==true) database.collect_Corr_LocalSL(spins,it);

#endif

#ifdef LOCAL_BC

if(doCorre_Local_BC==true) database.collect_Corr_Local_BC(spins,it);

#endif

#ifdef LOCAL_SC

if(doCorre_Local_SC==true) database.collect_Corr_Local_SC(spins,it);

#endif

#ifdef LOCAL_CR

if(doCorre_Local_CR==true) database.collect_Corr_Local_CR(spins,it);

#endif

#ifdef LOCAL_BC_PBCXY

if(doCorre_Local_BC_PBCXY==true)

database.collect_Corr_Local_BC_PBCXY(spins,it);

#endif

#ifdef FSUR_PBCXY

if(doCorre_FSUR_PBCXY==true) database.collect_Corr_FSUR_PBCXY(spins,it);

#endif

#ifdef CELL

if(doCellization==true) database.collect_Cell(spins,it);

#endif

if(input.para().boundary!="sbc") spindynamics.run(spins);

else spindynamics.run(spins,surfaceLabel);

if(input.para().isAnisotropic==false&&input.para().exchange_factor[0]<0.)

{

if(input.para().boundary!="sbc") zPolarize_Iso(spins);

else zPolarize_Iso(spins,surfaceLabel);
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}

}

#ifdef EM

if(print_EMtm==true || print_EMhs==true) database.collect_EM(spins,nt);

#endif

#ifdef FLY

if(doCorre_Fly==true) database.collect_Corr_Intermd(spins,nt);

#endif

#ifdef REAL

if(doCorre_Real==true) database.collect_Corr_Real(spins,nt);

#endif

#ifdef LOCAL_SINGLE_LINE

if(doCorre_LocalSL==true) database.collect_Corr_LocalSL(spins,nt);

#endif

#ifdef LOCAL_BC

if(doCorre_Local_BC==true) database.collect_Corr_Local_BC(spins,nt);

#endif

#ifdef LOCAL_SC

if(doCorre_Local_SC==true) database.collect_Corr_Local_SC(spins,nt);

#endif

#ifdef LOCAL_CR

if(doCorre_Local_CR==true) database.collect_Corr_Local_CR(spins,nt);

#endif

#ifdef LOCAL_BC_PBCXY

if(doCorre_Local_BC_PBCXY==true)

database.collect_Corr_Local_BC_PBCXY(spins,nt);

#endif

#ifdef FSUR_PBCXY

if(doCorre_FSUR_PBCXY==true)

database.collect_Corr_FSUR_PBCXY(spins,nt);

#endif

#ifdef CELL

if(doCellization==true) database.collect_Cell(spins,nt);

#endif

#ifdef FLY

if(doCorre_Fly==true) database.doCorre_Intermd();

#endif

#ifdef REAL

if(doCorre_Real==true) database.doCorre_Real();

#endif

#ifdef LOCAL_SINGLE_LINE

if(doCorre_LocalSL==true) database.doCorre_LocalSL();

#endif

#ifdef LOCAL_BC

if(doCorre_Local_BC==true) database.doCorre_Local_BC();
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#endif

#ifdef LOCAL_SC

if(doCorre_Local_SC==true) database.doCorre_Local_SC();

#endif

#ifdef LOCAL_CR

if(doCorre_Local_CR==true) database.doCorre_Local_CR();

#endif

#ifdef LOCAL_BC_PBCXY

if(doCorre_Local_BC_PBCXY==true) database.doCorre_Local_BC_PBCXY();

#endif

#ifdef FSUR_PBCXY

if(doCorre_FSUR_PBCXY==true) database.doCorre_FSUR_PBCXY();

#endif

long int Id = time(NULL);

#ifdef EM

if(print_EMtm==true || print_EMhs==true)

database.output_EM(Id,SDdt,iConfig);

#endif

#ifdef FLY

if(doCorre_Fly==true && singleConfig==true)

database.output_Corr_Intermd(Id,SDdt,iConfig);

#endif

#ifdef REAL

if(doCorre_Real==true && singleConfig==true)

database.output_Corr_Real(Id,SDdt,iConfig);

#endif

#ifdef LOCAL_SINGLE_LINE

if(doCorre_LocalSL==true && singleConfig==true)

database.output_Corr_LocalSL(Id,SDdt,iConfig);

#endif

#ifdef LOCAL_BC

if(doCorre_Local_BC==true && singleConfig==true)

database.output_Corr_Local_BC(Id,SDdt,iConfig);

#endif

#ifdef LOCAL_SC

if(doCorre_Local_SC==true && singleConfig==true)

database.output_Corr_Local_SC(Id,SDdt,iConfig);

#endif

#ifdef LOCAL_CR

if(doCorre_Local_CR==true && singleConfig==true)

database.output_Corr_Local_CR(Id,SDdt,iConfig);

#endif

#ifdef LOCAL_BC_PBCXY

if(doCorre_Local_BC_PBCXY==true && singleConfig==true)

database.output_Corr_Local_BC_PBCXY(Id,SDdt,iConfig);

#endif
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#ifdef FSUR_PBCXY

if(doCorre_FSUR_PBCXY==true && singleConfig==true)

database.output_Corr_FSUR_PBCXY(Id,SDdt,iConfig);

#endif

#ifdef CELL

if(doCellization==true)

database.output_Cell(Id,iConfig,SDdt);

#endif

#ifdef EM

if(print_EMtm==true || print_EMhs==true)

database.clearup();

#endif

#ifdef FLY

if(doCorre_Fly==true && singleConfig==true) database.clearup();

#endif

#ifdef REAL

if(doCorre_Real==true && singleConfig==true) database.clearup();

#endif

#ifdef LOCAL_SINGLE_LINE

if(doCorre_LocalSL==true && singleConfig==true) database.clearup();

#endif

#ifdef LOCAL_BC

if(doCorre_Local_BC==true && singleConfig==true) database.clearup();

#endif

#ifdef LOCAL_SC

if(doCorre_Local_SC==true && singleConfig==true) database.clearup();

#endif

#ifdef LOCAL_CR

if(doCorre_Local_CR==true && singleConfig==true) database.clearup();

#endif

#ifdef LOCAL_BC_PBCXY

if(doCorre_Local_BC_PBCXY==true && singleConfig==true) database.clearup();

#endif

#ifdef FSUR_PBCXY

if(doCorre_FSUR_PBCXY==true && singleConfig==true) database.clearup();

#endif

#ifdef CELL

if(doCellization==true) database.clearup();

#endif

if(iConfig!=NConfig-1) {

if(input.para().boundary!="sbc")

{ for(unsigned int i=0; i<NHybrid; i++) MC_moves(spins0,T); }

else { for(unsigned int i=0; i<NHybrid; i++)

MC_moves(spins0,T,surfaceLabel); }

spins.assign(spins0.begin(),spins0.end());
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}

} //iconfig

if(singleConfig==false) {

#ifdef FLY

if(doCorre_Fly==true) database.output_Corr_Intermd(time(NULL),SDdt);

#endif

#ifdef REAL

if(doCorre_Real==true) database.output_Corr_Real(time(NULL),SDdt);

#endif

#ifdef LOCAL_SINGLE_LINE

if(doCorre_LocalSL==true) database.output_Corr_LocalSL(time(NULL),SDdt);

#endif

#ifdef LOCAL_BC

if(doCorre_Local_BC==true) database.output_Corr_Local_BC(time(NULL),SDdt);

#endif

#ifdef LOCAL_SC

if(doCorre_Local_SC==true) database.output_Corr_Local_SC(time(NULL),SDdt);

#endif

#ifdef LOCAL_CR

if(doCorre_Local_CR==true) database.output_Corr_Local_CR(time(NULL),SDdt);

#endif

#ifdef LOCAL_BC_PBCXY

if(doCorre_Local_BC_PBCXY==true)

database.output_Corr_Local_BC_PBCXY(time(NULL),SDdt);

#endif

#ifdef FSUR_PBCXY

if(doCorre_FSUR_PBCXY==true)

database.output_Corr_FSUR_PBCXY(time(NULL),SDdt);

#endif

database.clearup();

}

}

}

template<class EHModel_D0, class EHModel_D, class AcceptProb, class RndGen,

class Input, class DataBase, class SpinDynamics, class SpinContainer,

class FieldType>

void Simulator<EHModel_D0,EHModel_D,AcceptProb,RndGen,Input,DataBase,SpinDynamics,

SpinContainer,FieldType>

::MC_moves(SpinContainer& Spins, psimag::Real T)

{

for(unsigned int j=0; j<input.para().NHeisenberg; j++)

for(unsigned int k=0; k<Spins.size(); k++) heisenberg(ran,0.,Spins,T);

for(unsigned int j=0; j<input.para().NWolff;j++) wolff(ran,0.,Spins,T);

for(unsigned int j=0; j<input.para().NIsing;j++) ising(ran,0.,Spins,T);
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for(unsigned int j=0; j<input.para().NOverRelax; j++) {

for(unsigned int k=0; k<input.para().NSubLat; k++) {

unsigned int iSub = static_cast<int>(input.para().NSubLat*ran()),

subsize = spindynamics.getSublat_index()[iSub].size();

int p=overRelax(ran,0.,Spins,spindynamics.getSublat_index()[iSub],subsize);

}

}

}

template<class EHModel_D0, class EHModel_D, class AcceptProb, class RndGen,

class Input, class DataBase, class SpinDynamics, class SpinContainer,

class FieldType>

void Simulator<EHModel_D0,EHModel_D,AcceptProb,RndGen,Input,DataBase,

SpinDynamics,SpinContainer,FieldType>

::MC_moves(SpinContainer& Spins, psimag::Real T,

const std::vector<bool>& surfaceLabel)

{

for(unsigned int j=0; j<input.para().NHeisenberg; j++)

for(unsigned int k=0; k<Spins.size(); k++)

heisenberg(ran,0.,Spins,T,surfaceLabel);

for(unsigned int j=0; j<input.para().NOverRelax; j++) {

for(unsigned int k=0; k<input.para().NSubLat; k++) {

unsigned int iSub = static_cast<int>(input.para().NSubLat*ran()),

subsize = spindynamics.getSublat_index()[iSub].size();

int p=overRelax(ran,0.,Spins,spindynamics.getSublat_index()[iSub],

subsize,surfaceLabel);

}

}

}

template<class EHModel_D0, class EHModel_D, class AcceptProb, class RndGen,

class Input, class DataBase, class SpinDynamics, class SpinContainer,

class FieldType>

void Simulator<EHModel_D0,EHModel_D,AcceptProb,RndGen,Input,DataBase,SpinDynamics,

SpinContainer,FieldType>

::zPolarize_Iso(SpinContainer& Spins)

{

psimag::Real m = 0., mx = 0., my = 0., mz = 0.;

psimag::Real zcax, zcay, zcaz, ycaz, ycax, ycay, xcax, xcay, xcaz;

psimag::Real sx, sy, sz;;

if(input.para().exchange_factor[0]>0.) {

for(unsigned int i=0;i<Spins.size();i++) {

mx += Spins[i][0];

my += Spins[i][1];

mz += Spins[i][2];

}

}
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else {

for(unsigned int i=0;i<Spins.size();i++) {

if(sublatticeLabel[i]==0) {

mx += Spins[i][0];

my += Spins[i][1];

mz += Spins[i][2];

}

else {

mx -= Spins[i][0];

my -= Spins[i][1];

mz -= Spins[i][2];

}

}

}

mx = mx/static_cast<double>(Spins.size());

my = my/static_cast<double>(Spins.size());

mz = mz/static_cast<double>(Spins.size());

m = sqrt(mx*mx+my*my+mz*mz);

zcax = mx/m;

zcay = my/m;

zcaz = mz/m;

ycaz = sqrt(1.-pow(zcaz,2.));

ycax = -zcax*zcaz/ycaz;

ycay = -zcay*zcaz/ycaz;

xcax = -zcay/ycaz;

xcay = zcax/ycaz;

xcaz = 0.;

for(unsigned int i=0;i<Spins.size();i++) {

sx = xcax*Spins[i][0]+xcay*Spins[i][1]+xcaz*Spins[i][2];

sy = ycax*Spins[i][0]+ycay*Spins[i][1]+ycaz*Spins[i][2];

sz = zcax*Spins[i][0]+zcay*Spins[i][1]+zcaz*Spins[i][2];

Spins[i][0] = sx;

Spins[i][1] = sy;

Spins[i][2] = sz;

}

return ;

}

template<class EHModel_D0, class EHModel_D, class AcceptProb, class RndGen,

class Input, class DataBase, class SpinDynamics, class SpinContainer,

class FieldType>

void Simulator<EHModel_D0,EHModel_D,AcceptProb,RndGen,Input,DataBase,



129

SpinDynamics,SpinContainer,FieldType>

::zPolarize_Iso(SpinContainer& Spins, const std::vector<bool>& surfaceLabel)

{

psimag::Real m = 0., mx = 0., my = 0., mz = 0.;

psimag::Real zcax, zcay, zcaz, ycaz, ycax, ycay, xcax, xcay, xcaz;

psimag::Real sx, sy, sz;;

if(input.para().exchange_factor[0]>0.) {

for(unsigned int i=0;i<Spins.size();i++) {

mx += Spins[i][0];

my += Spins[i][1];

mz += Spins[i][2];

}

}

else {

for(unsigned int i=0;i<Spins.size();i++) {

if(sublatticeLabel[i]==0) {

mx += Spins[i][0];

my += Spins[i][1];

mz += Spins[i][2];

}

else {

mx -= Spins[i][0];

my -= Spins[i][1];

mz -= Spins[i][2];

}

}

}

mx = mx/static_cast<double>(Spins.size());

my = my/static_cast<double>(Spins.size());

mz = mz/static_cast<double>(Spins.size());

m = sqrt(mx*mx+my*my+mz*mz);

zcax = mx/m;

zcay = my/m;

zcaz = mz/m;

ycaz = sqrt(1.-pow(zcaz,2.));

ycax = -zcax*zcaz/ycaz;

ycay = -zcay*zcaz/ycaz;

xcax = -zcay/ycaz;

xcay = zcax/ycaz;

xcaz = 0.;

for(unsigned int i=0;i<Spins.size();i++) {

if(!surfaceLabel[i]) {
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sx = xcax*Spins[i][0]+xcay*Spins[i][1]+xcaz*Spins[i][2];

sy = ycax*Spins[i][0]+ycay*Spins[i][1]+ycaz*Spins[i][2];

sz = zcax*Spins[i][0]+zcay*Spins[i][1]+zcaz*Spins[i][2];

Spins[i][0] = sx;

Spins[i][1] = sy;

Spins[i][2] = sz;

}

}

return ;

}

#endif

A.3.5 correlation Local BC PBCXY.h

#ifndef CORRELATION_LOCAL_BC_PBCXY_H

#define CORRELATION_LOCAL_BC_PBCXY_H

#include <fstream>

#include <vector>

#include <algorithm>

#include <numeric>

#include <iomanip>

#include <string>

#include <sstream>

#include <cstdlib>

#include <cmath>

#include "Real.h"

#include "ContainerUtil.h"

#include "LatticeIndexMapper.h"

template<class Input, class SC, class DataContainer, class SpinContainer>

class Correlation_Local_BC_PBCXY

{

typedef psimag::Real real;

public:

virtual ~Correlation_Local_BC_PBCXY() = 0;

virtual void insert(const SpinContainer&, const unsigned int) = 0;

virtual void doCorrelation_Local_BC() = 0;

virtual void print(const long int, const real, const int) = 0;

virtual void clearup() = 0;

protected:

template<class OS> void printTitle(const Input&, OS&, real, int) const;
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};

/*****************************************************************************/

template<class Input, class SC, class DataContainer, class SpinContainer>

Correlation_Local_BC_PBCXY<Input,SC,DataContainer,SpinContainer>::

~Correlation_Local_BC_PBCXY() {}

template<class Input, class SC, class DataContainer, class SpinContainer>

template<class OS>

void Correlation_Local_BC_PBCXY<Input,SC,DataContainer,SpinContainer>::

printTitle(const Input& in, OS& os, real SDdt, int iConfig) const

{

in.print_input(os);

std::ostringstream oss;

oss<<iConfig;

os<<"#\n# Running For iConfig = "<<(iConfig==-1?"N/A":oss.str())

<<" of NConfig = "<<in.para().NConfig<<" with SDdt = ";

if(SDdt==-1) os<<"N/A"<<std::endl;

else os<<SDdt<<std::endl;

}

///////////////////////////////////////////////////////////////////////////////

template<class Input, class SC, class DataContainer, class SpinContainer>

class Correlation_Local_BC_PBCXY_EvenL :

public Correlation_Local_BC_PBCXY<Input,SC,DataContainer,SpinContainer>

{

typedef psimag::Real real;

typedef std::vector<real> VContainer;

typedef std::vector<VContainer> VVContainer;

typedef std::vector<VVContainer> VVVContainer;

typedef std::vector<std::vector<DataContainer> > BCS_IndexContainer;

public:

explicit Correlation_Local_BC_PBCXY_EvenL(const Input&, const SC&);

virtual ~Correlation_Local_BC_PBCXY_EvenL();

virtual void insert(const SpinContainer&, const unsigned int);

virtual void doCorrelation_Local_BC();

virtual void print(const long int, const real, const int);

virtual void clearup();

private:

Correlation_Local_BC_PBCXY_EvenL(const Correlation_Local_BC_PBCXY_EvenL&);

Correlation_Local_BC_PBCXY_EvenL& operator=(

const Correlation_Local_BC_PBCXY_EvenL&);
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void findBCSIndex(BCS_IndexContainer&, BCS_IndexContainer&);

void spinSumOnPlane_100(const SpinContainer&, VVContainer&, VVContainer&,

VVContainer&, VVContainer&, VVContainer&, VVContainer&);

const Input& in;

const DataContainer& L, sublattice_label;

const unsigned int N, PL_P, PL_F, BCPL_P, BCPL_F, nt, tc, tintv;

BCS_IndexContainer BCS_Index_P, BCS_Index_F;

VVContainer aveBCS_X_P, aveBCS_Y_P, aveBCS_Z_P,

aveBCS_X_F, aveBCS_Y_F, aveBCS_Z_F;

VVVContainer BCS_Time_X_P, BCS_Time_Y_P, BCS_Time_Z_P,

BCS_Time_X_F, BCS_Time_Y_F, BCS_Time_Z_F;

VVContainer SSOP0_XY_100, SSOP0_YZ_100, SSOP0_ZX_100,

SSOP1_XY_100, SSOP1_YZ_100, SSOP1_ZX_100,

aveSSOP0_XY_100, aveSSOP0_YZ_100, aveSSOP0_ZX_100,

aveSSOP1_XY_100, aveSSOP1_YZ_100, aveSSOP1_ZX_100;

VVVContainer SSOP0_XY_Time_100, SSOP0_YZ_Time_100, SSOP0_ZX_Time_100,

SSOP1_XY_Time_100, SSOP1_YZ_Time_100, SSOP1_ZX_Time_100;

VVContainer Cx_100_P, Cy_100_P, Cz_100_P,

Cx_100_F, Cy_100_F, Cz_100_F;

};

/******************************************************************************/

template<class Input, class SC, class DataContainer, class SpinContainer>

Correlation_Local_BC_PBCXY_EvenL<Input,SC,DataContainer,SpinContainer>::

Correlation_Local_BC_PBCXY_EvenL(const Input& input, const SC& sc)

:in(input),

L(in.para().L),

sublattice_label(sc.sublattice_label()),

N(sc.number_of_sites()),

PL_P(L[1]),

PL_F(L[0]),

BCPL_P(L[1]/2-1),

BCPL_F(L[0]/2-1),

nt(in.para().nt),

tc(in.para().tc),

tintv(in.para().tintv)

{

findBCSIndex(BCS_Index_P,BCS_Index_F);
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aveBCS_X_P.resize(4); aveBCS_Y_P.resize(4); aveBCS_Z_P.resize(4);

aveBCS_X_F.resize(2); aveBCS_Y_F.resize(2); aveBCS_Z_F.resize(2);

for(unsigned int p=0; p<aveBCS_X_P.size(); p++)

{ aveBCS_X_P[p].resize(2,0.); aveBCS_Y_P[p].resize(2,0.);

aveBCS_Z_P[p].resize(2,0.); }

for(unsigned int p=0; p<aveBCS_X_F.size(); p++)

{ aveBCS_X_F[p].resize(2,0.); aveBCS_Y_F[p].resize(2,0.);

aveBCS_Z_F[p].resize(2,0.); }

BCS_Time_X_P.resize(nt+1);BCS_Time_Y_P.resize(nt+1);BCS_Time_Z_P.resize(nt+1);

BCS_Time_X_F.resize(nt+1);BCS_Time_Y_F.resize(nt+1);BCS_Time_Z_F.resize(nt+1);

for(unsigned int t=0; t<nt+1; t++) {

BCS_Time_X_P[t].resize(4);BCS_Time_Y_P[t].resize(4);BCS_Time_Z_P[t].resize(4);

BCS_Time_X_F[t].resize(2);BCS_Time_Y_F[t].resize(2);BCS_Time_Z_F[t].resize(2);

}

for(unsigned int t=0; t<nt+1; t++) {

for(unsigned int p=0; p<4; p++)

{ BCS_Time_X_P[t][p].resize(2,0.); BCS_Time_Y_P[t][p].resize(2,0.);

BCS_Time_Z_P[t][p].resize(2,0.); }

for(unsigned int p=0; p<2; p++)

{ BCS_Time_X_F[t][p].resize(2,0.); BCS_Time_Y_F[t][p].resize(2,0.);

BCS_Time_Z_F[t][p].resize(2,0.); }

}

SSOP0_XY_100.resize(PL_F); SSOP0_YZ_100.resize(PL_P); SSOP0_ZX_100.resize(PL_P);

SSOP1_XY_100.resize(PL_F); SSOP1_YZ_100.resize(PL_P); SSOP1_ZX_100.resize(PL_P);

for(unsigned int r=0; r<PL_F; r++) {

SSOP0_XY_100[r].resize(3,0.);

SSOP1_XY_100[r].resize(3,0.);

}

for(unsigned int r=0; r<PL_P; r++) {

SSOP0_YZ_100[r].resize(3,0.); SSOP0_ZX_100[r].resize(3,0.);

SSOP1_YZ_100[r].resize(3,0.); SSOP1_ZX_100[r].resize(3,0.);

}

aveSSOP0_XY_100.resize(PL_F); aveSSOP0_YZ_100.resize(PL_P);

aveSSOP0_ZX_100.resize(PL_P);

aveSSOP1_XY_100.resize(PL_F); aveSSOP1_YZ_100.resize(PL_P);

aveSSOP1_ZX_100.resize(PL_P);

for(unsigned int r=0; r<PL_F; r++) {

aveSSOP0_XY_100[r].resize(3,0.);

aveSSOP1_XY_100[r].resize(3,0.);

}

for(unsigned int r=0; r<PL_P; r++) {

aveSSOP0_YZ_100[r].resize(3,0.); aveSSOP0_ZX_100[r].resize(3,0.);

aveSSOP1_YZ_100[r].resize(3,0.); aveSSOP1_ZX_100[r].resize(3,0.);
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}

SSOP0_XY_Time_100.resize(nt+1); SSOP0_YZ_Time_100.resize(nt+1);

SSOP0_ZX_Time_100.resize(nt+1);

SSOP1_XY_Time_100.resize(nt+1); SSOP1_YZ_Time_100.resize(nt+1);

SSOP1_ZX_Time_100.resize(nt+1);

for(unsigned int t=0; t<nt+1; t++) {

SSOP0_XY_Time_100[t].resize(PL_F); SSOP0_YZ_Time_100[t].resize(PL_P);

SSOP0_ZX_Time_100[t].resize(PL_P);

SSOP1_XY_Time_100[t].resize(PL_F); SSOP1_YZ_Time_100[t].resize(PL_P);

SSOP1_ZX_Time_100[t].resize(PL_P);

}

for(unsigned int t=0; t<nt+1; t++) {

for(unsigned int r=0; r<PL_F; r++) {

SSOP0_XY_Time_100[t][r].resize(3,0.);

SSOP1_XY_Time_100[t][r].resize(3,0.);

}

}

for(unsigned int t=0; t<nt+1; t++) {

for(unsigned int r=0; r<PL_P; r++) {

SSOP0_YZ_Time_100[t][r].resize(3,0.); SSOP0_ZX_Time_100[t][r].resize(3,0.);

SSOP1_YZ_Time_100[t][r].resize(3,0.); SSOP1_ZX_Time_100[t][r].resize(3,0.);

}

}

Cx_100_P.resize(PL_P/2+1); Cy_100_P.resize(PL_P/2+1); Cz_100_P.resize(PL_P/2+1);

Cx_100_F.resize(PL_F/2+1); Cy_100_F.resize(PL_F/2+1); Cz_100_F.resize(PL_F/2+1);

for(unsigned int r=0; r<Cx_100_P.size(); r++) {

Cx_100_P[r].resize(tc+1,0.); Cy_100_P[r].resize(tc+1,0.);

Cz_100_P[r].resize(tc+1,0.);

}

for(unsigned int r=0; r<Cx_100_F.size(); r++) {

Cx_100_F[r].resize(tc+1,0.); Cy_100_F[r].resize(tc+1,0.);

Cz_100_F[r].resize(tc+1,0.);

}

}

template<class Input, class SC, class DataContainer, class SpinContainer>

Correlation_Local_BC_PBCXY_EvenL<Input,SC,DataContainer,SpinContainer>::

~Correlation_Local_BC_PBCXY_EvenL() {}

template<class Input, class SC, class DataContainer, class SpinContainer>

void Correlation_Local_BC_PBCXY_EvenL<Input,SC,DataContainer,SpinContainer>::

insert(const SpinContainer& spins, const unsigned int SDtime)

{

for(unsigned int p=0; p<4; p++) {

for(unsigned s=0; s<2; s++) {
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real sumBCS_X_P = 0.,

sumBCS_Y_P = 0.,

sumBCS_Z_P = 0.;

for(unsigned int i=0; i<BCS_Index_P[p][s].size(); i++) {

sumBCS_X_P += spins[BCS_Index_P[p][s][i]][0];

sumBCS_Y_P += spins[BCS_Index_P[p][s][i]][1];

sumBCS_Z_P += spins[BCS_Index_P[p][s][i]][2];

}

BCS_Time_X_P[SDtime][p][s] = sumBCS_X_P /

static_cast<real>(BCS_Index_P[p][s].size());

BCS_Time_Y_P[SDtime][p][s] = sumBCS_Y_P /

static_cast<real>(BCS_Index_P[p][s].size());

BCS_Time_Z_P[SDtime][p][s] = sumBCS_Z_P /

static_cast<real>(BCS_Index_P[p][s].size());

}

}

for(unsigned int p=0; p<2; p++) {

for(unsigned s=0; s<2; s++) {

real sumBCS_X_F = 0.,

sumBCS_Y_F = 0.,

sumBCS_Z_F = 0.;

for(unsigned int i=0; i<BCS_Index_F[p][s].size(); i++) {

sumBCS_X_F += spins[BCS_Index_F[p][s][i]][0];

sumBCS_Y_F += spins[BCS_Index_F[p][s][i]][1];

sumBCS_Z_F += spins[BCS_Index_F[p][s][i]][2];

}

BCS_Time_X_F[SDtime][p][s] = sumBCS_X_F /

static_cast<real>(BCS_Index_F[p][s].size());

BCS_Time_Y_F[SDtime][p][s] = sumBCS_Y_F /

static_cast<real>(BCS_Index_F[p][s].size());

BCS_Time_Z_F[SDtime][p][s] = sumBCS_Z_F /

static_cast<real>(BCS_Index_F[p][s].size());

}

}

spinSumOnPlane_100(spins,SSOP0_XY_100,SSOP0_YZ_100,SSOP0_ZX_100,SSOP1_XY_100,

SSOP1_YZ_100,SSOP1_ZX_100);

std::copy(SSOP0_XY_100.begin(),SSOP0_XY_100.end(),

SSOP0_XY_Time_100[SDtime].begin());

std::copy(SSOP0_YZ_100.begin(),SSOP0_YZ_100.end(),

SSOP0_YZ_Time_100[SDtime].begin());

std::copy(SSOP0_ZX_100.begin(),SSOP0_ZX_100.end(),

SSOP0_ZX_Time_100[SDtime].begin());

std::copy(SSOP1_XY_100.begin(),SSOP1_XY_100.end(),

SSOP1_XY_Time_100[SDtime].begin());

std::copy(SSOP1_YZ_100.begin(),SSOP1_YZ_100.end(),
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SSOP1_YZ_Time_100[SDtime].begin());

std::copy(SSOP1_ZX_100.begin(),SSOP1_ZX_100.end(),

SSOP1_ZX_Time_100[SDtime].begin());

if(SDtime==nt) {

for(unsigned int p=0; p<4; p++) {

std::fill(aveBCS_X_P[p].begin(),aveBCS_X_P[p].end(),0.);

std::fill(aveBCS_Y_P[p].begin(),aveBCS_Y_P[p].end(),0.);

std::fill(aveBCS_Z_P[p].begin(),aveBCS_Z_P[p].end(),0.);

}

for(unsigned int p=0; p<4; p++) {

for(unsigned int s=0; s<2; s++) {

for(unsigned int it=0; it<nt+1; it++) {

aveBCS_X_P[p][s] += BCS_Time_X_P[it][p][s];

aveBCS_Y_P[p][s] += BCS_Time_Y_P[it][p][s];

aveBCS_Z_P[p][s] += BCS_Time_Z_P[it][p][s];

}

}

}

for(unsigned int p=0; p<4; p++) {

for(unsigned int s=0; s<2; s++) {

aveBCS_X_P[p][s] /= static_cast<real>(nt+1);

aveBCS_Y_P[p][s] /= static_cast<real>(nt+1);

aveBCS_Z_P[p][s] /= static_cast<real>(nt+1);

}

}

for(unsigned int p=0; p<2; p++) {

std::fill(aveBCS_X_F[p].begin(),aveBCS_X_F[p].end(),0.);

std::fill(aveBCS_Y_F[p].begin(),aveBCS_Y_F[p].end(),0.);

std::fill(aveBCS_Z_F[p].begin(),aveBCS_Z_F[p].end(),0.);

}

for(unsigned int p=0; p<2; p++) {

for(unsigned int s=0; s<2; s++) {

for(unsigned int it=0; it<nt+1; it++) {

aveBCS_X_F[p][s] += BCS_Time_X_F[it][p][s];

aveBCS_Y_F[p][s] += BCS_Time_Y_F[it][p][s];

aveBCS_Z_F[p][s] += BCS_Time_Z_F[it][p][s];

}

}

}

for(unsigned int p=0; p<2; p++) {

for(unsigned int s=0; s<2; s++) {

aveBCS_X_F[p][s] /= static_cast<real>(nt+1);

aveBCS_Y_F[p][s] /= static_cast<real>(nt+1);

aveBCS_Z_F[p][s] /= static_cast<real>(nt+1);

}



137

}

for(unsigned int r=0; r<PL_F; r++) {

std::fill(aveSSOP0_XY_100[r].begin(),aveSSOP0_XY_100[r].end(),0.);

std::fill(aveSSOP1_XY_100[r].begin(),aveSSOP1_XY_100[r].end(),0.);

}

for(unsigned int r=0; r<PL_F; r++) {

for(unsigned int c=0; c<3; c++) {

for(unsigned int it=0; it<nt+1; it++) {

aveSSOP0_XY_100[r][c] += SSOP0_XY_Time_100[it][r][c];

aveSSOP1_XY_100[r][c] += SSOP1_XY_Time_100[it][r][c];

}

}

}

for(unsigned int r=0; r<PL_F; r++) {

for(unsigned int c=0; c<3; c++) {

aveSSOP0_XY_100[r][c] /= static_cast<real>(nt+1);

aveSSOP1_XY_100[r][c] /= static_cast<real>(nt+1);

}

}

for(unsigned int r=0; r<PL_P; r++) {

std::fill(aveSSOP0_YZ_100[r].begin(),aveSSOP0_YZ_100[r].end(),0.);

std::fill(aveSSOP0_ZX_100[r].begin(),aveSSOP0_ZX_100[r].end(),0.);

std::fill(aveSSOP1_YZ_100[r].begin(),aveSSOP1_YZ_100[r].end(),0.);

std::fill(aveSSOP1_ZX_100[r].begin(),aveSSOP1_ZX_100[r].end(),0.);

}

for(unsigned int r=0; r<PL_P; r++) {

for(unsigned int c=0; c<3; c++) {

for(unsigned int it=0; it<nt+1; it++) {

aveSSOP0_YZ_100[r][c] += SSOP0_YZ_Time_100[it][r][c];

aveSSOP0_ZX_100[r][c] += SSOP0_ZX_Time_100[it][r][c];

aveSSOP1_YZ_100[r][c] += SSOP1_YZ_Time_100[it][r][c];

aveSSOP1_ZX_100[r][c] += SSOP1_ZX_Time_100[it][r][c];

}

}

}

for(unsigned int r=0; r<PL_P; r++) {

for(unsigned int c=0; c<3; c++) {

aveSSOP0_YZ_100[r][c] /= static_cast<real>(nt+1);

aveSSOP0_ZX_100[r][c] /= static_cast<real>(nt+1);

aveSSOP1_YZ_100[r][c] /= static_cast<real>(nt+1);

aveSSOP1_ZX_100[r][c] /= static_cast<real>(nt+1);

}

}

}

}
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template<class Input, class SC, class DataContainer, class SpinContainer>

void Correlation_Local_BC_PBCXY_EvenL<Input,SC,DataContainer,SpinContainer>::

doCorrelation_Local_BC()

{

for(unsigned int t=0; t<tc+1; t++) {

real ave_P = 1./static_cast<real>(nt-t+1)/8.,

ave_F = 1./static_cast<real>(nt-t+1)/4.;

for(unsigned int it=0; it<nt-t+1; it++) {

// correlation in PBCXY direction

// starting @ sub0

Cx_100_P[0][t] +=

(BCS_Time_X_P[it][0][0]*SSOP0_YZ_Time_100[it+t][BCPL_P][0] +

BCS_Time_X_P[it][1][0]*SSOP0_YZ_Time_100[it+t][BCPL_P+1][0] +

BCS_Time_X_P[it][2][0]*SSOP0_ZX_Time_100[it+t][BCPL_P][0] +

BCS_Time_X_P[it][3][0]*SSOP0_ZX_Time_100[it+t][BCPL_P+1][0])*ave_P -

(aveBCS_X_P[0][0]*aveSSOP0_YZ_100[BCPL_P][0] +

aveBCS_X_P[1][0]*aveSSOP0_YZ_100[BCPL_P+1][0] +

aveBCS_X_P[2][0]*aveSSOP0_ZX_100[BCPL_P][0] +

aveBCS_X_P[3][0]*aveSSOP0_ZX_100[BCPL_P+1][0])*ave_P;

Cy_100_P[0][t] +=

(BCS_Time_Y_P[it][0][0]*SSOP0_YZ_Time_100[it+t][BCPL_P][1] +

BCS_Time_Y_P[it][1][0]*SSOP0_YZ_Time_100[it+t][BCPL_P+1][1] +

BCS_Time_Y_P[it][2][0]*SSOP0_ZX_Time_100[it+t][BCPL_P][1] +

BCS_Time_Y_P[it][3][0]*SSOP0_ZX_Time_100[it+t][BCPL_P+1][1])*ave_P -

(aveBCS_Y_P[0][0]*aveSSOP0_YZ_100[BCPL_P][1] +

aveBCS_Y_P[1][0]*aveSSOP0_YZ_100[BCPL_P+1][1] +

aveBCS_Y_P[2][0]*aveSSOP0_ZX_100[BCPL_P][1] +

aveBCS_Y_P[3][0]*aveSSOP0_ZX_100[BCPL_P+1][1])*ave_P;

Cz_100_P[0][t] +=

(BCS_Time_Z_P[it][0][0]*SSOP0_YZ_Time_100[it+t][BCPL_P][2] +

BCS_Time_Z_P[it][1][0]*SSOP0_YZ_Time_100[it+t][BCPL_P+1][2] +

BCS_Time_Z_P[it][2][0]*SSOP0_ZX_Time_100[it+t][BCPL_P][2] +

BCS_Time_Z_P[it][3][0]*SSOP0_ZX_Time_100[it+t][BCPL_P+1][2])*ave_P -

(aveBCS_Z_P[0][0]*aveSSOP0_YZ_100[BCPL_P][2] +

aveBCS_Z_P[1][0]*aveSSOP0_YZ_100[BCPL_P+1][2] +

aveBCS_Z_P[2][0]*aveSSOP0_ZX_100[BCPL_P][2] +

aveBCS_Z_P[3][0]*aveSSOP0_ZX_100[BCPL_P+1][2])*ave_P;

// starting @ sub1

Cx_100_P[0][t] +=

(BCS_Time_X_P[it][0][1]*SSOP1_YZ_Time_100[it+t][BCPL_P][0] +

BCS_Time_X_P[it][1][1]*SSOP1_YZ_Time_100[it+t][BCPL_P+1][0] +

BCS_Time_X_P[it][2][1]*SSOP1_ZX_Time_100[it+t][BCPL_P][0] +

BCS_Time_X_P[it][3][1]*SSOP1_ZX_Time_100[it+t][BCPL_P+1][0])*ave_P -

(aveBCS_X_P[0][1]*aveSSOP1_YZ_100[BCPL_P][0] +

aveBCS_X_P[1][1]*aveSSOP1_YZ_100[BCPL_P+1][0] +

aveBCS_X_P[2][1]*aveSSOP1_ZX_100[BCPL_P][0] +

aveBCS_X_P[3][1]*aveSSOP1_ZX_100[BCPL_P+1][0])*ave_P;
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Cy_100_P[0][t] +=

(BCS_Time_Y_P[it][0][1]*SSOP1_YZ_Time_100[it+t][BCPL_P][1] +

BCS_Time_Y_P[it][1][1]*SSOP1_YZ_Time_100[it+t][BCPL_P+1][1] +

BCS_Time_Y_P[it][2][1]*SSOP1_ZX_Time_100[it+t][BCPL_P][1] +

BCS_Time_Y_P[it][3][1]*SSOP1_ZX_Time_100[it+t][BCPL_P+1][1])*ave_P -

(aveBCS_Y_P[0][1]*aveSSOP1_YZ_100[BCPL_P][1] +

aveBCS_Y_P[1][1]*aveSSOP1_YZ_100[BCPL_P+1][1] +

aveBCS_Y_P[2][1]*aveSSOP1_ZX_100[BCPL_P][1] +

aveBCS_Y_P[3][1]*aveSSOP1_ZX_100[BCPL_P+1][1])*ave_P;

Cz_100_P[0][t] +=

(BCS_Time_Z_P[it][0][1]*SSOP1_YZ_Time_100[it+t][BCPL_P][2] +

BCS_Time_Z_P[it][1][1]*SSOP1_YZ_Time_100[it+t][BCPL_P+1][2] +

BCS_Time_Z_P[it][2][1]*SSOP1_ZX_Time_100[it+t][BCPL_P][2] +

BCS_Time_Z_P[it][3][1]*SSOP1_ZX_Time_100[it+t][BCPL_P+1][2])*ave_P -

(aveBCS_Z_P[0][1]*aveSSOP1_YZ_100[BCPL_P][2] +

aveBCS_Z_P[1][1]*aveSSOP1_YZ_100[BCPL_P+1][2] +

aveBCS_Z_P[2][1]*aveSSOP1_ZX_100[BCPL_P][2] +

aveBCS_Z_P[3][1]*aveSSOP1_ZX_100[BCPL_P+1][2])*ave_P;

// correlation in FBCZ direction

// starting @ sub0

Cx_100_F[0][t] +=

(BCS_Time_X_F[it][0][0]*SSOP0_XY_Time_100[it+t][BCPL_F][0] +

BCS_Time_X_F[it][1][0]*SSOP0_XY_Time_100[it+t][BCPL_F+1][0])*ave_F -

(aveBCS_X_F[0][0]*aveSSOP0_XY_100[BCPL_F][0] +

aveBCS_X_F[1][0]*aveSSOP0_XY_100[BCPL_F+1][0])*ave_F;

Cy_100_F[0][t] +=

(BCS_Time_Y_F[it][0][0]*SSOP0_XY_Time_100[it+t][BCPL_F][1] +

BCS_Time_Y_F[it][1][0]*SSOP0_XY_Time_100[it+t][BCPL_F+1][1])*ave_F -

(aveBCS_Y_F[0][0]*aveSSOP0_XY_100[BCPL_F][1] +

aveBCS_Y_F[1][0]*aveSSOP0_XY_100[BCPL_F+1][1])*ave_F;

Cz_100_F[0][t] +=

(BCS_Time_Z_F[it][0][0]*SSOP0_XY_Time_100[it+t][BCPL_F][2] +

BCS_Time_Z_F[it][1][0]*SSOP0_XY_Time_100[it+t][BCPL_F+1][2])*ave_F -

(aveBCS_Z_F[0][0]*aveSSOP0_XY_100[BCPL_F][2] +

aveBCS_Z_F[1][0]*aveSSOP0_XY_100[BCPL_F+1][2])*ave_F;

// starting @ sub1

Cx_100_F[0][t] +=

(BCS_Time_X_F[it][0][1]*SSOP1_XY_Time_100[it+t][BCPL_F][0] +

BCS_Time_X_F[it][1][1]*SSOP1_XY_Time_100[it+t][BCPL_F+1][0])*ave_F -

(aveBCS_X_F[0][1]*aveSSOP1_XY_100[BCPL_F][0] +

aveBCS_X_F[1][1]*aveSSOP1_XY_100[BCPL_F+1][0])*ave_F;

Cy_100_F[0][t] +=

(BCS_Time_Y_F[it][0][1]*SSOP1_XY_Time_100[it+t][BCPL_F][1] +

BCS_Time_Y_F[it][1][1]*SSOP1_XY_Time_100[it+t][BCPL_F+1][1])*ave_F -

(aveBCS_Y_F[0][1]*aveSSOP1_XY_100[BCPL_F][1] +

aveBCS_Y_F[1][1]*aveSSOP1_XY_100[BCPL_F+1][1])*ave_F;
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Cz_100_F[0][t] +=

(BCS_Time_Z_F[it][0][1]*SSOP1_XY_Time_100[it+t][BCPL_F][2] +

BCS_Time_Z_F[it][1][1]*SSOP1_XY_Time_100[it+t][BCPL_F+1][2])*ave_F -

(aveBCS_Z_F[0][1]*aveSSOP1_XY_100[BCPL_F][2] +

aveBCS_Z_F[1][1]*aveSSOP1_XY_100[BCPL_F+1][2])*ave_F;

}

}

// correlation in PBCXY direction

for(unsigned int r=1; r<Cx_100_P.size(); r++) {

unsigned int r1 = BCPL_P+r,

r2 = BCPL_P+1-r;

for(unsigned int t=0; t<tc+1; t++) {

real ave_P = 1./static_cast<real>(nt-t+1)/8.;

for(unsigned int it=0; it<nt-t+1; it++) {

// starting @ sub0

Cx_100_P[r][t] +=

(BCS_Time_X_P[it][0][0]*SSOP0_YZ_Time_100[it+t][r1][0] +

BCS_Time_X_P[it][1][0]*SSOP0_YZ_Time_100[it+t][r2][0] +

BCS_Time_X_P[it][2][0]*SSOP0_ZX_Time_100[it+t][r1][0] +

BCS_Time_X_P[it][3][0]*SSOP0_ZX_Time_100[it+t][r2][0])*ave_P -

(aveBCS_X_P[0][0]*aveSSOP0_YZ_100[r1][0] +

aveBCS_X_P[1][0]*aveSSOP0_YZ_100[r2][0] +

aveBCS_X_P[2][0]*aveSSOP0_ZX_100[r1][0] +

aveBCS_X_P[3][0]*aveSSOP0_ZX_100[r2][0])*ave_P;

Cy_100_P[r][t] +=

(BCS_Time_Y_P[it][0][0]*SSOP0_YZ_Time_100[it+t][r1][1] +

BCS_Time_Y_P[it][1][0]*SSOP0_YZ_Time_100[it+t][r2][1] +

BCS_Time_Y_P[it][2][0]*SSOP0_ZX_Time_100[it+t][r1][1] +

BCS_Time_Y_P[it][3][0]*SSOP0_ZX_Time_100[it+t][r2][1])*ave_P -

(aveBCS_Y_P[0][0]*aveSSOP0_YZ_100[r1][1] +

aveBCS_Y_P[1][0]*aveSSOP0_YZ_100[r2][1] +

aveBCS_Y_P[2][0]*aveSSOP0_ZX_100[r1][1] +

aveBCS_Y_P[3][0]*aveSSOP0_ZX_100[r2][1])*ave_P;

Cz_100_P[r][t] +=

(BCS_Time_Z_P[it][0][0]*SSOP0_YZ_Time_100[it+t][r1][2] +

BCS_Time_Z_P[it][1][0]*SSOP0_YZ_Time_100[it+t][r2][2] +

BCS_Time_Z_P[it][2][0]*SSOP0_ZX_Time_100[it+t][r1][2] +

BCS_Time_Z_P[it][3][0]*SSOP0_ZX_Time_100[it+t][r2][2])*ave_P -

(aveBCS_Z_P[0][0]*aveSSOP0_YZ_100[r1][2] +

aveBCS_Z_P[1][0]*aveSSOP0_YZ_100[r2][2] +

aveBCS_Z_P[2][0]*aveSSOP0_ZX_100[r1][2] +

aveBCS_Z_P[3][0]*aveSSOP0_ZX_100[r2][2])*ave_P;

// starting @ sub1

Cx_100_P[r][t] +=

(BCS_Time_X_P[it][0][1]*SSOP1_YZ_Time_100[it+t][r1][0] +
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BCS_Time_X_P[it][1][1]*SSOP1_YZ_Time_100[it+t][r2][0] +

BCS_Time_X_P[it][2][1]*SSOP1_ZX_Time_100[it+t][r1][0] +

BCS_Time_X_P[it][3][1]*SSOP1_ZX_Time_100[it+t][r2][0])*ave_P -

(aveBCS_X_P[0][1]*aveSSOP1_YZ_100[r1][0] +

aveBCS_X_P[1][1]*aveSSOP1_YZ_100[r2][0] +

aveBCS_X_P[2][1]*aveSSOP1_ZX_100[r1][0] +

aveBCS_X_P[3][1]*aveSSOP1_ZX_100[r2][0])*ave_P;

Cy_100_P[r][t] +=

(BCS_Time_Y_P[it][0][1]*SSOP1_YZ_Time_100[it+t][r1][1] +

BCS_Time_Y_P[it][1][1]*SSOP1_YZ_Time_100[it+t][r2][1] +

BCS_Time_Y_P[it][2][1]*SSOP1_ZX_Time_100[it+t][r1][1] +

BCS_Time_Y_P[it][3][1]*SSOP1_ZX_Time_100[it+t][r2][1])*ave_P -

(aveBCS_Y_P[0][1]*aveSSOP1_YZ_100[r1][1] +

aveBCS_Y_P[1][1]*aveSSOP1_YZ_100[r2][1] +

aveBCS_Y_P[2][1]*aveSSOP1_ZX_100[r1][1] +

aveBCS_Y_P[3][1]*aveSSOP1_ZX_100[r2][1])*ave_P;

Cz_100_P[r][t] +=

(BCS_Time_Z_P[it][0][1]*SSOP1_YZ_Time_100[it+t][r1][2] +

BCS_Time_Z_P[it][1][1]*SSOP1_YZ_Time_100[it+t][r2][2] +

BCS_Time_Z_P[it][2][1]*SSOP1_ZX_Time_100[it+t][r1][2] +

BCS_Time_Z_P[it][3][1]*SSOP1_ZX_Time_100[it+t][r2][2])*ave_P -

(aveBCS_Z_P[0][1]*aveSSOP1_YZ_100[r1][2] +

aveBCS_Z_P[1][1]*aveSSOP1_YZ_100[r2][2] +

aveBCS_Z_P[2][1]*aveSSOP1_ZX_100[r1][2] +

aveBCS_Z_P[3][1]*aveSSOP1_ZX_100[r2][2])*ave_P;

}

}

}

// correlation in FBCZ direction

for(unsigned int r=1; r<Cx_100_F.size(); r++) {

unsigned int r1 = BCPL_F+r,

r2 = BCPL_F+1-r;

for(unsigned int t=0; t<tc+1; t++) {

real ave_F = 1./static_cast<real>(nt-t+1)/4.;

for(unsigned int it=0; it<nt-t+1; it++) {

// starting @ sub0

Cx_100_F[r][t] +=

(BCS_Time_X_F[it][0][0]*SSOP0_XY_Time_100[it+t][r1][0] +

BCS_Time_X_F[it][1][0]*SSOP0_XY_Time_100[it+t][r2][0])*ave_F -

(aveBCS_X_F[0][0]*aveSSOP0_XY_100[r1][0] +

aveBCS_X_F[1][0]*aveSSOP0_XY_100[r2][0])*ave_F;

Cy_100_F[r][t] +=

(BCS_Time_Y_F[it][0][0]*SSOP0_XY_Time_100[it+t][r1][1] +

BCS_Time_Y_F[it][1][0]*SSOP0_XY_Time_100[it+t][r2][1])*ave_F -

(aveBCS_Y_F[0][0]*aveSSOP0_XY_100[r1][1] +
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aveBCS_Y_F[1][0]*aveSSOP0_XY_100[r2][1])*ave_F;

Cz_100_F[r][t] +=

(BCS_Time_Z_F[it][0][0]*SSOP0_XY_Time_100[it+t][r1][2] +

BCS_Time_Z_F[it][1][0]*SSOP0_XY_Time_100[it+t][r2][2])*ave_F -

(aveBCS_Z_F[0][0]*aveSSOP0_XY_100[r1][2] +

aveBCS_Z_F[1][0]*aveSSOP0_XY_100[r2][2])*ave_F;

// starting @ sub1

Cx_100_F[r][t] +=

(BCS_Time_X_F[it][0][1]*SSOP1_XY_Time_100[it+t][r1][0] +

BCS_Time_X_F[it][1][1]*SSOP1_XY_Time_100[it+t][r2][0])*ave_F -

(aveBCS_X_F[0][1]*aveSSOP1_XY_100[r1][0] +

aveBCS_X_F[1][1]*aveSSOP1_XY_100[r2][0])*ave_F;

Cy_100_F[r][t] +=

(BCS_Time_Y_F[it][0][1]*SSOP1_XY_Time_100[it+t][r1][1] +

BCS_Time_Y_F[it][1][1]*SSOP1_XY_Time_100[it+t][r2][1])*ave_F -

(aveBCS_Y_F[0][1]*aveSSOP1_XY_100[r1][1] +

aveBCS_Y_F[1][1]*aveSSOP1_XY_100[r2][1])*ave_F;

Cz_100_F[r][t] +=

(BCS_Time_Z_F[it][0][1]*SSOP1_XY_Time_100[it+t][r1][2] +

BCS_Time_Z_F[it][1][1]*SSOP1_XY_Time_100[it+t][r2][2])*ave_F -

(aveBCS_Z_F[0][1]*aveSSOP1_XY_100[r1][2] +

aveBCS_Z_F[1][1]*aveSSOP1_XY_100[r2][2])*ave_F;

}

}

}

}

template<class Input, class SC, class DataContainer, class SpinContainer>

void Correlation_Local_BC_PBCXY_EvenL<Input,SC,DataContainer,SpinContainer>::

clearup()

{

// (mandatory if singleConfig==1)

Cx_100_P.clear(); Cy_100_P.clear(); Cz_100_P.clear();

Cx_100_F.clear(); Cy_100_F.clear(); Cz_100_F.clear();

Cx_100_P.resize(PL_P/2+1); Cy_100_P.resize(PL_P/2+1);

Cz_100_P.resize(PL_P/2+1);

Cx_100_F.resize(PL_F/2+1); Cy_100_F.resize(PL_F/2+1);

Cz_100_F.resize(PL_F/2+1);

for(unsigned int r=0; r<Cx_100_P.size(); r++) {

Cx_100_P[r].resize(tc+1,0.); Cy_100_P[r].resize(tc+1,0.);

Cz_100_P[r].resize(tc+1,0.);

}

for(unsigned int r=0; r<Cx_100_F.size(); r++) {

Cx_100_F[r].resize(tc+1,0.); Cy_100_F[r].resize(tc+1,0.);

Cz_100_F[r].resize(tc+1,0.);

}

}
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template<class Input, class SC, class DataContainer, class SpinContainer>

void Correlation_Local_BC_PBCXY_EvenL<Input,SC,DataContainer,SpinContainer>::

print(const long int Id, const real SDdt, const int iConfig)

{

(Please refer to electronic version)

}

template<class Input, class SC, class DataContainer, class SpinContainer>

void Correlation_Local_BC_PBCXY_EvenL<Input,SC,DataContainer,SpinContainer>::

findBCSIndex(BCS_IndexContainer& BCS_Index_P, BCS_IndexContainer& BCS_Index_F)

{

BCS_Index_P.resize(4);

BCS_Index_F.resize(2);

for(unsigned int p=0; p<4; p++) BCS_Index_P[p].resize(2);

for(unsigned int p=0; p<2; p++) BCS_Index_F[p].resize(2);

DataContainer cor(3);

for(unsigned int i=0; i<N; i++) {

psimag::index_to_coordinate(i,cor,L);

// find BCS_Index in PBCXY direction

if(cor[2]==BCPL_P && (cor[0]==BCPL_F || cor[0]==BCPL_F+1)) {

if(sublattice_label[i]==0) BCS_Index_P[0][0].push_back(i);

else BCS_Index_P[0][1].push_back(i);

}

if(cor[2]==BCPL_P+1 && (cor[0]==BCPL_F || cor[0]==BCPL_F+1)) {

if(sublattice_label[i]==0) BCS_Index_P[1][0].push_back(i);

else BCS_Index_P[1][1].push_back(i);

}

if(cor[1]==BCPL_P && (cor[0]==BCPL_F || cor[0]==BCPL_F+1)) {

if(sublattice_label[i]==0) BCS_Index_P[2][0].push_back(i);

else BCS_Index_P[2][1].push_back(i);

}

if(cor[1]==BCPL_P+1 && (cor[0]==BCPL_F || cor[0]==BCPL_F+1)) {

if(sublattice_label[i]==0) BCS_Index_P[3][0].push_back(i);

else BCS_Index_P[3][1].push_back(i);

}

// find BCS_Index for FBCZ direction

if(cor[0]==BCPL_F) {

if(sublattice_label[i]==0) BCS_Index_F[0][0].push_back(i);

else BCS_Index_F[0][1].push_back(i);

}

if(cor[0]==BCPL_F+1) {

if(sublattice_label[i]==0) BCS_Index_F[1][0].push_back(i);

else BCS_Index_F[1][1].push_back(i);
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}

}

/*

for(unsigned int i=0; i<BCS_Index_P.size(); i++) {

std::cout<<"BC_P_"<<i<<":\n";

for(unsigned int j=0; j<BCS_Index_P[i].size(); j++) {

std::cout<<"sub"<<j<<": ";

for(unsigned int k=0; k<BCS_Index_P[i][j].size();k++) {

std::cout<<BCS_Index_P[i][j][k]<<" ";

}

std::cout<<"Total #: "<<BCS_Index_P[i][j].size()<<std::endl;

}

}

for(unsigned int i=0; i<BCS_Index_F.size(); i++) {

std::cout<<"BC_F_"<<i<<":\n";

for(unsigned int j=0; j<BCS_Index_F[i].size(); j++) {

std::cout<<"sub"<<j<<": ";

for(unsigned int k=0; k<BCS_Index_F[i][j].size();k++) {

std::cout<<BCS_Index_F[i][j][k]<<" ";

}

std::cout<<"Total #: "<<BCS_Index_F[i][j].size()<<std::endl;

}

}

*/

}

template<class Input, class SC, class DataContainer, class SpinContainer>

void Correlation_Local_BC_PBCXY_EvenL<Input,SC,DataContainer,SpinContainer>::

spinSumOnPlane_100(const SpinContainer& spins, VVContainer& SSOP0_XY_100,

VVContainer& SSOP0_YZ_100, VVContainer& SSOP0_ZX_100,

VVContainer& SSOP1_XY_100, VVContainer& SSOP1_YZ_100,

VVContainer& SSOP1_ZX_100)

{

unsigned int index;

DataContainer cor(3);

if(in.para().exchange_factor[0]<0.) {

real sumx0, sumy0, sumz0,

sumx1, sumy1, sumz1;

for(unsigned int iz=0; iz<L[0]; iz++) {

sumx0 = 0.; sumy0 = 0.; sumz0 = 0.;

sumx1 = 0.; sumy1 = 0.; sumz1 = 0.;

for(unsigned int ix=0; ix<L[2]; ix++) {

for(unsigned int iy=0; iy<L[1]; iy++) {

cor[0] = iz;

cor[1] = iy;

cor[2] = ix;
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index = psimag::coordinate_to_index(cor,L);

if(sublattice_label[index]==0) {

sumx0 += spins[index][0];

sumy0 += spins[index][1];

sumz0 += spins[index][2];

sumx1 -= spins[index][0];

sumy1 -= spins[index][1];

sumz1 -= spins[index][2];

}

else {

sumx0 -= spins[index][0];

sumy0 -= spins[index][1];

sumz0 -= spins[index][2];

sumx1 += spins[index][0];

sumy1 += spins[index][1];

sumz1 += spins[index][2];

}

}

}

SSOP0_XY_100[iz][0] = sumx0;

SSOP0_XY_100[iz][1] = sumy0;

SSOP0_XY_100[iz][2] = sumz0;

SSOP1_XY_100[iz][0] = sumx1;

SSOP1_XY_100[iz][1] = sumy1;

SSOP1_XY_100[iz][2] = sumz1;

}

for(unsigned int ix=0; ix<L[2]; ix++) {

sumx0 = 0.; sumy0 = 0.; sumz0 = 0.;

sumx1 = 0.; sumy1 = 0.; sumz1 = 0.;

for(unsigned int iy=0; iy<L[1]; iy++) {

for(unsigned int iz=0; iz<L[0]; iz++) {

cor[0] = iz;

cor[1] = iy;

cor[2] = ix;

index = psimag::coordinate_to_index(cor,L);

if(sublattice_label[index]==0) {

sumx0 += spins[index][0];

sumy0 += spins[index][1];

sumz0 += spins[index][2];

sumx1 -= spins[index][0];

sumy1 -= spins[index][1];

sumz1 -= spins[index][2];

}

else {

sumx0 -= spins[index][0];

sumy0 -= spins[index][1];

sumz0 -= spins[index][2];
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sumx1 += spins[index][0];

sumy1 += spins[index][1];

sumz1 += spins[index][2];

}

}

}

SSOP0_YZ_100[ix][0] = sumx0;

SSOP0_YZ_100[ix][1] = sumy0;

SSOP0_YZ_100[ix][2] = sumz0;

SSOP1_YZ_100[ix][0] = sumx1;

SSOP1_YZ_100[ix][1] = sumy1;

SSOP1_YZ_100[ix][2] = sumz1;

}

for(unsigned int iy=0; iy<L[1]; iy++) {

sumx0 = 0.; sumy0 = 0.; sumz0 = 0.;

sumx1 = 0.; sumy1 = 0.; sumz1 = 0.;

for(unsigned int iz=0; iz<L[0]; iz++) {

for(unsigned int ix=0; ix<L[2]; ix++) {

cor[0] = iz;

cor[1] = iy;

cor[2] = ix;

index = psimag::coordinate_to_index(cor,L);

if(sublattice_label[index]==0) {

sumx0 += spins[index][0];

sumy0 += spins[index][1];

sumz0 += spins[index][2];

sumx1 -= spins[index][0];

sumy1 -= spins[index][1];

sumz1 -= spins[index][2];

}

else {

sumx0 -= spins[index][0];

sumy0 -= spins[index][1];

sumz0 -= spins[index][2];

sumx1 += spins[index][0];

sumy1 += spins[index][1];

sumz1 += spins[index][2];

}

}

}

SSOP0_ZX_100[iy][0] = sumx0;

SSOP0_ZX_100[iy][1] = sumy0;

SSOP0_ZX_100[iy][2] = sumz0;

SSOP1_ZX_100[iy][0] = sumx1;

SSOP1_ZX_100[iy][1] = sumy1;

SSOP1_ZX_100[iy][2] = sumz1;

}
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}

else {

real sumx, sumy, sumz;

for(unsigned int iz=0; iz<L[0]; iz++) {

sumx = 0.; sumy = 0.; sumz = 0.;

for(unsigned int ix=0; ix<L[2]; ix++) {

for(unsigned int iy=0; iy<L[1]; iy++) {

cor[0] = iz;

cor[1] = iy;

cor[2] = ix;

index = psimag::coordinate_to_index(cor,L);

sumx += spins[index][0];

sumy += spins[index][1];

sumz += spins[index][2];

}

}

SSOP0_XY_100[iz][0] = sumx;

SSOP0_XY_100[iz][1] = sumy;

SSOP0_XY_100[iz][2] = sumz;

SSOP1_XY_100[iz][0] = sumx;

SSOP1_XY_100[iz][1] = sumy;

SSOP1_XY_100[iz][2] = sumz;

}

for(unsigned int ix=0; ix<L[2]; ix++) {

sumx = 0.; sumy = 0.; sumz = 0.;

for(unsigned int iy=0; iy<L[1]; iy++) {

for(unsigned int iz=0; iz<L[0]; iz++) {

cor[0] = iz;

cor[1] = iy;

cor[2] = ix;

index = psimag::coordinate_to_index(cor,L);

sumx += spins[index][0];

sumy += spins[index][1];

sumz += spins[index][2];

}

}

SSOP0_YZ_100[ix][0] = sumx;

SSOP0_YZ_100[ix][1] = sumy;

SSOP0_YZ_100[ix][2] = sumz;

SSOP1_YZ_100[ix][0] = sumx;

SSOP1_YZ_100[ix][1] = sumy;

SSOP1_YZ_100[ix][2] = sumz;

}

for(unsigned int iy=0; iy<L[1]; iy++) {

sumx = 0.; sumy = 0.; sumz = 0.;

for(unsigned int iz=0; iz<L[0]; iz++) {

for(unsigned int ix=0; ix<L[2]; ix++) {
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cor[0] = iz;

cor[1] = iy;

cor[2] = ix;

index = psimag::coordinate_to_index(cor,L);

sumx += spins[index][0];

sumy += spins[index][1];

sumz += spins[index][2];

}

}

SSOP0_ZX_100[iy][0] = sumx;

SSOP0_ZX_100[iy][1] = sumy;

SSOP0_ZX_100[iy][2] = sumz;

SSOP1_ZX_100[iy][0] = sumx;

SSOP1_ZX_100[iy][1] = sumy;

SSOP1_ZX_100[iy][2] = sumz;

}

}

return ;

}

#endif



Appendix B

Data Analysis Programs

B.1 Fourier Transform with FT LC.cpp

#include <iostream>

#include <fstream>

#include <iomanip>

#include <sstream>

#include <vector>

#include <string>

#include <cmath>

#include <cstdlib>

#include "Real.h"

void read_to_eol(std::ifstream& in) { while(in.get()!=’\n’); }

int main(int argc, char* argv[])

{

if(argc!=9) {

std::cout<<"usage: <program> <1: L>\n"

<<" <2: tc>\n"

<<" <3: dt>\n"

<<" <4: ratio - dw=PI/(tc*dt)"

<<" <5: 0:no print SQT; 1:print SQT\n"

<<" <6: 0:no print nqs-w; 1:print nqs-w\n"

<<" <7: 0:BC; 1:SCW; 2:SCO; 3:CR>\n"

<<" <8: LC-BC/SCW/SCO/CR input file\n";

exit(-1);

}

if(atoi(argv[5])!=0 && atoi(argv[5])!=1) {

std::cerr<<">>> Error: Wrong value for <5: 0:no print SQT; 1:print SQT>\n";

exit(-1);

}

if(atoi(argv[6])!=0 && atoi(argv[6])!=1) {

std::cerr<<">>> Error: Wrong value for <0:no print nqs; 1:print nqs>\n";

exit(-1);

149
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}

if(atoi(argv[7])!=0 && atoi(argv[7])!=1 && atoi(argv[7])!=2&&atoi(argv[7])!=3)

{

std::cerr<<">>> Error: Wrong value for <6: 0:BC; 1:SCW; 2:SCO; 3:CR>\n";

exit(-1);

}

const unsigned int L = atoi(argv[1]),

tc = atoi(argv[2]),

ratio = atoi(argv[4]),

printSQT = atoi(argv[5]),

printnqs = atoi(argv[6]),

doWhat = atoi(argv[7]);

psimag::Real dt = atof(argv[3]);

std::ifstream ifs(argv[8],std::ios::in);

std::vector<std::vector<psimag::Real> > c_q00_x, c_q00_y, c_q00_z;

if(L%2==1) {

if(doWhat==0 || doWhat==1) {

c_q00_x.resize((L+1)/2);

c_q00_y.resize((L+1)/2);

c_q00_z.resize((L+1)/2);

}

else {

c_q00_x.resize(L);

c_q00_y.resize(L);

c_q00_z.resize(L);

}

}

else{

if(doWhat==0 || doWhat==1) {

c_q00_x.resize(L/2+1);

c_q00_y.resize(L/2+1);

c_q00_z.resize(L/2+1);

}

else {

c_q00_x.resize(L);

c_q00_y.resize(L);

c_q00_z.resize(L);

}

}

for(unsigned int r=0; r<c_q00_x.size(); r++) {

c_q00_x[r].resize(tc+1,0.);

c_q00_y[r].resize(tc+1,0.);

c_q00_z[r].resize(tc+1,0.);

}
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while(ifs.peek()==’#’) read_to_eol(ifs);

unsigned int r, t;

psimag::Real cx, cy, cz;

while(ifs>>r>>t>>cx>>cy>>cz) {

c_q00_x[r][t] = cx;

c_q00_y[r][t] = cy;

c_q00_z[r][t] = cz;

}

ifs.close();

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

switch(doWhat) {

case 0: { std::cout<<"\n>>> LC-BC input file has been read! Now find S(q,t)

..."<<std::endl; break; }

case 1: { std::cout<<"\n>>> LC-SCW input file has been read! Now find S(q,t)

..."<<std::endl; break; }

case 2: { std::cout<<"\n>>> LC-SCO input file has been read! Now find S(q,t)

..."<<std::endl; break; }

case 3: { std::cout<<"\n>>> LC-CR input file has been read! Now find S(q,t)

..."<<std::endl; break; }

default: ;

}

psimag::Real q,

dq00 = 2.*PI/L,

q00_dist = 1.0;

std::vector<std::vector<psimag::Real> > Sqt_q00_x, Sqt_q00_y, Sqt_q00_z;

Sqt_q00_x.resize(c_q00_x.size());

Sqt_q00_y.resize(c_q00_x.size());

Sqt_q00_z.resize(c_q00_x.size());

for(unsigned int nq=0; nq<Sqt_q00_x.size(); nq++) {

Sqt_q00_x[nq].resize(tc+1);

Sqt_q00_y[nq].resize(tc+1);

Sqt_q00_z[nq].resize(tc+1);

}

std::vector<std::vector<psimag::Real> > cosq00;

cosq00.resize(c_q00_x.size());

for(unsigned int nq=0; nq<cosq00.size(); nq++) cosq00[nq].resize(c_q00_x.size());

for(unsigned int nq=0; nq<cosq00.size(); nq++) {

psimag::Real q = nq*dq00;

for(unsigned int r=0; r<cosq00[nq].size(); r++) {

cosq00[nq][r] = cos(q*r);
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}

}

for(unsigned int nq=0; nq<cosq00.size(); nq++) { // q_max = pi/q00_dist = pi

for(unsigned int t=0; t<tc+1; t++) { // q=(0, dq00, ..., pi)/q00_dist

psimag::Real sum_q00_x = 0.,

sum_q00_y = 0.,

sum_q00_z = 0.;

for(unsigned int r=0; r<cosq00[nq].size(); r++) {

sum_q00_x += c_q00_x[r][t]*cosq00[nq][r];

sum_q00_y += c_q00_y[r][t]*cosq00[nq][r];

sum_q00_z += c_q00_z[r][t]*cosq00[nq][r];

}

Sqt_q00_x[nq][t] = sum_q00_x;

Sqt_q00_y[nq][t] = sum_q00_y;

Sqt_q00_z[nq][t] = sum_q00_z;

}

}

if(printSQT==1) {

std::ofstream ofs[Sqt_q00_x.size()];

for(unsigned int nq=0; nq<Sqt_q00_x.size(); nq++) {

std::ostringstream oss;

switch(doWhat) {

case 0: { oss<<"SQT_BC_"<<argv[8]<<"_nq"<<nq; break; }

case 1: { oss<<"SQT_SCW_"<<argv[8]<<"_nq"<<nq; break; }

case 2: { oss<<"SQT_SCO_"<<argv[8]<<"_nq"<<nq; break; }

case 3: { oss<<"SQT_CR_"<<argv[8]<<"_nq"<<nq; break; }

default: ;

}

ofs[nq].open(oss.str().c_str(),std::ios::out);

switch(doWhat) {

case 0: { ofs[nq]<<"# S(q,t)_BC_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

case 1: { ofs[nq]<<"# S(q,t)_SCW_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

case 2: { ofs[nq]<<"# S(q,t)_SCO_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

case 3: { ofs[nq]<<"# S(q,t)_CR_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

default: ;

}

ofs[nq]<<std::setw(15)<<std::left<<"# col1:nq"<<std::setw(15)<<std::left

<<"col2:t"

<<std::setw(15)<<std::left<<"col3:q00_x"

<<std::setw(15)<<std::left<<"col4:q00_y"

<<std::setw(15)<<std::left<<"col5:q00_z"
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<<std::setw(15)<<std::left<<"col6:q00_T"

<<std::setw(15)<<std::left<<"col7:q00_m"

<<std::endl;

}

for(unsigned int nq=0; nq<Sqt_q00_x.size(); nq++) {

for(unsigned int t=0; t<tc+1; t++) {

ofs[nq]<<std::setw(15)<<std::left<<std::setprecision(6)<<std::fixed

<<nq<<std::setw(15)<<std::left<<std::setprecision(6)<<std::fixed

<<t<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<Sqt_q00_x[nq][t]

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<Sqt_q00_y[nq][t]

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<Sqt_q00_z[nq][t]

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<0.5*(Sqt_q00_x[nq][t]+Sqt_q00_y[nq][t])

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<(Sqt_q00_x[nq][t]+Sqt_q00_y[nq][t]+Sqt_q00_z[nq][t])/3.

<<std::endl;

}

ofs[nq].close();

}

}

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

std::cout<<"\n>>> Now FT on t and find s(q,w)......"<<std::endl;

std::ofstream ofs[Sqt_q00_x.size()];

for(unsigned int nq=0; nq<Sqt_q00_x.size(); nq++) {

std::ostringstream oss;

switch(doWhat) {

case 0: { oss<<"SQW_BC_"<<argv[8]<<"_nq"<<nq; break; }

case 1: { oss<<"SQW_SCW_"<<argv[8]<<"_nq"<<nq; break; }

case 2: { oss<<"SQW_SCO_"<<argv[8]<<"_nq"<<nq; break; }

case 3: { oss<<"SQW_CR_"<<argv[8]<<"_nq"<<nq; break; }

default: ;

}

ofs[nq].open(oss.str().c_str(),std::ios::out);

switch(doWhat) {

case 0: { ofs[nq]<<"# S(q,w)_BC_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

case 1: { ofs[nq]<<"# S(q,w)_SCW_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

case 2: { ofs[nq]<<"# S(q,w)_SCO_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

case 3: { ofs[nq]<<"# S(q,w)_CR_100 with L="<<L<<" tc="<<tc<<std::endl;
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break; }

default: ;

}

ofs[nq]<<std::setw(15)<<std::left<<"# col1:nq"<<std::setw(15)<<std::left

<<"col2:w(J)"

<<std::setw(15)<<std::left<<"col3:q00_x"

<<std::setw(15)<<std::left<<"col4:q00_y"

<<std::setw(15)<<std::left<<"col5:q00_z"

<<std::setw(15)<<std::left<<"col6:q00_T"

<<std::setw(15)<<std::left<<"col6:q00_m"

<<std::endl;

}

std::ofstream ofs_nqs;

std::ostringstream oss;

if(printnqs==1) {

switch(doWhat) {

case 0: { oss<<"SQW_BC_"<<argv[8]<<"_nqs"; break; }

case 1: { oss<<"SQW_SCW_"<<argv[8]<<"_nqs"; break; }

case 2: { oss<<"SQW_SCO_"<<argv[8]<<"_nqs"; break; }

case 3: { oss<<"SQW_CR_"<<argv[8]<<"_nqs"; break; }

default: ;

}

ofs_nqs.open(oss.str().c_str(),std::ios::out);

switch(doWhat) {

case 0: { ofs_nqs<<"# S(q,w)_BC_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

case 1: { ofs_nqs<<"# S(q,w)_SCW_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

case 2: { ofs_nqs<<"# S(q,w)_SCO_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

case 3: { ofs_nqs<<"# S(q,w)_CR_100 with L="<<L<<" tc="<<tc<<std::endl;

break; }

default: ;

}

ofs_nqs<<std::setw(15)<<std::left<<"# col1:nq"<<std::setw(15)<<std::left

<<"col2:w(J)"

<<std::setw(15)<<std::left<<"col3:q00_x"

<<std::setw(15)<<std::left<<"col4:q00_y"

<<std::setw(15)<<std::left<<"col5:q00_z"

<<std::setw(15)<<std::left<<"col6:q00_T"

<<std::setw(15)<<std::left<<"col6:q00_m"

<<std::endl;

}

/*

std::vector<psimag::Real> expmhalftt(tc+1); // energy resolution convolution

unsigned int irt = atoi(argv[5]);
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psimag::Real rt = atof(argv[5]);

if(irt==0) {

for(unsigned int t=0; t<=tc; t++) {

expmhalftt[t]=1.;

}

}

else {

psimag::Real delta_w = rt/tc;

for(unsigned int t=0; t<=tc; t++) {

expmhalftt[t]=exp(-0.5*t*t*delta_w*delta_w);

}

}

*/

/*

//Simpson’s Rule (Only (100))

psimag::Real norm = dt/(2.*PI), w, dw=PI/(tc*dt*ratio), w_max = PI/(dt*ratio),

even_q00_x, even_q00_y, even_q00_z,

odd_q00_x, odd_q00_y, odd_q00_z,

coswt_2;

for(unsigned int nq=0; nq<Sqt_q00_x.size(); nq++) { // nq=0...L/2, q=0...pi

for(unsigned int iw=0; iw<=tc/ratio; iw++) {

w=iw*dw;

even_q00_x=0.; even_q00_y=0.; even_q00_z=0.;

odd_q00_x=0.; odd_q00_y=0.; odd_q00_z=0.;

for(unsigned int t=1; t<=tc; t+=2) {

coswt_2=cos(w*(t-1)*dt)*2.;

even_q00_x += Sqt_q00_x[nq][t-1]*coswt_2;

even_q00_y += Sqt_q00_y[nq][t-1]*coswt_2;

even_q00_z += Sqt_q00_z[nq][t-1]*coswt_2;

coswt_2=cos(w*t*dt)*2.;

odd_q00_x += Sqt_q00_x[nq][t]*coswt_2;

odd_q00_y += Sqt_q00_y[nq][t]*coswt_2;

odd_q00_z += Sqt_q00_z[nq][t]*coswt_2;

}

coswt_2=cos(w*tc*dt)*2.;

psimag::Real sum_q00_x = (2.*even_q00_x-cos(w*0.*dt)*2.*Sqt_q00_x[nq][0]

+coswt_2*Sqt_q00_x[nq][tc])+4.*odd_q00_x,

sum_q00_y = (2.*even_q00_y-cos(w*0.*dt)*2.*Sqt_q00_y[nq][0]

+coswt_2*Sqt_q00_y[nq][tc])+4.*odd_q00_y,

sum_q00_z = (2.*even_q00_z-cos(w*0.*dt)*2.*Sqt_q00_z[nq][0]

+coswt_2*Sqt_q00_z[nq][tc])+4.*odd_q00_z;

ofs[nq]<<std::setw(15)<<std::left<<std::setprecision(6)<<std::fixed
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<<nq<<std::setw(15)<<std::left<<std::setprecision(6)<<std::fixed

<<w<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_x*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_y*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_z*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<0.5*(sum_q00_x+sum_q00_y)*norm

<<std::endl;

if(printnqs==1) {

ofs_nqs<<std::setw(15)<<std::left<<std::setprecision(6)<<std::fixed<<nq

<<std::setw(15)<<std::left<<std::setprecision(6)<<std::fixed<<w

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_x*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_y*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_z*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<0.5*(sum_q00_x+sum_q00_y)*norm

<<std::endl;

}

}

ofs[nq].close();

}

if(printnqs==1) ofs_nqs.close();

*/

psimag::Real w, dw=PI/(tc*dt*ratio), w_max = PI/(dt*ratio);

psimag::Real norm = dt/(2.*PI);

for(unsigned int nq=0; nq<Sqt_q00_x.size(); nq++) {

for(unsigned int iw=0; iw<=tc; iw++) {

w=iw*dw;

psimag::Real sum_q00_x = Sqt_q00_x[nq][0],

sum_q00_y = Sqt_q00_y[nq][0],

sum_q00_z = Sqt_q00_z[nq][0];

for(unsigned int t=1; t<=tc; t++) {

psimag::Real coswt_2 = 2.*cos(w*t*dt);

sum_q00_x += Sqt_q00_x[nq][t]*coswt_2;

sum_q00_y += Sqt_q00_y[nq][t]*coswt_2;

sum_q00_z += Sqt_q00_z[nq][t]*coswt_2;

}

ofs[nq]<<std::setw(15)<<std::left<<std::setprecision(6)<<std::fixed<<nq

<<std::setw(15)<<std::left<<std::setprecision(6)<<std::fixed<<w

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed
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<<sum_q00_x*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_y*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_z*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<0.5*(sum_q00_x+sum_q00_y)*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<(sum_q00_x+sum_q00_y+sum_q00_z)*norm/3.

<<std::endl;

if(printnqs==1) {

ofs_nqs<<std::setw(15)<<std::left<<std::setprecision(6)<<std::fixed<<nq

<<std::setw(15)<<std::left<<std::setprecision(6)<<std::fixed<<w

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_x*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_y*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<sum_q00_z*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<0.5*(sum_q00_x+sum_q00_y)*norm

<<std::setw(15)<<std::left<<std::setprecision(9)<<std::fixed

<<(sum_q00_x+sum_q00_y+sum_q00_z)*norm/3.

<<std::endl;

}

}

ofs[nq].close();

}

if(printnqs==1) ofs_nqs.close();

switch(doWhat) {

case 0: { std::cout<<"\n>>> FT on LC-BC has been finished!\n\n"; break; }

case 1: { std::cout<<"\n>>> FT on LC-SCW has been finished!\n\n"; break; }

case 2: { std::cout<<"\n>>> FT on LC-SCO has been finished!\n\n"; break; }

case 3: { std::cout<<"\n>>> FT on LC-CR has been finished!\n\n"; break; }

default: ;

}

return 0;

}


