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Abstract

In this paper we will be presenting my approach to generating two possible
solutions to the three-body problem. We will first discuss the theory of reducing the
dimension of the dynamical system through the use of symmetry and constants of
motion. However, we can reduce no farther than to 5 degrees of freedom, which is
still too high to solve and therefore we must change our attack from trying to find
a general solution, to simply finding a specific solution.

We will then make use of the program Maple, which will allow me to create a
simulation of this system. Through the simulations we will try and find the stable
figure eight solution as well as a solution having a light satellite coming in from
infinity and being captured in a stable orbit around a tight binary. We can adjust
the initial conditions of the three bodies until we have generated a simulation that
has the potential to be a stable periodic orbit. Unfortunately Maple will not prove
that any solution found is stable, and we are therefore left with only a conjecture as
to the stability of the system.
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Chapter 1

A Very Brief History of the n-Body Problem

Since mankind first looked to the stars in the night sky, we have wondered about our

place in the universe. The first attempts to explain our place held that the Earth

was the center of the universe, and that everything else in creation spun about the

Earth. Despite the modern knowledge of the incorrectness of this belief, at the time

it was understandable. Looking up one could see the stars spin overhead, however,

no motion was detectable standing on the Earth, and so the belief lasted.

With the introduction of the Christian religion, and the idea of a divine God who

had created all of the matter in the universe, the idea persisted. If God had created

the universe, and with it mankind, and since mankind lived on Earth, then clearly

God must have created the Earth to be the center of the Universe. This belief

was championed by Ptolemy who argued that space was a sphere which rotated

around the Earth, which was unmoving. The Catholic church accepted this belief,

and vigorously defended it for centuries.

It wasn’t until the 1500’s that the idea that the universe revolved around the

Earth began to change. In the year 1530 a.d. the great Polish astronomer, and

cleric, Nicolas Copernicus published the De Revolutionibus. In this work Copernicus

lays the foundation for modern Astronomy. In the book he claims that, despite the

beliefs of the church, the Earth in fact spins on its axis, completing a rotation once

a day, and beyond that, the Sun is actually the center of the Solar System, and the

Earth revolves around the Sun. Though Copernicus did not suffer the retribution of
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the Catholic church, many other astronomers of this time that tried to build off the

work that he did came into conflict with the church over this idea. It wasn’t until

the early 1600’s that the work done by Copernicus was expanded mathematically.

In 1571 Johannes Kepler was born in what at the time was the Holy Roman

Empire. Kepler was a bright, though sickly, child who eventually attended the Uni-

versity of Tübingen to become a Lutheran minister. However, this did not work out

for Kepler, and instead he became a mathematics professor in Graz. It was while he

was working there in 1596 that he wrote his defense of Copernicus’s work. When the

Counter-Reformation began, Kepler was forced to leave Graz, and he then moved to

Prague, where he teamed up to work with Tycho Brahe. It was here that Kepler’s

biggest contribution to astronomy occurred.

When Tycho Brahe died in 1601 Kepler replaced him as the Imperial Mathe-

matician. Tycho Brahe had collected very precise data about the orbital path of the

planet Mars, and Kepler used this data to determine that Mars’ orbit was, in fact,

an ellipse. This lead him to publish Astronomia Nova in 1609. In this work Kepler

laid down what have become known as Kepler’s first and second laws of planetary

motion. Beyond the two laws of motion, this work is important for another reason.

This is the first known published account where a scientist has taken the imper-

fect data of the real world and converted it into a scientific theorem of exceptional

accuracy. After yet another forced move, this time to Linz in 1612, Kepler published

Harmonices Mundi in which he laid out his third law of planetary motion.

Kepler’s first law lays out the orbital patterns of the planets and states that

The planets move in ellipses, with the sun at one focus.

With his second law Kepler discusses the area swept out by a line segment running

from the sun to the planet described. It is stated as

Equal areas are swept out by the radius vector in equal times.
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More precisely this statement means,

The area swept out in time t is proportional to t.

Finally if a is the length of the major axis of a planet’s elliptical orbit, and T is the

period of the planet’s orbit, then Kepler’s third law states

The ratio of a3/T 2 is the same for all planets.

It would be almost 60 years before the advances made by Kepler could be fur-

thered, and it would take one of the greatest mathematical minds of all time to

do it. In 1666 Sir Isaac Newton had begun to develop the basis for his three laws

of motion, but it was also at this time that Newton came across the work done

by Kepler. Newton’s first major accomplishment was to demonstrate that a force

directed towards the Sun, now known to be the gravitational pull of the Sun, per-

fectly explains Kepler’s laws. This force directed toward the Sun, he concluded, was

proportional to the mass of the object, and inversely proportional to the square of

the distance between the Sun and the planet. This explanation leads to the second

order differential equation in R3 which is known as Kepler’s problem:

d2~q

dt2
=
−k~q

|~q|3 , (1.1)

where ~q is the position vector in R3. Newton proved this equation has as its solutions

paths that are conic sections, ie. circles, ellipses, or hyperbolae.

Unfortunately, despite its apparent success in predicting the motion of the planets

in our solar system, the equation given by Kepler ignores many influences on the

paths of the planets. One of the obvious problems of this equation is that it does

not take into account the gravitational pull of any of the other planets in our solar

system. In this sense the equation does not give us a true sense of the paths of the

planets, but instead it generates an ideal orbit. In order to solve the true equations
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for our solar system, one would have to generate equations that account for all of

the masses in the solar system, and then to try and solve these equations. This leads

us to the n-body problem.

The n-body problem is a system of equations that would account for the grav-

itational pull of n bodies. Unfortunately for us, even with modern problem solving

techniques, and relatively fast computers it is impossible to solve the n-body problem

for just 3 planets1. However, despite not being able to write down a general solution

to the 3-body problem, much work has been done on trying to find specific solutions

to the three body problem.

In volume 81 of Contemporary Mathematics published in 1988 Richard Moeckel

lays out a solid basis of facts about the 3-body problem in a paper entitled Some

Qualitative Features of the Three-Body Problem[6]. Thirteen years later

Richard Montgomery published a paper [7] in the Notices of the AMS in which

he lays out a proof for the existence of a specific solution of the 3-body problem in

which three planets of equal mass chase each other around a figure 8. Each planet

is exactly one third of a period of revolution behind the planet in front of it. This

solution is proven to be stable, and is in fact KAM-stable. It was this article which

got me started at looking at the 3-body problem.

The 3-body problem is a system of equations used to determine the path of three

celestial objects, as they are attracted to each other by gravity. The equations can

all be derived similarly to the one proposed by Kepler, but now instead of just one

equation there will be three, one for each planet. Also instead of there just being one

term in each equation there will now be two terms, one for the pull from each planet.

If we let m1 be the mass of the first planet, m2 be the mass of the second planet,

and m3 be the mass of the third planet, and if we let ~q1 be the position vector of the

first planet in 3-space, ~q2 be the position vector of the second planet, and ~q3 be the

1This fact was proven by Poincaré in his paper [10]
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position vector of the third planet, we can begin to write down the equations for the

motion of the planets. As in the two body system, the gravitational attraction of

each planet will generate a force directed in towards the center of that planet. This

is just as in the 2-body case. Thus we see that the force acting on planet 1 is given

by

m1
d2~q1

dt2
= −k

(
m1m2(~q1 − ~q2)

|~q1 − ~q2|3 +
m1m3(~q1 − ~q3)

|~q1 − ~q3|3
)

(1.2)

where k is a constant. In a similar fashion we can construct the force equations for

the other two planets and they are

m2
d2~q2

dt2
= −k

(
m2m3(~q2 − ~q3)

|~q2 − ~q3|3 +
m2m1(~q2 − ~q1)

|~q2 − ~q1|3
)

(1.3)

and

m3
d2~q3

dt2
= −k

(
m3m1(~q3 − ~q1)

|~q3 − ~q1|3 +
m3m2(~q3 − ~q2)

|~q3 − ~q2|3
)

(1.4)

Where again k is simply a proportionality constant.

At this point we now have the three equations that we would like to solve.

However, each one of these equations is, in fact, an equation of 3 further variables.

Thus instead of only having to solve a system of 3 second order differential equations,

in reality we have to solve a system of 9 second order differential equations. Since

these equations are second order, this system is equivalent to a system of eighteen

first order differential equations. Because of this, the difficulty factor in solving for

the paths of just three planet’s orbits has increased dramatically. Instead of finding

a general solution to this problem all that can be done is to find specific solutions to

the three body problem. Imagine, now, the difficulty in solving the n-body problem

that would explain the paths of our solar system.
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Chapter 2

Known Results of the Three Body Problem

I will make an attempt in this report to demonstrate some basic solutions of the

three body problem. To do this I will make heavy use of the program Maple to both

set up, and to solve the differential equations defining the problem. I will also discuss

the difficulties inherent in trying to prove the existence of these solution.

In the previous chapter I gave a brief discussion of how hard it is to solve the

three-body problem. Instead what we can do is to find specific solutions to the three-

body problem, with certain initial assumptions. The main assumption that we will

make in order to proceed is that the motion of the three bodies is planar.

In order to proceed mathematically we will need to define the notation we will

use throughout the rest of this paper. The first thing we will define is the position

vector. This will be defined by letting ~qj be the position of the jth point mass in

planar space. We will next define ~pj to be the momentum vector for the point mass,

again in a planar space. And finally we will define mjε R+ to be the mass of the jth

body.

If we now define ~q = (~q1, ~q2, ~q3), let ~p = (~p1, ~p2, ~p3) where both ~p, ~q εR6 and finally

define M = diag(m1,m1,m2,m2,m3,m3), which is a six by six matrix with zeroes in

every entry except through the main diagonal whose entries are given. We can now

define the energy function of our dynamical system:

H(~q, ~p) =
1

2
~p T M−1~p− U(~q). (2.1)
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In the above equation we have defined the potential energy of the system to be

−U(~q). This function U(~q) is defined by

U(~q) =
m1m2

|~q1 − ~q2| +
m1m3

|~q1 − ~q3| +
m2m3

|~q2 − ~q3| . (2.2)

This energy function H(~q, ~p) is the Hamiltonian, meaning that we can take the partial

derivatives of the function in order to generate the system of dynamical equations

that we will use to try and find a solution to the three-body problem.

Since the equation is Hamiltonian we know that

∂H

∂p
=

dq

dt
and − ∂H

∂q
=

dp

dt
(2.3)

This leads to the following two differential equations.

q̇ = M−1~p (2.4)

ṗ = ∇U(~q)

Unfortunately the two differential equations above generate a dynamical system

existing in R12. In order to study this dynamical system it is helpful to reduce the

dimension of the problem. To do this we will make use of certain key integrals of

motion. I will prove these claims later in chapter 3.

The first integral of motion is the sum of the momenta of the three objects.

Since this quantity remains constant, we can, without any loss of generality, take

the total momentum of the system to be zero. This means that

~p1 + ~p2 + ~p3 = 0.

From this assumption we can see that the center of mass of the system will be

constant, and again we can simply take that to be placed at the origin. Giving us
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m1~q1 + m2~q2 + m3~q3 = 0

Since these two equations are vector equations in R2 we have now reduced both the

momentum vector ~p, and the position vector ~q by two degrees, thus reducing the

overall degree of the problem from 12 degrees of freedom down to 8 degrees.

Now since equations (2.7) do not change if we simultaneously rotate the position

vectors and momentum vectors in R2, we have that the total angular momentum

must be constant, and therefore we get that

~p1 × ~q1 + ~p2 × ~q2 + ~p3 × ~q3 = ω

where ω is a constant. We have now reduced our system by one more degree of

freedom. We should also note that this system is symmetric under all rotations so

we can remove one more degree of freedom from the system by quotienting our

system by this group action.

Finally since the energy function for our system must be conserved we know that

H(~q, ~p) = 1
2
~p T M−1~p− U(~q) = h

again where h is a constant. This will eliminate one more degree of freedom. We

have now reduced our system from 12 degrees of freedom, where we started, to only

5 degrees of freedom. Despite this success in reducing the degree of the system, 5

degrees of freedom is still too many for us to be able to solve this problem. We will

define this new five dimensional manifold as M(h, ω).

At this point it is probably a good idea to shift our attention from an analysis

of the momentum of the point masses to an analysis of the shape and sizes of the

triangles formed by the planets. In order to do this we will introduce a change of

variables, and a new coordinate system1.

1This new coordinate system was discovered by R. McGehee and presented in [5].
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Now since the center of mass is a constant, the moment of inertia about the

origin will be pivotal. Thus we will define the moment of inertia to be:

= = ~q T M~q = m1|~q1|2 + m2|~q2|2 + m3|~q3|2.

Next we define r =
√= which measures the size of the triangle that is formed by the

three point masses. It also defines the radial length of a polar coordinate system in

R6. We should note at this point that r = 0 represents a triple collision of our three

point masses (which must occur at the origin). We now define ~s to be the normalized

position vector by letting ~s = ~q
r
. In this way s will measure the shape and angular

position of the triangle formed by the bodies. Finally now we will normalize the

momentum vector in a slightly different way. By Defining ~z =
√

r~p.

With our new variables we now have new energy and angular momentum equa-

tions. These equations are given by:

H(~s, ~z) =
1

2
~z T M−1~z − U(~s) = hr (2.5)

~z1 × ~s1 + ~z2 × ~s2 + ~z3 × ~s3 = ω
√

r. (2.6)

We will now also have to express our differential equations using these new coordi-

nates, but first we define v = ~s ·~z. Thus instead of two equations defining our system

we now have three and they are:

r′ = vr

~s ′ = ~z − 1

2
v~s (2.7)

~z ′ = ∇U(~s) +
1

2
v~z

where we have factored out an r
3
2 from all of the equations, leaving the last two

equations free from of any dependence on r. We can now more easily talk about the

shape space defined by these equations. Define
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C = {(r, ~s) : r ≥ 0, ~sT M~s = 1,m1~s1 + m2~s2 + m3~s3 = 0}/S1

to be the space of allowable configurations of the three planets where we quotient

out the rotational symmetry. It can be shown that this space C is homeomorphic to

R+ × S2, (see [6]).

G. W. Hill [2] realized that it is useful to constrain the configurations through

the energy and angular momentum integrals. The subsets of configuration space,

called Hill’s regions are defined by

C(h, ω) = {(r, ~s)εC : for some ~zεR6, (r, ~s, ~z)εM(h,w)}

where M(h, ω) is the five dimensional quotiented energy and angular momentum

manifold that we got when we reduced the dimension of our original dynamical

system. We see now that C(h, ω) is simply the projection of M(h, ω) onto the con-

figuration space.

We can now restrict these Hill’s regions even further. We do not need to look at

all possible energy’s h. If h ≥ 0 then we must have that the kinetic energy of the

system is equal to or higher than the potential energy. This means that the restoring

force, gravity, is insufficient to pull the planets back towards each other, and we will

simply have the planets moving away from each other after a sufficient amount of

time passes. Thus we will restrict h < 0. We can also see that once we have chosen

the masses for our three bodies that the dynamics of the system only depends on

the value of hω2 and so we define λ = −hω2. Now to see exactly what happens to

our planets we can fix an h < 0 and then let ω vary between [0,∞).

From this restriction we can now derive some inequalities based on the energy

function. Since we know that the kinetic energy term given by 1
2
~zT M−1~z is non-

negative then we know that the potential energy term, given by U(~s) is greater than

or equal to |h|r. Thus if we fix the shape of the triangle formed by the planets we see

that the size of the triangle is restrained to 0 ≤ r ≤ U(s0)
|h| . This constraint rules out
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certain size triangles in our solution space. The potential energy becomes infinite at

a double collision point, and it is minimum at the equilateral triangle solution, thus

if we have a double collision we can have any size degenerate triangle, while for any

other shape triangle, especially equilateral triangle, shapes of a sufficiently large size

are excluded.

Our assumption that the kinetic energy has to be positive can be improved upon.

It turns out that one can show that if we fix the angular momentum ω then we can

limit the kinetic energy by

1

2
~zT M−1~z ≥ 1

2

ω2

r
.

Plugging this estimate into the energy equation shows us that

U(~s) ≥ |h|r +
ω2

2r
. (2.8)

This gives us a nice characterization of C(h, ω). We know that C(h, ω) is a solid

region in S2 × R+, and that its boundary is given by the equality in (2.8). Since

equation (2.8) is quadratic in r, we see that in fact C(h, ω) must be contained between

two sheets which lie over the shape sphere. Since the projection of C(h, ω) onto the

shape sphere is the set of all s for which equation (2.8) holds, with r ≥ 0, then we

can minimize the right hand side of equation (2.8) and we see that

U(~s) ≥
√

2|h|ω2 =
√

2λ.

This defines the projection of C(h, ω), and tells us that the Hill’s regions lie above

a region of the shape sphere that is bounded by an equipotential curve.

For the work that I am doing on this project I will be looking at solutions

that have large angular momentum ω. This means that any solutions that I find

will be located in a small region around one of the double collision points on our

shape sphere. This is because of equation (2.8) that says if we have high angular
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momentum, we must also have very large potential energy, which we get from the

double collision solutions. Since double collisions do not give us periodic orbits, we

will instead look at a group of solutions with what is called a tight binary solution.

A tight binary is simply two objects orbiting about their center of mass, with the

distance between the object held relatively small.

Sundman [15] gives us a nice theorem about the configurations of the three body

problem assuming a tight binary construct with two of the planets.

Theorem 1 Let the angular momentum be non-zero. Then any orbit passing suffi-

ciently close to triple collision is of the following type: the configuration is a tight

binary for all time and the short side of the triangle remains bounded while the other

two sides tend to infinity in both forward and backward time.

Sundman’s theorem leads to some interesting open question about tight binary

systems. One such question is can we find a tight binary solution of the three body

problem in which the short side of the triangle bounded for all time, while the other

two sides tend to infinity in one time direction, yet remain bounded in the other time

direction? In chapter we will use Maple to try and find some experimental evidence

about this question.
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Chapter 3

Analysis

In this chapter we will provide the proofs of the claims that were made in chapter

2. Recall that the energy of the system is given by

E =
1

2
~pT M−1~p− U(~q).

Where U(~q) is the potential energy given by:

U(~q) =
m1m2

|~q1 − ~q2| +
m1m3

|~q1 − ~q3| +
m2m3

|~q2 − ~q3|

Now since this is a closed system we know that there can be no other energy added

to the system. Thus the total energy of the system must be constant and so we get

E =
1

2
~pT M−1~p− U(~q) = h,

where h is a constant. Since this equation is a constant, we know it is Hamiltonian

and therefore we can change notation to

H(~q, ~p) =
1

2
~pT M−1~p− U(~q) = h. (3.1)

This tells us that our system is subject to Hamilton’s equation. These give us

a system of equations that we can use to model our planet system by taking the

partial derivatives of the energy function. Hamilton’s equations are given by:

d~q

dt
=

∂H

∂~p
d~p

dt
= −∂H

∂~q
. (3.2)
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Now by applying equation (3.2) to our energy equation we can generate a system

of dynamical equations, shown below, with which we can try and find a particular

solution to the three body problem.

d~q

dt
= M−1~p

d~p

dt
= ∇U(~q). (3.3)

We can make a slight notation change now to make things a little easier. We

will from now on denote the time derivative by ~̇p instead of the more cumbersome

d~p
dt

. Both ~̇p and ~̇q define differential equations in R6, so that equation (3.3) defines

a dynamical system in R12. We have no chance of solving a system with this many

degrees of freedom so we will need to lower the overall dimension of the system. We

can reduce these equations to a five-dimensional system by making use of specific

integrals of motion.

The first integral of motion that we will make use of tells us that the total

momentum of the system is a constant and therefore we can assume it to be zero

without a loss of generality.

Claim 1 The total momentum of the dynamical system does not change in time,

i.e. d
dt

(~p1 + ~p2 + ~p3) = 0 and so we can choose ~p1 + ~p2 + ~p3 = 0

Proof : Since our dynamical system is Hamiltonian, we know that

~̇p1 =
∂

∂~q1

U(~q) and that ~̇p2 =
∂

∂~q2

U(~q) finally that ~̇p3 =
∂

∂~q3

U(~q).

By ∂
∂qi

we mean to take the gradient in the qi direction. This means that

~̇p1 =
∂

∂~q1

(
m1m2

|~q1 − ~q2| +
m2m3

|~q2 − ~q3| +
m1m3

|~q1 − ~q3|

)
.

But since the middle term in the above expression has no ~q1 term we see that its

derivative with respect to ~q1 is zero and therefore we can ignore it. Similarly the
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third term has no ~q2 dependance and can be dropped for ~̇p2 and the first term has

no ~q3 term it is dropped for ~̇p3. Now we can write down the simplified equation for

each term and we get:

~̇p1 =
∂

∂~q1

(
m1m2

|~q1 − ~q2| +
m1m3

|~q1 − ~q3|

)

~̇p2 =
∂

∂~q2

(
m1m2

|~q1 − ~q2

+
m2m2

|~q2 − ~q3|

)
(3.4)

~̇p3 =
∂

∂~q3

(
m1m3

|~q1 − ~q3| +
m2m3

|~q2 − ~q3|

)
.

Before we continue we will need to note two important facts. The first is that we can

look at the partial derivatives of each term with respect to the x and y coordinates

independently. The second thing that we should note is that

|~q1 − ~q2|

can be rewritten as
√

(q1,x − q2,x)2 + (q1,y + q2,y)2.

Where qi,x and qi,y is the notation used to denote the x-component and the y-

component for the vector ~qi. Combining these two facts together allows us to rewrite

(3.4) as

~̇p1 =

(
∂

∂q1,x
,

∂

∂q1,y

) 
 m1m2√

(q1,x − q2,x)2 + (q1,y − q2,y)2
+

m1m3√
(q1,x − q3,x)2 + (q1,y − q3,y)2




~̇p2 =

(
∂

∂q2,x
,

∂

∂q2,y

) 
 m1m2√

(q1,x − q2,x)2 + (q1,y − q2,y)2
+

m2m3√
(q2,x − q3,x)2 + (q2,y − q3,y)2




~̇p3 =

(
∂

∂q3,x
,

∂

∂q3,y

) 
 m2m3√

(q2,x − q3,x)2 + (q2,y − q3,y)2
+

m1m3√
(q1,x − q3,x)2 + (q1,y − q3,y)2


 .

Now we can differentiate each expression which leaves us with:

~̇p1 = −1

2

2m1m2((q1,x − q2,x), (q1,y − q2,y))

((q1,x − q2,x)2 + (q1,y − q2,y)2)
3
2

− 1

2

2m1m3((q1,x − q3,x), (q1,y − q3,y))

((q1,x − q3,x)2 + (q1,y − q3,y)2)
3
2
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~̇p2 =
1

2

2m1m2((q1,x − q2,x), (q1,y − q2,y))

((q1,x − q2,x)2 + (q1,y − q2,y)2)
3
2

− 1

2

2m2m3((q2,x − q3,x), (q2,y − q3,y))

((q2,x − q3,x)2 + (q2,y − q3,y)2)
3
2

~̇p3 =
1

2

2m1m3((q1,x − q3,x), (q1,y − q3,y))

((q1,x − q3,x)2 + (q1,y − q3,y)2)
3
2

+
1

2

2m2m3((q2,x − q3,x), (q2,y − q3,y))

((q2,x − q3,x)2 + (q2,y − q3,y)2)
3
2

.

Now we can reduce our fractions, and condense our terms where possible. This leaves

us with:

~̇p1 =
−m1m2(~q1 − ~q2)

|~q1 − ~q2|3 +
−m1m3(~q1 − ~q3)

|~q1 − ~q3|3 (3.5)

~̇p2 =
m1m2(~q1 − ~q2)

|~q1 − ~q2|3 +
−m2m3(~q2 − ~q3)

|~q2 − ~q3|3 (3.6)

~̇p3 =
m1m3(~q1 − ~q3)

|~q1 − ~q3|3 +
m2m3(~q2 − ~q3)

|~q2 − ~q3|3 . (3.7)

It is clear from the above equations that when we add ~̇p1 + ~̇p2 + ~̇p3 together we will

get zero. Thus ~p1 + ~p2 + ~p3 = k where k is a constant that we take to be zero, and

we have proven our claim.

Our next claim will also reduce the degree of the system by two. This integral of

motion tells us that the center of mass of our system is a constant and therefore as

above we can take it to be the origin.

Claim 2 Assuming that ~p1 + ~p2 + ~p3 = 0, then the center of mass of the dynamical

system is a constant, i.e.

m1~q1 + m2~q2 + m3~q3 = C (3.8)

where C is a constant.

Proof : Once again if we can show that the derivative of m1~q1 +m2~q2 +m3~q3 is equal

to zero than we will have proven our claim. We know that

~̇q = M−1~p.
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But ~p can be written as a 1× 6 matrix. M on the other hand is a 6× 6 matrix, but

with every entry zero except down the main diagonal. Thus M−1~p becomes

(
1

m1

p1,x,
1

m1

p1,y,
1

m2

p2,x,
1

m2

p2,y,
1

m3

p3,x,
1

m3

p3,y

)
.

Now when we compare the terms we see that

~̇q1 =
1

m1

~p1

~̇q2 =
1

m2

~p2

~̇q3 =
1

m3

~p3

and so finally we see that

m1~̇q1 + m2~̇q2 + m3~̇q3 =
m1

m1

~p1 +
m2

m2

~p2 +
m3

m3

~p3 =

= ~p1 + ~p2 + ~p3.

But we have chosen to take :

~p1 + ~p2 + ~p3 = 0,

and so we have proven claim 2.

Next I will prove that the angular momentum of our system, ω is a constant.

This will allow us to remove one more degree of freedom from the dynamical system.

Claim 3 The angular momentum of our system is constant i.e.

~p1 × ~q1 + ~p2 × ~q2 + ~p3 × ~q3 = ω, (3.9)

where ω is a constant.

Proof : Once again if we can show that the derivative of (3.9) with respect to time

is zero then we will have proven the claim. So we would like to show that

d

dt
(~p1 × ~q1) +

d

dt
(~p2 × ~q2) +

d

dt
(~p3 × ~q3) = 0.
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Now we should note that

d

dt
(~p× ~q) = ~̇p× ~q + ~p× ~̇q,

but ~̇q = M−1~p so that

~p× ~̇q = ~p×M−1~p = M−1(~p× ~p) = 0,

since the cross product of a vector with itself is zero, and thus our problem is now

to show that

~̇p1 × ~q1 + ~̇p2 × ~q2 + ~̇p3 × ~q3 = 0. (3.10)

We can ease the notation by referring back to equations (3.5)-(3.7) and by making

the following substitution:

φ1 =
m1m2

|~q1 − ~q2|3 , φ2 =
m2m3

|~q2 − ~q3|3 , and φ3 =
m1m3

|~q1 − ~q3|3
.

So we can now take (3.9) and try and prove our claim. We can now substitute in

what ~̇pi equals from (3.5)-(3.7) and we get

= (−φ1(~q1 − ~q2)− φ3(~q1 − ~q3))× ~q1 + (φ1(~q1 − ~q2)− φ2(~q2 − ~q3))× ~q2(φ3(~q1 − ~q3) +

φ2(~q2 − ~q3))× ~q3.

Next we will distribute the cross product through the parenthesis

= −φ1(~q1− ~q2)× ~q1− φ3(~q1− ~q3)× ~q1 + φ1(~q1− ~q2)× ~q2− φ2(~q2− ~q3)× ~q2 + φ3(~q1−
~q3)× ~q3 + φ2(~q2 − ~q3)× ~q3

and through the next level of parenthesis

= φ1(~q2 × ~q1) + φ3(~q3 × ~q1) + φ1(~q1 × ~q2) + φ2(~q3 × ~q2) + φ3(~q1 × ~q3) + φ2(~q2 × ~q3)

and finally we will reorganize the cross product by making use of the fact that ~qi×~qj

is the same as −(~qj × ~qi)

= −φ1(~q1 × ~q2) + φ1(~q1 × ~q2)− φ3(~q1 × ~q3) + φ3(~q1 × ~q3)− φ2(~q2 × ~q3) + φ2(~q2 × ~q3)
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= 0.

This has lowered the degrees of freedom by one more. So we have succeeded in

reducing the degrees of freedom for the dynamical down from 12 to 7.

We can eliminate two more degrees of freedom in the system by making the

following observations. We can identify all of the vectors (~q, ~p) that differ by only

a simultaneous rotation of each vector through the same angle since the system

is symmetric under rotations. Our final reduction in degree comes from looking at

the total energy of the system. Since we know that the total energy of the system

is conserved we can further reduce the degree of our system by one. Thus we are

left with a total of five degrees of freedom. Despite having reduced our dynamical

system by seven degrees of freedom, five degrees of freedom is still to many to solve

explicitly.

Since we will be talking about the three-body problem in a more geometrical

method it will help to change the coordinate system to one that was discovered by

McGehee [5]. We define:

= = ~q T M~q = m1|~q1|2 + m2|~q2|2 + m3|~q3|2,

and define the variable r =
√= to be the radial variable in a 6 dimensional polar

coordinate system. The size of the triangle formed by the three planets is represented

by the variable r. We measure the shape of the triangle by the normalized position

vector given by ~s = ~q
r
. We normalize the momentum vector in a different way, by

defining ~z =
√

r~p.

Now when we substitute these coordinates into our energy function we get:

H(~sr,
~z√
r
) =

1

2

~z T

√
r
M−1 ~z√

r
− m1m2

|~s1r − ~s2r| −
m2m3

|r~s2 − r~s3| −
m1m3

|r~s1 − r~s3| .

factoring out the r’s we get:

h = H(~sr,
~z√
r
) =

1

2r
~z T M−1~z − U(~s)

r
=

1

r
H(~s, ~z).
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So that we see in our new coordinate system H(~s, ~z) = hr. We also get a new

equation for the angular momentum. Substituting our new coordinates into equation

(3.5) yields our new equation:

~z1√
r
× ~s1r +

~z2√
r
× ~s2r +

~z3√
r
× ~s3r =

=
√

(r)(~z1 × ~s1) +
√

r(~z2 × ~s2) +
√

r(~z3 × ~s3) =

√
r(~z1 × ~s1 + ~z2 × ~z2 + ~z3 × ~s3).

Which shows that:

~z1 × ~s1 + ~z2 × ~s2 + ~z3 × ~s3 =
ω√
r
.

Now that we have a new coordinate system it has become vital that we generate

a new system of differential equations. We will start with the r variable.

r =
√

~qT M~q

and so differentiating on the right hand side with respect to time gives us:

ṙ =
1

2

~̇q
T
M~q + ~qT M~̇q√

(~qT M~q)
=

1

2

2~qT M~̇q√
~qT M~q

.

But ~̇q = M−1~p and so the above equation becomes:

ṙ =
~q T ~p√
~q T M~q

.

Now if we substitute our new coordinates back in we get:

ṙ =
r~s · ~z√

r

r

and now when we simplify we get

~s · ~z√
r

. (3.11)

For our second differential equation we start with ~s = ~q
r

and again we take the

time derivative on the right hand side, this time we get:

~̇s =
~̇qr − ~qṙ

r2
.
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Which becomes

~̇s =
M−1~pr − ~q~s·~z√

r

r2
.

Continuing on gives us

~̇s =

M−1~zr√
r
− ~s(~s~̇z)r√

r

r2
.

And so finally we see that our second differential equation is:

~̇s =
M−1~z − ~s2~z

r
3
2

. (3.12)

Our final differential equation comes from ~z =
√

r~p, and again differentiating the

right hand side with respect to time.

~̇z =
1

2

ṙ~p√
r

+
√

r~̇p

So we now substitute in for ṙ and for ~̇p and ~p we get:

~̇z =
1

2

(~s~̇z)~z

r
3
2

+
√

r∇U(~q). (3.13)

Now we should analyze ∇U(~s) to determine its relation to ∇U(~q). So

∇U(~s) = ∇U(
~q

r
).

But this is

m1m2
(~q1−~q2)

r

|~q1
r
− ~q2

r
|3 +

m1m3
(~q1−~q3)

r

|~q1

r
− ~q3

r
|3 +

m2m3
(~q2−~q3)

r

|~q2

r
− ~q3

r
|3 .

So once again factoring out the r we get:

m1m2(~q1−~q2)
r

|~q1−~q2|3
r3

+
m1m3(~q1−~q3)

r
|~q1−~q3|3

r3

+
m2m3(~q2−~q3)

r
|~q2−~q3|3

r3

.

And finally by simplifying we see that

∇U(~s) = r2m1m2(~q1 − ~q2)

|~q1 − ~q2|3 + r2m1m3(~q1 − ~q3)

|~q1 − ~q3|3 + r2m2m3(~q2 − ~q3)

|~q2 − ~q3|3 = r2∇U(~q)

Now going back to equation (3.12) we end up with:

~̇z =
1

2

~s~z2

r
3
2

+
∇U(~s)

r
3
2

. (3.14)
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When we examine the three new differential equations we see that two of the

equation have an r
3
2 term in the denominator. We can now multiply through by a

factor of r
3
2 in all three equations and we will only be changing the parameterizations

of the solutions generated. We will now denote the derivative with respect to this

new parametrization by ′ and to help clean up the notation some we will define

v = ~s · ~z. So finally our three new differential equations become:

r′ = vr

~s ′ = M−1~z − ~sv (3.15)

~z ′ = ∇U(~s) +
1

2
v~z.

This change of coordinates helps with understanding the geometrical look of this

dynamical system. However, in the attempt that I made in trying to find a particular

solution to the three-body problem equations (3.15) are unnecessary, and so I will

be using the ~̇p and ~̇q equations that we started with as given in equation (2.4).
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Chapter 4

My Work

In the last two chapters we used a change of coordinates in order to view the system

in a more geometric light. Unfortunately for the analytical work that I did on this

project these new coordinates are not as efficient. Instead I will go back to the equa-

tions as defined in (1.2), (1.3), and (1.4). To display these equations as a dynamical

system I will need to reduce the order of the system to first degree differential equa-

tions by introducing velocity variables. I now have the following equations to solve:

d~q1

dt
=

1

m1m1

~p1

d~p1

dt
= m1m2

~q1 − ~q2

|~q1 − ~q2|3 + m1m3
~q1 − ~q3

|~q1 − ~q3|3
d~q2

dt
=

1

m2m2

~p2

d~p2

dt
= m2m1

~q2 − ~q1

|~q2 − ~q1|3 + m2m3
~q2 − ~q3

|~q2 − ~q3|3
d~q3

dt
=

1

m3m3

~p3

d~p3

dt
= m3m1

~q3 − ~q1

|~q3 − ~q1|3 + m3m2
~q3 − ~q2

|~q3 − ~q2|3

where ~qi ε R3 is the three dimensional position vector of the ith. From now on we

will suppress the vectorial arrows to ease the typography.

We can further ease the analysis of this system by further breaking apart the

differential equations in to both an x and y direction. We can ignore the z direction

as we are assuming that the planets are moving in a planar sense, and so the rate of

change in the z-direction is therefore 0. Now instead of 6 equations we will end up
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with 12 first order differential equations. To make the entering of these equations in

Maple easier I will now switch from the ~q and ~p to an (x, y) and v notation where

xi is the x value of the ith position vector and yi is the y value of the vector. Also

vx,i is the x value of the velocity of the ith planet, and vy,i is the y component of

the velocity. It is these equations I will use in the Maple software to try and find

approximate solutions to the n-body problem. The twelve equations are:

dx1

dt
= vx,1

dvx,1

dt
=

−m2(x1 − x2)

((x1 − x2)2 + (y1 − y2)2)3/2
− m3(x1 − x3)

((x1 − x3)2 + (y1 − y3)2)3/2

dy1

dt
= vy,1

dvy,1

dt
=

−m2(y1 − y2)

((x1 − x2)2 + (y1 − y2)2)3/2
− m3(y1 − y2)

((x1 − x3)2 + (y1 − y3)2)3/2

dx2

dt
= vx,2

dvx,2

dt
=

−m1(x1 − x2)

((x1 − x2)2 + (y1 − y2)2)3/2
− m3(x2 − x3)

((x2 − x3)2 + (y2 − y3)2)3/2

dy2

dt
= vy,2

dvy,2

dt
=

−m1(y1 − y2)

((x1 − x2)2 + (y1 − y2)2)3/2
− m3(y2 − y3)

((x2 − x3)2 + (y2 − y3)2)3/2

dx3

dt
= vx,3

dvx,3

dt
=

−m1(x1 − x2)

((x1 − x3)2 + (y1 − y3)2)3/2
− m2(x2 − x3)

((x2 − x3)2 + (y2 − y3)2)3/2

dy3

dt
= vy,3

dvy,3

dt
=

−m1(y1 − y3)

((x1 − x3)2 + (y1 − y3)2)3/2
− m2(y2 − y3)

((x2 − x3)2 + (y2 − y3)2)3/2
.

It is with these 12 equations that I began my analysis of the three-body problem

using Maple as a tool to try and approximate certain orbits.

The first orbit I tried to approximate was the figure eight orbit. This orbit was

proven to be stable by Richard Montgomery in [7]. I took the 12 equations as defined

above, plugged them in to Maple, and then used Maple to draw and display the figure
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eight solution, with a particular set of initial conditions. In order to simplify the work

that I did, I took m1 = m2 = m3 = 1. I then had Maple generate the phase portrait

for, as well as a particular solution to, the dynamical system I had defined1.

The initial conditions that generate the figure 8 orbit were found on Mont-

gomery’s website [8]. The initial conditions for the position of each planet were:

x1 = −.97000436 y1 = .24308753 (4.1)

x2 = .97000436 y2 = −.24308753 (4.2)

x3 = 0 y3 = 0 (4.3)

and the initial velocity given to each planet in the system was:

vx,1 = −.46620369 vy,1 = −.43236573 (4.4)

vx,2 = −.46620369 vy,2 = −.43236573 (4.5)

vx,3 = .93240737 vy,3 = .8647314. (4.6)

By using the phaseportrait command in Maple as well as the given initial conditions

(4.1)-(4.6), and the 12 differential equations given above I was able to generate the

following figure:

–2

–1

0

1

2

y1(t)

–2 –1 1 2

x1(t)

Figure 4.1: Maple’s graph of a figure eight solution to the three body problem.

1See Appendix A for the Maple code used to generate this solution.
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Now that I had a good picture of the figure eight solution I attempted to generate

a movie that would show the motion of the three bodies along the figure eight. To

do this some serious modifications to the original worksheet needed to be made.

To generate the movie I needed to have maple solve the differential equations and

output the results as a list procedure. The list procedure form, outputs the results

as a function, in my case, the results were output as a function of time. We can then

take these results and plug them back into our original equations, and use this to

generate the frames of the movie that we watch. When we do this we get an initial

frame like: We can then play this movie and watch the three planets chase each other

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

y1(t)

–1 –0.5 0 0.5 1

x1(t)

Figure 4.2: Initial frame of the figure eight solution generated in Maple.

around the figure eight2.

After finding the Maple approximation to this problem I then went on to look

at an open question Moeckel poses in his article. Can a planet’s position move to

infinity in one time direction, but be contained in a stable orbit in the other time

direction? One way to think about this problem is to imagine a satellite moving in

from very far away and falling into a stable orbit around another planet or a sun.

To find a solution like this we first must realize that the only way a satellite

can reach a stable orbit after coming in from infinity is if there is some way for the

2The Maple code used to generate this movie can be found in Appendix B
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satellite to transfer some of its energy to the objects it is trying to orbit. Since we

want stability in the system it is clear that we will need three bodies here and we

will need two of the bodies to be orbiting each other in what is called a tight binary

system. In this way we will allow the energy from the satellite to be absorbed by the

orbital energy of the tight binary. In this way I had hoped to find such a solution.

In this attempt I once again had to define the same twelve equations as before.

Though to make the next step easier I temporarily defined the mass of the third

planet to be zero. This way I could ignore its effect on the other two planets so that

I would be able to easily set up the tight binary system that I would need, also to

make things easier I normalized the distance of the binary planets from the center

of mass for the tight binary, so that each was 1 unit away from the center of mass,

taken to be the origin. I was now ready to determine the initial conditions for the

tight binary, which were:

x1 = 1 vx,1 = 1
2

(4.7)

x2 = 1 vx,2 = 1
2
, (4.8)

with y1 = y2 = vy,1 = vy,2 = 0.

Now that I had the solution for the tight binary system I was ready to reinsert the

third planet in to the system by increasing its mass from 0. My idea was that if the

third planet was fairly small then it would have the best chance of being captured,

and orbiting the other two planets. With that in mind I set the mass of the third

planet to be 1
25000

that of the other masses. Since I still had the masses normalized

that gave me the masses m1 = m2 = 1 and m3 = 1
25000

. Now it was simply a matter

of picking an initial position and velocity for the third planet and seeing if it ever

stayed in an orbit around the tight binary3.

3See Appendix C for the Maple code
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This solution has proven to be much more difficult to find than the figure eight

solution. So far all initial conditions that I have picked either have the third planet

moving to infinity in both time directions, or if I manage to find one not going to

infinity in one time direction, it turns out to be in orbit around the binary for all

time. The following graph will show this first type of example. I have been looking

–50

–40

–30

–20

–10

0

10

y1(t)

–10 10 20 30
x1(t)

Figure 4.3: Example of failed attempt.

at this problem for months and I have been unable to generate any solution to the

problem.

All the work I have done on this system has been through the use of the mathe-

matical software Maple. A software program like this can not be used to prove the

existence of a stable solution to the three-body problem. In fact all we can do with

a program like this is generate likely candidates for solutions. The program, and the

movies it generates can not be used to imply any behavior of the system as the time

line goes to infinity. All we can determine from the movie is stability over a certain

period of time.

Another problem with using a software program to try and approximate solutions

to the three-body problem is that the solutions are in fact approximate. Maple can

not generate exact answers and therefore every term used in the movies is truncated

or rounded off in some way. This means that the error terms between each frame of
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the movie, and the ”exact” results could be rather significant. Both of these factors

mean that any solution found using a software program like Maple is by no means

proven to be an actual solution to the three-body problem. Instead they can just be

used to point one in the right direction to a solution.

I would like to continue my experimentation into finding a solution to the problem

that I proposed. I had also considered trying to find a solution to the three-body

problem that was a variation of the solution found by Montgomery. In my variation

to this solution, instead of all three planets chasing each other through the figure

eight, I had thought to try and find a solution with two large planets, possibly in

a binary configuration, with a third smaller planet orbiting them in a figure eight

pattern. Further open questions on this topic can be found in the work done by

Moeckel, and by Montgomery.
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Appendix A

Figure 8 Phaseportrait

The following Maple code was used to generate the figure eight solution to the

three-body problem.

> restart:with(plots):with(DEtools):

I will define the twelve differential equations below.

> eqns1:=t->diff(x1(t),t)=vx1(t):
> eqns2:=t->diff(vx1(t),t)=-(x1(t)-x3(t))/(((x1(t)-x3(t))^2+

> (y1(t)-y3(t))^2))^(3/2)-(x1(t)-x2(t))/(((x1(t)-x2(t))^2+

> (y1(t)-y2(t))^2))^(3/2):

> eqns3:=t->diff(y1(t),t)=vy1(t):
> eqns4:=t->diff(vy1(t),t)=-(y1(t)-y3(t))/(((x1(t)-x3(t))^2

> +(y1(t)-y3(t))^2))^(3/2)-(y1(t)-y2(t))/(((x1(t)-x2(t))^2+

> (y1(t)-y2(t))^2))^(3/2):

> eqns5:=t->diff(x2(t),t)=vx2(t):
> eqns6:=t->diff(vx2(t),t)=-(x2(t)-x3(t))/((x2(t)-x3(t))^2+

> (y2(t)-y3(t))^2)^(3/2)-(x2(t)-x1(t))/(((x2(t)-x1(t))^2+

> (y2(t)-y1(t))^2)^(3/2)):

> eqns7:=t->diff(y2(t),t)=vy2(t):
> eqns8:=t->diff(vy2(t),t)=-(y2(t)-y3(t))/((x2(t)-x3(t))^2+

> (y2(t)-y3(t))^2)^(3/2)-(y2(t)-y1(t))/(((x2(t)-x1(t))^2+

> (y2(t)-y1(t))^2)^(3/2)):

> eqns9:=t->diff(x3(t),t)=vx3(t):
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> eqns10:=t->diff(vx3(t),t)=-(x3(t)-x1(t))/(((x3(t)-x1(t))^2

> +(y3(t)-y1(t))^2))^(3/2)-(x3(t)-x2(t))/(((x3(t)-x2(t))^2

> +(y3(t)-y2(t))^2))^(3/2):

> eqns11:=t->diff(y3(t),t)=vy3(t):
> eqns12:=t->diff(vy3(t),t)=-(y3(t)-y1(t))/(((x3(t)-x1(t))^2

> +(y3(t)-y1(t))^2))^(3/2)-(y3(t)-y2(t))/(((x3(t)-x2(t))^2

> +(y3(t)-y2(t))^2))^(3/2):

The following are the initial conditions for the solution.
> X1:=-0.97000436:Y1:=0.24308753:

> VX1:=-0.46620369:VY1:=-0.43236573:

> X2:=0.97000436:Y2:=-0.24308753:

> VX2:=-0.46620369:VY2:=-0.43236573:

> X3:=0:Y3:=0:VX3:=0.93240737:VY3:=0.86473146:

The below commands generate the solution for planet 1.
> pp1:=phaseportrait([eqns1(t),eqns2(t),eqns3(t),

> eqns4(t),eqns5(t),eqns6(t),eqns7(t),eqns8(t),

> eqns9(t),eqns10(t),eqns11(t),eqns12(t)],

> [x1(t),y1(t),vx1(t),vy1(t),x2(t),y2(t),vx2(t),

> vy2(t),x3(t),y3(t),vx3(t),vy3(t)],t=0..40,

> [[x1(0)=X1,y1(0)=Y1,vx1(0)=VX1,vy1(0)=VY1,

> x2(0)=X2,y2(0)=Y2,vx2(0)=VX2,vy2(0)=VY2,

> x3(0)=X3,y3(0)=Y3,vx3(0)=VX3,vy3(0)=VY3]],

> scene=[x1(t),y1(t)],stepsize=.01,x1=-2..2,

> y1=-2..2,color=[red],scaling=constrained):

This will generate the solution for the second planet.



> pp2:=phaseportrait([eqns1(t),eqns2(t),eqns3(t),

> eqns4(t),eqns5(t),eqns6(t),eqns7(t),eqns8(t),

> eqns9(t),eqns10(t),eqns11(t),eqns12(t)],

> [x1(t),y1(t),vx1(t),vy1(t),x2(t),y2(t),vx2(t),

> vy2(t),x3(t),y3(t),vx3(t),vy3(t)],t=0..40,

> [[x1(0)=X1,y1(0)=Y1,vx1(0)=VX1,vy1(0)=VY1,

> x2(0)=X2,y2(0)=Y2,vx2(0)=VX2,vy2(0)=VY2,

> x3(0)=X3,y3(0)=Y3,vx3(0)=VX3,vy3(0)=VY3]],

> scene=[x2(t),y2(t)],stepsize=.01,x2=-2..2,

> y2=-2..2,color=[red],scaling=constrained):

Below is the solution for the third planet.
> pp3:=phaseportrait([eqns1(t),eqns2(t),eqns3(t),

> eqns4(t),eqns5(t),eqns6(t),eqns7(t),eqns8(t),

> eqns9(t),eqns10(t),eqns11(t),eqns12(t)],

> [x1(t),y1(t),vx1(t),vy1(t),x2(t),y2(t),

> vx2(t),vy2(t),x3(t),y3(t),vx3(t),vy3(t)],

> t=0..40,[[x1(0)=X1,y1(0)=Y1,vx1(0)=VX1,

> vy1(0)=VY1,x2(0)=X2,y2(0)=Y2,vx2(0)=VX2,

> vy2(0)=VY2,x3(0)=X3,y3(0)=Y3,vx3(0)=VX3,

> vy3(0)=VY3]],scene=[x3(t),y3(t)],

> stepsize=.01,x3=-2..2,y3=-2..2,color=[red],

> scaling=constrained):

The command below will display all three solutions on the same graph.

> display([pp1,pp2,pp3]);



Appendix B

Figure 8 Movie

This is the Maple code that I used to generate the movie demonstrating the figure

eight solution to the three-body problem.

> restart:with(plots):with(plottools):with(DEtools):Digits:=8:

m here is the mass of the planets.

> m:=1:

I will now define the equations defining the motion of the bodies as eqns1 through

eqns12.

> eqns1:=t->D(x1)(t)=vx1(t):
> eqns2:=t->D(vx1)(t)=-m*((x1(t)-x3(t))/(((x1(t)-x3(t))^2+

> (y1(t)-y3(t))^2))^(3/2)+(x1(t)-x2(t))/(((x1(t)-x2(t))^2+

> (y1(t)-y2(t))^2))^(3/2)):

> eqns3:=t->D(y1)(t)=vy1(t):
> eqns4:=t->D(vy1)(t)=-m*((y1(t)-y3(t))/(((x1(t)-x3(t))^2+

> (y1(t)-y3(t))^2))^(3/2)+(y1(t)-y2(t))/(((x1(t)-x2(t))^2+

> (y1(t)-y2(t))^2))^(3/2)):

> eqns5:=t->D(x2)(t)=vx2(t):
> eqns6:=t->D(vx2)(t)=-m*((x2(t)-x3(t))/((x2(t)-x3(t))^2+

> (y2(t)-y3(t))^2)^(3/2)+(x2(t)-x1(t))/(((x2(t)-x1(t))^2+

> (y2(t)-y1(t))^2)^(3/2))):

> eqns7:=t->D(y2)(t)=vy2(t):
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> eqns8:=t->D(vy2)(t)=-m*((y2(t)-y3(t))/((x2(t)-x3(t))^2+

> (y2(t)-y3(t))^2)^(3/2)+(y2(t)-y1(t))/(((x2(t)-x1(t))^2+

> (y2(t)-y1(t))^2)^(3/2))):

> eqns9:=t->D(x3)(t)=vx3(t):
> eqns10:=t->D(vx3)(t)=-m*((x3(t)-x1(t))/(((x3(t)-x1(t))^2+

> (y3(t)-y1(t))^2))^(3/2)+(x3(t)-x2(t))/(((x3(t)-x2(t))^2+

> (y3(t)-y2(t))^2))^(3/2)):

> eqns11:=t->D(y3)(t)=vy3(t):
> eqns12:=t->D(vy3)(t)=-m*((y3(t)-y1(t))/(((x3(t)-x1(t))^2+

> (y3(t)-y1(t))^2))^(3/2)+(y3(t)-y2(t))/(((x3(t)-x2(t))^2+

> (y3(t)-y2(t))^2))^(3/2)):

Below I will define the initial conditions
> X1:=-.97000436: Y1:=.24308753:

> VX1:=-.46620369: VY1:=-.43236573:

> X2:=.97000436: Y2:=-.24308753:

> VX2:=-.46620369: VY2:=-.43236573:

> X3:=0: Y3:=0:

> VX3:=.93240737: VY3:=.86473146:
> gg1:=DEplot([eqns1(t),eqns2(t),eqns3(t),eqns4(t),eqns5(t),

> eqns6(t),eqns7(t),eqns8(t),eqns9(t),eqns10(t),eqns11(t),

> eqns12(t)],[x1(t),y1(t),vx1(t),vy1(t),x2(t),y2(t),vx2(t),

> vy2(t),x3(t),y3(t),vx3(t),vy3(t)],t=0..10,

> [[x1(0)=X1,x2(0)=X2,x3(0)=X3,y1(0)=Y1,y2(0)=Y2,y3(0)=Y3,

> vx1(0)=VX1,vy1(0)=VY1,vx2(0)=VX2,vy2(0)=VY2,vx3(0)=VX3,

> vy3(0)=VY3]],scene=[x1(t),y1(t)],

> stepsize=.01,scaling=constrained, arrows=none):

The following beginns the program to plot the movie.



> g:=dsolve({eqns1(t),eqns2(t),eqns3(t),eqns4(t),eqns5(t),
> eqns6(t),eqns7(t),eqns8(t),eqns9(t),eqns10(t),eqns11(t),

> eqns12(t),x1(0)=X1,y1(0)=Y1,vx1(0)=VX1,vy1(0)=VY1,

> x2(0)=X2,y2(0)=Y2,vx2(0)=VX2,vy2(0)=VY2,x3(0)=X3,

> y3(0)=Y3,vx3(0)=VX3,vy3(0)=VY3},{x1(t),y1(t),vx1(t),
> vy1(t),x2(t),y2(t),vx2(t),vy2(t),x3(t),y3(t),

> vx3(t),vy3(t)},type=numeric,output=listprocedure);

> gx1:=subs(g,x1(t)):gy1:=subs(g,y1(t)):

> gx2:=subs(g,x2(t)):gy2:=subs(g,y2(t)):

> gx3:=subs(g,x3(t)):gy3:=subs(g,y3(t)):
> for i from 1 to 100 do

> px1[i]:=gx1((i-1)/10):py1[i]:=gy1((i-1)/10):

> px2[i]:=gx2((i-1)/10):py2[i]:=gy2((i-1)/10):

> px3[i]:=gx3((i-1)/10):py3[i]:=gy3((i-1)/10):

> pic[i]:=pointplot([[px1[i],py1[i]],[px2[i],py2[i]],

> [px3[i],py3[i]]],symbol=circle,axes=boxed):end do:
> display(seq(display([gg1,pic[i]]),i=1..100),

> insequence=true,scaling=constrained);



Appendix C

My Solution

The following Maple code shows the program used to try and find the solution to

three-body problem, with a lighter planet coming in from infinity and being trapped

in a stable orbit around a tight binary.

> restart:with(plots):with(DEtools):

I will now define the masses of the three planets.
> m1:=1:

> m2:=1:

> m3:=1/25000:

I will now define the 12 differential equations
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> eq1:=t->diff(x1(t),t)=vx1(t):

> eq2:=t->diff(vx1(t),t)=-m2*((x1(t)-x2(t))/

> (((x1(t)-x2(t))^2+(y1(t)-y2(t))^2)^(3/2)))-

> m3*((x1(t)-x3(t))/((x1(t)-x3(t))^2+

> (y1(t)-y3(t))^2)^(3/2)):

> eq3:=t->diff(x2(t),t)=vx2(t):

> eq4:=t->diff(vx2(t),t)=-m1*(x2(t)-x1(t))/

> (((x2(t)-x1(t))^2+(y2(t)-y1(t))^2)^(3/2))-

> m3*(x2(t)-x3(t))/((x2(t)-x3(t))^2+

> (y2(t)-y3(t))^2)^(3/2):

> eq5:=t->diff(y1(t),t)=vy1(t):

> eq6:=t->diff(vy1(t),t)=-m2*(y1(t)-y2(t))/

> ((x1(t)-x2(t))^2+(y1(t)-y2(t))^2)^(3/2)-

> m3*(y1(t)-y3(t))/((x1(t)-x3(t))^2+

> (y1(t)-y3(t))^2)^(3/2):

> eq7:=t->diff(y2(t),t)=vy2(t):

> eq8:=t->diff(vy2(t),t)=-m1*(y2(t)-y1(t))/

> ((x1(t)-x2(t))^2+(y1(t)-y2(t))^2)^(3/2)-

> m3*(y2(t)-y3(t))/((x2(t)-x3(t))^2+

> (y2(t)-y3(t))^2)^(3/2):

> eq9:=t->diff(x3(t),t)=vx3(t):

> eq10:=t->diff(vx3(t),t)=-m1*(x3(t)-x1(t))/

> ((x1(t)-x3(t))^2+(y1(t)-y3(t))^2)^(3/2)-

> m2*(x3(t)-x2(t))/((x3(t)-x2(t))^2+

> (y3(t)-y2(t))^2)^(3/2):

> eq11:=t->diff(y3(t),t)=vy3(t):

> eq12:=t->diff(vy3(t),t)=-m1*(y3(t)-y1(t))/

> ((x1(t)-x3(t))^2+(y1(t)-y3(t))^2)^(3/2)-

> m2*(y3(t)-y2(t))/((x3(t)-x2(t))^2+

> (y3(t)-y2(t))^2)^(3/2):

I will now define the initial conditions for this solution.



> X1:=1:Y1:=0:

> VX1:=-1/(2*m1)*m3*VX3:VY1:=.5-1/(2*m1)*m3*VY3:

> X2:=-1:Y2:=0:

> VX2:=-1/(2*m2)*m3*VX3:VY2:=-.5-1/(2*m2)*m3*VY3:

> X3:=8:Y3:=8:VX3:=-.3:VY3:=0:

I will now generate the solution for the first planet.
> pp1:=phaseportrait([eq1(t),eq2(t),eq3(t),eq4(t),

> eq5(t),eq6(t),eq7(t),eq8(t),eq9(t),eq10(t),

> eq11(t),eq12(t)],[x1(t),y1(t),vx1(t),vy1(t),

> x2(t),y2(t),vx2(t),vy2(t),x3(t),y3(t),

> vx3(t),vy3(t)],t=0..40,[[x1(0)=X1,y1(0)=Y1,

> vx1(0)=VX1,vy1(0)=VY1,x2(0)=X2,y2(0)=Y2,

> vx2(0)=VX2,vy2(0)=VY2,x3(0)=X3,y3(0)=Y3,

> vx3(0)=VX3,vy3(0)=VY3]],scene=[x1(t),y1(t)],

> stepsize=.01,x1=-2..2,y1=-2..2,color=[red],

> scaling=constrained):

This is the solution for the second planet.
> pp2:=phaseportrait([eq1(t),eq2(t),eq3(t),eq4(t),

> eq5(t),eq6(t),eq7(t),eq8(t),eq9(t),eq10(t),

> eq11(t),eq12(t)],[x1(t),y1(t),vx1(t),vy1(t),

> x2(t),y2(t),vx2(t),vy2(t),x3(t),y3(t),

> vx3(t),vy3(t)],t=0..40,[[x1(0)=X1,y1(0)=Y1,

> vx1(0)=VX1,vy1(0)=VY1,x2(0)=X2,y2(0)=Y2,

> vx2(0)=VX2,vy2(0)=VY2,x3(0)=X3,y3(0)=Y3,

> vx3(0)=VX3,vy3(0)=VY3]],scene=[x2(t),y2(t)],

> stepsize=.01,x2=-2..2,y2=-2..2,color=[red],

> scaling=constrained):

And finally for the third planet.



> pp3:=phaseportrait([eq1(t),eq2(t),eq3(t),eq4(t),

> eq5(t),eq6(t),eq7(t),eq8(t),eq9(t),eq10(t),

> eq11(t),eq12(t)],[x1(t),y1(t),vx1(t),vy1(t),

> x2(t),y2(t),vx2(t),vy2(t),x3(t),y3(t),

> vx3(t),vy3(t)],t=-100..2000,[[x1(0)=X1,y1(0)=Y1,

> vx1(0)=VX1,vy1(0)=VY1,x2(0)=X2,y2(0)=Y2,

> vx2(0)=VX2,vy2(0)=VY2,x3(0)=X3,y3(0)=Y3,

> vx3(0)=VX3,vy3(0)=VY3]],scene=[x3(t),y3(t)],

> stepsize=.01,x3=-10..30,y3=-50..10,color=[red],

> scaling=constrained):

I will now finally display the graph of all three solutions
> .

> display([pp1,pp2,pp3]);



Appendix D

My Solution Movie

The following code will show the program that I used to generate a movie of the

captured planet problem I looked at.

> restart:with(plots):with(DEtools):with(plottools):

Below I will define the masses of the three planets.
> m1:=1:

> m2:=1:

> m3:=1/25000:

Now I will define the 12 equations of the dynamical system
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> eq1:=t->diff(x1(t),t)=vx1(t):

> eq2:=t->diff(vx1(t),t)=-m2*((x1(t)-x2(t))/

> (((x1(t)-x2(t))^2+(y1(t)-y2(t))^2)^(3/2)))-

> m3*((x1(t)-x3(t))/((x1(t)-x3(t))^2+

> (y1(t)-y3(t))^2)^(3/2)):

> eq3:=t->diff(x2(t),t)=vx2(t):

> eq4:=t->diff(vx2(t),t)=-m1*(x2(t)-x1(t))/

> (((x2(t)-x1(t))^2+(y2(t)-y1(t))^2)^(3/2))-

> m3*(x2(t)-x3(t))/((x2(t)-x3(t))^2+

> (y2(t)-y3(t))^2)^(3/2):

> eq5:=t->diff(y1(t),t)=vy1(t):

> eq6:=t->diff(vy1(t),t)=-m2*(y1(t)-y2(t))/

> ((x1(t)-x2(t))^2+(y1(t)-y2(t))^2)^(3/2)-

> m3*(y1(t)-y3(t))/((x1(t)-x3(t))^2+

> (y1(t)-y3(t))^2)^(3/2):

> eq7:=t->diff(y2(t),t)=vy2(t):

> eq8:=t->diff(vy2(t),t)=-m1*(y2(t)-y1(t))/

> ((x1(t)-x2(t))^2+(y1(t)-y2(t))^2)^(3/2)-

> m3*(y2(t)-y3(t))/((x2(t)-x3(t))^2+

> (y2(t)-y3(t))^2)^(3/2):

> eq9:=t->diff(x3(t),t)=vx3(t):

> eq10:=t->diff(vx3(t),t)=-m1*(x3(t)-x1(t))/

> ((x1(t)-x3(t))^2+(y1(t)-y3(t))^2)^(3/2)-

> m2*(x3(t)-x2(t))/((x3(t)-x2(t))^2+

> (y3(t)-y2(t))^2)^(3/2):

> eq11:=t->diff(y3(t),t)=vy3(t):

> eq12:=t->diff(vy3(t),t)=-m1*(y3(t)-y1(t))/

> ((x1(t)-x3(t))^2+(y1(t)-y3(t))^2)^(3/2)-

> m2*(y3(t)-y2(t))/((x3(t)-x2(t))^2+

> (y3(t)-y2(t))^2)^(3/2):

Below I will define the initial conditions.



> X1:=1:Y1:=0:

> VX1:=-1/(2*m1)*m3*VX3:VY1:=.5-1/(2*m1)*m3*VY3:

> X2:=-1:Y2:=0:

> VX2:=-1/(2*m2)*m3*VX3:VY2:=-.5-1/(2*m2)*m3*VY3:

> X3:=8:Y3:=8:

> VX3:=-.3:VY3:=0:

The following commands begin to generate the movie.
> g:=dsolve({eq1(t),eq2(t),eq3(t),eq4(t),eq5(t),
> eq6(t),eq7(t),eq8(t),eq9(t),eq10(t),eq11(t),

> eq12(t),x1(0)=X1,x2(0)=X2,vx1(0)=VX1,vx2(0)=VX2,

> y1(0)=Y1,y2(0)=Y2,vy1(0)=VY1,vy2(0)=VY2,

> x3(0)=X3,y3(0)=Y3,vx3(0)=VX3,vy3(0)=VY3},
> {x1(t),x2(t),y1(t),y2(t),vx1(t),vx2(t),
> vy1(t),vy2(t),x3(t),y3(t),vx3(t),vy3(t)},
> type=numeric,output=listprocedure);

I will now determine the number of frames for the movie.

> p:=2500:
> gx1:=subs(g,x1(t)):gy1:=subs(g,y1(t)):

> gx2:=subs(g,x2(t)):gy2:=subs(g,y2(t)):

> gx3:=subs(g,x3(t)):gy3:=subs(g,y3(t)):

Next I will generate the frames for the movie
> for i from 0 to p do

> px1[i]:=gx1(-(i-1)):py1[i]:=gy1(-(i-1)):

> px2[i]:=gx2(-(i-1)):py2[i]:=gy2(-(i-1)):

> px3[i]:=gx3(-(i-1)):py3[i]:=gy3(-(i-1)):

> pic1[i]:=pointplot([[px1[i],py1[i]]],symbol=circle):

> pic2[i]:=pointplot([[px2[i],py2[i]]],symbol=circle):

> pic3[i]:=pointplot([[px3[i],py3[i]]],symbol=box):

> end:

Finally I will display the movie



> display(seq(display([pic1[i],pic2[i],pic3[i]]),i=0..p),

> insequence=true,scaling=constrained);
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