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Abstract

The use of conducting meta-analytic work is on the rise, yet analysts tend to overlook

differences between approaches and simply select one that is common to the field of study.

This study contrasts two popular meta-analytic approaches based on work by Hedges and

Olkin (1985) and Hunter, Schmidt, and Jackson (1982) and compares them both in theory

and in application. Broadly, while Hedges and Olkin (1985) first corrects for statistical

biases, Hunter et al. (1982) uses the biased estimates but corrects for statistical artifacts

prior to integration. Conceptual and statistical differences between these approaches lead

to numerous disparities between estimates. Ultimately, it is difficult to provide guidelines

for which meta-analytic approach is the best as it differs by scenario and the information

available. This decision must be made holistically by examining the assumptions behind the

nature of the constructs in question, the characteristics of the data set, and possible types

of inaccuracies that must most be guarded against.
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Chapter 1

Introduction

A meta-analysis is “the statistical analysis of a large collection of analysis results

from individual studies for the purpose of integrating findings” (Glass, 1976). It is a

quantified summary of existing research that augments more classical and traditional

qualitative narrative summaries and reviews. The rise in popularity of such methods

is in response to the overwhelming number of individual studies being produced in

many disciplines. The benefit of a high quality meta-analysis is that it imparts a

great deal of information concisely.

The goal of this study is to provide a general overview of the meta-analysis field

with exploration into various techniques, and to do so at an approachable level. To

accomplish this goal, this study explores and contrasts two of the most popular ap-

proaches developed by Hedges and Olkin (1985) and Hunter, Schmidt, and Jackson

(1982). Broadly, Hedges and Olkin (1985) first transforms individual effect sizes

to unbiased estimators prior to integration. In contrast, the Hunter et al. (1982)

technique uses biased estimates but attempts to correct them for artifacts, such as

measurement error and unreliability, prior to integration. This study begins with
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an investigation into the statistical underpinnings behind each approach, including

preliminary issues such as transforming individual studies for preparation for inte-

gration, calculating effect size, testing significance, and examining homogeneity of

effect sizes. Next, these topics are compared in application. In order to motivate the

discussion, 10 studies examining the influence of role ambiguity on job satisfaction

were analyzed and contrasted. Finally, in an exploratory vein, the magnitude of the

studies’ effect sizes, the number of participants in individual samples, and the number

of studies composing the meta-analysis will were artificially manipulated in order to

gain a deeper understanding of the influence of these factors on meta-analytic results.

The unique contribution of this study is that it provides both a statistical discus-

sion and concrete exploration of the differences between two prominent meta-analytic

techniques. In alignment with this contribution, Hedges and Olkin (1985) and Hunter

et al. (1982) meta-analysis approaches and relevant issues are discussed, the data set

employed provided, and the relevant syntax is appended. It is desired to provide a

readily accessible resources to those less familiar with meta-analysis.
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Chapter 2

Literature Review

This chapter begins by introducing the topic of meta-analysis. Next, the strengths

and weaknesses inherent in the meta-analysis methodology (Section 2.1.1) are dis-

cussed. In Section 2.1.3 two popular approaches are introduced, that of Hedges and

Olkin (1985) (Section 2.1.4) and Hunter et al. (1982) (Section 2.1.5). For each, topics

such as calculating weighted average effect size, level of significance, and homogene-

ity are discussed. Section 2.1.6 provides some initial comparisons between these two

approaches. The chapter ends with a brief introduction to role ambiguity and job

satisfaction which constitute the motivating example (Section 2.2).

2.1 Meta-Analysis

A meta-analysis begins with a systematic review of all relevant studies in order to

develop a balanced and impartial pool of individual studies. The effects of the various

studies are then integrated, depending on technique and underlying assumptions. By

combining the results of similar studies, the precision of estimates and power to
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detect treatment effects are strengthened. In addition, variability may be examined

to identify potential unidentified moderators. This allows the analyst to identify

patterns and other interesting relationships.

2.1.1 Strength and Weakness of Meta-Analytic Technique

The benefit of a well-conducted meta-analysis is that it provides a great deal of

information concisely. Specifically, it provides a weighted estimate that more accu-

rately reflects the true effect size influencing the variables under consideration than

the individual studies from which it is composed. Furthermore, as the “true” effect

is being better estimated, this value is more generalizable in application.

A primary tenet of the meta-analysis strategy is that the included studies are a

representative sample of the population of studies. While missing at random is accept-

able, non-random missing data may bias estimates. However, there are many types

of biases that may diminish or even corrupt meta-analytic results. Some commonly

mentioned biases include publication bias, search bias, and selection or agenda-driven

bias. Publication bias (also referred to more commonly as the file-drawer problem)

reflects that studies that have found “interesting” effects are more likely to be dis-

seminated. Most often this entails being published in scholarly journal and books, as

well as being presented at conferences. As a meta-analysis is synthesis of available

studies, an analyst must make conscious efforts to obtain studies that may contain

null results. Another common bias is search bias. Even if publication bias were not

present, an analyst must be cognizant of the employed search criteria. The inclu-

siveness of search criteria or exclusionary criteria directly influences the nature of the

data set. This not only includes relevant terms and criteria, but, in the present day,

the search engine employed to locate studies. A final common bias is that of a selec-
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tion or agenda-driven bias. A subjective part of the selection process is the decision

of which studies to include in one’s analysis. While it may or may not be purposeful,

a non-equitable selection criteria will most likely bias results. The potential of this

bias is often mitigated by including multiple individuals in the decision process for

which studies to include.

One method to assess the impact of a non-random sample is to calculate the

failsafe N (Corwin, 1983). Simply put, a fail-safe N is a calculation of the number of

studies necessary to draw a meaningful effect size to non-meaningful effect size. The

reasoning is that if it would take a relatively large number of studies to make the effect

size negligible, then the researcher can be confident certain types of non-randomness,

such as the often cited file-drawer problem, has had minimal influence such that

kfs =
kobt(dobt − dc)
dc − dfs

where kfs is the number of fail safe studies, kobt is studies included in the meta-

analysis, dobt is summary effect size, dc is desired lower bound, and dfs is the studies

with this size needed to lower the effect size. Note, while not necessary, it is common

to set dfs to zero to indicate no effect. Obviously, such a statistic can not be used as

an indicator of other forms of bias, such as selection or agenda-driven bias.

2.1.2 Comparison of Fixed vs. Random Effect Models

While an “effect” is difficult to definitely define, conceptually, it is the underlying

influence that is the cause of the difference between two dissimilar or the relationship

between two similar entities or concepts. Correspondingly, an effect size refers to the

magnitude of the effect. There are two possibilities concerning the conceptualization
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of a population (i.e. true) effect sizes. Fixed effect models assume that sampling error

is the sole source of variation amongst the effect sizes of the included studies and that

they share a common effect size. This assumption is plausible when the studies are

close replications of one another, use the same procedures, measures, or have other

similar characteristics. Thus, the observed effect sizes for the ith study, Ti, will be

distributed about the common effect size µ by the random sampling error εi, such

that

Ti = µ+ εi; εi ∼ N(0, v2
i )

where v2
i is the sampling variance of the effect size. Because it is assumed that the

included studies are estimating the same effect size, weights are based on the random

error within the studies.

While fixed effect models are based on the assumption that the true effect is the

same across the included studies, in application, this is a problematic assumption.

While the included studies have enough in common to justify their combination, there

is generally no reason to assume that the true effect size is exactly the same across

studies. Thus, random effect models assume that the true effect size varies between

studies. The studies included in the meta-analysis are assumed to be a random sample

of the relevant distribution of effect sizes, and the combined effect size estimates the

mean effect size in this distribution. Thus the observed effect size, Ti, differs from

the underlying population mean, µ, due to both sampling study variance, ξi, and

underlying population error, εi, such that

Ti = µ+ ξi + εi; ξi ∼ N(0, τ 2), εi ∼ N(0, v2
i )

where v2
i is the sampling variance of the effect size and τ 2 is the underlying population
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variance. Thus, there are two levels of sampling and two levels of error. First, each

study is used to estimate the true effect in a specific population. Second, all of the

true effects are used to estimate the mean of the true effects. It follows that τ 2 will

increase as either the variance within-studies decreases and/or the observed variance

increases. Therefore, the ability to estimate the combined effect size precisely will

depend on both the number of subjects within studies, as well as the total number

of studies. While studies based on large samples may yield more precise estimates

than studies based on smaller samples, each study is assumed to be estimating a

different effect size. In comparison with the fixed effect model, the weights assigned

under random effects are more balanced, with studies based on large samples being

less likely to dominate the analysis (Hedges and Olkin, 1985).

Hunter and Schmidt (1990) provided sharp criticism to Hedges and Olkin (1985)

distinction between fixed and random effect models. Simply put, Hedges and Olkin

(1985) assumed that consistency among effect sizes is equivalent to the individual

studies being a fixed effect model and that a lack of homogeneity is indicative of

an unmeasured random effect component. Hunter and Schmidt (1990) contend that

opposed to a fixed effect model, Hedges and Olkin (1985) are in fact referencing a two-

factor model in which the random effect factor is nested under the fixed effect factor.

To elaborate, one may consider a mean difference effect size. Hedges and Olkin’s

(1985) implicit assumption is that the difference between conditions (i.e. classes)

represents all possible classes. Thus, given this assumption is true, the random effects

component (i.e. studies) would then be nested under this fixed effect factor.
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2.1.3 Popular Techniques

Two of the more popular meta-analysis techniques were developed by Hedges and

Olkin (1985) and Hunter et al. (1982). While both methods have evolved somewhat

over time these classic publications are often cited as the guiding methodology be-

hind other’s meta-analyses (Hedges, 1983; Hedges and Olkin, 1985; Hedges and Vevea,

1998; Schmidt and Hunter, 1977; Hunter and Schmidt, 1990, Hunter and Schmidt,

2004). Both methods provide an estimate of the overall mean effect size and an es-

timate of the variability of infinite-sample effect sizes. A sharp distinction is that

Hedges and Olkin (1985) first transforms the estimator to an unbiased version prior

to integration, while Hunter et al. (1982) employs the biased estimator but makes

corrections for various artifacts. It is of note that Hedges and Olkin (1985) equally

focus on methods for both mean difference and relational effect sizes. Here, mean dif-

ference effect size represents the effect size existing between two disparate constructs

or entities, while relational effect size represents the the similarity between two similar

constructs or entities. As their technique focuses on characteristics such as unbiased

estimators and standardization, one may readily move from effect sizes arising from

mean differences to relational effect sizes through conversions. In contrast, Schmidt

and Hunter (1990) focus on relational effect sizes. This is likely a reflection of neces-

sity as both Schmidt and Hunter are researchers in the social sciences. As a majority

of studies in the social sciences depend on cross-sectional survey designs that prevent

inferences of causality. Furthermore, internal validity is difficult to maintain without

loss to external validity. In other words, the complexity of human behavior is unlikely

to behave naturally in the presence of unnatural situational constructs. Thus for the

social sciences, due to these and other factors, the common metric base for a relational

effect size between two variables (x and y) is the correlation coefficient. Arguably,
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the most common correlation measure is the Pearson product moment correlation

coefficient;

rxy =
Σzxizyi
n

where n is the number of observational pairings and zxi and zyi are the standardized

scores of xi and yi for case i. As the motivational application concerns the social

construct of role theory, the focus of this thesis will concern relational effect sizes.

2.1.4 Hedges and Olkin (1985)

Hedges and Olkin (1985) provide various techniques for analyzing both mean

difference and relational effect sizes. The common measure of an individual relational

effect size is the Pearson product-moment correlation (r), which is a sample estimator

of the population correlation (ρ). It can be shown that while r is the maximum

likelihood estimator of ρ it is biased such that

Bias(r) ∼= −
ρ(1− ρ2)

2n

with the sample correlation coefficient tending to underestimate ρ (if ρ > 0). It is of

note that the sampling variance of r is obtained through an infinite series, but the

approximate variance of r (to order 1
n
) is V ar(r) ∼= (1−ρ2)2

n
. Thus, when the coefficient

is large in magnitude (or assessed from a large sample size), the bias of the sample is

minimal.

Hedges and Olkin (1985) referenced three methods to correct the bias in r. One
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potential transformation is to convert r into its unbiased estimate

G̃(r)
∼= r +

r(1− r2)

2(n− 3)
.

G̃(r) has been shown to be accurate to within .01 if n ≥ 8 and to within .001 when

n ≥ 18. Also, G̃(r) has been shown to have the same asymptotic distribution as r

(Hedges and Olkin, 1985).

The sampling distribution of r is also skewed, especially when the correlation co-

efficients are large. Therefore, a second potential transformation is to correct for this

by converting the correlation to z scores using Fisher’s (1921) r-to-z transformation

z =
1

2
ln

[
1 + r

1− r

]
. (2.1)

This method is the most commonly employed as it provides multiple benefits. For

instance, Fisher’s transformation normalizes the variance of r, as well as makes the

variance independent of ρ. In addition, simulation studies have shown that linear

combinations integrating G̃(r) differ only minimally than those integrating z. Fur-

thermore, as will be shown, the sampling variance and corresponding inverse weight

simplify to a great extent.

Finally, Hedges and Olkin (1985) briefly referenced a t-transformation proposed by

Kramer (1974, 1975) such that t =
√
n−2(r−ρ)√

(1−r2)(1−ρ2)
which has an approximately Students

t-distribution with n − 2 degrees of freedom and works well with very small sample

sizes. An important note of their work is that these are just three possible conversions

to eliminate/minimize biases. Others are possible and may provide superior results

depending on scenario.
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Effect size

One of the primary considerations when integrating multiple effect sizes into a

single estimate concerns the weights placed on individual studies. Hedges and Olkin

(1985) approach uses the sample variance σ2
r = (1−ρ2)2

(n−1)
in order to establish the fixed

effect inverse weights of w = (n−1)

(1−ρ2)2
. Note, as ρ is contained within σ2

r , larger cor-

relations will receive greater weight and thus may bias the estimate. As previously

mentioned two of the main reasons for the popularity of Fisher’s r-to-z transformation

is that the sample variance converts to

σ2
zi

=
1

ni − 3

eliminating the bias and the inverse weight simplify to

wi = ni − 3.

for the ith study. Along these lines, employing Fishers r-to-z transformation results

in the combined effect size (i.e. weighted average) of

z = Σk
i=1

(ni − 3)zi
Σk
i=1(ni − 3)

.

where k is the number of studies included in the meta-analysis.

Significance of effect size

Statistical significance concerns the likelihood of the observed results being ob-

tained from a distribution described in the null hypothesis. The significance may

either be described as values such as the standard normal deviates, z, the p-values or
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in terms of confidence intervals. It can be shown that when ρ1 = ρ2 = . . . = ρk = ρ

and n1, n2, . . . , nk increase at approximately the same rate, z is approximately nor-

mally distributed with mean ζ = z(ρ) and variance 1
Σk

i=1(ni−3)
. The large sample ap-

proximation to the distribution of z can be used to test hypotheses concerning ρ by

transforming to ζ. For instance, ρ = ρ0 corresponds to the hypotheses ζ = ζ0 = z(ρ0).

This hypothesis would be compared at significance level α using the test statistic

zsig = (z − ζ0)
√

Σk
i=1(ni − 3) (2.2)

compared to the 100×α percent two-tail critical value of the standard normal distri-

bution.

With the weighted average effect size and sample variance it is possible to construct

a confidence interval of the population value such that

z ± z ∗

√
1

Σk
i=1(ni − 3)

where z∗ is the critical value from the standard normal distribution such that the area

between −z∗ and z∗ is equal to the desired confidence interval. Once the confidence

interval has been established for z it is possible to revert to the original r through

Fisher’s corresponding z-to-r transformation

r =
e2z−1

e2z+1
.

Homogeneity of effect size

It is possible to test whether the observed variance is consistent with the hypothe-

sis that there is only a single underlying value of the effect size. The most popular test
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of the homogeneity of underlying effect sizes is based on work by Cochran (Hedges

and Olkin, 1985; Lipsey and Wilson, 2001). Given that r1, r2, ...rk are a series of in-

dependent sample correlations and, correspondingly, result in a series of independent

z-transformed values, then a test of homogeneity of the population correlation can

be constructed from the test statistic

Q = Σk
i=1(ni − 3)(zi − z)2, (2.3)

where the null hypothesis is rejected if the p-value is less than α, by convention, from

a chi-square distribution with k − 1 degrees of freedom. Here, Q is a weighted sum

of squared deviations from the mean.

Random Error Variance Component

If the Q statistic is found to be significantly different from the null, then there is

evidence that effect size is best explained by a random effect model as opposed to a

fixed effect model. In other words, the lack of homogeneity in distribution of effect

sizes is likely a result in differences between studies. The impact of the random effect

component (σ2
ρ = REV C) is expressed as

REV C =
Q− (k − 1)

Σwi − (
Σw2

i

Σwi
)
. (2.4)

REVC is then used to modify the inverse variance weight such that

wi∗ =
1

1
wi

+REV C
. (2.5)
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Hedges and Olkin (1985) approach is re-conducted utilizing the modified inverse vari-

ance weights in order to provide the random effects model estimates.

2.1.5 Hunter et al. (1982)

The method developed by Hunter et al. (1982) does not attempt to correct the

biases in effect size prior to integration. Instead the authors’ approach attempts to

correct the effect size for potential sources of error. It is important to note that the

influence of a specific type of artifact is independent across studies. Because of this, it

is possible to base meta-analysis on artifact distributions. Hunter and Schmidt (1990)

listed some of the prominent artifacts including sampling error, error of measurement

in the dependent and independent variables, dichotomization of continuous dependent

and independent variables, range variation in the independent variable, attrition ar-

tifacts, deviations from perfect construct validity in the dependent and independent

variables, reporting or transcriptional error, and variance due to extraneous factors.

While corrections for many different artifacts are possible, the information necessary

to correct the influence of artifacts are only sporadically reported. Therefore, the

artifacts of sampling error, attenuation, and range restriction are the ones most often

corrected.

For instance, a reality in the social sciences is that constructs are rarely, if ever,

perfectly measured. A commonly cited rule of thumb is that it is acceptable to use

scales with reliability as low as .7 (Nunnally, 1978). In this context, internal con-

sistency (or reliability) is the correlation between a measure’s scale and true scores.

Individual correlation coefficients may be corrected prior to integration for unrelia-
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bility in x and/or y through the correction

rc =
rxy√
rxx
√
ryy

,

where rxx and ryy are the internal consistencies of x and y, respectively.

Effect Size

After correcting the individual estimates for such artifacts as unreliability, Hunter

et al. (1982) estimate ρ as the simple weighted average of sample correlations such

that

r =
Σk
i=1niri

Σk
i=1ni

with a corresponding variance of

σ2
r =

Σk
i=1[ni(ri − r)2]

Σk
i=1ni

where ni is the number of observations and ri the correlation between x and y for

study i.

Significance of Effect Size

For significance testing Hunter et al. (1982) calculates the test statistic as the

standard normal z-score such that

Z =
r

σ(r)

(2.6)
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where

σ(r) =
Σk
i=1ni(ri − r)2

Σk
i=1ni

.

Homogeneity

Hunter et al. (1982) provide a method to test for systematic variation in effect

sizes employing a χ2 test

χ2
k−1 =

Σk
i=1ni

(1− r2)2
σ2
r . (2.7)

Significant Chi-square values provide evidence that potential moderators may be lurk-

ing. As the Chi-square is a summative statistic it is sensitive to changes in sample

size and number of studies included in the meta-analysis.

2.1.6 Comparison of Meta-Analytic Strategies

Hunter et al. (1982) differs from Hedges and Olkin (1985) techniques as it does

not attempt to correct the biases in effect size indexes before deriving mean effect

sizes or before applying moderators to these indexes. Rather, this approach attempts

to correct effect size indexes for potential sources of error, such as sampling error,

attenuation, and reliability, before meta-analytically integrating the effect size across

studies. However, this may be less beneficial as few studies report sources of error.

If the ri’s have a nonlinear bias then Hedges and Olkin (1985) approach, which cor-

rects for biases, should produce a weighted average effect size that differs from Hunter

et al. (1982). Specifically, Hunter et al. (1982) should underestimate r. In previous

comparisons of the two approaches, the Hunter et al. (1982) approach has gener-

ally provided more accurate results than has the Hedges and Olkin (1995) approach

(Field, 2001; Hall and Brannick, 2002; Schulze, 2004). Such a result is unexpected
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because Hedges and Olkin (1985) showed that the maximum likelihood estimator of

the mean in the random-effects case depends upon both sampling variance of the

individual studies and the variance of infinite-sample effect sizes (random effect vari-

ance component or REVC), but the Hunter et al. (1982) procedure uses sample size

weights, which do not incorporate the REVC. Thus, the Hunter et al. (1982) weights

can be shown to be suboptimal. However, both effect size and the REVC, are subject

to sampling error, and thus in practice, they may not provide more accurate esti-

mates. This becomes particularly true if the individual study sample sizes are small

(Brannick, Yang, and Cafri, 2008).

2.2 Role Stressors and Consequences

Role stressors are a psychological reaction that arises from ones subjective evalu-

ation of a significant others expectations (Khan et al., 1964). When expectations are

unclear, conflicting, and/or overwhelming, both personal and organizationally rele-

vant outcomes may be negatively influenced (Örtqvist and Wincent, 2006). Two of

the primary forms of role stressors are role ambiguity and role conflict. With consid-

eration for this motivational example only, role ambiguity will be investigated with it

defined as an inadequacy, being either unclear or inconsistent, of a message to convey

the necessary information to predict the outcome of the focal person’s behavior. Role

ambiguity may result from a failure to know what the role expectations are or of

actions necessary to conform to those expectations (O’Driscoll, Ilgen, and Hildreth,

1992). Relevant to the motivational application, job satisfaction is considered an

attitude to work-related conditions or other aspects of organizational life, including

co-workers, pay, and so forth (Wiener, 1982). Örtqvist and Wincent (2006) found
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that role ambiguity was shown to have a significant negative linear relationship with

job satisfaction (r = −.39, k = 39,Σk
i ni = 9780). Although the authors failed to

specify their meta-analytic technique it seems likely from the material present that

they employed Hunter et al. (1982) technique without corrections.
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Chapter 3

Data Analysis

The organization of this chapter is as follows: Section 3.1 introduces and provides

the data set under investigation. Section 3.2 presents the results of the various meta-

analytic approaches, with discussion into some of the pertinent differences between

methods. Section 3.3 introduces the moderating conditions under investigation; these

include the strength of the correlation coefficient, sample size, and number of studies

composing the meta-analysis. Specific details and discussion concerning the moder-

ating conditions effect on the magnitude of the weighted average effect size, level of

significance, homogeneity, and REVC are presented in Sections 3.3.1, 3.3.2, 3.3.3, and

3.3.4, respectively.

3.1 Description of Data

To motivate the investigation of the differences between meta-analytic approaches

ten studies (k = 10) were selected from the research literature. Specifically, the first

ten studies retrieved that successfully reported the correlation between role ambiguity
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(x) and job satisfaction (y), their corresponding internal consistencies (rxx and ryy),

and sample size (n) were retained for the purpose of this study (Table 3.1).

Table 3.1: Data set
Citation Year Sample Size rxx ryy rxy rCorr
Abdel-Halim (1982) 1982 89 0.670 0.780 -0.570 -0.788
Babin & Boles (1998) 1998 328 0.840 0.920 -0.370 -0.421
Behrman & Perreault, Jr. (1984) 1984 196 0.830 0.960 -0.547 -0.613
Dobreva-Martinova et al. (2002) 2002 1068 0.800 0.920 -0.390 -0.455
Fry & Hellriegel (1987) 1987 187 0.820 0.910 -0.310 -0.359
Glisson & Durick (1988) 1988 319 0.810 0.860 -0.680 -0.815
Johnston et al. (1990) 1990 102 0.807 0.850 -0.355 -0.429
Keenan & McBain (1979) 1979 90 0.840 0.730 -0.480 -0.613
Kemery, Mossholder, & Bedeian (1987) 1987 370 0.810 0.930 -0.360 -0.415
ODriscoll & Beehr (1994) 1994 236 0.860 0.860 -0.600 -0.698
Notes: Σk

i = 2985. rxx is the reliability of role ambiguity. ryy is the reliability of
job satisfaction.

3.2 Results

Table 3.1 was analyzed employing two meta-analytic approaches. One approach

was that endorsed by Hedges and Olkin (1985) which provides estimates for both

the fixed effect (HO FEM) and random effect (HO REM) models (Appendix A).

The second approach was that endorsed by Hunter et al. (1982). This approach

was conducted without correcting for artifacts (Hunter and Schmidt (1990) refer

to this as a bare-bones analysis (HSJ BB)) along with a variant correcting for the

artifact of attenuation (HSJ Corr)(Appendix B). Thus, four different meta-analyses

were conducted for comparative purposes being that of HO FEM, HO REM, HS JBB,

and HJS Corr (Table 3.2).
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Table 3.2: Meta-analytic estimates by approach
Approach z r s.e. LCB UCB |Zsig| Q χ2 REVC
HO FEM -0.488 -0.453 0.018 -0.481 -0.423 26.528 72.387
HO REM -0.516 -0.474 0.056 -0.556 -0.385 9.161 0.026
HSJ BB -0.444 0.036 -0.515 -0.373 34.142 59.953
HSJ Corr -0.522 0.045 -0.611 -0.433 59.953 115.900
Note: LCB = 95% lower confidence bound. UCB = 95% upper confidence bound.

Several insights may be taken from Table 3.2. Results showed only minimal differ-

ences between HO FEM (z = −.488) and HSJ BB (r = −.444). This is as expected as

by Hunter and Schmidt (1990) admission their technique parallels Hedges and Olkin

(1985) fixed effect model. However, within the individual approaches large differences

occur. For instance, results showed a substantial difference in the weighted average

effect size between HO FEM (z = −.488) and HO REM (z = −.516). This is a result

of the incorporation of the REVC into the revised weight in (2.5). In addition, results

demonstrate a substantial difference in the weighted average effect size between HSJ

BB (r = −.444) and HSJ Corr (r = −.528). This is a direct result of the correction

of rxy√
rxx
√
ryy

imposed on HSJ Corr. In cases of perfect reliability in which both rxx and

ryy equal 1, rxy√
rxx
√
ryy

equals to rxy. However, if unreliability is present in x and/or y

then correcting an unreliability artifact results in an increase to the magnitude of the

weighted average effect size.

There was also large variations in the standard error between models, and corre-

spondingly their confidence intervals and magnitude of the z − value (i.e.|zsig|). A

major disparity was the difference between HO FEM (s.e. = .018) and HO REM

(s.e. = .056) which is a direct result of the REVC being incorporated into the weight

of the HO REM standard error (2.5). Another disparity arises between HSJ BB
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(s.e. = .036) and HSJ Corr (s.e. = .045). This is a result of utilizing the corrected

weighted average effect size, opposed to the simple weighted average effect size in

2.1.5. Thus, the greater artifact correction imposed the higher the standard error.

Homogeneity is assessed through χ2, which in general is measuring the weighted

sum of squares of the effect size about the weighted mean effect size. Table 3.2 showed

that there are large difference in the χ2 values between HO FEM (χ2 = 72.387), HSJ

BB (χ2 = 59.953), and HSJ Corr (χ2 = 115.900). These differences are partially a

result of the variances used to impose the weight on the χ2. Specifically, while HO

FEM employs the reciprocal of the inverse weight of (ni − 3) in (2.3) the Hunter et

al. (1982) approach uses 1
(1−r2)2

in (2.7).

3.3 Potential Moderators

The characteristics of Table 3.1 were manipulated to investigate the effect of the

magnitude of correlation coefficient (r), size of the sample (n), and the number of stud-

ies included in the meta-analysis (k) on various characteristics of the meta-analyses.

One manipulated condition was the effect of the magnitude of the correlation prior to

integration. To investigate this influence each meta-analytic technique was conducted

using r+ .15, r, and r− .15. Note that ±.15 was selected only with considerations of

not violating the natural range of correlation coefficients or reversing the direction of

the correlation coefficient. Furthermore, the correlation between role ambiguity and

job satisfaction is negative, thus r − .15 results in a stronger and r + .15 a weaker

strength correlation. A second manipulated condition was to investigate the effect of

sample size on meta-analytic estimates. To do so, the sample size of each study was

either doubled (n× 2) or tripled (n× 3) depending on condition. The final manipu-
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lated condition was to investigate the effect of the number of studies on meta-analytic

estimates. This was done by doubling (k × 2) or tripling (k × 3) the data set (Table

3.1) depending on condition. One caveat is that to examine the influence of the num-

ber of studies included in the meta-analysis on REVC, k was manipulated in (2.4) by

multiplying the value by 1, 2, or 3 depending on condition. Results for HO FEM, HO

REM, HSJ BB, and HSJ Corr are located in Tables 3.3, 3.4, 3.5, 3.6, respectively.

Table 3.3: Hedges and Olkin (1985) Fixed Effect Model

Database r s.e. LCB UCB |Zsig| Q

Table 3.1 -0.453 0.018 -0.481 -0.426 26.528 72.387

r - .15 -0.610 0.018 -0.632 -0.587 38.535 132.590

r + .15 -0.299 0.018 -0.331 -0.266 16.753 51.454

n x 2 -0.453 0.013 -0.473 -0.432 37.623 145.587

n x 3 -0.453 0.011 -0.469 -0.436 46.122 218.787

k x 2 -0.453 0.013 -0.473 -0.432 37.516 144.775

k x 3 -0.453 0.011 -0.469 -0.436 45.948 217.162
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Table 3.4: Hedges and Olkin (1985) Random Effect Model

Database r s.e. LCB UCB |Zsig| REVC

Table 3.1 -0.474 0.056 -0.556 -0.385 9.161 0.026

r - .15 -0.632 0.076 -0.713 -0.536 9.887 0.051

r + .15 -0.320 0.048 -0.402 -0.234 6.932 0.018

n x 2 -0.475 0.030 -0.520 -0.428 17.184 0.028

n x 3 -0.475 0.030 -0.520 -0.429 17.294 0.029

k x 2 -0.474 0.0380 -0.530 -0.415 13.596 0.023

k x 3 -0.474 0.031 -0.520 -0.427 16.897 0.023

Table 3.5: Hunter, Schmidt, and Johnson (1982) Bare-bones Approach

Database r s.e. LCB UCB |Zsig| χ2

Table 3.1 -0.444 0.036 -0.515 -0.373 34.142 59.953

r − .15 -0.594 0.036 -0.665 -0.523 45.680 92.252

r + .15 -0.294 0.036 -0.365 -0.223 22.604 46.310

n× 2 -0.444 0.036 -0.515 -0.373 34.142 120.137

n× 3 -0.444 0.036 -0.515 -0.373 34.142 180.321

k × 2 -0.444 0.025 -0.494 -0.394 34.142 119.905

k × 3 -0.444 0.021 -0.485 -0.403 34.142 179.858
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Table 3.6: Hunter, Schmidt, and Johnson (1982) Corrected for Attenuation

Database r s.e. LCB UCB |Zsig| χ2

Table 3.1 -0.522 0.045 -0.611 -0.433 25.280 115.895

r − .15 -0.672 0.045 -0.761 -0.583 32.545 203.910

r + .15 -0.372 0.045 -0.461 -0.283 18.014 82.637

n× 2 -0.522 0.045 -0.611 -0.433 25.280 232.292

n× 3 -0.522 0.045 -0.611 -0.433 25.280 348.689

k × 2 -0.522 0.032 -0.585 -0.459 25.280 231.790

k × 3 -0.522 0.026 -0.573 -0.470 25.280 347.686
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3.3.1 Effect Size

Figure 3.1 illustrates the effect of the strength of individual correlation coefficients

on the weighted average effect size. Conditions were investigated by artificially manip-

ulating the strength of the coefficients by ±.15 for each meta-analysis. As expected,

the weighted average effect size increased or decreased based on the condition (-.15

and +.15, respectively).

Figure 3.1: The effect of the magnitude of r on the weighted average effect size

While sample size effects weights of individual effect sizes prior to integration a

simple proportional increase across all studies does not. Figure 3.2 demonstrates

that the weighted average effect size is invariant to proportion changes in sample

size. Similarly, Figure 3.3 demonstrates that if all else remains constant, a simple

proportional increase in the number of studies does not influence the weighted average

effect size.
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Figure 3.2: The effect of sample size on the weighted average effect size

Figure 3.3: The effect of the number of studies on the weighted average effect size

3.3.2 Significance of Effect Size

Figure 3.4 shows that as the strength of the correlation coefficients increase so

does the magnitude of the standard normal z -score. An increase in the magnitude of
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weighted average effect size results in high magnitude z -score as the weighted average

effect size is placed in the Zsig numerator for both Hedges and Olkin (1985) in (2.2)

and Hunter et al. (1982) in (2.6) approaches. However, HO REM increases at a

slower rate due to the incorporation of the REVC into random effects inverse weight

in (2.4).

Figure 3.4: The effect of the magnitude of r on |Zsig|

Figures 3.5 and 3.6 show that the Hunter et al. (1982) approach is invariant under

proportional increases in sample size and number of studies in the meta-analysis. In

contrast, the Hedges and Olkin (1985) approach is influenced, with HO FEM to a

greater extent than HO REM. This is a result of differences in the standard error

terms in the fixed effect (2.3) and random effect (2.5) models.
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Figure 3.5: The effect of sample size on |Zsig|

Figure 3.6: The effect of the number of studies on |Zsig|
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3.3.3 Homogeneity of Effect Size

Hedges and Olkin’s (1985) Q statistic is a χ2 test that assesses for consistency of

effect sizes. When the χ2 is significant, a random effect model is statistically justified.

While not inherently clear in the original formula (2.3), the computational formula

Q = Σ(wiz
2
i )−

(Σwizi)
2

Σwi
(3.1)

conveys that the Σ(wiz
2
i ) term increases at at faster rate than the (Σwizi)

2 term for

stronger correlation coefficients given a constant weight. Thus an increase in the

strength of the correlation coefficient results in larger χ2 values.

Correspondingly, Hunter et al. (1982) provide a method to test for systematic

variation in effect sizes employing a χ2 test in (2.7). Figure 3.7 illustrates that ho-

mogeneity decreases as the strength of the correlation coefficients increases. This is

a direct result of the (1 − r2)2 term in (2.7). Thus, an increase in the magnitude of

the weighted average effect size results in larger χ2 values.

Figure 3.7: The effect of the magnitude of r on χ2 value
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Figures 3.8 and 3.9 both emphasize that the χ2 is a summative statistic. Thus,

increases in sample sizes or the number of studies decreases homogeneity of the mea-

sure.

Figure 3.8: The effect of sample size on χ2 value

Figure 3.9: The effect of the number of studies on χ2 value
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3.3.4 Random Error Variance Component

Table 3.4 shows that the REVC is sensitive to manipulations to the strength of

the correlation coefficient. An increase in the strength of the coefficients was shown to

result in a substantial increase in the REVC (value for r+.15 was .018, r was .026, and

r − .15 was .051). This result holds true for Fisher’s r-to-z transformation as higher

magnitude values are increased at a greater rate under a standard normal distribution

than r. However, this finding may not hold for other potential transformations such

as those proposed by Hedges and Olkin (1985). Proportional increases in sample size

were shown to only negligibly increase the REVC (value for n×1 was .026, n×2 was

.028, and n×3 was .029). In contrast, results showed a negative relationship between

the number of studies included in the meta-analysis and REVC (value for k × 1 was

.026, k × 2 was .022, k × 3 was .018). This result conforms to expectations given in

(2.4).
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Chapter 4

Discussion

The purpose of this study was to investigate and compare two popular meta-

analytic approaches. In general, the results of this study provide two insights to

practitioners. First is that the selection of meta-analytic technique does have a direct

impact on one’s findings. For instance, the differences between HO FEM, HO REM,

HSJ BB, and HSJ corr were -.453, -.475, -.444, and -.522, respectively. Unfortunately

the second realization is that there is no “correct” methodology. It is up to the an-

alyst to investigate the nature of the constructs and measures under consideration

and make a subjective judgement which technique is best suited to the circumstance.

For instance, if one is dealing with scales believed to be unduly influenced by arti-

facts, then a Hunter et al. (1982) approach imposing corrections may be the most

appropriate. However, if information concerning those artifacts is unavailable, then

another technique may be more appropriate. Even within a single approach, such

as Hedges and Olkin (1985), there are multiple transformations possible to correct

for biasness depending on the characteristics on the data set. Thus, both across and

within different meta-analytic techniques multiple decisions must be made.
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A primary goal of this study was to investigate how manipulating the character-

istics of a meta-analysis data set effects estimates on a “real” data set. While the

realism of the data set adds value, it comes at a cost, as the data set was artificially

manipulated in order to investigate topics of interest. For instance, to investigate

the effects on an increased data set (i.e. k × 1, k × 2, k × 3) the initial data set

was simply doubled or tripled. While this did increase k technically the homogeneity

of the effects becomes convoluted due to violations concerning the independence of

observations. Yet, other methods have their own drawbacks with no single approach

free from their own inherent weaknesses.
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Appendix A

Hedges and Olkin (1985) SAS

Macro (Brannick, 2013)

%MACRO Hedges(es,w,dsn=_last_,print=raw) ;

********************************************************************

* When using this macro, the default is the

* effect size d (or g) which are not transformed

* for the analysis. The results are printed by default

* in whatever metric you input.Therefore, if you input

* d, you are good to go. But if you input *log transformed*

* data and you want results in the original metric, put

* Print = EXP in the call statement, e.g., %Hedges(es,w, print=EXP).

* If you input *Fisher z transformed* data and you want

* original metric output, put Print=BKR to get it back to r.

********************************************************************

*Note that the variance and other statistics

*except the means and confidence intervals

*reported by the program will still be in the transformed metric,

*even though the confidence intervals will be in the original metric.

40



*You cannot convert tau or tau squared into the original metric, only

*the interval resulting from the application of tau.

**********************************************************************;

proc iml;

use &dsn ;

read all var{&es} into es where(&es^=. & &w^=.) ;

read all var{&w} into w where(&es^=. & &w^=.) ;

k = nrow(es) ;

df = k - 1 ;

***********************************

* Fixed effects

***********************************;

*mean effect size;

mes = sum(es#w)/sum(w);

*standard error of the mean Fixed;

sem = sqrt(1/sum(w));

*lower bound for the mean Fixed;

les = mes - 1.95996*sem;

*upper bound for the mean Fixed;

ues = mes + 1.95996*sem;

* z for mean Fixed;

z = mes/sem ;

* p value for mean Fixed;

pz = (1 - (.5+erf(abs(z)/sqrt(2))/2))*2 ;

* maximum value of the effect sizes;

maxes = max(es) ;

* minimum value of the effect sizes;

mines = min(es) ;

**********************************

* random effects
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**********************************;

*weighted sum of squares, Q;

q = sum((es#es)#w) - sum(es#w)#sum(es#w)/sum(w);

wsd = sqrt(q*w[+,]**-1) ;

* p value for Q;

pq = 1-probchi(q,df) ;

*T-squared (estimated tau-squared;

Tsquare = (q - df)/(w[+,]-sum(w#w)/w[+,]) ;

* set to zero if less than zero;

if Tsquare<0 then ; do ; Tsquare = 0 ; end ;

* compute random effects weights;

wre = 1/(1/w + Tsquare) ;

* Mean ES Random;

mesre = sum(es#wre)/sum(wre) ;

* Standard error of the mean Random;

semre = sqrt(1/sum(wre)) ;

* Variance of the mean Random;

VmRE = semre#semre;

* Lower bound for the mean Random;

lesre = mesre - 1.95996*semre ;

* Upper bound for the mean Random;

uesre = mesre + 1.95996*semre ;

* z test for the mean Random;

zre = mesre/semre ;

*p value for the test of the H0: mean is zero, Random;

pzre = (1 - (.5+erf(abs(zre)/sqrt(2))/2))*2 ;

* I squared;

Isquare = ((q-df)/q)#100;

* T or estimated tau;

tau = sqrt(Tsquare);
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* sums of weights;

sw1 = sum(w);

sw2 = sum(w#w);

sw3 = sum(w#w#w);

* scaling factor;

C = sw1-(sw2/sw1);

A1 = df+2#(sw1-sw2/sw1)#Tsquare;

A2 = (sw2-2#(sw3/sw1)+(sw2#sw2)/(sw1#sw1))#(Tsquare#Tsquare);

* for computing CI for REVC;

A = A1+A2;

B = .5#(log(q)-log(df))/(sqrt(2#q)-sqrt(2#df-1));

b1=1-(1/(3#(df-1)#(df-1))); b2 = 2#(df-1)#b1; b3 = sqrt(1/b2);

* for computing CI for REVC;

if q <= (df+1) then B = b3;

L = exp(.5#log(q/df)-1.96#B);

U = exp(.5#log(q/df)+1.96#B);

* lower bound for tau squared;

LLtsq = (df#(L#L-1))/C;

if LLtsq < 0 then LLtsq =0;

* upper bound for tau squared;

ULtsq = (df#(U#U-1))/C;

if ULtsq < 0 then Ultsq =0;

* lower bound for tau;

LLtau = sqrt(LLtsq);

* upper bound for tau;

ULtau = sqrt(ULtsq);

********************************

* prediction interval

********************************;

dist = tinv(.975,(df-1));
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LLpred = mesre - dist#sqrt(Tsquare+VmRE);

ULpred = mesre + dist#sqrt(Tsquare+VmRe);

%if %upcase(&print) = EXP %then

%do;

mes = exp(mes) ;

les = exp(les) ;

ues = exp(ues) ;

sem = . ;

mes_re = exp(mes_re) ;

les_re = exp(les_re) ;

ues_re = exp(ues_re) ;

semre = . ;

print ’means and CIs ONLY converted from log to original’;

%end;

%if %upcase(&print) = BKR %then

%do;

mes = (exp(2#mes)-1)/(exp(2#mes)+1);

les = (exp(2#les)-1)/(exp(2#les)+1) ;

ues = (exp(2#ues)-1)/(exp(2#ues)+1) ;

mesre = (exp(2#mesre)-1)/(exp(2#mesre)+1);

lesre = (exp(2#lesre)-1)/(exp(2#lesre)+1) ;

uesre = (exp(2#uesre)-1)/(exp(2#uesre)+1) ;

LLpred = (exp(2#LLpred)-1)/(exp(2#LLpred)+1) ;

ULpred = (exp(2#ULpred)-1)/(exp(2#ULpred)+1) ;

print ’means and CIs ONLY converted from z to r’;

%end;

print ’-------------- Distribution Description --------------’;

mattrib k label={"No. of obs."} maxes label={"Max Obs."}

mines label={"Min Obs."} wsd label={"Weighted SD"};

print k mines maxes wsd [format=12.5];
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print " ";

print ’-------------- Homogeneity Analysis --------------’;

mattrib df label={"df"} pq label={"p"} ;

print q [format=12.5] df pq [format=12.5];

print Isquare [rowname="Proportion of observed variance due to random effects = "];

print Tsquare [rowname="Random effects var. component = "];

print ’Lower and Upper bounds for tausquared’;

print LLtsq ULtsq;

print tau [rowname="Standard deviation of random effects = "];

print’Lower and Upper bounds for tau’;

print LLtau ULtau;

print ’Lower and Upper Bounds for 95 percent Credibility (Prediction) Interval’;

print LLpred ULpred;

print " ";

print ’-------------- Fixed & Random Effects Model --------------’;

fixed = mes || sem || les || ues || z || pz ;

random = mesre || semre || lesre || uesre || zre || pzre ;

model = fixed // random ;

mattrib model rowname=({’Fixed’, ’Random’})

colname=({’Mean’ ’SE’ ’-95%CI’ ’+95%CI’ ’z’ ’p’})

label={"Model"};

print model [format=10.5];

quit;

%MEND Hedges;

run;

%Hedges(es,w,print=BKR);

run;
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Appendix B

Hunter, Schmidt, and Jackson

(1982) SAS Syntax (Brannick,

2013)

data d1;

input r n;

cards;

.25 100

.30 250

.20 200

.40 150

proc print;

proc iml;

*Schmidt and Hunter Bare Bones;

**************************************************;

use d1;

read all into x;
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obsr = x[,1]; *observed correlations;

n = x[,2]; *sample size N;

k = nrow(X);

sumn=n[+]; *sum of N;

aven = sumn/k;

*print x;

nr= obsr‘*n; *sum weighted r;

aver=nr/sumn; *weighted mean;

varr1= obsr - aver; *deviation from weighted mean;

varr2=n‘* varr1##2; *sum weighted squared deviations;

varr=varr2/sumn; *weighted variance of obs r (s-squared sub r);

samperr = (1-aver**2)**2/((sumn/k)-1); *sampling error variance;

resr=varr-samperr; *residual variance (variance of rho);

if resr < 0 then resr = 0; *keep boundary on residual variance;

sdrho=resr**.5; *print sdrho;

CI95L = aver-1.96#sqrt(varr/k);

CI95U = aver+1.96#sqrt(varr/k);

CR95L = aver-1.96#sqrt(resr);

CR95U = aver+1.96#sqrt(resr);

********************************************;

Print ’Number of studies is’ k;

Print ’Average sample size is’ aven;

Print ’Estimated population mean is’ aver;

Print ’Observed Variance is’ varr;

Print ’Sampling Error Variance is’ samperr;

Print ’SDrho is’ sdrho;

Print ’95 percent confidence interval for mean is’ CI95L CI95U;

Print ’95 percent credibility interval is’ CR95L CR95U;

quit;

run;
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