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Abstract

To provide physicists, Nicholas L. Evans and Susanne Ullrich, at the University of Georgia

(UGA) with the statistical support to determine the decay lifetimes of the photo-excited

DNA nucleobase Adenine, which is one of the four basic DNA nucleobases, we developed and

applied a set of statistical analysis methods, including background signal analysis, inverse-

variance-weighted Gaussian fitting, Gaussian-weighted summation, and non-linear regres-

sions with the Single-τ model in the long-lived and short-lived channels of TRPES experi-

ments of Adenine, through applying SAS procedures and C++ computer programming. For

one TRPES data set, we obtained the decay lifetimes τ1 = 884 fs for the long-lived channel

and τ2 = 67 fs for the the short-lived channel, both of which are in a good agreement with

experimental results of τ1 = (880 ± 50) fs and τ2 = (70 ± 30) fs [1]. With another TRPES

data set, we validated our methods, obtaining estimates of τ1 = 917 fs and τ2 = 91 fs.

Index words: UV photostability; photo-excited DNA nucleobase; Adenine; decay
lifetime; time constant; TRPES experiments; electronic relaxation
pathways; background signal subtraction; inverse-variance-weighted
Gaussian fitting; Gaussian weighted fitting; non-linear regression
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Chapter 1

Introduction

Electronic relaxation pathways in photo-excited DNA nucleobases have received much theo-

retical and experimental attention due to their underlying importance to the ultraviolet (UV)

photostability of these biomolecules [1]. Physicists, Nicholas L. Evans and Susanne Ullrich,

from the Department of Physics and Astronomy at the University of Georgia are interested

in the UV photostability of one of those biomolecules: Adenine, one of the four basic DNA

nucleobases. This molecule fights against destructive photochemical processes through the

so-called ultra-fast deactivation pathways. These physicists designed experiments to study

how these deactivation pathways work, but they need statistical help in analyzing the large

data sets they have obtained from their experiments. In their experiments, they use a pump

pulse to excite an electronic state in the bio-molecules, followed by a probe pulse for ion-

ization. They detect the electrons emitted and measure the flight time of electrons from the

ionization region to the detector. This flight time is labeled as TOF or Time of F light.

They set the probes to occur at different intervals relative to the pulse pump, calling this

interval the pump-probe delay time, which is labeled as Delay or DelayT ime. From their

experiments, they obtained so-called femtosecond (1femtosecond = 1fs = 10−15seconds)

time-resolved photoelectron spectra (TRPES) of the DNA nucleobase Adenine, which are

two-dimensional data (TRPES data) as a function of pump-probe delay time and time of

flight. They want to analyze the non-linear relationship between the pump-probe delay time

and the intensity signals.

Physicists are expecting to fit the data as a bi-exponential decay, i.e. an exponential decay

with two decay lifetimes. Through this fitting, they wish to find the decay time constants

1
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in a decaying relationship between the pump-probe delay time and the intensity signals in

two relaxation pathways, i.e. the so-called long-lived channel (LLC) and short-lived channel

(SLC) of TRPES experiments. These decay time constants are actually the decay lifetimes of

the photo-excited states of Adenine that they are investigating. Determining these lifetimes

and decay associated photoelectron spectra are the overall goals of their experiments.

In this work, to study the decay lifetimes of the photo-excited states of Adenine, we devel-

oped and applied a set of statistical methods of analysis, including background signal anal-

ysis, inverse-variance-weighted Gaussian fitting, Gaussian-weighted summation, and multi-

variate linear/non-linear regression analysis. These analyses were conducted using statistical

analysis software SAS, computational software Mathematica, and computer programming in

the C++ programming language.

The remainder of this document is as follows. Experimental and theoretical backgrounds

are presented in Chapter 2. Statistical analysis methods are described in Chapter 3. In

Chapter 4, statistical analysis results for the decay lifetimes of the photo-excited states

of Adenine are reported. Finally, the thesis conclusions are presented in Chapter 5. The

appendices A, B, and C contain fully annotated versions of all the software that has been

developed.



Chapter 2

Background

The work in this thesis is an extension of the work previously accomplished on the statistical

consulting project “Decay Times for Genetic Bases” [2], which was provided as a project

for the course of Supervised Statistical Consulting (STAT 8000) in the Summer of 2007

at the Department of Statistics at the University of Georgia. As our consulting clients,

two physicists, Nicholas L. Evans and Susanne Ullrich, from the Department of Physics

and Astronomy at the University of Georgia provided the initial data for this project. In

that project, we performed basic statistical investigations, from which we obtained some

preliminary results on the decay lifetimes of the photo-excited states of Adenine and in the

light of which we began the study under discussion in this thesis. In Section 2.3, a brief

review of our previous work can be found.

In an effort to measure the decay lifetimes of the photo-excited states of Adenine more

precisely and completely, instead of the original data set (Adenine Canada) and ab initio

methods we used previously in 2007, two new TRPES data sets from the latest TRPES

experiments and newly developed statistical analysis methods are applied in this work. A

detailed explantation of the new TRPES data sets (Adenine 803153 and Adenine 8030651)

can be found in Section 2.1. In Section 2.2, we provide an introduction to the theoretical back-

ground to predict the decay lifetimes of the photo-excited states of Adenine. An introduction

to the statistical analysis methods used in the current study can be found in Chapter 3. To

further illustrate the improvements we performed in the current study, two major drawbacks

of the previous study are discussed in Section 2.4.

3
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2.1 Experimental Design

2.1.1 TRPES Experiments

In this work, we analyze two data sets obtained from TRPES experiments of Adenine.

Physicists [1] at UGA set 151 different pump-probe delay time values, from −1565fs to

5935fs in 50fs steps for one data set, and from −1242fs to 6258fs in 50fs steps for the

second data set. For the convenience of study, these 151 different pump-probe delay time

values are labeled as 151 indices, which are called as Delay or DelayT ime, running from

0 to 150 in steps of 1. Each step of Delay represents 50fs. For each pump-probe delay

time, physicists measured the intensity signals at 4000 electron kinetic energy bins running

nonlinearly from 0eV to 4.00eV . Those 4000 electron energy bins are also labeled as 4000

indices, which are called as TOF or TimeofF light, ranging from 0 to 3999 in steps of 1. A

summary of these physical and indexed quantities in TRPES experiments can be found in

Table 2.1 in Section 2.1.2.

According to [1], at the photo-excited states of Adenine, the relationship between the

electron kinetic energy (E) and TOF is shown in Eqn. 2.1 as follows

E =
IR

(t− t0)2
− E0, (2.1)

where t is the real time of flight of photoelectrons in TRPES experiments with t = TOF

(in units of 10−9s). The quantities IR, t0 and E0 are quantities determined by the geometry

of the experiments, with the values of IR = 9.2329× 10−13eV · s2, t0 = 9.8341× 10−9s and

E0 = 3.9569× 10−1eV .

The relationship between the electronic binding energy (EBE) and the electron kinetic

energy (E) is given in Eqn. 2.2 as follows

EBE = Etotal − E, (2.2)

where EBE is the electronic binding energy in the unit of eV . E is the physical quantity

measured in TRPES experiments. Etotal = 11.09eV is the total photon energy, which is
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the sum of the pump and probe energies used to first excite and then ionize the Adenine

molecules. Combining Eqn. 2.1 and Eqn. 2.2, we show the relationship between t, i.e. the

real time of flight of excited electrons, and EBE, i.e. the total energy to ionize Adenine into

cationic states as follows

t = t0 +

√
IR

Etotal + E0 − EBE
(2.3)

Thus, the relationship between TOF and EBE is given by the following equation:

TOF = 9.8341 +
960.8798√

11.4857− EBE
(2.4)

In summary, the experiment measures electron TOF but we convert it to electron kinetic

energy (E) or electronic binding energy (EBE) in photoelectron spectrum through Eqn. 2.1

and Eqn. 2.2. In this thesis, we refer to our two-dimensional data set as being in TOF×Delay

scale.

2.1.2 TRPES Data Sets

The data sets of Adenine from TRPES experiments were labeled by physicists [Evans, et al.]

in 2008 at UGA with serial numbers of 803153 and 8030651. Thus, we call those data sets

as Adenine 803153 and Adenine 8030651. A detailed summary of the main characteristics of

Adenine 803153 and Adenine 8030651 can be found in Table 2.1. Explanation of the quan-

tities FWHM (Full Width at Half Maximum) and σ (experimentally measurable standard

deviation) in Table 2.1 can be found in Section 2.1.3, and an explanation of the scaling factor

in Table 2.1 can be found in Section 3.1.1.

The physicists scanned through 151 different pump-probe delay times 10 times back

and forth, which are recorded as 10 sweeps labeled as sweep index s running from 1 to 10.

From each sweep, the physicists created 3 data files, which are named as Ds.dat, Es.dat and

Ps.dat, s ∈ [1, 10], each containing a two-dimensional 4000(TOF )×151(Delay) data matrix.

The file of Ds.dat contains raw intensity signals without noise subtraction, while the files

Es.dat and Ps.dat contain independent background signal signals from two channels. Thus,
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Table 2.1: Summary of data characteristics of Adenine 803153 and Adenine 8030651 experiments

Adenine 803153 Adenine 8030651

Pump-probe delay time [−1565fs, 5935fs] [−1242fs, 6258fs]

Pump-probe delay time step 50fs 50fs

Delay index [0, 150] [0, 150]

Electron energy bin [0eV, 4.00eV ] [0eV, 4.00eV ]

Electron energy bin step non-linear non-linear

TOF index [0, 3999] [0, 3999]

Sweeps 10 10

FWHM of pump-probe delay time 256fs 255fs

σ of pump-probe delay time 108.713fs 108.289fs

σ in Delay index unit 2.17426 2.16577

Suggested scaling factor 5.00 2.00

Year of experiment 2008 2008

Location of experiment UGA UGA
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Table 2.2: Summary of the data files for Adenine 803153 and Adenine 8030651 experiments

Name of Data Files Sweep Index File Contents

Ds.dat Raw intensity signals

Es.dat s ∈ [1, 10] Background signal from channel 1

Ps.dat Background signal from channel 2

each experiment in sum has 30 data files, i.e. 10 files of raw intensity signals and 20 files

of noise signals. A summary of the data files for the Adenine 803153 and Adenine 8030651

experiments can be found in Table 2.2.

Since the intensity signals contained in Ds.dat, i ∈ [1, 10] are raw intensity signals, in

order to extract the net intensity signals, we need to perform a proper background signal

subtraction from those raw intensity signals before we proceed with performing statistical

analyses on Adenine 803153 and Adenine 8030651. A detailed explanation of the background

signal subtraction technique can be found in Section 3.1.

2.1.3 Standard Deviation σ of Delay

Another physical quantity we should know for TRPES experiments is the experimental

error, i.e. the experimentally measurable standard deviation (SD) σ due to the instrumental

time resolution (i.e. 130fs pulse duration used in the experiment). Physicists generally use

FWHM , which means Full Width at Half Maximum, to represent the imprecision in their

experiments. With assumption of normality, the relationship between FWHM and standard

deviation σ for any normal curve is, as shown in Fig. 2.1, given by

FWHM = 2.35482σ. (2.5)
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FWHMH

H/2

x

Figure 2.1: Illustration of relationship between FWHM and σ for a normal distribution.

For Adenine 803153, as one of experimental parameters, FWHM = 256fs. Thus, we

obtained σ = 108.713fs, which is the experimentally measurable standard deviation of

pump-probe delay time for Adenine 803153. In the unit of Delay, σ = 108.713fs
50fs

= 2.17426.

For the other data set Adenine 8030651, FWHM = 255fs. Thus, we obtained σ = 108.289fs,

or in the unit of Delay, σ = 108.713fs
50fs

= 2.16577 for the Adenine 8030651 data set.

2.2 Theoretical Background

Physicists predict that the relationship between the pump-probe delay time and the intensity

signals is bi-exponential decay, especially for Adenine, which should be modeled by the

convolution of a Gaussian error function and the intensity signals.

When the decay is a single-τ decay, which means there is only one exponential decay and

only one decay lifetime involved in the decaying process in the channel or relaxation pathway
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of TRPES experiments, the total intensity signals can be expressed theoretically as follows

I(t) = A ∗ exp( σ
2

2τ 2
− t

τ
) ∗ {1− erf(

σ/τ − t/σ√
2

)}, (2.6)

where t is the pump-probe delay time. σ is the experimentally measurable standard deviation

due to imprecision in detector time resolution (In the unit of Delay, σ = 2.17426 for Adenine

803153 and σ = 2.16577 for Adenine 8030651), and A and τ are the amplitude and decay

lifetime parameters we wish to estimate via this fitting. In this thesis, we call this model

the Single-τ model. The Gaussian error function used above has the following relationship

to the well-known normal distribution function

erf(z) =
2√
π

∫ z

0

e−t2 dt = 2 ∗ {CDF(′normal′,
√
2z, 0, 1)− 0.5}, (2.7)

where CDF(′normal′,
√
2z, 0, 1) is the SAS (Statistical Analysis Software) expression of the

standard normal cumulative distribution function with
√
2z as the upper limit of integral.

2.3 Brief Review of Previous Study in STAT 8000

Of course, the mathematical model in Eqn. 2.6 cannot exactly describe real-world physical

phenomena. However, it can be a good starting point from which to build up an under-

standing of more complicated decay models with convolutions. In the work (Summer 2007)

on the statistical consulting project “Decay Times for Genetic Bases”in STAT 8000 [2],

we attempted to develop such a decay model by combining two Single-τ exponential decay

models into a single convoluted Two-τ model. From this model, we obtained some prelimi-

nary results on the decay lifetimes τ1 and τ2 of Adenine.

The data set we analyzed in 2007 was obtained from earlier experiments conducted by

Prof. Ullrich in 2005 in Canada. Thus, we called this data set as Adenine Canada. In those

experiments, the physicists [Ullrich, et al.] set 53 different values of pump-probe delay time,

from −350fs to 2250fs in 50fs steps, and 50 electron energy bins, ranging from 0.25eV to

4.00eV in about 0.077eV steps. They scanned through the 53 different pump-probe delays 14
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Table 2.3: Summary of data characteristics of Adenine Canada experiment

Adenine Canada

Pump-probe delay time [−350fs, 2250fs]

Pump-probe delay time step 50fs

Delay index [0, 52]

Electron energy bin [0.25eV, 4.00eV ]

Electron energy bin step 0.077eV

TOF index [0, 49]

Sweeps 14

FWHM of pump-probe delay time 150fs

σ of pump-probe delay time 63.699fs

σ in Delay index unit 1.27398

Suggested scaling factor 5.30

Year of experiment 2005

Location of experiment Canada

times back and forth, and at each pump-probe delay time they recorded 5000 shots of pump-

prob intensity signals. Thus each entry of the two-dimensional 50(TOF ) × 53(Delay) data

matrix was the average of 70,000 intensity measurements. A summary of the characteristics

of the data set Adenine Canada can be found in Table 2.3.

Before the data set was sent to us for analysis, the physicists performed some background

signal subtractions. At each pump-probe delay time, they recorded a total of 500 shots of

pump only and 500 probe only signals. Since these signals were independent of pump-probe

delay time, the physicists simply summed them and then scaled them back by the scaling

factor of 5.3 to achieve the same averaging effect as for the pump-probe intensity signals

(500×53×14/5.3 = 70, 000). These values were subtracted from the raw intensity signals to
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produce the background-subtracted intensity signals which were provided to us for the 2007

STAT 8000 analysis.

The physicists [Ullrich, et al.] also reported the Full Width at Half Maximum of this

TRPES experiment to be FWHM = 150fs. From Eqn. 2.5, the experimentally measurable

standard deviation σ of the pump-probe delay time was thus σ = 63.699fs, or in the unit

of Delay, σ = 63.699fs
50fs

= 1.27398 for the Adenine Canada data set.

2.3.1 Shift Methods Selection

In the data set of two-dimensional 50 × 53 = 2650 delay-energy bin intensity values, there

were some negative values which were due to the noise subtraction method utilized. Since

true intensities can’t be negative, we considered applying the following five adjustments, or

five shift methods, to these negative data points before we began the analysis:

Method 1: We did nothing to the data.

Method 2: We added 0.07 to each data point of the 50(TOF )× 53(Delay) data matrix in

order to change some negative values to positive ones.

Method 3: A value of 0.10 was added to each data point of the 50(TOF )×53(Delay) data

matrix in order to make the total (summed over TOF levels) intensity signals positive,

although some individual data points could still be negative.

Method 4: An even larger value of 0.20 was added to each data point of the 50(TOF ) ×

53(Delay) data matrix so that all individual negative data points became positive.

Method 5: We simply assigned zero to all the negative intensities.

To select the best shift method, we tried non-linear fitting, which is described by the

Single-τ model in Eqn. 2.6, on the data after being shifted. Since the TRPES date set contains

a two-dimensional data matrix, before we could do the non-linear fitting one-dimensionally,
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we need to remove the dimension of TOF . To do that, we simply performed a direct summa-

tion over all TOF levels at each pump-probe delay time. To illustrate this procedure clearly,

three steps are listed as follows

Step 1: shift methods were applied.

Step 2: A direct non-weighted summation over all TOF levels at each pump-probe delay

time (Delay) was applied to make the data one-dimensional.

Step 3: The non-linear fitting described by the Single-τ model was applied.

With σ = 63.699fs in Eqn. 2.6, we used maximum-likelihood methods to obtain estimates

of the parameters A and τ to best fit the data. Table 2.4 displays the maximum likelihood

estimations (MLE’s) of A and τ for each of the five shift methods under the Single-τ model

of Eqn. 2.6. The last column, SSE, gives the sum of squared error for these fits. Both the

MLE’s for A and τ , as well as the SSE, were calculated from PROC NLIN, a non-linear

fitting algorithm in the SAS package.

Minimization of SSE is the optimal solution when errors at each point (the 53 pump-

probe delay times) are normally distributed with a constant standard deviation. Normality

itself is probably not a particularly crucial assumption here, given that each observation

is really an average over 70000 trials. However, assuming a constant standard deviation is

more problematic. The ’best’ solution would be to minimize the weighted sum of squared

errors, where the weights are inversely proportional to the error variance for each pump-

probe delay time. Since we did not know these variances, did not have the raw data (i.e.

the 70000 measurements which had been averaged to yield the provided intensities) and had

been assured by the physicists that the typical error at each delay time was of roughly the

same order of magnitude, we used minimization of SSE as the fit criteria in the 2007 study.

But we are not sure that this is really correct. For this study, we found shift method 5 to

yield the smallest error, as shown in Table 2.4. To be concise in this review section, we show

in Fig. 2.2 the fitting results from shift method 5 only.
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Table 2.4: Summary of the MLE’s of A and τ for each of the five shift methods under the Single-τ
model for Adenine

Shift Method
Number

Shift Â τ̂ SSE

1 neg + .00 13.31 299.3 300.6

2 neg + .07 12.40 408.2 134.7

3 neg + .10 11.88 482.9 159.9

4 neg + .20 9.92 987.0 473.2

5 neg → .00 11.85 459.2 120.0

Figure 2.2: Results of non-linear regression with the Single-τ model with shift method 5 applied
to the Adenine Canada data set.
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2.3.2 Fitting with Single-τ Model

Although we knew that the decay is bi-exponential for Adenine, we started fitting data by

using the Single-τ model described in Eqn. 2.6 since it is a relatively simple model from

which we hoped to get some preliminary results. With σ = 63.699fs, according to the

Single-τ model fitting, we obtained the predicted values of A, τ and SSE as the following:

Â = 11.85, τ̂ = 459.2, and SSE = 120.0. From Fig. 2.2, we can see that the fit is fairly good

when the delay time is positive and large. However, when the delay time goes to zero or

negative, the fit is not as good as in the right-hand tail. The reason that this simple Single-τ

model could give such a decent fitting at all is due to the fact that one of two decays of

the bi-exponential model is the dominant one, so that what we obtain here by the Single-τ

model is a good approximation of this dominant decay.

2.3.3 Fitting with Two-τ Model

As we stated previously, for Adenine, the physical model is that the first state A is achieved

by laser pulse excitation, then decays to a second state B, and the second state decays

to the ground state. So the total intensity of signals could be described by the following

mathematical expression:

I(t) = A1 ∗X1(t) + A2 ∗X2(t), (2.8)

where I(t) is the total observed intensity of signals, X1(t) and X2(t) are the particle popula-

tion in excited state A and B, respectively, and A1 and A2 are the unit intensity given off at

state A and state B, respectively. In this formulation, only I(t) is observed, so both A1 and

A2 as well as the functions X1(t) and X2(t) would need to be estimated. To do this, we first

considered the simplest situation in which σ is zero, i.e. there is no convolution caused by

pump and probe pulses. In this situation, we can write down the time differential equations

of X1(t) and X2(t) as follows

dX1(t)

dt
= −r1 ∗X1(t), (2.9)
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dX2(t)

dt
= −r2 ∗X2(t) + r1 ∗X1(t), (2.10)

where r1 = 1
τ1
, r2 = 1

τ2
. These equations merely state that X1(t) decays to X2(t) at a rate

(r1) proportional to the amount of X1(t) present and that X2(t) is created by the input from

decaying X1 particles, but decreases at a rate (r2) proportional to amount of X2(t) present.

As stated, the equations have an infinite number of solutions, so we impose the standard

initial conditions X1(0) = 1 and X2(0) = 0; At time t ∼ 0, all particles are in excited state

0. (This would be exactly true if there were no convolution, which is the assumption behind

Eqn. 2.9 and Eqn. 2.10). Ignoring convolution caused by pump and probe pulses, we found

the analytical solutions to these differential equations as follows

X1(t) = exp(−r1 ∗ t), (2.11)

X2(t) =
r1

r1 − r2
{exp(−r2 ∗ t)− exp(−r1 ∗ t)}. (2.12)

If we consider the convolution caused by pump and probe pulses, the analytical solution of

X1(t) will simply be changed to the form:

X1(t) = exp(
σ2

2τ 21
− t

τ1
) ∗ 2{1− erf(

σ/τ1 − t/σ√
2

)}

= exp(
1

2
σ2 ∗ r21 − r1 ∗ t) ∗ 2{1− erf(

σ ∗ r1 − t/σ√
2

)}. (2.13)

Thus, in order to find X2(t), we would need to solve the following differential equation:

dX2(t)

dt
= −r2 ∗X2(t) + r1 ∗ exp(

1

2
σ2 ∗ r21 − r1 ∗ t) ∗ 2{1− erf(

σ ∗ r1 − t/σ√
2

)}. (2.14)

It is not easy to find the analytical solution to the above equation, so we turned to construct

an approximate Two-τ model, in which we added a convolution term to X2(t) independently.

The following is the equation for this constructed Two-τ model:

I(t) = A1 ∗ exp(−r1 ∗ t) ∗ 2{1− erf(
σ ∗ r1 − t/σ√

2
)}+

A2 ∗
r1

r1 − r2
{exp(−r2 ∗ t)− exp(−r1 ∗ t)} ∗ 2{1− erf(

σ ∗ r2 − t/σ√
2

)}. (2.15)

The fitting results are shown in Fig. 2.3. For this constructed approximate Two-τ model,
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Figure 2.3: Results of non-linear regression with the constructed Two-τ model with shift method
5.

the fit looks fairly good, especially when the delay time is positive and large. However

when the delay time goes to zero or negative, the fit is not as good as the fit when the

delay time is positive and large. The fitting curve looks very similar to the fitting curve

obtained from the preliminary fitting with Single-τ model, introduced in Section 2.3.1. From

this model, we obtained the following parameter estimates: Â1 = 11.9930, Â2 = 0.0236,

τ̂1 = 1/0.00219fs = 456.62fs, τ̂2 = 1/0.00011fs = 900.90fs, SSE = 120.0. Compared

with the values of lifetimes previously suggested by physicists: τ1 = 100fs, τ2 = 1100fs, the

convergence of predicted τ2 to the suggested τ2 is better than the convergence of predicted τ1

to the suggested τ1. The parameter estimates under the two models are shown in Table 2.5.

Our reason for the very close agreement is because A2 is so small relative to A1 that the

Two-τ model is almost a Single-τ model.
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Table 2.5: Summary of the τs of Adenine with the Single-τ and constructed approximate Two-τ
model

Molecule Model σ(fs) τ1(fs) τ2(fs) A1 A2 SSE

Single-τ 459.2
�
�
�

11.85
�
�
�

120.07
Adenine

Two-τ
63.699

456.6 900.0 11.99 0.02 120.01

2.3.4 Conclusions on Previous Study

For Adenine Canada, the Single-τ model is meaningful because the fitting with it tells us that

one of two decays is a dominant decay in the bi-exponential model. The approximate Two-τ

model gives us a good fitting to the data, especially when the delay time is positive and

large. In Table 2.5, a short summary of our previous study on the decay lifetimes of Adenine

is given. As we discuss in Section 2.4, there are two major drawbacks in our previous study,

so these results may not be correct.

Now, we have access to more refined data. In the remainder of this thesis, we will show our

further study on the decay lifetimes of Adenine. As discussed in Section 2.1 and 2.4, to remedy

the drawbacks in our previous study and improve the precision in the statistical analysis, we

used two new TRPES data sets (Adenine 803153 and Adenine 8030651) plus new statistical

analysis methods in this follow-up study. In addition, we followed new understanding of

physics background to improve our estimation techniques.

2.4 Drawbacks of Previous Study in STAT 8000

We now realize that there were two major drawbacks in our previous study. These two

drawbacks should be eliminated from our current study in order to improve the precision of

statistical analyses. These two limitations are discussed below:
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1: No proper background signal subtraction Before the data set was sent to us for

analysis, the background signal subtraction has been performed directly by physicists.

Many negative signals were found in data. Instead of proposing a proper background

signal subtraction, we tried several crude Shiftmethods to remove those negative signals

simply by changing them to be zero, or by shifting whole data surface upwards with

different magnitudes to make those negative signals to be positive. Due to the limited

time to complete the STAT 8000 project, we didn’t perform a detailed statistical study

on the effects of background signal subtraction. We lack a proper statistical study on

background signal for this study.

2: Crude summation over time-of-flight bins The data set contains a two-dimensional

data matrix. Before we could perform the non-linear regressions one-dimensionally

with the pump-probe delay time (Delay) as the predictor variable, we removed the

dimension of electron energy by doing a summation over all electron energy bins (TOF )

at each Delay. In our previous study, we performed a direct non-weighted summation

over TOF , which could be too crude. We merely summed the intensities over TOF

(after the intuitive correcting for negative values, as discussed in Section 2.3.1) to

obtain the final I(t)′s which were our response variables in these analyses. This is not

the best way to do things, but with the data set we had and our understanding of the

physical system in 2007, it was the best which we could do then. We suspected that

we might be able to obtain more physically interpretable models if we weighted the

intensities from different electron energy bins differently, but we were unsure what the

correct weighting should be at that time.

In this current study, we eliminated the drawbacks discussed above from our analysis. In

Section 3.1 and 3.2, respective detailed explanations of the background signal subtraction

procedure and the improvements in the summation over TOF procedure can be found.

In addition to those improvements, we also found a new way to extract the decay lifetimes

τ1 and τ2 of Adenine. We focused on two relaxation pathways or channels in TRPES exper-
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iments, i.e. the long-lived channel (LLC) and short-lived channel (SLC). We know from

the physicists [Evans, et al.] that, in the long-lived channel, signals are mainly dominated

with the long-lived signals with the decay lifetime τ1, which could be extracted directly by

fitting with the Single-τ model described in Eqn. 2.6. In the short-lived channel, the situa-

tion becomes much more complicated. Not only can we find the signals from the short-lived

channel, but we can also find the signals from the long-lived channel there. Those signals are

overlapped in the short-lived channel. This overlapping is found to be strong, both exper-

imentally and statistically, which causes a heavy superposition of intensity signals in the

short-lived channel. In order to extract the decay lifetime τ2 of the short-lived channel, we

must decompose those overlapped signals into two components, one of which is the signal

purely from the short-lived channel, and the other of which is the remnant signal from the

long-lived channel. With this decomposition,the signals from the short-lived channel are puri-

fied and can be fitted again to extract the decay lifetime τ2 with the Single-τ model described

in Eqn. 2.6. In Section 3.3, a detailed description of how we accomplished the decomposition

and fitting in the short-lived channel can be found.



Chapter 3

Statistical Analysis Methods

In this chapter, we focus on the new statistical analysis methods we developed since 2007.

In Section 3.1, we will explain how we accomplished the background signal subtraction for

Adenine 803153. In Section 3.2, we explain how we improved the procedure for summation

over electron energy bins at each pump-probe delay time. By the procedures introduced in

Section 3.1 and 3.2, we ameliorated the drawbacks discussed in Section 2.4, of our previous

study. In the last section of this chapter, Section 3.3, we discuss the new procedure we followed

to extract the decay lifetimes of Adenine from the perspectives of physics and statistics.

3.1 Background Signal Subtraction

3.1.1 The Scaling Factor k

As noted in Section 2.1.2, the data set Adenine 803153 contains 30 data files: 10 files names

as Di.dat, i ∈ [1, 10], 10 files named as Ei.dat, i ∈ [1, 10] and 10 files named as Pi.dat,

i ∈ [1, 10]. Each data file contains a two-dimensional 4000(TOF )× 151(Delay) data matrix.

The D files contain raw intensity signals without background signal subtraction. The E and

P files contain background signal signals to be subtracted. Since background signal signals

are experimentally independent of intensity signals, physicists [Evans, et al.] proposed the

background signal subtraction as follows

R = D − k ∗BG

= D − k ∗ (E + P ), (3.1)

20
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where R represents the resultant intensity signals after background signal subtraction. D

represents the raw intensity signal before background signal subtraction. E+P represent the

total background signals to be subtracted from intensity signals. k, with an initial suggested

value of 5.00, is the scaling factor used to scale noise signals back to achieve the same

averaging effect as for the intensity signals.

Of course, we could use the suggested value of k = 5.00 in Eqn. 3.1, but to determine

the background signal subtraction more precisely, we need to determine the scaling factor k

more precisely, which actually is the goal of this part of the work.

3.1.2 Methods for Determining Scaling Factor k

To do a very precise estimate on k, we redefine Eqn. 3.1 on each data point of two-dimensional

4000(TOF )× 151(Delay) data matrix as follows

Rsij = Dsij − k ∗BGsij

= Dsij − k ∗ (Esij + Psij), (3.2)

where s is the index of Sweep, s ∈ [1, 10],

i is the index of TOF (electron energy bin), i ∈ [0, 3999],

j is the index of Delay (Pump-probe delay time), j ∈ [0, 150].

In Section 2.1.1 and 2.1.2, detailed explanations of these indices can be found.

First, we average over sweeps to obtain R·ij(k) as a function of k as follows

R·ij(k) = D·ij − k ∗BG·ij, (3.3)

where D·ij =
1

10

∑
s

Dsij,

BG·ij =
1

10

∑
s

BGsij =
1

10

∑
s

(Esij + Psij).

The optimal value of k can be determined from the region in which there is no real activity,

so that R·ij(k) behaves approximately like a zero mean and constant standard deviation

process. However, determining where those regions are requires some thought. To do this,



22

Table 3.1: Summary of the strategies of grid division for k determination

pixelTOF × pixelDelay 160× 30 80× 15 40× 3 1× 1 (raw data)

♯ of rows in cell 160 80 40 1

♯ of columns in cell 30 15 3 1

♯ of rows in grid 25 50 100 4000

♯ of columns in grid 5 10 50 151

♯ of cells (C) 125 500 5000 604000

♯ of pts in cell (N) 4800 1200 120 1

we divided the entire 4000(TOF )× 151(Delay) grid into sub-grids (“cells”), each of size of

pixelTOF × pixelDelay. In each cell(i′, j′), we have Index of cell in TOF : i′ = 0 ∼ INT (4000/pixelTOF )− 1,

Index of cell in Delay : j′ = 0 ∼ INT (151/pixelDelay)− 1.

Several strategies of grid division that we considered are given in Table 3.1. The second

strategy with pixelTOF × pixelDelay = 80 × 15 is the strategy ultimately utilized in this

study. The latter two strategies (40 × 3 and 1 × 1) have so few observations per cell and

so many different cells that the data appears very noisy - in statistical terms, they appear

to under-smooth the data. The first strategy (160× 30) over-smoothes the data, using only

125 cells, and not allowing the data to display true variation due to Delay and TOF . The

80×15 strategy which we have decided to utilize seems to strike a reasonable balance between

smoothing and signal detection.

Within each of the C cells (each containing N data points), the mean of R·ij(k)’s can be

found as follows ∑
i∈i′ j∈j′

R·ij(k)

Ni′j′
=

∑
i∈i′ j∈j′

D·ij

Ni′j′
− k ∗

∑
i∈i′ j∈j′

BG·ij

Ni′j′
, (3.4)
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where Ni′j′ = pixelTOF × pixelDelay is the sample size of data points in cell(i′, j′). We

denote the terms in Eqn. 3.4 as follows

µ̂R(i
′, j′, k) = R(i′, j′, k) = D(i′, j′)− k ∗BG(i′, j′). (3.5)

The sample standard deviation of R·ij(k) within each cell can be found in Eqn. 3.6 as follows

σ̂R(i
′, j′, k) =

√√√√√
∑

i∈i′ j∈j′

(
R·ij(k)−R(i′, j′, k)

)2
Ni′j′ − 1

. (3.6)

One can use the quantities in Eqn. 3.5 and Eqn. 3.6 to perform a one-sample t-test (with

Ni′j′ − 1 degree freedom (df)) of the null hypothesis that the true mean of R·ij(k), i.e.

µ̂R(i
′, j′, k), is zero. The t-statistics, which follows a standard normal distribution N (0, 1)

under the null hypothesis, is defined for each cell as follows

t(i′, j′, k) =
µ̂R(i

′, j′, k)− 0

σ̂R(i′, j′, k)/
√
Ni′j′

. (3.7)

If every region where this were tested were such that there were no real activity, then it

would be easy to determine the optimal value of k such that this hypothesis is satisfied.

However, there are many regions in the TOF × Delay region for which there is significant

activity beyond the baseline level. In these regions, even after subtracting the background

signal level, the residual contains real signals. So, before we can estimate the optimal value

of k, we must first identify the true no-signal regions.

In Section 4.1.1.2, with the strategy of grid division using the cell size of pixelTOF ×

pixelDelay = 80 × 15, we show how we applied the quantities defined in Eqn. 3.5 and

Eqn. 3.6 to locate the individual no-signal cells. With the same strategy of grid division,

in Section 4.1.1.3 and Section 4.1.1.4, we show the results demonstrating how we applied

the one-sample t-test with the t-statistics described in Eqn. 3.7 to determine the no-signal

regions, and then find the optimal estimated value of the scaling factor k, which is notated

as k∗ in this thesis.
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3.2 Gaussian-Weighted Summation over TOF

In order to remedy another drawback caused by the way we calculated the summation over

TOF in our previous study, we must find a more precise way to do this before we proceed

to further fitting on Delay in order to extract the decay lifetimes of Adenine. In 2007,

we suspected that we might be able to obtain more physically interpretable models if we

weighted the intensities from different TOF differently, but we were unsure what the correct

weighting should be at that time. Now, we have data that allow us to do this.

As known from physicists, for a fixed level of Delay, the intensities over TOF should

have approximately a Gaussian distribution. With this in mind, instead of staying with a

direct equal-weighted summation over TOF as we performed in our previous study, we set

out to consider a weighted summation, or a Gaussian-weighted summation, over TOF . To do

this Gaussian-weighted summation, we need to know beforehand the Gaussian probability

density function of data for a fixed level of TOF .

3.2.1 Gaussian Probability Density Function for a Fixed Level of TOF

Since TRPES data theoretically have a Gaussian distribution for a fixed level of TOF , to

find the Gaussian probability density function, we could simply perform a Gaussian fitting

to our data. However, the real world doesn’t always behave as theories predict. With a

detailed checking, we found there exists a skewed pattern in our data , which deforms the

distribution of data to a minor extent from a perfectly symmetrical Gaussian distribution.

To fix this skew, instead of performing a simple Gaussian fitting, we applied an inverse-

variance-weighted Gaussian fitting, from which we obtained the probability density function

of the skewed Gaussian distribution for a fixed level of TOF . Before we present details, the

general outline of our procedure is presented as follows

Step 1: We summed all data points over Delays at each level of TOF , thus obtaining

one-dimensional data in TOF .
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Step 2: We divided the data from Step 1 into small groups in TOF scale. For each group,

we calculated the sample standard deviation σ of all data points in the group.

Step 3: We performed a linear regression on σ’s obtained from Step 2 with TOF as the

predictor variable. Thus, we obtained a function showing the dependence of σ on TOF

level.

Step 4: We applied an inverse-variance-weighted Gaussian fitting on the data averaged from

Step 1 with
√
TOF as the predictor variable and

1

σ̂2
as the weighting factor. Thus, we

obtained the Gaussian probability density function of data.

The first step is to sum all data points over Delays at each level of TOF . Thus, we obtain

one-dimensional data as a function of TOF as follows

R·i·(k
∗) =

∑
j∈DelayRange

R·ij(k
∗), (3.8)

where k∗ is the optimal estimated value of scaling factor determined by the procedure of

background signal subtraction, which is described in Section 3.1.2. R·ij(k) is the quantity

defined in Eqn. 3.3. DelayRange with NDelayRange data points inside is the range of Delay

over which the summation is performed. R·i·(k
∗) is the result of summation, which is a

function of i, i.e. TOF , i ∈ [300, 1500].

The second step is to divide the data defined in Eqn. 3.8 into small groups with 25 data

points (with 25 i’s) per group. Each group is assigned an index of g. For each group, we

calculated the sample standard deviation σg of all data points in the group as follows

σg =

√√√√√
∑
i∈g

(
R·i·(k

∗)−Rg(k
∗)
)

Ng − 1
, (3.9)

where R·i·(k
∗) is defined in Eqn. 3.8. Rg(k

∗) is the overall average of 25 data points in group

g. Ng = 25 is the sample size of data points in group g.

In the next step, to find the function describing the dependence of σg with respect to

TOF , we propose the following linear regression model, through applying the SAS procedure
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PROC REG, to do a fitting on σg’s with TOF as the predictor variable.

σg = β0 + β1 ∗X + β2 ∗X2 + β3 ∗X3, (3.10)

where X is a linearly transformed predictor variable of TOF with X = TOF+12.5−1000
100

. β0,

β1, β2, and β3 are the parameters to be estimated in the fitting.

Lastly, using the non-linear model given in Eqn. 3.11, we fit the data averaged from the

first step, i.e. R·i·(k
∗)
/
NDelayRange, where i ∈ TOFFittingRange, with an inverse-variance-

weighted Gaussian fitting with
√
TOF as the predictor variable and

1

σ̂g
2 as the weighting

factor, through applying the SAS procedure PROC NLIN. TOFFittingRange is the index

range of TOF over which we performed the fitting.

f(
√
TOF ) =

C√
2πσ2

exp(−(
√
TOF − µ)2

2σ2
), (3.11)

where C, µ and σ are the parameters to be determined in the fitting. f(
√
TOF ) is the

Gaussian probability density function of data as a function of
√
TOF .

3.2.2 Gaussian-Weighted Summation over TOF

With the Gaussian probability density function f(x) described in Eqn. 3.11, we define the

weighting factor for Gaussian-weighted summation over TOF as follows

W (TOF ) =

∫ √
TOF+0.5

√
TOF−0.5

f(x) ∗ dx, (3.12)

where W (TOF ) is the weighting factor at each TOF . Note that TOF is an indexed quantity

running from 0 to 3999 in steps of 1. For mathematical convenience, it is also equivalently

represented by the index of i, i ∈ [0, 3999]. Therefore, W (TOF ) in Eqn. 3.12 can be also

written as W (i) or W (TOFi). We prefer the form of W (i) in this thesis. In Section 2.1.1 and

3.1.2, detailed explanations of TOF and its index i can be found .

With the weighting factor W (i) defined in Eqn. 3.12, we define the Gaussian-weighted

summation over TOF as follows

R··j(k
∗) =

∑
i∈TOFSumRange

R·ij(k
∗) ∗W (i), (3.13)
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where k∗ is the optimal estimated value of scaling factor. R·ij(k
∗) is the quantity defined in

Eqn. 3.3. TOFSumRange is the index range of TOF over which we performed the sum-

mation. R··j(k
∗) is the result of Gaussian-weighted summation, which is a function of j, i.e.

Delay.

In Section 4.1.2, we show the results related to Gaussian-weighted summation described

in Section 3.2.

To extract the decay lifetimes of Adenine, we further take the quantity defined in

Eqn. 3.13 into the Single-τ non-linear regressions with Delay as the predictor variable. This

part of the work will be introduced in the next section.

3.3 Non-linear Regression with the Single-τ Model on Delay

As we mentioned in Section 2.4, we followed a new way to extract the decay lifetimes of

Adenine τ1 and τ2 in this study. Instead of trying to construct Two-τ decay model by convo-

luting two Single-τ decay models as we attempted in the previous study, we set out to perform

fittings in two relaxation pathways or channels in TRPES experiments, i.e. the long-lived

channel (LLC) and short-lived channel (SLC), separately with Single-tau models.

In the long-lived channel, signals are mainly dominated by the long-lived signals with

the decay lifetime τ1, which could be extracted directly by fitting with the Single-τ model

described in Eqn. 2.6. However, in the short-lived channel, the situation is much more com-

plicated. The signals from the short-lived channel overlap with the signals from the long-lived

channel. We found both experimentally and statistically that this overlapping is very strong,

enough to cause a heavy superposition of intensity signals in the short-lived channel. Thus,

to extract the decay lifetimes τ1 of LLC and τ2 of SLC, we must follow two steps before we

could perform fittings in those two channels. First, we need to identify in Delay where the

long-lived channel is and where the short-lived channel is; Secondly, to extract τ2 of SLC,

we need to conduct an efficient decomposition of those overlapped signals in the short-lived
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channel into two components, one of which is the signal purely from the short-lived channel,

and the other of which is the remnant signal from the long-lived channel.

In Section 3.3.1, we discuss how to define the long-lived and short-lived channels in the

ranges of Delay. In Section 3.3.2, we show how to decompose signals in the short-lived

channel.

3.3.1 Ranges of Delay for the long-lived and short-lived Channels

Table 2.1 in Section 2.1.1 shows both physical quantities and indexed quantities for the recent

TRPES experiments. The physical range of pump-probe delay time for Adenine 803153 is

[−1565fs, 5935fs] and for Adenine 8030651 is [−1242fs, 6258fs], in steps of 50fs. The cor-

responding indexed range of Delay is [0, 150] in steps of 1, and each step of Delay represents

50fs in the real physical scale. Since there exists a one-to-one correspondence between phys-

ical range and indexed range, we can calculate the zero point of indexed range for Adenine

803153 as follow

Delay0 =
1565fs

50fs
= 31.3, (3.14)

where Delay0 is the zero point of the indexed range of Delay for Adenine 803153. Similarly,

for Adenine 8030651, the zero point of indexed range is Delay0 =
1242fs
50fs

= 24.84.

For Adenine 803153, as shown in [1], to obtain purely exponential decay ranges for non-

linear regressions with the Single-τ model, we chose the range of pump-probe delay time of

[100fs, 400fs] for the short-lived channel, which corresponds to the range ofDelay of [33, 39].

For the long-lived channel, we chose the range of pump-probe delay time of [400fs, 5885fs],

which corresponds to the range of Delay of [40, 149]. We should emphasize that, we dropped

Delay = 150 in our analyses since we found Delay = 150 to be an outlier point.

For Adenine 8030651, to meet the convergence criterion of non-linear fitting, we chose

the range of pump-probe delay time of [10fs, 310fs] for the short-lived channel, which cor-

responds to the range of Delay of [25, 31]. We also chose the range of pump-probe delay
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Table 3.2: Summary of the chosen ranges of Delay for SLC and LLC

Data Set Channel Physical Range Delay Range

SLC [100fs, 400fs] [33, 39]
Adenine 803153

LLC [400fs, 5885fs] [40, 149]

SLC [10fs, 310fs] [25, 31]
Adenine 8030651

LLC [310fs, 6208fs] [32, 149]

time of [310fs, 6208fs] for the long-lived channel, which corresponds to the range of Delay

of [32, 149].

Table 3.2 is a summary of the chosen ranges of Delay for the long-lived and short-lived

channels for Adenine 803153 and Adenine 8030651. Fig. 3.1 is an illustration of those ranges

for Adenine 803153.

3.3.2 Decomposition of Signals in the short-lived Channel

As mentioned in the beginning of this section, to extract the lifetime τ2 of SLC, we need to

decompose those strongly overlapped signals in the short-lived channel into two components,

one of which is the signal purely from the short-lived channel, and the other of which is the

remnant signal from the long-lived channel. To find those pure signals from the short-lived

channel, we performed a linear subtraction of signals as shown as follows

Step 1: Fitting in LLC In LLC, we first performed a non-linear regression with the

Single-τ model described in Eqn. 2.6 with Delay as the predictor variable. Thus, we

obtained the lifetime τ1 of LLC and the fitting function describing the intensity signals

as an exponential decay function of Delay in LLC.
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Figure 3.1: Illustration of the chosen ranges of Delay for SLC and LLC for Adenine 803153.

Step 2: Signal Subtraction in SLC In SLC, we subtracted the LLC signals, which are

given by the fitting function obtained in Step 1, from the total signals. Thus, we

obtained the resultant intensity signals as the pure signals from SLC.

Step 3: Fitting in SLC In SLC, we performed a non-linear regression with the Single-τ

model again on the resultant signals, which we obtained from Step 2. Thus, we obtained

the lifetime τ2 of SLC and the fitting function describing the intensity signals as an

exponential decay function of Delay in SLC.

To do the non-linear regressions, we applied the SAS procedure PROC NLIN.
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In Section 4.1.3, we will show the results related to the “LLC” and “SLC” Single-τ

non-linear regressions described in this Section 3.3.



Chapter 4

Statistical Analysis Results

In this chapter in Section 4.1 and Section 4.2, we present the statistical analysis results of

data sets Adenine 803153 and Adenine 8030651, respectively.

4.1 Statistical Analysis Results for Adenine 803153

Section 4.1.1 shows the results of background signal analyses, including the optimal estimated

value of the scaling factor k for the background signal subtraction. The results of Gaussian-

weighted summation over TOF can be found in Section 4.1.2. Section 4.1.3 is dedicated to

show the results of non-linear regressions with the Single-τ model in LLC and SLC, by

which we obtained the decay lifetimes of Adenine τ1 (LLC) and τ2 (SLC).

4.1.1 Background Signal Subtraction

4.1.1.1 Visualization on Background Signal

Fig. 4.1 shows a two-dimensional visualization of the background signal of Adenine 803153.

Each colorful block in Fig. 4.1 represents a cell, notated as cell(i′, j′), where i′ ∈ [0, 49]

and j′ ∈ [0, 9], in the 50 × 10 divided grid with the cell size of pixelTOF × pixelDelay =

80 × 15. Different colors in the color scale give the background signal intensity values, i.e.

BG(i′, j′), correspondingly. The x-axis and y-axis, labeled respectively as “grid TOF”and

“grid Delay” in the plot, give the values of i′ and j′, i.e. the values of the indices of cell in

TOF andDelay, respectively. In Section 3.1.2, an explanation of how we did the grid division

on the original two-dimensional 4000(TOF )× 151(Delay) data matrix to get cell(i′, j′) and

BG(i′, j′) can be found .

32
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Figure 4.1: 2D visualization of the background signal of Adenine 803153.

From Fig. 4.1, we can see that, as a function of i′ and j′, the background signal intensity

in each cell(i′, j′), i.e. BG(i′, j′), does not behave as a random function, which is independent

of i′ and j′, in the whole range of the plot. The observation is that BG(i′, j′) behaves as a

function of i′ only. Thus, BG(i′, j′) can be validly written as BG(i′). The relatively large

intensities all locate in the range of i′ of [9, 12], which corresponds to the range of TOF

of [720, 960]. For each j′, BG(i′, j′) approaches its approximate maximum value of 1.0 as i′

approaches 10, i.e. as TOF approaches 800.
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4.1.1.2 Determination of Individual No-Signal Cells

As we discussed at the end of Section 3.1.2, before we can estimate the optimal value of the

scaling factor k, we must identify the no-signal regions. To identify the no-signal regions, we

first set out to determine the individual no-signal cells.

We selected six representative individual cells (labeled from A to F ) on the 50 × 10

divided grid with the cell size of pixelTOF × pixelDelay = 80 × 15. In each cell(i′, j′), we

have 1200 D·ij s, 1200 BG·ij s and 1200 R·ij(k) s, where R·ij(k) = D·ij − k ∗BG·ij and i ∈ i′;

j ∈ j′. For each selected cell, three quantities were calculated as a function of k. Two of

them are defined in Eqn. 3.5 and Eqn. 3.6, i.e. µ̂R(i
′, j′, k) and σ̂R(i

′, j′, k). The other one is

the median of R·ij(k) in cell(i′, j′), notated as µ̃R(i
′, j′, k). The strategy of grid division and

definitions of µ̂R(i
′, j′, k) and σ̂R(i

′, j′, k) can be found in Section 3.1.2.

Fig 4.2 is an illustration on the locations of those six individual cells. The x-axis and

y-axis give the values of i′ and j′, i.e. the values of the indices of cell in TOF and Delay,

respectively. The z-axis, labeled as “aveR” in the plot, gives 9 times of the value of µ̂R(i
′, j′, k)

in each cell(i′, j′) with k = 5.02. The factor of 9 is due to the rescaling which is done by the

plotting software. We also projected the magnitude of µ̂R(i
′, j′, k) onto the xy−plane. Thus,

we obtained a two-dimensional intensity plot, in which different colors show the relative

intensity values of µ̂R(i
′, j′, k). From Fig. 4.2, we found around the location of Cell F , there

exists a hump running along i′-direction in the range of i′ ∈ [∼ 25, 49] with j′ ≃ 1.0. This

hump can not be explained by TRPES experiments. Thus, we called this hump as “weird

unexplained hump” in this study.

A summary of results from those six individual cells on µ̂R(i
′, j′, k), σ̂R(i

′, j′, k), and

µ̃R(i
′, j′, k) as a function of k can be found in Table 4.1. The 1st column of Table 4.1 gives

the labels of six cells from A to F and the 2nd column gives brief descriptions of locations

of six cells on the 50× 10 divided grid. Column 3 and 4 give i′ and j′, respectively. Column

5 gives four representative values of k, of which k = 5.00 is the suggested value given by
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Figure 4.2: Illustration of the locations of six representative individual cells A to F .

physicists [Evans, et al.]. Column 6 to Column 8 give the three quantity values we calculated

for each cell with different k’s.

With a general understanding on the no-signal behavior in mind, we expect a no-signal

cell to fulfill the following selection criteria:

1. µ̂R(i
′, j′, k) of cell is expected to be a small value which is close to zero.

2. σ̂R(i
′, j′, k) of cell is expected to be a relatively small value.

3. µ̃R(i
′, j′, k) of cell is expected to be close to µ̂R(i

′, j′, k).

By checking the values of µ̂R(i
′, j′, k) in Column 6, we at first excluded Cell D, Cell E

and Cell F from the family of no-signal cells. Also considering Cell C locates in the middle

of the main peak and the “weird unexplained hump”area, we also excluded Cell C. Next,

comparing values of µ̂R(i
′, j′, k), σ̂R(i

′, j′, k), and µ̃R(i
′, j′, k) of Cell A to those of Cell B, we

clearly see that Cell A performs better than Cell B. For the purpose of careful examination,

we also included Cell B in our next investigation to determine the no-signal regions, which

are expanded around the individual no-signal cells, i.e. Cell A and Cell B.



36

Table 4.1: Summary of the results of determination of individual no-signal cells

Cell Location i′ j′ k µ̂R(i
′, j′, k) σ̂R(i

′, j′, k) µ̃R(i
′, j′, k)

5.00 0.01 0.364 0.13

5.02 0.01 0.365 0.11

A Baseline area 34 6
5.04 0.01 0.366 0.10

5.06 0.00 0.368 0.09

5.00 0.08 3.990 0.12

End of main 5.02 -0.03 4.000 0.03

B hump 10 8
5.04 -0.13 4.017 -0.12

5.06 -0.23 4.030 -0.21

5.00 0.00 0.196 0.04

Gap between 5.02 0.00 0.197 0.02

C E and F 22 2
5.04 0.00 0.197 0.01

5.06 0.00 0.198 -0.01

5.00 0.80 3.957 0.90

Moderate peak 5.02 0.69 3.970 0.82

D of main hump 10 5
5.04 0.59 3.983 0.74

5.06 0.49 3.996 0.58

5.00 10.90 4.640 11.21

Highest peak 5.02 10.80 4.651 11.09

E of main hump 10 2
5.04 10.70 4.663 11.02

5.06 10.59 4.675 10.91

5.00 0.10 0.325 0.28

Weird unexplained 5.02 0.10 0.326 0.24

F hump area 30 2
5.04 0.09 0.327 0.22

5.06 0.09 0.328 0.21
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4.1.1.3 Determination of No-Signal Regions

To determine the no-signal regions, two expansions of cells, i.e. Expansion A and Expansion

B, around Cell A and Cell B, respectively, are tried on the 50×10 divided grid. For Expansion

A, the range of index of cell in TOF , i.e. i′, is i′ ∈ [18, 49], and the range of index of cell in

Delay, i.e. j′, is j′ ∈ [4, 9]. Thus, Expansion A has 192 cells. For Expansion B, i′ ∈ [7, 15],

and j′ ∈ [8, 9]. Thus, Expansion B has 18 cells. Fig. 4.3 is an illustration of the locations of

Expansion A and B.

Figure 4.3: Illustration of the locations of Expansion A and B.

Distributions of t-statistics, defined in Eqn. 3.7, with different k’s in Expansion A (with

192 t-statistics from 192 cells) and Expansion B (with 18 t-statistics from 18 cells) were

calculated. The results are shown in Table 4.2 and Table 4.3, respectively. In each table, we

have 13 columns. The 1st column gives six values of k in small steps of 0.01. Column 2 and

3 give the means and SDs of t-statistics in the expansion. Column 4 to column 12 give 9

percentiles of t-statistics. Column 13, titled as “Diff”, gives the difference between the mean

and median (50%-percentile) of t-statistics.

As we discussed in Section 3.1.2, in the one-sample t-test, t-statistics follows a standard

normal distribution N (0, 1) under the null hypothesis that the true mean of R·ij(k), i.e.
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Table 4.2: Summary of the results of distributions of 192 t-statistics in Expansion A

k Mean SD 1% 5% 10% 25% 50% 75% 90% 95% 99% Diff

5.00 0.179 1.025 -2.518 -1.382 -0.954 -0.505 0.050 0.816 1.433 1.840 2.640 0.129

5.01 0.148 1.024 -2.550 -1.418 -0.975 -0.534 0.018 0.780 1.391 1.811 2.618 0.130

5.02 0.116 1.022 -2.582 -1.457 -0.996 -0.563 -0.014 0.743 1.348 1.781 2.596 0.130

5.03 0.085 1.021 -2.613 -1.495 -1.017 -0.593 -0.046 0.707 1.549 1.752 2.574 0.131

5.04 0.053 1.020 -2.645 -1.533 -1.038 -0.622 -0.073 0.671 1.288 1.723 2.552 0.126

5.05 0.022 1.018 -2.676 -1.571 -1.080 -0.653 -0.101 0.635 1.260 1.694 2.524 0.123

Table 4.3: Summary of the results of distributions of 18 t-statistics in Expansion B

k Mean SD 1% 5% 10% 25% 50% 75% 90% 95% 99% Diff

5.00 0.211 1.214 -2.771 -1.632 -1.197 -0.613 0.072 0.910 1.634 2.054 2.947 0.148

5.01 0.179 1.212 -2.811 -1.677 -1.229 -0.661 0.035 0.869 1.591 2.012 2.893 0.145

5.02 0.138 1.209 -2.853 -1.715 -1.272 -0.717 -0.004 0.830 1.550 1.971 2.850 0.143

5.03 0.107 1.206 -2.895 -1.753 -1.315 -0.758 -0.051 0.788 1.509 1.929 2.807 0.143

5.04 0.068 1.204 -2.938 -1.795 -1.357 -0.797 -0.095 0.747 1.468 1.885 2.760 0.139

5.05 0.033 1.201 -2.980 -1.833 -1.399 -0.835 -0.134 0.709 1.425 1.839 2.715 0.132
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µ̂R(i
′, j′, k), is zero. With this consideration in mind, we checked the normality of data in

each table and obtained observations as follows

1. With the same k, the means and SDs from Expansion B are apparently larger than

those from Expansion A. Expansion A has better means and SDs for normality.

2. In two tables, the means and SDs continually decrease as k increases. In Expansion A,

the means drop from 0.179 to 0.022 as k increases from 5.00 to 5.05, and meanwhile,

the SDs drop from 1.025 to 1.018.

3. In Expansion A, as k = 5.02, distribution of t-statistics approaches nearly symmetric

distribution with 50%-percentile close to zero for normality.

From the observation listed above, we concluded that Expansion A is the no-signal region.

4.1.1.4 Determination of Optimal Scaling Factor k

As we discussed in Section 4.1.1.3, as k = 5.02 in the no-signal region, i.e. Expansion A,

distribution of t-statistics approaches nearly symmetric distribution with 50%-percentile close

to zero for normality. Thus, we chose 5.02 as the optimal estimated value of the scaling factor

k, i.e. k∗ = 5.02.

Fig. 4.4 shows a three-dimensional data visualization from the software Mathematica

for Adenine 803153 with the strategy of grid division with the cell size of pixelTOF ×

pixelDelay = 80 × 15 and k∗ = 5.02. The x-axis and y-axis, labeled respectively as

“TOF (i′)”and “Delay(j′)”, run along the directions of indices of cell in TOF and Delay,

i.e. i′ and j′, respectively, and z-axis, labeled as “R ”, gives the intensity of signals in each

cell(i′, j′), i.e. µ̂R(i
′, j′, k∗).

Fig. 4.5 is a two-dimensional intensity plot for Adenine 803153 with the strategy of grid

division with the cell size of pixelTOF×pixelDelay = 80×15 and k∗ = 5.02. The x-axis and

y-axis run along the directions of indices of cell in TOF and Delay, i.e. i′ and j′, respectively.

The brightness in graph represents the intensity of signals in each cell(i′, j′), i.e. µ̂R(i
′, j′, k∗).
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Figure 4.4: 3D visualization of Adenine 803153.

The brighter is the stronger. Two cut-offs of intensity were applied. One cut-off is at the main

peak intensity and the other one is at the middle of main peak intensity. The left plot is with

the cut-off at the main peak intensity and the right one is with the cut-off at the middle of

main peak intensity.
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Figure 4.5: 2D intensity plot of Adenine 803153.

4.1.2 Gaussian-Weighted Summation over TOF

4.1.2.1 Gaussian Probability Density Function for a Fixed Level of TOF

As we discussed in Section 3.2.1, to obtain the probability density function of the skewed

Gaussian distribution for a fixed level of TOF , we applied an inverse-variance-weighted

Gaussian fitting.

Considering the difference between the long-lived channel (SLC) and short-lived channel

(LLC), we applied two DelayRanges i.e. j ∈ [31, 35] and j ∈ [36, 149], when we calculated

the quantity R·i·(k
∗) defined in Eqn. 3.8. Due to the limitation of the space, the results of

R·i·(k
∗) are not presented here.

With the twoDelayRanges introduced above, we calculated the quantities Rg(k
∗) and σg,

which are defined in Eqn. 3.9. A segment of results is shown in Table 4.4. Definitions of the
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quantities in Column 2, 3, 5, and 6, i.e. g, Ng, Rg(k
∗) and σg, can be found in Section 3.2.1.

Column 4, titled as “TOF0”, gives the starting point of TOF for each group.

To find the weighting function describing the dependence of σg with respect to TOF ,

through applying the SAS procedure PROC REG, we performed a linear regression with

the model defined in Eqn. 3.10 on σg in Table 4.4. The summary of SAS output is shown in

Table 4.5. The quantity X, defined in Eqn. 3.10, is a linearly transformed predictor variable

of TOF as of X = TOF+12.5−1000
100

.

With the parameters β0, β1, β2, and β3 estimated by SAS, we obtained two SD func-

tions describing the dependence of σg with respect to X, i.e. TOF , with two DelayRanges

respectively, as follows

σ̂g = 7.6360− 1.1403 ∗X − 0.3474 ∗X2 + 0.0481 ∗X3, DelayRange = [31, 35], (4.1)

σ̂g = 36.3184− 6.3575 ∗X − 1.9786 ∗X2 + 0.3141 ∗X3, DelayRange = [36, 149]. (4.2)

With the weighting factor of 1
σ̂g

2 given by Eqn. 4.1 and Eqn. 4.2, to obtain the prob-

ability density function of the skewed Gaussian distribution for a fixed level of TOF , we

applied an inverse-variance-weighted Gaussian fitting, which is defined in Eqn. 3.11, on

R·i·(k
∗)
/
NDelayRange, where i ∈ TOFFittingRange, through applying the SAS procedure

PROC NLIN. The results are shown in Table 4.6. Column 2 shows TOFFittingRange.

Column 3 gives two weighting functions given by Eqn. 4.1 and 4.2. Column 4 to Column

6 show respectively the fitting results of the parameters C, µ, and σ, which are defined

in Eqn. 3.11. Thus, we obtained the probability density functions of the skewed Gaussian

distribution for a fixed level of TOF , with two DelayRanges, respectively, as follows

f(
√
TOF ) =

1√
12.1032 ∗ π

exp(−(
√
TOF − 28.69)2

12.1032
), DelayRange = [31, 35], (4.3)

f(
√
TOF ) =

1√
8.5698 ∗ π

exp(−(
√
TOF − 28.79)2

8.5698
), DelayRange = [36, 149]. (4.4)

Fig. 4.6 and Fig. 4.7 show the fitting results from inverse-variance-weighted Gaussian

fitting, with two DelayRanges, respectively. The x-axis, labeled as “TOF (i)”, gives TOF .
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Table 4.4: Summary of the results of Rg(k
∗) and σg with two DelayRanges

DelayRange g Ng TOF0 Rg(k
∗) σg

0 300 0.0080 0.0277

1 325 0.0120 0.0332

2 350 0.0080 0.0277

3 375 0.0440 0.0583

4 400 0.0960 0.0889

5 425 0.0395 0.2671

6 450 0.1978 0.5101

j ∈ [31, 35] . . . 25 . . . . . . . . .

41 1325 0.8037 1.5671

42 1350 0.2311 1.3746

43 1375 0.7518 1.2954

44 1400 0.3852 0.8601

45 1425 -0.0947 0.9800

46 1450 0.2035 0.7313

47 1475 0.2035 0.8698

0 300 -0.1010 0.3253

1 325 -0.0206 0.3106

2 350 0.0034 0.2677

3 375 0.0146 0.4668

4 400 -0.1814 1.0491

5 425 0.1618 1.4003

6 450 -0.0138 2.2913

j ∈ [36, 149] . . . 25 . . . . . . . . .

41 1325 2.2382 8.6666

42 1350 0.6402 6.2052

43 1375 -0.1481 5.1101

44 1400 0.5288 4.8350

45 1425 -0.7138 3.2393

46 1450 2.2392 3.7579

47 1475 -0.1200 3.4950
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Table 4.5: Summary of the SAS output of PROC REG on linear regression model to obtain the
weighting function for inverse-variance-weighted Gaussian fitting

DelayRange Parameter DF Parameter Estimate Standard Error t Value Pr > |t|

β0 1 7.63598 0.27697 27.57 <.0001

β1 1 -1.14028 0.17513 -6.51 <.0001
j ∈ [31, 35]

β2 1 -0.34740 0.03200 -10.86 <.0001

β3 1 0.04811 0.01336 3.60 0.0011

β0 1 36.31838 1.14491 31.72 <.0001

β1 1 -6.35752 0.80558 -7.89 <.0001
j ∈ [36, 149]

β2 1 -1.97855 0.22355 -8.85 <.0001

β3 1 0.31407 0.09259 3.39 0.0022

Table 4.6: Summary of the results of inverse-variance-weighted Gaussian fitting to obtain the
probability density function of the skewed Gaussian distribution for a fixed level of TOF

Weighting Function Fitting Parameters

DelayRange TOFFittingRange
(X = TOF+12.5−1000

100
) C µ σ

j ∈ [31, 35] i ∈ [525, 1400] SD = 7.6360− 1.1403 ∗X − 0.3474 ∗X2 + 0.0481 ∗X3 81.85 28.69 2.46

j ∈ [36, 149] i ∈ [575, 1300] SD = 36.3184− 6.3575 ∗X − 1.9786 ∗X2 + 0.3141 ∗X3 10.45 28.79 2.07
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The y-axis, labeled as “SweepAveR”, gives the magnitude of R·i·(k
∗)
/
NDelayRange, where

i ∈ TOFFittingRange. The red open dots in the plot are the data to be fitted and the

blue curve is the fitting line. To illustrate the improvements we obtained from the inverse-

variance-weighted Gaussian fitting, in Fig. 4.8 and Fig. 4.9, we also show the fitting results

from a unweighted Gaussian fitting on the same data, with two DelayRanges, respectively.

We can see that we improved the fit in the left-hand tail with the inverse-variance-weighted

Gaussian fitting.

Figure 4.6: Results of inverse-variance-weighted Gaussian fitting with the DelayRange of j ∈
[31, 35].

4.1.2.2 Gaussian-Weighted Summation over TOF

With the probability density function of the skewed Gaussian distribution for a fixed level of

TOF , given by Eqn. 4.3 and Eqn. 4.4, we calculated the Gaussian-weighted summation over

TOF as a function of Delay, i.e. R··j(k
∗), which is defined in Eqn. 3.13. The TOFSumRange

for summation is [0, 3999]. Fig. 4.10 shows the results of R··j(k
∗), where j ∈ [0, 149]. The

x-axis, labeled as “Delay T ime (j)”, gives Delay, running from 0 to 149. The y-axis, labeled

as “aveR WTTOF”, gives the magnitude of R··j(k
∗).



46

Figure 4.7: Results of inverse-variance-weighted Gaussian fitting with the DelayRange of j ∈
[36, 149].

Figure 4.8: Results of unweighted Gaussian fitting with the DelayRange of j ∈ [31, 35].
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Figure 4.9: Results of unweighted Gaussian fitting with the DelayRange of j ∈ [36, 149].

Figure 4.10: Results of Gaussian-weighted summation over TOF as a function of Delay.

With R··j(k
∗), where j ∈ [0, 149], as we obtained in this section, we proceed to conduct

the non-linear regressions with the Single-τ model on Delay in the long-lived (LLC) and

short-lived (SLC) channels, as discussed in Section 3.3.
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4.1.3 Non-linear Regression with the Single-τ Model on Delay

4.1.3.1 Non-linear Regression with the Single-τ Model on Delay in LLC

As discussed in Section 3.3.2, to obtain the lifetime τ1 and the fitting function describing

the intensity signals as an exponential decay function of Delay in LLC, we performed a

non-linear regression in LLC with the Single-τ model shown in Eqn. 2.6 with Delay as the

predictor variable.

Fig. 4.11 shows the fitting results. The x-axis, labeled as “Delay T ime (j)”, gives Delay,

running from 40 to 149, i.e. the range of Delay for LLC which we chose in Section 3.3.1. The

y-axis, labeled as “aveR WTTOF”, gives the magnitude of R··j(k
∗), defined in Eqn. 3.13,

where j ∈ [40, 149]. The red open dots in the plot are the data to be fitted and the blue

curve is the fitting line. We can see that the fitting in LLC is fairly good over the entire

fitting region.

Figure 4.11: Results of non-linear regression with the Single-τ model in LLC.

A summary of results can be found in Table 4.7. Column 1 gives the range of Delay for

LLC. Column 2 and 3 give respectively the best estimates of the parameters A1 and τ1 of

LLC. Column 3 gives the regression standard error.
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Table 4.7: Summary of the results of non-linear regression with the Single-τ model in LLC

LLC Delay Range Â1 τ̂1 σ̂e

j ∈ [40, 149] 5.7229 17.6749 0.2874

Since we know that 1Delay unit = 50 fs, our best estimate of the lifetime τ1 of LLC is

τ1 = 17.6749× 50 fs = 884 fs. (4.5)

To obtain the fitting function describing the intensity signals as an exponential decay

function of Delay in LLC, we insert Â and τ̂1 from Table 4.7 into Eqn. 2.6 as follows

I(t) = Â1 ∗ exp(
σ2

2τ̂ 21
− t

τ̂1
) ∗ {1− erf(

σ/τ̂1 − t/σ√
2

)},

= 5.7229 ∗ exp( 2.174262

2× 17.67492
− t

17.6749
) ∗ {1− erf(

2.17426/17.6749− t/2.17426√
2

)},

= 5.7229 ∗ exp(0.0076− 0.0566t) ∗ {1− erf(0.0870− 0.3252t)}, (4.6)

where σ = 2.17426 given in Section 2.1.3. I(t), where t ∈ [40, 149], is the Single-τ -fitted form

of R··j(k
∗), where j ∈ [40, 149].

4.1.3.2 Non-linear Regression with the Single-τ Model on Delay in SLC

As discussed in Section 3.3.2, to find the lifetime τ2 and the fitting function describing the

intensity signals as an exponential decay function of Delay in SLC, we first decomposed the

overlapped signals in SLC by subtracting the LLC signals, which are given by Eqn. 4.6, from

the total overlapped signals, i.e. R··j(k
∗), in SLC with j ∈ [33, 39]. Next, with the resultant

signals obtained from the above decomposition, we performed a non-linear regression on

those resultant signals with the Single-τ model again in SLC.

Fig. 4.12 shows the fitting results. The x-axis, labeled as “Delay T ime (j)”, gives Delay,

running from 33 to 39, i.e. the range of Delay for SLC which we chose in Section 3.3.1.
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Table 4.8: Summary of the results of non-linear regression with the Single-τ model in SLC

SLC Delay Range Â2 τ̂2 σ̂e

j ∈ [33, 39] 3.2138 1.5626 0.3619

The y-axis, labeled as “aveR WTTOF”, gives the magnitude of the resultant data from the

subtraction of (R··j(k
∗) − I(j)), where j ∈ [33, 39] and I(j) is given by Eqn. 4.6. The red

open dots in the plot are the data to be fitted and the blue curve is the fitting line.

Figure 4.12: Results of non-linear regression with the Single-τ model in SLC.

A summary of results can be found in Table 4.8. Column 1 gives the range of Delay for

SLC. Columns 2 and 3 give, respectively, the best estimates of the parameters A2 and τ2 of

SLC. Column 3 gives the regression standard error.

Since we know that 1Delay unit = 50 fs, our best estimate of the lifetime τ2 of SLC is

τ2 = 1.5626× 50 fs = 78 fs. (4.7)
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To obtain the fitting function describing the intensity signals as an exponential decay

function of Delay in SLC, we insert Â and τ̂2 from Table 4.8 into Eqn. 2.6 as follows

I(t) = Â2 ∗ exp(
σ2

2τ̂ 22
− t

τ̂2
) ∗ {1− erf(

σ/τ̂2 − t/σ√
2

)},

= 3.2138 ∗ exp( 2.174262

2× 1.56262
− t

1.5626
) ∗ {1− erf(

2.17426/1.5626− t/2.17426√
2

)},

= 3.2138 ∗ exp(0.9681− 0.6400t) ∗ {1− erf(0.9839− 0.3252t)}, (4.8)

where σ = 2.17426, which is given by Eqn. 2.5. I(t), where t ∈ [33, 39], is the Single-τ -fitted

form of R··j(k
∗), where j ∈ [33, 39].

4.1.3.3 Joint Non-linear Regression with the Single-τ Model on Delay in SLC

To estimate the parameters A2 and τ2 of SLC more precisely, we applied a joint non-linear

regression in SLC with a joint non-linear regression model which is linearly constructed by

two Single-τ models as follows

I(t) = A1 ∗ exp(
σ2

2τ 21
− t

τ1
) ∗ {1− erf(

σ/τ1 − t/σ√
2

)} +

A2 ∗ exp(
σ2

2τ 22
− t

τ2
) ∗ {1− erf(

σ/τ2 − t/σ√
2

)}. (4.9)

The first part of Eqn 4.9 is the contribution from LLC and the second part is the contribution

from SLC.

From the fittings we showed in Section 4.1.3.1 and Section 4.1.3.2, we obtained four

best estimates of parameters, i.e. Â1 and τ̂1 of LLC, Â2 and τ̂2 of SLC, which are given in

Table 4.7 and Table 4.8, respectively. We took those best estimates as the starting values for

the parameter estimation procedure of PROC NLIN.

Fig. 4.13 shows the fitting results. The x-axis, labeled as “Delay T ime (j)”, gives Delay,

running from 34 to 39. The y-axis, labeled as “aveR WTTOF”, gives the magnitude of

R··j(k
∗), where j ∈ [34, 39]. The red open dots in the plot are the data to be fitted and the

blue curve is the fitting line. We note that because of the intrinsic high sensitivity of the
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Table 4.9: Summary of the results of joint non-linear regression in SLC

SLC Delay Range Â2 τ̂2 σ̂e

j ∈ [34, 39] 3.2964 1.3369 0.1095

fitting in SLC, we dropped Delay = 33 in our fitting since we failed to obtain a convergent

fitting on Delay = 33, i.e. the lower boundary point of SLC.

Figure 4.13: Results of joint non-linear regression in SLC.

A summary of results can be found in Table 4.9. Column 1 gives the fitting range of

Delay for SLC. Column 2 and 3 give respectively the best estimates of the parameters A2

and τ2 of SLC. Column 3 gives the regression standard error.

Since we know that 1Delay = 50 fs, therefore our best estimate of the lifetime τ2 of

SLC is

τ2 = 1.3369× 50 fs = 67 fs. (4.10)
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Table 4.10: Summary of the results of non-linear regressions on Delay for Adenine 803153

Channel Fitting Range of Delay Fitting Model Â τ̂ σ̂e

LLC j ∈ [40, 149] Single-τ 5.7229 17.6749 (884 fs) 0.2874

j ∈ [33, 39] Single-τ 3.2138 1.5626 (78 fs) 0.3619
SLC

j ∈ [34, 39] Joint Single-τs 3.2964 1.3369 (67 fs) 0.1095

4.1.3.4 Summary of Non-linear Regression with the Single-τ Model on Delay

In Table 4.10, we give a summary of the results of non-linear regressions onDelay for Adenine

803153. Comparing our results to the experimental results listed in “TABLE 1: Excited-

State Decay Lifetimes of Adenine Extracted from TRPES Spectra”in [1], we conclude that

our results (τ1 = 884 fs and τ2 = 67 fs) agree with the experimental results of the case

of (3d) with τ1 = (880 ± 50) fs and τ2 = (70 ± 30) fs, under the excitation condition of

excitation wavelength/energy = 251.3nm/4.93 eV .

4.2 Statistical Analysis Results for Adenine 8030651

To validate the statistical analysis methods we developed, we applied the methods of

Gaussian-weighted summation over TOF and non-linear regressions in LLC and SLC, as

we did on Adenine 803153, to the other new TRPES data set, Adenine 8030651. In this

section, we show this validation. Section 4.2.1 gives a brief summary of the differences

between the data set Adenine 8030651 and Adenine 803153. Section 4.2.2 shows some main

results of Adenine 8030651.
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4.2.1 Brief Summary of Differences between Adenine 8030651 and Adenine

803153

In this section, we give a brief summary of the differences between the data set of Adenine

803153 and Adenine 8030651. A detailed summary of the main characteristics of Adenine

803153 and Adenine 8030651 can be found in Table 2.1 in Section 2.1.2.

The first difference is the suggested value of scaling factor k. The suggested value of k for

Adenine 8030651is 2.00. To be time efficient, we used the suggested value of k = 2.00 as the

optimal value of scaling factor for Adenine 8030651. A detailed explanation of the scaling

factor k of can be found in Section 3.1.1.

As we showed in Section 2.1.3, the second difference is the FWHM (Full Width at Half

Maximum) of TRPES experiments. For Adenine 8030651, FWHM = 255fs. Thus, the exper-

imentally measurable standard deviation σ of the pump-probe delay for Adenine 8030651

has a value of 2.16577.

The last difference is discussed in Section 3.3.1, i.e. the starting and ending points of the

range of pump-probe delay time of TRPES experiments. For Adenine 8030651, the range

of pump-probe delay time is [1242fs, 6258fs]. Thus, the zero point of Delay is calculated

as Delay0 = 1242fs
50fs

= 24.84. To meet the convergence criterion of non-linear fitting, the

range of Delay for LLC and SLC for Adenine 8030651 were chosen as [25, 31] and [32, 149],

respectively.

4.2.2 Non-linear Regression with the Single-τ Model on Delay

In this section, we show the results from the non-linear regressions in LLC and SLC for

Adenine 8030651 with the Single-τ model.

Fig. 4.14 shows the fitting results in LLC. The x-axis, labeled as “Delay T ime (j)”, gives

Delay, running from 32 to 149, i.e. the range of Delay for LLC. The y-axis, labeled as

“aveR WTTOF”, gives the magnitude of R··j(k
∗), where j ∈ [32, 149]. The red open dots
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in the plot are the data to be fitted and the blue curve is the fitting line. We can see that,

the fitting in LLC is fairly good overall the entire fitting region.

Figure 4.14: Results of non-linear regression with the Single-τ model in LLC.

Fig. 4.15 shows the fitting results in the SLC region. The x-axis, labeled as “Delay T ime (j)”,

gives Delay, running from 25 to 31, i.e. the range of Delay for SLC. The y-axis, labeled

as “aveR WTTOF”, gives the magnitude of the resultant data from the signal subtraction

in SLC. The red open dots in the plot are the data to be fitted and the blue curve is the

fitting curve.

Figure 4.15: Results of non-linear regression with the Single-τ model in SLC.
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Table 4.11: Summary of the results of non-linear regressions on Delay for Adenine 8030651

Channel Fitting Range of Delay Fitting Model Â τ̂ σ̂e

LLC j ∈ [32, 149] Single-τ 2.5420 18.3407 (917 fs) 0.2304

SLC j ∈ [25, 31] Single-τ 0.1191 1.8188 (91 fs) 0.3585

In Table 4.11, we give a summary of the results of non-linear regressions on Delay for

Adenine 8030651. Comparing our regression results to the experimental results listed in

“TABLE 1: Excited-State Decay Lifetimes of Adenine Extracted from TRPES Spectra”in [1],

within the estimated experimental error range, we found that our results (τ1 = 917 fs and

τ2 = 91 fs) agree with the experimental results of the case of (3d) with τ1 = (880 ± 50) fs

and τ2 = (70 ± 30) fs, under the excitation condition of excitation wavelength/energy =

251.3nm/4.93 eV , and (2d) with τ1 = (938±50) fs and τ2 = (71±30) fs, under the excitation

condition of excitation wavelength/energy = 259.9nm/4.77 eV .



Chapter 5

Conclusions

We developed statistical analysis methods for the study on the decay lifetimes of photo-

excited DNA nucleobase Adenine. We applied them on the new TRPES data set Adenine

803153 and obtained a good agreement between the results from statistical analyses and

those from physicists’ [Evans, [1]] experiments. To validate those methods, we applied them

on the other new TRPES data set Adenine 8030651. Within the estimated experimental error

range, we also obtained an agreement between statistical analyses and physical experiments.

With the TRPES data set Adenine 803153, we performed an extensive study on the

background signal subtraction, from which we determined a proper background signal sub-

traction with an optimal estimated value of scaling factor k, i.e. k∗ = 5.02. We also improved

the procedure for the summation over TOF . We applied a Gaussian-weighted summation

over TOF . To find the probability density function of the skewed Gaussian distribution

for a fixed level of TOF , we applied an inverse-variance-weighted Gaussian fitting with two

DelayRanges, i.e. j ∈ [31, 35] and j ∈ [36, 149]. We also followed a new physics understanding

to extract the decay lifetimes τ1 and τ2 of Adenine 803153. We focused on the non-linear

regressions with the Single-τ model in the long-lived (LLC) and short-lived (SLC) chan-

nels. We chose the LLC in the range of Delay of [40, 149] and the SLC in the range of

Delay of [33, 39]. To purify the signals in SLC and extract the decay lifetime τ2, we per-

formed a signal decomposition by a linear subtraction of signals with the total intensity

signals and the fitting signals from LLC. Through applying the Single-τ non-linear regres-

sions separately in LLC and SLC, we obtained the decay lifetime τ1 = 17.6749(884 fs)
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of LLC and the decay lifetime τ2 = 1.5626(78 fs) of SLC. We also applied a joint non-

linear regression in SLC with a joint non-linear regression model which is linearly con-

structed by two Single-τ models. Through applying this joint non-linear regression in SLC,

we improved our estimate on τ2 with τ2 = 1.3369(67 fs) in SLC. From those regression

results, we concluded that our results agree with the experimental results of the case of (3d)

in Ref. [1] with τ1 = (880± 50) fs and τ2 = (70± 30) fs, under the excitation condition of

excitation wavelength/energy = 251.3nm/4.93 eV .

To validate the statistical analysis methods, we repeated the methods of Gaussian-

weighted summation over TOF and non-linear regressions in LLC and SLC on Adenine

8030651. Since Adenine 8030651 has different starting and ending points of the range of

pump-probe delay time of TRPES experiments, we have different zero pointDelay0 . For Ade-

nine 8030651, we chose the LLC in the range of Delay of [32, 149] and the SLC in the range

of Delay of [25, 31]. Through applying the Single-τ non-linear regressions separately in LLC

and SLC, we obtained the decay lifetime τ1 = 18.3407(917 fs) of LLC and the decay lifetime

τ2 = 1.8188(91 fs) of SLC. Within the estimated experimental error range, those regression

results agree with the experimental results of the case of (3d) with τ1 = (880 ± 50) fs

and τ2 = (70 ± 30) fs, under the excitation condition of excitation wavelength/energy =

251.3nm/4.93 eV , and (2d) with τ1 = (938 ± 50) fs and τ2 = (71 ± 30) fs, under the exci-

tation condition of excitation wavelength/energy = 259.9nm/4.77 eV .
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Appendix A

The SAS Codes

A.1 Linear Regression with the Model Given by Eqn. 3.10 for Adenine 803153

options ps=100 ls=78 pageno=1 formdlim=’*’;

/* Input Data */

data Mtg0711.Delay31_39_TOF525_1400;

infile "C:\Documents and Settings\ZHUOFEI HOU\My Documents\STAT_MSProject

\dataSet_new\Meeting_100711

\sumupDelay31-39_TOF300-1500-Step25_MeanSD.txt";

input Group N TOF0 Mean SD;

if(TOF0>=525 && TOF0<=1400);

X = (TOF0+12.5-1000)/100;

Q = X**2;

C = X**3;

run;

data Mtg0711.Delay40_149_TOF575_1300;

infile "C:\Documents and Settings\ZHUOFEI HOU\My Documents\STAT_MSProject

\dataSet_new\Meeting_100711

\sumupDelay40-149_TOF300-1500-Step25_MeanSD.txt";

input Group N TOF0 Mean SD;

if(TOF0>=575 && TOF0<=1300);

X = (TOF0+12.5-1000)/100;

Q = X**2;

C = X**3;

run;

/* Regressions */

title2 "Fitting on Delay31_39_TOF525_1400";

proc reg data=Mtg0711.Delay31_39_TOF525_1400;

model SD = X Q C / P R;

run;
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title2 "Fitting on Delay40_149_TOF575_1300";

proc reg data=Mtg0711.Delay40_149_TOF575_1300;

model SD = X Q C / P R;

run;

/* Quit */

quit;

A.2 Inverse-variance-weighted Gaussian Fitting with the Model Given by

Eqn. 3.11 for Adenine 803153

options ps=100 ls=78 pageno=1 formdlim=’*’;

/* Input Data */

data Mtg0806.SumupDelay40_149_TOF0_3999;

infile "C:\Documents and Settings\ZHUOFEI HOU\My Documents\STAT_MSProject

\dataSet_new\Meeting_100806

\curveAlongi_SumupDelay40-149_TOF0-3999.txt";

input TOF sqrtTOF EBE aveR1;

aveR = aveR1;

X = (TOF+12.5-1000)/100;

Q = X**2;

C = X**3;

SD = 0.32383-0.05579*X-0.01817*Q+0.00281*C;

W = 1.0/SD**2;

run;

data Mtg0806.SumupDelay40_149_TOF0_3999_sym;

set Mtg0806.SumupDelay40_149_TOF0_3999;

where TOF>=575 && TOF<=1300;

run;

data Mtg0806.SumupDelay31_39_TOF0_3999;

infile "C:\Documents and Settings\ZHUOFEI HOU\My Documents\STAT_MSProject

\dataSet_new\Meeting_100806

\curveAlongi_SumupDelay31-39_TOF0-3999.txt";

input TOF sqrtTOF EBE aveR1;

aveR = aveR1;

X = (TOF+12.5-1000)/100;
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Q = X**2;

C = X**3;

SD = 1.13763-0.20597*X-0.04952*Q+0.00920*C;

W = 1.0/SD**2;

run;

data Mtg0806.SumupDelay31_39_TOF0_3999_sym;

set Mtg0806.SumupDelay31_39_TOF0_3999;

where TOF>=525 && TOF<=1400;

run;

/* Inverse-variance-weighted Gaussian Fitting */

%let PI = 3.1415926;

title "Weighted NLIN on SumupDelay40_149_TOF0_3999_sym";

proc nlin data=Mtg0806.SumupDelay40_149_TOF0_3999_sym method=marquardt;

parms c=100 u=30 s=2;

_weight_ = W;

model aveR=c*(1/sqrt(2*&PI*s*s))*exp(-1*(sqrtTOF-u)*(sqrtTOF-u)/(2*s*s));

output out=nlinout_sym1 predicted=pred residual=r

l95m=l95mean u95m=u95mean l95=l95ind u95=u95ind;

run;

title "Weighted NLIN on SumupDelay31_39_TOF0_3999_sym";

proc nlin data=Mtg0806.SumupDelay31_39_TOF0_3999_sym method=marquardt;

parms c=100 u=30 s=2;

_weight_ = W;

model aveR=c*(1/sqrt(2*&PI*s*s))*exp(-1*(sqrtTOF-u)*(sqrtTOF-u)/(2*s*s));

output out=nlinout_sym2 predicted=pred residual=r

l95m=l95mean u95m=u95mean l95=l95ind u95=u95ind;

run;

/* Plotting */

goptions reset=all;

symbol1 v=circle cv=red h=1;

symbol2 v=: cv=blue h=1 i=join l=1 w=2 ci=blue;

footnote1 h=1.5 c=red f=simplex ’Experimental o’

h=1.5 c=blue f=simplex ’ NLReg Fitting *’;

title1 h=1.8 ’SweepAveR vs. TOF for Adenine 803153’;

axis1 label=(’SweepAveR’) length=30 order=(-.5 to 3 by .5 )

minor=(number=4);

axis2 label=(’TOF (i)’) length=80 order=(550 to 1300 by 50 )
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minor=(number=4);

title2 h=1.5 "Delay Time Sum-Range=40-149, TOF Range=575-1300, k=5.02";

proc gplot data=nlinout_sym1 UNIFORM;

plot aveR*TOF pred*TOF / overlay vaxis=axis1 haxis=axis2 frame grid;

run;

axis1 label=(’SweepAveR’) length=30 order=(-5 to 20 by 5 )

minor=(number=4);

axis2 label=(’TOF (i)’) length=80 order=(500 to 1400 by 100 )

minor=(number=4);

title2 h=1.5 "Delay Time Sum-Range=31-39, TOF Range=525-1400, k=5.02";

proc gplot data=nlinout_sym2;

plot aveR*TOF pred*TOF / overlay vaxis=axis1 haxis=axis2 frame grid;

run;

/* Quit */

quit;

A.3 Non-linear Regression with the Single-τ Model Given by Eqn. 2.6 in LLC

for Adenine 803153

options ps=100 ls=78 pageno=1 formdlim=’*’;

/* Input Data */

data Mtg0911.Delay0_149_WTSumTOF;

infile "C:\Documents and Settings\ZHUOFEI HOU\My Documents\STAT_MSProject

\dataSet_new\Meeting_100911

\curveAlongj_Delay0-149_WTSumTOF.dat";

input delay aveR;

run;

data Mtg0911.Delay40_149_WTSumTOF;

set Mtg0911.Delay0_149_WTSumTOF;

where delay >= 40;

delay1 = delay - 31.3;

run;

/* Non-linear Fitting in LLC */

%let sig = 2.17426;
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title "NLIN on Delay40_149_WTSumTOF";

proc nlin data=Mtg0911.Delay40_149_WTSumTOF method=marquardt;

parms c=30 tau=14;

model aveR=c*exp(&sig*&sig/(2*tau*tau)-delay1/tau)*

(1-2*(cdf(’normal’,&sig/tau-delay1/&sig,0,1)-cdf(’normal’,0,0,1)));

output out=nlinout predicted=pred residual=r l95m=l95mean u95m=u95mean

l95=l95ind u95=u95ind;

run;

/* Plotting */

goptions reset=all;

axis1 label=(’aveR_WTTOF’) length=30 order=(-1 to 8 by 1)

minor=(number=1);

axis2 label=(’Delay Time (j)’) length=80;

symbol1 v=circle cv=red h=1;

symbol2 v=: cv=blue h=1 i=join l=1 w=2 ci=blue;

footnote1 h=1.5 c=red f=simplex ’Long-Live Signal’

h=1.5 c=blue f=simplex ’ Single-Tau Fitting’;

title1 h=1.8 ’aveR_WTTOF vs. Pump-Probe Delay Time

for Long-Live Chanel of Adenine’;

title2 h=1.5 "Delay Time Range=40-149, k=5.02, 80315";

proc gplot data=nlinout;

plot aveR*delay pred*delay / overlay vaxis=axis1 haxis=axis2 frame grid;

run;

/* Plotting Whole Range */

goptions reset=all;

axis1 label=(’aveR_WTTOF’) length=30 order=(-1 to 10 by 1)

minor=(number=1);

axis2 label=(’Delay Time (j)’) length=80;

symbol1 v=circle cv=red h=1;

/*footnote1 h=1.5 c=red f=simplex ’Total Intensity Signal’;*/

title1 h=1.8 ’aveR_WTTOF vs. Pump-Probe Delay Time of Adenine’;

title2 h=1.5 "Delay Time Range=0-149, k=5.02, 80315";

proc gplot data=Mtg0911.Delay0_149_WTSumTOF;

plot aveR*delay / overlay vaxis=axis1 haxis=axis2 frame grid;

run;

/* Quit */

quit;
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A.4 Non-linear Regression with the Single-τ Model Given by Eqn. 2.6 in SLC

for Adenine 803153

options ps=100 ls=78 pageno=1 formdlim=’*’;

/* Input Data */

data Mtg0911.Delay0_149_WTSumTOF;

infile "C:\Documents and Settings\ZHUOFEI HOU\My Documents\STAT_MSProject

\dataSet_new\Meeting_100911

\curveAlongj_Delay0-149_WTSumTOF_BK1.dat";

input delay aveR;

run;

data Mtg0911.Delay33_39_WTSumTOF;

set Mtg0911.Delay0_149_WTSumTOF;

where delay >=33 && delay <= 39;

delay1 = delay - 31.3;

run;

/* Linear Subtraction in SLC */

%let sig = 2.17426;

%let C1 = 5.7229;

%let tau1 = 17.6749;

data Mtg0911.Delay33_39_LLSubtracted;

set Mtg0911.Delay33_39_WTSumTOF;

LL = &C1*exp(&sig*&sig/(2*&tau1*&tau1)-delay1/&tau1)*

(1-2*(cdf(’normal’,&sig/&tau1-delay1/&sig,0,1)-cdf(’normal’,0,0,1)));

SL = aveR - LL;

run;

/* nonlinear fitting in separately SL*/

title "NLIN on Delay33_39_LLSubtracted";

proc nlin data=Mtg0911.Delay33_39_LLSubtracted method=marquardt;

parms c=5, tau=2;

model SL = c*exp(&sig*&sig/(2*tau*tau)-delay1/tau)*

(1-2*(cdf(’normal’,&sig/tau-delay1/&sig,0,1)-cdf(’normal’,0,0,1)));

output out=nlinout1 predicted=pred residual=r l95m=l95mean u95m=u95mean

l95=l95ind u95=u95ind;

run;
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/* Plotting */

goptions reset=all;

axis1 label=(’aveR_WTTOF’) length=30 order=(0 to 2.5 by 0.5)

minor=(number=1);

axis2 label=(’Delay Time (j)’) length=80;

symbol1 v=circle cv=red h=1;

symbol2 v=: cv=blue h=1 i=join l=1 w=2 ci=blue;

footnote1 h=1.5 c=red f=simplex ’Short-Live Signal’

h=1.5 c=blue f=simplex ’ Single-Tau Fitting’;

title1 h=1.8 ’aveR_WTTOF vs. Pump-Probe Delay Time

for Short-Live Chanel of Adenine’;

title2 h=1.5 "Delay Time Range=33-39, k=5.02, 80315";

proc gplot data=nlinout1;

plot SL*delay pred*delay / overlay vaxis=axis1 haxis=axis2 frame grid;

run;

/* Quit */

quit;



Appendix B

The C++ Codes

B.1 Data File Creation for SAS Input Procedures in Appendices A.1 and A.2

#include <iostream>

#include <fstream>

#include <sstream>

#include <iomanip>

#include <string>

#include <vector>

#include <map>

#include <cmath>

int main()

{

std::ifstream ifs_P[10], ifs_E[10], ifs_D[10];

std::string inFileName;

// Input P E D

std::cout<<"\nReading 10 P, E and D files......"<<std::endl;

for(unsigned int k=0; k<10; k++) {

std::ostringstream oss_P, oss_E, oss_D;

oss_P<<"P"<<k+1<<".dat";

oss_E<<"E"<<k+1<<".dat";

oss_D<<"D"<<k+1<<".dat";

ifs_P[k].open(oss_P.str().c_str(),std::ios::in);

ifs_E[k].open(oss_E.str().c_str(),std::ios::in);

ifs_D[k].open(oss_D.str().c_str(),std::ios::in);

}

std::cout<<"\nProgram Running......\n"<<std::endl;

// Initialization

double** sweepAveBG = new double*[4000];

double** sweepAveD = new double*[4000];

for(unsigned int i=0; i<4000; i++) {
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sweepAveBG[i] = new double[151];

sweepAveD[i] = new double[151];

}

for(unsigned int i=0; i<4000; i++) {

for(int j=0; j<151; j++) {

sweepAveBG[i][j] = 0.;

sweepAveD[i][j] = 0.;

}

}

double*** BG = new double**[10];

double*** D = new double**[10];

for(unsigned int k=0; k<10; k++) {

BG[k] = new double*[4000];

D[k] = new double*[4000];

}

for(unsigned int k=0; k<10; k++) {

for(unsigned int i=0; i<4000; i++) {

BG[k][i] = new double[151];

D[k][i] = new double[151];

}

}

for(unsigned int k=0; k<10; k++) {

for(unsigned int i=0; i<4000; i++) {

for(int j=0; j<151; j++) {

BG[k][i][j] = 0.;

D[k][i][j] = 0.;

}

}

}

// Calculate sweepAveBG, sweepAveD, sweepAveR, BG and D

int p, e, d;

for(unsigned int k=0; k<10; k++) {

for(unsigned int i=0; i<4000; i++) {

for(unsigned int j=0; j<151; j++) {

ifs_P[k]>>p;

ifs_E[k]>>e;

ifs_D[k]>>d;

sweepAveBG[i][j] += (p+e)*0.1;

sweepAveD[i][j] += d*0.1;

BG[k][i][j] = (p+e);

D[k][i][j] = d;

}

}
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}

const double K = 5.02;

double sweepAveR[4000][151];

for(unsigned int i=0; i<4000; i++) {

for(unsigned int j=0; j<151; j++) {

sweepAveR[i][j] = sweepAveD[i][j]-K*sweepAveBG[i][j];

}

}

// Curve along Delay_SumupTOF0-3999

// Curve along TOF_SumupDelay31-35 and 36-149

std::ostringstream oss1;

std::ofstream ofs1;

oss1<<"curveAlongj_Delay31-149_SumupTOF"<<0<<"-"<<3999<<".dat";

ofs1.open(oss1.str().c_str(),std::ios::out);

unsigned int startingDelay = 31,

endingDelay = 149;

for(unsigned int j=startingDelay; j<=endingDelay; j++) {

double sum = 0.;

for(unsigned int i=0; i<4000; i++) {

sum += sweepAveR[i][j];

}

ofs1<<std::setw(12)<<std::left<<j-31<<std::setw(15)

<<std::left<<std::setprecision(4)<<std::fixed<<sum

<<std::endl;

}

std::ostringstream oss2, oss3;

std::ofstream ofs2, ofs3;

oss2<<"curveAlongi_SumupDelay31-39_TOF"<<0<<"-"<<3999<<".dat";

oss3<<"curveAlongi_SumupDelay40-149_TOF"<<0<<"-"<<3999<<".dat";

ofs2.open(oss2.str().c_str(),std::ios::out);

ofs3.open(oss3.str().c_str(),std::ios::out);

std::vector<double> TOFR1, TOFR2;

unsigned int startingDelay1 = 31, endingDelay1 = 39,

startingDelay2 = 40, endingDelay2 = 149,

TOF_low = 300,

TOF_up = 1500;

for(unsigned int i=0; i<4000; i++) {

double sum1 = 0.,

sum2 = 0.;
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for(unsigned int j=startingDelay1; j<=endingDelay1; j++)

sum1 += sweepAveR[i][j]/9.;

for(unsigned int j=startingDelay2; j<=endingDelay2; j++)

sum2 += sweepAveR[i][j]/110.;

if(i>=TOF_low && i<TOF_up) {

TOFR1.push_back(sum1);

TOFR2.push_back(sum2);

}

double ebe=11.09-(9.2329e-13/((i*1.e-9-9.8341e-9)*(i*1.e-9-9.8341e-9))

-0.39569);

ofs2<<std::setw(15)<<std::left<<i

<<std::setw(20)<<std::left<<std::setprecision(6)<<sqrt(i)

<<std::setw(20)<<std::left<<std::setprecision(6)<<ebe

<<std::setw(20)<<std::left<<std::setprecision(6)<<std::fixed<<sum1

<<std::endl;

ofs3<<std::setw(15)<<std::left<<i

<<std::setw(20)<<std::left<<std::setprecision(6)<<sqrt(i)

<<std::setw(20)<<std::left<<std::setprecision(6)<<ebe

<<std::setw(20)<<std::left<<std::setprecision(6)<<std::fixed<<sum2

<<std::endl;

}

// Mean and SD analysis

double sqrtTOF_low = sqrt(TOF_low),

sqrtTOF_up = sqrt(TOF_low+TOFR1.size()),

EBE_low = 11.09-(9.2329e-13/((TOF_low*1.e-9-9.8341e-9)

*(TOF_low*1.e-9-9.8341e-9))-0.39569),

EBE_up=11.09-(9.2329e-13/(((TOF_low+TOFR1.size())*1.e-9-9.8341e-9)

*((TOF_low+TOFR1.size())*1.e-9-9.8341e-9))-0.39569);

std::ostringstream oss_MeanSD[6];

std::ofstream ofs_MeanSD[6];

oss_MeanSD[0]<<"sumupDelay31-39_TOF"<<TOF_low<<"-"<<TOF_up

<<"-Step25_MeanSD.dat";

oss_MeanSD[1]<<"sumupDelay31-39_sqrtTOF_"<<sqrtTOF_low<<"-"<<sqrtTOF_up

<<"-Step0Pt5_MeanSD.dat";

oss_MeanSD[2]<<"sumupDelay31-39_EBE_"<<EBE_low<<"-"<<EBE_up

<<"-Step0Pt1_MeanSD.dat";

oss_MeanSD[3]<<"sumupDelay40-149_TOF"<<TOF_low<<"-"<<TOF_up

<<"-Step25_MeanSD.dat";

oss_MeanSD[4]<<"sumupDelay40-149_sqrtTOF_"<<sqrtTOF_low<<"-"<<sqrtTOF_up

<<"-Step0Pt5_MeanSD.dat";
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oss_MeanSD[5]<<"sumupDelay40-149_EBE_"<<EBE_low<<"-"<<EBE_up

<<"-Step0Pt1_MeanSD.dat";

for(unsigned int i=0; i<6; i++) {

ofs_MeanSD[i].open(oss_MeanSD[i].str().c_str(),std::ios::out);

if(i==0||i==3) {

ofs_MeanSD[i]<<std::setw(20)<<std::left<<"Group"<<std::setw(20)

<<std::left<<"N"

<<std::setw(20)<<std::left<<"TOF0"<<std::setw(20)

<<std::left<<"Mean"<<std::setw(20)<<std::left<<"SD"

<<std::endl;

}

else if(i==1||i==4) {

ofs_MeanSD[i]<<std::setw(20)<<std::left<<"Group"<<std::setw(20)

<<std::left<<"N"

<<std::setw(20)<<std::left<<"sqrtTOF0"<<std::setw(20)

<<std::left<<"Mean"<<std::setw(20)<<std::left<<"SD"

<<std::endl;

}

else {

ofs_MeanSD[i]<<std::setw(20)<<std::left<<"Group"<<std::setw(20)

<<std::left<<"N"

<<std::setw(20)<<std::left<<"EBE0"<<std::setw(20)

<<std::left<<"Mean"<<std::setw(20)<<std::left<<"SD"

<<std::endl;

}

}

for(unsigned int i=0; i<TOFR1.size(); i+=25) {

double mean1 = 0., sd1 = 0.,

mean2 = 0., sd2 = 0.;

for(unsigned int j=i; j<i+25; j++) {

mean1 += TOFR1[j]/25.;

mean2 += TOFR2[j]/25.;

}

for(unsigned int j=i; j<i+25; j++) {

sd1 += (TOFR1[j]-mean1)*(TOFR1[j]-mean1);

sd2 += (TOFR2[j]-mean2)*(TOFR2[j]-mean2);

}

sd1 = sqrt(sd1/24.);

sd2 = sqrt(sd2/24.);

ofs_MeanSD[0]<<std::setw(20)<<std::left<<i/25<<std::setw(20)

<<std::left<<25<<std::setw(20)<<std::left<<i+TOF_low

<<std::setw(20)<<std::left<<std::setprecision(6)<<mean1

<<std::setw(20)<<std::left<<std::setprecision(6)<<sd1
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<<std::endl;

ofs_MeanSD[3]<<std::setw(20)<<std::left<<i/25<<std::setw(20)

<<std::left<<25<<std::setw(20)<<std::left<<i+TOF_low

<<std::setw(20)<<std::left<<std::setprecision(6)<<mean2

<<std::setw(20)<<std::left<<std::setprecision(6)<<sd2

<<std::endl;

}

std::map<double,double> sqrtTOFR1, sqrtTOFR2;

for(unsigned int i=0; i<TOFR1.size(); i++) {

sqrtTOFR1[sqrt(i+TOF_low)] = TOFR1[i];

sqrtTOFR2[sqrt(i+TOF_low)] = TOFR2[i];

}

std::map<double,double>::const_iterator itr1 = sqrtTOFR1.begin(),

itr2 = sqrtTOFR2.begin();

unsigned int gc_sqrtTOF = 0;

for(double sqrtTOF0=sqrtTOF_low; sqrtTOF0<sqrtTOF_up; sqrtTOF0+=0.5) {

double mean1 = 0., sd1 = 0.,

mean2 = 0., sd2 = 0.;

std::vector<double> temp1, temp2;

while(itr1->first<sqrtTOF0+0.5 && itr1!=sqrtTOFR1.end()) {

mean1 += itr1->second;

mean2 += itr2->second;

temp1.push_back(itr1->second);

temp2.push_back(itr2->second);

itr1++;

itr2++;

}

mean1 = mean1/temp1.size();

mean2 = mean2/temp2.size();

for(unsigned int j=0; j<temp1.size(); j++) {

sd1 += (temp1[j]-mean1)*(temp1[j]-mean1);

sd2 += (temp2[j]-mean2)*(temp2[j]-mean2);

}

sd1 = sqrt(sd1/temp1.size());

sd2 = sqrt(sd2/temp2.size());

ofs_MeanSD[1]<<std::setw(20)<<std::left<<gc_sqrtTOF<<std::setw(20)

<<std::left<<temp1.size()<<std::setw(20)<<std::left

<<std::setprecision(6)<<sqrtTOF0

<<std::setw(20)<<std::left<<std::setprecision(6)<<mean1

<<std::setw(20)<<std::left<<std::setprecision(6)<<sd1

<<std::endl;

ofs_MeanSD[4]<<std::setw(20)<<std::left<<gc_sqrtTOF<<std::setw(20)
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<<std::left<<temp2.size()<<std::setw(20)<<std::left

<<std::setprecision(6)<<sqrtTOF0

<<std::setw(20)<<std::left<<std::setprecision(6)<<mean2

<<std::setw(20)<<std::left<<std::setprecision(6)<<sd2

<<std::endl;

gc_sqrtTOF++;

}

std::map<double,double> EBER1, EBER2;

for(unsigned int i=0; i<TOFR1.size(); i++) {

double ebe = 11.09-(9.2329e-13/(((i+TOF_low)*1.e-9-9.8341e-9)

*((i+TOF_low)*1.e-9-9.8341e-9))-0.39569);

EBER1[ebe] = TOFR1[i];

EBER2[ebe] = TOFR2[i];

}

std::map<double,double>::const_iterator itr11 = EBER1.begin(),

itr22 = EBER2.begin();

unsigned int gc_EBE = 0;

for(double EBE0=EBE_low; EBE0<EBE_up; EBE0+=0.15) {

double mean1 = 0., sd1 = 0.,

mean2 = 0., sd2 = 0.;

std::vector<double> temp1, temp2;

while(itr11->first<EBE0+0.15 && itr11!=EBER1.end()) {

mean1 += itr11->second;

mean2 += itr22->second;

temp1.push_back(itr11->second);

temp2.push_back(itr22->second);

itr11++;

itr22++;

}

mean1 = mean1/temp1.size();

mean2 = mean2/temp2.size();

for(unsigned int j=0; j<temp1.size(); j++) {

sd1 += (temp1[j]-mean1)*(temp1[j]-mean1);

sd2 += (temp2[j]-mean2)*(temp2[j]-mean2);

}

sd1 = sqrt(sd1/temp1.size());

sd2 = sqrt(sd2/temp2.size());

ofs_MeanSD[2]<<std::setw(20)<<std::left<<gc_EBE<<std::setw(20)

<<std::left<<temp1.size()<<std::setw(20)<<std::left

<<std::setprecision(6)<<EBE0

<<std::setw(20)<<std::left<<std::setprecision(6)<<mean1

<<std::setw(20)<<std::left<<std::setprecision(6)<<sd1



74

<<std::endl;

ofs_MeanSD[5]<<std::setw(20)<<std::left<<gc_EBE<<std::setw(20)

<<std::left<<temp2.size()<<std::setw(20)<<std::left

<<std::setprecision(6)<<EBE0

<<std::setw(20)<<std::left<<std::setprecision(6)<<mean2

<<std::setw(20)<<std::left<<std::setprecision(6)<<sd2

<<std::endl;

gc_EBE++;

}

// Clearup

std::cout<<"\nFile Closing......\n"<<std::endl;

for(int k=0; k<10; k++) {

ifs_P[k].close();

ifs_E[k].close();

ifs_D[k].close();

}

ofs1.close();

ofs2.close();

ofs3.close();

for(unsigned int i=0; i<6; i++) ofs_MeanSD[i].close();

std::cout<<"Clearup......\n"<<std::endl;

for(int i=3999; i>=0; i--) {

delete [] sweepAveBG[i];

delete [] sweepAveD[i];

}

delete [] sweepAveBG;

delete [] sweepAveD;

for(int k=9; k>=0; k--) {

for(int i=3999; i>=0; i--) {

delete [] BG[k][i];

delete [] D[k][i];

}

}

for(int k=9; k>=0; k--) {

delete [] BG[k];

delete [] D[k];

}

delete [] BG;

delete [] D;
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std::cout<<"Program Finished Successfully!\n"<<std::end;

}

B.2 Data File Creation for SAS Input Procedures in Appendices A.3 and A.4

#include <iostream>

#include <fstream>

#include <sstream>

#include <iomanip>

#include <string>

#include <vector>

#include <map>

#include <cmath>

double probAtTOF(int,double,double);

int main()

{

std::ifstream ifs_P[10], ifs_E[10], ifs_D[10];

std::string inFileName;

// Input P E D

std::cout<<"\nReading 10 P, E and D files......"<<std::endl;

for(unsigned int k=0; k<10; k++) {

std::ostringstream oss_P, oss_E, oss_D;

oss_P<<"P"<<k+1<<".dat";

oss_E<<"E"<<k+1<<".dat";

oss_D<<"D"<<k+1<<".dat";

ifs_P[k].open(oss_P.str().c_str(),std::ios::in);

ifs_E[k].open(oss_E.str().c_str(),std::ios::in);

ifs_D[k].open(oss_D.str().c_str(),std::ios::in);

}

std::cout<<"\nProgram Running......\n"<<std::endl;

// Initialization

double** sweepAveBG = new double*[4000];

double** sweepAveD = new double*[4000];

for(unsigned int i=0; i<4000; i++) {

sweepAveBG[i] = new double[151];

sweepAveD[i] = new double[151];

}

for(unsigned int i=0; i<4000; i++) {
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for(int j=0; j<151; j++) {

sweepAveBG[i][j] = 0.;

sweepAveD[i][j] = 0.;

}

}

double*** BG = new double**[10];

double*** D = new double**[10];

for(unsigned int k=0; k<10; k++) {

BG[k] = new double*[4000];

D[k] = new double*[4000];

}

for(unsigned int k=0; k<10; k++) {

for(unsigned int i=0; i<4000; i++) {

BG[k][i] = new double[151];

D[k][i] = new double[151];

}

}

for(unsigned int k=0; k<10; k++) {

for(unsigned int i=0; i<4000; i++) {

for(int j=0; j<151; j++) {

BG[k][i][j] = 0.;

D[k][i][j] = 0.;

}

}

}

// Calculate sweepAveBG, sweepAveD, sweepAveR, BG and D

int p, e, d;

for(unsigned int k=0; k<10; k++) {

for(unsigned int i=0; i<4000; i++) {

for(unsigned int j=0; j<151; j++) {

ifs_P[k]>>p;

ifs_E[k]>>e;

ifs_D[k]>>d;

sweepAveBG[i][j] += (p+e)*0.1;

sweepAveD[i][j] += d*0.1;

BG[k][i][j] = (p+e);

D[k][i][j] = d;

}

}

}

const double K = 5.02;
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double sweepAveR[4000][151];

for(unsigned int i=0; i<4000; i++) {

for(unsigned int j=0; j<151; j++) {

sweepAveR[i][j] = sweepAveD[i][j]-K*sweepAveBG[i][j];

}

}

// Curve along Delay_WTSumupTOF

std::ostringstream oss;

std::ofstream ofs;

oss<<"curveAlongj_Delay0-149_WTSumTOF.dat";

ofs.open(oss.str().c_str(),std::ios::out);

for(unsigned int j=0; j<=39; j++) {

double sum_j = 0.;

for(unsigned int i=0; i<=4000; i++) {

sum_j += sweepAveR[i][j]*probAtTOF(i,28.9134,2.2450);

}

ofs<<std::setw(12)<<std::left<<j<<std::setw(15)<<std::left

<<std::setprecision(4)<<std::fixed<<sum_j<<std::endl;

}

for(unsigned int j=40; j<=149; j++) {

double sum_j = 0.;

for(unsigned int i=0; i<=4000; i++) {

sum_j += sweepAveR[i][j]*probAtTOF(i,28.9164,1.8966);

}

ofs<<std::setw(12)<<std::left<<j<<std::setw(15)<<std::left

<<std::setprecision(4)<<std::fixed<<sum_j<<std::endl;

}

// Clearup

std::cout<<"\nFile Closing......\n"<<std::endl;

for(int k=0; k<10; k++) {

ifs_P[k].close();

ifs_E[k].close();

ifs_D[k].close();

}

ofs.close();

std::cout<<"Clearup......\n"<<std::endl;

for(int i=3999; i>=0; i--) {

delete [] sweepAveBG[i];

delete [] sweepAveD[i];

}
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delete [] sweepAveBG;

delete [] sweepAveD;

for(int k=9; k>=0; k--) {

for(int i=3999; i>=0; i--) {

delete [] BG[k][i];

delete [] D[k][i];

}

}

for(int k=9; k>=0; k--) {

delete [] BG[k];

delete [] D[k];

}

delete [] BG;

delete [] D;

std::cout<<"Program Finished Successfully!\n"<<std::endl;

}

double probAtTOF(int TOF, double u, double s)

{

const double PI = 3.1415926;

double prob = 0.,

lower = 0.5*(sqrt(TOF)+sqrt(TOF-1)),

upper = 0.5*(sqrt(TOF+1)+sqrt(TOF)),

dx = (upper-lower)/10000.;

for(double x=lower; x<=upper; x+=dx) {

prob += (1./sqrt(2.*PI*s*s))*exp(-0.5*(x-u)*(x-u)/(s*s))*dx;

}

return prob;

}



Appendix C

The Mathematica codes

C.1 Data Visualization in Section 4.1.1.4

Directory[]

SetDirectory["/Users/zhuofeihou/STAT/MSP_Meeting/Meeting_100115/"]

FileNames[]

RData = ReadList["R_iPrime-jPrime_k=5.02.txt", Real, RecordLists -> True]

g1 = ListPlot3D[RData, PlotRange -> All, Mesh -> {50, 10},

MeshStyle -> Gray, AxesLabel -> {"TOF (i’)", "Delay (j’)", "R"},

PlotLabel -> "3D Plot of R with k=5.02, z=[-0.15, 10]",

Ticks -> {{0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50},

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}]

g2 = ListPlot3D[RData, PlotRange -> {-0.15, 0.4}, Mesh -> {50, 10},

MeshStyle -> Gray, AxesLabel -> {"TOF (i’)", "Delay (j’)", "R"},

PlotLabel -> "3D Plot of R with k=5.02, z=[-0.15, 0.4]",

Ticks -> {{0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50},

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

{0, 0.1, 0.2, 0.3, 0.4, 0.5}}]

Show[GraphicsArray[{{g1, g1}, {g2, g2}}]]

g3 = ListContourPlot[RData, PlotRange -> All, Frame -> True,

PlotLabel -> "2D Contour Plot of R with k=5.02, z=[-0.15, 10]"]

g4 = ListContourPlot[RData, PlotRange -> {-0.15, 0.4}, Frame -> True,

PlotLabel -> "2D Contour Plot of R with k=5.02, z=[-0.15, 0.4]"]

g5 = Show[GraphicsArray[{g3, g4}]]
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Export["2D_Contour_R_iPrime-jPrime_k=5.02.png",g5,"PNG",ImageSize->1000]

g6 = ListDensityPlot[RData, PlotRange -> All,

PlotLabel -> "2D Density Plot of R with k=5.02, z=[-0.15, 10]"]

g7 = ListDensityPlot[RData, PlotRange -> {-0.15, 0.4},

PlotLabel -> "2D Density Plot of R with k=5.02, z=[-0.15, 0.4]"]

g8 = Show[GraphicsArray[{g6, g7}]]

Export["2D_Density_R_iPrime-jPrime_k=5.02.png",g8,"PNG",ImageSize->1000]


