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ABSTRACT 

 Salt marshes are valuable ecosystems that are susceptible to habitat loss due to 

changes in sea level and coastal flooding, and there is growing interest in obtaining 

accurate habitat and elevation maps for these areas.  Remote sensing techniques such as 

Light Detection and Ranging (LIDAR) can produce digital elevation models (DEMs), but 

the accuracy of LIDAR in salt marshes is limited by a combination of sensor resolution, 

instrument errors, and poor laser penetration in dense vegetation.  I assessed the accuracy 

of a LIDAR-derived DEM for the salt marshes surrounding Sapelo Island, GA using real 

time kinematic (RTK) GPS.  These observations were used to develop and validate 

species-specific correction factors for ten marsh cover classes, which ranged from 0.03 to 

0.25 m.  In order to apply these corrections to the 13 km2 study site, I classified 

hyperspectral imagery by cover class and combined this information with elevation in a 

decision tree.  This produced both an accurate habitat classification (nine salt marsh 

habitat classes were mapped with a 90% overall accuracy) and a corrected DEM (overall 

mean error was reduced from 0.10 ± 0.12 (SD) to -0.003 ± 0.10 m (SD) and root mean 

squared error at the 68% confidence level decreased from 0.15 to 0.10 m) when validated 



with ground truth data.  Finally, I evaluated the use of remote sensing-derived variables 

(DEM elevation, slope, distance metrics) versus field collected edaphic variables (soil 

organic matter, water content, salinity, redox) to develop predictive models of plant 

distributions with both linear discriminant analysis (LDA) and classification and 

regression trees (CART).  Models that used remote sensing variables had accuracies of 

0.78 and 0.79, whereas those for edaphic models were 0.63 and 0.72 for LDA and CART, 

respectively.  Accuracies improved only slightly in the best models which combined 

remote sensing variables and soil organic matter (to 0.82 and 0.83 for LDA and CART, 

respectively), suggesting that remote sensing-derived variables alone can be effective 

predictors of marsh vegetation.  Taken together, these findings show the potential for 

appropriately analyzed remote sensing data for evaluating elevation and habitat in 

marshes. 
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Chapter 1 

INTRODUCTION AND LITERATURE REVIEW 

1. Background 

Salt marshes are valuable ecosystems.  Positioned at the interface between aquatic and 

upland habitats, they provide critical habitat for both aquatic and terrestrial organisms, are sites 

of chemical transformations and detoxification, and protect developed coastal areas from 

shoreline erosion and storms (Chapman, 1974; Mitsch and Gosselink, 2000).  Because they 

are situated in low-lying, intertidal areas with shallow slopes, small topographic differences 

affect water flow, sediment distribution, and the extent and frequency of tidal inundation in salt 

marshes, which in turn affect plant distributions (Gesch, 2009; Sanders, 2007).   There is 

therefore growing interest in obtaining accurate elevation and vegetation maps for these 

areas in order to understand how marshes are affected by anthropogenic and natural 

perturbations such as sea level rise, changes in freshwater and sediment delivery and human 

activities. 

Salt marsh macrophytes exhibit characteristic patterns of vertical zonation 

(Chapman, 1974; Sanchez et al., 1996; Silvestri et al., 2005).  Zonation is typically 

described in terms of elevation relative to the tidal frame, separating the marsh into low, mid 

and high marsh zones based on flooding frequency.  In salt marshes of the Southeastern 

United States Spartina alterniflora is the dominant plant in the low marsh, with taller 

plants found closest to the water.  The mid-marsh zone is also dominated by S. 

alterniflora, with Salicornia virginica (more recently reclassified as as Sarcocornia sp., 
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USDA, 2010), Batis maritima and Distichlis spicata, collectively termed marsh meadow 

or salt meadow, occurring at higher elevations in this zone.  In high marsh areas along the 

upland fringe, where the marsh is inundated only at the highest tides, Juncus roemerianus 

and Borrichia frutescens become the dominant species (Weigert and Freeman, 1990).   

Marsh plant distribution along the gradient from low to high marsh is generally 

explained by the stress-to-competition hypothesis: different species perform best in 

different portions of the marsh, and are generally restricted at low elevations due to 

physiological tolerances and at high elevations by competition (Pennings and Callaway, 

1992; Snow and Vince, 1984).  Elevation is related to the extent and frequency of tidal 

inundation, which in turn affects a number of abiotic parameters, including soil salinity and 

moisture (Adam, 1990; Adams, 1963; Chapman, 1974; Engels and Jensen, 2009; Sanderson et 

al., 2001), nutrient availability (Mitsch and Gosselink, 2000), soil aeration (Chapman, 

1974; Patterson and Mendelssohn, 1991; Ursino et al., 2004), organic matter content 

(Morris and Haskin, 1990) and soil redox potential (Mendelssohn and Morris, 2000; 

Pezeshki, 2001).  As a result of the topographic influence on these variables, even slight 

changes in elevation can affect both the overall extent of marshes and the patterns of 

vegetation within them (Zedler et al., 1999).  Thus, elevation is a useful metric for predicting 

plant spatial patterns (Silvestri et al., 2003; Zedler et al., 1999) and productivity (Mendelssohn 

and Morris, 2000; Morris et al., 2002) in marshes. 

This dissertation is focused on describing both elevation and plant distributions in a 

Southeastern salt marsh near Sapelo Island, Georgia.  The site is located in the Georgia Coastal 

Ecosystems Long Term Ecological Research domain and the Sapelo Island National Estuarine 

Research Reserve.  I had access to both Light Detection and Ranging (LIDAR) and 
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hyperspectral imagery (HSI) of this region, which are remote sensing techniques that can be 

used to provide information on elevation and plant composition, respectively.  I used field-

collected observations of plant composition, real time kinematic (RTK) GPS elevation and 

edaphic conditions to process, classify and validate this imagery and to explore the potential for 

using remote sensing-derived variables to predict plant distributions.  Below I provide an 

overview of remote sensing in salt marshes and the different analytical approaches 

utilized in this dissertation, and introduce my major objectives.   

2. Remote sensing of salt marsh vegetation 

2.1. LIDAR 

Remote sensing is an ideal tool for studying salt marsh environments as it 

provides coverage for large areas that are often inaccessible.  Over the past decade, many 

studies in forested ecosystems have used LIDAR to obtain information about ground 

elevation and vegetation structure (Brock and Purkis, 2009; Lefsky et al., 2002; 

MacMillan et al., 2003).  LIDAR is a remote sensing technology that measures the 

distance between the sensor and a target surface by determining the time elapsed between 

the emission of a laser pulse and the arrival of the reflection of that pulse at the sensor’s 

receiver (Wehr and Lohr, 1999).  LIDAR can quickly collect dense point clouds of 

discrete point data with X, Y and Z coordinates over large areas, and can be used to 

describe surface topography and vertical structure of all features above the ground 

surface.  LIDAR has been successfully used as an aid for mapping both vegetation and 

ground elevation in forest ecosystems where there is a large distance between the ground 

and canopy layers (Lefsky et al., 2002; Ritchie, 1996).  LIDAR data is often filtered to 

produce a first surface or Digital Surface Model (DSM) (interpolated from the first 
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return) and a bare earth digital elevation model (DEM) from the last return with 

vegetation and man-made features removed.   

LIDAR has been used with mixed success in salt marsh environments, as it tends 

to overestimate marsh ground elevations and has required a correction factor (Montane 

and Torres, 2006; Rosso et al., 2006).  Numerous investigators have found that LIDAR 

was unable to penetrate the dense marsh vegetation canopy and that accuracies vary for 

different species, making the calculation of vegetation height difficult (Rosso et al., 2006; 

Sadro et al., 2007).  Moreover, the same studies found LIDAR errors increase as 

vegetation density and heights increase and are species-specific.  The LIDAR systems 

used in these studies recorded only 2 returns (the first return is reflected from the top of 

the canopy, while the last return is from the ground) and had low pulse rates frequencies 

(PRF) of 16 kHz-30 kHz.  PRF is the number of emitted pulses per second and is one of the 

LIDAR system parameters that determines the laser point density.  As PRF increases, point 

density increases, thereby increasing the probability that a laser pulse will intercept a canopy 

gap and reach the ground.  LIDAR-derived DEM errors could be reduced by increasing the 

LIDAR point density and PRF.  A new generation of LIDAR systems has PRF of up to 

167 kHz, making accurate measurements of ground elevations and vegetation height 

promising. 

2.2. Hyperspectral Imagery 

Although LIDAR can measure surface elevations and can be used to indicate 

different size categories of vegetation, it is unable to identify species.  LIDAR only 

receives spectral information at one wavelength in the near infrared (NIR) and is 

therefore unable to sense pigment absorbance and reflectance properties of plants that 
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occur in the visible portion of the electromagnetic spectrum.  Therefore, to provide 

information on species composition LIDAR must be used in combination with visible 

wavelengths (Campbell, 2006).  HSI in the visible and NIR portion of the 

electromagnetic spectrum has been shown to be suitable for the separation of marsh 

vegetation species by spectral signatures (Artigas and Yang, 2005; Schmidt and 

Skidmore, 2003).  Hyperspectral sensors are ideal for this as they are able to collect a 

high number of continuous spectral bands (sometimes greater than 200 bands) with 

narrow bandwidths and at a fine spatial resolution.  The increased dimensionality of 

hyperspectral data allows for better species differentiation based on subtle differences in 

leaf structure and pigment composition (Hardisky et al., 1986; Schmidt and Skidmore, 

2003), when compared to multispectral imagery with only 3 to 7 spectral bands.  HSI has 

been used extensively in salt marshes to map vegetation patterns (Belluco et al., 2006; 

Silvestri et al., 2003; Wang et al., 2007), monitor invasive species (Gilmore et al., 2008; 

Hirano et al., 2003; Rosso et al., 2006), document erosion and vegetation succession 

(Thomson et al., 2004), measure biomass and species abundance (Lucas and Carter, 

2008; Wang et al., 2007) and detect vegetation change (Klemas, 2011), among other 

applications.   

Two of the most commonly used pixel level HSI classification algorithms for 

vegetation mapping are the maximum likelihood classifier (MLC) and the spectral angle 

mapper classifier (SAM).  MLC is a parametric classifier that assumes that the spectral band for 

each class is normally distributed and calculates the probability that a given pixel belongs to a 

specific class based on variance and covariance measures (Hoffbeck, 1995).  SAM is a 

classification algorithm designed specifically for HSI.  SAM measures the spectral similarity 
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between each unknown pixel and endmember (training class) spectra by calculating the angle 

between the spectra, treating the spectra as vectors in n-dimensional space, with n equal to the 

number of image bands (Kruse et al., 1993).  Overall, MLC has tended to perform better than 

SAM in salt marshes (Belluco et al., 2006; Hunter and Power, 2002), but SAM has been 

successfully applied in some studies (Marani et al., 2006; Marani et al., 2003; Sadro et 

al., 2007) and, therefore, both are evaluated here. 

There are challenges to using HSI in salt marshes, particularly with respect to 

accurately classifying S. alterniflora of varying heights.  First, there is persistent 

confusion within and between similar species.  The different height classes of S. 

alterniflora (short, medium and tall), are commonly confused in HSI classification due to 

their spectral similarity in both the visible and NIR portions of the spectrum (Artigas and 

Yang, 2005; Schmidt and Skidmore, 2003).  The spectral signature in the visible is 

largely controlled by pigment composition, which is the same for all S. alterniflora 

plants, and reflectance in the NIR is a function of air space configuration inside the leaf, 

which is genetically determined and invariant among the different height classes (Danson 

et al., 1992).  Spectral confusion between classes of closely related species has been 

found in previous studies.  Using HSI, Artigas and Yang (2005) were unable to separate 

S. alterniflora from Spartina patens in the visible and NIR in the New Jersey 

Meadowlands.  Another source of error in HSI classifications results from mixed pixels 

that include more than one type of vegetation and/or mud.  Both of these types of mixed 

pixels are observed with S. alterniflora: the different height classes represent a continuum 

and can therefore be found adjacent to one another, and S. alterniflora's erect structure 

and often sparse stem densities means that mud is spectrally mixed with vegetation 
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(Belluco et al., 2006; Silvestri et al., 2003; Thomson et al., 2003).  Silvestri et al. (2003) 

found that S. maritima is often misclassified because it is found in low-lying areas where 

mud and water interfere with its spectral signature.  Thomson et al. (2003) hypothesized 

that microphytobenthos on mud may also cause mud to resemble Spartina spectrally.   

2.3. Data Fusion 

One way to potentially overcome the individual limitations of LIDAR-derived 

DEMs and HSI, and to potentially address the difficulties associated with classifying S. 

alterniflora, is through data fusion.  Data fusion combines data from different sources to 

obtain more information than could be derived from either independently (Pohl and van 

Genderen, 1998).  It can be done at the pixel, feature or decision level.  Pixel level fusion 

is the combination of raw data from multiple sources into a single image.  At the pixel 

level, LIDAR-derived DEMs have been included as a component band with HSI to 

classify coastal habitats, resulting in improved classification accuracies (Chust et al., 

2008; Collin et al., 2010).  Feature level fusion requires the extraction of different 

features from the source data before features are merged together so that fusion takes 

place on features that match some selection criteria.  At the feature level, LIDAR-derived 

DEMs have been used as data layers in object orientated classifications of marsh habitats 

(Brennan and Webster, 2006; Gilmore et al., 2008).  Decision level fusion combines the 

independent results from multiple sources in a GIS to produce a final fused decision 

(Pohl and van Genderen, 1998).  LIDAR-derived DEMs have been fused with land cover 

classifications post hoc to refine and improve classification products (Lu and Weng, 

2007; Pal and Mather, 2003), to extract marsh species elevation ranges and distributions 

(Morris et al., 2005; Sadro et al., 2007), monitor the spread of invasive species (Rosso et 
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al., 2006), model species habitat (Moeslund et al., 2011; Sellars and Jolls, 2007), and 

predict sea level rise impacts (Webster et al., 2006).  The above studies have all used 

image fusion for classification purposes or for extracting additional elevation 

information.  However, none have used elevation data to modify their existing 

classification of salt marshes or used an existing classification map to correct DEM 

elevations at the decision level. 

3. Predictions of salt marsh plant distributions 

3.1. Edaphic versus remote-sensing derived variables 

As described above, numerous edaphic variables can influence where plants are 

found, with soil salinity and flooding (Adam, 1990; Pennings and Bertness, 2001; Pennings et 

al., 2005) being two of the most important.  Since patterns of tidal inundation are the result of 

location in the marsh and topographical variations, elevation and distance metrics have both 

been used as proxies for inundation frequency and duration (Adams, 1963; Deleeuw et al., 

1991; Earle and Kershaw, 1989).  Elevation and distance to mean high water (MHW) are both 

related to flooding frequency and duration, and have been shown to influence species 

zonation patterns (Earle and Kershaw, 1989; Silvestri et al., 2005; Zedler et al., 1999), 

productivity (Mendelssohn and Morris, 2000; Morris et al., 2002) and sedimentation rates 

(Marion et al., 2009; Wijen et al., 2001) in salt marshes.  However, simple correlations of 

elevation and/or distance metrics alone have been unable to fully explain zonation 

(Bockelmann et al., 2002; Silvestri et al., 2005; Zedler et al., 1999).  A major advantage of 

using information on elevation and tidal inundation to predict plant distributions is that data can 

be collected synoptically at the landscape level via remote sensing.   
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3.2. Multivariate analytical approaches 

Most previous studies of salt marsh plant distribution have used multivariate 

statistical approaches such as canonical correspondence analysis (CCA), which 

determines which linear combinations of multiple environmental variables best separate 

vegetation along environmental gradients (Ter Braak, 1987).  CCA has been used in 

Northwestern Atlantic and Mediterranean Sea salt marshes (Batriu et al., 2011; Cacador et al., 

2007; Rogel et al., 2000; Rogel et al., 2001) and in North Sea marshes (Engels and Jensen, 

2009; Suchrow and Jensen, 2010).  These studies have explained 23-95% of the variance in 

species percent cover based on edaphic variables.  Although CCA can be used to better 

understand species relationships along ecological gradients, the technique cannot classify 

vegetation type or predict group membership of new datasets. 

To classify and predict plant distributions, discriminant analysis is a commonly 

used parametric approach.  Linear and quadratic discriminant analysis (LDA and QDA, 

respectively) use a priori knowledge of existing class membership to separate groups 

based on the linear or quadratic combination of predictor variables.  Even though 

ecological data do not necessarily have a linear response along ecological gradients 

(Suchrow and Jensen, 2010), LDA has been applied in salt marshes with classification 

accuracies ranging from 57-70% to predict vegetation zonation in Southwestern Atlantic 

marshes (Isacch et al., 2006; Sanchez et al., 1998) and Southeastern U.S. salt marshes 

(Woerner and Hackney, 1997).   

A nonparametric approach increasingly used as an alternative to discriminant 

analysis for the description and prediction of plant patterns using environmental data are 

classification and regression trees (CART).  Tree based classification methods are 
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valuable data exploration tools that provide straightforward visualization of the data 

structure through binary classification (categorical) or regression (continuous) trees.  

CART has numerous advantages: data do not need to be normally distributed or 

transformed, homogeneity of covariances is not assumed, missing data and combinations 

of categorical and continuous variables are permitted, it captures hierarchical and non-

linear relationships as well as interactions between explanatory variables and is robust to 

outliers (Breiman et al., 1984; De'ath and Fabricius, 2000).  In salt marshes, CART has 

been applied with accuracies that ranged from 54% to 90% to differentiate vegetation in 

relation to changes in upland sedimentation (Byrd and Kelly, 2006) and for invasive 

species habitat modeling (Andrew and Ustin, 2009).  CART has been used to separate 

salt marsh vegetation based on landscape position (Dale et al., 2007) and edaphic 

variables (Lang et al., 2010).   

CART can also be a valuable tool for data exploration and variable selection by 

reducing the number of explanatory variables before training a parametric classifier such 

as LDA, as linear models can become less effective as the complexity of the data increase 

(Breiman et al., 1984; De'ath and Fabricius, 2000; Maindonald and Braun, 2007); 

however, I was unable find any examples of this suggested workflow.  Additionally, there 

are few comparative studies in which two classification methods are applied to the same 

data set.  Although the utility of CART has been compared to linear models in other 

ecosystems (De'ath and Fabricius, 2000; Guisan and Zimmermann, 2000; Pino-Mejias et 

al., 2010; Vayssieres et al., 2000), no such assessment has been carried out for the 

classification of salt marsh vegetation using CART and LDA with the same data set.   
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4. Overview of Dissertation 

The goal of this dissertation was to evaluate tools used to describe both elevation 

and plant distributions in salt marshes using remote sensing data.  In Chapter 2, I 

evaluated high PRF LIDAR data with RTK elevations in order to test its accuracy for 

different vegetation classes.  In Chapter 3, I developed an approach to fuse HSI of the salt 

marshes with the LIDAR-derived DEM to modify both habitat classification and 

elevation information and produced a high accuracy habitat map and corrected DEM of 

the study site. In Chapter 4, I compared the use of edaphic and remote sensing derived 

variables for the prediction of salt marsh plant distributions to determine which variables 

produce the most accurate classifications, and compared the use of discriminant analysis 

and CART to determine which classification technique is best suited for salt marsh data. 
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CHAPTER 2 

ACCURACY ASSESSMENT AND CORRECTION OF A LIDAR-DERIVED SALT 

MARSH DIGITAL ELEVATION MODEL1 
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Abstract 

Accurate habitat mapping in salt marshes is critical for both management and 

conservation goals.  Information on marsh elevation is important to coastal managers, 

particularly for flood inundation mapping, coastal hazard assessments and modeling sea 

level rise.  Elevation is also an important determinant of the frequency and duration of 

tidal flooding, which in turn affects species patterns in marshes: elevation differences of 

less than 10 cm can affect plant distributions and productivity.  Light Detection and 

Ranging (LIDAR) can provide synoptic elevation information in many environments, but 

its accuracy in salt marshes is limited by a combination of sensor resolution (scan angle 

and frequency, pulse width, footprint size), instrument errors (GPS and inertial 

measurement unit errors), and poor laser penetration in dense vegetation.  This means 

that uncorrected digital elevation models (DEM) are generally not accurate enough to 

distinguish elevation changes in salt marsh environments at the resolution that is used to 

determine tidal flooding or vegetation patterns.  In this study, we used a LIDAR-derived 

DEM for the salt marshes surrounding Sapelo Island, GA obtained with a state-of- the- 

art Optech Gemini ALTM LIDAR system with a high laser pulse rate frequency of 125 

kHz and advanced IMU/GPS technology, and evaluated its accuracy with elevations 

collected using real time kinematic (RTK) GPS.  We found that DEM mean vertical 

errors for different cover classes ranged from 0.03 to 0.25 m in comparison to the RTK 

ground truth data, with the larger offsets for taller vegetation.  We developed species-

specific correction factors for ten cover classes and used these correction factors to 

modify the LIDAR-derived DEM in four areas of the study domain where vegetation 

boundaries were mapped directly in the field.  Application of the derived correction 
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factors greatly improved the accuracy of the LIDAR-derived DEM within these areas, 

reducing the overall mean DEM error from 0.10 ± 0.12 (SD) to -0.01 ± 0.09 m (SD), and 

the Root Mean Square Error from 0.16 m to 0.10 m. In the corrected DEM, the ground 

elevations of all vegetation classes were no longer significantly different than the true 

RTK ground elevations.  Our results suggest that these types of corrections can greatly 

improve the accuracy of LIDAR-derived DEMs in salt marshes and further emphasize the 

importance of accuracy assessments before DEM data are used, especially in 

environments such as salt marshes where small differences in elevation can have 

significant effects on inundation patterns and plant distributions. 
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1. Introduction 

Salt marshes are valuable ecosystems.  Positioned at the interface between aquatic 

and upland habitats, they provide critical habitat for both aquatic and terrestrial 

organisms; are sites of chemical transformations and detoxification; and protect 

developed coastal areas from shoreline erosion and storms (Chapman, 1976; Mitsch and 

Gosselink, 2000).  Marshes are situated in low-lying, intertidal areas and have very little 

topographic relief.  Even small topographic differences, however, can affect water flow, 

sediment distribution, and the extent and frequency of tidal inundation in this 

environment.  These topographic variations affect the area and amount of water stored in 

intertidal areas and therefore detailed elevation data are also important for identifying and 

predicting areas vulnerable to storm surges and sea level rise (Blanton et al., 2006; Liu et 

al., 2007a; Sanders 2007).  An incorrect Digital Elevation Model (DEM) can affect the 

output of hydraulic models and the predicted extent of flooding (Gesch, 2009; Raber et 

al., 2007).   

Accurate elevation data is also important for salt marsh habitat mapping. Salt 

marsh plants are found within a narrow elevation range that is often less than 2 m 

(McKee and Patrick, 1988), but even subtle gradients in elevation are associated with 

changes in a range of factors including oxygen availability (Mitsch and Gosselink, 2000), 

soil moisture and porewater salinity (Adams, 1963), soil redox potential (Pezeshki, 

2001), availability of nutrients (Gallagher, 1975), and concentrations of sulfide 

(Mendelssohn and Morris, 2000) and organic matter (Morris and Haskin, 1990), all of 

which contribute to the characteristic patterns of vertical zonation found in salt marsh 

macrophytes.  As a result of the topographic influence on these variables, even slight 
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changes in elevation can affect both the overall extent of marshes and the patterns of 

vegetation within them (Zedler et al., 1999).  Topographic changes of less than 10 cm 

have been shown to significantly influence species patterns in marshes (Callaway et al., 

1990; Silvestri et al., 2005; Suchrow and Jensen, 2010).  Changes in plant distributions 

can alter erosion and accretion rates in marshes, and may serve as an early indicator of 

sea level rise (Kana et al., 1988; Vanderzee, 1988).  There is therefore a need for accurate 

elevation mapping in salt marshes to identify sensitive habitat and predict how marshes 

will respond to perturbations that might alter plant distributions such as sea level rise or 

changes in sediment delivery (Gesch, 2009; Liu et al., 2007a; Sanders, 2007). 

Over the past decade, many studies have used Light Detection and Ranging 

(LIDAR) to obtain information about ground elevation and vegetation structure (Brock 

and Purkis, 2009; Lefsky et al., 2002; MacMillan et al., 2003).  LIDAR is a remote 

sensing technology that measures the distance between the sensor and a target surface by 

determining the time elapsed between the emission of a laser pulse and the arrival of the 

reflection of that pulse at the sensor’s receiver (Wehr and Lohr, 1999).  LIDAR can 

quickly collect dense elevation data over large areas which can be used to describe 

surface topography and vertical structure.  LIDAR has been successfully used as an aid 

for mapping both vegetation and ground elevation in forest ecosystems where there is a 

large distance between the ground and canopy layers (Lefsky et al., 2002; Ritchie, 1996).  

Discrete return or pulsed LIDAR systems are able to discriminate multiple laser hits, or 

returns, for a target and assign each horizontal and vertical coordinates.  In vegetated 

habitats, the first return is often assumed to be reflected from the top of the canopy, while 

the last return originates from the ground or from somewhere within the canopy (Shan 
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and Toth, 2008).  LIDAR data is often filtered to produce a first surface or Digital 

Surface Model (DSM) (interpolated from the first return) and a DEM with vegetation and 

man-made features removed (bare earth from the last return following point cloud 

classification and filtering routines).   

Although LIDAR-derived DEMs can be effective at representing surface 

elevations in some environments, studies examining LIDAR-derived DEM accuracies in 

Spartina alterniflora marshes have reported errors: DEMs have been found to 

overestimate marsh ground elevations with a mean error of 0.07 to 0.17 m, and these 

errors have been found to increase with both increasing vegetation density and plant 

height (Montane and Torres, 2006; Morris et al., 2005; Rosso et al., 2006; Schmid et al., 

2011).  There are several reasons why these errors may occur.  First, systematic 

instrument errors that are associated with sensor and GPS resolution in both the 

horizontal and vertical directions are relatively large compared to the small topographic 

variability in salt marshes, which makes it difficult to detect meaningful differences in 

elevation across the landscape (Hodgson and Bresnahan, 2004; Marani et al., 2006).  If 

the magnitude of sensor error exceeds the elevation differences that are relevant for 

discerning where different plant species may be found, then the value of LIDAR is 

greatly reduced in salt marsh environments. 

A second problem in using LIDAR to produce both DSMs and DEMs in salt 

marshes is related to vegetation structure.  In areas where vegetation height is short, the 

time elapsed between subsequent returns can be too brief to be detected due to LIDAR 

system constraints (Brovelli et al., 2004; Wehr and Lohr, 1999).  Most LIDAR systems 

have a “dead zone” of about 2 m (for a pulse length of 7 ns), meaning that if the 
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vegetation is less than 2 m tall only one laser hit is recorded (Shan and Toth, 2008; 

Nayegandhi et al, 2006).  The consequences of this “dead zone” in salt marshes, where all 

but the tallest plants are < 2 m, is the collection of only one LIDAR return and the 

inability to accurately measure vegetation heights in a DSM (Rosso et al., 2006; Sadro et 

al., 2007).  Even with more than one return, predicted LIDAR-derived DEM elevations in 

marshes can be incorrect because the low, even stature of the vegetation has been found 

to limit laser pulse penetration in the canopy, resulting in the overestimation of marsh 

ground elevations in DEMs (Rosso et al., 2006; Sadro et al., 2007).   

There have been several technological advancements in recent years that may 

allow for improved accuracies of LIDAR-derived elevations, as well as greater laser 

point density and penetration in salt marshes.  First, advancements in onboard inertial 

measuring units (IMU) and kinematic GPS positioning systems minimize GPS errors, 

providing highly accurate laser point positions (X, Y, Z geographic coordinates) that can 

be used to rapidly collect ground truth observations (Ackermann, 1999; Maune et al., 

2007).  Second, within the last 5 years, a new generation of instruments has been 

developed that may have better capabilities for laser penetration due to higher pulse rate 

frequencies (PRF) as has been shown in forested ecosystems (Chasmer et al., 2006).  PRF 

is the number of emitted pulses per second and is one of the LIDAR system parameters 

that determine the laser point density, in addition to flight altitude, flight line swath 

overlap, pulse width, scan rate and angle and laser footprint size (Shan and Toth, 2008).  

As PRF increases, point density increases, thereby increasing the probability that a laser 

pulse will intercept a canopy gap and reach the ground.  The greater point density enables 

better spatial resolution and accuracy for DEMs (Hodgson and Bresnahan, 2004; Liu et 
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al., 2007b).  The salt marsh studies cited above used LIDAR systems with relatively low 

pulse PRFs (ranging from 25 to 83 kHz) and the ability of higher PRFs to penetrate dense 

canopies has not been rigorously tested in salt marshes.   

Our overall goal for this project was to evaluate high PRF LIDAR data, obtained 

in combination with advanced IMU/GPS technology, in order to create accurate digital 

elevation models (DEMs) of low-lying salt marsh environments.  We obtained a DEM of 

the salt marshes surrounding Sapelo Island, GA using a high PRF LIDAR system and 

evaluated its accuracy with elevations collected using real time kinematic (RTK) GPS.  In 

contrast to earlier studies (Montane and Torres, 2006; Morris et al., 2005), which focused 

almost exclusively on S. alterniflora or high marsh species, we developed species-

specific offsets from these data for ten cover classes that span the entire marsh vertical 

range.  To assess the robustness of the correction factors, we selected four areas within 

the study domain where vegetation boundaries were mapped directly in the field, and 

used these as test sites to evaluate and validate our approach for DEM modification.  

Although it is beyond the scope of the current study, this approach can now be applied, in 

combination with a validated vegetation classification map, to the entire DEM domain.    

2. Methods 

2.1. Study Site 

 This study was conducted in the salt marshes surrounding Sapelo Island, Georgia, 

USA (UTM Zone 17 N, 471480 E 3473972 N, Figure 2.1).  The site is located in the 

Georgia Coastal Ecosystems Long Term Ecological Research domain and the Sapelo 

Island National Estuarine Research Reserve.  Tides are semi-diurnal with a mean tide 

range of 2.5 m.  The Duplin River is a 13-km long tidal inlet that flows into Doboy Sound 
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(Blanton et al., 2006).  The river forms the western boundary of Sapelo Island and is 

surrounded by a complex of salt marshes, tidal creeks and back barrier islands.  This 

study included a total of 13.82 km2 of salt marsh habitat in and around the Duplin River.   

Salt marshes along the Eastern U.S. coast are often separated into low, mid and 

high marsh zones based on elevation and flooding frequency, with low marsh areas being 

inundated by the tide daily, high marsh areas being flooded at least every 15 days and 

mid marsh areas subjected to intermediate flooding regimes (Odum and Fanning, 1973; 

Teal, 1962).  S. alterniflora is the dominant macrophyte in these marshes and is the 

primary plant found in the low marsh zone.  For this study, S. alterniflora was classified 

as tall, medium or short, depending on its height (Figure 2.S1).  S. alterniflora that was 

taller than 1 m was considered “tall”.  Tall S. alterniflora can grow up to 2 m tall and is 

found along the regularly flooded creek banks in the low marsh.  S. alterniflora that 

ranged from 0.50 m to 1.0 m tall was considered “medium” and plants < 0.5 m were 

considered “short.”  Medium S. alterniflora dominates the mid-marsh and short S. 

alterniflora is found in the irregularly flooded high marsh.  S. alterniflora typically has 

two canopy layers: a taller dead layer from the previous year, and a shorter, layer of new 

growth (Turner, 1976).   

The high marsh contains a mixed community of Salicornia virginica, Batis 

maritima, Distichlis spicata and short S. alterniflora (Figure 2.S1), collectively termed 

marsh meadow or salt meadow (Wiegert and Freeman, 1990).  Marsh meadow has dense 

canopies, generally less than 0.50 m tall.  At the highest elevations along the upland 

fringe, Juncus roemerianus and Borrichia frutescens become the dominant species  
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(Figure 2.S1).  Canopy heights of J. roemerianus and B. frutescens range from 0.50 m to 

over 2 m tall. 

2.2. LIDAR Data 

The National Center for Airborne Laser Mapping (NCALM) acquired 35 km2 of 

LIDAR data for Duplin River marshes on March 9 and 10, 2009.  Data were acquired 

when plant growth and biomass were seasonally low to maximize laser penetration of the 

vegetation canopy, and during a spring low tide (-1.6 m) to minimize the amount of water 

on the marsh surface.  Water returns are considered unreliable since laser hits may be 

absorbed (due to the strong absorption of the 1047 wavelength by water) or scattered (due 

to specular reflectance) (Maune et al., 2007; Raber et al., 2007).  Data were collected 

with an Optech GEMINI Airborne Laser Terrain Mapper (ALTM) mounted in a twin-

engine Cessna Skymaster flown at an altitude of 800 m above ground level with a swath 

width of 370 m and 50% swath overlap between adjacent flight lines.  The survey was 

conducted with a laser PRF of 125 kHz, a total field of view of 32 degrees and up to 4 

returns.  The high PRF was used to obtain a target point density of 9 laser points m-2 and 

test the ability of the LIDAR sensor to penetrate the vegetation canopy.  Reported vertical 

and horizontal accuracies (root mean squared error (RMSE)) for the sensor are 0.05-0.10 

m and 0.10-0.15 m, respectively (Optech Inc., 2011).  Sensor and over-flight details can 

be found in Table 2.1.   

Two GPS reference stations were used to process differential trajectories of the 

aircraft during the survey.  After GPS processing, the trajectories were combined with 

IMU data to produce a final and complete navigation solution.  In total, 21 flight lines 

were flown, in addition to three perpendicular crossing lines.  Adjacent and crossing 
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flight lines were classified individually to identify ground class points for each line using 

TerraSolid’s TerraScan software (http://terrasolid.fi) and generate a bare earth data set 

using vegetation removal algorithms.  A surface model was then created for each flight 

line using only the ground class points.  To check for any misalignments and systematic 

errors, flight line to flight line calibration was performed by NCALM by analyzing swath 

overlaps and cross-lines using an algorithm in Terra Solid’s TerraMatch software 

(http://terrasolid.fi) that employs a least-squares approach to find the best-fit values for 

system orientation parameters (roll angle, pitch angle, yaw (heading) and mirror-scale 

values) (i.e. bore-sight calibrations).  After the best values for system orientation 

parameters were determined the flight strips were output again using the updated bore-

sight values.  The overlap areas of the flight lines were then checked for systematic 

height differences that can be largely attributed to the fact that LIDAR shot heights are 

directly correlated to the heights of the airplane trajectory, and the height error will vary 

as the GPS constellation changes during the flight.  NCALM determined the height error 

between individual flight line surfaces ranged from 0.01 to 0.07 m.  The height error 

values obtained for individual flight lines were averaged to get the final bore-sight 

correction values and were applied to the entire flight line as a final adjustment.  Absolute 

calibration was done using 662 check points surveyed with a vehicle-mounted kinematic 

GPS over paved roads near the Brunswick, GA airport.  These same road sections were 

surveyed with crossing flight lines using the ALTM and the heights of the check points 

were compared to the heights of the nearest neighbor LIDAR points within a radius of 20 

cm.  The RMSE of height differences was 0.11 m and RMSE at the 95% confidence level 

was 0.20 m.   
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A bare earth LIDAR-derived DEM was produced in SURFER Version 8 

(http://www.goldensoftware.com) at 1.0 x 1.0 m resolution using a kriging algorithm 

with a maximum variance of 0.15 m.  Elevations were all positioned in the NAD 83 

reference frame and projected into UTM coordinate zone 17 N.  Elevations are NAVD 88 

orthometric heights (in meters) computed using the National Geodetic Survey GEOID 03, 

which is 0.203 m above mean sea level (MSL) based on the nearest NOAA tide gauge 

station at St. Simons Island, GA.  The LIDAR-derived bare earth DEM product was used 

in the current analysis to determine vertical accuracy in salt marsh habitats. 

2.3. RTK Survey 

We conducted an initial ground survey of salt marsh ground control point (GCP) 

elevations and plant characteristics coincident with the LIDAR data collection in March 

2009.  We measured plant species presence, percent cover and height in 0.25 x 0.25 m 

quadrats at 50 locations; plots were marked with PVC poles and flagging so that they 

could be resurveyed as necessary.  Plant percent cover in vegetated plots ranged from 

30% to 100% and vegetation height ranged from 0.02 to 1.5 m.  At these same locations 

we surveyed elevations using a Trimble R6 RTK GPS receiver with reported 0.0030 and 

0.020 m vertical and horizontal RMSE at 68% percent confidence level (Trimble, 2009).  

Post-survey analysis of RTK data confirmed these accuracy values with an observed 

vertical RMSE of 0.0037 m, a mean vertical error of 0.010 and mean horizontal error of 

0.012 m (all reported at 68% percent confidence level).  RTK elevations are NAVD 88 

orthometric heights (in meters) computed using the National Geodetic Survey GEOID 03.  

At each GCP location the RTK Rover foot was placed flush with the marsh surface and 

care was taken to leave the sediment and vegetation undisturbed.  Although the tidal 
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stage varied throughout this and subsequent sampling periods, elevations were only 

surveyed when the marsh surface was not inundated to avoid any elevation changes due 

to sediment swelling. 

We carried out a more extensive RTK survey from June to August 2009 to collect 

additional GCPs for eight vegetation cover classes: S. alterniflora (short (SS), medium 

(SM) and tall (ST) height classes), J. roemerianus (JR), B. maritima (BM), D. spicata 

(DIST), S. virginica (SV) and B. frutescens (BF) and two non-vegetated classes 

(intertidal mud (MUD) and salt pan (SALT)).  Intertidal mud consisted of patches of mud 

≥ 1 m2 within the vegetated portion of the salt marsh and did not include mud on creek 

banks at elevations below tall S. alterniflora.  Salt pans were high marsh habitats with 

hypersaline sediments and less than 25% vegetation cover.  The original 50 GCPs were 

re-surveyed to ensure that no change in elevation occurred between the March 2009 

LIDAR acquisition and the summer 2009 RTK survey.  Target RTK sampling locations 

were randomly selected using the ArcGIS 9.3 software program (http://www.esri.com) 

and a vegetation classification of the Duplin River salt marshes created using 

hyperspectral imagery collected in June 2006 (Hladik et al., Unpublished results).  The 

vegetation map enabled us to identify sampling locations based on predicted vegetation 

class prior to the RTK survey.   

We chose target sampling locations for each vegetation class based on the 

hyperspectral classification, which mapped the following marsh cover classes: tall S. 

alterniflora, medium S. alterniflora, short S. alterniflora, S. virginica, B. maritima, J. 

roemerianus, B. frutescens, salt pan and mud.  Sampling locations were uploaded to the 

RTK GPS and in the field we navigated to each site to within 1 m of the target location 
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insofar as that was possible.  The number of RTK points sampled per cover class ranged 

from 35 (D. spicata) to 267 (medium S. alterniflora) (Table 2.2). This range in sampling 

was primarily due to the relative dominance of the various cover classes in the marsh.  

Additional GCPs were also collected opportunistically.  In total, we collected over 1800 

RTK ground elevations within the Duplin River marshes (Figure 2.1) and separated the 

data into training and validation data sets.  75% of the RTK GCPs (N = 1380) were used 

to assess the accuracy of the LIDAR-derived DEM and to calibrate the cover class-

specific correction factors to be used for DEM modification in the four test areas (Section 

2.4).  25% of the RTK GCPs were reserved for a subsequent assessment of the accuracy 

of the modified DEM of the entire domain (not presented here).  Independent RTK 

validation data for the four test areas were collected and are described in Section 2.5. 

We tested for differences in elevation between cover classes using one-way 

ANOVA followed by Tukey’s honest significance test to compare means.  Statistical 

results for all analyses in this study were considered significant when p-value < 0.05.  All 

statistical analyses were done using the open source program R version 2.10.1 

(http://cran.r-project.org/). 

2.4. LIDAR-derived DEM Accuracy Assessment 

We compared ground elevations from the RTK survey to the LIDAR-derived 

DEM elevation for each GCP location throughout the entire study domain (13.82 km2) 

using various error metrics.  For each GCP, the value of the corresponding 1 m2 DEM 

grid cell was extracted using ArcGIS (Spatial Analyst toolbox).  The RTK GCPs from the 

2009 surveys were assumed to be the true observed ground elevations and the elevations 

extracted from the LIDAR-derived DEM were used as predicted elevations.  We used 
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these data to assess the accuracy of the DEM and compute a mean correction factor for 

each cover class.  

To examine the scatter of the LIDAR-derived DEM elevation relative to the RTK 

ground survey elevation, we calculated the mean error, the RMSE, the fundamental 

vertical accuracy (FVA) and 95th percentile errors for each cover class following 

American Society for Photogrammetry and Remote Sensing guidelines (ASPRS Lidar 

Committee, 2004; Maune et al., 2007).  The mean error, or vertical bias, has been used 

previously to quantify the accuracy of LIDAR-derived DEMs in wetland environments 

(Hodgson and Bresnahan, 2004; Montane and Torres, 2006; Morris et al., 2005; Sadro et 

al., 2007; Toyra et al., 2003; Wang et al., 2009) and is a good indicator of vertical offsets 

as compared to the RMSE which does not account for such offsets in the data (Populus et 

al., 2001).  Both the RMSE and the FVA are representative errors for open terrain that are 

flat with no or sparse, low vegetation that conform to a normal distribution of errors.  The 

95th percentile errors are more appropriate for vegetated areas where the distribution of 

errors is non-normal, but are applicable to all cover classes (Maune et al., 2007).  The 

mean error, RMSE, FVA and 95th percentile error are reported here. 

The mean error for each GCP was calculated by subtracting the surveyed RTK 

elevation from the DEM elevation at the x/y coordinate of the GCP (ASPRS Lidar 

Committee, 2004; Maune et al., 2007).  The mean error for each marsh cover class 

comprised the correction factors used in the subsequent DEM modification (Section 2.5).  

The RMSE, as described in Maune et al. (2007), is a common measure of vertical 

accuracy for LIDAR data and is calculated as:  

RMSE = sqrt[∑( zLIDARi - zRTKi)2/n]       (2.1) 
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where zLIDARi is the elevation of the ith GCP in the LIDAR-derived DEM; zRTKi is the ith 

elevation of the ith GCP in the RTK data set; n is the number of GCPs; and i is an integer 

from 1 to n.  The FVA at a 95% confidence level was calculated as RMSE*1.96 (Maune 

et al., 2007).  The 95th percentile errors are the interpolated absolute value of elevation 

errors obtained by dividing the distribution of errors into one hundred groups of equal 

frequency.  The 95th percentile means that 95% of the elevation errors have a value equal 

to or less than the 95th percentile value  (Maune et al., 2007).  We compared the 

calculated RMSE for each cover class to the reported vertical RMSE of the LIDAR 

sensor (0.11 m based on vehicle mounted GPS absolute calibration) to determine whether 

or not the observed RMSE was within the range of instrument error. 

2.5. DEM Correction – Test application 

 To evaluate the utility of modifying the LIDAR-derived DEM using the species-

specific correction factors obtained from the field survey, we selected four small marsh 

areas as test sites where we mapped individual plant communities, representing nine 

cover classes (mud was not included) (Figure 2.2).  Vegetation stands were mapped using 

a high-resolution, differential GPS (Trimble Geo-XH DGPS; http://www.trimble.com) 

with a horizontal RMSE of less than 0.20 m (Figure 2.2).  To enable validation of the 

modified DEM, a new dataset of RTK GCP elevations were collected in the vegetation 

polygons coincident with DGPS mapping.  These RTK data were independent of the 

RTK data used to perform the initial DEM accuracy assessment and to derive the 

correction factors (Section 2.4).   

 The DGPS mapped polygons were brought into ArcGIS 9.3 as shapefiles where 

vegetation areas were edited to smooth boundaries and remove any obviously anomalous 
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data points.  The data table for each polygon shapefile identified the dominant marsh 

cover and its corresponding correction factor quantified from the 2009 RTK survey.  The 

correction factors were the mean error computed for each marsh cover type (see Section 

2.4) and represented the average difference between the DEM and RTK GCP elevations.  

In ArcGIS, the vegetation polygons were converted to raster format using the Polygon to 

Raster tool (Conversion toolbox).   Each polygon was assigned a numeric value as part of 

the rasterization.  For our purpose of DEM modification, each vegetation polygon was 

assigned the corresponding species-specific correction factor.  The end product of the 

Polygon to Raster step was four “correction factor” DEMs, one for each test location, 

with values corresponding to the species-specific correction factors.  The DEM of the 

larger domain was clipped to include only the test location areas, resulting in four 

“unmodified” DEMs.  The “correction factor” DEMs were subtracted from the four 

“unmodified” DEMs using the Raster Math tool in ArcGIS (Spatial Analyst toolbox) to 

produce four “modified” DEMs. 

 We performed accuracy assessments on both the “modified” DEMs and the 

“unmodified” DEMs, using the new RTK elevation validation data set as ground truth.  

Data from the four test sites were aggregated (total area of 0.107 km2) to ensure all 

vegetation classes were represented, and analyzed as one summed unit in all statistical 

analyses (N = 350).  The mean error, RMSE, FVA and 95th percentile errors were 

calculated for each cover class as described above.  The effectiveness of the correction 

factors were determined by comparing mean error, RMSE errors, FVA and 95th 

percentile errors in the modified and unmodified DEMs.  We compared the calculated 

RMSE for each cover class to the reported vertical RMSE of the LIDAR sensor (0.11 m 
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based on vehicle mounted GPS absolute calibration) to determine whether or not the 

observed RMSE was within the range of instrument error.  

3. Results 

3.1. LIDAR Data 

This study employed a new high PRF LIDAR sensor designed to more accurately 

measure salt marsh elevations.  Even with the high point density (obtained point density 

of 9 points m-2) and PRF, the sensor was unable to discriminate ground from vegetation 

and differentially map them for all cover classes.  The majority of the salt marsh only had 

one LIDAR return.  Based on our analyses for the entire domain (N = 1380), a LIDAR-

derived DEM can accurately measure elevations for non-vegetated and vegetated classes 

with a short stature.  The RMSE for D. spicata, short S. alterniflora, intertidal mud, B. 

maritima, S. virginica and salt pan were within the reported vertical RMSE of the LIDAR 

sensor (0.11 m), however, tall S. alterniflora, J. roemerianus, B. frutescens and medium 

S. alterniflora all had RMSEs that exceeded instrument error (see section 3.3).  The fact 

that the mean errors for salt pan and mud flat cover classes were within instrument error 

suggests that the overall LIDAR sensor system calibration and standard LIDAR survey 

corrections were effective.   

3.2. RTK survey 

RTK ground elevations from the 2009 survey of plant species followed the 

expected zonation from the low marsh to the high marsh (Table 2.2).  The species mean 

elevations occurred within a vertical range of 0.87 m, between 0.36 m (tall S. 

alterniflora) and 1.23 m (B. frutescens), with zero being relative to NAVD 88 (0.203 m 

above mean sea level), while elevation differences between adjacent cover classes (RTK 
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Elevation Difference) ranged from < 0.01 m to 0.42 m (Table 2.3).  The three height 

classes of S. alterniflora had significantly (p < 0.05) different elevations from each other, 

within a mean elevation range of only 0.51 m (Table 2.2).  Tall S. alterniflora, medium S. 

alterniflora and B. frutescens were significantly different from all other classes (Tables 

2.2 and 2.3).  However, the elevations of high marsh species overlapped considerably and 

were not significantly different, spanning an elevation range of only 0.15 m (from short 

S. alterniflora to J. roemerianus) (Tables 2.2 and 2.3).  

3.3. LIDAR-derived DEM Accuracy Assessment 

The LIDAR-derived DEM for the entire study domain over-predicted ground 

elevations for all cover classes, in comparison to the RTK ground elevation data, with 

mean errors up to 0.25 m and an overall mean error (Mean) of 0.10 ± 0.11 m (SD) (Table 

2.4).  The LIDAR-derived DEM elevations were significantly different than the RTK 

ground elevations for all cover classes (Table 2.4).  DEM mean overestimation error 

increased with plant height (R2 = 0.44, p < 0.001, Figure 2.S2), ranging from 0.03 m (salt 

pan) to 0.25 m (tall S. alterniflora).  RMSE ranged from 0.05 m (salt pan) to 0.30 m (tall 

S. alterniflora) (Table 2.4). The RMSE for D. spicata, short S. alterniflora, intertidal 

mud, B. maritima, S. virginica and salt pan were within the reported vertical RMSE of 

the LIDAR sensor (0.11 m), however, the overall RMSE, and the RMSE for tall S. 

alterniflora, J. roemerianus, B. frutescens and medium S. alterniflora all exceeded 

instrument error. 

LIDAR-derived DEM errors were greater than the elevation differences between 

many vegetation classes (see Section 3.2).  Mean DEM errors for adjacent cover classes 

(Domain DEM Error (Unmodified)) ranged from 0.03 to 0.25 m, whereas mean elevation 
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differences (RTK Elevation Difference) were < 0.01 to 0.41 m (Table 2.3).  A 

consequence of this is that DEM errors would prevent differentiation among some cover 

classes.  For example, mean errors were equal to, or exceeded, the elevation differences 

between medium S. alterniflora and short S. alterniflora and between J. roemerianus and 

B. frutescens.  These two pairs of cover classes have significantly different elevations 

based on the RTK ground truth data (Table 2.2).  As there was greater overlap in cover 

class elevations in the high marsh (S. virginica, B. maritima, D. spicata) and smaller 

associated errors (Table 2.4), these classes were less affected by LIDAR-derived DEM 

errors.   

3.4. DEM Correction – Test application 

3.4.1. Unmodified DEM 

The LIDAR-derived DEM elevations in the four test sites over-predicted 

elevations and had the same overall mean error (Mean) in comparison to the RTK ground 

elevations as was previously quantified for the larger domain (mean error of 0.10 ± 0.12 

m (SD)), with the amount of overestimation varying by cover class (Table 2.5, Figure 

2.3A).  The unmodified DEM elevations were significantly different than the RTK 

ground elevations for all cover classes except short S. alterniflora and salt pan (Table 

2.5).  Again, tall S. alterniflora had the greatest mean error (0.27 m) and salt pan had the 

smallest mean error (0.01 m, Table 2.5).  RMSE ranged from 0.04 m (salt pan) to 0.31 m 

(tall S. alterniflora) (Table 2.5).  The RMSE for D. spicata, short S. alterniflora, 

intertidal mud, B. maritima, S. virginica and salt pan were within the reported RMSE of 

the LIDAR sensor (0.11 m).  The overall RMSE, as well as the RMSEs for tall S. 

alterniflora, medium S. alterniflora, J. roemerianus and B. frutescens all exceeded 
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instrument error, which is again similar to the results obtained for the larger domain 

(Section 3.3). 

As was found in the larger accuracy assessment (Section 3.3), LIDAR-derived 

DEM errors exceeded differences in elevation between many cover classes.  Mean DEM 

errors for adjacent cover classes (Test Site DEM Error (Unmodified)) ranged from 0.01 

to 0.27 m (Table 2.3).  For example, mean errors were again larger than the elevation 

difference between medium S. alterniflora and short S. alterniflora and the combined 

errors for J. roemerianus and B. frutescens overwhelmed the elevation difference 

between the two classes.  DEM errors had less impact on the differentiation of high 

marsh cover classes compared to cover classes with larger error values.  

3.4.2. Corrected DEM 

 We modified the LIDAR-derived DEM elevations in the four test sites by 

applying the correction factors derived for each cover class (Section 3.3; Table 2.4 

(‘Mean’), Figures 2.3B and 2.4).  DEM modification considerably reduced the overall 

mean error in comparison to RTK elevations across the four sites (-0.01 ± 0.10 m (SD) 

from 0.10 ± 0.12 m (SD), Table 2.5, Figure 2.3B).  Elevation errors associated with the 

taller, dense vegetation classes were greatly decreased: tall S. alterniflora mean error 

averaged 0.05 m in the modified DEMs as compared to 0.27 m in the unmodified DEMs 

and B. frutescens mean error averaged -0.01 m as compared to 0.12 m.  Elevations of the 

remaining cover classes were all slightly under-predicted (< -0.01 to -0.06 m) in the 

modified DEMs, but were not significantly different in comparison to RTK GCPs (Table 

2.5).       
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 The overall RMSE and RMSE for all cover classes in the modified DEMs, except 

tall S. alterniflora (RMSE = 0.18), fell within the reported instrument vertical RMSE 

(0.11 m).  In contrast to the unmodified DEM (Section 3.4.1), mean errors for cover 

classes (Test Site DEM Error (Modified)) ranged from < 0.01 to 0.05 m, which is less 

than or equal to the elevation differences observed between cover classes (RTK Elevation 

Difference, < 0.01 to 0.42 m) (Table 2.3). 

4. Discussion 

4.1. LIDAR Data 

In salt marshes, a few centimeters of elevation are critical in determining flooding 

frequency, and hence accurate elevation data is vital for the modeling of coastal 

hydrology and the potential impacts of sea level rise, as well as the distribution and 

productivity of the marsh plants.  If LIDAR-derived DEMs are to be of use in salt marsh 

studies, they must be capable of detecting these small variations in topography against the 

background of the error signal.    The high PRF LIDAR system used in this study 

overestimated salt marsh ground elevations at our study site at Sapelo Island, GA.  

Although the system performed quite well for most cover classes, it was unable to 

penetrate thick canopy and the unmodified DEM required corrections based on our RTK 

survey data.  Even though the PRF contributed to attaining the high point density (9 

points m-2), the laser hits did not penetrate the canopy or the lower signal-to-noise-ratio 

may have obscured the separation of low vegetation from the ground surface (Hopkinson, 

2006; Shan and Toth, 2008).  There is also a tradeoff between PRF and the energy of the 

emitted pulse: an increase in PRF reduces pulse energy depending on the laser output 

power and could decrease accuracy due to the lower signal-to-noise ratio (Hopkinson, 
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2006; Shan and Toth, 2008).  High PRF LIDAR alone is therefore not a solution for 

deriving accurate DEMs for salt marshes and more attention should be given to 

narrowing FOV and pulse width to better detect closely space returns, decreasing 

footprint size, or improving filtering to minimize misclassification of low vegetation as 

ground.   

There are multiple sources of elevation errors in LIDAR-derived DEMs in 

addition to sensor errors.  Elevation errors can be introduced from the processing of raw 

LIDAR LAS point cloud data.  Classification and filtering routines could introduce 

LIDAR point labeling errors by misclassifying low vegetation as ground points: with 

short, even vegetation, the laser hits may resemble the flat ground surface and be 

classified as such (Gopfert and Heipke, 2006; Hodgson and Bresnahan, 2004).  This was 

likely the case here, as our examination of the raw LAS point clouds showed that the 

laser did not completely penetrate the vegetation canopy and reach the marsh ground 

surface (data not shown).  The interpolation of point clouds to generate a gridded DEM 

may introduce additional elevation error and the various methods (deterministic and 

geostatistical) can produce significantly different representations of a surface (Bater and 

Coops, 2009; Liu, 2008; Maune et al., 2007; Su and Bork, 2006).  In this study the 

interpolation process (geostatistical kriging) actually created a marsh ground surface that 

was lower than the point cloud and reduced the mean error and RMSE based on RTK 

GCPs (data not shown).  Even though the LIDAR-derived DEM marsh ground surface 

was more accurate than the point cloud, there were still substantial errors when compared 

to RTK GCPs.  It is possible that other interpolation techniques, such as the minimum bin 

method (deterministic), may produce a more accurate surface representation (Rosso et al., 
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2003; Schmid et al., 2011), however, an analysis of DEM interpolation methods was 

beyond the scope of this study . 

Full waveform-resolving LIDAR is an advancement in LIDAR technology which 

may produce higher accuracy salt marsh LIDAR-derived DEMs (Doran et al., 2010; 

Nayegandhi et al., 2006; Nayegandhi et al., 2009).  As opposed to discrete return LIDAR 

that only records individual pulse returns, full waveform sensors detect and digitize the 

complete backscattered return waveform and have been shown to be very sensitive to 

variations in vegetation structure (Mallet and Bretar, 2009; Nayegandhi et al., 2006).  The 

absence of a “dead zone” with full waveform LIDAR can produce a better representation 

of vegetation vertical complexity and has been shown to be effective at characterizing the 

ground surface (RMSE = 0.24 m; mean error = -0.05 m) and canopy height (RMSE = 

1.64 m; mean error = -0.22 m) in coastal vegetation communities (Nayegandhi et al., 

2006).  

4.2. RTK Survey 

As in other marshes, we found that vegetation species followed a general zonation 

pattern across the topographical gradient from low to high marsh (Table 2.2).  Observed 

plant distributions corresponded to those described in Weigert and Freeman (1990) for 

Southeastern salt marshes with tall S. alterniflora at lower elevations and J. roemerianus 

and B. frutescens at higher elevations.  The RTK data show that there are subtle, but 

significant, differences in species elevation distributions.  These distributions indicate the 

vertical resolution needed to discriminate amongst vegetation zones (RTK Elevation 

Difference), which ranged from < 0.01 to 0.42 m (Table 2.3). 
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McKee and Patrick (1988) have found that species elevations can vary widely 

among salt marshes.  In a survey of marshes along the Atlantic and Gulf coasts they 

found the mean upper limit of S. alterniflora was 0.17 m and the mean lower limit was -

0.72 m, both in relation to mean high water (MHW).  When expressed in relation to 

MHW, S. alterniflora at our site occupied a higher elevation and broader range, with an 

upper limit of 0.34 m and lower limit of -1.46.  In North Inlet, SC, which is a similar 

setting to the marshes examined here, Morris et al. (2005) reported median elevations (in 

relation to NAVD 88) for short S. alterniflora of 0.349 m, with a range of 0.22 to 0.481 

m.  The elevations in this study (in relation to NAVD 88 which is 0.203 m above MSL) 

were again higher: median elevation of short S. alterniflora averaged 0.87 m (range of 

0.59 to 1.14 m), medium S. alterniflora averaged 0.78 m (range of 0.24 to 1.09 m) and 

tall S. alterniflora averaged 0.38 m (range of -0.67 to 0.85 m in relation to NAVD 88).   

Morris and his collaborators (2002, 2005) have shown that the elevation 

distribution of S. alterniflora in relation to mean sea level can be used to assess marsh 

stability.  Morris et al. (2002) found that each S. alterniflora marsh has an optimal 

elevation for primary production, below which productivity is reduced due to hypoxia 

and above which productivity is reduced by desiccation and salt stress (see Mendelssohn 

and Morris, 2000).  When elevations are greater than the optimum (up to a point), 

marshes are stable against changes in relative sea level, whereas marshes at lower 

elevations are unstable.  The observed elevation range of S. alterniflora in this study 

(mean values of 0.56 to 1.07 m in relation to MSL) suggests that the marshes near Sapelo 

Island will be relatively stable with respect to sea level rise in comparison to marshes 

where the plants are located at lower elevations.  This finding is in agreement with a 
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previous study by Craft (2007), who suggested that Georgia salt marshes are stable based 

on sediment accretion data. 

4.3. LIDAR Accuracy Assessment 

The LIDAR-derived DEM (1 m grid size) for the entire study domain in this study 

over-predicted the ground elevation for every cover class when validated with the RTK 

ground truth data, with an average overall mean error of 0.10 m (RMSE = 0.15 m) (Table 

2.4).  We found that LIDAR-derived DEM overestimation is greatest for the tallest plant 

species (tall S. alterniflora, J. roemerianus, and B. frutescens) and the mean error 

decreases as plant height decreases (Table 2.4).  To determine the cause of DEM error, 

we examined the relationship between plant height and DEM mean error in a separate 

analysis.  Vegetation height had a statistically significant but not strong relationship with 

DEM mean error, explaining 44% of the variation (Figure 2.S2).  Sadro et al. (2007) also 

found a significant, but weak correlation (R2 = 0.18) between vegetation height and DEM 

error.  As plant height could not fully explain DEM error, this suggests that other factors, 

such as stem density, leaf orientation, and biomass are also prohibiting laser penetration 

and contributing to DEM error, in addition to height (Schmid et al., 2011).   

Our results are consistent with previous evaluations of LIDAR-derived DEMs in 

salt marsh ecosystems, which have all found that DEMs consistently overestimate salt 

marsh ground elevations.  In South Carolina S. alterniflora marshes (in areas primarily 

dominated by short and medium S. alterniflora), LIDAR-derived DEMs have been 

shown to overestimate marsh ground elevations with a mean error of 0.07 m (Montane 

and Torres, 2006), 0.11 m (Schmid et al., 2011), and 0.13 m (Morris et al., 2005).  

Although we found that tall S. alterniflora had substantially greater mean errors (0.25 m) 
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than these previous studies, our results (Table 2.4) conform well with these findings for 

short and medium S. alterniflora.  Our RMSE reported for short S. alterniflora is 

comparable to those identified by Morris et al. (2005) and Rosso et al. (2006).  RMSE for 

medium S. alterniflora are in agreement with the RMSE reported by Schmid et al. (2011) 

(0.16 m) and Rosso et al. (2006) (0.17 m).  The RMSE for tall S. alterniflora (0.30 m), 

however, exceeded all previously reported values. 

Relatively few studies have examined LIDAR-derived DEM errors for the other 

marsh species considered here, but in general the RMSE values we found for non-

vegetated and short, high marsh vegetation were considerably less than in other studies 

(Rosso et al., 2006; Sadro et al., 2007; Toyra et al., 2003).  In the high marsh, Schmid and 

others (2011) reported a mean error of 0.30 m (RMSE of 0.37 m) for J. roemerianus, 

0.11 m (RMSE of 0.15 m) for B. frutescens and 0.02 m (RMSE of 0.12 m) for S. 

virginica.  Although the errors reported in this study for B. frutescens and S. virginica 

were comparable, our errors associated with J. roemerianus were considerably less (mean 

error of 0.17 m, RMSE of 0.20 m) than those in the Schmid et al. (2011) study.  The 

RMSE errors reported here for D. spicata and S. virginica, (0.09 and 0.06 m, 

respectively, Table 2.4) are also substantially less than those reported by Sadro et al. 

(2007) (0.18 and 0.17 m) for a California salt marsh.  The differences in quantified errors 

between our study and others is most likely due to differences in sensor characteristics 

(PRF, FOV, pulse width, footprint size) and site specific variations in plant height and 

density. 

Overall, the species-specific errors observed here are larger than the elevation 

variation found between significantly different adjacent vegetation zones (Tables 2.3, 2.4 
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and 2.5).  In particular, LIDAR-derived DEM errors exceeded the elevation differences 

between medium S. alterniflora and short S. alterniflora and between J. roemerianus and 

B. frutescens.  As medium and short S. alterniflora constitute almost 80% of the Duplin 

River marshes (Hladik et al., Unpublished results), the inability of LIDAR-derived DEMs 

to distinguish between the two vegetation classes is noteworthy.  This is important 

because medium and short S. alterniflora can have significantly different biomass and 

productivity values (Morris and Haskin, 1990; Turner, 1976).  Additionally, corrected 

elevations are required for accurate hydrological modeling of flooding frequency and 

coastal hazard assessments (Gesch, 2009; Raber et al., 2007). 

4.4. DEM Correction-Test Application 

The application of the derived correction factors and subsequent DEM 

modification in the four test areas were successful and greatly improved the accuracy of 

the LIDAR-derived DEM in those locations, reducing the overall mean DEM error from 

0.10 to -0.01 m and the RMSE from 0.16 to 0.10 m.  Applying the species-specific 

correction factors (ranging from 0.03 to 0.25 m) brought all DEM elevations in 

agreement with their true RTK elevations (Table 2.5, Figures 2.3B and 2.4).  DEM 

correction was particularly visible in areas surrounding creek banks and creek heads 

(Figure 2.4), where medium and tall S. alterniflora are typically found.  The slight 

negative value for the overall mean error means that the correction factors produced a 

DEM surface that was slightly lower than RTK elevations, but well within the instrument 

error, for all classes except tall S. alterniflora.  Notably, the reduced errors in the 

modified DEM are less than the elevation differences between vegetation classes, making 

the corrected DEM appropriate for use in salt marsh studies.   
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Using a similar approach in a salt marsh in California composed mostly of high 

marsh plants, Sadro et al. (2007) reported improved LIDAR-derived DEM accuracies for 

extracted elevation values following a species-specific correction in combination with an 

AVIRIS classification and found no mean difference between survey and extracted 

LIDAR-derived DEM elevations after correction and an overall RMSE of 0.06 m.  It 

should be noted that Sadro et al. (2007) did not modify the actual DEM, but rather 

adjusted extracted elevations according to species-specific offsets.  Another approach to 

correcting DEMs is custom classification (analysis of LIDAR LAS point clouds) and 

generation of a new LIDAR-derived bare earth DEM surface.  Although custom 

classification requires more advanced software and expertise, it has been successfully 

applied in salt marshes.  Wang et al. (2009) used statistical techniques to better 

differentiate ground and canopy returns in marsh vegetation.  Other authors have 

experimented with various DEM interpolation algorithms to produce the most 

representative ground surface (Schmid et al., 2011; Toyra et al., 2003).  The errors in 

these efforts, however, were generally greater than, or comparable to, those reported here.   

5. Conclusion 

This study demonstrates that, despite advancements in LIDAR sensor technology, 

state-of-the-art high PRF LIDAR as applied here, does not produce accurate DEMs of 

salt marsh habitats and is of limited utility without correction.  The magnitude of LIDAR-

derived DEM error was greatest for taller vegetation, however, plant height could not 

fully explain errors and suggests that the relationship between DEM error and other 

vegetation characteristics, such as stem density, leaf orientation and biomass should be 

investigated.  We were successfully able to correct the LIDAR-derived DEM in four test 
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areas based on high accuracy RTK observations.  We achieved large reductions in mean 

error, which ranged from 0.01 to 0.27 m for ten cover classes, spanning the entire marsh 

elevation gradient, which allowed us to produce improved DEM elevations for four test 

sites within our study area.  Post-correction accuracy assessments showed that our 

corrections were robust, with errors ranging from -0.03 to 0.05 m, and are appropriate for 

the correction of DEM elevations in these salt marshes.  Based on these results, we can 

now correct the larger DEM of the whole Sapelo study area using a high accuracy 

hyperspectral classification to delineate cover classes.  This research underscores the 

importance of undertaking accuracy assessments before LIDAR-derived DEM data are 

used, particularly for low-lying habitats such as salt marshes where small differences in 

elevation are important for assessments of flood inundation, modeling sea level rise and 

habitat mapping.  
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Table 2.1.  LIDAR sensor system specifications for the Optech Gemini ALTM used by 
the National Center for Airborne Laser Mapping (NCALM) to acquire LIDAR data for 
this study. 
 
Altitude (m) 800 
Swath Width (m) 370 
Swath Overlap (%) 50 
Laser PRF (kHz) 125 
Scan Freq (Hz) 40 
Field of View (degrees) 32 
Scan Angle (degrees) 16 
Scan Cutoff (degrees) 3 
Footprint (cm) 60 
Wavelength (nm) 1047 
Pulse Length (ns) 7 
DEM grid size (m) 1 

 
Table 2.2.  Summary of RTK survey mean elevation (Mean), sample size (N), standard 
deviation (SD), standard error (SE), salt marsh zone(s) where each cover class is typically 
found (Marsh Zone(s)) and statistical significance grouping (Grouping) for each cover 
class evaluated in this study based on RTK data for the entire domain.  To determine the 
‘Grouping’ we tested for differences in elevation between cover classes using one-way 
ANOVA followed by Tukey’s honest significance test to compare means.  Mean 
elevations for each cover class was considered to be significantly different if the p-value 
< 0.05.  Zero elevation (in relation to NAVD 88) corresponds to 0.203 m below mean sea 
level.  All units are in meters (m). 
 

Cover Class Mean 
(m) N SD    

(m) Grouping Marsh Zone(s) 

Tall S. alterniflora  0.36 152 0.27 a low 
Medium S. alterniflora 0.77 267 0.13 b low, mid 
Short S. alterniflora 0.87 214 0.10 c mid, high 
Intertidal Mud 0.89 53 0.10 cd low, mid, high 
S. virginica 0.95 227 0.07 de high 
D. spicata 0.96 35 0.07 de high 
B. maritima 0.99 160 0.07 de high 
Salt Pan  1.01 62 0.06 e high 
J. roemerianus 1.02 117 0.20 e mid, high 
B. frutescens 1.23 78 0.10 f high 
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Table 2.3.  Summary of RTK elevations for each cover class in comparison to DEM errors for the DEM accuracy assessment of the 
larger domain and the subset of four areas used as test sites for the DEM test modification.  The column ‘RTK Elevation’ contains 
mean ground elevations for each cover class quantified in the 2009 RTK survey and subsequently used in the accuracy assessment of 
the larger domain (N = 1380, Table 2.2).  The column ‘RTK Elevation Difference’ represents the difference in mean elevation between 
sequential cover classes from low to high elevation.  For example, the elevation difference between tall S. alterniflora and medium S. 
alterniflora was calculated as the absolute value of 0.36-0.77 m.  ‘Domain DEM Error (unmodified)’ is the mean error for each cover 
class in the DEM of the entire domain based on the accuracy assessment (N = 1380, Table 2.4).  ‘Test site DEM Error (unmodified)’ 
and ‘Test site DEM Error (modified)’ are the mean errors for each cover class based on the four DEM test modification sites (N = 350, 
Table 2.5).  RTK grouping shows significant (p-value < 0.05) differences in elevation among cover classes based on post hoc ANOVA 
multiple comparison of means using Tukey's HSD and are presented in the ‘Grouping’ column.  All units are in meters (m). 
 

Cover Class 
RTK 

Elevation 
(m) 

RTK 
Elevation 
Difference 

(m) 

Domain 
DEM Error 

(m) 
(Unmodified) 

Test Site 
DEM Error 

(m) 
(Unmodified) 

Test Site 
DEM Error 

(m) 
(Modified) 

RTK 
Grouping

Tall S. alterniflora  0.36 0.25 0.27 0.05 a 
Medium S. alterniflora 0.77 0.42 0.11 0.09 -0.03 b 
Short S. alterniflora 0.87 0.09 0.05 0.03 -0.03 c 
Intertidal Mud 0.89 0.03 0.04  --  -- cd 
S. virginica 0.95 0.05 0.04 0.04 -0.01 de 
D. spicata 0.96 0.01 0.08 0.05 -0.02 de 
B. maritima 0.99 0.04 0.04 0.04 < 0.01 de 
Salt Pan  1.01 0.02 0.03 0.01 -0.03 e 
J. roemerianus 1.02 < 0.01 0.17 0.10 -0.06 e 
B. frutescens 1.23 0.21 0.12 0.12 -0.01 f 
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Table 2.4.  LIDAR-derived DEM accuracies for each cover class relative to RTK ground survey elevations measured in this study for 
the larger domain.  Table lists mean LIDAR-derived DEM error (Mean), number of observations (N), standard deviation (SD), 
standard error (SE), root mean square error (RMSE), fundamental vertical accuracy (FVA) and 95th percentile error (95th Percentile).  
See Section 2.4 for details on specific error calculations.  p-values are from a paired t-test between the RTK elevations and the 
predicted DEM elevations for each cover class.  The ‘Mean’ values are the species-specific correction factors that were used for DEM 
modification.  All units are in meters (m). 
 

Cover Class Mean 
(m) N SD      

(m) 
SE      
(m) 

RMSE 
(m) 

FVA 
(m) 

95th 
Percentile 

(m) 
p-value 

Tall S. alterniflora  0.25 152 0.17 0.01 0.30 0.59 0.49 < 0.001 

Medium S. alterniflora 0.11 267 0.07 0.00 0.13 0.26 0.24 < 0.001 

Short S. alterniflora 0.05 214 0.05 0.00 0.07 0.14 0.11 < 0.001 

Intertidal Mud 0.04 53 0.06 0.01 0.08 0.15 0.14 0.032 

S. virginica 0.04 227 0.05 0.00 0.06 0.12 0.11 < 0.001 

D. spicata 0.08 35 0.04 0.01 0.09 0.17 0.14 < 0.001 

B. maritima 0.04 160 0.04 0.00 0.06 0.12 0.11 < 0.001 

Salt Pan  0.03 62 0.04 0.01 0.05 0.10 0.10 0.012 

J. roemerianus 0.17 117 0.09 0.01 0.19 0.38 0.32 < 0.001 

B. frutescens 0.12 78 0.07 0.01 0.14 0.27 0.23 < 0.001 

Overall 0.10 1380 0.11 0.00 0.15 0.29 0.32 < 0.001 
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Table 2.5.  Summary of LIDAR-derived DEM accuracies in the four areas used as test sites for DEM modification. Accuracies for 
each cover class are presented for both the unmodified and modified DEM relative to the RTK ground survey elevation.  Table lists 
mean LIDAR error (Mean), number of observations (N), standard deviation (SD), standard error (SE), root mean square error 
(RMSE), fundamental vertical accuracy (FVA) and 95th percentile error (95th Percentile).  See Section 2.4 for details on specific error 
calculations.  p-values are from a paired t-test between the RTK elevations and the predicted DEM elevations for each cover class.  All 
units are in meters (m). 
 

Cover Class Mean 
(m) N SD      

(m) 
SE      
(m) 

RMSE 
(m) 

FVA 
(m) 

95th 
Percentile 

(m) 
p-value 

Unmodified DEM 
Tall S. alterniflora  0.27 66 0.15 0.02 0.31 0.61 0.52 < 0.001
Medium S. alterniflora  0.09 62 0.06 0.01 0.11 0.22 0.18 0.007 
Short S. alterniflora 0.03 72 0.04 0.01 0.05 0.10 0.10 0.073 
S. virginica 0.04 49 0.05 0.01 0.07 0.13 0.14 0.024 
D. spicata 0.05 10 0.03 0.01 0.06 0.11 0.09 0.001 
B. maritima  0.04 15 0.04 0.01 0.05 0.10 0.10 0.032 
Salt Pan  0.01 26 0.04 0.01 0.04 0.07 0.06 0.815 
J. roemerianus 0.10 35 0.08 0.01 0.13 0.25 0.24 0.007 
B. frutescens 0.12 15 0.09 0.02 0.15 0.29 0.24 0.001 
Overall 0.10 350 0.12 0.01 0.16 0.31 0.37 < 0.001
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Table 2.5 (continued). 
 

Cover Class Mean 
(m) N SD      

(m) 
SE      
(m) 

RMSE 
(m) 

FVA 
(m) 

95th 
Percentile 

(m) 
p-value 

Modified DEM 
Tall S. alterniflora  0.05 66 0.18 0.02 0.18 0.36 0.33 0.691 
Medium S. alterniflora  -0.03 62 0.06 0.01 0.07 0.13 0.06 0.068 
Short S. alterniflora -0.03 72 0.04 0.01 0.05 0.10 0.04 0.131 
S. virginica -0.01 49 0.05 0.01 0.05 0.10 0.08 0.515 
D. spicata -0.02 10 0.03 0.01 0.03 0.07 0.02 0.168 
B. maritima  0.00 15 0.03 0.01 0.03 0.06 0.04 0.981 
Salt Pan  < -0.01 26 0.04 0.01 0.05 0.10 0.02 0.416 
J. roemerianus -0.06 35 0.08 0.01 0.10 0.19 0.07 0.125 
B. frutescens -0.01 15 0.09 0.02 0.08 0.17 0.12 0.799 
Overall -0.01 350 0.10 0.01 0.10 0.19 0.17 0.494 
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Figure 2.1.  The unmodified LIDAR-derived bare earth DEM showing the location of the 
study area surrounding the Duplin River adjacent to Sapelo Island, GA.  White dots 
indicate RTK ground control points (GCPs) used to assess DEM elevation accuracy and 
calibrate species-specific correction factors. 
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Figure 2.2.  Overview map and vegetation polygons for the four areas used as test sites 
for DEM corrections.  A decimeter DGPS unit was used to delineate the boundaries of 
the various salt marsh cover types in these locations.  These areas were modified using 
the correction factors derived for the entire domain (see Figure 2.4).  Data from all test 
sites were aggregated for statistical analyses and together covered a total area of 0.107 
km2. 
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Figure 2.3.  LIDAR-derived DEM mean elevation errors from the four test locations (N = 
350) for each cover class before (A) and after (B) correction.  Bars represent mean errors 
in meters (m) +/- standard error.  Asterisks (*) above bars indicate significant p-values (p 
< 0.05) from a paired t-test between the RTK elevations and the predicted DEM 
elevations for each cover class (see Table 2.5).  Cover class abbreviations are as follows:  
ST: tall S. alterniflora; BF: B. frutescens; JR: J. roemerianus; SM: medium S. 
alterniflora; DIST: D. spicata; SV: S. virginica; BM: B. maritima; SS: short S. 
alterniflora; and SALT: salt pan. 
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Figure 2.4.  Map of one of the four areas (location 2, Figure 2.2) used as a test site for 
LIDAR-derived DEM corrections showing unmodified (top) and modified (bottom) 
DEM elevations (m).  Cooler blue colors indicate higher elevations and warmer dark 
browns indicate lower elevations.  Note the decrease in elevation associated with creek 
heads surrounded by tall and medium S. alterniflora in the modified DEM.  Total area 
mapped and modified at location 2 was 0.078 km2 (outlined in white). 
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Figure 2.S1.  Vegetated cover classes examined in this study. ST: Spartina alterniflora 
tall height, SM: Spartina alterniflora medium height; JR: Juncus roemerianus; SV: 
Salicornia virginica; SS: Spartina alterniflora short height; DIST: Distichlis spicata; 
BM: Batis maritima; and BF: Borrichia frutescens.  The two non-vegetated cover classes 
(intertidal mud (MUD) and salt pan (SALT)) are not depicted. 
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Figure 2.S2.  Measured plant stem height (m) versus LIDAR-derived DEM error (m) (R2 
= 0.44, p < 0.001).  During the RTK survey (section 2.3), heights of all stems in a 0.25 m 
x 0.25 m quadrat were measured to the closest centimeter at a subset of locations (N = 
342) representing the eight vegetated cover classes considered in this study.  Shown here 
are average plant height values for each quadrat plotted against LIDAR-derived DEM 
error for that location, which was calculated by subtracting the observed RTK elevation 
from the extracted LIDAR-derived DEM elevation (see section 2.4 for details). 
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CHAPTER 3 

DATA FUSION OF HYPERSPECTRAL AND LIDAR IMAGERY FOR SALT 

MARSH ELEVATION AND PLANT COMMUNITY MAPPING2 

  

2 Hladik, C., Alber, M., and Schalles, J. To be submitted to Remote Sensing of Environment. 
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Abstract 

Accurate mapping of both elevation and plant distributions in salt marshes is important 

for management and conservation goals.  Although Light Detection and Ranging (LIDAR) is 

effective at measuring surface elevations, laser penetration is limited in dense salt marsh 

vegetation.  In a previous study, we found that LIDAR-derived DEM error varied with 

vegetation cover and derived cover class-specific correction factors to reduce these 

errors, including separate corrections for three different height classes of Spartina 

alterniflora, the dominant macrophyte in Southeastern salt marshes.  In order to apply 

these species-specific corrections, it is necessary to have information on the distribution 

of cover classes in a LIDAR-derived DEM.  Hyperspectral imagery (HSI) has been shown 

to be suitable for the separation of marsh vegetation species by spectral signatures, and 

can be used to determine cover classes; however, there is persistent confusion between 

the different height classes of S. alterniflora and mud (the Spartina problem).  This paper 

presents a method to overcome the respective limitations of LIDAR and HSI through data 

fusion.  HSI was combined with a LIDAR-derived DEM through a decision tree, to map nine 

salt marsh habitat classes with a 90% overall accuracy.  The decision tree appreciably reduced 

the Spartina problem and demonstrated the utility of this approach for improving salt marsh 

classifications.  Further, fusing the HSI classification with the DEM to apply class-specific 

elevation correction factors for elevation mapping resulted in large reductions in overall mean 

error from 0.10 ± 0.12 (SD) to -0.003 ± 0.10 m (SD) and root mean squared error at the 68% 

confidence level from 0.15 to 0.10 m.  Our results suggest that the use of decision trees to fuse 

elevation and spectral information can aid both HSI classification and DEM elevation mapping.  
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1. Introduction 

Salt marshes are intertidal wetlands typically found in association with estuaries 

in temperate coastal areas.  Marshes are susceptible to habitat loss due to changes in sea 

level and coastal flooding, and there is growing interest in obtaining accurate elevation 

maps for these areas in order to understand how small topographic differences affect water 

flow, sediment distribution, and the extent and frequency of tidal inundation (Gesch, 2009; 

Sanders, 2007).  Differences in elevation also affect plant distributions, as salt marsh 

macrophytes exhibit characteristic patterns of vertical zonation.  In Southeastern Atlantic U.S. 

salt marshes, the height of Spartina alterniflora, the dominant plant, is affected by elevation, 

with taller plants found growing in low areas closest to the water’s edge and medium and 

shorter plants at higher elevations (Wiegert and Freeman, 1990).  A variety of other plants, 

including Juncus roemerianus, Salicornia virginica, Batis maritima, Distichlis spicata and 

Borrichia frutescens, are typically found in the highest parts of the marsh.  Gradients in 

elevation are also associated with a range of changes in soil characteristics, including oxygen 

availability and redox potential (Mitsch and Gosselink, 2000; Pezeshki, 2001), soil moisture 

and porewater salinity (Adam, 1990), and concentrations of sulfides and nutrients (Gallagher, 

1975; Mendelssohn and Morris, 2000).  Accurate elevation maps are therefore important not 

only for understanding flooding and inundation patterns but also for determining habitat 

characteristics of marshes (Adam, 1990; Silvestri et al., 2003; Zedler et al., 1999).   

Many coastal researchers use light detection and ranging (LIDAR) to produce 

digital elevation models (DEMs) of salt marshes, as it provides broad coverage for areas 

that are large and sometimes difficult to access on the ground.  However, there are 

several drawbacks to this approach.  First, LIDAR tends to overestimate salt marsh 

elevations due to poor laser penetration of the dense canopy (Montane and Torres, 2006; 
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Rosso et al., 2006; Sadro et al., 2007; Schmid et al., 2011).  The majority of prior studies 

have focused on improving techniques to separate LIDAR returns (Wang et al., 2009) 

and optimizing DEM interpolation methods (Schmid et al., 2011; Toyra et al., 2003), 

both of which can help to reduce error.  These corrections have been applied without 

taking plant species into account, and have had accuracies (mean error) ranging from -

0.02 to 0.12 m.  In a previous study (Hladik and Alber, 2012), we found that LIDAR-

derived DEM mean error varied with vegetation cover but could be reduced to -0.01 m by 

applying cover class-specific correction factors to four test areas (total area of 0.107 

km2).  For example, ground elevations for tall S. alterniflora were severely overestimated 

and required a 0.25 m correction factor, whereas those for short S. alterniflora were only 

overestimated by 0.05 m.   Because correction factors vary, it is necessary to have 

information on the distributions of cover classes to use this approach to correct the entire 

DEM, which was the limiting factor in the earlier study.  A second, related limitation of 

LIDAR is that it only receives spectral information at one wavelength in the near infrared 

(NIR).  It therefore cannot be used to distinguish among plant species, which requires 

information from the visible portion of the electromagnetic spectrum.  To provide information 

on species composition for habitat maps LIDAR-derived DEMs can be used in combination 

with visible wavelengths (Campbell, 2007; Sadro et al., 2007).   

Hyperspectral imagery (HSI) in the visible and NIR portion of the 

electromagnetic spectrum has been shown to be suitable for the separation of marsh 

vegetation species by spectral signatures (Artigas and Yang, 2005; Schmidt and 

Skidmore, 2003).  Hyperspectral sensors are ideal for this as they are able to collect a 

high number of continuous spectral bands (sometimes greater than 200 bands) with 
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narrow bandwidths and at a fine spatial resolution.  The increased dimensionality of 

hyperspectral data allows for better species differentiation based on subtle differences in 

leaf structure and pigment composition (Hardisky, 1986; Schmidt and Skidmore, 2003), 

when compared to multispectral imagery with only 3 to 7 spectral bands.  HSI has been 

used extensively in salt marshes to map vegetation patterns (Belluco et al., 2006; Silvestri et 

al., 2003; Wang et al., 2007), monitor invasive species (Gilmore et al., 2008; Rosso et al., 

2006), document erosion and vegetation succession (Thomson et al., 2004), measure biomass 

and species abundance (Lucas and Carter, 2008; Wang et al., 2007) and detect vegetation 

change (Klemas, 2011), among other applications.  These studies employed a variety of 

supervised classification techniques to process HSI including both subpixel and whole pixel 

algorithms.   

The current study focuses on the pixel level analysis of salt marshes with HSI.  Two of 

the most commonly used pixel level HSI classification algorithms for vegetation mapping are 

the maximum likelihood classifier (MLC) and the spectral angle mapper classifier (SAM).  

MLC is a parametric classifier that assumes each spectral band for each class is normally 

distributed and calculates the probability that a given pixel belongs to a specific class based on 

variance and covariance measures (Hoffbeck, 1995).  A drawback to MLC is that it performs 

poorly when there are a large number of spectral bands due to the large covariances that need to 

be calculated (i.e. the Hughes’ effect, Hughes, 1968).  As a result, very large training data sets 

are needed for successful MLC classifications, or spectral data must be reduced using statistical 

techniques (principle components analysis or minimum noise fractionation) (Lillesand et al., 

2004).  SAM is a classification algorithm designed specifically for HSI.  SAM measures the 

spectral similarity between each unknown pixel and endmember (training class) spectra by 
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calculating the angle between the spectra, treating the spectra as vectors in n-dimensional 

space, with n equal to the number of image bands (Kruse et al., 1993).  Two advantages to 

SAM are that not all endmembers need to be identified and the spectral angle is insensitive to 

variations in illumination (Leckie et al., 2005) and albedo effects (Kruse et al., 1993).  A 

significant limitation is that SAM is unable to differentiate cover classes having the same 

spectral angle, a particular concern for salt marsh vegetation classes that have small, but 

significant, reflectance differences (Schmidt and Skidmore, 2003).  Overall, MLC has tended to 

perform better than SAM in salt marshes (Belluco et al., 2006; Hunter and Power, 2002), 

but SAM has been successfully applied in some studies (Marani et al., 2003; Marani et 

al., 2006; Merani, 2007; Sadro et al., 2007) and, therefore, both are evaluated here. 

Regardless of how imagery is processed, there are several challenges to using HSI in 

salt marshes, particularly with respect to accurately classifying Spartina species.  First, there is 

persistent confusion within and between similar species.  The different height classes of S. 

alterniflora (short, medium and tall), are commonly confused in HSI classification due to their 

spectral similarity in both the visible and NIR portions of the spectrum (Artigas and Yang, 

2005; Schmidt and Skidmore, 2003).  The spectral signature in the visible is largely controlled 

by pigment composition, which is the same for all S. alterniflora plants, and reflectance in the 

NIR is a function of air space configuration inside the leaf, which is genetically determined and 

invariant among the different height classes (Danson et al., 1992).  In addition, a number of 

studies have also found spectral confusion between classes of closely related species.  

Using HSI, Artigas and Yang (2005) were unable to separate S. alterniflora from 

Spartina patens in the visible and NIR in the New Jersey Meadowlands.  Another source 

of error in HSI classifications results from mixed pixels that include more than one type of 
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vegetation and/or mud.  Both of these types of mixed pixels are observed with S. alterniflora: 

the different height classes represent a continuum and can therefore be found adjacent to one 

another, and S. alterniflora's erect structure and often sparse stem densities means that mud is 

spectrally mixed with vegetation (Belluco et al., 2006; Silvestri et al., 2003; Thomson et al., 

2003).  Silvestri et al. (2003) found that S. maritima is often misclassified because it is 

found in low-lying areas where mud and water interfere with its spectral signature.  

Thomson and others (2003) hypothesized that microphytobenthos on mud may also cause 

mud to resemble Spartina spectrally.  The inability to accurately classify the three height 

classes of S. alterniflora, compounded by the presence of mud in mixed pixels, is what we term 

the Spartina problem.   

One way to potentially overcome the individual limitations of LIDAR-derived 

DEMs and HSI, and to potentially address the Spartina problem, is through data fusion.  

Data fusion combines data from different sources to obtain more information than could 

be derived from either independently (see review by Pohl and Van Genderen, 1998).  It 

can be done at the pixel, feature or decision level.  Pixel level fusion is the combination 

of raw data from multiple sources into a single image.  At the pixel level, LIDAR-derived 

DEMs have been included as a component band with HSI to classify coastal habitats, 

resulting in improved classification accuracies (Chust et al., 2008; Collin et al., 2010).  

Feature level fusion requires the extraction of different features from the source data 

before features are merged together so that fusion takes place on features that match some 

selection criteria.  At the feature level, LIDAR-derived DEMs have been used as data 

layers in object orientated classifications of marsh habitats (Brennan and Webster, 2006; 

Gilmore et al., 2008).  Decision level fusion combines the independent results from 
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multiple sources in a GIS to produce a final fused decision (Pohl and Van Genderen, 

1998).  LIDAR-derived DEMs have been fused with land cover classifications post hoc 

to refine and improve classification products (Lu and Weng, 2004; Pahl and Mather, 

2003), to extract marsh species elevation ranges and distributions (Morris et al., 2005; 

Sadro et al., 2007), monitor the spread of invasive species (Rosso et al., 2006), model 

species habitat (Moselund et al., 2011; Sellars and Jolls, 2007), and predict sea level rise 

impacts (Webster et al., 2006).   

The above studies have all used image fusion for classification purposes or for 

extracting additional elevation information.  However, none have used elevation data to 

modify their existing classification of salt marshes.  In the case of S. alterniflora, the 

three height classes are spectrally similar but they occupy different elevations in salt 

marshes and require significantly different correction factors (ranging from 0.05 to 0.25 m, 

Hladik and Alber, 2012).  We therefore expect that the Spartina problem could potentially 

be reduced through the use of a decision tree that incorporates both spectral and elevation data.  

A decision tree is a nonparametric multistage or hierarchical classifier that can be applied to a 

single image or multiple co-registered images (Breiman et al., 1984).  Using a multistage 

approach, a decision tree breaks down a complex decision into a series of nodes, or branches, 

where binary decisions are made to sequentially subdivide the data into classes.  In a top-down 

approach, the process continues moving down the tree until the final node is reached.  Data 

sources that can be used in decision trees include classified images (such as products from 

MLC and SAM), DEMs and vegetation indices. 

This paper describes our approach to fusing HSI of the salt marshes surrounding 

Sapelo Island, GA with a LIDAR-derived DEM at the decision level, combined with a 
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decision tree, to modify habitat classification and elevation information to produce both 

an accurate habitat classification and DEM for the study area.  Our objectives were: (1) to 

compare the accuracy of MLC and SAM to determine the optimal classification routine 

for mapping salt marsh habitats with HSI; (2) to improve vegetation classification 

accuracy and address the Spartina problem by incorporating elevation information in 

vegetation mapping through a decision tree; and (3) to fuse the final vegetation 

classification with a LIDAR-derived DEM to produce corrected DEM elevations.   The 

method we outline is of specific use to those interested in developing accurate maps of 

salt marshes, but is also more broadly applicable as a demonstration of the combined 

power of LIDAR and HSI through an iterative data decision level fusion process.  

2. Methods 

2.1. Study site 

This study included a total of 13.82 km2 of salt marsh habitat in and around the 

Duplin River, a 13-km long tidal inlet that flows into Doboy Sound and forms the 

western boundary of Sapelo Island, Georgia, USA (UTM Zone 17 N, 471480 E 3473972 

N, Figure 3.1).  The river is surrounded by a complex of salt marshes, tidal creeks and 

back barrier islands.  S. alterniflora is the dominant macrophyte in these marshes.  For 

this study, S. alterniflora that was taller than 1 m was considered “tall”.  Tall S. 

alterniflora can grow up to 2 m tall and is the dominant plant found along the regularly 

flooded creek banks in the low marsh.  S. alterniflora that ranged from 0.50 m to 1.0 m 

tall was considered “medium” and plants < 0.5 m were considered “short” (Reimold et 

al., 1973; Figure 3.S1).  Medium S. alterniflora dominates the mid-marsh and short S. 

alterniflora is found in the irregularly flooded high marsh.  The high marsh contains a 

mixed community of S. virginica, B. maritima, D. spicata and short S. alterniflora, 
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collectively termed marsh meadow or salt meadow (Wiegert and Freeman, 1990).  Marsh 

meadow has dense canopies, generally less than 0.50 m tall.  At the highest elevations 

along the upland fringe, J. roemerianus and B. frutescens become the dominant species.  

Canopy heights of J. roemerianus and B. frutescens range from 0.50 m to over 2 m tall. 

2.2. Hyperspectral imagery 

Airborne Imaging Spectrometer for Applications (AISA) Eagle hyperspectral 

imagery were acquired on June 20, 2006, by the Center for Advanced Land Management 

Information Technologies (CALMIT) (Figure 3.1, Table 3.1).  AISA is a push-broom 

sensor with a 1000 pixel swath width (1 km swath width when flown at 1 m spatial 

resolution).  The AISA sensor calculates the apparent at-platform reflectance by 

simultaneously measuring both downwelling and upwelling radiance (Specim Imaging 

LTD, 2011).  The AISA sensor was mounted in a Piper Saratoga plane flown at 1650 m 

above ground level.  It collected spectral data in 63 bands in the visible and NIR portion 

of the electromagnetic spectrum from 400-980 nm (9 nm average bandwidth, 2.3 nm Full 

Width Half Maximum spectral resolution).  The high spectral resolution was selected to 

obtain continuous spectral data for better discrimination among the dominant marsh 

species, and the fine spatial resolution (1 m) was selected to minimize the number of 

mixed pixels.  The AISA Eagle system includes an imaging unit mounted in the rear of 

the passenger compartment to allow a nadir view collection of upwelling radiance.  A 

Specim FODIS diffuse light collector measured the downwelling irradiance signal and 

was used for percent reflectance estimates (at aircraft level) for each spectral band.   

Imagery, solar downwelling data, and flight positional data (altitude, GPS 

coordinates, pitch, roll, and yaw) were simultaneously collected for each flight line (see 

http://calmit.unl.edu/champ for more detailed information).  Four parallel flight lines of 
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data were captured in a northeast to southwest alignment, for a total area of over 25 km2.  

(Two of these were used in the current study.)  The flight lines were acquired in mid-

morning, to coincide with low tide (-0.09 m) and captured extensive areas of exposed 

intertidal mud.  The aircraft was flown in a “racetrack” path, meaning that the plane 

turned around to refly parallel swaths at the same downtrack orientation and with 

approximately 30% overlap of adjacent swaths.  Trimble AgGPS 132 receiver (Trimble, 

http://www.trimble.com) and Flightbar instruments allowed precise parallel swathing 

guidance for accurate navigation of specified flight line coordinates.  

Initial post-processing of data was performed by CALMIT using the CaliGeo 

(Specim Imaging LTD) and Environment for Visualizing Imagery (ENVI) (EXELIS, 

www.exelisvis.com) software programs.  The processing sequence for each flight line 

consisted of (1) radiometric corrections applied to raw imagery; (2) GPS and altitude data 

used to calculate and apply static geometric correction factors; (3) image rectification and 

geocorrection; and (4) image data produced with pixel values as normalized percent 

reflectance using the FODIS downwelling solar information.  Imagery was 

atmospherically corrected using FLAASH (Fast-Line-of-sight Atmospheric Analysis of 

Spectral Hypercube), an atmospheric correction module for ENVI (Adler-Golden et al., 

1999; Berk et al., 1998).  Sensor and over-flight details can be found in Table 3.1.  An initial 

product of the HSI was a normalized difference vegetation index (NDVI) image, which was 

used in the subsequent decision tree classification (section 2.7).  NDVI uses the ratio of 

reflectance in the red and NIR wavelengths (NDVI = (NIR799 − RED675)/ (NIR799 + RED675)) to 

derive an index of plant vigour (Rouse et al., 1974).  The subscript values are the wavelength 

band centers used to calculate NDVI for these HSI data. 

75



2.3. LIDAR data 

The National Center for Airborne Laser Mapping (NCALM) acquired 35 km2 of 

LIDAR data for Duplin River marshes on March 9 and 10, 2009.  Data were acquired 

when plant growth and biomass were seasonally low and during a spring low tide (-0.33 

m) to maximize laser penetration of the vegetation canopy and minimize the amount of 

standing water on the marsh surface.  Data were collected with an Optech GEMINI 

Airborne Laser Terrain Mapper (ALTM) mounted in a twin-engine Cessna Skymaster 

flown at an altitude of 800 m above ground level.  The survey was conducted with a laser 

pulse rate frequency (PRF) of 125 kHz and up to 4 returns.  The high PRF was used to 

obtain a target point density of 9 hits m-2.  Reported vertical and horizontal accuracies 

(root mean squared error (RMSE)) for the sensor are 0.05-0.10 m and 0.10-0.20 m, 

respectively (Optech, 2011).  Absolute calibration was done using 662 ground control points 

(GCPs) surveyed with a vehicle-mounted kinematic GPS over paved roads near the Brunswick, 

GA airport.  These same road sections were surveyed with crossing flight lines using the 

ALTM and the heights of the check points were compared to the heights of the nearest 

neighbor LIDAR points within a radius of 20 cm.  The RMSE of height differences was 0.11 

m, with a RMSE at the 95% confidence level of 0.20 m.  LIDAR processing routines are 

described in Hladik and Alber (2012); sensor and over-flight details can be found in 

Table 3.1. 

A bare earth LIDAR-derived DEM was produced in SURFER Version 8 (Golden 

Software, http://www.goldensoftware.com) at 1.0 x 1.0 m resolution using a kriging 

algorithm that calculated the mean elevation value of all laser hits within each grid cell 

with a maximum variance of 0.15 m.  Elevations were all positioned in the NAD 83 

reference frame and projected into UTM coordinate zone 17 N.  Elevations are NAVD 88 
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orthometric heights (in meters) computed using the National Geodetic Survey GEOID 03.  

The LIDAR-derived bare earth DEM product was used in the current analysis. 

The LIDAR-derived DEM covered the same area as the HSI data; however, there 

was an almost 3 year lag between HSI (2006) and LIDAR (2009) acquisition dates.  An 

RGB composite image of the HSI was compared to a 2009 aerial photograph of the same 

area to assess whether plant community boundaries or ground survey data locations had 

shifted during this interval.  We found no discrepancies or shifts in the dominant salt 

marsh vegetation between these images and do not think the difference in HSI and 

LIDAR acquisition dates affected the results of this study. 

2.4 Supporting field surveys 

2.4.1 HSI field survey 

We carried out an extensive field survey of 373 plots with horizontal submeter 

differential GPS (DGPS) positions (Trimble Geo-XH DGPS) coincident with the AISA 

hyperspectral flyover.  Plots were positioned along 24 transects that spanned the marsh 

elevation gradient from low marsh to high marsh.  Within each plot, all species present 

within a 1 x 1 m quadrat were documented and a dominant habitat type was assigned 

based on percent cover (Schalles et al., Unpublished Data).  Seven vegetation cover 

classes were included in the classification: S. alterniflora (short (SS), medium (SM) and 

tall (ST) height classes), J. roemerianus (JR), B. maritima (BM), S. virginica (SV) and B. 

frutescens (BF) and two non-vegetated classes (intertidal mud (MUD) and salt pan 

(SALT)) (Figure 3.S1).  The S. virginica class generally represented a mixture of high 

marsh plants, including B. maritima, D. spicata and short S. alterniflora, and as such, was 

rarely composed of only S. virginica.  Intertidal mud consisted of patches of mud ≥ 1 m2 

within the vegetated portion of the salt marsh as well as mud on creek banks at elevations 
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below tall S. alterniflora.  Salt pans were high marsh habitats with hypersaline sediments 

and less than 25% vegetation cover.  An additional 468 plots were surveyed in a similar 

manner in June and July 2007.  

Vegetation stand polygons were delineated in the field for HSI training and 

validation purposes between September 2006 and August 2007.  Relatively homogenous 

stands of each vegetation class were selected and mapped using a DGPS by walking a 

polygon area within respective stands, taking care to avoid boundaries between 

vegetation classes.  These polygon data were brought into ENVI as Regions of Interest 

(ROIs) and included in the training and validation data sets.  These field-based polygons 

were augmented with user-defined ROIs selected based on our knowledge of plant 

distributions and image interpretation.  These additional ROIs were necessary to attain a 

range of 10 n to 100 n training pixels for each cover class (n = number of bands), to 

improve estimates of class means and covariance matrices (Lillesand et al., 2004).  Note 

that although some user-defined training locations were a heterogeneous mix of cover 

classes, the dominant habitat class (based on percent cover) was assigned to each pixel.  

This was done to include training data that represented the full range of spectral 

variability for each cover class throughout the entire image, recognizing that in reality 

most pixels are not pure.   

All data (plot points, field-based polygons and user-defined ROIs) were randomly 

divided into training (33923 m2 pixels) and validation data sets (10701 m2 pixels) using 

the ArcGIS version 9.3 software program (http://www.esri.com), with approximately 

75% of the data reserved for supervised classifier training and 25% for validation of the 

classification results. 
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2.4.2 RTK field survey 

To ground truth the LIDAR-derived DEM, a high-accuracy real time kinematic 

(RTK) survey was conducted using a Trimble R6 RTK GPS receiver (Trimble, 2009) 

with an observed vertical RMSE of 0.0037 m, a mean vertical error of 0.010 and mean 

horizontal error of 0.012 m (all reported at 68% percent confidence level).  RTK 

elevations are NAVD 88 orthometric heights (in meters) computed using the National 

Geodetic Survey GEOID 03 (see Appendix A for elevations in relation to tidal datums).  

As reported previously (Hladik and Alber, 2012), RTK GCPs were collected throughout 

the Duplin River marshes in a survey that encompassed all of the vegetation cover classes 

considered in the HSI classification (section 2.4.1, Figure 3.S1).  RTK Data were 

collected in March 2009 coincident with LIDAR data acquisition and additional data 

were collected from June to August 2009.  Sampling locations were randomly selected 

using the ArcGIS 9.3 software program and a preliminary HSI vegetation classification 

of the Duplin River salt marshes (although if an area was misclassified it was corrected).  

At each GCP location the RTK Rover foot was placed flush with the marsh surface 

without disturbing the sediment and vegetation.  The number of RTK points sampled per 

cover class ranged from 53 (intertidal mud) to 267 (medium S. alterniflora) (Table 3.2).  

This range in sampling was primarily due to the relative dominance of the various cover 

classes in the marsh.  Additional GCPs were also collected opportunistically.  In total, 

1830 RTK GCPs were acquired and were used for two purposes: to determine the 

elevation range of each marsh cover type for use in the decision tree analysis (section 

2.7), and to derive correction factors for DEM modification (section 2.9).  The data were 

randomly divided into training and validation data sets using ArcGIS.  Seventy-five 

percent (N = 1380) of the RTK GCPs were used to calibrate the elevation ranges and 
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correction factors (Table 3.2) and 25% (N = 450, Figure 3.1) data were reserved as 

validation data for the modified DEM accuracy assessment (section 2.9). 

2.5. Overview of work flow 

The work flow employed in this study used a two-step classification routine 

followed by DEM modification (Figure 3.2).  In the first step, two standard supervised 

classification algorithms (MLC and SAM) were used to classify the HSI based on 

spectral reflectance characteristics in the visible and NIR.  The second step combined the 

classification results from step 1 with both the LIDAR-derived DEM and HSI-derived 

NDVI to modify classifications.  NDVI has been shown to aid in the separation of vegetated 

(S. alterniflora) versus non-vegetated pixels (mud) since vegetation has a high NDVI value and 

mud has a low NDVI value (Yang and Artigas, 2010).  This second classification iteration 

was used to correct misclassifications between the various cover classes, especially 

between the three height classes of S. alterniflora and mud pixels (the Spartina problem).  

Following the second classification, the accuracy of both the final MLC and SAM 

classifications were assessed.  Finally, the best classification was fused with the LIDAR-

derived DEM at the decision level, and cover class-specific correction factors were applied for 

DEM modification.  The end products of this work flow were both a final habitat map (product 

of the first data fusion) and a corrected DEM of the study area (product of the second data 

fusion). 

2.6 Initial hyperspectral supervised classification 

All image analyses were conducted using ENVI version 4.8.  Each of the two 

flight lines were processed and classified independently and then mosaiced together for 

the final classified habitat map.  Prior to classification, a water and upland mask were 

applied to the data so that only the salt marsh areas of interest were classified.  During the 
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initial stages of HSI preprocessing, data masking of surface water pixels was 

accomplished using wavelength-specific reflectance differences in a NIR band (858 nm), 

with reflectance values lower than 6.5% identified as water.  Remaining marsh and non-

marsh upland areas were separated manually using analyst image interpretation and a 

digitizing tablet.  This manual technique was used because non-salt marsh herbaceous 

vegetation in adjacent upland areas was confused with marsh vegetation in automated 

masking attempts.  

To carry out the supervised classifications, the mean spectra (Figure 3.S2) for 

each cover class was calculated from training pixels (section 2.4.1).  The success of the 

classifier is dependent on using unique spectral signatures for each cover class identified 

in the training data.  To evaluate this, we computed the Jeffries-Matusita distance and 

Transformed Divergence separability measures for each cover class.  Larger values 

(greater than 1.9, on a scale of 0 to 2) indicate good separability (Richards and Jia, 2006).  

In our data, training data pairs had values greater than 1.9 for both measures except the 

short S. alterniflora and medium S. alterniflora pair, which had a value of 1.62 for the 

Jeffries-Matusita distance measure (Table 3.S1).  However, short and medium S. 

alterniflora were kept as two distinct classes in this analysis as it is recommended that 

only pairs with values less than one be combined (Richards and Jia, 2006). 

Both SAM and MLC routines were used to classify salt marsh habitats.  Both 

classifiers require the user to specify thresholds for class membership, and then pixels are 

assigned to the class that has the greatest probability of membership.  The MLC 

probability threshold was set to 0.95, which means that each pixel must have a 95% 

probability of belonging to a specific cover class or it remains unclassified.  The spectral 
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angle threshold for the SAM classification was set at 0.15 radians, which means that if 

angles are smaller than this in comparison to an endmember spectra, then it is considered 

a match.  Pixels with angles larger than the specified threshold remain unclassified. 

2.7. Data fusion: Decision tree classification 

The results of both the MLC and SAM classifications were fused with the 

LIDAR-derived DEM and classifications were refined through a decision tree that 

evaluated both spectral and elevation information.  Note that both the HSI and DEM had 

the same grid cell size (1 m) and were spatially aligned by forced co-location whereby 

HSI coordinates were “snapped” to the DEM raster coordinates.  We used three input 

bands in the decision tree classification: the initial MLC or SAM classification, the DEM 

image and a NDVI image.  The expected elevation ranges for each cover class were 

informed by the ranges obtained in our RTK ground survey data (section 2.4.2), extended 

using ± one standard deviation to account for the possibility that the RTK survey did not 

sample the entire range of habitat class elevations.  All elevations in the decision tree are 

NAVD 88 orthometric heights (in meters).  Following the decision tree classification, a 

majority filter (ENVI Majority/Minority Analysis module within Post-Classification 

routines) was applied to each SAM and MLC classification output to remove isolated 

pixels with a 5x5 moving window and create a more coherent classified image by 

removing the "salt and pepper" appearance.   

The decision tree was straightforward for all classes except the three height 

classes of S. alterniflora.  For all vegetation classes and areas classified as mud, the 

decision tree reassigned all pixels with an elevation less than -1.2 m as unclassified.  This 

was done because -1.2 m was the lowest elevation for exposed creek bank areas based on 

RTK survey data and, as such, any areas lower than -1.2 m would have been inundated at 
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the time of LIDAR data acquisition.  LIDAR-derived DEM elevations in areas with 

standing water are assumed to be unreliable (Maune et al., 2007; Raber et al., 2007), so 

these areas were effectively masked out using the decision tree, in addition to those areas 

already masked during HSI preprocessing (section 2.6).  For areas initially classified as 

salt pan, the decision tree reassigned pixels with an elevation less than 0.8 m into a new 

shell class.  This was done because salt pan and shell have similar spectral characteristics, 

but 0.8 m was the minimum observed RTK elevation for salt pans.  Our knowledge of 

habitat distributions in the marsh supports this separation as oyster reefs are found in low-

lying areas in the study site. 

More complicated decision tree nodes were created for areas between -0.26 and 

1.25 m elevation initially classified as tall, medium or short S. alterniflora (Figure 3.3).  

Pixels initially classified as tall S. alterniflora in the MLC (or SAM) classification were 

reassigned to the medium S. alterniflora class if they had a corresponding DEM elevation 

greater than tall S. alterniflora’s maximum elevation (plus 1 standard deviation) observed 

in the RTK survey.  Pixels with elevations less than the maximum were then evaluated 

based on whether or not their elevation was greater than the minimum observed elevation 

(minus 1 standard deviation).  If so, they were kept in the tall S. alterniflora class.  If not 

(which means they were at lower elevations), they were assessed based on NDVI.  An 

NDVI cutoff of 0.30 was used to distinguish between mud and vegetated areas because 

tall S. alterniflora has a high NDVI value and mud has a very low index value.  Pixels 

with an NDVI value greater than 0.30 remained classified as tall S. alterniflora and those 

less than 0.30 were classified as either mud or unclassified based on the minimum DEM 

elevation cutoff of -1.2 m.   
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At the medium S. alterniflora node, pixels initially classified as such were first 

evaluated based on medium S. alterniflora’s minimum DEM elevation (minus 1 standard 

deviation).  Pixels with elevations greater than the minimum remained classified as 

medium S. alterniflora class.  Note that the RTK survey did not support the separation of 

medium and short S. alterniflora based on medium S. alterniflora’s maximum observed 

elevation, and therefore maximum elevation was not included in the decision tree.  Pixels 

with elevations less than the medium S. alterniflora minimum elevation were then 

assessed based on whether or not their elevations were greater than the minimum tall S. 

alterniflora elevation (minus 1 standard deviation).  In either case, pixels were evaluated 

by NDVI.  If elevations were greater than the minimum for tall S. alterniflora and NDVI 

was greater than 0.30, plants were classified as tall S. alterniflora whereas if the NDVI 

was less than 0.30 they were reassigned to mud.  If pixel elevations were lower than had 

previously been observed for tall S. alterniflora but their NDVI was greater than 0.30, 

they were classified as tall S. alterniflora, whereas if NDVI was less than 0.30 they were 

assigned to either mud or unclassified (based on the minimum of -1.2 m).   

Short S. alterniflora class membership was first assessed based on whether or not 

corresponding pixel elevations were greater than the minimum short S. alterniflora 

elevation observed in the field (minus 1 standard deviation).  If so, they remained 

classified as short S. alterniflora.  If not, they were assessed based on medium S. 

alterniflora’s minimum elevation.  If they met this criterion, they were reclassified as 

medium S. alterniflora. If not, they were assessed based on tall S. alterniflora’s minimum 

elevation and reclassified as tall S. alterniflora if they met this criterion.  Otherwise they 

were reassigned to either mud or unclassified based on the minimum of -1.2 m.   
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2.8. Hyperspectral classification accuracy assessment 

Classification accuracy of the decision tree output was evaluated by constructing 

a confusion matrix using the reserved validation data (section 2.4.1) and calculating the 

overall accuracy and kappa coefficient (Congalton, 1991).  The overall accuracy is the 

ratio of the number of validation pixels that are correctly classified to the total number of 

validation pixels regardless of their class (Foody, 2002).  The kappa coefficient is the 

proportion of correctly classified validation pixels and is considered more robust than 

overall percent accuracy because it takes into account chance agreement (Rosenfield and 

Fitzpatrick-Lins, 1986).  The producer's and user's accuracies, as well as the errors of 

commission and omission for individual classes, were also used to evaluate classifier 

performance.  The producer's accuracy is the probability that a ground truth pixel for a 

cover class is correctly identified as that class in the classified image.  The user's 

accuracy is the probability that a pixel in the classified image really belongs to the 

assigned class on the ground.  Errors of commission represent the percentage of pixels 

that belong to another class but which are classified as belonging to the target cover class, 

whereas errors of omission indicate the percentage of pixels that belong to the ground 

truth class but which the classifier has failed to classify as such.  A good classification 

should have high producer's and user's accuracies and low errors of commission and 

omission.  We also evaluated accuracy qualitatively based on user knowledge of the 

study area.   

2.9. Data fusion: DEM modification and accuracy assessment 

The classification with the highest overall accuracy and kappa coefficient was 

fused at the decision level with the unmodified LIDAR-derived DEM and the DEM 

correction factors for the purpose of correcting the DEM (on a HSI classification 
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polygon-to-polygon basis).  The HSI classification and the DEM were aligned by forced 

co-location (see section 2.7) prior to DEM modification.  As described in Hladik and 

Alber (2012), class-specific correction factors were derived for the same area as this 

study from the RTK training data set (N = 1380, section 2.4.2) by subtracting the 

surveyed RTK elevation from the DEM elevation at the corresponding x/y coordinate of 

each GCP.  Corrections represented the mean error for each cover class (Table 3.2).  To 

modify the DEM, the final HSI classification was exported as a polygon shapefile from 

ENVI and brought into ArcGIS.  Next, the classification vegetation polygons were 

converted to raster format using the Polygon to Raster tool (Conversion toolbox), by 

assigning a cover class-specific correction factor to each polygon.  The end product of the 

Polygon to Raster step was a “Correction Factor” DEM with values corresponding to the 

cover class-specific correction factors.  The “Correction Factor” DEM was then 

subtracted from the original, “Unmodified” DEM using the Raster Math tool in ArcGIS 

(Spatial Analyst toolbox) to produce a “Modified” DEM.  It should be noted that since 

the method used here applied different corrections to discrete portions of the marsh, it did 

create unrealistic "steps" in the surface of the marsh (for example, when going from short 

to medium S. alterniflora) which would require smoothing at class boundaries prior to 

some modeling applications.   

We performed accuracy assessments on both the “Modified” and “Unmodified” 

DEMs using the reserved RTK survey validation data (N = 450), which had not been 

used to derive the correction factors.  For each GCP location, the RTK elevations were 

assumed to be the true observed ground elevations and the elevations extracted from the 

DEM were used as predicted elevations.  To examine the accuracy of the DEM elevation, 
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we calculated the mean error, RMSE, the fundamental vertical accuracy (FVA) with a 

95% confidence level and 95th percentile errors for each cover class following American 

Society for Photogrammetry and Remote Sensing guidelines (ASPRS Lidar Committee, 

2004).  The vertical RMSE, as described in Maune et al. (2007), is a common measure of 

vertical accuracy for LIDAR-derived DEM and is calculated as:  

RMSE = sqrt [∑ ( zLIDARi - zRTKi)2/n]  (3.1) 

where zLIDARi is the elevation of the ith RTK GCP in the LIDAR-derived DEM; zRTKi is 

the ith elevation of the ith GCP in the RTK data set; n is the number of GCP; and i is an 

integer from 1 to n.  The FVA at a 95% confidence level was calculated as RMSE*1.96.  

The 95th percentile errors are the interpolated absolute value of elevation errors obtained 

by dividing the distribution of errors into one hundred groups of equal frequency.  The 

95th percentile means that 95% of the elevation errors have a value equal to or less than 

the 95th percentile value (Maune et al., 2007).   

Modified DEM elevations from each cover class were compared to RTK 

elevations using paired t-tests.  The calculated RMSE for each cover class in the DEM was 

also compared to the reported vertical RMSE of the LIDAR sensor (0.11 m based on vehicle 

mounted GPS absolute calibration) to determine whether it was within the range of instrument 

error.  Statistical results for all analyses in this study were considered significant when p ≤ 

0.05.  All statistical analyses were done using the open source program R version 2.10.1 

(http://cran.r-project.org/). 
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3. Results 

3.1. Overview of results 

As described below, the MLC classification performed significantly better than 

SAM.  Most vegetation classifications were only slightly improved by the fusion of the 

HSI and DEM and the application of the decision tree, but there was clear improvement 

in the identification and separation of mud and tall S. alterniflora at creek edges as well 

as better separation of mud and medium S. alterniflora pixels.  When fused with the best 

decision tree classification, the overall mean error of the modified DEM decreased from 

0.10 m to -0.003 m. 

3.2. Objective 1: Comparison of MLC and SAM 

Our initial classification of the HSI showed that MLC had a higher overall 

accuracy than SAM (89% versus 59%, Tables 3.S2 and 3.S3).  These accuracies changed 

only slightly after the application of the decision tree (MLC improved from 89% to 90% 

and SAM from 59% to 61%, Tables 3.S2, 3.S3, 3.3 and 3.4) and only the final 

classifications (post-decision tree application) are presented here. 

3.2.1 Maximum likelihood classification 

Class cover distributions in the MLC results were consistent with the typical 

zonation patterns for Southeastern salt marshes with tall S. alterniflora at lower 

elevations and J. roemerianus and B. frutescens at higher elevations (Figure 3.4).  In 

terms of areal extent, medium S. alterniflora was the dominant habitat class, covering 

47% of the classified marsh area (Table 3.5).  Together, the three S. alterniflora height 

classes represented 82% of the Duplin River marshes (when Unclassified areas were 

excluded).  Mud covered 9% of the marsh area, J. roemerianus and S. virginica were 5% 

each and B. frutescens, B. maritima and salt pan each covered less than 2%. 
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The MLC performed well, as seen in the confusion matrix results (Tables 3.3 and 

3.4).  Overall accuracy was 90% and the kappa coefficient was 0.88.  There were no 

unclassified pixels, and producer's and user's accuracies ranged from 80 to 99% for all 

cover classes.  Areas classified as salt pan (99%) and B. frutescens (96%) had the highest 

producer's accuracies, whereas S. virginica (80%) and short S. alterniflora (86%) had the 

lowest.  The largest error of commission was B. maritima (14%) and the greatest error of 

omission was S. virginica (20%), indicating that B. maritima was over-classified whereas 

S. virginica was under-represented in the final MLC classification. 

Seven percent of validation pixels were misclassified, ranging from 0% to 12% 

for each cover class pairing (Table 3.3).  The confusion matrix revealed notable 

misclassifications among the three height classes of S. alterniflora: 6% of medium S. 

alterniflora validation pixels were misclassified as short S. alterniflora; 12% of short S. 

alterniflora pixels were misclassified as medium S. alterniflora; and 5% of tall S. 

alterniflora pixels were misclassified as medium S. alterniflora.  S. virginica had the 

lowest classification accuracies and was most often spectrally confused with other 

classes, most notably as B. maritima (7%), medium S. alterniflora (7%) and salt pan 

(5%).  Additionally, 6% of B. maritima pixels were classified as B. frutescens and 11% of 

mud pixels were classified as short S. alterniflora. 

3.2.2. Spectral angle mapper classification 

In contrast to MLC, spatial distributions in the SAM classification were not 

consistent with typical spatial patterns, largely due to the over-representation of S. 

virginica and B. frutescens at the expense of medium and tall S. alterniflora (Figures 3. 3 

and 3.4).  SAM performed poorly with a low overall accuracy of 61% and kappa 

coefficient of 0.55.  Unlike MLC, 1% of validation pixels were unclassified, the majority 
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belonging to the mud class.  This indicates that the SAM angle for those pixels exceeded 

the specified threshold whereas the MLC threshold was not surpassed and could classify 

the same pixels.  SAM class producer's and user's accuracies ranged from 35% to 89%.  

Mud and J. roemerianus had the highest producer's accuracies (89% and 88%, 

respectively), whereas the lowest producer's accuracies were for medium S. alterniflora 

and tall S. alterniflora (43% and 58%, respectively).  Of note, the user's accuracy for tall 

S. alterniflora was 90%, and represented the highest accuracy value for the entire SAM 

classification.  The errors of commission and omission confirmed the over-classification 

of S. virginica and B. frutescens and the under-representation of medium and tall S. 

alterniflora.  

The poor performance by SAM is also evidenced by the percentage of validation 

pixels misclassified, which had an overall error rate of 39% and ranged from 0% to 27% 

per cover class pairing in the confusion matrix (Table 3.3).  Like MLC, there was 

confusion between the three S. alterniflora height classes; however the percent of SAM 

pixels misclassified are much larger than MLC.  Additionally, tall and medium S. 

alterniflora was misclassified as S. virginica and B. frutescens in the SAM classification. 

3.3. Objective 2: Data fusion of elevation data with decision tree results 

The application of the -1.2 m minimum elevation mask had little effect on the 

four non S. alterniflora classes with only 0.002% of all B. frutescens, B. maritima, J. 

roemerianus and S. virginica pixels reclassified as unclassified (Table 3.5).  However, 

application of the mask had a greater effect on the mud class as 38% of those pixels were 

reassigned to unclassified.  The majority of the reclassified mud pixels were exposed 

creek bank areas.  Seventeen percent of salt pan pixels were reclassified as shell, as they 

had corresponding elevations less than 0.8 m.  
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The individual elevation-based decision trees for tall, medium and short S. 

alterniflora show the percent of pixels that were assigned to each class (Figure 3.3).  Of 

the pixels initially classified as tall S. alterniflora, 1.4% were reassigned to medium S. 

alterniflora, 0.5 % to mud and less than 0.1% to unclassified.  Of the pixels initially 

classified as medium S. alterniflora, 7% were reclassified as tall S. alterniflora, 3% as 

mud and 0.05% as unclassified.  Only 1% of short S. alterniflora pixels were reassigned 

as medium S. alterniflora, 0.4% as tall S. alterniflora, 0.3% as mud and 0.9% as 

unclassified.  Taken together, these reclassifications of S. alterniflora and mud only 

affected 10% of all pixels, thus it did not have a large effect on the overall accuracy of 

the habitat classification (e.g. MLC accuracy improved from 89% to 90%).   

The majority of the reclassified pixels occurred in the upper portion of the Duplin 

River, and it is instructive to focus on this area, which has a high density of small creeks 

and is predominately classified as tall or medium S. alterniflora or mud.  We selected 

three locations within this portion of the marsh, each with an area of 0.15 km2, which 

exemplified the effects of the decision tree on class distributions (Figures 3.4 and 3.5).  In 

these example areas, there were 8 to 14% gains in tall S. alterniflora pixels, 12 to 22% 

losses in medium S. alterniflora pixels, and 0.004 to 5% changes in pixels classified as 

mud following use of the decision tree (Table 3.5, ‘Change in Total Proportion’ column).  

When expressed as a proportionate change per class, however, there were substantial 

increases in areas classified as both tall S. alterniflora (50-300%) and mud (2-29%) and 

corresponding losses in areas classified as short (32-70%) and medium S. alterniflora 

(20-33%) (Table 3.6, ‘Change in Proportion Per Class’ column)  The majority of the 

reclassification involved medium S. alterniflora being reclassified as tall because the 
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pixels occurred in low elevation areas where medium S. alterniflora is not observed, and 

mud pixels changed to unclassified because they occurred in areas less than -1.2 m. 

3.4. Objective 3: DEM modification and accuracy assessment 

In keeping with our previous observations (Hladik and Alber, 2012), elevations in 

the unmodified LIDAR-derived DEM were over-predicted in comparison to RTK 

validation data.  The amount of overestimation varied by cover class, but taller and 

denser vegetated cover classes had larger errors.  Elevations in the unmodified DEM 

were significantly different than the RTK ground elevations for all cover classes except 

for mud and salt pan (Table 3.6, Figure 3.6A).  The RMSE for short S. alterniflora, 

intertidal mud, B. maritima, S. virginica and salt pan, were all within the reported vertical 

accuracy of the LIDAR sensor (0.11 m).  However, the overall RMSE of the unmodified 

DEM (0.15 m), as well as those for tall and medium S. alterniflora, J. roemerianus and B. 

frutescens all had RMSE that exceeded instrument error, with the greatest RMSE for tall 

S. alterniflora (0.34 m). 

The overall mean error in the modified DEM, calculated using the RTK validation 

data, was substantially reduced to -0.003 ± 0.10 m (SD) (Table 3.6, Figures 3.6B and 3.7) 

compared to the unmodified DEM.  The largest error reduction was for tall S. 

alterniflora, where mean error decreased from 0.28 to 0.08 m.  Similarly, J. roemerianus 

error was reduced from 0.16 to -0.005 m in the modified DEM.  Elevations were slightly 

under-predicted (-0.0001 to -0.05 m) for all cover classes except tall S. alterniflora and B. 

maritima in the modified DEMs, but no classes were significantly different in 

comparison to RTK GCPs (Table 3.6, Figure 3.6B).  Overall RMSE (0.10 m) and RMSE 

for all cover classes, except tall S. alterniflora (0.22 m), fell within the reported 

instrument vertical RMSE in the modified DEM. 
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4. Discussion 

4.1. Objective 1: Classifier performance 

The integration of the LIDAR-derived DEM with the MLC classification of the 

HSI produced a habitat map of the Duplin River salt marshes with an overall accuracy of 

90%, as compared to 61% when the SAM classifier was used (Figure 3.4).  The MLC had 

higher kappa coefficient values, and greater class producer's and user's accuracies.  As 

demonstrated in the confusion matrices (Tables 3.3 and 3.4), MLC more accurately 

classified each of the nine cover classes compared to SAM.  In particular, SAM had 

substantially greater misclassifications for medium and tall S. alterniflora, largely due to 

greater confusion between those classes and S. virginica, J. roemerianus and B. 

frutescens.  Indeed, some of the largest discrepancies in the SAM classification were 

related to the over-classification of S. virginica and B. frutescens in areas where medium 

and tall S. alterniflora are typically found.  

Although a few studies have successfully used SAM in salt marshes (Marani et 

al., 2003; Marani et al., 2006; Merani, 2007), our findings support the results of previous 

studies that compared SAM and MLC classification performance (Belluco et al., 2006; 

Rosso et al., 2006).  In heterogeneous salt marshes, SAM is generally unable to handle 

under-represented classes and mixed pixels, as well as variations in vegetation density, 

cover, height, and leaf orientation (Belluco et al., 2006; Jollineau and Howarth, 2008).  

Belluco et al. (2006), in their classification of Lagoon of Venice salt marsh vegetation, 

attributed MLC's superior results to the high quantity and quality of the training data and 

to the high spatial and spectral resolution of the sensor, which enabled spectral separation 

of heterogeneous areas.  MLC calculates the within- and between-class variability 

(variance and covariance) of the training sites and as a result, assuming a large enough 
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sample size, can better separate mixed assemblages.  Belluco et al. (2006) also note the 

over-classification of J. roemerianus in SAM classifications and suggest that because J. 

roemerianus training pixels were typically mixed, SAM interpreted any mixed pixel 

whose spectra did not match any other class as J. roemerianus.  This reasoning could 

explain the large percent of pixels erroneously assigned to J. roemerianus in the SAM 

classification in this study, as well.  Similar reasoning might explain S. virginica since it 

also represented a mixed cover class. 

The highest overall MLC accuracy attained in this study was 90%, with a kappa 

coefficient of 0.88 and class producer's accuracies ranging from 80 to 99% (Table 3.4).  

These results are quite good and suggest that our approach is robust.  Previous studies 

classifying salt marsh habitats have attained a range of accuracies, from 59 to 99% 

(Rosso et al., 2006; Sadro et al., 2007; Wang et al., 2007).  The highest reported 

accuracies were in the Lagoon of Venice, where Belluco et al. (2006) and Marani et al. 

(2006) had class producer's accuracies ranging from 75 to 99% using SAM and MLC.  

Those studies classified four salt marsh species (Spartina maritima; Limonium, 

Salicornia and J. roemerianus), in addition to mud and water.  Belluco et al. (2006) used 

data from a variety of airborne sensors to test numerous classification algorithms, 

including MLC and SAM, and achieved the highest class accuracies for S. maritima 

(98%) and Limonium (98%) using MLC.  Marani et al. (2006) found that SAM classified 

Limonium (98.5 %) and S. maritima (97.9%) with the greatest accuracies.     

4.2. Objective 2: Data fusion and application of decision tree 

This study tested a hybrid approach that combined MLC and decision tree 

algorithms to fuse LIDAR-derived topographic and spectral information.  A high 

accuracy vegetation classification map was essential for performing the final DEM 

94



correction as the classification determined the boundaries by which correction factors 

were applied for each pixel of the map.  Moreover, accurate classification of the creek-

marsh interface was necessary for the proper representation of topography.  The greatest 

challenge in classifying the salt marsh vegetation was to separate the different height 

classes of a single species, S. alterniflora, which is something that previous studies have 

not done.  Given that the height classes of S. alterniflora are continuous rather than 

trimodal, it not unreasonable for them to be spectrally confused or misclassified.  

Although the decision tree did not appreciably improve overall classification accuracies, 

it did produce small gains in separating the three height classes of S. alterniflora and mud 

(Tables 3.3, 3.S2 and 3.S3).  The majority of changes were seen in the upper part of the 

study area where tall and medium S. alterniflora are highly mixed with mud areas (Table 

3.5, Figure 3.5).  In these areas the decision tree produced a more accurate representation 

of the marsh: low-lying areas on the edges of creeks, which were classified as medium S. 

alterniflora in the initial classification (darker blue areas in Figure 3.5), were reassigned 

to mud with a border of tall S. alterniflora, which meets our expectations.  Unfortunately, 

we did not have many GCPs in the areas that showed the most change due to the 

difficulty of assessing these low-lying parts of the marsh, so we do not have validation 

pixels to quantify accuracy in these areas specifically.  Had validation data been available 

in these areas, we believe that the application of the decision tree would have resulted in 

larger gains in classification accuracy.   

The reclassification of 38% of HSI generated mud pixels to “unclassified” for 

DEM elevations below -1.2 m illustrates an obvious coastal classification issue; i.e. the 

overall extent of exposed intertidal mud habitat is dependent on low tide stage at the time 

95



of image (or data) capture.  Indeed, the areas of mud reclassified in Figure 3.5 bordered 

water-masked channel areas.  Obtaining LIDAR on a low spring tide, as in this study, 

allows prediction of these exposed mud areas at higher water stages.  

Classification of salt marsh habitats using image fusion techniques have generally 

produced higher accuracy results.  Using a LIDAR-derived DEM and multispectral 

imagery, Chust et al. (2008) classified a coastal wetland with 88% accuracy.  Similarly, 

Collin et al. (2010), using dual-band LIDAR and multispectral imagery, attained MLC 

accuracy of 92%.  Geerling et al. (2007) mapped floodplain vegetation with 81% 

accuracy when they used LIDAR-derived DEMs in combination with HSI.  These studies 

have all focused on the fusion of visible imagery with DEM elevations prior to 

classification.  Our approach is unique in that we fused the two data sources via a 

decision tree after the visible imagery was initially classified.  To our knowledge, no prior 

studies have addressed or ameliorated the Spartina problem as effectively as our approach of 

data fusion through a decision tree.  The different height classes of S. alterniflora vary in 

biomass, productivity, carbon storage and palatability to herbivores (Goranson et al., 2004; 

Morris and Haskin, 1990; Turner, 1976), making their distinction important at the ecosystem 

scale.  Accurate habitat maps are especially important at the creek bank-marsh interface 

(where mud and tall S. alterniflora intersect), for estimates of overbank flooding and 

transport of materials such as carbon and minerals through small tidal creeks, as well as 

the exchange of carbon, minerals and groundwater across the interface (Bouma et al., 

2005; Townend et al., 2010; Zedler, 2001).  Additionally, tall S. alterniflora stands are 

vulnerable to creek bank erosion and wrack deposition, making high accuracy habitat 

delineations useful for identifying these disturbances. 
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4.3. Objective 3. DEM modification and accuracy assessment 

The second data fusion with the hyperspectral classification and application of 

class-specific correction factors to the LIDAR-derived DEM greatly improved the 

accuracy of the DEM (Figure 3.7).  The overall mean DEM error was reduced from 0.10 

to -0.003 m and the RMSE from 0.15 to 0.10 m.  Applying the cover class-specific 

correction factors brought all DEM elevations in line with their true RTK elevations 

(Table 3.6, Figure 3.6B).  These findings are in agreement with the results of DEM 

modification at four test sites within the Duplin River marshes using the same derived 

correction factors (Hladik and Alber, 2012).  The slight negative value for the overall 

error indicates that the correction factors produced a DEM surface that was slightly lower 

than RTK elevations, but is within instrument error.  The reduced errors in the modified 

DEM are less than the elevation differences between vegetation classes, making the 

corrected DEM appropriate for use in salt marsh studies where small differences in 

elevation can have important ecological effects.   

The DEM correction method used in this study combined a hyperspectral 

classification with the DEM to modify DEM elevations by informing the DEM of the 

data fusion-derived HSI classifications.  Sadro et al. (2007) used a similar approach and 

reported reduced LIDAR-derived DEM errors for extracted elevation values following 

the application of species-specific corrections in combination with an AVIRIS 

classification of a California salt marsh composed mostly of high marsh plants.  

Following correction, the authors found no mean difference between survey and extracted 

LIDAR-derived DEM elevations, with an overall RMSE of 0.06 m.  The Sadro et al. 

(2007) study did not modify the actual DEM surface, but rather modified extracted 

elevations according to species-specific offsets.  In contrast, we applied correction factors 
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to modify the DEM and then performed a rigorous accuracy assessment.   

Another approach to correcting LIDAR without data fusion is the analysis of 

LIDAR LAS point clouds and generation of a new LIDAR-derived bare earth DEM 

surface.  Wang et al. (2009) used statistical techniques to better differentiate ground and 

canopy returns in marsh vegetation, while other authors (Schmid et al., 2011; Toyra et al., 

2003) have experimented with various DEM interpolation algorithms to produce the most 

representative ground surface.  The errors in these efforts, however, were generally 

greater than, or comparable to, those reported here.  The current study shows that image 

fusion is an accurate and viable alternative for DEM correction. 

5. Conclusion 

Accurate habitat and elevation maps of salt marsh habitats are important for many 

applications, but existing methodologies have significant errors.  This study demonstrates the 

applicability of data fusion for both salt marsh habitat delineation and LIDAR-derived DEM 

correction.  The hyperspectral classification, when combined with the LIDAR-derived DEM 

through a decision tree, produced a habitat map with a 90% overall accuracy.  Prior studies 

have noted the difficulty in correctly classifying Spartina areas but have not provided a 

solution to reduce class confusion.  This study was not only comparable to previous 

efforts in terms of accuracy (S. alterniflora accuracy of 94.5%), but also provided a 

method for minimizing the Spartina problem.  Fusing the classification with the DEM to 

apply cover class-specific elevation correction factors resulted in large reductions in mean error 

for nine cover classes with an overall mean error of -0.003 m.  The data fusion approach used 

here minimized problems with both hyperspectral and LIDAR approaches, and represents a 

significant advance over evaluating hyperspectral and LIDAR data independently.   
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Table 3.1.  LIDAR and hyperspectral sensor system specifications used to acquire the 
remote sensing data for this study. 
 
  LIDAR Hyperspectral  
Sensor Optech ALTM Gemini AISA Eagle 
Flight Date March 2009 June 2006 
Altitude (m) 800 1650 
Swath Width (m) 370 1000 
Overlap (%) 50 50 
Number of Spectral 
Bands 1 63 

Wavelengths (nm) 1047 400-980 
Bandwidth (nm) − 9 
FOV (degrees) − 68 
Laser PRF (kHz) 125 − 
Scan Freq (Hz) 40 − 
Scan Angle (degrees) 16 − 
Scan Cutoff (degrees) 3 − 
Footprint (cm) 60 − 
Pulse Length (ns) 7 − 
Pixel Resolution (m) 1 1 

 
Table 3.2.  Cover class-specific correction factors used to modify the LIDAR-derived 
DEM when fused with the hyperspectral classification.  The sample size (N), standard 
deviation (SD, 1 sigma) and standard error (SE, 1 sigma) for the derivation of the 
correction factors are also shown.  Please refer to section 2.9 for details regarding 
correction factors.  All units (except N) are in meters (m).   
 
Cover Class Correction Factor (m) N SD (m) SE (m) 
Tall S. alterniflora  0.25 152 0.17 0.01 
Medium S. alterniflora 0.11 267 0.07 0.00 
Short S. alterniflora 0.05 214 0.05 0.00 
Intertidal Mud 0.04 53 0.06 0.01 
S. virginica 0.04 227 0.05 0.00 
B. maritima 0.04 160 0.04 0.00 
Salt Pan  0.03 62 0.04 0.01 
J. roemerianus 0.17 117 0.09 0.01 
B. frutescens 0.12 78 0.07 0.01 
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Table 3.3.  Maximum likelihood classification (MLC) and spectral angle mapper (SAM) classification confusion matrices after 
application of the decision tree for the nine marsh cover classes.  Columns represent the reference data (what the pixel actually was 
based on validation data) and rows represent the image data (what the pixel was classified as).  Shaded cells are those where the 
classification was accurate. Percentages are rounded to the nearest decimal place and may not sum to 100% for each cover class. 
 

Cover Class Tall S. 
alterniflora 

Medium S. 
alterniflora

Short S. 
alterniflora

Intertidal 
Mud 

S. 
virginica

B. 
maritima

Salt 
Pan  

J. roe-
merianus

B. fru-
tescens 

MLC   

Unclassified 0 0 0 0 0 0 0 0 0 
Tall S. alterniflora  94.50 2.71 0 1.76 0 0 0 2.10 0 
Medium S. 
alterniflora 5.16 88.2 12.12 0.29 6.71 0 0 2.34 2.04 
Short S. alterniflora 0 6.43 86.32 11.14 1.47 0 0 0 0 
Intertidal Mud 0 0.15 0.68 86.80 0 0 0 0 0 
S. virginica 0 1.07 0.88 0 79.87 2.83 1.19 0 0 
B. maritima 0 0 0 0 7.36 91.30 0 1.05 2.35 
Salt Pan  0 0 0 0 4.58 0 98.81 0 0 
J. roemerianus 0 1.43 0 0 0 0 0 94.51 0 
B. frutescens 0.34 0 0 0 0 5.87 0 0 95.61 
Total 100 100 100 100 100 100 100 100 100 
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Table 3.3 (continued).   
 

Cover Class Tall S. 
alterniflora 

Medium S. 
alterniflora

Short S. 
alterniflora

Intertidal 
Mud 

S. 
virginica

B. 
maritima

Salt 
Pan  

J. roe-
merianus

B. fru-
tescens 

SAM   

Unclassified 1.95 0.40 0 5.64 0 0 0 1.05 0 

Tall S. alterniflora  57.85 0.82 0 1.78 1.96 0 0 0 7.52 
Medium S. 
alterniflora 1.48 42.73 6.70 0 15.88 0 4.76 1.05 1.72 
Short S. alterniflora 0 25.14 62.51 2.67 6.71 0 26.98 0 0 
Intertidal Mud 0.20 0 15.32 88.72 0 0 0 0 0 
S. virginica 4.90 17.74 1.50 0 63.01 2.63 0 1.78 0 
B. maritima 2.68 0 0 0 0 72.06 0 0 6.74 
Salt Pan  0 0 13 1.19 0 0 68.25 0 0 
J. roemerianus 4.09 9.23 0.70 0 12.44 0 0 88.21 2.82 
B. frutescens 26.85 3.93 0 0 0 25.30 0 7.92 81.19 
Total 100 100 100 100 100 100 100 100 100 
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Table 3.4.  Maximum likelihood classification (MLC) and spectral angle mapper 
(SAM) classification errors of commission, errors of omission, producer’s 
accuracies and user’s accuracies for each cover class following application of the 
decision tree for the nine cover classes.  Percentages are rounded to the nearest 
decimal place and may not sum to 100% for each cover class. 
 

Cover Class Errors of 
Commission

Errors of 
Omission 

Producer's 
Accuracy 

User's 
Accuracy 

MLC  

Tall S. alterniflora  7.90 5.50 94.50 92.10 
Medium S. alterniflora 12.41 11.80 88.20 87.59 
Short S. alterniflora 12.70 13.68 86.32 87.30 
Intertidal Mud 6.03 13.20 86.80 93.97 
S. virginica 13.01 20.13 79.87 86.99 
B. maritima 13.93 8.70 91.30 86.07 
Salt Pan  5.32 1.19 98.81 94.68 
J. roemerianus 3.86 5.49 94.51 96.14 
B. frutescens 5.28 4.39 95.61 94.72 

SAM  

Tall S. alterniflora  9.74 42.15 57.85 90.26 
Medium S. alterniflora 17.24 57.27 42.73 82.76 
Short S. alterniflora 46.42 37.49 62.51 53.58 
Intertidal Mud 49.15 11.28 88.72 50.85 
S. virginica 65.10 36.99 63.01 34.90 
B. maritima 18.91 27.94 72.06 81.09 
Salt Pan  42.28 31.75 68.25 57.72 
J. roemerianus 30.13 11.79 88.21 69.87 
B. frutescens 59.21 18.81 81.19 40.79 
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Table 3.5.  Cover class areas based on the initial MLC classification and following the application of the decision tree for three areas 
in the upper Duplin River (corresponding to locations 1, 2 and 3 in Figures 3.4 and 3.5) and for the entire study domain.  The ‘MLC’ 
column contains the area assigned for each class expressed as a proportion of the total number of pixels in each location prior to 
application of the decision tree.  The ‘Decision Tree’ column contains the proportion of the area for each class following the 
application of the decision tree.  ‘Change in Proportion Per Class’ represents the change in cover class area, calculated on a per class 
basis, whereas ‘Change is Total Proportion’ is calculated based on the total number of pixels in the area following the application of 
the decision tree (‘Decision Tree’ minus ‘MLC’ column values).  The values in parentheses for the Whole Duplin are the proportion of 
the areas when Unclassified pixels are excluded. 
 

Cover Class MLC  Decision Tree 
Change in 

Proportion Per 
Class 

Change in Total 
Proportion 

Location 1 
Tall S. alterniflora (ST) 0.15 0.22 0.51 0.08 

Medium S. alterniflora (SM) 0.60 0.48 -0.20 -0.12 

Short S. alterniflora (SS) 0.01 0.00 -0.32 0.00 

Intertidal Mud (MUD) 0.17 0.17 0.02 0.00 

Unclassified 0.07 0.12 0.63 0.05 

Location 2 
Tall S. alterniflora (ST) 0.03 0.14 3.19 0.11 

Medium S. alterniflora (SM) 0.58 0.39 -0.33 -0.19 

Short S. alterniflora (SS) 0.00 0.00 -0.70 0.00 

Intertidal Mud (MUD) 0.31 0.35 0.13 0.04 

Unclassified 0.08 0.12 0.63 0.05 
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Table 3.5 (continued).   
 

Cover Class MLC  Decision Tree 
Change in 

Proportion Per 
Class 

Change in Total 
Proportion 

Location 3 
Tall S. alterniflora (ST) 0.08 0.18 1.64 0.13 

Medium S. alterniflora (SM) 0.49 0.32 -0.31 -0.22 

Short S. alterniflora (SS) 0.00 0.00 -0.36 0.00 

Intertidal Mud (MUD) 0.28 0.24 0.29 0.06 

Unclassified 0.15 0.25 1.88 0.02 

Whole Classification 
Tall S. alterniflora (ST) 0.09 (0.13) 0.11 (0.17) 0.02 0.24 

Medium S. alterniflora (SM) 0.33 (0.50) 0.30 (0.47) -0.03 -0.10 

Short S. alterniflora (SS) 0.08 (0.12) 0.08 (0.12) 0.00 -0.03 

Intertidal Mud (MUD) 0.07 (0.11) 0.06 (0.09) -0.02 -0.23 

S. virginica (SV) 0.03 (0.05) 0.03 (0.05) 0.00 0.00 

B. maritima (BM) 0.002 (0.01) 0.002 (0.01) 0.00 0.00 

Salt Pan (SALT) 0.003 (0.02) 0.003 (0.01) 0.00 -0.17 

J. roemerianus (JR) 0.03 (0.05) 0.03 (0.05) 0.00 0.00 

B. frutescens (BF) 0.003 (0.01) 0.003 (0.01) 0.00 0.00 

Shell 0.00 0.0005 (0.003) 0.00 1.00 

Unclassified 0.34 0.37 0.03 0.01 
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Table 3.6.  Summary of LIDAR-derived DEM accuracies.  Accuracies for each cover class are presented for both the unmodified and 
modified DEM relative to the RTK ground survey elevation.  The table lists mean error (Mean Error), number of observations (N), 
standard deviation (SD), standard error (SE), root mean square error (RMSE), fundamental vertical accuracy (FVA) and 95th 
percentile error (95th Percentile). p-values are from a paired t-test between the RTK elevations and the predicted DEM elevations for 
each cover class. All error units are in meters. 
 

Cover Class Mean Error 
(m) N SD       

(m) 
SE        
(m) 

RMSE     
(m) 

FVA      
(m) 

95th 
Percentile   

(m) 
p-value 

Unmodified DEM 

Tall S. alterniflora (ST) 0.28 51 0.20 0.03 0.34 0.67 0.56 < 0.001
Medium S. alterniflora (SM) 0.11 89 0.07 0.01 0.13 0.26 0.22 < 0.001
Short S. alterniflora (SS) 0.05 71 0.05 0.01 0.07 0.14 0.13 0.006 
Intertidal Mud (MUD) 0.06 17 0.06 0.01 0.08 0.16 0.14 0.431 
S. virginica (SV) 0.04 73 0.04 0.00 0.06 0.11 0.10 0.003 
B. maritima (BM) 0.05 53 0.04 0.01 0.06 0.11 0.11 0.003 
Salt Pan (SALT) 0.03 21 0.04 0.01 0.05 0.09 0.08 0.250 
J. roemerianus (JR) 0.16 37 0.09 0.01 0.18 0.35 0.27 < 0.001
B. frutescens (BF) 0.11 21 0.08 0.02 0.13 0.26 0.22 0.003 
Overall 0.10 450 0.12 0.01 0.15 0.30 0.34 < 0.001
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Table 3.6 (continued). 
 

Cover Class Mean Error 
(m) N SD       

(m) 
SE        
(m) 

RMSE     
(m) 

FVA      
(m) 

95th 
Percentile   

(m) 
p-value 

Modified DEM 

Tall S. alterniflora (ST) 0.08 51 0.20 0.03 0.22 0.42 0.41 0.129 
Medium S. alterniflora (SM) -0.01 89 0.08 0.01 0.08 0.16 0.12 0.506 
Short S. alterniflora (SS) -0.03 71 0.06 0.01 0.07 0.14 0.06 0.081 
Intertidal Mud (MUD) -0.05 17 0.10 0.02 0.11 0.22 0.08 0.495 
S. virginica (SV) -0.01 73 0.05 0.01 0.05 0.09 0.06 0.522 
B. maritima (BM) 0.00 53 0.04 0.01 0.04 0.08 0.07 0.911 
Salt Pan (SALT) -0.01 21 0.04 0.01 0.04 0.08 0.05 0.535 
J. roemerianus (JR) 0.00 37 0.08 0.01 0.08 0.16 0.12 0.914 
B. frutescens (BF) 0.00 21 0.08 0.02 0.08 0.15 0.08 0.985 
Overall 0.00 450 0.10 0.00 0.10 0.19 0.17 0.870 
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Table 3.S1.  Jeffries-Matusita and Transformed Divergence Region of Interest (ROI) separability measures calculated for each cover 
class pairing in this study.  Larger values (greater than 1.9, on a scale of 0 to 2) indicate good separability, whereas values less than 1 
indicate poor spectral separability.  Training data pairs had values greater than 1.9 for both measures except the short S. alterniflora 
and medium S. alterniflora pair, which had a value of 1.62 for the Jeffries-Matusita distance measure.  Short and medium S. 
alterniflora were kept as two distinct classes in this analysis as it is recommended that only pairs with values less than one be 
combined. 
 

Cover Class Tall S. 
alterniflora 

Medium S. 
alterniflora

Short S. 
alterniflora 

Intertidal 
Mud 

S. 
virginica 

B. 
maritima Salt Pan J. roe-

merianus 

Jeffries-Matusita 

Tall S. alterniflora  
Medium S. 
alterniflora 1.9053         
Short S. alterniflora 1.9921 1.6174 

Intertidal Mud 1.9997 1.9864 1.9642 

S. virginica 1.9941 1.9423 1.9423 1.9983 

B. maritima 1.9984 1.9990 1.9999 2.0000 1.9429 

Salt Pan  2.0000 2.0000 2.0000 1.9999 2.0000 2.0000 

J. roemerianus 1.9821 1.9541 1.9715 1.9994 1.9962 1.9992 2.0000 

B. frutescens 1.9594 1.9866 1.9996 2.0000 1.9962 1.9622 2.0000 1.9818 
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Table 3.S1 (continued). 
 

Cover Class Tall S. 
alterniflora 

Medium S. 
alterniflora

Short S. 
alterniflora 

Intertidal 
Mud 

S. 
virginica 

B. 
maritima Salt Pan J. roe-

merianus 

Transformed Divergence 

Tall S. alterniflora  
Medium S. 
alterniflora 2.0000         
Short S. alterniflora 2.0000 1.9209 

Intertidal Mud 2.0000 2.0000 1.9999 

S. virginica 2.0000 1.9982 2.0000 2.0000 

B. maritima 2.0000 2.0000 2.0000 2.0000 2.0000 

Salt Pan  2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 

J. roemerianus 2.0000 1.9985 2.0000 2.0000 2.0000 2.0000 2.0000 

B. frutescens 2.0000 2.0000 1.9989 2.0000 1.9874 2.0000 1.9999 2.0000 
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Table 3.S2. Maximum likelihood (MLC) and spectral angle mapper (SAM) classification error matrices for initial HSI classifications 
in this study prior to the decision tree.  Columns represent reference data (what the pixel actually is based on validation data) and rows 
represent image data (what the pixel was classified as).  Percentages are rounded to the nearest decimal place and may not sum to 
100% for each cover class. 
 

Cover Class Tall S. 
alterniflora 

Medium S. 
alterniflora

Short S. 
alterniflora

Intertidal 
Mud 

S. 
virginica

B. 
maritima

Salt 
Pan  

J. roe-
merianus

B. fru-
tescens 

MLC   

Unclassified 0 0 0 0 0 0 0 0 0 
Tall S. alterniflora  93.30 2.93 0 1.76 0.16 0 0 2.26 0 
Medium S. 
alterniflora 5.76 86.77 13.24 0.00 6.06 0 0 2.02 2.04 
Short S. alterniflora 0 7.99 85.44 10.56 0.98 0 0 0 0 
Intertidal Mud 0.2 0 0.54 86.80 0 0 0 0 0 
S. virginica 0 1.19 0.68 0 82.49 3.64 2.38 0 0 
B. maritima 0 0 0 0 5.73 89.27 0 0.97 2.66 
Salt Pan  0 0 0 1 4.58 0 97.62 0 0 
J. roemerianus 0 1.12 0.1 0 0 0 0 94.35 0 
B. frutescens 0.74 0 0 0 0 7.09 0 0 95.30 
Total 100 100 100 100 100 100 100 100 100 
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Table 3.S2 (continued). 
 

Cover Class Tall S. 
alterniflora 

Medium S. 
alterniflora

Short S. 
alterniflora

Intertidal 
Mud 

S. 
virginica

B. 
maritima

Salt 
Pan  

J. roe-
merianus

B. fru-
tescens 

SAM   

Unclassified 1.65 0.51 0 6.45 0 0 0 0.87 0 

Tall S. alterniflora  57.13 0.87 0 2.35 2.22 0 0 0 9.92 
Medium S. 
alterniflora 1.52 39.38 6.30 0 17.25 0 5.22 1.27 0.00 
Short S. alterniflora 0 28.77 55.24 1.17 6.80 0 26.51 0 0 
Intertidal Mud 0.00 0 14.81 87.39 0 0 0 0 0 
S. virginica 4.62 17.88 1.38 0 63.45 2.83 0 1.67 0 
B. maritima 3.43 0 0 0 0 70.65 0 0 7.97 
Salt Pan  0 0 22 2.64 0 0 68.27 0 0 
J. roemerianus 4.03 8.56 0.64 0 10.28 0 0 87.60 3.58 
B. frutescens 27.08 4.01 0 0 0 26.52 0 8.43 78.54 
Total 100 100 100 100 100 100 100 100 100 
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Table 3.S3.  Maximum likelihood (MLC) and spectral angle mapper (SAM) errors of 
commission, errors of omission, producer’s accuracies and user’s accuracies for each 
cover class for the initial HSI classification prior to the decision tree. 
 

Cover Class Errors of 
Commission

Errors of 
Omission 

Producer's 
Accuracy 

User's 
Accuracy 

MLC  

Tall S. alterniflora  8.60 6.70 93.30 91.40 
Medium S. alterniflora 13.20 13.23 86.77 86.80 
Short S. alterniflora 14.76 14.56 85.44 85.24 
Intertidal Mud 4.52 13.20 86.80 95.48 
S. virginica 14.14 17.51 82.49 85.86 
B. maritima 12.67 10.73 89.27 87.33 
Salt Pan  5.93 2.38 97.62 94.07 
J. roemerianus 3.23 5.65 94.35 96.77 
B. frutescens 7.60 4.70 95.30 92.40 

SAM  

Tall S. alterniflora  11.64 42.87 57.13 88.36 
Medium S. alterniflora 18.78 60.62 39.38 81.22 
Short S. alterniflora 50.38 44.76 55.24 49.62 
Intertidal Mud 50.25 12.61 87.39 49.75 
S. virginica 64.42 36.55 63.45 35.58 
B. maritima 22.44 29.35 70.65 77.56 
Salt Pan  56.96 31.73 68.27 43.04 
J. roemerianus 28.77 12.40 87.60 71.23 
B. frutescens 61.76 21.46 78.54 38.24 
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Figure 3.1.  The unmodified LIDAR-derived bare earth DEM showing the location of the 
study area surrounding the Duplin River adjacent to Sapelo Island, GA and the extent of 
the HSI imagery evaluated for this study (white outline).  White dots indicate RTK 
ground control point (GCP) sampling locations used to validate DEM elevation accuracy. 
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Figure 3.2.  Hyperspectral classification and LIDAR-derived DEM correction work flow.  
Circles represent LIDAR data processing steps; rectangles represent HSI processing; 
triangles represent data fusion; gray hexagons represent the products of data fusion. 
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Figure 3.3.  Decision tree classification workflows for evaluating pixels classified as tall, medium and short S. alterniflora (ST, SM, 
SS), fusing HSI and LIDAR-derived DEM data sources.  Circles represent LIDAR-derived DEM data; rectangles represent HSI data 
(MLC or SAM initial classification and NDVI); gray hexagons represent the cover class products of data fusion following the 
application of the decision tree.  Percentages represent the percent of pixels reassigned to each of the respective classes based on the 
decision tree rules.  Percentages are rounded and do not sum to 100% for each tree. 
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Figure 3.4.  The final MLC hyperspectral classification product (after application of 
decision tree). Areas 1, 2 and 3 represent locations of examples shown in Figure 3.5. 
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Figure 3.5.  Before (left) and after (right) application of the decision tree on the MLC 
classification for example locations 1, 2 and 3 shown in Figure 3.4.  Note the 
reassignment of medium S. alterniflora pixels (blue) to tall S. alterniflora (red) and mud 
(brown).  Black areas are unclassified and are either upland areas or water pixels that 
gave unreliable LIDAR water returns.  Each location is 0.15 km2 and was selected to 
demonstrate the effect of the decision tree on class distributions. 
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Figure 3.6.  LIDAR-derived DEM mean elevation errors from the RTK validation data 
set (N = 450) for each cover class before (A) and after (B) correction.  Bars represent 
mean errors in meters (m) +/- standard error.  Asterisks (*) above bars indicate significant 
p-values (p < 0.05) from a paired t-test between the RTK elevations and the predicted 
DEM elevations for each cover class (see Table 3.6).  Cover class abbreviations are as 
follows:  ST: tall S. alterniflora; BF: B. frutescens; JR: J. roemerianus; SM: medium S. 
alterniflora; SV: S. virginica; BM: B. maritima; SS: short S. alterniflora; and SALT: salt 
pan. 
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Figure 3.7.  The modified bare earth LIDAR-derived DEM product (warm color ramp) 
produced through data fusion with the final MLC classification and correction factors.  
Cool colors indicate higher elevations and warmer colors represent lower elevations.  
Note the low elevations in the upper Duplin River in brown where the decision tree had 
the greatest effect on reducing the Spartina problem.  The modified DEM is overlaid on 
the unmodified bare earth LIDAR-derived DEM (grayscale color ramp), with higher 
elevations in white and lower elevations in black.  Elevations were all positioned in the 
NAD 83 reference frame and projected into UTM coordinate zone 17 N.  Elevations are 
NAVD 88 orthometric heights (in meters) computed using the National Geodetic Survey 
GEOID 03. 
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Figure 3.S1.  Vegetated cover classes examined in this study. ST: Spartina alterniflora 
tall height, SM: Spartina alterniflora medium height; JR: Juncus roemerianus; SV: 
Salicornia virginica; SS: Spartina alterniflora short height; BM: Batis maritima; and BF:
Borrichia frutescens.  The two non-vegetated cover classes (intertidal mud (MUD) and 
salt pan (SALT)) are not depicted.  Photo credits: Steve Pennings (DIST) and Christine 
Hladik (all others). 
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Figure 3.S2.  Mean reflectance spectra for the training ROIs of the various habitat classes 
used in the MLC and SAM hyperspectral classifications.  The magnitude of reflectance 
varied, with salt pan (SALT) having the greatest overall reflectance and B. maritima 
(BM) having the highest vegetation reflectance.  In the visible range, J. roemerianus (JR) 
had the lowest reflectance.  The reflectance characteristics for vegetated cover classes are 
broad pigment absorption in the blue wavelengths (400-500 nm); a sharp chlorophyll 
pigment absorption feature in the NIR near 675 nm; a red edge feature with sharply 
increasing reflectance between 680-770 nm; high reflectance in the NIR; and a water 
absorption band near 940 nm.  Although similar in shape and magnitude, all cover classes 
were spectrally separable (Table 3.S1).  For the non-vegetated classes, mud and salt pan 
MUD, SALT), the general spectral shape showed steadily increasing reflectance 
roughout the visible with no identifiable absorbance features with the exception of the 
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3 Hladik, C. and Alber, M. To be submitted to Ecological Applications. 
 
 

 

 

CHAPTER 4 

CLASSIFICATION OF SALT MARSH VEGETATION USING EDAPHIC AND 

REMOTE SENSING-DERIVED VARIABLES3 
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Abstract 

Salt marshes are well known for their striking macrophyte zonation patterns.  

Although many variables affect species distribution, soil salinity and waterlogging have 

been shown to be two of the most important edaphic parameters.  These variables are 

largely determined by the frequency and duration of tidal flooding, which is dependent on 

topographical variations.  Light detection and ranging (LIDAR) can be used to generate 

digital elevation models (DEMs) from which elevation and landscape metrics can be 

derived with GIS, as an alternative to the collection of edaphic data in the field.  The 

primary objective of this study was to classify four marsh vegetation classes (tall 

Spartina alterniflora, medium S. alterniflora/short S. alterniflora, marsh meadow and 

Borrichia frutescens/J.roemerianus) based on edaphic and remote sensing-derived 

variables in order to determine which combination of variables best describe plant 

distributions in a Southeastern salt marsh.  Although multivariate statistical techniques 

such as linear discriminant analysis (LDA) are commonly used to classify and predict 

plant distributions based on edaphic and/or remote sensing-derived metrics, 

nonparametric classification and regression trees (CART) is being used increasingly as an 

alternative as it may better capture nonlinear and collinear relationships in environmental 

data sets.  Our second objective was to compare the performance of LDA and CART for 

the classification of marsh vegetation.  Models based on the edaphic variables soil 

organic matter content, water content, salinity and redox, attained accuracies of 0.63 and 

0.72, with LDA and CART respectively.  When the remote sensing variables DEM 

elevation, slope, distance to mean high water line and distance to upland area were used, 

classification accuracies improved to 0.78 for LDA and 0.79 for CART.  The greatest 
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accuracies (0.82 for LDA and 0.83 for CART) were attained by combining soil organic 

matter content with the four remote sensing metrics in the combination models.  Our 

results suggest that remote sensing-derived metrics can capture edaphic gradients 

effectively, which makes them especially suited to landscape level analyses of salt marsh 

plant habitats.  Although the two classification techniques had similar overall accuracies, 

we recommend a workflow wherein CART is used for variable reduction and selection 

prior to training and subsequent prediction of new observations by LDA.   
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1. Introduction 

 Salt marsh macrophytes exhibit characteristic patterns of vertical zonation 

(Chapman, 1974; Sanchez et al., 1996; Silvestri et al., 2005).  Zonation is usually 

described in terms of elevation relative to the tidal frame, and can be used to separate the 

marsh into low, mid and high marsh zones based on flooding frequency.  In salt marshes 

along the coast of the Southeastern United States Spartina alterniflora is typically the 

dominant plant in the low marsh, with taller plants found closest to the water.  S. 

alterniflora is also dominant in the mid-marsh zone, but can be replaced by marsh 

meadow or salt meadow species, Salicornia virginica, Batis maritima and Distichlis 

spicata, at higher elevations within this zone.  In high marsh areas along the upland 

fringe, where the marsh is inundated only at the highest tides, Juncus roemerianus and 

Borrichia frutescens become the dominant species (Weigert and Freeman, 1990).   

The relative importance of the processes that control plant zonation and the ability 

to predict salt marsh patterns have been the subject of intense study, especially in the 

context of sea level rise and climate change.  Although biological interactions such as 

competition and facilitation can influence where particular plants are found (Pennings 

and Callaway, 1992; Pennings et al., 2005; Vince and Snow, 1984), salt marsh plant 

zonation has been largely attributed to two environmental gradients: soil salinity and 

flooding (Adam, 1990; Pennings and Bertness, 2001; Pennings et al., 2005).  Elevated 

soil salinities affect regulation of internal solutes, metabolic functions and nutrient uptake 

by plants (Morris, 1984; Pennings and Bertness, 2001).  Flooding or waterlogging results 

in anaerobic conditions and subsequent changes in soil chemistry, specifically lower soil 

redox potential and higher sulfide concentration (Adam, 1990; Delaune et al., 1987; 
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Pezeshki, 2001).  Salt marsh plants have varying physiological tolerances for both 

salinity and flooding, with S. alterniflora generally better adapted to high salinities and 

prolonged inundation than most other plants, with the exception of high salt tolerant 

succulents such as S. virginica (Mendelssohn and Morris, 2000; Pennings et al., 2005).   

Since patterns of tidal inundation are the result of location in the marsh and 

topographical variations, elevation and distance metrics have both been used as proxies 

for inundation frequency and duration (Adams, 1963; Deleeuw et al., 1991; Earle and 

Kershaw, 1989).  Elevation is often correlated with soil salinity and flooding (Adam, 

1990; Adams, 1963; Sanderson et al., 2001), as well as other edaphic parameters, 

including oxygen availability (Chapman, 1974; Patterson and Mendelssohn, 1991), soil 

redox potential (Delaune et al., 1983; Pezeshki, 2001), nutrient availability (Gallagher, 

1975), organic matter content (Morris and Haskin, 1990) and sulfide concentration 

(Mendelssohn and Morris, 2000).  The distance to mean high water (MHW) and other 

tidal elevations indicate position within the marsh and the direction of tidal flooding, and 

are similarly related to flooding and salinity gradients.  Elevation and distance to MHW 

have been shown to be related to plant distribution (Earle and Kershaw, 1989; Silvestri et 

al., 2005; Zedler et al., 1999), productivity (Mendelssohn and Morris, 2000; Morris et al., 

2002) and sedimentation rates (Marion et al., 2009; van Wijnen and Bakker, 2001) in salt 

marshes.  Other landscape metrics, such as slope and distance to upland area (Andrew 

and Ustin, 2009; Griffin et al., 2011; Sellars and Jolls, 2007), have also been included in 

some analyses.  Although simple correlations of elevation and/or distance metrics alone 

have been unable to fully explain zonation (Bockelmann et al., 2002; Silvestri et al., 

2005; Zedler et al., 1999), many investigators have successfully used elevation in 
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combination with edaphic variables to explain plant zonation (Byrd and Kelly, 2006; 

Lang et al., 2010; Suchrow and Jensen, 2010; Woerner and Hackney, 1997).  However, 

no prior studies have examined the effectiveness of landscape variables such as elevation 

and distance metrics for predicting plant zonation in comparison to edaphic variables 

from the same study site.   

A major advantage of using information on elevation and tidal inundation to 

predict plant distributions is that data can be collected synoptically at the landscape level 

via remote sensing.  GIS and Light detection and ranging (LIDAR) can be used to 

generate digital elevation models (DEMs) from which elevation and landscape metrics 

can be derived.  In one of the most successful applications of landscape metrics, 

Sanderson et al. (2001) quantified the influence of tidal channels (using a cumulative 

inverse squared distance function) by combining distance to channel and channel size to 

predict the probability of salt marsh species presence with 90% accuracy.  However, it is 

not clear that this approach would work in other systems because the proportion of marsh 

cover correctly predicted was highly skewed by very high or low species coverage.   

 Regardless of which variables are included, analyses of plant distributions 

generally use multivariate statistical approaches such as canonical correspondence 

analysis (CCA).  CCA has been extensively used to explain species composition by 

constructing linear combinations of multiple environmental variables that best separate 

vegetation along environmental gradients (Ter Braak, 1987).  In Northwestern Atlantic 

and Mediterranean Sea salt marshes, CCA has been used to explain 23 to 95% of the 

variance in species composition based on salinity and soil moisture (Batriu et al., 2011; 

Cacador et al., 2007; Rogel et al., 2000; Rogel et al., 2001).  In North Sea marshes, CCA 
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axes related to salinity, soil moisture and elevation accounted for 94% of the plant 

community variance (Engels and Jensen, 2009; Suchrow and Jensen, 2010).  Although 

CCA can be used to better understand species relationships along ecological gradients, 

the technique cannot classify vegetation type or predict group membership of new 

observations. 

Two approaches commonly used to classify and predict plant distributions are 

discriminant analysis and logistic regression.  Linear and quadratic discriminant analysis 

(LDA and QDA, respectively) use a priori knowledge of existing class membership to 

separate groups based on linear or quadratic combinations of predictor variables.  Even 

though observations do not necessarily have a linear response along ecological gradients 

(Austin, 2007; Suchrow and Jensen, 2010), LDA has successfully explained and 

predicted vegetation zonation in Southwestern Atlantic marshes (Isacch et al., 2006; 

Sanchez et al., 1998) and Southeastern U.S. salt marshes (Woerner and Hackney, 1997), 

with classification accuracies ranging from 57-70%.  When data do not meet LDA 

assumptions (namely multivariate normality and homogeneity of variances), binary 

logistic regressions have been used to determine species presence or absence as a 

function of multiple variables.  Logistic regression models the probability of an outcome 

as a linear function of the predictor variables, and is similar to multiple linear regression 

but with a categorical, rather than continuous, dependent variable.  Logistic regression 

has been used to predict salt marsh species presence/absence using elevation, edaphic 

data and landscape metrics with limited success (Moffett et al., 2010; Sellars and Jolls, 

2007; Zedler et al., 1999). 
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Classification and regression trees (CART) is a nonparametric approach 

increasingly used as an alternative to discriminant analyses for the description and 

prediction of plant patterns using environmental data.  Tree based classification methods 

are valuable data exploration tools that provide straightforward visualization of the data 

structure through binary classification (categorical) or regression (continuous) trees.  

CART has numerous advantages: data do not need to be normally distributed or 

transformed, homogeneity of covariances is not assumed, missing data and combinations 

of categorical and continuous variables are permitted, hierarchical and non-linear 

relationships are captured, as are interactions between explanatory variables, and the 

method is robust to outliers (Breiman et al., 1984; De'ath and Fabricius, 2000).  In salt 

marshes, CART has been applied with accuracies that ranged from 54% to 90%.  In 

California marshes, CART has been used for the differentiation of vegetation in relation 

to changes in upland sedimentation (Byrd and Kelly, 2006) and for modeling invasive 

species habitat near the marsh-upland border (Andrew and Ustin, 2009).  CART has also 

been used to separate salt marsh vegetation in Australia using landscape position (Dale et 

al., 2007) and in the Lagoon of Venice using edaphic variables (Lang et al., 2010).   

CART can be used as a tool to reduce the number of variables used to train a 

parametric classifier such as LDA (Breiman et al., 1984; De'ath, 2007; Maindonald and 

Braun, 2007); however, we were unable find any examples of this suggested workflow.  

Additionally, there are few comparative studies in which the two classification methods 

are applied to the same data set.  Although the utility of CART has been compared to 

linear models in other ecosystems (De'ath and Fabricius, 2000; Guisan and Zimmermann, 

2000; Pino-Mejias et al., 2010; Vayssieres et al., 2000), no assessment has been carried 
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out for the classification of salt marsh vegetation using CART and LDA with the same 

data set.   

The objectives of this study were: 1) To describe salt marsh plant distributions in 

terms of both field-collected edaphic variables and remote-sensing derived landscape 

metrics; 2) to compare classifications based on edaphic and remote sensing-derived 

variables, to determine which variable sets produce the most accurate classifications and 

to address the question of whether remote sensing data can be effective predictors of 

plant distribution; and 3) to compare discriminant analysis and CART to determine which 

classification technique best predicts salt marsh plant distributions. 

2. Methods 

2.2. Study Site 

This study was located in the salt marshes in and around Sapelo and Blackbeard 

Islands, Georgia, USA (UTM Zone 17 N, 471480 E 3473972 N, Figure 4.1).  The study 

area included 23 km2 of salt marshes.  Tides are semi-diurnal with a mean tide range of 

2.5 m at this location.  S. alterniflora is the dominant macrophyte in these marshes, 

covering over 80% of the total area.  S. alterniflora can grow up to 2 m tall and is the 

primary plant found along the regularly flooded creek banks in the low marsh.  Medium 

height S. alterniflora (approximately 0.5-1.0 m) dominates the mid-marsh and shorter 

plants are found in the irregularly flooded high marsh.  The high marsh contains a mixed 

marsh meadow community (S. virginica, B. maritima, D. spicata and short S. 

alterniflora).  At the highest elevations, J. roemerianus and B. frutescens become the 

dominant species.   
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Data from both the Sapelo and Blackbeard Island marshes were combined in this portion 

of our study for multiple reasons.  First, CART cannot accurately reveal the data structure 

of smaller data sets (De'ath, 2007; Moore et al., 1991).  The combined data set, although 

still small, is of similar size to other studies that have successfully used CART (De'ath 

and Fabricius, 2000; Suchrow et al., 2012).  Secondly, and related to sample size, the 

Blackbeard data were necessary to increase the sample size of plant classes with lower 

relative frequencies of occurrence (namely, D. spicata, B. maritima, B. frutescens and J. 

roemerianus).  To be sure that site did not have an impact on our results, it was included 

in preliminary CART analyses.  The resultant trees did not retain site, producing identical 

classifications to those without site as an input variable.    

2.3. Field Variables 

Plant characteristics and edaphic variables were measured at 369 locations 

throughout the Duplin River (N = 217) and neighboring Blackbeard Island (N = 152) salt 

marshes in February 2010 for eight vegetation cover classes: S. alterniflora (short, 

medium and tall height classes), J. roemerianus, B. maritima, D. spicata, S. virginica and 

B. frutescens.  For this study, S. alterniflora that was taller than 1 m was considered 

“tall”; S. alterniflora that ranged from 0.50 m to 1.0 m tall was considered “medium” and 

plants < 0.5 m were considered “short” (Reimold et al., 1973).  The sampling locations 

were randomly selected using the ArcGIS 9.3 software program and a hyperspectral 

vegetation classification of the salt marshes.  The number of RTK points sampled per 

cover class ranged from 10 (D. spicata) to 88 (medium S. alterniflora) (Table 4.S1).   

At each sampling location, we measured the following plant parameters in 0.25 x 

0.25 m quadrats: plant species presence, percent cover of each species, stem counts and 
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height.  Oxidation-reduction potential of the soil was measured by inserting a portable 

redox potential probe (Pt electrode, Ag-AgCl reference solution) into the soil to a depth 

of ~7 cm.  We collected two 5-cm deep soil cores from each quadrat to measure soil 

porewater salinity, soil water content and soil organic matter content (SOM).  The cores 

were taken back to the lab and processed following Pennings and Richards (1998).  

Samples were immediately weighed and then dried at 50° C for four days and reweighed 

to calculate water content.  Dried soils were rehydrated with a known volume of 

deionized water, the salinity of the supernatant was measured and the porewater water 

salinity was determined by back-calculation.  Cores for SOM content were dried at 50 

degrees C for five days, weighed, placed in an ashing oven for 12 hours at 500 degrees C 

and then reweighed to determine the mass of organic matter lost on ignition.  

2.4. Remote sensing data 

2.4.1. LIDAR-derived DEM 

The National Center for Airborne Laser Mapping (NCALM) acquired 35 km2 of 

LIDAR data for Duplin River and Blackbeard Creek marshes on March 9 and 10, 2009 

(Figure 4.1).  Data were acquired when plant growth and biomass were seasonally low 

and during a spring low tide (-0.33 m) to maximize laser penetration of the vegetation 

canopy and minimize the amount of standing water on the marsh surface.  Data were 

collected with an Optech GEMINI Airborne Laser Terrain Mapper (ALTM) mounted in a 

twin-engine Cessna Skymaster flown at an altitude of 800 m above ground level.  The 

survey was conducted with a laser pulse rate frequency of 125 kHz, up to 4 returns and a 

point density of 9 hits m-2.  Reported vertical and horizontal accuracies (root mean 
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squared error) for the sensor are 0.05-0.10 m and 0.10-0.20 m, respectively.  LIDAR 

processing routines are described in (Hladik and Alber, 2012). 

A bare earth LIDAR-derived DEM was produced in SURFER Version 8 (Golden 

Software, http://www.goldensoftware.com) at 1.0 x 1.0 m resolution using a kriging 

algorithm that calculated the mean elevation value of all laser hits within each grid cell 

with a maximum variance of 0.15 m.  Elevations were all positioned in the NAD 83 

reference frame and projected into UTM coordinate zone 17 N.  DEM elevations are 

NAVD 88 orthometric heights (in meters) computed using the National Geodetic Survey 

GEOID 03.   

2.4.2. Remote sensing variables 

 The LIDAR-derived DEM was used to generate the following metrics: DEM 

elevation in relation to mean high water (DEM-MHW), slope, distance to mean low 

water (MLW) contour, distance to mean sea level (MSL) contour, distance to MHW 

contour and distance to upland areas.  In ArcGIS, DEM elevation and slope were 

extracted for the field survey sampling coordinates using the Spatial Analyst toolbox.  

ArcGIS was also used to contour the DEM at specified tidal datum heights (MLW, MSL 

and MHW).  The contour values were determined based on data from the NOAA tide 

gauge station at St. Simon’s Island (station ID 8677344).  The same tide station was used 

to convert the DEM elevations from the NAVD 88 vertical datum to heights above or 

below MHW.  Upland areas, which included back barrier islands, Sapelo Island and 

Blackbeard Island were digitized in ArcGIS to delineate upland boundaries.  All distance 

metrics were calculated using the open source program R package Analysis of Moving 

Boundaries Using R (ambur) (Jackson, 2011), which uses a nearest distance algorithm to 
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cast transects from each sampling location to each contoured tidal datum or the nearest 

upland area.   

 Elevation in relation to MHW is indicative of tidal flooding frequency and 

duration as well as salinity, and represents an important gradient in salt marshes that 

influences species zonation pattern (Morris et al., 2002; Silvestri et al., 2005) and 

sedimentation rates (Marion et al., 2009; van Wijnen and Bakker, 2001).  Distance to 

MLW contour approximates the boundaries of the Duplin River and larger creeks and, as 

such, also represents the marsh edge.  Creeks are sources of sediment and nutrients, and 

they also aerate and flush soils leading to increased plant productivity (Mendelssohn and 

Morris, 2000; Zedler et al., 1999).  MSL contour represents the average tidal height and 

is again a proxy for flooding and salinity.  MHW contour is the boundary demarcating the 

marsh platform and has a strong relationship with flooding, salinity and sedimentation 

(Krone, 1985).  Distance to the nearest upland represents gradients of groundwater (fresh 

water), sediment and nutrients, as well as elevation.   

2.5. Classification 

Classification models (CART and discriminant analysis) were both implemented 

using three groupings of the predictor variables to predict salt marsh vegetation cover 

class.  The ‘edaphic’ grouping included SOM content, soil salinity, soil water content and 

redox potential.  The ‘remote sensing’ variables consisted of DEM-MHW, slope, distance 

to MLW contour, MSL contour, MHW contour and distance to the nearest upland area.  

The final group, ‘combined variables,’ combined the edaphic and remote sensing 

variables to determine which combination of all possible predictors best discriminated 

amongst dominant salt marsh vegetation classes.   
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2.5.1. Class selection 

 We tested for differences between cover classes using one-way ANOVAs of each 

edaphic and remote sensing-derived predictor variable followed by Tukey’s honest 

significance test.  Classes that were not significantly different for the majority of the 

predictor variables were combined prior to classification.  Statistical results for all 

analyses in this study were considered significant when p-value < 0.05.  All statistical 

analyses were done using the open source program R version 2.14.1 (http://cran.r-

project.org/).  The mean values for all edaphic and remote sensing-derived landscape 

metrics for all eight vegetation classes are summarized in Table 4.S1 along with the 

results of the Tukey’s tests.  Based on those analyses, short and medium S. alterniflora 

were combined into a single class, B. maritima, D. spicata and S. virginica were also 

merged into one vegetation class identified as marsh meadow, as were J. roemerianus 

and B. frutescens.  This resulted in four vegetation classes that were classified using both 

CART and discriminant analysis: tall S. alterniflora (ST), short and medium S. 

alterniflora (SS-SM), marsh meadow (MM), and B. frutescens and J. roemerianus (BF-

JR).   

2.5.2. Classification and regression trees (CART) 

We used the R package rpart (Therneau and Atkinson, 2012) to implement 

classification trees using the dominant plant classes as the categorical grouping and the 

edaphic and remote sensing metrics as predictor variables.  Rpart splits a data set into 

homogeneous subsets through the binary recursive partitioning of the data (Breiman et 

al., 1984).  At each split, rpart performs stepwise variable selection to reduce the 

dimensionality of the data, ranking predictor variables based on a goodness-of-split 
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criterion (the Gini diversity index) that rates the degree of homogeneity attained to find 

the best split in the data (Therneau and Atkinson, 2012; Venables and Ripley, 2002).  

Predictor variables that contribute little to the model have a low rank and are not used.  

The best split maximizes group homogeneity (and between group heterogeneity) while at 

the same time improving classification accuracy (De'ath and Fabricius, 2000).  Splitting 

continues until all samples are classified or until additional splits no longer increase 

group homogeneity.  The first split of the data is termed the root node, whereas terminal 

nodes represent the final classification result.   

The general practice in producing a classification tree is to grow an overly large 

tree and then cut or prune it back using cross-validation estimates of error (Breiman et al., 

1984; De'ath and Fabricius, 2000).  Cross-validation, as carried out in rpart, uses 10-fold 

cross-validation to compute errors by spitting the data randomly into ten subsets, 

repeatedly using nine of these subsets to build (train) a tree and using the remaining 

group to validate the tree (Breiman et al., 1984).  This is repeated until all subsets have 

been used (averaging error estimates for all subsets) for all possible tree sizes and has 

been found to be a robust estimate of error (Breiman et al., 1984; Ripley, 1996).  The tree 

size with the minimum cross-validation error is selected and used for description and 

prediction.  A drawback to recursive partitioning is that single trees can be unstable since 

they do not fit a smooth function to the data, making the tree especially sensitive to small 

changes in the predictor variables (Breiman et al., 1984).  

Random forest is an alternative CART method to rpart that can produce more 

stable and accurate classifications and is robust against over-fitting (Breiman, 2001).  

Random forest was implemented using the R package randomForest (Liaw and Wiener, 
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2002).  It was used here to ensure that rpart was producing a stable tree and that the 

important predictor variables were retained.  In random forest, bootstrapping is used to 

construct 500 independent trees and the predictions are combined based on a majority 

vote (Breiman, 2001; Cutler et al., 2007).  As opposed to rpart where all variables are 

tried at each split, random forest only uses a small subset of randomly selected variables 

at each split (Liaw and Wiener, 2002).  Each tree is fully grown and the error is 

computed.  Random forest provides a measure of variable importance by estimating how 

much prediction error decreases when each variable is removed from the tree (Breiman, 

2001; Liaw and Wiener, 2002).  Variable importance is calculated based on the 

contribution of all variables and, therefore, a variable does not have to be a primary 

splitter to have a high importance rank.  Unlike rpart, random forest is an ensemble 

classifier and does not produce a single binary tree.  The structure of individual trees can 

be examined but an average tree does not exist in random forest.  The structure of 

selected random forest trees were compared to the final pruned tree generated using rpart 

as well as the cross-validation accuracy.  Additionally, confusion matrices were used to 

examine individual class errors for both rpart and random forest.  

2.5.3. Discriminant Analysis 

 Discriminant analysis, like CART, uses a Bayesian framework, generating 

posterior probabilities for each group based on the combination of all variables (Hastie et 

al., 2009; Venables and Ripley, 2002).  A sample is assigned to the class with the largest 

posterior probability and discriminant functions are functions of the posterior 

probabilities.  The discriminant functions can then be used to predict the class 

membership of new observations.  LDA and QDA are parametric classifiers which 
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assume that the data are multivariate normal and that the predictor variables are 

independent and not highly correlated.  LDA assumes that groups have homogenous 

covariances, whereas QDA allows for unequal variance-covariance matrices by 

calculating the covariance matrix of each group based on quadratic functions.  To meet 

these assumptions, the data were transformed to increase the normality and homogeneity 

of variance.  Salinity and slope were logarithmically transformed and all distance metrics 

were square root transformed.  LDA and QDA were carried out using the R package 

MASS (Venables and Ripley, 2002). 

 Variable selection is important for LDA and QDA, as high-order interactions and 

collinearity among explanatory variables can obscure the data structure.  To minimize 

this, the variables identified as important using CART (rpart and random forest) were 

selected for input in LDA and QDA.  Thus, not all edaphic and remote sensing variables 

were included in discriminant analyses.  Predictor variable importance within each 

analysis was determined based on the scaled discriminant coefficients: the larger the 

standardized coefficient, the greater the contribution of the respective variable to the 

discrimination between groups.  To determine if the vegetation groups had significantly 

different means for each discriminant function, ANOVAs followed by Tukey’s honest 

significance tests were carried out.   

Correlations between predictor variables and the discriminant functions indicate 

which predictor is most related to the discriminant function and were assessed using 

Spearman’s rank correlation coefficient, rho.  Similarly, class posterior probabilities were 

correlated with each predictor variable to determine the strength of association between 

the variables and each vegetation class based on Spearman’s rank correlation coefficient, 
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rho.  As with rpart, accuracy was assessed through 10-fold cross-validation.  Confusion 

matrices were used to examine individual class errors and performance.   

2.5.4. Classification method comparison 

Rpart, random forest, LDA and QDA were evaluated for the various predictor 

variable groupings (edaphic, remote sensing, combined variables) based on overall cross-

validation accuracy and individual class errors from confusion matrices.  Predictor 

variable importance was also compared for all statistical techniques.  Note that rpart 

variable importance is based on random forest rank, as it was better able to quantify 

variable rank (Liaw and Wiener, 2002).  For brevity, and as random forest and QDA 

performed similarly to rpart and LDA, respectively, only rpart and LDA are presented 

here.  Results for random forest and QDA can be found in Tables 4.S2, 4.S3 and 4.S4. 

3. Results 

3.1. Survey data  

 The mean values for all edaphic and remote sensing-derived landscape metrics for 

the four vegetation classes evaluated here are summarized in Table 4.1.  Our results for 

edaphic parameters are in the range of previously reported values for Georgia marshes 

(Pennings et al., 2005; Pennings et al., 2003; Weigert and Freeman, 1990).  In general, 

the soils of the ST and SS-SM classes were characterized by higher water content and 

SOM content than those of BF-JR and MM.  SS-SM soils were characterized by low 

redox potential (-51.6 mV) and MM soils by high salinity (53.6 PSU) compared to all 

other classes, as has been observed previously for both habitats (Weigert and Freeman, 

1990).   
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 The landscape metrics corresponded to the position of the various classes across 

the marsh landscape and are in agreement with previously reported spatial relationships 

(Adams, 1963; Hinde, 1954; Mckee and Patrick, 1988; Weigert and Freeman, 1990).  The 

four classes spanned the marsh elevation gradient from ST (-0.13 m below MHW) to BF-

JR (0.41 above MHW) and were each significantly different from each other based on 

Tukey’s tests (Table 4.1), as previously reported by Hladik and Alber (2012).  The SS-

SM and ST classes were situated at low elevations in close proximity to MLW, MSL and 

MHW contours and far from upland areas, whereas MM and BF-JR were in close 

proximity to upland areas and were further from the MLW, MSL and MHW contours 

(Table 4.1).  Note that class ST had the shortest mean distance to MHW line resulting 

from its proximity to creek bank levees, which are at an elevation equal to MHW.  Thus, 

when the MHW elevation was contoured based on DEM values, both the upper extent of 

flooding nearest to upland areas and the creek bank levee that forms in close proximity to 

ST habitat were contoured.  As such, ST distances to the MHW contour were less than 

those for the other plant classes (Table 4.1).  The majority of the marsh surface was 

characterized by shallow slopes, although the ST habitat was associated with the most 

severe slopes (6.7 degrees) for these data.   

3.2. Edaphic model 

 Rpart discriminated between the four salt marsh vegetation groups using all four 

edaphic predictor variables: SOM content, soil salinity, soil water content and redox 

potential (Figure 4.2A).  The primary node split in the tree was based on the proportion of 

SOM content (Figure 4.2A) and can be interpreted as follows: if SOM content is less than 

0.125 observations are then assessed as to whether or not their salinity is less than 29.5 
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PSU, whereas if SOM content is greater than 0.125, observations are evaluated based on 

redox potential.  In this case, SOM content separated the low marsh (ST and SS-SM) 

from the high marsh (MM and BF-JR) plant classes.  Breiman et al. (1984) stated that 

classification trees are optimized to choose the variable that splits the data into groups 

with maximum within group homogeneity.  Variable masking can be detected by looking 

at surrogate or alternative splits and their association with the optimal split and by 

identifying splits with index values (indicating classification improvement) close to the 

optimal split.  We examined the alternative splits for SOM content and found that water 

content was the variable that produced the next best split, with an index value close to 

that for SOM content (index value of 47 versus 53 for SOM content, data not shown).  

Thus, an alternative tree path could have had water content as the root node but with 

slightly less homogenous groupings.   

Following the root node split, data were then assessed based on salinity and redox 

potential, with water content and SOM content constituting the final splits with eight 

terminal nodes.  Random forest (not shown) also ranked SOM content as the variable 

with the greatest importance followed by water content, salinity and redox potential.  The 

overall cross-validation accuracy was 0.72 for the pruned tree (Figure 4.2A, Table 4.2).  

Class errors ranged from 0.16 for SS-SM to 0.59 for ST (Table 4.2).  The confusion 

matrix shows that 0.55 of ST observations were misclassified as SS-SM (Table 4.3).  The 

next highest error was for BF-JR, with 0.21 misclassified as MM and 0.10 as ST (Tables 

4.2 and 4.3).   

 When the four edaphic variables were evaluated with discriminant analysis, LDA 

scaled coefficients were in agreement with CART in the rank order of predictor variable 
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importance (Table 4.4).  The first linear discriminant function explained 80% of the 

between group variance, with an additional 15% explained by the second linear 

discriminant function (Table 4.4).  The third discriminant function only explained an 

additional 5 to 9% of the variance for all models (edaphic, remote sensing and combined 

variables) and is not discussed further.  A bi-plot of the individual scores for the first two 

discriminant functions in the edaphic variable analysis shows the separation of the 

vegetation classes (Figure 4.3A).  The first discriminant function differentiated between 

all classes pairs (p-value < 0.001) except for of SS-SM and ST (p-value = 0.07, data not 

shown).  Group means for the second discriminant function were significantly different 

(p-value < 0.001) between all groups except for BF-JR and ST (p-value = 0.08).  The first 

discriminant function was positively correlated with water content and SOM content 

(Spearman’s rho of 0.93 and 0.88, respectively) whereas the second function was 

negatively correlated with salinity (Spearman’s rho of -0.81, Table 4.4).  These variables 

were also important in predicting individual classes.  All classes had their strongest 

correlations (either negative or positive) with SOM content and water content, with the 

exception of MM, which had a strong correlation with salinity, i.e. observations with a 

high probability of being classified as MM had high salinities (Table 4.5).   

 The overall cross-validation accuracy of the LDA classification was 0.63, which 

is lower than that obtained with rpart (Table 4.2).  Model errors were again largest for ST 

and MM, with 0.69 of ST observations being misclassified as SS-SM and 0.41 of MM 

observations misclassified as either SS-SM (0.25) or BF-JR (0.16) (Tables 4.2 and 4.6).   
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3.3. Remote sensing model  

 The rpart classifications based on the remote sensing-derived predictor variables 

better discriminated between the salt marsh plants than the rpart classification with 

edaphic variables, with an overall cross-validation accuracy of 0.79 for the pruned trees 

(Table 4.2, Figure 4.2B).  Of the remote sensing variables considered (DEM-MHW, 

slope, and distances to MLW contour, MSL contour, MHW contour and upland area), 

rpart retained only DEM-MHW, slope and distances to MHW contour and uplands, in 

order of decreasing importance, for classification.  Distance to MHW contour formed the 

initial split in the data (Figure 4.2B).  Secondary splits assessed observations based on 

DEM-MHW slope.  Distance to upland area formed the tertiary split on both branches of 

the tree.  The remote sensing tree contained six terminal nodes.  Of particular note, there 

was only one pathway to ST class membership: distance to MHW contour less than 25.85 

m and a slope greater than 4.4 degrees.  Class error values ranged widely, from 0.37 (BF-

JR) to 0.15 (SS-SM) (Table 4.2).  Errors for BF-JR (0.37) were slightly greater than those 

based on edaphic variables (0.33) and resulted largely from misclassifications with MM 

(0.14) and SS-SM (0.17) (Table 4.3).  ST class error was substantially reduced from 0.59 

in the tree with only edaphic variables to 0.27 in this model, with the primary 

misclassification as SS-SM (0.25).  Class accuracies for MM and SS-SM were also 

improved when only remote sensing-derived were used for class separation. 

 When the four remote sensing variables retained by rpart were evaluated with 

discriminant analysis, LDA scaled discriminate function coefficients showed that DEM-

MHW and slope had the greatest contribution to class separation, in agreement with rpart 

(Table 4.4).  The first discriminant function accounted for 71% of the between class 
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variance and the second discriminant function explained an additional 20% of variance.  

The plot of the first two linear discriminant functions shows the relative positions of the 

vegetation classes (Figure 4.3B).  The first discriminant function discriminated between 

all vegetation pairs (p-value < 0.001).  All class pairings were also separable for the 

second linear function except SS-SM and MM and BF-JR and ST (p-value = 1 for both).  

The first discriminant function was correlated with DEM-MHW, distance to MHW and 

distance to upland area (-0.86, - 0.73 and 0.71, respectively), whereas slope loaded 

heavily on the second discriminant function (0.90, Table 4.4).  Correlations between 

posterior probabilities and explanatory variables point to the importance of specific 

predictor variables in the model (Table 4.5).  BF-JR and ST were correlated with DEM-

MHW but in opposing directions.  MM had a strong positive correlation with distance to 

MHW contour, whereas ST was negatively correlated with distance to MHW contour 

(Table 4.5).  In general, MM and SS-SM had correlations of moderate strength with the 

majority of variables. 

 Using the remote sensing-derived variables, LDA separated plant classes with an 

overall cross-validation accuracy of 0.78, which is equivalent to the rpart accuracy for 

these variables, and is again higher than that obtained in the edaphic model (Table 4.2).  

In the LDA analysis of the remote sensing variables, BF-JR observations were 

misclassified as MM and SM (0.21 and 0.13, respectively), whereas 0.18 of MM 

observations were misclassified as SM and 0.25 of ST observations as SS-SM (Table 

4.6).  LDA’s greatest error reduction in comparison to rpart was for ST, where the 

proportion of observations misclassified decreased from 0.69 to 0.25 (Table 4.2).  
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3.4. Combined variables model 

 Marsh vegetation was most accurately classified by both rpart and LDA when the 

edaphic and remote sensing-derived variables were combined.  The pruned rpart tree had 

an overall cross-validated accuracy of 0.83 (Table 4.2).  Only five splitting variables were 

retained in the combined tree.  In order of decreasing importance these were: slope, 

DEM-MHW, distance to MHW contour, SOM content and distance to upland (Figure 

4.2C).  SOM content formed the root node, splitting the data into low (ST and SS-SM) 

and high (MM and BF-JR) marsh branches.  Secondary splits assessed observations 

based on DEM-MHW and slope (Figure 4.2C).  Data were then assessed based on the 

distance to MHW contour and distance to upland areas, with seven terminal nodes.  As in 

the remote sensing model, there is only one path to ST class membership in this tree, 

through assessments of SOM content and slope.  Class errors were reduced or remained 

the same for ST, SS-SM and BF-JR when compared to the edaphic and remote sensing 

models, whereas that for MM was increased over the remote sensing model.  Of note, SS-

SM had a class error of only 0.07, whereas ST had the greatest error (0.27), due to 

persistent misclassification as SS-SM (0.25) (Tables 4.2 and 4.3).  

 When the variables retained by rpart were evaluated with LDA, SOM content was 

weighted the most heavily, followed by DEM-MHW.  Slope, distance to MHW contour 

and distance to uplands all had lower scaled coefficients (Table 4.4).  The first 

discriminant function explained 74% of the total variance and the second explained an 

additional 18% (Table 4.4).  The bi-plot of the first two linear discriminant functions 

shows the separation of vegetation classes (Figure 4.3B). Tukey’s pairwise comparisons 

between groups were consistent with the remote sensing model: The first discriminant 
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function again discriminated between all vegetation pairs (p-value < 0.001), whereas 

class pairings were separable for the second linear function except SS-SM and MM (p-

value = 1).  The first discriminant function was correlated with DEM-MHW, SOM 

content and distance to uplands and MHW contour (0.82, - 0.75, - 0.70 and 0.67 

respectively), whereas slope loaded heavily on the second discriminant function (0.91, 

Table 4.4).  The positions of all classes along the first discriminant in the bi-plot are 

reversed in comparison to the remote sensing model as a result of the addition of SOM 

content; scores along the second discriminant remain unchanged (Figure 4.3C).   

Predictor variable correlations with LDA class posterior probabilities were again 

similar to the remote sensing model and reinforced the bi-plot results (Table 4.5, Figure 

4.3C).  BF-JR and ST were correlated with DEM-MHW but in opposite directions (-0.82 

and 0.82, respectively).  BF-JR observations were negatively correlated with SOM 

content (-0.75), whereas SS-SM were positively correlated with SOM content (0.77).  

MM had a strong positive correlation with distance to MHW contour (0.66), whereas ST 

correlated with distance to MHW contour (-0.68) (Table 4.5).  In general, MM and SS-

SM had correlations of moderate strength with the majority of variables.  Note that 

although slope was the most important predictor variable in rpart, its strongest LDA 

correlation was with MM (-0.59) (Table 4.5).   

When all variables were combined, LDA had an overall cross-validation accuracy 

of 0.82, nearly the same as obtained using rpart, and LDA classification followed the 

same trends as rpart (Table 4.2).  Class errors were reduced or remained the same for all 

classes when compared to the LDA edaphic and remote sensing models (Table 4.2).  BF-

JR and ST had the largest class errors (0.30 and 0.25, respectively), whereas SS-SM and 
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MM had class errors of 0.12 and 0.17, representing the lowest class errors for LDA in 

this study (Table 4.2).  The majority of misclassifications were the result of BF-JR 

observations being misclassified as MM (0.24) and ST misclassified as SS-SM (0.25) 

(Table 4.6).   

4. Discussion 

These results gave us the opportunity to compare the use of remote sensing-

derived versus edaphic variables for the classification of salt marsh vegetation, as well as 

the performance of rpart versus LDA.  Both, rpart and LDA effectively classified salt 

marsh vegetation classes in this study.  Depending on which variables were used, rpart 

overall cross-validation accuracies ranged from 0.72 to 0.83 (Table 4.2).  LDA had a 

similar range, with accuracies ranging from 0.63 to 0.82.  Although, greatest accuracies 

were attained by combining SOM content with the remote sensing metrics in the 

combination model, remote sensing alone performed nearly as well (Table 4.2).  As 

detailed below, these are some of the best classifications of salt marsh vegetation to date.   

4.1. Rpart versus LDA classifiers 

Rpart performed slightly better than LDA, with the exception of the edaphic 

model where differences were greater (Table 4.2).  Both techniques were in general 

agreement on which predictor variables best discriminated between salt marsh classes, 

and classified vegetation types similarly (Tables 4.2, 4.3 and 4.6).  In general, 

classification errors were the result of confusion between BF-JR and MM classes and 

between SS-SM and ST classes (Tables 4.3 and 4.6).  As these two groups represent low 

and high marsh communities, they share similar edaphic conditions and distance metrics, 

making their separation difficult.  Interestingly, rpart performed substantially better than 
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LDA when only edaphic variables were used for prediction.  This may be because 

classification trees such as rpart are more suitable for environmental data sets where 

variables are often collinear and not independent (Table 4.S5) and thus fail to meet the 

assumptions of LDA.  Of particular note, SOM content and water content were highly 

correlated (Spearman’s rho = 0.80, Table 4.S5) and were strong drivers of the edaphic 

models generated by both rpart and LDA.   

No prior studies have compared the performance of parametric classifiers such as 

LDA to classification trees but previous work indicates that CART tends to perform 

slightly better than LDA.  Previous studies reported overall accuracies ranging from 57-

68% using LDA (Fischer et al., 2000; Sanchez et al., 1998), and 50-90% when CART 

was used to classify observations (Andrew and Ustin, 2009; Byrd and Kelly, 2006; Dale 

et al., 2007; Lang et al., 2010).  However, it is impossible to truly compare across models 

when different data sets were used.   

In cases where both LDA and CART give similar results, the literature suggests 

that LDA should be favored as parametric methods have more power for describing 

algebraic relationships (Feldesman, 2002; Maindonald and Braun, 2007).  Another 

approach for determining which analysis is appropriate is to run CART on a data set that 

combines the linear discriminant functions with the original predictor variables 

(Maindonald and Braun, 2007; Steinberg and Colla, 1997).  If the linear discriminant 

functions are the primary splitting variables with high importance in the combined data 

set, LDA is more appropriate for the data; if the discriminant functions are not retained, 

CART may capture the data structure better and should be used.  We did this for the 

edaphic, remote sensing and combined models and found that in each case the first two 
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LDA discriminant functions were the primary splitting variables in the rpart analysis, 

with the first function being the most important variable in each model.  This suggests 

that, despite the fact that our data did not meet all of its assumptions, LDA is a robust and 

appropriate classifier for these data.  Although LDA may be the classifier of choice, the 

classification trees were still valuable for selecting the subset of predictor variables that 

best separated the various groupings for LDA, and also for describing the structure of the 

data.  Without variable reduction using rpart, LDA accuracies ranged from 0.63 to 0.75 

(data not shown), due to the additional multivariate noise.  Importantly, the robustness of 

LDA cannot be assessed without comparing it against the nonparametric alternative, rpart 

(Feldesman, 2002).   

Based on the results of this study, we recommend a workflow in which 

classification trees are used for description and variable selection with subsequent 

classification and prediction of new classes using LDA.  CART is useful for selecting 

data and the resultant classification trees are more readily interpreted than discriminant 

functions.  However, the binary nature of rpart might make them less useful for making 

predictions due to limitations in tree structure, which classifies observations at each node 

based on values for one parameter.  In the trees produced with both the remote sensing 

and the combined variables, for example, ST class membership is evaluated based 

primarily on slope (Figures 4.2B and 4.2C).  This is not unreasonable as ST is typically 

found on creek banks with more severe slopes compared to the marsh platform.  

However, it prevents ST observations without a steep slope from being correctly 

identified as ST.  This limitation might be problematic if one were interested in 

predicting ST distribution due to a change in sea level, for example, unless slopes were 
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also allowed to change.  In comparison, LDA separates groups using a linear combination 

of all variables rather than one variable at a time.  Because of this, slope is not the only 

variable defining the ST class, and observations with shallower slopes would have a 

higher probability of being classified as ST in the LDA model.   

4.2. Edaphic versus remote sensing predictor variables 

4.2.1. Edaphic model 

We found that rpart and LDA classified salt marsh vegetation with accuracies of 

0.72 and 0.63, respectively, when using the edaphic variables SOM content, water 

content, salinity and redox potential (Table 4.2).  Previous studies have found that salinity 

and soil moisture (flooding) are the most important predictor variables for explaining 

variance in plant zonation using CCA (Batriu et al., 2011; Cacador et al., 2007; Rogel et 

al., 2000; Rogel et al., 2001), LDA (Sanchez et al., 1998; Woerner and Hackney, 1997) 

and CART (Byrd and Kelly, 2006).  Although most of these studies considered elevation 

in addition to edaphic variables, the highest accuracy for a study that considered edaphic 

variables alone was Sanchez et al. (1998), which used LDA to classify Spanish salt 

marshes based on salinity, water content and redox potential with an accuracy of 57%.   

Our results suggest that SOM content is an important edaphic parameter for the 

prediction of salt marsh vegetation, with water content being a suitable alternate.  SOM 

content formed the root node in the rpart model, which means it was the variable that best 

split the data into two homogenous groups (Figure 4.2A), and it also had the largest LDA 

scaled coefficient (Table 4.4).  However, SOM was highly correlated with water content, 

which is more commonly measured.  SOM is related to water content as prolonged 

flooding results in lower soil redox potential and anaerobic conditions, which lead to the 
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incomplete degradation of SOM (Brinson et al., 1981).  Additionally, soils typical of ST 

and SS-SM (high SOM) are composed of fine textured silts and clays that hold water well 

due to reduced interstitial space (Frey & Howard, 1969).  The SOM content may have 

produced a better split in the data than water content because it does not vary with respect 

to changes in tidal inundation.  In contrast, water content is highly dependent on tide 

stage and the time since the soil was last flooded and hence has a larger coefficient of 

variation (61% for water content compared to 6% for SOM content, data not shown), 

which would have added noise to the model.  However, water content may be a more 

appropriate predictor since SOM is related to both grain size and organic detritus from 

vegetation, making it highly site-specific.  Moreover, SOM content may be a result of 

water content rather than a true predictor of plant type.  It would be interesting to further 

explore the utilization of SOM content as a potential substitute for water content in 

predictions of salt marsh plant distribution. 

In the LDA results the first linear discriminant was correlated strongly with both 

SOM content and water content.  BF-JR and SS-SM classes had the strongest 

correlations, with lower SOM content and water content for BF-JR and higher 

proportions for SS-SM (Table 4.1 and 4.5).  These results are in agreement with previous 

characterizations of the respective habitats of BF-JR and SS-SM based on SOM content 

and water content (Bradley and Morris, 1990; Weigert and Freeman, 1990).  ST followed 

the same trend as SS-SM although with weaker correlation coefficients (Table 4.5).  MM 

was best correlated with the second linear discriminant function, with observations 

having a high probability of MM class membership when soil salinities are high (Table 

4.5).  This was again in agreement with the literature, as MM is generally found in close 
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proximity to hypersaline salt pans and is known to have high salt tolerance (Pennings and 

Bertness, 2001).  

4.2.2. Remote sensing-derived model 

The models composed of only the remote-sensing derived variables were better 

able to describe and predict salt marsh plant patterns than the edaphic variables alone, 

with rpart and LDA accuracies of 0.79 and 0.78, respectively.  Previous studies have used 

landscape metrics to explain variance in forbe panne species abundance (Griffin et al., 

2011), predict dune vegetation based on DEM elevation and slope (Sellars and Jolls, 

2007) and predict invasive plant habitat near the marsh-upland border using distance 

metrics (Andrew and Ustin, 2009).  These previous studies, which attained accuracies 

ranging from 46-90%, did not focus on salt marshes or encompass landscape-scale 

zonation.  In a Georgia salt marsh, in close proximity to our study site, Fischer et al. 

(2000) used LDA to predict the location of disturbed patches based on tidal creek 

morphology with an accuracy of 70%.  Although they were able to link tidal creek 

characteristics to the location of disturbed patches, their goal was not to describe or 

predict marsh-wide plant distributions as in the present study. 

 Our rpart model identified DEM-MHW and slope as the two variables that made 

the largest contribution in classifying the vegetation types, followed by distance to MHW 

contour and distance to upland area (Table 4.2).  Distance to MHW contour was the root 

node for the rpart classification tree with DEM-MHW a competing surrogate split (Figure 

4.2B).  Both of these variables are related to gradients in flooding and salinity, which 

affect species establishment and zonation patterns (Adam, 1990; Ranwell, 1972; Suchrow 
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and Jensen, 2010) as well as sedimentation rates (Marion et al., 2009; van Wijnen and 

Bakker, 2001).   

In the LDA model, the first linear discriminant function was negatively correlated 

with DEM-MHW and distance to MHW contour.  Vegetation classes were separated 

along an elevation gradient from BF-JR in the high marsh (negative scores for the first 

function) to ST in the low marsh (positive function scores), with significantly different 

means for all classes (Figure 4.3B, Tables 4.4 and 4.5).  Observations had a high 

probability of ST membership when the site was at a low elevation and a short distance 

from the MHW contour.  Although it may be expected that ST would have greater 

distances to MHW based on its low position in the tidal prism, creek bank levees are 

positioned at the elevation of MHW as a result of marsh geomorphology and hydrology 

in Southeastern US marshes (Stumpf, 1983; Weigert and Freeman, 1990).  BF-JR was 

characterized by sites with high elevations and in close proximity to an upland area 

(Table 4.1).  MM had the strongest relationship with distance to MHW contour (0.70, 

Table 4.5), which is related to the extent of tidal flooding and high soil salinities 

(Pennings and Bertness, 2001).  The second linear discriminant function was related to 

slope, with BF-JR and ST having high scores (steep slopes) and SS-SM and MM having 

low scores (shallow slopes).  These results are all consistent with salt marsh morphology 

across the elevation gradient from low to high marsh.   

Although the relative strengths of correlations in the two variable sets differed 

across classes the remote sensing-derived metrics were more effective predictors of 

vegetation type compared to edaphic variables no matter which classifier was used 

(Tables 4.2, 4.3 and 4.6).  ST had much stronger correlations with the remote sensing 
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predictor variables and lower class errors whereas SS-SM and MM had weaker 

correlations when compared to the edaphic model, but still had lower class errors (Tables 

4.2 and 4.5).  BF-JR was strongly correlated to both the edaphic and remote sensing 

variables, having similar class errors for all models.   

No previous studies have explicitly compared the predictive value of edaphic 

versus landscape metrics for classifying salt marsh vegetation type as investigators tend 

to combine both categories of variables when they are all available.  Based on our results, 

the success of the remote sensing only model reported here may be because the variables 

we used were suitable proxies for the edaphic variables and underlying processes, many 

of which are related to elevation and flooding patterns (Adams, 1963; Chapman, 1974; 

Morris and Haskin, 1990; Sanchez et al., 1998; Silvestri et al., 2005).  For example, the 

two most important variables in the edaphic model, SOM content and water content, both 

vary with distance from shore due to gradients in elevation and flooding.  These 

relationships may explain the effectiveness of the remote sensing-derived variables, 

which not only integrate known edaphic gradients but may also account for additional, 

unmeasured edaphic parameters insofar as they correlate with elevation and other 

distance metrics.  An additional reason for the superior performance of the remote 

sensing over edaphic variables is the fact that redox potential, salinity and water content 

can all vary substantially temporally with tidal inundation (LaRiviere et al., 2004; 

Silvestri et al., 2005; Woerner and Hackney, 1997), whereas elevation and the position of 

creeks and uplands areas change on the order of decades to centuries (Adam, 1990; Frey 

and Basan, 1985).  This makes the remote sensing metrics more temporally stable 

compared to edaphic variables.     
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4.2.3. Combination of all variables  

 When all predictor variables were combined to predict salt marsh vegetation class, 

accuracies were improved slightly over the remote sensing model, from 0.79 to 0.83 with 

rpart and from 0.78 to 0.82 for LDA (Table 4.2).  The combined model was dominated by 

the remote sensing variables (DEM-MHW, slope, distance to MHW contour and 

uplands), with SOM content being the only edaphic variable retained.  The rpart tree 

structure was similar to that produced with the remote sensing variables alone, with the 

addition of SOM content as the root node (Figure 4.2C).  The LDA bi-plot of the 

combined model (Figure 4.3C) also represents similar gradients as those produced by in 

the LDA remote sensing model.  Correlations with posterior probabilities were similar to 

the remote sensing model but with strong correlations with SOM content for BF-JR and 

SS-SM, which was similar to the edaphic model (see section 4.2.1, Table 4.5).  Given 

that the accuracies of our remote sensing models were comparable to the combined 

models, our results suggest that measuring edaphic variables, with the possible exception 

of SOM content, are not necessary for plant classification.   

Other studies using edaphic and landscape variables in combination to separate 

salt marsh vegetation have attained predictive accuracies that ranged from 50-79%, with 

only some overlap with the variables that emerged as important in our study.  Using 

CART, (Byrd and Kelly, 2006) found that salinity and elevation were the most important 

variables for predicting salt and brackish marsh vegetation response to edaphic and 

topographic changes resulting from upland sedimentation in California, with accuracies 

that ranged from 55-68%.  Australian salt marshes were classified using both edaphic and 

landscape metrics, again with CART, with 50% accuracy (Dale et al., 2007).  In this case, 
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distance to the nearest creek was the most important determinant of vegetation type.  

Moffett et al. (2010) used logistic regression to model zonation in a California salt marsh 

with elevation, salinity, and landscape metrics and found that, while S. alterniflora could 

be classified with 79% accuracy, other species did not have significant relationships with 

these variables.  They concluded that each zone is characterized by different 

combinations of variables.  In contrast, we attained vegetation class accuracies that 

ranged from 0.70 to 0.93 in the combined models, and found that the same variables 

could be used across all classes.  Moreover, the variables that were most important in our 

models were slope, DEM-MHW, distance to MHW contour, SOM content and distance 

to upland area. 

4.3. Model Applications 

The high classification accuracies attained in this study demonstrate the 

effectiveness of our overall approach and workflow.  The use of rpart for description and 

variable selection prior to classification by either rpart or LDA has been recommended, 

but to our knowledge has not been previously reported.  We suggest that this is an 

efficient method for variable selection that could be broadly applied in vegetation 

analyses.   

The models developed here successfully predicted plant distributions based on 

edaphic and remote sensing-derived landscape metrics that were related to gradients in 

elevation and flooding.  These models should be applicable to other Southeastern US 

marshes, although they would need to be validated.  However, we would caution against 

applying these models directly to other geographic regions.  Our edaphic models may be 

restricted owing to the differences in the relative importance of edaphic variables in 
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different geographic areas: Pennings et al. (2005) found that salinity is more important in 

Southeastern US marshes whereas flooding largely accounts for Northeastern marsh 

patterns.  Our remote sensing model was developed for areas where levees form near 

creek banks, which are geomorphological features not found in all areas.  This will 

influence the distance between ST and MHW contour.  Finally, in salt marsh plant 

communities structured by competitive interactions, our model would be limited or would 

need to be modified to include competition (Pennings and Callaway, 1992; Pennings et 

al., 2005; Vince and Snow, 1984).   

 A potentially important application of these models would be to predict changes 

in future plant distributions due to sea level rise.  The remote sensing model, in particular, 

could be nested into models that predict how landscape metrics may change in the future.  

Note, however, that this will require accurate predictions of how elevation will change 

with increased flooding, which will in turn affect remote sensing-derived variables, 

including DEM-MHW and distance to MHW contour.  Such a model will need to 

account for sedimentation, biological feedbacks and change in slope with sea level rise 

(Fagherazzi et al., 2012; Morris et al., 2002).  In particular, the rpart tree structure 

(Figures 4.2B and 4.2C) would be of limited use without the proper modeling of slope, as 

in its current configuration no observation with a shallow slope would be classified as 

ST.  In contrast to rpart, LDA predicts class membership on the combined linear 

coefficients for each variable and may be better suited for sea level rise modeling.   

5. Summary 

This study presented the opportunity to assess the effectiveness of remote 

sensing-derived landscape metrics versus edaphic variables for the discrimination of 
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vegetation classes.  Moreover, we were able to examine the value of nonparametric 

classification trees in comparison to traditional LDA for salt marsh vegetation 

classification.  Rpart and LDA achieved comparable accuracies, thus the LDA model is 

recommended for the prediction of new observations.  However, we recommend a 

workflow that uses rpart for variable reduction and selection prior to training by LDA.  

We found that the remote sensing-derived variables were more effective predictors of salt 

marsh plant distribution compared to edaphic variables, regardless of which classification 

technique was used.  Although the addition of SOM content to the remote sensing 

variables generated the most accurate classifications, it resulted in only small 

improvements over the remote sensing models, suggesting that the remote sensing 

variables alone are adequate for classifying marsh vegetation. These results highlight the 

value of the remote sensing approach and show great promise for landscape level 

analyses of salt marsh plant habitats. 
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Table 4.1.  Summary of mean values (± standard deviation) of predictor variables (water content, salinity, soil organic matter (SOM) 
content, redox, DEM elevation in relation to MHW (DEM-MHW), slope, distance to MHW contour and distance to uplands) for the 
four classes used in the current study.  Superscripts indicate significant (p-value < 0.05) groupings based on Tukey’s pairwise 
comparisons.  All variables (edaphic and remote sensing) have the same sample size (N).  
 

  
Water 

Content 
(proportion) 

Salinity        
(PSU) 

SOM 
(proportion) 

Redox          
(mV) N   

Edaphic variables 
Tall S. alterniflora (ST) 0.49 ± 0.05 a 33.9 ± 9.4 a 0.15 ± 0.02 a 74.2 ± 69.2 a 51 

Short/Medium S. alterniflora (SS SM) 0.49 ± 0.08 a 39.3 ± 12.0 a 0.17 ± 0.05 a  -51.6 ± 152.0 b 166 

Marsh Meadow (MM) 0.32 ± 0.12 b 53.6 ± 21.0 b 0.09 ± 0.05 b 47.3 ± 103.7 c 89 

B. frutescens/J. roemerianus (BF JR) 0.23 ± 0.13 c 39.4 ± 18.4 a 0.05 ± 0.04 c 122.8 ± 53.8 ac 63 

  
DEM-MHW    

(m) 
Slope          

(degrees) 
MLW        
(m) 

MSL           
(m) 

MHW      
(m) 

Uplands     
(m) 

Remote sensing variables 
Tall S. alterniflora (ST)  -0.13 ± 0.19 a 6.7 ± 5.4 a 60 ± 120 a 5 ± 24 a 2 ± 2 a 297 ± 184 a 

Short/Medium S. alterniflora (SS SM) 0.08 ± 0.14 b 1.6 ± 1.0 b 157 ± 136 a 98 ± 95 b 16 ± 20 b 289 ± 205 a 

Marsh Meadow (MM) 0.2 ± 0.09 c 1.1 ± 0.6 c 264 ± 132 b 192 ± 105 c 58 ± 32 c 80 ± 70 b 

B. frutescens/J. roemerianus (BF JR) 0.41 ± 0.19 d 3.3 ± 2.4 d 259 ± 140 b 157 ± 108 c 50 ± 47 c 71 ± 98 b 
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Table 4.2.  Summary of rpart and LDA errors and overall cross-validation accuracy for 
all three models: edaphic, remote sensing and combined variables.  Rpart values are for 
the pruned tree.  In order of decreasing importance, the variables used in the edaphic 
model were soil organic matter (SOM) content, water content, salinity and redox.  The 
variables used in the remote sensing model were DEM elevation in relation to MHW 
(DEM-MHW), slope, distance to MHW contour and distance to uplands.  The variables 
used in the combined model were slope, DEM-MHW, distance to MHW contour, SOM 
and distance to upland area. 
 

Species Class Model Error 

  Rpart LDA 
Edaphic Model 
B. frutescens/J. roemerianus 0.33 0.37 
Marsh Meadow 0.25 0.43 
Short/Medium S. alterniflora 0.16 0.22 
Tall S. alterniflora 0.59 0.69 
Overall Accuracy 0.72 0.63 

Remote Sensing Model 
B. frutescens/J. roemerianus 0.37 0.33 
Marsh Meadow 0.19 0.21 
Short/Medium S. alterniflora 0.15 0.18 
Tall S. alterniflora 0.27 0.25 
Overall Accuracy 0.79 0.78 

Combined Model 
B. frutescens/J. roemerianus 0.22 0.30 
Marsh Meadow 0.25 0.17 
Short/Medium S. alterniflora 0.07 0.12 
Tall S. alterniflora 0.27 0.25 
Overall Accuracy 0.83 0.82 
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Table 4.3.  Rpart confusion matrices for the edaphic, remote sensing and combined variables models based on pruned trees.  Rows 
represent the reference data (what the observation actually was based on validation data) and rows represent the classified data (what 
the observation was classified as).  Shaded cells are those where the classification was accurate and show the proportion of correctly 
classified observations for each class. 
 

  

B. 
frutescens/J. 
roemerianus 

(BF JR) 

Marsh 
Meadow 

(MM) 

Short/Medium 
S. alterniflora 

(SS SM) 

Tall S. 
alterniflora 

(ST) 
Total 

Edaphic Model 

B. frutescens/J. roemerianus (BF JR) 0.67 0.21 0.03 0.10 1 

Marsh Meadow (MM) 0.05 0.75 0.21 0.00 1 

Short/Medium S. alterniflora (SS SM) 0.01 0.11 0.84 0.05 1 

Tall S. alterniflora (ST) 0.02 0.02 0.55 0.41 1 
Remote Sensing Model 

B. frutescens/J. roemerianus (BF JR) 0.63 0.14 0.17 0.05 1 

Marsh Meadow (MM) 0.08 0.81 0.11 0.00 1 

Short/Medium S. alterniflora (SS SM) 0.05 0.09 0.85 0.01 1 

Tall S. alterniflora (ST) 0.02 0.00 0.25 0.73 1 
Combined Model 

B. frutescens/J. roemerianus (BF JR) 0.78 0.11 0.08 0.03 1 

Marsh Meadow (MM) 0.11 0.75 0.14 0.00 1 

Short/Medium S. alterniflora (SS SM) 0.04 0.02 0.93 0.01 1 

Tall S. alterniflora (ST) 0.02 0.00 0.25 0.73 1 
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Table 4.4.  Linear discriminant function scalings and proportion of variance explained for linear discriminant one (LD 1), two (LD 2) 
and three (LD 3).  Values in parentheses are Spearman’s correlation coefficients, rho, for correlations between each linear 
discriminant function corresponding and predictor variables (water content, salinity, soil organic matter (SOM) content, redox, DEM 
elevation in relation to MHW (DEM-MHW), slope, distance to MHW contour and distance to uplands). 
 
  LD 1 LD 2 LD 3 
Edaphic Model 
Variance Explained 0.80 0.15 0.05 
Water Content 7.02 (0.93) 2.03 (0.24) 8.73 (-0.01) 
Salinity 0.9 (-0.17) -2.47 (-0.81) 2.09 (0.49) 
Redox -0.001 (-0.6) 0.005 (0.37) 0.007 (0.51) 
SOM 9.13 (0.88) -0.54 (0.14) -10.23 (-0.17) 
Remote Sensing Model 
Variance Explained 0.71 0.20 0.09 
DEM-MHW -4.82 (-0.86) 1.47 (0.12) -4.83 (-0.28) 
Slope 0.29 (0.37) 1.25 (0.9) 0.21 (-0.06) 
MHW 0.09 (-0.73) -0.06 (-0.2) -0.06 (0.56) 
Uplands -0.13 (0.71) -0.03 (-0.17) 0.31 (-0.4) 
Combined Model   
Variance Explained 0.74 0.18 0.07 
SOM -11.58 (-0.75) -6.77 (-0.34) -5.19 (-0.23) 
DEM-MHW 4.03 (0.82) -0.32 (-0.05) -5.6 (-0.37) 
Slope -0.23 (-0.29) 1.2 (0.91) -0.04 (-0.18) 
MHW 0.11 (0.67) -0.04 (-0.25) 0.27 (0.49) 
Uplands -0.08 (-0.7) -0.03 (-0.08) -0.03 (-0.28) 

  

174



Table 4.5.  Spearman's Correlation Coefficients, rho, for correlations between LDA class posterior probabilities and corresponding 
predictor variables (water content, salinity, soil organic matter (SOM) content, redox, DEM elevation in relation to MHW (DEM-
MHW), slope, distance to MHW contour and distance to uplands) for the edaphic, remote sensing and combined variables models. 
 

  WaterContent Salinity Redox SOM DEM-
MHW Slope MHW Uplands 

Edaphic Model  
B. frutescens/J. roemerianus -0.86 -0.02 0.58 -0.81  --  --  --  -- 

Marsh Meadow -0.69 0.70 0.29 -0.63  --  --  --  -- 

Short/Medium S. alterniflora 0.84 -0.16 -0.72 0.86  --  --  --  -- 

Tall S. alterniflora 0.62 -0.38 0.11 0.49  --  --  --  -- 

Remote Sensing Model 
B. frutescens/J. roemerianus  --  --  --  -- 0.85 0.00 0.47 -0.66 

Marsh Meadow  --  --  --  -- 0.46 -0.65 0.70 -0.59 

Short/Medium S. alterniflora  --  --  --  -- -0.37 -0.20 -0.54 0.61 

Tall S. alterniflora  --  --  --  -- -0.81 0.56 -0.69 0.54 

Combined Model  
B. frutescens/J. roemerianus  --  --  -- -0.75 0.82 -0.04 0.49 -0.65 

Marsh Meadow  --  --  -- -0.50 0.47 -0.59 0.66 -0.58 

Short/Medium S. alterniflora  --  --  -- 0.77 -0.39 -0.19 -0.49 0.58 

Tall S. alterniflora  --  --  -- 0.56 -0.82 0.53 -0.68 0.55 
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Table 4.6.  LDA confusion matrices for the edaphic, remote sensing and combined models.  Rows represent the reference data (what 
the observation actually was based on validation data) and rows represent the classified data (what the observation was classified as).  
Shaded cells are those where the classification was accurate and show the proportion of correctly classified observations for each 
class.   
 

  

B. 
frutescens/J. 
roemerianus 

(BF JR) 

Marsh 
Meadow 

(MM) 

Short/Medium 
S. alterniflora 

(SS SM) 

Tall S. 
alterniflora 

(ST) 
Total 

Edaphic Model 

B. frutescens/J. roemerianus (BF JR) 0.63 0.22 0.05 0.10 1 

Marsh Meadow (MM) 0.16 0.57 0.25 0.02 1 

Short/Medium S. alterniflora (SS SM) 0.01 0.10 0.78 0.10 1 

Tall S. alterniflora (ST) 0.00 0.00 0.69 0.31 1 
Remote Sensing Model 

B. frutescens/J. roemerianus (BF JR) 0.67 0.21 0.13 0.00 1 

Marsh Meadow (MM) 0.03 0.79 0.18 0.00 1 

Short/Medium S. alterniflora (SS SM) 0.01 0.12 0.82 0.05 1 

Tall S. alterniflora (ST) 0.00 0.00 0.25 0.75 1 
Combined Model 

B. frutescens/J. roemerianus (BF JR) 0.70 0.24 0.06 0.00 1 

Marsh Meadow (MM) 0.04 0.83 0.13 0.00 1 

Short/Medium S. alterniflora (SS SM) 0.00 0.07 0.88 0.05 1 

Tall S. alterniflora (ST) 0.00 0.00 0.25 0.75 1 
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Table 4.S1.  Summary of mean values (± standard deviation) of predictor variables (water content, salinity, soil organic matter (SOM) 
content, redox, DEM elevation in relation to MHW (DEM-MHW), slope, distance to MHW contour and distance to uplands) for all 
eight vegetation classes.  Superscripts indicate significant (p-value < 0.05) groupings based on Tukey’s pairwise comparisons.  All 
variables (edaphic and remote sensing) have the same sample size (N). 
 

  Water Content Salinity SOM Redox  N   
Edaphic variables 
Tall S. alterniflora 0.48 ± 0.05 a 34 ± 9.4 abd 0.15 ± 0.02 a 85.2 ± 69.2 ad 51 
Medium S. alterniflora 0.49 ± 0.08 a 35.6 ± 12.4 abcd 0.15 ± 0.04 a 54.4 ± 127.8 bd 88 
Short S. alterniflora 0.5 ± 0.1 a 39.7 ± 10.9 bcd 0.16 ± 0.06 a  -139 ± 140.3 c 78 
D. spicata 0.38 ± 0.11 bc 46.1 ± 16.1 abcde 0.08 ± 0.06 bc 40.35 ± 125.9 abd 10 
S. virginica 0.29 ± 0.12 bcd 46.5 ± 22.2 de 0.09 ± 0.05 b 63.1 ± 87.1 d 62 
B. maritima 0.24 ± 0.08 cde 63.7 ± 23.2 de 0.07 ± 0.03 bc 133.1 ± 49.1 ad 17 
J. roemerianus 0.25 ± 0.16 bcd 29.7 ± 14.8 abcd 0.05 ± 0.04 bc 93.1 ± 51.9 ad 37 
B. frutescens 0.17 ± 0.05 ed 40.5 ± 21.9 abcd 0.03 ± 0.04 bc 151.9 ± 43.9 a 26 

   DEM-MHW Slope MLW MSL MHW Uplands 
Remote sensing variables 
Tall S. alterniflora  -0.11 ± 0.19 a 6.7 ± 5.4 a 60 ± 120 a 5 ± 24 a 2 ± 2 a 297 ± 184 a 
Medium S. alterniflora 0.09 ± 0.15 b 1.9 ± 1.2 b 47 ± 128 a 21 ± 88 b 5 ± 7 a 260 ± 204 a 
Short S. alterniflora 0.07 ± 0.12 b 1.1 ± 0.6 bc 260 ± 130 b 142 ± 93 cd 19 ± 25 b 153 ± 206 a 
D. spicata 0.21 ± 0.08 c 0.9 ± 0.4 c 279 ± 160 b 210 ± 101 cd 65 ± 21 c 30 ± 52 b 
S. virginica 0.21 ± 0.08 c 1 ± 0.6 c 290 ± 125 b 221 ± 105 de 75 ± 34 c 63 ± 62 b 
B. maritima 0.26 ± 0.07 c 1 ± 0.6 c 207 ± 108 b 99 ± 90 cde 53 ± 22 c 43 ± 107 b 
J. roemerianus 0.32 ± 0.21 cd 2.2 ± 2.2 d 282 ± 135 b 152 ± 92 cde 33 ± 38 bc 26 ± 34 b 
B. frutescens 0.51 ± 0.14 d 4.1 ± 2.7 d 180 ± 132 b 115 ± 129 cde 36 ± 58 c 72 ± 133 b 
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Table 4.S2.  Summary of rpart, random forest (RF), LDA and QDA errors and overall 
cross-validation accuracy for all three models: edaphic, remote sensing and combined.  
Rpart values are for the pruned tree.  In order of decreasing importance, the variables 
used in the edaphic model were soil organic matter (SOM) content, water content, 
salinity and redox.  The variables used in the remote sensing model were DEM-MHW, 
slope, distance to MHW contour and distance to uplands.  The variables used in the 
combined model were slope, DEM-MHW, distance to MHW contour, SOM and distance 
to upland area. 
 

Species Class Model Error     

  Rpart RF LDA QDA 
Edaphic Model 
B. frutescens/J. roemerianus 0.33 0.24 0.37 0.30 
Marsh Meadow 0.25 0.34 0.43 0.40 
Short/Medium S. alterniflora 0.16 0.24 0.22 0.36 
Tall S. alterniflora 0.59 0.53 0.69 0.31 
Overall Accuracy 0.72 0.69 0.63 0.64 

Remote Sensing Model 
B. frutescens/J. roemerianus 0.37 0.19 0.33 0.25 
Marsh Meadow 0.19 0.22 0.21 0.20 
Short/Medium S. alterniflora 0.15 0.17 0.18 0.20 
Tall S. alterniflora 0.27 0.31 0.25 0.22 
Overall Accuracy 0.79 0.79 0.78 0.79 

Combined Model 
B. frutescens/J. roemerianus 0.22 0.25 0.30 0.27 
Marsh Meadow 0.25 0.19 0.17 0.20 
Short/Medium S. alterniflora 0.07 0.12 0.12 0.16 
Tall S. alterniflora 0.27 0.29 0.25 0.16 
Overall Accuracy 0.83 0.81 0.82 0.82 
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Table 4.S3.  Random forest confusion matrices and class errors for the edaphic, remote sensing and combined models.  Rows 
represent the reference data (what the observation actually was based on validation data) and rows represent the classified data (what 
the observation was classified as).  Shaded cells are those where the classification was accurate and show the proportion of correctly 
classified observations for each class. 
 

  

B. 
frutescens/J. 
roemerianus 

(BF JR) 

Marsh 
Meadow 

(MM) 

Short/Medium 
S. alterniflora 

(SS SM) 

Tall S. 
alterniflora 

(ST) 
Total Class 

Error 

Edaphic Model 

B. frutescens/J. roemerianus (BF JR) 0.76 0.17 0.03 0.03 1 0.24 

Marsh Meadow (MM) 0.12 0.66 0.23 0.00 1 0.34 

Short/Medium S. alterniflora (SS SM) 0.01 0.13 0.76 0.10 1 0.24 

Tall S. alterniflora (ST) 0.04 0.02 0.47 0.47 1 0.53 
Remote Sensing Model 

B. frutescens/J. roemerianus (BF JR) 0.81 0.08 0.11 0.00 1 0.19 

Marsh Meadow (MM) 0.06 0.78 0.16 0.00 1 0.22 

Short/Medium S. alterniflora (SS SM) 0.05 0.08 0.83 0.04 1 0.17 

Tall S. alterniflora (ST) 0.00 0.00 0.31 0.69 1 0.31 
Combined Model 

B. frutescens/J. roemerianus (BF JR) 0.75 0.14 0.10 0.02 1 0.25 

Marsh Meadow (MM) 0.07 0.81 0.12 0.00 1 0.19 

Short/Medium S. alterniflora (SS SM) 0.02 0.06 0.88 0.05 1 0.12 

Tall S. alterniflora (ST) 0.00 0.00 0.29 0.71 1 0.29 
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Table 4.S4.  QDA confusion matrices and class errors for the edaphic, remote sensing and combined models.  Rows represent the 
reference data (what the observation actually was based on validation data) and rows represent the classified data (what the 
observation was classified as).  Shaded cells are those where the classification was accurate and show the proportion of correctly 
classified observations for each class.   
 

  

B. 
frutescens/J. 
roemerianus 

(BF JR) 

Marsh 
Meadow 

(MM) 

Short/Medium 
S. alterniflora 

(SS SM) 

Tall S. 
alterniflora 

(ST) 
Total Class 

Error 

Edaphic Model 

B. frutescens/J. roemerianus (BF JR) 0.70 0.24 0.03 0.03 1 0.30 

Marsh Meadow (MM) 0.13 0.60 0.23 0.05 1 0.40 

Short/Medium S. alterniflora (SS SM) 0.01 0.11 0.64 0.24 1 0.36 

Tall S. alterniflora (ST) 0.00 0.00 0.31 0.69 1 0.31 
Remote Sensing Model 

B. frutescens/J. roemerianus (BF JR) 0.75 0.13 0.13 0.00 1 0.25 

Marsh Meadow (MM) 0.03 0.80 0.17 0.00 1 0.20 

Short/Medium S. alterniflora (SS SM) 0.01 0.12 0.80 0.07 1 0.20 

Tall S. alterniflora (ST) 0.00 0.00 0.22 0.78 1 0.22 
Combined Model 

B. frutescens/J. roemerianus (BF JR) 0.73 0.19 0.08 0.00 1 0.27 

Marsh Meadow (MM) 0.06 0.80 0.14 0.00 1 0.20 

Short/Medium S. alterniflora (SS SM) 0.01 0.08 0.84 0.07 1 0.16 

Tall S. alterniflora (ST) 0.00 0.00 0.16 0.84 1 0.16 
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Table 4.S5.  Spearman’s correlation coeffient, rho, for correlations between all predictor variable pairings.  Variables included were 
water content, salinity, soil organic matter (SOM) content, redox potential, DEM elevation in relation to MHW (DEM-MHW), slope, 
distance to MHW, MLW and MSL contours and distance to uplands. 
 

  Elevation Water Content Salinity SOM Redox DEM-MHW Slope MHW MLW MSL Uplands
Elevation 1 -0.61 0.23 -0.42 0.22 0.90 -0.35 0.56 0.29 0.42 -0.35 
Water Content -0.61 1 -0.44 0.80 -0.49 -0.60 0.03 -0.47 -0.19 -0.22 0.42 
Salinity 0.23 -0.44 1 -0.27 0.15 0.12 -0.15 0.14 -0.05 -0.01 -0.13 
OM -0.42 0.80 -0.27 1 -0.42 -0.43 0.00 -0.38 -0.19 -0.18 0.39 
Redox 0.22 -0.49 0.15 -0.42 1 0.31 0.26 0.12 -0.16 -0.15 -0.16 
DEM-MHW 0.90 -0.60 0.12 -0.43 0.31 1 -0.21 0.49 0.18 0.30 -0.30 
Slope -0.35 0.03 -0.15 0.00 0.26 -0.21 1 -0.15 -0.25 -0.31 0.13 
MHW 0.56 -0.47 0.14 -0.38 0.12 0.49 -0.15 1 0.47 0.63 -0.36 
MLW 0.29 -0.19 -0.05 -0.19 -0.16 0.18 -0.25 0.47 1 0.84 -0.45 
MSL 0.42 -0.22 -0.01 -0.18 -0.15 0.30 -0.31 0.63 0.84 1 -0.39 
Uplands -0.35 0.42 -0.13 0.39 -0.16 -0.30 0.13 -0.36 -0.45 -0.39 1 
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Figure 4.1.  The LIDAR-derived bare earth DEM showing the location of the study area 
near Sapelo and Blackbeard Islands, GA.  Dots indicate field sampling locations colored 
by dominant species. 
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Figure 4.2.  Rpart classification trees using the: (A) edaphic predictor variables (soil 
organic matter (SOM), water content, salinity and redox); (B) remote sensing-derived 
predictor variables (DEM elevation in relation to MHW (DEM-MHW), slope and 
distances to mean high water (MHW) and uplands); and (C) combination of all predictor 
variables.  ST: tall S. alterniflora; SS-SM: short and medium S. alterniflora; MM: marsh 
meadow; and BF-JR: B. frutescens and J. roemerianus.  
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Figure 4.2 (continued).   
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Figure 4.3.  Biplots of linear discriminant function one (LD1) and two (LD2) for (A) 
edaphic predictor variables (soil organic matter (SOM), water content, salinity and 
redox); (B) remote sensing-derived predictor variables (DEM elevation in relation to 
MHW (DEM-MHW), slope and distances to mean high water (MHW) contour and 
uplands); and (C) combination of all predictor variables.  Colors indicate LDA class 
assignments.  ST: tall S. alterniflora; SS-SM: short and medium S. alterniflora; MM: 
marsh meadow; and BF-JR: B. frutescens and J. roemerianus. 
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Figure 4.3 (continued).   
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Chapter 5 

CONCLUSIONS 

Accurate habitat and elevation mapping in salt marshes is important for 

management and conservation goals.  Marshes are susceptible to habitat loss due to 

changes in sea level and coastal flooding, and there is growing interest in obtaining 

accurate elevation maps for these areas in order to understand how small topographic 

differences affect water flow, sediment distribution, and the extent and frequency of tidal 

inundation.  Differences in elevation also affect plant distributions, as salt marsh macrophytes 

exhibit characteristic patterns of vertical zonation, with gradients in elevation influencing 

edaphic parameters.  There is therefore a need for accurate habitat and elevation mapping 

in salt marshes to identify sensitive areas and predict how marshes will respond to 

perturbations such as sea level rise or changes in sediment delivery.  

In this dissertation I evaluated the use of remote sensing data to map plant 

distributions and elevation in a Southeastern salt marsh by 1) assessing the accuracy of a 

digital elevation model (DEM) derived from Light Detection and Ranging (LIDAR) data 

for different vegetation classes; 2) fusing hyperspectral imagery (HSI) and a LIDAR-

derived DEM to modify both habitat classification and elevation information; and 3) 

comparing the use of edaphic and remote sensing-derived variables for the prediction of 

salt marsh plants using linear discriminant analysis (LDA) and classification and 

regression trees (CART). 
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In Chapter 2, I found that high pulse rate frequency (PRF) LIDAR did not 

produce accurate DEMs of salt marsh habitats and is of limited utility without correction.  

DEM mean vertical errors for ten different cover classes ranged from 0.03 to 0.25 m in 

comparison to real time kinematic (RTK) GPS ground truth data.  The magnitude of 

DEM error was greatest for taller vegetation; however, plant height could not fully 

explain errors and suggests that the relationship between DEM error and other vegetation 

characteristics, such as stem density, leaf orientation and biomass should be investigated.  

I used species-specific correction factors to modify the LIDAR-derived DEM in four 

areas of the study domain where vegetation boundaries were mapped directly in the field.  

Application of the derived correction factors greatly improved the accuracy of the 

LIDAR-derived DEM within these areas, reducing the overall mean DEM error from 

0.10 ± 0.12 (SD) to -0.01 ± 0.09 m (SD), and the root mean squared error (RMSE) from 

0.16 m to 0.10 m.  In the corrected DEM, the ground elevations of all vegetation classes 

were no longer significantly different than the true RTK ground elevations.   

My results suggest that these types of corrections are robust and can greatly 

improve the accuracy of DEMs obtained using high PRF LIDAR in salt marshes.  

However, more attention should be given to other LIDAR sensor parameters such as 

narrowing field of view and pulse width to better detect closely space returns, decreasing 

footprint size, or improving filtering routines to minimize misclassification of low 

vegetation as ground.  It may also be possible to improve DEMs by using a different 

technique for the interpolation of LIDAR point clouds.  In this study geostatistical kriging 

was used to generate a gridded DEM, but, it is possible that other interpolation 
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techniques, such as the minimum bin method (deterministic), may produce a more 

accurate surface representation and this approach could be explored.   

In order to apply the correction factors, it is necessary to have information on the 

distribution of cover classes in a LIDAR-derived DEM.  HSI has been shown to be 

suitable for the separation of marsh vegetation species by spectral signatures, and can be 

used to determine cover classes; however, there is persistent confusion between the 

different height classes of Spartina alterniflora and mud due to mixed pixels.  In Chapter 

3, I compared maximum likelihood (MLC) and spectral angle mapper (SAM) 

classification methods for HSI, and presented a method to overcome the respective 

limitations of LIDAR and HSI through data fusion.  MLC more accurately classified each 

of the nine cover classes in the HSI as compared to SAM, producing a habitat map of the 

Duplin River salt marshes with an overall accuracy of 90%, as compared to 61% when 

the SAM classifier was used.  When the initial HSI classification was fused with the 

LIDAR data through a decision tree, I could apply class-specific elevation correction 

factors.  This resulted in a large reduction in overall mean DEM error from 0.10 ± 0.12 

(SD) to -0.003 ± 0.10 m (SD), and, in RMSE, from 0.15 to 0.10 m.  The decision tree 

also resulted in slight improvements in plant classifications, with 1% and 2% increases in 

overall accuracy for MLC and SAM, respectively.  These results suggest that the data 

fusion approach minimizes problems with both hyperspectral and LIDAR, and represents 

a significant advancement over evaluating hyperspectral and LIDAR data independently. 

 Future efforts should focus on acquiring ground survey data to better quantify the 

effect of data fusion on improving the classification of S. alterniflora.  Although the 

decision tree did not greatly improve overall classification accuracies, it did produce 
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small gains in separating the three height classes of S. alterniflora and mud.  The 

majority of changes were seen in the upper part of the study area where tall and medium 

S. alterniflora are highly mixed with mud areas.  Unfortunately, I did not have many 

ground control points in these areas due to the difficulty of assessing these low-lying 

parts of the marsh, so I was unable to quantify improvements in accuracy.  Had validation 

data been available in these areas, I believe that the application of the decision tree would 

have resulted in larger gains in classification accuracy.   

 In Chapter 4, I evaluated the effectiveness of remote sensing-derived variables in 

comparison to edaphic parameters for the classification of salt marsh vegetation, using 

two different analytical approaches (LDA and CART).  LDA and CART achieved 

comparable accuracies for all models.  In cases such as this where both LDA and CART 

give similar results, the LDA approach is recommended for the prediction of new 

observations.  However, I recommend a workflow that uses CART for variable reduction 

and selection prior to training by LDA.  More importantly, I found that the remote 

sensing-derived variables were more effective predictors of salt marsh plant distribution 

compared to edaphic variables, regardless of which classification technique was used.  

Remote sensing models had accuracies of 0.78 and 0.79, whereas the edaphic models had 

accuracies of 0.63 and 0.72 for LDA and CART, respectively.  The most important 

remote sensing variables were DEM elevation in relation to mean high water (DEM-

MHW), slope and distance to mean high water line, whereas the most important edaphic 

variables were soil organic matter (SOM) and water content.  Although the addition of 

SOM content to the remote sensing variables generated the most accurate classifications 

(0.82 and 0.83 for LDA and CART, respectively), these represented only small 
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improvements over the remote sensing model, suggesting that remote sensing-derived 

variables alone are adequate for classifying marsh vegetation. 

It should be noted that the remote sensing-derived variables used in Chapter 4 

were generated using the unmodified DEM, as not all of the ground survey sites included 

in these analyses were located within the domain of the modified DEM produced for 

Chapter 3.  This means that my models would be directly applicable to most situations 

where there is not enough information available to modify DEMs based on plant 

classification.  Where plant classifications are available, then models describing current 

plant distributions become less useful.  However, I did conduct LDA and CART analyses 

to develop models that used remote sensing variables derived from the modified DEM 

(Appendix B).  These models could be used in conjunction with predicted changes in 

slope, elevation, and the other remote sensing variables to evaluate the response of marsh 

vegetation to sea level rise or other perturbations and is something that should be pursued 

in the future. 

 As a whole, this dissertation provides guidance on the use of remote sensing data 

for mapping salt marsh plant distributions and elevations.  The analytical approaches and 

workflows developed here can be applied elsewhere to correct LIDAR-derived DEMs, 

classify vegetation based on elevation and HSI, and develop models for predicting 

vegetation distribution using landscape metrics.  An important application of this work 

will be the use of remote sensing data to assess current plant zonation patterns, as well as 

to make landscape level predictions of how plant distributions will change in the future.  

Additionally, given that bathymetry is necessary to set up hydrodynamic models, a 

corrected DEM is important for accurate simulations of tidal flooding as well as for 
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projecting the effects of storms and sea level rise.  This work highlights the value of the 

remote sensing approach and shows great promise for landscape level analyses of salt 

marsh habitats. 
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APPENDIX A 

RTK ELEVATIONS IN RELATION TO TIDAL DATUMS 
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Table A1.  Real time kinematic (RTK) elevations in relation to various tidal datums for 
mean, minimum and maximum observed RTK elevations of each cover class.  Shown are 
elevations relative to the North American Vertical Datum 1988 (NAVD 88), mean low 
water (MLW), mean sea level (MSL) and mean high water (MHW) tidal datums.  Values 
were determined based on data from the NOAA tide gauge station at St. Simon’s Island, 
Georgia (station ID 8677344) referenced on the 1983-2001 Epoch.  The tide station was 
used to convert the RTK elevations from the NAVD 88 vertical datum to heights above 
or below MLW, MSL and MHW tidal datums.   

Cover Class NAVD 88 MLW MSL MHW 

Mean Elevation 
Tall S. alterniflora 0.36 1.58 0.56 -0.44 

Medium S. alterniflora 0.77 1.99 0.98 -0.02 

Short S. alterniflora 0.87 2.09 1.07 0.07 

Intertidal Mud 0.89 2.11 1.10 0.10 

S. virginica 0.95 2.17 1.15 0.16 

D. spicata 0.96 2.17 1.16 0.16 

B. maritima 0.99 2.21 1.20 0.20 

Salt pan 1.01 2.23 1.22 0.22 

J. roemerianus 1.02 2.23 1.22 0.22 

B. frutescens 1.23 2.44 1.43 0.43 

Minimum Elevation 
Tall S. alterniflora -0.67 0.55 -0.46 -1.46 

Medium S. alterniflora 0.24 1.46 0.45 -0.55 

Short S. alterniflora 0.59 1.81 0.79 -0.20 

Intertidal Mud 0.52 1.74 0.73 -0.27 

S. virginica 0.75 1.97 0.96 -0.04 

D. spicata 0.78 2.00 0.98 -0.02 

B. maritima 0.84 2.06 1.04 0.05 

Salt pan 0.87 2.09 1.08 0.08 

J. roemerianus 0.67 1.88 0.87 -0.13 

B. frutescens 0.94 2.16 1.15 0.15 
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Table A1 (continued). 

Cover Class NAVD 88 MLW MSL MHW 

Maximum Elevation 
Tall S. alterniflora 0.85 2.07 1.05 0.05 

Medium S. alterniflora 1.09 2.31 1.30 0.30 

Short S. alterniflora 1.14 2.35 1.34 0.34 

Intertidal Mud 1.09 2.31 1.30 0.30 

S. virginica 1.28 2.50 1.49 0.49 

D. spicata 1.10 2.31 1.30 0.30 

B. maritima 1.29 2.51 1.50 0.50 

Salt pan 1.16 2.38 1.36 0.36 

J. roemerianus 1.46 2.68 1.66 0.67 

B. frutescens 1.49 2.71 1.70 0.70 
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APPENDIX B 

MULTIVARIATE ANALYSES OF REMOTE SENSING-DERIVED VARIABLES 

USING MODIFIED DEM ELEVATIONS 
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In Chapter 4, we evaluated the effectiveness of remote sensing-derived variables 

in comparison to edaphic parameters for the classification of salt marsh vegetation using 

linear discriminant analysis (LDA) and classification and regression trees (CART).  

Although the two classification techniques had similar overall accuracies, we 

recommended a workflow wherein CART is used for variable reduction and selection 

prior to training and subsequent prediction of new observations by LDA.  More 

importantly, in Chapter 4 we found that the remote sensing-derived variables were more 

effective predictors of salt marsh plant distribution compared to edaphic variables, 

regardless of which classification technique was used.  When the remote sensing 

variables DEM elevation in relation to mean high water (DEM-MHW), slope, distance to 

mean high water (MHW) line and distance to upland area were used, classification 

accuracies were 0.78 for LDA and 0.79 for CART (Table 4.2).   

The remote sensing-derived variables used for Chapter 4 analyses were generated 

using unmodified digital elevation models (DEMs) derived from Light Detection and 

Ranging (LIDAR) data for Sapelo Island and Blackbeard Island, GA (Figure 4.1).  Not 

all the ground survey sites (where edaphic parameters were measured) included in those 

analyses were located within the domain of the modified DEM produced in Chapter 3 

(Sapelo Island marshes, Figure 3.1).  However, the results of Chapter 4 suggest that 

edaphic variables are not necessary for predicting plant distributions, which allows us to 

expand our analysis to include sampling locations where edaphic data was not available.  

More importantly, this allows us to examine the use of the modified DEM created in 

Chapter 3 for CART and LDA models. 
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In this Appendix, we evaluated the use of remote sensing variables derived from 

the modified DEM for the classification of a larger data set of plant observations for the 

Duplin River salt marshes.  The sampling locations used here were the same as used in 

Chapters 2 and 3 and were collected as part of a survey of salt marsh ground control point 

(GCP) elevations carried out in 2009 to validate and correct the LIDAR-derived DEM 

(Tables 2.2 and 3.2).  At each sampling location the plant species present were recorded 

and the ground elevation was surveyed using a real time kinematic (RTK) GPS receiver.  

Additional details can be found in Chapters 2 and 3.  Note that only remote sensing-

derived variables for these sampling locations (N = 1380) are used in the current analysis; 

edaphic variables were not measured at these locations.   

The remote sensing variables were derived from the modified DEM following the 

same methods used in Chapter 4.  However, for direct comparison of unmodified and 

modified DEM models, only those remote sensing variables identified as important in 

Chapter 4 are used here (Figure 4.2B).  These included DEM-MHW, slope, and distances 

to MHW and upland area.  The same four vegetation classes were classified using both 

CART (using rpart) and LDA: tall S. alterniflora (ST), short and medium S. alterniflora 

(SS-SM), marsh meadow (MM) and B. frutescens/J. roemerianus (BF-JR).  Once 

variables were derived from the modified DEM, models were generated using rpart and 

LDA.  We compared rpart and LDA results for the modified DEM to those obtained 

using the unmodified DEM in Chapter 4 to determine if corrected elevations affected 

models.  Rpart results were examined based on tree structure and variable importance, 

whereas LDA results were evaluated based on scaled discriminant functions and 
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discriminant function correlations with predictor variables.  We also examined the cross-

validated confusion matrices for both rpart and LDA to determine model accuracy.   

The overall cross-validation accuracy for the rpart tree generated from the 

modified DEM was 0.79, the same as attained using the unmodified DEM (Table B1 and 

4.2).  However, there were differences in the tree structure of rpart models based on the 

modified versus unmodified DEMs (Figures B1 and 4.2B).   The modified DEM root 

node was based on DEM-MHW as opposed to MHW in the unmodified DEM.  Although 

DEM-MHW was still the most important variable, followed by slope, the model based on 

the modified DEM had a much larger contribution to class discrimination.  Class errors 

using the modified DEM followed the same trend as in the unmodified DEM, but errors 

for MM and ST were reduced whereas BF-JR and SS-SM errors were larger in the 

modified DEM (Tables B1, B3, 4.2 and 4.3). 

There were few differences in the LDA models produced using the modified as 

compared to the unmodified DEMs (Figures B2 and Figure 4.3B).  However, the overall 

accuracy slightly decreased from 0.78 using the unmodified DEM to 0.76 for the 

modified DEM (Tables B1 and 4.2).  Using the modified DEM the first discriminant 

function explained slightly more of the variance between vegetation classes than the 

unmodified DEM (75% versus 71%), but it was again strongly correlated with DEM-

MHW (Tables B3 and 4.4).  The second discriminant function explained an additional 

20% of the variance and was correlated with slope, similar to results for the unmodified 

DEM.  In the modified DEM, however, the second discriminant function was also 

strongly correlated with distance to uplands, contrary to the unmodified DEM results 

(Spearman’s correlation coefficients of -0.7 and -0.17 in the modified and unmodified 
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models, respectively) (Tables B3 and 4.4).  Most notably, class errors were reduced for 

all classes when using the modified DEM with the exception of BF-JR for which errors 

increased from 0.33 to 0.51 (Tables B1 and 4.2).  BF-JR errors were mostly due to larger 

misclassifications of BF-JR observations as SS-SM using the modified DEM (Table B3 

and 4.6). 

These results indicate that the use of the modified DEM did not greatly affect 

rpart and LDA classifications in comparison to the unmodified DEM (Chapter 4).  In a 

comparison of the sampling points located used here that were also included in the 

Chapter 4 study, I found that neither the distance metrics nor the slope were significantly 

different in the unmodified versus the modified DEM (Wilcoxon rank sum test, p-value > 

0.05, data not shown).  DEM-MHW was the only remote sensing-derived variable that 

was significantly different in the two DEMs, which is to be expected based on the fact 

that the DEM required correction.  We therefore believe the models presented in Chapter 

4 are robust and could be used in situations where DEMs have not been modified.  

However, the CART and LDA models developed in this Appendix, which are based on 

the modified DEM, are the ones that would be most appropriate to use for predicting how 

plant distributions in the Duplin marshes might change under future conditions.    
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Table B1.  Summary of rpart and LDA errors and overall cross-validation accuracy for 
the remote sensing models.  Rpart values are for the pruned tree.  In order of decreasing 
importance, the variables used in the remote sensing model were DEM-MHW, slope, 
distance to uplands and distance to MHW. 

  Rpart LDA 
Remote Sensing Model 
B. frutescens/J. roemerianus 0.44 0.51 
Marsh Meadow 0.12 0.25 
Short/Medium S. alterniflora 0.20 0.13 
Tall S. alterniflora 0.18 0.27 
Overall Accuracy 0.79 0.76 
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Table B2. Rpart and LDA confusion matrices for the remote sensing models.  Rows represent the reference data (what the observation 
actually was based on validation data) and rows represent the classified data (what the observation was classified as).  Shaded cells are 
those where the classification was accurate and show the proportion of correctly classified observations for each class. 

  

B. 
frutescens/J. 
roemerianus 

(BF JR) 

Marsh 
Meadow 

(MM) 

Short/Medium 
S. alterniflora 

(SS SM) 

Tall S. 
alterniflora 

(ST) 
Total 

Rpart 

B. frutescens/J. roemerianus (BF JR) 0.56 0.29 0.13 0.02 1 

Marsh Meadow (MM) 0.05 0.88 0.06 0.01 1 

Short/Medium S. alterniflora (SS SM) 0.02 0.11 0.80 0.07 1 

Tall S. alterniflora (ST) 0.00 0.00 0.17 0.82 1 
LDA 

B. frutescens/J. roemerianus (BF JR) 0.49 0.20 0.30 0.00 1 

Marsh Meadow (MM) 0.05 0.75 0.20 0.00 1 

Short/Medium S. alterniflora (SS SM) 0.01 0.08 0.87 0.04 1 
Tall S. alterniflora (ST) 0.00 0.00 0.27 0.73 1 
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Table B3.  Linear discriminant function scalings and proportion of variance explained for linear discriminant one (LD 1), two (LD 2) 
and three (LD 3).  Values in parentheses are Spearman’s correlation coefficients, rho, for correlations between each linear 
discriminant function corresponding predictor variables. 

  LD 1 LD 2 LD 3 

Remote Sensing Model 
Variance Explained 0.75 0.16 0.08 
DEM-MHW  -4.18 (-0.90)  0.55 (0.15)  -3.51 (-0.10) 
Slope  1.08 (0.52)  2.34 (0.7)  -0.82 (-0.3) 
MHW  -0.06 (-0.59)  -0.05 (-0.16)  0.27 (0.73) 
Uplands  -0.06 (0.68)  -0.09 (-0.70) 0.27 (-0.24) 

 

203



 

Figure B1.  Rpart classification tree using the remote sensing-derived predictor variables 
(DEM elevation in relation to MHW (DEM-MHW), slope and distances to mean high 
water (MHW) and uplands) derived from the modified DEM.  ST: tall S. alterniflora; SS-
SM: short and medium S. alterniflora; MM: marsh meadow; and BF-JR: B. frutescens 
and J. roemerianus. 
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Figure B2.  Biplot of linear discriminant function one (LD1) and two (LD2) for remote 
sensing-derived predictor variables (DEM elevation in relation to MHW (DEM-MHW), 
slope and distances to mean high water (MHW) and uplands) derived from the modified 
DEM.  ST: tall S. alterniflora; SS-SM: short and medium S. alterniflora; MM: marsh 
meadow; and BF-JR: B. frutescens and J. roemerianus. 
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